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Abstract

Spatial configurations tend to change. Dealing with spatial representations often means

dealing with changing representations. Change in state for qualitative spatial represen-

tation languages has been analyzed through transition graphs in which relations form

conceptual neighbourhoods via potential motion. Continuity has remained an implicitly

assumed notion for any such understanding of motion. The work described in this the-

sis is concerned with formalizing an intuitive notion of spatio-temporal continuity for a

qualitative theory of spatial change.

Taking over a theory for spatial regions, I extend it for space-time. A mereotopological

spatio-temporal theory based on space-time histories is developed. I formalize the intuitive

notion of spatio-temporal continuity and christen it strong firm continuity. Continuous

transitions in mereotopology for space-time histories are investigated.

For strong firm continuity, transition rules for spatio-temporal histories are formulated.

The conceptual neighbourhood for the spatial representation language RCC-8 specifies

which transitions are continuous, and in its original presentation was simply posited with-

out any proof of correctness. Formal proofs for the non-existence of transitions i.e., tran-

sitions absent from the RCC-8 conceptual neighbourhood are presented here.
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Chapter 1

Introduction

Moving around the environment is one of the primary tasks which human beings and an-

imals accomplish equally well. In the animal kingdom as a whole, reasoning about space

is probably the most common and basic form of intelligence [Davis, 1990]. For human

beings, spatial reasoning, the representation and reasoning about space is a particularly

powerful and accessible mode of cognition [Piaget and Inhelder, 1967; Davis, 1990]. In

our every day interaction with the physical world, spatial reasoning appears to be driven

by qualitative abstractions rather than complete quantitative knowledge a priori [Escrig

and Toledo, 1998b]. Therefore, Qualitative Reasoning holds promise for developing the-

ories1 for reasoning about space: indeed, the desire to reason about space more akin to

the cognitive process led to the birth of Qualitative Spatial Reasoning within Artificial

Intelligence.

Space and time are inextricably linked. Spatial configurations frequently change over

time. An obvious way to incorporate the notion of time into spatial representations is

to consider space-time histories traced by spatial objects over time as primitive entities

[Hayes, 1985a; 1985b]. Combined space-time representations for spatio-temporal reasoning

is an emerging area [Galton, 1993; 1997b; Claramunt and Thériault, 1996; El-Geresy et al.,

2000; Agouris et al., 2000; Muller, 1998b; 2002; Bittner, 2002b; 2002a]. This has inspired

the work described in this thesis.

1The word theory is used in its logical/mathematical context i.e., a set of formal axioms which specify
the properties and relations of a collection of entities, not in the natural scientist’s sense of an empirically
testable explanation of observed regularities.

1
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1.1 Motivation

Motion can be seen as a form of spatio-temporal change. Such a notion is key to our un-

derstanding of spatial relations and changes thereof. Relations form conceptual neighbour-

hoods [Freksa, 1992] through potential motion. However continuity remains an implicitly

assumed notion. Consequently what constitute continuous transitions is typically posited

rather than recovered from the theory.

1.1.1 Qualitative Continuity

Until recently, space-time continuity has remained an implicitly assumed notion within

qualitative spatial reasoning. Galton was the first to address what continuity implies for

a qualitative theory of motion [Galton, 1993]. He characterised continuity at the semantic

level [Galton, 2000a]. Muller [1998b; 1998c] had an explicit characterization of continuity

for a single component history. However Muller’s notion of continuity is inadequate (see

Section 2.6, Chapter 2). A goal of this thesis is to make explicit the intuitive notion of

spatio-temporal continuity.

1.1.2 Continuity and Transition

With a combined space-time representation, allowable transitions between spatial rela-

tions for spatial representation languages need no longer be posited. Transition rules can

be stated which can be proved correct within the theory. Muller presented transition rules

[Muller, 1998b; 1998a] that claimed to recover parts of the conceptual neighbourhood for

the Region Connection Calculus (RCC). However, Muller’s transition rules were shown to

be inadequate by Davis [2001]. Davis provided an alternative characterisation in Muller’s

language for space-time histories [Davis, 2000], but was not strictly mereotopological

(see Section 2.7.2, Chapter 2). My goal here is to formulate transition rules for space-time

histories so as to recover the conceptual neighbourhood for RCC within pure

mereotopology.

1.2 Organisation of the thesis

The principal focus of this thesis is (a) to develop a mereotopological theory of space-time

and (b) under the intuitive notion of spatio-temporal continuity, recover the conceptual

neighbourhood for RCC. The thesis is organised into the following chapters:
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Chapter 2: Qualitative Spatial Representation and Reasoning

In the next chapter I shall review related work in the area of Qualitative Spatial Rea-

soning. The different approaches to qualitative spatial representation are mentioned for

completeness. The emphasis is on Region-Based Theories of Space: theories based on

regions as the primitive entity. The earliest of the region-based theories of space are those

of Leśniewski and of Whitehead. The mereotopological theory of space-time in this thesis

is based on the spatial representation language Region Connection Calculus [Randell et

al., 1992b] which is a development of Clarke’s theory. I shall therefore describe in some

detail the theories of Clarke [1981] and Randell et al. [1992b]. I am interested in change

in spatial relations over time. Any such change is spatio-temporal. I shall therefore review

the related area of qualitative spatio-temporal reasoning including qualitative continuity

and continuous transitions.

Chapter 3: Mereotopological Theory of Space-Time

A mereotopological theory of space-time is developed here. The mereotopological theory of

space-time is based on RCC and closely follows the one by Muller [1998c]. I introduce three

distinct dyadic primitives, one each for spatial, temporal and spatio-temporal connection.

In order to introduce spatio-temporal interaction, I retain the classical notion of temporal

order [Muller, 1998c] and define temporal relations similar to those of Allen for multi-piece

intervals [Allen and Hayes, 1985]. I have a simpler formulation and arrive at linearity (as

in Kamp’s Logic [1979] with overlap replaced by temporal connection) for the underlying

temporal structure.

The mereotopological theory forms the basis on which in Chapter 4 formal proofs for

non-existence of transitions i.e., transitions absent from the RCC conceptual neighbour-

hood are presented.

Chapter 4: Continuous Transitions in Mereotopology

I formalize the most common implicitly assumed intuitive notion of spatio-temporal con-

tinuity, for which I strengthen Muller’s notion of continuity and christen it strong firm

continuity.

I formulate transition rules for space-time histories. The notion of strong firm continu-

ity defined above is reinforced through additional axioms. For the RCC relations I define

durative relations and formulate transition operators. I present an analysis from first prin-

ciples of which relations can hold instantaneously under strong firm continuity and under

what conditions. Formal proofs for the non-existence of transitions i.e., transitions absent
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from the RCC-8 conceptual neighbourhood under strong firm continuity are presented.

Chapter 5: Further Work and Conclusion

I conclude by enumerating the contributions of this work. A framework based on the

mereotopological spatio-temporal theory for constructing qualitative space-time histories

from partial information is described. I shall present a critical evaluation and pointers

towards future work.



Chapter 2

Qualitative Spatial Representation

and Reasoning

This chapter is a brief overview of the field of qualitative spatial representation and rea-

soning. In recent years much research has been done in this area. An exhaustive and

complete overview here is neither feasible nor intended. Here I shall give a general under-

standing of the field and particular insight into the lines of research, which originated and

inspired the work undertaken in this thesis. More complete overviews are [Cohn, 1997;

1999] and [Vieu, 1997]. A recent survey is [Cohn and Hazarika, 2001b].

I will retrace the emergence of qualitative spatial reasoning. The guiding principles

of qualitative spatial reasoning and the different approaches to qualitative spatial repre-

sentation are highlighted. I shall discuss the closely related area of qualitative spatio-

temporal reasoning. I shall review the work done so far in formalization of qualitative

spatio-temporal continuity and continuous transitions.

2.1 What is Qualitative Spatial Reasoning?

Artificial Intelligence (AI) has as one of its central topics the ability to represent and

reason with common-sense knowledge [McCarthy, 1959]. Of our commonsensical abilities,

those involving space and spatial attributes are perhaps the most basic ones. The physical

world in which we live has a spatial extent and all physical objects are located in space.

Space is an important part of common-sense reasoning.

5
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Early forays into common-sense reasoning about the physical world involved solving

textbook problems on physics and mathematics. The earliest systems like STUDENT

[Bobrow, 1968], CARPS [Charniak, 1968], ISSAC [Novak, 1976] and MECHO [Bundy et

al., 1979] could solve a variety of problems. However, these were not adequate for reason-

ing about most commonplace physical scenarios. This gave rise to the urge for something

different from the traditional approach solely relying on mathematical equations. A sys-

tem suggested by De Kleer [1975] involving both quantitative knowledge and qualitative

information concerning the physical situation marked the starting point for qualitative

physics [Forbus, 1989; Weld and De Kleer, 1990].

Hayes’ Naive Physics Manifesto [1979; 1985a; 1985b] paved the way for establishing

qualitative physics (meantime re-christened qualitative reasoning) as an important topic

of research within AI. The Naive Physics Manifesto proposed to represent space-time with

four-dimensional histories. Based on Hayes’ histories, Forbus [1980; 1983] presented a

system, which reasoned about motion through free space by using both qualitative and

quantitative information.

Qualitative Reasoning (QR) is an approach for dealing with common-sense knowl-

edge without recourse to complete quantitative knowledge. Representation of knowledge

is through a limited repository of qualitative abstractions. The essence is to represent

continuous properties of the world by a discrete system of symbols. The resulting set of

qualitative values is termed a quantity space. The most frequently used quantity space is

the abstraction {+,−, 0}. This was successful in qualitative dynamics – the sub-field of

qualitative physics describing forces that causes systems to change over time. The bulk

of work dealt with reasoning about scalar quantities, whether they denote the level of

liquid in a tank, the height of a bouncing ball [Weld and De Kleer, 1990] or a complex

socio-economic allocation problem [Brajnik and Lines, 1988]. This success was largely due

to the possibility of exploiting the underlying partial or total order of the quantity space

using transitivity.

On the contrary, it was conjectured that this cannot be the case for qualitative kine-

matics – the sub-field of qualitative physics concerned with spatial reasoning required by

common-sense physics. Forbus, Neilson and Faltings in their seminal paper on qualita-

tive kinematics [Forbus et al., 1987] put forward the poverty conjecture. According to

the poverty conjecture there is no purely qualitative general-purpose kinematics. The

neglect of spatial reasoning in QR can be partially attributed to the poverty conjecture.

But qualitative spatial reasoning is more than just kinematics. To understand why the

poverty conjecture contributed to the delayed progress of spatial reasoning within QR, it

is worth recalling their third (and most strongest) argument:
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No Total Order: quantity spaces don’t work in more than one dimension,

leaving little hope for concluding much about combining weak information

about spatial properties.

Forbus, Neilson and Faltings [1987]

They doubt if transitivity of values (a key feature of qualitative quantity spaces) can

be exploited much in higher dimensions. Forbus et al. conclude that the space of repre-

sentations in higher dimensions is sparse and for spatial reasoning nothing weaker than

numbers will do [Forbus et al., 1987].

Despite early forays such as the Naive Physics Manifesto [Hayes, 1979; 1985a; 1985b],

the multi-dimensional nature of space has been ill addressed. However, it is exciting to note

that there has been an increasing amount of research over the last few years, which tends

to refute, or at least weaken the poverty conjecture. Qualitative spatial representations

addressing many different aspects of space including topology, orientation, shape, size and

distance have been put forward. There is a rich diversity of these representations and they

exploit transitivity as demonstrated by the transitivity tables1, which have been built for

these representations.

In spite of all these developments, in most current computerized applications, spa-

tial information is based almost entirely on numerical co-ordinates and parameters. In

contrast, everyday spatial interactions are driven by qualitative abstractions. Research

on mental models suggests that qualitative representations are an essential component

of common-sense reasoning about the physical world [Davis, 1990; Knauff et al., 1998].

For computer systems to be intelligent, with many other facets of common-sense knowl-

edge such as visual recognition, natural language processing and speech understanding,

it would need more than ad hoc understanding of space and spatial interactions. There-

fore there is increasing interest in the study of spatial concepts from a cognitive point

of view. Qualitative Spatial Representation and Reasoning is concerned with providing

calculi which allow a machine to represent and reason with spatial entities without resort

to traditional quantitative techniques prevalent within for example, computer graphics or

computer vision.

Qualitative spatial representation and qualitative spatial reasoning can be regarded

as two separate sub-fields. Representation is concerned with different forms of spatial

knowledge and how it can be formalized within a computational framework. Reason-
1Originating in Allen’s analysis of temporal relations and called the transitivity table [Allen and

Koomen, 1983], is now more appropriately renamed composition table since more than one relation is
involved and it is the composition of the relations that is being represented rather than the transitivity of
individual relations.
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ing is concerned with methods and techniques for decision-making using spatial knowl-

edge and developing efficient algorithms for doing so. The term Qualitative Spatial

Reasoning (QSR) usually subsumes both the sub-fields of representation and reasoning.

2.2 Ontological Commitments

Conventional mathematical theories of space consider points as primitive spatial entities.

Extended spatial entities such as regions are defined, if necessary, as sets of points. How-

ever, many regard considering points as primitive spatial entities a philosophical error:

No one has ever perceived a point, or ever will do so, whereas people have

perceived individuals of finite extent. So the natural philosophical approach

is to treat points and other boundaries as in some sense ideal abstractions or

limits arrived at by approximating from individuals alike in kind with those,

which are experienced.

Simons [1987, page 42]

While it may be easier to deal with points rather than with regions in a computational

framework, within QSR there is a strong tendency to take regions of space as the primitive

spatial entity [Vieu, 1997]. This ontological shift means building new theories for most

spatial and geometrical concepts. However there are strong reasons for taking regions

as the ontological primitive: (a) the spatial extension of any physical object is region-like

rather than a lower dimension entity, such as a line or a point and therefore a region-based

spatial theory would provide a more direct method for reasoning about physical objects and

(b) one can always define points, if required, in terms of regions [Biacino and Gerla, 1991;

Pratt and Schoop, 1998].

However, it needs to be admitted that at times it is advantageous to view a 3D physical

entity as a 2D or even a 1D entity. Once entities of various dimensions are admitted, a

pertinent question would be whether mixed dimension entities are allowed [Cohn et al.,

1997b; 1997a; Gotts et al., 1996; Pratt and Lemon, 1997]. A related question is how to

model the multi-dimensionality of space? One approach is to model space by considering

each dimension separately, projecting each region to each of the dimensions and reasoning

along each dimension separately. However, this approach is grossly inadequate. As shown

in Figure 2.1 below, two objects overlap when projected on to both the x and y axes

individually, when in fact they may not overlap at all. Though note that for certain

domains such an approach could be used (cf. [Walischewski, 1999]).
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y

x

Figure 2.1: Projecting regions to each dimensions and reasoning separately may give
misleading information, e.g. about disjointness of these two regions.

The nature of the embedding space, i.e. the universal spatial entity, is another im-

portant ontological commitment. Conventionally, one might take this to be Rn for some

n, but one can imagine applications where discrete (e.g. [Egenhofer and Sharma, 1993]),

finite (e.g. [Gotts, 1996d]), or non convex (e.g. non connected) universes might be useful.

Continuous space models are favoured by high-level approaches to handling spatial infor-

mation, whereas discrete, digital representations are used at the lower level. An attempt

to bridge this gap by developing a high-level qualitative spatial theory based on a discrete

model of space is [Galton, 1999]. Recently Roy and Stell [2002] show how one particular

spatial representation language for continuous space can be modified so as to permit dis-

crete spaces. For an investigation into discrete vs continuous space, see [Masolo and Vieu,

1999].

Apart from the above ontological questions there are further issues, the one with far

reaching consequences being: what primitive computations should be allowed? In a logical

theory, this amounts to deciding what primitive non-logical symbols one will admit without

definition, only being constrained by some set of axioms. One could argue that this set

of primitives should be small, not only for mathematical elegance and to make it easier

to assess the consistency of the theory, but also because this will simplify the interface

of the symbolic system to a perceptual component because fewer primitives have to be

implemented. The converse argument might be that the resulting symbolic inferences may

be more complicated or that it is more natural to have a large and rich set of concepts

which are given meaning by many axioms which connect them in many different ways.

First we need to formalize the naive world view, using whatever concepts seem

best suited to that purpose - thousands or tens of thousands of them if neces-

sary. Afterwards we can try to impose some a priori ontological scheme upon

it. But until we have the basic theory articulated, we do not know what our

subject matter is. Now, this is not to say that we should not exercise some care

in avoiding unnecessary proliferation of axioms, or some aesthetic sensibility in

designing axioms to give clean proofs and to interact as elegantly as possible.
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But these are matters of general scientific style, not ends in themselves.

Hayes [1985b, page 5]

2.3 Different Approaches to QSR

There are many different aspects to space and therefore to its representation. Qualitative

spatial representations addressing different aspects of space including topology, orienta-

tion, shape, size and distance have been put forward. There is a rich diversity of these

representations.

2.3.1 Topology

Topology is perhaps the most elemental aspect of space. Topology must form a funda-

mental aspect of qualitative spatial reasoning since it certainly can only make qualitative

distinctions. Topology has been studied extensively within the mathematical literature.

However much of it is too abstract to be of relevance to those attempting to formalize

common-sense spatial reasoning. Although various qualitative spatial theories have been

influenced by mathematical topology, there are number of reasons why such a wholesale

importation seems undesirable in general [Gotts et al., 1996].

Moreover, we are interested in qualitative spatial reasoning and not just representation,

and this has been paid little attention in mathematics.

Neither point-set nor algebraic topology is particularly well-adapted to reason-

ing of the forms such as: Given that a region a is in relation R1 to region b,

and region b is in relation R2 to region c; what relations may or must hold

between a and c?

Cohn [1999]

Of course, it might be possible to adapt the conventional mathematical formalisms,

and indeed this strategy has been adopted [Egenhofer and Franzosa, 1991; 1995; Worboys

and Bofakos, 1993]. One existing approach to topology which has been espoused by QSR is

the work to be found in philosophical logic [Whitehead, 1929; De Laguna, 1922; Woodger,

1937; Clarke, 1981; 1985; Biacino and Gerla, 1991]. This work has built axiomatic theories

of space which are predominantly topological in nature, and which take regions rather than

points as primitive.

In particular the work of Clarke [Clarke, 1981; 1985] has led to the development of

the so called Region Connection Calculus [Randell and Cohn, 1989; Randell et al., 1992b;
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1992a; Randell and Cohn, 1992; Cui et al., 1992; Cohn et al., 1994; Bennett, 1994; Gotts,

1994b; Cohn, 1995; Gotts et al., 1996; Cohn et al., 1997b; 1997a]. Clarke’s theory has also

been a basis for theory of common-sense geometry [Vieu, 1991; Asher and Vieu, 1995]. I

shall discuss these further in section 2.4.

2.3.2 Mereotopology

Mereology is the theory of parts and whole due to Leśniewski [1927 1931]. More on

mereology will be said in section 2.4.1. Mereotopology is the combination of the disciplines

of mereology and topology.

Varzi [1994; 1996] presents a systematic account of the subtle relations between mere-

ology and topology. He notes that whilst mereology is not sufficient by itself, there are

theories in the literature which have proposed integrating topology and mereology. The

notion of connection, which is the key topological notion for the qualitative description of

space, cannot be defined in terms of the mereological part-whole relation alone. Therefore

topological notions have to be added to mereology to provide an adequate qualitative the-

ory of space. There are three main strategies of integration: (a) generalize mereology by

adding a topological primitive, (b) topology is primal and mereology is a sub-theory and

(c) topology as a specialised domain-specific sub-theory of mereology.

Borgo et. al. [1996] generalize mereology and add the topological primitive SC(x): x is

a self-connected (one-piece) spatial entity, to the mereological part relation. Alternatively

a single primitive can be used as in [Varzi, 1994]: x and y are connected parts of z. The

main advantage of separate theories of mereology and topology is that it allows collocation

without sharing of parts. This is not possible in the remaining two approaches.

Following Clarke [1981], the theories of Randell et. al [1992b] and Asher and Vieu [1995]

are based on a single topological primitive C(x, y): x and y are connected. One defines

the parthood relation P(x, y) from C(x, y). This has the elegance of being a single unified

theory, but collocation implies sharing of parts. These theories are normally boundary-less

(i.e. without lower dimensional spatial entities) but this is not absolutely necessary (cf.

[Randell and Cohn, 1989; Gotts, 1996b]).

Eschenbach and Heydrich introduce topology as a specialised domain-specific sub-

theory of mereology [Eschenbach and Heydrich, 1995]. Restricted quantification is used

by introducing a sortal predicate Region(x). C(x, y) can then be defined as:

C(x, y) ≡def Region(x) ∧ Region(y) ∧ O(x, y)

where O(x, y) is true iff regions x and y share a part.
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The mereotopological theory discussed in this thesis is closely based on the theory of

Randell et. al [1992b]. Thus for me, topology is primal and mereology is a sub-theory.

2.3.3 Orientation

Orientation relations describe where objects are placed relative to one another. Orienta-

tion can be defined in terms of three basic concepts: the primary object, the reference

object and the frame of reference. Of the qualitative orientation calculi to be found in

the literature, certain calculi have an explicit triadic relation while others presuppose an

extrinsic frame of reference [Frank, 1992; Hernández, 1994].

Most approaches to dealing with orientation qualitatively are based on points as basic

spatial entities. Frank [1992] suggested different methods of describing cardinal direction

of a point with respect to a reference point in a geographic space i.e., directions are in

form of ‘north’, ‘east’, ‘south’ and ‘west’. Freksa defined the direction of a located point to

a reference point with respect to a perspective point [Freksa, 1992]. Within this approach,

three axes are used, one is specified by the perspective point and the reference point, the

other two axes are orthogonal to the first one and are specified by the reference point and

the perspective point respectively. These axes define 15 different ternary base relations.

Of those with explicit triadic relations it is especially worth mentioning the work of

Schlieder [1993], following earlier work by Goodman and Pollack [1993], who develops

a calculus based on a function which maps triples of points to one of three qualitative

values, +, 0 or −, denoting anticlockwise, co-linear and clockwise orientations respectively.

Schlieder also developed a calculus for reasoning about the relative orientation of pairs of

line segments [Schlieder, 1995].

A triadic orientation calculus, based on a relation CYCORD(x, y, z) which is true

(in 2D) when x, y, z are in a clockwise orientation, shows how a number of qualitative

calculi can be translated into the CYCORD system [Röhrig, 1994], whose reasoning system

(implemented as a constraint logic program) can then be exploited. A refinement of the

theory, leading to an algebra of ternary relations for cyclic ordering of 2D orientations

contains 24 atomic relations, hence 224 relations, of which CYCORD relation is one [Isli

and Cohn, 1998; 2000]. Whilst orientation is clearly very important for many modes of

spatial reasoning, further consideration of this aspect of spatial information is beyond the

scope of this thesis.
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2.3.4 Distance and Size

Distance is one of the most important aspects of space. Qualitative representation of

distance is based on either some absolute scale or some kind of relative measurement. ‘A

is close to B’ is a statement of the first category, whereas a statement such as ‘A is closer

to B than to C’ is from the second category.

Of interest in this context are the order of magnitude calculi [Raiman, 1986; Mavrovouni-

otis and Stephanopoulos, 1988] developed within QR which are of the absolute kind of

representations. Among relative representations, perhaps the earliest is De Laguna’s Ge-

ometry of Solids [De Laguna, 1922]. In section 2.4.1 I say more on De Laguna’s formaliza-

tion. Another method of determining the relative size of two objects relies on being able

to translate regions (assumed to be shape and size invariant) and then exploit topological

relationships. If a translation is possible so that one region becomes a proper part of

another, then it must be smaller [Mukerjee and Joe, 1990].

Distance is closely related to the notion of orientation: e.g. distances cannot usu-

ally be summed unless they are in the same direction. Therefore it is perhaps not sur-

prising that there have been a number of calculi which are based on positional infor-

mation: a primitive which combines distance and orientation information [Frank, 1992;

Zimmermann and Freksa, 1993; Zimmermann, 1993]. The framework for representing

distance [Hernández et al., 1995] has been extended to include orientation [Clementini et

al., 1997] combining qualitative orientation and absolute distance knowledge. [Isli and

Moratz, 1999] combines qualitative orientation [Isli and Cohn, 1998] and relative distance

information. Another combined distance and position calculus is [Escrig and Toledo,

1998a]. Worth mentioning here is Liu’s qualitative trigonometry which explicitly defines

the semantics of qualitative distance and qualitative orientation angles and formulates a

representation for trigonometry [Liu, 1998].

2.3.5 Shape

Shape is an important characteristic of an object, and particularly difficult to describe

qualitatively. Qualitative formalisms for describing shape can either be constructive rep-

resentations or certain constraining approaches.

Within the constructive representation of qualitative shape, complex shapes are de-

scribed by structured combinations of primitive entities. One needs to go beyond topology,

introducing some kind of shape primitives whilst still retaining a qualitative representa-

tion. Approaches which work by describing the boundary of an object include those that

classify the sequence of different types of boundary segments [Richards and Hoffman, 1985]
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or by describing the sequence of different types of curvature extrema [Leyton, 1988] along

its contour. Alternatively one might construct a complex shaped region out of simpler ones

along the lines of constructive solid geometry, but starting from a more qualitative set of

primitives [Requicha and Boelcke, 1992]. A general curvature-based theory of qualitative

outlines in 2D is presented in [Galton and Meathrel, 1999; Meathrel and Galton, 2000;

Meathrel, 2001]. This theory subsumes the system of Hoffman and Richards [1985] and

Leyton [1988].

In a purely topological theory, very limited statements can be made about the shape of

a region: whether it has holes or interior voids or whether it is one-piece or not. The shape

abstraction primitives such as the bounding box or the convex hull have been considered

briefly within the 9-intersection model [Clementini and Di Felice, 1997] whilst the latter

technique has been investigated extensively within the RCC calculus [Cohn, 1995; Davis

et al., 1999]. In section 2.4.3 I shall further discuss shape description using RCC.

2.4 Region-Based Theories of Space

Formal region based theories of space date back to the early part of the 20th century.

Whitehead, in his book The Concept of Nature proposed the construction of a geometry

in which spatial regions rather than points would be basic entities [Whitehead, 1920]. In

Process and Reality he suggested that a general theory of objects, events and processes

could be developed based on the primitive relation of connectedness [Whitehead, 1929].

Since the only well-developed physical theories are formulated in terms of points in space,

Whitehead proposes the method of extensive abstraction as a method of constructing

points from regions of space. The idea is to define a point in terms of certain infinitely

nested sets of regions.

2.4.1 Early Theories

Nicod’s doctoral dissertation Geometry in the Sensible World [Nicod, 1924] developed

Whitehead’s approach. He proposed a number of highly path-breaking approaches to

constructing geometrical systems. The ones worth noting are: (a) characterization of

geometry from the point of view of being equipped with a kinaesthetic sense of one’s

own movement in space and (b) taking into account the viewpoint and perspective of an

observer in describing geometrical entities. It is interesting to note that Nicod’s thesis con-

tains a discussion of temporal relationships between intervals and proposes a classification

which is essentially the same as that adopted much later by Allen [1981].

De Laguna’s Geometry of Solids was also influenced by Whitehead [De Laguna, 1922].
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The theory is based on a triadic primitive CanConnect(x, y, z): x can connect y and z.

CanConnect(x, y, z) is true if a body x can connect y and z by simple translation i.e.,

without scaling, rotation or shape change. The primitive is extremely expressive and it is

easy to define notions such as connectedness and relative distance measures.

Contemporary with Whitehead, the Polish logician and philosopher Leśniewski pre-

sented mereology – a formal theory of the part-whole relation [Leśniewski, 1927 1931].

Leśniewski presented mereology in his own logical calculus, which he called ontology – a

calculus based on principles which are rather different from those of standard predicate

calculus. A full description of Leśniewski’s ontology is beyond the scope of this thesis (see

[Simons, 1987] for a detailed account).

However, mereology is not bound to the form in which it was originally presented.

Mereology as understood today is a formulation due to Tarski [1929] and is built on the

single primitive relation P(x, y): x is a part of y. Building on Leśniewski’s mereology

by introducing a new sphere primitive, Tarski gave a theory of the Geometry of Solids

[Tarski, 1929], which is embedded by means of definition into an axiomatisation of ele-

mentary Euclidean geometry (as given in [Tarski, 1959]). In The Axiomatic Method in

Biology, Woodger [1937] presents proofs of a number of theorems derivable from the ax-

ioms of mereology (as presented by Tarski). A shortcoming of the theory of mereology,

based as it is on the part relation, is that no distinction can be made between the re-

lations of connectedness and overlapping: if two regions do not overlap they are simply

discrete! Leonard and Goodman [1940] devised a formalism which they called Calculus of

Individuals, based upon a predicate that holds when two individuals are discrete.

2.4.2 Clarke’s Calculus of Individuals

A theory more expressive than that of Leonard and Goodman [1940] and simpler than that

of Tarski, is Clarke’s formalism based on connectedness [Clarke, 1981; 1985]. Clarke’s

intended interpretation was spatio-temporal. Clarke took as his primitive C(x, y): the

notion of two regions x and y being connected. Apart from axioms to ensure C is reflexive

and symmetric, Clarke had an axiom of extensionality. The axiom of extensionality states

that if two regions are connected to exactly the same other regions then they must be the

same. From the C relation, Clarke defines the relation of part to whole (or which we call

parthood) and several other useful spatial relations as enumerated in Table 2.1 below.

Clarke defines a fusion operator analogously with Leśniewski’s sum [Leśniewski, 1927

1931]. The fusion of a set of regions X is that region which is connected to all and only

those regions that are connected to at least one region in the set. The fusion operator f
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Relation Interpretation Definition
DC(x, y) x is disconnected from y ¬Cxy
P(x, y) x is a part of y ∀z[C(z, x) → C(z, y)]
PP(x, y) x is a proper part of y [P(x, y) ∧ ¬P(y, x)]
O(x, y) x overlaps y ∃z[P(z, x) ∧ P(z, y)]
DR(x, y) x is discrete from y ¬O(x, y)
EC(x, y) x is externally connected to y [C(x, y) ∧ ¬O(x, y)]
TP(x, y) x is a tangential part of y [P(x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)]]
NTP(x, y) x is a nontangential part of y [P(x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)]]

Table 2.1: Defined relations in Clarke’s theory.

is defined as follows:

x = f(X) ≡def ∀y[C(y, x) ↔ ∃z[z ∈ X ∧ C(y, z)]]

The theory also contains an axiom ensuring that for every non-empty set of regions

a fusion region exists. Thus the fusion operator can be seen to be only partial. In a

standard first-order theory all functions are assumed to be total. Clarke introduces a

slight modification into the logical interpretation of quantification in his theory. The rule

of universal quantification is revised so that one can only replace the variable either by

an individual constant or a complex term τ for which it is provable that ∃x[x = τ ]. This

restriction may be regarded as a rudimentary sort theory: quantifiers range over a sort

region and all individual constants refer to this sort [Bennett, 1997]. However functions

(such as f) may have as their value either a region or an entity ∅ whose sort is disjoint

from region.

Clarke defines functions similar to the Boolean operators using f . The lack of a null

region means the functions do not form a Boolean algebra and therefore the functions are

termed quasi-Boolean. The quasi-Boolean functions are sum(x, y): the sum of x and y;

prod(x, y): the intersection (product) of x and y and compl(x): the complement of x.

sum(x, y) ≡def f({z|(P(z, x) ∨ P(z, y))})

prod(x, y) ≡def f({z|(P(z, x) ∧ P(z, y))})

compl(x) ≡def f({y|¬C(y, x)})

Clarke defines a set of topological operators viz. interior, closure and exterior as

functions from regions to regions. In Clarke’s system it is possible to distinguish regions

having the properties of being (topologically) closed or open2. An additional axiom con-

2A closed region is one that contains all its boundary points (more correctly all its limit points), whereas
an object is open if it does not contain any of its own boundary points.
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cerning these topological functions is given. The axiom asserts: (a) every region has a

non-tangential part and thus an interior (remembering that in Clarke’s theory a topo-

logical interpretation is assumed) and (b) the product of two open regions is itself open.

Clarke’s system has the odd result (from a commonsense view point) that if a body maps

to a closed region of space, then its complement is open and the two are disconnected and

not touching!

Clarke subsequently extended his original theory of spatial regions by the introduction

of points through extensive abstraction. Points are not basic entities of the system but

are identified with certain sets of region. Clarke axiomatised a set of conditions for a set

of regions to be points. Biacino and Gerla [1991] noted that Clarke’s treatment of points

leads to a collapse of connection C to O as under the given axiomatisation every pair of

connected regions must overlap!

2.4.3 Region Connection Calculus

The Region Connection Calculus (RCC) is a modification and development of Clarke’s

original theory. The basic part of the formal theory assumes a dyadic relation: C(x, y) to

mean that region x is connected to region y. C can be given a topological interpretation

in terms of points incident in regions3. In this interpretation, C(x, y) holds when the

topological closures of regions x and y share at least one point. Clarke’s topological

interpretation of C(x, y) is different in that regions x and y themselves share a point.

Actually, given the disdain of the RCC theory as presented in [Randell et al., 1992b] for

points, a better interpretation, given some suitable distance metric, would be that C(x, y)

means that the distance between x and y is zero (c.f. [Stell and Worboys, 1997]). This

has the effect of collapsing the distinction between a region, its closure and its interior,

which it is argued has no relevance for the kinds of domain with which QSR is concerned.

Unlike Clarke, RCC does not introduce the topological distinctions between the types

of regions assumed by the theory. According to Randell et. al [1992b] it seems odd

to have open, semi-open and closed regions as a model for regions. Such a topological

distinction also reflects a general concern that a remoteness exists between the facts of

actual observation and the descriptive languages used. To bridge this gap, there has

been strong interest within Philosophy in developing languages with a clear primitive

observation or phenomenal content [Hamblin, 1971]. From the standpoint of our naive

understanding of the world a topological structure distinguishing between open, semi-

open and closed regions is arguably too rich for our purpose. I base my mereotopological

theory on RCC.
3If one wants to think of regions as consisting of sets of points.
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C(x, y) is surprisingly powerful. It is possible to define many predicates and func-

tions which capture interesting and useful topological distinctions. Following Clarke the

mereological relation of parthood P(x, y) is defined as:

P(x, y) ≡def ∀z[C(z, x) → C(z, y)]

The definition of parthood requires space not to be discrete. According to RCC any

region connected to an atomic region is connected to the complement of that region. If

space is discrete, the above definition for P would make an atomic region part of its

complement!4 RCC is based on the presumption that space is not discrete.

The parthood relation is used to define proper-part (PP), overlap (O) and disjoint

(DR). Further, DC,EC,PO,EQ,TPP and NTPP i.e., disconnected, externally connected,

partial overlap, equal, tangential proper-part and non-tangential proper-part respectively

are defined. These relations, along with the inverses for the last two viz. TPPi and NTPPi,

constitute a Jointly Exhaustive and Pairwise Disjoint (JEPD) set of base relations referred

to as RCC-8.

b
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NTPP(a,b)TPP(a,b)
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Figure 2.2: Lattice defining the subsumption hierarchy of dyadic relations defined in terms
of C. The pictorial representation of eight base relations is included below the lattice.
From [Randell et al., 1992b].

4Note that in the original formulation of Clarke and that of Asher and Vieu, since the topological
interior function is defined, this notion of part does not force a non-atomic interpretation.
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All the relations defined in terms of C can be embedded in a relational lattice with

the top element interpreted as tautology and the bottom element as contradiction. The

relational lattice along with the pictorial representations of the eight base relations is

shown in Figure 2.2. Note the distinction between C(x, y) and O(x, y). In the latter

case, but not necessarily in the former, there is a region that is a part of both x and y.

The lattice is used, in conjunction with many sorted logic LLAMA [Cohn, 1983; 1987]

to implement a resolution-based automated reasoning system for the theory [Randell and

Cohn, 1992].

A formal semantics for RCC has been given by [Gotts, 1996a; Dornheim, 1995; Stell

and Worboys, 1997]. Furthermore, a canonical model for arbitrary ground Boolean wffs

over RCC-8 atoms has been proposed [Renz and Nebel, 1998] which is then utilised in a

procedure to generate an actual 2D or 3D interpretation. He used the canonical model to

transform the modal encoding to propositional logic, and since some relations transform

to a tractable fragment of propositional logic, he thus identifies a tractable fragment of

RCC-8.

All regions in a particular model of the axioms are of the same dimensionality as

the universal region, u, assuming u itself to be of uniform dimensionality. This follows

from the fact that RCC includes an axiom that all regions have a NTPP [Bennett, 1997;

Cohn et al., 1997a; Gotts, 1996a]. One source of the difficulties arising is the fact that

within RCC there is no way to refer directly to the boundary of a region or to the dimen-

sionality of the shared boundary of two EC regions, or to any relations between entities

of different dimensionalities. There has been a tendency in much of the work involving

qualitative spatial reasoning to assume, if only implicitly, that the spatial entities con-

sidered in any one theory should have the same dimension. In cases where reasoning

about dimensionality becomes important, RCC and related systems based on C are not

very powerful5. The INCH calculus [Gotts, 1996b] treats points and spatially extended

entities as specializations of the more general notion of a spatial extent. It aims to im-

prove on the expressiveness of connection-based calculi such as RCC, while avoiding the

counter-intuitive consequences of a point-set approach.

Another proposal addressing the problem of representing and reasoning about regions

of different dimensionality (though still not of mixed dimensionality) is [Galton, 1996].

Galton adopted an axiomatic approach, building on a variant of Classical Extensional

Mereology (as recounted in [Simons, 1987]), through use of the mereological part rela-

tion P(x, y) and a topological boundary primitive B(x, y): x bounds y. [Galton, 1996]

5One way of reasoning about regions of different dimensionality would be to impose a sort structure
(one sort for each dimension) and essentially taking a copy of the theory for each dimension-sort.
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leads towards the desired intuitive picture of a strictly linear hierarchy of dimensions, but

stopped short of constructing the desired hierarchical structure of dimensions. Other the-

ories which introduce the notion of boundaries of regions explicitly include [Varzi, 1994;

Smith, 1997] and [Randell and Cohn, 1989].

Taxonomies of topological properties and relations can be defined using the single

predicate C(x, y). Apart from the simple RCC-8 relations, the primitive C(x, y) can be

used to define many more predicates. For example one could define predicates which

count the number of times two regions touch. In a series of papers, [Gotts, 1994a; 1994b;

Gotts et al., 1996; Gotts, 1996c], Gotts sets himself the task of distinguishing a ‘doughnut’

(a solid one piece region with a single hole). It is shown how under a restrictive set of

assumptions about the topological properties of the regions in general, and the target

region in particular, all shapes depicted in Figure 2.3 can be distinguished.

(b)(a) (d,e)(c)

(f) (g) (h) (i) (j)

A doughnut with a

degenerate hole-surround

TorusDoughnut (or Solid Torus) Two doughnuts with degenerate holes

Double doughnut Loop Cylinder-surface Block minus block

(topologically, a solid block)
Doughnut with gap

Figure 2.3: It is possible to distinguish all the above shapes using C alone.
From [Gotts, 1994b]

Another range of topological distinctions between one-piece (CON) regions can be

made (under certain assumptions) using C. As shown in Figure 2.4, a region, if it is

connected, may or may not be interior connected (INCON); meaning that the interior of

the region is all of one piece. It is relatively easy to express this property (or its converse)

in terms of C. However INCON does not rule out all regions with anomalous boundaries,

and in particular does not exclude the regions (d,e,f) of Figure 2.3, which do have one-

piece interiors, but which nevertheless have boundaries which are not (respectively) simple

curves or surfaces, having anomalies in the form of points which do not have line-like

(or disc-like) neighbourhoods within the boundary (i.e. which are locally Euclidean). It

appears possible using C(x, y) to define a predicate WCON that will rule out the anomalous

cases of Figure 2.3, but it is by no means straightforward and it is not demonstrated

conclusively in [Gotts, 1994b] that the definitions do what is intended, as is pointed out

in [Cohn et al., 1997b].
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CON, not INCON or WCONCON, INCON and WCON CON and INCON, not WCON

Figure 2.4: Different types of CON region. From [Gotts, 1994b]

It is worthwhile to point here that [Cohn and Varzi, 1998] studied three distinct fami-

lies of theories, corresponding to the different ways of interpreting the connection relation

vis-a-vis the options made available by the open-closed distinction. The classification of

varieties of topological connection is extended further in [Cohn and Varzi, 2003] by consid-

ering a second, orthogonal dimension: the strength of the connection based on conduits.

Four cases of strong connection are identified (corresponding to a,b,c,d in Figure 2.5).

Considering the notion of multi-piece regions leads to the idea that the degree of con-

nection between the various components of a multi-piece region is a third dimension of

variation of connection relation. Four variations of connection between x and y are based

on whether some or all components of x are connected to some or all components of y

(corresponding to α, β, γ, δ in Figure 2.5).

32

α β γ δ

a

b

c

d

Figure 13. Varieties of multiple connection.

τ-fusion of the avenues and y the τ-fusion of the streets. In the case of a

city like Manhattan only the weaker relationship Cγ,κ,τ(x,y) holds, because

only Broadway extends all the way to the southernmost street of the is-

land. The τ-fusions of all American rivers and all American states stand in

a Cβ,κ,τ-relationship, since every river is connected to some state and vice

versa. Finally, an example of Cα,κ,τ is afforded by the relationship between

the τ-fusion of all airplanes and the τ-fusion of all airports. At any time,

some airplane is connected to (at) an airport, though there is no guarantee

that this holds for all airplanes.

Two final remarks are in order. First, we have been careful to define

these relations so that they are symmetric: the first and last definitions

have quantifiers of the same type, which naturally commute, whereas the

other definitions contain a “vice versa” conjunct. On the other hand, the

first two definitions yield reflexive relations but the third and fourth do

Figure 2.5: Varieties of multiple connection, based on whether some or all components of
one is connected to some or all components of the other. The different rows correspond
to the type of strong connection. From [Cohn and Varzi, 2003].

RCC theory has shown that many interesting predicates can be defined once one takes

the notion of a convex hull of a region (or equivalently, a predicate to test convexity)

and combines it with a topological representation. The theory axiomatizes an additional
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primitive function conv(x): the convex hull of x. The above tasks of distinguishing cases

of surrounding and containment becomes almost trivial once the conv(x) primitive is in-

troduced. The additional relations defined using conv allow one to specify whether one

region is inside, partially inside or outside another. By computing the topological rela-

tionships between the shape itself and the different components of the difference between

the convex hull and the shape, one can distinguish many different kinds of concave shapes

[Cohn, 1995]. A refinement to this technique exploits the idea of recursive shape descrip-

tion [Sklansky, 1972] to describe any non convex components of the difference between the

convex hull and the shape. The convex hull is clearly a powerful primitive and in fact it

has recently been shown [Davis et al., 1999] that this system essentially is equivalent to an

affine geometry: any two compact planar shapes not related by an affine transformation

can be distinguished by a constraint language of EC,PP and the conv primitive.

2.4.4 Asher and Vieu’s Theory

Asher and Vieu [1995] with an aim to develop the foundations of a common-sense geometry

also give a mereotopological system based on Clarke’s Calculus of Individuals. The original

interpretation of C(x, y) is retained, though the fusion operator is discarded, it is made first

order and several errors are corrected. A significant feature of Asher and Vieu’s theory is

the notion of weak contact and strong contact. They qualify the standard interpretation

of connection and make distinction between connection such as ‘relation between a glass

and the table on which it is standing’ with that from ‘relation between the stem of the

glass and the cup of the glass’ [Asher and Vieu, 1995]. The former is an example of weak

contact whilst the latter is of strong contact. Contrary to the RCC interpretation, [Asher

and Vieu, 1995] argue that differentiating between an individual, its closure and its interior

is cognitively important.

On our point of view, it is on the contrary cognitively important to be able

to view material objects as closed individuals and their complements as open

ones, so that their interpretations do not share any point. Indeed, we do not

want the the air around the glass to have a ‘glass boundary’ belonging to it,

that is why in RT0, the glass and the air are in weak contact.

Asher and Vieu [1995]

The distinction is captured through incorporation of notions of open and closed sets

from point-set topology into their mereotopology. For any region there is a minimal open

region containing it. This is the smallest neighbourhood of the region. Thus, in contrast
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to RCC, space is not allowed to be dense. However, based on the connection predicate

C(x, y), Asher and Vieu define parthood P(x, y) as done in RCC. Use of the same parthood

definition (which gives rise to the requirement in RCC that space be dense) explains the

major distinction between the two theories – for Asher and Vieu a region is not connected

to its complement, whereas for RCC it is.

2.4.4.1 Muller’s Extension

Muller has taken over the theory of Asher and Vieu [1995] and extends it to space-time

[Muller, 1998b; 1998c; 1998a]. Taking up the idea of spatio-temporal histories [Hayes,

1985a; 1985b], Muller presents a mereotopological model in which the primitive entities

are spatio-temporal regions, on which spatio-temporal and temporal relations are defined.

The expressive power of the theory allows for definition of complex motion classes such as

those expressed by motion verbs in natural language.

Of Asher and Vieu’s theory, Muller retains the part dealing with notions of mereology

and classical topology, leaving aside the definition for notion of natural contact between

two objects. The spatio-temporal relations are an extension of spatial relations of [Asher

and Vieu, 1995] to space-time. Additional temporal relations are introduced to add further

structural specification. As the primitive objects are extended both in time and space, the

appropriate logics for temporal relations are close to event logics [Kamp, 1979] where con-

temporaneous entities need not be equal. Besides a classical temporal precedence relation

<t , a primitive temporal connection <> (a connection with almost the same behaviour as

C(x, y) but only on a temporal level) is introduced. With these it is possible to distinguish

a temporal overlap from a simple temporal contact.

The notion of a temporal slice TS(x, y): x is a temporal slice of y (i.e., the maximal

component part corresponding to a certain time extent) introduced by Muller is significant

for spatio-temporal interactions particularly to define relations changing through time and

recover some concepts of relative spatial localisation. However it is not clear using Muller’s

extension how to express statements such as ‘John is at the same place where Mary was’,

which is of considerable importance for any theory for spatio-temporal reasoning. In the

thesis I extend the mereotopological theory to include a purely spatial connection relation

(cf. Section 3.2.1, Chapter 3).

Perhaps the most important contribution of Muller’s mereotopological theory of space-

time was an explicit qualitative definition of continuity. More will be said about that in

section 2.5.
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2.4.5 Other Region-Based Theories

Egenhofer’s n-intersection Model

An alternative approach to representing and reasoning about topological relations has

been promulgated via a series of papers [Egenhofer, 1989; Egenhofer and Franzosa, 1991;

Egenhofer, 1994; Clementini et al., 1994; Egenhofer and Herring, 1994; Egenhofer and

Franzosa, 1995]. Three sets of points are associated with every region - its interior, bound-

ary and complement. The relationship between any two regions can be characterized by a

3x3 matrix called the 9-intersection6. Taking into account the physical reality of 2D space

and some specific assumptions about the nature of regions, there are exactly 8 matrices,

corresponding to the RCC-8 relations.

Different calculi with more JEPD relations can be derived by changing the underlying

assumptions. For example, one can reason about regions which have holes by classifying

the relationship not only between each pair of regions, but also the relationship between

each hole of each region and the other region and each of its holes [Egenhofer et al., 1994].

Alternatively, one can extend the representation in each matrix cell by the dimension

of the intersection [Clementini and Di Felice, 1995], which allows one to enumerate all

the relations between areas, lines and points. Though I use a matrix representation of

instantaneous relations in Chapter 4, Section 4.14, loosely inspired by 9-and 4-intersection

models, this approach to spatial representation is not relevant to the work in this thesis,

and nothing more need be said about it here.

Region Based Geometry

Region Based Geometry (RBG) is an axiomatic theory of qualitative configurations of

regions [Bennett et al., 2000c; 2000b; Bennett, 2001a] based on Geometry of Solids [Tarski,

1929]. The formulation of RBG is influenced by [Borgo et al., 1996] but is more elegant.

[Bennett et al., 2000b] assume only parthood and the morphological notion of a sphere

whereas [Borgo et al., 1996] employ an additional topological primitive simple region and

relations congruence and strong connection.

Tarski showed how to give a categorical axiomatisation of the geometry of regions by

adding a sphere primitive to Leśneiwski’s Mereology [Tarski, 1929] where the combination

of mereological and geometrical axioms involves set theory. In RBG, the interface is

achieved by purely 1st-order axioms. Note that geometry and mereotopology still retains

6A simpler 2x2 matrix [Egenhofer and Franzosa, 1991] known as the 4-intersection featuring just the
interior and the boundary is sufficient to describe the eight RCC relations. The 3x3 matrix allows more
expressive sets of relations to be defined since it takes into account the relationship between the regions
and its embedding space.
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the second order axioms. The elementary sub-language of RBG is extremely expressive.

In [Cristani et al., 2000] a precursor to RBG was used for describing spatial locations.

Subsequent developments appeared in [Bennett et al., 2000a] and [Bennett et al., 2000b]. A

concise but definitive version of the theory together with a detailed proof of its categoricity

is given in [Bennett, 2001a].

2.5 Qualitative Spatio-Temporal Reasoning

The connection between time and space has been a recurring topic, initially in geography

(cf. Hagerstand’s Time Geography [1967]), and more recently in computer science. Spatial

configurations tend to change. Reasoning about space often involves reasoning about

change in spatial configurations. Spatial change is spatio-temporal.

Spatio-temporal reasoning is so common in our daily life that we rarely notice

it as a particular concept of spatial analysis. When applied to computer in-

formation systems, spatio-temporal reasoning attempts to solve problems that

deal with objects that occupy space and change over time.

Egenhofer and Golledge [1998]

Taking time into account is a central issue for GIS [Egenhofer and Golledge, 1998]

and spatial databases [Peuquet, 1999]. A lot of effort is devoted to providing useful and

well-grounded models to be used as high level qualitative description of spatio-temporal

change [Egenhofer and Al-Taha, 1992; Claramunt and Thériault, 1996; Hornsby and Egen-

hofer, 2000]. Driven by cognitive approaches that characterize the processing of spatial

information in QSR, there has been work in other areas within AI such as computer vision,

robotics etc. on qualitative representation and reasoning about spatial change [Escrig and

Toledo, 1998b; Musto et al., 1999; Galton, 2000a] and spatial interactions [Pinhanez and

Bobick, 1996; Fernyhough et al., 2000; Galata et al., 2002]. Qualitative Spatio-Temporal

Reasoning (QSTR) encompasses all such techniques.

There are two basic approaches to reasoning with qualitative spatial data over time:

(a) take a snapshot viewpoint and describe dynamic behaviour as a set of temporal states

or (b) view the world as spatio-temporal histories [Hayes, 1985a]. The first approach has

been extensively investigated [Wolter and Zakharyaschev, 2000; Bennett et al., 2002] and

complexity results are discussed. Bittner and Smith [2003] propose an ontological theory

that is powerful enough to describe both complex spatio-temporal processes and enduring

entities. The theory comprehends two major categories of sub-theories: SNAP and SPAN;
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SNAP is the snapshot view and SPAN is the 4D view. The present thesis embraces

the second approach of extending a purely spatial representation language to qualitative

spatio-temporal language with relations which hold between space-time histories. My

main concern is qualitative continuity and spatial change (in particular change of state

for RCC-8 relations). I therefore review work encompassing qualitative continuity and

continuous transitions. In section 2.5.4 I shall briefly mention other approaches to QSTR

based on space-time.

2.5.1 Qualitative Spatial Change

Topological changes in ‘single’ spatial entity include: change in dimension (this is usually

‘caused’ by an abstraction or granularity shift rather than an ‘actual’ spatial change7);

change in number of topological components (for example. breaking a cup, fusing blobs of

mercury); change in the number of tunnels (e.g. drilling through a block of wood); change

in the number of interior cavities (e.g. putting a lid on a container). Galton identifies

varieties of spatial change [Galton, 2000a] based on a survey of spatial attributes.

2.5.1.1 Qualitative Motion

Change in spatial configurations over time is spatio-temporal and is the basis of motion.

Motion can be seen as a kind of spatial change.

Motion is the prototype of all spatial change (indeed of all change, change in

respect of property p being metaphorically represented as motion in p-space).

Galton [2000a, page 281]

In spite of a large amount of work in mereotopological theories as a basis for common-

sense reasoning, very little work has been done on motion in a qualitative framework.

Galton [1993; 1997b] and more recently [Muller, 1998b] have looked at motion in the more

cognitive kind of approach characterized by processing spatial information. Even though

qualitative, representation of motion as in [Hays, 1989; Rajagopalan and Kuipers, 1994]

is in a Cartesian framework while [Forbus, 1983; Davis, 1990] insist more on the concept

of dynamic processes.

Investigation of qualitative motion by Galton [1993; 1997b] is in a combined region-

based space and interval/point-based time. Muller [1998b] enriches Asher and Vieu’s

theory intended for spatial entities to achieve a formal theory for reasoning about motion.
7For example, we may view a road as being a 1D line on a map, a 2D entity when we consider whether

it is wide enough for an outsize load, and a 3D entity as we consider the range of mountains it passes over,
or the potholes and a particularly delicate cargo.
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An alternative approach is [Bennett et al., 2000a] which explores the expressive power

of RBG [Bennett et al., 2000b] to the problem of representing and reasoning about

the motion of rigid bodies within a confining environment. Motivated by the desire

to exploit decidable modal logics for spatio-temporal qualitative reasoning, a series of

rather expressive such calculi have been proposed [Wolter and Zakharyaschev, 2000;

Bennett et al., 2002] in which it is possible easily to represent restrictions on continu-

ous motion.

2.5.1.2 Transitions between Spatial Relations

In many domains we assume that change is continuous. Thus there is a requirement to

build into the spatial calculus which changes in value will respect the underlying contin-

uous nature of change. It is important to know which qualitative values or relations are

conceptual neighbours: two relations drawn from a JEPD set of relations are conceptual

neighbours if one can be transformed into the other by a process of gradual continuous

change without passage through a third relation. Networks defining such neighbours are

often called conceptual neighbourhoods in the literature following the use of the term by

[Freksa, 1992] to describe the structure of Allen’s 13 JEPD relations [Allen, 1983] according

to their conceptual closeness8.
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Figure 2.6: Pictorial representation of the envisioning axioms: conceptual neighbourhood
for RCC-8. From [Cohn et al., 1998].

For characterizing the change of state in RCC-8 (relations), the formal theory was aug-

mented with a set of envisioning axioms. These axioms specify which direct transitions

can be made in the topological relations between pairs of regions. Figure 2.6 is a picto-

rial representation of the envisioning axioms for RCC-8. The envisioning axioms can be

regarded as an instance of the conceptual neighbourhood for RCC-8. However the notion

8Note that one can lift this notion of closeness from individual relations to entire scenes via the set
of relations between the common objects and thus gain some measure of their conceptual similarity as
suggested by [Bruns and Egenhofer, 1996].
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of what constitutes continuous change is left uncharacterized. It is implicitly assumed but

never made explicit. I shall return to that in section 2.6.

2.5.2 Incorporating Time into Space

Ontological Primitive of Space-Time

In order to add time to space, an obvious and straightforward choice is to interpret entities

in space-time rather than in space alone.

Events happen in time, but also in space – they have a where as well as a when.

They are four-dimensional spatio-temporal entities. So are objects, which have

a position and shape and composition at a given time or period, which may

differ at other times, and have temporal as well as spatial boundaries. All of

which suggests that a basic ontological primitive should be a piece of space-

time with natural boundaries, both temporal and spatial. I will call these

things histories.

Hayes [1985b]

In fact, Clarke’s intended interpretation of his region-based calculus was spatio-temporal

[Clarke, 1981; 1985]. Clarke’s spatio-temporal interpretation followed Whitehead [White-

head, 1929]. Starting with [Russell, 1914], there are a few authors [Quine, 1960; Carnap,

1958] and more recently [Hayes, 1985b; Vieu, 1991; Muller, 1998c] who consider whole

space-time histories.

Spatio-temporal ontological questions have only begun to be addressed, and conse-

quently, little work has been done on qualitative representations of space-time. Carnap

had defined languages in which primitive entities were spatio-temporal [Carnap, 1958],

but he stopped short of any characterisation of their properties. Hayes’ theory of space-

time [Hayes, 1985a] is the closest attempt to a spatio-temporal theory. To the best of our

knowledge [Muller, 1998c] is the first attempt at a full mereotopological theory based on

space-time as a primitive.

Other Approaches

The notion of time can be also incorporated into space by some combination of spatial

and temporal logics. There exists a wide spectrum of temporal languages [Allen, 1983;

Gabbay et al., 1994; van Benthem, 1996] and a variety of spatial formalisms [Clarke,

1981; Randell et al., 1992b; Clementini et al., 1994; Lemon and Pratt, 1998]. Effective

reasoning procedures have been developed and implemented for temporal [Plaisted, 1986;
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Kesten et al., 1993] as well as spatial formalisms [Bennett, 1994; Haarslev et al., 1999;

Renz and Nebel, 1999]. For incorporation of time into space, the next logical step would

be to have a combination of these two streams of reasoning. In fact, there have been

attempts to have spatio-temporal hybrids [Guesgen and Hertzberg, 1992; Bennett and

Cohn, 1999]. The most recent attempt at a spatio-temporal representation and reasoning

based on RCC-8 is [Wolter and Zakharyaschev, 2000]. Taking a temporal logic T and a

spatial logic S, they integrate the intended models of T and S into a multi-dimensional

spatio-temporal structure driven by semantic considerations. Next they combine T and S

into a super-language which is capable of speaking about these structures, and a variety

of ways to combine the languages. Thus they are able to create a family of expressive but

decidable spatio-temporal formalisms.

Galton [1993; 1995] brought together a formal (mixed interval/point-based) model of

time, comprising a fundamental set of temporal entities endowed with a temporal ordering

relation, with a formal model of space based on regions. Galton identifies transitions as

durative or instantaneous depending on whether the initial and final states are separated

by an interval or an instant and defines eight different transition operators [Galton, 2000b].

This raises the question as to whether representing continuous motion on spatial regions

requires a mixed temporal ontology of instants and intervals. In the thesis I explore the

possibility of expressing transitions without introducing temporal points.

In yet another approach to incorporate time into spatial reasoning, the RCC formalism

[Randell et al., 1992b] contained a function space(x, t), representing the space occupied

by object x at a moment of time t. Alternatively, the connection relation C(x, y) could be

made ternary C(x, y, t) to mean region x is connected to region y during time t. I do not

explore these approaches any further.

2.5.3 Qualitative Simulation

Using conceptual neighbourhood diagrams, it is easy to build a qualitative spatial simula-

tor [Cui et al., 1992]. Such a simulator takes a set of ground atomic statements describing

an initial state and constructs a tree of future possible states. Continuity alone does not

provide sufficient constraints to restrict the generation of next possible states to a reason-

able set in general. Domain specific constraints are required in addition. The construction

of an envisioner [Weld and De Kleer, 1990] akin to the transition calculus approach of [Goo-

day and Cohn, 1996] would also be possible. It is an event-based approach to qualitative

simulation where the behaviour of a system with time is measured in terms of landmark

events i.e., events that result in interesting changes in the system being modelled rather

than a sequence of qualitative states.
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Qualitative Physical Fields [Lundell, 1996] extends Qualitative Process Theory [Forbus,

1984] to include qualitative spatio-temporal processes for e.g., modelling heat flow between

topologically connected sunny and shaded regions and inferring the evolution of warm and

cold regions. Perhaps Process Grammars [Leyton, 1988] is the most widely cited change-

based qualitative formalization. Given two shapes, one can infer sequences of processes

which could cause one to change into the other. Another work on ascertaining the causal

history of shapes and of more relevance to region-based theories of space is an analysis by

[Egenhofer and Al-Taha, 1992]. It identifies which traversals of a topological conceptual

neighbourhood correspond to processes such as expansion of a region, rotation of a region

etc. Whilst qualitative simulation is clearly an important mode of QSTR, any further

discussion is beyond the scope of this thesis.

2.5.4 Other approaches to QSTR based on space-time

Qualitative representation and reasoning over episodes in space [El-Geresy et al., 2000] is

the closest to the spatio-temporal entities of our mereotopological theory of space-time.

The episode of an object is the consistent behaviour of a spatial object within a duration of

time when this behaviour can be described as being consistent (i.e., described by a single

function). The approach is limiting as only well-behaved approximations of representation

of spatio-temporal relations are possible.

Elsewhere, there is research on reasoning about qualitative spatio-temporal relations

at multiple levels of granularity [Bittner, 2002a; 2002b]. Even though the reasoning tasks

at a given level of granularity seems similar to what I expect for my mereotopological

theory, the underlying ontology is markedly different. Bittner distinguishes the domain

of objects, and the domain of regions. Further, the domain of regions is constituted

by regions of different dimensionality: four-dimensional spatio-temporal regions, three-

dimensional spatial regions and one-dimensional temporal regions. This contrasts with

our mereotopological theory where all regions in a particular model of the axioms are of

the same dimension, as it has RCC as its basis (cf. Section 2.4.3).

2.6 Qualitative Continuity

Continuity of change is the perception of being seamless and is dependent on the granu-

larity. What seems as continuous at some level of granularity may be discontinuous at a

finer level. Nevertheless, continuity may be thought of as the intuitive idea of a gradual

variation with no abrupt jumps or gaps. A formal characterization of such an intuitive

notion of continuity for a qualitative theory of motion is what I refer to as qualitative
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continuity.

Continuity has remained an implicitly assumed notion for construction of a conceptual

neighbourhood for any qualitative spatial calculus. For example, the change of state in

RCC has been analyzed through transition graphs in which the relations form conceptual-

neighbourhoods via potential motion. Continuity remains an implicitly assumed notion.

A possible counter-example that has been much discussed by the Region Con-

nection Calculus group is when a two-part scattered region x has one part

inside y, and the other part outside y. If the inside part dwindles continuously

to a point and then disappears, we have PO transformed into DC with no in-

tervening instance of EC. The question is whether this kind of spatial change

in which a component of a region disappears, is to count as continuous.

Galton [2000a, Page 78]

Only recently, Galton [1993; 1995; 1997b] has begun to address what continuity implies

for a common-sense theory of motion. However, it characterizes continuity as a set of

logical constraints on the transitions in a temporal framework but falls short of an explicit,

generic characterization of spatio-temporal continuity.

Muller [1998b] has proposed an intuitive notion of space-time continuity that is per-

haps nearest to a qualitative understanding of motion. Any spatio-temporal region w is

qualitatively continuous just in case it is temporally self-connected and it does not make

any spatial leaps (cf. Figure 4.2, Chapter 4).

CONTINUw ≡def [CONtw ∧ ∀xu[[TSxw ∧ x <> u ∧ Puw] → Cxu]]]

Here CONtw means that temporal projection of w is a connected time interval. Other

predicates are as stated in section 2.4.4. However, for reasons discussed below, this defi-

nition of continuity is not adequate.

2.7 Continuity and Conceptual Neighbourhoods

The conceptual neighbourhood is usually built manually for each new calculus – poten-

tially an arduous and error prone operation if there are many relations. Techniques to

arrive at these automatically would be very useful. An analysis of the structure of concep-

tual neighbourhoods reported by [Ligozat, 1994] goes some way toward this goal. Ligozat

showed how the topology of temporal and spatial relations, of which the notion of con-
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ceptual neighbourhood is an important aspect, can be represented by spatial structures in

Euclidean space.

A more fundamental approach which exploits the continuity of the underlying semantic

spaces [Galton, 1997b] not only allows the construction of a conceptual neighbourhood for a

class of relations from a semantics, but also infers which relations dominate other relations:

R1 dominates R2 if R2 can hold over an interval followed/preceded by R1 instantaneously.

E.g. in RCC-8 TPP dominates NTPP and PO, while EQ dominates all its neighbouring

relations. Dominance is analogous to the equality change law to be found in traditional

QR [Weld and De Kleer, 1990] and allows a stricter temporal order to be imposed on

events occurring in a qualitative simulation [Galton, 2001]. Galton extends the conceptual

neighbourhood diagram by adding the concept of dominance between qualitative states

and formulates the dominance diagrams. The diagrams can be fundamental insights into

the structure of the domain they represent.

2.7.1 Defining Metrics on Regions

Galton [1997a; 2000a] defines a metric over space of regions and then uses the standard

epsilon-delta definition of continuity. Having a semantic grounding for continuity, it allows

one to prove the correctness of the transition graph for RCC-8 rather than just positing

it. Davis [2001] continues Galton’s approach developing a more extensive analysis of the

qualitative properties of continuous shape change where continuous is defined relative to

a metric over regions.

The different metrics considered yield different concepts of continuous shape trans-

formation. Out of the continuous transformations, the transition graph for the binary

topological relations of RCC-8 under the Hausdorff distance (see Figure 2.7) is of interest

to us here.

2.7.2 Spatial Transitions over Histories

An approach to automatically inferring continuity networks has been proposed by Muller

[1998b; 1998a]. Davis [2001] has shown that the history based definition of continuity

proposed by Muller is equivalent to continuity with respect to Hausdorff distance. Muller

claims to show that it follows from his definition that the only transitions possible for the

RCC-8 relations are the rules developed in [Cohn et al., 1998] (see Figure 2.6). Davis on

the contrary has shown in [Davis, 2001] that functions continuous in Hausdorff distance

can execute any of the transitions as in Figure 2.7.

Davis argues that Muller’s analysis of state transitions is not adequate [Davis, 2001;



Qualitative Spatial Representation and Reasoning 33

EQ

TPPi

TPP NTPP
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Figure 2.7: Transition graph for the Hausdorff metric. The significance of the arrow from
the dashed circle on the left is that every relation on the right can undergo a transition
to any relation on the left. From [Davis, 2001].

2000]. Davis provides an alternative characterisation of transitions in Muller’s first order

language over histories. It is by no means straightforward and it is not demonstrated

conclusively in [Davis, 2000] that the definitions do what is intended. Further, Davis’

characterization of transitions violate the spirit of mereotopology, as it achieves its end by

using the expressive power of first-order logic over histories to, in effect, define time instants

and spatial points. Thus it remains a challenge to find a more natural mereotopological

(purely region based) expression for transition rules that would allow the correctness of

the RCC-8 conceptual neighbourhood diagram to be proved in a pure mereotopological

theory. I take up this challenge.

Moreover, I believe it is not only the case that Muller’s transition theorems are flawed

but his definition of continuity (in Section 2.6) is not sufficient. I argue that for charac-

terising the non-transition between ECst and PPst (cf. Figure 4.4, Chapter 4), the notion

of continuity proposed in Muller [1998b] is too weak for this allows temporal pinching : a

history is allowed to disappear and re-appear instantaneously. To avoid temporal pinch-

ing, I introduce a notion of firm continuity. Independently, Muller had also revised his

definitions of continuity [Muller, 2002].

Muller’s revised definitions are not sufficient for characterizing continuity when involv-

ing transitions between pairs of histories. The following observation by Galton [2000a]

with regard to intuitive notion of continuity and continuity in the Hausdorff distance is

significant:

To find an example of a change that is in some intuitive sense continuous but

is not H-continuous9, we must look for a case where the spatial change in an

object arises not from the continuous motion of parts of the object but from

9H-continuous refers to continuity in the Hausdorff distance.
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the continuous motion of things outside the object.

Galton[2000a, page 324]

This shows that the notion of continuity in a topological theory of space-time given

by Muller needs to be reinforced through additional axioms. Bennett [2001b] gave an

explicit definition of continuity in a not so dissimilar setting. Conjuncts in his definition

have terms that relate to parts of the history and also regions outside the history10. To

completely characterise the intuitive notion of continuity we need to have account of parts

within and outside the history. This will form the focus of Chapter 4, Section 4.3.1.

10[Bennett, 2001b] do not have histories explicitly, only regions and time, but regions at a particular
time can be referred to (through modal operators) both in the past and the future.



Chapter 3

Mereotopological Theory of

Space-Time

This chapter describes a mereotopological theory of space-time. This is closely based

on the theory proposed by Muller [1998a]. Asher and Vieu’s [1995] topological theory

serves as a basis for Muller’s theory of spatio-temporal entities. The theory described here

has the Region Connection Calculus of Randell et. al [1992b] as its basis. Consequently

my language is simpler as it does not distinguish the interiors and closures of regions.

3.1 Underlying Logic and Domain of Interpretation

In common with existing formally given models of RCC [Bennett, 1997; Gotts, 1996a],

I assume that the regions denoted are regular regions. The basic entities of my theory

are non-empty regular regions of space-time. Following Hayes [1985a], space-time regions

traced by objects over time are termed histories. Figure 3.1 shows the space-time history

for a 2-D object. Note that assuming regions are regular implies all regions, including the

universal region, are of uniform dimensionality.

For n-D space, the space-time (henceforth s-t) history is a n+1 dimensional volume.

The object at any time is a temporal slice of its s-t history. One important question

about such s-t histories is whether it is possible to have a zero extent along the temporal

dimension, i.e., is it possible to have instantaneous spatial objects? This is analogous to

35
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space

time History

Temporal Slice

Figure 3.1: A space-time history is a n+1 dimensional volume for n-D space.

asking if the surface of a cube is a spatial object in standard 3-D ontology [Heller, 1990,

page 6]. The more pertinent question is the spatial analog of the above: what does it

mean for a n+1 dimensional s-t history to toggle instantaneously into a lower dimensional

spatial extent? i.e., for histories to disappear and reappear again instantaneously at the

same spatial location. This is termed temporal pinching and I shall discuss its implication

for continuity in Chapter 4. It is worthwhile to point out that even though I commit to

an ontology where objects are occurrent, I do not attempt a formal characterization of

the identity criteria, which is difficult [Wiggins, 1980] and beyond the scope of this thesis.

There are number of possibilities in the literature to cope with this (c.f. [Thomson, 1983]);

some involve considering four dimensional space-time [Heller, 1990] while others focus on

a revised theory of parts [Simons, 1987]

Following previous work within the Leeds QSR Group [Randell et al., 1992b; Gotts

et al., 1996; Cohn et al., 1997b], I do not wish to admit lower dimensional entities. For

example, in their work on spatial mereotopology all regions were of the same dimension

and Cohn et. al. did not consider boundaries as spatial entities [Randell et al., 1992b;

Cohn and Varzi, 1998]. Here too, I do not admit lower dimensional entities such as

temporal points into my ontology [Randell et al., 1992b; Gotts et al., 1996; Cohn et al.,

1997b]. Thus s-t histories may pinch to a spatial point at a temporal point, but I do not

allow explicit reference to either of these points. In Chapter 4, I shall introduce descriptive

apparatus to allow us to describe instantaneous transitions and histories which pinch to a

spatial point instantaneously.

The spatio-temporal theory presented here is a first-order theory with equality. I use

the symbol = for equality. The logical symbols of and, or, negation and implication are

denoted ∧ , ∨ ,¬ and → respectively. A definition is introduced by ≡def and will be

referred to as Di, for some i. Similarly, axioms will be named Ai and theorems Thi.

Formulae for which there are plausible informal reasons to believe that they should be

provable, although no proof has been found are labelled as conjectures and named Ci.
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Proofs of the theorems can be found in Appendix B through Appendix E. Fi refers to

formulae from cited sources and other formulae we want to discuss. For reasons discussed

in section 3.2.2.1, I employ the sorted logic LLAMA [Cohn, 1983; 1987]. Unless stated

otherwise, the arguments of all relations within our mereotopological theory of space-time

are of sort Region. For simplicity throughout the thesis, universal quantifiers scoping over

whole formulae are omitted.

As pointed out by [Cohn, 2001; Hayes, 1985b, Page 32], when presenting an axioma-

tisation the question arises as to whether it captures the intended interpretation and

intuitions. Ideally we would create a categorical theory and prove it so, as in RBG [Ben-

nett, 2001a]. This is beyond my aim, here, so I will follow the approach (propounded

in [Cohn, 2001]) of proving a variety of theorems to show that intended consequences of

the theory do indeed hold. Ultimately, the theorems concerning the RCC-8 conceptual

neighbourhood will be among these, but I will prove many other theorems on the way

which go some distance to showing the consequences of the axiomatisation.

The theory is presented as a sequence of axioms, definitions and conjectures; each

conjecture is expected to follow from the previous axioms, definitions and conjectures,

and I use a theorem prover to attempt to prove them. If the conjecture is proved, it is

regarded as a theorem and can help to prove subsequent conjectures. Failure to prove

a conjecture suggests one of two possibilities: (a) the theorem prover is unable to arrive

at the proof; or (b) axioms are too weak. Where there are plausible reasons to believe

that the conjecture should be provable (and no counter-example is available), I add the

conjecture to the theory, with the status of an axiom in that it can be used for subsequent

proofs. For b above, I formally strengthen the axiom set by additional axiom(s).

In the absence of a categorical theory, I still naturally wish to have a consistent one.

Showing consistency requires demonstrating a model of all the axioms. More will be said

about the consistency of the theory in Section 5.3.1, Chapter 5.

3.2 Mereotopological Framework

The Region Connection Calculus is the basis for the mereotopological framework. The

topological relation of connection is primal and the mereological relation of parthood is

defined.

3.2.1 Primitive Relations

As discussed in Section 2.4.3, the Region Connection Calculus (RCC) is based on a single

connection primitive. Here I have three versions of connection relation: spatial, temporal
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and spatio-temporal. As shown in Figure 3.2, the spatial, temporal and spatio-temporal

connection relations are interpreted in pure space, time and space-time respectively. Space

is shown as 1D in Figure 3.2 and subsequent illustrations, but this is simply for ease of

drawing. The defined concepts are applicable to 2D and other higher dimensional space.

y
time

a. b. c.
space space

time time

x x
y y

space

x

Figure 3.2: Connection Primitives: a. Spatial b. Temporal and c. Spatio-Temporal.
Note that these diagrams show external connection which (as detailed in section 3.2.2) is
a special (limit) case of connection.

Intuitively, spatial connection for s-t entities is the connection of their spatial projec-

tion. As shown in Figure 3.2(a), connection under spatial projection is interpreted along

the temporal axis i.e., connection on projection to an infinitesimally thin ‘temporal slice’

at right angles to the temporal axis. Spatial connection is written as Csp(x, y) : x is spa-

tially connected to y. Here, x and y are s-t regions whose closures have a spatial point

in common, though not necessarily simultaneously. Temporal connection is written as

Ct(x, y) : x is temporally connected to y. Here, x and y are s-t regions whose closures

have a temporal point in common, though not necessarily at the same place. Figure 3.2(b)

illustrates temporal connection. The spatio-temporal connection primitive, Cst(x, y) : x

is spatio-temporally connected to y (as shown in Figure 3.2(c)) is true just in case the

closures of x and y at least share a s-t point.

The axiomatisation of these connection relations are identical and closely follows the

axiomatisation of C in Cohn et al. [1997b]. The relation Cα(x, y) is reflexive and symmet-

ric. We have the following axioms:

A1. Cα(x, x)

A2. Cα(x, y) → Cα(y, x)

where α ∈ {sp, t, st}.
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3.2.2 Mereotopological Relations

The mereological relation of parthood, Pα(x, y): x is a part of y, is defined from the

topological connection relation Cα(x, y). Based on Cα, I have three distinct parthood

relations: spatial, temporal or spatio-temporal part.

D1. Pα(x, y) ≡def ∀z[Cα(z, x) → Cα(z, y)]

Parthood is reflexive (Th1) and transitive (Th2).

Th1. Pα(x, x)

Th2. [Pα(x, y) ∧ Pα(y, z)] → Pα(x, z)

The parthood relation is used to define proper-part (PPα), overlap (Oα) and discrete-

ness (DRα). Further DCα,ECα,POα,EQα,TPPα and NTPPα i.e., disconnected, externally

connected, partial overlap, equal, tangential proper-part and non-tangential proper-part

respectively can be defined. These relations, along with the inverses for the last two

viz. TPPiα and NTPPiα constitute the Jointly Exhaustive and Pairwise Disjoint (JEPD)

relations of RCC-8.

I list the definitions for these relations (adapted from [Cohn et al., 1997b]) using Cα.

D2. Oα(x, y) ≡def ∃z[Pα(z, x) ∧ Pα(z, y)]

D3. PPα(x, y) ≡def [Pα(x, y) ∧ ¬Pα(y, x)]

D4. DRα(x, y) ≡def ¬Oα(x, y)

D5. DCα(x, y) ≡def ¬Cα(x, y)

D6. ECα(x, y) ≡def [Cα(x, y) ∧ ¬Oα(x, y)]

D7. POα(x, y) ≡def [Oα(x, y) ∧ ¬Pα(x, y) ∧ ¬Pα(y, x)]

D8. EQα(x, y) ≡def [Pα(x, y) ∧ Pα(y, x)]

D9. TPPα(x, y) ≡def [PPα(x, y) ∧ ∃z[ECα(z, x) ∧ ECα(z, y)]]

D10. NTPPα(x, y) ≡def [PPα(x, y) ∧ ¬∃z[ECα(z, x) ∧ ECα(z, y)]]

In the present context, the above relations can be interpreted in either space, time

or space-time (depending on the subscript α). The classical interpretation of RCC-8

relations is not fundamentally different from the RCC-8 relations under spatio-temporal

interpretation in this thesis. However the RCC-8 relations under spatial connection have

a different bearing. For example EQsp(x, y) may be true even though x and y occupy

two distinct regions of space-time. To bring home this distinction, I present both the

interpretations next to each other. Figure 3.3(a) shows the JEPD set of RCC-8 relations

in space-time, whereas Figure 3.3(b) is the equivalent relations under spatial connection.
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Figure 3.3: JEPD set of RCC-8 relations a. under Cst connection and b. under Csp

connection.

I have EQα, where α ∈ {st, sp, t} as the main equivalence relation. In addition, I have

the notation =α as syntactic sugar for EQα to mean spatio-temporal equivalence, spatial

equivalence and temporal equivalence for α = st, α = sp and α = t respectively1.

Even though RCC is based on Clarke’s Theory, in its original manifestation it did not

include an axiom of extensionality. This is an axiom that is intended to assert that the

identity of any two objects follow from their indiscernibility with respect to some property.

Bennett [1997] was first to suggest the axiom of extensionality for RCC, based on the

connection primitive C, and he called it C-extensionality. In its present manifestation, an

axiom for C-extensionality would mean spatio-temporal equivalence under Cst. For Csp

and Ct it would imply spatial equivalence and temporal equivalence respectively. I include

the axiom of extensionality (A3) in my axiomatisation of Cα.

A3. ∀z[Cα(z, x) ↔ Cα(z, y)] → [x =α y]

In line with C-extensionality, I shall term indiscernibility with respect to parthood

relation Pα as P-extensionality. Given the above definitions, this is derivable and we have

theorem Th3.

1The subscripted equality =α, where α ∈ {st, sp, t} applies to s-t histories; if one wanted to identify it
with logical equality, one would have an axiom ∀x, y[(x = y) ↔ (x =st y)].
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Th3. ∀z[Pα(z, x) ↔ Pα(z, y)] → [x =α y]

3.2.2.1 Boolean Functions

In addition, I add the following existential axioms. In A4 the individual z is denoted x∪y

and represents the sum, whereas in A5 it is denoted x − y and represents the difference.

A6 is the axiom for existence of an individual z which represents the intersection of x

and y and is denoted x ∩ y. In A7 z represents the complement of an individual x and is

denoted x̄. We only need the spatio-temporal version of the axioms (A4 to A6) since the

spatial and the temporal versions are implied by axiom A15 (introduced in Section 3.4,

Page 48).

A4. ∃z∀u[Cst(u, z) ↔ (Cst(u, x) ∨ Cst(u, y))]

A5. ¬Pst(x, y) → ∃z∀w[(Pst(w, x) ∧ DRst(w, y)) ↔ Pst(w, z)]

A6. Ost(x, y) → ∃z∀u[Cst(u, z) ↔ ∃v(Pst(v, x) ∧ Pst(v, y) ∧ Cst(v, u))]

A7. ∀x[∃y[¬Cst(x, y) → ∃z[∀w(Cst(w, z) ↔ ¬NTPPst(w, x)) ∧

∀w(Ost(w, z) ↔ ¬Pst(w, x))]]]

Even though the above axioms (A4 to A7) characterize the Boolean functions, it is

worth noting that each of the above formulae is not purely definitional. Since all functions

must have a value, the use of the above functions carry existential commitment. A formula

that introduces a new functional symbol into a theory cannot be regarded as a definition

unless entities with appropriate properties to be values of the function are already guar-

anteed to exist as a consequence of the axioms of the theory [Bennett, 1997]. Therefore

when using the functional extension of the basic theory for automated reasoning I replace

A4 to A7 with the following explicit definitions:

D11. [z =st (x ∪ y)] ≡def ∀w[Cst(w, z) ↔ (Cst(w, x) ∨ Cst(w, y))]

D12. [z =st (x− y)] ≡def ∀w[Cst(w, z) ↔ Cst(w, (x ∩ ȳ))]

D13. [z =st (x ∩ y)] ≡def ∀u[Cst(u, z) ↔ ∃v(Pst(v, x) ∧ Pst(v, y) ∧ Cst(u, v))]

D14. [z =st x̄] ≡def ∀w[(Cst(w, z) ↔ ¬NTPPst(w, x)) ∧

(Ost(w, z) ↔ ¬Pst(w, x))]

The above functions except for sum (x ∪ y) are partial with respect to the domain of

regions. Following Randell et al. [1992b] I will employ the sorted logic LLAMA [Cohn,

1983; 1987] to make them total functions. In considering the spatio-temporal aspects of

RCC theory, I assume that there are two disjoint (and non-empty) base sorts: Region and

Null. The sort Null is added to allow arbitrary Boolean combinations of regions to be
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expressed as functions viz. when two regions do not overlap and have no region as the

intersection. Unless otherwise noted, we declare that the arguments of all relations in the

RCC theory are of sort Region. The quasi-Boolean functions are made total by letting

the result sort of the partial functions be Region∪Null. The functions can be regarded as

genuine Boolean operators over the domain Region ∪ Null.

I also introduce a constant symbol ‘U’ to denote the universe. Every region is connected

to the universe. We have the following definition:

D15. (U =st x) ≡def ∀yCst(y, x)

Next I have axioms to relate the Boolean algebra to the relational part of the theory.

Axiom A8 linking the sort literal Null and D13 implies that intersecting regions must

overlap and regions that do not overlap have a null product. This is taken from [Cohn et

al., 1997a].

A8. DRst(x, y) ↔ Null(x ∩ y)

A number of theorems for RCC-8 have been reported in [Randell et al., 1992b; Bennett,

1997]. I present here a representative set that will be used for our subsequent tasks. I

have the following theorems.

Th4. [NTPPα(x, y) ∧ Cα(z, x)] → Oα(z, y)

Th5. Pst(x, y) → Cst(y, x̄)

Th6. ECst(x, x̄)2.

Th7. ¬ECst(x, y) ↔ [Cst(x, y) ↔ Ost(x, y)]

I need to ensure that every region has a non-tangential proper part and thus avoid the

problems associated with the definition of parthood discussed in Section 2.4.3, Chapter 2.

The NTPP axiom (F1) was included by [Randell et al., 1992b] to rule out the possibility

of atomic models of the theory.

F1. ∀y∃xNTPPst(x, y).

It has been argued by Bennett [1997] to be a theorem since he presents a line of argu-

ments to demonstrate that RCC would be inconsistent in the presence of atomic regions3.

In a different setting, using an axiomatisation which is very close to the axiomatisation

here, [Düntsch et al., 2001] prove that the NTPP axiom is in fact a theorem. However,

since I do not have a machine proof using the formulation presented here, I present it here

2Here variable x ranges over sort Region but does not include the universal region U. The sort Region
have two subsorts: UniversalRegion and RegionNotUniversalRegion. Variable x in Th6 ranges over the sort
RegionNotUniversalRegion.

3Bennett argue that the NTPP axiom (F1) is derivable from other axioms of the theory including axiom
for C-extensionality A3 and axiom for complement of an individual A7.
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as a conjecture C1. We only need the st version since C1 implies the sp and t versions

using A15.

C1. ∀y∃xNTPPst(x, y).

3.2.3 Firm Connection

In order to identify instantaneous relations between histories (cf. Section 4.4, Chapter 4)

and to distinguish between pinched and non-pinched histories in a pointless mereotopology

(Section 4.1.3, Chapter 4), the categorisation of relations between certain parts of histories

is essential. This requires a stronger notion of connection than straightforward spatio-

temporal connection.

y y
x

  a.   b.

x

Figure 3.4: a. Firm and b. Non-Firm connection between two entities x and y.

I introduce the notion of firm connection corresponding to the perfect connection

amongst conduit-based connections of [Cohn and Varzi, 2003]. Figure 3.4 illustrates firm

connection and non-firm connection. A firm-connection in n-D space is defined as a con-

nection wherein an n-D worm can pass through the connection without becoming visible

to the exterior. In other words, for two regions to be firmly-connected, a direct conduit

exists between the two [Cohn and Varzi, 2003].

To define firm-connection here, I first define one-pieceness (i.e., s-t connectedness). A

s-t region x is spatio-temporally one-piece, CONstx, just in case however it is split into

parts whose union is that region, the parts are Cst connected to each other. Similarly

we can define temporal connectedness: a s-t region x is temporally one-piece just in case

all parts of x are temporally connected. We can also define spatial connectedness: a s-t

region x is spatially one-piece just in case all parts of x are Csp connected. D17 defines an

interior connected region (corresponding to the notion of simple region in [Borgo et al.,

1996]). A region is interior connected INCONx, just in case for any y which is a NTPPst

of x, there exists a one-piece region which has y as a part and is itself NTPPst of x.

D16. CONαx ≡def ∀y, z[x =st (y ∪ z) → Cα(y, z)]

D17. INCONx ≡def ∀y[NTPPst(y, x)→∃z(Pst(y, z) ∧ NTPPst(z, x) ∧ CONstz)]



Mereotopological Theory of Space-Time 44

Finally D18 states that a connection between two entities x and y is a firm-connection

just in case some u (which is a part of x), and some v (which is a part of y), is interior

connected (INCON(u ∪ v)). We have the following definition:

D18. FCON(x, y) ≡def ∃u, v[Pst(u, x) ∧ Pst(v, y) ∧ INCON(u ∪ v)]

FCON is reflexive and symmetric. We have the following theorems.

Th8. FCON(x, x)

Th9. FCON(x, y) ↔ FCON(y, x)

3.3 Temporal Relations

The temporal connection relation Ct makes it possible to have a temporal version of all the

RCC definitions. The most commonly used temporal notions are temporal inclusion, tem-

poral overlap and temporal equivalence corresponding to Pt(x, y),Ot(x, y) and EQt(x, y)

respectively. For clarity I will at times write the temporal relations as infix operators. Fol-

lowing Muller [1998a], temporal connection Ct(x, y) is also written as x <> y. Definitions

D19 to D21 introduce temporal inclusion, temporal overlap and temporal equivalence as

infix operators. I will write Pt(x, y),Ot(x, y) and EQt(x, y) as x ⊆t y, x σt y and x =t y

respectively.

D19. x ⊆t y ≡def Pt(x, y)

D20. x σt y ≡def Ot(x, y)

D21. x =t y ≡def EQt(x, y)

3.3.1 Temporal Order

In order to introduce a s-t interpretation we must capture a notion of temporal order.

For temporal order I retain the primitive, x <t y : the closure of x strictly precedes the

closure of y in time [Kamp, 1979; van Benthem, 1983; Muller, 1998c]. Axiom A9 postulates

that temporal connection and temporal order are incompatible. Also temporal order is

asymmetric (A10). Axiom A11 postulates the composition of temporal connection and

temporal order. Finally axiom A12 postulates the monotonicity of temporal inclusion with

regards to temporal order.

A9. x <> y → ¬(x <t y)

A10. x <t y → ¬(y <t x)

A11. [x <t y ∧ y <> z ∧ z <t w] → (x <t w)
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A12. x <t y → ∀z[(z ⊆t x → z <t y) ∧ (z ⊆t y → x <t z)]

From the above we have theorems Th10 and Th11 establishing the irreflexivity and

transitivity of <t . The relation is a strict (partial) order.

Th10. ¬(x <t x)

Th11. [x <t y ∧ y <t z] → (x <t z)

We have the following theorems for the composition of <t and temporal relations of

=t , σt and ⊆t . Th17 establishes the reflexivity of temporal equivalence.

Th12. [x <t y ∧ y =t z] → (x <t z)

Th13. [x <t y ∧ y σt z ∧ z <t t] → (x <t t)

Th14. [x <t y ∧ y ⊆t z ∧ z <t t] → (x <t t)

Th15. x ⊆t y → ∀z[(z <t y → z <t x) ∧ (y <t z → x <t z)]

Th16. [x =t y ∧ x ⊆t z] → (y ⊆t z)

Th17. x =t x

In order to capture the properties of the Boolean sum operator and the temporal

relations of connection and ordering, we need to introduce two more axioms. Axiom A13

states that if a region composed of the sum of two other regions is temporally before

a third region, then both of its parts must also be before (and vice versa). The second

axiom (A14) states that if a region composed of the sum of two other regions is temporally

connected to a third region, then one of its parts must be connected to the third region

(and vice versa).

A13. [x <t y ∧ z <t y] ↔ (x ∪ z) <t y

A14. (x ∪ y) <> z ↔ [x <> z ∨ y <> z]

If the sum of x and y is temporally included in z, x and y individually are temporally

included in z. We have the following theorem:

Th18. (x ∪ y) ⊆t z → [x ⊆t z ∧ y ⊆t z]

3.3.2 Interval Relations

I shall use the term interval to refer to a spatio-temporal region, when the spatio-temporal

region is to be used in a context where only its temporal extent is of interest. An interval

z is the temporal extent of z, where z can be any history.

Allen [1984] and even before him Nicod [1924] pointed out that if time is totally ordered

then there are 13 JEPD relations (which can be defined in terms of meets [Allen and Hayes,
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1985]) in which one one-piece interval can stand to another. I will list here the ones that

will be required for our subsequent discussion.

In order to define interval relations I introduce the notion of a non-ECt part for a pair

of regions. For regions x and y temporally externally connected, NECP(u, x, y) states u

to be a non-ECt part of x with respect to y. Figure 3.5 illustrates the NECP of x with

respect to y.

D22. NECP(u, x, y) ≡def ECt(x, y) ∧ Pst(u, x) ∧ ¬ECt(u, y)

time

space

x

Non−EC  Part
y

t u

Figure 3.5: For regions x and y temporally externally connected, u is the NECP of x with
respect to y.

Given a pair of temporally externally connected regions there exists for each a non-ECt

part with respect to the other. Theorem Th19 establishes the existence of a NECP for a

pair of ECt regions4.

Th19. ECt(x, y) → ∃zNECP(z, x, y)

Next I define meets. Note that unlike Allen we need our definitions to work for multi-

piece intervals. This is achieved through the second conjunct of D23. The universal

quantification for NECP makes it invariant of connectedness. D23 is the definition for

meets which is a specialisation of ECt. Figure 3.6(a) shows the temporal relation of meets.

Note that when multi-piece intervals ECt as in Figure 3.6(b) they don’t meet.

time

y

x

x

y

y

x

x

x xyt yt
space

Figure 3.6: Interval relation of a. 1t and b. ¬ 1t for multi-piece intervals.

4Note that theorems using D22 and Th19 (i.e., Th27, Th30 and Th31) require axioms for mereotopolog-
ical correspondence between time and space-time. Proof of these theorems use axiom A15 and conjecture
C2 from section 3.4.
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D23. x 1t y ≡def ECt(x, y) ∧ ∀z[NECP(z, x, y) → z <t y] ∧

∀z[NECP(z, y, x) → x <t z]]

Figure 3.7 shows the different temporal relations. D24 is the definition for a temporal

interval x ending with another interval y. D25 is for a temporal interval x starting with

another interval y. D26 defines interval x to be between two distinct intervals y and z.

Note that this three place relation is not an ‘Allen’ relation.
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Figure 3.7: Temporal Relations over spatio-temporal regions.

D24. x A|t y ≡def ∀u[x 1t u ↔ y 1t u]

D25. x |@t y ≡def ∀u[u 1t x ↔ u 1t y]

D26. x ‖t (y; z) ≡def [y 1t x ∧ x 1t z]

We have the following properties. 1t is irreflexive and asymmetric, whereas |@t and

A|t are reflexive and symmetric.

Th20. ¬(x 1t x)

Th21. x 1t y → ¬(y 1t x)

Th22. x |@t x

Th23. x A|t x

Th24. x |@t y → y |@t x

Th25. x A|t y → y A|t x

The following theorems establish the relation between interval relations and temporal

order as well as other temporal relations.

Th26. [x 1t y ∧ y 1t z] → x <t z

Th27. [x 1t y ∧ y <t z] → x <t z
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Th28. [x |@t y ∧ y |@t z] → x |@t z

Th29. [x A|t y ∧ y A|t z] → x A|t z

Th30. [x ⊆t y ∧ y 1t z ∧ z <t w] → x <t w

Th31. x 1t y → ∀z[(z <t x → z <t y) ∧ (y <t z → x <t z)]

Th32. x ‖t (y; z) → ∀w[(w ⊆t y → w <t z) ∧ (w ⊆t z → y <t w)]

I introduce predicates to refer to the initial and final parts of a history. D27 states

that a part of a history y can be termed an initial part just in case it starts with y and

ends before it. Conversely, x is a final part of a history y (D28) just in case x starts after

y and ends with it.

D27. IP(x, y) ≡def Pst(x, y) ∧ x |@t y ∧ ∃z[z A|t y ∧ x 1t z ∧ x ∪ z =st y]

D28. FP(x, y) ≡def Pst(x, y) ∧ x A|t y ∧ ∃z[z |@t y ∧ z 1t x ∧ x ∪ z =st y]

3.4 Spatio-Temporal Interactions

A s-t connection implies a spatial as well as a temporal connection, though note that the

converse is not necessarily true. Figure 3.8 shows spatio-temporal regions x and y are

spatially and temporally connected but not spatio-temporally. I add the following axiom:

A15. Cst(x, y) → [Ct(x, y) ∧ Csp(x, y)]

y

x

time

space

Figure 3.8: Space-time regions x and y are Csp and Ct connected but not Cst connected.

In addition to axiom A15 above, I need to have F2.

F2. Pst(x, y) → [Psp(x, y) ∧ Pt(x, y)].

The above formula accounts for the mereological correspondence between space-time,

space and time. The proof should be derivable from the definition of Pst (D1) and axiom

A15 and indeed I have sketched a proof manually. However, I could not arrive at a machine

proof using SPASS and therefore have it as a conjecture here5:

5Muller[2002; 1998a] also includes an axiom to postulate the mereological correspondence between
space-time and time, apart from having an axiom analogous to A15 to postulate that spatio-temporal
connection implies temporal connection.
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C2. Pst(x, y) → [Psp(x, y) ∧ Pt(x, y)].

Note that spatio-temporal overlap should imply spatial and temporal overlap simulta-

neously. We have the following theorem:

Th33. Ost(x, y) → [(x σt y) ∧ Osp(x, y)]

Models must not be spatio-temporal alone, so spatio-temporal connection Cst needs to

be different from spatial as well as temporal connection [Muller, 2002; 1998a]. I introduce

the following axioms.

A16. ∃x∃y[Ct(x, y) ∧ ¬Cst(x, y)]

A17. ∃x∃y[Csp(x, y) ∧ ¬Cst(x, y)]

3.4.1 Temporal Slice

As already noted, I do not allow lower dimensional entities such as temporal points into

my ontology. In order to refer to regions within a given time or to define relations between

s-t regions that may vary through time, I introduce the notion of a temporal slice, i.e., the

maximal component part corresponding to a certain time extent [Muller, 1998b].

This is different from the temporal slice of many mereological theories, such as the zero

duration slice of [Simons, 1987, Page 32]. Following Muller [2002; 1998b] I stay completely

within a pointless mereotopological theory. For a s-t history y, a temporal slice x is a part

of y such that any part of y that is temporally included in x is a part of x. Temporal slice

is written as TS(x, y): x is a temporal slice of y.

D29. TS(x, y) ≡def Pst(x, y) ∧ ∀z[(Pst(z, y) ∧ z ⊆t x) → Pst(z, x)]

Figure 3.9 shows (a) what it means for x to be a temporal slice of y during w and

(b) when x is not a temporal slice of y, because the ‘missing’ chunk though part of history

y and temporally included in w is not a part of x.

y

wx

TS     (     )x, y

time

x,

y

x w

EQTS        ;x, y(     ) y
w

(      )

time

space

a b

missing chunk

Figure 3.9: Temporal Slice of a history y: a. when x is a temporal slice of y during w and
b. when x is not a temporal slice of y.
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The definition for TS implies reflexivity, antisymmetry and transitivity. We have the

following theorems:

Th34. TS(x, x).

Th35. [TS(x, y) ∧ TS(y, x)] → x =st y.

Th36. [TS(x, y) ∧ TS(y, z)] → TS(x, z).

Any history y should have a temporal slice x corresponding to the temporal extent

of a contemporaneous entity w. Analogous to A26 in [Muller, 2002] I have the following

axiom to ensure the existence of temporal slice:

A18. w ⊆t y → ∃x[TS(x, y) ∧ x =t w]

I have theorem Th37, which shows that this slice is unique.

Th37. [TS(x, y) ∧ TS(z, y) ∧ x =t z] → x =st z

I introduce a function ts(y, w) to return this corresponding slice whenever it exists

(i.e., when w ⊆t y). D30 is the definition of ts(y, w).

D30. ts(y, w) ≡def

 ιx(TS(x, y) ∧ x =t w) if w ⊆t y

Null otherwise

For w ⊆t y, D30 returns the temporal slice of y corresponding to the temporal extent

of w. Muller refers to the above temporal slice by the notation y
w

[Muller, 2002; 1998a].

The notation y
w and the function ts are equivalent. I will regard y

w as syntactic sugar for

the function ts(y, w).

We have the following theorems involving the ts function. ts(x, x) is equal to x and

therefore theorem Th38 and Th39.

Th38. ts(x, x) =st x

Th39. TS(ts(x, x), x).

3.4.1.1 Existence of Temporal Slices

Two histories s-t connect if and only if one has a slice s-t connected to the other, as shown

in Th40. Moreover, as shown in Figure 3.10(a) for temporal slice of a history y spatially

disconnected from an entity z connected to y, there exists a temporal slice distinct from

the first and s-t connected to z; this is demonstrated by Th41.

Th40. Cst(x, y) ↔ ∃z[TS(z, y) ∧ Cst(x, z)]

Th41. [TS(y1, y) ∧ ¬Csp(y1, z) ∧ Cst(z, y)] → ∃y2[TS(y2, y) ∧ Cst(y1, y2) ∧

Cst(z, y2) ∧ ¬(y1 =st y2)]
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Figure 3.10: Existence of temporal slices for histories connected spatio-temporally.

Note that the final conjunct ¬(y1 =st y2) adds nothing logically since it follows imme-

diately from ¬Cst(y1, z) and Cst(z, y2). Removing the last conjunct would leave the conse-

quent reduced to ∃y2[TS(y2, y) ∧ Cst(y1, y2) ∧ Cst(z, y2)]. However this is provable without

the ¬Csp(y, z) conjunct (in the antecedent), from a simpler antecedent [TS(y1, y) ∧ Cst(z, y)].

I therefore choose to state this theorem in this ‘stronger’ form.

Related to Th41 is the following theorem, where the spatially disjoint entity is equi-

temporal. In such a case as shown in Figure 3.10(b), the temporal slice is externally s-t

connected.

Th42. [TS(y1, y) ∧ ¬Csp(y1, z) ∧ Cst(z, y) ∧ (y1 =t z)] → ∃y2[TS(y2, y) ∧

Cst(y1, y2) ∧ ECst(z, y2) ∧ ¬(y1 =st y2)]

The existence of a temporal slice for any contemporaneous entity is given by the

following theorems. Given axiom A18 and the definition of ts, we have Th43. Furthermore

we have the following theorems closely related to A18. If y is a spatio-temporal part of x,

there exists a temporal slice of x temporally equivalent to y (Th44). And Th45 states that

if x temporally overlaps y, there exists a temporal slice of x that is temporally included

in y.

Th43. x ⊆t y → TS(ts(y, x), y).

Th44. Pst(x, y) → ∃u[TS(u, y) ∧ u =t x]

Th45. x σt y → ∃u[TS(u, y) ∧ u ⊆t x]

3.5 Underlying Temporal Structure

I will assume a linear underlying temporal order. The intuition is to have a temporal

ordering between self-connected entities as in Kamp’s logics [Kamp, 1979], but where

overlap is replaced by my temporal connection.

F3. CONtx ∧ CONty → [x <t y ∨ x <> y ∨ y <t x]
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For a theory allowing multipiece entities, I need something stronger than the above

as the underlying temporal order. And I would like to have F3 as a theorem. Muller

proceeds similarly. However, Muller uses a concept of maximal connected temporal part

and defines a relation of betweenness for non self-connected entities. I present below

a simpler formulation than Muller’s. This is possible since I have interval relations (in

particular meets) defined in my formalism. D31 states that x and y are ordered when x

is temporally before or meets y.

D31. ORD(x, y) ≡def x <t y ∨ x 1t y

Apart from being temporally ordered, <t , and meeting, 1t , non self-connected

temporal entities can embed one another. Ladkin calls such non self-connected temporal

entities union-of-convex intervals [Ladkin, 1987, Chapter 6, Page 65]. Logical definitions

of a subset of all possible relations between non-convex intervals are provided in [Ladkin,

1987]. There are infinitely many relations definable in an algebra generated by such union-

of-convex intervals [Ladkin and Maddux, 1988]. I prefer to group all these cases together

here and term it embed.

I introduce the predicate EMB(x, y) to mean x embeds y.

D32. EMB(x, y) ≡def [¬CONtx ∨ ¬CONty] ∧

¬ORD(x, y) ∧ ¬ORD(y, x) ∧ DRt(x, y)
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Figure 3.11: Multipiece intervals embedding one another. For two multipiece intervals,
EMB(x, y) and EMB(y, x) could hold simultaneously. a. ∃xiyi[EMB(xi, yi) ∧ EMB(yi, xi)]
and b. ∃xiyi[EMB(xi, yi) ∧ ¬EMB(yi, xi)].

Figure 3.11 illustrates embedding of one multi-piece component within another. It

is worth noting that for two multipiece intervals, EMB(x, y) and EMB(y, x) could hold

simultaneously. Figure 3.11(a) shows five different ways in which two multipiece intervals

xi and yi embed one another. There could also be situations in which one multipiece

interval xi embeds another multipiece interval yi without yi embedding xi. Some different

ways this is possible are shown in Figure 3.11(b).
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EMB is irreflexive: we have theorem Th46.

Th46. ¬EMB(x, x)

I am now in a position to state what I need for the underlying temporal structure.

Temporally, a pair of entities can embed or be in an ordering relation or overlap each

other. Therefore for a linear order as underlying temporal structure, I add the following

axiom6:

A19. [EMB(x, y) ∨ ORD(x, y) ∨ ORD(y, x) ∨ Ot(x, y)]

This gives me the linearity condition I had set out to have. I have F3 as a theorem:

Th47. CONtx ∧ CONty → [x <t y ∨ x <> y ∨ y <t x]

6Even though pairwise disjoint, in absence of an underlying linear order, embeds, ordered and temporal
overlap are not jointly exhaustive. A19 would be a theorem after addition of some other axiom for linear
order.
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Chapter 4

Continuous Transitions in

Mereotopology

As noted in Chapter 2, change in qualitative spatial representation languages such as

RCC-8 has been analyzed through transition graphs. Relations form a conceptual neigh-

bourhood via potential motion. Continuity has generally remained an implicitly assumed

notion. In this introductory part to Chapter 4, I outline my approach to making continuity

explicit.

Transitions in RCC-8 conceptual neighbourhood diagrams in the literature (and the

ones that are subject of the thesis) are transitions between purely spatial relations for

purely spatial regions. However, I am working in a framework where I can only talk about

st regions and their sp, t or st relations. Therefore there needs to be some mechanism

to characterize what is happening to spatial relations (between spatial regions) just by

looking at spatio-temporal regions.

To illustrate this, consider Figure 4.1. Spatio-temporal histories x and y in Fig-

ure 4.1(a) have a DCst to POst transition with ECst holding instantaneously at the end

of z1. Figure 4.1(b) shows a DCst to ECst transition with ECst holding throughout z2,

including at the boundary between z1 and z2.

In Figure 4.1(a), the purely spatial relationship between the temporal interior1 (before

the instant of transition at the end of interval z1) of x
z1

and y
z1

is disconnection. Note that

if the purely spatial relationship between purely spatial regions is constant over an interval,

1The notion of a temporal interior will be handled via the NECP concept introduced in Section 3.3.2.
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Figure 4.1: a. DCst to POst transition with ECst holding instantaneously at the end of z1
and b. DCst to ECst transition with ECst holding throughout z2 (including at the boundary
between z1 and z2).

and is say Rsp, the slices of the spatio-temporal regions over that interval normally have

relation Rst
2. The converse of this is not true i.e., spatio-temporal relation Rst over an in-

terval does not necessarily mean that the purely spatial relationship remains constant (i.e.,

is Rsp) over the interval. This is illustrated in Figure 4.11 (Section 4.3.2, Page 65), where

even though the spatio-temporal relationship over the complete interval is ECst, the purely

spatial relationship for contemporaneous slices is sporadic, varying between external con-

nection and disconnection. Similar temporal variation can occur between other relations.

For characterizing transitions, I am interested in spatial relations that hold continuously

over a given interval since it is only in this case that I can truly claim that a transition

between the two relations in question has occurred. I therefore introduce durative relations

in Section 4.3.2. Transitions characterising the RCC-8 conceptual neighbourhood will be

defined in terms of these durative relations which ensure that the spatial relation holds

between two histories throughout the intervals involved in the transition.

In order to characterise direct transitions between two histories (i.e., where a certain

relation holds duratively during a given interval and a different relation holds duratively

in an adjacent interval, without a third relation holding instantaneously in between), as in

Figure 4.1(b), I introduce a non-instantaneous transition operator Trans in Section 4.5.1.

On the other hand, transitions involving an instantaneous relation holding at the temporal

boundary of two intervals, as in Figure 4.1(a), are characterized through InsRel that uses

the instantaneous transition matrix introduced in Section 4.4.1. Through the instanta-

neous transition matrix Mr, I identify from first principles, conditions holding between

two st histories which correspond to a unique instantaneous transition relation. Using Mr,

I arrive at a formal definition of instantaneous transitions within the mereotopological

framework.

2The only exception to this rule is for NTPPsp when it is possible that the st relation is TPPst rather than
NTPPst: if two regions x,y are such that NTPPsp(x, y) at every time during an interval z, then TPPst(

x
z
, y

z
)

rather than NTPPst(
x
z
, y

z
) would hold.
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The main purpose of the rest of this chapter is to formally characterise the notion of

continuous transitions between spatial relations discussed above in order to recover the

CND for RCC-8. The basis of this characterisation is to restrict attention to continuous

histories, i.e. the continuity of relations between histories depends crucially on the fact

that the constituent histories themselves are continuous in a strong sense. In the next sec-

tion, 4.1, I define an appropriate notion of continuity for a single s-t history, which I term

Strong Firm Continuity. In section 4.2, I briefly discuss how weaker notions of continuity

for s-t histories would lead to weaker CNDs. In section 4.3.1, I introduce further axioms

which strengthen the notion of continuity of a s-t history. In section 4.3.2, I formally define

the notion of a durative relation and present some introductory theorems characterising

transitions between durative relations over continuous s-t histories. In section 4.4, I ax-

iomatise instantaneous transitions via the instantaneous transition matrix. In section 4.5,

I formally define the notion of transition of durative spatial relations between continuous

s-t histories which will be used in section 4.6 to recover the CND.

4.1 Spatio-Temporal Continuity of a s-t history

In order to define the notion of spatio-temporal continuity, I introduce a binary component

relation, where a component is a maximal one-piece part of a history. D33 gives the

definition of a component.

D33. Compst(x, y) ≡def CONstx ∧ Pst(x, y) ∧ ∀w[[CONstw ∧

Pst(w, y) ∧ Pst(x,w)] → w = x]

4.1.1 Strong Continuity

A spatio-temporal history is spatio-temporally continuous if there are no ‘spatial’ or ‘tem-

poral’ gaps. For this to be the case, there can only be a single, unique, s-t component

which can be characterised in the following definition of Strong s-t continuity3.

D34. StrCONTsty ≡def ∀w1, w2[[Compst(w1, y) ∧ Compst(w2, y) ∧

w1 =t w2 ∧ w1 =sp w2] → w1 =st w2]

Strong s-t continuity is both ‘spatial’ and ‘temporal’ continuity4. Even though this

is an appealing notion of spatio-temporal continuity, it does not rule out spatial leaps.

3Just before finalizing the thesis I realized that in fact StrCONTsty appears to be equivalent to CONsty !
Historically, components had been important to the definition of strong continuity [Hazarika and Cohn,
2001] and the present definition naturally followed from the earlier presentation. Time did not allow a
reformulation using this simpler definition since many proofs would have had to have been recomputed.

4A spatio-temporal history is spatially (resp. temporally) continuous if there are no spatial (resp.
temporal) gaps in the history.
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See Figure 4.2: history w with spatio-temporal components x and (v+ u) is spatially and

temporally continuous (according to D34) but makes a sideways spatial leap. Thus the

above notion needs to be refined further.

4.1.2 Continuity: Ruling out Sideways Leaps

Muller’s definition of continuity [Muller, 2002; 1998b] is: any s-t region is defined as

qualitatively continuous just in case it is temporally self-connected and it doesn’t make any

spatial leaps5 (corresponding to a sudden gain or loss of parts, or a sudden translation).

Muller’s definition captures part of what one might take to be an intuitive notion of

spatio-temporal continuity. Figure 4.2 is an illustration of discontinuity under definition

D35 below

D35. CONTw ≡def CONtw ∧ ∀x∀u[[TS(x,w) ∧ x <> u ∧ Pst(u,w)] → Cst(x, u)]

x

time

space

w=x+v+u

v u

Figure 4.2: Muller’s definition of discontinuity of history w. The region w is discontinuous
under Muller’s definition of continuity because it makes a sideways spatial leap.

4.1.2.1 Firm Continuity: Non-Pinched Histories

The above definition of continuity (D35) is unable to stop histories from temporal pinch-

ing, i.e., exclude histories that disappear and reappear again instantaneously at the same

spatial location. With temporal pinching, we have weird transitions possible: for exam-

ple transitions that do not adhere to the conceptual neighbourhood diagrams for binary

topological relations such as RCC-8. More about this will be said in Section 4.2.

In order to enforce a stronger notion of s-t continuity for histories, I disallow temporal

pinching and introduce the notion of firm-continuity. A non-pinched continuous s-t history

is firmly continuous.

5Note that Muller uses a slightly different definition of one-piece/connectedness using closures.
CONtw ≡def ¬∃x1, x2(w = x1 + x2 ∧ ¬(cx1 <> cx2)) where cx is defined as the closure of x. His
mereotopological theory follows [Clarke, 1981] in having topological functions and Cxy interpreted as
x and y share a point.
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Figure 4.3: a. Firmly-continuous history and b. A non-firm history with ‘temporal
pinching’ at the end of z.

Figure 4.3(a) shows a firmly-connected history w, while Figure 4.3(b) is for a history

with temporal pinching. I first make definition D36 to denote adjacent temporal slices

of a history. For a history z, ECTS(x, y, z) states x and y to be temporally externally

connected temporal slices of z. D37 is the definition of a non-pinched history w and D38

defines firm-continuity.

D36. ECTS(x, y, z) ≡def [TS(x, z) ∧ TS(y, z) ∧ ECt(x, y)]

D37. NPw ≡def ∀xy[ECTS(x, y, w) → FCON(x, y)]

D38. FCONTw ≡def CONTw ∧ NPw

4.1.3 Strong Firm Continuity

The notion of strong continuity (defined in Section 4.1.1) can now be further refined to

exclude temporal pinching and also spatial leaps within a component. The strongest notion

of space-time continuity will be StrFCONT as given by D39. I term this as strong firm

continuity.

D39. StrFCONTy ≡def StrCONTsty ∧ FCONTy

When considering the spatial relationship over time between pairs of s-t histories, for

convenience of reference, the doctrine of strong firm continuity StrFCONT will be labelled

CS-0. Allowing temporal pinching weakens CS-0 to CS-1 and CS-2 depending on whether

temporal pinching of one or both histories is allowed respectively.

I shall now consider how the above cases of continuity affect the notion of a conceptual

neighbourhood diagram (CND). In Section 4.6 I shall examine the case for CS-0 and present

a formal proof for the non-existence of transitions i.e., transitions absent from the RCC-8

CND. But first I will take an informal approach and simply present, without proof, the

CNDs for these three cases of continuity: CS-0, CS−1,CS-2 .
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4.2 Hierarchy of CNDs

With CS-0, the intuitive transitions between histories hold. The RCC-8 conceptual neigh-

bourhood is one such transition network. Under space-time interpretations and with

temporal pinching, we can have a number of weird transitions.

x

x y

y
EQ

 EC

spacespace

time

EC

time

st

stst

a. b.

TPPist

Figure 4.4: Transition under temporal pinching: a. ECst to TPPist for temporal pinching
of a single history. b. ECst to EQst for temporal pinching of both histories.

Figure 4.4(a) shows the transition from ECst to TPPst between space-time histories

x and y, for temporal pinching of y. In Figure 4.4(b), both histories x and y undergo

temporal pinching and consequently we have a ECst to EQst transition. These are not

valid transitions of the standard RCC-8 conceptual neighbourhood [Cohn et al., 1998]

posited under the notion of continuity implicitly assumed there.

The RCC-8 transition networks for CS-0, CS-1 and CS-2 are shown in Figure 4.5.

Allowing pinching of a single history means a direct transition between ECst and TPPst

or TPPist is possible. If pinching of both histories is allowed we have a direct transition

between ECst and EQst. Note that the diagram for CS-2 differs slightly from the conceptual

neighbourhood given in Figure 10 of [Davis, 2000] (see Figure 2.7, Chapter 2), for example:

his figure has a direct link from DC to TPP. This depends on the interpretation of the

spatial relationship holding when regions pinch to a spatio-temporal point. Davis considers

the normalised (regularised) spatial cross section and isolated points will thus disappear,

leading to the introduction of yet further links. I could have also taken this approach, in

which case his Figure 10 and my diagram for CS-2 would be identical.

DC EC PO EQ

TPPi

TPP NTPP

NTPPi

Figure 4.5: Transition graph for CS-0, CS-1 and CS-2. Transitions for CS-0 are shown as
single arcs; additional links for CS-1 are double arcs and for CS-2 are triple arcs.
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4.3 Characterizing Transitions

Before I introduce definitions to characterize transitions of RCC relations in a mereotopo-

logical theory of space-time, we need to look at why we need yet another set of definitions!

4.3.1 Continuity and Space-Time Histories

For a single history w with a spatial leap, proving discontinuity is not difficult. For a

continuous history, all temporally connected parts of adjacent temporal slices u and v

should be spatio-temporally connected (cf. Figure 4.2, Page 58). I have theorem Th48.

Th48. CONTw → ∀u, v[ECTS(u, v, w) → ¬∃x[Pst(x, v) ∧ Ct(x, u) ∧ ¬Cst(x, u)]]

Any history w having a sideways spatial leap (characterized through change of relation

from ¬Csp to PPsp as shown in Figure 4.6) is discontinuous. Proving ¬CONTw for such a

transition from axioms and definitions above is straightforward (Th49).

Th49. [ECTS(u, v, w) ∧ ¬Csp(u, z) ∧ PPsp(v, z)] → ¬CONTw

time

space

zu

v

Figure 4.6: A discontinuous history w. Discontinuity is because of sideways spatial leap,
characterised through change of pure spatial relationship.

Note that the second and the third conjuncts in the antecedent of Th49 can be replaced

by ¬Csp(u, v) whilst maintaining the truth of the theorem (In fact this weaker form can be

easily proved from the theorem as stated.) Through Th49 I want to highlight the fact that

proving discontinuity for a single history with a spatial leap characterised through change

in spatial relation with another history z is straightforward. As we shall see in subsequent

discussion, this is in contrast to proving discontinuity involving a sideways spatial leap for

a pair of histories (c.f. Th51 below). ¬Csp(u, v) would only relate adjacent temporal slices

of the history w. Therefore in Th49 I introduce the second history z and have the second

and the third conjuncts in the antecedent of Th49 stated explicitly.

The discontinuity of a history is not necessarily because of a sideways spatial leap. We

may have discontinuity involving a temporal gap (which may not involve sideways spatial

leap), characterised through a change in spatio-temporal relation as shown in Figure 4.7.
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We have the following theorem:

Th50. [ECTS(x, y, z) ∧ EQt(u, x) ∧ NTPPst(v, y)] → [¬CONT(u+v) ∨ ¬CONTz]

x

time

space

v y

z

w = u + v

b

time

space

v

u

y

z

w = u + v

a

xu

Figure 4.7: A discontinuous history w. Discontinuity arises because of temporal gap,
characterised through change in spatio-temporal relationship. Note that it is immaterial
whether a. u and x remain spatially disconnected, DCsp and b. u and x are spatially
connected, Csp.

In spite of putting in a considerable amount of effort (using OTTER [McCune, 1994]

and SPASS [Weidenbach, 2001]), I was not successful in proving discontinuity involving a

sideways spatial leap for a pair of histories, nor could a hand proof be obtained. I make

the following observations:

a. continuity CONTw as defined by D35 relates only parts of the single history w

b. entities not part of w also influence the intuitive notion of continuity (see Sec-

tion 2.7.2, Chapter 2).

This is particularly true when we are characterizing transitions between two distinct his-

tories. D35 does not allow one to infer that for a temporal slice x equi-temporal to an

external entity z, ¬Cst(x, z) for a continuous histories w implies ¬Cst(z, w). This is shown

in Figure 4.8(a).

Note that a sideways spatial leap would make it possible for w to connect to z. But in

that case it would be ¬CONTw. Contrast this with Th48 (based on D35) where a relation

between temporal and spatial connection is established only for parts of (adjacent temporal

slices of) a continuous history. I therefore add the following axiom (cf. Figure 4.8(b)):

A20. [TS(x,w) ∧ EQt(x, z) ∧ ¬Cst(x, z) ∧ Cst(z, w)] → ¬CONTw.

For adjacent temporal slices y1 and y2 of history y and adjacent temporal slices z1

and z2 of history z, a transition from ¬Cst(y1, z1) to PPst(y2, z2) involves discontinuity as

shown in Figure 4.9. Having added axiom A20, a transition involving spatial leap between

co-temporal adjacent slices of a pair of histories y and z, is proved discontinuous. I have

the following theorem:
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Figure 4.8: Disconnected external entity z, equi-temporal to a temporal slice x of space-
time history w: a. remains st-disconnected from w for CONTw and b. can st-connect to
w only when ¬CONTw

Th51. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧

¬Cst(y1, z1) ∧ PPst(y2, z2)] → [¬CONTy ∨ ¬CONTz]

spacespace
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22

CONT     ;  CONT CONT    ;      CONT 

Figure 4.9: Transition between co-temporal adjacent temporal slices of a pair of histories
y and z, from ¬Cst to PPst implies discontinuity. If one is continuous then the other has
to be discontinuous. Note that both can be discontinuous and satisfy the transition.

Similarly to theorem Th51, we would expect to have non-transition from ECst(y1, z1)

to PPst(y2, z2) i.e., such a transition would imply discontinuity for one of the histories or

both (F4). Such a theorem would not only show that spatial leaps are impossible in this

situation, but also that temporal pinching does not occur.

F4. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧

ECst(y1, z1) ∧ PPst(y2, z2)] → [¬FCONTy ∨ ¬FCONTz]

The definition of continuity D35, reinforced through additional axiom A20, along with

notion of firm-continuity D38, can not yield the desired result. Consider F4. There is a

disjunction on the right hand side. It is natural to phrase the required condition in this

way. But to simplify our reasoning here, assume that the literal ¬FCONTy is moved across

to the antecedent (so it becomes FCONTy). If F4 is to be satisfied non trivially (i.e. if the

antecedent is not false), then all the conditions in the antecedent must be true.
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To illustrate this consider Figure 4.10 . First we draw an FCONTy such that ECTS(y1, y2, y)

(case a). Next we make sure that PPst(y2, z2) – see case b; note that z2 does not start

earlier than y2 since z1 will have to be EQt with y1 and ECTS(z1, z2, z). We also draw z2

so that on one side it extends laterally (spatially) beyond y2 whilst on the other (right

hand) side y2 and z2 terminate at the same spatial point. This allows us to consider two

separate cases below. We now need to draw z1. z1 has to be EQt with y1 and ECst(y1, z1).

In order for ECst(y1, z1) to be true, y1 and z1 only need to touch once somewhere along

their duration, but I just illustrate the situation where they ECst continuously (analogous

figures can be drawn for the other cases). However we try to draw z1, z must fail to be

FCONT, since it will have a sideways leap (case c), or it is temporally pinched to a point

(case d). This motivates the introduction of A21 which is satisfied by Figure 4.10(c) and

Figure 4.10(d).

a. b.

d.c.
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Figure 4.10: Between co-temporal adjacent temporal slices of a pair of histories y and z,
an ECst to PPst transition involves spatial leap with or without temporal pinching.

A21. [ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧ ECst(y1, z1) ∧ FCON(y1, z2)] → ¬CONTz

Continuity definition D35, reinforced with axioms A20 and A21, and the notion of firm

continuity, D38, characterize the intuitive notion of spatio-temporal continuity, disallowing

spatial leap and temporal pinching. F4 now becomes a theorem:

Th52. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧

ECst(y1, z1) ∧ PPst(y2, z2)] → [¬FCONTy ∨ ¬FCONTz]

From D35 and axioms A20 and A21, we have the related theorems of non-transition

from DCst to EQst and ECst to EQst.

Th53. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧

DCst(y1, z1) ∧ EQst(y2, z2)] → [¬CONTy ∨ ¬CONTz]

Th54. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧
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ECst(y1, z1) ∧ EQst(y2, z2)] → [¬FCONTy ∨ ¬FCONTz]

4.3.2 Durative Relations R=
sp

Figure 4.11 is representative of when a spatio-temporal relation in an interval (between

temporal slices y1 and z1) is sporadic: here it changes between ECst and DCst. However,

note that over the complete interval z1 it remains ECst and Figure 4.11 illustrates an ECst

to PPst transition from z1 to z2.

Figure 4.11: Illustration of an ECst to PPst transition with sporadic spatio-temporal rela-
tion during interval z1: here it changes between ECst and DCst. However, note that over
the complete interval z1 it remains ECst.

This is not what we intuitively refer to as change from a given RCC relation to another.

I need to have a set of durative base relations6: spatial relations that hold continuously

during a given interval. For the conceptual neighbourhood diagram when I refer to change

in RCC relation I will then mean change of such a pair of relations.

Even though not a base relation, I will define durative part, for in terms of this the

base relations will be defined. Defining durative part (D40) and durative disconnection

(D41) is straightforward. A spatio-temporal entity x is a durative part of y if they are

temporally equivalent and x is a spatio-temporal part of y (D40). Similarly, a pair of

entities are duratively disconnected if they are temporally equivalent and spatio-temporally

disconnected (D41).

D40. P=
sp(x, y) ≡def EQt(x, y) ∧ Pst(x, y)

D41. DC=
sp(x, y) ≡def EQt(x, y) ∧ DCst(x, y)

Next, I define durative external connection, in terms of which the remaining durative

RCC base relations can be defined. As discussed above w.r.t Figure 4.11, note that the idea

of a durative external connection EC=
sp(x, y) is stronger than being merely equi-temporal

and ECst(x, y). I define durative external connection (D43) using the notion of contem-

poraneous temporal slice pair : a pair of temporally equivalent temporal slices. I want

the RCC relation to be true for all such contemporaneous temporal slice pairs during the

6For RCC-8, the transition graph is specified over the set of base relations (see Section 2.5.1.2, Page 27).
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interval in question. I first define contemporaneous temporal slice pairs EQTS(u, v, x, y)

(D42).

D42. EQTS(u, v, x, y) ≡def [TS(u, x) ∧ TS(v, y) ∧ EQt(u, v)]

D43. EC=
sp(x, y) ≡def EQt(x, y) ∧ ∀u, v[EQTS(u, v, x, y) → ECst(u, v)]

It will be useful to define a strong version P=
sp

> of the durative part relation P=
sp

7. D57

introduces P=
sp

>.

D44. P=
sp

>(x, y) ≡def [P=
sp(x, y) ∧ ¬P=

sp(y, x)]

In order to define the base relation PO=
sp, I check that for all subintervals z during the

extent of x (or equivalently I could check for during the extent of y) POst(x
z ,

y
z ) holds.

D45. PO=
sp(x, y) ≡def EQt(x, y) ∧ ∀z[Pt(z, x) → POst(x

z ,
y
z )]

The definitions for EQ=
sp follow the standard RCC definitions based on P=

sp. For

TPP=
sp(x, y) I have the standard RCC definition with PPst and ECst replaced with P=

sp
>

and EC=
sp respectively. The definition of NTPP=

sp(x, y) is different (D48). It is not sufficient

to say that x is a P=
sp

> of y and there does not exist any entity z, EC=
sp connected to both

x and y.

b. c.a.

spacespace

time time

space

time

x xy xy yz z

z

Figure 4.12: NTPP=
sp(x, y) is different from the standard RCC definitions. a. TPP=

sp(x, y)
follows the standard RCC definition with PPst and ECst replaced with P=

sp
> and EC=

sp re-
spectively. b. Existence of any entity z within the temporal inclusion of x, ECst connected
to both x and y means that not only does NTPP=

sp(x, y), not hold, but nor does any other
durative relation. c. In this case NTPP=

sp(x, y) does hold: there is no z within temporal
inclusion of x, ECst connected to both x and y – the existence of a z ECst connected to
both x and y outside the temporal extent of z (depicted) does not stop NTPP=

sp(x, y) from
holding.

As shown in Figure 4.12(b), existence of any entity (within the temporal inclusion

of x) spatio-temporally externally connected to both x and y would make x a tangential

proper-part of y. Therefore we replace EC=
sp with ECst. Note that outside the temporal

inclusion of x, there can exist an entity z that is externally connected to both x and y

7Note that this predicate is weaker than a definition of PP=
sp would be, were I to introduce such a

relation.
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(Figure 4.12(c)). Pi=sp
>, TPPi=sp and NTPPi=sp represent the inverses for P=

sp
>, TPP=

sp and

NTPP=
sp respectively.

D46. EQ=
sp(x, y) ≡def [P=

sp(x, y) ∧ P=
sp(y, x)]

D47. TPP=
sp(x, y) ≡def [P=

sp
>(x, y) ∧ ∃z[EC=

sp(z, x) ∧ EC=
sp(z, y)]]

D48. NTPP=
sp(x, y) ≡def [P=

sp
>(x, y) ∧ ¬∃z[z ⊆t x ∧ ECst(z, x) ∧ ECst(z, y)]]

As shown in Figure 4.13(a), any entity z, EC=
sp with a temporal slice x of a history w,

must be ECst connected to the history (Th55). In Figure 4.13(b), an entity z is P=
sp

> with

a temporal slice x of history w. This implies PPst(z, w). We have Th56.

Th55. [EC=
sp(z, x) ∧ TS(x,w)] → ECst(z, w)

Th56. [P=
sp

>(z, x) ∧ TS(x,w)] → PPst(z, w)

time

space

w

time

space

zx

w

zx

a. b.

Figure 4.13: For any entity z a. EC=
sp connected with temporal slice x of a history w,

implies ECst(z, w) and b. P=
sp

> of temporal slice x of a history w, implies PPst(z, w).

Proceeding similarly, one may expect DC=
sp to imply DCst. However, note that F5 is

not a theorem (cf. Figure 4.8(b)).

F5. [DC=
sp(z, x) ∧ TS(x,w)] → DCst(z, w)

Nevertheless, if history w is continuous (cf. Figure 4.8(a)) and x is a temporal slice of

w, any external entity z, DC=
sp with x, implies DCst(z, w)8. We have the following theorem:

Th57. [DC=
sp(z, x) ∧ TS(x,w) ∧ CONTw] → DCst(z, w)

Note that TPP=
sp implies TPPst, whereas NTPP=

sp implies only PPst. If z is EQ=
sp with

temporal slice x, z is a temporal slice of w (Th60). We have the following theorems:

Th58. [TPP=
sp(z, x) ∧ TS(x,w)] → TPPst(z, w)

Th59. [NTPP=
sp(z, x) ∧ TS(x,w)] → PPst(z, w)

Th60. [EQ=
sp(z, x) ∧ TS(x,w)] → TS(z, w)

8Proof for this is possible only with additional axiom A20 to strengthen CONT definition D35.
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4.3.2.1 Transitions between R=
sp Relations

The transitions characterised by Th61 through Th64 are representative of transitions

between durative relations. Th61 establishes the non-existence of a transition from DC=
sp

to P=
sp

> for continuous histories. Th62 is the corresponding theorem for non-existence of

transition from EC=
sp to P=

sp
> for firmly-continuous histories.

Th61. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧

DC=
sp(y1, z1) ∧ P=

sp
>(y2, z2)] → [¬CONTy ∨ ¬CONTz]

Th62. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧

EC=
sp(y1, z1) ∧ P=

sp
>(y2, z2)] → [¬FCONTy ∨ ¬FCONTz]

We have theorems for non-transitions from DC=
sp or EC=

sp to EQ=
sp. Th63 establishes

the non-existence of a transition from DC=
sp to EQ=

sp for continuous histories. Th64 is

the corresponding theorem for non-existence of transition from EC=
sp to EQ=

sp for firmly-

continuous histories.

Th63. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧

DC=
sp(y1, z1) ∧ EQ=

sp(y2, z2)] → [¬CONTy ∨ ¬CONTz]

Th64. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧

EC=
sp(y1, z1) ∧ EQ=

sp(y2, z2)] → [¬FCONTy ∨ ¬FCONTz]

Muller [1998b] set out theorems with similar interpretations based on notion of space-

time continuity captured through D35. As pointed out in Section 2.7.2, Chapter 2, Davis

[2001] has shown Muller’s statement of the transition rules to be inadequate. It is not only

that the transition rules are inadequate, D35 and D38 alone are not sufficient to capture

intuitive strong firm continuity. For us, this is demonstrated from the fact that proof of

Th61 through Th64 required A20 and A21.

I failed to arrive at proofs (whether machine generated or by hand) for Th61 and

Th62 with D35 alone characterizing intuitive s-t continuity. Later, Muller did correct his

definitions to forbid temporal pinching [Muller, 1998a; 2002]9. Muller terms the ruling

out of temporal pinching as temporal strong connectedness, and envisaged that such a

notion of continuity would eliminate an ECst to PPst transition. However, he failed to see

the necessity to incorporate a relationship with external entities into the intuitive notion

of continuity. Muller [1998a; 1998b; 2002] envisaged his definitions would eliminate the

non-transitions, but (in absence of proofs) it is not clear if the definitions achieve that.

9Personal communication with Muller, brought to light his correction in [Muller, 2002]. Earlier partial
correction to his definition of continuity [Muller, 1998b] was in French [Muller, 1998a].
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Davis [2000] provided alternate characterization of transition rules. This is accom-

plished through defining time instants and spatio-temporal points. Spatial RCC-8 rela-

tions are then defined to hold instantaneously at these time points. Continuous transitions

are stated in terms of these relations holding at all points in an interval.

It can reasonably be objected to this analysis that, though it observes the letter

of the mereotopological enterprise, it violates the spirit, as it achieves its ends

by using the very great expressive power of first-order logic over histories to,

in effect, define time instants and spatio-temporal points.

[Davis, 2000].

Here I shall state the transition rules i.e., non-existence of transitions for continu-

ous histories between durative base relations - spatial relations that hold continuously

over an interval. Arguably, this is a more intuitive mereotopological expression of transi-

tion. Axiom A21 covers within pure region-based mereotopology, situations that require

defining RCC-8 relations holding at an instantaneous cross-section (for characterizing of

transitions) in [Davis, 2000].

However, the above characterization of transition is unable to capture instantaneous re-

lations holding at the temporal boundary of two intervals. Therefore it cannot recover the

complete conceptual neighbourhood for RCC-8. We need some mechanism to categorise

instantaneous relations within mereotopology. This is the focus of section 4.4.

When defining the transitions between RCC-8 relations and specifying conditions for

instantaneous relations, it will be helpful to treat RCC symbols as constant symbols rather

than predicates. Thus I define predicates rccα(φ, x, y): meaning Φα holds between s-t

regions x and y where φ is the lowercase translation of the RCC-8 relation Φ.

D49. rccα(φ, x, y) ≡def Φα(x, y)

where α is st, sp, t or =
sp corresponding to spatio-temporal, spatial, temporal or durative

RCC-8 relation. D49 is a (finite) axiom schema.

4.4 A Model for Instantaneous Relations

In this subsection I will analyse and thus axiomatise from first principles which relations

can hold instantaneously. This in no way excludes any of the RCC-8 relations from holding

over an interval. The analysis only identifies which of the relations can be instantaneous

under CS-0 and under what mereotopological conditions. The underlying hypothesis for

my analysis is that it is sufficient to consider the Boolean combinations of two regions and

their FCON relationship over the instantaneous transition: this hypothesis is confirmed



Continuous Transitions in Mereotopology 70

below since it is shown that situations in which relations can be instantaneous is precisely

characterised. FCON is chosen as a suitable predicate because the two parts of a pinched

history will not FCON.

4.4.1 Instantaneous Transition Matrix

I will determine the existence of an instantaneous topological relation between two histories

x and y (occurring when two intervals z1 and z2 meet), based upon the comparison of

(x∪y), (x∩y), (x−y) and (y−x), restricted to the intervals z1 and z2 respectively. These

can be combined such that they form 16 fundamental descriptions:


ψ11(x∪y

z1
, x∪y

z2
) ψ12(x∪y

z1
, x∩y

z2
) ψ13(x∪y

z1
, x−y

z2
]) ψ14(x∪y

z1
, y−x

z2
)

ψ21(x∩y
z1
, x∪y

z2
) ψ22(x∩y

z1
, x∩y

z2
) ψ23(x∩y

z1
, x−y

z2
) ψ24(x∩y

z1
, y−x

z2
)

ψ31(x−y
z1
, x∪y

z2
) ψ32(x−y

z1
, x∩y

z2
) ψ33(x−y

z1
, x−y

z2
) ψ34(x−y

z1
, y−x

z2
)

ψ41(y−x
z1
, x∪y

z2
) ψ42(y−x

z1
, x∩y

z2
) ψ43(y−x

z1
, x−y

z2
) ψ44(y−x

z1
, y−x

z2
)


where ψij ∈ {FCON,¬FCON}.

The notion of firm connection between the 16 individual pairs was identified as a simple

test that enables the identification of whether an instantaneous relationship occurs. In

case of parts of a pair not existing for one of the intervals, the connection is assumed to

be ¬FCON without any loss in generality of the analysis.

I will call the instantaneous transition matrix Mr(x, y, z1, z2), where x and y are

StrFCONT histories and z1 and z2 are adjacent intervals, temporally included in the his-

tories. The subscript, r, is used to identify the relation holding instantaneously between

x and y at the boundary of z1 and z2. The entire matrix, Mr, is to be regarded as a

conjunction of its elements:

D50. Mr(x, y, z1, z2) ≡def

∧4
i=1[

∧4
j=1 ψij(δ1, δ2)]

where δ1 and δ2 is one of (x ∪ y), (x ∩ y), (x− y) or (y − x) restricted to the intervals z1

and z2 respectively.

4.4.2 Constraints for Non-Existing Relations

Based on the FCON or ¬FCON outcome of each pair, 216 possibilities exist for the instan-

taneous transition matrix; however only a small number of them are possible. The aim of

this section is to make explicit the possibilities that are not realizable, thus arriving at the

ones that characterize the class of instantaneous relations between two given histories.

For spatio-temporal histories x and y with a transition at the boundary between inter-

vals z1 and z2, if x−y
z1

is FCON to y−x
z2

(or y−x
z1

is FCON to x−y
z2

), then both x and y must
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have a sideways spatial leap and hence cannot be StrFCONT. Similarly, if x∩y
z1

is FCON

to either x−y
z2

or y−x
z2

then both x and y must have a sideways spatial leap and cannot be

StrFCONT10. I have Conditions 1 and 2.

Condition 1 For StrFCONT histories x and y, x − y restricted to the interval before a

transition can never be FCON to y − x restricted to the interval after the transition (or

vice versa).

Condition 2 For StrFCONT histories x and y, x ∩ y restricted to the interval before a

transition can never be FCON to either x − y or y − x restricted to the interval after the

transition (or vice versa) .

We have x ∪ y = (x ∩ y) ∪ (x− y) ∪ (y − x). The following condition is based on this

property.

Condition 3 x ∪ y restricted to the interval before a transition is FCON to one of x ∩ y,

x − y or y − x restricted to the interval after the transition (or vice versa) iff at least (a

pair involving) one of x ∩ y, x− y and y − x is FCON.

Since x and y are individually StrFCONT, we have Condition 4 (since otherwise x and

y would be pinched histories).

Condition 4 For StrFCONT histories x and y, x ∪ y restricted to the interval before a

transition is FCON to x ∪ y restricted to the interval after the transition.

If all of x ∩ y, x− y and y − x before the transition are FCON to themselves after the

transition, then there is no instantaneous transition at the boundary between z1 and z2.

Therefore, for instantaneous transitions, I have Condition 5.

Condition 5 For StrFCONT histories x and y with an instantaneous transition, at least

one of x∩y, x−y and y−x restricted to the interval before the transition must be ¬FCON

to themselves restricted to the interval after the transition.

For StrFCONT histories x and y undergoing an instantaneous transition with the in-

tersection disappearing instantaneously, x − y and y − x restricted to the interval before

the transition must be simultaneously FCON to themselves restricted to the interval after

the transition. For these pairs to be ¬FCON, the histories must pinch to a point at the

boundary between the intervals z1 and z2 and cannot be StrFCONT. I have Condition 6.
10Equally if either x−y

z1
or y−x

z1
is FCON to x∩y

z2
then both x and y must have a sideways spatial leap and

cannot be StrFCONT.
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Condition 6 For StrFCONT histories x and y with x∩ y restricted to the interval before

the transition being ¬FCON to x ∩ y restricted to the interval after the transition, both

x − y and y − x restricted to the interval before the transition need to be simultaneously

FCON to themselves restricted to the interval after the transition.

4.4.3 Existing Instantaneous Transition Matrices

The valid instantaneous transition matrices can be determined by successively applying

the above conditions and cancelling the corresponding non-existing matrices11.

Condition 1 and Condition 2 together imply that any matrix must have the form


? ? ? ?

? ? ¬FCON ¬FCON

? ¬FCON ? ¬FCON

? ¬FCON ¬FCON ?


Condition 3 implies that the first row (resp. column) is the Boolean sum of the

remaining rows (resp. columns). We can ignore the first row and the column as being

determined by the rest of the matrix. Therefore, there are three positions12 which remain

undetermined after Conditions 1 through 4. Each of these can be FCON or ¬FCON. There

are 23 possible combinations i.e., 8 matrices.

Condition 3 together with Condition 4 eliminates the case where all of the three rela-

tions ψ22, ψ33 and ψ44 are simultaneously ¬FCON. Condition 5 eliminates the case where

all of the three ψ22, ψ33 and ψ44 are simultaneously FCON. Condition 6 eliminates two

cases: for ψ22 being ¬FCON one of either ψ33 or ψ44 is FCON but not both.

Four matrices remain for two StrFCONT histories in transition through an instanta-

neous relationship. Each matrix corresponds to a unique instantaneous relation. The

geometric interpretation displayed in Figure 4.14 demonstrates this visually.

Proposition 1 The only possible transition matrices for relations which hold instanta-

neously between two StrFCONT histories correspond to EQst,ECst,TPPst and TPPist
13.

11Relations that can take either of the two values will be marked by a wild card (?).
12Corresponding to the elements (except ψ11) of the leading diagonal.
13Galton’s theory of dominance [Galton, 1995] exploits the continuity of the underlying semantic space

and allows one to infer which relations dominate other relations: R1 dominates R2 if R2 can hold over
an interval followed or preceded by R1 holding instantaneously. From the theory of dominance, the above
four relations are the only relations that hold instantaneously in RCC-8 (c.f. Section 5.1.2, Page 92).
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The corresponding possible values for Mr(x, y, z1, z2) are:

Meq(x, y, z1, z2) =


FCON FCON − −
FCON FCON − −
− − − −
− − − −



Mec(x, y, z1, z2) =


FCON − FCON FCON

− − − −
FCON − FCON −
FCON − − FCON



Mtpp(x, y, z1, z2) =


FCON FCON − FCON

FCON FCON − −
− − − −

FCON − − FCON



Mtppi(x, y, z1, z2) =


FCON FCON FCON −
FCON FCON − −
FCON − FCON −
− − − −


where − = ¬FCON

Figure 4.14 shows the relations that can hold instantaneously between two histories x

and y corresponding to the four sub-cases of Proposition 1.

I introduce a predicate IM(r, x, y, z1, z2), to denote spatio-temporal RCC-8 relation r

holding between StrFCONT histories x
(z1∪z2) and y

(z1∪z2) . In conjunction with Proposition 1,

I add axiom A22 to characterize IM(r, x, y, z1, z2) which effectively amounts to a definition

of IM(r, x, y, z1, z2) under the condition that the histories are StrFCONT.

A22. [StrFCONT( x
(z1∪z2)) ∧ StrFCONT( y

(z1∪z2))] →

IM(r, x, y, z1, z2) ↔


[ (r = eq) ∧ Meq(x, y, z1, z2) ] ∨

[ (r = ec) ∧ Mec(x, y, z1, z2) ] ∨

[ (r = tpp) ∧ Mtpp(x, y, z1, z2) ] ∨

[ (r = tppi) ∧ Mtppi(x, y, z1, z2) ]


where Mr(x, y, z1, z2) with r ∈ {eq, ec, tpp, tppi} is as per D50 with corresponding values

as per Proposition 1.

It might be wondered why it takes a matrix involving 16 conditions over eight parts

of x and y to identify the instantaneous relations and the conditions under which they

can hold. It might turn out that it is in fact possible to characterise the conditions

using a smaller set of conditions (and indeed Condition 3 tells us that it is certainly
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Figure 4.14: Instantaneous relations possible between StrFCONT histories x and y. In
each case, x is bounded by a dotted line, and y by a solid line.

possible to ignore the conditions in the first row and column). However my intention was

not to prejudge the final outcome, but rather to exhaustively analyse the relationships

between the various parts of x and y without any preconception as to which relations

could in fact be instantaneous and ‘discover’ the set analytically from the complete space

of possible matrices. By conducting the analysis in this way we can have confidence

that we have not missed a condition (an ad hoc style of analysis might easily identify a

sufficient condition but might not identify all necessary conditions). This analysis is rather

in the style of the 4- and 9-intersection model of Egenhofer [Egenhofer and Franzosa, 1991;

Egenhofer and Herring, 1994; Egenhofer and Franzosa, 1995] (see Section 2.4.5, Chapter 2)

where from a 2 x 2 and 3 x 3 matrix which determine whether various topological parts of

two regions share points or not, then by imposing a variety of conditions (such as regularity

or one pieceness), the 24 or 29 possibilities are whittled down to just eight possibilities

(corresponding to the RCC-8 relations).

4.4.4 Shared Boundary at Instantaneous Transition

In order to facilitate categorisation of the type of relation holding instantaneously at the

temporal boundary, I introduce the notion of a shared boundary element for entities on

the same side of the temporal boundary (about which an instantaneous transition occurs).

A shared boundary element is denoted as SBE(w, x, y): w is a shared boundary element of

x and y. As in Figure 4.15(a), two regions x1 and y1 have a shared boundary element w
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iff w is equal to the intersection of x1 and y1 and there exists a one-piece region z, which

is ECt and firmly connected to w. I have the following definition:

zy2

x2

y1

x1w

y2

y1

time

space

time

space
a. b.

x

x

1

2

Figure 4.15: Shared boundary at an instantaneous transition. a. SBE(w, x1, y1) i.e.,
w is the part of x1 and y1 with the shared boundary. For FCONT histories this forces
∃zSBE(z, x2, y2). b. Note that for instantaneous transition there may not be a shared
boundary element at all. For ECst holding instantaneously we have ¬∃wSBE(w, x1, y1).

D51. SBE(w, x, y) ≡def ∃z[(w = x ∩ y) ∧ ECt(x, z) ∧ ECt(y, z) ∧

ECt(w, z) ∧ CONz ∧ FCON(w, z)]

A shared boundary element is symmetric about x and y. Further, (x − y) and also

(y − x) cannot be a SBE of x and y. We have the following theorems:

Th65. SBE(z, x, y) ↔ SBE(z, y, x)

Th66. ¬SBE(x− y, x, y)

Th67. ¬SBE(y − x, x, y)

Figure 4.15(a) illustrates a transition with EQst holding instantaneously. Firm continu-

ous histories involved in an instantaneous transition that have a shared boundary element

w on one side in fact have shared boundary elements on both sides of the instantaneous

boundary (as illustrated by Th68 and Th69) (also see Figure 4.16).

Th68. [[FCONTx ∧ FCONTy ∧ ECTS(x1, x2, x) ∧ ECTS(y1, y2, y) ∧

P=
sp

>(x1, y1) ∧ P=
sp

>(y2, x2)] → [SBE(x1, x1, y1) ∧ SBE(y2, x2, y2)]]

Th69. [[FCONTx ∧ FCONTy ∧ ECTS(x1, x2, x) ∧ ECTS(y1, y2, y) ∧

PO=
sp(x1, y1) ∧ P=

sp
>(x2, y2)] → [SBE(x1 ∩ y1, x1, y1) ∧ SBE(x2, x2, y2)]]

As shown in Figure 4.15(b), an instantaneous transition without an SBE for the FCONT

histories is possible. For instantaneous ECst, no SBE exist on both sides of the instanta-

neous boundary. We have theorem Th70.

Th70. [[FCONTx∧FCONTy ∧ECTS(x1, x2, x)∧ECTS(y1, y2, y)∧DRst(x1, y1)∧

PO=
sp(x2, y2)]→¬∃z1, z2[SBE(z1, x1, y1)∧SBE(z2, x2, y2)∧FCON(z2, x1)]]
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The above theorems and the following properties for SBE and FCONT histories will

be used in subsequent proofs for identification of instantaneous transitions. For FCONT

histories in transition, shared boundary elements on either side of the transition boundary

are firmly connected. We have theorem Th71. Parts of histories that do not comprise a

shared boundary element are not firmly connected to a shared boundary element on the

other side of the transition boundary (Th72).

Th71. [[FCONTx ∧ FCONTy ∧ ECTS(x1, x2, x) ∧ ECTS(y1, y2, y) ∧

ECt(w, x2) ∧ FCON(w, x2) ∧ ECt(z, x1) ∧ FCON(z, x1) ∧

SBE(w, x1, y1) ∧ SBE(z, x2, y2)] → FCON(z, w)]

Th72. [[FCONTx ∧ FCONTy ∧ ECTS(x1, x2, x) ∧ ECTS(y1, y2, y) ∧

ECt(w, x2) ∧ FCON(w, x2) ∧ ECt(z, x1) ∧

SBE(w, x1, y1) ∧ ¬SBE(z, x2, y2)] → ¬FCON(z, w)]

A transition from DRst to PO=
sp for FCONT histories would satisfy the instantaneous

matrix Mec (Th73). Theorem Th74 is for a transition from P=
sp

> to Pi=sp
> for FCONT

histories in which case it satisfies the Meq matrix.

Th73. [[DRst( x
z1
, y

z1
) ∧ PO=

sp(
x
z2
, y

z2
) ∧ ECTS( x

z1
, x

z2
, x

z1∪z2
) ∧

ECTS( y
z1
, y

z2
, y

z1∪z2
) ∧ FCONT( x

z1∪z2
) ∧ FCONT( y

z1∪z2
)] → Mec(x, y, z1, z2)]

Th74. [[P=
sp

>( x
z1
, y

z1
) ∧ P=

sp
>( y

z2
, x

z2
) ∧ ECTS( x

z1
, x

z2
, x

z1∪z2
) ∧

ECTS( y
z1
, y

z2
, y

z1∪z2
) ∧ FCONT( x

z1∪z2
) ∧ FCONT( y

z1∪z2
)] → Meq(x, y, z1, z2)]
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Figure 4.16: PO=
sp to NTPP=

sp transition for FCONT histories have the possibility of either
of two distinct instantaneous relations holding. a. PO=

sp to NTPP=
sp with EQst holding

instantaneously. b. PO=
sp to NTPP=

sp with TPPst holding instantaneously.

A transition from PO=
sp to NTPP=

sp or PO=
sp to NTPPi=sp is different in that either of a

pair of instantaneous matrices is true. For PO=
sp to NTPP=

sp, either of the matrices Meq or

Mtpp is satisfied for FCONT histories.

For PO=
sp to NTPP=

sp transition with either EQst or TPPst holding instantaneously, we

have theorem Th75. Similarly for PO=
sp to NTPPi=sp, either of Meq or Mtppi holds (Th76).

Th75. [[PO=
sp(

x
z1
, y

z1
) ∧ NTPP=

sp(
x
z2
, y

z2
) ∧ ECTS( x

z1
, x

z2
, x

z1∪z2
) ∧
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ECTS( y
z1
, y

z2
, y

z1∪z2
) ∧ FCONT( x

z1∪z2
) ∧

FCONT( y
z1∪z2

)] → [Meq(x, y, z1, z2) ∨ Mtpp(x, y, z1, z2)]]

Th76. [[PO=
sp(

x
z1
, y

z1
) ∧ NTPPi=sp(

y
z2
, x

z2
) ∧ ECTS( x

z1
, x

z2
, x

z1∪z2
) ∧

ECTS( y
z1
, y

z2
, y

z1∪z2
) ∧ FCONT( x

z1∪z2
) ∧

FCONT( y
z1∪z2

)] → [Meq(x, y, z1, z2) ∨ Mtppi(y, x, z1, z2)]]

4.5 Elementary Transitions

4.5.1 Transition Operators

I define two operators to capture the notion of elementary transition. Three distinct

transition operators – two durative and one instantaneous, were defined in [Cohn and

Hazarika, 2001a]. The durative operators, called TransTo and TransFrom, assumed that

the initial and/or the final relations hold over intervals and differ as to which of the

two relations hold at the dividing instant. The direction of change was established by

incorporating 1t into the definition. RCC-8 transitions need not be directed in time, as

for any transition forward in time, there is a dual one going backward. Therefore here the

temporal relation 1t is replaced by temporal external connection, ECt.

z1

z 2

x y

b.

z 

a.
space

2

1z

time time

space

x y

DC

ECDC

EC

Figure 4.17: Durative transition operators a. TransTo and b. TransFrom. The
pair collapses to a single operator Trans for histories x and y on x1 1t x2 being
replaced by ECt(z1, z2).

Figure 4.17 shows TransTo and TransFrom at the end of interval z1. The operators

collapse to a single one with replacement of z1 1t z2 by ECt(z1, z2). I call this durative

undirected transition operator, Trans. The other operator, InsRel, is for histories under-

going a transition involving an instantaneous relation. The instantaneous relation holds

at the temporal boundary between z1 and z2 characterised through the instantaneous

transition matrix.

I will first define the durative transition operator Trans and thereafter the instantaneous

operator InsRel. Note that in the definitions below, the final two arguments to the durative

relation rcc=
sp, amount to just testing the spatial topology without sporadic changes at the
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specified time.

4.5.1.1 Trans

A transition for two histories x and y from relation r1 to relation r2 occurs just in case z1

and z2 are externally temporally connected and r1 holds over contemporaneous temporal

slices of every NECP part of the histories restricted to z1 with respect to z2. Relation r2

holds over contemporaneous temporal slices of every NECP part of the histories restricted

to z2 with respect to z1.

D52. Trans(r1, r2, x, y, z1, z2) ≡def [ECt(z1, z2) ∧ (z1∪z2) ⊆t x ∧ (z1∪z2) ⊆t y ∧

∀u,v[[NECP(u, x
z1
, z2)∧NECP(v, y

z1
, z2)∧EQTS(u, v, x

z1
, y

z1
)]→ rcc=

sp(r1, u, v)]∧

∀u,v[[NECP(u, x
z2
, z1)∧NECP(v, y

z2
, z1)∧EQTS(u, v, x

z2
, y

z2
)]→ rcc=

sp(r2, u, v)]∧

¬(r1 = r2)]

Note that in a standard topological interpretation of mereotopology such as [Asher

and Vieu, 1995], this would amount to r1 and r2 holding over the interior of z1 and z2

respectively.

4.5.1.2 InsRel

Any transition for two histories x and y with an instantaneous relation r holding in between

z1 and z2 is related by IM(r, x, y, z1, z2).

D53. InsRel(r, x, y, z1, z2) ≡def [ECt(z1, z2) ∧ (z1 ∪ z2) ⊆t x ∧

(z1 ∪ z2) ⊆t y ∧ IM(r, x, y, z1, z2)]

For each instantaneous relation holding between z1 and z2, distinct RCC-8 relations

hold before and after it. I introduce the predicate InsRel3 relating the three relations:

D54. InsRel3(r1, r2, r3, x, y, z1, z2) ≡def [InsRel(r2, x, y, z1, z2) ∧

∀u,v[[NECP(u, x
z1
, z2)∧NECP(v, y

z1
, z2)∧EQTS(u, v, x

z1
, y

z1
)]→ rcc=

sp(r1, u, v)]∧

∀u,v[[NECP(u, x
z2
, z1)∧NECP(v, y

z2
, z1)∧EQTS(u, v, x

z2
, y

z2
)]→ rcc=

sp(r3, u, v)]∧

¬(r1 = r2) ∧ ¬(r3 = r2)]

4.5.2 Transitions and Continuity

4.5.2.1 EleTran

I can now define an elementary transition. An elementary transition from an interval z1

to an adjacent interval z2 is defined as being a Trans or an InsRel3; r1 is the relation that

holds at the start of the transition, r3 is the relation that holds at the end of the transition,
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and r2 is the relation that either holds instantaneously between z1 and z2 or which may

be the same as either r1 or r3:

D55. EleTran(r1, r2, r3, x, y, z1, z2) ≡def [[Trans(r1, r3, x, y, z1, z2) ∧ (r2 = r3)] ∨

[Trans(r1, r3, x, y, z1, z2) ∧ (r2 = r1)] ∨ InsRel3(r1, r2, r3, x, y, z1, z2)]

Transitions need to be continuous; therefore I add axiom A23 which states that for

any Trans to be followed by another Trans, the intermediate state must be identical.

A23. [Trans(r1, r2, x, y, z1, z2) ∧ Trans(r3, r4, x, y, z2, z3)] → [r2 = r3]

4.6 Conceptual Neighbourhood Diagram under StrFCONT

4.6.1 DirTran

I use the above formulation to recover the RCC-8 conceptual neighbourhood diagram

under strong firm continuity (i.e., for StrFCONT histories). Here I want to show that

the links not in the conceptual neighbourhood diagram (Figure 2.6, Chapter 2) represent

inconsistent transitions by showing such transitions result in one or both of the histories

being ¬StrFCONT. For this I define a direct transition DirTran as follows:

D56. DirTran(r1, r2, x, y, z1, z2) ≡def [∃r[EleTran(r1, r2, r, x, y, z1, z2) ∨

EleTran(r, r1, r2, x, y, z1, z2)] ∧ ¬∃r[EleTran(r1, r, r2, x, y, z1, z2) ∧

¬(r = r1) ∧ ¬(r = r2)]]

4.6.2 Why is NECP adequate?

The transition operators are defined in terms of contemporaneous temporal slices which

are NECPs, whereas as seen in Section 4.3.1 discontinuity is based on transition between

adjacent temporal slices of a pair of histories. Why is it that NECP is adequate? This is

made clear in the following discussion.

time time

space

z

x y

space

z

x y

a. b.

Figure 4.18: RCC-8 relation resulting from how NECPs are connected. a. Disconnected
over all NECPs implies histories x and y are disjoint. b. Existence of NECPs that overlap
implies histories x and y overlap.
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As shown in Figure 4.18(a), when disconnected over all NECPs, two histories are dis-

joint14. We have theorem Th77. Note that from mereotopology, two histories x and y that

have no parts that overlap (here these parts are stated to be not NECPs), do not overlap

(Th78). For histories that overlap as shown in Figure 4.18(b), there exists an NECP that

is part of the overlapping parts: we have theorem Th79.

Th77. [ECt(x, z) ∧ ECt(y, z) ∧ ∀u, v[[NECP(u, x, z) ∧

NECP(v, y, z)] → ¬Cst(u, v)]] → [¬Cst(x, y) ∨ ECst(x, y)]

Th78. [ECt(x, z) ∧ ECt(y, z) ∧ ∀u, v[[Pst(u, x) ∧ ¬NECP(u, x, z) ∧

Pst(v, y) ∧ ¬NECP(v, y, z)] → ¬Ost(u, v)]] → ¬Ost(x, y)

Th79. [ECt(x, z) ∧ ECt(y, z) ∧ [Pst(u, x) ∧ Pst(u, y) ∧ ECt(u, z)]] →

∃w[Pst(w, u) ∧ NECP(w, x, z) ∧ NECP(w, y, z)]

If for two histories x and y, externally temporally connected to a third history z, all

NECPs do not overlap, x and y do not overlap. We have the following theorem:

Th80. [[ECt(x, z) ∧ ECt(y, z) ∧ ∀u, v[[NECP(u, x, z) ∧

NECP(v, y, z)] → ¬Ost(u, v)]] → ¬Ost(x, y)]

Transitions for the RCC-8 conceptual neighbourhood are stated using DirTran which

is defined in terms of EleTran. An EleTran is either a Trans or an InsRel3 and thus in-

volves durative RCC-8 relations. Durative relations between two space-time histories

involve a relationship between temporally equivalent temporal slices from each history.

In Section 4.6.2.1, I look at what relation holds over histories for where a durative base

relation holds over all NECPs which are EQTS. In Section 4.6.2.2, I shall ascertain how

histories x and y restricted to temporal interval z1 are related during a given transition

Trans(r1, r2, x, y, z1, z2); recall that as per the definition of Trans, r1 holds over EQTS which

are NECPs of x
z1

and y
z1

(with respect to z2). This illustrates why NECPs are adequate

to characterize continuous transitions, when discontinuity is characterized over adjacent

temporal slices.

4.6.2.1 Temporal Slices as NECPs

Suppose we know that a durative base relation holds over the NECPs (which are EQTS)

of x and y with respect to an interval z. What can we say about the relation holding

between the whole of x and y? We have the following theorems for when a durative base

relation holds for the NECPs. For DC=
sp holding over all NECPs which are EQTS of two

14Note that this is true irrespective of whether or not the NECPs are temporal slices. For similar
relationships involving existence of connection or overlap over NECPs we need to look at NECPs which are
temporal slices. This is the focus of Section 4.6.2.1 and Section 4.6.2.2
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histories x and y, with respect to a third history z, DRst holds between x and y. We have

theorem Th81. Similarly ECst holds over x and y for EC=
sp holding over NECPs which are

EQTS of x and y with respect to z: we have theorem Th82.

Th81. [[ECt(x, z) ∧ ECt(y, z) ∧ ∀u, v[[NECP(u, x, z) ∧

NECP(v, y, z) ∧ EQTS(u, v, x, y)] → DC=
sp(u, v)]] → DRst(x, y)]

Th82. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧

NECP(v, y, z) ∧ EQTS(u, v, x, y)] → EC=
sp(u, v)]] → ECst(x, y)]

We have PO=
sp, EQst and TPPst holding over complete histories x and y, for PO=

sp, EQ=
sp

and TPP=
sp respectively holding over temporally equivalent temporal slices from x and y,

which are NECPs with respect to z (Th83 through Th85).

Th83. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧

NECP(v, y, z) ∧ EQTS(u, v, x, y)] → PO=
sp(u, v)]] → PO=

sp(x, y)]

Th84. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧

NECP(v, y, z) ∧ EQTS(u, v, x, y)] → EQ=
sp(u, v)]] → EQst(x, y)]

Th85. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧

NECP(v, y, z) ∧ EQTS(u, v, x, y)] → TPP=
sp(u, v)]] → TPPst(x, y)]

For the durative base relation NTPP=
sp holding over NECPs which are EQTS, we have

theorem Th86 establishing PPst holding over complete histories.

Th86. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧

NECP(v, y, z) ∧ EQTS(u, v, x, y)] → NTPP=
sp(u, v)]] → PPst(x, y)]

4.6.2.2 NECPs and Trans

For histories undergoing a Trans from DC=
sp over NECPs of z1 to any other relation R=

sp

(where R=
sp refers to a relation from the set of durative base relations in Section 4.3.2), the

histories are disjoint over the interval z1. We have theorem Th87. For the case of Trans

from EC=
sp to any other relation R=

sp, histories restricted to interval z1 are spatio-temporally

externally connected ECst (Th88). Related to the above, we have theorem Th89 and Th90

corresponding to PO=
sp and TPP=

sp holding over all NECPs.

Th87. Trans(dc, r, x, y, z1, z2) → DRst( x
z1
, y

z1
)

Th88. Trans(ec, r, x, y, z1, z2) → ECst( x
z1
, y

z1
)

Th89. Trans(po, r, x, y, z1, z2) → PO=
sp(

x
z1
, y

z1
)

Th90. Trans(tpp, r, x, y, z1, z2) → TPPst( x
z1
, y

z1
)
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Theorem Th91 is for histories undergoing a Trans from NTPP=
sp, the histories restricted

to interval z1 are PPst. Corresponding to Th90 we have a theorem (Th92) for TPPi=sp

holding over the NECPs.

Th91. Trans(ntpp, r, x, y, z1, z2) → PPst( x
z1
, y

z1
)

Th92. Trans(tppi, r, x, y, z1, z2) → TPPst( y
z1
, x

z1
)

Further note that Trans being defined in terms of NECPs over z1 and z2, we have the

following theorems specifying the relation holding over histories restricted to z2 for a given

relation over all NECPs during z2 with respect to z1:

Th93. Trans(r, eq, x, y, z1, z2) → EQst( x
z2
, y

z2
)

Th94. Trans(r, po, x, y, z1, z2) → PO=
sp(

x
z2
, y

z2
)

Th95. Trans(r, tpp, x, y, z1, z2) → TPPst( x
z2
, y

z2
)

Th96. Trans(r, ntpp, x, y, z1, z2) → PPst( x
z2
, y

z2
)

Related to Th95 and Th96 we have theorems Th97 and Th98 for TPPi=sp and NTPPi=sp

holding over the NECPs during z2.

Th97. Trans(r, tppi, x, y, z1, z2) → TPPst( y
z2
, x

z2
)

Th98. Trans(r, ntppi, x, y, z1, z2) → PPst( y
z2
, x

z2
)

Even though Trans is stated in terms of NECPs over z1, these theorems remove the

ambiguity as to which relations hold for histories over interval z1. However, note that in

certain cases (cf. Th87 and Th91), a relation that subsumes the expected spatio-temporal

relation from the lattice of subsumption hierarchy (see Figure 2.2, Chapter 2) is all that

can be inferred15.

4.6.3 Instantaneous Transitions and StrFCONT

4.6.3.1 Non-Instantaneous Relations and InsRel3

An instantaneous transition given by InsRel3 involves a RCC-8 relation holding instanta-

neously. A22 eliminates the possibility of DCst,POst,NTPPst and NTPPist holding instan-

taneously for StrFCONT histories. Thus there is no InsRel3 for StrFCONT histories during

time interval z1 to z2, involving any of the above relations holding at the boundary of z1

and z2. We have the following theorems:

15A number of other theorems based on the R=
sp relation being specified over NECPs during z1 or z2 can

be proved along similar lines. I present here only the above theorems (Th87 to Th98) as only these are
needed for subsequent proofs in Section 4.6.4. Note that I do not commit to the relation R=

sp holding over
the NECPs at the other end; the relation at the other end (for a given relation at one end) determines
whether a particular transition is consistent for StrFCONT histories (see Appendix D).
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Th99. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬InsRel3(r1, dc, r2, x, y, z1, z2)

Th100. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬InsRel3(r1, po, r2, x, y, z1, z2)

Th101. [StrFCONT( x
z1∪z2

)∧StrFCONT( y
z1∪z2

)]→¬InsRel3(r1, ntpp, r2, x, y, z1, z2)

Th102. [StrFCONT( x
z1∪z2

)∧StrFCONT( y
z1∪z2

)]→¬InsRel3(r1, ntppi, r2, x, y, z1, z2)

4.6.3.2 Instantaneous Transition Matrix Mr and InsRel3

Non-transitions involving InsRel3 for StrFCONT histories based on the instantaneous re-

lations, EQst,ECst,TPPst and TPPist are more subtle. Use of A22 leads to identification

of the instantaneous transition matrix Mr for a particular relation r holding instanta-

neously. Identifying non-transition requires checking FCONnectivity between parts of pair

of histories, thus arriving at a contradiction through the particular Mr. I present here a

representative set of theorems involving InsRel3 that will be used for subsequent tasks.

For StrFCONT histories, EQst holding instantaneously does not allow InsRel3 involving

either DC=
sp or EC=

sp over EQTS which are NECPs of x and y (restricted to z1) with respect

to z2. We have theorems Th103 and Th104.

Th103. InsRel3(dc, eq, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Th104. InsRel3(ec, eq, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

We cannot have an InsRel3 with ECst holding instantaneously and either EQ=
sp, TPP=

sp,

NTPP=
sp or their inverses TPPi=sp and NTPPi=sp holding over EQTS which are NECPs of x

z2

and y
z2

(with respect to z1). We have the following theorems.

Th105. InsRel3(r, ec, eq, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Th106. InsRel3(r, ec, tpp, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Th107. InsRel3(r, ec, ntpp, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Th108. InsRel3(r, ec, tppi, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Th109. InsRel3(r, ec, ntppi, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

For InsRel3 involving TPPst as the instantaneous relation, we enumerate the following

theorems. Th110 and Th111 refers to the impossibility of having DC=
sp and EC=

sp respec-

tively holding over EQTS which are NECPs of x
z1

and y
z1

(with respect to z2).

Th110. InsRel3(dc, tpp, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Th111. InsRel3(ec, tpp, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Similarly we have theorems Th112 and Th113 that refer to the impossibility of having

TPPi=sp and NTPPi=sp respectively holding over EQTS which are NECPs of x
z2

and y
z2

(with
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respect to z1) with TPPst holding instantaneously at the boundary of z1 and z2.

Th112. InsRel3(r, tpp, tppi, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Th113. InsRel3(r, tpp, ntppi, x, y, z1, z2)→ [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

For InsRel3 with TPPist as the instantaneous relation, theorems Th114 through Th116

refer to the impossibility of having DC=
sp, EC=

sp or TPP=
sp respectively holding over EQTS

which are NECPs of x
z1

and y
z1

(with respect to z2).

Th114. InsRel3(dc, tppi, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Th115. InsRel3(ec, tppi, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Th116. InsRel3(tpp, tppi, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Finally, for StrFCONT histories, Th117 refers to the impossibility of having NTPP=
sp

holding over EQTS which are NECPs of x
z2

and y
z2

(with respect to z1) with TPPist holding

instantaneously at the boundary of z1 and z2.

Th117. InsRel3(r, tppi, ntpp, x, y, z1, z2)→ [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

4.6.4 Non-Existence of Transitions

A link between relations r1 and r2 in the CND exists iff DirTran(r1, r2, x, y, z1, z2) is consis-

tent. Absence of any link between r1 and r2 should entail ¬DirTran(r1, r2, x, y, z1, z2). For

example, since there is no direct link between DC=
sp and EQ=

sp, the following is a theorem

expressing the non-existence of transition in the RCC-8 CND for StrFCONT histories.

Th118. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(dc, eq, x, y, z1, z2)

In Table 4.1 I have the relations r1 and r2 listed in the rows and columns respec-

tively. The entries of the table can be understood as transition between the corresponding

relations under StrFCONT. The table is symmetric about the diagonal. Transitions corre-

sponding to the links present in the CND are marked . I am concerned here with

transitions that are absent from the CND of RCC-8. There are 17 such non-transitions.

These are marked with the corresponding theorem that establishes the non-existence.

There is no transition from EC=
sp and EQ=

sp in the standard RCC-8 conceptual neigh-

bourhood. The following theorem establishes this non-transition for StrFCONT histories.

Th119. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(ec, eq, x, y, z1, z2)

A direct transition from DC=
sp and PO=

sp is absent from the RCC-8 conceptual neigh-

bourhood. However, a transition with ECst holding instantaneously is possible, i.e.,

∃x, y, z1, z2[StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

∧ InsRel3(dc, ec, po, x, y, z1, z2)] would be
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DC=
sp EC=

sp PO=
sp EQ=

sp TPP=
sp TPPi=sp NTPP=

sp NTPPi=sp

DC=
sp Th120 Th118 Th121 Th125 Th123 Th127

EC=
sp Th119 Th122 Th126 Th124 Th128

PO=
sp Th129 Th130

EQ=
sp

TPP=
sp Th131 Th133

TPPi=sp Th134

NTPP=
sp Th132

NTPPi=sp

Table 4.1: Transitions under StrFCONT. Non-transitions are marked with the correspond-
ing theorem that establishes their non-existence.

consistent. Any transition from DC=
sp to PO=

sp without an intervening instantaneous rela-

tion should not be possible for StrFCONT histories. We have the following theorem:

Th120. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(dc, po, x, y, z1, z2)

For any transition from being disconnected or externally connected to proper-part

involves spatial leap and/or temporal pinching as seen in Section 4.3. Thus under strong

firm continuity, there exists no direct link between DC=
sp or EC=

sp to TPP=
sp and NTPP=

sp.

We have theorems Th121 through Th124 establishing this non-existence for StrFCONT

histories.

Th121. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(dc, tpp, x, y, z1, z2)

Th122. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(ec, tpp, x, y, z1, z2)

Th123. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(dc, ntpp, x, y, z1, z2)

Th124. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(ec, ntpp, x, y, z1, z2)

Similarly no direct link exists between DC=
sp or EC=

sp to TPPi=sp and NTPPi=sp

for StrFCONT histories. We have theorems Th125 through Th128.

Th125. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(dc, tppi, x, y, z1, z2)

Th126. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(ec, tppi, x, y, z1, z2)

Th127. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(dc, ntppi, x, y, z1, z2)

Th128. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(ec, ntppi, x, y, z1, z2)
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Both ∃x, y, z1, z2[StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

∧ InsRel3(po, eq, ntpp, x, y, z1, z2)]

as well as ∃x, y, z1, z2[StrFCONT x
z1∪z2

∧StrFCONT y
z1∪z2

∧ InsRel3(po, tpp, ntpp, x, y, z1, z2)]

would be consistent. Under strong firm continuity, a transition from PO=
sp to NTPP=

sp

with EQst or TPPst holding instantaneously is possible. Similarly for PO=
sp to NTPPi=sp

with TPPst replaced by TPPist holding instantaneously. No direct transition from POst to

NTPPst or NTPPist exists and we have theorems Th129 and Th130.

Th129. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(po, ntpp, x, y, z1, z2)

Th130. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(po, ntppi, x, y, z1, z2)

No direct transition between R=
sp to Ri=sp is possible. For StrFCONT histories, only

transition possible between R=
sp to Ri=sp is with EQst holding instantaneously. Therefore

∃x, y, z1, z2[StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

∧ InsRel3(tpp, eq, tppi, x, y, z1, z2)] would be

consistent. Similar is the case for a NTPP=
sp to NTPPi=sp transition under strong firm

continuity. We have theorems Th131 and Th132.

Th131. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(tpp, tppi, x, y, z1, z2)

Th132. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(ntpp, ntppi, x, y, z1, z2)

A transition from TPP=
sp to NTPPi=sp for StrFCONT involves EQst holding instanta-

neously and similarly for TPPi=sp to NTPP=
sp. We have the following theorems:

Th133. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(tpp, ntppi, x, y, z1, z2)

Th134. [StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

] → ¬DirTran(tppi, ntpp, x, y, z1, z2)

4.6.5 Recovering the CND

The missing links of the RCC-8 CND have been shown to be non-transitions under strong

firm continuity. From Table 4.1 the remaining transitions possible between the RCC-8

relations are the ones envisioned originally as in Figure 2.6, Chapter 2. I have recovered

the conceptual neighbourhood within my mereotopological theory of space-time.

However, in absence of formal proofs for the existence of transitions (corresponding to

the links present in the CND), the recovery is only partial. More will be said about it in

Section 5.2.2, Chapter 5.



Chapter 5

Further Work and Conclusion

In this chapter I shall summarise the main results of the thesis and point to areas for

further work. First, I shall discuss a potential application based on the mereotopological

framework developed in the thesis. I will present an approach to the problem of acquiring

a qualitative world description from partial qualitative spatio-temporal information such

as might be acquired by a mobile agent exploring some region in space [Hazarika and

Cohn, 2002]. This is achieved by exploiting qualitative motion and a library of possible

spatio-temporal patterns.

5.1 Potential Application: Abducing Qualitative Histories

Shanahan was the first to propose map-building for robotic navigation as a formal ab-

duction task [Shanahan, 1998]. He proposed a logic-based framework using abduction for

sensory data assimilation. However the system does not use a purely qualitative approach

to spatial representation [Randell et al., 1992b] and space is represented as a real-valued

coordinate system. In line with Shanahan’s suggestion [Shanahan, 1998, page 34-45],

grounded at the sensory level, I explore the use of the mereotopological theory of space-

time developed in this thesis, for building a world model from sensory information.

5.1.1 Abductive Framework

A map emphasises the illusion of seeing a spatial scene from above at an instant of time

(a snapshot) which I refer to as global snapshot: the complete knowledge of the world at

87
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a particular time. In contrast, the knowledge of the world an autonomous agent garners

as it continuously explores is only partial and I will refer to it as local survey knowledge:

partial spatial knowledge of the world at all times during its exploration. I shall consider

an inhabited dynamic system. My interpretation of a dynamical system is as in [Sandewall,

1994]. A dynamical system is one whose state changes over time and where effects flow

forwards in time. It is inhabited iff it contains one or more agents which can influence the

system’s state at later times by performing actions.

With space-time primitives in an inhabited dynamic system, the key idea is to generate

complete space-time histories by abduction: given a record of local surveys, the abductive

task is to hypothesise the space-time histories, which, given the spatio-temporal patterns

of objects in the domain, would explain the local surveys. In logical terms, if a local survey

is represented as the conjunction Φ of a set of spatio-temporal relationships, the task is

to find an explanation of Φ in the form of a logical description (a mereotopological world

model) ∆H involving space-time histories, such that

ΣST ∧ ∆P ∧ ∆H |= Φ ,where

1. ΣST is a spatio-temporal theory for space, time, change and continuity.

2. ∆P is a logical description of spatio-temporal patterns for objects in the domain.

Figure 5.1 below illustrates the abductive framework. The abductive reasoning engine

is driven by selection heuristics. The process is a multi-tier procedure wherein explanations

are abduced and then heuristics are used to choose preferred explanations. I shall present

here a primary heuristic for spatial abduction and discuss a range of possibilities for

refining the set of abduced explanations.

Qualitative World Model
Expressed with Space−Time Histories

Heuristics
Selection

Local Survey Using
Spatio−Temporal

Ontology

Reasoning Engine
Abductive

Spatio−Temporal Spatio−Temporal
PatternsTheory

Figure 5.1: Abductive approach to generating an integrated spatio-temporal representa-
tion. The world model is constructed from local surveys based on a library of possible
spatio-temporal patterns.
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5.1.1.1 Spatio-Temporal Theory ΣST

The spatio-temporal theory ΣST is the mereotopological theory developed in the thesis

including continuity expressed in a purely mereotopological framework. Any transition

between RCC-8 relations to be consistent with the background theory ΣST must follow a

path in the conceptual neighbourhood diagram (cf. Figure 2.6, Chapter 2). This imposes

constraints on the abduction as discussed in Section 5.1.2.

The conceptual neighbourhood of Figure 2.6, Chapter 2 is under the assumption that

histories are StrFCONT (cf. Section 4.6, Chapter 4). There isn’t any restriction on the

rigidity of the objects. Thus a transition involving spatio-temporal expansion of one of the

histories is possible, for example, EQst(x, y) to NTPPst(x, y) with uniform growth of history

y. If we assume all objects are rigid1, we can add axiom A24 which further constrains the

possible continuous transitions2 in Figure 5.2.

b

a

b b

a

a b

b

ab

a b

b a

a

a

ECDC PO

TPP NTPP

NTPPiTPPi

EQ

Figure 5.2: Transition Graph for RCC-8 relations under the assumption that all objects
are rigid. Illegal transitions are shown with dashed lines.

A24. PPst
x
z1

y
z1
→ ¬EQst

x
z2

y
z2

The illegal transitions are shown with dashed lines in Figure 5.2. This axiom will also

disallow the sequence TPPst −. POst −. TPPist which would otherwise be possible given the

purely local constraints imposed by the restricted form of Figure 5.2.

5.1.1.2 Spatio-Temporal Patterns ∆P

The range of phenomena that can be described in a s-t theory of space is potentially

infinite. Identifying useful s-t patterns ∆P involving one or more spatial entities is a

complex task and one far beyond the scope of the present work; here I am simply concerned

1More realistically some objects are rigid and some are not. To constrain the number of alternative
abductive explanations, I assume only rigid objects in the domain.

2When Freksa gave the conceptual neighbourhood for Allen’s Calculus, he also gave three specialised
versions based on ways in which an interval can be deformed. The transition graph obtained for intervals
of fixed size was called B-conceptual neighbourhood [Freksa, 1992]. The spatial equivalent is the movement
of a region in space with area and shape unchanged [Cohn et al., 1994].
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with validating our abductive framework. Therefore here I will enumerate only a small

possible representative group of s-t patterns for rigid (shape invariant) objects which will

be sufficient to illustrate the ideas. The following qualitative s-t patterns are identifiable

with a single spatial entity:

1. Immobility, IMBx: Immobility is the phenomenon of occupying the same space at

all times.

2. Non-repeating, NPTx: Non-repeating is defined as the phenomenon of never being

in the same place twice3.

3. Repeating, RPTx: Repeating is the phenomenon of being in the same place at two

different times, at being elsewhere inbetween4.

xx

time

space

x

IMB RPTNPT

Figure 5.3: A selection of spatio-temporal patterns for a single entity.

Figure 5.3 shows the different s-t patterns identified above. D57 to D59 provide the

object level definitions5 for the above three different patterns. I cannot distinguish rotation

from repeating mobility. Topologically, they both have the property that objects are in

the same place twice. However, with an additional morphological primitive of congruence

[Bennett et al., 2000b] I could make the distinction. Further note that a sphere rotating

occupies the same place at all times, so immobility as defined above does not necessarily

mean being at rest. Also note that with congruence, I could make explicit at the object

level the assumption that objects are rigid. Even without this I am able to axiomatise

some of the effects of rigidity (see A24).

D57. IMBx ≡def ∀t[t ⊆t x → EQspx
x
t ]

D58. NPTx ≡def ∀u, v[(u ⊆t x ∧ v ⊆t x ∧ ¬(u =t v)) → ¬EQsp
x
u

x
v ]

D59. RPTx ≡def ∃u, v, w[(u ⊆t x ∧ v ⊆t x ∧ w ⊆t x ∧

v ‖t (u;w)) ∧ EQsp
x
u

x
w ∧ ¬EQsp

x
u

x
v ]

3Note that this definition implies that the object is never stationary. Objects that are in non-repeating
motion and at rest intermittently would display a combination of IMB and NPT over time. This could be
expressed as a (macro) pattern explicitly if desired.

4There are weaker and stronger versions of these predicates possible. For example, of never taking an
overlapping path or of taking an overlapping path more than once (which might then yield the kind of
semantic region descriptions computed in [Fernyhough et al., 2000]).

5These definitions consider the spatial positions during different intervals, since in section 5.1.3 I will
define a local survey to be knowledge that holds during a set of observation intervals. It is in fact possible,
for example, for an entity x to be in the same position twice instantaneously and still satisfy NPTx.
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5.1.2 Generalized Transitions

Any change occurring (excluding change in spatio-temporal pattern involving a single

entity) involves an EleTran. For defining transitions between s-t patterns I treat pat-

tern relations as constant symbols rather than as predicates. Thus I define a predicate

pat(p, x): meaning pattern P holds for x; where p is the lowercase translation of the

pattern relation P. I introduce the following definition schema:

D60. pat(p, x) ≡def P(x)

I now define pattern transitions for monadic s-t patterns. A pattern transition for a

monadic pattern relation is specified by PatTran(x,p1,p2, z1, z2) where history x undergoes

a transition of pattern from p1 to p2.

D61. PatTran(x, p1, p2, z1, z2) ≡def [pat(p1,
x
z1

) ∧ pat(p2,
x
z2

) ∧

ECt(z1, z2) ∧ ¬(p1 = p2)]

I define a generalized transition from an interval z1 to an adjacent interval z2 as being

an elementary transition or a pattern transition.

D62. GTrans(z1, z2) ≡def ∃x, y, r1, r2, r, p1, p2[PatTran(x, p1, p2, z1, z2) ∨

EleTran(r1, r, r2, x, y, z1, z2)]

It is important to capture the relationship between mobility and change. I shall present

two axioms (A25 and A26) which capture such properties. If an object occupies distinct

regions of space at different times then it must be ¬IMB somewhere in between. I add

axiom A25 to capture this constraint.

A25. ¬EQsp
x
z1

x
z2
→ ∃z3[z3 ‖t (z1; z2) ∧ ¬IMB x

z3
]

Galton [1995] has introduced the concept of ‘dominance’: to say that q dominates p is

to say that it is possible for q to hold at an instant which limits (at one or the other end)

an open interval over which p holds. I use the predicate Dom(q, p) to express this6. In the

case of R=
sp relations we can obtain each of the following facts as a theorem: Dom(ec,dc),

Dom(ec,po), Dom(tpp,po), Dom(tppi,po), Dom(tpp,ntpp), Dom(tppi,ntppi), Dom(eq,po),

Dom(eq,tpp), Dom(eq,tppi), Dom(eq,ntpp), Dom(eq,ntppi). Galton [1995] has analyzed

what he terms as states of motion and states of position. The states of motion are dom-

inated by the states of position. For Dom(r1, r2) to be true, r2 needs to be a state of

motion. Therefore at least one of the histories, x
z2

or y
z2

must not be immobile (for r2

holds between x
z2

and y
z2

). I therefore add the following axiom to capture this relationship

between dominance and motion.
6This is definable within the mereotopological theory from the Instantaneous Transition Matrix analysis.

Dom(q, p) ≡def ∃r, x, y, z1, z2[StrFCONT x
z1∪z2

∧ StrFCONT y
z1∪z2

∧ InsRel3(r, q, p, x, y, z1, z2)].
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A26. [rcc=
sp(r1,

x
z1
, y

z1
) ∧ rcc=

sp(r2,
x
z2
, y

z2
) ∧ Dom(r1, r2) ∧

(z1 1t z2 ∨ z2 1t z1)] → [¬IMB x
z2
∨ ¬IMB y

z2
]

5.1.3 Specifying the Local Survey Φ

Now I shall specify the format of the observation Φ that I am assuming. I will confine

myself to considering the observations of a single agent, which records, at a sequence of

intervals τ1, τ2, . . . τn the R=
sp relationships between pairs of objects that it observes and

any patterns it notices. Thus Φ consists of a conjunction of atoms each of the form

rcc=
sp(r,

x
τj
, y

τi
) or pat(p1,

x
τj

).

I conjoin to Φ also the n-1 facts τj 1t τj+1 where 1 ≤ j ≤ n− 1. This has the effect

of uniqueness of names assumption for the named interval constants. We may also add

statements asserting the agent’s belief of the continuity of the histories; for example, that

a history x is strong firm continuous i.e. StrFCONTx. We also need to add axioms to

express the uniqueness of names for the named objects in the observations. It is also

helpful to assume that if the agent observes an object at a particular time interval, then

it is able to observe everything about it (i.e. its pattern of behaviour during z1 and the

spatial relationships between it and all the objects it observes during z1). I introduce a

predicate Obs(t) to mean t is an observation interval. I will also add the assumption that

all objects have the same lifetime. Thus Φ consists of:

1. A conjunction Obs(τ1) ∧ . . . ∧ Obs(τn) ∧ τ1 1t τ2 ∧ . . . ∧ τn1 1t τn where

τ1, . . . , τn are constant symbols denoting the observation intervals of the agent. Note

that unless n ≥ 2 then no change can be observed; so I assume n ≥ 2.

2. A conjunction of atomic facts Ω expressing observed s-t knowledge at the τi, for

example, DC=
sp

b
τ2

c
τ2
, EQ=

sp
a
τ1

a
τ4
, IMB a

τ2

3. A conjunction
∧xi∈Γ StrFCONTxi stating that each of the objects in Γ is strongly

continuous, where Γ is the set of named objects in Ω.

4. An axiom expressing the uniqueness of names of the objects in Γ.

5. The assumption that all objects have the same lifetime:
∧α,β∈Γ α =t β

6. I assume that during every observation interval zi each history follows one of the

behaviour patterns. This can be expressed by the following axiom schema, just for

the objects in Γ.

A27. Obs(zi) → ∃p∀x ∈ Γ[pat(p, x
zi

)]

We could also express the global constraint ∃p∀x ∈ Γ[pat(p, x)]
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5.1.4 Selection Heuristics

In general, abduction may yield more than one possible answer. Often abductive reasoning

is accompanied by some preference criteria [Sandewall, 1989]. We can express these criteria

using heuristics7.

My primary heuristic is to choose those explanations that minimize the number of

changes of state i.e. exploit some form of ‘global’ persistence or spatio-temporal

inertia.

5.1.4.1 Global Persistence

Most non-monotonic approaches to reasoning about time and change assume that fluents

tend to persist if nothing tells us the contrary. In other words, unnecessary change is

minimized. I would like to import this inertia assumption explicitly into my s-t theory.

Prior to this, I need to make a few more definitions and state certain assumptions.

I wish to characterize change in an abstract and qualitative way. I will only consider

qualitative change between named histories. Thus purely metric changes which do not

result in a qualitative change do not affect the explanations generated, nor do changes

involving histories not corresponding to a named object of interest.

Within my s-t theory, a formula fst (involving spatial relations between one or more

space-time histories) whose value evolves over different temporal slices is a spatio-temporal

fluent. My logical language for describing s-t fluents is ΣST ∪∆P. Spatio-temporal inertia

is expressed by the following reasoning step:

Given that a s-t fluent fst holds during a given slice z1, can we conclude that it

holds during the subsequent slice z2 (where z1 1t z2)? For example, if IMB x
z1

then is IMB x
z2

true ?

There are two different categories of answers to this problem. Provided the s-t fluent

fst is known to be monotonic a priori, abductive inferences under local survey do not cause

particular problem8. It is for abductive inference using non-monotonic s-t fluents that the

inertia assumption needs to be exploited.

Definition 1 Spatio-temporal change: Given a collection of named s-t histories, a s-t

change occurs if z1 and z2 are named slices through these histories (with z1 1t z2) and

GTrans(z1, z2) is true.
7In order to avoid trivial explanations, a set of predicates is distinguished such that every acceptable

explanation must contain only these predicates. Further, given a theory ΣST and a formula Φ to be
explained, I add conditions ΣST 2 Φ and ΣST 2 ¬Φ guaranteeing that the set of all explanations is non-
empty and non-trivial [Shanahan, 1997].

8Monotonicity is convenient because it means we can reason about what an agent believes on the basis
of partial knowledge about its beliefs [Konolige, 1988].
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Definition 2 Episode: Given a collection of named s-t histories, an episode is the max-

imal slice through all these histories during which no s-t change occurs. I introduce the

predicate Episode(ei) to denote this notion (D63).

D63. Episode(ei) ≡def ¬∃z1, z2[IP(z1, ei) ∧ Obs(z1) ∧ Obs(z2) ∧ (z1 1t z2) ∧

GTrans(z1, z2)] ∧ [IP(τ1, ei) ∨ [∃w1(w1 1t ei) ∧ GTrans(w1, ei)]] ∧

[FP(τn, ei) ∨ [∃w2(ei 1t w2) ∧ GTrans(ei, w2)]]

where τ1 and τn are the initial and final observation intervals defined in Section 5.1.3.

Definition 3 Episodic Boundary: Given two episodes ei and ej such that ei 1t ej, the

episodic boundary is the pair (ei, ej). I introduce the predicate EB(ei, ej) to denote this

notion.

Note that although an object may be moving during some interval this does not neces-

sarily imply there is any s-t change in our framework. For example, we can have NPTa
z but

no episode boundaries need occur during z unless there is some change of binary pattern

or an R=
sp relation involving a changes.

Circumscriptive Theory CT

Circumscription is a form of nonmonotonic reasoning initially introduced by McCarthy

[McCarthy, 1980] and further developed by Lifschitz [Lifschitz, 1994] for reasoning under

incomplete information. The basic idea of circumscription is to limit the set of objects of

which a predicate is true, a process which is known as minimising the predicate.

Let ρ1 and ρ2 be predicates with arity n. Let x̄ be a tuple of n distinct variables. We

have the following notation.

ρ1 = ρ2 means ∀x̄[ρ1(x̄) ↔ ρ2(x̄)]

ρ1 ≤ ρ2 means ∀x̄[ρ1(x̄) → ρ2(x̄)]

ρ1 < ρ2 means [ρ1 ≤ ρ2] ∧ ¬[ρ1 = ρ2]

Let A(Ab,Z1, ...Zm) be a sentence containing a predicate constant Ab and object, func-

tion, and/or predicate constants Z1, ...,Zm (and possibly other object, function and pred-

icate constants). The circumscription of Ab in A with varied Z1, ...,Zm is the sentence

A(Ab,Z1, ...,Zm) ∧ ¬∃ab, z1, ..., zm[A(ab, z1, ..., zm) ∧ ab < Ab]

Here ab is a predicate variable of the same arity as Ab; if Zi is an object constant, then zi is

an object variable and if Zi is a function/predicate constant, then zi is a function/predicate
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variable of the same arity. The equality symbol is not allowed to appear in the list

Z1, ...,Zm. If Z denotes the tuple Z1, ...,Zm and z denotes the tuple z1, ..., zm; then the

above formula can be written as

A(Ab,Z) ∧ ¬∃ab, z[A(ab, z) ∧ ab < Ab]

The subformula ¬∃ab, z[A(ab, z) ∧ ab < Ab] says that the extent of Ab is minimal.

Minimality is understood as the impossibility of making the extent of the circumscribed

predicate smaller even when some of the object, function, or predicate constants occurring

in A are allowed to vary along with Ab in the process of minimizing its extent. The above

formula is denoted as CIRC[A;Ab;Z].

Minimizing Spatio-Temporal Change

Some changes are forced by the observations, for example, if {DC=
sp(

x
z1
, y

z1
),EC=

sp(
x
z2
, y

z2
),

z1 1t z2} ⊆ Φ then GTrans(z1, z2) is forced. However, if {IMB x
z1
, IMB x

z3
, (z2 ‖t (z1; z3))} ⊆

Φ and nothing else is known about x in Φ then I want to assume that there is no change

of pattern for x in z2. This is akin to the commonsense law of inertia.

Spatio-temporal inertia is achieved by minimizing GTrans and thus the number of

episodes. This is done by posing the problem as a circumscriptive theory under minimiza-

tion of generalized transition GTrans9.

A1. ΣST

A2. ∆P

A3. Φ

P1. circ GTrans var Λ

where Λ is the set of predicates that may occur in s-t fluents.

Example 1

Let us assume the scenarios as shown in Figure 5.4 for an autonomous agent, a, with

on-board vision in an inhabited environment10.

There are two qualitatively different temporal parts: initially (during τ1) a sees only

c, then (during τ2) it sees b as well. Thus during τ1 we have

{DC=
sp

a
τ1

c
τ1
, IMB c

τ1
, NPT a

τ1
} ⊆ Φ

9The circumscriptive theory here is defined using the notation in [Lifschitz, 1994, pages 307-308].
Instead of CIRC[A;Ab;Z], the theory axioms A (A1 to A3) are listed, followed by the circumscription
policy circ Ab var Z (P1).

10I am not concerned here with issues of lower level vision such as segmentation and recognition of
objects. I assume that such lower level vision algorithms are available. I also assume an ability to anchor
specific regions in the robot’s visual image field to named objects.
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Figure 5.4: Scenarios of an inhabited dynamic environment: a. initial state, b. final state
showing path with dotted lines. Two observation intervals τ1 and τ2 are represented.

and during τ2 we have

{DC=
sp

a
τ2

c
τ2
,DC=

sp
a
τ2

b
τ2
,DC=

sp
b
τ2

c
τ2
, IMB c

τ2
, IMB b

τ2
, NPT a

τ2
}⊆ Φ

It can also record the pure spatial relationships between τ1 and τ2, i.e.,

{EQsp
c
τ1

c
τ2
, POsp

a
τ1

a
τ2
} ⊆ Φ

Since ΣST ∪ ∆P ∪ Φ does not imply any change of pattern or change of R=
sp relationship

between τ1 and τ2, minimizing GTrans will in fact result in an empty extension for GTrans.

Thus there are no episodic boundaries and the only explanation possible is11:

∆H = [IMB
b
τ1

∧ DC=
sp

b
τ1

c
τ1

∧ DC=
sp

a
τ1

b
τ1

∧ ¬GTrans(τ1, τ2)]

The first conjunct is of particular interest in this example. IMB b
τ1

is abduced from

the observation IMB b
τ2

based on an empty extension for GTrans. Of course if I did not

make the assumption, in Section 5.1.3, that all objects have the same lifetime, then other

explanations might be possible (provided I extended the notion of GTrans to incorporate

changes owing to objects coming into existence and ceasing to exist). Also note that if a

was involved in some change from τ1 to τ2 (for example, DC=
sp

a
τ1

c
τ1

to EC=
sp

a
τ2

c
τ2

) then an

episodic boundary would be forced, and changes involving b could occur ‘for free’, thus

resulting in multiple explanations (for example, where b starts moving during τ2). Later,

in section 5.1.4.2, I discuss how these might be avoided.

Example 2

Consider another scenario for the autonomous agent a as shown in Figure 5.5.

There are three qualitatively different observation intervals : initially (during τ1) a sees b

and c. Thus we have
11Note that for those observations which do not change during Φ (for example, the R=

sp relation between
a and c), no explanation is produced. A solution is to add an initial observation interval τ0, without any
observations. The abduction procedure would then abduce that the values must also hold in τ0. Thus the
τ0 values would also appear in the abduced formulae ∆H. The explanation of any observation which does
not change during Φ, for example, DC=

sp(
a
τ1
, c

τ1
) would thus be that a and c were DC=

sp just before τ1 and
¬EB(τ0, τ1).
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Figure 5.5: Set of scenarios for autonomous agent a in an inhabited dynamic environment.
a. initial state, b. final state showing path with dotted lines. Three observation intervals
τ1, τ2 and τ3 are represented.

{DC a
τ1

b
τ1
, DC a

τ1

c
τ1
, DC c

τ1

b
τ1
, IMB c

τ1
, NPT b

τ1
, NPT a

τ1
} ⊆ Φ

Then (during τ2) it sees only c i.e,

{DC a
τ2

c
τ2
, IMB c

τ2
, NPT a

τ2
} ⊆ Φ

and finally (during τ3) it sees b again and also d for the first time:

{DC a
τ3

b
τ3
, DC a

τ3

c
τ3
,DC a

τ3

d
τ3
, DC b

τ3

c
τ3
, EC b

τ3

d
τ3
, DC c

τ3

d
τ3
, IMB b

τ3
, IMB c

τ3
, IMB d

τ3
, NPT a

τ3
} ⊆ Φ

It can also record the pure spatial relationships. Thus we also have the following:

{EQ c
τ1

c
τ2
, EQ c

τ2

c
τ3
, PO a

τ1

a
τ2
, PO a

τ2

a
τ3
, DC b

τ1

b
τ3
} ⊆ Φ

With these observations, based on the s-t patterns and minimization of GTrans, we have a

single episodic boundary (i.e. 2 episodes) though it may occur either after τ1 or after τ2.

The following formula is one possible explanation of the local survey made by a:

∆H = [IMB
b
τ2

∧ IMB
d
τ2

∧ DC
a
τ2

b
τ2

∧ DC
c
τ2

d
τ2

∧ EC
b
τ2

d
τ2

∧ GTrans(τ1, τ2)]

Alternatively the episode boundary may occur after τ2 rather than after τ1:

∆H = [NPT
b
τ2

∧ DC
a
τ2

b
τ2

∧ DC
c
τ2

d
τ2

∧ GTrans(τ2, τ3)]

Note that in neither of these explanations can we infer knowledge about d before the

episode boundary.

5.1.4.2 Additional Heuristics

In the preceding section I have shown how circumscribing GTrans addresses the issue of

‘global’ s-t inertia. As we have seen, in some very simple cases this may be sufficient to

generate a unique explanation. However, in general, multiple explanations will still be

possible. [Hazarika and Cohn, 2002] explore some further heuristics which might be used

to prefer one explanation to another. Here are some such possible heuristics:
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1. Prefer explanations where change happens as late as possible (i.e., the initial state

extends for as long as possible)

2. Prefer explanations where change happens as early as possible (i.e., the final state

extends as far back in time as possible)

3. Prefer explanations where the total ‘number of changes’ is minimal (i.e., if we count

the number of changes at each episode boundary, and sum these, then this sum is

minimal). There are variants of this, for example, where one minimizes the number

of changes at the last or the first episodic boundary.

4. Assume some a priori knowledge on the kinds of change which might occur (for

example, certain patterns are more likely and/or certain objects more likely to be

immobile).

Example 3

Let us consider another scenario as illustrated in Figure 5.6 below.

1

a. b.

ab b

b
c c

5

3

4

2

dd

a

Figure 5.6: Scenarios for autonomous agent a in an inhabited dynamic environment.
a. initial state, b. final state showing path with dotted lines. Five observation intervals
τ1, τ2, τ3, τ4 and τ5 are represented.

There are five qualitatively different observation intervals as shown in Figure 5.6(b). Ini-

tially (during τ1) a sees c,d and b. Thus we have

{DC a
τ1

b
τ1
, DC a

τ1

c
τ1
, DC a

τ1

d
τ1
, DC b

τ1

c
τ1
, DC b

τ1

d
τ1
, DC c

τ1

d
τ1
, IMB b

τ1
, IMB c

τ1
, IMB d

τ1
, NPT a

τ1
} ⊆ Φ

Then, (during τ2) it sees c and d but not b i.e,

{DC a
τ2

c
τ2
,DC a

τ2

d
τ2
, DC c

τ2

d
τ2
,IMB c

τ2
, IMB d

τ2
,NPT a

τ2
}⊆ Φ

Thereafter during τ3, it does not see anything other than c. Thus we have

{DC a
τ3

c
τ3
, IMB c

τ3
, NPT a

τ3
} ⊆ Φ

After that, during τ4, it sees b as well as c:

{DC a
τ4

b
τ4
,DC a

τ4

c
τ4
,DC b

τ4

c
τ4
,IMB c

τ4
, NPT b

τ4
, NPT a

τ4
}⊆ Φ

Finally during τ5, it sees d again
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{DC a
τ5

b
τ5
, DC a

τ5

c
τ5
, DC a

τ5

d
τ5
, DC b

τ5

c
τ5
, EC b

τ5

d
τ5
, DC c

τ5

d
τ5
, IMB c

τ5
, IMB d

τ5
, NPT b

τ5
, NPT a

τ5
} ⊆ Φ

It can also record the pure spatial relationships. Thus we also have the following

{EQ c
τ1

c
τ2
, EQ c

τ2

c
τ3
, EQ c

τ3

c
τ4
, EQ c

τ4

c
τ5
, EQ d

τ1

d
τ2
,PO a

τ1

a
τ2
, PO a

τ2

a
τ3
,

PO a
τ3

a
τ4
,PO a

τ4

a
τ5
,PO b

τ3

b
τ4
, PO b

τ4

b
τ5
, DC b

τ1

b
τ4
, DC b

τ1

b
τ5
}⊆ Φ

Although there are four potential locations for episodic boundaries, circumscribing GTrans

results in only two episodes, with alternative locations for the episodic boundary as shown

in the two explanations below:

∆H = [NPT
b
τ2

∧ NPT
b
τ3

∧ IMB
d
τ3

∧ IMB
d
τ4

∧ DC
a
τ2

b
τ2

∧ DC
a
τ3

b
τ3

∧

DC
a
τ3

d
τ3

∧ DC
a
τ4

d
τ4

∧ DC
c
τ3

d
τ3

∧ DC
c
τ4

d
τ4

∧ GTrans(τ1, τ2)]

∆H = [IMB
b
τ2

∧ IMB
b
τ3

∧ IMB
d
τ3

∧ IMB
d
τ4

∧ DC
a
τ2

b
τ2

∧ DC
a
τ3

b
τ3

∧

DC
a
τ3

d
τ3

∧ DC
a
τ4

d
τ4

∧ DC
c
τ3

d
τ3

∧ DC
c
τ4

d
τ4

∧ GTrans(τ3, τ4)]

Binary Behaviour Patterns

In my earlier presentation of spatial behaviour patterns, I only considered monadic pat-

terns involving a single s-t history. However, in general one might consider patterns involv-

ing two or more histories and if such behaviour patterns can be preferentially associated

with particular sorts of objects, then this will provide additional heuristic knowledge to

constrain possible explanations. In the case of pairs of spatial entities, x, y, Figure 5.7

shows some possible patterns for rigid objects which do not interpenetrate each other.

These are:

1. Coalescence COLxy: a coming together of two bodies for a period.

2. Separation SEPxy: Separation of two bodies that have previously behaved as a unit

for a period. This is the dual of coalescence.

3. Collision CLNxy: a dynamic event when two bodies come into contact and separate

again. A collision could be instantaneous or a coalescence followed by a separation.

4. Disjointness DISxy: Two bodies remain disjoint for a period.

5. Attachment ATTxy: Two bodies remain attached for a period.

It is straightforward to define these patterns in terms of the existing apparatus except

that in order to define DISxy, I define a predicate IntPxy : x is an interior part of y.

D64. IntPxy ≡def ∃z1, z2[TSxy ∧ IPz1y ∧ FPz2y ∧ x ‖t (z1; z2)]
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x yx y yxyx yx

COL SEP CLN DIS ATT
space

time

Figure 5.7: A selection of binary spatio-temporal patterns.

D65 through D67 provide the object level definitions for the first three binary spatio-

temporal patterns. D68 and D69 define disjointness and attachment respectively.

D65. COLxy ≡def ∃u, v[u |@t x ∧ u 1t v ∧

v A|t x ∧ x =t y ∧ Trans(dc, ec, x, y, u, v)]

D66. SEPxy ≡def ∃u, v[u |@t x ∧ u 1t v ∧

v A|t x ∧ x =t y ∧ Trans(ec, dc, x, y, u, v)]

D67. CLNxy ≡def ∃u, v, w[u |@t x ∧ v ‖t (u;w) ∧

w A|t x ∧ x =t y ∧ [[Trans(dc, ec, x, y, u, v) ∧

Trans(ec, dc, x, y, v, w)] ∨ InsRel3(dc, ec, dc, x, y, u, v)]]

D68. DISxy ≡def ∀u, v[[IntPux ∧ IntPvy] → DCuv]

D69. ATTxy ≡def ∀t[(t ⊆t x ∧ t ⊆t y) → ECsp
x
t

y
t ]

Clearly many other possible binary patterns are possible. For example, Muller [Muller,

1998b] presents other examples of binary patterns (for example, crossing, leaving, entering)

including cases where interpenetration occurs. One can think of many domain examples

where such patterns might be prototypically associated with particular kinds of object

pairs; for example, in a woodworking domain, a nail and piece of wood would typically

either have a COL or a DIS behaviour pattern. Similarly, Egenhofer [Egenhofer and Al-

Taha, 1992] discusses how various patterns of behaviours for deformable objects can be

associated with paths through a transition network (for example, expanding, contracting).

These could form possible (complex) patterns.

My notion of generalized transition, GTrans, was defined in terms of monadic pattern

transitions; clearly, including binary (or higher arity patterns) in my language would mean

modifying GTrans in order to ensure that changes of these kinds of pattern also force an

episodic boundary.

5.1.5 What is achieved?

I present here a method which exploits the mereotopological theory of space-time and

the heuristic of spatio-temporal inertia in order to infer qualitative s-t world models from
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local surveys using circumscription. The existence of multiple explanations is a general

characteristic of abduction and even using inertia as a heuristic, many explanations will

remain in general. I have discussed some possible further heuristics to prefer certain

explanations, but without much more domain specific background knowledge, ambiguity

will always be present.

5.2 Summary of Work

5.2.1 Contributions

I have developed a mereotopological spatio-temporal theory based on space-time histories.

The explicit definition for qualitative continuity as initially proposed in [Muller, 1998b;

1998c] and thereafter (partially) corrected in [Muller, 1998a; 2002] is strengthened to

capture accurately the intuitive notion of continuity. This is the notion implicitly assumed

in the standard RCC-8 conceptual neighbourhood diagram. I refer to it as StrFCONT:

strong firm continuity.

Relations holding between contemporaneous slices from a pair of StrFCONT histories

change without spatial leaps, temporal gaps or temporal pinching. Any transition which

does not fall into the above category is a non-transition under strong firm continuity. Such

transitions do not appear in the standard RCC-8 transition graph. Formal proofs for non-

transitions between StrFCONT histories were obtained and I have partially recovered the

RCC-8 conceptual neighbourhood within pointless mereotopology.

I have pointed out a potential application based on the spatio-temporal language of

histories. The envisaged application is of constructing a qualitative spatio-temporal world

model from partial observations.

5.2.1.1 Taking histories further

Even though very early on in AI, Hayes [1979; 1985b] suggested an ontology of space-time

histories for commonsense reasoning, it was Muller who took up the idea seriously and

developed a mereotopological theory of space-time [Muller, 1998c]. The spatio-temporal

theory developed in this thesis is inspired by Muller’s attempt at recovering the transition

graph for RCC-8 through an explicitly stated intuitive notion of continuity in a language

over histories.

In Chapter 3, I presented a mereotopological theory which closely follows [Muller,

1998c]. Muller makes topological distinctions viz. closed and open regions (as his theory

is based on Asher and Vieu’s [1995]), which according to us have no significance for a
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commonsense theory. My mereotopological theory is based on RCC and (is simpler as) I

do not make any such distinctions.

I include an explicit spatial connection Csp apart from spatio-temporal and temporal

connection. This is distinct from spatial connection of contemporaneous entities and

captures directly the intuition of same place, possibly different time.

I introduce a function for a temporal slice. I define interval12 relations over non-convex

intervals and I am able to prove self-connected entities are temporally well ordered.

5.2.1.2 Intuitive Spatio-Temporal Continuity

Representing individual changes is a first step towards the integration of time with a

spatial information system. For example, geographic entities have a transient life-style:

they come into being and may subsequently go out of existence [Hornsby and Egenhofer,

2000]. There can be many other dimensions of change such as changing shape, location or

thematic information [Galton, 2000a]. What is it that enables a geographic entity after any

such change to be recognized as the one before (such a change)? Notions of spatio-temporal

continuity holds a key to providing an answer to such queries. A complementary theoretical

issue is the development of formal models for studying spatio-temporal interactions within

an integrated spatio-temporal framework.

I have refined Muller’s definition of intuitive spatio-temporal continuity [Muller, 1998b;

1998c]. To avoid temporal pinching, the notion of firm continuity was introduced13. The

additional axioms A20 and A21 for capturing the intuitive notion of strong spatio-temporal

continuity (within pointless mereotopology) are a significant addition to the explicit defi-

nition of strong firm continuity stated in a language over histories. These axioms reinforce

that for an intuitive notion of continuity, it is important to consider relationship between

parts of a history to other parts of the same history and to regions outside the history.

5.2.1.3 Transition between Histories

I have presented a general formal framework for continuous transitions in mereotopology

for space-time histories. Transition rules for s-t histories were formulated in pure point-

less mereotopology. StrFCONT histories do not allow transitions involving spatial leaps,

temporal gaps or temporal pinching.

12Recall that “intervals” are in fact s-t histories, but where I am only interested in the temporal extent.
An interval z is the temporal extent of z, where z can be any s-t history.

13Independently, I had arrived at the notion of firm continuity and discussed it in [Cohn and Hazarika,
2001a]. Personal communication with Muller brought to light he had a similar correction in temporal
continuity [Muller, 2002].
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Recovering the RCC-8 Transition Graph

I axiomatise continuous transitions under strong firm continuity. By establishing that the

links absent from the RCC-8 transition graph are non-transitions for StrFCONT histories,

I have partially recovered the conceptual neighbourhood diagram.

Muller had flaws in the statement of his transition rules as pointed out by Davis

[2001]. Davis presents an alternative characterization which however sacrifices the spirit

of mereotopology. Our formulation of the transition rules require a simpler mereotopology

which does not have closure and interior operators. I do not have explicit temporal points

and do not need to introduce a set of RCC relations defined in terms of an instantaneous

relation (holding at the transition) as in [Davis, 2000]. I analyze and axiomatize from

first principles which relations can hold instantaneously at the temporal boundary of two

intervals. This is based on Boolean combinations of the two regions and their FCON

relationship, which prompted the analysis presented in Section 4.4, Chapter 4, leading to

formulation of the instantaneous transition matrix. Transitions as understood for change of

RCC-8 relations are defined in terms of durative relations - relations that hold continuously

over an interval of time. This I feel is closer to the intuitive understanding of transition

between spatial relations.

5.2.2 Critical Evaluation

I started with the motivation of correcting the statement of transition rules in Muller’s

language over histories. This led to the realization that Muller’s definition of qualitative

continuity is inadequate14.

5.2.2.1 Continuity: What did we not attempt?

In Chapter 4, an intuitive notion of spatio-temporal continuity was defined. My attempt to

categorize spatio-temporal continuity is not an attempt to clarify the wider philosophical

question of identity criteria, which is difficult and beyond the scope of this thesis.

I acknowledge that identity and continuity are interdependent and make the following

observations in regards to identity and continuity in geographic space: 1. Continuity is a

necessary but not a sufficient condition for identity15.

14Davis’ theorem concerning Muller’s explicit definition of qualitative continuity and Galton’s observation
with respect to intuitive continuity (as stated in Section 2.7.2, Chapter 2) provides additional evidence.

15For fiat objects, the notion of continuity may not conform to any spatio-temporal form of continuity.
For example, Stollberg a district in Saxony, Germany, dates back to the Amtshauptmannschaft Stollberg.
The district was established in 1910. In 1939 it was renamed to Landkreis. In 1950 the district was dissolved
and the municipalities were assigned to the neighbouring districts of Aue, Chemnitz and Zwickau. However
two years later in another reform the district was recreated, only with a different layout. This history is
not continuous in terms of the spatio-temporal form of continuity defined in Chapter 4. However, it does
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Spatio-temporal continuity , then, is a criterion of identity on which I rely for

most of my judgements of identity. Is it a metaphysically sufficient condition

for the persistence of an object? Obviously not; a tree can burn until it is

just a pile of ash, though there were no leaps through space or time. Is it a

necessary condition? Apparently so, in my experience, and in the experience

of a vast number of people who have expressed their opinions on the subject

either implicitly or explicitly.

Ray[1998]

2. A change of the continuity criteria would change the identity criteria. For example,

the notion of and what constitutes a river: depending on our notion of continuity, a river

which had previously been dry can be regarded as a new river, or the same river as when

it last ran.

5.2.2.2 Recovering the Transition Graph: What is left out?

For recovering the RCC-8 conceptual neighbourhood diagram, my approach is closer to

Muller’s than to Davis’ in that I present a naive physical theory, rather than one closely

based on mathematical topology. I present a comprehensive framework and introduce

operators to characterize transitions. There are two aspects to proving the correctness of

the conceptual neighbourhood diagram: (a) links that are present need to be shown to be

necessary and (b) those absent to be shown to represent discontinuous transitions. The

latter is a theorem proving task but the former requires model building and appears to

be much harder to be automated (though see [Winker, 1982; McCune, 2001]). I confine

myself only to the second task.

In the absence of intended models and a syntactic proof of completeness, the only way

to know that the axiomatisation fulfills my intentions to characterize continuous transitions

is by proving ‘transition theorems’. I have shown links absent from the RCC-8 transition

graph to be non-transitions for StrFCONT histories. The approach may not be entirely

intuitively satisfying16 but in itself is a non-trivial task.

Certainly, proving the correctness of rules that state the non-existence of tran-

sitions, or worse, those that state the existence of transitions, from plausible

mereotopological axioms, would seem to be daunting if not hopeless . . . . It

have a notional cultural and legal continuity. Discussion of such notions of continuity is beyond the scope
of this thesis.

16One might possibly object to use of the 4x4 transition matrix for characterizing the instantaneous
transition.



Further Work and Conclusion 105

seems doubtful to me, however, that such a characterization could be found

that would be entirely satisfying.

Davis [2000, page 8]

Even though I have shown all non-existent links to be invalid transitions for StrFCONT

histories, in absence of formal proofs for existence of transition for the links present in the

RCC-8 transition graph the recovery of the conceptual neighbourhood remains partial.

5.3 Further Work

There remain many avenues for further research. Some of these concern the foundation

of qualitative spatio-temporal reasoning encompassing automated reasoning and the use

of space-time histories, whilst others are areas which may lead to application (including

extension and development) of the mereotopological theory of space-time (proposed in

Chapter 3).

5.3.1 Proof of Consistency

To prove consistency it would suffice to construct a model for the axioms, a concrete

interpretation for the symbols of the theory under which all the axioms are true. The

theory described here has the Region Connection Calculus as its basis, which is shown to

be consistent by Gotts [1996] since he isolates a class of models. The introduction of the

additional axioms extending RCC have all been justified, normally through a graphical

illustration of an undesired model, and the resulting axioms are specifically designed and

intended just to remove these undesired models.

Moreover, I have used SPASS to help justify the consistency of the theory: every

time I introduced an additional axiom, I used SPASS to reason forward from the axioms

and theorems in the theory thus far; if a refutation had been found, this would have

indicated an inconsistent theory. In no case was an inconsistency detected. However,

owing to the semi-decidability of FOPC, I had to resource limit SPASS, and thus no

conclusive proof of consistency was obtained. I thus leave for future work the important

issue of a formal demonstration of consistency of the space-time theory presented here.

It is possible that the use of an automated model building techniques e.g. [Peltier, 2003;

Caferra, 2004] may be of assistance, though the fact that any model of the theory will have

an infinite universe (as an immediate consequence of C1). Alternatively methods such as

demonstrated by [Davis and Morgenstern, 2004] may lead to a fully justified demonstration

of the consistency of the theory.
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5.3.2 Experiments with Theorem Proving

For me here, proving theorems was part of the process of verification of the axiomatisa-

tion. Although I was aware of the theoretical undecidability and intractability of 1st-order

reasoning, the seriousness of the difficulties that these properties pose for automated rea-

soning was highlighted whilst working with the mereotopological theory. Even seemingly

simple deductions (sought within the complete axiom set) would often exhaust the avail-

able resources. This isn’t surprising or any different from what others have experienced

and reported [Wos et al., 1991; Reif and Schellhorn, 1997; Bennett, 1997].

During automated theorem proving, the success rates and the proof times strongly

depend on how good provers are at finding out the few relevant axioms that are really

needed in the proofs. Use of reduction techniques (see Appendix D) as suggested in [Reif

and Schellhorn, 1997; Amir and McIIraith, 2000] did help in obtaining many of the proofs

presented in Appendix D and Appendix E. A detailed study and complete analysis to ex-

plore how far automated reasoning (within qualitative spatio-temporal reasoning through

space-time histories) can be achieved by a general purpose proof system is worthy of fur-

ther research. For such a study, apart from the space-time and the transition theorems

discussed here, of particular interest and of relevance to the work in this thesis would be

including the hierarchy of CNDs presented in Section 4.2, Chapter 4.

5.3.3 Extending the Abductive Formalism

Facing the practical challenge of dealing with the potentially very large number of possible

explanations that may be present in a realistic example and developing computational

methods of ensuring that these are handled efficiently is an important area for future

research.

I have restricted myself to a purely mereotopological qualitative s-t language. Increas-

ing the expressiveness of the language by allowing other kinds of qualitative s-t knowledge

(for example, of orientation, size, distance, shape [Cohn and Hazarika, 2001b]) may have

benefits in reducing ambiguity as multiple kinds of knowledge interact. Similarly, metric

s-t knowledge may be included where available. A priori knowledge about what kinds of

behaviour patterns are (preferentially) associated with particular kinds of object or agent

may help reduce the possible explanations that may be abduced. Creating suitable li-

braries of such behaviours is thus an important (probably domain specific) task. If there

are a large number of possible such behaviours then this knowledge acquisition problem

may be non-trivial. In such cases, it would be useful to learn these automatically from

training data (cf. [Fernyhough et al., 2000]).
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Another problem (mentioned by Shanahan [1998]) of great practical importance in

an abductive scenario is that of noise in the data. One advantage of using a qualitative

representation is that some noise is lost in the abstraction process, though in general the

problem will remain. In this context it will be useful to consider the use of qualitative lan-

guages which explicitly allow for this such as the extension of RCC to handle indeterminate

boundaries [Cohn and Gotts, 1996].

One issue that I have totally ignored is the problem of object identification over time.

For example, consider the problem of tracking a mobile object over time from video data.

Of course, this problem could itself be made subject to abduction: one probable explana-

tion of two similarly shaped objects close to each other in time and space is that they are

the same object. Another restriction made for the sake of simplicity here is that there is a

single time line (τ1, ..., τn). However if we wanted to extend the theory to handle multiple

cooperating local agents performing surveys asynchronously, then we would need to allow

multiple time lines. How this is to be accomplished within the spatio-temporal language

over histories requires further investigation.

Finally, I note that the theory is potentially applicable to various other domains in

which partial s-t knowledge is available and it is desirable to infer a complete scenario.

One such task would be the problem of inferring what has happened between various

‘global snapshots’ such as geographical surveys (or remote sensing data) taken at periodic

intervals. Experimenting with and evaluating the approach outlined here in such contexts

would also be an area worthy of research.
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Appendix A

Reference of Formulae

The appendix lists all formulae which have appeared before in article(s) not authored by

me. The column on the left lists the formula1 and the reference on the right say where it

appeared before.

Formula Reference

Axioms

A1-A2 [Cohn et al., 1997b]

A3 [Bennett, 1997]

A4-A7 [Randell et al., 1992b]

A8 [Cohn et al., 1997a]

A9-A14 [Muller, 1998a]

A18 [Muller, 2002]

Definitions

D1-D10 [Cohn et al., 1997b]

D11-D14 [Bennett, 1997]

D16 [Cohn et al., 1997b]

D19-D21 [Muller, 1998a]

D29 [Muller, 1998a]

D35 [Muller, 1998a]

1Note that I have not listed any theorems that have appeared before since my formulation differs from
all previous formulations in at least some respects, and thus few proofs of theorems carry over directly.
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Appendix B

Space-Time Theorems

I have a sorted formulation and use SPASS [Weidenbach, 2001] which is a sorted theorem

prover. When presenting the proofs in Appendix B through E, resolutions involving sorts

are left out and not recorded (for each of the proof) for ease of readibility. Every resolution

that I have recorded here is abstracted from a one with explicit sortal resolvents.

Proofs of theorems cited in Chapter 3 are collated below. In the interest of space, for

simple proofs we only list the set of axioms and definitions that were used. For proofs

of more involved theorems each inference step is made explicit. First the theorem is

cited followed by the refutation set and then the proof is given. All proofs have been

automatically generated using SPASS.

Clause normal form is used as the representational language and binary resolution is

generally used. Additional rules where ever used are stated explicitly. I use SHy, Spt, EqR

and Rew as abbreviation for Standard Hyper-Resolution, Splitting, Equality-Resolution

and Rewriting respectively [Weidenbach, 2001]. Arbitrary constants (or ground terms)

used in the proofs are selected from the set {a,b, c . . .}. SKPn and skfn, for some n,

denote skolem predicate and skolem function respectively.

Th1. Pα(x, x).

From D1.

Th2. [Pα(x, y) ∧ Pα(y, z)] → Pα(x, z).

From D1.
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Th3. ∀z[Pα(z, x) ↔ Pα(z, y)] → [x =α y]

From D8, Th1.

Th4. [NTPPα(x, y) ∧ Cα(z, x)] → Oα(z, y).

Refutation Set:

1. ¬NTPPα(u, v) ∨ PPα(u, v) D10

2. ¬PPα(u, v) ∨ Pα(u, v) D3

3. ¬Oα(u, v) ∨ Pα(skf8(v, u), u) D2

4. ¬Oα(u, v) ∨ Pα(skf8(v, u), v) D2

5. ¬Cα(u, v) ∨ Oα(u, v) ∨ ECα(u, v) D6

6. ¬Pα(u, v) ∨ ¬Pα(v, w) ∨ Pα(u,w) Th2

7. ¬Pα(v, w) ∨ ¬Pα(v, u) ∨ Oα(u,w) D2

8. ¬Cα(v, u) ∨ ¬Pα(u,w) ∨ Cα(v, w) D1

9. ¬ECα(v, u) ∨ ¬ECα(v, w) ∨ ¬NTPPα(u,w) D10

10. NTPPα(a,b)

11. Cα(c, a)

12. ¬Oα(c,b)

Proof:

13. Oα(c, a) ∨ ECα(c, a) 11,5

14. PPα(a,b) 10,1

15. Pα(a,b) 14,2

16. Cα(c,b) SHy 11,15,8

17. ECα(c,b) ∨ Oα(c,b) 16,5

18. ECα(c,b) 17,12

19. ECα(c, a) Spt 13

20. 2 SHy 19,18,10,9

21. ¬ECα(c, a) Spt 20,19,13

22. Oα(c, a) Spt 20,13

23. Pα(skf8(a, c), c) 22,3

24. Pα(skf8(a, c), a) 22,4

25. Pα(skf8(a, c),b) SHy 24,15,6

26. Oα(c,b) SHy 25,23,7

27. 2 26,12

Th5. Pst(x, y) → Cst(y, x̄)

Refutation Set:

1. NTPPst(u, v) ∨ Cst(u, v̄) D14
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2. Pst(u, v) ∨ Ost(u, v̄) D14

3. ¬NTPPst(u, v) ∨ PPst(u, v) D10

4. ¬PPst(u, v) ∨ ¬Pst(v, u) D3

5. ¬ECst(u, v) ∨ ¬Ost(u, v) D6

6. ¬Ost(u, v) ∨ ECst(u, v) ∨ Cst(u, v) D6

7. ¬Pst(u, v) ∨ ¬Pst(v, u) ∨ EQst(u, v) D8

8. Pst(a,b)

9. ¬Cst(b, ā)

Proof:

10. ¬Ost(u, v) ∨ Cst(u, v) 6,5

11. ¬PPst(b, a) 8,4

12. ¬Ost(b, ā) 10,9

13. NTPPst(b, a) 9,1

14. Ost(b, ā) ∨ EQst(a,b) SHy 8,7,2

15. EQst(a,b) 14,12

16. NTPPst(b,b) Rew 15,13

17. ¬PPst(b,b) Rew 15,11

18. PPst(b,b) 16,3

19. 2 18,17

Th6. ECst(x, x̄).

Refutation Set:

1. Pst(u, u) Th1

2. NTPPst(u, v) ∨ Cst(u, v̄) D14

3. ¬NTPPst(u, v) ∨ PPst(u, v) D10

4. ¬PPst(u, v) ∨ ¬Pst(v, u) D3

5. ¬Ost(u, v̄) ∨ ¬Pst(u, v) D14

6. ¬Cst(u, v) ∨ Ost(u, v) ∨ ECst(u, v) D6

7. ¬ECst(a, ā)

Proof:

8. ¬Cst(a, ā) ∨ Ost(a, ā) 7,6

9. ¬Cst(a, ā) ∨ Pst(a, a) 8,5

10. ¬Cst(a, ā) 9,1

11. NTPPst(a, a) 10,2

12. PPst(a, a) 11,3

13. 2 SHy 12,4,1
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Th7. ¬ECst(x, y) ↔ [Cst(x, y) ↔ Ost(x, y)]

i. ¬ECst(x, y) → [Cst(x, y) ↔ Ost(x, y)]

Refutation Set:

1. Cst(u, u) A1

2. ¬Cst(u, v) ∨ Cst(v, u) A2

3. ¬Ost(u, v) ∨ Pst(skf8(v, u), u) D2

4. ¬Ost(u, v) ∨ Pst(skf8(v, u), v) D2

5. ¬Cst(u, v) ∨ Ost(u, v) ∨ ECst(u, v) D6

6. ¬Cst(v, u) ∨ ¬Pst(u,w) ∨ Cst(v, w) D1

7. ¬ECst(a,b)

8. Cst(a,b) ∨ Ost(a,b)

9. ¬Cst(a,b) ∨ ¬Ost(a,b)

Proof:

10. ¬Cst(a,b) ∨ Ost(a,b) 7,5

11. Ost(a,b) 10,8

12. ¬Cst(a,b) 12,9

13. Pst(skf8(b, a), a) 11,3

14. Pst(skf8(b, a),b) 11,4

15. Cst(skf8(b, a), a) SHy 13,6,1

16. Cst(a, skf8(b, a)) 15,2

17. Cst(a,b) SHy 16,14,6

18. 2 17,12

ii. [Cst(x, y) ↔ Ost(x, y)] → ¬ECst(x, y)

Refutation Set:

1. ¬ECst(u, v) ∨ Cst(u, v) D6

2. ¬Ost(u, v) ∨ ¬ECst(u, v) D6

3. ECst(a,b)

4. ¬Cst(a,b) ∨ Ost(a,b)

5. ¬Ost(a,b) ∨ Cst(a,b)

Proof:

6. Cst(a,b) 3,1

7. Ost(a,b) 6,4

8. ¬Ost(a,b) 3,2

9. 2 8,7

Note : Clause 5 generated from the conjecture is not used in the proof. Conjecture remains

valid for [Ost(x, y) → Cst(x, y)] is a theorem (From D1, D2 and A1).



Space-Time Theorems 115

Th8. FCON(x, x)

Note : In order to have the above theorem, I need to show that every region has an INCON

part. I have the following conjecture:

C3. ∀y∃x[Pst(x, y) ∧ INCON(x)]

Refutation Set:

1. INCON(skf33(u)) C3

2. Pst(skf33(u), u) C3

3. (u ∪ u) =st u Lemma

4. ¬Pst(u, v) ∨ ¬INCON(u ∪ w) ∨ ¬Pst(w, x) ∨ FCON(v, x) D18

5. ¬FCON(a, a)

Proof:

6. ¬Pst(u, a) ∨ ¬INCON(u ∪ w) ∨ ¬Pst(w, a) 5,4

7. ¬Pst(u, a) ∨ ¬INCON(u) ∨ ¬Pst(u, a) 6,3

8. ¬INCON(u) ∨ ¬Pst(u, a) 7

9. ¬INCON(skf33(a)) 8,3

10. 2

Th9. FCON(x, y) ↔ FCON(y, x)

From D18, D4, Th1

Th10. ¬(x <t x)

From A1, A9

Th11. [x <t y ∧ y <t z] → (x <t z)

From A1, A11

Th12. [x <t y ∧ y =t z] → (x <t z)

From D21, A12

Th13. [x <t y ∧ y σt z ∧ z <t t] → (x <t t)

Refutation Set:

1. Ct(u, u) A1

2. ¬(u σt v) ∨ Pt(skf17(v, u), v) D2

3. ¬(u σt v) ∨ Pt(skf17(v, u), u) D2

4. ¬Pt(v, w) ∨ ¬(u <t w) ∨ (u <t v) A12

5. ¬Ct(v, u) ∨ ¬Pt(u,w) ∨ Ct(v, w) D1
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6. ¬Ct(v, w) ∨ ¬(w <t x) ∨ ¬(u <t v) ∨ (u <t x) A11

7. a <t b

8. b σt c

9. c <t d

10. ¬(a <t d)

Proof:

11. Pt(skf17(b, c), c) 8,2

12. Pt(skf17(b, c),b) 8,3

13. Ct(skf17(b, c), c) SHy 11,5,1

14. a <t skf17(b, c) SHy 12,7,4

15. a <t d SHy 14,13,9,6

16. 2 15,10

Th14. [x <t y ∧ y ⊆t z ∧ z <t t] → (x <t t)

Refutation Set:

1. Ct(u, u) A1

2. ¬(u ⊆t v) ∨ ¬(w <> u) ∨ (w <> v) D19

3. ¬(u <t v) ∨ ¬Ct(v, w) ∨ ¬(w <t x) ∨ (u <t x) A11

4. a <t b

5. b ⊆t c

6. c <t d

7. ¬(a <t d)

Proof:

8. ¬Ct(u, b) ∨ Ct(u, c) 5,2

9. ¬Ct(b, u) ∨ ¬(u <t v) ∨ (a <t v) 4,3

10. ¬Ct(b, c) ∨ (a <t d) 9,6

11. ¬Ct(b, c) 10,7

12. ¬Ct(b,b) 11,8

13. 2 12,1

Th15. x ⊆t y → ∀z[(z <t y → z <t x) ∧ (y <t z → x <t z)]

From A12

Th16. [x =t y ∧ x ⊆t z] → y ⊆t z

From D19, D21
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Th17. [x =t x]

From D21, Th1

Th18. ECt(x, y) → ∃zNECP(z, x, y)

Refutation Set:

1. Pt(u, u) Th1

2. Cst(u, u) A1

3. NTPPst(skf15(u), u) A1

4. Pt(skf13(u, v), v) D2

5. Pst(skf11(u, v), v) D2

6. [¬NTPPst(u, v) ∨ NTPPt(u, v)] Lemma1

7. ¬Pst(u, v) ∨ Pt(u, v) C2

8. ¬ECt(u, v) ∨ Ct(u, v) D6

9. ¬Ct(u, v) ∨ Ct(v, u) A2

10. ¬ECt(u, v) ∨ ¬Ot(u, v) D6

11. ¬Ot(u, v) ∨ Pt(skf13(v, u), v) D2

12. ¬Ost(u, v) ∨ Pst(skf11(v, u), v) D2

13. ¬NTPPst(u, v) ∨ ¬Cst(w, u) ∨ Ost(w, v) Th4

14. ¬NTPPt(u, v) ∨ ¬Ct(w, u) ∨ Ot(w, v) Th4

15. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ Ot(v, w) D2

16. ¬Pt(u, v) ∨ ¬Ct(w, u) ∨ Ct(w, v) D1

17. ¬Pst(u, v) ∨ ¬ECt(v, w) ∨ ¬ECt(u,w) ∨ NECP(u, v, w) D22

18. ECt(a,b)

19. [¬NECP(u, a,b)]

Proof:

20. ¬Ot(a,b) 18,10

21. NECP(skf11(u, a), a,b) ∨ ECt(skf11(u, a),b) SHy 18,17,5

22. ECt(skf11(u, a),b) 21,19

23. ¬Pt(u, a) ∨ ¬Pt(u, b) 20,15

24. Ct(skf11(u, a),b) 22,8

25. ¬Pt(b, u) ∨ Ct(skf11(v, a), u) 24,16

26. ¬Ot(u, a) ∨ ¬Pt(skf13(a, u),b) 23,11

27. ¬Pt(b, u) ∨ Ct(u, skf11(v, a)) 25,9

28. ¬Pt(b, u) ∨ Pt(skf11(v, a), w) ∨ Ct(u,w) 27,16

29. ¬Ot(b, a) 26,4

30. ¬Pt(skf11(u, a), v) ∨ ¬Pt(b, w) ∨ Ct(w, v) 28,7

1[NTPPst(x, y) → NTPPt(x, y)].
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31. ¬Ost(a, u) ∨ ¬Pt(b, v) ∨ Ct(v, u) 30,12

32. ¬Pt(u, a) ∨ ¬Pst(u, v) ∨ ¬Pt(b, w) ∨ Ct(w, v) 31,15

33. ¬Ost(u, a) ∨ ¬Pt(skf11(a, u), v) ∨ ¬Pt(b, w) ∨ Ct(w, v)

34. ¬Ost(u, a) ∨ ¬Pt(b, v) ∨ Ct(v, u) 33,5

35. ¬NTPPst(u, a) ∨ ¬Cst(v, u) ∨ ¬Pt(b, w) ∨ Ct(w, v)

36. Ct(b, skf15(a)) SHy 35,3,2,1

37. Ct(skf15(a),b) 36,9

38. ¬Pt(b, u) ∨ Ct(skf15(a), u) 37,16

39. ¬Pt(b, u) ∨ Ct(u, skf15(a)) 38,9

40. ¬Pt(b, u) ∨ ¬NTPPt(skf15(a), v) ∨ Ot(u, v) 39,14

41. ¬NTPPst(skf15(a), u) ∨ ¬Pt(b, v) ∨ Ot(v, u) 40,6

42. Ot(b, a) SHy 41,3,1

43. 2 42,29

Th19. (x ∪ y) ⊆t z → [x ⊆t z ∧ y ⊆t z]

Refutation Set:

1. Ct(skf12(u, v), v) D1

2. ¬Ct(u, v) ∨ Ct(u, (w ∪ v)) A14

3. ¬Ct(u, v) ∨ Ct(u, (v ∪ w)) A14

4. ¬Ct(skf12(u, v), u) ∨ (v ⊆t u) D19

5. ¬(u ⊆t v) ∨ ¬(w <> u) ∨ (w <> v) D19

6. (a ∪ b) ⊆t c

7. ¬(a ⊆t c) ∨ ¬(b ⊆t c)

Proof:

8. ¬Ct(u, (a ∪ b)) ∨ Ct(u, c) 6,5

9. ¬Ct(u, a) ∨ Ct(u, c) 8,3

10. ¬Ct(u, b) ∨ Ct(u, c) 8,2

11. Ct(skf12(u, a), c) 9,1

12. (a ⊆t c) 11,4

13. ¬(b ⊆t c) 12,7

14. Ct(skf12(u, b), c) 10,1

15. (b ⊆t c) 14,4

16. 2 15,13

Th20. ¬(x 1t x)

Refutation Set:

1. (u =t u) Th17
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2. ¬(u 1t v) ∨ ECt(u, v) D23

3. ¬(u =t v) ∨ u ⊆t v D21

4. ¬Ot(u, v) ∨ ¬ECt(u, v) D6

5. ¬Pt(v, w) ∨ ¬Pt(v, u) ∨ Ot(u,w) D2

6. a 1t a

Proof:

7. ECt(a, a) 6,2

8. Pt(u, u) 3,1

9. ¬Pt(u,w) ∨ Ot(u,w) 8,5

10. ¬Pt(u,w) ∨ ¬ECt(u,w) 9,4

11. ¬ECt(u, u) 10,8

12. 2 11,7

Th21. x 1t y → ¬(y 1t x)

Refutation Set:

1. ¬(u 1t v) ∨ ECt(u, v) D23

2. ¬(u <t v) ∨ ¬(v <t u) A10

3. ¬ECt(u, v) ∨ NECP(skf15(v, u), u, v) Th19

4. ¬(u 1t v) ∨ ¬NECP(w, v, u) ∨ u <t w D23

5. ¬(u 1t v) ∨ ¬NECP(w, u, v) ∨ w <t v D23

6. a 1t b

7. b 1t a

Proof:

8. ECt(b, a) 7,1

9. NECP(skf15(a,b),b, a) 8,3

10. a <t skf15(a,b) SHy 9,6,4

11. skf15(a,b) <t a SHy 9,7,5

12. 2 SHy 11,10,2

Th22. x |@t x

From D25

Th23. x A|t x

From D24

Th24. x |@t y → y |@t x

From D25
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Th25. x A|t y → y A|t x

From D24

Th26. [x 1t y ∧ y 1t z] → (x <t z)

Refutation Set:

1. Ct(u, u) A1

2. Cst(u, u) A1

3. Pt(skf12(u, v), v) D2

4. Cst(skf10(u, v), v) D1

5. ¬(u 1t v) ∨ ECt(u, v) D23

6. Cst(u, v) ∨ Ct(u, v) A15

7. ¬ECt(u, v) ∨ Ct(u, v) D6

8. ¬Ct(u, v) ∨ Ct(v, u) A2

9. ¬Cst(u, v) ∨ Cst(v, u) A2

10. ¬NECP(u, v, w) ∨ Pst(u, v) D22

11. ¬ECt(u, v) ∨ ¬Ot(u, v) D6

12. ¬NECP(u, v, w) ∨ ECt(u,w) D22

13. ¬Ot(u, v) ∨ Pt(skf12(v, u), v) D2

14. ¬Cst(skf10(u, v), v) ∨ Pst(v, u) D1

15. ¬ECt(u, v) ∨ NECP(skf13(v, u), u, v) Th19

16. ¬Ct(u, v) ∨ Ot(u, v) ∨ ECt(u, v) D6

17. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ Ot(v, w) D2

18. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

19. ¬(u 1t v) ∨ ¬NECP(w, v, u) ∨ u <t w D23

20. ¬(u 1t v) ∨ ¬NECP(w, v, u) ∨ w <t v D23

21. ¬ECt(u, v) ∨ ¬Pst(w, u) ∨ NECP(w, u, v) ∨ ECt(w, v) D22

22. ¬(u <t v) ∨ ¬Ct(v, w) ∨ ¬(w <t x) ∨ u <t x A11

23. a 1t b

24. b 1t c

25. ¬(a <t c)

Proof:

26. ¬NECP(u, b, c) ∨ u <t c 24,20

27. ECt(b, c) 24,5

28. ¬NECP(u, b, a) ∨ a <t u 23,19

29. ECt(a,b) 23,5

30. ¬(a <t u) ∨ ¬Ct(u, v) ∨ ¬(v <t c) 25,22

31. Ct(a,b) 29,7
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32. Ct(b, a) 31,8

33. ECt(b, a) ∨ Ot(b, a) 32,16

34. ¬ECt(b, c) ∨ ¬Pst(u, b) ∨ ECt(u, c) ∨ u <t c 26,21

35. ¬Pst(u, b) ∨ ECt(u, c) ∨ u <t c 34,27

36. ¬ECt(b, a) ∨ a <t skf13(a,b) 28,15

37. ECt(b, a) Spt 33

38. a <t skf13(a,b) 37,36

39. NECP(skf13(a,b),b, a) 27,15

40. ¬Ct(skf13(a,b), u) ∨ ¬(u <t c) 38,30

41. Pst(skf13(a,b),b) 39,10

42. ¬Cst(u, skf13(a,b)) ∨ Cst(u, b) 41,18

43. ECt(skf13(a,b), c) ∨ skf13(a,b) <t c 41,35

44. skf13(a,b) <t c 40,1

45. ECt(skf13(a,b), c) 44,43

46. NECP(skf13(c, skf13(a,b)), skf13(a,b), c) 45,15

47. ¬ECt(skf13(c, skf13(a,b)), c) 46,12

48. Pst(skf13(c, skf13(a,b)), skf13(a,b)) 46,10

49. Cst(skf10(u, skf13(c, skf13(a,b))), skf13(a,b)) SHy 48,18,4

50. Cst(skf13(c, skf13(a,b)), skf13(a,b)) SHy 48,18,2

51. Cst(skf13(a,b), skf13(c, skf13(a,b))) 50,9

52. Ct(skf13(a,b), skf13(c, skf13(a,b))) 51,9

53. ¬(skf13(c, skf13(a,b)) <t c) 52,40

54. ¬Pst(skf13(c, skf13(a,b)),b) ∨ ECt(skf13(c, skf13(a,b)), c) 53,35

55. ¬Pst(skf13(c, skf13(a,b)),b) 54,47

56. Cst(skf10(u, skf13(c, skf13(a,b))),b) 49,42

57. Pst(skf13(c, skf13(a,b)),b) 56,14

58. 2 57,55

59. ¬ECt(b, a) Spt 58,37,33

60. Ot(b, a) Spt 58,33

61. Pt(skf12(a,b), a) 60,13

62. Ot(a,b) SHy 61,17,3

63. 2 SHy 62,29,11

Th27. [x 1t y ∧ y <t z] → (x <t z)

Refutation Set:

1. Cst(u, u) A1

2. Pt(skf14(u, v), v) D2
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3. ¬(u 1t v) ∨ ECt(u, v) D23

4. Cst(u, v) ∨ Ct(u, v) A15

5. ¬ECt(u, v) ∨ Ct(u, v) D6

6. ¬Ct(u, v) ∨ Ct(v, u) A2

7. ¬NECP(u, v, w) ∨ Pst(u, v) D22

8. ¬ECt(u, v) ∨ ¬Ot(u, v) D6

9. ¬Ot(u, v) ∨ Pt(skf14(v, u), v) D2

10. ¬ECt(u, v) ∨ NECP(skf15(v, u), u, v) Th19

11. ¬Ct(u, v) ∨ Ot(u, v) ∨ ECt(u, v) D6

12. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ Ot(v, w) D2

13. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

14. ¬(u 1t v) ∨ ¬NECP(w, v, u) ∨ u <t w D23

15. ¬(u <t v) ∨ ¬Ct(v, w) ∨ ¬(w <t x) ∨ u <t x A11

16. a 1t b

17. b <t c

18. ¬(a <t c)

Proof:

19. ECt(a,b) 16,3

20. Ct(a,b) 19,5

21. Ct(b, a) 20,6

22. Ot(b, a) ∨ ECt(b, a) 21,11

23. ECt(b, a) Spt 22

24. NECP(skf15(a,b),b, a) 23,10

25. Pst(skf15(a,b),b) 24,7

26. a <t skf15(a,b) SHy 24,16,14

27. Cst(skf15(a,b),b) SHy 25,13,1

28. Cst(skf15(a,b),b) 27,4

29. a <t c SHy 28,26,17,15

30. 2 29,18

31. ¬ECt(b, a) Spt 30,23,22

32. Ot(b, a) Spt 30,22

33. Pt(skf14(a,b), a) 32,9

34. Ot(a,b) SHy 33,12,2

35. 2 SHy 34,19,8

Th28. [x |@t y ∧ y |@t z] → x |@t z

From D25
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Th29. [x A|t y ∧ y A|t z] → x A|t z

From D24

Th30. [x ⊆t y ∧ y 1t z ∧ z <t w] → (x <t w)

Refutation Set:

1. Pst(u, u) Th1

2. Cst(u, u) A1

3. skf12(u, v) ⊆t v D2

4. Pst(skf13(u, v, w), w) D22

5. ¬(u 1t v) ∨ ECt(u, v) D23

6. ¬Pst(u, v) ∨ u ⊆t v C2

7. ¬ECt(u, v) ∨ Ct(u, v) D6

8. ¬Ct(u, v) ∨ Ct(u, v) A2

9. ¬Ct(u, v) ∨ ¬(u <t v) A9

10. ¬ECt(u, v) ∨ ¬Ot(u, v) D6

11. ¬Ot(u, v) ∨ (skf12(v, u) ⊆t u) D2

12. ¬Ct(u, v) ∨ Ot(u, v) ∨ ECt(u, v) D6

13. ¬(u <t v) ∨ (w ⊆t u) ∨ (w <t v) A12

14. ¬(u ⊆t v) ∨ ¬(u ⊆t w) ∨ Ot(v, w) D2

15. ¬(u ⊆t v) ∨ ¬Ct(w, u) ∨ Ct(w, v) D1

16. ¬(u 1t v) ∨ ¬NECP(w, u, v) ∨ (u <t w) D23

17. ¬ECt(u, v) ∨ Pst(sf13(w, v, u), w) ∨ NECP(w, u, v) D22

18. a ⊆t b

19. b 1t c

20. c <t d

21. ¬(a <t d)

Proof:

22. ¬NECP(u, c,b) ∨ (b <t u) 19,16

23. ECt(b, c) 19,5

24. ¬(a ⊆t u) ∨ Ot(b, u) 18,14

25. ¬(u <t d) ∨ ¬(a ⊆t u) 21,13

26. ¬(b <t d) 25,18

27. skf12(u, c) <t d SHy 20,13,3

28. Ct(a,b) SHy 18,15,2

29. Ct(b, c) 23,7

30. Ct(b, a) 28,8

31. Ct(c,b) 29,8
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32. ECt(b, a) ∨ Ot(b, a) 30,12

33. ECt(c,b) ∨ Ot(c,b) 31,12

34. ¬Ct(sf12(u, c),d) 27,9

35. ECt(b, a) Spt 32

36. ¬(u ⊆t d) ∨ Ct(skf12(v, c), u) 34,15

37. ¬(a ⊆t u) ∨ ¬ECt(b, u) 24,10

38. ¬(a ⊆t a) 37,35

39. Pst(a, a) 38,6

40. 2 39,1

41. ¬ECt(b, a) Spt 40,35,32

42. ¬Ot(b, a) Spt 40,32

43. ECt(c,b) Spt 33

44. ¬(skf12(u, c) ⊆t d) 36,2

45. ¬Ot(c,d) 44,11

46. ¬(u ⊆t c) ∨ ¬(u ⊆t d) 45,14

47. ¬Pst(u, c) ∨ ¬(u ⊆t d) 46,6

48. ¬Pst(u, d) ∨ ¬Pst(u, c) 47,6

49. ¬Pst(skf13(u, v, c),d) 48,4

50. ECt(c, u) ∨ NECP(d, c, u) 49,17

51. ECt(c,b) ∨ (b <t d) 50,22

52. 2 SHy 51,43,26

53. ¬ECt(c,b) Spt 52,43,33

54. Ot(c,b) Spt 52,33

55. Pst(skf12(b, c),b) SHy 54,11

56. Ot(b, c) SHy 55,14,3

57. 2 SHy 56,23,10

Th31. x 1t y → ∀z[(z <t x → z <t y) ∧ (y <t z → x <t z)]

Refutation Set:

1. Ct(u, u) A1

2. ¬(u 1t v) ∨ ECt(u, v) D23

3. ¬Pst(u, v) ∨ Pt(u, v) C2

4. ¬NECP(u, v, w) ∨ Pst(u, v) D22

5. ¬ECt(u, v) ∨ NECP(skf15(v, u), u, v) Th19

6. ¬(u 1t v) ∨ ¬(v <t w) ∨ (u <t w) Th27

7. ¬(u <t v) ∨ ¬Pt(w, v) ∨ u <t w A12

8. ¬(u 1t v) ∨ ¬NECP(w, u, v) ∨ (w <t v) D23
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9. ¬(u <t v) ∨ ¬Ct(v, w) ∨ ¬(w <t x) ∨ u <t x A11

10. a 1t b

11. ¬(a <t d)

12. (u <t v) ∨ SkP(w, v, u)

13. ¬SkP(b, a, c) ∨ (b <t d)

14. ¬(u <t v) ∨ SkP(v, w, u)

Proof:

15. ECt(a,b) 10,2

16. ¬(a 1t u) ∨ ¬(u 1t d) 11,6

17. ¬(b <t d) 16,10

18. ¬SkP(b, a, c) 17,13

19. NECP(skf15(b, a), a,b) 15,5

20. c <t a 18,12

21. ¬(c <t b) 18,14

22. Pst(skf15(b, a), a) 19,4

23. (skf15(b, a) <t b) SHy 19,10,8

24. Pt(skf15(b, a), a) 22,3

25. (c <t skf15(b, a)) SHy 24,20,7

26. c <t b SHy 25,23,9,1

27. 2 26,21

Th32. x ‖t (y; z) → ∀w[(w ⊆t y → w <t z) ∧ (w ⊆t z → y <t w)]

From D26, A12, Th26

Th33. Ost(x, y) → [x σt y ∧ Osp(x, y)]

From D2, C2

Th34. TS(x, x).

From D29, Th1

Th35. [TS(x, y) ∧ TS(y, x)] → x = y.

From D8, D29

Th36. [TS(x, y) ∧ TS(y, z)] → TS(x, z).

Refutation Set:

1. ¬TS(u, v) ∨ Pst(u, v) D29

2. ¬Pst(u, v) ∨ Pt(u, v) C2

3. ¬Pst(u, v) ∨ Pt(skf11(u, v), u) ∨ TS(u, v) D29
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4. ¬Pst(u, v) ∨ Pst(skf11(u, v), u) ∨ TS(u, v) D29

5. ¬Pst(skf11(u, v), u) ∨ ¬Pst(u, v) ∨ TS(u, v) D29

6. ¬Pt(u, v) ∨ ¬Pt(v, w) ∨ Pt(u,w) Th2

7. ¬Pst(u, v) ∨ ¬Pst(v, w) ∨ Pst(u,w) Th2

8. ¬Pst(v, w) ∨ ¬Pt(v, u) ∨ ¬TS(u,w) ∨ Pst(v, u) D29

9. TS(a,b)

10. TS(b, c)

11. ¬TS(a, c)

Proof:

12. Pst(b, c) 10,1

13. Pst(a,b) 9,1

14. Pt(a,b) 13,2

15. Pst(a, c) SHy 13,12,7

16. TS(a, c) ∨ Pt(skf11(a, c), a) 15,3

17. Pt(skf11(a, c), a) 16,11

18. TS(a, c) ∨ Pst(skf11(a, c), c) 15,4

19. Pst(skf11(a, c), c) 18,11

20. Pt(skf11(a, c),b) SHy 17,14,6

21. Pst(skf11(a, c),b) SHy 20,19,10,8

22. Pst(skf11(a, c), a) SHy 21,17,9,8

23. TS(a, c) SHy 22,15,5

24. 2 23,11

Th37. [TS(x, y) ∧ TS(z, y) ∧ x =t z] → x =st z

Refutation Set:

1. ¬TS(u, v) ∨ Pst(u, v) D29

2. ¬(u =t v) ∨ (v ⊆t u) D21

3. ¬(u =t v) ∨ (u ⊆t v) D21

4. ¬Pst(u, v) ∨ ¬Pst(v, u) ∨ EQst(u, v) D8

5. ¬TS(u, v) ∨ ¬Pst(w, v) ∨ ¬(w ⊆t u) ∨ Pst(w, u) D29

6. TS(c, a)

7. (c =t b)

8. TS(b, a)

9. ¬EQst(c,b)

Proof:

10. Pst(b, a) 8,1

11. (b ⊆t c) 7,2
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12. (c ⊆t b) 8,3

13. Pst(c, a) 6,1

14. ¬Pst(c,b) ∨ ¬Pst(b, c) 9,4

15. Pst(c,b) SHy 13,12,9,5

16. Pst(b, c) SHy 11,10,6,5

17. ¬Pst(b, c) 15,14

18. 2 17,16

Th38. ts(x, x) =st x

Refutation Set:

1. TS(u, u) Th34

2. (u =t u) Th17

3. Pt(u, u) Th1

4. ¬(w =t u) ∨ (ts(v, u) = w) ∨ ¬TS(w, v) ∨ ¬(u ⊆t v) D30

5. ¬(ts(a, a) = a)

Proof:

6. ¬(a =t a) ∨ ¬TS(a, a) ∨ ¬(a ⊆t a) 5,4

7. 2 SHy 6,3,2,1

Th39. TS(ts(x, x), x)

From Th34, Th38

Th40. Cst(x, y) ↔ ∃z[TS(z, y) ∧ Cst(z, x)]

i. Cst(x, y) → ∃z[TS(z, y) ∧ Cst(z, x)]

Refutation Set:

1. TS(u, u) Th34

2. Cst(a,b)

3. [¬TS(u, b) ∨ ¬Cst(u, a)]

Proof:

4. ¬TS(b,b) 3,2

5. 2 4,1

ii. ∃z[TS(z, y) ∧ Cst(z, x)] → Cst(x, y)

Refutation Set:

1. ¬TS(u, v) ∨ Pst(u, v) D29

2. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

3. TS(c,b)
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4. Cst(a, c)

5. ¬Cst(a,b)

Proof:

6. Pst(c,b) 3,1

7. ¬Pst(u, b) ∨ ¬Cst(a, u) 5,2

8. ¬Pst(c,b) 7,4

9. 2 8,6

Th41. [TS(y1, y) ∧ ¬Csp(y1, z) ∧ Cst(z, y)] → ∃y2[TS(y2, y) ∧
Cst(y1, y2) ∧ Cst(z, y2) ∧ ¬(y1 = y2)]

Refutation Set:

1. Pst(u, u) Th1

2. TS(u, u) Th34

3. Cst(u, u) A1

4. Pst(skf23(u, v), v) D29

5. Csp(u, v) ∨ DCsp(u, v) D5

6. ¬TS(u, v) ∨ Pst(u, v) D29

7. ¬Cst(u, v) ∨ Csp(u, v) A15

8. ¬DCsp(u, v) ∨ ¬Csp(u, v) D5

9. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

10. ¬Pst(u, v) ∨ ¬Pst(skf23(u, v), u) ∨ TS(u, v) D29

11. Cst(a,b)

12. TS(c,b)

13. ¬Csp(a, c)

14. [¬TS(u, b) ∨ ¬Cst(c, u) ∨ ¬Cst(a, u) ∨ (c = u)]

Proof:

15. Pst(c,b) 12,6

16. ¬TS(b,b) ∨ ¬Cst(c,b) ∨ (c = b) 14,11

17. ¬Cst(c,b) ∨ (c = b) 16,2

18. Csp(a,b) 11,7

19. DCsp(a, c) 13,5

20. ¬DCsp(a,b) 18,8

21. ¬Cst(u, c) ∨ Cst(u, b) 15,9

22. Cst(c,b) 21,3

23. c = b 23,17

24. DCsp(a,b) Rew 23,19

25. 2 24,20
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Th42. [TS(y1, y) ∧ ¬Csp(y1, z) ∧ Cst(z, y) ∧ y1 =t z] → ∃y2[TS(y2, y) ∧
Cst(y1, y2) ∧ ECst(z, y2) ∧ ¬(y1 = y2)]

Refutation Set:

1. TS(u, u) Th34

2. Pst(u, u) Th1

3. Csp(u, u) A1

4. Cst(u, u) A1

5. Pst(skf14(u, v), v) D2

6. Ct(skf13(u, v), v) D1

7. ¬TS(u, v) ∨ Pst(u, v) D29

8. ¬Pst(u, v) ∨ Psp(u, v) C2

9. ¬Pst(u, v) ∨ Pt(u, v) C2

10. ¬Cst(u, v) ∨ Csp(u, v) A15

11. ¬(u =t v) ∨ (u ⊆t v) D21

12. ¬Csp(u, v) ∨ Csp(v, u) A2

13. ¬Cst(u, v) ∨ Cst(v, u) A2

14. ¬Ost(u, v) ∨ Pst(skf14(u, v), v) D2

15. ¬Ct(skf13(u, v), v) ∨ Pt(v, u) D1

16. ¬Cst(u, v) ∨ Ost(u, v) ∨ ECst(u, v) D6

17. ¬Pt(u, v) ∨ ¬Ct(w, u) ∨ Ct(w, v) D1

18. ¬Psp(u, v) ∨ ¬Csp(w, u) ∨ Csp(w, v) D1

19. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

20. ¬TS(u, v) ∨ ¬Pst(w, v) ∨ ¬Pt(w, u) ∨ Pst(w, u) D29

21. TS(b, a)

22. c =t b

23. ¬Csp(c,b)

24. Cst(c, a)

25. [¬TS(u, a) ∨ ¬Cst(b, u) ∨ ¬ECst(c, u) ∨ (b = u)]

Proof:

26. ¬Pst(u, a) ∨ ¬Pt(u, b) ∨ Pst(u, b) 21,20

27. Pst(b, a) 21,7

28. Ost(c, a) ∨ ECst(c, a) 24,16

29. Csp(c, a) 24,10

30. Pt(c,b) 22,11

31. ¬Psp(u, b) ∨ ¬Csp(c, u) 22,18

32. ¬Cst(b, a) ∨ ¬ECst(c, a) ∨ (b = a) 25,1

33. Ost(c, a) Spt 28
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34. ¬Pst(u, b) ∨ ¬Csp(c, u) 31,8

35. ¬Pst(a,b) 34,29

36. ¬Cst(u, b) ∨ Cst(u, a) 27,19

37. ¬Pst(u, v) ∨ ¬Csp(w, u) ∨ Csp(w, v) 18,8

38. ¬Cst(u, b) ∨ Cst(a, u) 36,13

39. Cst(a,b) 38,4

40. Cst(b, a) 39,13

41. ECst(c, a) ∨ (a = b) 40,32

42. ¬Ct(u, c) ∨ Ct(u, b) 30,17

43. ¬Pst(u, v) ∨ ¬Ct(w, u) ∨ Ct(w, v) 17,9

44. ¬Ct(skf13(b, u), c) ∨ Pt(u, b) 42,15

45. ¬Csp(u, skf14(v, w)) ∨ Csp(u,w) 37,5

46. ¬Ct(u, skf14(v, w)) ∨ Ct(u,w) 43,5

47. Csp(skf14(u, v), v) 45,3

48. Ct(skf13(u, skf14(v, w)), w) 46,6

49. Csp(u, skf14(v, u)) 47,12

50. ¬Pst(skf14(u, c),b) 49,34

51. Pt(skf14(u, c),b) 48,44

52. ¬Pst(skf14(u, c), a) ∨ Pst(skf14(u, c),b) 51,26

53. ¬Pst(skf14(u, c), a) 52,50

54. ¬Ost(c, a) 53,14

55. 2 54,33

56. ¬Ost(c, a) Spt 55,33,28

57. ECst(c, a) Spt 55,28

58. a = b 57,41

59. ¬Pst(b,b) Rew 58,35

60. 2 59,2

Th43. (x ⊆t y) → TS(ts(y, x), y)

From D30

Th44. Pst(x, y) → ∃u[TS(u, y) ∧ u =t x]

From C2, A18

Th45. x σt y → ∃u[TS(u, x) ∧ u ⊆t y]

Refutation Set:

1. ¬(u =t v) ∨ u ⊆t v D21



Space-Time Theorems 131

2. ¬(u =t v) ∨ v ⊆t u D21

3. ¬(v ⊆t u) ∨ TS(skf14(v, u), u) D29

4. ¬(v ⊆t u) ∨ skf14(v, u) =t v A18

5. ¬(u σt v) ∨ skf12(v, u) ⊆t u D2

6. ¬(u σt v) ∨ skf12(v, u) ⊆t v D2

7. ¬(v ⊆t u) ∨ ¬(u ⊆t v) ∨ u =t v D21

8. ¬(u =t v) ∨ ¬(u ⊆t w) ∨ (v ⊆t w) Th16

9. a σt b

10. [¬TS(u, a) ∨ ¬(u ⊆t b)]

Proof:

11. Pt(skf12(b, a), a) 9,5

12. Pt(skf12(b, a),b) 9,6

13. TS(skf14(skf12(b, a), a), a) 11,3

14. EQt(skf14(skf12(b, a), a), skf12(b, a)) 11,4

15. ¬Pt(skf14(skf12(b, a), a),b) 13,10

16. Pt(skf14(skf12(b, a), a), skf12(b, a)) 14,1

17. Pt(skf12(b, a), skf14(skf12(b, a), a)) 14,2

18. EQt(skf12(b, a), skf14(skf12(b, a), a)) SHy 17,16,7

19. ¬EQt(skf12(b, a), u) ∨ Pt(u, b) 12,8

20. Pt(skf14(skf12(b, a), a),b) 19,18

21. 2 20,15

Th46. ¬EMB(x, x)

Refutation Set:

1. Ct(skf15(u, v), v) D1

2. ¬EMB(u, v) ∨ DRt(u, v) D32

3. ¬DRt(u, v) ∨ ¬Ot(u, v) D4

4. ¬Ct(skf15(u, v), u) ∨ Pt(v, u) D1

5. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ Ot(v, w) D2

6. EMB(a, a)

Proof:

7. DRt(a, a) 6,2

8. Pt(u, u) 4,1

9. ¬Pt(u, v) ∨ Ot(u, v) 8,5

10. ¬Pt(u, v) ∨ ¬DRt(u, v) 9,3

11. ¬DRt(u, u) 10,8

12. 2
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Th47. [CONt(x) ∧ CONt(y)] → [x <t y ∨ x <> y ∨ y <t x]

Refutation Set:

1. u <> u A1

2. Pt(skf16(u, v), v) D2

3. ¬(u 1t v) ∨ ECt(u, v) D23

4. ¬ECt(u, v) ∨ u <> v D6

5. ¬(u <> v) ∨ v <> u A2

6. ¬Ot(u, v) ∨ Pt(skf16(v, u), v) D2

7. ¬CONt(u) ∨ ¬CONt(v) ∨ ¬EMB(u, v) D32

8. ¬ORD(u, v) ∨ u <t v ∨ u 1t v D31

9. ¬Pt(u, v) ∨ ¬(w <> u) ∨ w <> v D1

10. EMB(u, v) ∨ ORD(u, v) ∨ ORD(v, u) ∨ Ot(u, v) A19

11. CONt(a)

12. CONt(b)

13. ¬(a <t b)

14. ¬(b <t a)

15. ¬(a <> b)

Proof:

16. ¬CONt(u) ∨ ¬EMB(u, a) 11,7

17. ¬(b <> a) 15,5

18. ¬ECt(a,b) 15,4

19. ¬Pt(u, b) ∨ ¬(a <> u) 15,9

20. ¬ORD(b, a) ∨ b 1t a 14,8

21. ¬ORD(a,b) ∨ a 1t b 13,8

22. ¬EMB(b, a) 16,12

23. Ot(b, a) ∨ ORD(a,b) ∨ ORD(b, a) 22,10

24. (a <> skf16(u, b)) 19,2

25. Ot(b, a) Spt 23

26. Pt(skf16(a,b), a) 25,6

27. Ct(skf16(a,b), a) SHy 26,9,1

28. Ct(a, skf16(a,b)) 27,5

29. 2 28,24

30. ¬Ot(b, a) Spt 29,25,23

31. ORD(a,b) ∨ ORD(b, a) Spt 29,23

32. ORD(a,b) Spt 31

33. a 1t b 32,21

34. ECt(a,b) 33,3
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35. 2 34,18

36. ¬ORD(a,b) Spt 35,32,31

37. ORD(b, a) Spt 35,31

38. b 1t a 37,20

39. ECt(b, a) 38,3

40. b <> a 39,4

41. 2 40,17
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Appendix C

Transition Theorems I

Proofs of theorems cited in Section 4.3, Chapter 4 are presented below. First the theorem

is cited followed by the refutation set and then the proof is given. Theorems presented in

Appendix B are used as Lemmas. Additional Lemma wherever used is stated explicitly

prior to proof of the theorem.

Th48. CONTw → ∀u, v[ECTS(u, v, w) → ¬∃x[Pst(x, v) ∧ Ct(x, u) ∧ ¬Cst(x, u)]]

Refutation Set:

1. ¬CONTu ∨ CONt(u) D35

2. ¬TS(u, v) ∨ Pst(u, v) D29

3. ¬Ct(u, v) ∨ Ct(v, u) A2

4. ¬Cst(u, v) ∨ Cst(v, u) A2

5. ¬ECTS(u, v, w) ∨ TS(v, w) D36

6. ¬ECTS(u, v, w) ∨ TS(u,w) D36

7. ¬Pst(u, v) ∨ ¬Pst(v, w) ∨ Pst(u,w) Th2

8. ¬CONTu ∨ ¬TS(v, u) ∨ ¬Ct(v, w) ∨ ¬Pst(w, u) ∨ Cst(v, w) D35

9. CONTa

10. Pst(d, c)

11. Ct(d,b)

12. ECTS(b, c, a)

13. ¬Cst(d,b)

Proof:

14. CONt(a) 9,1

135
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15. Ct(b,d) 11,3

16. ¬Cst(b,d) 13,4

17. TS(c, a) 12,5

18. TS(b, a) 12,6

19. Pst(c, a) 17,2

20. Pst(d, a) SHy 19,10,7

21. ¬CONTa ∨ Cst(b,d) SHy 20,18,15,8

22. Cst(b,d) 21,9

23. 2 22,16

Th49. [ECTS(u, v, w) ∧ ¬Csp(u, z) ∧ PPsp(v, z)] → ¬CONTw

Refutation Set:

1. ¬CONTu ∨ CONt(u) D35

2. ¬TS(u, v) ∨ Pst(u, v) D29

3. ¬Cst(u, v) ∨ Csp(v, u) A15

4. ¬ECt(u, v) ∨ Ct(u, v) D6

5. ¬PPsp(u, v) ∨ Psp(u, v) D3

6. ¬ECTS(u, v, w) ∨ ECt(u, v) D36

7. ¬ECTS(u, v, w) ∨ TS(v, w) D36

8. ¬ECTS(u, v, w) ∨ TS(u,w) D36

9. ¬Psp(u, v) ∨ ¬Csp(w, u) ∨ Csp(w, v) D1

10. ¬CONTu ∨ ¬TS(v, u) ∨ ¬Ct(v, w) ∨ ¬Pst(w, u) ∨ Cst(v, w) D35

11. CONTa

12. PPsp(c,d)

13. ECTS(b, c, a)

14. ¬Csp(b,d)

Proof:

15. CONt(a) 11,1

16. Psp(c,d) 12,5

17. ¬Psp(u, d) ∨ ¬Csp(b, u) 14,9

18. ECt(b, c) 13,6

19. TS(c, a) 13,7

20. TS(b, a) 13,8

21. Ct(b, c) 18,4

22. Pst(c, a) 19,2

23. ¬CONTa ∨ Cst(b, c) SHy 22,21,20,10

24. Cst(b, c) 23,11
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25. Csp(b, c) 24,3

26. ¬Csp(b, c) 17,16

27. 2 26,25

Th50. [ECTS(x1, x2, x) ∧ EQt(z1, x1) ∧ NTPPst(z2, x2)] → [¬CONT(z1 ∪ z2) ∨ ¬CONTx]

Lemma 1. (u ∪ v) = (v ∪ u)

From D11, A2

Proof of Theorem:

Refutation Set:

1. ¬CONTu ∨ CONt(u) D35

2. (u ∪ v) = (v ∪ u) Lemma 1

3. ¬Ost(u, v) ∨ Ot(u, v) Th33

4. ¬NTPPst(u, v) ∨ Pst(u, v) D10

5. ¬TS(u, v) ∨ Pst(u, v) D29

6. ¬EQt(u, v) ∨ Pt(u, v) D8

7. ¬Ct(u, v) ∨ Ct(v, u) A2

8. ¬ECTS(u, v, w) ∨ ECt(u, v) D36

9. ¬ECTS(u, v, w) ∨ TS(v, w) D36

10. ¬ECTS(u, v, w) ∨ TS(u,w) D36

11. ¬CONt(u ∪ v) ∨ Ct(u, v) D16

12. ¬ECt(u, v) ∨ ¬Ot(u, v) D6

13. ¬NTPPst(u, v) ∨ ¬Cst(w, u) ∨ Ost(w, v) Th4

14. ¬Pst(u, v) ∨ ¬Pst(v, w) ∨ Pst(u,w) Th2

15. ¬Pt(u, v) ∨ ¬Ct(w, u) ∨ Ct(w, v) D1

16. ¬CONTu ∨ ¬TS(v, u) ∨ ¬Ct(v, w) ∨ ¬Pst(w, u) ∨ Cst(v, w) D35

17. CONTa

18. EQt(d,b)

19. NTPPst(e, c)

20. CONT(d ∪ e)

21. ECTS(b, c, a)

Proof:

22. CONt(a) 17,1

23. Pst(e, c) 19,4

24. Pt(d,b) 18,6

25. ECt(b, c) 21,8

26. TS(c, a) 21,9

27. TS(b, a) 21,10
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28. CONt(d ∪ e) 20,1

29. CONt(e ∪ d) 28,2

30. ¬Ot(b, c) 25,12

31. Pst(c, a) 26,5

32. Ct(e,d) 29,11

33. Pst(e, a) SHy 31,23,14

34. Ct(e,b) SHy 32,24,15

35. Ct(b, e) 34,7

36. ¬CONTa ∨ Cst(b, e) SHy 35,33,27,16

37. Cst(b, e) SHy 36,22,17

38. Ost(b, c) SHy 37,19,13

39. Ot(b, c) 38,3

40. 2 39,30

Th51. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧
¬Cst(y1, z1) ∧ PPst(y2, z2)] → [¬CONTy ∨ ¬CONTz]

Refutation Set:

1. ¬CONTu ∨ CONt(u) D35

2. ¬TS(u, v) ∨ Pst(u, v) D29

3. ¬ECt(u, v) ∨ Ct(u, v) D6

4. ¬PPst(u, v) ∨ Pst(u, v) D3

5. ¬ECTS(u, v, w) ∨ ECt(u, v) D36

6. ¬ECTS(u, v, w) ∨ TS(v, w) D36

7. ¬ECTS(u, v, w) ∨ TS(u,w) D36

8. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

9. ¬CONTu ∨ ¬TS(v, u) ∨ ¬Cst(w, u) ∨ ¬EQt(w, v) ∨ Cst(w, v) A20

10. ¬CONTu ∨ ¬TS(v, u) ∨ ¬Ct(v, w) ∨ ¬Pst(w, u) ∨ Cst(v, w) D35

11. CONTa

12. CONTb

13. EQt(c, e)

14. PPst(d, f)

15. ECTS(c,d, a)

16. ¬Cst(c, e)

17. ECTS(e, f,b)

Proof:

18. CONt(a) 11,1

19. Pst(d, f) 14,4
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20. ¬CONTu ∨ ¬TS(e, u) ∨ ¬Cst(c, u) ∨ C(c, e) 13,9

21. TS(f,b) 17,6

22. TS(e,b) 17,7

23. ECt(c,d) 15,5

24. TS(d, a) 15,6

25. TS(c, a) 15,7

26. ¬CONTu ∨ ¬TS(e, u) ∨ ¬Cst(c, u) 20,16

27. ¬TS(e,b) ∨ ¬Cst(c,b) 26,12

28. ¬Cst(c,b) 27,22

29. Pst(f,b) 21,2

30. Ct(c,d) 23,3

31. Pst(d, a) 24,2

32. ¬CONTa ∨ Cst(c,d) SHy 31,30,25,10

33. Cst(c,d) 32,11

34. Cst(c, f) SHy 33,19,8

35. Cst(c,b) SHy 34,29,8

36. 2 35,28

Th52. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧
ECst(y1, z1) ∧ PPst(y2, z2)] → [¬FCONTy ∨ ¬FCONTz]

Lemma 2. ECst(x, y) → ECst(y, x)

From D6, A2

Proof of Theorem:

Refutation Set:

1. ¬FCONTu ∨ NPu D38

2. ¬FCONTu ∨ CONTu D38

3. Pst(skf58(u, v), v) D18

4. Pst(skf57(u, v), u) D18

5. ¬ECst(u, v) ∨ ECst(v, u) L2

6. ¬EQt(u, v) ∨ Pt(v, u) D8

7. ¬EQt(u, v) ∨ Pt(u, v) D8

8. ¬PPst(u, v) ∨ Pst(u, v) D3

9. ¬Pst(u, v) ∨ ¬Pst(v, w) ∨ Pst(u,w) Th2

10. ¬NPu ∨ ¬ECTS(v, w, u) ∨ FCON(v, w) D37

11. ¬Pt(u, v) ∨ ¬Pt(v, u) ∨ EQt(u, v) D8

12. ¬FCON(u, v) ∨ INCON(skf58(v, u) ∪ skf57(v, u)) D18

13. ¬Pst(u, v) ∨ ¬INCON(u ∪ w) ∨ ¬Pst(w, x) ∨ FCON(v, x) D18
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14. ¬CONTu ∨ ¬EQt(v, w) ∨ ¬ECst(v, w) ∨ ¬FCON(w, x) ∨ ECTS(v, x, u) A21

15. FCONTa

16. FCONTb

17. ECst(c, e)

18. EQt(c, e)

19. PPst(d, f)

20. ECTS(c,d, a)

21. ECTS(e, f,b)

Proof:

22. CONTb 16,2

23. NPa 15,1

24. Pst(d, f) 19,8

25. Pt(e, c) 18,6

26. Pt(c, e) 18,7

27. ECst(e, c) 17,5

28. ¬CONTb ∨ ¬EQt(e, u) ∨ ¬ECst(e, u) ∨ ¬FCON(u, f) 27,14

29. ¬NPa ∨ FCON(c,d) 20,10

30. FCON(c,d) 29,23

31. ¬EQt(e, u) ∨ ¬ECst(e, u) ∨ ¬FCON(u, f) 28,22

32. Pst(skf57(d, u), f) SHy 24,9,4

33. EQt(e, c) SHy 26,25,11

34. INCON(skf58(d, c) + skf57(d, c)) 30,12

35. FCON(c, f) SHy 34,32,13,3

36. 2 SHy 35,33,31,27

Th53. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧
DCst(y1, z1) ∧ EQst(y2, z2)] → [¬CONTy ∨ ¬CONTz]

Refutation Set:

1. ¬CONTu ∨ CONtu D35

2. ¬TS(u, v) ∨ Pst(u, v) D29

3. ¬ECt(u, v) ∨ Ct(v, u) D6

4. ¬ECTS(u, v, w) ∨ ECt(u, v) D36

5. ¬ECTS(u, v, w) ∨ TS(v, w) D36

6. ¬ECTS(u, v, w) ∨ TS(u,w) D36

7. ¬DCst(u, v) ∨ ¬Cst(u, v) D5

8. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

9. ¬CONTu ∨ ¬TS(v, u) ∨ ¬EQt(v, w) ∨ ¬Cst(w, u) ∨ Cst(v, w) A20
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10. ¬CONTu ∨ ¬Pst(v, u) ∨ ¬TS(w, u) ∨ ¬Ct(w, v) ∨ Cst(w, v) D35

11. CONTa

12. CONTb

13. EQt(c,d)

14. DCst(c,d)

15. EQst(e, f)

16. ECTS(c, e,b)

17. ECTS(d, f, a)

Proof:

18. ECTS(c, f,b) 15,16

19. CONta 11,1

20. ¬Cst(c,d) 14,7

21. ¬CONTu ∨ ¬TS(c, u) ∨ ¬Cst(d, u) ∨ Cst(c,d) 13,9

22. ECt(d, f) 17,4

23. TS(f, a) 17,5

24. TS(d, a) 17,6

25. TS(f,b) 16,5

26. TS(c,b) 16,6

27. ¬CONTu ∨ ¬TS(c, u) ∨ ¬Cst(d, u) 21,20

28. ¬TS(c,b) ∨ ¬Cst(d,b) 27,12

29. ¬Cst(d,b) 28,26

30. Ct(d, f) 22,3

31. Pst(f, a) 22,2

32. Pst(f,b) 25,2

33. ¬CONTa ∨ Cst(d, f) SHy 31,23,10

34. Cst(d, f) ∨ ¬Cst(d,b) 33,11

35. Cst(d,b) SHy 34,32,8

36. 2 35,29

Th54. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧ EQt(y1, z1) ∧
ECst(y1, z1) ∧ EQst(y2, z2)] → [¬FCONTy ∨ ¬FCONTz]

Refutation Set:

1. ¬FCONTu ∨ NPu D38

2. ¬FCONTu ∨ CONTu D38

3. ¬NPu ∨ ¬ECTS(v, w, u) ∨ FCON(v, w) D37

4. ¬ECt(u, v) ∨ Ct(v, u) D6

5. ¬CONTu ∨ ¬EQt(v, w) ∨ ¬ECst(v, w) ∨ ¬FCON(w, x) ∨ ¬ECTS(v, x, u) A21
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6. FCONTa

7. FCONTb

8. EQt(c,d)

9. ECst(c,d)

10. EQst(e, f)

11. ECTS(c, e,b)

12. ECTS(d, f, a)

Proof:

13. CONTb 7,2

14. NPa 6,1

15. ¬CONTu ∨ ¬EQt(c,d) ∨ ¬FCON(d, v) ∨ ¬ECTS(c, v, u) 9,5

16. ECTS(c, f,b) Rew 11,10

17. ¬NPa ∨ FCON(d, f) 12,3

18. FCON(d, f) 17,14

19. ¬CONTu ∨ ¬FCON(d, v) ∨ ¬ECTS(c, v, u) 15,8

20. ¬CONTb ∨ ¬FCON(d, f) 19,16

21. 2 SHy 20,18,13

Th55. [EC=
sp(z, x) ∧ TS(x,w)] → ECst(z, w)

Refutation Set:

1. TS(u, u) Th34

2. Pst(skf23(u, v), v) D2

3. ¬EC=
sp(u, v) ∨ EQt(u, v) D43

4. ¬Pst(u, v) ∨ Pt(u, v) C2

5. ¬EQt(u, v) ∨ Pt(u, v) D8

6. ¬ECst(u, v) ∨ Cst(u, v) D6

7. ¬ECst(u, v) ∨ ¬Ost(u, v) D6

8. ¬Ost(u, v) ∨ Pst(skf23(v, u), v) D2

9. ¬Cst(u, v) ∨ Ost(u, v) ∨ ECst(u, v) D6

10. ¬TS(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) Th40

11. ¬Pt(u, v) ∨ ¬Pt(v, w) ∨ Pt(u,w) Th2

12. ¬Pst(u, v) ∨ ¬Pst(u,w) ∨ Ost(v, w) D2

13. ¬TS(u, v) ∨ ¬Pst(w, v) ∨ ¬Pt(w, u) ∨ Pst(w, u) D29

14. ¬EC=
sp(u, v) ∨ ¬TS(w, u) ∨ ¬EQt(w, x) ∨ ¬TS(x, v) ∨ ECst(w, x) D43

15. EC=
sp(a,b)

16. TS(b, c)

17. ¬ECst(a, c)
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Proof:

18. EQt(a,b) 15,3

19. ¬Cst(a, c) ∨ Ost(a, c) 17,9

20. Pt(a,b) 18,5

21. ECst(a,b) SHy 18,15,14,1

22. ¬Ost(a,b) 21,7

23. Cst(a,b) 21,6

24. Cst(a, c) SHy 23,16,10

25. Ost(a, c) 24,19

26. Pst(skf23(c, a), c) 25,8

27. Ost(c, a) SHy 26,12,2

28. Pst(skf23(a, c), a) 27,8

29. Pt(skf23(a, c), a) 28,4

30. Pt(skf23(a, c),b) SHy 29,20,11

31. Pst(skf23(a, c),b) SHy 30,16,13,2

32. Ost(a,b) SHy 31,28,12

33. 2 32,22

Th56. [P=
sp

>(z, x) ∧ TS(z, w)] → PPst(z, w)

Refutation Set:

1. ¬TS(u, v) ∨ Pst(u, v) D29

2. ¬P=
sp

>(u, v) ∨ P=
sp(u, v) D44

3. ¬P=
sp(u, v) ∨ Pst(u, v) D40

4. ¬P=
sp(u, v) ∨ EQt(u, v) D40

5. ¬P=
sp

>(u, v) ∨ ¬P=
sp(v, u) D44

6. ¬Pst(u, v) ∨ Pst(v, u) ∨ PPst(u, v) D3

7. ¬Pst(u, v) ∨ ¬Pst(v, w) ∨ Pst(u,w) Th2

8. ¬EQt(u, v) ∨ ¬Pst(u, v) ∨ P=
sp(u, v) D40

9. ¬Pst(u, v) ∨ ¬Pst(v, u) ∨ (u = v) D8

10. P=
sp

>(a,b)

11. TS(b, c)

12. ¬PPst(a, c)

Proof:

13. Pst(b, c) 11,1

14. ¬P=
sp(b, a) 10,5

15. P=
sp(a,b) 10,2

16. ¬Pst(a, c) ∨ Pst(c, a) 12,6
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17. ¬Pst(c,b) ∨ (c = b) 13,9

18. Pst(a,b) 15,3

19. EQt(a,b) 15,4

20. ¬EQt(b, a) ∨ ¬Pst(b, a) 14,8

21. Pst(a, c) SHy 18,13,7

22. Pst(c, a) 21,16

23. ¬Pst(a, c) ∨ (a = c) 22,9

24. Pst(c,b) SHy 22,18,7

25. Pst(b, a) SHy 22,13,7

26. (c = b) 24,17

27. ¬EQt(b, a) 25,20

28. EQt(a, c) Rew 26,19

29. ¬EQt(c, a) Rew 27,26

30. (a = c) 23,21

31. ¬EQt(a, a) Rew 30,29

32. EQt(a, a) Rew 30,28

33. 2 32,31

Th57. [DC=
sp(z, x) ∧ TS(z, w) ∧ CONTw] → DCst(z, w)

Refutation Set:

1. ¬CONTu ∨ CONtu D35

2. Cst(u, v) ∨ DCst(u, v) D5

3. ¬DC=
sp(u, v) ∨ DCst(u, v) D41

4. ¬DC=
sp(u, v) ∨ EQt(u, v) D41

5. ¬EQt(u, v) ∨ Pt(v, u) D8

6. ¬EQt(u, v) ∨ Pt(u, v) D8

7. ¬Cst(u, v) ∨ Cst(v, u) A2

8. ¬DCst(u, v) ∨ Cst(u, v) D5

9. ¬Pt(u, v) ∨ ¬Pt(v, u) ∨ (uEQtv) D8

10. ¬CONTu ∨ ¬EQt(v, w) ∨ ¬Cst(w, u) ∨ ¬TS(v, u) ∨ Cst(v, w) A20

11. CONTa

12. DC=
sp(c,b)

13. TS(b, a)

14. ¬DCst(c, a)

Proof:

15. CONta 11,1

16. DCst(c,b) 12,3
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17. EQt(c,b) 12,4

18. Cst(c, a) 14,2

19. ¬Cst(c,b) 16,8

20. Pt(b, c) 17,5

21. Pt(c,b) 17,6

22. EQt(b, c) SHy 20,21,9

23. ¬CONTa ∨ Cst(b, c) SHy 22,18,13,10

24. Cst(b, c) 15,11,1

25. Cst(c,b) 24,7

26. 2 25,19

Th58. [TPP=
sp(z, x) ∧ TS(z, w)] → TPPst(z, w)

Refutation Set:

1. TS(u, u) Th34

2. ¬TPP=
sp(u, v) ∨ P=

sp
>(u, v) D47

3. ¬TPP=
sp(u, v) ∨ EC=

sp(skf71(v, w), v) D47

4. ¬TPP=
sp(u, v) ∨ EC=

sp(skf71(v, u), u) D47

5. ¬EC=
sp(u, v) ∨ ¬TS(v, w) ∨ ECst(u,w) Th55

6. ¬P=
sp

>(u, v) ∨ ¬TS(v, w) ∨ PPst(u,w) Th56

7. ¬PPst(u, v) ∨ ¬ECst(w, u) ∨ ¬ECst(w, v) ∨ TPPst(u, v) D9

8. TPP=
sp(c, a)

9. TS(a,b)

10. ¬TPPst(c,b)

Proof:

11. EC=
sp(skf71(a, u), a) 8,3

12. EC=
sp(skf71(a, c), c) 8,4

13. P=
sp

>(c, a) 8,2

14. ¬PPst(c,b) ∨ ¬ECst(u, c) ∨ ¬ECst(u, b) 10,7

15. PPst(c,b) SHy 13,9,6

16. ¬ECst(u, c) ∨ ¬ECst(u, b) 15,14

17. ECst(skf71(a, c), c) SHy 12,5,1

18. ECst(skf71(a, u),b) SHy 11,5,9

19. 2 SHy 18,17,16

Th59. [NTPP=
sp(z, x) ∧ TS(z, w)] → PPst(z, w)

From: D48, Th56
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Th60. [EQ=
sp(z, x) ∧ TS(z, w)] → TS(z, w)

Refutation Set:

1. ¬EQ=
sp(u, v) ∨ P=

sp(u, v) D46

2. ¬EQ=
sp(u, v) ∨ P=

sp(v, u) D46

3. ¬P=
sp(u, v) ∨ Pst(u, v) D40

4. ¬P=
sp(u, v) ∨ EQt(u, v) D40

5. ¬EQTS(u, v, w, x) ∨ TS(v, x) D42

6. ¬Pst(u, v) ∨ ¬Pst(v, u) ∨ (u = v) D8

7. ¬TS(u, v) ∨ ¬EQt(u,w) ∨ ¬TS(w, x) ∨ EQTS(u,w, v, x) D42

8. EQ=
sp(c, a)

9. TS(a,b)

10. ¬TS(c,b)

Proof:

11. ¬TS(u, v) ∨ ¬EQt(u, a) ∨ EQTS(u, a, v,b) 9,7

12. P=
sp(a, c) 8,2

13. P=
sp(c, a) 8,1

14. ¬EQTS(u, c, v,b) 10,5

15. ¬EQt(a, a) ∨ EQTS(a, a,b,b) 11,9

16. Pst(a, c) 12,3

17. Pst(c, a) 13,3

18. EQt(c, a) 13,4

19. (a = c) SHy 17,16,6

20. ¬EQt(c, c) ∨ EQTS(a, a,b,b) Rew 19,15

21. EQt(c, c) Rew 19,18

22. ¬EQt(c, c) ∨ EQTS(c, c,b,b) Rew 20,19

23. 2 SHy 22,21,14

Th61. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧
DC=

sp(y1, z1) ∧ P=
sp

>(y2, z2)] → [¬CONTy ∨ ¬CONTz]

Lemma 3. DCst(x, y) → DCst(y, x)

From: D5, A2

Proof of Theorem:

Refutation Set:

1. TS(u, u) Th34

2. ¬CONTu ∨ CONtu D35

3. ¬DCst(u, v) ∨ DCst(v, u) Lemma 3

4. ¬P=
sp

>(u, v) ∨ P=
sp(u, v) D44
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5. ¬P=
sp(u, v) ∨ EQt(u, v) D40

6. ¬DC=
sp(u, v) ∨ DCst(u, v) D41

7. ¬DC=
sp(u, v) ∨ EQt(u, v) D41

8. ¬TS(u, v) ∨ Pst(u, v) D29

9. ¬EQt(u, v) ∨ Pt(v, u) D8

10. ¬EQt(u, v) ∨ Pt(u, v) D8

11. ¬ECt(u, v) ∨ Ct(u, v) D6

12. ¬ECTS(u, v, w) ∨ ECt(u, v) D36

13. ¬ECTS(u, v, w) ∨ TS(v, w) D36

14. ¬ECTS(u, v, w) ∨ TS(u,w) D36

15. ¬DCst(u, v) ∨ ¬Cst(u, v) D5

16. ¬Pst(u, v) ∨ ¬Pst(v, w) ∨ Pst(u,w) Th2

17. ¬Pt(u, v) ∨ ¬Pt(v, w) ∨ EQt(u, v) D8

18. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

19. ¬CONTu ∨ ¬EQt(v, w)¬Cst(w, u) ∨ ¬TS(v, u) ∨ Cst(v, w) A20

20. ¬CONTu ∨ ¬TS(v, u) ∨ ¬Ct(v, w) ∨ ¬Pst(w, u) ∨ Cst(v, w) D35

21. ¬P=
sp(u, v) ∨ ¬TS(w, u) ∨ ¬EQt(w, x) ∨ ¬TS(x, v) ∨ Pst(w, x) D40

22. CONTa

23. CONTb

24. DC=
sp(e, c)

25. P=
sp

>(f,d)

26. ECTS(e, f, a)

27. ECTS(c,d,b)

Proof:

28. ¬EQt(u, v) ∨ ¬Cst(v,b) ∨ ¬TS(u, b) ∨ Cst(u, v) 23,19

29. CONt(a) 22,2

30. P=
sp(f,d) 25,4

31. DCst(e, c) 24,6

32. EQt(e, c) 24,7

33. TS(d,b) 27,13

34. TS(c,b) 27,14

35. ECt(f, e) 26,12

36. TS(f, a) 26,13

37. TS(e, a) 26,14

38. EQt(f,d) 30,5

39. DCst(c, e) 31,3

40. Pt(c, e) 32,9
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41. Pt(e, c) 32,10

42. Pst(d,b) 33,8

43. Ct(e, f) 35,11

44. Pst(f, a) 36,8

45. Pst(f,d) SHy 38,30,21,1

46. ¬Cst(c, e) 39,15

47. EQt(c, e) 41,40,17

48. ¬CONTa ∨ Cst(e, f) SHy 44,43,37,20

49. Cst(e, f) 48,29,22

50. Pst(f,b) SHy 45,42,16

51. ¬Cst(e,b) ∨ ¬TS(c,b) ∨ Cst(c, e) 47,28

52. ¬Cst(e,b) ∨ Cst(c, e) 51,34

53. ¬Cst(e,b) 52,46

54. Cst(e,b) SHy 50,49,18

55. 2 54,53

Th62. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧
EC=

sp(y1, z1) ∧ P=
sp

>(y2, z2)] → [¬FCONTy ∨ ¬FCONTz]

Refutation Set:

1. TS(u, u) Th34

2. ¬FCONTu ∨ NPu D38

3. ¬FCONTu ∨ CONTu D38

4. Pst(skf54(u, v), v) D18

5. Pst(skf53(u, v), u) D18

6. Pst(skf39(u, v), v) D2

7. ¬P=
sp

>(u, v) ∨ P=
sp(u, v) D44

8. ¬EC=
sp(u, v) ∨ EQt(u, v) D43

9. ¬P=
sp(u, v) ∨ Pst(u, v) D40

10. ¬TS(u, v) ∨ Pst(u, v) D29

11. ¬EQt(u, v) ∨ Pt(v, u) D8

12. ¬EQt(u, v) ∨ Pt(u, v) D8

13. ¬ECst(u, v) ∨ Cst(u, v) D6

14. ¬Cst(u, v) ∨ Cst(v, u) A2

15. ¬ECTS(u, v, w) ∨ TS(u,w) D36

16. ¬ECst(u, v) ∨ ¬Ost(u, v) D6

17. ¬Ost(u, v) ∨ Pst(skf39(v, u), v) D2

18. ¬Cst(u, v) ∨ Ost(u, v) ∨ ECst(u, v) D6

19. ¬Pst(u, v) ∨ ¬Pst(v, w) ∨ Pst(u,w) Th2
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20. [¬EC=
sp(u, v) ∨ ¬TS(v, w) ∨ ECst(u,w)] Th55

21. ¬NPu ∨ ¬ECTS(v, w, u) ∨ FCON(v, w) D37

22. ¬Pt(u, v) ∨ ¬Pt(v, u) ∨ EQt(u, v) D8

23. ¬Pst(u, v) ∨ ¬Pst(u,w) ∨ Ost(v, w) D2

24. ¬FCON(u, v) ∨ INCON(skf54(v, u) ∪ skf53(v, u)) D18

25. ¬Pst(u, v) ∨ ¬INCON(u ∪ w) ∨ ¬Pst(w, x) ∨ FCON(v, x) D18

26. ¬CONTu ∨ ¬EQt(v, w) ∨ ¬ECst(v, w) ∨ ¬FCON(w, x) ∨ ¬ECTS(v, x, u) A21

27. FCONTa

28. FCONTb

29. EC=
sp(e, c)

30. P=
sp

>(f,d)

31. ECTS(e, f, a)

32. ECTS(c,d,b)

Proof:

1. CONTb 28,3

2. NPa 27,2

3. P=
sp(f,d) 30,7

4. EQt(e, c) 29,8

5. TS(c,b) 32,15

6. ¬CONTb ∨ ¬EQt(c, u) ∨ ¬ECst(c, u) ∨ ¬FCON(u, d) 32,26

7. ¬NPa ∨ FCON(e, f) 31,21

8. FCON(e, f) 39,34

9. ¬EQt(c, u) ∨ ¬ECst(c, u) ∨ ¬FCON(u, d) 38,33

10. ECst(e, c) SHy 20,29,1

11. Pst(f,d) 35,9

12. Pt(c, e) 36,11

13. Pt(e, c) 36,12

14. Pst(c,b) 37,10

15. ECst(e,b) SHy 37,29,20

16. INCON(skf54(f, e) ∪ skf53(f, e)) 40,24

17. Cst(e, c) 42,13

18. Pst(skf53(f, u),d) SHy 43,19,5

19. EQt(c, e) SHy 45,44,22

20. Pst(skf39(u, c),b) SHy 46,19,6

21. ¬Ost(e,b) 47,16,

22. Cst(c, e) 49,14

23. ECst(c, e) ∨ Ost(c, e) 54,18
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24. FCON(e,d) SHy 50,48,25,4

25. ¬EQt(c, e) ∨ ¬ECst(c, e) 56,41

26. ¬ECst(c, e) 57,51

27. Ost(c, e) 58,55

28. Pst(skf39(e, c), e) 59,17

29. Ost(e,b) SHy 60,52,23b

30. 2 61,53

Th63. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧
DC=

sp(y1, z1) ∧ EQ=
sp(y2, z2)] → [¬CONTy ∨ ¬CONTz]

Refutation Set:

1. ¬CONTu ∨ CONt(u) D35

2. Cst(u, v) ∨ DCst(u, v) D5

3. ¬EQ=
sp(u, v) ∨ P=

sp(v, u) D46

4. ¬EQ=
sp(u, v) ∨ P=

sp(u, v) D46

5. ¬P=
sp(u, v) ∨ Pst(u, v) D40

6. ¬DC=
sp(u, v) ∨ DCst(u, v) D41

7. ¬DC=
sp(u, v) ∨ EQt(u, v) D41

8. ¬TS(u, v) ∨ Pst(u, v) D29

9. ¬ECt(u, v) ∨ Ct(u, v) D6

10. ¬ECTS(u, v, w) ∨ ECt(u, v) D36

11. ¬ECTS(u, v, w) ∨ TS(v, w) D36

12. ¬ECTS(u, v, w) ∨ TS(u,w) D36

13. ¬DCst(u, v) ∨ ¬Cst(u, v) D5

14. ¬TS(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) Th40

15. ¬Pst(u, v) ∨ ¬Pst(v, u) ∨ (u = v) D8

16. ¬CONTu ∨ ¬EQt(v, w)¬Cst(w, u) ∨ ¬TS(v, u) ∨ Cst(v, w) A20

17. ¬CONTu ∨ ¬TS(v, u) ∨ ¬Ct(v, w) ∨ ¬Pst(w, u) ∨ Cst(v, w) D35

18. CONTa

19. CONTb

20. DC=
sp(e, c)

21. EQ=
sp(f,d)

22. ECTS(e, f,b)

23. ECTS(c,d, a)

Proof:

24. CONt(b) 19,1

25. CONt(a) 18,1
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26. P=
sp(d, f) 21,3

27. P=
sp(f,d) 21,4

28. DCst(e, c) 20,6

29. EQt(e, c) 20,7

30. ECt(c,d) 23,10

31. TS(d, a) 23,11

32. TS(c, a) 23,12

33. TS(f,b) 22,11

34. TS(e,b) 22,12

35. Pst(d, f) 26,5

36. Pst(f,d) 27,5

37. ¬Cst(e, c) 28,13

38. Ct(c,d) 30,9

39. Pst(d, a) 31,8

40. ¬CONTb ∨ DCst(c,b) ∨ Cst(e, c) SHy 34,29,16,2

41. DCst(c,b) ∨ Cst(e, c) 40,24,19

42. DCst(c,b) 41,37

43. ¬Pst(f,d) ∨ (d = f) 35,15

44. (d = f) 43,36

45. Ct(c, f) Rew 44,38

46. Pst(f, a) Rew 44,39

47. ¬Cst(c,b) 42,13

48. ¬CONTa ∨ Cst(c, f) SHy 46,45,32,17

49. Cst(c, f) 48,25,18

50. Cst(c,b) SHy 49,33,14

51. 2 50,47

Th64. [ECTS(y1, y2, y) ∧ ECTS(z1, z2, z) ∧
EC=

sp(y1, z1) ∧ EQ=
sp(y2, z2)] → [¬FCONTy ∨ ¬FCONTz]

Refutation Set:

1. TS(u, u) Th34

2. ¬FCONTu ∨ NPu D38

3. ¬FCONTu ∨ CONTu D38

4. ¬EQ=
sp(u, v) ∨ P=

sp(v, u) D46

5. ¬EQ=
sp(u, v) ∨ P=

sp(u, v) D46

6. ¬EC=
sp(u, v) ∨ EQt(u, v) D43

7. ¬P=
sp(u, v) ∨ Pst(u, v) D40

8. [¬EC=
sp(u, v) ∨ ¬TS(v, w) ∨ ECst(u,w)] Th55
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9. ¬NPu ∨ ¬ECTS(v, w, u) ∨ FCON(v, w) D37

10. ¬Pst(u, v) ∨ ¬Pst(v, u) ∨ (u = v) D8

11. ¬CONTu ∨ ¬EQt(v, w) ∨ ¬ECst(v, w) ∨ ¬FCON(w, x) ∨ ¬ECTS(v, x, u) A21

12. FCONTa

13. FCONTb

14. EC=
sp(e, c)

15. EQ=
sp(f,d)

16. ECTS(e, f,b)

17. ECTS(c,d, a)

Proof:

18. NPb 13,2

19. CONTb 13,3

20. NPa 12,2

21. P=
sp(d, f) 15,4

22. P=
sp(f,d) 15,5

23. EQt(e, c) 14,6

24. ¬NPa ∨ FCON(c,d) 17,9

25. FCON(c,d) 24,20

26. ECst(e, c) SHy 14,8,1

27. Pst(d, f) 21,7

28. Pst(f,d) 22,7

29. (f = d) SHy 28,27,10

30. ECTS(e,d,b) Rew 29,16

31. ¬CONTb SHy 30,26,25,23,11

32. 2 31,19



Appendix D

IM and NECP Theorems

Theorems cited in Section 4.4.4 through Section 4.6.3 of Chapter 4 are presented be-

low. Getting machine generated proofs for this group of theorems was difficult. Most

of the proofs required carefully crafted lemmas, proofs of which were subsequently ma-

chine generated. For proofs of theorems cited in Appendix D and Appendix E, we

restricted the SPASS input file to axioms and definitions that are envisaged to be re-

quired for the proof1 along the lines shown to be effective in [Reif and Schellhorn, 1997;

Amir and McIIraith, 2000].

Th65. SBE(z, x, y) ↔ SBE(z, y, x)

From D51

Th66. ¬SBE(x− y, x, y)

From D51, D12

Th67. ¬SBE(y − x, x, y)

From D51, D12

1This is the set of formulae obtained by including axioms and definitions such as to have transitive
closure (over the complete set of axioms and definitions) of the literals appearing in the conjecture. The
main problem is partitioned into sub problems and solving the sub problems some potential Lemma(s) are
worked out, which is than used for proof of the main theorem.

153
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Th68. [[FCONTx ∧ FCONTy ∧ ECTS(x1, x2, x) ∧ ECTS(y1, y2, y) ∧
P=

sp
>(x1, y1) ∧ P=

sp
>(y2, x2)] → [SBE(x1, x1, y1) ∧ SBE(y2, x2, y2)]]

Lemma 4. [P=
sp

>(x, y) → [EQt(x, y) ∧ PPst(x, y)]]

From D1, D3, D8, D40, D44

Lemma 5. [PPst(u, v) → (u ∩ v = u)]

From D3, D13

Lemma 6. [[CONTw ∧ TS(x,w)] → CONx]

From D11, D16, D29, D35, A20

Lemma 7. [[EQt(x, y) ∧ ECt(x, z)] → ECt(y, z)]

From D6, D8

Proof of Theorem:

Refutation Set:

1. Pst(u, u) Th1

2. ¬FCONTu ∨ NPu D38

3. ¬FCONTu ∨ CONTu D38

4. Pt(skf26(u, v), v) D2

5. ¬P=
sp

>(u, v) ∨ EQt(u, v) Lemma 4

6. ¬P=
sp

>(u, v) ∨ PPst(u, v) Lemma 4

7. ¬FCON(u, v) ∨ FCON(v, u) Th9

8. ¬Pst(u, v) ∨ Pt(u, v) C2

9. ¬EQt(u, v) ∨ Pt(v, u) D8

10. ¬EQt(u, v) ∨ Pt(u, v) D8

11. ¬ECt(u, v) ∨ Ct(u, v) D6

12. ¬PPst(u, v) ∨ Pst(u, v) D3

13. ¬Ct(u, v) ∨ Ct(v, u) A2

14. ¬ECTS(u, v, w) ∨ ECt(u, v) D36

15. ¬ECTS(u, v, w) ∨ TS(v, w) D36

16. ¬ECTS(u, v, w) ∨ TS(u,w) D36

17. ¬POt(u, v) ∨ Pt(v, u) D7

18. ¬ECt(u, v) ∨ ¬Ot(v, u) D6

19. ¬PPst(u, v) ∨ Pst(v, u) D3

20. ¬PPst(u, v) ∨ (u ∩ v = u) Lemma 5

21. ¬SBE(u, v, w) ∨ SBE(u,w, v) Th65

22. ¬CONTu ∨ ¬TS(v, u) ∨ CONv Lemma 6

23. ¬Ot(u, v) ∨ Pt(skf26(v, u), u) D2

24. ¬Ct(u, v) ∨ Ot(u, v) ∨ ECt(u, v) D6

25. ¬EQt(u, v) ∨ ¬ECt(u,w) ∨ ECt(v, w) Lemma 7
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26. ¬NPu ∨ ¬ECTS(v, w, u) ∨ FCON(v, w) D37

27. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ Ot(v, w) D2

28. ¬Pst(u, v) ∨ Pt(skf32(u, v), u) ∨ TS(u, v) D29

29. ¬Ot(u, v) ∨ Pt(u, v) ∨ Pt(v, u) ∨ POt(u, v) D7

30. ¬TS(u, v) ∨ ¬Pst(w, v) ∨ ¬Pt(w, u) ∨ Pst(w, u) D29

31. ¬CONu ∨ ¬ECt(v, u) ∨ ¬ECt(w, u) ∨
¬FCON(w, u) ∨ ¬ECt(x, u) ∨ ¬(w = x ∩ v) ∨ SBE(w, x, v) D51

32. FCONTa

33. FCONTb

34. P=
sp

>(c, e)

35. P=
sp

>(f,d)

36. ECTS(c,d, a)

37. ECTS(e, f,b)

38. ¬SBE(c, c, e) ∨ ¬SBE(f,d, f)

Proof:

39. NPb 33,2

40. CONTb 33,3

41. NPa 32,2

42. CONTa 32,3

43. EQt(f,d) 35,5

44. PPst(f,d) 35,6

45. EQt(c, e) 11,5

46. PPst(c, e) 11,6

47. ¬NPb ∨ FCON(e, f) 37,26

48. ECt(e, f) 37,14

49. TS(e,b) 37,16

50. ¬NPa ∨ FCON(c,d) 36,26

51. ECt(c,d) 36,14

52. TS(d, a) 36,15

53. FCON(e, f) 47,39

54. FCON(c,d) 50,41

55. Pt(d, f) 43,9

56. Pt(f,d) 43,10

57. ¬Pst(d, f) 44,19

58. Pst(f,d) 44,12

59. (f ∩ d = f) SHy 44,20

60. Pt(e, c) 45,9

61. Pt(c, e) 45,10
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62. ¬Pst(e, c) 46,19

63. Pst(c, e) 46,12

64. (c ∩ e = c) SHy 46,20

65. ¬Ot(e, f) 48,18

66. Ct(e, f) 48,11

67. ¬CONTb ∨ CONe 49,22

68. CONe 67,40,39,33

69. ECt(e,d) SHy 51,45,25

70. ¬CONTa ∨ CONd 52,22

71. CONd 70,42,41,32

72. FCON(f, e) 53,7

73. Ot(f, f) SHy 55,27

74. Ot(d,d) SHy 56,27

75. TS(f,d) ∨ Pt(skf32(f,d), f) SHy 58,28

76. Ot(c, c) SHy 60,27

77. Ot(e, e) SHy 61,27

78. TS(c, e) ∨ Pt(skf32(c, e), c) SHy 63,28

79. Ct(f, e) SHy 66,13

80. POt(f, f) ∨ Pt(f, f) ∨ Pt(f, f) SHy 73,29

81. POt(f, f) ∨ Pt(f, f) Obs80

82. POt(d,d) ∨ Pt(d,d) ∨ Pt(d,d) SHy 74,29

83. POt(d,d) ∨ Pt(d,d) Obs82

84. POt(c, c) ∨ Pt(c, c) ∨ Pt(c, c) SHy 76,29

85. POt(c, c) ∨ Pt(c, c) Obs84

86. POt(e, e) ∨ Pt(e, e) ∨ Pt(e, e) SHy 77,29

87. POt(e, e) ∨ Pt(e, e) Obs86

88. ¬Pt(u, e) ∨ ¬Pt(u, f) 65,27

89. ECt(f, e) ∨ Ot(f, e) SHy 79,24

90. ¬CONd ∨ SBE(c, c, e) SHy 69,64,54,51,31

91. SBE(c, c, e) 90,71

92. ¬SBE(f,d, f) 91,38

93. TS(f,d) Spt 75

94. Pst(d, f) SHy 93,55,30,1

95. 2 94,57

96. ¬TS(f,d) Spt 95,93,75

97. Pt(skf32(f,d), f) Spt 95,75

98. TS(c, e) Spt 78

99. Pst(e, c) SHy 98,60,30,1
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100. 2 99,62

101. ¬TS(c, e) Spt 100,98,78

102. Pt(skf32(c, e), c) Spt 100,78

103. ¬Pt(skf26(u, f), e) 88,4

104. POt(f, f) Spt 81

105. ¬Pt(f, f) 104,17

106. ¬Pst(f, f) 105,8

107. 2 106,1

108. ¬POt(f, f) Spt 107,104,81

109. Pt(f, f) Spt 107,81

110. POt(d,d) Spt 83

111. ¬Pt(d,d) 110,17

112. ¬Pst(d,d) 111,8

113. 2 112,1

114. ¬POt(d,d) Spt 113,110,83

115. Pt(d,d) Spt 113,83

116. POt(c, c) Spt 85

117. ¬Pt(c, c) 116,17

118. ¬Pst(c, c) 117,8

119. 2 118,1

120. ¬POt(c, c) Spt 119,116,85

121. Pt(c, c) Spt 119,85

122. POt(e, e) Spt 87

123. ¬Pt(e, e) 122,17

124. ¬Pst(e, e) 123,8

125. 2 124,1

126. ¬POt(e, e) Spt 125,122,87

127. Pt(e, e) Spt 125,87

128. ECt(f, e) Spt 89

129. ECt(d, e) SHy 128,43,25

130. ¬CONe ∨ SBE(f, f,d) SHy 129,128,72,59,31

131. SBE(f, f,d) 130,68

132. SBE(f,d, f) SHy 131,21

133. 2 132,92

134. ¬ECt(f, e) Spt 133,128,89

135. Ot(f, e) Spt 133,89

136. Pt(skf26(e, f), e) SHy 135,23

137. 2 136,103
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Th69. [[FCONTx ∧ FCONTy ∧ ECTS(x1, x2, x) ∧ ECTS(y1, y2, y) ∧
PO=

sp(x1, y1) ∧ P=
sp

>(x2, y2)] → [SBE(x1 ∩ y1, x1, y1) ∧ SBE(x2, x2, y2)]]

From D38, D44, D45, D51, Th9, Th65

Th70. [[FCONTx∧FCONTy ∧ECTS(x1, x2, x)∧ECTS(y1, y2, y)∧DRst(x1, y1)∧
PO=

sp(x2, y2)]→¬∃z1, z2[SBE(z1, x1, y1)∧SBE(z2, x2, y2)∧FCON(z2, x1)]]

From D4, D38, D45, D51, Th9, Th65

Th71. [[FCONTx ∧ FCONTy ∧ ECTS(x1, x2, x) ∧ ECTS(y1, y2, y) ∧
ECt(w, x2) ∧ FCON(w, x2) ∧ ECt(z, x1) ∧ FCON(z, x1) ∧

SBE(w, x1, y1) ∧ SBE(z, x2, y2)] → FCON(z, w)]

Lemma 8. u ∩ v = v ∩ u

From D13, A2

Lemma 9. [[FCON(x1, y1)∧ECt(x1, y1)∧FCON(x2, y2)∧ECt(x2, y2)∧
FCON(x1, y2)∧ECt(x1, y2)∧FCON(x2, y1)∧ECt(x2, y1)]→FCON(x1 ∩ y1, x2 ∩ y2)]

From D18, D13, Th9

Proof of Theorem:

Refutation Set:

1. ¬FCONTu ∨ NPu D38

2. (u ∩ v = v ∩ u) Lemma 8

3. ¬FCON(u, v) ∨ FCON(v, u) Th9

4. ¬ECTS(u, v, w) ∨ ECt(u, v) D36

5. ¬SBE(u, v, w) ∨ (u = v ∩ w) D51

6. ¬NPu ∨ ¬ECTS(v, w, u) ∨ FCON(v, w) D37

7. ¬ECt(u, v) ∨ ¬FCON(u, v) ∨ ¬SBE(u,w, x) ∨ FCON(v, x) D51

8. ¬ECt(u, v) ∨ ¬FCON(u, v) ∨ ¬SBE(u,w, x) ∨ ECt(x, v) D51

9. [¬ECt(u, v) ∨ ¬ECt(u,w) ∨ ¬FCON(u, v) ∨ ¬FCON(u,w) ∨ ¬FCON(x, v) ∨
¬ECt(v, x) ∨ ¬ECt(x,w) ∨ ¬FCON(x,w) ∨ FCON(u ∩ x, v ∩ w)] Lemma 9

10. FCONTa

11. FCONTb

12. FCON(g, c)

13. ECt(g, c)

14. FCON(h,d)

15. ECt(h,d)

16. ECTS(c,d, a)

17. SBE(h, c, e)

18. SBE(g,d, f)
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19. ECTS(e, f,b)

20. ¬FCON(g,h)

Proof:

21. NPb 11,1

22. NPa 10,1

23. ¬FCON(h, g) 20,3

24. ¬NP(b) ∨ FCON(e, sk11) 19,6

25. ECt(e, f) 19,4

26. (d ∩ f) = g 18,5

27. ¬ECt(g, u) ∨ ¬FCON(g, u) ∨ FCON(u, f) 18,7

28. ¬ECt(g, u) ∨ ¬FCON(g, u) ∨ ECt(f, u) 18,8

29. (c ∩ e) = h 17,5

30. ¬ECt(h, u) ∨ ¬FCON(h, u) ∨ FCON(u, e) 17,7

31. ¬ECt(h, u) ∨ ¬FCON(h, u) ∨ ECt(e, u) 17,8

32. ¬NP(a) ∨ FCON(c, sk14) 16,6

33. ECt(c,d) 16,4

34. (f ∩ d) = g Rew 26,2

35. (e ∩ c) = h Rew 29,2

36. FCON(e, f) 24,21

37. FCON(c,d) 32,22

38. ¬FCON(h,d) ∨ ECt(e,d) 31,15

39. ¬FCON(h,d) ∨ FCON(d, e) 30,15

40. ¬FCON(g, c) ∨ ECt(f, c) 28,13

41. ¬FCON(g, c) ∨ FCON(c, f) 27,13

42. ECt(e,d) 38,14

43. FCON(d, e) 39,14

44. ECt(f, c) 40,12

45. FCON(c, f) 41,12

46. FCON(e,d) 43,3

47. FCON(e ∩ c, f ∩ d) SHy 46,45,42,37,36,33,25,9

48. FCON(h, g) Rew 47,34

49. 2 48,23

Th72. [[FCONTx ∧ FCONTy ∧ ECTS(x1, x2, x) ∧ ECTS(y1, y2, y) ∧
ECt(w, x2) ∧ FCON(w, x2) ∧ ECt(z, x1) ∧

SBE(w, x1, y1) ∧ ¬SBE(z, x2, y2)] → ¬FCON(z, w)]

From D36, D38, D51, Th9, Th65
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Th73. [[DRst( x
z1
, y

z1
) ∧ PO=

sp(
x
z2
, y

z2
) ∧ ECTS( x

z1
, x

z2
, x

z1∪z2
) ∧

ECTS( y
z1
, y

z2
, y

z1∪z2
) ∧ FCONT( x

z1∪z2
) ∧ FCONT( y

z1∪z2
)] → Mec(x, y, z1, z2)]

From D4, D45, D38, Th70, Th71, Th72, Proposition 1

Th74. [[P=
sp

>( x
z1
, y

z1
) ∧ P=

sp
>( y

z2
, x

z2
) ∧ ECTS( x

z1
, x

z2
, x

z1∪z2
) ∧

ECTS( y
z1
, y

z2
, y

z1∪z2
) ∧ FCONT( x

z1∪z2
) ∧ FCONT( y

z1∪z2
)] → Meq(x, y, z1, z2)]

From D44, D38, Th68, Th71, Th72, Proposition 1

Th75. [[PO=
sp(

x
z1
, y

z1
) ∧ NTPP=

sp(
x
z2
, y

z2
) ∧ ECTS( x

z1
, x

z2
, x

z1∪z2
) ∧

ECTS( y
z1
, y

z2
, y

z1∪z2
) ∧ FCONT( x

z1∪z2
) ∧

FCONT( y
z1∪z2

)] → [Meq(x, y, z1, z2) ∨ Mtpp(x, y, z1, z2)]]

From D45, D44, D38, Th69, Th71, Th72, Proposition 1

Th76. [[PO=
sp(

x
z1
, y

z1
) ∧ NTPPi=sp(

y
z2
, x

z2
) ∧ ECTS( x

z1
, x

z2
, x

z1∪z2
) ∧

ECTS( y
z1
, y

z2
, y

z1∪z2
) ∧ FCONT( x

z1∪z2
) ∧

FCONT( y
z1∪z2

)] → [Meq(x, y, z1, z2) ∨ Mtppi(x, y, z1, z2)]]

From D45, D44, D38, Th69, Th71, Th72, Proposition 1

Th77. [ECt(x, z) ∧ ECt(y, z) ∧ ∀u, v[[NECP(u, x, z) ∧
NECP(v, y, z)] → ¬Cst(u, v)]] → [¬Cst(x, y) ∨ ECst(x, y)]

Refutation Set:

1. Cst(u, u) Th1

2. Pst(skf11(u, v), v) D2

3. Cst(skf9(u, v), v) D1

4. ¬NECP(u, v, w) ∨ Pst(u, v) D22

5. ¬ECt(u, v) ∨ ¬NECP(u,w, v) D22

6. ¬Ost(u, v) ∨ Pst(skf11(v, u), v) D2

7. ¬Cst(skf9(u, v), u) ∨ Pst(v, u) D1

8. ¬ECt(u, v) ∨ NECP(skf13(v, u), u, v) Th19

9. ¬Cst(u, v) ∨ Ost(u, v) ∨ ECst(u, v) D6

10. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

11. ¬Pst(u, v) ∨ ¬ECt(v, w) ∨ ECt(u,w) ∨ NECP(u, v, w) D22

12. ECt(a, c)

13. ECt(b, c)

14. Cst(a,b)

15. ¬ECst(a,b)
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16. [¬Cst(u, v) ∨ ¬NECP(u, a, c) ∨ ¬NECP(v,b, c)]

Proof:

17. ¬Pst(u, b) ∨ ECt(u, c) ∨ NECP(u, b, c) 13,11

18. Ost(a,b) ∨ ECst(a,b) 14,9

19. ¬NECP(u, a, c) ∨ ¬NECP(u, b, c) 16,1

20. Ost(a,b) 18,15

21. ECt(skf11(u, a), c) ∨ NECP(skf11(u, a), a, c) SHy 12,11,2

22. Pst(skf11(b, a),b) SHy 20,6

23. ¬Cst(u, skf11(b, a)) ∨ Cst(u, b) 22,10

24. ECt(skf11(b, a), c) ∨ NECP(skf11(b, a),b, c) SHy 22,13,11

25. ¬Pst(u, a) ∨ ¬ECt(a, c) ∨ ¬NECP(u, b, c) ∨ ECt(u, c) 19,11

26. ¬Pst(u, a) ∨ ¬NECP(u, b, c) 25,12,5

27. ¬NECP(skf11(u, a),b, c) ∨ ECt(skf11(u, a), c) 21,19

28. NECP(skf11(u, a), a, c) ∨ NECP(skf13(c, skf11(u, a)), skf11(u, a), c) SHy 21,8

29. ¬NECP(skf11(u, a),b, c) 27,5

30. ECt(skf11(b, a), c) 29,24

31. NECP(skf13(c, skf11(b, a)), skf11(b, a), c) 30,8

32. ¬Pst(u, b) ∨ ¬Pst(u, a) ∨ ECt(u, c) 26,17

33. NECP(skf11(u, a), a, c) ∨ Pst(skf13(c, skf11(u, a)), skf11(u, a)) 28,4

34. ¬Pst(u, skf11(b, a)) ∨ ¬Cst(v, u) ∨ Cst(v,b) 23,10

35. Pst(skf13(c, skf11(b, a)), skf11(b, a)) SHy 38,30,5

36. Cst(skf9(u, skf13(c, skf11(b, a))), skf11(b, a)) SHy 35,10,3

37. ¬ECt(skf13(c, skf11(b, a))) 31,5

38. ¬Pst(skf13(c, skf11(b, a)),b) ∨ ¬Pst(skf13(c, skf11(b, a)), a) 37,32

39. Cst(skf9(u, skf13(c, skf11(b, a))),b) SHy 35,34,3

40. Pst(skf13(c, skf11(b, a)),b) 39,7

41. ¬Pst(skf13(c, skf11(b, a)), a) 40,38

42. Cst(skf9(u, skf13(c, skf11(b, a))), a) SHy 36,10,2

43. Pst(skf13(c, skf11(b, a)), a) 42,7

44. 2 43,41

Th78. [[ECt(x, z) ∧ ECt(y, z) ∧ ∀u, v[[Pst(u, x) ∧ ¬NECP(u, x, z) ∧
Pst(v, y) ∧ ¬NECP(v, y, z)] → ¬Ost(u, v)]] → ¬Ost(x, y)]

Refutation Set:

1. Pst(u, u) Th1

2. ¬NECP(u, v, w) ∨ ¬ECt(u,w) D22

3. ECt(a, c)
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4. Ost(a,b)

5. ECt(b, c)

6. [¬Pst(u, a) ∨ ¬Ost(u, v)¬Pst(v,b) ∨ NECP(u, a, c) ∨ NECP(v,b, c)]

Proof:

7. ¬NECP(b, u, c) 5,2

8. ¬Pst(a, a) ∨ ¬Pst(b,b) ∨ NECP(a, a, c) ∨ NECP(b,b, c) 6,4

9. ¬NECP(a, v, c) 3,2

10. 2 SHy 9,8,7,1

Th79. [ECt(x, z) ∧ ECt(y, z) ∧ Pst(u, x) ∧ Pst(u, y) ∧ ECt(u, z)] →
∃w[Pst(w, u) ∧ NECP(w, x, z) ∧ NECP(w, y, z)]

Refutation Set:

1. ¬NECP(u, v, w) ∨ Pst(u, v) D22

2. ¬ECt(u, v) ∨ ¬NECP(u,w, v) D22

3. ¬ECt(u, v) ∨ NECP(skf19(v, u), u, v) Th19

4. ¬Pst(u, v) ∨ ¬Pst(v, w) ∨ Pst(u,w) Th2

5. ¬Pst(u, v) ∨ ¬ECt(v, w) ∨ ECt(u,w) ∨ NECP(u, v, w) D22

6. Pst(d, c)

7. Pst(d, a)

8. ECt(d,b)

9. ECt(c,b)

10. ECt(a,b)

11. [¬Pst(u, d) ∨ ¬NECP(u, c,b) ∨ ¬NECP(u, a,b)]

Proof:

12. NECP(skf19(b,d),d,b) 8,3

13. ¬Pst(u, d) ∨ Pst(u, a) 7,4

14. ¬Pst(u, d) ∨ Pst(u, c) 6,4

15. ¬Pst(u, c) ∨ ¬ECt(c,b) ∨ ¬Pst(u, d) ∨ ¬NECP(u, a,b) ∨ ECt(u, b) 11,5

16. ¬Pst(u, c) ∨ ¬Pst(u, d) ∨ ¬NECP(u, a,b) 15,9,2

17. ¬Pst(u, d) ∨ ¬NECP(u, a,b) 16,14

18. Pst(skf19(b,d),d) 12,1

19. ¬ECt(skf19(b,d),b) 12,2

20. Pst(skf19(b,d), a) 18,13

21. NECP(skf19(b,d), a,b) ∨ ECt(skf19(b,d),b) SHy 20,10,5

22. NECP(skf19(b,d), a,b) 21,19

23. 2 SHy 22,18,17
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Th80. [[ECt(x, z) ∧ ECt(y, z) ∧ ∀u, v[[NECP(u, x, z) ∧
NECP(v, y, z)] → ¬Ost(u, v)]] → ¬Ost(x, y)]

Refutation Set:

1. Pst(u, u) Th1

2. Pst(skf11(u, v), v) D2

3. Pst(skf13(u, v, w, x), x) D22

4. ¬Ost(u, v) ∨ Pst(skf11(u, v), v) D2

5. ¬Pst(u, v) ∨ ¬Pst(u,w) ∨ Ost(v, w) D2

6. ¬Pst(u, v) ∨ ¬ECt(v, w) ∨ ECt(u,w) ∨ NECP(u, v, w) D22

7. [¬ECt(u, v) ∨ ¬Pst(w, u) ∨ ¬Pst(w, x) ∨ ¬ECt(x, v) ∨
¬ECt(w, v) ∨ NECP(skf13(x, v, u, w), u, v)] Th79

8. [¬ECt(u, v) ∨ ¬Pst(w, u) ∨ ¬Pst(w, x) ∨ ¬ECt(x, v) ∨
¬ECt(w, v) ∨ NECP(skf13(x, v, u, w), x, v)] Th79

9. ECt(a, c)

10. Ost(a,b)

11. ECt(b, c)

12. [¬NECP(u, a, c) ∨ ¬Ost(u, v) ∨ ¬NECP(v,b, c)]

Proof:

13. Pst(skf11(b, a),b) 10,4

14. ECt(skf11(u, b), c) ∨ NECP(skf11(u, b),b, c) SHy 11,6,2

15. Ost(b, a) SHy 13,5,2

16. ¬Pst(u, a) ∨ ¬ECt(a, c) ∨ ¬Ost(u, v) ∨ NECP(v,b, c) ∨ ECt(u, c) 12,6

17. [¬ECt(u, c) ∨ ¬Pst(v, u) ∨ ¬Pst(v, a) ∨ ¬ECt(a, c) ∨
¬ECt(v, c) ∨ ¬Ost(skf13(a, c, u, v), w) ∨ ¬NECP(w,b, c)] 12,8

18. ¬Pst(u, a) ∨ ¬Ost(u, v) ∨ NECP(v,b, c) ∨ ECt(u, c) 16,9

19. [¬ECt(u, c) ∨ ¬Pst(v, u) ∨ ¬Pst(v, a) ∨
¬ECt(v, c) ∨ ¬Ost(skf13(a, c, u, v), w) ∨ ¬NECP(w,b, c)] 17,9

20. Pst(skf11(a,b), a) SHy 15,4

21. Ost(a, skf11(a,b)) SHy 20,5,1

22. Pst(skf11(skf11(a,b), a), skf11(a,b)) SHy 20,4

23. Ost(skf11(a,b), skf119(a,b)) SHy 22,5

24. ECt(skf11(a,b), c) ∨ ECt(skf11(a,b), c) SHy 23,18,14

25. ECt(skf11(a,b), c) Obs24

26. NECP(skf13(a, c,b, skf11(a,b)),b, c) SHy 25,20,11,9,7,2

27. [¬Pst(u, skf13(a, c, v, w)) ∨ ¬Pst(u, x) ∨ ¬ECt(v, c) ∨
¬Pst(w, v) ∨ ¬Pst(w, a) ∨ ¬ECt(w, c) ∨ ¬NECP(x,b, c)] 19,5

28. 2 SHy 27,26,25,20,11,2,3
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Th81. [[ECt(x, z) ∧ ECt(y, z) ∧ ∀u, v[[NECP(u, x, z) ∧
NECP(v, y, z) ∧ EQTS(u, v, x, y)] → DC=

sp(u, v)]] → DRst(x, y)]

Lemma 10. ¬DC=
sp(x, x)

From A1, D5, D41

Lemma 11. [ECt(x, z) ∧ ECt(y, z) ∧ Ost(x, y)] → ∃u, v[EQTS(u, v, x, y) ∧
NECP(u, x, z) ∧ NECP(v, y, z) ∧ Ost(u, v)]

From D2, D6, D22, D42, Th19

Proof of Theorem:

Refutation Set:

1. EQt(u, u) Th17

2. ¬DC=
sp(u, u) Lemma 10

3. Pst(skf23(u, v), v) D29

4. Ost(u, v) ∨ DRst(u, v) D4

5. ¬TS(u, v) ∨ Pst(u, v) D29

6. ¬EQt(u, v) ∨ Pt(v, u) D8

7. ¬NECP(u, v, w) ∨ Pst(u, v) D22

8. ¬EQTS(u, v, w, x) ∨ EQt(u, v) D42

9. ¬EQTS(u, v, w, x) ∨ TS(v, x) D42

10. ¬EQTS(u, v, w, x) ∨ TS(u,w) D42

11. ¬NECP(u, v, w) ∨ ¬ECt(u,w) D22

12. ¬ECt(u, v) ∨ NECP(skf26(v, u), u, v) Th19

13. ¬TS(u, v) ∨ ¬TS(v, w) ∨ TS(u,w) Th36

14. ¬Pst(u, v) ∨ ¬Pst(v, w) ∨ Pst(u,w) Th2

15. ¬Pst(u, v) ∨ ¬Pst(u,w) ∨ Ost(v, w) D2

16. ¬Pst(u, v) ∨ Pt(skf23(u, v), u) ∨ TS(u, v) D29

17. ¬Pst(u, v) ∨ ¬Pst(skf23(u, v), u) ∨ TS(u, v) D29

18. ¬Pst(u, v) ∨ ¬ECt(v, w) ∨ ECt(u,w) ∨ NECP(u, v, w) D22

19. ¬TS(u, v) ∨ ¬Pst(w, v) ∨ Pt(w, u) ∨ Pst(w, u) D29

20. ¬TS(u, v) ∨ ¬EQt(u,w) ∨ ¬TS(w, x) ∨ EQTS(u,w, v, x) D42

21. ¬ECt(u,w) ∨ ¬Ost(u, v) ∨ ¬ECt(v, w) ∨ NECP(skf37(v, u, w), v, w) Lemma 11

22. ¬ECt(u,w) ∨ ¬Ost(u, v) ∨ ¬ECt(v, w) ∨ NECP(skf36(w, u, x), u, w) Lemma 11

23. [¬ECt(u,w) ∨ ¬Ost(u, v) ∨ ¬ECt(v, w) ∨
EQTS(skf37(v, u, w), skf36(w, u, x), u, v)] Lemma 11

24. ECt(c,b)

25. ECt(a,b)

26. ¬DRst(c, a)

27. [¬NECP(u, c,b) ∨ ¬EQTS(u, v, c, a) ∨ ¬NECP(v, a,b) ∨ DC=
sp(u, v)]
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Proof:

28. NECP(skf26(b, a), a,b) 25,12

29. ¬Pst(u, a) ∨ ECt(u, b) ∨ NECP(u, a,b) 25,18

30. ¬Ost(a, u) ∨ ¬ECt(u, b) ∨ EQTS(skf37(u, a,b), skf36(b, a, u), a, u) 25,23

31. ¬Ost(a, u) ∨ ¬ECt(u, b) ∨ NECP(skf36(b, a, v), a,b) 25,22

32. ¬Ost(u, c) ∨ ¬ECt(u, b) ∨ EQTS(skf37(c, u,b), skf36(b, u, c), u, c) 24,23

33. ¬Ost(u, c) ∨ ¬ECt(u, b) ∨ NECP(skf36(c, u,b), c,b) 24,21

34. ¬Pst(u, c) ∨ ¬ECt(u, b) ∨ NECP(u, c,b) 24,18

35. ¬Ost(c, u) ∨ ¬ECt(u, b) ∨ EQTS(skf37(u, c,b), skf36(b, c, u), c, u) 24,23

36. ¬Ost(c, u) ∨ ¬ECt(u, b) ∨ NECP(skf36(u, c,b), u,b) 24,21

37. Ost(c, a) 26,4

38. ¬Ost(c, a) ∨ EQTS(skf37(a, c,b), skf36(b, c, a), c, a) 35,25

39. ¬Ost(a, c) ∨ EQTS(skf37(c, a,b), skf36(b, a, c), a, c) 32,25

40. ¬Ost(c, a) ∨ NECP(skf37(a, c,b), a,b) 36,25

41. ¬Ost(a, c) ∨ NECP(skf37(c, a,b), c,b) 33,25

42. ¬Ost(a, a) ∨ NECP(skf37(b, a, u), a,b) 31,25

43. NECP(skf37(a, c,b), a,b) 40,37

44. EQTS(skf37(a, c,b), skf36(b, c, a), c, a) 38,37

45. [¬TS(u, c) ∨ ¬EQt(u, v) ∨ ¬TS(u, a) ∨
¬NECP(u, c,b) ∨ ¬NECP(v, a,b) ∨ DC=

sp(u, v)] 27,20

46. Pst(skf26(b, a), a) 28,7

47. ¬Pst(skf26(b, a), u) ∨ Ost(a, u) 46,15

48. Pst(skf37(a, c,b), a) 43,7

49. ¬Pst(skf37(a, c,b), u) ∨ O(a, u) 48,15

50. Ost(a, a) 47,46

51. NECP(skf36(b, a, u), a,b) 50,42

52. ¬ECt(skf36(b, a, u),b) 51,11

53. ¬Pst(skf26(b, a, u), a) 51,7

54. ¬Ost(a, u) ∨ ¬ECt(u, b) ∨ EQt(skf37(u, a,b), skf36(b, a, u)) 30,8

55. ¬Ost(a, u) ∨ ¬ECt(u, b) ∨ TS(skf36(b, a, u), u) 30,9

56. ¬Ost(a, u) ∨ ¬ECt(u, b) ∨ TS(skf37(u, a,b), a) 30,10

57. [¬Pst(u, c) ∨ ¬TS(u, c) ∨ ¬EQt(u, v) ∨ ¬TS(v, a) ∨
¬NECP(v, a,b) ∨ ECt(u, b) ∨ DC=

sp(u, v)] 45,34

58. [¬TS(u, c) ∨ ¬EQt(u, v) ∨ ¬TS(v, a) ∨
¬NECP(v, a,b) ∨ ECt(u, b) ∨ DC=

sp(u, v)] 57,5

59. ¬Ost(a, c) ∨ Pst(skf37(c, a,b), c) 41,7

60. TS(skf37(a, c,b), c) 44,10

61. Pst(skf37(a, c,b), c) 60,5
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62. [¬Ost(a, u) ∨ ¬ECt(u, b) ∨ ¬Pst(v, a) ∨
¬Pt(v, skf37(u, a,b) ∨ Pst(v, skf37(u, a,b)] 56,19

63. [¬Ost(a, u) ∨ ¬ECt(u, b) ∨ ¬Pst(v, u) ∨
¬Pt(v, skf36(b, a, u) ∨ Pst(v, skf36(b, a, u)] 55,19

64. ¬Ost(a, c) ∨ ¬Pst(u, skf37(c, a,b)) ∨ Pst(u, c) 59,14

65. Ost(a, c) 61,49

66. EQTS(skf37(c, a,b), skf36(b, a, c), a, c) 65,39

67. ¬Pst(u, skf37(c, a,b)) ∨ Pst(u, c) 65,64

68. TS(skf36(b, a, c), c) 66,9

69. TS(skf37(c, a,b), a) 66,10

70. ¬TS(u, skf37(c, a,b)) ∨ TS(u, a) 69,13

71. ¬Ost(a, u) ∨ ¬ECt(u, b) ∨ Pt(skf36(b, a, u), skf37(u, a,b)) 54,6

72. [¬Pst(u, a) ∨ ¬TS(v, c) ∨ ¬EQt(u, v) ∨
¬TS(u, a) ∨ ECt(u, b) ∨ ECt(v,b) ∨ DC=

sp(v, u)] 58,29

73. [¬TS(u, c) ∨ ¬EQt(u, v) ∨ ¬TS(v, a) ∨ ECt(v,b) ∨ ECt(u, b) ∨ DC=
sp(u, v)] 72,5

74. ¬Pst(skf23(u, skf37(c, a,b)), c) 67,3

75. [¬EQt(skf36(b, a, c), u) ∨ ¬TS(u, c) ∨ ECt(u, b) ∨
ECt(skf36(b, a, c),b) ∨ DC=

sp(skf36(b, a, c), u)] 74,68

76. ¬EQt(skf36(b, a, c), u) ∨ ¬TS(u, c) ∨ ECt(u, b) ∨ DC=
sp(skf36(b, a, c), u) 75,52

77. [¬Ost(a, u) ∨ ¬ECt(u, b) ∨ ¬Ost(a, u) ∨ ¬ECt(u, a) ∨
¬Pst(skf36(b, a, u), a) ∨ Pst(skf36(b, a, u), skf37(u, a,b))] 71,62

78. [¬Ost(a, u) ∨ ¬ECt(u, b) ∨
¬Pst(skf36(b, a, u), a) ∨ Pst(skf36(b, a, u), skf37(u, a,b))] Obs77

79. ¬Ost(a, u) ∨ ¬ECt(u, b) ∨ Pst(skf36(b, a, u), skf37(u, a,b)) 78,53

80. [¬Pst(skf36(b, a, u), v) ∨ ¬Ost(a, u) ∨ ¬ECt(u, b) ∨
¬Pst(skf23(skf36(b, a, u), v), u) ∨ TS(skf36(b, a, u), v) ∨

Pst(skf23(skf36(b, a, u), v), skf36(b, a, u))] 63,16

81. [¬Pst(skf36(b, a, u), v) ∨ ¬Ost(a, u) ∨ ¬ECt(u, b) ∨
¬Pst(skf23(skf36(b, a, u), v), u) ∨ TS(skf36(b, a, u), v)] 80,17

82. [¬EQt(skf36(b, a, c), skf36(b, a, c)) ∨
¬TS(skf36(b, a, c), a) ∨ ECt(skf36(b, a, c),b)] 76,2

83. ¬TS(skf36(b, a, c), a) 82,52,2

84. [¬Pst(skf36(b, a, c), skf37(c, a,b)) ∨ ¬Ost(a, c) ∨
¬ECt(c,b) ∨ TS(skf36(b, a, c), skf37(c, a,b)] 74,81

85. TS(skf36(b, a, c), skf37(c, a,b) 84,79,65,24

86. TS(skf36(b, a, c), a) 85,70

87. 2 86,83
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Th82. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧
NECP(v, y, z) ∧ EQTS(u, v, x, y)] → EC=

sp(u, v)]] → ECst(x, y)]

Lemma 12. [[Ost(x, y) ∧ TS(y, z)] → Ost(x, z)]

From D2, D29

Lemma 13. [ECt(x, z)∧ECt(y, z)∧Ot(x, y)∧DCst(x, y)]→ ∃u, v[EQTS(u, v, x, y)∧
NECP(u, x, z) ∧ NECP(v, y, z) ∧ DCst(u, v)]

From D2, D5, D6, D22, D42, Th19

Proof of Theorem:

Refutation Set:

1. Pst(u, u) Th1

2. Pt(skf19(u, v), v) D2

3. Cst(u, v) ∨ DCst(u, v) D5

4. ¬Pst(u, v) ∨ Pt(u, v) C2

5. ¬EQt(u, v) ∨ Pt(v, u) D8

6. ¬EQt(u, v) ∨ Pt(u, v) D8

7. ¬ECt(u, v) ∨ Ct(u, v) D6

8. ¬ECst(u, v) ∨ Cst(u, v) D6

9. ¬Ct(u, v) ∨ Ct(v, u) A2

10. ¬Cst(u, v) ∨ Cst(v, u) A2

11. ¬NECP(u, v, w) ∨ Pst(u, v) D22

12. ¬POt(u, v) ∨ ¬Pt(v, u) D7

13. ¬ECt(u, v) ∨ ¬Ot(u, v) D6

14. ¬ECst(u, v) ∨ ¬Ost(u, v) D6

15. ¬DCst(u, v) ∨ ¬Cst(u, v) D5

16. Ost(skf25(u, v, w), skf24(u, v, w)) Lemma 11

17. ¬EQTS(u, v, w, x) ∨ TS(v, x) D42

18. ¬Ot(u, v) ∨ Pt(skf19(v, u), v) D2

19. ¬ECt(u, v) ∨ NECP(skf21(v, u), u, v) Th19

20. ¬Ct(u, v) ∨ Ot(u, v) ∨ ECt(u, v) D6

21. ¬Cst(u, v) ∨ Ost(u, v) ∨ ECst(u, v) D6

22. ¬Ost(u, v) ∨ ¬TS(v, w)] ∨ Ost(u,w) Lemma 12

23. ¬EC=
sp(u, v)¬TS(v, w) ∨ ECst(u,w) Th55

24. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ Ot(v, w) D2

25. ¬Pst(u, v) ∨ ¬Pst(u,w) ∨ Ost(v, w) D2

26. ¬Pst(u, v) ∨ ¬Cst(w, u) ∨ Cst(w, v) D1

27. ¬Ot(u, v) ∨ Pt(u, v) ∨ Pt(v, u) ∨ POt(u, v) D2

28. ¬ECt(u, v) ∨ ¬Ost(u,w) ∨ ¬ECt(w, v) ∨ NECP(skf25(w, v, u), u, v) Lemma 11
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29. ¬ECt(u, v) ∨ ¬Ost(u,w) ∨ ¬ECt(w, v) ∨ NECP(skf24(v, w, x), w, v) Lemma 11

30. ¬ECt(u, v) ∨ ¬Ot(u,w) ∨ ¬DCst(u,w) ∨
¬ECt(w, v) ∨ NECP(skf27(v, u, x), u, v) Lemma 13

31. ¬ECt(u, v) ∨ ¬Ot(u,w) ∨ ¬DCst(u,w) ∨
¬ECt(w, v) ∨ NECP(skf26(v, w, x), w, v) Lemma 13

32. [¬ECt(u, v) ∨ ¬Ost(u,w) ∨ ¬ECt(w, v) ∨
EQTS(skf25(w, v, u), skf25(v, w, u), u, w)] Lemma 11

33. [¬ECt(u, v) ∨ ¬Ot(u,w) ∨ ¬DCst(u,w) ∨
¬ECt(w, v) ∨ EQTS(skf27(v, u, w), skf26(v, w, u), u, w)] Lemma 13

34. ECt(c,b)

35. EQt(c, a)

36. ECt(a,b)

37. ¬ECst(c, a)

38. [¬NECP(u, c,b) ∨ ¬EQTS(u, v, c, a) ∨ ¬NECP(v, a,b) ∨ EC=
sp(u, v)]

Proof:

39. ¬NECP(skf21(b, a), a,b) 36,19

40. ¬ECt(u, b) ∨ ¬Ost(u, a) ∨ EQTS(skf25(a,b, u), skf24(b, a, u), u, a) 36,32

41. ¬ECt(u, b) ∨ ¬Ost(u, a) ∨ NECP(skf24(b, a, v), a,b) 36,29

42. Pt(a, c) 35,5

43. Pt(c, a) 35,6

44. [¬Ot(c, u) ∨ ¬DCst(c, u) ∨
¬ECt(u, b) ∨ EQTS(skf27(b, c, u), skf26(b, u, c), c, u)] 34,33

45. ¬Ot(c, u) ∨ ¬DCst(c, u) ∨ ¬ECt(u, b) ∨ NECP(skf27(b, c, v), c,b) 34,30

46. ¬Ot(c, u) ∨ ¬DCst(c, u) ∨ ¬ECt(u, b) ∨ NECP(skf26(b, u, v), u,b) 34,31

47. ¬Ot(c, u) ∨ ¬ECt(u, b) ∨ EQTS(skf25(u, b, c), skf24(b, u, c), c, u) 34,32

48. ¬Ot(c, u) ∨ ¬ECt(u, b) ∨ NECP(skf24(u, b, c), c,b) 34,28

49. ¬Ot(c,b) 34,13

50. Ct(c,b) 34,7

51. ¬Ct(c, a) ∨ Ost(c, a) 37,21

52. ¬Ot(c, a) ∨ ¬DCst(c, a) ∨ EQTS(skf27(b, c, a), skf26(b, a, c), c, a) 44,36

53. ¬Ot(c, a) ∨ EQTS(skf25(a,b, c), skf24(b, a, c), c, a) 47,36

54. ¬Ot(c, a) ∨ ¬DCst(c, a) ∨ NECP(skf26(b, a, u), a,b) 46,36

55. ¬Ot(c, a) ∨ ¬DCst(c, a) ∨ NECP(skf27(b, c, u), c,b) 45,36

56. ¬Ot(c, a) ∨ NECP(skf25(a,b, c), c,b) 48,36

57. ¬Ot(a, a) ∨ NECP(skf24(b, a, u), a,b) 41,36

58. Ot(c, c) SHy 42,24

59. Ot(a, a) SHy 43,24

60. Ct(b, c) SHy 50,9
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61. POt(c, c) ∨ Pt(c, c) ∨ Pt(c, c) SHy 58,27

62. POt(c, c) ∨ Pt(c, c) Obs61

63. POt(a, a) ∨ Pt(a, a) ∨ Pt(a, a) SHy 59,27

64. POt(a, a) ∨ Pt(a, a) Obs63

65. ECt(b, c) ∨ Ot(b, c) SHy 60,20

66. ¬Pt(u, c) ∨ ¬Pt(u, b) 49,24

67. Pst(skf21(b, a), a) 39,11

68. Ost(a, a) SHy 67,25

69. NECP(skf24(b, a, u), a,b) 68,57

70. DCst(c, a) ∨ Ost(c, a) SHy 51,3

71. POt(c, c) Spt 62

72. ¬Pt(c, c) 71,12

73. ¬Pst(c, c) 72,4

74. 2 73,1

75. ¬POt(c, c) Spt 74,71,62

76. Pt(c, c) Spt 74,62

77. Ot(c, a) SHy 76,43,24

78. ¬DCst(c, a) ∨ NECP(skf26(b, a, u), a,b) 77,54

79. ¬DCst(c, a) ∨ NECP(skf27(b, c, u), c,b) 77,55

80. ¬DCst(c, a) ∨ EQTS(skf27(b, c, a), skf26(b, a, c), c, a) 77,52

81. POt(a, a) Spt 64

82. ¬Pt(a, a) 81,12

83. ¬Pst(a, a) 82,4

84. 2 83,1

85. ¬POt(a, a) Spt 84,81,64

86. Pt(a, a) Spt 84,64

87. ECt(b, c) Spt 65

88. NECP(skf21(c,b),b, c) SHy 87,19

89. Pst(skf21(c,b),b) 88,11

90. Pt(skf21(c,b),b) SHy 89,4

91. Ot(b,b) SHy 90,24

92. [¬ECt(c,b) ∨ ¬Ost(c, a) ∨ ¬NECP(skf25(a,b, c), c,b) ∨
¬NECP(skf24(b, a, c), a,b) ∨ EC=

sp(skf25(a,b, c), skf24(b, a, c))] 40,38

93. [¬Ost(c, a) ∨ ¬NECP(skf25(a,b, c), c,b) ∨
¬NECP(skf24(b, a, c), a,b) ∨ EC=

sp(skf25(a,b, c), skf24(b, a, c))] 92,34

94. ¬Ost(c, a) ∨ EC=
sp(skf25(a,b, c), skf24(b, a, c)) 93,69,56

95. POt(b,b) ∨ Pt(b,b) ∨ Pt(b,b) SHy 91,27

96. POt(b,b) ∨ Pt(b,b) Obs95
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97. POt(b,b) Spt 96

98. ¬Pt(b,b) 97,12

99. ¬Pst(b,b) 98,4

100. 2 99,1

101. ¬POt(b,b) Spt 100,97,96

102. Pt(b,b) Spt 100,96

103. DCst(c, a) Spt 70

104. NECP(skf26(b, a, u), a,b) 103,78

105. NECP(skf27(b, c, u), c,b) 103,79

106. EQTS(skf27(b, c, a), skf26(b, a, c), c, a) 103,80

107. ¬Cst(c, a) 103,15

108. [¬Ot(c, a) ∨ ¬DCst(c, a) ∨ ¬ECt(a,b) ∨ ¬NECP(skf27(b, c, a), c,b) ∨
¬NECP(skf26(b, a, c), a,b) ∨ EC=

sp(skf27(b, c, a), skf26(b, a, c))] 44,38

109. [¬NECP(skf27(b, c, a), c,b) ∨ ¬NECP(skf26(b, a, c), a,b) ∨
EC=

sp(skf27(b, c, a), skf26(b, a, c))] 107,103,77,36

110. EC=
sp(skf27(b, c, a), skf26(b, a, c)) 109,105,104

111. Pst(skf27(b, c, u), c) 105,11

112. ¬Pt(skf19(u, b), c) 66,2

113. TS(skf26(b, a, c), a) 106,17

114. ECst(skf27(b, c, a), a) SHy 113,110,23

115. Cst(skf27(b, c, a), a) 114,8

116. Cst(a, skf27(b, c, a)) 115,10

117. Cst(a, c) SHy 116,111,26

118. Cst(c, a) SHy 117,10

119. 2 118,107

120. ¬DCst(c, a) Spt 119,103,70

121. Ost(c, a) Spt 119,70

122. EQTS(skf25(c,b, a), skf24(b, a, c), c, a) 121,53

123. EC=
sp(skf25(a,b, c), skf24(b, a, c)) 121,94

124. TS(skf24(b, a, c), a) 122,17

125. Ost(skf25(a,b, c), a) SHy 124,22,16

126. ECst(skf25(a,b, c), a) SHy 124,123,23

127. 2 SHy 126,125,14

128. ¬ECt(b, c) Spt 127,87,65

129. Ot(b, c) Spt 127,65

130. Pt(skf19(c,b), c) SHy 129,18

131. 2 130,112
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Th83. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧
NECP(v, y, z) ∧ EQTS(u, v, x, y)] → PO=

sp(u, v)]] → PO=
sp(x, y)]

From D7, D6, D22, D42, D45, Th19

Th84. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧
NECP(v, y, z) ∧ EQTS(u, v, x, y)] → EQ=

sp(u, v)]] → EQst(x, y)]

From D8, D6, D22, D42, D46, Th19

Th85. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧
NECP(v, y, z) ∧ EQTS(u, v, x, y)] → TPP=

sp(u, v)]] → TPPst(x, y)]

From D3, D6, D8, D9, D22, D42, D47, Th19, Th58

Th86. [[ECt(x, z) ∧ ECt(y, z) ∧ EQt(x, y) ∧ ∀u, v[[NECP(u, x, z) ∧
NECP(v, y, z) ∧ EQTS(u, v, x, y)] → NTPP=

sp(u, v)]] → PPst(x, y)]

From D3, D6, D8, D9, D22, D42, D48, Th19, Th59

Th87. Trans(dc, r, x, y, z1, z2) → DRst( x
z1
, y

z1
)

Lemma 14. Trans(r1, r2, x, y, z1, z2) → ECt( x
z1
, z2)

From D6, D52, A30, Th18,

Lemma 15. Trans(r1, r2, x, y, z1, z2) → ECt( y
z1
, z2)

From D6, D52, A30, Th18

Proof of Theorem:

Refutation Set:

1. ¬rcc=
sp(dc, u, v) ∨ DC=

sp(u, v) D49

2. ¬Trans(u, v, w, x, y, z) ∨ ECt(x
y , z) Lemma 14

3. ¬Trans(u, v, w, x, y, z) ∨ ECt(w
y , z) Lemma 15

4. ¬ECt(u, v) ∨ ¬ECt(w, v) ∨ NECP(skf9(v, w, x), w, v) ∨ DRst(u,w) Th81

5. ¬ECt(u, v) ∨ ¬ECt(w, v) ∨ NECP(skf10(v, u, x), u, v) ∨ DRst(u,w) Th81

6. [¬ECt(u, v) ∨ ¬ECt(w, v) ∨
¬DC=

sp(skf10(v, u, w), skf9(v, w, u)) ∨ DRst(u,w)] Th81

7. [¬ECt(u, v) ∨ ¬ECt(w, v) ∨
EQTS(skf10(v, u, w), skf9(v, w, u), u, w) ∨ DRst(u,w)] Th81

8. [¬Trans(u, v, w, x, y, z) ∨ ¬NECP(x1, w
y , z) ∨

¬NECP(x2, x
y , z) ∨ EQTS(x1, x2, w

y ,
x
y ) ∨ rcc=

sp(u, x1, x2)] D52

9. Trans(dc, r, a,b, c,d)

10. ¬DRst( a
c ,

b
c )
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Proof:

11. ECt(b
c ,d) 9,2

12. ECt( a
c ,d) 9,3

13. DRst( a
c ,

b
c ) ∨ EQTS(skf10(d, a

c ,
b
c ), skf9(d, b

c ,
a
c ), a

c ,
b
c ) SHy 12,11,7

14. DRst( a
c ,

b
c ) ∨ NECP(skf9(d, b

c , u),
b
c ,d) SHy 12,11,4

15. DRst( a
c ,

b
c ) ∨ NECP(skf10(d, a

c , u),
a
c ,d) SHy 12,11,5

16. NECP(skf9(d, b
c , u),

b
c ,d) 14,10

17. NECP(skf10(d, a
c , u),

a
c ,d) 15,10

18. EQTS(skf10(d, a
c ,

b
c ), skf9(d, b

c ,
a
c ), a

c ,
b
c ) 13,10

19. rcc=
sp(dc, skf10(d, a

c ,
b
c ), skf9(d, b

c ,
a
c )) SHy 18,17,16,9,8

20. DC=
sp(skf10(d, a

c ,
b
c ), skf9(d, b

c ,
a
c )) 19,1

21. DRst( a
c ,

b
c ) SHy 20,12,11,6

22. 2 21,10

Th88. Trans(ec, r, x, y, z1, z2) → ECst( x
z1
, y

z1
)

Lemma 16. Trans(r1, r2, x, y, z1, z2) → EQt( x
z1
, y

z1
)

From D8, D52, A30, Th18

Proof of Theorem:

Refutation Set:

1. ¬rcc=
sp(ec, u, v) ∨ EC=

sp(u, v) D49

2. ¬Trans(u, v, w, x, y, z) ∨ ECt(x
y , z) Lemma 14

3. ¬Trans(u, v, w, x, y, z) ∨ ECt(w
y , z) Lemma 15

4. ¬Trans(u, v, w, x, y, z) ∨ EQt( x
z1
, y

z1
) Lemma 16

5. ¬ECt(u, v) ∨ ¬EQt(u,w) ∨ ¬ECt(w, v) ∨ NECP(skf9(v, w, x), w, v) ∨ ECst(u,w) Th82

6. ¬ECt(u, v) ∨ ¬ECt(w, v) ∨ ¬EQt(u,w) ∨ NECP(skf10(v, u, x), u, v) ∨ ECst(u,w) Th82

7. [¬ECt(u, v) ∨ ¬ECt(w, v) ∨ ¬EQt(u,w) ∨
¬EC=

sp(skf10(v, u, w), skf9(v, w, u)) ∨ ECst(u,w)] Th82

8. [¬ECt(u, v) ∨ ¬EQt(u,w) ∨ ¬ECt(w, v) ∨
EQTS(skf10(v, u, w), skf9(v, w, u), u, w) ∨ ECst(u,w)] Th82

9. [¬Trans(u, v, w, x, y, z) ∨ ¬NECP(x1, w
y , z) ∨

¬NECP(x2, x
y , z) ∨ EQTS(x1, x2, w

y ,
x
y ) ∨ rcc=

sp(u, x1, x2)] D52

10. Trans(ec, r, a,b, c,d)

11. ¬ECst( a
c ,

b
c )

Proof:

12. ECt(b
c ,d) 10,2

13. ECt( a
c ,d) 10,3

14. EQt( x
z1
, y

z1
) 10,4
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15. ECst( a
c ,

b
c ) ∨ EQTS(skf10(d, a

c ,
b
c ), skf9(d, b

c ,
a
c ), a

c ,
b
c ) SHy 14,13,12,8

16. ECst( a
c ,

b
c ) ∨ NECP(skf9(d, b

c , u),
b
c ,d) SHy 14,13,12,5

17. ECst( a
c ,

b
c ) ∨ NECP(skf10(d, a

c , u),
a
c ,d) SHy 14,13,12,6

18. NECP(skf9(d, b
c , u),

b
c ,d) 16,11

19. NECP(skf10(d, a
c , u),

a
c ,d) 17,11

20. EQTS(skf10(d, a
c ,

b
c ), skf9(d, b

c ,
a
c ), a

c ,
b
c ) 15,11

21. rcc=
sp(ec, skf10(d, a

c ,
b
c ), skf9(d, b

c ,
a
c )) SHy 20,19,18,10,9

22. EC=
sp(skf10(d, a

c ,
b
c ), skf9(d, b

c ,
a
c )) 21,1

23. ECst( a
c ,

b
c ) SHy 22,13,12,7

24. 2 23,11

Th89. Trans(po, r, x, y, z1, z2) → PO=
sp(

x
z1
, y

z1
)

From D49, D52, Th83

Th90. Trans(tpp, r, x, y, z1, z2) → TPPst( x
z1
, y

z1
)

From D49, D52, Th85

Th91. Trans(ntpp, r, x, y, z1, z2) → PPst( x
z1
, y

z1
)

From D49, D52, Th86

Th92. Trans(tppi, r, x, y, z1, z2) → TPPst( y
z1
, x

z1
)

From D49, D52, Th85

Th93. Trans(r, eq, x, y, z1, z2) → EQst( x
z2
, y

z2
)

From D49, D52, Th84

Th94. Trans(r, po, x, y, z1, z2) → PO=
sp(

x
z2
, y

z2
)

From D49, D52, Th83

Th95. Trans(r, tpp, x, y, z1, z2) → TPPst( x
z2
, y

z2
)

From D49, D52, Th85

Th96. Trans(r, ntpp, x, y, z1, z2) → PPst( x
z2
, y

z2
)

From D49, D52, Th86

Th97. Trans(r, tppi, x, y, z1, z2) → TPPst( y
z2
, x

z2
)

From D49, D52, Th85
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Th98. Trans(r, ntppi, x, y, z1, z2) → PPst( y
z2
, x

z2
)

From D49, D52, Th86

Th99. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬InsRel3(r1, dc, r2, x, y, z1, z2)

Lemma 17. ¬(dc = ec)

From D5, D6, D49

Lemma 18. ¬(dc = eq)

From D5, D8, D49

Lemma 19. ¬(dc = tpp)

From D5, D9, D49

Lemma 20. ¬(dc = tppi)

From D5, D9, D49

Proof of Theorem:

Refutation Set:

1. ¬(dc = tppi) Lemma 20

2. ¬(dc = tpp) Lemma 19

3. ¬(dc = eq) Lemma 18

4. ¬(dc = ec) Lemma 17

5. ¬SKP1(u, v, w, x, y) ∨ (y = tppi) A22

6. ¬SKP2(u, v, w, x, y) ∨ (y = ec) A22

7. ¬SKP3(u, v, w, x, y) ∨ (y = eq) A22

8. ¬InsRel(u, v, w, x, y) ∨ IM(u, v, w, x, y) D53

9. ¬InsRel3(u, v, w, x, y, z, x1) ∨ InsRel(v, x, y, z, x1) D54

10. [¬StrFCONT( w
x∪y ) ∨ ¬StrFCONT( w

x∪y ) ∨ ¬IM(u, v, w, x, y) ∨
SKP3(y, x, w, v, u) ∨ SKP2(y, x, w, v, u) ∨ SKP1(y, x, w, v, u) ∨ (u = tppi)] A22

11. StrFCONT( a
c∪d )

12. StrFCONT( b
c∪d )

13. InsRel3(p, dc, q, a,b, c,d)

Proof:

14. InsRel(dc, a,b, c,d) 13,9

15. IM(dc, a,b, c,d) 14,8

16. [(dc = tppi) ∨ SKP1(d, c,b, a, dc) ∨
SKP2(d, c,b, a, dc) ∨ SKP3(d, c,b, a, dc)] SHy 12,11,10,5

17. SKP1(d, c,b, a, dc) ∨ SKP2(d, c,b, a, dc) ∨ SKP3(d, c,b, a, dc) 16,1

18. SKP1(d, c,b, a, dc) Spt 17

19. (dc = tpp) 18,5
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20. 2 19,2

21. ¬SKP1(d, c,b, a, dc) Spt 20,18,17

22. SKP2(d, c,b, a, dc) ∨ SKP3(d, c,b, a, dc) Spt 20,17

23. SKP2(d, c,b, a, dc) Spt 22

24. (dc = ec) 23,6

25. 2 24,4

26. ¬SKP2(d, c,b, a, dc) Spt 25,23,22

27. SKP3(d, c,b, a, dc) Spt 25,22

28. (dc = eq) 27,7

29. 2 28,3

Th100. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬InsRel3(r1, po, r2, x, y, z1, z2)

From A22, D53, D54

Th101. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬InsRel3(r1, ntpp, r2, x, y, z1, z2)

From A22, D53, D54

Th102. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬InsRel3(r1, ntppi, r2, x, y, z1, z2)

From A22, D53, D54

Th103. InsRel3(dc, eq, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Lemma 21. (x∩y
z ) = [x

z ∩
y
z ]

From D13, D30

Lemma 22. InsRel3(dc, r1, r2, x, y, z1, z2) → DRst( x
z1
, y

z2
)

From D49, D54, Th81

Lemma 23. ¬(tppi = eq)

From D9, D8, D49

Lemma 24. ¬(tpp = eq)

From D9, D8, D49

Lemma 25. ¬(eq = ec)

From D6, D8, D49

Lemma 26. InsRel3(dc, r1, r2, x, y, z1, z2) → ¬FCON( (x∩y)
z1

, (x∩y)
z1

)

Refutation Set:

1. ¬Null(u) ∨ ¬FCON(u, v)

2. ¬DRst(u, v) ∨ Null(u ∩ v) A8

3. (x∩y
z ) = [x

z ∩
y
z ] Lemma 21
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4. InsRel3(dc, r1, r2, x, y, z1, z2) → DRst( x
z1
, y

z2
) Lemma 22

5. InsRel3(dc,p, q, a,b, c,d)

6. FCON( (a∩b)
c , (a∩b)

d )

Proof:

1. DRst( a
c ,

b
c ) 5,4

2. ¬Null( a∩b
c ) 6,1

3. Null( a
c ∩

b
c ) 7,2

4. Null( a∩b
c ) 9,3

5. 2 10,8

Note : Recall that the instantaneous matrix analysis is based on checking FCONnectivity of

Boolean combinations, with non-existing ones assumed ¬FCON (Section 4.4, Chapter 4). Include

an explicit statement of the form ∀[Null(u),Region(v)]¬FCON(u, v). Since FCON is symmetric

∀[Null(u),Region(v)]¬FCON(v, u) also holds.

Proof of Theorem:

Refutation Set:

1. ¬(tppi = eq) Lemma 23

2. ¬(tpp = eq) Lemma 24

3. ¬(eq = ec) Lemma 25

4. ¬SKP2(u, v, w, x, y) ∨ (y = ec) A22

5. ¬SKP1(u, v, w, x, y) ∨ Meq(x,w, v, u) A22

6. ¬InsRel(u, v, w, x, y) ∨ IM(u, v, w, x, y) D53

7. ¬Meq(x,w, v, u) ∨ FCON(u∩v
w , u∩v

x ) Proposition 1

8. ¬InsRel3(u, v, w, x, y, z, x1) ∨ InsRel(v, x, y, z, x1) D54

9. ¬InsRel3(dc, z, y, u, v, w, x) ∨ ¬FCON(u∩v
w , u∩v

x ) Lemma 26

10. [¬StrFCONT( w
x∪y ) ∨ ¬StrFCONT( w

x∪y ) ∨ ¬IM(u, v, w, x, y) ∨
SKP1(y, x, w, v, u) ∨ SKP2(y, x, w, v, u) ∨ (u = tpp) ∨ (u = tppi)] A22

11. StrFCONT( a
c∪d )

12. StrFCONT( b
c∪d )

13. InsRel3(dc, eq,p, a,b, c,d)

Proof:

14. InsRel(eq, a,b, c,d) 13,8

15. IM(eq, a,b, c,d) 14,6

16. [SKP1(d, c,b, a, eq) ∨
SKP2(d, c,b, a, eq) ∨ (eq = tpp) ∨ (eq = tppi)] SHy 15,12,11,10

17. SKP1(d, c,b, a, eq) ∨ SKP2(d, c,b, a, eq) 16,2,1

18. SKP2(d, c,b, a, eq) Spt 17

19. (eq = ec) SHy 18,4
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20. 2 19,3

21. ¬SKP2(d, c,b, a, eq) Spt 20,18,17

22. SKP1(d, c,b, a, eq) Spt 20,17

23. Meq(a,b, c,d) 22,5

24. FCON( a∩b
c , a∩b

d ) 23,7

25. 2 SHy 24,13,9

Th104. InsRel3(ec, eq, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Lemma 27. DRst(u, v) ↔ [¬Cst(u, v) ∨ ECst(u, v)]

From D5, D6, D4

Lemma 28. InsRel3(ec, r1, r2, x, y, z1, z2) → ECst( x
z1
, y

z1
)

From D49, D54, Th82

Lemma 29. InsRel3(ec, r1, r2, x, y, z1, z2) → ¬FCON( (x∩y)
z1

, (x∩y)
z2

)

Refutation Set:

1. ¬Null(u) ∨ ¬FCON(u, v)

2. ¬ECst(u, v) ∨ DRst(u, v) Lemma 27

3. ¬DRst(u, v) ∨ Null(u ∩ v) A8

4. (x∩y
z ) = [x

z ∩
y
z ] Lemma 21

5. InsRel3(ec, r1, r2, x, y, z1, z2) → ECst( x
z1
, y

z2
) Lemma 28

6. InsRel3(ec,p, q, a,b, c,d)

7. FCON( (a∩b)
c , (a∩b)

d )

Proof:

1. ECst( a
c ,

b
c )

2. DRst( a
c ,

b
c )

3. ¬Null( a∩b
c )

4. Null( a
c ∩

b
c )

5. Null( a∩b
c )

6. 2

Proof of Theorem:

Refutation Set:

1. ¬(tppi = eq) Lemma 23

2. ¬(tpp = eq) Lemma 24

3. ¬(eq = ec) Lemma 25

4. ¬SKP2(u, v, w, x, y) ∨ (y = ec) A22

5. ¬SKP1(u, v, w, x, y) ∨ Meq(x,w, v, u) A22
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6. ¬InsRel(u, v, w, x, y) ∨ IM(u, v, w, x, y) D53

7. ¬Meq(u, v, w, x) ∨ FCON(u∩v
w , u∩v

x ) Proposition 1

8. ¬InsRel3(u, v, w, x, y, z, x1) ∨ InsRel(v, x, y, z, x1) D54

9. ¬InsRel3(ec, z, y, u, v, w, x) ∨ ¬FCON(u∩v
w , u∩v

x ) Lemma 29

10. [¬StrFCONT( w
x∪y ) ∨ ¬StrFCONT( w

x∪y ) ∨ ¬IM(u, v, w, x, y) ∨
SKP1(y, x, w, v, u) ∨ SKP2(y, x, w, v, u) ∨ (u = tpp) ∨ (u = tppi)] A22

11. StrFCONT( a
c∪d )

12. StrFCONT( b
c∪d )

13. InsRel3(ec, eq,p, a,b, c,d)

Proof:

14. InsRel(eq, a,b, c,d) 13,8

15. IM(eq, a,b, c,d) 14,6

16. [SKP1(d, c,b, a, eq) ∨
SKP2(d, c,b, a, eq) ∨ (eq = tpp) ∨ (eq = tppi)] SHy 15,12,11,10

17. SKP1(d, c,b, a, eq) ∨ SKP2(d, c,b, a, eq) 16,2,1

18. SKP2(d, c,b, a, eq) Spt 17

19. (eq = ec) SHy 18,4

20. 2 19,3

21. ¬SKP2(d, c,b, a, eq) Spt 20,18,17

22. SKP1(d, c,b, a, eq) Spt 20,17

23. Meq(a,b, c,d) 22,5

24. FCON( a∩b
c , a∩b

d ) 23,7

25. 2 SHy 24,13,9

Th105. InsRel3(r, ec, eq, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Lemma 30. ¬(tppi = ec)

From D6, D9, D49

Lemma 31. ¬(tpp = ec)

From D6, D9, D49

Lemma 32. InsRel3(r1, r2, eq, x, y, z1, z2) → EQst( x
z2
, y

z2
)

From D49, D54, Th84

Lemma 33. InsRel3(r1, r2, eq, x, y, z1, z2) → ¬FCON( (x∪y)
z1

, (x−y)
z2

)

From A8, D12

Proof of Theorem

Refutation Set:

1. ¬(tppi = ec) Lemma 30
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2. ¬(tpp = ec) Lemma 31

3. ¬(eq = ec) Lemma 25

4. ¬SKP1(u, v, w, x, y) ∨ (y = eq) A22

5. ¬SKP2(u, v, w, x, y) ∨ Mec(x,w, v, u) A22

6. ¬InsRel(u, v, w, x, y) ∨ IM(u, v, w, x, y) D53

7. ¬InsRel3(u, v, w, x, y, z, x1) ∨ InsRel(v, x, y, z, x1) D54

8. ¬Mec(u, v, w, x) ∨ FCON(u∪v
w , (u−v)

x ) Proposition 1

9. ¬InsRel3(y, z, eq, u, v, w, x) ∨ ¬FCON(u∪v
w , (u−v)

x ) Lemma 29

10. [¬StrFCONT( w
x∪y ) ∨ ¬StrFCONT( w

x∪y ) ∨ ¬IM(u, v, w, x, y) ∨
SKP1(y, x, w, v, u) ∨ SKP2(y, x, w, v, u) ∨ (u = tpp) ∨ (u = tppi)] A22

11. StrFCONT( a
c∪d )

12. StrFCONT( b
c∪d )

13. InsRel3(p, ec, eq, a,b, c,d)

Proof:

14. ¬FCON( a∪b
c , (a−b)

d ) 13,9

15. InsRel(ec, a,b, c,d) 13,7

16. IM(ec, a,b, c,d) 15,6

17. ¬Mec(a,b, c,d) 14,8

18. [SKP1(d, c,b, a, ec) ∨
SKP2(d, c,b, a, ec) ∨ (ec = tpp) ∨ (ec = tppi)] SHy 16,12,11,10

19. SKP1(d, c,b, a, ec) ∨ SKP2(d, c,b, a, ec) 18,2,1

20. SKP2(d, c,b, a, ec) Spt 19

21. Mec(a,b, c,d) 20,5

22. 2 21,17

23. ¬SKP2(d, c,b, a, ec) Spt 22,20,19

24. SKP1(d, c,b, a, ec) Spt 22,19

25. (eq = ec) 24,4

26. 2 25,3

Th106. InsRel3(r, ec, tpp, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Lemma 34. InsRel3(r1, r2, tpp, x, y, z1, z2) → ¬FCON( (x∪y)
z1

, (x−y)
z2

)

From A8, D12

Proof of Theorem

Refutation Set:

1. ¬(eq = ec) Lemma 25

2. ¬(tpp = ec) Lemma 31
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3. ¬(tppi = ec) Lemma 30

4. ¬SKP1(u, v, w, x, y) ∨ (y = eq) A22

5. ¬SKP2(u, v, w, x, y) ∨ Mec(x,w, v, u) A22

6. ¬InsRel(u, v, w, x, y) ∨ IM(u, v, w, x, y) D53

7. ¬InsRel3(u, v, w, x, y, z, x1) ∨ InsRel(v, x, y, z, x1) D54

8. ¬Mec(u, v, w, x) ∨ FCON(u∪v
w , (u−v)

x ) Proposition 1

9. ¬InsRel3(y, z, tpp, u, v, w, x) ∨ ¬FCON(u∪v
w , (u−v)

x ) Lemma 34

10. [¬StrFCONT( w
x∪y ) ∨ ¬StrFCONT( w

x∪y ) ∨ ¬IM(u, v, w, x, y) ∨
SKP1(y, x, w, v, u) ∨ SKP2(y, x, w, v, u) ∨ (u = tpp) ∨ (u = tppi)] A22

11. StrFCONT( a
c∪d )

12. StrFCONT( b
c∪d )

13. InsRel3(p, ec, tpp, a,b, c,d)

Proof:

14. ¬FCON( a∪b
c , (a−b)

d ) 13,9

15. InsRel(ec, a,b, c,d) 13,7

16. IM(ec, a,b, c,d) 15,6

17. ¬Mec(a,b, c,d) 14,8

18. [SKP1(d, c,b, a, ec) ∨
SKP2(d, c,b, a, ec) ∨ (ec = tpp) ∨ (ec = tppi)] SHy 16,12,11,10

19. SKP1(d, c,b, a, ec) ∨ SKP2(d, c,b, a, ec) 18,2,1

20. SKP2(d, c,b, a, ec) Spt 19

21. Mec(a,b, c,d) 20,5

22. 2 21,17

23. ¬SKP2(d, c,b, a, ec) Spt 22,20,19

24. SKP1(d, c,b, a, ec) Spt 22,19

25. (eq = ec) 24,4

26. 2 25,3

Th107. InsRel3(r, ec, ntpp, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

From D10, D53, D54, A22, Proposition 1

Th108. InsRel3(r, ec, tppi, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

From D9, D53, D54, A22, Proposition 1

Th109. InsRel3(r, ec, ntppi, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

From D10, D53, D54, A22, Proposition 1
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Th110. InsRel3(dc, tpp, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Lemma 35. ¬(tppi = tpp)

From D9, D49

Proof of Theorem:

Refutation Set:

1. ¬(tppi = tpp) Lemma 35

2. ¬(tpp = eq) Lemma 24

3. ¬(tpp = ec) Lemma 31

4. ¬SKP1(u, v, w, x, y) ∨ (y = eq) A22

5. ¬SKP2(u, v, w, x, y) ∨ (y = ec) A22

6. ¬InsRel(u, v, w, x, y) ∨ IM(u, v, w, x, y) D53

7. ¬Mtpp(u, v, w, x) ∨ FCON(u∩v
w , u∩v

x ) Proposition 1

8. ¬InsRel3(u, v, w, x, y, z, x1) ∨ InsRel(v, x, y, z, x1) D54

9. ¬InsRel3(dc, z, y, u, v, w, x) ∨ ¬FCON(u∩v
w , u∩v

x ) Lemma 26

10. [¬StrFCONT( w
x∪y ) ∨ ¬StrFCONT( v

x∪y ) ∨ ¬IM(u, v, w, x, y) ∨
SKP1(y, x, w, v, u) ∨ SKP2(y, x, w, v, u) ∨ (u = tppi) ∨ Mtpp(v, w, x, y)] A22

11. StrFCONT( a
c∪d )

12. StrFCONT( b
c∪d )

13. InsRel3(dc, tpp,p, a,b, c,d)

Proof:

14. InsRel(tpp, a,b, c,d) 13,8

15. IM(tpp, a,b, c,d) 14,6

16. [SKP1(d, c,b, a, tpp) ∨
SKP2(d, c,b, a, tpp) ∨ Mtpp(a,b, c,d) ∨ (tppi = tpp)] SHy 15,12,11,10

17. SKP1(d, c,b, a, tpp) ∨ SKP2(d, c,b, a, tpp) ∨ Mtpp(a,b, c,d) 16,1

18. SKP2(d, c,b, a, tpp) Spt 17

19. (tpp = ec) SHy 18,5

20. 2 19,3

21. ¬SKP2(d, c,b, a, tpp) Spt 20,18,17

22. SKP1(d, c,b, a, tpp) ∨ Mtpp(a,b, c,d) Spt 20,17

23. SKP1(d, c,b, a, tpp) Spt 22

24. (tpp = eq) SHy 23,4

25. 2 24,2

26. ¬SKP1(d, c,b, a, tpp) Spt 25,23,22

27. Mtpp(a,b, c,d) 25,22

28. FCON( a∩b
c , a∩b

d ) 27,7

29. 2 SHy 28,13,9
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Th111. InsRel3(ec, tpp, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

From D6, D53, D54, A22, Proposition 1

Th112. InsRel3(r, tpp, tppi, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

From D9, D53, D54, A22, Proposition 1

Th113. InsRel3(r, tpp, ntppi, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

From D10, D53, D54, A22, Proposition 1

Th114. InsRel3(dc, tppi, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

From D9, D53, D54, A22, Proposition 1

Th115. InsRel3(ec, tppi, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

From D6 D53, D54, A22, Proposition 1

Th116. InsRel3(tpp, tppi, r, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

Lemma 36. (x−y
z ) = [x

z −
y
z ]

From D12, D30

Lemma 37. InsRel3(tpp, r1, r2, x, y, z1, z2) → TPPst( x
z1
, y

z1
)

From D49, D54, Th85

Lemma 38. InsRel3(tpp, r1, r2, x, y, z1, z2) → ¬FCON( (x−y)
z1

, (x∪y)
z1

)

Refutation Set:

1. ¬Null(u) ∨ ¬FCON(u, v)

2. ¬PPst(u, v) ∨ Null(u− v)

3. ¬TPPst(u, v) ∨ PPst(u, v) D9

4. (x−y
z ) = [x

z −
y
z ] Lemma 36

5. InsRel3(tpp, r1, r2, x, y, z1, z2) → TPPst( x
z1
, y

z2
) Lemma 37

6. InsRel3(tpp,p, q, a,b, c,d)

7. FCON( (a−b)
c , (a∪b)

d )

Proof:

1. TPPst( a
c ,

b
c ) 6,5

2. ¬Null( a−b
c ) 7,1

3. PPst( a
c ,

b
c ) 8,3

4. Null( a
c −

b
c ) 10,2

5. Null( a−b
c ) 11,4

6. 2 13,9
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Note : Lemma 38 require inclusion of an explicit statement of the form

∀u, v[PPst(u, v) → Null(u− v)]. This is a theorem from D3, D5 and A8.

Proof of Theorem:

Refutation Set:

1. ¬(tppi = tpp) Lemma 35

2. ¬(tppi = eq) Lemma 23

3. ¬(tppi = ec) Lemma 30

4. ¬SKP1(u, v, w, x, y) ∨ (y = eq) A22

5. ¬SKP2(u, v, w, x, y) ∨ (y = ec) A22

6. ¬InsRel(u, v, w, x, y) ∨ IM(u, v, w, x, y) D53

7. ¬Mtppi(u, v, w, x) ∨ FCON(u−v
w , u∪v

x ) Proposition 1

8. ¬InsRel3(u, v, w, x, y, z, x1) ∨ InsRel(v, x, y, z, x1) D54

9. ¬InsRel3(tpp, z, y, u, v, w, x) ∨ ¬FCON(u−v
w , u∪v

x ) Lemma 38

10. [¬StrFCONT( w
x∪y ) ∨ ¬StrFCONT( v

x∪y ) ∨ ¬IM(u, v, w, x, y) ∨
SKP1(y, x, w, v, u) ∨ SKP2(y, x, w, v, u) ∨ (u = tpp) ∨ Mtppi(v, w, x, y)] A22

11. StrFCONT( a
c∪d )

12. StrFCONT( b
c∪d )

13. InsRel3(tpp, tppi,p, a,b, c,d)

Proof:

14. InsRel(tppi, a,b, c,d) 13,8

15. IM(tppi, a,b, c,d) 14,6

16. [SKP1(d, c,b, a, tppi) ∨
SKP2(d, c,b, a, tppi) ∨ Mtppi(a,b, c,d) ∨ (tppi = tpp)] SHy 15,12,11,10

17. SKP1(d, c,b, a, tppi) ∨ SKP2(d, c,b, a, tppi) ∨ Mtppi(a,b, c,d) 16,1

18. SKP2(d, c,b, a, tppi) Spt 17

19. (tppi = ec) SHy 18,5

20. 2 19,3

21. ¬SKP2(d, c,b, a, tppi) Spt 20,18,17

22. SKP1(d, c,b, a, tppi) ∨ Mtppi(a,b, c,d) Spt 20,17

23. SKP1(d, c,b, a, tppi) Spt 22

24. (tppi = eq) SHy 23,4

25. 2 24,2

26. ¬SKP1(d, c,b, a, tppi) Spt 25,23,22

27. Mtppi(a,b, c,d) 25,22

28. FCON( a−b
c , a∪b

d ) 27,7

29. 2 SHy 28,13,9
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Th117. InsRel3(r, tppi, ntpp, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]

From D9, D53, D54, A22, Proposition 1



Appendix E

Transition Theorems II

Proofs of theorems for the non-existence of transitions cited in Section 4.6.4, Chapter 4

are presented below. Proofs for these 17 theorems fall into two broad groups: one that

forces histories to be ¬StrFCONT for the given transition and the other that have a rela-

tion holding instantaneously in between (for StrFCONT histories). Proofs in each group,

although look similar, have subtle differences based on the relations involved. Lemmas

wherever used are stated prior to proof of the theorem. All proofs have been automatically

generated using SPASS [Weidenbach, 2001].

Th118. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(dc, eq, x, y, z1, z2)

Lemma 39. [[u ⊆t v ∧ u ⊆t w] → EQt( v
u ,

w
u )]

From D1, D8, D30

Lemma 40. [[ECt(z1, z2) ∧ (z1 ∪ z2) ⊆t w] → ECTS( w
z1
, w

z2
, w

(z1∪z2)
)]

From D6, D30, D36, Th18

Lemma 41. [Trans(dc, eq, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬FCONTu ∨ CONTu D38

4. Cst(u, v) ∨ DCst(u, v) D5

5. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

6. ¬DRst(u, v) ∨ ¬Cst(u, v) ∨ ECst(u, v) Lemma 27

185
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7. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

8. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

9. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

10. ¬Trans(u, eq, v, w, x, y) ∨ EQst( v
y ,

w
y ) Th93

11. ¬Trans(dc, u, v, w, x, y) ∨ DRst( v
x ,

w
x ) Th87

12. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

13. ¬ECt(u, v) ∨ ¬Pt(u ∪ v, w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) ) Lemma 40

14. [¬CONTu ∨ ¬CONTv ∨ ¬EQt(w, x) ∨
¬DCst(w, x) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, y, v)] Th53

15. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨
¬ECst(w, x) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, y, v)] Th54

16. StrFCONT( a
c∪d )

17. StrFCONT( b
c∪d )

18. Trans(dc, eq, a,b, c,d)

Proof:

19. FCONT( b
c∪d ) 17,1

20. StrCONTst( b
c∪d ) 17,2

21. FCONT( a
c∪d ) 16,1

22. StrCONTst( a
c∪d ) 16,2

23. DRst( a
c ,

b
c ) 18,11

24. Pt(c ∪ d,b) 18,8

25. Pt(c ∪ d, a) 18,9

26. ECt(c,d) 18,7

27. EQst( a
d ,

b
d ) 18,10

28. Pt(c,b) 24,5

29. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 26,24,13

30. Pt(c, a) 25,5

31. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 26,25,13

32. ECTS( a
c ,

b
d ,

a
(c∪d) ) Rew 31,27

33. EQt( a
c ,

b
c ) SHy 30,28,12

34. ¬CONT( b
c∪d ) ∨ ¬CONT( a

c∪d ) ∨ Cst( a
c ,

b
c ) SHy 33,32,29,14,4

35. Cst( a
c ,

b
c ) 34,22,21,20,19,17,16,3

36. ECst( a
c ,

b
c ) SHy 35,23,6

37. ¬FCONT( b
c∪d ) ∨ ¬FCONT( a

c∪d ) SHy 36,33,32,29,15

38. 2 37,22,21,20,19,17,16

Note : Clauses 14 and 15 have been generated from Th53 and Th54 respectively after equality

resolution. Note the pair of ECTS terms in each clause; the second variable (corresponding to
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one of the externally connected temporal slice) is made equal through reduction of the EQst term

present in Th54 and Th53.

Proof of Theorem:

Refutation Set:

1. ¬(dc = eq) Lemma 18

2. ¬Trans(dc, eq, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 41

3. ¬InsRel3(dc, eq, u, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th103

4. ¬InsRel3(u, dc, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th99

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w) ∨
(v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

6. [¬EleTran(u, v, w, x, y, z, x1) ∨
Trans(u,w, x, y, z, x1) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )

10. DirTran(dc, eq, a,b, c,d)

Proof:

11. ¬Trans(dc, eq, a, u, c,d) ∨ ¬StrFCONT( u
c∪d ) 8,2

12. ¬InsRel3(u, dc, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d ) 8,4

13. ¬InsRel3(dc, eq, u, a, v, c,d) ∨ ¬StrFCONT( v
c∪d ) 8,3

14. [EleTran(dc, eq, skf62(d, c,b, a, eq, dc), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, eq, dc), dc, eq, a,b, c,d)] 10,7

15. ¬Trans(dc, eq, a,b, c,d) 11,9

16. ¬InsRel3(u, dc, v, a,b, c,d) 12,9

17. ¬InsRel3(dc, eq, u, a,b, c,d) 13,9

18. [EleTran(dc, eq, skf62(d, c,b, a, eq, dc), a,b, c,d) Spt 14

19. [Trans(dc, skf62(d, c,b, a, eq, dc), a,b, c,d) ∨
InsRel3(dc, eq, skf62(d, c,b, a, eq, dc), a,b, c,d)] 18,6

20. [(dc = eq) ∨ (skf62(d, c,b, a, eq, dc) = eq) ∨
InsRel3(dc, eq, skf62(d, c,b, a, eq, dc), a,b, c,d)] 18,5

21. (skf62(d, c,b, a, eq, dc) = eq) 20,17,1

22. [Trans(dc, eq, a,b, c,d) ∨ InsRel3(dc, eq, eq, a,b, c,d)] Rew 21,19

23. 2 22,17,15

24. ¬EleTran(dc, eq, skf62(d, c,b, a, eq, dc), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, eq, dc), dc, eq, a,b, c,d) Spt 23,14

26. [(dc = eq) ∨ (skf63(d, c,b, a, eq, dc) = dc) ∨
InsRel3(skf63(d, c,b, a, eq, dc), dc, eq, a,b, c,d)] 25,5
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27. InsRel3(skf63(d, c,b, a, eq, dc), dc, eq, a,b, c,d) ∨
Trans(skf63(d, c,b, a, eq, dc), eq, a,b, c,d) 25,6

28. (skf63(d, c,b, a, eq, dc) = dc) 26,12,1

29. InsRel3(dc, dc, eq, a,b, c,d) ∨ Trans(dc, eq, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th119. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(ec, eq, x, y, z1, z2)

Lemma 42. [Trans(ec, eq, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

4. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

5. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

6. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

7. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

8. ¬Trans(ec, u, v, w, x, y) ∨ ECst( v
x ,

w
x ) Th88

9. ¬Trans(u, eq, v, w, x, y) ∨ EQst( v
y ,

w
y ) Th93

10. ¬ECt(u, v) ∨ ¬Pt(u ∪ v, w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) ) Lemma 40

11. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨
¬ECst(w, x) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, y, v)] Th54

12. StrFCONT( a
c∪d )

13. StrFCONT( b
c∪d )

14. Trans(ec, eq, a,b, c,d)

Proof:

15. FCONT( b
c∪d ) 13,1

16. StrCONTst( b
c∪d ) 13,2

17. FCONT( a
c∪d ) 12,1

18. StrCONTst( a
c∪d ) 12,2

19. ECst( a
c ,

b
c ) 14,8

20. Pt(c ∪ d,b) 14,5

21. Pt(c ∪ d, a) 14,6

22. ECt(c,d) 14,4

23. EQst( a
d ,

b
d ) 14,9

24. Pt(c,b) 20,3

25. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 22,20,10

26. Pt(c, a) 21,3
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27. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 22,21,10

28. ECTS( a
c ,

b
d ,

a
(c∪d) ) Rew 46,39

29. EQt( a
c ,

b
c ) SHy 26,24,7

30. ¬FCONT( a
c∪d ) ∨ ¬FCONT( b

c∪d ) SHy 29,28,25,19,11

31. 2 30,18,17,16,15,13,12

Proof of Theorem:

Refutation Set:

1. ¬(ec = eq) Lemma 25

2. ¬Trans(ec, eq, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 42

3. ¬InsRel3(ec, eq, u, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th104

4. ¬InsRel3(u, ec, eq, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th105

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w) ∨
(v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

6. [¬EleTran(u, v, w, x, y, z, x1) ∨
Trans(u,w, x, y, z, x1) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )

10. DirTran(ec, eq, a,b, c,d)

Proof:

11. ¬Trans(ec, eq, a, u, c,d) ∨ ¬StrFCONT( u
c∪d ) 8,2

12. ¬InsRel3(ec, eq, u, a, v, c,d) ∨ ¬StrFCONT( v
c∪d ) 8,3

13. ¬InsRel3(u, ec, eq, a, v, c,d) ∨ ¬StrFCONT( v
c∪d ) 8,4

14. [EleTran(ec, eq, skf62(d, c,b, a, eq, ec), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, eq, ec), ec, eq, a,b, c,d)] 10,7

15. ¬Trans(ec, eq, a,b, c,d) 11,9

16. ¬InsRel3(u, ec, eq, a,b, c,d) 13,9

17. ¬InsRel3(ec, eq, u, a,b, c,d) 12,9

18. EleTran(ec, eq, skf62(d, c,b, a, eq, ec), a,b, c,d) Spt 14

19. [Trans(ec, skf62(d, c,b, a, eq, ec), a,b, c,d) ∨
InsRel3(ec, eq, skf62(d, c,b, a, eq, ec), a,b, c,d)] 18,6

20. [(ec = eq) ∨ (skf62(d, c,b, a, eq, ec) = eq) ∨
InsRel3(ec, eq, skf62(d, c,b, a, eq, dc), a,b, c,d)] 18,5

21. (skf62(d, c,b, a, eq, ec) = eq) 20,17,1

22. [Trans(ec, eq, a,b, c,d) ∨ InsRel3(ec, eq, eq, a,b, c,d)] Rew 21,19

23. 2 22,17,15
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24. ¬EleTran(ec, eq, skf62(d, c,b, a, eq, ec), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, eq, ec), ec, eq, a,b, c,d) Spt 23,14

26. [(ec = eq) ∨ (skf63(d, c,b, a, eq, ec) = ec) ∨
InsRel3(skf63(d, c,b, a, eq, ec), ec, eq, a,b, c,d)] 25,5

27. InsRel3(skf63(d, c,b, a, eq, ec), ec, eq, a,b, c,d) ∨
Trans(skf63(d, c,b, a, eq, ec), eq, a,b, c,d) 25,6

28. (skf63(d, c,b, a, eq, ec) = ec) 26,12,1

29. InsRel3(ec, ec, eq, a,b, c,d) ∨ Trans(ec, eq, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th120. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(dc, po, x, y, z1, z2)

Lemma 43. [¬(dc = po)]

From D5, D7, D49

Lemma 44. [¬(ec = po)]

From D6, D7, D49

Lemma 45. [Trans(dc, po, x, y, z1, z2)∧StrFCONT( x
z1∪z2

)∧StrFCONT( y
z1∪z2

)]→
InsRel3(dc, ec, po, x, y, z1, z2)]

Refutation Set:

1. ¬(ec = po) Lemma 44

2. ¬(dc = ec) Lemma 17

3. ¬StrFCONTu ∨ FCONTu D39

4. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

5. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

6. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

7. ¬Trans(u, po, v, w, x, y) ∨ PO=
sp(

v
y ,

w
y ) Th94

8. ¬Trans(dc, u, v, w, x, y) ∨ DRst( v
x ,

w
x ) Th87

9. ¬Mec(u, v, w, x) ∨ ¬(ec = y) ∨ SKP1(x,w, v, u, y) A22

10. NECP(skf16(u, v, w, x, y), w
v , u) ∨ SKP3(z, w, u, v, x1) D54

11. NECP(skf17(u, v, w, x, y), w
v , u) ∨ SKP3(z, x1, u, v, w) D54

12. ¬rcc=
sp(u, skf17(v, w, x, y, u), skf16(v, w, y, u, x)) ∨ SKP3(u, y, v, w, x) D54

13. ¬ECt(u, v) ∨ ¬Pt(u ∪ v, w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) ) Lemma 40

14. EQTS(skf17(u, v, w, x, y), skf16(u, v, x, y, w), w
v ,

x
v ) ∨ SKP3(y, x, u, v, w) D54

15. [¬SKP1(u, v, w, x, y) ∨ ¬StrFCONT( x
v∪u ) ∨

¬StrFCONT( w
v∪u ) ∨ IM(y, x, w, v, u)] A22

16. [¬IM(u, v, w, x, y) ∨ ¬Pt(x ∪ y, w) ∨ ¬Pt(x ∪ y, v) ∨
¬ECt(x, y) ∨ InsRel(u, v, w, x, y)] D53

17. [¬SKP3(u, v, w, x, y) ∨ ¬SKP3(z, v, x, w, y) ∨ ¬InsRel(x1, y, v, w, x) ∨
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(u = x1) ∨ InsRel3(z, x1, u, y, v, w, x) ∨ (z = x1)] D54

18. [¬Trans(u, v, w, x, y, z) ∨ ¬NECP(x1, w
z , y) ∨ ¬EQTS(x1, x2, w

z ,
x
z ) ∨

¬NECP(x2, x
z , y) ∨ rcc=

sp(v, x1, x2)] D52

19. [¬Trans(u, v, w, x, y, z) ∨ ¬NECP(x1, w
y , z) ∨ ¬EQTS(x1, x2, w

y ,
x
y ) ∨

¬NECP(x2, x
y , z) ∨ rcc=

sp(u, x1, x2)] D52

20. [¬DRst(u
v ,

w
v ) ∨ ¬PO=

sp(
u
x ,

w
x ) ∨ ¬FCONT( u

v∪x ) ∨ ¬FCONT( w
v∪x ) ∨

¬ECTS(u
v ,

u
x ,

u
v∪x ) ∨ ¬ECTS(w

v ,
w
x ,

w
v∪x ) ∨ Mec(u,w, v, x)] Th73

21. StrFCONT( a
c∪d )

22. StrFCONT( b
c∪d )

23. Trans(dc, po, a,b, c,d)

24. ¬InsRel3(dc, ec, po, a,b, c,d)

Proof:

25. ¬FCONT( a
c∪d ) 21,3

26. ¬FCONT( b
c∪d ) 22,3

27. ¬SKP1(d, c, u, a, v) ∨ ¬StrFCONT( u
c∪d ) ∨ IM(v, a, u, c,d) 21,15

28. DRst( a
c ,

b
c ) 23,8

29. Pt(c ∪ d,b) 23,5

30. Pt(c ∪ d, a) 23,6

31. ECt(c,d) 23,4

32. PO=
sp(

a
d ,

b
d ) 23,7

33. ¬SKP3(po,b, c,d, a) ∨ ¬SKP3(dc,b,d, c, a) ∨
¬InsRel(ec, a,b, c,d) ∨ (ec = po) ∨ (dc = ec) 24,17

34. ¬SKP3(po,b, c,d, a) ∨ ¬SKP3(dc,b,d, c, a) ∨ ¬InsRel(ec, a,b, c,d) 32,2,1

35. ¬SKP1(d, c,b, a, u) ∨ IM(u, a,b, c,d) 22,17

36. ECTS(b
c ,

b
d ,

b
c∪d ) SHy 31,29,13

37. ECTS( a
c ,

a
d ,

a
c∪d ) SHy 31,30,13

38. [SKP3(u, b, c,d, v) ∨ SKP3(w,b, c,d, a) ∨ SKP3(x, y, c,d, a) ∨
rcc=

sp(po, skf17(c,d, a,b, w), skf16(c,d,b, w, a))] SHy 23,18,14,11,10

39. [SKP3(u, b,d, c, v) ∨ SKP3(w,b,d, c, a) ∨ SKP3(x, y,d, c, a) ∨
rcc=

sp(dc, skf17(d, c, a,b, w), skf16(d, c,b, w, a))] SHy 23,19,14,11,10

40. SKP3(u, b, c,d, a) ∨ rcc=
sp(po, skf17(c,d, a,b, u), skf16(c,d,b, u, a)) Con 38

41. SKP3(u, b,d, c, a) ∨ rcc=
sp(dc, skf17(d, c, a,b, u), skf16(d, c,b, u, a)) Con 39

42. SKP3(po,b, c,d, a) ∨ SKP3(po,b, c,d, a) 40,12

43. SKP3(po,b, c,d, a) Obs42

44. ¬SKP3(dc,b,d, c, a) ∨ ¬InsRel(ec, a,b, c,d) 43,34

45. SKP3(dc,b,d, c, a) ∨ SKP3(dc,b,d, c, a) 41,12

46. SKP3(dc,b,d, c, a) Obs45

47. ¬InsRel(ec, a,b, c,d) 46,44
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48. ¬IM(ec, a,b, c,d) ∨ ¬Pt(c ∪ d,b) ∨ ¬Pt(c ∪ d, a) ∨ ¬ECt(c,d) 47,16

49. ¬IM(ec, a,b, c,d) 48,31,30,29

50. Mec(a,b, c,d) SHy 37,36,32,28,26,25,20

51. ¬Mec(a,b, c,d) ∨ ¬(u = ec) ∨ IM(u, a,b, c,d) 35,9

52. ¬(u = ec) ∨ IM(u, a,b, c,d) 51,50

53. ¬(ec = ec) 52,49

54. 2 Obs53

Proof of Theorem:

Refutation Set:

1. ¬(ec = po) Lemma 44

2. ¬(dc = ec) Lemma 17

3. ¬(dc = po) Lemma 43

4. ¬InsRel3(u, v, w, x, y, z, x1) ∨ EleTran(u, v, w, x, y, z, x1) D55

5. ¬InsRel3(u, po, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th100

6. ¬InsRel3(u, dc, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th99

7. [¬DirTran(u, v, w, x, y, z) ∨
¬EleTran(u, x1, v, w, x, y, z) ∨ (x1 = u) ∨ (x1 = v)] D56

8. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w) ∨
(v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

9. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1) ∨
InsRel3(u, v, w, x, y, z, x1)] D55

10. ¬Trans(dc, po, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨

¬StrFCONT( v
w∪x ) ∨ InsRel3(dc, ec, po, u, v, w, x) Lemma 45

11. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

12. StrFCONT( a
c∪d )

13. StrFCONT( b
c∪d )

14. DirTran(dc, po, a,b, c,d)

Proof:

15. ¬InsRel3(u, po, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d ) 12,5

16. ¬InsRel3(u, dc, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d ) 12,6

17. [EleTran(dc, po, skf62(d, c,b, a, po, dc), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, po, dc), dc, po, a,b, c,d)] 14,11

18. ¬EleTran(dc, u, po, a,b, c,d) ∨ (u = dc) ∨ (u = po) 14,7

19. ¬InsRel3(u, dc, v, a,b, c,d) 16,13

20. ¬InsRel3(u, po, v, a,b, c,d) 15,13

21. ¬InsRel3(dc, u, po, a,b, c,d) ∨ (u = dc) ∨ (u = po) 18,4
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22. ¬Trans(dc, po, a,b, c,d) ∨ ¬StrFCONT( a
c∪d ) ∨

¬StrFCONT( b
c∪d ) ∨ (ec = dc) ∨ (ec = po) 21,10

23. ¬Transdc, po, a,b, c,d) 22,13,12,2,1

24. EleTran(dc, po, skf62(d, c,b, a, po, dc), a,b, c,d) Spt 17

25. [Trans(dc, skf62(d, c,b, a, po, dc), a,b, c,d) ∨
InsRel3(dc, po, skf62(d, c,b, a, po, dc), a,b, c,d)] 24,9

26. [(dc = po) ∨ (skf62(d, c,b, a, po, dc) = po) ∨
InsRel3(dc, po, skf62(d, c,b, a, po, dc), a,b, c,d)] 24,8

27. (skf62(d, c,b, a, po, dc) = po) 26,20,3

28. [Trans(dc, po, a,b, c,d) ∨ InsRel3(dc, po, po, a,b, c,d)] Rew 27,25

29. 2 28,23,20

30. ¬EleTran(dc, po, skf62(d, c,b, a, po, dc), a,b, c,d) Spt 29,24,17

31. EleTran(skf63(d, c,b, a, po, dc), dc, po, a,b, c,d) Spt 29,17

32. [(dc = po) ∨ (skf63(d, c,b, a, po, dc) = dc) ∨
InsRel3(skf63(d, c,b, a, po, dc), dc, po, a,b, c,d)] 31,8

33. InsRel3(skf63(d, c,b, a, po, dc), dc, po, a,b, c,d) ∨
Trans(skf63(d, c,b, a, po, dc), po, a,b, c,d) 31,9

34. (skf63(d, c,b, a, po, dc) = dc) 32,19,3

35. InsRel3(dc, dc, po, a,b, c,d) ∨ Trans(dc, po, a,b, c,d) Rew 34,33

36. 2 35,23,19

Th121. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(dc, tpp, x, y, z1, z2)

Lemma 46. [Trans(dc, tpp, x, y, z1, z2)→ [¬StrFCONT( x
z1∪z2

) ∨¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬FCONTu ∨ CONTu D38

4. ¬TPPst(u, v) ∨ PPst(u, v) D47

5. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

6. ¬DRst(u, v) ∨ ¬Cst(u, v) ∨ ECst(u, v) Lemma 27

7. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

8. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

9. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

10. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

11. ¬Trans(dc, u, v, w, x, y) ∨ DRst( v
x ,

w
x ) Th87

12. ¬Trans(u, tpp, v, w, x, y) ∨ TPPst( v
y ,

w
y ) Th95

13. ¬ECt(u, v) ∨ ¬Pt((u ∪ v), w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) ) Lemma 40

14. [¬CONTu ∨ ¬CONTv ∨ ¬EQt(w, x) ∨ ¬PPst(y, z) ∨
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¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v) ∨ Cst(w, x)] Th51

15. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨ ¬ECst(w, x) ∨
¬PPst(y, z) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v)] Th52

16. StrFCONT( a
c∪d )

17. StrFCONT( b
c∪d )

18. Trans(dc, tpp, a,b, c,d)

Proof:

19. FCONT( b
c∪d ) 17,1

20. StrCONTst( b
c∪d ) 17,2

21. FCONT( a
c∪d ) 16,1

22. StrCONTst( a
c∪d ) 16,2

23. DRst( a
c ,

b
c ) 18,11

24. Pt(c ∪ d,b) 18,8

25. Pt(c ∪ d, a) 18,9

26. ECt(c,d) 18,7

27. TPPst( a
d ,

b
d ) 18,12

28. Pt(c,b) 24,5

29. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 26,24,13

30. Pt(c, a) 25,5

31. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 26,25,13

32. EQt( a
c ,

b
c ) SHy 30,28,10

33. PPst( a
d ,

b
d ) 27,4

34. ¬CONT( b
c∪d ) ∨ ¬CONT( a

c∪d ) ∨ Cst( a
c ,

b
c ) SHy 33,32,31,29,14

35. Cst( a
c ,

b
c ) 34,22,21,20,19,17,16,3

36. ECst( a
c ,

b
c ) SHy 35,23,6

37. ¬FCONT( b
c∪d ) ∨ ¬FCONT( a

c∪d ) SHy 36,33,32,31,29,15

38. 2 37,22,21,20,19,17,16

Proof of Theorem:

Refutation Set:

1. ¬(dc = tpp) Lemma 19

2. ¬Trans(dc, tpp, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 46

3. ¬InsRel3(dc, tpp, u, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th110

4. ¬InsRel3(u, dc, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th99

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w) ∨
(v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

6. [¬EleTran(u, v, w, x, y, z, x1) ∨
Trans(u,w, x, y, z, x1) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
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EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )

10. DirTran(dc, tpp, a,b, c,d)

Proof:

11. ¬Trans(dc, tpp, a, u, c,d) ∨ ¬StrFCONT( u
c∪d ) 8,2

12. ¬InsRel3(dc, tpp, u, a, v, c,d) ∨ ¬StrFCONT( v
c∪d ) 8,3

13. ¬InsRel3(u, dc, tpp, a, v, c,d) ∨ ¬StrFCONT( v
c∪d ) 8,4

14. [EleTran(dc, tpp, skf62(d, c,b, a, tpp, dc), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, tpp, dc), dc, tpp, a,b, c,d)] 10,7

15. ¬Trans(dc, tpp, a,b, c,d) 11,9

16. ¬InsRel3(u, dc, tpp, a,b, c,d) 13,9

17. ¬InsRel3(dc, tpp, u, a,b, c,d) 12,9

18. EleTran(dc, tpp, skf62(d, c,b, a, tpp, dc), a,b, c,d) Spt 14

19. [Trans(dc, skf62(d, c,b, a, tpp, dc), a,b, c,d) ∨
InsRel3(dc, tpp, skf62(d, c,b, a, tpp, dc), a,b, c,d)] 18,6

20. [(dc = tpp) ∨ (skf62(d, c,b, a, tpp, dc) = tpp) ∨
InsRel3(dc, tpp, skf62(d, c,b, a, tpp, dc), a,b, c,d)] 18,5

21. (skf62(d, c,b, a, tpp, dc) = tpp) 20,17,1

22. [Trans(dc, tpp, a,b, c,d) ∨ InsRel3(dc, tpp, tpp, a,b, c,d)] Rew 21,19

23. 2 22,17,15

24. ¬EleTran(dc, tpp, skf62(d, c,b, a, tpp, dc), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, tpp, dc), dc, tpp, a,b, c,d) Spt 23,14

26. [(dc = tpp) ∨ (skf63(d, c,b, a, tpp, dc) = dc) ∨
InsRel3(skf63(d, c,b, a, tpp, dc), dc, tpp, a,b, c,d)] 25,5

27. InsRel3(skf63(d, c,b, a, tpp, dc), dc, tpp, a,b, c,d) ∨
Trans(skf63(d, c,b, a, tpp, dc), tpp, a,b, c,d) 25,6

28. (skf63(d, c,b, a, tpp, dc) = dc) 26,12,1

29. InsRel3(dc, dc, tpp, a,b, c,d) ∨ Trans(dc, tpp, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th122. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(ec, tpp, x, y, z1, z2)

Lemma 47. [Trans(ec, tpp, x, y, z1, z2)→ [¬StrFCONT( x
z1∪z2

) ∨¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬TPPst(u, v) ∨ PPst(u, v) D47

4. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18
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5. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

6. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

7. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

8. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

9. ¬Trans(ec, u, v, w, x, y) ∨ ECst( v
x ,

w
x ) Th88

10. ¬Trans(u, tpp, v, w, x, y) ∨ TPPst( v
y ,

w
y ) Th95

11. ¬ECt(u, v) ∨ ¬Pt((u ∪ v), w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) ) Lemma 40

12. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨ ¬ECst(w, x) ∨
¬PPst(y, z) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v)] Th52

13. StrFCONT( a
c∪d )

14. StrFCONT( b
c∪d )

15. Trans(ec, tpp, a,b, c,d)

Proof:

16. FCONT( b
c∪d ) 14,1

17. StrCONTst( b
c∪d ) 14,2

18. FCONT( a
c∪d ) 13,1

19. StrCONTst( a
c∪d ) 13,2

20. ECst( a
c ,

b
c ) 15,9

21. Pt(c ∪ d,b) 15,6

22. Pt(c ∪ d, a) 15,7

23. ECt(c,d) 15,5

24. TPPst( a
d ,

b
d ) 15,10

25. Pt(c,b) 21,4

26. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 23,21,11

27. Pt(c, a) 21,4

28. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 23,22,11

29. EQt( a
c ,

b
c ) SHy 29,25,8

30. PPst( a
d ,

b
d ) 24,3

31. ¬FCONT( b
c∪d ) ∨ ¬FCONT( a

c∪d ) SHy 30,29,28,26,20,12

32. 2 31,19,18,17,16,14,13

Proof of Theorem:

Refutation Set:

1. ¬(tpp = ec) Lemma 31

2. ¬Trans(ec, tpp, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 47

3. ¬InsRel3(u, ec, tpp, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th106

4. ¬InsRel3(ec, tpp, u, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th111

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w) ∨
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(v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

6. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1) ∨
InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z)

∨ EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )

10. DirTran(ec, tpp, a,b, c,d)

Proof:

11. ¬Trans(ec, tpp, a, u, c,d) ∨ ¬StrFCONT( u
c∪d 8,2

12. ¬InsRel3(u, ec, tpp, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 8,3

13. ¬InsRel3(ec, tpp, u, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 8,4

14. [EleTran(ec, tpp, skf62(d, c,b, a, tpp, ec), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, tpp, ec), ec, tpp, a,b, c,d)] 10,7

15. ¬Trans(ec, tpp, a,b, c,d) 11,9

16. ¬InsRel3(ec, tpp, u, a,b, c,d) 12,9

17. ¬InsRel3(u, ec, tpp, a,b, c,d) 13,9

18. EleTran(ec, tpp, skf62(d, c,b, a, tpp, ec), a,b, c,d) Spt 14

19. Trans(ec, skf62(d, c,b, a, tpp, ec), a,b, c,d)

∨ InsRel3(ec, tpp, skf62(d, c,b, a, tpp, ec), a,b, c,d) 18,6

20. [(ec = tpp) ∨ (skf62(d, c,b, a, tpp, ec) = tpp) ∨
InsRel3(ec, tpp, skf62(d, c,b, a, tpp, ec), a,b, c,d)] 18,5

21. (skf62(d, c,b, a, tpp, ec) = tpp) 20,17,1

22. Trans(ec, tpp, a,b, c,d) ∨ InsRel3(ec, tpp, tpp, a,b, c,d) Rew 21,19

23. 2 22,17,15

24. ¬EleTran(ec, tpp, skf62(d, c,b, a, tpp, ec), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, tpp, ec), ec, tpp, a,b, c,d) Spt 23,14

26. [(ec = tpp) ∨ (skf63(d, c,b, a, tpp, ec) = tpp) ∨
InsRel3(skf63(d, c,b, a, tpp, ec), ec, tpp, a,b, c,d)] 25,5

27. [InsRel3(skf63(d, c,b, a, tpp, ec), ec, tpp, a,b, c,d) ∨
Trans(skf63(d, c,b, a, tpp, ec), tpp, a,b, c,d)] 25,6

28. (skf62(d, c,b, a, tpp, ec) = ec) 26,12,1

29. Trans(ec, tpp, a,b, c,d) ∨ InsRel3(ec, ec, tpp, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th123. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(dc, ntpp, x, y, z1, z2)

Lemma 48. [¬(dc = ntpp)]

From D5, D10, D49
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Lemma 49. [Trans(dc, ntpp, x, y, z1, z2)→ [¬StrFCONT( x
z1∪z2

)∨¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬FCONTu ∨ CONTu D38

4. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

5. ¬DRst(u, v) ∨ ¬Cst(u, v) ∨ ECst(u, v) Lemma 27

6. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

7. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

8. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

9. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

10. ¬Trans(dc, u, v, w, x, y) ∨ DRst( v
x ,

w
x ) Th87

11. ¬Trans(u, ntpp, v, w, x, y) ∨ PPst( v
y ,

w
y ) Th96

12. [¬ECt(u, v) ∨ ¬Pt((u ∪ v), w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) )] Lemma 40

13. [¬CONTu ∨ ¬CONTv ∨ ¬EQt(w, x) ∨ ¬PPst(y, z) ∨
¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v) ∨ Cst(w, x)] Th51

14. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨ ¬ECst(w, x) ∨
¬PPst(y, z) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v)] Th52

15. StrFCONT( a
c∪d )

16. StrFCONT( b
c∪d )

17. Trans(dc, ntpp, a,b, c,d)

Proof:

18. FCONT( b
c∪d ) 16,1

19. StrCONTst( b
c∪d ) 16,2

20. FCONT( a
c∪d ) 15,1

21. StrCONTst( a
c∪d ) 15,2

22. DRst( a
c ,

b
c ) 17,10

23. Pt(c ∪ d,b) 17,7

24. Pt(c ∪ d, a) 17,8

25. ECt(c,d) 17,6

26. PPst( a
d ,

b
d ) 17,11

27. Pt(c,b) 23,4

28. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 25,23,12

29. Pt(c, a) 24,4

30. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 25,24,12

31. EQt( a
c ,

b
c ) SHy 29,27,9

32. ¬CONT( b
c∪d ) ∨ ¬CONT( a

c∪d ) ∨ Cst( a
c ,

b
c ) SHy 31,30,28,26,13
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33. Cst( a
c ,

b
c ) 32,21,20,19,18,16,15,4

34. ECst( a
c ,

b
c ) SHy 33,22,5

35. ¬FCONT( b
c∪d ) ∨ ¬FCONT( a

c∪d ) SHy 34,31,30,28,26,14

36. 2 35,21,20,19,18,16,15

Proof of Theorem:

Refutation Set:

1. ¬(dc = ntpp) Lemma 48

2. ¬Trans(dc, ntpp, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 49

3. ¬InsRel3(u, ntpp, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th101

4. ¬InsRel3(u, dc, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th99

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = u) ∨
(v = w) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

6. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1) ∨
InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z)

∨ EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )

10. DirTran(dc, ntpp, a,b, c,d)

Proof:

11. ¬Trans(dc, ntpp, a, u, c,d) ∨ ¬StrFCONT( u
c∪d 8,2

12. ¬InsRel3(u, ntpp, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,3

13. ¬InsRel3(u, dc, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,4

14. [EleTran(dc, ntpp, skf62(d, c,b, a, ntpp, dc), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, ntpp, dc), dc, ntpp, a,b, c,d)] 10,7

15. ¬Trans(dc, ntpp, a,b, c,d) 11,9

16. ¬InsRel3(u, dc, v, a,b, c,d) 13,9

17. ¬InsRel3(u, ntpp, v, a,b, c,d) 12,9

18. EleTran(dc, ntpp, skf62(d, c,b, a, ntpp, dc), a,b, c,d) Spt 14

19. Trans(dc, skf62(d, c,b, a, ntpp, dc), a,b, c,d)

∨ InsRel3(dc, ntpp, skf62(d, c,b, a, ntpp, dc), a,b, c,d) 18,6

20. [(dc = ntpp) ∨ (skf62(d, c,b, a, ntpp, dc) = ntpp) ∨
InsRel3(dc, ntpp, skf62(d, c,b, a, ntpp, dc), a,b, c,d)] 18,5

21. (skf62(d, c,b, a, ntpp, dc) = ntpp) 20,17,1

22. Trans(dc, ntpp, a,b, c,d) ∨ InsRel3(dc, ntpp, ntpp, a,b, c,d) Rew 21,19

23. 2 22,17,15

24. ¬EleTran(dc, ntpp, skf62(d, c,b, a, ntpp, dc), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, ntpp, dc), dc, ntpp, a,b, c,d) Spt 23,14
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26. [(dc = ntpp) ∨ (skf63(d, c,b, a, ntpp, dc) = ntpp) ∨
InsRel3(skf63(d, c,b, a, ntpp, dc), dc, ntpp, a,b, c,d)] 25,5

27. [InsRel3(skf63(d, c,b, a, ntpp, dc), dc, ntpp, a,b, c,d) ∨
Trans(skf63(d, c,b, a, ntpp, dc), ntpp, a,b, c,d)] 25,6

28. (skf62(d, c,b, a, ntpp, dc) = dc) 26,12,1

29. Trans(dc, ntpp, a,b, c,d) ∨ InsRel3(dc, dc, ntpp, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th124. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(ec, ntpp, x, y, z1, z2)

Lemma 50. [¬(ec = ntpp)]

From D6, D10, D49

Lemma 51. [Trans(ec, ntpp, x, y, z1, z2)→ [¬StrFCONT( x
z1∪z2

)∨¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

4. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

5. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

6. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

7. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

8. ¬Trans(ec, u, v, w, x, y) ∨ ECst( v
x ,

w
x ) Th87

9. ¬Trans(u, , ntpp, v, w, x, y) ∨ PPst( v
y ,

w
y ) Th96

10. [¬ECt(u, v) ∨ ¬Pt((u ∪ v), w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) )] Lemma 40

11. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨ ¬ECst(w, x) ∨
¬PPst(y, z) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v)] Th52

12. StrFCONT( a
c∪d )

13. StrFCONT( b
c∪d )

14. Trans(ec, ntpp, a,b, c,d)

Proof:

15. FCONT( b
c∪d ) 13,1

16. StrCONTst( b
c∪d ) 13,2

17. FCONT( a
c∪d ) 12,1

18. StrCONTst( a
c∪d ) 12,2

19. ECst( a
c ,

b
c ) 14,8

20. Pt(c ∪ d,b) 14,5

21. Pt(c ∪ d, a) 14,6

22. ECt(c,d) 14,4
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23. PPst( a
d ,

b
d ) 14,9

24. Pt(c,b) 20,3

25. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 22,20,10

26. Pt(c, a) 21,3

27. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 22,21,10

28. EQt( a
c ,

b
c ) SHy 26,24,7

29. ¬FCONT( b
c∪d ) ∨ ¬FCONT( a

c∪d ) SHy 28,27,25,23,19,11

30. 2 29,18,17,16,15,13,12

Proof of Theorem:

Refutation Set:

1. ¬(ec = ntpp) Lemma 50

2. ¬Trans(ec, ntpp, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 51

3. ¬InsRel3(u, ntpp, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th101

4. ¬InsRel3(u, ec, ntpp, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th107

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = u) ∨
(v = w) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

6. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1)

∨ InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf80(z, y, x, w, v, u), w, x, y, z)

∨ EleTran(skf81(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )

10. DirTran(ec, ntpp, a,b, c,d)

Proof:

11. ¬Trans(ec, ntpp, a, u, c,d) ∨ ¬StrFCONT( u
c∪d 8,2

12. ¬InsRel3(u, ntpp, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,3

13. ¬InsRel3(u, ec, ntpp, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 8,4

14. [EleTran(ec, ntpp, skf62(d, c,b, a, ntpp, ec), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, ntpp, ec), ec, ntpp, a,b, c,d)] 10,7

15. ¬Trans(ec, ntpp, a,b, c,d) 11,9

16. ¬InsRel3(u, ntpp, v, a,b, c,d) 12,9

17. ¬InsRel3(u, ec, ntpp, a,b, c,d) 13,9

18. EleTran(ec, ntpp, skf62(d, c,b, a, ntpp, ec), a,b, c,d) Spt 14

19. Trans(ec, skf62(d, c,b, a, ntpp, ec), a,b, c,d)

∨ InsRel3(ec, ntpp, skf62(d, c,b, a, ntpp, ec), a,b, c,d) 18,6

20. [(ec = ntpp) ∨ (skf62(d, c,b, a, ntpp, ec) = ntpp) ∨
InsRel3(ec, ntpp, skf62(d, c,b, a, ntpp, ec), a,b, c,d)] 18,5
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21. (skf62(d, c,b, a, ntpp, ec) = ntpp) 20,17,1

22. Trans(ec, ntpp, a,b, c,d) ∨ InsRel3(ec, ntpp, ntpp, a,b, c,d) Rew 21,19

23. 2 22,17,15

24. ¬EleTran(ec, ntpp, skf62(d, c,b, a, ntpp, ec), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, ntpp, ec), ec, ntpp, a,b, c,d) Spt 23,14

26. [(ec = ntpp) ∨ (skf63(d, c,b, a, ntpp, ec) = ntpp) ∨
InsRel3(skf63(d, c,b, a, ntpp, ec), ec, ntpp, a,b, c,d)] 25,5

27. [InsRel3(skf63(d, c,b, a, ntpp, ec), ec, ntpp, a,b, c,d) ∨
Trans(skf63(d, c,b, a, ntpp, ec), ntpp, a,b, c,d)] 25,6

28. (skf62(d, c,b, a, ntpp, ec) = ec) 26,12,1

29. Trans(ec, ntpp, a,b, c,d) ∨ InsRel3(ec, ec, ntpp, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th125. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(dc, tppi, x, y, z1, z2)

Lemma 52. DRst(x, y) ↔ DRst(y, x)

From D4, D5, D6, A2

Lemma 53. [Trans(dc,tppi, x, y, z1, z2) → [¬StrFCONT( x
z1∪z2

) ∨ ¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬FCONTu ∨ CONTu D38

4. ¬DRst(u, v) ∨ DRst(v, u) Lemma 52

5. ¬TPPst(u, v) ∨ PPst(u, v) D9

6. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

7. ¬DRst(u, v) ∨ ¬Cst(u, v) ∨ ECst(u, v) Lemma 27

8. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

9. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

10. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

11. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

12. ¬Trans(dc, u, v, w, x, y) ∨ DRst( v
x ,

w
x ) Th87

13. ¬Trans(u, tppi, v, w, x, y) ∨ TPPst(w
y ,

v
y )

14. [¬ECt(u, v) ∨ ¬Pt(u ∪ v, w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) )] Lemma 40

15. [¬CONTu ∨ ¬CONTv ∨ ¬EQt(w, x) ∨ ¬PPst(y, z) ∨
¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v) ∨ Cst(w, x)] Th51

16. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨ ¬ECst(w, x) ∨
¬PPst(y, z) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v)] Th52

17. StrFCONT( a
c∪d )
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18. StrFCONT( b
c∪d )

19. Trans(dc, tppi, a,b, c,d)

Proof:

20. FCONT( b
c∪d ) 22,2

21. StrCONTst( b
c∪d ) 22,3

22. FCONT( a
c∪d ) 21,2

23. StrCONTst( a
c∪d ) 21,3

24. DRst( a
c ,

b
c ) 23,16

25. Pt(c ∪ d,b) 23,13

26. Pt(c ∪ d, a) 23,14

27. ECt(c,d) 23,12

28. TPPst( a
d ,

b
d ) 23,16

29. Pt(c,b) 30,9

30. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 32,30,18

31. Pt(c, a) 31,9

32. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 32,31,18

33. EQt(b
c ,

a
c ) SHy 35,33,15

34. DRst(b
c ,

a
c ) 28,5

35. PPst(b
d ,

a
d ) SHy 41,11,1

36. ¬CONT( a
c∪d ) ∨ ¬CONT( b

c∪d ) ∨ Cst(b
c ,

a
c ) SHy 42,37,36,34,19

37. Cst(b
c ,

a
c ) 43,27,26,25,24,22,21,4

38. ECst(b
c ,

a
c ) SHy 44,38,10

39. ¬FCONT( a
c∪d ) ∨ ¬FCONT( b

c∪d ) SHy 45,42,37,36,34,20

40. 2 46,27,26,25,24,22,21

Proof of Theorem:

Refutation Set:

1. ¬(dc = tppi) Lemma 20

2. ¬Trans(dc, tppi, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 53

3. ¬InsRel3(dc, tppi, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th114

4. ¬InsRel3(u, dc, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th99

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w) ∨
(v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

6. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1) ∨
InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z)

∨ EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )
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10. DirTran(dc, tppi, a,b, c,d)

Proof:

11. ¬Trans(dc, tppi, a, u, c,d) ∨ ¬StrFCONT( u
c∪d 8,2

12. ¬InsRel3(u, dc, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,4

13. ¬InsRel3(dc, tppi, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,3

14. [EleTran(dc, tppi, skf62(d, c,b, a, tppi, dc), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, tppi, dc), dc, tppi, a,b, c,d)] 10,7

15. ¬Trans(dc, tppi, a,b, c,d) 11,9

16. ¬InsRel3(u, dc, v, a,b, c,d) 12,9

17. ¬InsRel3(dc, tppi, u, a,b, c,d) 13,9

18. EleTran(dc, tppi, skf62(d, c,b, a, tppi, dc), a,b, c,d) Spt 14

19. [Trans(dc, skf62(d, c,b, a, tppi, dc), a,b, c,d) ∨
InsRel3(dc, tppi, skf62(d, c,b, a, tppi, dc), a,b, c,d)] 18,6

20. [(dc = tppi) ∨ (skf62(d, c,b, a, tppi, dc) = tppi) ∨
InsRel3(dc, tppi, skf62(d, c,b, a, tppi, dc), a,b, c,d)] 18,5

21. (skf62(d, c,b, a, tppi, dc) = tppi) 20,17,1

22. [Trans(dc, tppi, a,b, c,d) ∨ InsRel3(dc, tppi, tppi, a,b, c,d)] Rew 21,19

23. 2 22,17,15

24. ¬EleTran(dc, tppi, skf62(d, c,b, a, tppi, dc), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, tppi, dc), dc, tppi, a,b, c,d) Spt 23,14

26. [(dc = tppi) ∨ (skf63(d, c,b, a, tppi, dc) = dc) ∨
InsRel3(skf63(d, c,b, a, tppi, dc), dc, tppi, a,b, c,d)] 25,5

27. InsRel3(skf63(d, c,b, a, tppi, dc), dc, tppi, a,b, c,d) ∨
Trans(skf63(d, c,b, a, tppi, dc), tppi, a,b, c,d) 25,6

28. (skf63(d, c,b, a, tppi, dc) = dc) 26,12,1

29. InsRel3(dc, dc, tppi, a,b, c,d) ∨ Trans(dc, tppi, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th126. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(ec, tppi, x, y, z1, z2)

Lemma 54. [Trans(ec, tppi, x, y, z1, z2)→ [¬StrFCONT( x
z1∪z2

)∨¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬FCONTu ∨ CONTu D38

4. ¬ECst(u, v) ∨ ECst(v, u) Lemma 52

5. ¬TPPst(u, v) ∨ PPst(u, v) D9

6. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

7. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52
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8. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

9. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

10. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

11. ¬Trans(ec, u, v, w, x, y) ∨ ECst( v
x ,

w
x ) Th87

12. ¬Trans(u, tppi, v, w, x, y) ∨ TPPst(w
y ,

v
y ) Th97

13. [¬ECt(u, v) ∨ ¬Pt((u ∪ v), w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) )] Lemma 40

14. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨ ¬ECst(w, x) ∨
¬PPst(y, z) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v)] Th52

15. StrFCONT( a
c∪d )

16. StrFCONT( b
c∪d )

17. Trans(ec, tppi, a,b, c,d)

Proof:

22. FCONT( b
c∪d ) 19,2

23. StrCONTst( b
c∪d ) 19,3

24. FCONT( a
c∪d ) 18,2

25. StrCONTst( a
c∪d ) 18,3

26. ECst( a
c ,

b
c ) 20,14

27. Pt(c ∪ d,b) 20,11

28. Pt(c ∪ d, a) 20,12

29. ECt(c,d) 20,10

30. TPPst(b
d ,

a
d ) 20,14

31. Pt(c,b) 27,8

32. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 29,27,16

33. Pt(c, a) 28,8

34. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 29,28,16

35. EQt(b
c ,

a
c ) SHy 32,30,13

36. ECst(b
c ,

a
c ) 25,4

37. PPst(b
d ,

a
d ) SHy 38,9,1

38. ¬FCONT( a
c∪d ) ∨ ¬FCONT( b

c∪d ) SHy 39,35,34,33,31,17

39. 2 40,24,23,22,21,19,18

Proof of Theorem:

Refutation Set:

1. ¬(tppi = ec) Lemma 30

2. ¬Trans(ec, tppi, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 54

3. ¬InsRel3(u, ec, tppi, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th108

4. ¬InsRel3(ec, tppi, u, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th114

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w) ∨
(v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55
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6. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1) ∨
InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z)

∨ EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )

10. DirTran(ec, tppi, a,b, c,d)

Proof:

11. ¬Trans(ec, tppi, a, u, c,d) ∨ ¬StrFCONT( u
c∪d 8,2

12. ¬InsRel3(u, ec, tppi, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,3

13. ¬InsRel3(ec, tppi, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,4

14. [EleTran(ec, tppi, skf62(d, c,b, a, tppi, ec), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, tppi, ec), ec, tppi, a,b, c,d)] 10,7

15. ¬Trans(ec, tppi, a,b, c,d) 11,9

16. ¬InsRel3(ec, tppi, u, a,b, c,d) 12,9

17. ¬InsRel3(u, ec, tppi, a,b, c,d) 13,9

18. EleTran(ec, tppi, skf62(d, c,b, a, tppi, ec), a,b, c,d) Spt 14

19. Trans(ec, skf62(d, c,b, a, tppi, ec), a,b, c,d)

∨ InsRel3(ec, tppi, skf62(d, c,b, a, tppi, ec), a,b, c,d) 18,6

20. [(ec = tppi) ∨ (skf62(d, c,b, a, tppi, ec) = tppi) ∨
InsRel3(ec, tppi, skf62(d, c,b, a, tppi, ec), a,b, c,d)] 18,5

21. (skf62(d, c,b, a, tppi, ec) = tppi) 20,17,1

22. Trans(ec, tppi, a,b, c,d) ∨ InsRel3(ec, tppi, tppi, a,b, c,d) Rew 21,19

23. 2 22,17,15

24. ¬EleTran(ec, tppi, skf62(d, c,b, a, tppi, ec), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, tppi, ec), ec, tppi, a,b, c,d) Spt 23,14

26. [(ec = tppi) ∨ (skf63(d, c,b, a, tppi, ec) = tppi) ∨
InsRel3(skf63(d, c,b, a, tppi, ec), ec, tppi, a,b, c,d)] 25,5

27. [InsRel3(skf63(d, c,b, a, tppi, ec), ec, tppi, a,b, c,d) ∨
Trans(skf63(d, c,b, a, tppi, ec), tppi, a,b, c,d)] 25,6

28. (skf62(d, c,b, a, tppi, ec) = ec) 26,12,1

29. Trans(ec, tppi, a,b, c,d) ∨ InsRel3(ec, ec, tppi, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th127. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(dc, ntppi, x, y, z1, z2)

Lemma 55. [¬(dc = ntppi)]

From D5, D10, D49
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Lemma 56. [Trans(dc, ntppi, x, y, z1, z2)→ [¬StrFCONT( x
z1∪z2

)∨¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬FCONTu ∨ CONTu D38

4. ¬DRst(u, v) ∨ DRst(v, u) Lemma 52

5. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

6. ¬DRst(u, v) ∨ ¬Cst(u, v) ∨ ECst(u, v) Lemma 27

7. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

8. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

9. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

10. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

11. ¬Trans(dc, u, v, w, x, y) ∨ DRst( v
x ,

w
x ) Th87

12. ¬Trans(u, ntppi, v, w, x, y) ∨ PPst(w
y ,

v
y )

13. [¬ECt(u, v) ∨ ¬Pt((u ∪ v), w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) )] Lemma 40

14. [¬CONTu ∨ ¬CONTv ∨ ¬EQt(w, x) ∨ ¬PPst(y, z) ∨
¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v) ∨ Cst(w, x)] Th51

15. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨ ¬ECst(w, x) ∨
¬PPst(y, z) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v)] Th52

16. StrFCONT( a
c∪d )

17. StrFCONT( b
c∪d )

18. Trans(dc, ntppi, a,b, c,d)

Proof:

22. FCONT( b
c∪d ) 21,2

23. StrCONTst( b
c∪d ) 21,3

24. FCONT( a
c∪d ) 20,2

25. StrCONTst( a
c∪d ) 20,3

26. DRst( a
c ,

b
c ) 22,15

27. Pt(c ∪ d,b) 22,12

28. Pt(c ∪ d, a) 22,13

29. ECt(c,d) 22,11

30. PPst(b
d ,

a
d ) 22,15

31. Pt(c,b) 29,8

32. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 31,29,17

33. Pt(c, a) 30,8

34. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 31,30,17

35. EQt(b
c ,

a
c ) SHy 34,32,14
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36. DRst(b
c ,

a
c ) 27,5

37. ¬CONT( a
c∪d ) ∨ ¬CONT( b

c∪d ) ∨ Cst(b
c ,

a
c ) SHy 40,36,35,33,18

38. Cst(b
c ,

a
c ) 41,26,25,24,23,21,20,4

39. ECst(b
c ,

a
c ) SHy 42,37,9

40. ¬FCONT( a
c∪d ) ∨ ¬FCONT( b

c∪d ) SHy 43,40,36,35,33,19

41. 2 44,26,25,24,23,21,20

Proof of Theorem:

Refutation Set:

1. ¬(ntppi = dc) Lemma 55

2. ¬Trans(dc, ntppi, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 56

3. ¬InsRel3(u, ntppi, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th102

4. ¬InsRel3(u, dc, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th99

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w) ∨
(v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

6. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1)

∨ InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z)

∨ EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )

10. DirTran(dc, ntppi, a,b, c,d)

Proof:

11. ¬Trans(dc, ntppi, a, u, c,d) ∨ ¬StrFCONT( u
c∪d 8,2

12. ¬InsRel3(u, ntppi, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,4

13. ¬InsRel3(u, dc, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,3

14. [EleTran(dc, ntppi, skf62(d, c,b, a, ntppi, dc), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, ntppi, dc), dc, ntppi, a,b, c,d)] 10,7

15. ¬Trans(dc, ntppi, a,b, c,d) 11,9

16. ¬InsRel3(u, dc, v, a,b, c,d) 12,9

17. ¬InsRel3(u, ntppi, v, a,b, c,d) 13,9

18. EleTran(dc, ntppi, skf62(d, c,b, a, ntppi, dc), a,b, c,d) Spt 14

19. Trans(dc, skf62(d, c,b, a, ntppi, dc), a,b, c,d)

∨ InsRel3(dc, ntppi, skf62(d, c,b, a, ntppi, dc), a,b, c,d) 18,6

20. [(dc = ntppi) ∨ (skf62(d, c,b, a, ntppi, dc) = ntppi) ∨
InsRel3(dc, ntppi, skf62(d, c,b, a, ntppi, dc), a,b, c,d)] 18,5

21. (skf62(d, c,b, a, ntppi, dc) = ntppi) 20,17,1

22. Trans(dc, ntppi, a,b, c,d) ∨ InsRel3(dc, ntppi, ntppi, a,b, c,d) Rew 21,19

23. 2 22,17,15
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24. ¬EleTran(dc, ntppi, skf62(d, c,b, a, ntppi, dc), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, ntppi, dc), dc, ntppi, a,b, c,d) Spt 23,14

26. [(dc = ntppi) ∨ (skf63(d, c,b, a, ntppi, dc) = ntppi) ∨
InsRel3(skf63(d, c,b, a, ntppi, dc), dc, ntppi, a,b, c,d)] 25,5

27. [InsRel3(skf63(d, c,b, a, ntppi, dc), dc, ntppi, a,b, c,d) ∨
Trans(skf63(d, c,b, a, ntppi, dc), ntppi, a,b, c,d)] 25,6

28. (skf62(d, c,b, a, ntppi, dc) = dc) 26,12,1

29. Trans(dc, ntppi, a,b, c,d) ∨ InsRel3(dc, dc, ntppi, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th128. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(ec, ntppi, x, y, z1, z2)

Lemma 57. [¬(ntppi = ec)]

From D6, D10, D49

Lemma 58. [Trans(ec, ntppi, x, y, z1, z2)→ [¬StrFCONT( x
z1∪z2

)∨¬StrFCONT( y
z1∪z2

)]]

Refutation Set:

1. ¬StrFCONTu ∨ FCONTu D39

2. ¬StrFCONTu ∨ StrCONTstu D39

3. ¬ECst(u, v) ∨ ECst(v, u) Lemma 52

4. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

5. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

6. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

7. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

8. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

9. ¬Trans(ec, u, v, w, x, y) ∨ ECst( v
x ,

w
x ) Th87

10. ¬Trans(u, ntppi, v, w, x, y) ∨ PPst(w
y ,

v
y )

11. [¬ECt(u, v) ∨ ¬Pt((u ∪ v), w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) )] Lemma 40

12. [¬FCONTu ∨ ¬FCONTv ∨ ¬EQt(w, x) ∨ ¬ECst(w, x) ∨
¬PPst(y, z) ∨ ¬ECTS(w, y, u) ∨ ¬ECTS(x, z, v)] Th52

13. StrFCONT( a
c∪d )

14. StrFCONT( b
c∪d )

15. Trans(ec, ntppi, a,b, c,d)

Proof:

22. FCONT( b
c∪d ) 19,2

23. StrCONTst( b
c∪d ) 19,3

24. FCONT( a
c∪d ) 18,2

25. StrCONTst( a
c∪d ) 18,3

26. ECst( a
c ,

b
c ) 20,14
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27. Pt(c ∪ d,b) 20,11

28. Pt(c ∪ d, a) 20,12

29. ECt(c,d) 20,10

30. PPst(b
d ,

a
d ) 20,14

31. Pt(c,b) 27,8

32. ECTS(b
c ,

b
d ,

b
(c∪d) ) SHy 29,27,16

33. Pt(c, a) 28,8

34. ECTS( a
c ,

a
d ,

a
(c∪d) ) SHy 29,28,16

35. EQt(b
c ,

a
c ) SHy 32,30,13

36. ECst(b
c ,

a
c ) 25,4

37. ¬FCONT( a
c∪d ) ∨ ¬FCONT( b

c∪d ) SHy 39,35,34,33,31,17

38. 2 40,24,23,22,21,19,18

Proof of Theorem:

Refutation Set:

1. ¬(ntppi = ec) Lemma 57

2. ¬Trans(ec, ntppi, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) Lemma 58

3. ¬InsRel3(u, ec, ntppi, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th108

4. ¬InsRel3(u, tppi, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th114

5. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w)

∨ (v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

6. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1)

∨ InsRel3(u, v, w, x, y, z, x1)] D55

7. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z)

∨ EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

8. StrFCONT( a
c∪d )

9. StrFCONT( b
c∪d )

10. DirTran(ec, ntppi, a,b, c,d)

Proof:

11. ¬Trans(ec, ntppi, a, u, c,d) ∨ ¬StrFCONT( u
c∪d 8,2

12. ¬InsRel3(u, ntppi, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,3

13. ¬InsRel3(u, ec, ntppi, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 8,4

14. [EleTran(ec, ntppi, skf62(d, c,b, a, ntppi, ec), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, ntppi, ec), ec, ntppi, a,b, c,d)] 10,7

15. ¬Trans(ec, ntppi, a,b, c,d) 11,9

16. ¬InsRel3(u, ntppi, v, a,b, c,d) 12,9

17. ¬InsRel3(u, ec, ntppi, a,b, c,d) 13,9

18. EleTran(ec, ntppi, skf62(d, c,b, a, ntppi, ec), a,b, c,d) Spt 14

19. Trans(ec, skf62(d, c,b, a, ntppi, ec), a,b, c,d)
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∨ InsRel3(ec, ntppi, skf62(d, c,b, a, ntppi, ec), a,b, c,d) 18,6

20. [(ec = ntppi) ∨ (skf62(d, c,b, a, ntppi, ec) = ntppi) ∨
InsRel3(ec, ntppi, skf62(d, c,b, a, ntppi, ec), a,b, c,d)] 18,5

21. (skf62(d, c,b, a, ntppi, ec) = ntppi) 20,17,1

22. Trans(ec, ntppi, a,b, c,d) ∨ InsRel3(ec, ntppi, ntppi, a,b, c,d) Rew 21,19

23. 2 22,17,15

24. ¬EleTran(ec, ntppi, skf62(d, c,b, a, ntppi, ec), a,b, c,d) Spt 23,18,14

25. EleTran(skf63(d, c,b, a, ntppi, ec), ec, ntppi, a,b, c,d) Spt 23,14

26. [(ec = ntppi) ∨ (skf63(d, c,b, a, ntppi, ec) = ntppi) ∨
InsRel3(skf63(d, c,b, a, ntppi, ec), ec, ntppi, a,b, c,d)] 25,5

27. [InsRel3(skf63(d, c,b, a, ntppi, ec), ec, ntppi, a,b, c,d) ∨
Trans(skf63(d, c,b, a, ntppi, ec), ntppi, a,b, c,d)] 25,6

28. (skf62(d, c,b, a, ntppi, ec) = ec) 26,12,1

29. Trans(ec, ntppi, a,b, c,d) ∨ InsRel3(ec, ec, ntppi, a,b, c,d) Rew 28,27

30. 2 29,16,15

Th129. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(po, ntpp, x, y, z1, z2)

Lemma 59. [¬(po = ntpp)]

From D7, D10, D49

Lemma 60. [¬(po = eq)]

From D7, D8, D49

Lemma 61. [¬(po = tpp)]

From D7, D9, D49

Lemma 62. [¬(eq = ntpp)]

From D8, D10, D49

Lemma 63. [¬(tpp = ntpp)]

From D9, D10, D49

Lemma 64. [[PPst(x, y) ∧ EQt(x, y)] → P=
sp

>(x, y)]

From D3, D40, D44

Lemma 65. [[Trans(po, ntpp, x, y, z1, z2)∧StrFCONT( x
z1∪z2

)∧StrFCONT( y
z1∪z2

)]→
[InsRel3(po, eq, ntpp, x, y, z1, z2) ∨ InsRel3(po, tpp, ntpp, x, y, z1, z2)]]

Refutation Set:

1. ¬(tpp = ntpp) Lemma 63

2. ¬(eq = ntpp) Lemma 62

3. ¬(po = eq) Lemma 60

4. ¬(po = tpp) Lemma 61
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5. ¬StrFCONTu ∨ FCONTu D39

6. ¬Pt(u ∪ v, w) ∨ Pt(v, w) Th18

7. ¬PPst(x, y) ∨ ¬EQt(x, y) ∨ P=
sp

>(x, y) Lemma 64

8. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

9. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

10. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

11. ¬Trans(u, ntpp, v, w, x, y) ∨ PPst( v
y ,

w
y ) Th94

12. ¬Trans(po, u, v, w, x, y) ∨ PO=
sp(

v
x ,

w
x ) Th87

13. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

14. ¬Meq(u, v, w, x) ∨ ¬(eq = y) ∨ SKP2(x,w, v, u, y) A22

15. NECP(skf17(u, v, w, x, y), w
v , u) ∨ SKP3(z, w, u, v, x1) D54

16. NECP(skf18(u, v, w, x, y), w
v , u) ∨ SKP3(z, x1, u, v, w) D54

17. ¬rcc=
sp(u, skf18(v, w, x, y, u), skf17(v, w, y, u, x)) ∨ SKP3(u, y, v, w, x) D54

18. ¬ECt(u, v) ∨ ¬Pt(u ∪ v, w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) ) Lemma 40

19. EQTS(skf18(u, v, w, x, y), skf17(u, v, x, y, w), w
v ,

x
v ) ∨ SKP3(y, x, u, v, w) D54

20. [¬SKP2(u, v, w, x, y) ∨ ¬StrFCONT( x
v∪u ) ∨

¬StrFCONT( w
v∪u ) ∨ IM(y, x, w, v, u)] A22

21. [¬IM(u, v, w, x, y) ∨ ¬Pt(x ∪ y, w) ∨ ¬Pt(x ∪ y, v) ∨
¬ECt(x, y) ∨ InsRel(u, v, w, x, y)] D53

22. ¬Mtpp(v, w, x, y) ∨ ¬(tpp = u) ∨ ¬StrFCONT( v
x∪y ) ∨

¬StrFCONT( w
x∪y ) ∨ IM(u, v, w, x, y)] A22

23. [¬SKP3(u, v, w, x, y) ∨ ¬SKP3(x1, v, x, w, y) ∨ ¬InsRel(z, y, v, x, w) ∨
(u = z) ∨ InsRel3(u, z, x1, y, v, x, w) ∨ (z = x1)] D54

24. [¬Trans(u, v, w, x, y, z) ∨ ¬NECP(x1, w
z , y) ∨ ¬EQTS(x1, x2, w

z ,
x
z ) ∨

¬NECP(x2, x
z , y) ∨ rcc=

sp(v, x1, x2)] D52

25. [¬Trans(u, v, w, x, y, z) ∨ ¬NECP(x1, w
y , z) ∨ ¬EQTS(x1, x2, w

y ,
x
y ) ∨

¬NECP(x2, x
y , z) ∨ rcc=

sp(u, x1, x2)] D52

26. [¬PO=
sp(

u
v ,

w
v ) ∨ ¬P=

sp
>(u

x ,
w
x ) ∨ ¬FCONT( u

v∪x ) ∨ ¬FCONT( w
v∪x ) ∨

¬ECTS(u
v ,

u
x ,

u
v∪x ) ∨ ¬ECTS(w

v ,
w
x ,

w
v∪x ) ∨

Mtpp(u,w, v, x) ∨ Meq(u,w, v, x)] Th73

27. StrFCONT( a
c∪d )

28. StrFCONT( b
c∪d )

29. Trans(po, ntpp, a,b, c,d)

30. ¬InsRel3(po, eq, ntpp, a,b, c,d)

31. ¬InsRel3(po, tpp, ntpp, a,b, c,d)

Proof:

32. ¬FCONT( b
c∪d ) 28,5

33. ¬FCONT( a
c∪d ) 27,5
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34. ¬SKP2(d, c, u, a, v) ∨ ¬StrFCONT( u
c∪d ) ∨ IM(v, a, u, c,d) 27,20

35. PO=
sp(

a
c ,

b
c ) 29,12

36. Pt(c ∪ d,b) 29,9

37. Pt(c ∪ d, a) 29,10

38. ECt(c,d) 29,8

39. PPst( a
d ,

b
d ) 29,11

40. [¬SKP3(po,b,d, c, a) ∨ ¬SKP3(ntpp,b, c,d, a) ∨
¬InsRel(tpp, a,b, c,d) ∨ (po = tpp) ∨ (tpp = ntpp)] 31,23

41. [¬SKP3(po,b,d, c, a) ∨ ¬SKP3(ntpp,b, c,d, a) ∨
¬InsRel(eq, a,b, c,d) ∨ (eq = po) ∨ (eq = ntpp)] 30,23

42. ¬SKP3(po,b,d, c, a) ∨ ¬SKP3(ntpp,b, c,d, a) ∨ ¬InsRel(tpp, a,b, c,d) 40,4,1

43. ¬SKP3(po,b,d, c, a) ∨ ¬SKP3(ntpp,b, c,d, a) ∨ ¬InsRel(eq, a,b, c,d) 41,3,2

44. ¬SKP2(d, c,b, a, u) ∨ IM(u, a,b, c,d) 34,28

45. Pt(d,b) 36,6

46. ECTS(b
c ,

b
d ,

b
c∪d ) SHy 38,36,18

47. Pt(d, a) 37,6

48. ECTS( a
c ,

a
d ,

a
c∪d ) SHy 38,37,18

49. EQt( a
d ,

b
d ) SHy 47,45,13

50. [SKP3(u, b,d, c, v) ∨ SKP3(w,b,d, c, a) ∨ SKP3(x, y,d, c, a) ∨
rcc=

sp(po, skf18(d, c, a,b, w), skf17(d, c,b, w, a))] SHy 29,25,19,16,15

51. [SKP3(u, b, c,d, v) ∨ SKP3(w,b, c,d, a) ∨ SKP3(x, y, c,d, a) ∨
rcc=

sp(ntpp, skf18(c,d, a,b, w), skf17(c,d,b, w, a))] SHy 29,24,19,16,15

52. [SKP3(u, b,d, c, v) ∨ rcc=
sp(po, skf18(d, c, a,b, u), skf17(d, c,b, u, a))] Con 50

53. SKP3(u, b, c,d, a) ∨ rcc=
sp(ntpp, skf18(c,d, a,b, u), skf17(c,d,b, u, a)) Con 51

54. SKP3(po,b,d, c, a) ∨ SKP3(po,b,d, c, a) 52,17

55. SKP3(po,b,d, c, a) Obs54

56. ¬SKP3(ntpp,b, c,d, a) ∨ ¬InsRel(tpp, a,b, c,d) 55,42

57. ¬SKP3(ntpp,b, c,d, a) ∨ ¬InsRel(eq, a,b, c,d) 55,43

58. P=
sp

>( a
d ,

b
d ) SHy 49,39,7

59. SKP3(ntpp,b, c,d, a) ∨ SKP3(ntpp,b, c,d, a) 53,17

60. SKP3(ntpp,b, c,d, a) Obs59

61. ¬InsRel(eq, a,b, c,d) 57,60

62. ¬InsRel(tpp, a,b, c,d) 56,60

63. ¬IM(tpp, a,b, c,d) ∨ ¬Pt(c ∪ d,b) ∨ ¬Pt(c ∪ d, a) ∨ ¬ECt(c,d) 62,21

64. ¬IM(tpp, a,b, c,d) 63,38,37,36

65. ¬IM(eq, a,b, c,d) ∨ ¬Pt(c ∪ d,b) ∨ ¬Pt(c ∪ d, a) ∨ ¬ECt(c,d) 61,22

66. ¬IM(eq, a,b, c,d) 65,38,36,37

67. [¬(tpp = tpp) ∨ ¬Mtpp(a,b, c,d) ∨
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¬StrFCONT( a
c∪d ) ∨ ¬StrFCONT( b

c∪d )] 64,22

68. ¬Mtpp(a,b, c,d) ∨ ¬StrFCONT( a
c∪d ) ∨ ¬StrFCONT( b

c∪d ) Obs67

69. ¬Mtpp(a,b, c,d) 68,28,27

70. Meq(a,b, c,d) ∨ Mtpp(a,b, c,d) SHy 58,48,46,35,33,32,26

71. Meq(a,b, c,d) 70,69

72. ¬Meq(a,b, c,d) ∨ ¬(u = eq) ∨ IM(u, a,b, c,d) SHy 44,14

73. ¬(u = eq) ∨ IM(u, a,b, c,d) 72,71

74. ¬(eq = eq) 73,66

75. 2 Obs74

Proof of Theorem:

Refutation Set:

1. ¬(tpp = ntpp) Lemma 63

2. ¬(eq = ntpp) Lemma 62

3. ¬(po = eq) Lemma 60

4. ¬(po = tpp) Lemma 61

5. ¬(po = ntpp) Lemma 59

6. ¬InsRel3(u, v, w, x, y, z, x1) ∨ EleTran(u, v, w, x, y, z, x1) D55

7. ¬InsRel3(u, ntpp, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th101

8. ¬InsRel3(u, po, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th100

9. [¬DirTran(u, v, w, x, y, z) ∨
¬EleTran(u, x1, v, w, x, y, z) ∨ (x1 = u) ∨ (x1 = v)] D56

10. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w) ∨
(v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

11. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1) ∨
InsRel3(u, v, w, x, y, z, x1)] D55

12. [¬Trans(po, ntpp, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) ∨
InsRel3(po, eq, ntpp, u, v, w, x) ∨ InsRel3(po, tpp, ntpp, u, v, w, x)] Lemma 65

13. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

14. StrFCONT( a
c∪d )

15. StrFCONT( b
c∪d )

16. DirTran(po, ntpp, a,b, c,d)

Proof:

17. ¬InsRel3(u, ntpp, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 14,7

18. ¬InsRel3(u, po, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d 14,8

19. [EleTran(po, ntpp, skf62(d, c,b, a, po, ntpp), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, po, ntpp), ntpp, po, a,b, c,d)] 16,13

20. ¬EleTran(po, u, ntpp, a,b, c,d) ∨ (u = po) ∨ (u = ntpp) 16,9
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21. ¬InsRel3(u, po, v, a,b, c,d) 18,15

22. ¬InsRel3(u, ntpp, v, a,b, c,d) 17,15

23. ¬InsRel3(po, u, ntpp, a,b, c,d) ∨ (u = po) ∨ (u = ntpp) 20,6

24. [¬Trans(po, ntpp, a,b, c,d) ∨ ¬StrFCONT( a
c∪d ) ∨ ¬StrFCONT( b

c∪d ) ∨
InsRel3(po, tpp, ntpp, a,b, c,d) ∨ (po = eq) ∨ (eq = ntpp)] 23,12

25. ¬Trans(po, ntpp, a,b, c,d) ∨ InsRel3(po, tpp, ntpp, a,b, c,d) 24,14,15,3,2

26. ¬Trans(po, ntpp, a,b, c,d)(po = tpp) ∨ (tpp = ntpp) 25,23

27. ¬Trans(po, ntpp, a,b, c,d) 26,4,1

28. EleTran(po, ntpp, skf62(d, c,b, a, ntpp, po), a,b, c,d) Spt 19

29. [Trans(po, skf62(d, c,b, a, ntpp, po), a,b, c,d) ∨
InsRel3(po, ntpp, skf62(d, c,b, a, ntpp, po), a,b, c,d)] 28,11

30. [(po = ntpp) ∨ (skf62(d, c,b, a, ntpp, po) = ntpp) ∨
InsRel3(po, ntpp, skf62(d, c,b, a, ntpp, po), a,b, c,d)] 28,10

31. (skf62(d, c,b, a, ntpp, po) = ntpp) 30,22,5

32. [Trans(po, ntpp, a,b, c,d) ∨ InsRel3(po, ntpp, ntpp, a,b, c,d)] Rew 31,29

33. 2 32,27,22

34. ¬EleTran(po, ntpp, skf62(d, c,b, a, ntpp, po), a,b, c,d) Spt 33,28,19

35. EleTran(skf63(d, c,b, a, ntpp, po), po, ntpp, a,b, c,d) Spt 33,19

36. [(po = ntpp) ∨ (skf63(d, c,b, a, ntpp, po) = po) ∨
InsRel3(skf63(d, c,b, a, ntpp, po), po, ntpp, a,b, c,d)] 35,10

37. InsRel3(skf63(d, c,b, a, ntpp, po), po, ntpp, a,b, c,d) ∨
Trans(skf63(d, c,b, a, ntpp, po), ntpp, a,b, c,d) SHy 35,11

38. (skf63(d, c,b, a, ntpp, po) = po) 36,21,5

39. InsRel3(po, po, ntpp, a,b, c,d) ∨ Trans(po, ntpp, a,b, c,d) Rew 38,37

40. 2 39,21,27

Th130. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(po, ntppi, x, y, z1, z2)

Lemma 66. [¬(po = ntppi)]

From D7, D10, D49

Lemma 67. [¬(po = tppi)]

From D7, D9, D49

Lemma 68. [¬(tppi = ntppi)]

From D9, D10, D49

Lemma 69. [¬(eq = ntppi)]

From D8, D10, D49

Lemma 70. [[Trans(po, ntppi, x, y, z1, z2)∧StrFCONT( x
z1∪z2

)∧StrFCONT( y
z1∪z2

)]→
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[InsRel3(po, eq, ntppi, x, y, z1, z2) ∨ InsRel3(po, tppi, ntppi, x, y, z1, z2)]]

From D39, D52, D54, A22, Th76

Proof of Theorem:

Refutation Set:

1. ¬(tppi = ntppi) Lemma 68

2. ¬(eq = ntppi) Lemma 69

3. ¬(po = eq) Lemma 60

4. ¬(po = tppi) Lemma 67

5. ¬(po = ntppi) Lemma 66

6. ¬InsRel3(u, v, w, x, y, z, x1) ∨ EleTran(u, v, w, x, y, z, x1) D55

7. ¬InsRel3(u, ntppi, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th102

8. ¬InsRel3(u, po, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th100

9. [¬DirTran(u, v, w, x, y, z) ∨
¬EleTran(u, x1, v, w, x, y, z) ∨ (x1 = u) ∨ (x1 = v)] D56

10. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w)

∨ (v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

11. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1)

∨ InsRel3(u, v, w, x, y, z, x1)] D55

12. ¬Transpo, ntppi, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨ ¬StrFCONT( v

w∪x ) ∨
InsRel3(po, eq, ntppi, u, v, w, x) ∨ InsRel3(po, tppi, ntppi, u, v, w, x) Lemma 70

13. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

14. StrFCONT( a
c∪d )

15. StrFCONT( b
c∪d )

16. DirTran(po, ntppi, a,b, c,d)

Proof:

17. ¬InsRel3(u, ntppi, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d ) 14,7

18. ¬InsRel3(u, po, v, a, w, c,d) ∨ ¬StrFCONT( w
c∪d ) 14,8

19. [EleTran(po, ntppi, skf62(d, c,b, a, po, ntppi), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, po, ntppi), ntppi, po, a,b, c,d)] 16,13

20. ¬EleTran(po, u, ntppi, a,b, c,d) ∨ (u = po) ∨ (u = ntppi) 16,9

21. ¬InsRel3(u, po, v, a,b, c,d) 18,15

22. ¬InsRel3(u, ntppi, v, a,b, c,d) 17,15

23. ¬InsRel3(po, u, ntppi, a,b, c,d) ∨ (u = po) ∨ (u = ntppi) 20,6

24. ¬Trans(po, ntppi, a,b, c,d) ∨ ¬StrFCONT( a
c∪d ) ∨ ¬StrFCONT( b

c∪d ) ∨
InsRel3(po, eq, ntppi, a,b, c,d) ∨ (tppi = po) ∨ (tppi = ntppi) 23,12

25. ¬Trans(po, ntppi, a,b, c,d) ∨ InsRel3(po, eq, ntppi, a,b, c,d) 24,15,14,3,2
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26. ¬Trans(po, ntppi, a,b, c,d)(po = eq) ∨ (ntppi = eq) 25,23

27. ¬Trans(po, ntpp, a,b, c,d) 26,4,1

28. EleTran(po, ntppi, skf62(d, c,b, a, ntppi, po), a,b, c,d) Spt 19

29. [Trans(po, skf62(d, c,b, a, ntppi, po), a,b, c,d) ∨
InsRel3(po, ntppi, skf62(d, c,b, a, ntppi, po), a,b, c,d)] 28,11

30. [(po = ntppi) ∨ (skf62(d, c,b, a, ntppi, po) = ntppi) ∨
InsRel3(po, ntppi, skf62(d, c,b, a, ntppi, po), a,b, c,d)] 28,10

31. (skf62(d, c,b, a, ntppi, po) = ntppi) 30,22,5

32. [Trans(po, ntppi, a,b, c,d) ∨ InsRel3(po, ntppi, ntppi, a,b, c,d)] Rew 31,29

33. 2 32,27,22

34. ¬EleTran(po, ntppi, skf62(d, c,b, a, ntppi, po), a,b, c,d) Spt 33,19,28

35. EleTran(skf63(d, c,b, a, ntppi, po), po, ntppi, a,b, c,d) Spt 33,19

36. [(po = ntppi) ∨ (skf63(d, c,b, a, ntppi, po) = po) ∨
InsRel3(skf63(d, c,b, a, ntppi, po), po, ntppi, a,b, c,d)] 35,10

37. InsRel3(skf63(d, c,b, a, ntppi, po), po, ntppi, a,b, c,d) ∨
Trans(skf63(d, c,b, a, ntppi, po), ntppi, a,b, c,d) SHy 35,11

38. (skf63(d, c,b, a, ntppi, po) = po) 36,21,5

39. InsRel3(po, po, ntppi, a,b, c,d) ∨ Trans(po, ntppi, a,b, c,d) Rew 38,37

40. 2 39,27,21

Th131. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(tpp, tppi, x, y, z1, z2)

Lemma 71. [[Trans(tpp, tppi, x, y, z1, z2)∧StrFCONT( x
z1∪z2

)∧StrFCONT( y
z1∪z2

)]→
InsRel3(tpp, eq, tppi, x, y, z1, z2)]

Refutation Set:

1. ¬(tpp = eq) Lemma 24

2. ¬(tppi = eq) Lemma 23

3. ¬StrFCONTu ∨ FCONTu D39

4. ¬Pt(u ∪ v, w) ∨ Pt(v, w) Th18

5. ¬Pt(u ∪ v, w) ∨ Pt(u,w) Th18

6. ¬PPst(x, y) ∨ ¬EQt(x, y) ∨ P=
sp

>(x, y) Lemma 64

7. ¬Trans(u, v, w, x, y, z) ∨ ECt(y, z) D52

8. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, x) D52

9. ¬Trans(u, v, w, x, y, z) ∨ Pt(y ∪ z, w) D52

10. ¬Trans(u, tppi, v, w, x, y) ∨ PPst(w
y ,

v
y ) Th97

11. ¬Trans(tpp, u, v, w, x, y) ∨ PPst( v
x ,

w
x ) Th90

12. ¬Pt(u, v) ∨ ¬Pt(u,w) ∨ EQt( v
u ,

w
u ) Lemma 39

13. ¬Meq(u, v, w, x) ∨ ¬(eq = y) ∨ SKP2(x,w, v, u, y) A22

14. NECP(skf17(u, v, w, x, y), w
v , u) ∨ SKP3(z, w, u, v, x1) D54
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15. NECP(skf18(u, v, w, x, y), w
v , u) ∨ SKP3(z, x1, u, v, w) D54

16. ¬rcc=
sp(u, skf18(v, w, x, y, u), skf17(v, w, y, u, x)) ∨ SKP3(u, y, v, w, x) D54

17. ¬ECt(u, v) ∨ ¬Pt(u ∪ v, w) ∨ ECTS(w
u ,

w
v ,

w
(u∪v) ) Lemma 40

18. EQTS(skf18(u, v, w, x, y), skf17(u, v, x, y, w), w
v ,

x
v ) ∨ SKP3(y, x, u, v, w) D54

19. [¬SKP2(u, v, w, x, y) ∨ ¬StrFCONT( x
v∪u ) ∨

¬StrFCONT( w
v∪u ) ∨ IM(y, x, w, v, u)] A22

20. [¬IM(u, v, w, x, y) ∨ ¬Pt(x ∪ y, w) ∨ ¬Pt(x ∪ y, v) ∨
¬ECt(x, y) ∨ InsRel(u, v, w, x, y)] D53

21. [¬SKP3(u, v, w, x, y) ∨ ¬SKP3(x1, v, x, w, y) ∨ ¬InsRel(z, y, v, x, w) ∨
(u = z) ∨ InsRel3(u, z, x1, y, v, x, w) ∨ (z = x1)] D54

22. [¬Trans(u, v, w, x, y, z) ∨ ¬NECP(x1, w
z , y) ∨ ¬EQTS(x1, x2, w

z ,
x
z ) ∨

¬NECP(x2, x
z , y) ∨ rcc=

sp(v, x1, x2)] D52

23. [¬Trans(u, v, w, x, y, z) ∨ ¬NECP(x1, w
y , z) ∨ ¬EQTS(x1, x2, w

y ,
x
y ) ∨

¬NECP(x2, x
y , z) ∨ rcc=

sp(u, x1, x2)] D52

24. [¬P=
sp

>(u
v ,

w
v ) ∨ ¬P=

sp
>(w

x ,
u
x ) ∨ ¬FCONT( u

v∪x ) ∨ ¬FCONT( w
v∪x ) ∨

¬ECTS(u
v ,

u
x ,

u
v∪x ) ∨ ¬ECTS(w

v ,
w
x ,

w
v∪x ) ∨ Meq(u,w, v, x)] Th74

25. StrFCONT( a
c∪d )

26. StrFCONT( b
c∪d )

27. Trans(tpp, tppi, a,b, c,d)

28. ¬InsRel3(tpp, eq, tppi, a,b, c,d)

Proof:

29. ¬FCONT( b
c∪d ) 28,5

30. ¬FCONT( a
c∪d ) 27,5

31. ¬SKP2(d, c, u, a, v) ∨ ¬StrFCONT( u
c∪d ) ∨ IM(v, a, u, c,d) 27,20

32. PPst( a
c ,

b
c ) 29,12

33. Pt(c ∪ d,b) 29,9

34. Pt(c ∪ d, a) 29,10

35. ECt(c,d) 29,8

36. PPst(b
d ,

a
d ) 29,11

37. [¬SKP3(tpp,b,d, c, a) ∨ ¬SKP3(tppi,b, c,d, a) ∨
¬InsRel(eq, a,b, c,d) ∨ (eq = tpp) ∨ (eq = tppi)] 31,23

38. ¬SKP3(tpp,b,d, c, a) ∨ ¬SKP3(tppi,b, c,d, a) ∨ ¬InsRel(eq, a,b, c,d) 41,3,2

39. ¬SKP2(d, c,b, a, u) ∨ IM(u, a,b, c,d) 34,28

40. Pt(d,b) 36,6

41. Pt(c,b) 37,6

42. Pt(d, a) 37,6

43. Pt(c, a) 37,6

44. ECTS(b
c ,

b
d ,

b
c∪d ) SHy 38,36,18
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45. ECTS( a
c ,

a
d ,

a
c∪d ) SHy 38,37,18

46. EQt( a
d ,

b
d ) SHy 47,45,13

47. EQt( a
c ,

b
c ) SHy 47,45,13

48. [SKP3(u, b,d, c, v) ∨ SKP3(w,b,d, c, a) ∨ SKP3(x, y,d, c, a) ∨
rcc=

sp(tpp, skf18(d, c, a,b, w), skf17(d, c,b, w, a))] SHy 29,25,19,16,15

49. [SKP3(u, b, c,d, v) ∨ SKP3(w,b, c,d, a) ∨ SKP3(x, y, c,d, a) ∨
rcc=

sp(tppi, skf18(c,d, a,b, w), skf17(c,d,b, w, a))] SHy 29,24,19,16,15

50. [SKP3(u, b,d, c, v) ∨ rcc=
sp(tpp, skf18(d, c, a,b, u), skf17(d, c,b, u, a))] Con 50

51. SKP3(u, b, c,d, a) ∨ rcc=
sp(tppi, skf18(c,d, a,b, u), skf17(c,d,b, u, a)) Con 51

52. SKP3(tpp,b,d, c, a) ∨ SKP3(tpp,b,d, c, a) 52,17

53. SKP3(tpp,b,d, c, a) Obs54

54. ¬SKP3(tppi,b, c,d, a) ∨ ¬InsRel(eq, a,b, c,d) 55,42

55. P=
sp

>(b
d ,

a
d ) SHy 49,39,7

56. P=
sp

>( a
c ,

b
c ) SHy 49,39,7

57. SKP3(tppi,b, c,d, a) ∨ SKP3(tppi,b, c,d, a) 53,17

58. SKP3(tppi,b, c,d, a) Obs59

59. ¬InsRel(eq, a,b, c,d) 57,60

60. ¬IM(eq, a,b, c,d) ∨ ¬Pt(c ∪ d,b) ∨ ¬Pt(c ∪ d, a) ∨ ¬ECt(c,d) 61,22

61. ¬IM(eq, a,b, c,d) 65,38,36,37

62. Meq(a,b, c,d) 68,28,27

63. ¬Meq(a,b, c,d) ∨ ¬(u = eq) ∨ IM(u, a,b, c,d) SHy 44,14

64. ¬(u = eq) ∨ IM(u, a,b, c,d) 72,71

65. ¬(eq = eq) 73,66

66. 2 Obs74

Proof of Theorem:

Refutation Set:

1. ¬(tppi = tpp) Lemma 35

2. ¬(tpp = eq) Lemma 24

3. ¬(tppi = eq) Lemma 23

4. ¬InsRel3(u, v, w, x, y, z, x1) ∨ EleTran(u, v, w, x, y, z, x1) D55

5. ¬InsRel3(u, tpp, tppi, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th112

6. ¬InsRel3(tpp, tppi, u, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th116

7. [¬DirTran(u, v, w, x, y, z) ∨
¬EleTran(u, x1, v, w, x, y, z) ∨ (x1 = u) ∨ (x1 = v)] D56

8. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w)

∨ (v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

9. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1)



Transition Theorems II 220

∨ InsRel3(u, v, w, x, y, z, x1)] D55

10. ¬Trans(tpp, tppi, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨

¬StrFCONT( v
w∪x ) ∨ InsRel3(tpp, eq, tppi, u, v, w, x) Lemma 71

11. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

12. StrFCONT( a
c∪d )

13. StrFCONT( b
c∪d )

14. DirTran(tpp, tppi, a,b, c,d)

Proof:

15. ¬InsRel3(tpp, tppi, u, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 12,6

16. ¬InsRel3(u, tpp, tppi, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 12,5

17. [EleTran(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, tppi, tpp), tpp, tppi, a,b, c,d)] 14,11

18. ¬EleTran(tpp, u, tppi, a,b, c,d) ∨ (u = tpp) ∨ (u = tppi) 14,7

19. ¬InsRel3(u, tpp, tppi, a,b, c,d) 13,16

20. ¬InsRel3(tpp, tppi, u, a,b, c,d) 13,15

21. ¬InsRel3(tpp, u, tppi, a,b, c,d) ∨ (u = tpp) ∨ (u = tppi) 18,4

22. ¬Trans(tpp, tppi, a,b, c,d) ∨ ¬StrFCONT( a
c∪d ) ∨

¬StrFCONT( b
c∪d ) ∨ (eq = tpp) ∨ (eq = tppi) 21,10

23. ¬Trans(tpp, tppi, a,b, c,d) 22,13,12,2,3

24. EleTran(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d) Spt 17

25. [Trans(tpp, skf62(d, c,b, a, tppi, tpp), a,b, c,d) ∨
InsRel3(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d)] 24,9

26. [(tpp = tppi) ∨ (skf62(d, c,b, a, tppi, tpp) = tppi) ∨
InsRel3(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d)] 24,8

27. (skf62(d, c,b, a, tppi, tpp) = tppi) 26,20,1

28. [Trans(tpp, tppi, a,b, c,d) ∨ InsRel3(tpp, tppi, tppi, a,b, c,d)] Rew 27,25

29. 2 28,23,20

30. ¬EleTran(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d) Spt 29,24,17

31. EleTran(skf63(d, c,b, a, tppi, tpp), tpp, tppi, a,b, c,d) Spt 29,17

32. [(tpp = tppi) ∨ (skf63(d, c,b, a, tppi, tpp) = tpp) ∨
InsRel3(skf63(d, c,b, a, tppi, tpp), tpp, tppi, a,b, c,d)] 31,7

33. InsRel3(skf63(d, c,b, a, tppi, tpp), tpp, tppi, a,b, c,d) ∨
Trans(skf63(d, c,b, a, tppi, tpp), tppi, a,b, c,d) SHy 31,9

34. (skf63(d, c,b, a, tppi, tpp) = tpp) 32,19,1

35. InsRel3(tpp, tpp, tppi, a,b, c,d) ∨ Trans(tpp, tppi, a,b, c,d) Rew 34,33

36. 2 35,23,19
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Th132. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(ntpp, ntppi, x, y, z1, z2)

Lemma 72. [¬(ntppi = tpp)]

From D9, D10, D49

Lemma 73. [[Trans(ntpp,ntppi, x, y, z1, z2)∧StrFCONT( x
z1∪z2

)∧StrFCONT( y
z1∪z2

)]→
InsRel3(ntpp, eq, ntppi, x, y, z1, z2)]

From D39, D52, D54, A22, Th74

Proof of Theorem:

Refutation Set:

1. ¬(ntppi = tpp) Lemma 72

2. ¬(eq = ntpp) Lemma 62

3. ¬(eq = ntppi) Lemma 69

4. ¬InsRel3(u, v, w, x, y, z, x1) ∨ EleTran(u, v, w, x, y, z, x1) D55

5. ¬InsRel3(u, ntppi, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th102

6. ¬InsRel3(u, ntpp, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th101

7. [¬DirTran(u, v, w, x, y, z) ∨
¬EleTran(u, x1, v, w, x, y, z) ∨ (x1 = u) ∨ (x1 = v)] D56

8. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w)

∨ (v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

9. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1)

∨ InsRel3(u, v, w, x, y, z, x1)] D55

10. ¬Trans(ntpp, ntppi, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨

¬StrFCONT( v
w∪x ) ∨ InsRel3(ntpp, eq, ntppi, u, v, w, x) Lemma 73

11. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

12. StrFCONT( a
c∪d )

13. StrFCONT( b
c∪d )

14. DirTran(ntpp, ntppi, a,b, c,d)

Proof:

15. ¬InsRel3(u, ntppi, u, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 12,6

16. ¬InsRel3(u, tpp, tppi, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 12,5

17. [EleTran(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, tppi, tpp), tpp, tppi, a,b, c,d)] 14,11

18. ¬EleTran(tpp, u, tppi, a,b, c,d) ∨ (u = tpp) ∨ (u = tppi) 14,7

19. ¬InsRel3(u, tpp, tppi, a,b, c,d) 16,13

20. ¬InsRel3(tpp, tppi, u, a,b, c,d) 15,13

21. ¬InsRel3(tpp, u, tppi, a,b, c,d) ∨ (u = tpp) ∨ (u = tppi) 18,4

22. ¬Trans(tpp, tppi, a,b, c,d) ∨ ¬StrFCONT( a
c∪d ) ∨
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¬StrFCONT( b
c∪d ) ∨ (eq = tpp) ∨ (eq = tppi) 21,10

23. ¬Trans(tpp, tppi, a,b, c,d) 22,13,12,3,2

24. EleTran(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d) Spt 17

25. [Trans(tpp, skf62(d, c,b, a, tppi, tpp), a,b, c,d) ∨
InsRel3(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d)] 24,9

26. [(tpp = tppi) ∨ (skf62(d, c,b, a, tppi, tpp) = tppi) ∨
InsRel3(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d)] 24,8

27. (skf62(d, c,b, a, tppi, tpp) = tppi) 26,20,1

28. [Trans(tpp, tppi, a,b, c,d) ∨ InsRel3(tpp, tppi, tppi, a,b, c,d)] Rew 27,25

29. 2 28,23,20

30. ¬EleTran(tpp, tppi, skf62(d, c,b, a, tppi, tpp), a,b, c,d) Spt 29,24,17

31. EleTran(skf63(d, c,b, a, tppi, tpp), tpp, tppi, a,b, c,d) Spt 29,17

32. [(tpp = tppi) ∨ (skf63(d, c,b, a, tppi, tpp) = tpp) ∨
InsRel3(skf63(d, c,b, a, tppi, tpp), tpp, tppi, a,b, c,d)] 31,7

33. InsRel3(skf63(d, c,b, a, tppi, tpp), tpp, tppi, a,b, c,d) ∨
Trans(skf63(d, c,b, a, tppi, tpp), tppi, a,b, c,d) SHy 31,9

34. (skf63(d, c,b, a, tppi, tpp) = tpp) 32,19,1

35. InsRel3(tpp, tpp, tppi, a,b, c,d) ∨ Trans(tpp, tppi, a,b, c,d) Rew 34,33

36. 2 35,23,19

Th133. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(tpp, ntppi, x, y, z1, z2)

Lemma 74. [[Trans(tpp,ntppi, x, y, z1, z2)∧StrFCONT( x
z1∪z2

)∧StrFCONT( y
z1∪z2

)]→
InsRel3(tpp, eq, ntppi, x, y, z1, z2)]

From D39, D52, D54, A22, Th74

Proof of Theorem:

Refutation Set:

1. ¬(ntppi = tpp) Lemma 72

2. ¬(tpp = eq) Lemma 24

3. ¬(eq = ntppi) Lemma 69

4. ¬InsRel3(u, v, w, x, y, z, x1) ∨ EleTran(u, v, w, x, y, z, x1) D55

5. ¬InsRel3(u, tpp, ntppi, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th113

6. ¬InsRel3(u, ntppi, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th102

7. [¬DirTran(u, v, w, x, y, z) ∨
¬EleTran(u, x1, v, w, x, y, z) ∨ (x1 = u) ∨ (x1 = v)] D56

8. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w)

∨ (v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

9. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1)
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∨ InsRel3(u, v, w, x, y, z, x1)] D55

10. ¬Trans(tpp, ntppi, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨

¬StrFCONT( v
w∪x ) ∨ InsRel3(tpp, eq, ntppi, u, v, w, x) Lemma 74

11. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

12. StrFCONT( a
c∪d )

13. StrFCONT( b
c∪d )

14. DirTran(tpp, ntppi, a,b, c,d)

Proof:

15. ¬InsRel3(u, ntppi, u, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 12,6

16. ¬InsRel3(u, tpp, ntppi, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 12,5

17. [EleTran(tpp, ntppi, skf62(d, c,b, a, ntppi, tpp), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, ntppi, tpp), tpp, ntppi, a,b, c,d)] 14,11

18. ¬EleTran(tpp, u, ntppi, a,b, c,d) ∨ (u = tpp) ∨ (u = ntppi) 14,7

19. ¬InsRel3(u, tpp, ntppi, a,b, c,d) 16,13

20. ¬InsRel3(tpp, ntppi, u, a,b, c,d) 15,13

21. ¬InsRel3(tpp, u, ntppi, a,b, c,d) ∨ (u = tpp) ∨ (u = ntppi) 18,4

22. ¬Trans(tpp, ntppi, a,b, c,d) ∨ ¬StrFCONT( a
c∪d ) ∨

¬StrFCONT( b
c∪d ) ∨ (eq = tpp) ∨ (eq = ntppi) 21,10

23. ¬Trans(tpp, ntppi, a,b, c,d) 22,13,12,2,3

24. EleTran(tpp, ntppi, skf62(d, c,b, a, ntppi, tpp), a,b, c,d) Spt 17

25. [Trans(tpp, skf62(d, c,b, a, ntppi, tpp), a,b, c,d) ∨
InsRel3(tpp, ntppi, skf62(d, c,b, a, ntppi, tpp), a,b, c,d)] 24,9

26. [(tpp = ntppi) ∨ (skf62(d, c,b, a, ntppi, tpp) = ntppi) ∨
InsRel3(tpp, ntppi, skf62(d, c,b, a, ntppi, tpp), a,b, c,d)] 24,8

27. (skf62(d, c,b, a, ntppi, tpp) = ntppi) 26,1,20

28. [Trans(tpp, ntppi, a,b, c,d) ∨ InsRel3(tpp, ntppi, ntppi, a,b, c,d)] Rew 27,25

29. 2 28,23,20

30. ¬EleTran(tpp, ntppi, skf62(d, c,b, a, ntppi, tpp), a,b, c,d) Spt 29,17,24

31. EleTran(skf63(d, c,b, a, ntppi, tpp), tpp, ntppi, a,b, c,d) Spt 29,17

32. [(tpp = ntppi) ∨ (skf63(d, c,b, a, ntppi, tpp) = tpp) ∨
InsRel3(skf63(d, c,b, a, ntppi, tpp), tpp, ntppi, a,b, c,d)] 31,7

33. InsRel3(skf63(d, c,b, a, ntppi, tpp), tpp, ntppi, a,b, c,d) ∨
Trans(skf63(d, c,b, a, ntppi, tpp), ntppi, a,b, c,d) SHy 31,9

34. (skf63(d, c,b, a, ntppi, tpp) = tpp) 32,19,1

35. InsRel3(tpp, tpp, ntppi, a,b, c,d) ∨ Trans(tpp, ntppi, a,b, c,d) Rew 34,33

36. 2 35,23,19
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Th134. [StrFCONT( x
z1∪z2

) ∧ StrFCONT( y
z1∪z2

)] → ¬DirTran(tppi, ntpp, x, y, z1, z2)

Lemma 75. [¬(tppi = ntpp)]

From D9, D10, D49

Lemma 76. [[Trans(tppi, ntpp, x, y, z1, z2) ∧ StrFCONT( x
z1∪z2

) ∧
StrFCONT( y

z1∪z2
)] → InsRel3(tppi, eq, ntpp, x, y, z1, z2)]

From D39, D52, D54, A22, Th74

Proof of Theorem:

Refutation Set:

1. ¬(tppi = ntpp) Lemma 75

2. ¬(eq = tppi) Lemma 23

3. ¬(ntpp = eq) Lemma 62

4. ¬InsRel3(u, v, w, x, y, z, x1) ∨ EleTran(u, v, w, x, y, z, x1) D55

5. ¬InsRel3(u, tppi, ntpp, v, w, x, y) ∨ ¬StrFCONT( v
x∪y ) ∨ ¬StrFCONT( w

x∪y ) Th117

6. ¬InsRel3(u, ntpp, v, w, x, y, z) ∨ ¬StrFCONT( w
y∪z ) ∨ ¬StrFCONT( x

y∪z ) Th101

7. [¬DirTran(u, v, w, x, y, z) ∨
¬EleTran(u, x1, v, w, x, y, z) ∨ (x1 = u) ∨ (x1 = v)] D56

8. [¬EleTran(u, v, w, x, y, z, x1) ∨ (v = w)

∨ (v = u) ∨ InsRel3(u, v, w, x, y, z, x1)] D55

9. [¬EleTran(u, v, w, x, y, z, x1) ∨ Trans(u,w, x, y, z, x1)

∨ InsRel3(u, v, w, x, y, z, x1)] D55

10. ¬Trans(tpp, ntppi, u, v, w, x) ∨ ¬StrFCONT( u
w∪x ) ∨

¬StrFCONT( v
w∪x ) ∨ InsRel3(tpp, eq, ntppi, u, v, w, x) Lemma 76

11. [EleTran(u, v, skf62(z, y, x, w, v, u), w, x, y, z) ∨
EleTran(skf63(z, y, x, w, v, u), u, v, w, x, y, z) ∨ ¬DirTran(u, v, w, x, y, z)] D56

12. StrFCONT( a
c∪d )

13. StrFCONT( b
c∪d )

14. DirTran(tppi, ntpp, a,b, c,d)

Proof:

15. ¬InsRel3(u, ntpp, u, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 12,6

16. ¬InsRel3(u, tppi, ntpp, a, v, c,d) ∨ ¬StrFCONT( v
c∪d 12,5

17. [EleTran(tppi, ntpp, skf62(d, c,b, a, ntpp, tppi), a,b, c,d) ∨
EleTran(skf63(d, c,b, a, ntpp, tppi), tppi, ntpp, a,b, c,d)] 14,11

18. ¬EleTran(tppi, u, ntpp, a,b, c,d) ∨ (u = tppi) ∨ (u = ntpp) 14,7

19. ¬InsRel3(u, tppi, ntpp, a,b, c,d) 16,13

20. ¬InsRel3(tppi, ntpp, u, a,b, c,d) 15,13

21. ¬InsRel3(tppi, u, ntpp, a,b, c,d) ∨ (u = tppi) ∨ (u = ntpp) 18,4

22. ¬Trans(tppi, ntpp, a,b, c,d) ∨ ¬StrFCONT( a
c∪d ) ∨
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¬StrFCONT( b
c∪d ) ∨ (eq = tppi) ∨ (eq = ntpp) 21,10

23. ¬Trans(tppi, ntpp, a,b, c,d) 22,12,13,2,3

24. EleTran(tppi, ntpp, skf62(d, c,b, a, ntpp, tppi), a,b, c,d) Spt 17

25. [Trans(tppi, skf62(d, c,b, a, ntpp, tppi), a,b, c,d) ∨
InsRel3(tppi, ntpp, skf62(d, c,b, a, ntpp, tppi), a,b, c,d)] 24,9

26. [(tppi = ntpp) ∨ (skf62(d, c,b, a, ntpp, tppi) = ntpp) ∨
InsRel3(tppi, ntpp, skf62(d, c,b, a, ntpp, tppi), a,b, c,d)] 24,8

27. (skf62(d, c,b, a, ntpp, tppi) = ntpp) 26,20,1

28. [Trans(tppi, ntpp, a,b, c,d) ∨ InsRel3(tppi, ntpp, ntpp, a,b, c,d)] Rew 27,25

29. 2 28,23,20

30. ¬EleTran(tppi, ntpp, skf62(d, c,b, a, ntpp, tppi), a,b, c,d) Spt 29,24,17

31. EleTran(skf63(d, c,b, a, ntpp, tppi), tppi, ntpp, a,b, c,d) Spt 29,17

32. [(tppi = ntpp) ∨ (skf63(d, c,b, a, ntpp, tppi) = tppi) ∨
InsRel3(skf63(d, c,b, a, ntpp, tppi), tppi, ntpp, a,b, c,d)] 31,7

33. InsRel3(skf63(d, c,b, a, ntpp, tppi), tppi, ntpp, a,b, c,d) ∨
Trans(skf63(d, c,b, a, ntpp, tppi), ntpp, a,b, c,d) SHy 31,9

34. (skf63(d, c,b, a, ntpp, tppi) = tppi) 32,19,1

35. InsRel3(tppi, tppi, ntpp, a,b, c,d) ∨ Trans(tppi, ntpp, a,b, c,d) Rew 34,33

36. 2 35,23,19



Transition Theorems II 226



Bibliography

[Agouris et al., 2000] P. Agouris, K. Beard, G. Mountrakis, and A. Stefanidis. Captur-

ing and modeling geographic object change: A spatio-temporal gazetteer framework.

Photogrammetric Engineering and Remote Sensing, 66(10):1241–1250, 2000.

[Allen and Hayes, 1985] J. F. Allen and P. J. Hayes. A common sense theory of time. In

Proceedings of the 9th International Joint Conference on AI (IJCAI-85), pages 528–531,

Los Angeles, USA, 1985.

[Allen and Koomen, 1983] J. F. Allen and J. A. Koomen. Planning using a temporal

world model. In Proceedings of the 8th International Joint Conference on AI (IJCAI-

83), pages 741–747, Karlsruhe, Germany, 1983.

[Allen, 1981] J. F. Allen. An interval-based representation of temporal knowledge. In

Proceedings of the 7th International Joint Conference on AI (IJCAI-81), pages 221–

226, 1981.

[Allen, 1983] J. F. Allen. Maintaining knowledge about temporal intervals. Communica-

tions of the ACM, 26(11):832–843, 1983.

[Allen, 1984] J. F. Allen. Towards a general theory of action and time. Artificial Intelli-

gence, 23(2):123–154, 1984.

[Amir and McIIraith, 2000] A. Amir and S. McIIraith. Partition-based logical reasoning.

In A. G. Cohn, F. Giunchiglia, and B. Selman, editors, Principles of Knowledge Repre-

sentation and Reasoning: Proceedings of the 7th International Conference (KR-2000).

Morgan Kaufmann, 2000.

[Asher and Vieu, 1995] N. Asher and L. Vieu. Towards a geometry of common sense:

A semantics and a complete axiomatization of mereotopology. In Proceedings of 14th

International Joint Conference on AI (IJCAI-95), pages 846–852, Montreal, 1995.

227



BIBLIOGRAPHY 228

[Bennett and Cohn, 1999] B. Bennett and A. G. Cohn. Multi-dimensional multi-modal

logics as a framework for spatio-temporal reasoning. In Working Notes of IJCAI-99

Workshop on Hot Topics in Spatio-Temporal Reasoning, Stockholm, 1999.

[Bennett et al., 2000a] B. Bennett, A. G. Cohn, P. Torrini, and S. M. Hazarika. Describing

rigid body motions in a qualitative theory of spatial regions. In Proceedings of 17th

National Conference on AI (AAAI-2000), pages 503–509, Austin, Texas, 2000.

[Bennett et al., 2000b] B. Bennett, A. G. Cohn, P. Torrini, and S. M. Hazarika. A foun-

dation for region-based qualitative geometry. In W. Horn, editor, Proceedings of 14th

European Conference on AI (ECAI-2000), pages 204–208, Berlin, 2000.

[Bennett et al., 2000c] B. Bennett, A.G. Cohn, P. Torrini, and S.M. Hazarika. Region-

based qualitative geometry. Technical Report 2000.07, School of Computing, University

of Leeds, LS2 9JT, UK, 2000.

[Bennett et al., 2002] B. Bennett, A.G. Cohn, F. Wolter, and M. Zakharyaschev. Multi-

dimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelli-

gence, 17(3):239–251, 2002.

[Bennett, 1994] B. Bennett. Spatial reasoning with propositional logics. In J. Doyle,

E. Sandewall, and P. Torasso, editors, Principles of Knowledge Representation and

Reasoning: Proceedings of the 4th International Conference (KR-94), pages 51–62, San

Francisco, CA., 1994. Morgan Kaufmann.

[Bennett, 1997] B. Bennett. Logical Representations for Automated Reasoning about Spa-

tial Relationships. PhD thesis, School of Computer Studies, The University of Leeds,

1997. Available from http: / / www. comp. leeds. ac. uk/ brandon/ thesis. html.

[Bennett, 2001a] B. Bennett. A categorical axiomatisation of region-based geometry. Fun-

damenta Informaticae, 46(1-2):145–158, 2001.

[Bennett, 2001b] B. Bennett. Space, time, matter and things. In C. Welty and B. Smith,

editors, Proceedings of 2nd International Conference on Formal Ontology in Information

Systems (FOIS-01), pages 105–116. ACM, 2001.

[Biacino and Gerla, 1991] L. Biacino and G. Gerla. Connection structures. Notre Dame

Journal of Formal Logic, 32(2):242–247, 1991.

[Bittner and Smith, 2003] T. Bittner and B. Smith. Granular spatio-temporal ontolo-

gies. In AAAI Symposium: Foundations and Applications of Spatio-Temporal Reasoning

(FASTR), pages 12–17. AAAI Press, 2003.



BIBLIOGRAPHY 229

[Bittner, 2002a] T. Bittner. Judgements about spatio-temporal relations. In D. Fensel,

F. Guinchiglia, D. McGuinness, and Mary-Anne Williams, editors, Principles of Knowl-

edge Representation and Reasoning: Proceedings of 8th International Conference (KR-

02), pages 521–532. Morgan Kaufmann, 2002.

[Bittner, 2002b] T. Bittner. Reasoning about qualitative spatio-temporal relations at mul-

tiple levels of granularity. In F. van Harmelen, editor, Proceedings of the 15th European

Conference on AI (ECAI-02). IOS Press, 2002.

[Bobrow, 1968] D. Bobrow. Natural language input for a computer problem-solving sys-

tem. In M. Minsky, editor, Semantic Information Processing. MIT Press, Cambridge,

MA, 1968.

[Borgo et al., 1996] S. Borgo, N. Guarino, and C. Masolo. A pointless theory of space

based on strong connection and congruence. In L. Carlucci Aiello and J. Doyle, ed-

itors, Principles of Knowledge Representation and Reasoning: Proceedings of the 5th

International Conference (KR-96). Morgan Kaufmann, 1996.

[Brajnik and Lines, 1988] G. Brajnik and M. Lines. Qualitative modeling and simulation

of socio-economic phenomena. Journal of Artificial Societies and Social Simulation,

1(1), 1988.

[Bruns and Egenhofer, 1996] H. T. Bruns and M. J. Egenhofer. Similarity of spatial

scenes. In Proceedings of the 7th International Symposium on Spatial Data Handling

(SDH-96), pages 173–184. Taylor and Francis, 1996.

[Bundy et al., 1979] A. Bundy, L. Byrd, G. Luger, C. Mellish, R. Milne, and M. Palmer.

MECHO : A program to solve mechanics problems. Technical Report : Working Paper

50, Department of Artificial Intelligence, Edinburgh University, 1979.

[Caferra, 2004] R. Caferra. Automated model building. In Applied Logic Series, volume 31.

Kluwer, 2004.

[Carnap, 1958] R. Carnap. Introduction to Symbolic Logic and its Applications. Dover

Publications, Inc., New York, 1958. Translated by W. H. Meyer, Univ. of Chicago and

J. Wilkinson, Wesleyan Univ.

[Charniak, 1968] E. Charniak. CARPS a program which solves calculus word problems.

Technical Report MAC-TR-51, Project MAC,MIT, 1968.



BIBLIOGRAPHY 230

[Claramunt and Thériault, 1996] C. Claramunt and M. Thériault. Towards semantics for

modelling spatio-temporal processes within GIS. In Proceedings of 7th International

Symposium on Spatial Data Handling (SDH-96), pages 47–63. Taylor and Francis., 1996.

[Clarke, 1981] B. L. Clarke. A calculus of individuals based on ‘connection’. Notre Dame

Journal of Formal Logic, 22(3):204–218, 1981.

[Clarke, 1985] B. L. Clarke. Individuals and points. Notre Dame Journal of Formal Logic,

26(1):61–75, 1985.

[Clementini and Di Felice, 1995] E. Clementini and P. Di Felice. A comparison of methods

for representing topological relationships. Information Sciences, 3:149–178, 1995.

[Clementini and Di Felice, 1997] E. Clementini and P. Di Felice. Approximate topological

relations. International Journal of Approximate Reasoning, 16:173–204, 1997.

[Clementini et al., 1994] E. Clementini, J. Sharma, and M. J. Egenhofer. Modeling topo-

logical spatial relations: strategies for query processing. Computers and Graphics,

18(6):815–822, 1994.

[Clementini et al., 1997] E. Clementini, P. Di Felice, and D. Hernández. Qualitative rep-

resentation of positional information. Artificial Intelligence, 95(2):317–356, 1997.

[Cohn and Gotts, 1996] A. G. Cohn and N. M. Gotts. Representing spatial vagueness:

A Mereological Approach. In L. C. Aiello, J. Doyle, and S. Shapiro, editors, Princi-

ples of Knowledge Representation and Reasoning: Proceedings of the 5th International

Conference (KR-96), pages 230–241. Morgan Kaufmann, 1996.

[Cohn and Hazarika, 2001a] A. G. Cohn and S. M. Hazarika. Continuous transitions in

mereotopology. In Working Notes of Commonsense-2001: 5th Symposium on Logical

Formalizations of Commonsense Reasoning, pages 71–80, New York, 2001.

[Cohn and Hazarika, 2001b] A. G. Cohn and S. M. Hazarika. Qualitative spatial repre-

sentation and reasoning: an overview. Fundamenta Informaticae, 46(1-2):1–29, 2001.

[Cohn and Varzi, 1998] A. G. Cohn and A. Varzi. Connection relations in mereotopology.

In H. Prade, editor, Proceedings of the 13th European Conference on AI (ECAI-98),

pages 150–154. John Wiley & Sons, 1998.

[Cohn and Varzi, 2003] A. G. Cohn and A. Varzi. Mereotopological connection. Journal

of Philosophical Logic, 32:357–390, 2003.



BIBLIOGRAPHY 231

[Cohn et al., 1994] A. G. Cohn, J. M. Gooday, and B. Bennett. A comparison of structures

in spatial and temporal logics. In R. Casati, B. Smith, and G. White, editors, Philos-

ophy and the Cognitive Sciences: Proceedings of the 16th International Wittgenstein

Symposium, Vienna, 1994. Hölder-Pichler-Tempsky.
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[Hägerstrand, 1967] T. Hägerstrand. Innovation diffusion as a spatial process. Chicago:

University of Chicago Press, 1967.

[Hamblin, 1971] C. L. Hamblin. Instants and intervals. Studium Generale, 24:127–134,

1971.

[Hayes, 1979] P. J. Hayes. The Naive Physics Manifesto. In D. Mitchie, editor, Expert

systems in the micro-electronic age. Edinburgh University Press, 1979.

[Hayes, 1985a] P. J. Hayes. Naive Physics I: Ontology for Liquids. In J. R. Hubbs and

R. C. Moore, editors, Formal Theories of the Commonsense World, pages 71–89. Ablex

Publishing Corporation, Norwood, NJ, 1985.

[Hayes, 1985b] P. J. Hayes. The Second Naive Physics Manifesto. In J. R. Hubbs and

R. C. Moore, editors, Formal Theories of the Commonsense World. Ablex Publishing

Corporation, Norwood, NJ, 1985.

[Hays, 1989] E. Hays. On defining motion verbs and spatial prepositions. Technical report,

Universitat des Saarlandes, 1989.

[Hazarika and Cohn, 2001] S. M. Hazarika and A. G. Cohn. Qualitative spatio-temporal

continuity. In D. R. Montello, editor, Spatial Information Theory: Foundations of

GIS(COSIT-01), number 2205 in Lecture Notes in Computer Science, pages 92–107.

Springer, 2001.

[Hazarika and Cohn, 2002] S. M. Hazarika and A. G Cohn. Abducing qualitative spatio-

temporal histories from partial observations. In D. Fensel, F. Guinchiglia, D. McGuin-

ness, and Mary-Anne Williams, editors, Principles of Knowledge Representation and

Reasoning: Proceedings of the 8th International Conference (KR-02), pages 14–25. Mor-

gan Kaufmann, 2002.



BIBLIOGRAPHY 238

[Heller, 1990] M. Heller. The Ontology of Physical Objects: Four Dimensional Hunks of

Matter. Cambridge University Press, Cambridge, 1990.

[Hernández et al., 1995] D. Hernández, E. Clementini, and P. Di Felice. Qualitative dis-

tances. In A. U. Frank and W. Kuhn, editors, Spatial Information Theory: A Theoretical

Basis for GIS (COSIT-95), number 988 in Lecture Notes in Computer Science, pages

45–58, Berlin, 1995. Springer Verlag.

[Hernández, 1994] D. Hernández. Qualitative Representation of Spatial Knowledge. Num-

ber 804 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1994.

[Hornsby and Egenhofer, 2000] K. Hornsby and M. J. Egenhofer. Identity-based changes:

A foundation for spatio-temporal knowledge representation. International Journal of

Geographical Information Science, 14(3):207–224, 2000.

[Isli and Cohn, 1998] A. Isli and A. G. Cohn. An algebra for cyclic ordering of 2D orienta-

tions. In Proceedings of the 15th National Conference on AI (AAAI-98), pages 643–649,

Madison, WI, 1998.

[Isli and Cohn, 2000] A. Isli and A.G. Cohn. A new approach to cyclic ordering of 2D

orientations using ternary relation algebras. Artificial Intelligence, 122(1–2):137–187,

2000.

[Isli and Moratz, 1999] A. Isli and R. Moratz. Qualitative spatial representation and rea-

soning: algebraic models for relative position. Technical report, Fachbereich Informatik,

Universitaet Hamburg, 1999.

[Kamp, 1979] H. Kamp. Events, instants and temporal reference. In Von Stechow Bäuerle,
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relations, 69, 72

transition

matrix, 70, 72, 83

interval relations

embeds, 52

meets, 46

JEPD, 18

local survey, 88

specifying, 92

mereology, 11, 15

mereotopological

framework, 37

relations, 39

RCC-8, 39

durative, 65

parthood, 39

mereotopology

what is, 11

NECP, 46

one-piece

definition, 43

poverty conjecture, 6

primitive relations, 37

qualitative

continuity, 30

axiom, 62, 64

definition, 58

reasoning, 6

spatial reasoning

approaches, 10

what is, 8

Region Connection Calculus

about, 17

references, 10

snapshot, 87

global, 87

sorts, 41

LLAMA, 37

sorted logic, 41

space-time

histories, 6, 28, 101

continuous, 61

spatial
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connection, 38

leap, 61

spatio-temporal

change, 93

minimizing, 95

connection, 38

continuity

firm, 58

intuitive, 58

sideways leaps, 58

fluent, 93

inertia, 93

interactions, 48

patterns, 89

binary, 99

temporal

connection, 38

equivalence, 44

inclusion, 44

overlap, 44

pinching, 33, 36, 58

relations, 44

equivalence, 45

inclusion, 45

order, 44

overlap, 45

slice, 23, 36

contemporaneous pair, 65

definition, 49

existence of, 50

uderlying structure, 51

Theorems

Th1-Th2, 39

Th3, 41

Th4-Th7, 42

Th8-Th9, 44

Th10-Th18, 45

Th19, 46

Th20-Th27, 47

Th28-Th32, 48

Th33, 49

Th34-Th41, 50

Th42-Th45, 51

Th46-Th47, 53

Th48-Th49, 61

Th50, 62

Th51, 63

Th52-Th54, 64

Th55-Th60, 67

Th61-Th64, 68

Th65-Th70, 75

Th71-Th75, 76

Th76, 77

Th77-Th80, 80

Th81-Th90, 81

Th91-Th98, 82

Th99-Th111, 83

Th112-Th119, 84

Th120-Th128, 85

Th129-Th134, 86

topology, 10

transition

direct, 79

elementary, 78

generalized, 91

graph, 32

inconsistent, 79

instantaneous, 70

intuitive, 60

operators, 77

durative, 77
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pattern, 91

weird, 60


