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Abstract

A person with normal hearing has the ability to follow a particular conversa-

tion of interest in a noisy and reverberant environment, whilst simultaneously

ignoring the interfering sounds. This task often becomes more challenging

for individuals with a hearing impairment. Attending selectively to a sound

source is difficult to replicate in machines, including devices such as hearing

aids. A correctly set up hearing aid will work well in quiet conditions, but its

performance may deteriorate seriously in the presence of competing sounds.

To be of help in these more challenging situations the hearing aid should be

able to segregate the desired sound source from any other, unwanted sounds.

This thesis explores a novel approach to speech segregation based on

optimal cue mapping (OCM). OCM is a signal processing method for seg-

regating a sound source based on spatial and other cues extracted from the

binaural mixture of sounds arriving at a listener’s ears. The spectral energy

fraction of the target speech source in the mixture is estimated frame-by-

frame using artificial neural networks (ANNs). The resulting target speech

magnitude estimates for the left and right channels are combined with the

corresponding original phase spectra to produce the final binaural output

signal. The performance improvements delivered by the OCM algorithm are

evaluated using the STOI and PESQ metrics for speech intelligibility and

quality, respectively. A variety of increasingly challenging binaural mixtures

are synthesised involving up to five spatially separate sound sources in both

anechoic and reverberant environments. The segregated speech consistently

exhibits gains in intelligibility and quality and compares favourably with a

leading, somewhat more complex approach. The OCM method allows the

selection and integration of multiple cues to be optimised and provides scal-

able performance benefits to suit the available computational resources. The

ability to determine the varying relative importance of each cue in different

acoustic conditions is expected to facilitate computationally efficient solu-

tions suitable for use in a hearing aid, allowing the aid to operate effectively

in a range of typical acoustic environments. Further developments are pro-

posed to achieve this overall goal.
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Chapter 1

Introduction

1.1 Background

Speech is a powerful communications bridge between humans, though it can

suffer from sources of acoustic interference which increase the effort required

to listen to speech and can reduce its intelligibility. The problem becomes

more serious for people suffering from a hearing deficit. According to a recent

study by Action On Hearing Loss, there were approximately 10 million people

in 2015 with a hearing loss in the UK (RNID, 2015), which means that about

one person in six has some degree of hearing impairment.

Hearing loss which occurs at birth is known as congenital hearing loss. Ac-

quired hearing loss after birth usually develops gradually, but can be sudden.

Hearing loss can be indicated by many signs, most obviously by experienc-

ing difficulty with hearing what people are saying or requiring higher sound

levels than others when listening to music or watching television. There are

a multitude of reasons why sounds may not be processed successfully and

these can lie at any point within the auditory system.

Hearing loss can loosely be divided into two types: conductive and sen-
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sorineural. Problems of the outer ear or middle ear result in conductive

hearing loss. This is often caused by a blockage (e.g. due to earwax or fluid

arising from an ear infection) or a structural problem (such as a disorder of

the hearing bones or a perforated eardrum).

Sensorineural hearing loss may be caused by damage to the inner ear

or the auditory nerve. It often results from defective outer hair cells or

damage to the cochlea resulting from genetic disorders, injury, ageing or the

cumulative effect of loud noise. It is possible to suffer from both conductive

and sensorineural hearing loss and this is described as a mixed hearing loss.

Hearing impairment can vary greatly in its severity, ranging from slight to

profound deafness.

For many decades hearing aids have been the primary choice for allevi-

ating the effects of a hearing deficit. A person with sensorineural hearing

impairment may have less ability to hear a weak sound and less tolerance

of an intense sound (a phenomenon known as recruitment) than a normal-

hearing person. Hearing aids with electronic compression can compensate

for this deficit. In general, in order to communicate effectively, suffers from

sensorineural hearing impairment require a higher signal-to-noise ratio than

normal-hearing people.

In the 1930s, wearable electric hearing aids began to be developed. These

were very large and were worn somewhere on the body and so were referred

to as body aids. The advent of transistor technology in the 1960s saw a

significant reduction in their size and led to the development of behind-the-

ear (BTE) devices. The size of hearing aids continued to reduce, leading to

the appearance of completely-in-the-canal (CIC) hearing aids in the 1980s

(Hearing Aids, 2015).

The small size of hearing aids is not the only challenge associated with

them. One of the biggest challenges and opportunities arrived with the intro-

duction of digital technology in hearing aids in the 1980s (e.g. Graupe et al.

(1986)). Some operations, such as block processing to represent a signal with
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fine resolution in the frequency domain, cannot realistically be implemented

in analogue aids.

The switch to digital signal processing (DSP) in hearing aid technology

has had a major impact. Digital hearing aids have the ability to make de-

cisions about how to process sounds depending on the acoustic environment

(Dillon, 2001). DSP algorithms can selectively reduce the amplitude of inter-

fering sounds and improve the ability of the user to understand a conversation.

An algorithm by Tellakula (2007), has been used to improve signal-to-noise

ratio in high-end hearing aids (Widex Inc., 2015). In the last decade, hearing

aids have largely completed the transition from analogue to digital technol-

ogy. Great strides have been made, not only in terms of more and more

sophisticated signal processing algorithms, but also with greater miniaturi-

sation and power efficiency. The latter issue in particular has continually

held back digital hearing aid development as computational complexity and

power consumption go hand-in-hand.

Digital hearing aids can be categorised as monaural or bilateral. Monaural

hearing aids are worn in only one ear, whereas bilateral aids require users to

wear a pair of monaural hearing aids, one in each ear. Conventionally, each

monaural hearing aid in a bilateral pair processes the sound individually using

its own independent algorithm, without sharing any information between the

two. Modern binaural hearing aids are also fitted bilaterally, but they are

able to communicate with each other and share binaural information. This

gives them the ability to process sounds in a more sophisticated and effective

manner.

Although modern hearing aids can improve the intelligibility of speech

and preserve sound quality, they tend to work well only in relatively quiet

environments. Noisy or reverberant environments can seriously affect their

performance (Kochkin, 2000; RNID, 2007) to the extent that 13% of people

interviewed by Gimsing (2008) had stopped using their hearing aids after five

years of having them fitted, predominantly due to unpleasant sound quality

or a lack of benefit. Two years later, Kochkin (2010) reported that the
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number of “satisfied” or “very satisfied” customers had not improved, with

lack of benefit and poor sound quality remaining the key reasons cited for

this.

It is clear that a more advanced hearing aid is needed that is able to

provide users with a better experience in terms of greater speech intelligibility

and higher speech quality in adverse, varying conditions. Similar issues exist

in the field of automatic speech recognition (ASR), despite the advances in

such systems in the last few years. Once again, however, recognition rates

are high for speech in a relatively quiet environment with a microphone

close to the talker, but performance markedly deteriorates in the presence

of interfering sounds, especially competing speech (Narayanan and Wang,

2014).

1.2 Motivation

In everyday life, humans with normal hearing display a remarkable ability

to attend selectively to a single sound source in the presence of competing

concurrent sources, background noise and reverberation. This phenomenon

can be demonstrated, for example, in the case of holding a conversation with

someone in noisy surroundings, where it is often possible to pay attention to

the target speech of interest without being affected by other nearby concur-

rent conversations or sounds. This selective attention ability of the human

hearing system has been referred to as the cocktail party effect (Cherry, 1953).

The effect applies widely in daily life, because the sound waves reaching our

ears generally do not emanate from a single sound source but, rather, come

from a combination of sound sources, many of which can be considered to

be unwanted. In addition, listeners are able to adapt to and tolerate moder-

ate reverberation in an acoustic environment (Nábělek and Robinson, 1982).

Humans also have the ability to localise the direction of a speech source in a

mixture of competing sound sources by virtue of having two ears and by using

head movements (Rayleigh, 1907). By utilising both ears, human listeners
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can attend to a desired sound signal under extremely adverse conditions and

binaural hearing compared to monaural leads to significant improvements in

speech intelligibility in noisy environments (Moore, 2012).

Binaural hearing makes it possible for a person to locate a directional

sound source with greater ease than when using a single ear (Harris, 1965) and

it increases speech intelligibility in noisy environments. These observations

inspired the development of binaural digital hearing aids. Recently, Thakur

et al. (2015) demonstrated that it is possible to implement in hardware a

sound segregation algorithm in real time. He developed a framework for the

algorithm that emulates the human ability of selective attention to a single

sound source using a field programmable gate array (FPGA). With todays

technology it is also feasible to share information between and with two

bilateral devices via a wireless link, as demonstrated by the integration of

Bluetooth technology (Bluetooth Technology Website, 2015) in hearing aids

(e.g. Oticon (2008)). Such technologies are fundamental to the construction

of binaural hearing aids.

One form of signal processing applicable to a digital hearing aid is sound

segregation, in which elements of a sound source (such as speech) are ex-

tracted from an acoustic mixture to form an auditory stream (Wang and

Brown, 2006). Segregation can, for example, be performed on the basis that

the direction of the wanted sound source is different from the directions of

the interfering sources. Based on the premise that extracting a clean version

of the wanted speech from a binaural mixture improves both the intelligi-

bility and the quality of the wanted speech, an ideal goal for a hearing aid

is to achieve perfect source segregation. The focus of the work in this the-

sis is on developing a binaural digital hearing aid algorithm which exploits

segregation cues to advance a significant distance closer to this goal.

Machine learning is a branch of artificial intelligence which focuses on

the study and construction of algorithms that can learn from data and make

predictions. In recent years, there has been a surge of interest in researching

machine learning and applying it to speech processing. Artificial neural net-

47



works (ANNs) are a popular example of a machine learning model inspired

by the biological neural networks found in the central nervous systems of

animals. In the training stage of the ANN, when both the clean speech and

the binaural mixture are accessible, speech segregation can be considered as

a supervised learning problem. A time-frequency mask is commonly used

in the segregation process. The computational goal of machine learning is

to estimate the ideal mask, such that the features of the target speech may

be extracted from the noisy speech mixture. The mask commonly has two

forms: a binary mask (IBM) or a ratio mask (IRM). In this application, the

speech segregation problem is formulated as a classification problem when

estimating the IBM and a mapping problem when estimating the IRM.

1.3 Objectives

Typical auditory environments in which hearing aids are used include situa-

tions with multiple concurrent sound sources. The sound from these sources

may be reflected and diffracted by surfaces both near and far and the location

of each source may be constantly changing. In practice, the interfering sounds

themselves will exhibit a range of characteristics. For instance, they may be

stochastic or periodic in nature or a mixture of the two. In reverberation, the

reflected sound may be highly correlated with the original source, whereas

the target speech and interfering sources may be relatively uncorrelated, such

as in the case of multiple talkers. These variations may create conflicting re-

quirements when attempting to segregate the target sound source.

Most efforts at segregation of a speech source involve systems that try to

tackle the cocktail party problem. To be useful in a hearing aid, such a system

must be capable of segregating sound sources in real-time with sufficiently

low delay in the acoustic output from the device. Visual cues contribute to

speech intelligibility in noise (Sumby and Pollack, 1954) and for this to be

effective a latency of under 160 ms in the acoustic signal reaching the listener

has been shown to be adequate (Grant and Greenberg, 2001). However, the
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delay should generally be under 10 ms for hearing aids, to avoid the user

hearing a delayed version of their own voice (Stone and Moore, 1999). For

this reason, and because of power consumption constraints, which are due

to battery size limitations, the algorithm must be relatively computationally

simple.

Not only does the proposed algorithm have the potential to help someone

with a hearing impairment to focus on wanted speech better in noise, the

same can be expected to apply to users with normal hearing. There are other

potential applications besides hearing aids for the proposed work, including

improving the robustness of portable speech recognition devices and sound-

based human-computer interaction systems, and hearing for robots.

The research presented in this thesis is aimed principally at improving

the performance of digital hearing aids. The work is motivated principally

by the desire to raise the intelligibility of target speech by exploiting some of

the attributes of human binaural hearing when interfering sounds are present.

The primary mechanism by which this will be achieved is speech segregation.

Based on this, we develop and evaluate a scheme for reducing the level of

competing sounds in a binaural mixture of sound signals using machine learn-

ing principles, thereby reducing the degree of masking being imposed on the

wanted sound source.

1.4 Hypothesis

It is hypothesised that:

The intelligibility and quality of a target speech source in a binaural mix-

ture with spatially distinct competing concurrent interfering sounds may be

increased using a machine learning algorithm which is suitable for implemen-

tation in a hearing aid.

Associated with the primary hypothesis, there are several supplementary
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research questions:

1) Does optimal mapping of an increasing number of diverse cues im-

prove the segregation of one sound source in a binaural mixture in terms of

intelligibility and quality?

2) Does the use of a ratio mask estimated by a neural network, compared

with the equivalent binary mask, improve segregation of one sound source in

a binaural mixture in terms of intelligibility and quality?

3) Is it possible to determine the varying relative contribution of diverse

cues for estimating a mask in a range of simulated multiple-source and rever-

berant acoustic conditions?

4) Is it possible to allow maximum benefit to be drawn from limited com-

putational resources by configuring the optimal mapping of cues?

All these questions are addressed in this thesis in order to validate the

hypothesis. Section 9.2, within the conclusion at the end of the thesis, returns

to these questions and reviews the extent to which they have been answered.

1.5 Thesis structure

The thesis is organised into nine chapters. Chapter 2 presents a brief overview

of the human hearing system. In particular, it introduces the peripheral au-

ditory system and discusses the psychology of the perception of sound, in-

cluding masking and auditory grouping. Chapter 3 contains an overview of

binaural hearing, beginning with consideration of sound localisation for a sin-

gle source, the effect on localisation of multiple sources and the advantages

afforded by binaural hearing. Head-related transfer functions, sound spatial-

isation and binaural synthesis are introduced as fundamental prerequisites

for artificially spatialising sound sources. Chapter 4 introduces speech intelli-

gibility and quality assessment metrics. It briefly reviews existing techniques
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for improving speech intelligibility and speech quality in noise.

In Chapter 5, a new binaural processing method for improving speech in-

telligibility and quality in interference is described. Firstly, the concept of a

time-frequency mask is defined and means for extracting a variety of spatial

cues from a multi-source binaural mixture are described. This leads to the

description of a novel algorithm called optimal cue mapping (OCM). OCM

utilises extracted cues to estimate a spectral ratio mask which is applied

frame-by-frame to the binaural mixture to segregate the wanted speech. A

pilot study of OCM is described in Chapter 6. It starts with a simple fixed-

direction, three-source anechoic configuration. The contribution of each type

of cue is investigated and the performance of each mask is evaluated. With

the aim of applying OCM in increasingly realistic situations, a more com-

plicated problem space with variable-direction interferers in both anechoic

and reverberant conditions is established in Chapter 7. The OCM algorithm

is compared in Chapter 8 with another state-of-the-art binaural segregation

system for a variety of configurations.

The results of the research are summarised in Chapter 9, and suggestions

for further work are presented.
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Chapter 2

Human Hearing and Sound

Perception

In order to design a successful hearing aid algorithm, an appreciation of the

human hearing system is needed. This chapter begins by briefly describing

the outer, middle and inner ears, which are the major physiological com-

ponents of the peripheral auditory system. Attention is then focused on

masking, which is of special relevance when listening to speech in a complex

binaural soundfield. The results of applying a mask (the spectral energy

fraction of the target source in the mixture) in the segregation process gen-

erally leads to a fragmented version of the original target speech and so the

final part of this chapter considers some higher functions of hearing using

the powerful conceptual framework of auditory scene analysis to understand

how these fragments are given meaning.

2.1 The peripheral auditory system

The human auditory system can be split into three parts: the outer ear, mid-

dle ear and inner ear, as shown in figure 2.1. The outer ear is itself principally
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Figure 2.1: The peripheral auditory system. Redrawn from Moore (2012).

composed of three further parts. The first of these is the pinna, also known

as the auricle, which is an irregularly shaped organ that comprises complex

folds of cartilage. The pinna acts as an acoustic filter whose spectral charac-

teristics for sounds entering the ear canal vary depending on the location of

the sound source. The set of cues forms a unique fingerprint for each possible

direction, which provides information to help the hearing system localise a

sound and attend to it in the presence of other interfering sounds. This will

be considered further in section 3.1.4. Furthermore, the size of the pinna and

its detailed shape differ between individuals, which means that the filtering

effects it produces are unique to each listener.

The second part of the outer ear is the meatus or ear canal. It is a tube

which directs the sound from the pinna towards the tympanic membrane

(eardrum) which is the third major part of the outer ear. The ear canal

has an average length of 25mm and a diameter of between 7mm and 10mm

(Moore, 2012). The eardrum sits at an angle of approximately 55◦ to the ear

canal. It is elliptical, with horizontal and vertical diameters of 8-9mm and

9-10mm, respectively. Its average thickness is approximately 0.074mm.

Sound travels down the auditory canal and causes the eardrum to vibrate.

The vibrations are transmitted through the bones of the middle ear (the
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Figure 2.2: Schematic view of unrolled cochlea. Adapted from Howard and
Angus (2009).

malleus, incus and stapes) to the oval window. Collectively known as the

ossicles, the most important function of the middle ear is to convert air

vibrations in the ear canal to fluid movement inside the cochlea. The shape

and arrangement of the bones serve to match the acoustic impedance of the

air medium to the fluid medium. The stapes presses onto the oval window

and its movements are transmitted to the fluid in the cochlea. A second

membrane-covered opening exists, known as the round window. When the

oval window moves inwards, the round window moves outwards, and vice

versa. The transfer of acoustic energy depends on the difference between the

sound pressure applied on the oval window and that applied on the round

window.

The inner ear contains the cochlea and auditory nerve. The cochlea is a

fluid-filled spiral which consists of two to three turns. It has two chambers,

the scala vestibuli and scala tympani, running along its length of 35 mm.

The two chambers are separated by Reissners membrane and the basilar

membrane (BM), and they are connected through the helicotrema at the

apex (or apical) end of the cochlea. The organ of corti runs along the basilar

membrane and is coated with around 12,000 outer hair cells and 3,500 inner

hair cells. The base end of the cochlea is where the two previously mentioned

windows, the oval window and the round window, are located. A schematic

view of an unrolled cochlea is shown in figure 2.2.
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The properties of the basilar membrane vary considerably from base to

apex, and its response is affected differently by sounds of different frequencies.

At the base, the basilar membrane is stiff and narrow, while it is wider and

less stiff at the apex. As a result, high-frequency sounds cause maximum dis-

placement of the basilar membrane near the base and low-frequency sounds

have maximum effect near the apex.

When the stapes presses against the oval window, a pressure difference is

applied across the basilar membrane. This is transmitted along the length

of the basilar membrane, causing the round window to move outwards. The

wave motion that occurs on the basilar membrane in response to a sound

stimulus is referred to as a travelling wave. The wave begins at the oval

window, rises to a peak where the basilar membrane is most sensitive to the

frequency of the sound stimulus, and fades away as the energy is absorbed

towards the helicotrema. Each point on the basilar membrane moves up and

down sinusoidally. The inner hair cells convert the physical vibration of the

basilar membrane into neural activity, which is then carried to the brain via

the auditory nerve.

Two popular theories exist to explain the pitch perception of sound (see,

for example, Howard and Angus (2009)), namely the place theory and the

temporal theory. The place theory states that pitch perception depends

on which regions of the basilar membrane are vibrating. The sensation of

different frequency pitches derives exclusively from the motion of particular

groups of hair cells. According to the temporal theory, pitch is coded by the

precise timings of nerve cell firing, which are synchronised with the phase of

an incoming periodic sound. Neither theory fully or properly explains pitch

perception and each is applicable under different conditions.
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2.2 Critical bands and masking

The human hearing system responds to sound frequencies ranging approxi-

mately from 20Hz to 20 kHz and it can detect pressure variations between

20µPa and 20Pa. The term “absolute threshold of hearing” is applied to

indicate the minimum audible sound level of a pure tone for an average ear

with normal hearing. Therefore, to describe the pressure, the lowest percepti-

ble sound pressure level (SPL), p0, is used as a reference. The sound pressure

level in dBs, LSPL, is then given by the equation:

LSPL = 20log10
p

p0
(dBSPL) (2.1)

where p denotes the sound pressure of the stimulus and p0 refers to the sound

level of 20µPa or 2× 10−5N/m2.

The sensitivity of human hearing to different frequencies is not uniform,

which means the minimum threshold of hearing is a function of frequency

and it also varies from person-to-person. It is affected by age, gender and

social factors (Davis, 1995). There are two different methods for measuring

the threshold of hearing (or absolute sensitivity). The first is the minimum

audible pressure (MAP) (Killion, 1978). MAP is measured by delivering a

sound to a listener’s ear, usually over a headphone, and then asking them to

indicate the minimum audible level. The absolute intensity is then obtained

by placing a probe microphone inside the ear canal. The second method is

the minimum audible field (MAF) (Robinson and Dadson, 1956). In this

measurement, the sound is delivered through a loudspeaker rather than a

headphone. It requires a free field environment, such as an anechoic cham-

ber, which is free from reflections and diffractions caused by obstacles. For

reference purposes, the sound pressure level is also measured without the

listener, at the position corresponding to the centre of their head.

Examples of the results obtained using each method are shown in figure

2.3. It can be seen that they yield different results. The difference above
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Figure 2.3: Minimum thresholds of hearing. Redrawn from Moore (2012).

1 kHz is attributed by Moore (2012) to physiological noise caused by the

vascular system when wearing the headphone. Most significantly, the figure

shows that the human hearing system is most sensitive at frequencies between

3 and 4 kHz.

2.2.1 Critical bands

Both MAP and MAF are measured in a quiet environment. The absolute

threshold of human hearing can, however, be raised in the presence of other

sounds or noise (Greenwood, 1961). For example, a listener may fail to detect

a small amplitude tone when noise with relatively greater energy is presented

simultaneously. This phenomenon is known as masking. In addition, a sound

source is said to be masked when components of it cannot be heard due to

the presence of another sound. The sound source that is masked is called the

maskee, and the masking sound is known as the masker.

To investigate masking, Fletcher (1940) carried out an experiment to
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measure the threshold for detecting a sinusoidal signal as a function of the

bandwidth of a band-limited noise. The noise had constant power density

and its centre frequency was set equal to the sinusoidal signal frequency.

The results of the experiment indicate that the hearing threshold for a tone

increases as the noise bandwidth increases until it reaches a certain relatively

stable value. Increasing the bandwidth of the noise further does not affect

the threshold appreciably.

This behaviour can be accounted for in the peripheral auditory system if

the cochlea acts like a bank of bandpass filters with overlapping passbands.

These filters are termed critical bands or auditory filters. When a listener

is presented with a tone and a band-limited noise, the bandpass filter with

matching centre frequency passes the tone and the noise within that criti-

cal band and this creates the masking effect. Any noise outside the critical

bandwidth plays little part in the masking process, creating the approxi-

mately constant threshold value observed when the noise bandwidth exceeds

the bandwidth of the auditory filter.

The notched-noise method described by Patterson (1976) may be used to

infer a shape for the auditory filters. In this method, a tone of frequency f

is chosen, and masker noise with a stopband bandwidth 2∆f and centred at

f is applied. This is illustrated in figure 2.4. The noise passing through the

auditory filter is represented by the shaded regions. As the stop-band of the

noise gets wider, the amount of noise decreases and this results in a lowering

of the threshold of perception. Based on this, the shape of the auditory filter

can be estimated and appears as a convex curve in figure 2.5. The critical

bands are spread continuously across the spectrum. There is no evidence to

indicate any discontinuities between them.

The critical bandwidth of auditory filters does not vary uniformly with

frequency. The bandwidth is narrower at low frequencies and becomes wider

as the frequency is increased. Data from subjective measurements of critical

bandwidth and centre frequency by Zwicker and Terhardt (1980) are shown

in table 2.1. The lowest frequency range here is from 0 Hz to 100 Hz, which
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Figure 2.4: Schematic illustration of the notched-noise method. Redrawn
from Patterson (1976).

includes the inaudible frequencies between 0 Hz to 20 Hz.

The shape of the auditory filters is complex and so they are often de-

scribed in terms of their equivalent rectangular bandwidths (ERBs). The

ERB is the bandwidth of a brickwall bandpass filter required to pass the

same noise energy as the auditory filter it represents. The ERB of an audi-

tory filter is intended to represent its bandwidth but not its shape.

A formula that estimates the ERB in Hz as a function of centre frequency

has been developed by Glasberg and Moore (1990) and is given by:

ERB = 24.7(4.37fc+ 1) (2.2)

where fc is the centre frequency in kHz.
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Table 2.1: The values of critical band rate and critical bandwidth, adapted
from Zwicker and Terhardt (1980).

Range
Critical bandwidth (Hz) Centre frequency(Hz)

(lower Hz - upper Hz)

0-100 100 50
100-200 100 150
200-300 100 250
300-400 100 350
400-510 110 450
510-630 120 570
630-770 140 700
770-920 150 840
920-1080 160 1000
1080-1270 190 1170
1270-1480 210 1370
1480-1720 240 1600
1720-2000 280 1850
2000-2320 320 2150
2320-2700 380 2500
2700-3150 450 2900
3150-3700 550 3400
3700-4400 700 4000
4400-5300 900 4800
5300-6400 1100 5800
6400-7700 1300 7000
7700-9500 1800 8500
9500-12000 2500 10500
12000-15500 3500 13500
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2.2.2 Masking

In the previous section, the concept of masking was introduced and was

shown to occur when the perception of one sound is affected by the presence

of noise which is spectrally close to it. This type of masking in the frequency

domain is known as simultaneous masking, since maskee and masker are

presented at the same time. Masking also occurs when maskee and masker

do not coincide temporally, which is known as non-simultaneous masking. In

the following sections, both types of masking are discussed.

2.2.2.1 Simultaneous masking

Figure 2.5: Basilar membrane displacement for tone A and B, tone B has a
lower frequency than tone A. (a) two tones are barely overlapped, (b) two
tones are masked by each other, (c) tone A is almost fully masked by tone

B, (d) tone A partially masks tone B. Redrawn from Rossing (1990).

When a sound arrives at the cochlea, it vibrates and excites the hair cells

along the basilar membrane, as described in section 2.1. For a sine wave,

there is a position of maximum displacement on the basilar membrane and

this position depends on the frequency of the tone. Neighbouring regions of

the basilar membrane are also displaced, but to a lesser degree. If another
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tone with a slightly different frequency is active simultaneously, it is only

perceptible if its energy is sufficient to displace the basilar membrane with a

greater amplitude than the original tone does at the position of peak response

for this new frequency. Hence, a low energy signal can be hidden under the

region of displacement caused by the original sine wave. This is illustrated

in figure 2.5.

The masking threshold (that is the boundary between perceptible and

imperceptible) can be measured by presenting a pure tone masker signal at

a certain frequency with a fixed intensity and a maskee with a variable fre-

quency and intensity. The graphical representation of masked thresholds as

a function of frequency is known as a masking pattern or masked audiogram.

Figure 2.6: Masking pattern for a narrow band of noise with centre
frequency of 410 Hz. The overall noise level is indicated above each curve

which shows the elevation in threshold of a pure tone signal as a function of
frequency. Redrawn from Moore (2012), original from Egan and Hake

(1950).

Figure 2.6 shows an example of a masking pattern for narrowband noise

with a centre frequency of 410 Hz. For a low level masker (20 and 30 dB SPL),

the threshold exhibits a symmetrical shape. As the masker level increases,

62



however, the masking curve becomes wider and the shape becomes asym-

metric. As can be seen in figure 2.5, higher frequencies are more effectively

masked than lower frequencies. This is referred to as the upward spread

of masking. It happens because a low frequency sound has to propagate a

longer distance along the basilar membrane compared to a high frequency one.

This causes displacement of higher frequency points on the basilar membrane

while the low frequency sound is propagating past them.

2.2.2.2 Non-simultaneous masking

Masking not only occurs when two signals are presented simultaneously, but

also when they are presented in succession, as shown in figure 2.7. The louder

sound causes the other sound before or after it to become imperceptible.

This type of masking is known as non-simultaneous masking or temporal

masking. It can be subdivided into two types: forward masking, which

describes the case where masking occurs just after the presence of the masker,

and backward masking, which occurs when the maskee precedes the masker.

Figure 2.7: Schematic drawing of the region of non-simultaneous masking.
Redrawn from Fastl and Zwicker (2007).

The masking threshold reduces to 0 dB 100-200 ms after the end of the

masker. The increase in forward masking is not straightforwardly related to
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the masker level. When the masker level increases by 10 dB, for example,

there may be only a 3 dB increase in the masking threshold. Furthermore,

the amount of masking increases as the duration of the masker is increased

at least up to 50 ms (Moore, 2012). Forward masking is also influenced

by the relationship between the frequencies of maskee and masker. The

occurrence of forward masking is thought to be due to the ringing effect,

which is the continued displacement of the basilar membrane after the end of

a loud masking signal; a quieter signal cannot be heard if it overlaps with the

ringing. The response to a lower level signal is also reduced by the short term

fatigue in the auditory nerve produced by the masker. The neural activity

excited by the masker persists at a higher level in the auditory system after

the signal has ended.

Backward masking is a more minor effect than forward masking. Signif-

icant backward masking tends to last only about 1-2ms and can usually be

ignored. The amount of backward masking detected mainly depends on how

much training the subject has received. Trained subjects often display little

or even no backward masking. It is thought that this masking may in part

be caused by the fact that louder sounds propagate faster through the hear-

ing system and overtake a preceding lower level signal, causing the latter to

become masked (Rossing, 1990).

2.2.2.3 Binaural masking level differences

When two identical signals are presented to both ears, the presentation is

termed diotic. On the other hand, when the signal arriving at the left ear is

different from the one at the right ear, the presentation is said to be dichotic.

When listening to spatially separated sounds, the human auditory system

exploits phase, level and spectral differences in the signals arriving at the

two ears to assist in distinguishing them. Therefore, in certain conditions,

if the sounds are presented dichotically, the masking threshold falls. For ex-

ample, in the last case in table 2.2, when a sine wave maskee with frequency
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below 1500 Hz and possessing an interaural phase difference of π radians is

presented simultaneously with a diotically presented white noise masker, the

masking threshold is 15 dB lower than when the sine wave is presented dioti-

cally. This shift in masking threshold is known as the binaural masking level

difference (BMLD) and represents the difference in the masking threshold

between diotic and dichotic presentations of a signal.

Table 2.2: The masking level differences in different conditions, adapted
from Moore (2012).

Interaural condition MLD in dB

NuSπ 3
NuS0 4
NπSm 6
N0Sm 9
NπS0 13
N0Sπ 15

Table 2.2 shows the masking level difference (MLD) for several masker and

maskee conditions. Labels N and S denote a noise masker and a sinusoidal

wave (tone) maskee, respectively. The subscript ‘0’ means that the phase of

the signal is the same at both ears, also known as a homophasic signal. The

subscript ‘π’ means that the phase of the signals at the left and right ears

differs by π radians, also known as an antiphasic signal. The second subscript

‘m’ denotes the target signal is presented monaurally. The last subscript ‘u’

means that the signals at each ear are uncorrelated. As shown in the table,

the introduction of phase difference between signals arriving at the left and

right ears affects the masking threshold. The results indicate that it is easier

for the human hearing system to detect the maskee in noise when the signals

are spatially separated. The maximum MLD occurs for the case N0Sπ when

the target signal is located to one side of the listener and the noise is placed

in the median plane.

65



2.3 Auditory scene analysis

Unlike the visual system, where the spatial location of individual visual ob-

jects are directly mapped to specific locations on the retina, there is no di-

rect mapping in the auditory system between the spatial location of a sound

source and the location of physical displacements along the basilar membrane.

Despite this, the human auditory system is still able to localise and segre-

gate multiple concurrent sound sources in a complex mixture of sounds by

using alternative perceptual mechanisms. The area of research that investi-

gates this basis of auditory perception is referred to as auditory scene analysis

(ASA). Bregman made major contributions to the early development of ASA,

including a seminal text on the subject (Bregman, 1990).

It is relatively easy for a listener to attend to a solitary sound source

because all the auditory information decoded by the brain contributes to the

signal stream from that source. However, attention to an individual sound

source becomes more complicated when one or more additional sound sources

are introduced. This is because the sound source contents overlap spectrally

and temporally. The goal of ASA is to recover separate descriptions of “each

separate thing” in such an environment (Bregman, 1990). In fact, “each

separate thing” may consists of many sounds (e.g. footsteps).

Conceptually, ASA is concerned with two main processes: segmentation,

which describes the decomposition of the acoustic input into a set of time-

frequency fragments and grouping, which is the combining of fragments that

are likely to have originated from the same sound source. Bregman (1990)

makes a distinction between two types of perceptual grouping: primitive

grouping and schema-driven grouping. In the following sections, segmenta-

tion and grouping are discussed. Furthermore, how different acoustic features,

such as onset, harmonicity, amplitude and frequency modulation, and spatial

cues, contribute to perceptual grouping is reviewed.
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2.3.1 Segmentation

As described in section 2.2, the auditory system continually performs a

frequency decomposition of all sounds presented to the ears, resulting in

temporal-spectral fragments. These broken down time-frequency regions are

the fundamental building blocks that form a stream (see section 2.3.2). They

are localised in the sense that they belong to a particular time and frequency

region. In addition, there are many properties which can be used to de-

scribe spectral fragments, such as amplitude modulation, frequency modula-

tion, fundamental frequency and binaural cues (ITD and ILD). Segmentation

takes place between auditory peripheral processing and perceptual grouping.

Figure 2.8: Illustration of exclusive allocation in which either two faces or a
vase can be seen. Redrawn from Bregman (1990).

Humans have the ability to assign particular spectral fragments to differ-

ent streams at different times. According to Gestalt principles, the spectral

fragments can only be assigned to a single stream at any one time (Breg-

man, 1990). This phenomenon is referred to as exclusive allocation and is

demonstrated visually in figure 2.8. However there are exceptions to this rule

(Bregman, 1990).
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2.3.2 Primitive grouping

The role of auditory perception is to group spectral fragments and attribute

them to the individual sound source that created them, a process known as

grouping. The spectral fragments for a sound source can be linked together in

time, resulting in an auditory stream. Grouping results in the perception of

a single sound source rather than a set of separate sounds. In this section, we

introduce the primitive grouping which is also known as bottom-up grouping.

Primitive grouping includes the integration of sequential and simultaneous

segments.

Many primitive grouping principles can be considered as the Gestalt prin-

ciples of perceptual organisation. A number of laws developed by the Gestalt

psychologists (e.g. Köhler (1970) and Koffka (2013)) aim to explain percep-

tual organisation, or the manner employed by the brain in which small ele-

ments form mental patterns. These principles are applicable to vision and

audition. The laws state that elements having common attributes can be

grouped together. Next we explain these attributes in greater detail.

2.3.2.1 Sequential integration

Sequential integration of segments explains how the spectral fragments from

the same source occurring at different instances are grouped together. Many

cues are used by the auditory system to inform the grouping process. Two

sound sources should likely be grouped together if they are sufficiently similar

in respect of a low-level relationship, such as time or frequency. This property

of the auditory system is referred to as the Gestalt principle of proximity.

Spectral and temporal relations

Spectral and temporal characteristics which affect grouping were demon-

strated in experiments by Van Noorden (1975). These experiments employed
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Figure 2.9: Sequential grouping of alternating pure tones, adapted from
Wang and Brown (2006).

sequences of separate 40ms tones with onset-to-onset times ranging between

60 and 150ms. The sequences of tones consisted of fixed frequency tones,

denoted by B, and a variable frequency tone, denoted by A. The tones were

organised in the pattern ABA−ABA−..., where the hyphen in the sequences

indicates a silence. The fixed frequency tone B was set to 1 kHz, and the fre-

quency of the variable frequency tone A was slowly lowered from a frequency

much higher than B to a frequency much lower than B and then raised back

up again. The duration of the frequency sweeping was 80 s.

A simple example of sequential grouping is shown in figure 2.9. When

the tones are presented to listeners with a frequency difference of less than

about four semitones. Listeners’ perceived organisation of the tones depends

on the rate of the two tones. In figure 2.9 (a), tone A and B with low rate

(the time between onsets is 150ms) are grouped together and one stream

of alternating tones is heard. However, it becomes more difficult to hear a

single stream when the rate of A and B is increased, as shown in figure 2.9 (b).

Similarly, when tone A and B are presented at the same low rate but with

a larger frequency difference, more than 12 semitones, they are segregated

into two streams (see figure 2.9 (c)). For intermediate frequency differences,

listeners could switch at will between perceiving the tones as integrated or

segregated. Therefore, the separation was measured under two conditions in

experiments by Van Noorden (1975). Firstly, listeners were asked to try to

perceive all the tones as part of a single sequence and to report when they
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Figure 2.10: The influence of tone repetition rate and tone frequency
separation on streaming: Temporal coherence boundary (O) and fission

boundary (X). Redrawn from Bregman (1990), original from Van Noorden
(1975).

could not. Secondly, they were asked to try to perceive the tone sequences

as separate and again report when they could not. These two conditions

resulted in two thresholds: the temporal coherence boundary (TCB) and the

fission boundary (FB) for the first and second conditions, respectively. TCB

measures the point at which the auditory system is forced to segregate the

two tones by primitive processes, and the FB is a measure of the limits of the

attention-based processes in grouping a stream through selective attention

(Bregman, 1990).

The two boundaries are plotted in figure 2.10 as a function of frequency

separation and tone rate, where tone rate is the onset-to-onset time. The

graph indicates that listeners distinguish the two tones as separate streams for

smaller frequency separations when they are presented at higher rates. It also

shows the limits of attention-based processes that form a stream. Above the

TCB curve, two tones are always perceived as part of two separate sequences,

while below the FB curve, the two tones are always perceived as part of the
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same stream. In the region in between the curves, exclusive allocation occurs.

Listeners could hear either integrated or segregated tones at will, but never

both possibilities at once.

Frequency properties of a complex tone which contribute to grouping in-

clude fundamental frequency, pitch and spectral balance (Bregman, 1990). It

is noteworthy that pitch is perceived at the fundamental frequency of a com-

plex tone, whether or not the fundamental frequency component is present

(Licklider, 1951). The relative levels of the harmonics of a complex tone form

the spectral balance. Bregman (1990) stated that all these frequency proper-

ties influence sequential grouping. This type of grouping follows the Gestalt

principle of proximity.

Spatial location

Another grouping principle for sequential integration of sound is spatial lo-

cation. Sounds that originate from the same spatial location or segments

having common interaural time or level differences tend to be grouped. How-

ever, the grouping effect is not as strong as fundamental frequency. This is

demonstrated in the experiment conducted by Deutsch (1975). In the ex-

periment, it is shown that a tune becomes unrecognisable when the notes of

the tune are played to the left and right ears alternately. However, the tune

becomes recognisable again when each note is presented with a drone (i.e. a

lower constant frequency tone) to the opposite ear. This result indicates that

fundamental frequency cues can dominate location cues in grouping when the

location cues become weaker in the presence of another simultaneous tone.

Darwin (1997) confirmed this and went on to demonstrate that spatial loca-

tion influences the grouping more as a stimulus continues and it may become

the dominant cue at longer durations.
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2.3.2.2 Simultaneous integration

The other type of primitive grouping is simultaneous integration, in which

components from the same source that occur at the same time are grouped

together. An example of simultaneous integration is when we hear separate

instruments playing a chord (Darwin, 1997). It can be easy to distinguish the

individual contributions of less skilled players who are out of tune or time, or

who play with different consonant time intervals. A potent Gestalt principle

in this context is known as common fate, which states that segments tend

to be grouped together when they change in the same way at the same time.

Many simultaneous grouping principles can be phrased in terms of common

fate.

Harmonicity

In natural speech, there are many starts, stops and pauses. Hence, for two

competing voices, temporal relations, such as common onset, can be grouped

to help separate two speech signals. Listening to one voice during pauses in

the other help to separate two speech streams as well. When there are no

pauses in the speech, some other grouping principle may contribute to the

separation. Harmonically related frequency components tend to be grouped

into the same stream. The human auditory system is able to identify multiple

harmonic series when they have different fundamental frequencies, and can

infer a missing fundamental. It becomes difficult to distinguish a target

voice when two voices are present which have the same fundamental (Bird

and Darwin, 1998). This is similar to the example given above where two or

more instruments played simultaneously may be heard as a chord. In such

cases, spectral density can be another important grouping principle. The

likelihood of grouping increases with increasing spectral density or when a

set of partials have similar intensities.
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Spatial location

Two indispensable attributes for grouping are time and frequency. That

is, two simultaneous sounds will be perceived as separate if they differ in

frequency. Similarly, two sounds with the same frequency but which occur

at different times will be perceived as separate. Compared with time and

frequency, Kubovy (1981) states that spatial location is not an indispensable

attribute. Kubovy uses the example that two identical sounds from different

spatial locations will be perceived to be fused into a single sound coming

from an intermediate direction.

In an informal experiment, Bregman (1990) discovered this is not always

the case, however. In some conditions, segregation of two identical complex

tones which only differ in spatial location may occur. The first complex tone

consisted of frequency components at 200, 400, 600 and 800Hz, and the sec-

ond one consisted of frequency components at 300, 600, 900 and 1200Hz. All

the components had equal intensity. These complex tones were simulated in

the horizontal plane with azimuths of 45◦ and −45◦ respectively. They were

presented at irregular intervals (different onset and offset times) but over-

lapped for substantial durations. At the time when the 600 Hz component

was active in both tones and were of identical intensity and phase in each ear,

then, according to Kubovy (1981), this 600Hz component would be fused and

perceived in front of the listener. This was not the case, however. Instead,

listeners found that the 600Hz component always remained spatialised in

the directions of both complex tones. Bregman (1990) explained that this is

because the 600Hz component is grouped with other frequency components

at the instants of onset and offset.

Amplitude and frequency modulation

It is very unlikely that different sound sources will change in the same way

and at the same time instants (Bregman, 1990). For this reason, frequency
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components that have the same temporal modulation have a tendency to

be grouped into the same stream. This principle applies to both amplitude

and frequency modulation and it is an example of common fate. Amplitude

modulation typically has two forms: onset/offset synchrony and changes in

amplitude. Onset/offset synchrony between two pure tones causes them to

be grouped (Bregman and Pinker, 1978). A common modulation pattern for

changes in amplitude is periodic. In terms of frequency modulation, it may

involve gliding changes and micromodulation. A relatively slow and gradual

shift in partials can be referred to as a gliding change. Micromodulation, on

the hand, refers to smaller and faster changes in frequency. All these factors

contribute to simultaneous grouping (Bregman, 1990).

2.3.3 Schema-driven grouping

Compare with primitive grouping described in section 2.3.2, schema-based

(top-down) grouping, on the other hand, is a high-level process which is aided

by learning and experience. An example of schema-based streaming is the

human ability to separate simultaneous speech sources based on semantic

structure and understanding. This type of grouping is a hypothesis-driven

process, in that listeners are able to pick up streams from a mixture by using

stored knowledge of familiar patterns or schemas. This stored patterns can

be particular types of sounds, such as music, speech and environment sound.

An example to occur with speech sounds is given here. The two different

synthesised vowels, “ee” and “ah”, which have the same onset and offset

times, the pitch at any time and the same loudness contour. Regarding

to primitive grouping principle, they are unlikely to be separated. While

listeners are able to hear the two individual vowels.
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2.4 Summary

In this chapter, the human hearing system and how sounds are perceived

have been briefly described. These psychophysical mechanisms provide one

approach for estimating the ideal binary masks and ideal ratio masks in the

algorithm described in Chapter 5.

The structure of the peripheral auditory system includes the outer ear,

middle ear and inner ear. A sound enters the ear canal after interacting with

the pinna, and propagates to the eardrum, which passes the sound vibrations

to the middle ear. The middle ear transmits the vibrations of the eardrum

to the cochlea through the ossicles. The cochlea in the inner ear performs a

frequency decomposition along the basilar membrane. The inner hair cells

pass neural responses from the basilar membrane to the brain via the auditory

nerve.

In simplistic terms, the cochlea can be thought of as a bank of bandpass

filters. The bandwidths of the critical bands are not uniform, becoming wider

as the frequency increases. The notched-noise method can be used to esti-

mate the shape of the auditory filters, which is found to be an asymmetrical

upward convex curve.

When listeners are presented with multiple sounds, masking may occur.

Simultaneous masking occurs when the masker and maskee are active at the

same time and are spectrally close to each other. Nonsimultaneous masking

describes the masking which occurs when the maskee exists just before or

just after the masker. The masking level difference reveals the difference in

masking threshold which arises between the dichotic and diotic presentations

of a sound. It demonstrates that there is an advantage to listening with two

ears in the presence of a mixture of two spatially separate sound sources.

The perceptual mechanisms underlying the ability of the human auditory

system to segregate multiple sound sources are explored in auditory scene
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analysis (ASA). ASA can account for, among many other things, for the

cocktail party effect. Bregman (1990) breaks the segregation process into

two overall stages: segmentation and grouping. In the first stage, the acous-

tic signal is decomposed into time-frequency segments which are described

by many properties, such as amplitude modulation, frequency modulation,

fundamental frequency, interaural time or level difference. The second stage

groups the segments which originate from a single source into a perceptual

stream. Primitive grouping consists of simultaneous and sequential grouping.

This follows the Gestalt principles of proximity and common fate. Segments

can be similar in terms of temporal relations, frequency, spatial location,

harmonicity, amplitude modulation or frequency modulation. Schema-based

grouping, on the other hand, is a high-level process which is based on lis-

teners learning and experience. Simulating and exploiting the perceptual

mechanisms of ASA have given rise to the research field of computational

auditory scene analysis (CASA), which will be considered further in Chapter

4.

The human hearing system has the ability to localise sound. Spatial

location contributes to both simultaneous and sequential grouping, using

properties such as common interaural time or level difference. Hence, an

understanding of how the hearing system uses localisation cues, particularly

binaural ones, is required. In the next chapter, we review human binaural

hearing which is also essential in the development of a binaural hearing aid

algorithm.
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Chapter 3

Binaural Hearing

In the previous chapter, an overview was given of the human hearing system

and the perception of sound. One aim of the current research is to exploit

some of the attributes of binaural hearing in an algorithm for improving

speech intelligibility. Therefore, it is helpful at this stage to review the ability

of the hearing system to localise sound and how it uses localisation cues,

particularly binaural ones. This chapter begins with a description of the

binaural spatial hearing system. It goes on to consider sound localisation

for a single source. Head-related transfer functions, sound spatialisation and

binaural synthesis are introduced as fundamental prerequisites for artificially

spatialising sound sources.

3.1 Sound localisation

In preparation for subsequent sections, a head-related coordinate system is

introduced to describe the direction of a sound source (see figure 3.1). With

respect to the interaural axis, the frontal plane bisects the front and back

halves of the head, and the horizontal plane bisects the upper and lower

halves of the head. The median plane bisects the left and right halves. The
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direction of a sound source can be referenced as (θ, ϕ), where θ and ϕ de-

note the azimuth and the elevation angles of the source relative to the head,

respectively. For example, a direction of (0◦, 0◦) refers to the direction 0◦

azimuth and 0◦ elevation, which is directly in front of the head in the hori-

zontal plane. The ear closest to a sound source is referred to as the ipsilateral

ear and the more distant one is the contralateral ear.

Figure 3.1: Head-related coordinate system. θ and ϕ represent azimuth and
elevation, respectively. The arrows on θ and ϕ are pointing in the positive

directions, with the origin straight ahead.

In previous sections, the physiology and psychoacoustics of the human

hearing system are discussed. These aspects of the hearing system are not

directly responsible for localising or segregating a sound source, but they

generate some of the information which assists in the process. The two prin-

cipal localisation cues for determining the direction of a sound source are

the interaural time difference (ITD) and the interaural level difference (ILD).

Rayleigh (1907) proposed the duplex theory which suggests that localisa-
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tion cues are based on ITD at low frequencies and ILD at high frequencies.

These and other cues which are able to provide localisation information are

described next.

3.1.1 Interaural time difference

As mentioned above, an important cue for localisation by the human audi-

tory system is interaural time difference (ITD). ITD describes the difference

in the arrival time between the signals received at the left and right ears.

Woodworth’s formula (Woodworth and Schlosberg, 1962) provides a simple

way to estimate ITD. In this formula, the sound source is assumed to lie

at infinity (the far field condition) and the head is modelled as a horizontal

section through a simple sphere (illustrated in figure 3.2).

Figure 3.2: The path difference between left and right ear for a distant
source.

The radius of the head is r and θ is the azimuth direction of the sound

source in radians. The total path difference dtotal that is shown in the figure

consists of the arc darc and the line dstraight. darc and dstraight can be expressed
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as:

darc = rθ (3.1)

dstraight = r sin θ (3.2)

Thus the total path difference is:

dtotal = darc + dstraight = r(θ + sin θ) (3.3)

If c is the speed of sound in the air, the expression for ITD is given by

ITD =
r(θ + sin θ)

c
(3.4)

For example, when θ is 90◦ (i.e. the source is located to the right of the

head, representing the maximum path difference in this simple model), using

340m/s for the speed of sound and assuming the radius of the head to be

90mm, the path difference and ITDmax are obtained by:

dtotal = 0.09(
π

2
+ sin

π

2
) = 231.4mm (3.5)

ITDmax ≈ 680µs (3.6)

Figure 5.8 in chapter 5 shows plots of some ITDs as a function of azimuth

angles as calculated using equation 3.4.

When a sinusoidal signal is considered, ITD can alternatively be expressed

as an interaural phase difference (IPD) between the left and right ears. Due

to phase wrapping, this equivalence is only unambiguous for a sinusoid whose

wavelength λ is greater than twice the interaural path difference. In other

words, IPD is able to provide unambiguous information about the location of

a sound source only for low frequency sinusoids below approximately 1.5 kHz.

For example, for a 5 kHz sinusoid (i.e. with a period of 200µs), an ITD of
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400µs would result in two complete cycles of IPD, incorrectly implying a

source direction of 0◦ azimuth. There is evidence to suggest, however, that

the hearing system uses the temporal envelope of the signal to estimate in-

teraural time difference between the two ears at higher frequencies (Henning,

1974), and this is discussed further in section 3.1.2.

For a given ITD, if the head is kept stationary, there is insufficient infor-

mation to fully localise a sound source and there is a cone-shaped surface

over which the ITD is constant. This is an example of a cone of confusion

(Mills and Tobias, 1972) and is illustrated in figure 3.3. To resolve this ambi-

guity the hearing system needs additional information which is described in

subsequent sections.

Figure 3.3: An example of a cone of confusion for a spherical head. All
points on the cone’s surface for this simple model have the same ITD.

Points on circular cross sections of the cone have approximately the same
ILD.

Kuhn (1977) conducted an experiment to reveal how ITD varies with

frequency. He determined that ITD is influenced by varying interactions

between the sound wave and the head, with diffraction occurring at low fre-

quencies and creeping waves forming around the head at high frequencies.

Kuhn defined a nondimensional parameter
∏

to describe the resulting vari-

ation in ITD:

ITD =
∏

(
r

c
sin θinc) (3.7)

where r is the radius of the head, c is the ambient speed of sound, and
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θinc is the angle of incidence. His results show that for frequencies below

500Hz
∏

equals 3 and ITD is frequency independent. ITD then decreases

to a minimum between 1.4 kHz and 1.6 kHz. For frequencies above 3 kHz,
∏

equals 2. For example, assuming the radius of the head is 90mm, the angle

of incidence is 45◦ and the speed of sound in air is 340m/s, then according

to equation 3.7 the ITD is approximately 560µs for frequencies below 500Hz

and falls to 370µs above 3 kHz.

3.1.2 Interaural envelope difference

As mentioned in the previous section, the human hearing system is able to

detect interaural time differences for signals with frequencies above 1.5 kHz,

despite ambiguities arising in the interaural phase difference. When signals

are analysed in the cochlea, the resulting bandpass-filtered signals essentially

contain two kinds of information: the temporal fine structure, which forms

the notional output waveform of each band, and the temporal amplitude en-

velope of the signals. For a signal with frequencies above 1.5 kHz, the human

auditory system tends to use the interaural envelope difference (IED) rather

than the interaural time delay of the fine structure (Henning, 1974). Because

the envelope of a high frequency sound is modulated at a low frequency, the

ambiguity in phase of the high frequency sound is resolved. In Henning’s

experiments, a 300Hz modulation of a 3.9 kHz carrier was presented to each

ear. In order to ensure that no ILD was present, the mean level and the

modulation depth were made the same in both ears. The results indicated

that the detection of interaural delay for these tones was as good as for the

300Hz tone. Therefore, the envelope modulation of high frequency sounds

provided localisation using ITDs alone.

The extent of the lateralisation achieved by an interaural delay is, how-

ever, small when IED carriers greater than approximately 1.6 kHz are pre-

sented over headphones (Bernstein and Trahiotis, 1985). Moreover, Middle-

brooks and Green (1990) pointed out that the average modulation depth was

82



too small, or the modulation frequency too high, to permit utilisation of IED

in a typical free-field listening scenario.

3.1.3 Interaural level difference

Another cue that is used to detect the direction of a sound is the interaural

level difference (ILD). At high frequencies, sounds are shadowed by the head,

resulting in level differences between the left and right ears. This is shown in

a simplified form in figure 3.4. The head shadowing effect becomes stronger

Figure 3.4: Simplified diagram showing (a) head shadowing at high
frequencies and (b) diffraction at low frequencies. The source is coming

from the right side of the head.

as the wavelength gets shorter, as simulated in figure 3.4 (a). In plot (b), low
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frequency sounds with wavelengths longer than the diameter of the head are

shown tending to diffract around the head, reducing the ILD.

Using 340m/s for the speed of sound c and setting the wavelength of

the sinusoidal sound equal to a head diameter of 180mm, equation 3.8 can

be used to evaluate the frequency f above which head shadowing becomes

significant.

f =
c

λ
=

340

0.18
≈ 1.9 kHz (3.8)

Thus, sounds above approximately 1.9 kHz are affected by head shadowing

effects. Figure 3.5 demonstrates the frequency-dependent nature of the ILD

cue due to decreasing diffraction as the frequency increases. For a sinusoidal

sound that is distant from the listener, ILDs are very small below approxi-

mately 500Hz, while they can be as large as 20 dB at high frequencies.

Figure 3.5: Interaural level difference as a function of frequency and
direction. Redrawn from Feddersen et al. (1957).

Middlebrooks et al. (1989) observed that ILD varies with both azimuth

and elevation of the sound source. ILDs at some frequencies display lateral

asymmetry, reflecting the morphological differences which typically occur

between the two ears. As a consequence, substantial ILDs can arise even for
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sounds located in the median plane.

For sound sources very close to the head, the situation is different. Con-

siderable ILDs can occur even at lower frequencies in this situation (Brungart

and Rabinowitz, 1999). Because of this behaviour, ILD also provides a dis-

tance cue for sounds close to the head and so helps to resolve the cone of

confusion to a single circle by reducing the possible sound locations on the

cone’s surface. The role of ILD as a distance cue will be discussed in more

detail in section 3.1.5.

3.1.4 Spectral cues

In addition to ITD and ILD cues, the auditory system also receives detailed

spectral information that aids sound source localisation. When a sound prop-

agates from a source to each eardrum, it is influenced and filtered by the

torso, shoulders, head and pinnae, resulting in changes to the original signal

spectrum. This affects both the monaural and the interaural signal spec-

tra, furnishing additional cues for localising the sound source. These spec-

tral changes are embodied in an individual’s head-related transfer functions

(HRTFs). Since HRTFs fully describe the magnitude and phase changes ex-

perienced by an incoming direct sound between its source and the eardrum,

they necessarily also contain the ITD/IPD and ILD cues. The HRTF is the

frequency domain description of this process; the equivalent description in

the time domain is known as the head-related impulse response (HRIR). The

HRTF and HRIR form a Fourier transform pair. Due to variations in the mor-

phology of the torso, head and pinnae, HRTFs vary from person-to-person

(Møller et al., 1995).

Figure 3.6 illustrates the frequency range predominantly influenced by

relevant parts of the body. The cavum conchae lies at the entrance to the ear

canal and is the largest resonant region of the pinna. The cavum conchae,

the ear canal and eardrum also modify the spectrum of arriving sounds,

but the changes do not contain directional information (Algazi et al., 1999).
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Figure 3.6: Factors affecting the propagation of a sound between the source
and the eardrum. The range of frequencies most likely affected by each
factor is indicated. The upper ranges of the ear canal resonance must

usually be approximated by models. Redrawn from Begault et al. (1994).

According to Begault et al. (1994), the key spectral changes for localisation

are due to the pinna. Because of the shape and size of the folds and cavities

within the pinna, their greatest impact is on the higher frequency components

in signals (Begault et al., 1994; Moore, 2012). Musicant and Butler (1984)

confirmed that the ability of listeners to localise 4 kHz high-passed noise was

significantly superior to their localisation acuity when the pinna cues were

partially removed by occluding the external ears. They found that there was

no further performance degradation for 4 kHz low-passed filtered noise when

the pinna cues were removed.

It is widely accepted that spectral cues from the pinna contribute most

strongly to sound localisation in elevation. For example, early research un-

dertaken by Humanski and Butler (1988) shows that the performance of

localising a sound in the vertical plane is similar when using only the ipsilat-

eral ear or when either using both ears. This supports the notion that it is

the monaural pinna spectral cues which contribute most to localisation judg-
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ments in the vertical plane. In monaural listening, further experiments have

shown that listeners perform better for high-passed noise than low-passed

noise in terms of sound localisation in the vertical plane (Butler and Human-

ski, 1992). Butler and Humanski found that listeners were able to localise

the low-passed noise binaurally rather than monaurally in lateral vertical

planes, suggesting that only binaural temporal and level difference cues are

used at these frequencies. In addition, they noticed that the influence of the

pinna diminishes for source elevations over 45◦. They suggested that time

and intensity difference and pinna cues must be available for sound to be

fully localised in the vertical plane.

As mentioned above, it is not only the pinna that contributes to the for-

mation of HRTFs. Other parts of the body are also obstacles in the sound

propagation path to the eardrum, and they too modify the spectra of incom-

ing sounds. They can create low-frequency cues and help to explain why some

binaural recordings produced using a dummy head, with and without a torso,

create sound images with different elevations. Motivated by the observation

that listeners are able to accurately estimate the elevation of sources posi-

tioned outside the median plane, Algazi et al. (2001) analysed HRTFs and

attributed this ability to low frequency elevation-dependent head diffraction

and torso reflections.

Spectral cues also help disambiguate frontal sources from rear sources

and supply the elevation information which helps to resolve further the cone

of confusion (Begault et al., 1994). For a nearby source, ITD and ILD cues

can reduce the possible locations on the cone surface to a single circle (see

section 3.1.3). The extra front-back and elevation information further reduce

the circle of possible locations down to a small solid angle approximating a

single point.

3.1.5 Distance cues

Shinn-Cunningham (2000) investigated the role of overall signal level in deter-
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mining the distance of a sound source. For a distant source, the overall sound

level follows the inverse square law. For example, there is 6 dB reduction in

the received energy for each doubling of the source distance. However, for a

sound source less than one meter from the head, the inverse square law does

not apply. In fact, for a nearby source at a particular distance, the level de-

pends also on source direction. The level of a nearby sound changes relatively

slowly with distance in the median plane and changes faster as a function of

distance on the interaural axis. Based on these results, Shinn-Cunningham

concluded that overall signal level can only provide relative distance informa-

tion unless the listener has prior knowledge about the source level.

Changes in spectral shape of a sound source with distance form another

distance cue (Coleman, 1963). Coleman pointed out that high frequencies

and low frequencies are attenuated differently as they propagate through air.

As the source moves further away, high frequencies diminish more rapidly in

amplitude than low frequencies. Later work carried out by Little et al. (1992)

shows that this loss of high frequency energy results in high frequency sounds

tending to be heard closer to the listener than low frequency sounds. Thus, a

relative distance cue is provided by nonuniform spectral attenuation though

an absolute distance cue requires prior knowledge of the source spectrum.

ILD not only provides direction information, as described in section 3.1.3,

but also distance information. For nearby sources, ILD varies strongly with

source distance (Brungart and Rabiowitz, 1996). ILD increases substantially

at all frequencies for a lateral source when its distance decreases below 1 m

(Duda and Martens, 1998; Brungart et al., 1999). Brungart (1998) showed

that, based on distance-dependent changes in the ILD, an absolute distance

cue can be added into a virtual auditory display for close sources.

In reverberant conditions, a sound arriving at the ears consists of the

direct sound, early reflections and late reverberation. The ratio of direct-to-

reverberant sound pressure at the ipsilateral ear varies with source distance

and hence also contributes to distance perception. Shinn-Cunningham (2000)

found that the pressure ratio varies nearly linearly with distance for a sound
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source located at 90◦ azimuth between 1m and 0.15m. This pressure ratio

also varies with source distance when the source is placed at 0◦, where ILD

is approximately zero and therefore where ILD changes cannot contribute to

distance perception.

3.2 Resolution of spatial hearing

In section 3.1, a general overview was given of cues that contribute to sound

localisation. As described in the cocktail party problem, the human hearing

system provides us with the ability to localise and selectively access a partic-

ular source. In order to segregate one target source in the presence of other

competing sources based on localisation, it is helpful to know how accurately

we are able to localise a signal source. In this section, the resolution (or

acuity) of the human hearing system for distinguishing spatially separated

sound sources is described.

3.2.1 Minimum audible angle

The minimum angular separation between spatial locations of two tone pulses

which can be detected by the hearing system is referred to as the minimum

audible angle (MAA), first described by Mills (1958). Its measurement in

the horizontal plane is obtained in static conditions by presenting a tone

pulse at a fixed spatial location and then presenting it again, slightly shifted

left or right in azimuth. The smallest angular change between two locations

for which there is a just noticeable difference is recorded. MAAs vary in

magnitude as a function of azimuth and elevation (Perrott and Saberi, 1990).

The MAA thresholds are dependent on the frequency of the tone (Mills, 1958).

The results from Mills (1958) show that the smallest MAAs are about 1◦ in

azimuth for sounds between 250Hz and 1 kHz which come from directly in

front of the listener. MAA rises sharply for frequencies in the range 1 to
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1.5 kHz. Perrott and Saberi (1990) measured the MAA threshold for changes

in elevation and reported MAA values of about 4◦.

3.2.2 Minimum audible movement angle

Another measure of the resolution of spatial hearing is the minimum audible

movement angle (MAMA), which was first measured by Harris and Sergeant

(1971). The MAMA is defined as the minimum angle that a sound source

must move through before the change of location is detected. It can be

obtained by presenting a sound source through a loudspeaker on a rotating

arm. The listener must detect whether the sound source is moving or station-

ary. Using tones with frequencies between 800Hz and 6.4 kHz, Harris and

Sergeant (1971) measured MAMAs for a very slow moving sound source at a

rate of 2.8◦/s. They found that MAMAs lie in the range 2◦ to 4◦. Perrott and

Musicant (1977) used a tone at 500 Hz as a stimulus. They found that MA-

MAs increase as the velocity of the sound source is increased, with MAMAs of

8.3◦, 12.9◦ and 21.2◦ for a sound source with rates of 90◦/s, 180◦/s and 360◦/s,

respectively. Grantham (1986) provided more evidence that MAMAs vary

with sound source velocity. Chandler and Grantham (1992) concluded that

MAMAs are larger than the corresponding MAAs in most cases. MAA can

be considered as a special case of MAMA, where the rate of source movement

is zero. However, this is an over simplification and Grantham (1986) points

out that MAMAs are affected by sound source duration as well. Specifically,

the MAMA increases sharply from 5◦ to 20◦ or more when the duration of

the stimulus is decreased below 100 to 150ms. Moreover, their experiments

showed that the human hearing system is most sensitive to sound source

movement directly in front of the head and least sensitive at large lateral

angles.
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3.3 HRTF measurement

A binaural pair of HRTFs describes the spectral filtering that occurs between

a sound source for a given direction and each of the listener’s eardrums.

HRTFs vary as functions of azimuth, elevation and distance. Of particular

relevance to this work is the use of HRTFs to spatialise a sound source.

The measurement of an HRTF involves playing a stimulus signal through

a loudspeaker at the required position. A microphone is placed at or close

to the eardrum to capture the output from the loudspeaker after it has

been modified by the HRTF. The analogue signal at the microphone is pre-

amplified and digitised and compared with the original stimulus. The transfer

function of the full signal path is then defined as the total system transfer

function (TSFT). Apart from the HRTF in the path, the digital signal has

also been affected by the unwanted transfer function of the amplifier, loud-

speaker, microphone, cables and room. These unwanted transfer functions

make up the system transfer function (STF). The STF can be measured in

a similar way by repeating the measurement for the full path between the

loudspeaker and the microphone without the presence of the listener. The

desired HRTF H(ω) is then given by:

H(ω) =
TSTF

STF

=
HDA(ω)HAMP (ω)HSPKR(ω)H(ω)HMIC(ω)HPREAMP (ω)HAD(ω)

HDA(ω)HAMP (ω)HSPKR(ω)HMIC(ω)HPREAMP (ω)HAD(ω)
(3.9)

where H(ω) is a single HRTF and can be transferred to the time domain

via the inverse Fourier transform, to produce the corresponding HRIR, and

HDA(ω), HAMP (ω), HSPKR, (ω), H(ω), HMIC(ω), HPREAMP (ω) and HAD(ω)

are the transfer functions for analogue-to-digital converter, amplifier, loud-

speaker, microphone, preamplifier and digital-to-analogue converter, respec-

tively. This measurement process is repeated to obtain the HRTFs (one left,

one right) for the desired set of directions.
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Ideally, to measure the HRTF accurately for a particular direction, the

microphone should be placed directly at the eardrum and the loudspeaker

should represent a point source. In reality the microphone is usually placed

at the entrance to the occluded ear canal and a single-driver loudspeaker is

used with a wide frequency response (Butler and Musicant, 1993; Pralong

and Carlile, 1994; Algazi et al., 1999).

It is far from practical to place a microphone at the eardrum, because it

is a clinical procedure and can potentially result in damage to the eardrum

(Wightman and Kistler, 1989). It has been shown that the ear canal provides

very little directionally dependent filtering over the audio frequency range

(Algazi et al., 1999) (see section 3.1.4). The perceptually salient directional

detail is still preserved when the microphone is placed at the entrance to

the occluded ear canal. Generally, HRTFs are measured at a distance of at

least 1 m, to minimise the parallax effect (Brungart, 1999), which creates a

difference between the angles of incidence at each ear.

The acoustic measurement of a full set of several hundred HRTFs is a time-

consuming process. A large research effort continues to go into investigating

alternative approaches for synthesising HRTFs. This topic is beyond the

scope of the work described in this thesis. Approaches can be summarised as

those using the boundary element method (Brebbia and Dominguez, 1996),

differential pressure synthesis (Tao et al., 2003), the statistical relationship

between morphology and HRTFs (Brown and Duda, 1997), physical and

functional models of HRTFs and functional (Brown and Duda, 1998). This

topic is beyond the scope of the work described in this thesis and will not be

considered further.

HRTFs are generally measured in an anechoic chamber or in an environ-

ment where room reflections can easily be removed. Sometimes, however, it

is required to capture the room reverberation as well so that a sound can

be spatialised in realistic conditions. The resulting measurement is known

as a binaural room impulse response (BRIR). A BRIR includes the HRTF,

but also the early reflections and reverberant tail due to the room. A BRIR
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is affected by many factors, such as the position of the sound source in the

room, the position of the listener and the directions that the sound source

and listener are facing.

When listening in an enclosed space, a complex fusion of sounds arrives

at the ears. The sounds include signals directly from the sound source and

also indirectly from reflecting surfaces, such as the ceiling, floor and walls in

a room.

As mentioned above, a BRIR is characterised by three parts; the direct

sound, early reflections and the reverberant tail. The direct sound travels in

a straight line from the sound source to the listener and is the first element

to arrive at the ears of the listener. The first early reflection travels indirectly

from the source to the listener and therefore arrives after the direct sound. It

is reflected by the closest surface in the environment. Further early reflections

typically follow soon after, which have been reflected by one, two or more

surfaces before reaching the listener’s ears. The early reflections are generally

lower in amplitude than the direct sound. This is partly due to the greater

distances they travel (sound pressure level reduces by about 6 dB for each

doubling of the distance). The amplitude is also affected by the size and

position of the reflective surfaces, and the material from which the surface

is made will reflect some frequencies better than others (Howard and Angus,

2009). Gradually, reflections arriving at the listener reduce in amplitude

and become increasingly temporally closely spaced and chaotic; these late

reflections form the reverberant tail.

3.4 Conclusion

This chapter introduces the human sound localisation system. An under-

standing of human localisation cues is essential in the development of a bin-

aural hearing aid algorithm.
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Interaural time difference (ITD) and interaural level difference (ILD) are

the two main binaural cues used to determine the spatial location of a sound

source. ITD is the dominant cue at frequencies below approximately 1.5 kHz

while ITD becomes more important for frequencies above 1.9 kHz. In addi-

tion, interaural envelope difference (IED) plays a role at high frequency in

the scenario where no strong low-frequency ITD cues are available.

When a sound propagates from a source to our eardrums, it is influenced

and filtered by our body surfaces. This results in spectral changes to the

original signal which form another type of localisation cue. Of the surfaces

involved, the spectral modifications caused by the pinna provide the most im-

portant direction cues. Furthermore, the ambiguities that are created using

ITD and ILD alone can be resolved with the aid of the spectral signature.

The human auditory system is able to detect sound location changes

accurately to approximately 1◦ to 3◦ azimuth. In elevation, the minimum

angle of change that humans can detect is around 4◦ to 5◦.

An understanding of the binaural and spectral cues that humans use to

localise sound sources and the accuracy of detection of sound location changes

is essential for designing a source separation algorithm which is based on the

sound spatial location. This research aims to use spatial cues and other cues

extracted from the binaural mixture of sounds arriving at a listener’s ears.

The integration of these cues forms a core part of the technical work for the

proposed algorithm in Chapter 5.

Head-related transfer functions are also introduced in this chapter. They

are unique to each individual and can be used to spatialise sound sources in

a virtual auditory system, which is the main method we use to create the

training and test data sets in Chapters 6, 7 and 8. The training data is used

to train the proposed algorithm, which is based on artificial neural networks.

The test data is used to evaluate the performance of the systems.

Human listening performance including intelligibility and localisation of

94



multiple sources in adverse conditions will be described in the next chapter.

Sound source segregation lies at the heart of our research and the next chapter

also reviews a variety of methods for performing this task.
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Chapter 4

Segregation of Multiple Sound

Sources by Listeners and

Machines

In the previous chapter we discussed characteristics of the binaural spatial

hearing system for a single sound source. This chapter begins by consider-

ing the performance of human hearing in adverse conditions. It covers the

advantages afforded by binaural hearing and the effect on intelligibility and

localisation of multiple simultaneous sound sources.

This research is concerned with the intelligibility of a target speech source

in the presence of competing talkers in both anechoic and reverberant con-

ditions. Many source separation algorithms have successfully separated the

target speech from such a mixture and demonstrated an improvement in

intelligibility. Consequently, we review some of these algorithms and dis-

cuss their performance and limitations. Algorithms considered include blind

source separation, which typically utilises more than two microphones, model-

based separation, which usually utilises only one microphone, and binaural

computational auditory scene analysis (CASA).
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4.1 Human listening performance

Humans have a remarkable ability to attend selectively to a single sound

source within a wide variety of complex acoustic environments. Miller (1947)

concluded that listeners with normal hearing can achieve adequate intelligi-

bility rates at 0 dB signal-to-noise ratio (SNR) levels, which typically occur

when talker and listener are within 0.7m of each other when everyone is talk-

ing at the same level (Plomp, 1977). Furthermore, to achieve 95% speech

intelligibility for short sentences in speech-shaped noise requires that the

speech energy arriving at the listener is only 2 dB above the speech reception

threshold (SRT) (Steeneken, 1992). This demonstrates that a small gain in

SNR could lead to a significant improvement in the intelligibility.

Nábělek and Robinson (1982) investigated human speech recognition per-

formance on a single speech source in both anechoic and reverberant con-

ditions. The results illustrate that intelligibility decreases in the presence

of reverberation for subjects of all ages and longer reverberation times re-

duce the intelligibility further. In a set of typical results, for example, the

speech recognition accuracy was 99.7% in the anechoic condition when listen-

ing monaurally, but dropped to 97.0%, 92.5% and 87.7% for reverberation

times of 0.4 s. 0.8 s and 1.2 s, respectively. Bolt and MacDonald (1949) and

Nábělek et al. (1989) proposed two factors to account for the degradation

of speech intelligibility in reverberation. The first is self-masking, which

refers to the temporal smearing of frequency changes within each phoneme.

The second is overlap-masking, which occurs when the energy of a preceding

phoneme masks a subsequent phoneme.

A number of studies have measured the ability of humans to understand

speech in adverse conditions and have investigated the factors influencing

intelligibility in the presence of competing sources (distracters). Hirsh (1950)

suggests that the binaural release from masking can be exploited in binaural

hearing aids. In this section, we begin by looking at the influences on intelli-

gibility related to the benefits which result from the use of binaural hearing
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over monaural hearing (the so-called binaural advantage). These are of par-

ticular interest in view of the binaural arrangement of microphones adopted

for the optimal cue mapping (OCM) algorithm described in Chapter 5.

4.1.1 Spatial release from masking

Cherry (1953) introduced the notion of the “cocktail party effect” and ar-

gued that binaural hearing provides an advantage over monaural hearing

in challenging auditory conditions such as these. This advantage can be

demonstrated by the binaural intelligibility level difference (BILD), which is

related to the binaural masking level difference (BMLD) (see section 2.2.2).

The BILD measures the signal-to-noise ratio difference between monaural

and binaural representations that deliver the same level of intelligibility. Be-

cause there is no need for the background signal to be entirely silent to

achieve a certain intelligibility level, the BILD is usually smaller than the

corresponding BMLD.

Pollack and Pickett (1958) compared the reception of monosyllabic words

in monaural and binaural listening conditions in the presence of 1, 2, 4 and

7 competing talkers. In the monaural listening (control) condition, the tar-

get source and competing sources were presented to a single ear. In the

binaural listening (stereophonic) condition, two different sets of competing

sources were presented to each ear and the target source was presented bin-

aurally. The target and competing sources were controlled by the signal-to-

background ratio (S/B ratio or SBR), which is the ratio between the target

source power and the total power of all the competing sources. The intelli-

gibility was defined as the percentage of correctly identified words. Pollack

and Pickett measured BILD as a function of the number of competing sources

at 50% intelligibility, known as the speech reception threshold (SRT). The

BILD is 12 dB when only one competing source is presented. The BILD de-

creases to 5.5 dB at the SRT when seven competing sources are presented,

for both monaural and binaural listening conditions. The results illustrate
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the advantage of binaural hearing over monaural.

Hawley et al. (1999) also measured the intelligibility of speech in compet-

ing sound sources. He concluded that the proximity of the competing talker

to the target talker influences intelligibility of the target more than the num-

ber of talkers. In addition, he demonstrated a spatial release from masking

due to the binaural advantage when the target and competing sources are

placed in different directions.

Moncur and Dirks (1967) and Nábělek and Pickett (1974) demonstrated

that the binaural release from reverberation provides an improvement in

speech intelligibility. When listening binaurally in reverberant conditions,

Nábělek and Robinson (1982) found that there is a 5% intelligibility im-

provement when the sound source is presented binaurally, compared with

the intelligibility rate achieved using monaural listening.

Culling et al. (2003) investigated the effects of reverberation on the per-

ceptual segregation of competing speech sources. In their experiments, the

target and masker sources were either both located at 0◦ or at ±60◦ az-

imuth. They found that it is easier to understand the target speech when it

is spatially separated from a competing source in an anechoic environment

compared with when the environment is reverberant. They concluded that

reverberation not only seriously affects a listener’s ability to distinguish dif-

ferences in the fundamental frequencies of competing voices, but also in their

spatial locations.

4.1.2 Informational and energetic masking

Plomp (1976) measured the intelligibility of speech in the presence of a

masker in anechoic and reverberant conditions, and binaurally and monau-

rally. A difference between this and previous research was that both noise

and speech maskers were employed. His results show that the masked thresh-

old (the signal-to-noise ratio required for intelligible speech) in the presence
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of a noise masker is approximately 3 dB higher than it is in the presence of

a speech masker. That is, spatial release from masking is larger for a speech

masker than for a noise masker.

The difference in spatial release in these conditions leads to the concepts

of informational masking and energetic masking. If both target and masker

signals are similar clearly audible sounds, then informational masking in-

creases the difficulty with which listeners are able to discriminate the target

sound from the interfering sound (Durlach et al., 2003). On the other hand,

the condition that one or more portions of the target signal are rendered

inaudible, where the masker signal overlaps in time and frequency, is called

energetic masking.

Experiments conducted by Kidd Jr. et al. (1998) and Ihlefeld and Shinn-

Cunningham (2008) further demonstrate that spatial separation facilitates

detection of a target signal in the presence of an informational masker com-

pared with a noise masker. Informational masking is caused by failures in

either across-time linkage of target segments or in top-down selection of the

target (Ihlefeld and Shinn-Cunningham, 2008). In addition, distinct inter-

aural level differences in energetic masking help listeners to locate the tar-

get segments, but have little influence on streaming. This led Ihlefeld and

Shinn-Cunningham (2008) to suggest that these mechanisms influence infor-

mational masking and spatial release between target and masker, improving

streaming and target selection. When target and interference sources are

presented from the same location, however, an informational masker is able

to disguise the target signal more than a noise (energetic) masker. Accord-

ing to Kidd Jr. et al. (1998), the listener does not know which linkage of

segments (target streaming or masker streaming) to focus on in the case of

informational masking.

Brungart et al. (2006) examine how to isolate energetic masking. An

ideal binary mask which retains only the dominant time-frequency regions of

the target signal was used to isolate energetic masking in their experiments.

Their results suggest that energetic masking influences speech-in-noise mask-
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ing more than speech-on-speech masking. Additionally, when the target-

to-interference ratio was between -12 dB and 0 dB, intelligibility was almost

equivalent to that for the target alone, which suggests that spectral overlap

may have a relatively small impact in most automatic speech recognition

tasks with multiple concurrent talkers.

4.1.3 Auditory glimpsing

Based on sparseness and the redundancy of speech, humans have the ability

to use “glimpses” of speech in spectro-temporal regions where it is least

affected by background sounds. This section reviews a number of factors

which contribute to the appeal of auditory glimpsing and the intelligibility

improvement it can provide.

Strange et al. (1983) first evaluated the performance of the human hear-

ing system when provided with partial signal information in the time domain,

created by gaps in the temporal waveform. Seven modified /b/-vowel-/b/

(consonant-vowel-consonant) syllables were used in the experiment. For each

of the syllables, different parts of the waveform were deleted and the tem-

poral relationships of the remaining parts were manipulated. The results

of syllable identification tests showed that untrained listeners were able to

identify vowels accurately, even when vowel nuclei were silent, just based

on dynamic spectral information contained in the preserved initial and final

transitions. Furthermore, when the durational information which indicates

intrinsic vowel length was eliminated, dynamic spatial information appeared

to be implicated in the glimpsing process.

Kasturi et al. (2002) investigated speech intelligibility with either a sin-

gle “hole” in various bands or two “holes” in disjoint or adjacent bands in

the spectrum. They found the vowel and consonant recognition performance

showed a modest decrease when a single hole occurred either in the low- or

the high-frequency region of the spectrum. The vowel recognition rate was

sensitive to the location of the holes when a second hole was introduced. How-
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ever, a rate of around 70% for correct consonant recognition was observed

even when the middle- and high-frequency regions of the spectrum were miss-

ing. Kasturi et al. (2002) found that different frequencies contributed to

vowel recognition unequally, whereas all frequency bands were equally impor-

tant for consonant identification. Li and Loizou (2007) extended these ideas

by further evaluating the dependence of glimpsing on spectral regions, and

they also investigated the impact of spectral width and the duration of the

glimpses. They confirmed that the frequency location and total duration of

the glimpses affected speech recognition significantly. Their results indicate

that the majority of the information used to improve speech intelligibility is

contained in the low- and mid-frequency bands. They suggest that multiple

short glimpse windows generally result in higher speech intelligibility than

the presence of a few longer ones.

Cooke (2006) adopted an automatic speech recognition (ASR) system to

identify consonants in noise. He argued that the proportion of the spectro-

temporal regions glimpsed was a good predictor of intelligibility. In addition,

he suggested that in a speech-in-noise segregation algorithm it may be sim-

pler to focus on the regions with advantageous local SNR than to estimate the

energy proportion of the speech signal in every time-frequency unit. An un-

derstanding of the mechanisms used by listeners to raise speech intelligibility

in adverse conditions can, he argues, provide insights which promote progress

in ASR (Cooke, 2006), which is a sentiment that is equally applicable to the

OCM algorithm discussed later in this thesis.

4.1.4 Sound source localisation

In section 3.2 the resolution of human spatial hearing for a single sound source

is discussed. In this section, speech localisation acuity of a target source in

the presence of competing sources is considered. It was suggested by Begault

et al. (1994) that accurate localisation of multiple sound sources is achieved

by the independent analysis of localisation cues within each critical band.
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Hawley et al. (1999) investigated localisation acuity in normal-hearing

listeners for a target sound source in the presence of three competing sources

in the horizontal plane. All the sources were spoken by the same male talker

at the same level and were presented to listeners via seven loudspeakers with

a regular separation of 30◦. Listeners were asked to point to the source

of a known sentence in the presence of unknown sentences from unknown

locations. The results show that binaural localisation of a clearly audible

speech target in the presence of three competing talkers is robust, though

mis-localisation of a competing sound may occur.

Best et al. (2005) performed related experiments, measuring the effect

of auditory spatial perception with a broadband masker and a broadband

target stimulus. In their experiments, the temporal overlap and the total

time duration of two sources were varied and the overall target-to-masker

ratio was maintained at 0 dB. Their results show that a broadband masker

does not affect the localisation of a broadband target, even where there is

substantial overlap in time and frequency. This localisation robustness was

not affected when the stimuli had simultaneous onsets and offsets. The results

also demonstrated a small systematic error away from the direction of the

masker in the lateral localisation angle of the target in the presence of a

simultaneous noise masker.

4.2 Evaluation methods for speech enhance-

ment systems

Since the aim of this research is to improve the intelligibility and quality

of speech in the presence of competing sounds, it is essential to be able to

measure the changes in these metrics due to the speech enhancement system.

Speech intelligibility is rated in terms of the percentage of spoken words

that are recognised correctly. Speech quality is a function of the realism and
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naturalness of the signal. Generally, highly intelligible speech also exhibits

good speech quality, and good speech quality results in highly intelligible

speech, although this is not always the case. Increasing the quality of speech

does not necessarily increase its intelligibility (Gold et al., 2011), but Ramı́rez

and Górriz (2011) report that it can reduce listener fatigue. For this reason

alone, speech quality is an important consideration in speech processing.

This section describes evaluation methods for speech enhancement sys-

tems in terms of the improvements they offer in speech intelligibility and

quality. There are two categories of performance evaluation. The first is

based on subjectivity and requires human listeners to make judgements dur-

ing listening experiments. The second is objective and estimates the perfor-

mance numerically using signal analysis.

4.2.1 Speech intelligibility

For a listener to understand a sentence, it is often not necessary for them

to correctly identify every phoneme, or even every word in a sentence. Due

to the redundancy in speech, the incorrectly perceived sounds may be re-

placed subconsciously with the correct ones. This is referred as the per-

ceptual restoration of missing speech sounds (Warren et al., 1970) and it is

related to the law of closure which describes human brain’s tendency to fill in

gaps in information and ignore contradictory information. Thus, the ability

to understand speech varies widely, depending on an individual’s linguistic

competence.

4.2.1.1 Subjective methods

Fletcher and Steinberg (1929) were the first to describe articulation test ma-

terial when they formulated a list of 66 consonant-vowel-consonant nonsense

syllables. The number of correctly heard syllables indicated the phoneme in-

telligibility. A similar method was proposed by Miller and Nicely (1955), but
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the number of consonants was reduced to 16. Listeners were trained to iden-

tify component phonetic units and may have be confused by phonemes which

did not accord with spelling. Therefore, evaluation of speech intelligibility is

often based on word-level testing.

When undertaking the word intelligibility test, listeners were limited to

responses which were real words. This allowed them to respond using words

with defined spellings. Problems could arise, however, due to variations in

the extent of listeners’ vocabularies, since the test depended on the successful

recall of memorised words that they had previously heard. One possible so-

lution to these problems is to create many word lists with balanced difficulty,

although this increases the length of the test and may require a listener to

attend more than one test session.

Another subjective method for measuring intelligibility is at the sentence

level. Kalikow et al. (1977) developed a set of sentences known as the speech

perception in noise (SPIN) test. These are phonetically balanced with one

key word per sentence at the end of the sentence. Based on the key word,

these sentences are classified either as high predictability sentences (e.g. “The

boat sailed along the coast”) or low predictability sentences (e.g. “Jane was

interested in the stamp”). Intelligibility scores are indicated by the propor-

tion of correctly recognised key words in the sentences. Recently, a modified

form of SPIN test has been devised which can be used in multiple signal-to-

noise ratio (SNR) conditions and which allows the SNR corresponding to the

50% recognition rate to be calculated (Wilson et al., 2012).

4.2.1.2 Objective methods

Most objective methods for estimating intelligibility are based on measure-

ments of how a signal changes across frequency bands. The work of French

and Steinberg (1947) led to the definition of the Articulation Index (AI) as

a standardised method of objectively evaluating speech intelligibility. There

are two successors to AI: the Speech Intelligibility Index (SII) (ANSI, 1997)
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and the Speech-Transmission Index (STI) (Commission et al., 2003). These

approaches are computed from the speech and noise levels in a set of fre-

quency bands by weighting according to the relative contribution of the band

to intelligibility. In another words, these are SNR-based methods. These ap-

proaches are, however, unable to model the effects of speech enhancement al-

gorithms operating in the time-frequency (T-F) domain (Ephraim and Malah,

1985). For example, coherence SII and a normalised covariance-based STI

procedure both show low correlation with speech intelligibility after ideal

time frequency segregation processing has been applied (Taal et al., 2009).

More recently, the Short-Time Objective Intelligibility (STOI) metric,

based on correlation of the spectral amplitude modulation of the clean and

degraded speech, has been developed by Taal et al. (2011). It has been shown

that STOI scores are highly correlated with the subjective intelligibility of

speech in noise and T-F weighted noisy speech (Gomez et al., 2011; Schwerin

and Paliwal, 2014).

Using the STOI metric, both clean and degraded speech are converted

from the time domain into the frequency domain using the short-time Fourier

transform (STFT) with 50% overlap and a Hanning window of duration

25.6ms. The complex-valued STFT coefficients are denoted by x̂(m, b) where

m and b are the time frame index and frequency bin, respectively. The

spectral coefficients are grouped into one-third octave bands. The norm of

the jth one-third octave band for clean speech is given by:

Xj(m) =

√√√√b2(j)−1∑
b=b1(j)

|x̂(m, b)|2 (4.1)

where b1 and b2 denote the lower and upper edges of the one-third octave

band. Similarly, the T-F representation of the same one-third octave band

can be obtained for the processed speech and denoted as Yj(m). Then the

short-time temporal envelope of clean speech is defined as:

xj,m = [Xj(m−N + 1), Xj(m−N + 2), ..., Xj(m)]T (4.2)
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where N = 30, which corresponds to a time duration of 384ms (since the

duration of each window is 25.6ms). Similarly, the short-time temporal enve-

lope of the degraded speech is denoted by yj,m. Before comparing the clean

and degraded speech, yj,m is clipped to remove the impact of frames with

low speech energy. The clipped y is denoted as ȳ and given by:

ȳj(m) = min

(
|| xj,m ||
|| yj,m ||

yj,m(n), λxj,m(n)

)
n ∈ 1, ..., N (4.3)

where x(n) indicates the nth element of x, || · || denotes the Euclidean norm,

and λ = 6.623 represents a −15 dB signal-to-distortion ratio. The intermedi-

ate intelligibility is calculated from the correlation between the two vectors:

dj,m =
(xj,m − µxj,m

)T (ȳj,m − µȳj,m)

|| (xj,m − µxj,m
) || || (ȳj,m − µȳj,m) ||

(4.4)

where µ(·) represents the sample average of the vector. The overall STOI

score is then obtained by averaging dj,m over all bands and frames:

d =
1

JM

∑
j,m

dj,m (4.5)

where M and J denote the total number of frames and one-third octave

bands, respectively.

4.2.2 Speech quality

In this section we consider the measurement of speech quality and, as in the

previous section about measuring speech intelligibility, we split the assess-

ment of speech quality into two basic approaches; subjective and objective.
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4.2.2.1 Subjective methods

There are broadly two types of subjective speech quality measurements. The

first is based on human-generated mean opinion scores (MOSs). Listeners

are first trained by playing a set of reference speech stimuli indicative of

the range of quality levels they will be presented with during the main test.

They are required to rate the quality of the speech in each stimulus using a

numerical MOS scale. The second approach is the preference test, typically

in which speech stimuli are presented in pairs to a listener, who is required

to select the stimulus which they perceive to have the higher quality.

4.2.2.2 Objective methods

An alternative way to measure speech quality is to automate the estimation

of the MOS by means of an algorithmic comparison between the clean and the

corresponding degraded signals. The Perceptual Evaluation of Speech Qual-

ity (PESQ) is an international standard for estimating the MOS, which has

been agreed by the International Telecommunication Union-Telecommunication

Standardisation Sector (Rix et al., 2001).

Figure 4.1: Simplified diagram of the PESQ algorithm, redrawn from
Kondo (2012).

A simplified diagram of the PESQ algorithm is shown in figure 4.1. Both

original and degraded signals are internally represented by means of a percep-

tual model. A delay compensation process is used to time-align the degraded

signal with the original signal. The MOS estimation is then derived using a
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cognitive model based on the differences between the internal representations

of the two signals. Experiments conducted by Kondo (2012) compared the

objective quality measurement produced by the PESQ algorithm with the

MOS scores produced subjectively by ten listeners. The results indicate that

the objective MOS generally agrees with the corresponding subjective score.

4.3 Blind source separation

In this section, we begin by describing the blind source separation (BSS)

problem. The aim of BSS is to recover a sound source from a mixture of

sounds by means of several observations of the mixture using only information

embedded in the mixtures themselves.

In real acoustic conditions, the delays and reflections experienced by a

propagating sound need to be taken into account by the BSS model. For Q

microphones and M sources, the observed mixture xq at the qth microphone

at time sample n can be described as (Dmour et al., 2011):

xq(n) =
M∑
i=1

P−1∑
p=0

aqi(p)si(n− p) q ∈ [1, ..., Q] (4.6)

where si is the ith source signal, aqi denotes the room impulse response of

length P , from source i to microphone q.

Recovery of the original sound sources is usually achieved by estimating

the matrix of the unmixing filter wiq (Dmour et al., 2011). Therefore, the

estimated ith source ŝi(n) can be written as:

ŝi(n) =

Q∑
q=1

U∑
u=1

wiq(n)xq(n− u) i ∈ [1, ...,M ] (4.7)

where U denotes the length of the unmixing filters.
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4.3.1 Independent component analysis

Independent component analysis (ICA) can be considered as a particular

class of solution to address the BSS problem. It is based on two main as-

sumptions. Firstly, it is assumed that the unknown sources have identical

probability distributions which are statistically independent of each other,

which is known as the independent and identically distributed assumption

(the i.i.d assumption). In practice, this is a reasonable assumption to make

in audio applications, since two highly correlated sound sources are unlikely

to be active simultaneously. When this assumption breaks down, the likely

result is that the sources become grouped into a single sound source. Sec-

ondly, each source must have a non-Gaussian distribution. If the sources are

Gaussian, it is impossible to infer the direction of the columns of the mix-

ing matrix (SID, 2005). ICA is able to separate sources in overdetermined

situations, which means that the number of observed mixtures must at least

equal the number of sources.

The concept of ICA was first proposed by Comon (1994) and further de-

veloped by Bell and Sejnowski (1995), motivated by the signal separation

challenge. Bell and Sejnowski focused on solving the instantaneous noise-

less mixing problem and they did not consider the source propagation delay.

They provided a unifying framework to the BSS problem in their information

maximisation approach. ICA can achieve good separation performance in the

time domain, once the algorithm converges (Amari et al., 1997; Douglas and

Sun, 2003).

An acoustic mixture usually includes delays and convolutions with spa-

tial impulse responses. More recent research implements ICA in the Fourier

domain (Smaragdis, 1998; Barry et al., 2005). The main idea is to perform

ICA in each frequency band rather than in the time domain, wherein delays

and convolutions which are shorter than the window length can be treated as

phase modifications. This creates what is known as the permutation problem,

in which the different frequency components belonging to each sound source
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must be identified and grouped in order to reconstruct each signal separately

in the time domain. Many methods have been proposed to assign continuity

criteria for extracting the correct components. For example, the permutation

problem can be addressed based on a combination of direction-of-arrival esti-

mation and correlation of signal envelopes between frequency bands (Sawada

et al., 2004), or by using either one of these methods individually (Ikram and

Morgan, 2002; Anemüller and Kollmeier, 2000).

A review of the performance of ICA for the separation of competing

acoustic sources in anechoic and reverberant conditions is given by Kendrick

and Shirley (2008). They conclude that separation performance varies with

different microphone topologies and with the type of ICA algorithm. The

results further illustrate that performance is degraded by the presence of

reverberation. Furthermore, the requirement for overdetermination in ICA

limits its application in hearing aids.

4.3.2 Beamforming

While ICA focuses on the statistical properties of signals, beamforming takes

advantage of spatial information about them and forms another BSS solution

family. Beamforming is a signal processing technique using an array of mi-

crophones of known topology. The goal is to preserve the acoustic signals

coming from a particular, desired direction and to cancel out sounds coming

from all other directions.

The delay-and-sum beamformer is one of the simplest kinds of fixed beam-

former. With reference to figure 4.2, a wanted sound from a distant point

source arrives at each microphone in turn in the linear array. The delay

in the arrival time from one microphone to the next depends on the angle

θs and is proportional to their separation. Appropriate delays, T1, T2, ...,

are applied to compensate for the different times of arrival, such that the

wanted signal from each microphone is brought into time alignment. After

summation, this results in the wanted signal ŝ being enhanced while signals
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from other directions tend to be canceled out. Steering the beamformer is

straightforwardly achieved by adjusting the time delays. For a narrowband

frequency signal, the time delay can be achieved by applying a phase shift.

For a wideband signal the time delays can be applied to each frequency band

after decomposition.

Figure 4.2: Delay-and-sum Beamforming, redrawn from Adel et al. (2012).

The delay-and-sum beamformer has a major limitation, particularly for

small arrays. In some unwanted directions, the interference cannot be ade-

quately rejected using a fixed beam pattern (Feng and Jones, 2006). This

problem has been addressed using more sophisticated techniques such as

adaptive beamforming, of which linearly constrained minimum-variance (LCMV)

is one example (Capon, 1969). In general, the goal is to minimise the average

energy contributed by the interferers. The coefficients in a LCMV system

are adjusted such that signals from the target direction pass unmodified and

the amplitude of the interfering signals from other directions is minimised.

These coefficients can be optimised for a particular target direction.

For narrowband signals, the optimal filter coefficients vector copt, derived

by Capon, can be written as (Feng and Jones, 2006):

copt =
R−1e

eHR−1e
(4.8)

where R−1 is the inverse of the cross-correlation matrix between the mi-

crophone signals, e is the steering vector containing the relative phase and
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amplitude information of the source in the target direction, and H indicates

the complex- conjugate transpose. Difficulties with this type of beamformer

are that it is computationally expensive and sensitive to numerical errors in

the matrix inversion.

For wideband signals, (Frost III, 1972) introduced a wideband adaptive

beamformer. He applied an adaptive filter to the signals at each microphone,

allowing a frequency-dependent response. Due to the gradient operation

in this method, however, its main disadvantage is slow convergence. To

improve this, Griffiths and Jim (1982) introduced the generalised sidelobe

canceller, which is an unconstrained minimisation technique. This method

still converges slowly, but is simpler to implement than Frost’s method. The

beamformer by Griffiths and Jim has proven very popular (Feng and Jones,

2006).

Beamforming using large arrays has demonstrated substantial improve-

ments in speech intelligibility (Kates and Weiss, 1996; Schum, 2003). How-

ever, the use of beamforming in a binaural hearing aid is limited by the phys-

ical constraints of the number and location of the microphones. To achieve a

relatively good performance the number of microphones in the beamforming

system must exceed the number of sound sources (Allred, 2006). Further-

more, the performance of a beamformer degrades in reverberation (Green-

berg and Zurek, 1992; Ricketts and Hornsby, 2003). Therefore, applying

beamforming techniques in a typical binaural hearing aid using only two mi-

crophones creates difficulties in dealing with everyday listening environments

where there are often more than two sources and these are often affected by

reverberation.

4.4 Model-based separation

Another family of solutions to improve speech intelligibility using signal sep-

aration is based on machine learning models for speech. A number of ap-
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proaches have been developed, including hidden Markov models (HMMs)

and non-negative matrix factorisation (NMF).

A hidden Markov model possesses temporal continuity, making it suitable

for modelling speech. Varga (1990) modelled both speech and a noise signal

using an HMM. In a subsequent development by Roweis (2000), an HMM

was trained using a narrowband spectrogram to model each talker. After

training, these models were combined to form a factorial HMM. The separa-

tion of multiple talkers can be achieved by first inferring an underlying state

sequence for the factorial HMM, then a binary mask can be constructed using

the model outputs. The approach by Roweis is only suitable, however, when

the models are trained using the same talkers, which makes them impractical

for hearing aid use.

More recent research has improved the performance of separation algo-

rithms based on factorial HMMs. A new probabilistic model, the factorial

scaled hidden Markov model (FS-HMM), has been proposed by Ozerov et al.

(2009), who applied FS-HMM to a variety of speech separation problems. In

a further enhancement, Mysore et al. (2010) describe the non-negative facto-

rial HMM (N-FHMM) for modelling sound mixtures. Hershey et al. (2010)

demonstrated that their factorial HMM-based algorithm could outperform a

human listener in monaural separation tasks and produced comparable re-

sults in a talker recognition challenge. Specifically, their algorithm achieved

an overall recognition rate of 21.6%, compared with a human recognition rate

of 22.3%. Hershey et al. pointed out that model-based speech separation still

has room for improvement to be viable in real-world applications. Sticking

points continued to include poor adaptation to unknown talkers and envi-

ronments (Hershey et al., 2010). These factors have limited the application

of model-based methods in hearing aids, where an ability to generalise and

accommodate unknown talkers and environments is highly desirable.
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4.5 Computational auditory scene analysis

The term auditory scene analysis (ASA) was introduced in section 2.3. ASA

refers to the human ability to organise sounds, particularly in the perception

of an acoustic mixture. The related phenomenon of selective attention is

often exemplified using the cocktail party effect (Cherry, 1953), in which a

listener focuses on one sound source within a mixture. Information which

facilitates the segregation of a wanted sound source from a mixture includes

the monaural and binaural cues embedded in it.

Computational auditory scene analysis (CASA) can be defined as a ma-

chine system that emulates the sound source segregation functions of the

human hearing system as described in ASA (Rosenthal and Okuno, 1998;

Wang and Brown, 2006). It very often attempts to replicate the percep-

tual and neural mechanisms in ASA to segregate various kinds of sounds.

Specifically, CASA systems address the sound segregation problem by us-

ing a variety of acoustic cues, such as periodicity (Parsons, 1976; Okuno

et al., 1999; Cooke, 2005), onset and offset detection (Brown and Cooke,

1994; Smith and Fraser, 2004; Hu and Wang, 2008), amplitude modulation

extraction (Kollmeier and Koch, 1994; Hu and Wang, 2004), frequency mod-

ulation (Kumaresan and Rao, 1999; Cooke and Ellis, 2001) and interaural

difference (Lyon, 1983; Harding et al., 2006; Mandel et al., 2010b). In ad-

dition, sound stream segregation can be used as a front-end for automatic

speech recognition (ASR) systems in real-world environments (Okuno et al.,

1996).

Broadly speaking, CASA systems can be divided into monaural (one-

microphone) and binaural (two-microphone) approaches. Together, they are

capable of extracting complementary sets of acoustic cues. The binaural

approach in CASA is particularly relevant to our research. Like optimal cue

mapping, which we present in Chapter 5, binaural CASA typically combines

various cues extracted from a binaural mixture based on a time-frequency

mask. Hence, in this section we present a review of the binaural approach
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within CASA.

4.5.1 Binaural CASA

As described in section 4.1, binaural hearing contributes to sound localisa-

tion and auditory robustness in reverberation. This has led a number of

researchers to develop binaural CASA systems which are based on two spa-

tially separated microphones. By definition, binaural CASA systems extract

binaural cues by comparing the signals arriving at the left and right ears.

In early research carried out by Lyon (1983), a binaural cocktail party

processor was proposed. The system localised and separated sound sources

based on interaural time difference (ITD) which were estimated by cross-

correlating the outputs from a model of a left and right pair of binaural

cochlear filterbanks. Bodden (1993) proposed a similar approach which addi-

tionally incorporated interaural level difference (ILD). The target source was

separated from the mixture by deriving and applying a soft mask compris-

ing the energy ratios between target speech and the mixture in each critical

band.

A related anechoic binaural speech separation algorithm described by Ro-

man et al. (2003) uses a skeleton cross-correlogram, in which the local peaks

are identified and replaced with a narrower Gaussian function to estimate the

sound source location. The skeleton representation helps to avoid the broad

peaks in the correlogram which occur at low frequencies. Roman observed

that interaural time difference (ITD) and interaural level difference (ILD) dis-

tributions for the target source in a mixture display an azimuth-dependent

characteristic. In particular, changes in the relative strengths of a target and

an interferer source lead to a systematic shift in the estimated ITD and ILD.

The target source is segregated by using a mask estimator which has been

pre-trained to exploit the ITD and ILD features jointly.

Harding et al. (2006) proposed a soft mask estimator for ASR based
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on the statistics of binaural interaction. This approach is similar to that

of Roman et al. (2003). However, rather than using a parametric method,

they estimated probability distributions for ITD, ILD and joint ITD-ILD

features from the training data. The system exhibited an enhanced ability,

compared with an unprocessed mixture, to recognise a target speech signal

in the presence of reverberation.

Much research in binaural CASA has been devoted to combining spatial

cues with other cues. In a study of Denbigh and Zhao (1992), harmonicity

was used to separate the voiced speech of two talkers. In addition, the use

of directional cues in the binaural mixture helped them to determine the

allocation of pitch periods to different talkers in each time frame. Similarly,

the system proposed by Woods et al. (1996) uses both pitch and localisation

cues, this time based on a confidence score derived from the consistency of

the cues used. Kollmeier and Koch (1994) also integrated low-frequency enve-

lope modulations and binaural cues. Segregation systems based on harmonic

tracking alone perform poorly when the fundamental frequencies of sound

sources are very close. Using a residue-driven CASA architecture, Nakatani

et al. (1996) and Okuno et al. (1999) used localisation cues to improve both

the pitch estimation and the assignment of a pitch to one of two talkers . In

more recent research, Jiang et al. (2014) developed a CASA binary classifica-

tion system for reverberant speech segregation using integrated gammatone

frequency cepstral coefficients (GFCCs) and binaural cues.

4.5.2 Binaural CASA structure

In this section, we introduce some of the fundamental ideas associated with

most binaural CASA systems. They typically consist of the four stages shown

in figure 4.3.

The first stage of a CASA system (see figure 4.3) typically comprises an

auditory filterbank, often composed of gammatone filters (Patterson et al.,

1987) to perform a time-frequency analysis of the incoming binaural mixture.
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Figure 4.3: Schematic diagram of a typical binaural CASA system. T , N
and R denote the target source, noise source (interferer) and the

reconstructed target source, respectively. Summarised from Roman et al.
(2003) and Jiang et al. (2014).

It is inspired by the frequency selectivity processing which takes place in

the human auditory system. The order, bandwidth and frequency spacing

of the filters are usually set to match measured psychophysical data (Brown

and Wang, 2005). The response of each filter is half-wave rectified and com-

pressed to simulate the neuromechanical transduction in the cochlea (Roman

et al., 2003). Not all CASA systems employ auditory periphery processing,

however, as the time-frequency analyser can be replaced by the short-time

Fourier transform or discrete wavelet transform, for example (Brown and

Wang, 2005).

In the second stage, binaural cues are extracted at the level of each time-

frequency unit. There are two primary localisation cues: ITD at lower fre-

quencies and ILD at higher frequencies. ITD is typically extracted using

cross-correlation. Such a scheme was proposed by Jeffress (1948) and is ex-

pressed in equation 4.9. ILD is calculated using equation 4.10.

C(t, f, τ) =
N−1∑
n=0

hL(t− n, f)hR(t− n− τ, f)w(n) (4.9)

ILD(t, f) = 10 log 10

∑N−1
n=0 hR(t+ n, f)2∑N−1
n=0 hL(t+ n, f)2

(4.10)

where hL(t, f) and hR(t, f) are the signal outputs from the auditory periphery

for left and right channels, respectively, at time t and frequency bin f , and
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w(n) is a window function of length N . The ITD can be derived from the

time lag corresponding to the position of the peak in C(t, f, τ) for each time-

frequency unit.

Apart from these two binaural cues, many other monaural and binaural

cues can be extracted in the second stage. Denbigh and Zhao (1992) pro-

posed a related speech separation system which incorporated information on

the fundamental frequency of a speech source. In addition, as described in

section 3.1.2, interaural envelope difference (IED) is able to provide direction

information at higher frequencies.

The computational goal of CASA is to estimate an ideal time-frequency

mask for segregating the target signal in a mixture (Wang and Brown, 2006)

and this leads to the third stage of the typical CASA structure. The binary

mask estimator usually relies on supervised learning to combine the different

features extracted from the input mixture. Binary mask estimation can be

seen as a classification problem. In previous research, Roman et al. (2003)

applied kernel density estimation, and Woodruff and Wang (2013) employed

a set of multilayer perceptrons, whilst Jiang et al. (2014) used deep neural

networks to estimate the mask. Once the binary mask has been obtained, the

time domain signal for the target source can be reconstructed by inverting

the auditory periphery processing.

CASA systems have been reported to perform well in speech segregation

tasks, improving both speech intelligibility and quality (Jiang et al., 2014).

The implementation of a very recent DNN-based binaural CASA system will

be described in detail and compared with our new optimal cue mapping

approach in Chapter 8.
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4.6 Discussion

The human auditory system is extremely good at segregating and localising

sounds in a binaural mixture and this is partly due to the integrated use of

both ears in binaural hearing. Hence, an understanding of human listening

performance in these conditions is essential in the development of a binaural

hearing aid algorithm and has been a focus of this chapter.

Compared with monaural hearing, binaural hearing makes speech more

intelligible in both anechoic and reverberant conditions involving multiple

sound sources, provided that the target speech is spatially separated from

the other sources. Segregation and localisation performance decrease as the

number of competing sources increases and the presence of reverberation

generally makes the task of source segregation still more difficult. When the

number of interference sources becomes sufficiently high, the sources become

known as speech babble, which changes the masking effect they create from

being predominantly informational into purely energetic masking.

The robustness of speech recognition in background noise is commonly at-

tributed to the glimpsing process in which human listeners detect and group

the spectro-temporal regions where the target speech dominates. Low- and

mid-frequencies provide more speech intelligibility information than high fre-

quencies and so efforts to perform spatial segregation should be concentrated

on the lower regions of the audio spectrum.

Insights gained in this chapter provide the motivation for the two-microp-

hone approach introduced in the next chapter. In Chapter 6 we begin to

evaluate the algorithm using the simplest underdetermined con figuration; a

three-source setup in anechoic conditions. The constraints are gradually re-

leased in Chapter 7, where reverberation is also considered in the evaluation.

Increasingly realistic conditions are examined in Chapter 8, where the algo-

rithms performance is evaluated using larger numbers of competing speech

sources.
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A variety of methods for evaluating speech intelligibility and speech qual-

ity have been reviewed. They include time-consuming subjective measure-

ments on human listeners and much more rapidly determined objective mea-

surements based on perceptual models. Experiments show that the STOI

and PESQ metrics described in sections 4.2 correlate well with their cor-

respoding subjective measurements. In the following chapters, in order to

avoid the time and effort involved in evaluating the proposed algorithm sub-

jectively, we adopt these objective evaluation methods for estimating speech

intelligibility and quality.

Many machine-based techniques for segregating multiple sources have

been briefly reviewed in this chapter. These were most broadly classified

as blind source separation techniques, model-based separation systems and

computational auditory scene analysis. In terms of function, they are all

potentially useful for this research, as a perfectly segregated speech source

would maximise speech intelligibility, the prime goal of our work. The model-

based speech segregation systems reviewed here are generally too complex to

implement, however, or require too much computation and electrical power

to be supportable on a miniature, wearable DSP device. Some algorithms

possess the fundamental difficulty that they cannot be run in realtime, for

example because the segregation solution is arrived at iteratively. To satisfy

the requirements of this research, a relatively simple, low complexity, real-

time algorithm ultimately capable of operating on a hearing aid device is

needed. The binaural CASA approach has been given special attention in

this chapter, because it is most closely related to our optimal cue mapping

(OCM) technique, which is described in the next chapter.
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Chapter 5

Binaural Processing of Multiple

Sound Sources: Optimal Cue

Mapping

Due to the effects of masking, speech intelligibility can be significantly de-

creased in the presence of concurrent interfering sounds reaching a listener’s

ears. These acoustic interference sources make speech perception more chal-

lenging for people who suffer from a hearing deficit (Shinn-Cunningham and

Best, 2008).

A popular method for segregating a wanted (target) speech source from

a mixture of the target and one or more interfering sources (interferers) is to

Fourier transform the mixture into the frequency domain to create a vector

containing the mixture’s spectrum as a set of magnitude and phase values,

one pair for each frequency point. The fraction of the energy at each fre-

quency point due to the target alone is estimated and placed in a second

vector, known as the mask. Pairwise multiplication of these two vectors,

that is, of the mixture spectrum and the mask, produces an estimate for the

spectrum of the target. The success of the method depends on the accu-

racy with which the mask can be estimated. In ideal conditions, by which is
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meant that the mask can be estimated perfectly, the mask method of source

segregation is capable of providing large improvements in intelligibility. A

great advantage of the approach is that these improvements are retained

even when only the magnitude values of the mask are estimated and then

combined with the phase values of the original mixture spectrum.

Methods that estimate the magnitude multiplicative mask in the time

and frequency domains show great promise in terms of speech intelligibility

improvements. In recent speech perception research, Roman et al. (2003), Li

and Loizou (2008) and Jiang et al. (2014) proposed target speech segrega-

tion models based on an ideal binary mask (IBM), which is a two-dimensional

matrix of binary values with the same form as a spectrogram. When the es-

timated target speech is dominant in a particular time-frequency (T-F) unit,

that mask element is assigned the value unity and zero otherwise. Research

has shown that source segregation using a binary mask produces remarkable

improvements in terms of speech intelligibility in noisy conditions, for both

normal-hearing and hearing-impaired listeners (Li and Loizou, 2008; Wang

et al., 2009; Kim et al., 2009). Moreover, listeners can also benefit from

binary mask source segregation in reverberant environments (Roman and

Woodruff, 2011; Jiang et al., 2014).

As the signal-to-noise ratio (SNR) of the target speech signal reduces,

however, the IBM becomes increasingly sparse, causing the intelligibility of

the target to deteriorate, albeit gracefully. In low SNR circumstances, it

has been shown in automatic speech recognition tasks that the ideal ratio

mask (IRM) performs better (Harding et al., 2006; Srinivasan et al., 2006;

Narayanan and Wang, 2014). In a ratio mask the mask values may take any

value between 0 and 1 and can be thought of as indicating the probability of

target dominance for each T-F unit in the mask. In part, because errors in

mask estimation are likely to have less of a perceptual impact, an IRM is able

to perform better in terms of objective intelligibility than IBM (Narayanan

and Wang, 2013). Also, as the SNR of the target deteriorates, ratio mask

values diminish, but the mask does not become sparse in the sense that a
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binary mask does. The intelligibility advantage at low target SNRs of using

a ratio mask rather than a binary mask is demonstrated graphically in figure

5.2 in section 5.1.2.

In acoustically challenging environments, listening to speech with both

ears improves its intelligibility. Inspired by the advantage of binaural hear-

ing, Roman et al. (2003) use the interaural time difference (ITD) and in-

teraural intensity difference (IID) spatial cues to estimate a binary mask.

Moreover, these cues have long been recognised as being important in lo-

calisation (Strutt, 1907; Rayleigh, 1907). However, acoustic signals are rich

in other cues originating from the sources themselves and from the effects

of the acoustic environment. With the assistance of these additional cues,

the performance of source segregation can potentially be improved. In con-

sidering this possibility, however, it is desirable to be able to determine the

usefulness of each cue in different contexts (e.g. anechoic or reverberation

conditions), so that weak cues are not integrated, which could waste limited

computational resources.

Figure 5.1: Block diagram of the proposed binaural signal processing
method. xl(n) and xr(n) are the signals recorded at both ears. After
applying the STFT, a pair of complex-valued spectra, Xl(m, b) and

Xr(m, b), are obtained. Acoustic features are extracted for each T-F unit
and form inputs to the ANN, which is trained to predict the energy ratio

Rl(m, b) and Rr(m, b) of target speech in the left and right channels,
respectively. The estimated target speech signals ŝl(n) and ŝr(n) are
reconstructed via post processing for presentation to the listener.

In this chapter, the optimal cue mapping (OCM) model is proposed. It
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is a binaural signal processing strategy based on time-frequency mask es-

timation, as shown in the figure 5.1. The left and right channels, xl(n)

and xr(n), respectively, of a binaural mixture signal are received at the two

ears and transformed into the time-frequency domain using the short-time

Fourier transform. This results in a pair of complex-valued spectra, Xl(m, b)

and Xr(m, b), where m and b denote the time frame and frequency band,

respectively. Information embedded in these signals is extracted and then

data-driven machine learning techniques are used to estimate the ideal ratio

mask. We use a set of simple two-layer, feed-forward artificial neural net-

works (ANNs) to estimate the energy ratio of target speech to target speech

plus interference in the binaural mixture. The segregated target signals ŝl(n)

and ŝr(n) are finally reconstructed by the post processing and presented bin-

aurally to the listener.

By interrogating this machine learning model, the cues extracted from

the binaural mixture can be ranked according to their estimated importance.

The importance ranking is a measure of the contribution made by one input

or by a group of inputs to the estimation of a mask. Depending on factors

such as the restricted computational power and limited memory size of the

hearing aid, or on the properties of the acoustic environment (e.g. interaural

coherence in section 5.2 or other cues that have not addressed in this thesis),

the least important input(s) to the ANN can be pruned out. In so doing,

the trained system is able to segregate the target signal out of the binaural

mixture in an efficient way and provide the best possible intelligibility and

quality of a segregated target speech signal in the prevailing conditions.

5.1 Definitions

To ensure rigour and facilitate repeatability, in this section we define a num-

ber of processes which will be used when describing optimal cue mapping

and when evaluating our results.
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5.1.1 Signal-to-noise ratio definition

In our application, signal-to-noise ratio (SNR) is a measure of the total signal

energy due to the target speech source compared with the total energy due

to any interfering sound sources. The ratio is often expressed in decibels:

SNR = 10 · log 10

M∑
n=1

s2[n]

M∑
n=1

y2[n]

(5.1)

where M is the length of the signal, s and y are the target speech signal

and interfering noise signal, respectively. In order to distinguish it from the

refined definition described below, we use the term global SNR to describe

equation 5.1.

To measure the SNR of a speech signal using the global SNR is problem-

atic due to the highly non-stationary nature of speech. For instance, consider

an utterance and white noise both having a certain energy E over a dura-

tion of 1 second. According to equation 5.1, the global SNR is 0 dB. If, on

the other hand, the same utterance with the same overall energy, now in-

cludes a period of silence, such as a pause in the middle, then its duration

increases. The energy E in this signal is spread over a longer period of time

and so, compared with a continuous noise signal, will now appear to have

a smaller global SNR. The example here illustrates the fact that the actual

level of noise presented to achieve a certain global SNR strongly depends on

the proportion of silence in the speech samples. For this reason, we apply

an energy-based voice activity detector (VAD) in the SNR measurement to

remove the silent or quiet portions of the speech before calculating the SNR.

We use the term local SNR to describe this calculation, shown in equation

5.2:

local SNR = 10 · log 10


P∑

p=1

(
M∑
n=1

s2p[n] · V ADp

)
P∑

p=1

(
M∑
n=1

y2p[n] · V ADp

)
 (5.2)
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where P is the total number of frames and V ADp is zero when the energy in

the p-th frame of sp is 40 dB less than the global maximum or the p-th frame

of yp has zero energy. For all other cases, V ADp is set to one. In detail, the

signal is broken into a contiguous series of fixed-length, overlapping frames.

Following the practice adopted by May et al. (2015), and as indicated above,

a frame of signal is excluded from the SNR calculation if the energy level of

the target source is 40 dB less than the global maximum of the mixture. In

this way, the SNR is calculated only in periods of the mixture signal where

the target source is active. This leads to a consistent way of defining the

SNR, which is independent of the extent of silences or low energy portions

in the target speech.

5.1.2 Time-frequency mask

The conventional approach to ratio mask estimation is to transform the tem-

poral frames of the left and right channel waveforms into a domain where

the signals are represented more sparsely, which makes the target and inter-

ferers easier to separate. The aim is to separate the target talker signal from

the interferer signals using spectro-temporal signal processing. In previous

research a variety of transforms have been explored (e.g., Hyvärinen and Oja

(2000); Akansu and Haddad (2001)). They tend to offer different trade-offs

and to provide optimal performance in different circumstances. Their per-

formance is often evaluated using the short-time Fourier transform (STFT)

as a baseline. We anticipate that the results of our research will be broadly

applicable and largely independent of the transform method and we therefore

adopt the STFT to perform signal decomposition.

In reality, the target speech and interference will always arrive at the

listener as a binaural mixture. The computational goal of the left and right

channel T-F masks is to estimate the target signal-to-interferer energy ratio

in each T-F unit. In later chapters of this thesis, we adopt a machine learning

approach to performing mask estimation. Training these algorithms requires
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generation of the IRM (ideal ratio mask), for which perfect knowledge of the

target and the interference signals is necessary. Throughout this thesis we

are simulating the acoustic environments we investigate. This means that we

have individual access to the target and interference signals before they are

each binaurally spatialised and mixed. Thus, the IRM can be calculated. By

applying the STFT to the target speech signal t[n] and interference i[n], two

complex valued spectra T (m, b) and I(m, b) are obtained, where the integers

n, m and b denote the time index, the time frame index and frequency bin,

respectively. The ideal energy ratio mask R for the target is defined by

accessing the target and interference signal before mixing according to:

R(m, b) =
| T (m, b) |2

| T (m, b) |2 + | I(m, b) |2
(5.3)

Although we have seen that the ideal ratio mask delivers a superior perfor-

mance compared with a binary mask in automatic speech recognition (Hard-

ing et al., 2006; Srinivasan et al., 2006; Narayanan and Wang, 2014), we will

also have need of the equivalent binary mask B as a baseline for comparison

of speech intelligibility performance. This can be derived very simply from

the ratio mask:

B(m, b) =

{
1 R(m, b) > δ

0 otherwise
(5.4)

where δ is an adjustable threshold. δ is set to 0.5 for the results reported in

this thesis. At this value, when the energy of the target signal exceeds the

energy of the interference then the appropriate T-F unit in the binary mask

is set to one, otherwise it is set to zero.

5.1.3 Intelligibility

The fundamental aim of this research is to increase the intelligibility of tar-

get speech which is being partially obscured by interfering sound sources and

reverberation. The ultimate way to assess the effectiveness of an algorithm
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Figure 5.2: STOI performance of the original binaural mixture (left
channel) and of the target signal reconstructed using the IBM and IRM, as
a function of various local SNRs. Target speech and interference are located

at 0◦ and −30◦, respectively.

in this respect is to run a listening test, but these are very time-consuming

and human-resource intensive. Hence, a number of automated methods have

been devised for estimating the intelligibility of speech under various adverse

conditions. In our work, we estimate the intelligibility of a variety of un-

processed and processed signals using the short-time objective intelligibility

(STOI) metric (Taal et al., 2011), which correlates well with the intelligibility

of noisy and T-F weighted noisy speech as measured experimentally using

human participants.

Figure 5.2 shows the STOI score for an original binaural mixture signal

(left channel) and the STOI scores after applying ideal ratio and binary masks

to this. The graphs are plotted as a function of local SNR for a two-source

configuration (target speech and one interferer) in anechoic conditions. (A

more detailed description of the configuration will be provided in the next

section.) We can observe that as the local SNR increases, the original mixture

of target speech and interference becomes more intelligible since fewer and
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fewer T-F units are dominated by the interference signal. After application

of the ideal ratio and binary masks, the STOI score becomes much better

than the original mixture. The improvement is largest for very low local SNR

values. Furthermore, in this ideal case, the IRM performs very similarly to

the IBM when the local SNR is above -3 dB. However, the performance gap

between IRM and IBM widens at lower local SNR values. This behaviour

reflects the fact that the IRM performs better than the IBM, particularly

for low SNR conditions where the binary mask becomes sparse. It is also

noteworthy that the binary mask STOI score is not as smooth as the other

two curves. This stems from the fact that the T-F units are turned on or

off using a hard decision process which creates erratic signal reconstruction

using the binary mask. For these reasons, our work primarily focuses on

estimation of ratio masks rather than binary masks.

5.2 Cue harvesting

In the human auditory system, it is well known that binaural cues play a

key role in determining the direction of arrival of a sound source. Differences

between the signals at the two ears facilitate the separation of target speech

and unwanted speech or noise based on their spatial locations. Principally,

these cues are the time difference of arrival of the sound at each ear and

the sound pressure level difference between the two ears. Exploiting these

cues appropriately leads to improved intelligibility. Therefore, there are clear

benefits in applying binaural signal processing methods based on these cues

in hearing aids. The OCM (optimal cue mapping) algorithm is designed

to improve speech intelligibility by processing the signals arriving at both

ears jointly using a variety of cues. These cues can originate in the speech

source (e.g. pitch and sibilance), the acoustic environment (e.g. the number

of sources and the amount of reverberation) or in the listener (e.g. via their

HRTFs).

The main cues used in the OCM algorithm and their statistical features
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are described in the following sections. They are predominantly binaural

and an obvious choice since we are using two microphones in a binaural

arrangement.

5.2.1 Statistics of IPD and ILD

We begin by considering the binaural cues used by Roman et al. (2003),

namely interaural time difference (ITD) and interaural level difference (ILD).

In fact, we use interaural phase difference (IPD), which is closely related to

ITD at frequencies below approximately 1 kHz. Above this frequency, IPD

values begin to wrap, first at highly lateral azimuths and then at gradually

smaller deviations from the median plane as the frequency increases. Roman

et al. (2003) derived ITD using cross-correlation, which we consider further

in section 5.2.3.

Segregating two spatially separated sound sources in the horizontal plane

using a binaural arrangement of two microphones is usually analytically

tractable (i.e. a fully determined problem) and almost perfect separation

under anechoic conditions is often possible. Nevertheless analysing the sta-

tistical characteristics of IPD and ITD when two sound sources located in

different directions are simultaneously active provides valuable insights which

are of value in more complex acoustic situations.

We begin by generating a binaural mixture of two talkers speaking si-

multaneously. The subsequent analysis will be based on this example. The

source material for both talkers is selected from the TIMIT database (John

et al., 1993). The HRTFs used to spatialise the speech are taken from set

HA02 in the SYMARE database (Jin et al., 2014). The local SNR is set to

0 dB by scaling both the target and noise signal before spatialisation. The

target source is from a male talker located at 0◦ azimuth, saying, “Don’t

ask me to carry an oily rag like that” ∗. The interfering speech is “Doctors

∗ File name is ‘train/dr2/mdss0/sa2.wav’in the TIMIT database
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prescribe drugs too freely” ∗, from a female talker who is located at −30◦

azimuth. Both sources are in the horizontal plane.
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Figure 5.3: Spectrograms of the left and right channels for each source and
the mixture in a two-source anechoic configuration. The target source is
located at 0◦ azimuth, and the interference is placed at −30◦ azimuth.

Figure 5.3 shows the spectrograms of the left and right channels of each

individual source and of the mixture. Figures 5.3 (a) and (b) appear the

same, which is to be expected, since the level difference between both ears

for the target speech is small due to its location directly in front of the

listener. However, it is possible to tell from subplots (c) and (d) that the

left channel of the interfering speech has more energy than the right which

is because the interferer source is closest to the listeners left ear. After

mixing the two sources binaurally (subplots (e) and (f)), it is still noticeable

that the two channels have different magnitude spectra, especially near the

beginning of the mixture sound and in some parts of the spectral region

above 4 kHz. Comparison of the spectrograms reveals that there are T-F

∗ File name is ‘train/dr1/fkfb0/sx78.wav’ in the TIMIT database
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units in the mixture where the interference is more energetic than the target

and therefore there is the potential for masking to occur. In about the first

0.4 s, it is hard to discern the harmonics of the target speech, whereas they

become easily distinguishable later, especially after 2 s.

In order to study IPD and ILD in more detail, figure 5.4 shows the phase

difference between the left and right channels in the left-hand column (sub-

plots (a), (c) and (e)) and the level difference subplots ((b), (d) and (f) are

in the right-hand column. IPD and ILD are extracted according to:

IPD(m, b) = ϕXl(m, b)− ϕXr(m, b) (5.5)

ILD(m, b) = 20 · log 10 | Xl(m, b) |
| Xr(m, b) |

(5.6)

where ϕ is the unwrapped phase of the spectra Xl and Xr which are the

complex-valued spectra for the left and right channels, respectively.

The IPD (subplot(a)) and ILD (subplot(b)) of the target source are close

to zero, since the target is positioned symmetrically between the two ears

at 0◦ azimuth. Perhaps due to a small offset in the direction of the head

during the measurement of the HRTFs, or because of a slight asymmetry in

the shape of the listeners head, there is a constant small delay between the

signals arriving at the ears from the target. This manifests itself in subplot

(a) as a phase change which increases linearly with increasing frequency. The

IPD of the interfering source at −30◦ azimuth, on the other hand, changes

much more rapidly with frequency and cyclically completes a 2π shift ap-

proximately every 3.3 kHz. This frequency corresponds to a period of 300µs,

which relates this particular IPD response to an equivalent near-constant

ITD for the interferer of this value. The ILD at low frequencies is small due

to diffraction of the interfering sound around the head. At higher frequen-

cies, above approximately 4 kHz, head shadow effects become stronger and

subplot (d) exhibits greater energy differences. For every frequency band,

because the directions of the two sources are stable, the IPD and ILD values

are constant as a function of time. In the mixture IPD plot (figure 5.4 (d)),
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Figure 5.4: Spectrograms of IPD and ILD for each source and for the
mixture using a two source anechoic configuration. The target source is
located at 0◦ azimuth, and the interference is located at −30◦ azimuth.

the regions where the IPD is close to zero belong to the target and are eas-

ily distinguishable from the the non-zero regions caused by the interference.

Similarly, the ILDs of both sources are well reflected in the ILD plot for the

mixture signal. The regions with approximately zero ILD values are associ-

ated with the target and the remaining regions derive predominantly from

the interference source. Generally speaking, the regions with IPD and ILD

values close to zero can be confidently marked as target source active and

dominant.

Based on the above observations, we see that IPD and ILD are strong

indicators of whether or not a T-F unit is dominated by the target. Roman

et al. (2003) demonstrated that as the energy ratio R between the target and

interfering source changes there is a corresponding systematic shift in the
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possible values for ITD and ILD. Specifically, reducing values for the ITD

and ILD indicate an increasing probability that the target source is active

and dominant. Conversely, a decrease in the value of ratio R results in the

ITD and ILD spreading away from target-only values before converging on

the values corresponding to the interferer alone. In a particular frequency bin,

the ITD and ILD display a certain location-dependent statistical distribution

corresponding the location of each source.

In order to study the relationship between IPD, ILD and energy ratio R,

we extract IPDs and ILDs from 5,000 frames of binaural mixtures for the

same two-source configuration. We also calculate the ideal energy ratio R

between the target and interferer signals, since each source is individually

accessible before mixing. Figure 5.5 and 5.6 demonstrate the relationships

between the values of IPD, ILD and R. We obtain similar results to those

described by Roman et al. (2003), who use an auditory filterbank for signal

decomposition rather than the STFT.

Figure 5.5 (a) shows the scatter plot for the distribution of IPD with

respect to R, as well as the mean and standard deviation of R. Subplot

(c) is the histogram of the IPD values at the frequency bin corresponding

to 1 kHz, created from the 5,000 frames of binaural mixture. Similar plots

for ILD values at a frequency of 3 kHz are shown in figures 5.5 (b) and (d).

It is worth noting that when IPD/ILD values cluster close to zero, R is

close to unity. Similarly, when R decreases towards zero, IPD/ILD values

shift towards their interference-only values. Therefore, in this two-source

configuration, there are two peaks in the histograms and these correspond to

the IPD/ILD target-only values and interferer-only values for this particular

frequency bin.

Furthermore, to reveal the IPD and ILD statistical properties in a joint

space, we extract both from the 5,000 frames of binaural mixture at 2 kHz to

demonstrate them. There are 20 bins for IPD from −π to π, and 20 bins for

ILD from -20 dB to 20 dB, resulting in a 20 by 20 grid. Figure 5.6 shows the

histograms of IPD and ILD samples in the joint space at 2 kHz. Each peak in
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Figure 5.5: Statistical properties of 5,000 empirical data values for IPD and
ILD as a function of energy ratio R in anechoic conditions. The target and
interference are located at 0◦ and −30◦, respectively. (a) The scatter plot of
IPD against R showing the mean and standard deviation of R at 1 kHz. (b)
The scatter plot of ILD against R with the mean and standard deviation of
R at 3 kHz. (c) Histogram showing frequency of occurrence of IPD values
at 1 kHz. (D) Histogram showing frequency of occurrence of ILD at 3 kHz.
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Figure 5.6: Histogram of IPD and ILD samples in the 20 by 20 joint grid
space, generated from 5,000 frames of binaural mixture at 2 kHz in anechoic

conditions. The empirical data are obtained with target and interferer
located at 0◦ and −30◦ azimuth, respectively.

the histogram represents a distinct active source coming from one direction.

The target source generates a peak in the combined frequency of occurrence

for IPD and ILD close to zero in both dimensions. The other peak occurs

where IPD and ILD values are close to the interference-only value.

Based on the observations shown in figure 5.5, the mapping relationships

between IPD/ILD and R have been revealed. In addition, IPD and ILD

have characteristic distributions in which the peaks indicate the number and

location of active sources, particularly apparent in figure 5.6. This analysis

demonstrates that IPD and ILD are rich sources of information for estimat-

ing R in anechoic environments. Therefore, they are strong candidates for

forming inputs to an algorithm for estimating the ratio mask to segregate a

target speech source from one or more interfering sources in a binaural mix-

ture. In later chapters these binaural cues do indeed form two of the inputs

to our proposed optimal cue mapping algorithm.
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5.2.2 Statistics of ∆IPD and ∆ILD

In the previous section, we considered a simultaneously active target and

interferer. Individually, these have stable IPDs (figure 5.4 (a) and (c)) and

stable ILDs (figure 5.4 (b) and (d)). When these sources are combined,

however, the resultant IPD and ILD are unstable (figure 5.4 (e) and (f)). In

this section we look at the properties of this unstable behaviour and at the

cues it carries to assist in estimating the ratio mask, R.

In an early study (Gao and Tew, 2015), delta features (denoted by ∆) of

IPD and ILD are found to be useful in estimating the mask. A delta feature

measures the difference between the current value of a property and the value

in the previous frame, also known as the rate of change. In this section, we

investigate why delta IPD and ILD can help in the estimation of the energy

ratio R and explore their relationship to it.

The definition of ∆IPD and ∆ILD are given in equations 5.7 and 5.8.

∆IPD(m, b) = IPD(m, b)− IPD(m− 1, b) (5.7)

∆ILD(m, b) = ILD(m, b)− ILD(m− 1, b) (5.8)

where integers m and b denote the time frame index and frequency bin,

respectively. As discussed in section 5.2.1 and shown in figure 5.4, the IPD

and ILD for each individual source varies relatively smoothly across frequency.

Once in the mixture, the IPD and ILD tend to be either close to the target-

only value or close to the interferer-only value.

Consider a three-source configuration, for example, where the target is lo-

cated at 0◦ azimuth and the two interfering sources are placed symmetrically

on both sides at −30◦ and 30◦ azimuth, respectively. In this configuration,

IPD and ILD values will be close to zero when the target source only is ac-

tive (or dominant), and either positive or negative when either the left or

the right interferers is active, respectively. Hence, even when only the two
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Figure 5.7: The relationship between ∆IPD and ∆ILD and ratio mask
value (indicated by the colour) particularly for small values of IPD and ILD

at 500Hz and 3 kHz, respectively.

interferers are active and the target is inactive, the IPD and ILD values of

the binaural mixture will shift between positive and negative values and so

inevitably pass through zero as they tend to shift towards the value of the

currently dominant interferer.

Pursuing this further, when both IPD and ∆IPD are stable and approxi-

mately zero, it can be seen that the ratio R is close to unity, signifying the

case that the target speech alone is active and is located at 0 azimuth. On

the other hand, if instead two interferers are active, and the target is inactive,

the IPD will vary erratically between positive and negative values, and will

occasionally be close to zero. However, ∆IPD will generally be non-zero in

this situation and the ratio R will be zero. In this scenario therefore, when

IPD is close to zero, the value of ∆IPD is a strong indicator of the mask value

and can be considered important. A similar argument applies to ∆ILD.
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Further analysis of figure 5.7 reveals that a small ∆IPD/∆ILD value

particularly influences the mask value when the associated IPD/ILD value is

small. The mask value is close to unity when both IPD and ILD and both

of their deltas are zero, indicating that only the target is active; for other

values of delta feature, the ratio mask value shifts towards to zero, indicating

that multiple sources are active or, in the extreme condition, that the target

source is actually inactive. In this way, not only are the importance of ∆IPD

and ∆ILD revealed, but also their role in enhancing the estimate of the mask.

5.2.3 Cross-correlation

This research aims to segregate a target sound source from spatially dis-

tinct interfering sources. Being able to determine the directions of the direct

sounds arriving at the listener is potentially extremely valuable for estimat-

ing the proportion of energy in each T-F unit due to the desired target speech.

ITD has been shown to be one of the most important cues for localising a

source (Blauert, 1997). For this reason, many researchers have integrated

ITD into their algorithms to perform localisation (Roman et al., 2003; Hard-

ing et al., 2006; Woodruff, 2012; Ma et al., 2015b).

Cross-correlation measures the similarity between two signals as a func-

tion of the lag τ of one relative to the other. For signals with a sufficiently

narrow cross-correlation function it can be used to estimate the time differ-

ence of arrival of a sound received by two spatially separated microphones,

as in the case of a binaural pair of hearing aids. In this section we consider

basic approaches for estimating time difference of arrival and build up to the

system which we go on later to apply in our optimal cue mapping method.

In section 3.1.1 it was shown that ITD can be approximately calculated

by the Woodworth formula. Figure 5.8 shows ITD plotted as a function of

azimuth for HRTF set HA02 in the SYMARE database (Jin et al., 2014).

Points on the curve are calculated by cross-correlating the HRIR left/right

pairs at each measured azimuth direction in the database. The time lag
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Figure 5.8: Comparison of ITD for θ between −90◦ and 90◦, ϕ = 0◦, from
set HA02 in the SYMARE database, with the Woodworth approximation

for r = 0.085m and c = 343m/s.

corresponding to the maximum value in the cross-correlation function is used

to determine the ITD between two signals. For comparison, the Woodworth

approximation is also plotted in figure 5.8. The head radius parameter in

the model has been adjusted to create a good fit with the measured ITD.

The graph demonstrates the near-linear relationship between ITD and the

azimuth angle of a sound source and confirms the usefulness of this parameter

in the localisation process. The figure also shows the excellent fit between the

simplistic Woodworth formula and an ITD obtained through measurement

of a real HRIR.

One weakness of estimating ITD by cross-correlating HRIR pairs is that

it generates a frequency-independent result, when it has been shown that in

reality ITD varies as a function of frequency (Kuhn, 1977). We accommodate

this frequency dependency by calculating the normalised cross-correlation

function within each frequency bin b of a gammatone filterbank (Roman
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et al., 2003). Although all the features described in the previous sections can

be extracted from binaural mixtures just based on gammatone filterbanks,

at this stage we aim to keep the spectral bandwidth as narrow as possible at

higher frequencies, which can be provided by the STFT. Hence, we combine

the two signal decomposition techniques by allocating the appropriate STFT

frequency points to each gammatone filter band. The bandwidths of the

gammatone filterbank adhere to the equivalent rectangular bandwidth (ERB)

concept (see section 2.2) promulgated by Glasberg and Moore (1990). The

ERB bandwidth calculation is repeated here. For each frequency point b in

the STFT:

ERB(b) = 24.7(4.37fc(b) + 1) (5.9)

where centre frequency fc(b) = fs · b/N (kHz), fs is the sampling frequency

and N is the number of points in each STFT frame. Using this information

the impulse response of the associated 4th order gammatone filter is calculated

for every frequency point according to:

g(n, b) =

{
n3e−2πERB(b)ncos(2πfcn) ifn ≥ 0

0 otherwise
(5.10)

The gammatone-filtered ear signals are denoted as l(m, b) and r(m, b)

for left and right ear, respectively. Then the normalised cross-correlation

function (CCF) between the two channels can be described as:

CCF (m, b, τ) =

∑
n

(l(m, b)[n]− l(m, b))(r(m, b)[n− τ ]− r(m, b))√∑
n

(l(m, b)[n]− l(m, b))2
√∑

n

(r(m, b)[n− τ ]− r(m, b))2

(5.11)

where τ is limited in range to encompass the natural range of ITD values,

approximately -800µs to 800µs, and n is the sample index in the time-domain

filtered signal. The bars denote the mean value. A sampling frequency of

16 kHz results in a cross-correlation output vector of length 27 for each T-F

unit. The 3D structure of cross-correlation output values for all frequencies
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and all time frames is called the cross-correlogram (Roman et al., 2003).

Then the overall time delay in the mth frame SCCF (m, τ) can be estimated

by summing CCF (m, b, τ) across all frequency points, as shown in equation

5.12

SCCF (m, τ) =
∑
b

CCF (m, b, τ) (5.12)

which is the form used in (Roman et al., 2003). We include the expression for

the mean time delay here for completeness and it is not actually used in our

OCM algorithm. As explained above, time difference of arrival varies with

frequency and so we compute it on a per frequency point basis according to

equation 5.11.

To visualise the time difference of arrival information in the cross-correlation

function between the left and right input channels, the signal being analysed

here is the example mixture used in section 5.2.1. The mixture contains two

talkers, the target and an interferer located at 0◦ and −30◦ azimuth, respec-

tively, in anechoic conditions. Figure 5.9 (a) and (b) show the cross correla-

tion vector values for each source for all frequency bands over a duration of

1.4 s. The cross-correlograms summed across all frequencies within the same

time frame are presented in subplots (c) and (d) and the cross-correlograms

for each signal are shown in subplots (e) and (f).

The time differences for the target signal in all frequency bands are close

to zero, as indicated by the time lag for which the peaks in each frequency

band are aligned in figure 5.9 (a). This alignment creates the peak at 0 s

observed in the summation shown in figure 5.9 (c). It is clear that the

horizontal line running along the time dimension in figure 5.9 (e) indicates

that the time difference between the two channels is, as expected, about

0 s throughout the whole duration of the target signal. A similar pattern

applies for the plot of the interference signal in the right column of figure

5.9. The time delay between the two channels is now about -300µs, which

is similar to the time difference for the azimuth angle −30◦ in figure 5.8.

Since the interference is on the left side of the listener, we use a negative

time delay to signify that the sound reaches the left ear sooner than the
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Figure 5.9: Example of source localisation methods for target and interferer
sources, respectively. (a) Cross-correlation coefficients for the target speech

within each frequency band at the time of 1.4 s. (b) Cross-correlation
coefficients for the interferer speech within each frequency band at the time

of 1.4 s. (c) Summed cross-correlation coefficients across all frequency
points for the target. (d) Summed cross-correlation coefficients across all

frequency points for the interferer. (e) Cross-correlogram for the whole time
duration of the target. (f) Cross-correlogram for the whole time duration of

the interferer.
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right ear. Multiple peaks can be seen in the high frequency channels for

both target and interferer. This ambiguity is due to the shorter acoustic

wavelength of signal components at higher frequencies creating periodicities.

Psychophysical models generally apply envelopes to the responses in this

frequency range to overcome the ambiguity (Blauert, 1997). In this study,

we currently do not employ cross-correlation envelopes. Note that the time

resolution of the computed time differences is limited by the sampling interval.

For finer temporal resolution, the time differences could be interpolated.
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Figure 5.10: Example of source localisation for the mixture. (a)
Cross-correlation coefficients within each frequency band at the time of

1.4 s. (b) Summed cross-correlation coefficients across all frequency points.
(c) Cross-correlogram for the whole time duration.

A similar set of plots, for the binaural mixture of the target and inter-
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ferer combined, is shown in figure 5.10. Two broken horizontal lines are now

apparent in the cross-correlogram in subplot (c), representing the time dif-

ference of arrivals for the two sources in the figure. As expected, the line

relating to the target is located at time differences close to 0 s and the line

for the interferer lies at approximately -300µs. For frequency channels where

either the target or the interferer is much stronger than the other source, the

observed peak lies closer to the source’s true time difference of arrival. When

both sources have similar energy levels, two principal maxima are observed

indicating that multiple sources are active simultaneously, although other

peaks also occur, creating ambiguity.

Because the cross-correlation function has the potential to estimate source

direction, we include it as a further input to our optimal cue mapping method.

Since our method estimates ratio mask values for every frequency point, the

cross-correlation coefficients for each frequency point are evaluated, instead

of using their summation across all frequencies.

5.2.4 Interaural coherence

So far we have only considered cue extraction in anechoic conditions. In many

realistic situations, direct sounds are contaminated by room reflections. A

room impulse response (RIR) evolves from the deterministic direct sound

and early reflections through to the stochastic reverberant tail. The varying

statistical properties of the reverberant sound require different treatments to

reduce their effect on intelligibility.

In the preceding sections, we have considered a series of cues that create

potentially useful dissimilarities between a signal arriving at the left and

right channels of a binaural hearing aid. We now look at a process which

approaches the problem from another perspective. Many researchers have

demonstrated the usefulness of a metric known as interaural coherence (IC)

for improving estimates of ITD and ILD in reverberant conditions (e.g., Faller

and Merimaa (2004a); Jeub et al. (2010a); Alinaghi (2013)).
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Interaural coherence measures the similarity between two signals. It can

be described as:

IC(m, b) =
El,r(m, b)√

El,l(m, b)Er,r(m, b)
(5.13)

where El,l(m) and Er,r(m) denote the recursive auto-power spectral densities

(APSD) for each T-F unit in the left and right channels, respectively, and

El,r(m) is the recursive cross-power spectral density (CPSD) of two time-

aligned channels. They are calculated by means of the recursive relation:

El,l(m, b) = αEl,l(m− 1, b) + (1− α) | Xl(m, b) |2 (5.14)

El,r(m, b) = αEl,r(m− 1, b) + (1− α)Xl(m, b)X∗
r (m, b) (5.15)

where α is the smoothing factor with values in the interval [0,1]. Xl(m, b)

and Xr(m, b) are the Fourier-transformed signal in the left and right channels

of the mth time frame and bth frequency bin.

Equation 5.13 generates IC values between 0 and 1. Perfectly coherent

left and right channels yield the IC value 1. The value of the IC drops as

the behaviour of a T-F unit from one frame to the next becomes increas-

ingly dominated by reverberation and other (generally unwanted) chaotic

influences. This is illustrated in the figure 5.11. Subplots (a) and (c) show

spectrograms of a speech signal in anechoic and reverberant conditions, re-

spectively. Here, the binaural room impulse response, obtained from the

AIR database (Jeub et al., 2009), is measured in a stairway hall and the

speech source is placed at 0◦ azmuth. The IC is almost 1 in the anechoic

condition (figure 5.11 (b)), since the left and right channels are similar with

approximately zero time difference in arrival time. Figure 5.11 (c) shows the

same speech source spatialised within the reverberant environment. Tempo-

ral features have become smeared by the approximately exponential decay

of the room impulse response. The original patterns of energy variation in

the spectrogram of the anechoic target can be recognised in the plot of IC

in reverberation in figure 5.11 (d). This is because the regions of late rever-

beration produce IC values that shift away from 1 due to the fact that the
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late reflections come from multiple directions with different times of arrival

in each ear. This incoherence occurs in both channels, and the red circle

shows a clear example of how high values of IC tend to pick out the T-F

units which contain relatively high energy direct sound whereas reverberant

tails tend to produce low IC values.
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Figure 5.11: Comparison between the spectrograms of some anechoic and
reverberant speech (left channel shown only) and their corresponding IC
patterns. (a) Spectrogram of anechoic speech. (b) Interaural coherence of
the anechoic speech. (c) Spectrogram of the same speech in reverberation.

(d) Interaural coherence of the reverberant speech.

The reliability of estimated IPDs and ILDs in reverberation is controlled

by setting a threshold for the IC value. IPD and ILD values for T-F units

with an IC above a suitable threshold indicate a reliable estimate (Faller

and Merimaa, 2004b). It is necessary to have a different threshold for each

frequency band. This is due to the high variation in the characteristics

of reverberation with frequency, most notably the reverberation time (Jeub
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et al., 2009). Finding a suitable set of thresholds is further complicated by

the large differences in the reverberant properties of different rooms.

Figure 5.12: The envelopes of normalised histograms showing the
distributions of selected IPDs and ILDs in reverberation for four IC

threshold values. The speech source is at 0◦ azimuth. (a) and (b) IPD
distributions at 300Hz and 600Hz, respectively, (c) and (d) ILD

distributions at 2 kHz and 4 kHz, respectively.

To reveal the relationship between binaural cue estimation accuracy in

reverberation and IC threshold, we generate 5,000 observations for target

speech at 0◦. Again, the binaural room impulse response measured in a

stairway hall has been used from the AIR database (Jeub et al., 2009). Figure

5.12 (a) plots the envelopes of normalised histograms showing the relative

frequency of occurrence of IPD values for four different IC threshold values

at 300Hz. Subplot (b) shows the result of the same analysis at 600Hz. ILDs

at 2 kHz and 4 kHz are analysed in a similar way in figures 5.12 (c) and

(d). Setting the IC threshold to zero means that all the IPDs or ILDs are

selected and contribute to the histograms. The majority of IPDs or ILDs
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IC threshold
0.95 0.75 0.55 0

IPD at 300Hz 0.0711 0.2562 0.4203 0.6132
IPD at 600Hz 0.0784 0.5841 1.1848 2.0512
ILD at 2 kHz 4.1286 15.9367 22.9968 32.3888
ILD at 4 kHz 4.7197 17.8085 25.7629 39.6461

Table 5.1: Variance of selected cues for different IC threshold values and
different frequencies for speech in reverberation at 0◦ azimuth.

cluster around zero since the speech source lies in front of the listener. As

the threshold is raised the distribution tends to compress and become more

sharply peaked. Raising the threshold also has the effect of selecting fewer

cues, though this is obscured by the normalisation applied in these plots. The

variances of the selected cues corresponding to figure 5.12 are shown in table

5.1. Higher IC threshold values create smaller cue variances. For the same

threshold value, the variance of the selected cues increases with increasing

frequency. Therefore, in order to achieve the same variance across frequency,

a frequency-dependent IC threshold is needed.

IC threshold
0.95 0.75 0.55 0

IPD at 300Hz 0.1042 0.3873 0.7007 1.1464
IPD at 600Hz 0.118 0.9796 0.7007 2.5664
ILD at 2 kHz 3.9837 20.6285 32.4524 47.6133
ILD at 4 kHz 5.5505 17.3251 27.1951 40.6805

Table 5.2: Variance of selected cues for different IC threshold values and
different frequencies for speech in reverberation at −30◦ azimuth.

Altering the azimuth angle of the source also affects the shape of the

distribution created using a particular threshold. The details are presented

in figure 5.13 and table 5.2 for a sound source located at −30◦ azimuth. In the

figure, it can be seen that the expected shift in the peaks of the distributions

has occurred, corresponding to the change in source direction. However, the

distributions are not as symmetrical as when the source is located at 0◦

azimuth. Compared to the variances of the selected cues in table 5.1, when
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Figure 5.13: The envelopes of normalised histograms showing the
distributions of selected IPDs and ILDs in reverberation for four IC

threshold values. The speech source is at −30◦ azimuth. (a) and (b) IPD
distributions at 300Hz and 600Hz, respectively, (c) and (d) ILD

distributions at 2 kHz and 4 kHz, respectively.

the source lies at 0◦, the variances of the selected cues in table 5.2 tend

to be larger for a given IC threshold value. The variation of the direct-to-

reverberant energy ratio (DRR) at each ear for different azimuth angles leads

to this direction-dependent behaviour in the variances of IPD and ILD.

It can be concluded from this analysis that the estimation of IPD and

ILD cues in reverberation can be further improved with the assistance of

interaural coherence when an appropriate threshold is applied. Since IPD

and ILD are powerful cues for ratio mask estimation, the inclusion of IC into

our optimal cue mapping algorithm can be expected to improve its ability to

segregate target speech in reverberant conditions.
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5.3 Neural network-based mask estimator

The main aim of this research is to improve estimation of the binaural ratio

mask for segregating a target sound source in the presence of a spatially

separate interfering mixture of sources and reverberation. In addition, the

main novel contribution of this work is the systematic integration of many

cues for improving the estimate in an efficient way. One approach for doing

this is to apply machine learning techniques. In this section we demonstrate

the method using a conventional and relatively simple type of artificial neural

network (ANN). A simple ANN has been used so that attention can be

focused on the selection and integration of the input cues.

5.3.1 Artificial neural network topology

Every artificial neural network (ANN) requires input data, either in the form

of training data or of test data. Training data includes input (or observa-

tion) data and also the corresponding expected output (or label) data. The

training data provides the ANN with examples which are used to adapt the

weights of its internal connections so that its output gradually produces bet-

ter and better estimates of the correct output. Training includes testing how

well the ANN is learning the relationship between input and output. This

usually involves presenting the ANN with previously unseen data and com-

paring its output with correct results. A trained network is able to fulfil

certain tasks, such as mapping or classification.

Prior to training an ANN, the input and expected output data need to be

transformed so that they possess, as closely as possible, a normal distribution

(Akansu and Haddad, 2001). This results in changes in input values causing

a similarly sized change at the output. To standardise the measurement

scales of the inputs, they are transformed to possess zero mean and exhibit a

spread in values of one standard deviation (standard score or z-score) using

152



the equation:

inputn =
xn − x̂n

σn

(5.16)

where inputn is the standardised nth input, xn is the original observed feature

input data, x̂n and σn denote the mean and standard deviation of the input

xn, respectively.

The nonlinear transfer functions used to build the ANN are sigmoids. In

order to satisfy the demands of the transfer function, the expected output

has to be constrained to the range [0 1]. Due to the nature of the ratio

mask in our application, its values are already located in this range, hence

no transformation is needed for the expected output in this study.

For the training stage, the learning method adopted here utilises the

back-propagation algorithm (Fausett, 1994). The label data is the desired

output from neural network and is presented together with the corresponding

observation data. The learning algorithm continually updates the weights

and biases in the ANN after evaluating a new observation and computing

the difference between each actual output and the label.

Figure 5.14 shows the topology of a simple ANN. The number of neurons

(or nodes) in the input layer of the ANN is determined once the shape of

the training data is known. Generally, the number of neurons is equal to

the dimension (or length) of the input features. Taking the features IPD

and ILD as an example, the number of neurons required is therefore two, as

shown in figure 5.14. Further design details are given in the experimental

work described in Chapter 6 and 7.

In a similar way to the input layer, the number of neurons in the output

layer equals the number of outputs. The ratio mask R is the computational

goal in this experiment, so there is a single node in the output layer for each

ANN and each one calculates the ratio for one frequency point. The ANN

in figure 5.14 is an example of a simple network architecture with 3 layers.

The inputs to the ANN are normalised IPD and ILD values for the frequency
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corresponding to the network. The hidden neurons are labelled A, B and

C and there are only three in order to display the architecture clearly. In

a practical network the number of hidden neurons is generally much larger

than three. The input-hidden-output neuron connection weights are denoted

by W. Subscripts are used to indicate the origin and destination of each

connection (e.g. W2B signifies that the connection comes from input 2, the

ILD input, and goes to hidden layer node B)

Figure 5.14: Example of a simple three-layer ANN architecture. It has two
input neurons, three hidden neurons and one output neuron.

5.3.2 Network optimisation

In any application of neural networks for the mapping or classification of

data, the number of hidden layers and the number of hidden neurons needs

to be decided. There exists no simple method for determining this. Early

research by Irie and Miyake (1988) and Hornik et al. (1989) has shown that

a three-layer (one hidden layer) feed-forward network with an arbitrarily

large number of nodes is a universal function approximator. Recently, Gao
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and Tew (2015) demonstrated for our application that an ANN with one

hidden layer has the ability to learn the mapping between various acoustic

cue inputs and appropriate ratio mask output values. Therefore, we continue

to use one hidden layer in this research. With regard to defining the number

of neurons in the hidden layer, the strategy we adopt is an exhaustive search.

Although this approach is computationally highly expensive it allows the

optimal network topology to be determined with a high degree of confidence.

To estimate neural network generalisation error and determine the opti-

mum number of neurons in the hidden layers for the ANN at each frequency

point, we employ the cross-validation method developed by Weiss and Ku-

likowski (1991) and Plutowski et al. (1994). In N -fold cross-validation, the

training data is split into N subsets of approximately equal size. The neural

network is trained using N − 1 subsets of the data and is subsequently evalu-

ated using the remaining one subset. This procedure is repeated N times, on

each occasion using a different subset for the evaluation. Therefore, each eval-

uation uses a unique subset of training data and it explains why the method

is also known as leave-one-out cross-validation (Kohavi et al., 1995). The av-

erage performance of the N neural networks is an indication of their ability to

generalise (that is, to provide reliable estimates for previously unseen input

data). We use 10-fold cross-validation in this study and the performance of

each ANN is measured by averaging the mean square errors (MSEs) between

the ideal ratio mask values and the estimated ratios.

5.4 Cue importance ranking

Identifying cues which have the potential to improve estimates of the ratio

mask is the first step in creating an effective solution to the speech segrega-

tion problem. However, efficiency is also crucial in the envisaged application

of this research in hearing aids, which have very limited computational re-

sources. For this reason it is helpful to rank the cues in importance, so that

unnecessary computation is avoided by excluding inputs which do little or
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nothing to improve the estimation of the binaural ratio mask.

Up to this point, we have identified a variety of features (or acoustic

cues) in the binaural mixture which are potentially useful for estimating the

ratio mask. They include IPD, ILD and their deltas, cross-correlation, and

interaural coherence. In this section, these inputs are presented as inputs

to ANNs and the networks are trained to estimate ratio mask values. The

trained ANNs are then analysed to identify the degree to which these features

contribute to the mask estimation by the network. The goal is to reveal the

relative importance of each input feature. Here we employ the connection

weights method (Olden et al., 2004) and Garson’s method (Garson, 1991) to

analyse each of the neural network inputs. With reference to the demonstra-

tor ANN in figure 5.14 the analysis proceeds as follows:

• 1: For each input neuron, measure the contribution of input neuron to

output neuron via each hidden neuron by calculating the product of

the weights along every connection path.

c(i, j) = w(i, j)w(j, R) (5.17)

where i ∈ {1, 2} denotes either the IPD input neuron (i = 1) or ILD

input neuron (i = 2), and j ∈ {A,B,C} denotes the index of a hidden

layer neuron. R denotes the output neuron.

• 2: Sum the products c(i, j) across all the hidden neurons for each input

type to create the overall connection weights P (i):

P (i) =
∑
j

c(i, j) (5.18)

• 3: Measure the relative contribution r(i, j) of each input feature to the

output layer via each hidden neuron:

r(i, j) =
|c(i, j)|∑
i

|c(i, j)|
(5.19)
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and find the sum S(i) of contribution of each input neuron:

S(i) =
∑
j

r(i, j) (5.20)

• 4: Garson’s relative importance metric RI for input feature i is then

calculated by:

RI(i) =
S(i)∑
i

S(i)
(5.21)

The connection weights method is composed of steps 1 and 2. The over-

all connection weight indicates the relative importance (Olden et al., 2004).

Steps 1 to 4 constitute Garson’s algorithm. It is noteworthy that Garson’s al-

gorithm does not retain the sense of the relative contribution of each feature

since the absolute value is used in step 3. The relative importance estimate

resulting from both methods will be discussed in the next chapter.

5.5 Post-processing

A trained network yields ratio mask estimates for a single frequency in either

the left or the right channel. Hence, the estimated spectrum of the tar-

get signal, T̂l|r(m, b), is obtained by multiplying the coefficients of mixture

Ml|r(m, b) by the estimated ratio mask ˆERM l|r(m, b):

|T̂l(m, b)| = |Ml(m, b)| ˆERM l(m, b) (5.22)

|T̂r(m, b)| = |Mr(m, b)| ˆERM r(m, b) (5.23)

For each time frame, the complex spectrum of target signal Tl|r(m, b)

can be calculated by combining the phase of the original mixture with the
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modified magnitude spectrum:

T̂l|r(m, b) = |T̂l|r(m, b)|ejω∠Ml|r(m,b) (5.24)

This complex spectrum can be converted back to the time domain using

anN -point inverse discrete Fourier transform (IDFT). Finally, the segregated

target signal is synthesised using the overlap-and-add method with a Hann

window.

An alternative way to synthesise the segregated target signal is to cal-

culate the N -point IDFT of the ratio mask, erml|r(m, b), and convolve the

result with the N time-domain mixture samples in the frame, ml|r(m, b).

t̂l(m, b) = ml(m, b)
⊗

erml(m, b) (5.25)

t̂r(m, b) = mr(m, b)
⊗

ermr(m, b) (5.26)

where
⊗

denotes convolution operation. This produces 2N − 1 output sam-

ples and preserves the convolution tail correctly. The overlap-and-add process

can then be applied without further windowing.

5.6 Summary

This chapter outlines optimal cue mapping (OCM), which is a novel signal

processing algorithm intended to improve the intelligibility of a target speech

source in the presence of multiple interfering sounds in anechoic and rever-

berant conditions. This is to be achieved by exploiting binaural cues to

segregate the wanted speech from the unwanted interference. The principle

novelty of the proposed algorithm has two aspects. Firstly, it is a relatively

simple algorithm based on a conventional ANN architecture, in contrast to

more modern machine learning algorithms, such as the deep learning neural

network (see Chapter 8). Only information in the previous and current time
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frames are required. This means that the algorithm can potentially be run

in real-time, which is a necessity in a hearing aid. Secondly, a way to under-

stand the contribution of diverse cues for estimating the mask is provided.

In this way, cues can be integrated dynamically, depending on the acoustic

conditions. This facilitates the removal of cues which do not contribute to

the mask estimation process, potentially increasing algorithm efficiency still

more.

It has been demonstrated that spectro-temporal binary masks can achieve

substantial intelligibility improvements for both normal-hearing and hearing-

impaired listeners in adverse conditions (Li and Loizou, 2008; Wang et al.,

2009; Kim et al., 2009; Roman and Woodruff, 2011). However, the ideal

binary mask with a fixed threshold becomes increasingly sparse in low SNR

situations, resulting in the deterioration of intelligibility. Recent research

into the use of a ratio mask approach has been demonstrated to improve

performance in automatic speech recognition tasks (Harding et al., 2006;

Srinivasan et al., 2006; Narayanan and Wang, 2014). Furthermore, the ratio

mask has been shown to yield greater intelligibility improvements than a

binary mask in similar conditions (Gao and Tew, 2015).

In this initial work, the cues are acoustic in nature and predominantly

binaural. Spatial cues are extracted from a multi-source binaural mixture.

We demonstrate how IPD and ILD are two powerful cues for indicating the

direction of a dominant sound source in the mixture, and we show that

there is a strong relationship between these cues and the proportion of target

energy in each T-F unit, the precursor to estimating a ratio mask. Extra

cues, ∆IPD and ∆ILD, are also extracted and we explain how these assist

the mask estimation process. The cross-correlation function yields a series of

coefficients which we demonstrate are rich in information about the direction

of multiple sources in a binaural mixture. Hence, we also plan to integrate

these into the ratio mask estimation algorithm. In reverberant conditions,

this chapter suggests how interaural coherence can help identify T-F units

which contain reliable IPD and ILD values. In addition, by analysing the
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importance of each type of cue in the estimation, we gain deeper insight

into how these cues should be integrated into the system. The importance

analysis also provides the opportunity for further optimisation in terms of

satisfying the computational limitations of different applications with the

minimum loss of source segregation performance.

In optimal cue mapping, ANNs are trained to estimate the spectral en-

ergy fraction of a wanted speech source at each frequency point in the input

mixture. Once trained, the ANN outputs form a spectral ratio mask which is

applied frame-by-frame to the mixture to approximate the magnitude spec-

trum of the wanted speech. Due to careful cue selection, OCM is a potentially

real-time binaural method, since it only uses information from the current

frame of mixture samples, such as IPD and ILD cues, and information from

the preceding frame, e.g. to calculate ∆IPD and ∆ILD values. Therefore, it

is potentially feasible to implement OCM in time critical applications, such

as in hearing aids.

The extent to which OCM can provide binaural unmasking and intelli-

gibility improvements for a target speech source in a mixture needs to be

investigated. Experiments to discover its effectiveness form the subject of

the next chapter.
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Chapter 6

Pilot Study

The main research aim in this project is to improve the speech intelligibility

and quality of speech in complex binaural sound mixtures. As mentioned

in previous chapters, the ideal binary mask (IBM) has been shown to be

capable of producing intelligible speech in adverse noisy conditions (Li and

Loizou, 2008; Wang et al., 2009; Kim et al., 2009; Roman and Woodruff,

2011; Jiang et al., 2014). In an IBM, the time-frequency (T-F) units are

classified as either being totally associated with the target signal or with the

interferer signal by assigning each unit with the value 1 or 0, respectively.

Hence this formulation can be thought of as a classification problem. A

more complicated form of T-F mask is the ratio mask which was proposed

by Barker et al. (2000). In the T-F unit of an ideal ratio mask (IRM), it is

the proportion of energy attributable to the target in the mixture which is

stored (see section 5.1.2). In this case, the value of the T-F unit lies on a

continuum between 0 and 1. Evaluating a ratio mask turns the binary mask

classification problem into a probability estimation exercise. In addition, it

has been shown that the IRM performs particularly well in automatic speech

recognition tasks (Harding et al., 2006; Srinivasan et al., 2006).

In Chapter 5, the optimal cue mapping (OCM) algorithm, based on ma-

chine learning, was introduced. The computational goal of this algorithm is
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to estimate the ideal ratio mask that makes best use of the available cues

whatever the acoustic environment. In this chapter, a pilot study is described

based on the OCM algorithm. A viable source segregation system is system-

atically built up by utilising a list of acoustic cues (see section 5.2) extracted

from the binaural input mixture.

The OCM algorithm has the potential to assist in establishing the relative

importance of acoustic spatial cues, of properties of the acoustic space and

of sound source features in the binaural mixture. This process was described

in section 5.4. Hence, in this chapter we also analyse the importance of each

cue that we consider for inclusion in the mask estimation process and present

the results.

Some of the work presented in this chapter has previously been published

by Gao and Tew (2015).

6.1 Experimental setup

In this development of the OCM algorithm we assume that the target speech

source lies within a few degrees of 0◦ azimuth, i.e. in front of the listener.

This is based on the anecdotal observation that a listener tends to look at

the talker with whom they are conversing as a way of reducing listening

effort through reading the talkers lips and body language. It also serves as

a way of showing respect and of indicating attentiveness. We consider this

assumption to be a reasonable starting point, although we recognise that

there are many occasions in real life when it is invalid. With appropriate

training, the machine learning systems at the heart of the OCM method can

be adapted to work with the target sound source in other directions. The

scope of this research does not, however, extend to exploring methods for

identifying and tracking the target and so we restrict ourselves here to proving

the principle of optimal cue mapping for a single target source direction.
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With a two-microphone array in most anechoic conditions, it is theoret-

ically possible to separate two point sources of sound which lie in different

directions. This is an example of an overdetermined system (i.e. the number

of microphones is equal to or exceeds the number of sound sources). It may

arise, for example, out of doors when listening to a target talker in the pres-

ence of one interfering conversation. The situation changes, however, when

there are two interfering conversations, which typically will introduce two

interfering talkers speaking at the same time as the target talker. This re-

sulting binaural mixture is now underdetermined. In this case it is no longer

possible to separate the target talker analytically using linear filtering of two

microphone signals because there is no longer enough information in the two

microphone signals to be able to reverse the mixing process.

With appropriate training of the ANNs used in OCM, there is no hard con-

straint on the number of interferers and their directions. Variable-direction

interferer setups in both anechoic and reverberant conditions are described in

Chapter 7 and yet more configurations are used in Chapter 8. In Chapter 8,

underdetermined configurations with up to five sources (including the target

speech) are evaluated and compared to one state-of-the-art signal processing

approach using deep learning neural networks.

In this pilot study, we first train and test an OCM system for a simple

underdetermined case in anechoic conditions. Thus, the training and test

mixtures that are evaluated in this chapter are a three-source configuration

which contains two interfering talkers and one target talker. Specifically, the

two interferers are positioned asymmetrically either side of the listener to

simulate a plausible natural situation. However, as stated in our early work,

reported in (Gao and Tew, 2015), one of our initial aims was to compare the

performance of the OCM method with work reported by Roman et al. (2003).

Hence, in this section we inherit their setup, which employs a symmetrical

arrangement of two interfering sound sources located at azimuth angles of

−30◦ and 30◦, respectively. As previously discussed, the target is placed at

0◦ azimuth.
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Signal analysis is based throughout on the short-time Fourier transform

(STFT). The STFT frame duration is set to 20ms, which corresponds to 320

samples using a sampling frequency of 16 kHz. This sampling frequency was

determined by the sampling frequency of the speech corpus employed (John

et al., 1993) for creating the binaural training and test mixtures. Each frame

is Hann windowed using 50% overlap with its neighbours. Each STFT frame

of the binaural input mixture therefore consists of 161 frequencies, from 0Hz

up to and including the Nyquist frequency at 8 kHz.

In the OCM algorithm, to exploit the cues listed in section 5.2, input

data for each ANN is generated from two T-F units of the same frequency,

one drawn from the current frame and the other from the preceding frame.

For training purposes, as well as generating the input features for each ANN,

the corresponding ideal energy ratio value is calculated for segregating the

target speech at the ANNs frequency. The method for computing the ideal

ratio mask is described in section 5.1.2. There is a left channel and right

channel pair of ANNs for each frequency and hence there are 322 ANNs in

total.

All the ANNs used in the various experimental configurations are trained

on the York Advanced Research Computing Cluster (YARCC) (Smith, 2015).

The full cluster consists of 28 nodes, 58 processors and 528 cores. Depending

on the level of competing demand for resources, we can employ up to half of

the cluster at any given time. It takes under 24 hours to train any of the sets

of ANNs described in this chapter on a single core or cluster. The training

time is dependent on the computing speed of the different cores.

6.1.1 Training and testing setup

Speech for training is randomly selected from the training set in the TIMIT

database (John et al., 1993). Speech for testing purposes is randomly selected

from the database’s test set. Therefore, there is no overlap between the two

sources of material and so testing of the ANNs is conducted using previously
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unseen speech clips. For the anechoic simulated conditions, we use the HRIRs

of SYMARE subject HA02 (Guillon and Zolfaghari, 2012) to spatialise the

sound sources in the mixture. Note, there is no restriction on the choice

of HRIRs. For example, we have also used the HRIRs for subject HA01 in

the SYMARE database and obtained similar results. Varying the elevation

of the sound sources is not currently considered in this research. Hence all

the sources are placed in the horizontal plane at an elevation angle of zero

degrees. The HRIRs used in this chapter were originally sampled at 48 kHz.

Hence, we down-sample the HRIRs to 16 kHz to match the sampling rate of

the speech signals.

To simulate the condition that people are talking with approximately

the same sound intensity, the training mixtures are adjusted to have 0 dB

local SNR (section 5.1.1) before they are spatialised. This is considered to

be a worst case scenario, since in reality, individual interfering talkers will

generally be at a somewhat lower level than the target. Convolving the sound

sources by their respective pairs of HRTFs will affect their original local

SNRs and create an imbalance of levels between the left and right channels

for lateral sources. Rather than train the ANNs with a fixed local SNR in

the left or the right channel, no further attempt is made to control the local

SNRs in the training and test mixtures, on the basis that these SNRs vary

in a similar way under natural acoustic conditions. Indeed, a property which

we explore later is the ability of the mask estimator to segregate the target

speech successfully when the local SNR is deliberately altered.

Irrespective of the experimental configuration, we generate 5,000 training

data items for each distinct training case (examples of different training cases

include varying the number of active sources and/or varying the direction

of the active sources). It is important to make sure the training data is

sufficient to ensure that the ANN weights have adapted. Therefore, we also

train the ANNs using double-sized training data. If this produces similar

results in the subsequent testing phase (within the limits of the experimental

noise floor) then this confirms that 5,000 items is sufficient for training. If
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further adaptation is observed using the larger training set, then the checking

process is repeated with a larger number of items in both sets. Thus, 5,000

training data items is chosen as a starting point and the number is increased

if necessary.

It is also important to ensure that sufficient test data is employed. To

demonstrate that, we compare the results of using differently sized test mix-

tures. We find that increasing the size of the test mixture from 50 test items

up to 100 items reduces the mean-square output error from the ANNs by less

than 2%, which we consider to be a sufficiently small improvement to allow

the use of 50 items in each test case. Further support for this decision comes

from Jiang et al. (2014), who also set the size of their TIMIT test mixtures

to 50.

6.1.2 Evaluation metrics

The OCM approach aims to improve the intelligibility of speech in adverse

multi-talker conditions. Initially we model an anechoic environment and sub-

sequently extend the problem to include room reverberation. We evaluate

the OCM algorithm in respect of two properties of speech: speech intelligibil-

ity and speech quality and discuss each in turn in this section. The detailed

evaluation methods for speech enhancement systems have been discussed in

section 4.2.

Experimentally, perhaps the simplest way to measure speech intelligibility

is as a rate of success for correctly identifying spoken words read from a

list (e.g. Kalikow et al. (1977)). All perceptual testing involving human

participants is, however, potentially time consuming. This has motivated

the development of automated methods for estimating speech intelligibility.

These can be a valuable and efficient indicator of performance before time

and effort is committed to confirming the results by experiment.

Taal et al. (2011) propose the short-time objective intelligibility (STOI)
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metric. This has been shown to correlate well with the intelligibility of speech

in noise and T-F weighted noisy speech. The STOI model yields scores be-

tween 0 and 1, where a higher score indicates higher intelligibility. Therefore,

we adopt the STOI metric to evaluate the performance of the OCM method

in terms of intelligibility.

The second property we consider is speech quality, which reflects the real-

ism and naturalness of the speech. Increasing the quality of the speech does

not necessarily lead to a rise in its intelligibility (Gold et al., 2011). Gener-

ally, highly intelligible speech exhibits a subjectively good speech quality and

vice versa. However, highly intelligible speech also can be of low quality and

vice versa. Ramı́rez and Górriz (2011) report that an improvement in speech

quality can reduce listener fatigue and, even for this reason alone, speech

quality is an important consideration in speech processing. Again, to avoid

the time and effort involved in measuring the speech quality of the speech

produced by the algorithms investigated in this research, we turn to an au-

tomated method for estimating this attribute. The perceptual evaluation of

speech quality (PESQ) metric described by Rix et al. (2001) has been shown

to correspond well with subjective speech quality scores for speech separa-

tion and enhancement systems (Yi and Loizou, 2008). We therefore adopt

this metric in our evaluations. The PESQ metric returns scores which range

between -0.5 and 4.5, where higher scores suggest better perceptual speech

quality.

6.1.3 Definitions

Before starting to describe the pilot study, the short labels for ANN topolo-

gies and mask estimators that will be used in this chapter are summarised

in table 6.1. All the systems are trained at an SNR of 0 dB.
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Table 6.1: System definitions and training details for each mask set.

Interferer configuration HRIR System Mask set

Two interferers in fixed SYMARE Ideal
IBM
IRM

directions −30◦ and 30◦ HA02 Anechoic
F2 EBMF2

2-inputs ERMF2

Two interferers in fixed SYMARE F6 EBMF6
directions −30◦ and 30◦ HA02 Anechoic 6-inputs ERMF6

Two interferers in fixed SYMARE F7 EBMF7
directions −30◦ and 30◦ HA02 Anechoic 7-inputs ERMF7

6.1.4 Feature selection for system F2

As described in section 3.1, IPD and ILD are two primary binaural cues for

sound localisation in the horizontal plane. Hence we first train OCM system

F2 using as inputs IPD and ILD features only. These features are similar

to the ITD and IID features employed by Roman et al. (2003). The reason

for the use of slightly altered cues is discussed in section 5.2.1. Here, we

use EBMF2 and ERMF2 to denote the estimated binary and ratio mask

sets created by OCM system F2 for the two inputs, IPD and ILD, only. As

described in section 5.1.2, the binary mask is derived by quantising the ratio

mask to two levels, 0 and 1, with the threshold set to 0.5. Thus, the same

ANN is used in both cases and only its output is modified, depending on

whether a ratio mask or a binary mask is desired. The performance of the

binary mask using the inputs IPD and ILD will form the baseline with which

more sophisticated systems will be compared.
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6.1.5 Additional feature selection for systems F6 and

F7

In section 5.2, several other spatial cues and binaural features are introduced.

These extra cues are potential candidates for improving the accuracy of mask

estimation in various conditions. Based on system F2 with two primary lo-

calisation cues, we add four further inputs in a new system, F6. These cues

are ∆IPD, ∆ILD, magnitude and interaural coherence (IC). Here, EBMF6

and ERMF6 denote the binary and ratio masks, respectively, which are pro-

duced using system F6. Furthermore, system F7 has one more extra input

which is a set of cross-correlation coefficients. EBMF7 and ERMF7 denote

the corresponding binary and ratio masks.

We assess the relative importance of each input in three systems, F2,

F6 and F7. Of particular interest is how well the extra inputs have been

integrated into the estimation process. The role of all these cues are described

below.

∆IPD and ∆ILD

The delta features of IPD and ILD, ∆IPD and ∆ILD, measure the difference

between the current value of that feature and its value in the previous time

frame. In section 5.2.2 we investigated the impact of these delta features on

the ratio mask and concluded that they will be useful in mask estimation.

We therefore incorporate inputs ∆IPD and ∆ILD into the enhanced system,

F6.

Magnitude

The magnitude input is simply the absolute value of the current T-F unit

at the frequency associated with the ANN. It therefore indicates the level of
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the mixture signal at this frequency. Its primary effect on mask estimation

is anticipated to occur when both the target and the interferer signal levels

at this frequency are low. In this situation the ratio is subject to increased

error due to the influence of the noise floor and is therefore set to zero, since

there is no target signal to be segregated.

Interaural coherence

As a test of the OCM method, we include IC as the sixth and final input

to system F6. IC has been demonstrated to be an important cue in many

source separation algorithms involving dereverbveration (Westermann et al.,

2013; Alinaghi, 2013). Therefore, we anticipate that IC will contribute little

to the estimation of the mask values in anechoic conditions and that we will

observe a rise in its importance in the presence of reverberation.

Cross-correlation

In section 5.2.3 cross-correlation coefficients were identified as a potentially

useful cue for segregating sources based on their direction. This feature

is likely to be most useful for sources with variable direction, whereas the

directions of the interferers are known and fixed at −30◦ and 30◦ in this

experiment. For this reason the coefficients have not been included in the

current system. In addition, cross-correlation coefficients are formed into a

feature vector containing 27 coefficients. This sets it apart from the other

input features which only consist of 1 element. Cross-correlation coefficients

will be used, however, in a later simulation (see section 6.3), where the di-

rections of the interferers are allowed to vary and it will become apparent

that the multi-element nature of the feature requires special treatment during

analysis.
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6.2 Comparison of OCM performance for F2

and F6

In this chapter, as a starting point in the development of ecologically valid

solutions for the speech segregation problem, we concentrate on entirely ane-

choic simulations. Furthermore, as stated in section 6.1, we begin in this

section by considering a three-source configuration, which is one of the sim-

plest underdetermined cases which can be addressed. The target is placed

directly in front of the virtual listener at 0◦ azimuth and the two interference

sources are located at −30◦ and 30◦ azimuth, respectively. The main aim of

this section is to train and compare the performance of two OCM systems.

6.2.1 ANN topologies for F2 and F6

In order to compare the performance of the masks generated by systems F2

and F6, it is important to ensure that the underlying ANNs reach a near-

minimum level of mean-square error (MSE) during the training phase. In so

doing, they will produce close to the best possible mask estimation results.

We follow the procedure previously described in section 5.3.2 to determine

the number of neurons in the hidden layer of each ANN. The goal is to achieve

a sufficiently low MSE using the fewest possible neurons.

In defining the ANN topologies for F2 and F6, 16 frequency points are

selected out of the 161 linearly-spaced frequencies available between 0 Hz

and the Nyquist frequency (see section 6.1). The 16 frequency points are

chosen to be approximately equally spaced on the equivalent rectangular

bandwidth frequency scale to create an analysis of ANN performance across

the audio bandwidth. Under this configuration of three sound sources with

fixed-directions, the number of neurons is defined using the 10-fold cross-

validation method described in section 5.3.2. The resulting MSEs for F2 and

F6 are plotted in figure 6.1 as a function of the number of hidden units in the
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ANNs. The 2D graphs in subplots (c) and (d) include a dashed line showing

the size of the hidden layer which has been chosen.

It can be seen from figures 6.1 (a) and (c) that the minimum MSEs for

F2 vary across frequency, although they all follow a similar trajectory. For

the sake of clarity, the 2D projections of subplots (a) and (b) are shown in

figures 6.1 (c) and (d), respectively. For all 16 frequency points, substantial

reductions in MSE are observable up to 10 neurons. The performance is

fairly stable between 10 and 20 neurons, beyond which there is no further

improvement. Indeed, the MSEs tend to increase after 30 neurons, which

is caused by overfitting. In the 10-fold cross-validation method, ANNs are

trained using 9 subsets of training data and tested using only one. As the

number of neurons in the ANN increases, the ANNs become better at learning

the training data and weaker in their ability to generalise. Hence, in the test

phase, larger ANNs yield greater MSEs when presented with the previously

unseen validation data. ANNs with 15 neurons exhibit a MSE which is within

0.1% of the asymptotic value and hence this network topology is used in

system F2 with inputs IPD and ILD only. In figures 6.1 (b) and (d) a similar

pattern is observed for system F6 and therefore ANNs with 15 neurons are

used in the six-input case also.

6.2.2 Relative importance

Relative importance (RI) measures the contribution of each type of cue to

the mask estimation process (see section 5.4 for information on how RI can

be calculated). A knowledge of the RI of each input provides insights into

the acoustic conditions in which they are of greatest value and provides an

indication of how well each has been integrated into the estimation process.

The level of contribution for each type of input is examined here for both

F2 and F6. For the sake of simplicity, rather than measuring RI across the

entire frequency band, we measure RI for a subset of 64 frequency points

only. The selected frequencies are equally spaced on the equivalent rectan-
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Figure 6.1: MSE performances of ANNs across frequency as a function of
the number of neurons in the fixed three-source anechoic configuration with

target at 0◦ azimuth and two interferers at −30◦ and 30◦ azimuth,
respectively. (a) MSE performance across frequencies as a function of the
number of neurons for system F2. (b) MSE performance across frequencies

as a function of the number of neurons for system F6. (c) The 2D
projection of (a). (d) The 2D projection of (b).
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gular bandwidth scale, ranging from 100Hz up to 8 kHz. These frequencies

are mapped onto the linear 320-point STFT frequency scale comprising 161

points from 0 Hz up to 8 kHz, described in section 6.1. Due to the linear fre-

quency spacing of the FFT, at higher frequencies multiple STFT frequency

points fall within each ERB. After removing the duplicated frequency points

55 frequency points remain out of the original 64. In order to obtain a suf-

ficiently statistically reliable measurement, 100 ANNs are trained for each

frequency point, resulting in 5,500 ANNs in total for F2 and F6. We com-

pare Garson’s method and the connection weights approach (see section 5.4)

to analyse the relative importance of each type of input based on all 5,500

ANNs. The importance of each of the inputs is ranked and the plausibility

of the results from the two methods is scrutinised to determine whether one

method is more appropriate than the other in this application.

6.2.2.1 Garson’s method

Using Garson’s method (see section 5.4), the relative importance of each

input is calculated for both systems over all 55 frequency points. Figure 6.2

(a) plots the envelopes of two histograms. These show the number of ANNs

in each of 100 bands of relative importance values for the inputs IPD and

ILD. The results in figure 6.2 (a) indicate that ILD is more important than

IPD since the peak of its distribution occurs at an RI value 10% greater than

the peak for the IPD distribution. The plots have even symmetry because

the two inputs share a total possible contribution of 100%. Thus, a rise in

the RI of IPD causes a commensurate drop in the RI of ILD and vice versa.

For system F6 with six inputs, figure 6.2 (b) shows that IPD contributes

most strongly and ILD lies in second place, followed by ∆IPD and ∆ILD.

As anticipated, interaural coherence is determined to be least important in

this anechoic situation, with magnitude doing little better, probably because

of the infrequency with which both sources are simultaneously at very low

levels.
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Figure 6.2: Number of ANNs within each relative importance bin for each
input computed over all frequencies using Garson’s method. The setup

consists of three sources: target at 0◦ azimuth and two interferers at −30◦

and 30◦ azimuth, respectively. (a) The results over all frequencies for inputs
IPD and ILD in the two-input system F2. (b) The results over all

frequencies for inputs IPD, ∆IPD, ILD, ∆ILD, magnitude (Mag) and
interaural coherence (IC) in the six-input system.

Figure 6.3 breaks Garson’s analysis down further and shows the relative

importance of IPD and ILD against frequency. Each frequency point is the

mean of the relative importance for all 100 ANNs which were trained per

frequency point. Figure 6.3 (a) shows that for system F2 IPD is more impor-

tant than ILD below approximately 650Hz and more important above about

2.8 kHz. The transition in importance from IPD to ILD is gradual and the

results encouragingly reflect the well known fact that IPD (and ITD) are the

dominant localisation cues at low frequencies and ILD is the dominant cue

at higher frequencies.
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Figure 6.3: Garson’s relative importance metric for each type of input for
all ANNs from 100Hz to 8 kHz on an ERB scale in the fixed three-source
anechoic setup with target at 0◦ azimuth and two interferers at −30◦ and
30◦ azimuth, respectively. (a) The results for inputs IPD and ILD in the
two-input system. (b) The results for inputs IPD, ∆IPD, ILD, ∆ILD,

magnitude (Mag) and interaural coherence (IC) in the six-input system.

The corresponding results for system F6 are shown in figure 6.3 (b).

The relative importance of IPD and ILD cross over between approximately

1.2 kHz and 3 kHz. IPD is more important at frequencies below 1.2 kHz while

ILD becomes dominant when the frequency is greater than 3 kHz. Although

the two curves touch at approximately 6 kHz, this does not affect the general

tendency for ILD to be of greater importance than IPD at higher frequencies.

The figure confirms that the extra cues ∆IPD and ∆ILD do play a role in

mask estimation, even though they contribute less to the estimation overall.

In similar fashion to IPD, ∆IPD rises in importance for frequencies below

about 1.8 kHz although the opposite trend is not seen in ∆ILD. The first

crossover between ∆IPD and ∆ILD occurs at approximately 1.8 kHz and

176



above this frequency they tend to exhibit similar importance. As expected,

the importance of the magnitude and interaural coherence (IC) inputs are

the least significant. Above 3.8 kHz, however, the importance of the magni-

tude input rises to the level where it is approximately equal to that of ∆IPD

and ∆ILD.

6.2.2.2 Connection weights approach
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Figure 6.4: Number of ANNs within each relative importance bin for each
input computed over all frequencies using the connection weights approach.
The setup consists of three sources: target at 0◦ azimuth and two interferers
at −30◦ and 30◦ azimuth, respectively. (a) The results over all frequencies
for inputs IPD and ILD in the two-input system F2. (b) The results over
all frequencies for inputs IPD, ∆IPD, ILD, ∆ILD, magnitude (Mag) and

interaural coherence (IC) in the six-input system.

We also measure the contribution of each input using a different method,

the connection weights approach (see section 5.4). The envelopes of his-
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Figure 6.5: Relative importance of inputs for all ANNs from 100Hz to
8 kHz on an ERB scale using the connection weights approach in the fixed,

three-source anechoic setup. The target is at 0◦ azimuth and the two
interferers are at −30◦ and 30◦, azimuth, respectively. (a) The results for
inputs IPD and ILD in two-input system. (b) The results for inputs IPD,
∆IPD, ILD, ∆ILD, magnitude (Mag) and interaural coherence (IC) in

six-input system.

tograms, generated in a similar way to those in figure 6.2, are shown for both

systems in figure 6.4. As when using Garson’s method, similar results are

obtained for system F2 to those in figure 6.4 (a) in that the relative impor-

tance values for the IPD inputs are grouped towards the lower end of the

RI scale, which indicates that ILD cues contribute less to mask estimation

than IPD cues. Figure 6.4 (b) shows the contribution of each type of cue to

mask estimation in system F6. Both ILD and IPD lead in importance, but

their positions are reversed, with ILD showing as the most dominant cue,

followed by IPD. Both have broader distributions than in figure 6.2 (b). As

with Garson’s method, the places of third and fourth in importance are taken
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by ∆ILD and ∆IPD, respectively. Also, magnitude and interaural coherence

are again the least important cues.

Figures 6.5 (a) and (b) compare the relative importance, calculated using

the connection weights approach, between each input as a function of fre-

quency for systems F2 and F6, respectively. For F2, the relative importance

trend of IPD suggests a slight dominance over ILD only below a few hun-

dred hertz. The ILD cue becomes clearly dominant above 2.8 kHz. There

is a wide transition region over the frequency range between 400Hz and

2.8 kHz. These results are broadly similar to the results obtained using Gar-

son’s method. For system F6, the first difference compared with that method

is that the relative importance of IPD and ILD crosses at a lower frequency

of around 500Hz. Secondly, interaural coherence is the most dominant cue

at very low frequencies below 200Hz.

6.2.2.3 Discussion

It can be seen that there are both similarities and differences between the

results obtained using the two relative importance metrics. In this section,

we investigate and discuss these differences.

In figure 6.2, the relative importance for systems F2 and F6 calculated

by Garson’s method indicates that the most important cue for F2 is ILD,

whereas the most important cue for F6 is IPD. This can be accounted for

by considering the relative importance of each cue as a function of frequency,

shown in figure 6.3. In figure 6.3 (a), the bandwidth dominated by IPD is

approximately 650Hz (11 frequency points). The bandwidth from 2.8 kHz

to 8 kHz (44 frequency points) is dominated by ILD. Therefore, many more

frequency points in the 55 that were analysed are dominated by ILD and

this causes ILD to appear more important than IPD in the RI histogram

(figure 6.2 (a)). However, the number of analysed frequency points which are

dominated by IPD (36) is more than the number dominated by ILD (19), as

shown in figure 6.3 (b). Therefore, in figure 6.2 (b) IPD is ranked as the most
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important cue. This explanation does not provide a reason for the differences

observed between the two systems in the bandwidths dominated by each cue,

which remains an open question.

We next address the different results obtained by the two methods. As

we described in section 5.4, Garson’s method employs the absolute values of

connection weights to quantify the importance of each ANN input. Therefore,

it ignores the opposing influences of any connections with negative connec-

tion weights (Olden et al., 2004). In order to understand the disadvantage

of Garson’s method that leads to mis-ranking between IPD and ILD at some

frequency points, we demonstrate the phenomenon at 800Hz, where the im-

portance of ILD is 10% smaller than IPD in figure 6.3 (b) (using Garson’s

method), and 4% larger than IPD in figure 6.5 (b) (using the connection

weights method). A dashed vertical line has been drawn at 800Hz in both

of these figures.

To demonstrate the origin of the different results obtained by the two

methods, ANN connection weight products for IPD and ILD, averaged over

all 100 ANNs at 800Hz, are listed in table 6.2. There are 15 neurons in

the system, as shown in figure 6.1. In table 6.2, considering the IPD input

column, it is apparent that eight hidden neurons positively influence mask

estimation and the sum of their weights is 1.93. The remaining seven hidden

neurons are all negative and have an opposing influence on mask estimation.

They sum to -2.24. In a similar way, the ILD connection weights contribute

a total positive influence of 1.05 to the estimation, and a total negative

influence of 3. Both the negative and positive influences are considered by

the connection weights method. This is represented in table 6.2 by the rows

labelled ‘sum of positive weights’ and ‘sum of negative weights’ and their

combined influence in the row ‘sum of all weights’.

Garson’s method, however, does not account for the effects of inhibition.

The fact that some hidden neurons have negative weights is lost by using

absolute values in the calculation. This leads to different estimations of

ANN input importance by the two methods (Olden et al., 2004). The effect
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Table 6.2: Averaged connection weight products for inputs IPD and ILD for
the 100 F6 ANNs trained at 800Hz. The sum of all weights corresponds to

the connection weights result, and the bottom row corresponds to the
Garson result.

Neuron ID
Input

IPD ILD

1 0.24 -0.57
2 0.72 0.77
3 0.44 0.11
4 0.14 -0.22
5 -0.30 -0.38
6 0.18 0.08
7 0.05 -0.34
8 -0.24 -0.09
9 -0.69 -0.60
10 -0.09 -0.24
11 0.01 0.02
12 -0.27 -0.29
13 -0.39 0.06
14 -0.28 -0.22
15 0.14 -0.03

Sum of positive weights 1.93 1.05
Sum of negative weights -2.24 -3.00

Sum of all weights -0.31 -1.95
Sum of absolute weights 4.17 4.04
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of Garson’s method is simply illustrated by the bottom row ‘sum of absolute

weights’ in table 6.2.

Scrutiny of the values in the bottom row of table 6.2 reveals that the

IPD absolute sum (4.17) is larger than the absolute sum for the ILD weights

(4.04). Therefore, Garson’s method ranks IPD as more important than ILD.

On the other hand, in the ‘sum of all weights’ row, positive and negative

connection weights tend to cancel. This results in a sum of -0.31 for IPD,

which is considerably less negative than the sum of -1.95 for ILD. Therefore,

the connection weights approach uses raw connection weights which preserves

the reinforcement/inhibition information and is why the method is preferred

by Olden et al. (2004). However, the approach tends to lose information

about the strength of the mapping between an input and the output of the

ANN, since weights with high positive values and others with high negative

values tend to cancel and this appears to be a distinct advantage of Garson’s

method.

In figure 6.5 (b) it can be observed that, according to the connection

weights approach, interaural coherence (IC) becomes the most important cue

below about 200Hz and peaks at 150Hz. To investigate this more closely we

plot in figure 6.6 the relationship between IC and the ratio mask value R at

150Hz.
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Figure 6.6: Relationship between interaural coherence (IC) and ratio (R) at
150 Hz in ANN training data.

IC measures the similarity between the signals reaching the two ears. At

low frequencies, there is very little acoustic difference between the left and

right channels. Therefore, in figure 6.6, most values of IC are close to 1,

182



independent of the value of the ratio, R. From this we conclude that IC must

be unimportant at this frequency, because it is impossible to predict the value

of R from IC. From this point of view, Garson’s method produces a more

believable result, because figure 6.3 (b) shows IC to be the least important

input at low frequencies.

For both Garson’s method and the connection weights method, we also

notice that some of the importance curves are smooth and some appear to

be noisy. An important point to discuss is where the noise is coming from.

One possible reason is that it has something to do with variations in the

properties of the training and test data. Another reason may be that some

ANNs complete the training phase closer to the MSE global minimum than

others. It is likely, for example, that it is the noise in the RI metric which

causes the two importance curves, IPD and ILD, to touch at approximately

6 kHz in figure 6.3 (b) (Garsons method), and is why the RI scores for IPD

and ILD cross over at 200Hz as shown in figure 6.5 (a) (connection weights

method).

It is clear from this discussion that both RI metrics have their own

strengths and weakness and so in subsequent RI analyses we continue to

show the results for both approaches. Furthermore, to reduce the impact of

noise, we apply smoothing to the RI curves presented in later sections of the

thesis to reveal the underlying trends in RI more clearly.

6.2.3 Target speech segregation STOI performance

In previous sections a suitable ANN topography has been established for the

purpose of estimating the ratio mask in our optimal cue mapping approach

to target speech segregation. We have also presented a method for ranking

potentially useful cues in order of importance as a function of frequency.

In this section we begin to evaluate the perceptual performance of optimal

cue mapping. We do so by applying standard models for estimating the
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intelligibility gains delivered by OCM.

Target speech that the ANNs have not been exposed to during the training

phase is evaluated in terms its STOI scores. The test data employed here

consists of 50 test mixtures, described in section 6.1, with local SNRs of -5 dB,

0 dB and 5 dB. By comparing the segregated target speech with the original

clean target speech before it was mixed with the interferers, a STOI score

is obtained. The STOI results for four masks types are presented in table

6.3: EBMF2, ERMF2, EBMF6 and ERMF6 (see section 6.1.3). The baseline

results using the ideal binary mask (IBM) and ideal ratio mask (IRM), the

definitions for which can be found in section 5.1.2, are presented to indicate

the upper bound for possible intelligibility improvements.

Before discussing the STOI scores in detail, we use this opportunity to

compare two different post-processing methods. Synthesis of the segregated

target speech is implemented using both of the methods described in sec-

tion 5.5 in order to examine how much each method influences intelligibility

performance. Both are based on the short-time Fourier transform (STFT).

In the convolution (CONV) method, however, the convolution tail created

in each frame is preserved and added to the following frame, whereas in the

IFFT method the tail is discarded and each frame is Hann windowed to avoid

possible discontinuities at frame boundaries.

As shown in table 6.3, the convolution method yields better STOI scores

than the IFFT method in all scenarios. Furthermore, in terms of the STOI

score improvements, the binary masks benefit more than the ratio masks

from using the convolution method. This result is likely due to the fact that

the binary mask forces hard decisions at each T-F boundary which inherently

causes the resynthesised signal to be less smooth, and hence less intelligible,

than when the ratio mask is used. Keeping the convolution tail removes small

but audible amplitude modulations of the audio output between neighbouring

time frames. There is more to gain by using the convolution method in both

of these situations. Since the convolution method is shown to be superior, it

is used in the post processing for all subsequent evaluations.
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Table 6.3: STOI scores using four different masks with two different
post-processing methods at three different SNRs. The configuration is

three-source anechoic, with the target at 0◦ azimuth and two interferers at
−30◦ and 30◦ azimuth, respectively. Numbers in bold are the best

segregation results for each test condition and numbers in italics are the
best ideal results.

Systems Methods
STOI

-5 dB 0dB 5dB

UPM 0.5448 0.6819 0.8266

Binary mask results

EBMF2
IFFT 0.7367 19.19% 0.8279 14.60% 0.9132 8.66%
CONV 0.7444 19.96% 0.8313 14.94% 0.9150 8.84%

EBMF6
IFFT 0.7482 20.34% 0.8384 15.65% 0.9187 9.21%
CONV 0.7552 21.04% 0.8421 16.02% 0.9202 9.36%

IBM
IFFT 0.8284 28.36% 0.8955 21.36% 0.9469 12.03%
CONV 0.8377 29.29% 0.9015 21.96% 0.9500 12.34%

Ratio mask results

ERMF2
IFFT 0.7812 23.64% 0.8572 17.53% 0.9308 10.42%
CONV 0.7817 23.69% 0.8579 17.60% 0.9312 10.46%

ERMF6
IFFT 0.7869 24.21% 0.8622 18.03% 0.9338 10.72%
CONV 0.7880 24.32% 0.8634 18.15% 0.9344 10.78%

IRM
IFFT 0.8843 33.95% 0.9249 24.30% 0.9604 13.38%
CONV 0.8844 33.96% 0.9258 24.39% 0.9619 13.53%
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From a practical point of view, if an ANN can generalise from a restricted

set of training data then this will reduce the training data size and training

time required. For this reason it is important to know how a system trained in

one signal-to-interferer SNR condition performs in different SNR conditions.

To more easily assimilate the data in table 6.3, from the point of view of

the generalisation ability of each ANN, it is presented graphically in figure

6.7. The figure shows the STOI scores for each mask at three different SNRs

compared with the scores for the unprocessed mixture (UPM).
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Figure 6.7: STOI scores for the masks EBMF2, EBMF6, ERMF2 and
ERMF6 compared with the unprocessed mixture UPM and the

corresponding ideal masks, IBM and IRM. The comparison is performed for
local SNRs of -5 dB, 0 dB and 5 dB in anechoic conditions with target speech
at 0◦ azimuth and two interferers at −30◦ and 30◦ azimuth, respectively.

Figure 6.7 shows that, for binary mask, EBMF2, compared with the

unprocessed mask, UPM, the intelligibility improves by approximately 20%,
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14.9% and 8.8% at local SNRs of -5 dB, 0 dB and 5 dB, respectively. In

addition, there are 23.7%, 17.6% 10.5% improvements using the ratio mask

ERMF2 for the three SNR test conditions.

By incorporating more input features in system F6, masks EBMF6 and

ERMF6 perform better than their two-input counterparts using F2. For the

binary mask based on six inputs, there is approximately a further 1.1%, 1.1%

and 0.5% STOI score improvement over the equivalent two-input system for

the -5 dB, 0 dB and 5 dB SNR conditions, respectively. The improvement

for the corresponding ratio masks is smaller; approximately 0.6%, 0.6% and

0.3%, respectively.

As anticipated, the overall ratio mask performance is superior to that of

the binary mask, particularly at low SNRs. Ratio mask ERBF2 achieves

an improvement in STOI score of almost 3.7% at -5 dB SNR and 1.6% at

5 dB over the binary mask EBMF2. For the six-input system, compared to

EBMF6, ERMF6 gains a further 3.3% improvement at -5 dB and 1.4% at

5 dB.

Overall, the mask which performs best in all test conditions is ERMF6.

It yields an 18.2% STOI score improvement compared to the STOI score for

the unprocessed mask UPM at 0 dB SNR. For the lower SNR of -5 dB, the

mask ERMF6 creates an even greater improvement of 24.3% in the STOI

score. At the highest SNR (5 dB) the improvement drops to 10.8%. In

general, the STOI score is most improved for lower SNRs, and asymptotically

approaches the score for the ideal upper bound for higher SNRs. The greater

improvement at poor SNRs, particularly for the ratio masks, is especially

advantageous in a hearing aid application.

In general, the STOI score is most improved at the lower SNR, and asymp-

totically approaches the score for the ideal upper bound at higher SNR con-

ditions. The greater improvement at poor SNRs, particularly for the ratio

mask estimators, is especially advantageous in a hearing aid application.
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Table 6.4 presents an alternative measure for the intelligibility perfor-

mance improvements produced by the masks. It compares the actual im-

provement in STOI score compared with the unprocessed mixture with the

ideal maximum STOI score improvement. The performance gain describes

the position of real results in the improvement space using the difference be-

tween the STOI score of the mixture and the ideal mask as a reference. We

define the STOI performance gain using the following formula:

gainSTOI =
STOIreal − STOIUPM

STOIideal − STOIUPM

(6.1)

Hence, a performance gain close to 1 indicates that the STOI score using the

mask is close to the ideal upper bound. A gain of zero means that there is

no improvement.

Table 6.4: The STOI performance gain of the masks for a three-source
anechoic configuration with the target at 0◦ azimuth and two interferers at
−30◦ and 30◦ azimuth, respectively. Numbers in bold are the best results

for the binary and ratio masks in each test condition.

Systems
Performance gain

-5 dB 0 dB 5dB

EBMF2 0.68 0.68 0.72
EBMF6 0.72 0.73 0.76

ERMF2 0.70 0.72 0.77
ERMF6 0.72 0.74 0.80

Table 6.4 shows that, for all SNR conditions, the six-input masks, EBMF6

and ERMF6, perform better than their two-input counterparts, EBMF2 and

EBMF6. In all cases, although the STOI improvement percentage increases

as the SNR decreases, the performance gain in the improvement space re-

duces. This is reasonable; it is clearly more difficult to segregate the target

signal in low SNR conditions and the performance gain reflects this fact.

The improvement space for lower SNR conditions is wider than for high SNR

conditions, hence a smaller performance gain at low SNRs may nevertheless

result in a relatively large percentage STOI improvement.
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6.2.4 Target speech segregation PESQ performance

As described at the beginning of this chapter, there is no simple connection

between speech intelligibility and its quality. However, processed speech of

good quality can bring hearing aid users a higher level of listening comfort.

Therefore, it is worth examining the speech quality yielded by the masks.

The PESQ score for each mask is shown in table 6.5. Similar trends to those

seen in the STOI results are apparent. Speech quality improves more with

the inclusion of a richer set of input features and with the use of a ratio mask

as opposed to a binary mask.

We define the PESQ performance gain using a formula similar to the one

for STOI performance gain:

gainPESQ =
PESQreal − PESQUMP

PESQideal − PESQUPM

(6.2)

It is the proportion defined by the difference between the PESQ score for the

processed signal and the PESQ score for the unprocessed mixture, compared

with the maximum possible difference.

Table 6.6 shows that, for each SNR condition, EBMF6 and ERMF6 ex-

hibit the highest PESQ performance gains out of the two binary masks and

two ratio masks, respectively. Although mask EBMF6 has a higher PESQ

performance gain than ERMF6, it yields a lower percentage improvement in

Table 6.5 than ERMF6 does. It is noteworthy that the speech quality im-

proves more for lower SNR conditions, but that the performance gain drops

due to the segregation challenge becoming greater. Overall, comparison of

the PESQ scores in table 6.5 between the binary mask estimator and the ra-

tio mask estimator shows that the output quality of the ratio mask estimator

is superior in matching conditions.
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Table 6.5: PESQ scores using four different masks with two different
post-processing methods at three different SNRs. The configuration is

three-source anechoic, with the target at 0◦ azimuth and two interferers at
−30◦ and 30◦ azimuth, respectively. Numbers in bold are the best

segregation results for each test condition and numbers in italics are the
best ideal results.

Systems
PESQ

-5 dB 0dB 5dB

UPM 1.4608 1.8324 2.1730

Binary mask results

EBMF2 2.2746 16.28% 2.6014 15.38% 2.9655 15.85%
EBMF6 2.3052 16.89% 2.6700 16.75% 3.0115 16.77%
IBM 2.7957 26.70% 3.0994 25.34% 3.3520 23.58%

Ratio mask results

ERMF2 2.3692 18.17% 2.7044 17.44% 3.0876 18.29%
ERMF6 2.4137 19.06% 2.7500 18.35% 3.1157 18.85%
IRM 3.1360 33.50% 3.3822 31.00% 3.6082 28.70%

Table 6.6: The PESQ performance gain of the masks for a three-source
anechoic configuration with the target at 0◦ azimuth and two interferers at
−30◦ and 30◦ azimuth, respectively. Numbers in bold are the best results

for the binary and ratio masks in each test condition.

Systems
Performance gain

-5 dB 0 dB 5dB

EBMF2 0.61 0.61 0.67
EBMF6 0.63 0.66 0.71

ERMF2 0.54 0.56 0.64
ERMF6 0.57 0.59 0.66
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6.3 Incorporation of cross-correlation in dif-

ferent SNR conditions

The performance of the OCM algorithm in terms of target speech intelligibil-

ity and quality for three different SNRs has been evaluated in the preceding

sections. However, we have so far restricted the number of interferers to two

and they have fixed directions of ±30◦ azimuth. The purpose of this section

is to investigate relaxing the constraints on the interferers, initially to allow

their directions to vary. To do so, we integrate cross-correlation coefficients

(see Section 5.2.3) into the inputs to the mask estimator as a means of pro-

viding the ANNs with more information about the direction (and ultimately

the number) of sources in the binaural mixture.

A sound source from a particular azimuth direction has a characteristic

ITD associated with it. This converts to a time lag when the left and right

binaural channels are cross-correlated and this forms the basis for the cross-

correlogram (section 5.2.3). Human ITDs range from approximately -680µs

to +680µs (see section 3.1.1). Given the sampling frequency of our current

model (16 kHz), this conveniently results in 27 discrete time lags (13 negative,

zero and 13 positive) over the range -800µs to +800µs. As a starting point,

therefore, these 27 cross-correlation coefficients will be applied as additional

inputs to the ANNs in the mask estimators. Aims of this section include

determining whether these cross-correlation coefficients will assist the ANN

in estimating masks and whether 27 coefficients is a suitable number.

Based on system F6’s superior intelligibility according to the STOI anal-

ysis in section 6.2.3 and higher quality using the PESQ analysis in section

6.2.4, we next evaluate whether cross-correlation coefficients enhance the ra-

tio estimation of this system. The new system with seven types of inputs is

denoted by F7. F7, like F2 and F6 (defined in section 6.1.3), has a binary

mask variant, EBMF7, and a ratio mask variant, ERMF7. Hence, it results

in a new system with 33 dimensions of input features.
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The same training and testing strategy used in section 6.2 is applied here.

A baseline analysis is performed first, where the fixed, two-interferer setup is

applied to the new S7 ANN. Only if the results are as expected, i.e. they are

similar to the results for system F6, is it safe to move on to more challenging

setups.

6.3.1 Establishing the ANN topologies

To ensure that the new networks contain sufficient neurons to reach a near-

minimum level of MSE, the same process (see section 6.2.1) is employed to

define the 33-input ANN topology.
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Figure 6.8: MSE performances of ANNs across frequency as a function of
the number of neurons in the fixed three-source anechoic configuration with

target at 0◦ azimuth and two interferers at −30◦ and 30◦ azimuth,
respectively. (a) MSE performance across frequencies as a function of the

number of neurons for system F7. (b) The 2D projection of (a).

The size of the F7 ANNs is determined, as before, using 10-fold cross-

validation. The mean of the MSEs for the 16 frequency bands analysed

are plotted in figure 6.8. According to the performance of the ANNs using

different numbers of neurons, we again select ANNs with 15 hidden neurons

for this system. The internal network topology is unchanged, because the

training data setup has not been altered from the fixed-source conditions

used with systems F2 and F6 in section 6.2.
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6.3.2 Relative importance

The purpose of introducing cross-correlation is to enable the ANN to esti-

mate the ratio mask better for interferers of arbitrary direction. Therefore,

evaluating its relative importance for the fixed 2-interferer setup is expected

to cause the cross-correlation input to have a very low importance. We use

this configuration as a baseline for assessing the relative importance of the

cross-correlation input using increasingly complex source arrangements.

In previous relative importance measurements, described in section 6.2.2,

all input cues, such as IPD and ILD, involved presenting a single input to

the ANN. Although cross-correlation coefficients are considered to form one

type of input, they involve multiple inputs which are fed in parallel into

the ANN. This alters the way in which the relative importance of the cross-

correlation coefficients are computed. In order to evaluate a vector input, the

mean value of all the corresponding connection weight products is used. The

relative importance measured by using Garson’s method is shown in figure

6.9 and the corresponding results using the connection weights method is

shown in figure 6.10.

The envelopes of seven histograms, one for each input type, are presented

in figure 6.9 (a) and 6.10 (a), showing the frequency of occurrence of the

RI scores for each input in each of 10 bins. Both sets of results indicate

that IPD and ILD still contribute most strongly to mask estimation. ∆IPD,

∆ILD, magnitude and interaural coherence appear to contribute to mask

estimation as well, but to a much lesser extent. This also agrees with our

earlier results in section 6.2.2. As expected, the cross-correlation coefficients

cue is the weakest in this setup for F7. This is because the system has been

trained and tested with fixed source directions. In these circumstances, very

little extra information is provided by the cross-correlation coefficients, which

have therefore not been exploited by the networks.

More detailed relative importance results, averaged across all 100 ANNs
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Figure 6.9: Relative importance calculated using Garson’s method for the
inputs IPD, ∆IPD, ILD, ∆ILD, magnitude (Mag), interaural coherence
(IC) and cross-correlation coefficients (XC) for all ANNs in the fixed,
three-source anechoic setup for system F7. The speech target is at 0◦

azimuth and the two interferers are at −30◦ and 30◦ azimuth, respectively.
(a) Relative importance histogram envelopes for system F7. (b) Smoothed
relative importance of inputs for all ANNs from 100Hz to 8 kHz on an ERB

scale.

trained at each frequency, is shown in figures 6.9 (b) and 6.10 (b) for each of

the RI metrics, respectively. As discussed in section 6.2.2.3, smoothing the

results of relative importance across frequency reveals the underlying trends

more clearly that we are trying to identify. Hence, a 3-point moving average

filter is applied to smooth the curves. Note too that the vertical scales are

now logarithmic to help distinguish the curves with lower RI scores.

Garson’s method suggests that IPD is the most important cue below

1.2 kHz and ILD is mostly dominant above 3 kHz. The connection weights
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Figure 6.10: Relative importance calculated using the connection weights
approach for the inputs IPD, ∆IPD, ILD, ∆ILD, magnitude (Mag),

interaural coherence (IC) and cross-correlation coefficients (XC) for all
ANNs in the fixed, three-source anechoic setup for system F7. The speech
target is at 0◦ azimuth and the two interferers are at −30◦ and 30◦ azimuth,
respectively. (a) Relative importance histogram envelopes for system F7.
(b) Smoothed relative importance of inputs for all ANNs from 100Hz to

8 kHz on an ERB scale.

method, however, indicates that the RI scores for IPD and ILD cross over at

the lower frequency of 400Hz. Although, the transition frequency is different,

it can still be seen that IPD is the dominant cue at low frequencies and ILD

dominates at higher frequencies. In addition, the importance of ∆IPD de-

creases compared with F6 in figures 6.3 (b) and figure 6.5 (b). Both methods

also suggest that the contribution of interaural coherence in the estimation

is very low for frequencies above 1.2 kHz.
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6.3.3 Target speech segregation STOI and PESQ per-

formance

The STOI and PESQ measurement procedures employed for systems F2 and

F6 in sections 6.2 are repeated for F7 to discover if the addition of cross-

correlation coefficients improves the performance of the resulting binary and

ratio masks. The F7 results, using the previously defined fixed-source, two-

interferer setup are shown in table 6.7. For comparison purposes, the results

of F6 are repeated alongside them. As shown in the table, ERMF7 yields

slightly higher scores for both the STOI and the PESQ analyses for all SNR

conditions. At an SNR of -5 dB there is another 1% improvement in the STOI

rating compared to ERMF6. For an SNR of 5 dB the improvement falls to

0.3%. There is also a small improvement in PESQ scores of approximately

0.02 - 0.03. It is interesting to note that although the STOI score improves us-

ing the binary mask EBMF7, the PESQ score consistently decreases slightly.

The reason for this is unclear.

Table 6.7: STOI and PESQ scores for systems F6 and F7 for different SNRs
using a three-source anechoic configuration. The target is at 0◦ azimuth

and the two interferers are at −30◦ and 30◦ azimuth, respectively. Numbers
in bold are the best results for each test condition.

Systems
-5 dB 0 dB 5dB

STOI PESQ STOI PESQ STOI PESQ

EBMF6 0.7552 2.3052 0.8421 2.6570 0.9202 3.0115
EBMF7 0.7637 2.2994 0.8467 2.6354 0.9230 2.9962

ERMF6 0.7880 2.4137 0.8634 2.7500 0.9344 3.1157
ERMF7 0.7985 2.4486 0.8697 2.7720 0.9375 3.1362

Although we have shown that the relative importance of the cross-correlation

inputs is, as expected, small, it is not zero. This may account for the small

but consistent further increase in performance of F7 over F6, even for this

two-source, fixed direction setup.
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6.4 Conclusion

In this chapter we considered the training of three families of ANNs, with

topographies F2, F6 and F7. They were trained using different numbers of

input features. The training data was a binaural mixture consisting of a

mixture of target and interferer speech fragments. A left and a right chan-

nel ANN was assigned to each frequency point. Each ANN was trained to

estimate the ideal ratio mask value for its associated frequency and training

was terminated once the output MSE using unseen test data fell below a

previously determined threshold.

The importance of every input for each system was ranked. Both sim-

ilarities and differences are observable between the results obtained using

the two relative importance metrics; Garson’s method and the connection

weights method. Garson’s method does not account for the effects of inhibi-

tion of the hidden neurons. The metric uses the absolute values of connection

weights. By contrast, the raw connection weights are used in the connection

weights method, which therefore preserves the reinforcement/inhibition in-

formation. High positive and negative weights tend to cancel, however, and

when this occurs, the strength information in the mapping is lost between

the inputs and the output of the ANN. Due to the complementary strengths

and weakness of the two methods, we use both approaches to demonstrate

the importance of each cue.

Both of these relative importance metrics produce noisy results. This

noise may stem from variations in the properties of the training/test data

and the different local minima attained by each ANN at the completion of

its training phase. Smoothing is applied to the relative importance results

to reduce the impact of the noise.

Integrating extra input features always led to better performance in terms

of speech intelligibility and generally improved the quality metric. The STOI

and PESQ scores confirm the results of the importance analysis in section
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6.2.2, which predicted that the additional inputs ∆IPD and ∆ILD would

provide a small, but clear, improvement in the estimation of the binary and

ratio masks. The importance of each of the inputs for each system was ranked

and the plausibility of the results for the six-input system was scrutinised.

Based on the importance analysis for system F6 in section 6.2.2, IPD is

the dominant cue at low-frequencies and ILD is the most important cue at

higher frequencies. The interaural coherence and magnitude inputs appear

to be redundant. Only the additional inputs ∆IPD and ∆ILD are likely to

provide significant improvements when integrated with IPD and ILD.

System F7 was introduced to release the constraints on the direction of

interferers by integrating cross-correlation coefficients as additional inputs.

As expected, testing F7 at fixed directions of interferers produced similar

results to those for F6, though a small improvement in terms of both STOI

and PESQ scores was nevertheless observed. This confirmed that there is

no harm in integrating these coefficients and they are expected to become

of more use in subsequent simulations when we introduce interferers which

vary in direction in next chapter.

In addition, we have demonstrated that the systems trained for the 0 dB

SNR condition also have the ability to generalise to SNR conditions 5 dB

above and 5 dB below this level.

In this chapter, all the systems were evaluated using anechoic mixtures

in which the interference directions were fixed. In the next chapter we re-

lease these constraints and the proposed algorithm is evaluated with variable

interference directions in both anechoic and reverberation mixtures. A sys-

tematic evaluation of the ability of the ANNs to generalise when tested on

binaural mixtures with a different SNR from the one they were trained on is

also presented next.
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Chapter 7

Detailed Evaluation of the

OCM Approach

In the previous simulations, the systems F2, F6 and F7 were trained using

a three-source configuration in anechoic conditions, with the target placed

straight in front of the virtual listener (i.e. in the direction 0◦ azimuth) and

two fixed interferers were placed one on either side of the listener at −30◦

and 30◦ azimuth, respectively.

Now, with the aim of applying optimal cue mapping in increasingly realis-

tic situations, we make the problem space more complicated. In this chapter

the direction of the interferers is varied in 10 degree increments. We now al-

low the direction of one interferer to range between −90◦ and −10◦ azimuth

and the other interferer to range between 10◦ and 90◦ azimuth. Thus, there

will be always one interferer on both sides of the listener. With 10◦ steps,

there are 91 possible combinations of direction. A vector of coordinates

is used to represent the permitted interferer configurations. For example,

[−30, 30] indicates one interferer is at −30◦ azimuth and the other one is at

30◦ azimuth. As in previous simulations, the target is always located at 0◦

azimuth and hence the position of target is omitted from the configuration

vector. The configurations used in previous simulations form one of these 91
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combinations so that performance comparisons can easily be made between

them and the results presented in this chapter.

7.1 Variable direction interferers in anechoic

environments

Since the problem space is now much bigger, the training strategy will be

different. Most importantly, the training phase will be considerably longer

and the ANNs will be considerably larger than for the previous systems for

which the two interferers were fixed. In the next section we consider the

impact of varying the training strategy both on the ANN topology required

and on the performance as measured using STOI and PESQ.

7.1.1 Planning the training and testing strategies

We consider three training strategies, TS1, TS2 and TS3, of varying complex-

ity. Each of these strategies is likely to require a different network topology

for effective learning and we define these as systems V7-1, V7-2 and V7-3,

respectively. All three systems produce ratio masks with the generic label

ERMV7 and a binary mask counterpart EBMV7. These systems include the

cross-correlation coefficients defined in section 5.2.3. In the current systems,

however, the key point is that the seven inputs are used to estimate the ra-

tio mask for segmenting a target speech source from two interfering speech

sources whose positions are no longer fixed. For each direction combination,

we generate a set of training data containing 5,000 examples. This num-

ber was previously established in section 6.2 to be sufficient for successful

training.
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Training strategy TSV7-1

The most obvious training strategy is to choose to train a system using

training data which covers all possible interferer directions and combinations.

This results in 91 sets of 5,000 training examples (455,000 examples in total).

Training strategy TSV7-2

To reduce the size of the training set, a second system is trained with the

target at 0◦ azimuth, but in this case the two interferers are paired in symmet-

rical directions and stepped in 10◦ increments: [−10, 10], [−20, 20], [−30, 30],

[−40, 40], [−50, 50], [−60, 60], [−70, 70], [−80, 80], [−90, 90]. This reduces

the training data size to nine sets of 5,000 examples (45,000 examples in

total).

Training strategy TSV7-3

In the final strategy, the system is trained as for TSV7-2, but using only four

pairs of directions: [−20, 20], [−40, 40], [−60, 60], [−80, 80]. Thus, there

are 20,000 training examples in total for strategy TSV7-3.

Definitions

The three training strategies yield three distinct families of ANNs and their

related masks. The labelling system, which will be used throughout this

chapter is defined in table 7.1.

Once trained, all the masks, ERMV7-1, ERMV7-2 and ERMV7- 3, are

tested for all 91 configurations. We categorise the test data into three types

for the three systems. The first category is the matched case, which means

that the system was trained using the same source direction configuration
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Table 7.1: System definitions and training strategies for each mask set in
anechoic conditions.

Training strategy HRIR System Mask set

TSV7-1
SYMARE

V7-1
EBMV7-1

HA02 Anechoic ERMV7-1

TSV7-2
SYMARE

V7-2
EBMV7-2

HA02 Anechoic ERMV7-2

TSV7-3
SYMARE

V7-3
EBMV7-3

HA02 Anechoic ERMV7-3

being tested. Hence, when testing mask ERMV7-1, trained using strategy

TSV7-1, all the test examples belong to the matched case. Configuration

[−20, 20], for example, belongs in the matched case category in all three

systems because this pair of directions appears in the training data for all of

them. The second category of test data is the semi-matched case. Here, only

one interferer direction out of the two directions in each pair has been used

in training the ANN. For example, when testing system V7-2, the configu-

ration [−10, 20] is a semi-matched type test data, since both −10◦ and 20◦

azimuth angle appear in the training data, but never as a pair (i.e. only the

symmetrical pairs [−10, 10] and [−20, 20]) are present in the training data,

but not [−10, 20] together. The last category of test data is the unmatched

case. For example, [−10, 10] and [−10, 30] are both unmatched cases in the

third test strategy, TSV7-3, because neither of these directions are presented

during the training phase. This approach to testing not only assesses how

well each system has learned each matched case, but also reveals how well

it can estimate the ratio mask for their previously unseen semi-matched and

unmatched input conditions.

7.1.2 Establishing the ANN topologies

The same procedure previously described in section 6.2.1 is applied here to

define the appropriate number of neurons in the ANN topology for the three
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Figure 7.1: MSE performance of ANNs across frequency as a function of
the number of neurons under three sources configuration for three systems

in anechoic environment. (a) The system is trained at all the possible
combinations of interferer’s directions. (b) The projection of MSE

performance of system 1 in 2D. (c) The system is only trained at all the
symmetrical directions of interferers. (d) The projection of MSE

performance of system 2 in 2D. (e) The system is trained partially at
symmetrical directions of interferers. (f) The projection of MSE

performance of system 3 in 2D.
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systems. This is to ensure that all the networks contain sufficient neurons to

reach a near-minimum level of mean-square error (MSE). Figure 7.1 shows

the resulting MSEs from applying each training strategy to a multi-layer

perceptron with one hidden layer for which the number of hidden units is

systematically varied. Each graph includes a dashed line showing the size

of the ANN chosen, based on 10-fold cross-validation (section 5.3.2). The

size of the hidden layers for systems V7-1, V7-2 and V7-3 is 50, 35 and 30

neurons, respectively.

7.1.3 Relative importance

For the purpose of assessing the relative importance of each input, 100 copies

of each of the ANN topologies in the three systems are trained using their

respective training strategies. The local SNR of the training data is set to

0 dB. The training samples are drawn from the training speech corpus in

TIMIT (John et al., 1993) and prepared using the HRIRs for subject HA02

from the SYMARE database (Guillon and Zolfaghari, 2012), as described in

section 6.1.1.

To determine the relative importance of each input type, the ANNs

are then analysed using both Garson’s method and the connection weights

method, described in section 5.4. The results using Garson’s method are

shown in figure 7.2 and those for the connection weights method are shown

in figure 7.3. Figures 7.2 (a) and 7.3 (a) show the histogram envelopes, ob-

tained using the same procedure as in section 6.2.2, for all seven types of

inputs. Figures 7.2 (b) and 7.3 (b) show the relative importance of each

type of input as a function of frequency on an ERB scale. It can be seen

that ILD dominates IPD at mid-to-high frequencies, which is consistent with

the comparable result for the seven-input topology using fixed interferers in

figure 6.10 (section 6.3.2).

With variable direction inputs, however, we see that below 500Hz inter-

aural coherence has become a highly dominant cue in the connection weights
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Figure 7.2: Relative importance of the inputs IPD, ∆IPD, ILD, ∆ILD,
magnitude (Mag), interaural coherence (IC) and cross-correlation

coefficients (XC) using Garson’s method in the variable three-source
configuration in anechoic conditions. (a) Relative importance histogram

envelopes for system V7-1. (b) Smoothed relative importance of each type
of input from 100Hz to 8 kHz on an ERB scale.
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Figure 7.3: Relative importance of the inputs IPD, ∆IPD, ILD, ∆ILD,
magnitude (Mag), interaural coherence (IC) and cross-correlation

coefficients (XC) using the connection weights method in the variable
three-source configuration in anechoic conditions. (a) Relative importance
histogram envelopes for system V7-1. (b) Smoothed relative importance of

each type of input from 100Hz to 8 kHz on an ERB scale.
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method. Apart from this, both RI metrics indicate that interaural coherence

contributes very little to mask estimation. The cross-correlation coefficients

maintain their elevated importance compared with the fixed direction sce-

nario throughout the upper range of the spectrum. This confirms that the

27 cross-correlation coefficients clearly contain strong directional cues at mid

and high frequencies. Their relatively low importance at low frequencies

is likely to be due to the poor time lag resolution of the cross-correlation

function in this region of the spectrum.

7.1.4 Target speech segregation STOI performance

Once again, we apply the STOI performance measure to estimate the intel-

ligibility improvement of the target speech afforded by the three variants of

the V7 network topologies, V7-1, V7-2 and V7-3, using training strategies

TSV7-1, TSV7-2 and TSV7-3, respectively. There are 91 different direction

combinations when independent movement of the two interferers is allowed

in 10◦ steps. For each of these 91 direction combinations, we generate a test

case. Each case contains 50 mixtures and they all have a local SNR of 0 dB

in the left channel before mixing.

As a preliminary check that the results of the three new systems appear

reasonable, we first carry out a comparison of their STOI scores with the

fixed direction system F7, originally shown in table 6.7. The results for F7

are repeated in table 7.2 and compared with the scores for the three new

variable-direction mask estimators using only the fixed interferer directions.

Mask estimator ERMV7-1 produces the highest STOI score of the three

systems and this matches the STOI score for ERMF7 very closely. This

confirms that system V7-1 has successfully learnt the fixed-direction pair,

despite also being presented with 90 other direction pair combinations.

The STOI scores for the unprocessed mixtures (UPMs) for all direction

combinations are shown in figure 7.4. The scores are measured in the left

channel only, since the results for the right channel are similar. They lie in
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Table 7.2: Comparison of STOI scores between the fixed direction system
ratio mask ERMF7 and the three variable-direction masks ERMV7-1/2/3

for the same interferer directions.

Systems
STOI

-5 dB 0dB 5dB

ERMF7 0.7985 0.8697 0.9375
ERMV7-1 0.7868 0.8613 0.9293
ERMV7-2 0.7808 0.8576 0.9274
ERMV7-3 0.7559 0.8444 0.9223
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Figure 7.4: STOI scores for the unprocessed mixtures using all 91 test cases
defined in TSV7-1 in the three-source anechoic configuration. The mean
value is 0.6814 and standard deviation is 0.0187. The mixtures have 0 dB

local SNR before spatialisation.

the range 0.65 to 0.7 with a mean value of 0.6814 and a standard deviation

0.0187. Visual inspection of the figure suggests that the variation in STOI

scores displays a dependence on interferer position.

Mask ERMV7-2 compared with ERMV7-1 shows a small decline in STOI

score of about 1%. In particular, the performance for the semi-matched cases

is very close to the fully trained system V7-1. This is also confirmed in figure

7.5 which shows the similarity between the results of all the 91 test cases for

both ERMV7-1 and ERMV7-2. For mask estimator ERMV7-3, however, it

can be seen that relatively low STOI scores occur when either interferer 1 is

at −10◦ or when interferer 2 is at 10◦, which are boundary unmatched cases
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Figure 7.5: STOI scores for the three mask estimators ERMV7-1/2/3, using
all 91 test cases defined in TSV7-1 in the three-source anechoic

configuration. (a) Results for mask ERMV7-1 trained using strategy
TSV7-1. The mean value is 0.8676 and standard deviation is 0.0077. (b)

Results for mask ERMV7-2 trained using TSV7-2. The mean value is 0.8644
and standard deviation is 0.0079. (c) Results for mask ERMV7-3 trained
using TSV7-3. The mean value is 0.8527 and standard deviation is 0.0189.
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adjacent to the target. Furthermore, due to the relatively poor performance

for the unmatched test cases in general, the STOI scores for ERMV7-3 exhibit

a higher standard deviation of 0.0189.
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Figure 7.6: STOI scores for the original mixture with 0 dB local SNR before
spatialisation and the mask estimators ERMV7-1/2/3 for the test cases on
the symmetric diagonal in the three-source variable direction anechoic

configuration.

To give a more detailed view of the results, figure 7.6 shows a 2D sec-

tion of the STOI scores through the symmetric diagonal ([−10, 10] [−20, 20]

[−30, 30] ... [−90 90]) of the 3D plots in figure 7.5. Both ERMV7-1 and

ERMV7-2 have been trained at these nine direction combinations. Hence

tests at these configurations represent matched cases. The results show they

perform very similarly, with STOI scores which are close to 0.88 at all nine

diagonal positions and the two lines in the figure almost entirely coincide.

As expected, mask ERMV7-3 also yields similar STOI scores in the matched

case directions. However, the results are slightly worse in the unmatched ones.

When both interferers are close to the target signal, at [−10, 10], the STOI

score falls sharply to about 0.8. This is not only because it is an unmatched

case, but also because the system exploits several binaural features, which

become very similar in value to the target speech being segregated. Therefore

it becomes harder for the ANN in system V7-3 to distinguish the target from
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the interferers due to the small binaural cue differences. When the interfer-

ers have a greater angular separation from the target the differences in STOI

score between matched cases using mask ERMV7-1 and the corresponding

unmatched cases using ERMV7-3 decrease. This can be accounted for in

terms of the greater differences in the binaural cues in these directions. The

difference is smallest for the interferer direction pair [−90, 90], for which the

interferers are angularly most separated from the target and from each other.
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Figure 7.7: STOI scores for the original mixture with 0 dB local SNR before
spatialisation and after using the masks ERMV7-1/2/3 for test directions
on the antisymmetric diagonal in the three-source anechoic configuration.

The STOI scores for all three masks along the anti-symmetric diagonal

([−90, 10], [−80, 20] [−70, 30] ... [−10, 90]) are shown in figure 7.7. This

plot contains examples of matched, semi-matched and unmatched test di-

rections. These nine direction pairs are matched cases for ERMV7-1, and

semi-matched cases for ERMV7-2. Again, the STOI scores from both of

these masks are very similar and they coincide on the plot. For ERMV7-3,

as expected, the STOI scores for the semi-matched directions follow the same

pattern as ERMV7-2 and they are very close to the score obtained using mask

ERMV7-1. The STOI scores at both corners (i.e. [−90, 10] and [−10, 90])

are lower than the others. Not only are these examples of unmatched direc-

tions, but also one interferer is close to the target so that it becomes more
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difficult for the ANN in system V7-3 to segregate the target. Overall, mask

ERMV7-3 displays a symmetrical pattern of STOI scores on the surface plot

in figure 7.5.
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Figure 7.8: STOI scores for the original mixture with 5 dB local SNR before
spatialisation and for the three masks ERMV7-1/2/3 for test direction pairs

along the (a) symmetric and (b) anti-symmetric diagonals in the
three-source anechoic configuration.

To examine the ability of each estimator to generalise the training data

for input mixtures with different local SNRs, we further evaluate the perfor-

mance of the three ratio masks at 5 dB and -5 dB. As usual, the local SNRs

are measured before spatialising each sound source. Surface plots showing

the STOI scores for all 91 test cases are available in appendix figure A.1 and

A.2 for the 5 dB and -5 dB local SNRs, respectively.

2D cross-sections extracted from figure A.1 for the 5 dB SNR case are

shown in figure 7.8 and for the -5 dB case in figure 7.9. Figure 7.8 (a) shows

the STOI scores for the symmetric diagonal. ERMV7-1 and ERMV7-2 yield
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Figure 7.9: STOI scores for the original mixture with -5 dB local SNR
before spatialisation and for the three masks ERMV7-1/2/3 for test

direction pairs along the (a) symmetric and (b) anti-symmetric diagonals in
the three-source anechoic configuration.

very similar results which consistently improve the scores by more than 10%

from 0.8 to 0.9 for each pair of interferer directions. Mask ERMV7-3, however,

improves by only approximately 8% for the test direction pair [−10, 10],

because it is an unmatched test case for this mask and both interferers are also

very close to the target source. For the other test directions for ERMV7-3, the

difference between systems is smaller. In figure 7.8 (a), all masks improve the

STOI score by more than 10%, except ERMF7-3 for test cases [−90, 10] and

[−10, 90]. The same reason applies; the test cases for a system increase the

difficulty of segregating the target source when they are unmatched and one

interferer is very close to the target. For the -5 dB local SNR test condition, a

similar pattern of results is obtained. Now, however, for both masks ERMV7-

1 and ERMV7-2, the STOI score improvement is greater, at over 20% for all
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directions on both diagonals.

7.1.5 Target speech segregation PESQ performance

Figure 7.10 shows the PESQ score which is obtained for the original unpro-

cessed mixture for every direction-pair combination. All the PESQ scores lie

in the range 1.5 to 2, substantially below the ideal score of 4.5.
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Figure 7.10: PESQ scores for the unprocessed mixtures using all 91 test
cases defined in TSV7-1 in the three-source anechoic configuration. The
mean value is 1.7852 and standard deviation is 0.0611. The mixtures have

0 dB local SNR before spatialisation.

As shown in figure 7.11, masks ERMV7-1 and ERMV7-2 both output

similar speech quality. ERMV7-3 exhibits the poorest performance, which

occurs at the two edges where one or both interferers lie close to the target

speech. The PESQ score is improved to above 2.5 for all systems except for

the unmatched cases in ERMV7-3.

Similarly, sections through the symmetric and antisymmetric diagonals

from the surface plot in figure 7.11 are compared in more detail in figures 7.12

and 7.13. In figure 7.12, for both mask ERMV7-1 and ERMV7-2 the PESQ

score is improved by 0.8 at [−10, 10], and the improvement increases up to

1 when the interferers are far from the target at [−90, 90]. For all masks,

the test results for matched direction pairs are very similar, which indicates
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Figure 7.11: PESQ scores for the three mask estimators ERMV7-1/2/3,
using all 91 test cases defined in TSV7-1 in the three-source anechoic
configuration. (a) Results for mask ERMV7-1 trained using strategy

TSV7-1. The mean value is 2.7480 and standard deviation is 0.0762. (b)
Results for mask ERMV7-2 trained using TSV7-2. The mean value is 2.7162
and standard deviation is 0.0765. (c) Results for maskERMV7-3 trained
using TSV7-3. The mean value is 2.5960 and standard deviation is 0.1584.
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Figure 7.12: PESQ measurement of the unprocessed mixture with 0 dB
local SNR before spatialisation and the three masks ERMV7-1/2/3 for test
cases on the symmetric diagonal in the three-source anechoic configuration.

that all systems perform equally well for the conditions where learning is

near-optimal. As expected, the performance of mask ERMV7-3 for the un-

matched case ([−10, 10]) is significantly worse than the same direction pair

for masks ERMV7-1 and ERMV7-2, for which this is a matched case. As

noted before, the performance gap between matched and unmatched cases

starts to decrease when the interferers are further away from the target since

the binaural cues steadily become more distinct.

The results for the antisymmetric diagonal are shown in figure 7.13. It

shows that all three masks exhibit similar PESQ scores for the matched

cases that they have in common. The similarity in scores between ERMV7-1

and the corresponding semi-matched cases for ERMV7-2 demonstrate that

the latter system has generalised well for this condition. There is a differ-

ence of approximately 0.5 between the PESQ scores for the matched case in

ERMV7-1 and the unmatched case in ERMV7-3, reveals some short-comings

in generalisation where neither interferer direction was used during training.

The PESQ performance of the masks for the 5 dB and -5 dB local SNR
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Figure 7.13: PESQ scores for the original mixture with 0 dB local SNR
before spatialisation and the three estimators for test cases on the
antisymmetric diagonal in the three-source anechoic configuration.

conditions are also evaluated. The STOI scores for all 91 test direction pairs

are shown in figures A.3 and A.4 for 5 dB and -5 dB SNRs, respectively, in

appendix A. The results along the symmetric and antisymmetric diagonals

are extracted and are shown in figures 7.14 and 7.15. For the 5 dB SNR test

condition, the PESQ score is improved by at least 0.8 (16%) for each test

direction pair, from approximately 2 to 2.8. For the -5 dB SNR condition,

the PESQ score is improved slightly less, but the improvement is at least 0.4

(8%) for each test direction pair, and lifts the score from approximately 1.5

up to at least 1.8 for unmatched cases, slightly over 2 for semi-matched cases

and over 2.3 for matched cases. The results for all three estimators follow

a similar pattern to the results for the 0 dB SNR test condition. ERMV7-

1 and ERMV7-2 perform similarly, and the unmatched test cases for mask

ERMV7-3 produce the lowest scores.
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Figure 7.14: PESQ scores for the original mixture with 5 dB local SNR
before spatialisation and using the three masks for test direction pairs on
the two diagonals in the three-source anechoic configuration. (a) on the

symmetric diagonal and (b) on the antisymmetric diagonal.
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Figure 7.15: PESQ scores for the original mixture with -5 dB local SNR
before spatialisation and using the three masks for test direction pairs on
the two diagonals in the three-source anechoic configuration. (a) on the

symmetric diagonal and (b) on the antisymmetric diagonal.
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7.2 Variable direction interferers in reverber-

ation environments

In previous sections, we have demonstrated that OCM improves speech in-

telligibility and quality using the STOI and PESQ metrics in simulated ane-

choic environments. However, most real environments involve substantial

reverberation. Therefore, in this section we evaluate how OCM performs in

reverberant conditions and how the contributions to mask estimation by the

features in the binaural mixture are changed by the new acoustic conditions.

To create the reverberation test conditions, we use a binaural room im-

pulse response (BRIR) from the AIR database (Jeub et al., 2009). It is

measured in a stairway hall of width 5.2m and length 7m. The BRIR mea-

surements were made using the HMSII.3 dummy head (Jeub et al., 2010b)

oriented in 15◦ azimuthal steps in the range −90◦ to 90◦ relative to the sound

source at a distance of 1m. Other binaural impulse responses in anechoic

and reverberant conditions are used in the next chapter.

7.2.1 Training and testing strategies

The ANN topology V7-2 (section 7.1.2), previously applied in an anechoic

configuration, is retrained to create ratio mask ERMVR7-2 for use in this

reverberant configuration. The new system is labeled as VR7-2. V7-3 is

also retrained in the same reverberant conditions using a different strategy

to create ratio mask estimator ERMVR7-3. The new system is labeled as

VR7-3. In detail, VR7-2 is trained using the strategy, denoted as TSVR7-2,

for six of the 36 possible combinations of interferer direction pairs available

using the AIR database BRIRs. Specifically, TSVR7-2 places the target at

0◦ azimuth with interferers at [−90, 90] to [−15, 15] in 15◦ steps for each in-

terferer direction. System VR7-3 is trained with the interferers organised as

the three direction pairs [−15, 15], [−45, 45] and [−75, 75] only. This train-
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ing strategy is denoted as TSVR7-3. Therefore, as for the systems trained

in anechoic conditions in section 7.1.1, the 36 test mixtures can be split into

three categories: matched, semi-matched and unmatched. The nomenclature

for the reverberation simulations is presented in table 7.3.

Table 7.3: System definitions and training strategies for each mask set in
reverberation

Training strategy HRIR System Mask set

TSVR7-1 - - -

TSVR7-2
AIR

VR7-2
EBMVR7-2

BRIR database ERMVR7-2

TSVR7-3
AIR

VR7-3
EBMVR7-3

BRIR database ERMVR7-3

To create the training set, we generate 5,000 items of training data for

each interferer direction pair. The appropriate subsets of this training data

are used to train VR7-2 (using training strategy TSVR7-2) and VR7-3 (us-

ing training strategy TSVR7-3) resulting in ratio masks ERMVR7-2 and

ERMVR7-3, respectively.

It is important to note that, in this initial work, dereverberation is not

considered here. We aim to segregate the target speech together with its

associated reverberation. No attempt is made to remove the reverberation.

Hence the training target is the ratio mask for the reverberant target speech

in the mixture.

The evaluation is conducted in a three-source configuration. The target

speech is located at 0◦ azimuth, and two speech interferers are placed one

on each side. To the left of the listener there are six possible directions

from −90◦ to −15◦ in 15◦ steps. There is a symmetrical arrangement for the

interferer on the right-hand side. This results in 36 different combinations of

interferer direction pairs for testing.
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7.2.2 Relative importance

The relative importance calculated using Garson’s method is shown in figure

7.16. The results for the connection weights method are presented in figure

7.17. In both sets of results, compared with the anechoic scenario (figure

7.3), the importance of ILD remains high, but at all frequencies IPD is now

much less important than ILD. ∆IPD has become the least important in-

put. We hypothesise that the phase relationship between the left and right

channels is very sensitive to the effect of adding even relatively low levels

of reverberation. The temporal smearing caused by reverberation also has

a detrimental effect on ILD, but its impact remains relatively low until the

reverberation is of a similar energy to the direct sound. This may account for

the reduced importance in reverberation of IPD and ∆IPD compared with

ILD and ∆ILD.

The importance of IC has risen and exceeded the importance of ∆IPD.

This increase in importance is consistent with the results from Jeub et al.

(2010a) and Alinaghi (2013), where the importance of IC has been shown to

increase in reverberant environments.
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Figure 7.16: Relative importance of the inputs IPD, ∆IPD, ILD, ∆ILD,
magnitude (Mag), interaural coherence (IC) and cross-correlation

coefficients (XC) using Garson’s method in the variable three-source
configuration in reverberant conditions. (a) Relative importance histogram
envelopes for system VR7-2. (b) Smoothed relative importance of each type

of input from 100Hz to 8 kHz on an ERB scale.
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Figure 7.17: Relative importance of the inputs IPD, ∆IPD, ILD, ∆ILD,
magnitude (Mag), interaural coherence (IC) and cross-correlation

coefficients (XC) using the connection weights method in the variable
three-source configuration in reverberant conditions. (a) Relative

importance histogram envelopes for system VR7-2. (b) Smoothed relative
importance of each type of input from 100Hz to 8 kHz on an ERB scale.

224



7.2.3 Target speech segregation STOI performance

The intelligibility of the original reverberant mixture before processing and

of the segregated target speech after applying each ratio mask estimator are

assessed using the STOI performance metric. Individual sources are set to

0 dB local SNR, filtered and mixed. For both systems, the STOI score is

computed for each of the 36 direction pairs using 50 binaural test mixtures.

Figure 7.18 shows the STOI scores computed for the left channel of

the original mixture and for the outputs from ratio masks ERMVR7-2 and

ERMVR7-3, trained using training strategies TSVR7-2 and TSVR7-3, re-

spectively. These were evaluated by treating the reverberant target speech

as the desired segregated target.

The original mixtures display STOI scores of between 0.55 and 0.65 with

a mean value of 0.5963 and a standard deviation of 0.0264. ERMVR7-2

and ERMVR7-3 both improve the speech intelligibility. The improvement

achieved by mask ERMVR7-2 is greatest. It yields a STOI score with a mean

value of 0.7710 and a standard deviation of 0.0165. The minimum STOI score

for ERMVR7-2 is approximately 0.73 and the maximum is approximately 0.8.

ERMVR7-3 performs less well than ERMVR7-2 (mean STOI value is 0.7580),

especially for the unmatched interferer direction pairs. Hence, the STOI score

surface in the 3D plot of figure 7.18 (c) is not as flat as its counterpart in

figure 7.18 (b). This is reflected in the standard deviation value of 0.0193

which is greater than in the value for ERMVR7-2. Nevertheless, there is still

more than a 10% improvement in the STOI scores for all the test interferer

direction pairs using ERMVR7-3.

To compare the performance of the two masks more closely, the STOI

scores for interferer direction pairs along the symmetric and antisymmetric

diagonals are shown in figure 7.19.

Figure 7.19 (a) shows the STOI scores for all symmetric interferer direc-

tion pairs. It can be seen that when interferers are close to the target, the
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Figure 7.18: STOI scores for the unprocessed mixtures and for the outputs
from the two mask estimators, ERMVR7-2 and ERMVR7-3, for all

direction pair combinations in the three-source reverberant configuration.
The mixtures are 0 dB local SNR before spatialisation. The target is

located at 0◦ azimuth and the two interferers are placed at −90◦ to 0◦ and
0◦ to 90◦ azimuth, respectively, with 15◦ steps. (a) The STOI scores for the
unprocessed mixture. The mean value is 0.5963 and standard deviation is
0.0264. (b) The STOI scores for ERMVR7-2, trained using TSVR7-2. The
mean value is 0.7710 and standard deviation is 0.0165. (c) The STOI scores
for ERMVR7-3, trained using TSVR7-3. The mean value is 0.7580 and

standard deviation is 0.0193.
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Figure 7.19: STOI scores for the unprocessed mixture with 0 dB local SNR
before spatialisation and the masks ERMVR7-2 and ERMVR7-3 in the

three-source reverberant configuration for the test cases (a) on the
symmetric diagonal and (b) on the antisymmetric diagonal (where sources

are 105◦ apart).

improvement in the STOI score for both estimators is less than when both in-

terferers are further away. The improvements are 11% and 20% at [−15, 15]

and [−90, 90], respectively, for ERMVR7-2. For ERMVR7-3, the interferer

direction pair test cases in figure 7.19 (a) consist of both matched and un-

matched cases. The STOI score from both systems are very similar, while

there is about a 3% difference at [−30, 30] and [−60, 60], which are matched

direction pair cases for ERMVR7-2, but unmatched cases for ERMVR7-3.

The third unmatched case, [−90, 90], for ERMVR7-3 produces a STOI score

1% lower than the corresponding case for ERMVR7-2.

Figure 7.19 (b) shows the STOI performance on the antisymmetric di-

227



agonal, where the interferer pairs are always separated by 105◦. On this

diagonal, all the test cases for both ERMVR7-2 and ERMVR7-3 are semi-

matched. However, ERMVR7-2 performs slightly better than ERMVR7-3,

because both of the interferer direction pairs in the test cases are used to

train system VR7-2 and only one of the pair is used train ERMVR7-3. As a

consequence of this difference in training, there is a drop in STOI score for

ERMVR7-3, which is a maximum of approximately 2.5% for the interferer

direction pairs [−60, 45] and [−30, 75].
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Figure 7.20: STOI scores for the unprocessed mixture with 5 dB local SNR
before spatialisation and the mask estimators ERMVR7-2 and ERMVR7-3
in the three-source reverberant configuration for the test cases (a) on the
symmetric diagonal and (b) on the antisymmetric diagonal (where sources

are 105◦ apart).

Since both mask estimators are trained on a single SNR condition (0 dB),

it is once again interesting to examine their ability to generalise under dif-
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Figure 7.21: STOI scores for the unprocessed mixture with -5 dB local SNR
before spatialisation and the mask estimators ERMVR7-2 and ERMVR7-3
in the three-source reverberant configuration for the test cases (a) on the
symmetric diagonal and (b) on the antisymmetric diagonal (where sources

are 105◦ apart).

ferent SNR conditions. Specifically, we test the systems using reverberant

binaural input mixtures with local SNRs of 5 dB and -5 dB where, as usual,

the SNR is measured before spatialisation. The STOI score surface plots

for all 36 test cases may be viewed in figures A.5 and A.6 in Appendix A.

We focus here on the detailed results on the symmetric and antisymmetric

diagonals, shown for the 5 dB SNR and -5 dB SNR situations in figures 7.20

and 7.21, respectively.

For ERMVR7-2 in figure 7.20 there is an average improvement in STOI

score of 10%. When one or both interferers are close to the target source,

however, the improvement decreases to 7%. The maximum improvement
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in terms of STOI score is 12% for the 5 dB SNR condition. These gains

are universally smaller than those at the lower SNR of 0 dB. ERMVR7-3

performs as well as ERMVR7-2 for the matched cases, while it is approxi-

mately 2% worse than ERMVR7-2 for the unmatched cases and less than

2% for the semi-matched cases. A similar trend can be observed in the -5 dB

SNR test condition, shown in figure 7.21. ERMVR7-2 improves the STOI

score from approximately 0.45 up to 0.63, averaging an 18% improvement in

the reverberant condition. The performance gap between ERMVR7-2 and

ERMVR7-3 is approximately 4% for unmatched cases and less than 4% for

semi-matched cases.
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7.2.4 Target speech segregation PESQ performance

In this section we analyse the impact of ratio masks ERMVR7-2 and ERMVR7-

3 on target speech quality in reverberation. The PESQ score for the unpro-

cessed mixtures and after applying both masks are compared in figure 7.22.

The unprocessed (reverberant) interferer direction pairs have a PESQ score

of around 2 and the standard deviation is 0.0719. For the processed signals

from both estimators the PESQ scores are lifted above 2.5 in most cases.

Following a similar pattern to previous results (figure 7.18), at the two edges

where there is one interferer close to the target, the PESQ scores are less

than this. For ERMVR7-3, the performance is not as good as ERMVR7-2

for some test cases.

A more detailed analysis of the PESQ scores is again considered for the

symmetric diagonal (figure 7.23 (a)) and the antisymmetric diagonal (figure

7.23 (b)). For ERMVR7-2, the test interferer direction pairs are all matched

and the results follow a similar pattern to the STOI scores. When inter-

ferers are close to the target, the PESQ score improves less than when the

separation between the interferers and the target is greater. The improve-

ments are 0.3 (6%) and 0.5 (10%) at [−15, 15] and [−90, 90], respectively.

For ERMVR7-3, the PESQ performance is 0.1 (2%) and 0.05 (1%) worse

than ERMVR7-2 in the unmatched direction pairs, [−30, 30] and [−90, 90],

respectively. For the matched cases, both masks improve the PESQ score by

similar amounts.

Figure 7.23 (b) shows the PESQ scores along the antisymmetric diago-

nal. Again, all the test cases along this diagonal are semi-matched for both

ERMVR7-2 and ERMVR7-3, but only alternate direction pairs are used to

train ERMVR7-3. However, both of the interferer directions in the test cases

have been used to train the ERMVR7-2, while only one of the interferer direc-

tions is used train the ERMVR7-3, with the result that ERMVR7-2 performs

better than ERMVR7-3. The two greatest PESQ score differences are ap-

proximately 0.12 (2.3%) and 0.1 (2%) in for the interferer direction pairs
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Figure 7.22: PESQ scores for the unprocessed mixtures and for the outputs
from the two masks, ERMVR7-2 and ERMVR7-3, for all direction pair

combinations in the three-source reverberant configuration. The mixtures
are 0 dB local SNR before spatialisation. The target is located at 0◦

azimuth and the two interferers are placed at −90◦ to 0◦ and 0◦ to 90◦

azimuth, respectively, with 15◦ steps. (a) The STOI score of the original
mixture. The mean value is 2.0386 and standard deviation is 0.0719. (b)
The STOI score for mask ERMVR7-2, trained using TSVR-2. The mean
value is 2.5408 and standard deviation is 0.0687. (c) The STOI score for
mask ERMVR7-3, trained using TSVR-3. The mean value is 2.4808 and

standard deviation is 0.0618.
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Figure 7.23: PESQ scores for the unprocessed mixture with 0 dB local SNR
before spatialisation and masks ERMVR7-2 and ERMVR7-3 in the
three-source reverberant configuration for the test cases (a) on the

symmetric diagonal and (b) on the antisymmetric diagonal (where sources
are 105◦ apart).

[−60, 45] and [−30, 75].

In a similar manner to the STOI analysis , we test the PESQ perfor-

mance of the masks for mixture local SNRs 5 dB above and 5 dB below the

0 dB level at which they were trained, where the SNR is measured before

spatialisation. The surface plot of the PESQ scores for all 36 test cases is

available in figures A.7 and A.8 in Appendix A. The detailed results along

the two diagonals are shown in figures 7.24 and 7.25, respectively. In a sim-

ilar trend to that seen previously, there is an approximately 0.5 (10%) and

0.6 (12%) PESQ score improvement for ERMVR7-2 in the 5 dB and -5 dB

SNR conditions, respectively. For ERMVR7-3 the PESQ score improvement
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Figure 7.24: PESQ scores for the unprocessed mixture with 5 dB local SNR
before spatialisation and masks ERMVR7-2 and ERMVR7-3 in the
three-source reverberant configuration for the test cases (a) on the

symmetric diagonal and (b) on the antisymmetric diagonal (where sources
are 105◦ apart).

compared to ERMVR7-2 for matched test cases is very similar. ERMVR7-3

scores are approximately 0.1 (2%) lower than those for ERMVR7-2, where the

interferer direction pairs for system VR7-3 are semi-matched and matched

for ERMVR7-2. The difference between the matched and unmatched cases

is slightly greater than 0.1 (2%).
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Figure 7.25: PESQ scores for the unprocessed mixture with -5 dB local
SNR before spatialisation and masks ERMVR7-2 and ERMVR7-3 in the

three-source reverberant configuration for the test cases (a) on the
symmetric diagonal and (b) on the antisymmetric diagonal (where sources

are 105◦ apart).
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7.3 Summary

The pilot study presented in Chapter 6 shows that an ideal ratio mask outper-

forms a binary mask in terms of its STOI (speech intelligibility) and PESQ

(speech quality) scores. However, those systems use two interferer sources

whose directions are restricted to −30◦ and 30◦ azimuth, respectively. In

this chapter we have demonstrated that it is possible to relax these con-

straints on interferer direction with very little impact on mask performance.

System F7 (with seven input types: IPD, ∆IPD, ILD, ∆ILD, magnitude, in-

teraural coherence and cross-correlation coefficients) was retrained to handle

two interfering sources with varying directions in anechoic conditions. Three

different training strategies were used in this variable direction scenario to

produce systems V7-1, V7-2 and V7-3. By analysing the relative importance

of each type of cue, we found that the importance of cross-correlation coef-

ficients increases when the interferers are allowed to move, compared with

the fixed direction scenario. This supports the notion that the 27 cross-

correlation coefficients contain important directional cues which can be used

by the ANN and are still useful in the reverberant condition.

Evaluating the performance of the three ratio mask estimators shows that

there is an improvement in the intelligibility and in the quality of a target

speech source segregated from a mixture of two directionally distinct and vari-

able interfering speech sources. V7-1, trained using strategy TSV7-1, which

covers all the tested interferer directions, produced the highest performance

in terms of both intelligibility and quality.

System V7-2 was trained using strategy TSV7-2, for which interferer di-

rection pairs always had lateral symmetry (i.e. the two sources had equal

positive and negative azimuth angles, respectively). This restricted the num-

ber of distinct interferer direction pairs presented during training to only

nine of the 81 combinations ultimately tested in the anechoic condition. The

purpose of this restriction was to reduce the training data size compared

with the training set in which all the interferer directions are exhaustively

236



covered. An additional benefit is that this reduces the ANN training time

without excessively compromising ratio mask performance. It also allows us

to reduce the size of the training data and to reduce the number of hidden

neurons in the ANN from 50 down to 35.

We find that system V7-2 performs as well as the fully trained system,

V7-1, for all interferer direction pairs seen during training (matched test

cases) and where only one of the two interferer directions had been presented

during training (semi-matched test cases). This result indicates that the sys-

tem V7-2 has the ability to generalise and appropriately handle the partially

unseen interferer direction combinations in semi-matched cases.

A third training strategy, TSV7-3, produced system V7-3. This system

was trained using half the training data used in strategy TSV7-2. The perfor-

mance gap between V7-1 and V7-3 shows, however, that this further reduc-

tion in training data leads to defective performance of V7-3 for unmatched

test cases, i.e. where neither interferer direction in a training pair has been

presented during training.

Estimators trained in the 0 dB SNR condition also have the ability to

generalise to SNR conditions 5 dB above and below this level. The fully

trained system ERMV7-1 improves intelligibility by approximately 11.8%,

18.6% and 24.3% for the 5 dB, 0 dB and -5 dB SNR conditions. The speech

quality using the PESQ metric is also improved by more than 0.9 (18%) in

all the tested cases.

Due to the advantage of the training strategy TSV7-2 when applied in

anechoic conditions, we further retrained system V7-2 using training strategy

TSVR7-2, which adds reverberation to the binaural mixture.

The relative importance of each type of cue was again measured, this

time in these reverberant conditions. Results show that the importance of

interaural coherence increases for frequencies above 2.2 kHz compared with

anechoic conditions. This provides confirmation that interaural coherence
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contributes to the ratio mask estimation process and also indicates the range

of the spectrum over which it chiefly operates. Moreover, the introduction

of reverberation leads to a greater reduction in the relative importance of

IPD compared with ILD. The mechanisms behind this finding are worthy of

further investigation.

The results in this chapter indicate that there is potential for successful

source segregation by these ANN-based mask estimators in reverberation.

The results show that system VR7-2 improves the STOI score for a binaural

input mixture by 11.5%, 17.5% and 20.1% for 5 dB, 0 dB and -5 dB SNR

conditions, respectively. Compared with similar scenarios in anechoic condi-

tions, the improvement is smaller due to the additional segregation challenges

caused by reverberation. Reverberation also reduces mask performance in

terms of speech quality. System VR7-2 improves the PESQ score compared

with the input mixture by 0.46 (9%), 0.5 (10%) and 0.55 (11%) at 5 dB, 0 dB

and -5 dB condition, respectively.

In general, we have demonstrated that the optimal cue mapping (OCM)

approach in binaural signal processing can reveal and allow us to probe the

relative importance of different cues when tackling the general problem of

speech segregation. We have shown that it improves the intelligibility and

quality of a target speech source in specific simulated acoustic conditions.

In the next chapter we investigate the performance of the OCM approach

further. In particular, we directly compare its ability to estimate binary and

ratio masks with a leading alternative method based on state-of-the-art deep

neural networks.
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Chapter 8

A Comparative Evaluation of

OCM

In this chapter, the performance of the optimal cue mapping (OCM) algo-

rithm is compared with one of the latest representative neural network-based

binaural segregation methods.

In December 2014 Jiang and Wang described a deep neural network

(DNN)-based classification algorithm which performs binaural segregation

in multi-source anechoic and reverberant environments (Jiang et al., 2014).

The system employs a set of DNNs as a binary classifier. Each DNN corre-

sponds to one particular frequency band. Binaural features such as ITD and

ILD, and monaurally extracted gammatone frequency cepstral coefficients

(GFCCs), are used to train the DNNs. The trained DNNs yield the binary

decision for switching on or off each T-F unit in a binary mask for extract-

ing the target speech from a binaural mixture. For ease of reference, we

denote the DNN classification approach in Jiang et al. (2014) as the CLAS

algorithm.

Jiang et al. (2014) compared their algorithm with the following four bin-

aural separation algorithms:
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TARG algorithm

Roman et al. (2006) proposed a binaural segregation method in multi- source

reverberant environments by utilising the location information of the target

source only. The first step is to perform target cancellation through adaptive

filtering. Based on the observation that there is a correlation between the

amount of cancellation and the relative strength of target to mixture, a binary

decision is made to estimate the ideal binary mask (IBM). For convenience,

we label this target-based approach as the TARG algorithm.

DUET algorithm

DUET (the Degenerate Unmixing Estimation Technique) is a blind source

separation method which can, in principle, separate any number of sources

using only two microphones (Rickard, 2007). It assumes that the signals in

the time-frequency domain are sparse and exhibit W-disjoint orthogonality.

Each source is segregated using a binary mask.

STATE algorithm

Woodruff (2013) proposed a binaural segregation approach which is based

on pitch and azimuth cues. He formulates the IBM estimation as a multi-

source state space searching across time. Each multi-source state encodes the

number of active sources and the azimuth and the pitch of each active source.

A set of multilayer perceptrons are trained to assign the time-frequency units

to one active source in each multi-source state. A hidden Markov model

framework is used to estimate the most probable path through the state space.

Then segregation is achieved with an azimuth-based sequential organisation

stage. For ease of reference, we label this state-space approach as the STATE

algorithm.
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MESSL algorithm

Mandel et al. (2010a) describe the Model-based Expectation Maximisation

Source Separation and Localisation (MESSL) method for separating multiple

sound sources by clustering for source localisation. Based on the interaural

phase and level difference of each time-frequency unit, a probabilistic mask

is estimated by computing the maximum-likelihood parameters from the ex-

pectation maximisation algorithm. Note: Jiang et al. (2014) quantise the

MESSL output into a binary mask with a threshold of 0.5 in their compari-

son.

Even in low SNR test conditions and strong reverberation, the results ob-

tained by Jiang et al. indicate that the joint binaural and monaural features

they employed enable their DNN-based segregation algorithm to outperform

the four representative binaural separation algorithms which have been sum-

marised above. In addition, theirs was the first approach to apply DNNs

for binaural segregation. The DNN-based algorithm is similar to our OCM

method in that both are based on supervised machine learning techniques to

estimate the T-F mask for a target source in adverse acoustic environments.

Since Jiang et al. (2014) have shown their DNN-based approach to be

superior to several other competing segregation methods it is of great interest

to compare it to our approach. In this chapter we first describe and validate

our implementation of the DNN-based method. We then go on to compare

the performance of the two algorithms in a variety of simulated, increasingly

challenging acoustic environments.

8.1 DNN model verification

Before comparing our OCM approach with the CLAS algorithm, we first

describe the CLAS algorithm and then verify that our implementation of it

produces results in line with those reported by Jiang et al. (2014). Because
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the CLAS algorithm generally outperforms the TARG, DUET, STATE and

MESSL algorithms, we compare the performance of our OCM algorithm

with that of the CLAS algorithm and we do not present results for the other

algorithms.

8.1.1 Description of the CLAS algorithm

The binaural segregation problem is considered by Jiang et al. (2014) as a

classification task in their DNN-based approach. For signal decomposition,

they firstly use a 64-channel fourth-order order gammatone filterbank for

auditory peripheral processing. The filtered signal is then half-wave rectified

to simulate the auditory nerve. Finally, each channel is divided into 20ms

frames with 50% overlap. The resulting time-frequency (T-F) representation

of the signal is known as a cochleagram. Based on left and right channel T-F

units, they extract the ILD in each 20ms frame. They further break down

each 20ms frame into two 10ms time durations. In this way they obtain

extra two-dimensional (2D) ILD features. For the estimation of ITD, they

calculate a 32-coefficient normalised cross-correlation function (CCF). The

ITD is derived from this as the lag corresponding to the maximum in the CCF.

For comparison reasons, they additionally employ all 32 CCF coefficients to

determine the time delay between the two ears. Besides utilising binaural

features, Jiang et al. (2014) also extract monaural features. Specifically, they

calculate 36 gammatone frequency cepstral coefficients (GFCCs). One DNN

is trained for each frequency subband using all of the above features, resulting

in 64 DNNs in total. Each subband DNN consists of two hidden layers with

200 hidden neurons in each layer.

Jiang et al. (2014) use the HIT-FA evaluation criterion to assess the

classification accuracy of their CLAS algorithm. HIT-FA is the difference

between the percent of correctly labelled target-dominant T-F units (HIT

rate) and the percent of incorrectly estimated interference-dominant T-F

units (FA or false-alarm rate). The HIT-FA scores for the CLAS algorithm

242



are compared under three different binaural feature conditions and within

each of these for three different reverberation times. The results for the CLAS

algorithm are shown in figure 8.1. The figure shows that the performance of

the system with 34D (32 CCF coefficients and 2 ILDs) features yields the best

HIT-FA score compared to the other two systems, although the performance

of all three systems decreases as the reverberation time increases. The 32D

CCFs feature provides more detailed information about relative time delays

between the left and the right channels compared with only one ITD and

improves the HIT-FA score. Furthermore, using the two-ILD vector results

in slightly better scores than using only one such feature. Therefore, the

binaural features they adopted for their subsequent studies included 32 CCFs

and 2 ILDs, giving a feature vector comprising 34 inputs.
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Figure 8.1: HIT-FA scores for the two-source setup used by Jiang et al.
(2014) for the trained azimuths using a 0 dB SNR input mixture with target
and interference located at 0◦ and −45◦ azimuth, respectively. Figure is

redrawn from Jiang et al. (2014).

Jiang et al. (2014) next integrated monaural feature GFCCs in an attempt

to improve the classification performance further. The combination of 34D

binaural feature input data with 36D GFCC feature input data results in a

70D feature vector input for the DNNs. Figure 8.2 shows the comparisons

between DNNs with and without GFCC inputs in anechoic conditions, where

the interference azimuth is in the range of −180◦ to 180◦ in 10◦ steps. They

achieved 1% better performance by using GFCC features at most azimuths.

243



However, the performance improved by 10% with the help of the GFCC

feature data at 0◦ and 180◦ , which are in front and behind the head.
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Figure 8.2: HIT-FA scores for two-source anechoic setup at 0 dB SNR with
target at 0◦ and interference located at all azimuths in 10◦ steps. Figure

redrawn from Jiang et al. (2014).

Because of the superior performance of their system with the 70D feature

set, we reproduced this DNN-based binaural segregation algorithm with the

demonstration code provided by the authors. In order to implement it ac-

curately, we train the DNNs using exactly the procedure described by Jiang

et al. (2014), and also confirmed the implementation with the first author.

8.1.2 Initial validation of our CLAS algorithm imple-

mentation

In this section we describe two small validation experiments which we imple-

ment to confirm that our replication of the DNN approach by Jiang et al.

(2014) produces results in line with their reported findings. The system is

tested with 50 sentences randomly picked from the TIMIT database and

spatialised at each azimuth angle. It is important to note that the exact

training and test data used by Jiang et al. (2014) is not available, nor are

there sufficiently detailed records of the data they used to be able to recreate

it exactly. Although our training and test data are drawn from the same

database, the training and test sentence lists will not be the same, leading

to minor differences in the detailed properties of our training and test data
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Figure 8.3: Verification of reproduced DNN-based algorithm for the
two-source anechoic setup using the 70-feature input at 0 dB SNR. The

target is at 0◦ azimuth and the interferer is stepped in 10◦ intervals around
the virtual listener.

compared with the data created and used by Jiang et al. (2014). Therefore,

small differences can be expected between the results originally obtained by

Jiang et al. (2014) and the results we obtain from our replication of their

CLAS algorithm.

Firstly, we evaluate the performance of the replicated CLAS algorithm for

a two-source setup in anechoic conditions. The results are presented in figure

8.3. The azimuth angle −180◦ and 0◦ in our axis system is equivalent to 0◦

and 180◦ in their axis system. At these two azimuth angles, the HIT-FA score

is above 40%. For the other azimuth angles, the performance always exceeds

80% and is generally very close to 90%. Compared to the results shown in

figure 8.2, the reproduced DNN algorithm achieves a similar performance.

We also validate the performance of the replicated CLAS system in re-

verberant conditions, using the same binaural room impulse responses as

Jiang et al. (2014), specifically the ROOMSIM package by Campbell et al.

(2005). The reverberation time constant (T60) is 300 ms. During training,

we place the target at an azimuth of 0◦ and vary the direction of the inter-

ference over the full 360◦ range around the virtual listener (between −180◦

and 180◦), in 10◦ intervals. The system is tested with interference spaced at
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5◦ intervals over the full 360◦ range. Therefore, the system is tested using

interference both in trained azimuth directions and in untrained directions.

At each azimuth angle, 50 test sentences are used.

-150 -100 -50 0 50 100 150
Azimuth (Degree)

0

20

40

60

80

100

H
IT

-F
A

 (
%

)

Trained azimuth
Untrained azimuth

Figure 8.4: Performance of two-source reverberation setup at trained and
untrained azimuths with reverberation and using input mixtures with 0 dB

SNR. Figure redrawn from Jiang et al. (2014).
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Figure 8.5: Verification of reproduced DNN-based algorithm for the
two-source reverberation setup at trained and untrained azimuths with

reverberation and using input mixtures with 0 dB SNR.

The original results reported in Jiang et al. (2014) are shown in figure 8.4

and the replicated results are shown in figure 8.5. Again, the azimuth angles

presented in figure 8.4 are defined differently from those used in figure 8.5.

For example, azimuth angle 180◦ used by Jiang et al. (2014) in figure 8.4 lies

directly in front of the listener, which is 0◦ in our coordinate system in figure

8.5. By comparing the two figures, it can be seen that the replicated DNNs

output HIT-FA scores of approximately 70% for most interference directions
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are approximately 3-5% higher than the reported results in Jiang et al. (2014).

When the interference lies directly in front of the head (i.e., in the same

direction as the target speech), both implementations produce approximately

the same HIT-FA scores of around 45%. As mentioned above, precise details

of the training and test data used by Jiang et al. (2014) were unavailable and

we therefore emulated the training and test data as closely as possible from

the information which was available, such as using the same BRIRs and the

TIMIT database. It is likely that small differences between the properties of

these two sets of data are the cause of the small but consistent performance

differences observed between figures 8.2 and 8.3, and also between figures 8.4

and 8.5 in terms of their HIT-FA scores.

Having confirmed visually and by using HIT-FA scores that our implemen-

tation of the algorithm by Jiang et al. (2014) closely matches their reported

results, we continue with a more thorough comparison of the CLAS and OCM

approaches under a variety of simulated acoustic conditions.

8.2 Universally applied configuration details

In order to achieve a fair comparison of the CLAS and OCM methods, we

apply the same configurations to both training and testing setups. For con-

venience, we use the configurations which have been previously reported by

Jiang et al. (2014).

In all the training processes described in this chapter, only multiples of

10◦ in azimuth are used. The sources of all the audio material used here are

the same as described in Jiang et al. (2014). Specifically, the training and test

sentences are randomly selected from the training and test set of the TIMIT

corpus (John et al., 1993). The interference is speech babble obtained from

the NOISEX corpus (Varga and Steeneken, 1993). The corpus is of about 4

minutes’ duration and is divided into two parts. The first part, of duration

106 s, is used in the training phase, and the other part, of duration 128 s, is
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used in the testing phase. The data were provided by Jiang et al. (2014). For

each configuration, we generate 500 different binaural mixtures to train the

DNN algorithm, which is the same number used by Jiang et al. (2014). All

the training mixtures have 0 dB global SNR, as measured in the left channel.

Each test case consists of 50 test sentences.

As explained in section 8.1.1, Jiang et al. (2014) use a feature space

comprising 70 inputs for training the DNNs. The inputs are composed of 32

normalised cross-correlation function coefficients (CCF) for each pair of T-F

units, two ILD features which are measured every 10ms in 20ms duration,

and 36 monaural GFCC features. They found that this combination achieved

the best performance. Therefore, we inherit this setup to train the replicated

DNNs.

Each subband DNN consists of an input layer with 70 neurons, two hidden

layers with 200 binary neurons in each layer and an output layer with only

one neuron with a binary label. Hence, the DNN is used to estimate the

ideal binary mask. DNN training follows exactly the same process described

in Jiang et al. (2014).

In the evaluation phase, we randomly choose 50 sentences from the TIMIT

database to compare the two systems for each test case. For the comparison

we generate STOI and PESQ scores. We adopt the clean-target-modulated

SER metric to measure the similarity between the estimated target signal

and the original clean target signal. The SER metric is defined as:

SER = 10 · log 10

∑
t

sI(t)
2∑

t

(sI(t)− sE(t))2
(8.1)

where sI and sE denote the ideal clean target signal and the signal resynthe-

sized from the estimated binary mask or estimated ratio mask, respectively.

Note, in order to be consistent with the test conditions in Jiang et al.

(2014), all the test SNRs in this chapter are measured in the left channel
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Table 8.1: System definitions and training details for each group of
comparisons. Part A.

Interferer configuration BRIR Algorithm System Mask set

Ideal
IBM
IRM

2-source BRIR-A
OCM O2-A

EBMO2-A
one interferer ERMO2-A

10◦ step Anechoic CLAS C2-A EBMC2-A

3-source BRIR-A
OCM O3-A

EBMO3-A
one interferer on ERMO3-A

either side 10◦ step Anechoic CLAS C3-A EBMC3-A

5-source BRIR-A
OCM O5-A

EBMO5-A
one interferer in ERMO5-A

each quadrant 10◦ step Anechoic CLAS C5-A EBMC5-A

2-source BRIR
OCM O2-S300

EBMO2-S300
one interferer S300 ERMO2-S300

10◦ step simulated CLAS C2-S300 EBMC2-S300

2-source BRIR
OCM O2-S700

EBMO2-S700
one interferer S700 ERMO2-S700

10◦ step simulated CLAS C2-S700 EBMC2-S700

3-source BRIR
OCM O3-S300

EBMO3-S300
one interferer on S300 ERMO3-S300

either side 10◦ step simulated CLAS C3-S300 EBMC3-S300

3-source BRIR
OCM O3-S700

EBMO3-S700
one interferer on S700 ERMO3-S700

either side 10◦ step simulated CLAS C3-S700 EBMC3-S700

5-source BRIR
OCM O5-S300

EBMO5-S300
one interferer in S300 ERMO5-S300

each quadrant 10◦ step simulated CLAS C5-S300 EBMC5-S300

5-source BRIR
OCM O5-S700

EBMO5-S700
one interferer in S700 ERMO5-S700

each quadrant 10◦ step simulated CLAS C5-S700 EBMC5-S700
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Table 8.2: System definitions and training details for each group of
comparisons. Part B.

Interferer configuration BRIR Algorithm System Mask set

2-source BRIR
OCM O2-R320

EBMO2-R320
one interferer R320 ERMO2-R320

10◦ step Room A CLAS C2-R320 EBMC2-R320

2-source BRIR
OCM O2-R470

EBMO2-R470
one interferer R470 ERMO2-R470

10◦ step Room B CLAS C2-R470 EBMC2-R470

2-source BRIR
OCM O2-R680

EBMO2-R680
one interferer R680 ERMO2-R680

10◦ step Room C CLAS C2-R680 EBMC2-R680

2-source BRIR
OCM O2-R890

EBMO2-R890
one interferer R890 ERMO2-R890

10◦ step Room D CLAS C2-R890 EBMC2-R890

after spatialisation. The rigorous comparison of the OCM and CLAS sys-

tems involves 13 training configurations and generating 41 masks. These are

summarised in tables 8.1 and 8.2. The labels in the table will be referred to

frequently in subsequent sections.

8.3 Comparison in anechoic configuration

The anechoic BRIR, BRIR-A, is employed as a baseline in this evaluation. In

the training process for all simulated BRIRs, two-source configurations, the

target talker is located at 0◦ and the location of the interference is systemati-

cally varied in 36 steps from −180◦ to 170◦ in 10◦ steps. Training follows the

process described in section 8.2 to produce the two-source, anechoic, OCM

and CLAS systems, O2-A and C2-A, respectively.

250



8.3.1 Preliminary comparison for one test condition
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Figure 8.6: Ideal and estimated masks for systems O2-A and C2-A in the
two-source configuration using input mixtures at 0 dB SNR with target

speech at 0◦ and interferer at −45◦ azimuth.

With the target speech always located at an azimuth of 0◦ in the horizon-

tal plane, we begin by analysing the performance of O2-A and C2-A for a

single speech interferer at an azimuth of −45◦. When comparing the two sys-

tems, it is important to keep in mind that the CLAS method creates a binary

mask estimate only (EBMC2-A), whereas the OCM method produces both a

binary and a ratio mask estimate (EBMO2-A and ERMO2-A, respectively).

As an informal visual indication of the relative performance of the two

systems, figure 8.6 compares the ideal binary mask, IBM2 with the estimated

ideal binary mask, EBMC2-A for system C2-A and the estimated binary and
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Figure 8.7: Cochleagrams for mixture and the segregated signals for
two-source configuration at 0 dB SNR with target speech at 0◦ and

interferer at −45◦.

ratio masks, EBMO2-A and ERMO2-A, respectively, for system O2-A. The

figure shows the masks for one of the 50 test sentences.

Note that because the single speech interferer is at −45◦ azimuth, this is

an unmatched test case, i.e. this interferer angle has not been seen by the

systems during their training phases. The visual impression from figure 8.6

is that all the estimated masks closely match their ideal mask counterparts.

More spectral detail is observable in the masks relating to system O2-

A due to the finer frequency resolution afforded by the short-time Fourier

transform approach compared with the simulated auditory filterbank used in

system C2-A. The greater spectral detail, however, is unlikely to be percep-
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tually significant since, by definition, the auditory filterbank bandwidths are

designed to match the spectral resolution of the human hearing system.

Figure 8.7 shows cochleagrams for the original speech, the target and

interferer mixture, the clean target speech and the segregated target speech.

The cochleagrams of the estimated target speech are very similar for all three

estimates. However, an example of an observable difference has been circled

in red. In figures 8.7 (c) and (d), showing the results for the OCM method,

the detail inside the red circle matches the target source closely, whereas some

features are partially or completely missing in figure 8.7 (e) for the CLAS

system. Again, this is likely to be due to the use of an auditory filterbank

model in this system. The short-time Fourier transform approach used here

has a finer frequency resolution than the auditory filterbank model and so

preserves more spectral detail.

Figure 8.8 (a), (c) and (e) show waveforms of the segregated target speech

in the time domain and the output clean-target-modulated SER for each of

the three estimated masks, EBMC2-A, EBMO2-A and ERMO2-A, respec-

tively. Although all the estimated waveforms appear very similar after cor-

rection of the processing delay, the residual errors for the OCM method

(figures 8.8 (d) and (f)) are slightly superior to that of the CLAS method

(figure 8.8 (b)) in terms of their SERs. The error signal level using mask

EBMO2-A is 0.19 dB smaller than that produced by mask EBMC2-A using

the approach by Jiang et al. (2014). There is a further improvement of 1.39

dB in terms of SER using the OCM ratio mask ERMO2-A.

In this typical example, both the OCM and CLAS algorithms visually do

a good job of estimating masks for segregating the target speech. There are

only small differences between the ideal and estimated masks in each case.

The clean-target-modulated SERs indicate that the optimal cue mapping

binary mask performs slightly better than the CLAS system and that the

OCM ratio mask performs better still. In the next section, the comparison

between the two approaches is put on a more rigorous footing.
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Figure 8.8: Segregated target waveforms for the two-source configuration at
0 dB SNR with interference at −45◦ produced by masks EBMC2-A,
EBMO2-A and ERMO2-A in (a), (c) and (e), respectively. The

corresponding target waveform estimation errors are shown in (b), (d) and
(f), respectively.

8.3.2 Detailed comparison of two-source configurations

We extend our analysis of systems O2-A and C2-A to include the full set

of interferer directions and evaluate their STOI intelligibility scores, PESQ

quality scores and signal-to-error ratios (SERs). We determine and compare

the performance of the two systems to create a baseline performance in all

subsequent test configurations. The evaluation can be split into two parts,

the matched and unmatched cases. Training is carried out using a single

interferer at multiples of 10◦ azimuth. Therefore, azimuth angles between
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−170◦ and 180◦ in 10◦ steps belong to the matched case and the azimuth

angles between −175◦ and 175◦ in 10◦ steps are classified as the unmatched

case. This means that only half of the 72 interferer locations encircling the

virtual listener are used for training.

Figure 8.9: STOI scores for anechoic, two-source systems O2-A and C2-A
for interference locations in 5 degree steps using 0 dB input mixture SNR. ◦

and ∗ denote scores for the matched and unmatched case, respectively.

Figures 8.9 and 8.10 show the STOI and PESQ scores in both the matched

and the unmatched cases for all 72 directions in anechoic conditions. In

figure 8.9, the OCM system O2-A, producing the ratio mask ERMO2-A,

performs best. The STOI scores using the ratio mask system are above 0.85

for most interference azimuths and they are approximately 5% better than

those produced by the OCM estimated binary mask EBMO2-A. Furthermore,

compared with the CLAS-estimated binary mask, EBMC2-A, the OCM ratio

mask yields approximately 10% further improvement. Compared with the
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Figure 8.10: PESQ scores for anechoic, two-source systems O2-A and C2-A
for interference locations in 5 degree steps at 0 dB SNR mixture levels. ◦
and ∗ denote scores for the matched and unmatched case, respectively.

STOI score for the unprocessed mixture (UPM), applying the OCM ratio

mask, ERMO2-A, provides an improvement of almost 25%, from 0.62 up to

0.87 for most interferer directions. However, the scores obtained using both

binary masks (OCM and CLAS) fall below the original mixture score when

the interference is located in front or behind the listener at 0◦ or −180◦,

whereas the ratio mask score is similar to that of the original. The matched

cases yield similar STOI scores to their adjacent unmatched cases.

The relative scores for interference located to the left side of the virtual

listener are predominantly mirrored on the right. The small asymmetry is

because the test SNRs are measured in the left channel, causing the SNRs to

rise above the nominally defined level of 0 dB when the interferer is placed on

the left side and below 0 dB when the interferer is placed on the right side.
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Figure 8.10 shows the PESQ scores for both systems and the original

mixture. Again, the ratio mask, ERMO2-A, performs best out of the three

estimated masks, with its PESQ scores above 2.7 for most interference loca-

tions. The scores for the OCM estimated binary masks, EBMO2-A, drop to

approximately 2.5. Furthermore, the CLAS binary mask, EBMC2-A, yields

scores close to those of the original mixture, which is about 1.5. Overall, the

PESQ scores suggest that the OCM estimated binary and ratio masks both

generally improve target speech quality.

Figure 8.11: Output clean-target-modulated SER performance for anechoic,
two-source systems O2-A and C2-A for interference locations in 5 degree
steps at 0 dB SNR input mixture levels in anechoic condition. ◦ and ∗

denote scores for the matched and unmatched case, respectively.

To assess the numerical similarity of the segregated target signal to its

original clean form, figure 8.11 shows the clean-target modulated SER output

results. The OCM ratio mask’s superior performance is clearly demonstrated,

with an SER close to 9 dB for most interferer directions, which is over 1 dB
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greater than the estimated binary mask performance of the OCM system.

The CLAS systems’s estimated binary mask, EBMC2-A, performs similarly

for interferers on the left side, but up to 0.6 dB better than EBMO2-A on

the right. These results lend support to the statement that improvements in

SER do not necessarily correlate with either speech intelligibility or speech

quality improvements, since the OCM binary masks outperform the CLAS

binary masks in both these aspects.

8.3.3 Detailed comparison with multiple interferers

We next extend our evaluation to OCM and CLAS-based systems in three-

source and five-source configurations. We again use the same interferer config-

urations and training procedures used by Jiang et al. (2014). O3-A and C3-A

are the trained three-source OCM and CLAS systems, respectively. During

training, one noise source is always randomly chosen on the left side of the vir-

tual listener and the direction of the other source is randomly chosen on the

right side. For the five-source configuration systems, O-A5 and C-A5, train-

ing proceeds with the four interferers in randomly selected directions, each

within a different quadrant so that, once again, the entire horizontal plane

is covered. In initial testing of the three-source configuration, two interferers

are placed at −45◦ and 45◦ azimuth and in the five-source test configuration,

four interferers are located symmetrically within each quadrant at azimuths

of −135◦, −45◦, 45◦ and 135◦, respectively.

The resulting test scores for STOI, PESQ and SER analyses are shown in

figure 8.12. As expected, there is a visible decline in scores for the 5-source

configuration compared with the 3-source one. However, the OCM ratio

masks, ERMO3-A and ERMO5-A, produce the best results in all test condi-

tions. The performance of the OCM estimated binary masks, EBMO3-A/5-A,

ranks second, followed by the CLAS masks EBMC3-A/5-A. The STOI score

for the three-source configuration OCM binary mask shows an improvement

of 6% over the original mixture, from 0.63 up to 0.69. The OCM ratio mask,
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ERMO3-A, produces a 10% STOI improvement. There is a 1% reduction

in STOI score using the CLAS binary mask, EBMC3-A. In the five-source

configuration, the STOI improvement is 8%, 11% and 5% for the estimated

masks EBMO5-A, ERMO5-A and EBMC5-A, respectively, with the OCM

approach again showing greatest improvement.

Figure 8.12: STOI, PESQ and output clean-target-modulated SER
performance for anechoic three-source and five-source configurations for
systems O3-A/O5-A and C3-A/C3-A for 0 dB SNR input mixture levels.

The resynthesised speech quality indicated by the PESQ score in figure

8.12 actually declines for the CLAS system. By contrast, the PESQ scores

for the OCM estimated ratio masks, ERMO3-A/5-A, improve by 0.7 in both

the three- and the five-source configurations, which is a rise of 14% compared

with the score for the original mixture.
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The clean-target-modulated SER indicates that the segregated target sig-

nal using the OCM ratio mask is closest to the original signal in terms of

signal power. The two binary masks create similar SERs in the three-source

configuration. In the five-source case, the OCM binary mask outperforms

the CLAS binary mask by about 0.5 dB.

8.3.4 System performance for different SNRs

Systems O2-A and C2-A are trained using signal-to-noise ratios (SNRs) nom-

inally set to 0 dB (see section 8.2). In this section we investigate how well the

masks trained under these conditions perform for two different SNRs: 5 dB

and -5 dB. Since the SNRs of the binaural mixture are measured in the left

channel, figure 8.14 shows the results for the left channel only. The speech

intelligibility of the target signal after source segregation is shown in figure

8.13 (a) and (b). In the 5 dB SNR test condition, the OCM ratio mask,

ERMO2-A, trained at 0 dB SNR, improves the STOI score for the original

mixture by approximately 20% for most interferer directions and performs

best out of the three masks. The OCM binary mask, EBMO2-A, performs

slightly (2%) better than the CLAS system binary mask, EBMC2-A. When

the interferer is close to the target signal, at -5◦ azimuth, the improvement is

limited and there is only an 8% increase in STOI score as a result of applying

the OCM ratio mask. In the -5 dB input SNR condition, the differences in

performance are magnified. There is approximately a 30%, 25% and 18%

improvement in the STOI scores for the masks ERMO2-A, EBMO2-A and

EBMC2-A, respectively. When the interferer lies at -5◦ azimuth, it is inter-

esting to note that the OCM binary mask improves the STOI score by 20%

and outperforms the score produced using the OCM ratio mask by 4%.

In terms of speech quality in the 5 dB SNR test condition, as shown in

figure 8.13 (c), the OCM ratio and binary masks improve the PESQ score for

the original mixture by approximately 1 (20%) and 0.8 (16%), respectively,

except when the interferer is located at -5◦ azimuth. The CLAS binary mask,
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Figure 8.13: STOI, PESQ and output clean-target-modulated SER
performance for the anechoic two-source configuration as a function of
interference location for 5 dB and -5 dB SNR input mixtures. ◦ and ∗

denote matched case and unmatched case, respectively. (a), (c) and (e) are
the results obtained using the 5 dB mixture. (b), (d) and (f) are the results

obtained using the -5 dB mixture.
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however, yields a similar PESQ score to that of the original mixture at this

SNR. In the -5 dB SNR test condition (figure 8.13 (d)), the improvement in

PESQ score is 1.3 (26%) and 1 (20%) for the OCM ratio and binary masks

for most interferer directions. Performance of the CLAS binary mask is worse

and it generally reduces speech quality compared with the PESQ score for

the original mixture.

The SER comparison between the segregated target signals and the ideal

clean target signals is shown in figure 8.13 (e) (the 5 dB SNR case) and (f)

(the -5 dB SNR case). The OCM ratio mask, ERMO-A2, performs best for

all interferer directions in both the 5 dB and -5 dB SNR conditions. The two

binary masks produce similar clean-target-modulated SERs.

8.3.5 Performance of three- and five-source configura-

tions under varying SNR

The three-source and five-source configurations described in section 8.3.3,

are trained using 0 dB binaural mixtures. In this section, the masks trained

using 0 dB SNR input mixtures are presented with input mixtures which

have SNRs of 5 and -5 dB. The test results are shown in figure 8.14. It can

be seen in figure 8.14 (a) that the set of OCM ratio masks, ERMO3-A, for

the three-source configurations have the highest mean STOI scores compared

with the two binary masks, EBMO3-A and EBMC3-A. In the 5 dB SNR test

condition, the OCM binary mask, EBMO3-A, performs worse than the CLAS

binary mask, EBMC3-A, in the three-source setup. The situation is more

straightforward for the 5 dB SNR three- and five-source setups (figure 8.14

(b)), where the performance of the OCM ratio mask, ERMO5-A, produces

the highest mean STOI for both the three- and five-source configurations and

the OCM binary mask is in second place for both source configurations.

Figures 8.14 (c) and (d) show the mean PESQ scores for the same test

conditions as the STOI analysis, above. The results for the OCM masks
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Figure 8.14: Mean STOI, PESQ and output clean-target-modulated SER
performance for anechoic three-source and five-source configurations for
different interferer directions at 5 dB and -5 dB input mixture SNRs. (a),
(c) and (e) are the STOI, PESQ and SER results, respectively, using 5 dB
input mixture SNR. (b), (d) and (f) are the corresponding results using

-5 dB input mixture SNR.

263



display a familiar pattern, with the ratio masks, ERMO3-A and ERMO5-A

producing the highest quality of segregated target speech. The OCM binary

mask also shows an improved mean PESQ score compared with the score for

the original binaural mixture. The CLAS binary mask produces segregated

target speech with a lower speech quality than the original mixture in all test

conditions.

The similarity between the segregated target speech and the clean target

speech in terms of their SER mean values is shown for the 5 dB input mixture

SNR test condition in figure 8.14 (e). Here, the ratio mask delivers the highest

mean, followed by the CLAS binary mask for both the three- and five-source

setups. For the -5 dB SER test condition, the OCM binary mask outperforms

the CLAS binary mask, which is a reversal in the trend and which was in

transition in the 0 dB SER case shown in figure 8.12 (c).
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8.4 Comparison in reverberant configuration

So far in this chapter, we have compared our optimal cue mapping (OCM) al-

gorithm with the DNN-based binary classification (CLAS) approach by Jiang

et al. (2014) in simulated anechoic conditions. The anechoic comparisons in-

volved two-source, three-source and five-source setups using 5 dB, 0 dB and

-5 dB SNR binaural test mixtures. In this section, we compare the OCM

and CLAS systems in increasingly realistic conditions which include rever-

beration. Conform to the analysis procedure presented in Jiang et al. (2014),

we use both simulated binaural room impulse responses (BRIRs) and BRIRs

measured in real rooms, using two, three and five sources and binaural input

mixtures with SNRs of 5 dB, 0 dB and -5 dB.

8.4.1 OCM and CLAS system performance in simu-

lated reverberation

We begin by analysing the target segregation performance of the OCM and

CLAS systems using two sets of simulated BRIRs. The simulated BRIRs, re-

ferred to as BRIR-S, are generated using the ROOMSIM package described

by Campbell et al. (2005). BRIR-S contains two sets of BRIRs, the reverber-

ation time (T60) of BRIR-S300 is 300ms and that of BRIR-S700 is 700ms.

The direct-to-reverberant ratio (DRR) of each BRIR is -1.97 dB and -7.74 dB

respectively.

With reference to figure 8.15, the reflection coefficients of all the surfaces

in the simulated room are uniform. The room is 6 meters long, 4 meters wide

and 3 meters high. The virtual listener is fixed in location, 2.5 meters from

two adjacent walls and 2 meters above floor level. 72 BRIR measurements

are simulated in the horizontal plane with an azimuth resolution of 5◦, which

thus describe a full 360◦ revolution around the virtual listener. As shown in

figure 8.15, all sound sources are located 1.5 meters away from the listener,
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Figure 8.15: The geometrical arrangement of the virtual room used to
simulate binaural room impulse response sets BRIR-S.

apart from the three sound sources at azimuth angles of −85◦, −90◦ and

−95◦ to the left of the listener and three more at 85◦, 90◦ and 95◦ to the

right. These six sources are constrained by the proximity of the walls and so

they are located only 1.4 meters from the listener. This matches the setup

used in Jiang et al. (2014). The virtual target talker is always located at

0◦ azimuth and during training the location of the interfering babble noise

source is spatialised at 36 positions, from −180◦ to 170◦ at 10◦ intervals using

the desired set of BRIRs.

As summarised in table 8.1, OCM system O2-S300 and CLAS system C2-

S300 are trained using simulated BRIR set BRIR-S300 in a similar manner

to that described in section 8.2. The SNR of the original mixture is set to

0 dB. Three masks are produced, EBMO2-S300, ERMO2-S300 and EBMC2-

S300, which are the OCM binary mask and ratio mask and the CLAS binary

mask, respectively. This training process is repeated using the BRIR set

BRIR-S700.

266



Figure 8.16: STOI and PESQ scores and output clean-target-modulated
SER performance in the reverberant two-source configuration for the OCM
and CLAS masks as a function of interference location. The input mixture
SNR is 5 dB. Left column, T60 is 300 ms; right column, T60 is 700 ms. ◦

and ∗ denote a matched case and an unmatched case, respectively.
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Figure 8.17: STOI and PESQ scores and output clean-target-modulated
SER performance in the reverberant two-source configuration for the OCM
and CLAS masks as a function of interference location. The input mixture
SNR is 0 dB. Left column, T60 is 300 ms; right column, T60 is 700 ms. ◦

and ∗ denote a matched case and an unmatched case, respectively.
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Figure 8.18: STOI and PESQ scores and output clean-target-modulated
SER performance in the reverberant two-source configuration for the OCM
and CLAS masks as a function of interference location. The input mixture
SNR is -5 dB. Left column, T60 is 300 ms; right column, T60 is 700 ms. ◦

and ∗ denote a matched case and an unmatched case, respectively.
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During testing, the direction of the interferer is stepped from −90◦ to −5◦

in azimuth. The results of comparing this two-source configuration using 5 dB

SNR input mixture are shown in figure 8.16. In addition, figures 8.17 and

8.18 show the corresponding results using input mixture SNRs of 0 dB and

-5 dB for the same two T60s.

Figures 8.16 (a), 8.17 (a) and 8.18 (a), show the STOI score for each

system when T60 equals 300 ms. It can be seen that the OCM ratio mask,

ERMO2-S300, performs best in all input mixture SNR conditions. The CLAS

binary mask, ERMC2-S300 yields better STOI scores than the OCM binary

mask, EBMO2-S300, for the 5 dB input mixture SNR condition. However,

the difference in STOI scores between the two binary mask methods becomes

smaller as the SNR decreases. A similar pattern of STOI performance is

evident when the reverberation time is increased to 700 ms, as shown in

figures 8.16 (b), 8.17 (b) and 8.18 (b)

The PESQ scores for the target speech quality in the 300 ms T60 condition

are shown in figures 8.16 (c), 8.17 (c) and 8.18 (c). Again, the OCM ratio

mask performs best for all three input mixture SNRs. The OCM binary

mask actually reduces the speech quality compared with the original mixture,

although the reduction tails away as the angular separation of the interferer

from the target increases. The CLAS binary mask also outputs reduced

speech quality, with PESQ scores which are substantially lower than the

OCM binary mask scores. When the input test mixtures T6O equals 700 ms,

the OCM ratio mask shows an improvement in PESQ score compared with

the input mixture and both binary mask methods harm the speech quality

in all test SNR conditions.

In figures 8.16 (e), 8.17 (e) and 8.18 (e), which show the clean-target-

modulated SER performance in the 300 ms reverberant condition, the OCM

ratio mask generally performs best, with the CLAS binary mask either com-

ing a close second or, in the case of the 5 dB input mixture SNR condition,

narrowly exceeding the performance of the ratio mask. When T60 equals 700

ms, the subplot (e) in each figure demonstrates that the segregated target
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signals from the OCM ratio mask are consistently most similar to the clean

target, followed by the CLAS binary mask, which in turn is followed by the

OCM binary mask.

8.4.2 Performance in reverberation for multiple inter-

ference sources

In this section we consider more challenging source configurations. Specif-

ically, we evaluate the systems’ performance using three and five sources

under the two simulated reverberant conditions applied in the previous sec-

tion when analysing two sources. In the three-source configuration, the two

interfering sources are located at azimuths of −45◦ and 45◦. When there

are five sources, the four interferers are located, one in each quadrant, at

azimuth angles of −45◦, 45◦, −135◦ and 135◦. The OCM and CLAS systems

are trained according to the process described in section 8.2 for the four

training conditions. These training conditions are summarised in table 8.1,

which also lists the 12 associated masks which are generated.

The results of segregating the target speech using each of the masks are

summarised in figures 8.19, 8.20 and 8.21 using test input mixture SNRs of

5 dB, 0 dB and -5 dB, respectively. Figure 8.19 (a) shows the mean STOI

scores for the directions tested. It can be seen that the OCM ratio masks,

ERMO3-S300, ERMO5-S300, ERMO3-S700 and ERMO5-S700, respectively,

perform best and that, as observed when using two sources in section 8.4.1,

the corresponding CLAS binary masks ranks second and the OCM binary

masks perform least well. As the test mixture SNR decreases (subplot (a) in

figures 8.20 and 8.21), the ratio mask STOI scores remain the highest.

In all input mixture SNR conditions, the OCM ratio mask generates the

highest PESQ scores (subplot (b) in figures 8.19, 8.20 and 8.21). The scores

are an improvement on the PESQ score for the input mixture, except for

the most challenging five-source setup using a T60 of 700 ms. Similarly,
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the OCM binary mask produces better speech quality than the CLAS binary

mask, except in the most challenging setup. Both sets of binary masks reduce

speech quality compared with the input mixture PESQ scores.
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Figure 8.19: Mean STOI and PESQ scores and mean output
clean-target-modulated SER for reverberant, three-source and five-source
configurations. The T60 reverberation times are 300 ms and 700 ms. The

input mixture SNR is 5 dB.
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Figure 8.20: Mean STOI and PESQ scores and mean output
clean-target-modulated SER for reverberant, three-source and five-source
configurations. The T60 reverberation times are 300 ms and 700 ms. The

input mixture SNR is 0 dB.

274



Figure 8.21: Mean STOI and PESQ scores and mean output
clean-target-modulated SER for reverberant, three-source and five-source
configurations. The T60 reverberation times are 300 ms and 700 ms. The

input mixture SNR is -5 dB.
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8.4.3 OCM and CLAS system performance in recorded

reverberation

We continue to follow the analysis procedures adopted in Jiang et al. (2014)

and in this section we compare the performance of our OCM approach and

their CLAS approach for target speech segregation in real reverberation.

Thus, we use measured binaural room impulse responses to compare the

two systems in a two-source configuration.

The real BRIR sets (BRIR-Rnnn) contain four sets of binaural room im-

pulse responses, each captured in a different real room at the University of

Surrey using a Cortex (MK.2) Head and Torso Simulator (HATS) (Hum-

mersone, 2010). The rooms, labelled A, B, C and D, have different sizes

and reflection characteristics. The initial time delay gap (ITDG), direct-to-

reverberant ratio (DRR) and reverberation time (T60) for each room are

listed in table 8.3. In each set of measurements, the sound sources are placed

from −90◦ to 90◦ with a 5◦ spacing.

Table 8.3: Room acoustical properties of BRIR-Rnnn. Table reproduced
from Hummersone (2010).

Room ITDG (ms) DRR (dB) T60 (s)

A 8.72 6.09 0.32
B 9.66 5.31 0.47
C 11.9 8.82 0.68
D 21.6 6.12 0.89

The training data is prepared from the TIMIT corpus (John et al., 1993)

and the NOISEX corpus (Varga and Steeneken, 1993), as described in section

8.2. In the training stage for all the systems, the babble noise is placed at

−90◦ to 90◦ by 10◦ step. The binaural mixture is set to 0 dB SNR in the

left channel, as described in section 8.2. The system and mask labels for this

analysis are listed in table 8.2. During testing, the babble noise is placed

on the left side only, from an azimuth angle of −90◦ down to −5◦ in 5◦

step, which is twice the density of directions used during training. Therefore,
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the test includes both matched (previously seen) and unmatched (previously

unseen) cases. 50 sentences are used in each test direction. Further details

can be found in section 8.2.

Figure 8.22 illustrates the target segregation results at 5 dB (left plots),

0 dB (central plots) and -5 dB (right plots) in Room A (T60 equals 320 ms).

As expected, the figure shows that the STOI and PESQ scores and the clean-

target-modulated SER of each system decrease as the test mixture SNR

decreases. The OCM ratio mask, ERMO2-R320, remains the best performer

of the three masks in terms of STOI and PESQ scores in all test cases.

In detail, ERMO2-R320 has a STOI score which is between 3% and 5%

more than the scores for the CLAS binary mask, EBMC2-R320, in all input

mixture SNR conditions. In the 5 dB SNR condition, the CLAS mask STOI

score is approximately 3% higher than the OCM binary mask, EBMC2-R320.

The STOI scores are very close to each other in the 0 dB input mixture test

condition. In a repeating trend, the OCM binary mask STOI score at -5 dB

SNR is slightly higher than the score for the CLAS mask.

The speech quality comparison is shown in figure 8.22 (d), (e) and (f).

The results demonstrate that the PESQ score performance is highest for the

OCM ratio mask, followed by the OCM binary mask. The CLAS binary mask

performs relatively poorly, with a score considerably below the PESQ score

for the input mixture at all SNRs. The clean-target-modulated SER displays

the normal reversal in performance, with the CLAS mask outperforming the

OCM binary mask for this metric. The results in figure 8.22 (g), (h) and (i)

add further support for the notion espoused that a relatively high SER value

does not necessarily correlate with higher speech intelligibility or quality.

This is particularly strongly demonstrated in the 5 dB test condition (left

column), where it can be seen that the CLAS mask displays higher SER

values than the OCM ratio mask for some directions, whereas the STOI

and PESQ scores in the corresponding directions are much worse. At lower

input SNRs, the difference between the STOI and PESQ performances of the

systems become smaller. However, they still follow the pattern: OCM ratio
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mask, then CLAS binary mask and finally the OCM binary mask.

Similar tests in Room B, C and D are also carried out. Their T60s are

470 ms, 680 ms, and 890 ms and their results are shown in figures 8.23, 8.24,

and 8.25, respectively. The performance of each mask in the different rooms

follows the same pattern as the results for Room A. The OCM ratio mask

produces the highest STOI and PESQ scores, and, in most cases, the highest

clean-target-modulated SER. The OCM binary masks with the 5 dB input

mixture do not have as high a STOI score as the CLAS binary mask. However,

the difference between the STOI scores for the two binary masks becomes

smaller as the test SNR decreases. The observed PESQ scores demonstrate

that the OCM ratio mask enhances the target speech quality in all test cases

whereas the OCM binary masks do not, in general, improve it. The CLAS

binary mask invariably reduces the PESQ score compared with the score for

the input mixture.
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Figure 8.22: Room A (T60 = 320 ms). STOI and PESQ scores and output
clean-target-modulated SER performance for reverberant, two-source

configurations as a function of interferer direction. Mixture SNRs are 5 dB
(left column), 0 dB (middle column) and -5 dB (right column). ◦ and ∗

denote matched and unmatched cases, respectively. The black line in (b) is
obscured by the green line.
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Figure 8.23: Room B (T60 = 470 ms). STOI and PESQ scores and output
clean-target-modulated SER performance for reverberant, two-source

configurations as a function of interferer direction. Mixture SNRs are 5 dB
(left column), 0 dB (middle column) and -5 dB (right column). ◦ and ∗
denote matched and unmatched cases, respectively. The black line in (b)

and (c) is obscured by the green line.
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Figure 8.24: Room C (T60 = 680 ms). STOI and PESQ scores and output
clean-target-modulated SER performance for reverberant, two-source

configurations as a function of interferer direction. Mixture SNRs are 5 dB
(left column), 0 dB (middle column) and -5 dB (right column). ◦ and ∗

denote matched and unmatched cases, respectively. The black line in (b) is
obscured by the green line.
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Figure 8.25: Room D (T60 = 890 ms). STOI and PESQ scores and output
clean-target-modulated SER performance for reverberant, two-source

configurations as a function of interferer direction. Mixture SNRs are 5 dB
(left column), 0 dB (middle column) and -5 dB (right column). ◦ and ∗

denote matched and unmatched cases, respectively. The black line in (b) is
obscured by the green line.

282



8.5 Comparison of generalisation ability

In the preceding sections, we evaluate and compare the OCM and CLAS

algorithms in a variety of conditions. These include the performance of both

systems in anechoic and reverberant environments. The reverberation analy-

sis involves simulated and recorded reverberation. The number of interferers

varies from one interference source up to four. Both systems trained for

the 0 dB SNR condition have the ability to generalise and operate at other

signal-to-noise ratios, namely at -5 dB and 5 dB. A limitation of the evalu-

ation process so far, however, is that both the OCM and CLAS estimators

have been evaluated and compared in the conditions for which they were

trained. Specifically, a system trained in anechoic conditions has not been

tested in reverberant conditions and a system trained for one set of inter-

ferers has not been tested with a different number and arrangement. Both

of these situations will arise in practice and in this section we therefore test

and compare the generalisation ability of both estimator approaches further

in each of these dimensions.

The first scenario examined in this section is to train the estimators using

signals that contain N sources and test them using mixtures containing M

sources, where N ̸= M . Detailed experiments are described in section 8.5.1.

The second scenario is to evaluate the performance of estimators that were

trained on signals generated in one room when tested using mixtures gener-

ated in a different one. Detailed experiments in this scenario are presented in

section 8.5.2. The ability of an estimator to generalise in these circumstances

is crucial for their intended application in a hearing aid, since the number

of interferers may vary from moment to moment and a hearing aid user may

move from one acoustic space to another.
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8.5.1 Generalisation ability for different numbers of in-

terferers

In this section, we extend our generalisation analysis of OCM and CLAS

systems to consider test configurations which differ from the training con-

figuration in the number and arrangement of sound sources. Thus, systems

trained using many sources are tested on fewer sources and vice versa. We

inherit the systems previously trained in sections 8.3 and 8.4 and test them

using different source configurations. We examine OCM and CLAS estima-

tors trained using two sources, three sources and five sources in anechoic and

two reverberant conditions (T60 = 300ms and T60 = 700ms). Details of

the training process can be found in section 8.2. For the sake of brevity we

focus on one acoustic condition and investigate the effect on performance of

altering the number and directions of sources in a reverberant environment

with T60 = 300ms. Results for two other acoustic environments, one ane-

choic and the other a different reverberant environment with T60 = 700ms,

are provided in appendix A.

Three different source configurations in three different acoustic spaces

results in nine different setups. For each setup, the OCM binary and ratio

mask estimators and the CLAS binary mask estimator are tested using signals

containing two, three and five sources, in the same acoustic space that they

were trained in. The effect of altering the acoustic space will be considered

in the next section.

Throughout this work, the target source continues to be located at 0◦

azimuth. For the two-source configuration the single interfering source is

located at −45◦ azimuth. In the three-source case, the two interferers are

placed at ±45◦ azimuth. In the five-source configuration, the four interfer-

ers are sited at 75◦, 135◦, −30◦ and −120◦, respectively. These directions

are chosen such that they possess substantially different ITDs and so appear

strongly directionally distinct, since they each lie on a different cone of confu-

sion (see section 3.1). Each test case contains 50 randomly selected sentences
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from the test set in the TIMIT corpus (John et al., 1993). More information

about the generation of test data can be found in section 8.2. The SNR for

all training and test mixtures is set at -5 dB, which is the most challenging

SNR of the three employed throughout this research.

Figures 8.26, 8.27 and 8.28 show the results for each system tested using

two sources, three sources and five sources in an acoustic environment with

300ms reverberation time. Each subplot consists of three results, which show

the improvement in performance of the three estimators compared with the

unprocessed mixture for each of the three different numbers of sources. Fig-

ures 8.26 (a) left plot, 8.27 (a) middle plot and 8.28 (a) right plot are the

reference results, for the cases in which the total number of sources (N) used

in the training phase is equal to the total number of sources (M) used in the

testing phase (i.e. N and M are both equal to two, three and five, respec-

tively). Similar analyses have been performed previously in sections 8.4.1 and

8.4.2 and these results are in close agreement with them. The results indicate

that the OCM ratio mask performs best in the three systems, followed by the

OCM binary mask and the CLAS binary mask. The STOI speech quality is

improved by 13.9%, 8.7% and 10.0% for the estimators specifically trained

and tested using two sources, three sources and five sources, respectively.

These results serve as a reference against which the performance differences

for the test cases where N ̸= M can be compared. For ease of comparison,

the reference results (i.e. when N = M) are also shown as horizontal red

lines on each of the corresponding generalised results (i.e. when N ̸= M).

In general, the OCM ratio mask yields the best STOI improvement in all

three figures. It is approximately 2% to 3% better than the corresponding

OCM binary mask system. The CLAS system sits in third place and shows

a further reduction in performance of approximately 1% compared with the

OCM binary mask estimator.

All the estimators evaluated here demonstrate the ability to generalise

and to perform satisfactorily when the number of interfering sources differs

from the training stage. Figure 8.26 (a) shows the generalisation ability of the
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estimators, O2-S300 and C2-S300, trained using two sources and tested with

three sources and five sources. In detail, the ratio mask estimator ERMO2-

S300 improves the STOI score most when testing the three-source and five-

source configurations, with 8.6% (figure 8.26 (a) middle plot) and 9.8% (fig-

ure 8.26 (a) right plot) STOI improvements, respectively. The corresponding

mask sets which are trained using the three-source configuration (figure 8.27

(a) middle plot) and the five-source configuration (figure 8.28 (a) right plot)

show improvements of 0.1% and 0.2% more than ERMO2-S300 trained using

two sources and tested using three and five sources, respectively.

In figure 8.27, the systems are trained using the three-source configuration

and tested using two, three and five sources. Similarly, all the systems have

the ability to generalise to the two-source and five-source configurations. The

improvements in STOI scores are 13.4% and 10.0% for ERMO3-S300 when

testing using two sources and five sources, respectively. The performance of

the OCM binary mask estimator, EBMO3-S300, is approximately 2% lower

and the CLAS binary mask estimator, EBMC3-S300, is approximately 3%

lower. Estimator ERMO3-S300, trained using three sources and tested using

two sources, scores 0.5% lower than estimator ERMO2-S300, trained and

tested using two sources (figure 8.26 (a) left plot). ERMO3-S300, when

tested using five sources, compared with ERMO5-S300, trained and tested

using five sources (figure 8.28 (a) right plot) scores only 0.03% lower.

In figure 8.28 (a), the results reveal the ability of the OCM and CLAS

mask estimators trained using five sources to generalise to two-source and

three-source configurations in terms of their STOI performance. The same

performance ranking of the three systems is observed here, with the OCM

ratio mask estimator as usual showing the greatest improvement in STOI

score. The ERM05-S300 estimator yields a 12.8% and 8.4% STOI improve-

ment when tested using the two-source and five-source configurations. On

the other hand, compared with the estimators both trained and tested using

two (figure 8.26 (a) left plot) and five sources (figure 8.27 (a) middle plot),

ERMO5-S300 displays a 1.1% and 0.3% reduction in STOI score, respec-

286



tively.
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Figure 8.26: The STOI and PESQ improvement compared with the
corresponding unprocessed mixtures and SER performance for systems
which are trained on signals containing two sources and tested on signals
containing two, three and five sources, respectively. (a), (c) and (e) are the
STOI improvement, PESQ improvement and SER results, respectively,

using -5 dB input mixture SNR (T60 = 300 ms). The red horizontal lines
show the corresponding reference results from estimators tested using the

same number of sources that they were trained with.

With respect to the generalisation ability of these estimators in terms

of speech quality improvement, figures 8.26 (b), 8.27 (b) and 8.28 (b) show

that the PESQ score is improved by more than 0.3 for the OCM ratio mask

estimator, even when the numbers of interfering sources used in the training

and testing phases are not identical. Both the OCM binary mask estimator

and CLAS binary mask estimator degrade speech quality, no matter whether

the number of interfering sources is identical or not during training and

testing. A measure of the numerical similarity between the segregated signal

and the clean target signal in terms of the SER metric is also provided in row
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Figure 8.27: The STOI and PESQ improvement compared with the
corresponding unprocessed mixtures and SER performance for systems

which are trained on signals containing three sources and tested on signals
containing two, three and five sources, respectively. (a), (c) and (e) are the
STOI improvement, PESQ improvement and SER results, respectively,

using -5 dB input mixture SNR (T60 = 300 ms). The red horizontal lines
show the corresponding reference results from estimators tested using the

same number of sources that they were trained with.

(c) of figures 8.26, 8.27 and 8.28. As for previous analyses, the CLAS binary

mask fares somewhat better in comparison to the OCM estimators, though

the ratio mask still performs best.

Similar results using the same sets of source setups are presented in Ap-

pendix A for two further acoustic environments. Figures A.9, A.10 and A.11

show the results for estimators trained in an anechoic environment using two,

three and five sources, respectively. Figures A.12, A.13 and A.14 show cor-

responding results for estimators trained using two, three and five sources,

respectively, in an environment with a 700ms reverberation time. Broadly
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Figure 8.28: The STOI and PESQ improvement compared with the
corresponding unprocessed mixtures and SER performance for systems
which are trained on signals containing five sources and tested on signals
containing two, three and five sources, respectively. (a), (c) and (e) are the
STOI improvement, PESQ improvement and SER results, respectively,

using -5 dB input mixture SNR (T60 = 300 ms). The red horizontal lines
show the corresponding reference results from estimators tested using the

same number of sources that they were trained with.

similar patterns of results are observed in both acoustic spaces.

In summary, all the evaluated systems in this section demonstrate an

ability to generalise in terms of improving STOI and PESQ scores when the

number of interfering sources used for testing differs from the number used

for training. There are several unexpected results arising from the analy-

sis conducted in the reverberant environment T60 = 300ms. Binary masks

EBMO2-S300 for OCM and EBMC2-S300 for CLAS (both trained using two

sources) very slightly exceed the STOI performance of the reference mask

estimator when tested using three sources, as shown in the middle plot of
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figure 8.26 (a). These two binary mask estimators also outperform the same

reference estimators in terms of their PESQ scores (figure 8.26 (b) middle

and right plot). These phenomena are not observed in the 700 ms rever-

beration time condition (see figure A.12). The level of generalisation for the

ratio mask estimator trained using two sources in the T60 = 300ms reverber-

ant environment (see figure 8.26) is surprisingly high for every metric (STOI

and PESQ scores, and SER). When tested using three and even five sources,

this estimator equals the performance of the corresponding reference estima-

tors. In figure A.10, the three-input anechoic sources ratio mask estimator

provides a 24.6% and 20.9% improvement in STOI and PESQ scores, re-

spectively, when fed with two-source anechoic test data. This represents a

shortfall of 9.5% and 7.5% in STOI and PESQ scores, respectively, compared

with the reference estimator in this condition. Therefore, some generalisation

is occurring, but not as much as might be expected in view of the fact that

the source directions in the two-source test data are included in the three

directions that this three-source estimator was trained with. Broadly similar

results are observed using the OCM and CLAS binary masks. These obser-

vations are worthy of further investigation. For now, however, it is sufficient

to note that generalisation across the dimension of varying the number of

sources has been successful, indeed remarkably so in some conditions.
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8.5.2 Generalisation ability for different room acous-

tics

.

In the previous section, we examined the ability of the three mask estima-

tors to segregate sources successfully when tested using a different number

of interfering sources compared with the number they were trained with. All

those evaluations were limited to using the same acoustic space. In this sec-

tion, we investigate how all three estimators perform when the acoustic space

is changed by training the estimators using BRIRs for one room and testing

them using BRIRs for different rooms.

In section 8.4.3, we trained OCM and CLAS estimators using the real

BRIR sets measured by Hummersone (2010). The BRIR sets consist of mea-

surements of four different rooms, labelled A, B, C and D, with different sizes

and reflection characteristics (see section 8.4.3). Each estimator is trained

using speech examples spatialised in a different individual room and it is

then tested using test data generated from all four rooms. Since the focus

of this section is on the generalisation ability of the estimators as a function

of varying room acoustics, we apply the simplest two-source configuration

mixture as the test data. We employ the test strategy described in section

8.4.3. The target source is located at 0◦ azimuth and the direction of the

interfering source ranges from −90◦ to −5◦ azimuth in steps of 5◦. Each test

case contains 50 randomly selected sentences from the test set in the TIMIT

corpus (John et al., 1993). More detail about the generation of the test data

can be found in section 8.2.

Figure 8.29 shows the target segregation test results at 5 dB SNR in room

A for the mask estimators trained on data spatialised in rooms A, B, C and

D, respectively. The labels in the legend are defined in table 8.2. Plots

(a), (d) and (g) show the STOI, PESQ and SER results, respectively, for

four OCM ratio estimators, each trained in a different room. As expected,
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reference estimator ERMO2-R320, trained and tested in room A, yields the

greatest STOI improvement (the highest line in the plots), improving the

STOI score by almost 0.2 for most interferer directions. As the direction

of the interfering source approaches that of the target, the improvement

decreases. The estimators trained using data spatialised in rooms B, C and

D increase the STOI score of room A test data slightly less, in most cases by

approximately 0.15. When the direction of the interfering source is close to

the target, such as at −5◦ azimuth, the performances of all the estimators fall

and become very similar to that of the reference estimator ERMO2-R320.

The speech quality scores behave differently from the speech intelligibility

scores. The PESQ scores obtained here for all the systems in room A are

very close to each other. This demonstrates that all the three mask estima-

tors trained in different rooms have a similar ability to generalise in terms

of their PESQ scores and their performance is almost the same as the mask

estimator trained in room A. The SER metric also indicates that the refer-

ence estimator, ERMO2-R320, outperforms the other three mask estimators,

which all perform similarly to each other.

The STOI and SER metrics for the four OCM binary masks (EBMO2-

Rnnn) and the four CLAS masks (EBMC2-Rnnn) in figure 8.29 (b), (e) and

(h), and (c), (f) and (i) follow a similar pattern to the OCM ratio masks

just discussed. The estimators trained on data spatialised using BRIRs for

rooms B, C and D have the ability to segregate the target when tested using

room A data. Again, there are improvements in the STOI scores, although

not as much as those exhibited by estimators EBMO2-R320 and EBMC2-

R320, which are trained and tested in room A. In terms of speech quality,

the four EBMO2 binary mask estimators produce a PESQ score which is,

on the whole, marginally inferior to that for the unprocessed mixture. The

four CLAS binary mask estimators, EBMC2-Rnnn, significantly degrade the

speech quality. This observation mirrors the results we obtained in section

8.4.3. The SER metrics also follow a similar pattern to the OCM ratio mask

results.
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The results for all the other conditions investigated are shown in figures

8.30 (estimators trained on data spatialised in room B), 8.31 (trained in

room C) and 8.32 (trained in room D), respectively. They all follow the

same pattern as the results shown in figure 8.29.

Compared with the mean STOI scores for the OCM ratio mask reference

estimators (i.e. those estimators trained in one environment and tested in

the same environment), estimators trained in a different room from which

they were tested exhibit a mean STOI score depressed by approximately

0.055, 0.037, 0.055 and 0.017 for rooms A, B, C and D respectively. This

corresponds to a range of between 1.7% and 5.5%. The results suggest that

all the estimators have a substantial ability to generalise along the dimension

of varying acoustic environment.
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Figure 8.29: The STOI and PESQ and SER performance for systems which
are trained on data for room A, B, C and D, respectively, using test

mixture with -5 dB SNR in room A (T60 = 320ms). (a), (d) and (g) are
the STOI, PESQ and SER results for OCM ratio masks, respectively. (b),
(e) and (h) are the STOI, PESQ and SER results for OCM binary masks,
respectively. (c), (f) and (i) are the STOI, PESQ and SER results for

CLAS masks, respectively.
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Figure 8.30: The STOI and PESQ and SER performance for systems which
are trained on data for room A, B, C and D, respectively, using test

mixture with -5 dB SNR in room B (T60 = 470ms). (a), (d) and (g) are
the STOI, PESQ and SER results for OCM ratio masks, respectively. (b),
(e) and (h) are the STOI, PESQ and SER results for OCM binary masks,
respectively. (c), (f) and (i) are the STOI, PESQ and SER results for

CLAS masks, respectively.
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Figure 8.31: The STOI and PESQ and SER performance for systems which
are trained on data for room A, B, C and D, respectively, using test

mixture with -5 dB SNR in room C (T60 = 680ms). (a), (d) and (g) are
the STOI, PESQ and SER results for OCM ratio masks, respectively. (b),
(e) and (h) are the STOI, PESQ and SER results for OCM binary masks,
respectively. (c), (f) and (i) are the STOI, PESQ and SER results for

CLAS masks, respectively.
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Figure 8.32: The STOI and PESQ and SER performance for systems which
are trained on data for room A, B, C and D, respectively, using test

mixture with -5 dB SNR in room D (T60 = 890ms). (a), (d) and (g) are
the STOI, PESQ and SER results for OCM ratio masks, respectively. (b),
(e) and (h) are the STOI, PESQ and SER results for OCM binary masks,
respectively. (c), (f) and (i) are the STOI, PESQ and SER results for

CLAS masks, respectively.
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8.6 Discussion

This chapter has compared the speech segregation performance of our pro-

posed optimal cue mapping (OCM) approach and a state-of-the-art DNN-

based classification (CLAS) algorithm (Jiang et al., 2014). The performance

of the systems was examined using three metrics. We first compared the

performance of the OCM and CLAS algorithms in anechoic configurations.

The comparisons consisted of two-source, three-source and five-source setups

using input mixtures with different test SNRs. We also compared them

in reverberant conditions with simulated binaural room impulse responses

(BRIRs). In addition, the simulated BRIRs were used to generate binaural

speech mixtures to assess the OCM and CLAS algorithms in more realis-

tic conditions. These synthesised BRIRs still have short-comings, however,

as they simulate the acoustics of a simple rectangular prism room without

any obstacles. Due to the generally poor subjective quality of the simulated

BRIRs (Hummersone, 2010), we went on to compare the OCM and CLAS

algorithms using real recorded BRIRs. The comparisons again included a

range of source configurations and used three different input mixture test

SNRs. Finally, we assessed the generalisation ability of the estimators in

three dimensions: generalisation to different test SNRs, generalisation to

different numbers of sources, and generalisation to different room acoustics.

These three scenarios are highly relevant performance indicators for speech

segregation tasks in applications such as hearing aids and automatic speech

recognition systems. This is because the mixture SNR and the number of

interfering sources are not constant in real life and the movement of a hearing

aid user between one environment and another may cause the characteristics

of the acoustic space they are in to vary radically.

The evaluation results illustrate that the OCM ratio and binary masks

consistently improve target speech intelligibility in both anechoic and rever-

berant conditions. Furthermore, the OCM ratio mask improves target speech

quality in all the tests which were conducted. The improvement is reduced,
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however, in reverberant conditions compared with anechoic conditions. To a

lesser extent, the OCM binary masks enhance target speech quality in ane-

choic configurations, but the binary mask has a detrimental effect on speech

quality in most of the tested reverberant conditions, both using simulated

BRIRs and measured BRIRs of real rooms.

Since IPD and ILD form two of the inputs to our OCM estimators, these

estimators partially depend on binaural cues for their operation. In reverber-

ant environments the early and late reflections interact with the direct sound,

disturbing the binaural cues, which therefore become less reliable than they

are in anechoic conditions. Hence, speech segregation in reverberation is more

difficult than it is in anechoic conditions and this degrades the performance

of the OCM algorithm in such conditions.

As expected, our comparisons also show that the OCM ratio mask achieves

more robust segregation than the corresponding OCM binary mask. Further-

more, the performance of the OCM binary mask exceeds that of the CLAS

binary mask in all anechoic configurations. It is revealing to investigate the

performance differences between the two binary mask approaches. In two-

source anechoic conditions, the OCM binary mask performs better in terms

of both target speech intelligibility and quality. However, in the three-source,

5 dB input SNR test condition, its performance is inferior to that of the CLAS

binary mask. It also performs worse than the CLAS binary mask for some

test cases using the simulated and recorded BRIRs at different input mixture

SNRs. It is likely that this is because the OCM algorithm estimates the mask

at a finer frequency resolution and it also lacks helpful inputs representing

the monaural features of the input mixture. It is thought that these differ-

ences account, at least in part, for the increased performance of the CLAS

binary mask in some conditions.

The generalisation ability of a system which learns relates to its perfor-

mance when exposed to test data to which it has not been exposed during

training. Generalisation ability not only depends on the nature of a neural

network as a universal function approximator, but it also depends on the
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strategies used in the training process, such as choosing the number of hid-

den neurons (see section 5.3.2). If the number of hidden neurons is not large

enough, the system is unable to learn effectively. Too many hidden neurons,

on the other hand, can bestow too much power on the network, so that it

is possible for it to overfit the training data, reducing its ability to gener-

alise. The balance and diversity of the training data set are also critical for

successful training of the network.

Generalisation is a critical issue for practical speech segregation algo-

rithms. In terms of generalisation ability to different mixture SNRs, esti-

mators were trained using 0 dB SNR mixtures and tested using -5 dB, 0 dB

and 5 dB SNR mixtures. All estimators improve speech intelligibility in all

the tested SNR conditions. On the other hand, when the test mixture has

a low SNR, the PESQ scores are degraded when a binary mask is used, and

this applies to both the OCM and CLAS approaches. The OCM ratio mask

estimator is the only one that improves speech quality in all the test condi-

tions investigated. When the number of interfering sources between training

and testing changes, the results show that all the systems have the ability

to generalise. Further generalisation performance evaluation with regards

to changes in the acoustic space demonstrate that estimators trained in one

room are able to segregate a target speech source in a variety of reverberant

conditions and to improve its intelligibility.
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Chapter 9

Conclusion

This research has led to a method for improving the intelligibility and quality

of a target speech source in a binaural mixture with spatially distinct com-

peting concurrent interfering sounds in anechoic and reverberant conditions.

The long term goal is to incorporate the algorithm in a hearing aid capable

of assisting people with normal hearing or with a hearing deficit in acoustic

conditions which they find challenging.

The proposed optimal cue mapping (OCM) approach, described in Chap-

ter 5, includes a straightforward machine learning algorithm which estimates

a binaural ratio mask for speech segregation. Through modelling, it has been

demonstrated that OCM has the ability to integrate binaural cues and other

acoustic features to successfully segregate the target speech. Using the two

relative importance methods outlined in Chapter 5, it is possible to deter-

mine the varying relative importance of the input cues for estimating the

ratio mask under a range of typical acoustic conditions so that only the most

important features are extracted and used for mask estimation according to

the prevailing acoustic conditions. The segregated speech shows raised per-

ceptual intelligibility and quality and compares favourably with a current

state-of-the-art solution.
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In Chapters 7 and 8 we have selected seven cues for the purpose of demon-

strating the OCM method. The cues are easily integrated into the OCM

algorithm and the range of cues is expandable to include further properties

of the acoustic environment and to introduce characteristics of the source.

By taking advantage of the generalisation ability of artificial neural networks

(ANNs), we have shown how it is possible to reduce the training data size

without creating a significant impact on the performance of the binary and

ratio masks they generate. The key benefit of doing this is a reduction in

training time.

In hearing aid algorithm design, for example, knowledge of the contri-

bution of each type of cue to the mask estimation helps to construct an

algorithm that can draw maximum benefit from the limited computational

resources available by allowing the least important cues to be identified and

eliminated. This knowledge will also assist in the development of segrega-

tion algorithms which are able to adapt in a continuous fashion as acoustic

conditions change.

9.1 The effect of source segregation

The results of the subjective intelligibility and quality measurements in Chap-

ters 7 and 8 have produced a number of key points. The most important of

these is that the speech intelligibility and quality of a target speech sound

source can be improved by using a machine learning method that estimates

the ratio mask for the target source in a binaural mixture.

In Chapter 6, we carried out a pilot study using a very simplistic scenario

of a fixed source direction configuration in anechoic conditions. The target

source was fixed at 0 azimuth and two interferers were placed at −30◦ and

30◦ azimuth, respectively. This baseline system was constructed using two

fundamental localisation cues, IPD and ILD, as inputs to the ANNs which

were trained to estimate the ratio mask. Based on the ratio mask estimate,
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the counterpart binary mask was derived by quantising the ratio mask values

using a threshold of 0.5.

Building on this simple start, another system incorporating more cues

was considered. The extra cues, ∆IPD, ∆ILD and magnitude, were selected

based on their expected potential for improving estimation of the ideal masks.

Interaural coherence was included to confirm that results of subsequent rel-

ative importance analyses were plausible, in that its usefulness in anechoic

conditions was expected to be small.

The comparative results revealed, as expected, that the ratio mask estima-

tor performs better than the corresponding binary mask and that integrating

extra input features always led to further improvements in segregating the

target speech from the binaural mixture in terms of both the intelligibility

of the target speech and its quality. Using the STOI metric, the difference

in intelligibility between the ratio mask and the binary mask grew as the

test SNR was decreased. For example, the ratio mask yielded STOI scores

which were approximately 1.5% and 3.5% higher than the equivalent binary

mask for the 5 dB and -5 dB SNR conditions, respectively. The estimator

using extra input features produced a further 1% improvement compared

to the baseline estimator with two inputs. Relative to the original binaural

input mixture, the ratio mask estimator with six inputs is able to improve

the STOI score by approximately 11%, 18% and 24% for SNRs of 5, 0 and

-5 dB, respectively. Similar trends were observed regarding speech quality es-

timates using the PESQ metric; the ratio mask produced PESQ scores about

2% higher than those produced using the binary mask. The system using the

richer set of six cues further improved the quality by approximately 1%. The

best-performing system was able to improve target speech quality by over

18% for all the test conditions that we used.

In Chapter 7, to aid mask estimation in the presence of interfering sources

with varying directions, and to relax the constraints of needing to know

these directions explicitly, a direction cue comprising 27 cross-correlation

coefficients was incorporated into the mask estimator. This resulted in a new
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system with seven distinct types of input. We initially assumed the existence

of up to two interferers, one on either side of the listener. Both sources were

constrained to lie in any azimuthal direction which was a multiple of 10◦,

resulting in 91 possible combinations of interferer direction. A system trained

using examples drawn from only nine of the 91 combinations, for which the

two interferers are paired symmetrically, is able to perform as well as a system

which has been trained using the full set of 91 direction combinations. This

indicates that the training data size can be reduced significantly by taking

advantage of the ability of an ANN to generalise, leading to a reduction in the

size of the ANN and a reduction in the training time. Reducing the training

data size further led to inferior performance, demonstrating that the training

data set had become too small to be able to generalise.

The fully trained seven-input, variable-direction system exhibited an im-

provement in speech intelligibility, compared with the original binaural mix-

ture, of approximately 11.8%, 18.6% and 24.3% for SNRs of 5 dB, 0 dB and

-5 dB, respectively. These results are very similar to the performance of the

six-input system with fixed-direction interferers.

The application of OCM to target speech segregation in reverberation

shows promise. STOI scores for reverberant binaural mixtures improved by

up to 11.5% 17.2% and 20.1% for SNRs of 5 dB, 0 dB and -5 dB , respectively.

In terms of speech quality, there were up to approximately 18% and 10%

improvements for anechoic and reverberant conditions, respectively.

More challenging configurations, including a five-source setup for the

OCM algorithm, were tested in Chapter 8. Our results illustrate that the

OCM ratio mask estimates consistently improve target speech intelligibil-

ity and quality in both simulated binaural room impulse response (BRIR)

conditions and using measured BRIRs. However, the improvement was con-

siderably reduced, especially in the most challenging reverberation conditions

compared with anechoic conditions.

A thorough analysis of the OCM algorithm demonstrates its ability to
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generalise across four dimensions. The OCM estimators successfully estimate

masks which function satisfactorily using binaural mixtures with:

• previously unseen source directions;

• previously unseen numbers of sources;

• previously unseen signal-to-noise ratios and

• previously unseen acoustic environments.

9.2 Validation of hypothesis

The hypothesis for this research is stated in Chapter 1. It is repeated here

for convenience:

The intelligibility and quality of a target speech source in a binaural mix-

ture with spatially distinct competing concurrent interfering sounds may be

increased using a machine learning algorithm which is suitable for implemen-

tation in a hearing aid.

The proposed OCM algorithm aims to improve speech intelligibility and

quality by segregating the target sound from a binaural mixture based on

spatial and other cues. The core of the OCM approach is based on a ma-

chine learning algorithm; a neural network with three-layer topology. The

objective analysis of OCM in Chapters 6 and 7 indicates that both speech

intelligibility and quality are improved for the configuration involving three

competing concurrent talkers in both anechoic and reverberant conditions.

Furthermore, the performance of OCM compares favourably with the lead-

ing, more complex deep neural network approach (the CLAS algorithm) de-

scribed in Chapter 8. The results indicate that OCM consistently exhibits

gains in intelligibility and quality and has equivalent or even better perfor-

mance than the CLAS algorithm in various test conditions involving up to

five competing talkers.

The algorithm operates on the two most recent frames of input signal.
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Thus a delay of approximately one frame would be introduced. With a

frame duration of 10ms, the limit stated by Stone and Moore (1999) is met

for avoiding issues when the hearing aid user hears their own voice. Due to

the use of simple neural networks and powerful DSP technology, OCM can be

implemented in real time (this is discussed in greater detail later in section

9.3.7). In summary, the hypothesis is satisfied and has been validated.

Associated with the primary hypothesis are several supplementary re-

search questions. These have been answered by this research and will be

discussed in turn.

Does optimal mapping of an increasing number of diverse cues improve

the segregation of one sound source in a binaural mixture in terms of intelli-

gibility and quality?

This research question is answered in Chapters 6 and 7. The pilot study

in Chapter 6 indicates that integrating extra, appropriate input features

leads to better performance in terms of speech intelligibility (using the STOI

metric) and mostly improves the speech quality (using the PESQ metric).

The relative importance evaluation results in Chapter 7 show that not all

the cues selected contribute to the mask estimation process. Taking the

interaural coherence as an example, its relative importance depends on the

acoustic environment and it makes a greater contribution to mask estimation

in reverberation than it does in the anechoic condition. Interaural coherence

is shown to be the least important cue, out of those chosen, in the anechoic

condition. Nevertheless, its inclusion in the set of inputs to the estimator

does no harm to the estimators performance. The general conclusion from

this aspect of the research is that an increasing number of relevant diverse

cues improves the segregation performance.

Does the use of a ratio mask estimate by neural network compared with the

equivalent binary mask improve segregation of one sound source in a binaural

mixture in terms of intelligibility and quality?
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The answer to this research question can be found in the evaluation and

comparison undertaken in, Chapters 6, 7 and 8. The results consistently

show that the ratio mask estimator outperforms the corresponding binary

mask estimator for both the intelligibility and quality metrics, STOI and

PESQ, respectively.

Is it possible to determine the varying relative contribution of diverse cues

for estimating a mask in a range of simulated multiple-source and reverberant

acoustic conditions?

It is clear from the discussion in section 6.2.2 that both relative impor-

tance metrics, namely Garson’s method and the connection weights method,

have their own strengths and weakness. So in the relative importance analy-

ses in Chapter 6 and 7, we show the results for both approaches. They both

suggest that IPD and ILD are the most important cues. IPD is dominant at

low frequencies and ILD is dominant at high frequencies. The importance of

cross-correlation becomes valuable when the direction of interference is vari-

able, but does not contribute significantly to mask estimation under static

conditions of source direction. The importance of interaural coherence also

increases in a reverberant environment compared with an anechoic one.

Is it possible to allow maximum benefit to be drawn from limited compu-

tational resources by configuring the optimal cue mapping?

By analysing the relative contribution of diverse cues for estimating a

mask, it is possible to develop an algorithm which permits maximum benefit

to be drawn from the limited computational resources available in a hearing

aid. The approach is scalable, with more or less inputs being incorporated

according to the computational resources which can be accommodated in a

particular application.
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9.3 Further work

It has been shown that the optimal cue mapping approach to source segre-

gation provides intelligibility and quality improvements in the various test

cases examined in this thesis. However, it is essential to extend this work in

a variety of ways, to improve system performance and allow the algorithm

to operate in increasingly realistic and challenging situations.

9.3.1 Moving source segregation

The OCM system has been tested in many different configurations in Chap-

ters 7 and 8, including the use of two, three and five sources in anechoic

and reverberant conditions. In all these cases, however, the directions of the

target and interfering sources have been fixed. We anticipate that the system

will be tolerant of interferer movement. Using the three-source configuration

as an example, the system has been tested for 91 possible interferer location

combinations. For all these (fixed) directions, the system is able to segregate

the target speech, demonstrating that as an interferer jumps from one loca-

tion to the next, as long as the test case falls into one of these 91 combinations,

the ANN is capable of producing a near-optimal mask estimate.

But how well does the algorithm work when the interferer lies in between

the directions for which it was trained? The ability of the ANN to generalise

for semi-matched and unmatched test cases has been demonstrated in Chap-

ter 7 and is illustrated in figures 7.5 (b) and 7.18 (b). These figures show

that the ANNs continue to work well when one or both interfering sources lie

mid-way between two directions for which they were trained. This strongly

suggeasts that these systems will successfully handle cases where an inter-

ferer lies in a previously unseen direction or is moving in an arbitrary way

through the space for which the ANN was trained.

Throughout this work the target source direction has been fixed at an
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azimuth of 0◦, directly in front of the listener. Although this constraint can

be relaxed by training the ANNs with the target fixed in a different direction,

it is always the case that the signal of interest must be known. Therefore, the

segregation of a moving target signal is not supported in any of the current

systems due to a lack of continually updated information about the target’s

position and direction of movement. In order to overcome this limitation,

another layer in the algorithm will eventually be necessary to incorporate

head and target tracking, so that the listener can turn their head and the

algorithm’s segregation focus can remain directed towards the target.

9.3.2 Integration with other features

A variety of features extracted from the binaural input mixture have been

used in the OCM algorithm. The performance of the system could be im-

proved further, however, by incorporating other features of the source and

acoustic environment. Good candidates of the many possibilities include

monaural cues, such as pitch-based features and the amplitude modula-

tion spectrum (AMS) (Wang, 2015), and mel frequency cepstral coefficients

(MFCC) (Kallasjoki et al., 2011; Keronen et al., 2013). How such extensions

to the current inputs might be prioritised and selected is considered in the

following section.

9.3.3 Relative importance measurement

Methods for measuring the relative importance for a set of input features

are discussed in Chapter 6 and form an important part of this work. The

reliability of the two techniques described there and applied in this research

remains a problem. We apply Garson’s method and the connection weights

method and draw conclusions based on the combined results of both methods.

More work is required to analyse more deeply inside the neural networks to

derive a more robust and suitable relative importance measurement for each
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type of input feature.

9.3.4 Dereverberation

Speech intelligibility can be reduced by reverberation. A study carried out by

Nábělek and Robinson (1982) shows that longer reverberation times decrease

intelligibility more for subjects of all ages. In the current initial implementa-

tion of the OCM algorithm we did not consider dereverberation. To segregate

the target speech together with its associated reverberation, the OCM esti-

mator was trained using the reverberant target source alone. To segregate

an estimate of the dereverberated target source would require the training

data to be anechoic. Furthermore, a different set of cues might be needed to

assist the estimator with the dereverberation process.

Given an appropriate choice of input features, selected according to their

relative importance, and using a clean target source to train the estima-

tor, there are strong reasons to suppose that the ANNs could make a well-

informed estimate of a dereverberation ratio mask and so provide a further

improvement in speech intelligibility compared with our current results.

9.3.5 Training target

In this research, the means of achieving binaural source segregation has been

to estimate the ideal ratio mask using a set of ANNs, and this has been

shown to yield improvements in speech intelligibility and quality. However,

estimating the ideal ratio mask may not be the most effective method for

segregating a target speech source. Other mappings can be considered for

ANN training with the goal of improving target speech intelligibility and

quality as well. For example, Wang et al. (2014) investigated mappings for

supervised monaural speech separation. They demonstrate that the choice

of a suitable training target is crucial.
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It would be interesting to investigate alternative methods for segregating

target speech using ANNs, such as the short-time Fourier transform spec-

tral magnitude and the STFT mask (Wang et al., 2014). Unlike the ideal

ratio mask, the STFT mask is not upperbounded by unity. In an alterna-

tive approach, Lightburn and Brookes (2015) propose an oracle binary mask.

Referred to as the STOI-optimal binary mask, its goal is to maximise the

intelligibility of the target speech by optimising its STOI score.

9.3.6 Artificial neural networks

In the ANN training stage of the OCM method, many parameters of the

neural networks, such as the training rules and the learning rate, have to be

chosen by experiment. Optimal parameter selection and the setting of their

values varies depending on the particular application. There is no existing

method for determining the best learning rate, for example. It is unlikely

that optimal parameters have been used in our experiments. More effort is

needed to determine the optimal parameters for the ANNs in this application.

The multi-layer perceptron ANN architecture used in our research falls

into the category of shallow networks. Whilst the architecture works well

for our current purposes, it might cope less well with a larger number of

input features, which is likely to be needed in future. For example, to cope

better with some realistic, but complex, scenarios, the number of simultane-

ous interferers which the ANNs can accommodate is likely to increase. Each

additional interferer greatly increases the number of possible combinations

of interferer direction. As a result, in order to retain acceptable segregation

performance, the number of hidden neurons and number of hidden layers in

the ANN will need to increase, along with the size of the associated training

data and the training time.

In recent years, there has been much research into deep learning as ap-

plied to signal processing. Deep learning neural networks (DNNs) have al-

ready been trained to perform spectral mapping for speech dereverberation
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(Han et al., 2014), source separation (Jiang et al., 2014) and automatic speech

recognition (Narayanan andWang, 2013; Maas et al., 2014). Ma et al. (2015a)

exploited DNNs for binaural localisation of multiple speakers in reverber-

ant conditions. The primary advantage of the DNN is that it is capable of

compactly representing a larger set of functions than a conventional ANN

(DeepLearning, 2015). For example, a k-layer network (where the number of

hidden neurons is a function of the number of inputs) cannot represent as

many functions as a (k+1)-layer network, unless the former has a very large

number of hidden neurons. In addition, DNNs with multiple hidden layers

show powerful learning and exhibit the capacity for nonlinear mappings that

a conventional ANN cannot learn. Hence, taking advantage of the enhanced

properties of DNNs may address some of the limitations of the shallow net-

works currently used in our research. It should be noted, however, that the

conventional multi-layer perceptron ANNs used here are generally much less

computationally complex than DNNs. This point is considered further in the

next section.

9.3.7 Practical implementations

One of the objectives of this research is to develop a speech segregation

technique capable in future of being implemented such that it operates in

real time and has modest resource needs. The processing architecture and

computational requirement are relatively simple in OCM and satisfy these

requirements. Hence it is potentially feasible to implement the algorithm

on physical hardware. Although the actual implementation of the OCM

algorithm on hardware does not lie within the scope of this research, the

possibility of implementing it in a real-time system has always been kept in

mind. In particular, the algorithm is suitable for binaural hearing aids with

a wireless link such as Bluetooth. In a real-time system, the computational

task must be completed within tightly specified time limits and the algorithm

must be causal, i.e. it may only use information available in the present and

from the past.
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Feature extraction is mainly based on the Fourier transform. The STFT

temporal frame length has been set to 10 ms throughout this research, cor-

responding to 320 samples for a 16 kHz sample rate. Therefore, the time

limit for processing each frame is 10 ms so that the reconstructed sound

can be played back continuously and within the latency limit determined by

Stone and Moore (1999). Current digital signal processing (DSP) technology

can, for example, perform a 512-point FFT with hardware acceleration in

3740 clock cycles (equivalent to 37.4µs with a clock rate of 100MHz) us-

ing a 1.3 volt power supply (Mckeown, 2013). The complex operation of

cross-correlation can be executed on such hardware and has been used in a

commercial digital hearing aid (Widex Inc., 2015).

Once each mask estimation ANN has been trained, all its weights can

be stored in a memory block in the hardware. The ratio mask estimation

process inside an ANN principally involves multiplication and addition and a

non-linearity in each neuron. Between the input layer and the single hidden

layer, the extracted features which form the inputs to the ANN are multiplied

by the appropriate weights in the input layer and the products are summed

in the hidden layer neurons before being fed into the nonlinearities. A simi-

lar process applies between the hidden layer and the output layer. The final

output summation is also passed through a nonlinear transfer function and

the output forms an estimate for the target speech ratio mask for the same

frequency point in each frame. With the pipelined multiplier and accumu-

lator structure in a modern DSP device, the operation can be done in the

order of microseconds, which is well inside the 10ms latency limit mentioned

above.

Many ultra-low-power DSPs with integrated Bluetooth are commercially

available, such as the CSR series of devices (CSR, 2015), in which the smallest

package option is 5.5mm by 5.5mm. Hence, the fundamental technology

to implement the proposed algorithm in a behind-the-ear binaural wireless

hearing aid is already available.
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Appendices

Extra figures are presented in this chapter.
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Figure A.1: STOI scores for the unprocessed mixtures and for the three
mask estimators ERMV7-1/2/3, using all 91 test cases defined in TSV7-1
in the three-source anechoic configuration. The mixtures are 5 dB local
SNR before spatialisation. (a) The STOI scores for the unprocessed

mixture with mean value of 0.8007 and standard deviation of 0.0167. (b)
Results for mask ERMV7-1 trained using strategy TSV7-1. The mean
value is 0.9185 and standard deviation is 0.0055. (c) Results for mask

ERMV7-2 trained using TSV7-2. The mean value is 0.9163 and standard
deviation is 0.0055. (d) Results for mask ERMV7-3 trained using TSV7-3.

The mean value is 0.9123 and standard deviation is 0.0111.
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Figure A.2: STOI scores for the unprocessed mixtures and for the three
mask estimators ERMV7-1/2/3, using all 91 test cases defined in TSV7-1
in the three-source anechoic configuration. The mixtures are -5 dB local
SNR before spatialisation. (a) The STOI scores for the unprocessed

mixture with mean value of 0.5501 and standard deviation of 0.0233. (b)
Results for mask ERMV7-1 trained using strategy TSV7-1. The mean
value is 0.7935 and standard deviation is 0.0123. (c) Results for mask

ERMV7-2 trained using TSV7-2. The mean value is 0.7882 and standard
deviation is 0.0128. (d) Results for mask ERMV7-3 trained using TSV7-3.

The mean value is 0.7679 and standard deviation is 0.0311.
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Figure A.3: PESQ scores for the three mask estimators ERMV7-1/2/3,
using all 91 test cases defined in TSV7-1 in the three-source anechoic

configuration. The mixtures are 5 dB local SNR before spatialisation. (a)
The PESQ scores for the unprocessed mixture with mean value of 2.0914
and standard deviation of 0.0698. (b) Results for mask ERMV7-1 trained
using strategy TSV7-1. The mean value is 3.0593 and standard deviation is
0.0758. (c) Results for mask ERMV7-2 trained using TSV7-2. The mean
value is 3.0274 and standard deviation is 0.0820. (d) Results for mask

ERMV7-3 trained using TSV7-3. The mean value is 2.9230 and standard
deviation is 0.1533.
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Figure A.4: PESQ scores for the three mask estimators ERMV7-1/2/3,
using all 91 test cases defined in TSV7-1 in the three-source anechoic

configuration. The mixtures are -5 dB local SNR before spatialisation. (a)
The PESQ scores for the unprocessed mixture with mean value of 1.4750
and standard deviation of 0.0746. (b) Results for mask ERMV7-1 trained
using strategy TSV7-1. The mean value is 2.4153 and standard deviation is
0.0824. (c) Results for mask ERMV7-2 trained using TSV7-2. The mean
value is 2.3834 and standard deviation is 0.0820. (d) Results for mask

ERMV7-3 trained using TSV7-3. The mean value is 2.2540 and standard
deviation is 0.1605.
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Figure A.5: STOI scores for the unprocessed mixtures and for the outputs
from the two mask estimators, ERMVR7-2 and ERMVR7-3, at all direction

pair combinations in the three-source reverberant configuration. The
mixtures are 5 dB SNR before spatialisation. The target is located at 0◦,
and two interferers are placed at −90◦ to 0◦ and 0◦ to 90◦, with 15◦ step,
respectively. (a) The STOI score of the unprocessed mixture. The mean

value is 0.7425 and standard deviation is 0.0189. (b) For estimator
ERMVR7-2, trained at all interferer direction pairs on the symmetric

diagonal. The mean value is 0.8581 and standard deviation is 0.0115. (c)
For estimator ERMVR7-3, trained at alternate combinations of interferer
direction pairs on the symmetric diagonal. The mean value is 0.8498 and

standard deviation is 0.0126.
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Figure A.6: STOI scores for the unprocessed mixtures and for the outputs
from the two mask estimators, ERMVR7-2 and ERMVR7-3, at all direction

pair combinations in the three-source reverberant configuration. The
mixtures are -5 dB SNR before spatialisation. The target is located at 0◦,
and two interferers are placed at −90◦ to 0◦ and 0◦ to 90◦, with 15◦ step,
respectively. (a) The STOI score of the unprocessed mixture. The mean

value is 0.4470 and standard deviation is 0.0254. (b) For estimator
ERMVR7-2, trained at all interferer direction pairs on the symmetric

diagonal. The mean value is 0.6480 and standard deviation is 0.0209. (c)
For estimator ERMVR7-3, trained at alternate combinations of interferer
direction pairs on the symmetric diagonal. The mean value is 0.6311 and

standard deviation is 0.0201.
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Figure A.7: PESQ scores for the unprocessed mixtures and for the outputs
from the two mask estimators, ERMVR7-2 and ERMVR7-3, at all direction

pair combinations in the three-source reverberant configuration. The
mixtures are 5 dB SNR before spatialisation. The target is located at 0◦,
and two interferers are placed at −90◦ to 0◦ and 0◦ to 90◦, with 15◦ step,
respectively. (a) The PESQ score of the unprocessed mixture. The mean

value is 2.3872 and standard deviation is 0.0608. (b) For estimator
ERMVR7-2, trained at all interferer direction pairs on the symmetric

diagonal. The mean value is 2.8536 and standard deviation is 0.0704. (c)
For estimator ERMVR7-3, trained at alternate combinations of interferer
direction pairs on the symmetric diagonal. The mean value is 2.7932 and

standard deviation is 0.0636.
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Figure A.8: PESQ scores for the unprocessed mixtures and for the outputs
from the two mask estimators, ERMVR7-2 and ERMVR7-3, at all direction

pair combinations in the three-source reverberant configuration. The
mixtures are -5 dB SNR before spatialisation. The target is located at 0◦,
and two interferers are placed at −90◦ to 0◦ and 0◦ to 90◦, with 15◦ step,
respectively. (a) The PESQ score of the unprocessed mixture. The mean

value is 1.6550 and standard deviation is 0.0643. (b) For estimator
ERMVR7-2, trained at all interferer direction pairs on the symmetric

diagonal. The mean value is 2.2101 and standard deviation is 0.0575. (c)
For estimator ERMVR7-3, trained at alternate combinations of interferer
direction pairs on the symmetric diagonal. The mean value is 2.1486 and

standard deviation is 0.0528.

322



Tested on two-source Tested on three-source Tested on five-source
0

0.2

0.4

∆
 S

T
O

I

a
EBMO2-A
ERMO2-A
EBMC2-A

Tested on two-source Tested on three-source Tested on five-source
-1

0

1

∆
 P

E
S

Q

b

Tested on two-source Tested on three-source Tested on five-source

-2
0
2
4
6

S
E

R
 (

dB
)

c

Figure A.9: The STOI and PESQ improvement compared with the
corresponding unprocessed mixtures and SER performance for systems
which are trained on signals containing two sources and tested on signals
containing two, three and five sources, respectively. (a), (c) and (e) are the
STOI improvement, PESQ improvement and SER results, respectively,
using -5 dB input mixture SNR (T60 = 0ms). The red horizontal lines

show the corresponding reference results from estimators tested using the
same number of sources that they were trained with.
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Figure A.10: The STOI and PESQ improvement compared with the
corresponding unprocessed mixtures and SER performance for systems

which are trained on signals containing three sources and tested on signals
containing two, three and five sources, respectively. (a), (c) and (e) are the
STOI improvement, PESQ improvement and SER results, respectively,
using -5 dB input mixture SNR (T60 = 0ms). The red horizontal lines

show the corresponding reference results from estimators tested using the
same number of sources that they were trained with.
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Figure A.11: The STOI and PESQ improvement compared with the
corresponding unprocessed mixtures and SER performance for systems
which are trained on signals containing five sources and tested on signals
containing two, three and five sources, respectively. (a), (c) and (e) are the
STOI improvement, PESQ improvement and SER results, respectively,
using -5 dB input mixture SNR (T60 = 0ms). The red horizontal lines

show the corresponding reference results from estimators tested using the
same number of sources that they were trained with.
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Figure A.12: The STOI and PESQ improvement compared with the
corresponding unprocessed mixtures and SER performance for systems
which are trained on signals containing two sources and tested on signals
containing two, three and five sources, respectively. (a), (c) and (e) are the
STOI improvement, PESQ improvement and SER results, respectively,

using -5 dB input mixture SNR (T60 = 700ms). The red horizontal lines
show the corresponding reference results from estimators tested using the

same number of sources that they were trained with.
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Figure A.13: The STOI and PESQ improvement compared with the
corresponding unprocessed mixtures and SER performance for systems

which are trained on signals containing three sources and tested on signals
containing two, three and five sources, respectively. (a), (c) and (e) are the
STOI improvement, PESQ improvement and SER results, respectively,

using -5 dB input mixture SNR (T60 = 700ms). The red horizontal lines
show the corresponding reference results from estimators tested using the

same number of sources that they were trained with.
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Figure A.14: The STOI and PESQ improvement compared with the
corresponding unprocessed mixtures and SER performance for systems
which are trained on signals containing five sources and tested on signals
containing two, three and five sources, respectively. (a), (c) and (e) are the
STOI improvement, PESQ improvement and SER results, respectively,

using -5 dB input mixture SNR (T60 = 700ms). The red horizontal lines
show the corresponding reference results from estimators tested using the

same number of sources that they were trained with.
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List of Abbreviations

AI Articulation Index.

AMS Amplitude Modulation Spectrum.

ANN Articial Neural Networks.

APSD Auto-Power Spectral Density.

ASA Auditory Scene Analysis.

ASR Automatic Speech Recognition.

BILD Binaural Intelligibility Level Difference.

BM Basilar Membrane.

BMLD Binaural Masking Level Difference.

BRIR Binaural Room Impulse Response.

BSS Blind Source Separation.

BTE Behind-the-Ear.

CASA Computational Auditory Scene Analysis.

CCF Cross-Correlation Function.

CIC Completely-in-the-Canal.

CPSD Cross-Power Spectral Density.

DNN Deep Neural Network.

DRR Direct-to-Reverberant Energy Ratio.

DSP Digital Signal Processing.

DUET Degenerate Unmixing Estimation Technique.

EBM Estimated Binary Mask.
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ERB Equivalent Rectangular Bandwidth.

ERM Estimated Ratio Mask.

FB Fission Boundary.

FFT Fast Fourier Transform.

FPGA Fileld Programmable Gate Array.

FS-HMM Factorial Scaled Hidden Markov Model.

GFCC Gammatone Frequency Cepstral Coefficient.

HATS Head And Torso Simulator.

HMM Hidden Markov Model.

HRIR Head-Related Impulse Response.

HRTF Head-Related Transfer Functions.

IBM Ideal Binary Mask.

IBM Ideal Ratio Mask.

IC Interaural Coherence.

ICA Independent Component Analysis.

IDFT Inverse Discrete Fourier Transform.

IED Interaural Envelope Difference.

IFFT Inverse Fast Fourier Transform.

IID Interaural Intensity Difference.

ILD Interaural Level Difference.

IPD Interaural Phase Difference.
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ITD Interaural Time Difference.

ITDG Initial Time Delay Gap.

LCMV Linearly Constrained Minimum-Variance.

MAA Minimum Audible Angle.

MAF Minimum Audible Field.

MAMA Minimum Audible Movement Angle.

MAP Minimum Audible Pressure.

MESSL Model-based Expectation Maximisation Source Separation and Lo-

calisation.

MFCC Mel Frequency Cepstral Coefficients.

MOS Mean Opinion Score.

MSE Mean Square Error.

N-FHMM Non-Negative Factorial Hidden Markov Model.

NMF Non-Negative Matrix Factorisation.

OCM Optimal Cue Mapping.

PESQ Perceptual Evaluation of Speech Quality.

RI Relative Importance.

RIR Room Impulse Response.

SBR Signal-to-Background Ratio.

SER Signal-to-Error Ratio.

SII Speech Intelligibility Index.
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SNR Signal-to-Noise Ratio.

SPIN Speech Perception in Noise.

SPL Sound Pressure Level.

SRT Speech Reception Threshold.

STF System Transfer Function.

STFT Short-Time Fourier Transform.

STI Speech-Transmission Index.

STOI Short-Time Objective Intelligibility.

TCB Temporal Coherence Boundary.

TSFT System Transfer Function.

UPM Unprocessed Mixture.

VAD Voice Activity Detector.

XC Cross-Correlation Coefficient.
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Jeub, M., Schäfer, M., and Krüger, H. (2010b). Do we need dereverberation
for hand-held telephony? Proc. Int. Congress on Acoustics, (August):1–7.
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Köhler, W. (1970). Gestalt psychology: An introduction to new concepts in
modern psychology. WW Norton & Company.

Kollmeier, B. and Koch, R. (1994). Speech enhancement based on physiolog-
ical and psychoacoustical models of modulation perception and binaural
interaction. volume 95, pages 1593–1602. Acoustical Society of America.

Kondo, K. (2012). Subjective quality measurement of speech: its evaluation,
estimation and applications. Springer Science & Business Media.

Kubovy, M. (1981). Concurrent-pitch segregation and the theory of indis-
pensable attributes. Perceptual organization, pages 55–98.

Kuhn, G. (1977). Model for the interaural time differences in the az-
imuthal plane. The Journal of the Acoustical Society of America, 62(May
2012):157–167.

Kumaresan, R. and Rao, A. (1999). Model-based approach to envelope and
positive instantaneous frequency estimation of signals with speech applica-
tions. The Journal of the Acoustical Society of America, 105(3):1912–1924.

Li, N. and Loizou, P. C. (2007). Factors influencing glimpsing of speech in
noise. The Journal of the Acoustical Society of America, 122(2):1165–1172.

Li, N. and Loizou, P. C. (2008). Factors influencing intelligibility of ideal
binary-masked speech: Implications for noise reduction. The Journal of
the Acoustical Society of America, 123(3):1673–1682.

Licklider, J. C. R. (1951). A duplex theory of pitch perception. The Journal
of the Acoustical Society of America, 23(1):147–147.

Lightburn, L. and Brookes, M. (2015). Sobm-a binary mask for noisy speech
that optimises an objective intelligibility metric. In Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference on,
pages 5078–5082. IEEE.

343



Little, A. D., Mershon, D. H., and Cox, P. H. (1992). Spectral content as a
cue to perceived auditory distance. Perception, 21(3):405–416.

Lyon, R. F. (1983). A computational model of binaural localization and sep-
aration. In Acoustics, Speech, and Signal Processing, IEEE International
Conference on ICASSP’83., volume 8, pages 1148–1151. IEEE.

Ma, N., Brown, G. J., and May, T. (2015a). Exploiting deep neural networks
and head movements for binaural localisation of multiple speakers in re-
verberant conditions. In Sixteenth Annual Conference of the International
Speech Communication Association.

Ma, N., May, T., Wierstorf, H., and Brown, G. (2015b). A machine-hearing
system exploiting head movements for binaural sound localisation in rever-
berant conditions. In 40th IEEE International Conference on Acoustics,
Speech and Signal Processing.

Maas, A. L., Hannun, A. Y., Lengerich, C. T., Qi, P., Jurafsky, D., and Ng,
A. Y. (2014). Increasing Deep Neural Network Acoustic Model Size for
Large Vocabulary Continuous Speech Recognition.

Mandel, M., Weiss, R., and Ellis, D. (2010a). Model-based expectation-
maximization source separation and localization. IEEE Transactions on
Audio, Speech, and Language Processing, pages 1–13.

Mandel, M. I., Weiss, R. J., and Ellis, D. P. (2010b). Model-based
expectation-maximization source separation and localization. Audio,
Speech, and Language Processing, IEEE Transactions on, 18(2):382–394.

May, T., Ma, N., and Brown, G. J. (2015). Robust localisation of multiple
speakers exploiting head movements and multi-conditional training of bin-
aural cues. In Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pages 2679–2683. IEEE.

Middlebrooks, J. C. and Green, D. M. (1990). Directional dependence of in-
teraural envelope delays. The Journal of the Acoustical Society of America,
87(5):2149–2162.

Middlebrooks, J. C., Makous, J. C., and Green, D. M. (1989). Directional
sensitivity of sound-pressure levels in the human ear canal. The Journal
of the Acoustical Society of America, 86(1):89–108.

Miller, G. A. (1947). The masking of speech. Psychological Bulletin,
44(2):105–129.

344



Miller, G. A. and Nicely, P. E. (1955). An analysis of perceptual confusions
among some english consonants. The Journal of the Acoustical Society of
America, 27(2):338–352.

Mills, A. and Tobias, J. V. (1972). Foundations of modern auditory theory.
Academic Press, New York.

Mills, A. W. (1958). On the minimum audible angle. The Journal of the
Acoustical Society of America, 30(4):237–246.

Møller, H., Sørensen, M. F., Hammershøi, D., and Jensen, C. B. (1995).
Head-related transfer functions of human subjects. Journal of the Audio
Engineering Society, 43(5):300–321.

Moncur, J. P. and Dirks, D. (1967). Binaural and monaural speech intelligi-
bility in reverberation. Journal of Speech, Language, and Hearing Research,
10(2):186–195.

Moore, B. C. (2012). An introduction to the psychology of hearing. Brill.

Musicant, A. D. and Butler, R. A. (1984). The influence of pinnae-based
spectral cues on sound localization. The Journal of the Acoustical Society
of America, 75(4):1195–1200.

Mysore, G. J., Smaragdis, P., and Raj, B. (2010). Non-negative hidden
markov modeling of audio with application to source separation. In Latent
Variable Analysis and Signal Separation, pages 140–148. Springer.
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