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Abstract 

 

Anaerobic Digestion (AD) is a biologically mediated technology that is used as a 

method for managing and obtaining energy from organic waste materials. 

Through the biological action of Bacteria, Fungi and Archaea, in the absence of 

oxygen, the organic waste is converted to biogas, mainly methane, which can be 

used as a fuel source. This gas can be burned to generate electricity, heat, 

injected into the grid or used to fuel vehicles. 

 

I have developed a single stage, lab scale anaerobic digester that is a reflection of 

full-scale process systems. This model reactor facilitates the collection of 

samples for metagenomic sequencing, along with process data, providing an 

insight to the AD process. Three experiments were carried out (using the lab 

model) to determine (i) the dynamic changes that occur in microbial AD 

communities, (ii) the rate at which these communities change and (iii) if the 

observed changes are comparable between numerous systems run under the 

same conditions. 

 

The use of amplicon sequencing appears to be a common method used to study 

the composition of microbial communities, especially in AD, but this method is 

prone to inaccuracies and so alternative methods were developed, as described 

in this thesis. By applying the use of shotgun metagenomic sequencing, 

combined with various contig assemblers and a custom clustering method, 

more detail on the microbes present and their functions in AD is obtained 

compared to targeted sequencing. Pipelines to interpret large datasets generated 

through Next Generation Sequencing (NGS) have been developed and utilised 

in this project. We have identified microbes that are present within the AD 

system, and the time-scale of the dynamic changes. This method has also 

revealed novel methanogens that are important in the AD process. 
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1    Introduction 

 

Alternatives to fossil fuels are now being sought due to limited resource 

availability and the heavy dependence on fossil fuels in modern society. Adding 

to this, global political pressures have been adopted to ensure that carbon 

emissions are reduced and renewable energy technology presence and supply is 

increased. 

 

The supply of renewable energy is now a priority in the UK to ensure that there 

is a constant, reliable, sustainable and cleaner supply of energy. The supply of 

electricity generated from renewable sources now contributes a significant 

proportion (18 %), with this number increasing from previous years, but the 

dependence on fossil fuels, such as coal, gas and oil is still high (Figure 1.1). An 

increased presence of renewable technologies therefore would ensure that there 

is a lower requirement for fossil fuels. The UK has a target to ensure that the 

total energy supplied amounts to 15 % from renewable technologies by 2020.  

 

 

 

Figure 1.1. UK electricity generated from fuel source in 2014. Data taken from 

DEFRA (www.gov.uk). 
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Along with reducing the reliance for fossil fuels, renewable technologies are 

cleaner, as fewer carbon dioxide emissions are produced. Carbon dioxide is 

classed as a greenhouse gas and is linked to climate change. 

 

 

 

Figure 1.2. Total gas emissions for the UK. Adapted from Department of Energy 

& Climate Change 2014. 

 

Total gas emissions in the UK have been decreasing (Figure 1.2) and this is 

partly due to a drive towards using renewable energy technologies. In 2013, the 

generation of electricity accounted for 33 % of total gas emissions, and therefore 

renewable energy technologies have the potential to significantly reduce this 

figure, especially as some have little to no carbon dioxide emissions. The 

transport sector accounted for around 21 % of total gas emissions in 2013, 

mainly through the use of petrol and diesel, so alternative sources would reduce 

the level of emissions from this sector, along with less fossil fuel use. 

 

There are numerous renewable, low carbon energy technologies available such 

as wind, tidal, thermal and solar, each with their own advantages.  

 

Anaerobic Digestion (AD) is a biologically mediated technology that is gaining 

more prominence as a process that can be used for the generation of renewable 
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energy sources. The Anaerobic Digestion process involves a complex 

community of microbes that breakdown organic waste materials in the absence 

of oxygen, which results in the production of biogas, mainly methane, which is 

a fuel source (Figure 1.3). AD can contribute towards achieving increasingly 

stringent targets for a greater proportion of energy to be derived from 

renewable sources as well as a solution to the increased need for waste materials 

to be processed in a responsible manner. Currently there are around 320 AD 

sites in the UK. 

 

 

 

 

Figure 1.3. Overview of the AD process where organic waste materials are pre-

treated before being placed into the digester. The microbes in the AD system 

utilise these compounds to produce biogas. The remaining digestate can be 

further processed and used e.g. as a fertiliser. 
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Along with the requirement for alternatives to fossil fuels, there is a need for 

managing waste materials in a responsible manner to ensure that less is placed 

into landfill. It is estimated that the UK alone generates up to 15 million tonnes 

of food waste annually, and AD has the potential to ensure much of this waste is 

not placed in landfill, whilst generating a fuel source from this. In 2013, 4 % of 

UK total gas emissions were from waste management (mainly landfill), with 91 

% of this being methane. Therefore AD has the potential to reduce this number. 

 

1.1  Benefits and Challenges 

 

AD has many benefits that allow it to be a predominant contender for use in the 

generation of renewable fuels. The main advantage of this technology is that as 

the complex community of microbes break down the organic waste, the 

production of biogas results, which is mainly comprised of methane and carbon 

dioxide. The biogas produced can be burned for the generation of electricity via 

a Combined Heat and Power unit (CHP), with low grade heat as a by-product. 

If the AD unit is, for example, on a manufacturing site, this generated electricity 

and heat can sometimes be used on site ensuring that the manufacturer uses less 

fossil fuel generated electricity. As fossil fuel resources are limited (Krakat et al., 

2011), the move towards greener technologies is important. Also, if fewer 

resources are taken from the national grid, this means that company overheads 

would be reduced, and the generated gas or electricity could even be sold back 

into the grid. The use of AD therefore has clear environmental and financial 

benefits. It has been previously estimated that AD has the potential to provide 

up to 50 % of the UK gas residential requirements (National Grid, 2009). The gas 

can also be upgraded and placed into the grid or can be used as a fuel source for 

vehicles (Goulding and Power, 2013). 

 

Another advantage of AD is that it is a method for managing waste materials, 

and the preparation of the waste to be placed into the digester is often minimal. 

There are large costs associated with the disposal of solid waste and the 

treatment of liquid wastes. Any technologies that can prevent solid materials 

from being placed in landfill are clearly important. Any solid material that is 

removed from the AD system, digestate, can be further processed, according to 
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EU legislation, such as being pasteurised and stored (Ariunbaatar et al., 2014), 

and this can be used as a fertiliser due to the high nitrogen levels, meaning that 

potentially fewer synthetic fertilisers are required. The versatility of AD systems 

to accept a variety of waste streams is advantageous meaning the technology 

can be used in a wide number of applications. These can include solid and 

liquid based wastes from the foods and drinks industry, such as dairy, brewery 

and confectionary, along with bio-diesel waste, sewage and farm wastes. Other 

advantages include that there is a low sludge yield (biomass) (Chen et al., 2008), 

especially compared to aerobic treatments, the systems require low nutrient 

input and there are low operational and maintenance associated costs (De 

Vrieze et al., 2012, Wijekoon et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Overview of the conversion of organic waste materials to biogas 

mediated by different microbes. 
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There are challenges associated with the technology, with the main one being 

that as AD systems are comprised of a complex community of microbes (Figure 

1.4), which if disrupted, can cause the AD system to stall, such as reactor 

acidification. This is especially true for the methanogen community, which can 

be sensitive to slight changes in operational and environmental conditions, such 

as temperature, pH, or organic loading rates (De Vrieze et al., 2012). If the 

methanogen activity is reduced, or the organic loading rates are too high, an 

accumulation of organic acids can result. If methanogens do not utilise these, 

this in turn can cause the pH to become more acidic and high levels of organic 

acids can have a toxic effect on the methanogens (Franke-Whittle et al., 2014), 

further stalling the system. For this reason, it is common that theoretical 

maximum organic loading rates are not reached. Long start up times are also 

another drawback of this technology, as the microbes in the system require time 

to acclimatise to the specific components of the waste. Although the systems 

have versatility to different waste materials, the feedstock composition cannot 

be abruptly changed, as again, the microbial community in the system would 

need time to adapt to this. Another challenge associated with AD is that systems 

have been reported to have foaming issues. Foam is a liquid-gas dispersion 

(Kougias et al., 2014) that forms in the reactor and can result in operational 

disruption. Ultimately, any disruption to the AD process could have both 

environmental and economical costs. 

 

1.2  Biochemistry and Microbiology 

 

Anaerobic Digestion is a process that involves a complex community of Bacteria 

and Archaea, all with different metabolic capacities, working in a syntrophic 

fashion (Pind et al., 2003) to break down organic wastes to produce biogas, 

mainly comprising of methane (50-70 %) and carbon dioxide (30-50 %). There is 

an arbitrary division of the biochemical reactions the substrates are subjected to 

in the AD process; hydrolysis, where polymers are hydrolysed to monomers, 

acidogenesis, where these monomers are converted to intermediate compounds, 

acetogenesis, where intermediates are further broken down to acetate and 

finally methanogenesis (Heeg et al., 2014), the formation of biogas (Figure 1.5). 
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Figure 1.5. Key processes involved in the AD process. 1. Hydrolysis 2. 

Acidogenesis 3. Acetogenesis 4. Hydrogenotrophic methanogenesis 5. 

Aceticlastic methanogenesis (adapted from Madsen et al. 2011). 

 

1.2.1  Hydrolysis 
 

Hydrolysis is the breakdown of polymers to soluble monomers, such as 

polysaccharides, proteins and lipids to monosaccharides, amino acids and fatty 

acids, often performed by fermentative bacteria and fungi. This step is carried 

out by specific extracellular enzymes such as lipases, proteases and amylases, 

produced by these fermentative microbes (De Francisci et al., 2015). Hydrolysis 

is regarded as a rate limiting step in the AD process (Ge et al., 2011). This is 

particularly important for wastes containing high levels of insoluble particular 

matter as these have to be solubilised (Gavala et al., 2003) and then hydrolysed 

from polymers to monomers (Xue et al., 2015). 

 

There are numerous examples of microbes that can perform the hydrolysis step. 

There are known organisms belonging to the Phylum Firmicutes, including the 
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genus Clostridium, which can degrade complex polymers, e.g. cellulose (Nelson 

et al., 2011) and Bacteroidetes that are proteolytic bacteria (Rivière et al., 2009). 

 

1.2.2  Acidogenesis 
 

Acidogenic microbes use the soluble monomers produced during hydrolysis to 

form reduced intermediate products, such as a variety of organic acids, 

(including acetate and formate), alcohols (such as methanol and ethanol), 

ketones, H2 and CO2 (Franke-Whittle et al., 2014), in the process known as 

acidogensis. Other byproducts such as ammonia and hydrogen sulphide (H2S) 

may also be formed in this step (Appels et al., 2008). 

 

 

 
Eq. 1.1. C6H12O6 + 2H2O                                                   2CH3COOH + 2CO2 + 4H2 
 

Eq 1.2. C6H12O6 + 2H2                                    2CH3CH2COOH + 2H2O 

 

 

Examples of acidogenic reactions include the formation of acetic acid (Eq. 1.1) 

and propionic acid (Eq. 1.2) from glucose. 

 

Organisms that perform the acidogenic reactions include Spirochaetes, 

specifically the genus Cloacamonas, which is commonly found in AD systems 

and it has been proposed that this organism has the capacity to ferment amino 

acids (Pelletier et al., 2008) and Cloacamonas species are syntrophic fermentation 

bacteria (Razaviarani and Buchanan, 2014). 

 

1.2.3  Acetogenesis 
 

In the third stage, acetogenesis, a variety of syntrophic microbes perform 

numerous reactions and are closely linked with the methanogens. 

 

Reactions that occur include the oxidation of organic acids, such as butyrate (Eq. 

1.3) and propionate (Eq. 1.4) to acetate. 
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     Eq 1.3. CH3CH2CH2COO- + 2H2O                           2CH3COO- + H+ + 2H2 

 

     Eq 1.4. CH3CH2COO- + 2H2O                  CH3COO- + CO2 + 3H2     

 

     Eq 1.5. CH3COO- + 4H2O                                                      2HCO3- + H+  

 

 

The oxidation of butyrate and propionate is thermodynamically unfavourable 

and therefore a close association with methanogens and other syntrophic 

microbes that utilise acetate and hydrogen is important (Wang et al., 2013). This 

interspecies hydrogen transfer between hydrogen producers and consumers 

ensures that hydrogen remains in low concentrations (McInerney et al., 2009). 

Examples of known organic acid oxidisers include Syntrophomonas wolfei and 

Syntrophobacter fumaroxidans that degrade butyrate and propionate respectively 

(Stams and Plugge, 2009). It is estimated that propionate, when converted to 

acetate, hydrogen and carbon dioxide can account for up to 35 % of methane 

produced (Wagner et al., 2014). 

 

Acetate oxidation (Eq. 1.5) can also occur, producing hydrogen (Lee et al., 2015). 

This reaction can only take place when the hydrogen concentration is low and 

this requires hydrogen consuming hydrogentropic methanogens (Moestedt et 

al., 2014), such as Methanoculleus. Of the characterised syntrophic acetate 

oxidisers, most belong to the class Clostridia (Kampmann et al., 2012). 

 

1.2.4  Methanogenesis 
 

The final stage in the AD process is conducted by methanogens, a group of 

organisms belonging to the domain Archaea. As well as being common to the 

AD process, methanogens have been found in a variety of anaerobic 

environments (Wilkins et al., 2015). The methanogen community is less diverse 

than the bacterial community and often accounts for a smaller proportion than 

the bacterial population, with previous reports suggesting around 10 % relative 

abundance in AD systems (Wirth et al., 2012). Numerous factors often influence 

the Archaea community such as the methanogen diversity and activity. One 
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example from a study by Franke-Whittle et al. (2014), showed that mesophilic 

digesters have a greater diversity of methanogens compared to thermophillic 

digesters. As with the bacterial community, having a diverse methanogen 

community in AD systems is beneficial for system stability as this group of 

organisms can be disrupted by several environmental factors, and it not unusual 

for conditions to vary in AD systems. This could include variations in feedstock 

composition and digester temperature. 

 

Methanogens can utilise a range of substrates such as acetate, formate, and other 

one carbon compounds, as well as carbon dioxide and hydrogen (Ziganshin et 

al., 2011). Methanogens are grouped based on the substrates that they utilise; 

aceticlastic or hydrogenotrophic (Razaviarani and Buchanan, 2014).  

 

Aceticlastic methanogens utilise acetate to form methane (Eq. 1.6). Both 

Methanosarcina and Methansaeta, belonging to the class Methanomicrobia are 

acetate utilising methanogens. Interestingly, Methanosarcina can switch between 

the aceticlastic and hydrogenotrophic pathways (Qu et al., 2009, De Vrieze et al., 

2012), so can use a range of compounds such as acetate, methanol (Jäger et al., 

2009) (Eq 1.8), along with hydrogen and carbon dioxide (Yu et al., 2014). The 

aceticlastic methanogens have shown to be affected by various conditions in the 

AD systems, such as dominating when hydrogen levels are low, but different 

aceticlastic methanogens thrive under varying acetate concentrations. For 

example, Methanosarcina has been shown to utilise acetate over Methanosaeta 

when the acetate concentration is over 1 mM, but below that concentration 

Methanosaeta is the dominant methanogen (Razaviarani and Buchanan, 2014). 

 

 

         Eq 1.6.   CH3COO- + H+                                         CH4 + CO2 

 

         Eq 1.7.   4H2 + CO2                                         CH4 + 2H2O 

 

         Eq 1.8.  4CH3OH                                                     3CH4 + CO2 + 2H2O 
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The hydrogenotrophic methanogens utilise hydrogen and carbon dioxide (Eq. 

1.7), along with other one carbon compounds, such as formate to produce 

methane. Examples of these methanogens include the genera Methanomicrobium, 

Methanospirillium and Methanoculleus, amongst others belonging to the class 

Methanomicrobia. These methanogens tend to be found in lower numbers in AD 

systems, but when the hydrogen levels increase, the proportion of these 

methanogens can increase (Razaviarani and Buchanan, 2014). An example of a 

hydrogenotrophic methanogen is Methanospirillium, which uses hydrogen and 

carbon dioxide preferentially over formate (Nelson et al., 2011). The pathways 

(and enzymes) involved in methanogenesis are displayed in Figure 1.6. 

 

 

 
 

Figure 1.6. Schematic diagram of the methanogenesis pathways 

(Dziewit et al., 2015) 
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1.3 Core Group of Microbes 

 

Many studies have recently focused on trying to get a better understanding on 

the microbial communities involved in the AD process e.g. Jang et al. (2014), 

Lim et al. (2013) and Tian et al. (2015), amongst others, as shown in Table 1.1 

and 1.2. AD is a technology that has been developed from an engineering 

perspective, but the microbiology still remains relatively unknown. Although 

numerous measurements are taken when running an AD system (Chapter 1.6) 

which act as indicators of system performance, there is the potential that 

microbial markers could also reveal and predict system performance. 

 

In recent years our understanding of complex microbial communities, dynamics 

and function has increased significantly due to the development of Next 

Generation Sequencing (NGS) technologies. NGS technology provides the 

ability to sequence most complex communities, at more depth (Whiteley et al., 

2012), giving more comprehensive information, as the volume of data generated 

is so much greater compared to previous technologies. Prior to NGS, the 

sequencing of complex communities was only possible using expensive, low 

resolution technologies, but as this technology has developed, the cost per base 

has dramatically decreased. With increased sequencing output, available at 

lower costs, our ability to understand complex communities has increased, 

ultimately giving greater understanding of these subject areas. Recent examples 

include research in AD (Schlüter et al., 2008), human microbiome (Belda-Ferre et 

al., 2012) and soil (Souza et al., 2013). 

 

The microbiology and microbial dynamics of AD is still relatively unknown. 

The roles played by methanogens in AD has been more widely studied, but the 

bacterial species that are responsible for hydrolysis and acidogenesis are not 

well understood (Keating et al., 2016). The nature in which the systems are run 

and samples taken also makes understanding the microbiology more 

challenging. Most AD systems will be run under slightly different conditions, 

which are optimised to the input material, most likely shaping the community 

structure. Additionally, different inoculum will have been obtained, giving a 

different starting microbial population. These factors often make identifying 

important microbes involved in the process difficult and therefore drawing 
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conclusions from recent research can be challenging, as demonstrated in Table 

1.1. Nonetheless it is possible to demonstrate that there are a common group of 

microbes across the studied AD systems, albeit at the phylum level. 
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Archaea - Order 

Methanosarcinales 
(A) 

Methanobacteriales 
(H) 

Methanomicrobiales 
(H) 

Ref 

 
81 % 

 
5 % 

 
11 % 

 
Jang et al., 20141 

 
54 % 

 
16 % 

 
25 % 

 
Jang et al., 20142 

 
26 % 

 
15 % 

 
48 % 

 
Qiao et al., 2013 

 
51 % 

 
0.2 % 

 
10 % 

 
Rivière et al., 

2009 
    

Table 1.3. Relative abundance of methanogens in AD systems. (A) Aceticlastic 

(H) Hydrogenotrophic. 

    

The five most common phyla in AD studies are Firmicutes, Chloroflexi, 

Bacteroidetes, Proteobacter and Actinobacteria, although the proportions of 

each varies, as shown in Table 1.2. There are also some other phyla that have 

been detected such as Synergistes. Other papers that have conducted 

sequencing of numerous AD systems also confirm these findings. For example, 

De Vrieze et al. (2015) analysed 29 full scale AD systems and the most dominant 

phyla were Firmicutes, Bacteroidetes and Proteobacteria. 

 

The relative abundance and variations of methanogens found in AD systems 

also differ, as shown in Table 1.3, and these microbes are influenced by various 

factors, such as digester type, size and operational conditions. For example, 

Regueiro et al. (2014) showed that temperature drop caused a change from 

Methanosaeta to Methanosarcina dominated communities. High volatile fatty acid 

(VFA) levels have also been shown to favour particular taxa (Methanosarcina,  

Franke-Whittle et al., 2014). 

 

Previous research has also reported a large proportion of unassigned sequence 

e.g. Jang et al. (2014). This is not unexpected as the recent phenomenon in 

sequencing technology has allowed for more information to be obtained, but 

this is not without its own challenges. The extensive amount of data generated 
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from sequencing often provides information on species where there is none in 

the literature, and so correctly assigning the sequencing information can often 

be a challenge, especially as many of the microbes involved in the process have 

not been cultivated (Vanwonterghem et al., 2014) or identified. Adding to this, 

independently isolating and culturing some of these organisms can be difficult 

as some microbes can only grow when co-cultured (Qiu et al., 2004). 

 

There are two opposed theories regarding microbial community dynamics; 

neutral and niche. Both theories propose reasons for the observed formation of 

microbial communities. Neutral theory suggests that stochastic process 

determine the microbial dynamics, whereas niche suggests that deterministic 

factors influence this (Ofiteru et al., 2010). Few studies using AD systems that 

are run under the same conditions have been carried out to investigate which 

theory applies to this model. Vanwonterghem, et al. (2014) conducted such an 

experiment where three replicate lab scale AD systems were run and it was 

concluded that deterministic factors were the most important in shaping the 

microbial community, such as species interactions and operational conditions. 

 

1.4 Methodologies for understanding microbial communities 

1.4.1  Amplicon sequencing 
 

The majority of research into the microbial communities and dynamics of AD 

using DNA sequencing reported to date use the 16S ribosomal RNA (16S rRNA) 

gene for bacteria, or mcrA for methanogens e.g. Razaviarani & Buchanan (2014), 

Jang et al. (2014), Regueiro et al. (2014), Sundberg et al. (2013) and Cardinali-

Rezende et al. (2012). This targeted sequencing method is common for studies 

on microbial communities. The 16S rRNA is present in all prokaryotes and 

contains highly variable sequence regions, along with conserved ones. The 

conserved regions give this method the advantage of amplification using 

universal primers and the variable regions allow for phylogenetic analysis 

(Chan et al., 2011). Limitations associated with PCR amplification include that 

there can often be errors and bias associated with this method. These can 

include preferential annealing between both the primers and the template, 

varying copy numbers of the target, and the production of artefacts (Hongoh et 



 18 

al., 2003). These errors in the process can therefore sometimes give inaccurate 

estimations of the abundance of species in a microbial community. 

 

1.4.2  Quantitative PCR 
 

Quantitative PCR (qPCR) is a molecular method used to both amplify and 

detect changes in specific targets in DNA. Primers can be designed to target 

individual or groups of microbes by using specific target genes, and so this can 

be used to estimate the populations of the selected microbes which contain the 

targeted gene (Kim et al., 2013) i.e. monitor microbial dynamics. This method 

has been used previously e.g. Traversi et al. (2012), but remains susceptible to a 

variety of limitations, as discussed in Chapter 1.4.1. 

 

1.4.3  Metagenomics 
 

There are numerous NGS platforms available to researchers, using different 

methods of detection, each with their own advantages. The use of shotgun 

sequencing eliminates the limitations associated with targeted sequencing 

techniques. Selecting which platform to use is often based on a variety of 

required factors such as read length, speed, volume of data generated (largest 

throughput) or accuracy (Di Bella et al., 2013). Discussed are two platforms used 

in this project. 

 

Ion-Torrent PGM is a sequencing technology where pH changes are detected in 

picowells on integrated circuits. Nucleotides are washed over the well and 

when a nucleotide is incorporated during stand synthesis, hydrogen ions are 

released, and this change in pH is detected (Whiteley, et al. 2012). This 

technology has the advantage that as light detection systems are not required, 

which are often expensive, it makes this technology more affordable. This in 

turn means that this technology is available for individual research groups, 

resulting in a greater reach within the academic research community towards 

complex microbial communities. Drawbacks associated with this sequencing 

platform include short read lengths, at around 200-400 bases, low output 
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compared to other platforms (around 2 Gb) and a greater error frequency in 

homopolymer tracts. 

 

The Illumina HiSeq is another sequencing platform that employs a sequencing 

by synthesis approach. The sample DNA is fragmented, adapters ligated, 

denatured, attached to a flow cell, followed by bridge PCR, resulting in clusters. 

Fluorescently tagged nucleotides are washed over the flow cell and if 

incorporation occurs, the cluster fluoresces at a particular wavelength, 

associated with a nucleotide. This is then cleaved to allow for the next 

nucleotide to be incorporated (Di Bella et al., 2013). Pair end reads are produced 

from the forward and reverse strands. This sequencing platform has the 

advantages of low reagent costs and the highest output of sequencing 

technology (up to 1000 Gb), but the main drawbacks are the long run times and 

short reads, around 2 x 150 bp. 

 

There are other sequencing platforms available such as Roche 454, Sequencing 

by Oligo Ligation Detection (SOLiD), Illumina MiSeq, along with third 

generation sequencing technologies, such as MinIon. 

 

The main limitation associated with the generation of large datasets using NGS 

is the method for analysing these. Generally, sequencing platforms produce 

short reads, and these have to be assembled into contigs. Contigs are 

overlapping sections of DNA, generated using contig assemblers, that attempt 

to join short fragments of DNA together, producing a longer section of DNA. 

The ultimate aim is to create complete draft genomes that would be highly 

informative about the microbes sequenced. Long read sequencing platforms 

such as PacBio are a useful technology that can improve genome assemblies as 

the short reads obtained from other sequencers can be scaffold onto these. 
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1.5  Types of Anaerobic Digesters 

 

There are a variety of AD reactor designs that can be used to break down 

organic wastes to biogas. These systems can vary in size, number of digestion 

vessels, process temperature, and the vessel design is very much dependent on 

the characteristics of the waste materials. Vessel design and operation have a 

significant influence on microbial communities. 

 

1.5.1  Reactor design 
 

1.5.1.1  Single stage digesters 
 

A single reactor vessel is used and the environment is maintained to ensure that 

the microbes in the system are in relatively favourable conditions. This type of 

digester has the advantages such as ease of operation and lower initial capital 

required to construct the system. The drawbacks of single stage digesters are 

that the diverse community of microbes have different optimum pH levels, such 

as the acidogenic bacteria which prefer a pH of around 4, whereas the 

methanogens optimal pH is 7 (Appels et al., 2008). Consequently as the 

methanogens are slow growing organisms, the pH is often tailored to their 

requirements. The sponsors of the project, described within this thesis, 

Clearfleau Ltd, use single stage AD systems (Figure 1.7). 
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Figure 1.7. A process scale AD facility, located at a dairy facility. The digester 

has a 1000 m3 capacity, taking in 200 m3 of effluent daily. 

 

1.5.1.2  Two (or more) stage digesters 
 

Two or more vessels can be used to anaerobically break down organic waste. In 

this type of system, each vessel can be operated under different conditions as 

the microbes involved in the process specialise in different vessels (Lindner et 

al., 2016). For example, those microbes involved in hydrolysis and acidogenesis 

(discussed in Chapter 1.2) often accumulate in one vessel, at a pH of around 4, 

whereas those involved in the later stages of the process, e.g. methanogens can 

accumulate in the last digestion vessel (with a pH around 7), i.e. community 

partitioning. This community self organisation means microbes can be in 

favourable environments, which should ensure that all the biodegradable 

components of the waste get utilised, increasing the biogas output per unit of 

feedstock. Challenges associated with this type of system can be that the capital 

input and running costs are higher than single stage systems. 
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1.5.1.3  Fixed film AD 
 

This is a process where inert materials (such as plastic) are used allowing for 

bacteria to attach and colonise, forming biofilms. The waste streams flow over 

the fixed bacterial colonies in the reactor, which break down the organic 

materials in the liquid. This process has the advantage that as the microbes are 

fixed onto a surface, they are not washed out, ensuring that the biomass in the 

system remains high, along with having a high surface area. Given this, the 

retention time of the system decreases, as there are high numbers of microbes to 

break down the organic waste. A drawback of this system is the low tolerance of 

suspended solids or particulate matter. 

 

1.5.1.4  Plug Flow 
 

Plug Flow AD systems are one of the most basic types of digesters. Waste 

materials are placed into one end of the plug, and this forces the material to flow 

through and is removed from the other end at the rate in which material is 

placed in. The advantage of this type of system is that it is a simple design and 

therefore lower capital and running costs than other digesters. These types of 

systems are more appropriate for feedstocks of high particulate or suspended 

solids content. 

 

1.5.1.5  Upflow anaerobic sludge blanket (UASB) 
 

In this process, a blanket of granular sludge is suspended in a tank and waste 

materials flow upwards through the blanket. As the material flows through the 

suspended blanket, it is broken down by the microbes. As the AD system 

becomes established, the microbes form granules where microbes attach and 

organise to form a cross-feeding network. Those microbes on the outside of the 

granule perform such processes as fermentation, and those in the middle 

perform methanogenesis (Li et al., 2015). This process is beneficial as it ensure 

the microbes remain in favourable conditions, e.g. ensuring low hydrogen 

levels. 

 

 



 23 

1.5.2  Reactor considerations 
 

1.5.2.1  Temperature 
 

AD systems are generally run either as mesophilic (30-40 °C) or thermophilic 

(50-60 °C), depending on the feedstock characteristics. Mesophilic conditions 

have the advantage that less energy input is required to ensure the temperature 

of the system is maintained and there is often a greater diversity of microbes 

when run at this temperature (Yu et al., 2014), with microbial diversity being an 

important factor in AD. Thermophilic conditions have the advantage that the 

breakdown of the waste to biogas is quicker than mesophilic, allowing for 

higher organic loading rates (Moestedt et al., 2014) and there is greater pathogen 

kill compared to mesophilic. Thermophilic AD has been shown to reduce certain 

pathogens such as Escherichia coli and Salmonella species below detectable limits 

(Lloret et al., 2013). The drawbacks associated with thermophilic conditions are 

that greater amounts of energy are required to maintain the temperature, 

meaning that higher running costs are linked with this method. It is common for 

low solid waste materials to be placed into a mesophilic AD system, whereas 

high solid wastes tend to go into thermophilic systems. 

 

1.5.2.2  Batch or continuous flow 
 

Batch AD is when organic material is placed into an AD system and left until 

this has been broken down by the microbial community. The process is then 

stopped and restarted with new waste material, i.e. discontinuous. This is 

generally used for high solid based waste materials. Continuous AD is when 

waste materials are continually placed into the digester. This method has the 

advantage over the former that as the system is continually run, and does not 

require to be emptied and set up regularly, there is a consistent gas output. 

 

1.5.2.3  Retention Time 
 

The retention time is very much dependent on the type of digester system used, 

the size of the vessel and the characteristics of the feedstock. For example, 

feedstocks that are of low strength i.e. low levels of organic content (or low COD 
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level), will be placed into an AD system at a high rate, therefore the material 

will remain the system for a shorter period of time, compared to feedstocks of 

high organic content. Additionally, waste materials that are of high solids 

content will have a higher retention time as these materials can take longer to 

breakdown. 

 

1.5.2.4  Mixing 
 

The level of mixing in AD systems is again influenced by the reactor design and 

the feed characteristics. Mixing is an important process in the running of AD 

systems to ensure that the material in the digester is homogenous, ensuring that 

there is an equal distribution of temperature and that the microbes can access 

the waste. There are various methods of mixing that can be used including 

hydraulic, mechanical and pneumatic. The mixing process can account for a 

large proportion of the AD running costs, but has been shown to be beneficial in 

gas output, releasing gas from the liquid phase to the gas phase (Lindmark et 

al., 2014). 

 

1.6  Measured and controlled parameters in AD 

 

There are several different industrial standard measurements that can be taken 

on a daily basis in AD which act as indicators that the systems are running 

efficiently. These can include gas flow, methane composition, pH, organic acids 

and chemical oxygen demand. 

 

1.6.1  Biogas 
 

Gas volume and biogas composition are key indicators of system performance. 

This is because the biogas is the end product of the digestion process. Therefore 

a high gas volume and high methane composition, relative to the vessel size and 

feedstock are often indicators that the biology of the system is working well. 

Methane content is dictated too by the composition of the waste material. High 

fat and protein levels produce a methane composition of around 60-70 %, 

whereas high sugar wastes usually yield around 50 % methane. This is because 
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both fats and protein have higher specific methane yields than carbohydrates 

(Alves et al., 2009). 

 

1.6.2  pH 
 

pH is an important parameter that needs to be measured and controlled, 

especially in single stage systems. Methanogens in the system have an optimal 

pH of 6.8 – 7.2 (Appels et al., 2008), and so ensuring that the pH remains at least 

7 is imperative to ensure that they are at optimal levels. If the pH drops below 7, 

an alkali solution such as sodium hydroxide is usually added. pH can 

sometimes act as an indicator of system imbalance. As organic waste is broken 

down to acetic acid, along with other volatile fatty acids (VFAs), there is only a 

small group of microbes that can utilise these, such as acetogens and 

methanogens. If there are insufficient microbes to use these products, then VFAs 

can start to accumulate, again causing the pH of the system to become more 

acidic. pH alone is not always a reliable measurement of system stability as the 

buffering capacity of the waste material input into the system, along with the 

AD system buffering capacity, could ensure that even though there potentially 

could be high VFA levels, the pH remains around 7 or above. 

 

1.6.3  Temperature 
 

AD systems can be run at different temperatures according to the waste that is 

placed into the system. As discussed in Chapter 1.5.2.1, AD systems are 

generally run either as mesophilic or thermophilic. It is important to ensure that 

the AD system is run at a constant temperature as the microbes in the system 

have acclimatised to that particular temperature, and changes in this could 

affect the trophic network of the microbial community. This in turn could, for 

example, cause an accumulation of organic acids, due to these not being utilised. 

It is however, not uncommon for fluctuations in the AD system temperature to 

occur, especially due to seasonal temperature variations. Regueiro et al. (2014) 

showed how a change in temperature altered the microbial community of a 

stable digester. In this experiment the digesters were run at a stable temperature 

(35 °C), before the temperature was dropped (17 °C) and then subsequently 
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increased to 35 °C. During stable operating conditions the bacterial community 

was represented mainly by the phyla Firmicutes and Bacteroidetes, with 

Syntrophomonas and Clostridium the main genera. When the temperature was 

decreased, the Bacteroidetes phyla increased, but Firmicutes decreased, mainly 

Clostridium and Syntrophomonas. The methanogen community also showed 

changes, where Methanosaeta dominance converted to Methanosarcina during the 

temperature change. 

 

1.6.4  Organic Acids 
 

Organic acid, or VFA measurements in AD provides information on the process 

efficiency for the AD systems. Organic acids are the intermediate products in 

the process, and some are directly utilised by methanogens, so having an insight 

into the concentrations in the system is key. Increased levels of organic acids can 

be an indication of system imbalance, usually with the methanogens, causing a 

decrease in pH (Franke-Whittle et al., 2014). High levels of these organic acids 

can be toxic to methanogens (De Vrieze et al., 2012), so generally keeping the 

levels low is usually preferred. AD operators favour low levels of organic acids 

as it shows that the organic waste is being utilised efficiently by the microbial 

consortia. High organic acid levels are often perceived as unfavourable, but 

there can be exceptions to this. It has been noted that high organic acid levels 

actually enhance system performance, but this again can be dependent on the 

composition of the waste. Commercial kits, usually colourimetric, are available 

to measure the levels of organic acids, where fatty acids in an acidic 

environment react with diols to produce fatty acid esters, which are then 

reduced by iron salts to form a red colour.  These kits provide a rapid 

measurement, but they do not offer detailed information on individual organic 

acids, usually just the acetic acid content. Measuring individual organic acids is 

an insightful parameter as it allows for detailed information on each VFA, and 

these can act as indicators of system performance. For example, Wang et al. 

(2012) reported that when the ratio of propionate to acetate was greater than 1 

the methane output stopped, but at a value of <0.08 the methane output 

continued. Therefore, more detailed information on each VFA can be an 

indication on AD performance and efficiency. 
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1.6.5  Chemical Oxygen Demand 
 

Chemical oxygen demand (COD) is the measure of a liquid that uses oxygen in 

the decomposition of organic matter. This test, usually colourimetric, is used to 

measure both the COD of the feed and the digestion vessel, where a sulphuric 

acid and potassium dichromate solution reacts with oxidisable material, 

resulting in a green colouration. The COD of the feed is required as this value 

can be used to determine the rate at which the organic waste is loaded into the 

digestion vessel (calculated as a feed to mass ratio, F:M), if a continuous feed 

system. A high COD feedstock would be added in at a lower rate, therefore 

increasing the retention time compared to a low COD of organic material. The 

COD of the reactor is a measurement that is used to determine if the organic 

waste placed in the system has been utilised. Typically a 95 % reduction in COD 

of the feedstock compared to the liquid removed from the system would be 

expected. 

 

1.6.6  Feed Rate & Composition 
 

The organic loading rate (OLR) is important to control to ensure that the AD 

systems are not overloaded with organic waste.  Overloading the system often 

results in reactor acidification, and therefore a decrease in performance 

(Akuzawa et al., 2011). This in turn causes a build up of VFAs meaning that the 

balance between the VFA producers and consumers is disrupted. Where 

possible, controlling the composition of the feedstock being placed into the 

system is another important factor. The microbial community has the ability to 

adapt to a wide range of feedstocks, if given adequate time to do so. It is 

common practice for AD systems to be fed with mixed composition feedstocks 

(co-digestion) as this can provide additional nutrients (Park and Li, 2012), often 

resulting in increased biogas outputs. However, ensuring that feedstocks remain 

relatively constant and that there are no abrupt changes is essential. De Francisci 

et al. (2015) showed that when AD systems are overloaded with different 

substrates, e.g. carbohydrates, proteins or lipids, the microbial communities 

change and this can have a negative effect on the system performance. For 

example, when the feedstock was supplemented with carbohydrate, Lactobacilli 



 28 

numbers greatly increased, but such large changes in microbial populations 

were not observed with the additions of either proteins or lipids. 

 

In some applications, waste streams can be processed before being placed into 

the system, referred to as pre-treatment methods. These can include thermal, 

chemical and mechanical pre-treatment methods, that are designed to enhance 

the digestion process, such as hydrolysis (Ariunbaatar et al., 2014). Some 

feedstocks can also be pasteurised prior to being placed into the digester. This 

practice would mean that the AD would be a closed system as there is no input 

of microbes into the digester, whereas open systems have a continual influx of 

microbes, which could change the microbial community composition. 

 

Co-digestion is often used to ensure that there is a sufficient mixture of both 

macro- and micronutrients. The C/N ratio is measured and controlled as high 

levels of nitrogen can lead to an accumulation of ammonia, which has an 

inhibitory effect on methanogens (Chen et al., 2008), resulting in a decrease in 

methane output and increase in VFAs (Rajagopal et al., 2013). There are 

numerous proposals on how high ammonia levels have an effect on 

methanogens, such as that hydrophobic ammonia may diffuse into the cell 

causing a proton imbalance or that the ammonia may inhibit specific enzymes 

involved in methanogenesis process (Rajagopal et al., 2013). High ammonia 

levels have also been suggested to affect other microbes as well, such as 

aceticlastic microbes (Calli et al., 2005) In contrast, if the nitrogen level is too 

low, then there is not enough for microbial growth requirements, and so 

nitrogen additions need to be made to the system. Ammonia can also act as a 

buffering agent allowing for stable operating conditions, even if there are large 

fluctuations in VFAs, shown in Eq 1.9 (Zhang et al., 2013).  

 

Eq. 1.9.   CxHyCOOH + NH3 . H2O                   CxHyCOO- + NH4+ + H2O 

 

1.6.7  Micronutrients 
 

Micronutrients are elements needing to be controlled in the AD process as these 

have key functions.  Micronutrients (or trace elements) are essential as these 

elements are found in enzymes that catalyse the fermentation and methane 
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production reactions (Zandvoort et al., 2003), leading to methane formation. 

Some micronutrients that are added include Nickel, Iron, Cobalt, Selenium and 

Tungsten (Banks et al., 2012, Jiang et al., 2012). For these elements to be effective 

they must be in a bioavailable form and generally in low concentrations, e.g. 

0.16 and 0.22 mg kg-1 of feedstock for Selenium and Cobalt respectively (Banks 

et al., 2012). 

 

1.7  Aims 

 

The aim of this project is to determine the microbiology of AD systems using 

metagenomics and to potentially correlate this with process data. To date there 

is a limited understanding on what the microbes and their dynamics are in 

anaerobic digesters. When operating these systems, a number of parameters are 

measured and controlled, and these are used to identify if the AD system is 

running efficiently. It is possible however that these data might not be 

providing a true reflection of system performance. Understanding of the 

microbes involved in the AD process could develop the potential to allow for 

better control, such as improving stability, efficiency, mainly gas output and 

breakdown of waste based on feed composition as well as microbial markers 

that are indicative of system performance. Additionally, an understanding of 

the microbial dynamics and interactions could be beneficial in improving AD 

systems, therefore the following questions need to be addressed: 

 

• Is there a core group of microbes common to the AD process? 

• How do the microbial communities adjust to particular feedstocks? 

• Are there microbial markers that indicate system performance? 

 

To investigate the microbial communities involved in AD, along with other 

process parameters, one objective was to design and develop a lab scale AD 

system that modelled a full scale digester, as those designed by the sponsors of 

the project, Clearfleau Ltd. This company uses single stage anaerobic digesters 

for the management of liquid waste materials. It was important that the digester 

closely mirrored the larger systems to ensure that it was a fair reflection of the 

full scale industrial process. An advantage of using a lab scale system, instead of 
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collecting samples from an established AD system was that it ensured samples 

could be collected as required and processed immediately, along with allowing 

unique experiments to be performed. 

 

Secondly, the monitoring of the microbial changes along with other parameters 

that are required to be measured in the AD process can include pH, individual 

VFAs, Organic Acids, Chemical oxygen demand (COD), gas flow and gas 

composition. All these parameters offer indications of system performance. 

Methods to measure process parameters needed to have local protocols put in 

place, such as those required for gas and VFA analysis.  

 

Finally, samples needed to be sequenced using metagenomics to determine the 

microbial communities involved in the AD process. Methods to analyse the 

large datasets generated by DNA sequencing technologies were also required to 

be developed.  
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2 Materials & Methods 

2.1  Digester set up and operation 

2.1.1  AD operation 
 

The lab scale, single stage anaerobic digester (Figure 2.1), with a 30 L working 

volume, was constantly mixed via a peristaltic pump (Rapide R8, Verderflex), 

with a flow rate of 300 L/h (10 x turnover/hour). The temperature was 

maintained at 35 °C (± 0.1 °C) via a heating plate (UC150, Stuart) and controlled 

via a custom designed temperature feedback system. The pH of the digester was 

logged and controlled (Hach Lange) using a 50:50 mix of 32 % NaOH solution 

and saturated Na2CO3 solution via a peristaltic pump to ensure the system 

remained at a constant pH 7. The feedstock was continuously added using a 

peristaltic pump (i150, ipumps). Water and small molecules, below 20 nm were 

removed from the system by using tangential flow filtration (3006805, Berghof). 
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Figure 2.1. Cross section of the lab scale AD system final design. The 30 Litre 

stainless steel digestion vessel (A) is connected to a peristaltic pump (B) which 

mixes the material in the digester. A temperature probe (C) is connected to a 

heat block (D) to maintain a constant temperature and a pH probe (E) is 

connected to a pump that inputs caustic into the system (F). Feed is also 

introduced into the system via a peristaltic pump (F). The biogas is released via 

a gas out line (G) connected to a gas flow meter and GC. Water is removed 

from the system using a membrane (H) and the direction of flow in controlled via 

a valve (I). Digester samples can be collected from the sample port (J). 
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2.1.2  Inoculum 
 

For each experiment, anaerobic digestate was collected from a local domestic 

wastewater treatment facility; Yorkshire Water Naburn, York. The sample was 

collected from an outlet pipe coming from a post-digestion holding tank, which 

contained the digestate (prior to a dewatering step). 30 litres of the AD material 

was collected in a sealed plastic barrel. The material was immediately 

transported to the lab where it was poured into the digestion vessel. The AD 

material was poured over a metal sieve (mesh size of 5 mm) to ensure that no 

large solid material was introduced into the digester.  

 

2.1.3  Feedstock storage and input 
 

2.1.3.1  Storage 
 

Feed obtained from manufacturing sites was collected in sealed food grade 

barrels and stored at 4 °C.  

 

2.1.3.2  Pasteurisation 
 

The biodiesel waste was pasteurised prior to use. The 30 L barrel of waste was 

heated to 60 °C using an immersed heating element, held for 30 minutes, then 

chilled back to 4 °C. 

 

2.1.3.3  Artificial feedstock 
 

The artificial feedstock was made using a mixture of skimmed milk powder (400 

ml/L), malt extract powder (300 ml/L), Coffee-mate ® powder (a mixture of 

glucose and vegetable fats, 200 ml/L) and yeast extract powder (100 ml/L).  All 

components were made up at 100 g/L using tap water. 
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2.2  Process Data 
 

2.2.1  Gas Flow and composition 
 

For experiment one (Chapter 4.4.1) and two (Chapter 4.4.2), the flow of biogas 

produced by the AD system was measured using a gas flow meter (EW-32707-

02, Cole-Parmer) and recorded via a data logger at 10-minute intervals (ACD-20, 

Picolog). Gas composition was measured once daily by GC-TCD (8610C, SRI) 

using a 3’ x 1/8” 5A molecular sieve column (8600-PK2A, SRI). The GC was 

calibrated over a range of methane concentrations, varying from 30 % to 80 %. 

Methane standards were created using Nitrogen and Methane in Teflon bags. 

The initial oven temperature was set at 40 °C, held for 2 minutes after injection, 

increased to 200 °C at a rate of 20 °C/min. 100 µl of sample was injected using a 

syringe that has been flushed three times with sample prior to loading. Helium 

(Grade A, BOC) was the carrier gas at a flow rate of 10 ml/min. Peak analysis 

was carried out using PeakSimple software (SRI). 

 

For experiment three (Chapter 4.4.3), the biogas flow was measured using a gas 

flow meter calibrated to a methane and carbon dioxide mix (WZ-32648-06, Cole-

Parmer) and was logged at 10-minute intervals (ACD-20, Picolog). Gas 

composition was measured as described above, with the exception that the 

initial oven temperature was set at 60 °C, held for two minutes, and then 

increased to 220 °C. 100 µl of sample was loaded onto the column by an auto 

sampler (SRI). The GC was calibrated using a mix of Carbon Dioxide and 

Methane, at three different concentrations, which were run in triplicate 

(displayed in Figure 2.2 and Table 2.1). 
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Figure 2.2. Calibration data for methane and carbon dioxide standards, run in 

triplicate. 

 

 

Gas Range (%) R2 Value 

Methane 39.8 – 70.2 0.986 

Carbon Dioxide 19-8 – 40.2 0.991 

 

Table 2.1. Calibration data for methane and carbon dioxide showing the 

percentage range of each gas standard and R2 value, when using the selected 

method. 

 

 

2.2.2  Volatile Fatty Acids 
 

Samples were obtained from the lab scale reactor using the sample tap. 30 ml of 

digestate was discarded before another 30 ml collected. Digester sample aliquots 

(2 x 2 ml) were centrifuged at 12,000 x g for 8 minutes, after which the 

supernatant was filtered through a 0.45 µm filter (Millex). The pellet fraction 
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was used for DNA extraction (Chapter 2.3) while 1 ml of the supernatant was 

acidified using 15 µl phosphoric acid, then 2 µl was injected onto a GC-FID 

(Chrompack 9000).  

 

A Nukol Capillary column, 30 m x 0.25 mm (size x I.D.), df 0.25 um (24107, 

Sigma) was used to separate VFAs. The initial oven temperature was 100 °C, 

increased to 200 °C at a rate of 8 °C/min, then held for 10 minutes. Helium 

(Grade A, BOC) was used as the carrier gas with a flow rate of 5 ml/min. The 

injector and detector were set at 230 °C. Peak analysis was carried out using 

PeakSimple software (SRI). 

 

This method is similar to that used by Elbeshbishy & Nakhla (2012) and 

Cysneiros et al. (2012), and was capable of detecting Acetic acid, Propionic acid, 

Isobutyric acid, Butyric acid, Isovaleric acid, Valeric acid, Isocaproic acid, 

Caproic acid and Heptanoic acid. The system was calibrated using dilutions of 

Acetic acid (Figure 2.3) as well as dilutions of a Volatile Acid Mix (46975-U, 

Sigma) composed of Acetic acid, Propionic acid, Isobutyric acid, Butyric acid, 

Isovaleric acid, Valeric acid, Isocaproic acid, Caproic acid and Heptanoic acid 

(Figure 2.4 and Table 2.2). 
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Figure 2.3. Calibration graph for acetic acid showing a linear response, on a log 

scale. 

 

 

 

VFA Range (ug) R2 Value 

Acetic acid 0.02 - 12.01 0.998 

Propionic acid 0.02 - 1.55 0.998 

Isobutyric acid 0.03 - 1.78 0.998 

Butyric acid 0.03 - 1.78 0.998 

Isovaleric acid 0.03 - 2.11 0.999 

Valeric acid 0.03 - 2.11 0.999 

Isocaproic acid 0.04 - 2.33 0.998 

Caproic acid 0.04 - 2.33 0.998 

Heptanoic acid 0.04 - 2.66 0.997 

 

 

Table 2.2. Individual VFA GC analysis showing the range of concentrations 

used to calibrate the instrument, and R2 values, when run in triplicate. 
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Figure 2.4. Calibration graphs for each Volatile Fatty Acid, on a log scale using 

dilutions of the standard VFA mix. 
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2.2.3  Organic Acids and Chemical Oxygen Demand 
 

The test to determine concentration of organic acids was performed using the 

LCK 365, and the COD was measured using LCK 514 and LCK 914 kits (Hach 

Lange) according to the manufacturers instructions using filtered digestate 

samples. 

 

2.3 Molecular methods for community analysis 

2.3.1  DNA Extraction 
 

2.3.1.1  QIAamp & SoilMaster DNA extractions 
 

Genomic DNA was extracted using the QIAamp DNA Stool Minikit (51504, 

Qiagen) and SoilMaster DNA extraction kit (SM02050, Epicentre), according to 

the manufacturers instructions. 

 

2.3.1.2  Mo-Bio Powersoil DNA extraction 
 

Digester samples were taken from the sample port and were processed as 

described in Chapter 2.2.2. DNA was extracted using the PowerSoil DNA 

extraction kit (12888, MO-BIO), according to the manufacturers instructions 

with the following exceptions. During the bead beating stage samples were 

vortexed for 15 minutes instead of 10 minutes. Additionally, at step number 16 

of the protocol, the centrifugation time was extended to 1 minute instead of 30 

seconds. At step 18, the centrifugation was extended to 2 minutes instead of 1 

minute. At step 21, the centrifugation time was extended to 1 minute. DNA was 

quantified by absorbance at 260 nm using a Nanodrop Spectrophotometer 

(Thermo Scientific). Samples were stored at  -80 °C. 

 

DNA quality was checked on a 50 ml 1 % agarose gel, using 0.5 g agarose, 50 ml 

1x TAE and 2.5 ul EtBr (10 mg/ml). 10 µl of purified DNA was loaded into each 

well, along with 2 µl DNA loading dye (6x). The gel was run in 1x TAE at 100 

Volts for 40 minutes. 
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2.3.2  Ion Torrent PGM Sequencing 
 

Samples were sent to the Technology Facility, University of York to be 

sequenced. All reagents and equipment were obtained from Life Technologies 

unless stated otherwise. Libraries were prepared for metagenomic sequencing 

using the Ion Xpress Plus gDNA fragment library kit, with Ion Shear Plus 

reagent fragmentation for 300 base read libraries, according to the 

manufacturers instructions. Briefly, 1 µg of each DNA sample was fragmented 

for 6 minutes using the Ion Shear Plus protocol, followed by an enzymatic 

fragmentation and adapter ligation. Fragment sizes were determined using the 

Agilent Bioanalyzer with Agilent High Sensitivity DNA Kit. The average 

fragment size was 400 bp. Barcoded adapters were ligated and nick repair 

performed, and run on an E-gel SizeSelect 2% Agarose Gel (Invitrogen), with 

DNA fragments of 400 bp extracted. Five rounds of PCR amplification was 

performed and was accessed using the Agilent High Sensitivity DNA Kit with 

the Agilent 2100 Bioanalyser. Libraries were then pooled at eqimolar 

concentrations and diluted to 26 pM, ready for sequencing. Sequencing template 

preparation was performed using the Ion OneTouch system in conjunction with 

the Ion PGM Template OT2 400 Kit, and sequencing was performed on an Ion 

Personal Genome Machine System, using an Ion 318 Chip v2 with the Ion PGM 

Sequencing 400 Kit. 

 

2.3.3  Quantitative real-time PCR 
 

2.3.3.1 Primer Design 
 

Primers were designed to detect eight different microbial species (Table 2.3), 

using Primer-Blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). 

 

End point PCR was carried out with each primer pair to ensure a single band 

was formed for each selected target. The total volume for each PCR reaction was 

50 µl, which consisted of 100 ng DNA, 0.1 mM forward primer, 0.1 mM reverse 

primer, 25 µl 2x Mastermix (Thermo Scientific) and made up to 50 µl using 

water. PCR amplification was carried out using a Tpersonal thermocycler 

(Biometra), where initial denaturation was at 95 °C for 2 minutes, followed by 
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94 °C for 30 seconds, 57 °C for 30 seconds and 72 °C for 30 seconds for 30 cycles 

and a final extension at 68 °C for 5 minutes. The PCR products were run on a 50 

ml 2 % agarose gel, using 1 g agarose, 50 ml 1x TAE and 2.5 µg of EtBr (10 

mg/ml). 10 µl of sample was loaded into each well with 2 µl of 6x DNA loading 

dye, and run in 1x TAE for 40 minutes at 100 Volts. 

 

2.3.3.2 qPCR 
 

For qPCR, 10 µl SYBR Green mastermix (Applied Biosystems), 0.5 mM forward 

primer, 0.5 mM reverse primer, 25 ng DNA and made up to 20 µl using water, 

assembled in the qPCR plate. Each DNA sample was run in triplicate on a 

StepOnePlus Real Time PCR system (Applied Biosystems). The holding stage 

was 95 °C for 20 seconds, followed by the cycle stage, 95 °C for 3 seconds, then 

60 °C for 30 seconds, for 40 cycles. 
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2.3.4  Illumina HiSeq Metagenomic Sequencing 
 

DNA samples were sent to the Leeds Institute of Molecular Medicine to be 

sequenced using two lanes on the Illumina HiSeq 2500 sequencing platform. 

The libraries were prepared using the NEBNext Ultra DNA Library Prep Kit for 

Illumina (E7370, NEB), according to the manufacturers instructions. DNA 

samples were sheared to an average size of 200 bp using a Covaris S2 system 

before Library Prep Kit was used. After the PCR amplification step, fragment 

sizes were determined using the Agilent Bioanalyzer with Agilent High 

Sensitivity DNA Kit. The prepared libraries were run using a HiSeq2500 PE 

flow cell on the Illumina HiSeq 2500 platform. 

 

2.3.5 PacBio Sequencing 
 

DNA samples were sent to the Centre of Genomic Research, University of 

Liverpool to be sequenced using the PacBio sequencing platform. The genomic 

DNA samples were firstly purified using AMPure beads (Agencourt) and the 

quality and quantity was measured using both the Nanodrop and Qubit assay. 

The Fragment Analyser (AAT), using the high sensitivity genomic DNA kit was 

used to determine the average size of the DNA. DNA was treated using the 

SMRTbell library kit (PacBio). Briefly, the DNA was treated with Exonuclease 

V11 at 37 °C for 15 minutes and the ends of the DNA were repaired according to 

the Pacific Biosciences protocol. Sample was treated using DNA damage repair 

mix for 20 minutes at 37 °C, followed by a 5 minutes incubation using end 

repair mix at 25 °C. DNA was ligated to the adapter overnight at 25 °C. Ligation 

was terminated by incubation at 65 °C for 10 minutes followed by exonuclease 

treatment for 60 minutes at 37 °C. The library was then purified using 0.5 x 

AMPure beads and size selected using a 0.75 % blue pippin cassette (SAGE), in 

the range of 15000-20000 bp. The recovered fragments were damage repaired 

again. A Qubit assay determined the recovery of DNA and the Fragment 

analyser determined the average fragment size. SMRTbell library was annealed 

to the sequencing primer (determined by the Binding calculator) and a complex 

made using DNA Polymerase (P6/C4 chemistry). The complex was bound to 

Magbeads and sequencing was done using 360 minute movie time on the Pacific 

Biosciences RS11 instrument. 
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2.4 Bioinformatics 

2.4.1  MG-RAST 
 

Sequencing data obtained from the Ion Torrent PGM sequencing platform was 

uploaded into MG-RAST (Meyer et al., 2008). The data was analysed using 

default settings. Briefly, the annotation database used was M5NR, the maximum 

e-Value cut off was 1e-5 and the minimum identity cut off was 60 %. 

2.4.2 Contig assembly 

 

Contigs were assembled from the sequencing data using Megahit (Liu et al., 

2015), using the default parameters. For the alternative assembly strategy, 

Megahit, IDBA-UD (Peng et al., 2012), Newbler (Roche) and Minimus2 (Sommer 

et al., 2007), were all used. Briefly, the contigs were formed by dividing the 

Illumina sequencing data into three groups (1-4, 5-8, 9-11) and then run through 

IDBA-UD, in parallel with all the 11 samples through Megahit. The contigs that 

were over 2 Kb were merged with the PacBio reads using Minimus 2. Any 

contigs smaller than 2 Kb were reassembled using Newbler before being 

reassembled with the other contigs. 

 

2.4.3 Clustering 

2.4.3.1 K-means clustering 

 

Contigs were clustered using the Sci-Kit Learn module for Python, using an 

input cluster number of 256. 

 

2.4.3.2 Custom clustering method 
 

A custom script was written for clustering the contigs. Briefly, the standard 

deviation of the difference of the log value of abundance for all time points 

between pairs of contigs was calculated, based on the normalised data. If the 

standard deviation was greater than 0.035 then the query and test are judged to 

be colinear. See Appendix A for custom script. 
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2.4.4 Prokka 
 

Open Reading Frames (ORFs) from the clusters were assigned using to Prokka 

(Seemann, 2014), using the default settings. 

 

2.4.5 Metabolic activity 
 

The ORFs from each cluster were uploaded to the KASS KEGG (Moriya et al., 

2007) server (http://www.genome.jp/tools/kaas/) to determine the genes 

within these clusters, denoted to be involved in methane metabolism. 

 

2.4.6 BLAST  
 

2.4.6.1 Manual BLAST 
 

Manual BLAST searching of ORFs, as assigned by Prokka, was conducted using 

the NCBI standard protein BLAST (Altschul et al., 1997). 

 

2.4.6.2 Automated BLAST 
 

The automated BLAST search was carried out using a custom script whereby 

the top match for each ORF was returned, displaying the function of the 

potential gene, the organism it belonged to and the e value. Any search that was 

returned as a hypothetical protein was excluded. See Appendix B for custom 

script. 

 

2.4.7 Phylogeny 
 

A core set of genes associated with 30 methanogens (see Appendix C) was 

selected using MicroScope (Vallenet et al., 2013) 

(http://www.genoscope.cns.fr/agc/microscope/home/) using an MICFAM 

parameter of 50/80. A BLAST database of these sequences was generated and a 

list of common core genes for each cluster to be placed in a phylogeny was 

retrieved and edited to form a FASTA file of concatenated genes for both 

reference and query species. This file was loaded into Clustal X (Larkin et al., 



 46 

2007), to generate an alignment and tree file that was visualised using FigTree 

(v1.4.2). 

 

2.4.8 Genome mapping 
 

The specified reference genomes were downloaded from the NCBI database and 

loaded into Double Act (http://www.hpa-

bioinfotools.org.uk/pise/double_act.html) along with the cluster sequence data. 

The output file from Double Act, along with the reference genome and cluster 

sequence data were loaded into Artemis Comparison Tool (ACT) (Carver et al., 

2005), to visualise the comparison. 
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3 Lab scale digester construction 

 

One aim of the project was to design and construct a lab scale anaerobic digester 

that would provide a means to monitor the dynamic changes of the microbial 

communities involved in AD, along with measuring other factors, such as 

process data.  

 

To do this, a lab scale anaerobic digester was designed and constructed, with the 

aim of ensuring that it modelled the full scale system, built by the sponsors of 

the project, Clearfleau Ltd. This company uses single stage anaerobic digesters 

for the management of low solids liquid waste materials e.g. confectionary, 

biodiesel and dairy wastewaters. These systems are designed to have a solids 

content ranging between 2 – 3 %, and can vary in size, depending on the output 

volume of wastewaters and composition of the feedstock. The size of Clearfleau 

process scale digesters ranges between 1500 – 5800 m3, with feed inputs ranging 

from 42 – 275 m3  per day (data taken from recent Clearfleau built digesters). 

Clearfleau Ltd also have a pilot scale AD system that is used on site to trial the 

suitability of feedstocks, which is a scaled down version of the process scale 

digesters, with a volume of 8 m3. Importantly, as the majority of feedstocks are 

from food processing sites, the microbial load in the feedstock is minimal. This 

means that essentially no microbes are added into the system, which is 

beneficial when studying the microbial compositions of AD, as this ensures 

there are no fluctuations or changes occurring because of external microbes 

added. This in comparison to other AD systems that have an influx of microbes 

from the input material (e.g. domestic wastewater), and therefore the 

community structure would be highly influenced by the continual addition of 

microbes. It was important that the lab digester closely mimicked the larger 

systems to ensure that it was a fair reflection of the full scale industrial process.  

 

A critical part of this process is the solids and microbe retention within the 

system. This is achieved on the pilot scale unit using a Cavitation Air Flotation 

Tank (CAFT) system (as described in Chapter 3.2), where reactor sludge is 

vigorously mixed with air and polymer, causing the solids and microbes to 

aggregate and float. This material can then be returned into the digestion vessel 
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to ensure that the microbes remain in the AD system and the solids are returned 

as they require a longer retention time to be biologically degraded. 

 

An advantage of using a lab scale model, instead of collecting samples from an 

established AD system, is that samples collected can be processed immediately, 

which is important if transcriptomics or metabolomics studies are to be 

conducted, especially as RNA and metabolites are unstable. Additionally, the 

lab scale system allows for unique experiments to be performed, where process 

parameters can be varied, such as increasing feed rates beyond normal practice. 

These sorts of experiments are not feasible at pilot or process scales due to costs, 

whereas the lab scale systems can be easily restarted if required. 

 

3.1  Lab Scale AD system 

 

The design and construction of the lab scale system, in collaboration with the 

Biology Mechanical and Electronic Workshops, University of York was an 

extensive process that involved much experimentation to ensure the lab scale 

system mimicked those of process scales in terms of layout and how they were 

run. The suggested digester layout information, based on the process scale 

system, was provided by Clearfleau Ltd. 

 

The digester unit, which is effectively a membrane bioreactor (Xiao et al., 2015), 

was a modified stainless steel stockpot, with a 36 litre capacity, giving a liquid 

working volume of 30 litres. To this, a pH probe, with feedback connected to a 

pump that added an alkali solution, to ensure the pH remained around 7.  A 

temperature probe, connected to a heat block was used to ensure the 

temperature remained at the set temperature. A gas out pipe and inlet ports for 

feed and caustic solution were all installed. A peristaltic pump was selected as 

the method for mixing the system. Figure 2.1 shows a diagrammatic view of the 

digester layout including the dewatering system used in the final design, 

tangential flow filtration, discussed in Chapter 3.2.2, and Figure 3.1 is a photo of 

the system. 
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The main challenge associated with the designing of the lab system was the 

issue of scaling down to a 30 litre unit. Such challenges include that at process 

scale a chopper pump is used to circulate and mix the reactor content, whereas 

at lab scale a peristaltic pump had to be used, as this gave the required flow 

rates. The two pumps work in a different manner, potentially having a different 

effect on the sludge material. Additionally a heat exchanger is used on larger 

systems, but for the lab unit, a heat block had to be used, as this was an 

appropriate size for a scaled down system. Level sensors are also used in the 

larger systems as an estimation of the volume within the reactor, but this did 

not work at lab scale, and finally a CAFT system was used as a method of 

dewatering, but again, this did not work at the lab scale (discussed in Chapter 

3.2.1). Tangential Flow Filtration (TFF) was used as an alternative for 

dewatering. The continuous addition of feed is another key feature of the AD 

systems, which is a challenge when scaling down, especially as a low flow 

pump and small tubing is required. These factors demonstrate some limitations 

of scaling down and therefore on the lab scale AD unit. 
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Figure 3.1.  The lab scale anaerobic digester. The 30 Litre stainless steel 

digestion vessel (A) is connected to a peristaltic pump (B) which mixes the 

material in the digester. A temperature probe (C) connected to a heat block (D) 

is used to maintain a constant temperature and a pH probe (E) is connected to a 

pump which inputs caustic into the system (F). Feed is also introduced into the 

system via a peristaltic pump (F). The biogas is released via a gas out line (G) 

connected to a gas flow meter. Water is removed from the system using a 

membrane (H). 
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3.2  Dewatering methods 

 

The designing and construction of the lab scale dewatering system required 

several different methods to be trialled. This is because Clearfleau’s digesters 

use a CAFT system, but at the lab scale, this did not operate as expected 

(discussed in Chapter 3.2.1), and so an alternative method, tangential flow 

filtration was trialled (Chapter 3.2.2). The removal of water from the system is to 

ensure the volume of the digester remains constant, and is especially important 

when dealing with low solids/high volume liquid wastes. Retaining the 

microbes in the system is important, especially for AD systems that have a 

liquid material input, which have a low solids content and a short HRT. This is 

because methanogens are slow growing organisms, and if digester material was 

just removed directly from the system, the methanogen abundance would 

decrease due to microbial washout and this could reduce the biogas output. 

Discussed in this section are the two different dewatering methods that were 

investigated. 

 

3.2.1  CAFT 
 

The initial plan was to replicate a method that Clearfleau Ltd use on both pilot 

and process scale systems. This is known as a CAFT system. Figure 3.2 displays 

a representation of this system. 

 

The CAFT system is a method for dewatering which utilises air and polymer to 

ensure that microbes and solids can be returned back into the AD system. 

Methanogen activity is reduced when exposed to oxygen (Fetzer et al., 1993) 

and so it could be assumed that using this method could potentially be 

detrimental to the methanogens and therefore methane production. It is possible 

that when flocculation occurs, the majority of organisms are protected from air 

exposure, except those on the surface, explaining why this technology can be 

used. It is also possible that granules could form (McHugh et al., 2003), a 

process which polymer could encourage, which again offers an explanation to 

why this technology can be used. Along with oxygen exposure, another 

drawback of using this method for dewatering is the use of a polymer. Polymers 
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added are usually either cationic or anionic. These cause the solids and microbes 

to flocculate. Whilst the polymer is effective at this for dewatering, the returned 

aggregated solids and microbes can potentially fall out of suspension in the 

system, and when more polymer is used, can exacerbate the issue. This in turn 

means that the microbes in the AD unit could either be at the bottom of the 

reactor or floating on the surface, reducing both the capacity of the reactor and 

its performance. Another drawback of this technology can be the associated 

polymer usage costs, increasing the overall running costs of the AD unit. 

 

The use of a CAFT system has the advantage that when the solids and microbes 

flocculate, they can be scraped off the surface and returned back into the system. 

This ensures that there is no microbe washout, keeping the microbial numbers 

high within the system. 
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Figure 3.2. Cross-sectional representation of the CAFT system used to retain 

solids and microbes whilst removing water. Digester material from the reactor 

(A) is pumped into the first tank (T1), where it is mixed with both air (B) and 

polymer (C). This material then flows over into the second tank (T2) where the 

aggregated and flocculated material (solids and microbes) can be mechanically 

removed from the surface of the liquid by a scraper (D) into the third tank (T3). 

The solids and microbes can then be pumped back into the AD reactor (E), 

whilst the remaining wastewater (F) can be discharged down the drain. 
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A lab scale CAFT system was constructed and trialled, as the aim of the project 

was to mimic that of a full scale system. The lab scale CAFT had a working 

volume of 7 litres. Although several modifications were made to the CAFT to 

ensure it worked as intended, the process was not as efficient at flocculation as 

the full scale systems, as many of the solids remained in suspension. It is likely 

that the aeration on the lab system was not vigorous enough to cause 

flocculation. Examples of modifications made included altering the heights of 

the weir, along with using a more powerful motor to draw the air into the 

system for flocculation, but these changes did not prove to be sufficient. Because 

of this, an alternative method had to be sought. 

 

3.2.2  Membrane Filtration 
 

Tangential flow filtration was investigated as an alternative to the CAFT system. 

The principle of tangential flow filtration is that the material of interest is passed 

through a membrane tube under pressure. Molecules smaller than the selected 

membrane pore size can cross the membrane, such as water, but those greater 

cannot, for example, solids and microbes (Figure 3.3). When used in AD, this 

ensures that the solids and microbes remain in the system. The rate at which 

liquid passes across the membrane, as filtrate, depends upon the rate of flow 

through the membrane, which determines the pressure. Increased flow is 

beneficial in TFF as this ensures there is scouring of the membrane, preventing it 

from becoming blocked. An advantage of using this method is that the pore size 

of the membrane can be selected, giving more control of what material is 

emitted in the filtrate. This ensures particulates such as biomass (Xiao et al., 

2015) and suspended solids are retained in the system, and this is beneficial for 

slow growing anaerobes (Smith et al., 2012). Another clear advantage of this 

method is that it is a closed system, unlike using the CAFT method, and so no 

oxygen or polymer is introduced. 
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Figure 3.3. Cross sectional view demonstrating the principle of tangential flow 

filtration. Digester material is passed along the membrane tube where material 

smaller than the pore size is removed as filtrate, but anything greater is retained 

in the system. 

 

 

 

Three different membranes were trialled to determine if any were suitable for 

water removal in AD (Table 3.1). Subsequently two were found to have a 

membrane inner diameter that was too small, and the rate of water removal was 

not sufficient for the lab scale system.  
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Membrane Material Length (cm) I.D (mm) Pore size 

WaterSep 

Explorer 12 

M-PES 31.2 1 750 kD 

MidiKross TC 

Filter Module 

M-PES 23 1 500 kD 

Berghof PVDF 50 8 30 nm 

 

Table 3.1. A comparison of the membrane properties including the material, 

module length, inner diameter of the membrane and pore size and those trialled 

to determine which was most suitable for water removal in anaerobic digestion. 

 

A third membrane was trialled, which was suitable for the lab system. The 

membrane (Berghof), had an I.D of 8 mm, 0.5 m long and a pore size of 30 nm, 

and performance tests demonstrated sufficient water removal was achieved 

using this membrane. 

 

3.3 Conclusions 

 

The lab scale AD system design enabled it to be used for numerous 

experiments. To ensure that the system was working prior to conducting the 

various experiments, a short commissioning experiment was carried out to 

ensure that all the components were working as intended (data not shown). In 

this run, the AD system was inoculated with sludge taken from a local 

wastewater AD system and fed using biodiesel waste. The various process 

parameters were monitored to ensure that the system was working as 

anticipated. This included checking that the data were being logged correctly, 

the temperature and pH remained within the set limits, the peristaltic pump 

mixed the digester material, the gas composition was monitored to ensure the 

lab scale system remained anaerobic and finally that the dewatering method 

was suitable. 

 

The greatest challenge was developing a scaled down version of an AD system. 

There are some clear limitations to be acknowledged. These include that on the 
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full scale systems, mixing is achieved by a chopper pump, heating maintained 

by heat exchange, dewatering using a CAFT system, all the tubing is oxygen 

impermeable and micronutrients are added. In comparison, for our lab system, 

mixing is maintained by a peristaltic pump. The use of this pump can be a 

drawback because as the rollers go over the tubing it gets compressed, which 

will also compress the digestate. The set temperature was maintained by a heat 

block, and so potentially the heat distribution could be slightly uneven within 

the system. Dewatering was achieved using membrane filtration, which ensures 

the system remains closed and no polymer is used. This is a distinct difference 

between the two systems, but both methods for dewatering retain the microbes, 

ensuring the lab system mimics the process scale. Additionally, silicon based 

tubing was used for the smaller peristaltic feed pump which is oxygen 

permeable. As the experiments described in this work were not for long periods 

(maximum 57 days), micronutrients were not added. 

 

Regardless of the limitations, the lab unit has been proven to be a robust system 

that is comparable to larger systems, and therefore useful for conducting 

predictive experiments. 
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4    Process Data from Lab Scale AD Trials 

4.1  Introduction 

 

The use of laboratory scale AD systems are important to address a wide range 

of issues in this field. These systems therefore are an essential tool in 

understanding the processes behind AD, and ultimately ensuring this 

information is translated to the process scale systems, with the aim of improving 

the AD process. 

 

An advantage of having lab scale systems is the opportunity for novel 

experiments to be conducted, whilst collecting process data and samples for 

metagenomics. Such experiments include, as described in this chapter, (a) 

feeding a lab scale system beyond the normal industrial practice rate, (b) 

starting the feed rates higher than expected and increasing this at a much faster 

rate and (c) running three systems in parallel. The availability of lab scale 

systems ensured that AD samples could be collected as required, often on a 

daily basis and processed immediately for DNA extraction, ensuring that the 

DNA is a reflection of the AD system at that immediate time point. The variety 

of process data available to be collected is also an advantage as this offers an 

insight into system performance. An important parameter to measure is the 

individual and total organic acid concentrations. These compounds are 

intermediate metabolites in the system, and acetic acid is especially important as 

this is utilised by methanogens, and so levels of these can be indicators of 

system performance. The concentration of other VFAs are also important to 

measure as these have been shown to be inhibitory to the process, such as 

propionic acid, at concentrations over 900 mg/L (Wang et al., 2009). The 

measured COD value acts as an indicator of how well the components of the 

feedstock are being utilised, along with the gas flow rate and gas composition, 

which can all be measured on our lab systems. The pH is another important 

parameter, especially as the maximum biogas yield has a pH around 7 (Liu et 

al., 2008). Furthermore, the pH has been shown to affect which methanogenesis 

pathway is dominant, with the aceticlastic pathway being most dominant when 

the pH is around 6.5, but in a more acidic environment, the hydrogenotrophic 

pathway is more dominant (Hao et al., 2012). Therefore the measurement of 
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these parameters is beneficial in AD to determine the system performance. 

Additionally, by collecting all these data, it has the potential to correlate this 

with the metagenomic analyses, and therefore understand how the microbial 

population responds to the system environment or vice versa. Process data 

indicates what has already happened in the system, as a response, therefore is 

likely to have a poor predictive ability. It is hypothesised that microbial 

indicators will predict system stability better than process data. 

 

4.2 Aims 

 
• To run the lab scale AD systems conducting different experiments - 

under varying conditions, such as using different feedstock 

compositions and varying the feed rates 

• Measure process parameters including gas flow, composition, pH and 

volatile fatty acids, as key measureable components of system 

performance 

• Take DNA samples for next generation sequencing to investigate the 

microbial communities  

 

4.3 Experimental Design 

 

For each experiment the lab scale AD systems were seeded using 30 litres of 

inoculum taken from an established domestic wastewater treatment site, with 

an anaerobic digester, located in Naburn (Yorkshire Water), York. A different 

feedstock was added into the systems continuously for each experiment as 

detailed below and process measurements including gas flow, composition, pH, 

organic acids were all collected, along with DNA samples for sequencing. 

 

4.4 Results 

4.4.1  Biodiesel Waste 
 
The first experiment was carried out to show that the lab AD unit was a robust 

system to use for the monitoring of various process parameters, and to provide 
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samples for DNA sequencing, allowing for the development of molecular tools 

to investigate the microbial communities. 

 

Process waste, collected from a biodiesel production facility was used as the 

feedstock. It was expected that this waste process water contained (amongst 

others) some methanol and glycerol (Siles López et al., 2009). The process waste 

was pasteurised before use (Chapter 2.1.3.2), to ensure the microbial load was 

low, and therefore not introducing microbes via the feed into the AD system. 

 

The experiment was run for 39 days (Chapter 2.1.1). The solids content of the 

inoculum collected from the established AD system was around 2.2 % 

(according to the Yorkshire Water on-site monitoring equipment) and the COD 

of the feed when collected from the site (before being pasteurised and 

refrigerated) was 92.5 g/L. It is therefore possible to estimate the F:M ratio and 

OLR. The starting feed rate for the experiment was 0.34 ml/min (F:M 0.1). This 

was steadily increased throughout the trial, reaching a maximum of 1.25 

ml/min (Figure 4.1 a), giving an estimated F:M of 0.36 (Figure 4.1 b). The 

estimated starting OLR was 1.68 and reached a maximum of 6.17 Kg COD.m3.d. 

 

The system total volatile fatty acid concentration when sampled (see Chapter 

2.2.2) responded to the introduction of feed and subsequently increased, 

reaching a peak of 12.92 g/L after 22 days, although this decreased thereafter. 

The main VFA that accumulated in the system was acetic acid (Figure 4.1 f), and 

this accounted for 95% of total VFAs (12.25 g/L) when the VFAs reached a peak 

of 12.92 g/L. Other VFAs were detectable in the system, such as propionic acid, 

isobutryic acid, butyric acid and isovaleric acid (Figure 4.1 g), but at much lower 

concentrations than acetic acid, e.g. a peak of 0.54 g/L was measured for 

propionic acid.  

 

Initial pH of the digester was 7.01 and reached 7.43 at the end of the 39 day trial 

(Figure 4.1 e), suggesting that the digester or the feedstock had sufficient 

buffering capacity to ensure high VFA levels did not cause system acidification 

(Murto et al., 2004). High levels of VFAs are reported to be a common cause of 

system failure (Franke-Whittle et al., 2014), but in this trial the high VFA 

concentrations appeared not to exert any negative effect.  
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The gas flow rate responded with an upward trend to the increased feed rates 

throughout the trial, starting at 6 standard cubic centimetres per minute (sccm), 

and reached a peak of 47.1 sccm at day 38 (Figure 4.1 c). The gas flow output 

continually increased regardless of increasing total VFA levels, further 

suggesting that high VFA levels are not a true indication of system performance 

and stability. Additionally, the methane composition of the biogas increased 

throughout the trial (Figure 4.1 d), with an average of 61 %. The starting 

methane composition was 45.9 %, but reached 71 % at day 39. 
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Figure 4.1. AD process data for experiment one showing feed rates (a), 

estimated F:M ratios and OLR over 39 days (b), gas flow (c), methane as 

percentage of gas production (d), pH (e), points at which DNA samples were 

taken and acetic acid concentration (f), other detectable volatile fatty acids (g), 

biogas conversion rates (h) and methane conversion rates (i). 
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The efficiency of conversion can be derived as another measure of system 

performance. This was determined as the amount of gas produced (sccm) per 

gram of COD put into the system from the feedstock. This can be measured as 

both the conversion to biogas or methane. The conversion efficiency to methane 

is important as this is the key output from the AD process. The rate of 

conversion to biogas was high in the first 7 days of the experiment (Figure 4.1 

h), peaking at 483 sccm/g COD on day 5, but this decreased until day 12, at 

which the value starts to gradually increase. The same trend is observed for 

methane conversion rates (Figure 4.1 i), supporting the notion that the microbial 

community is acclimatising to the components of the feed and so the efficiency 

of the conversion of feedstock components to biogas, most importantly 

methane, is improving. The starting conversion rate to methane at day 1 was 

155.2 sccm/g COD, and peaked at 301.2 sccm/g COD at day 38, showing nearly 

a doubling in the efficiency of conversion. This suggests that methanogen 

abundance has increased throughout the experiment as the volume of methane 

output increased, and this is expected to be reflected from the DNA sequencing 

of samples (Chapter 5). Additionally, as TFF is used as the dewatering method, 

the microbes are retained within the system, and so the slower growing 

methanogens would not be washed out. This would allow for the number of 

these microbes to gradually increase, which would be beneficial for the AD 

system and methane production. 

 

4.4.2 One Week Trial 
 

The initial experiment and sequencing of samples using the lab AD system for 

digesting biodiesel waste (Chapter 4.4.1) highlighted that there were dynamic 

changes occurring within the microbial community (Chapter 5.3.2.2). The 

changes that were observed from this trial had been monitored using the 

starting population and a sample after 25 days. Additionally, the qPCR data 

from the same experiment displayed the dynamic changes of selected microbes 

that were occurring over days.  

 

The aim of this experiment was to gain a more comprehensive insight into the 

speed with which the microbial populations changed and whether these 

changes can be observed and detected. This experiment was conducted for 7 
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days using the lab scale AD system, where samples were taken daily and 

hourly. The feedstock used was malt wastewater. This process waste was 

collected from a manufacturing site and refrigerated until used. Figure 4.2 

displays the process data. 

 

The solids content of the inoculum collected from the established AD system 

was around 2 % (according to the on-site monitoring equipment) and the COD 

of the feed when collected from the site (before being refrigerated) was 42.5 g/L. 

It is therefore possible to estimate the F:M ratio. The feed was introduced into 

the system at a rate of 0.9 ml/min (estimated F:M 0.14) before being increased to 

1.3 ml/min (estimated F:M 0.21) after 92 hours (Figure 4.2 e, f), since the VFA 

levels were decreasing, suggesting the feed rate could be increased. The normal 

practice of the industrial partners was to start with a feed rate at a F:M of 0.1 or 

below to allow the microbial community to adapt.  

 

The measured concentrations of acetic acid and propionic acid indicate a change 

when the liquid waste was introduced into the system. The organic acid 

concentration increased to 0.68 g/L and 0.35 g/L for acetic and propionic acid 

respectively after 24 hours. The concentration of these two acids decreased until 

the feed rate was increased again at 92 hours where a slight increase was 

observed, then the level of acetic acid remained constant for the remainder of 

the experiment (Figure 4.2 a). The gas flow rate changed with the introduction 

of the waste material and continued to increase throughout the experiment, 

reaching a peak of 14.4 sccm after 147 hours (Figure 4.2 b). The methane content 

of the biogas fluctuated throughout the experiment, giving an average of 59 %. 

DNA extractions were carried out every 24 hours with the exception of samples 

being taken more frequently at 92, 94, 97 and 100 hours, when the feed rate was 

increased at 92 hours, to determine if the microbial community responded to the 

rapid increase in the rate of feed. 

 

The conversion efficiency is varied in this experiment. After 24 hours this value 

was 173.7 sccm/g COD, but decreased to 88.8 sccm/g COD after 92 hours, when 

the feed rate was increased, before reaching 126.6 sccm/g COD at 147 hours 

(Figure 4.2 c, d). It would be expected that if the feed rate increased then the gas 

output would also increase, in a well running system. This does not necessarily 
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mean the conversion efficiency would increase quickly when the feed rate is 

turned up as the microbial communities would need time to adapt to the 

components in the feedstock. The change in the feed rate does not appear to 

affect the VFA levels, suggesting the methanogens are utilising the acetic acid to 

produce methane, and the methane percentage is relatively consistent. The 

conversion efficiency to total biogas remained consistent also, but the methane 

conversion did decrease until the feed rate was increased. This correlates with 

the acetic acid levels that were decreasing until that point. Therefore, one 

suggestion could be that the increase in feed rates could be having a negative 

impact on other microbes in the process e.g. those involved in hydrolysis or 

acidogenesis, and this affects the efficiency of converting the waste to biogas. 

Another reason could be that parts of the microbial community do not specialise 

as quickly as others, or those required were low in abundance in the inoculum, 

therefore impacting on the efficiency of conversion. The measurement of VFA 

concentrations alone does not provide enough information, and other 

components, such as nitrogen, or other nutrients could be limited and therefore 

affecting the microbial community. Determining the microbial community 

would reveal if any of the above mentioned suggestions would explain the 

results. 
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Figure 4.2. AD experiment two process data showing the concentration of 

organic acids (a), gas flow & methane levels (b), biogas conversion rates (c), 

methane conversion rates (d), estimated F:M & OLR (e) and feed rates & DNA 

extractions (f). 
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4.4.3  Triplicate Artificial Waste Trial 
 
In the third experiment, three AD systems were run for 57 days until the 

maximum feeding rate was achieved (F:M 0.3 and OLR of 4.7 Kg COD.m3.d.), 

under the same conditions. This was to investigate the microbial community 

change throughout the experiment, and if these were replicated in each of the 

three vessels, along with the process data. If the results gave the same outcome 

for the three vessels then this would suggest the microbial communities in AD 

are predictable when using a membrane bioreactor. 

 

Two opposing theories exist to explain community formation: stochastic and 

deterministic. Deterministic (or niche) theory argues that such factors as 

competition and environmental parameters determine the community structure 

(Ofiteru et al., 2010). The stochastic (or neutral) model assumes all species to be 

ecologically equivalent along with the same demographic rates (Dumbrell et al., 

2010), probabilistic dispersal and random birth-death events (Stegen et al., 2012). 

It has been suggested that both these theories could play a role in microbial 

community structures (Ofiteru et al., 2010). A recent study that investigated 

which theory best explains the shaping of a microbial community in AD was 

carried out by Vanwonterghem et al. (2014), where three 2 litre replicate systems 

were run over 362 days. This report states that niche factors are responsible for 

shaping the microbial communities and such factors as operational conditions 

and substrate availability are very important, causing a synchronisation in the 

microbial population. As stated in this report, targeted sequencing was used, 

and this therefore limited the reporting of the microbial community structure 

down to the genus level. Additionally, the systems that were used in the 

experiment did not retain the microbes. Although this can be reflective of some 

process scale AD systems, there is likely to be some microbial washout, 

especially of the slower growing microbes, and so therefore this can influence 

the microbial communities. To fully understand the changes that are occurring 

within the AD system, monitoring of the species and strain level are required, as 

these different microbes might be changing, and so greater resolution on the 

microbial community is required. This third experiment serves to run three 

systems in parallel, where microbial retention is a key part of the process, along 

with taking samples for sequencing, and then analysing these at the strain level. 
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The measured process parameter data for the three systems are displayed in 

Figure 4.3. 

 

The three AD systems were run for 57 days under the same conditions, using 

the same feedstock. This was a mixture of four components: skimmed milk 

powder, malt extract, Coffee-mate ® (a mixture of glucose and vegetable fats) 

and yeast extract (Chapter 2.1.3.3). This mixture ensured there was a variety of 

nutrients available and provided a broad range of biological polymers: 

carbohydrates, proteins and fats. Importantly, the mixture was made frequently 

to ensure that few microbes were introduced into the system, preventing the 

community structure from being influenced by new microbes that are 

introduced. All of the systems were seeded using material taken from an 

established anaerobic digester, Naburn, York.  

 

Initially the feedstock was added at a low rate (F:M of 0.05) to ensure that the 

systems were not overwhelmed with the addition, along with allowing the 

microbial community to acclimatise. After 12 days, the feed rate was increased, 

and this was increased further throughout the experiment, although the rate 

was decreased at the weekends, due to limitations regarding feed bottle size. 

The maximum feed rate target of 0.89 ml/min was reached (Figure 4.3 f) 

towards the end of the trial, giving a F:M of 0.3 and an OLR of 4.7 Kg COD.m3.d. 

(Figure 4.3 g). No artificial mix was added from day 26 to 27 as a foaming event 

occurred. To overcome this, 50 g of rock salt was added to each system. Beyond 

this point, the foaming event did not occur again. High loading rates of proteins 

and lipids, along with high concentrations of acetic and butyric acid can lead to 

an increased occurrence of foaming within systems. At the time of the foaming 

event, the organic acid levels were high. 
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Figure 4.3. AD process data over 57 days for experiment three showing organic 

acid concentration (a), Chemical oxygen demand (b), pH (c), Gas flow (d), 

Methane percentage of gas (e), feed rates (f) and F:M and OLR (g). 
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The total measured organic acid concentration (Figure 4.3 a) changed with the 

introduction of the artificial mix, and steadily increased at a comparable level 

for each of the three systems, until day 10 where the organic acid measurements 

for AD 1 rapidly increased, reaching a peak of 6.54 g/L at day 22, whereas AD 2 

and 3 had lower values of 3.19 g/L and 4.01 g/L respectively. The Standard 

Deviation (SD) values were highest during this time, with the highest value 

being 1.81, largely due to the high organic acid measurement of AD 1. When the 

feed was stopped, due to the foaming, these values rapidly decreased to 1.43, 

0.66 and 0.89 g/L for AD 1, 2 and 3. The organic acid values thereon reflected 

the rate at which the feed was added. When the feed was increased, the organic 

acid levels increased, and when this was decreased, the organic acids did the 

same. The values of organic acids for each of the systems remained comparable 

from day 29 onwards, with a maximum SD reaching 0.70, and the lowest 0.05, 

with the largest values occurring towards the end of the experiment. This 

compared to AD 2 and 3, which appear to have much closer values, giving an 

SD maximum of 0.36 and lowest of 0.001. The digester COD values changed in a 

similar fashion to the organic acid measurements (Figure 4.3 b). 

 

The pH (Figure 4.3 c) of all systems started above 7, but as the artificial mix was 

added, this decreased (to exactly pH 7 for all the systems). Caustic solution was 

added to ensure that the pH remained at 7. It is important that the pH remains 

at around 7 as this value has been shown to give a maximum biogas yield (Liu 

et al., 2008), and variations from this could decrease the efficiency of the system, 

as the organic acids would accumulate and not get converted to biogas. Once 

the feed was resumed beyond day 28, no caustic was added as the pH remained 

above 7, suggesting that the systems have sufficient buffering capacity and that 

the microbes are metabolising the artificial mix, and this is further supported by 

the data from the organic acid measurements. 

 

The gas flow rate changed to the feed rate (Figure 4.3 d), with a low degree of 

variation between the three systems (highest σ 2.1). Although AD 1 appeared 

not to be performing as well as AD 2 and 3, in regards to higher organic acid 

and COD values, the average gas flow throughout the trial was 10 sccm, 

compared to 10.5 and 9.7 sccm for AD 2 and 3 respectively. The quality of the 

gas appeared also to be comparable between the three systems, with average 
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methane compositions of 55.7, 56.2 and 55 % for AD 1, 2 and 3 (Figure 4.3 e). 

The SD of gas quality between the three systems reached a maximum of 3.3, 

indicating the variability between the three systems is low. The methane content 

of the gas decreased slightly when the systems had artificial mix added, but 

when this was decreased, the methane content increased. This could be possibly 

explained that as the mix had a high sugar content, this would influence the 

methane output, as high sugar waste has a theoretical yield of 50 % (Alves et al., 

2009). When the system is having the mix added at a higher rate, the simple 

carbohydrates, such as sugar gets more readily utilised before other 

components, whereas when the feed rate is decreased, the other components in 

the mix are utilised, as the feed becomes more limiting. 
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Figure 4.4. AD process data from the triplicate systems showing the organic 

acid concentrations (a), gas flow (b), biogas conversion rates (c), methane 

conversion (d), feed rates and F:M (e). 
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The conversion rates for this experiment appear to be comparable between the 

three systems, although there is more variation at the start of the experiment. 

The conversion rates for both the biogas (Figure 4.4 c) and methane (Figure 4.4 

d) appears to peak when the feed is reduced over the weekend, which coincides 

with a decrease in organic acids and COD. This suggests that the systems were 

being over fed during the five days, and the decrease at the weekends proved to 

be beneficial during the experiment. There is a noticeable peak around day 34, 

and this also coincides with when the feed was reduced. This suggests that the 

feed rates (OLR) during the week could either be too high, or the feed rate could 

be having some inhibitory effect on the microbes, possibly the methanogens. 

This is because the total organic acids increase during the week, but decrease at 

the weekend, and the methane levels are higher during the lower feeding rates. 

High or rapidly increased OLR have been reported to have a negative effect on 

AD systems, such as resulting in increasing VFAs and lowered gas output (Hori 

et al., 2015). It is also possible that ammonia levels could increase when the feed 

rates were high, as protein was put into the system. Increased ammonia 

concentrations have been shown to have an inhibitory effect in AD systems 

(Moestedt et al., 2016), but as the feed rate was decreased at the weekends, the 

microbial community could use the ammonia and so the inhibition reduced. It 

could also be possible that long chain fatty acids could be present within the 

systems, again having an inhibitory effect. LCFA have also been shown to be 

inhibitory to AD systems, especially acetate utilising methanogens (Ma et al., 

2015). It has also been reported that food waste contains low levels of 

micronutrients, such as Selenium and Cobalt, with the former required for 

coenzymes in the reduction of formate, preventing propionate accumulation 

(Yirong et al., 2014). Therefore the high levels of VFAs could be reduced with 

the addition of micronutrients. Measurements of all these parameters would 

have to be taken to prove these. 

 

4.5 Conclusions 

 

The three experiments conducted using the lab scale digesters demonstrated 

that they are useful systems for testing a variety of aspects in AD, such as 
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measuring process parameters and taking DNA samples whilst varying process 

conditions. 

 

The first experiment, using biodiesel waste shows that the system can be run at 

high feed rates (estimated F:M and OLR of 0.36 and 6.17 Kg COD.m3.d 

respectively), where the levels of VFAs are high and reactor acidification does 

not result as a consequence. Therefore pH alone is not necessarily a useful proxy 

for system stability, especially when digesters and/or feedstocks have high 

buffering capacity (Franke-Whittle et al., 2014). Buffering capacity was not 

measured directly during this experiment, and so it is hypothesised that the 

feed or digester has a high buffering capacity, based on the pH. The conversion 

rates to biogas and methane at the end of the experiment are high compared to 

other points throughout the experiment, and these generally increased 

throughout the trial, suggesting that the microbial communities are becoming 

more specialised. Although the acetate levels increase during the trial, they 

decrease during the latter stages of the experiment, again suggesting that the 

microbial communities are changing. More specifically, decreasing acetate levels 

suggest that the methanogen numbers are increasing as this gets used, and this 

correlation between an increase in Methanosarcina abundance and decreasing 

acetate has been reported (Hori et al., 2006).  There is an initial increase in the 

methane conversion efficiency during this experiment for the first seven days 

before a decrease. It would be interesting if the metagenomic analysis of 

samples during those time points reflects a change in the microbial community, 

mostly the methanogens. It is also possible that each digester has an optimal 

operation conditions (Franke-Whittle et al., 2014), such as the ability to process 

high VFA levels, suggesting that process data alone is not truly reliable, and that 

understanding the microbiology could be more informative. If this experiment 

were continued it would have been interesting to see if the conversion rate 

would continue to increase or level out and if the feed rate could be further 

increased. 

 

The second experiment potentially demonstrated that the AD systems 

acclimatise to the feedstock much quicker than has been suggested as the feed 

rate was higher (estimated starting F:M and OLR of 0.14 and 2.17 Kg COD.m3.d 

respectively) than would be normally carried out in industry (F:M of 0.05 – 0.1), 
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as there was no significant accumulation of VFAs over the time measured. 

However, as mentioned from experiment one, VFA concentrations alone do not 

provide a true reflection of system performance, but an indication. Again, if the 

experiment was continued, it would be interesting to determine if the feed rate 

could be further increased at a faster rate, without causing system instability or 

inefficiencies. The conversion efficiency to methane appears to have a 

downwards trend, suggesting that actually the increased feed is not beneficial to 

the system and that possibly the microbial communities in the system need 

more time to adapt. Intriguingly, as previously reported, low methane output 

levels would usually coincide with high VFAs (Xiao et al., 2013), but for this 

experiment, both parameters were low. This information is conflicting with the 

VFA measurements, which remained in low concentrations in the system, and 

therefore analysis of the microbial communities may explain the reasoning for 

low VFAs but also low efficiencies. 

 

In the experiment where three systems were run in triplicate, there was a similar 

output in process data. Although one system appears to differ for some process 

measurements, especially during early stages of the experiment (organic acids 

and COD), the three systems generally track each other, suggesting that the 

microbial community composition could be similar. It is also interesting to note 

that the decreased feed rates during the weekends appeared to have a positive 

effect on the systems, as the process data for the three systems aligned beyond 

these points. An explanation for variation could be that the starting material is 

not homogenous, giving variability in the starting microbial communities 

between the three systems. This variability in community could still result in the 

same process data, or the community all tends to shape in the same way, even if 

there is variability at the start. Furthermore, digester differences could be a 

factor of experimental variability. Although the three systems were run in the 

same way, using the digesters that were built and designed in the same way, 

some variability could occur. Examples include that the mixing and/or heating 

could be more efficient in one system compared to the others. A longer 

experiment would be beneficial to truly demonstrate if the three systems 

converge. The data from this experiment initially suggests that deterministic 

factors shape the microbial communities, as suggested by Vanwonterghem et al. 

(2014). Even though there is variation in the process data at the start of the 
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experiment, this variability between systems decreases, and the AD systems 

appear to track each other closely, which would suggest that the environment is 

having an impact on the community structure. The sequencing data from this 

experiment looking at the microbial community structure and dynamics would 

reveal if this hypothesis is true. 

 

A comparison between the three experiments is somewhat difficult as the three 

independent experiments were run under differing conditions i.e. feed 

composition. It is possible to compare the systems based on an important 

consideration – the methane conversion efficiency, when at a comparable F:M 

ratio, in this instance, 0.2. For experiment one this was 201 sccm/g COD, 

experiment two, 119 sccm/g COD and experiment three, AD1 149 sccm/ g 

COD, AD 2 117 sccm/g COD and AD 3 126 sccm/g COD. These results are 

suggestive that the feedstock ultimately determines the methane composition of 

the biogas and therefore influences the conversion efficiency value. The 

limitation with using the efficiency value is that there is an assumption that the 

feed added (as grams COD) is equal, but feedstock composition affects the 

methane output. This is because the conversion efficiency value is a measure of 

the amount of feed added to the system (grams COD), the gas flow (sccm) and 

the methane composition (%). Therefore, a feed that produces a high methane 

composition is likely to have a higher methane conversion efficiency than one 

that produces a lower methane output. Experiment two and three have 

comparable conversion efficiencies, except for AD 3 of experiment three, and it 

should be noted that the composition of these feedstocks could be somewhat 

similar. This is because the feed taken for experiment two was collected from a 

malting facility, so high in sugars, and the feed made for experiment three was 

composed of milk and malt extract (amongst others), which again is high in 

sugar. Therefore the conversion efficiencies would be expected to be similar, 

although experiment three has other components and so would explain why 

these conversion efficiencies are marginally higher. The conversion efficiency of 

experiment one is almost double that of experiment two and three. This feed 

was collected form a bio-diesel processing facility, and so was expected to 

contain notable amount of fats and glycerol, which would explain the high 

methane output. This is due to the theoretical yields, as fats and proteins give a 

higher methane yield (69.5 % and 68.8 % respectively), in comparison to 
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carbohydrates, at 50 %. The volume of biogas generated from fats is the highest, 

due to the high energy value, and carbohydrates are the lowest (Alves et al., 

2009). This would explain why experiment one has the highest methane output 

and the highest methane conversion efficiency of the three experiments. It can 

be concluded that using the efficiency of conversion is a valuable method for 

determining the performance of a system, but the feed composition must be 

accounted for also, and so measuring the composition of the feedstock would be 

important. 
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5    Molecular Tools for Determining the Microbial 

Community Structure and Dynamics 

 

5.1  Introduction 

 
Previous research has characterised the microbes involved in the AD process 

using a variety of techniques. These have mainly focused on using 16S rRNA 

amplification for the process e.g. Li et al. (2013), and this method has the 

potential to provide biased results. The use of shotgun sequencing in AD 

appears to be uncommon, with few articles published e.g. Yang et al., 2014. This 

can be because sequencing technology has exponentially improved, with 

increased output and accuracy (Solomon et al., 2014). This in turn has the 

potential for a greater understanding of complex microbial communities but the 

pitfalls associated with this technology is that the processing and interpretation 

of large volumes of data generated can be challenging. There also appears to be 

a lack of suitable pipelines available that can process such large datasets. There 

are numerous contig assemblers that can be used to handle these datasets, e.g. 

Megahit (Liu et al., 2015), Newbler (Roche), SPAdes (Bankevich et al., 2012), 

Metaray (Boisvert et al., 2012) and IBDA-UD (Peng et al., 2012), amongst others. 

The choice of assembler is specific to each dataset generated, and often trial and 

error is used to determine the assembler that produces the best results. A 

challenge with some contig assemblers is that these expect equal coverage for 

genomes, which would generally be found in the sequencing of single 

organisms, but metagenomes do not have this. Therefore if assemblers assume 

that everything is equal, contigs that have a lot of coverage would get discarded 

(Reddy et al., 2014). The choice of assembler is therefore important, so trying 

numerous ones often appears to be the best option, or using numerous 

assemblers to generate contigs from a dataset. The aim of assembling contigs is 

to ultimately reconstruct complete microbial genomes and gain a greater 

understanding of microbial functions. 

 

This chapter describes the analytical pipelines that can be used to understand 

the microbial communities involved in the AD process. The microbial 
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communities and the dynamic changes are monitored using a variety of 

molecular techniques such as Ion-Torrent, qPCR, Illumina HiSeq and PacBio 

sequencing platforms, and analysed using different bioinformatic analysis 

techniques. The resulting sequencing data has been processed using several 

methods, such as contig assembly, clustering and gene annotation. Examples of 

tools used include Megahit and IDBA-UD for contig assembly. Additionally, 

custom scripts have been developed to process the data, such as clustering the 

contigs and searching the databases. It is hypothesised that shotgun 

metagenomic sequencing provides more informative data regarding microbial 

community dynamics and functions compared to targeted sequencing. 

 

5.2 Aims 

 

• Determine which DNA extraction kit was most suitable for use on 

anaerobic digester samples 

• Ensure the extracted DNA quality is sufficient for Next Generation 

Sequencing by Ion Torrent and to establish initial data analysis of those 

data 

• Investigate qPCR as a means to measure dynamic changes in 

populations for selected organisms 

• Investigate short and long read technologies 

• Develop pipelines to process and assess the utility of such data 

 

5.3 Results and Discussion 

5.3.1 DNA Extraction 
 

Three different DNA extraction kits were trialled to determine which of these 

was most suitable for the extraction of genomic DNA from anaerobic digester 

samples (Chapter 2.3.1). The extracted DNA was checked for quality on a 1 % 

agarose gel (Figure 5.1). 
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Figure 5.1. DNA quality from the three different DNA extraction kits using the 

same AD sample. Lane 1, Q-step 4 ladder (Yor Bio). Lane 2, 3 and 4, DNA 

extracted using Qiagen. Lanes 5 & 6, Epicentre. Lanes 7 & 8, MO-BIO. 
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Using the same anaerobic digester sample to determine which kit yielded 

optimal amounts of DNA with a high quality demonstrated that the MO-BIO 

Powersoil Kit was most suitable. The other kits showed that low levels of DNA 

were recovered from the samples, whereas the PowerSoil kit produced a distinct 

band. A possible drawback of the PowerSoil kit is the slight level of DNA 

shearing that has occurred during the extraction process, as shown in Figure 5.1. 

 

5.3.2  Ion Torrent Metagenomic Sequencing 
 

5.3.2.1 Ion Torrent PGM 
 

Two samples (Day 0 and Day 25), from experiment one (Chapter 4.4.1), were 

sequenced to determine whether changes occurring in the microbial populations 

from the starting sample to the microbial community that had acclimatised to 

the particular feedstock (taken from a biodiesel refinery site), could be 

measured. This initial sequencing run using the Ion Torrent was also used as a 

trial to demonstrate that the extracted DNA using the selected method was 

suitable for metagenomic sequencing. The Ion Torrent PGM platform, using a 

318 chip and the 400 bp kit was used to sequence the two DNA samples 

(Chapter 2.3.2). The read length distribution obtained from both samples is 

displayed in Figure 5.2. 
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Figure 5.2. Sequence length (bases) distribution obtained from the Ion Torrent 

PGM sequencing platform for Day 0 (a) and Day 25 (b) samples. 

 

 

The mean sequence length from the Ion Torrent platform was 222 ± 112 bases 

and 225 ± 115 bases for Day 0 and Day 25 samples respectively. The total 

number of bases from Day 0 sample was 520,061,463 and 360,310,163 bases for 

Day 25 sample. Although this technology has the advantage that longer reads 

can be obtained, compared to other short read sequencing technologies, the 

amount of sequence data generated using this platform is not sufficient for 



 84 

complex community metagenomic studies. That said, this method provided a 

useful tool to start investigating the microbial communities. 

 

5.3.2.2 Annotation software 
 

The sequence data from the two samples (Day 0 and Day 25) were uploaded to 

MG-RAST (Meyer et al., 2008), using default settings for analysis (Chapter 2.4.1). 

Post QC sequencing information is displayed in Table 5.1. 

 

 

Sample Day 0 Day 25 

 

Bases 

 

296,885,752 

 

198,597,836 

Number of sequences 1,819,527 1,239,582 

Mean Length (bases) 163 ± 82  160 ± 82  

Alpha Diversity 592 538 

 

Table 5.1. Post QC sequencing information for Day 0 and Day 25 samples 

according to MG-RAST. 

 

 

For the Day 0 sample, Bacteria accounted for 92.6 %, and Archaea 2.4 %, 

whereas the Day 25 sample, Bacteria accounted for 89.6 % and Archaea 9.2 %, 

exhibiting an increase in the methanogens. The four most dominant phyla in the 

Day 0 sample were Proteobacteria (33.2 %), Bacteroidetes (28.2 %), Firmicutes 

(12.6 %) and Actinobacteria (4 %). A small proportion of the data was 

categorised as unclassified (4.3 %). In contrast to this, the most abundant 

phylum in the Day 25 sample was Bacteroidetes (29.6 %), which is consistent 

with the Day 0 sample. The second most abundant was Proteobacteria (23.1 %), 

showing that microbes belonging to this phylum have decreased. Firmicutes 

(15.5 %) was the third most abundant phylum, showing an increase, and 

Actinobacteria (3.1 %) showing a decrease. Again the unclassified accounted for 

a sizeable proportion at 5 % (Figure 5.3). 
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Figure 5.3. The percentage of reads that are annotated to known organisms at 

phyla level for the Day 0 and Day 25 samples from experiment one, according to 

MG-RAST. 

 

The MG-RAST annotation software also provides the alpha diversity from each 

sample. For the starting sample (Day 0), the alpha diversity was 592 species, 

whereas after 25 days, the alpha diversity was 538 species, suggesting there is a 

simplification of the microbial communities. 

 

An approach to look at the most abundant organisms present is to impose a cut-

off threshold. The cut-off for organisms that were classed as most abundant was 

0.5 % or over of total reads. The most significant change in the microbial 

community is the increase in abundance of methanogens. At Day 0 they account 

for 0 % of the most abundant organisms, but after 25 days, methanogens 

(Methanosarcina and Methanoculleus), account for 10 % (Figure 5.4), suggesting 

these microbes are involved in the digestion process, as these have significantly 
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increased in abundance. Methanosarcina are known acetate using methanogens 

(Jäger et al., 2009) and during this experiment the acetate concentrations were 

high, and so the increase in abundance of this organism correlates with the 

process data. Methanoculleus uses hydrogen and carbon dioxide to produce 

methane (Anderson et al., 2009) and the increase in this organism could also 

possibly be due to the increased acetic acid levels, where hydrogen is produced. 

Hydrogen utilising methanogens are required for acetate production and so for 

acetate levels to increase, an increase in such organisms as Methanoculleus could 

be expected. Generally the abundant organisms do not appear to change 

drastically in number, when comparing the two samples, but more detail from 

samples in-between these time points is required. Syntrophus was an organism 

that showed a decrease in abundance, from 10 % to 4 % from Day 0 to Day 25. A 

large proportion of the data is grouped as unassigned; 45 % and 37 % for Day 0 

and Day 25 respectively. 
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Figure 5.4. Krona graph representation of the most abundant organisms at the 

genus level where 0.5 % and above of total reads were used as the cut-off for 

Day 0 (a) and Day 25 (b). [ ] displays percent in Day 0 sample. * displays those 

organisms that are present in Day 25, but not Day 0 sample. 
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Changes in the microbial community structure would be expected as the naïve 

microbial community had been exposed to a change in feedstock, therefore the 

microbial numbers and composition would be predicted to change. 

 

The amount of sequence data obtained from the Ion Torrent platform did not 

provide enough of a comprehensive insight and complete coverage of all the 

microbes present in the sample, as the read depth of data from the Ion Torrent 

was low. Although MG-RAST is a good tool to use for metagenomic studies, 

there are limitations. It has been reported (R. Randle-Boggis, Personal 

communication) that MG-RAST is highly accurate at correctly assigning 

sequence to known organisms at phylum level, but at species level, the 

assignments become more inaccurate. This is important because incorrect 

assignments can give an inaccurate sense of the microbial communities. 

Unassigned data is another limitation associated with MG-RAST. For example, 

as displayed in Figure 5.4, there is a large proportion of data that is unassigned 

(45 % and 37 % for Day 0 and Day 25 samples respectively). Therefore the 

sequencing platform, coupled with MG-RAST, does not provide the best overall 

interpretation of the microbial community. 

 

5.3.3  Quantitative PCR 
 
Quantitative Polymerase Chain Reaction (qPCR) is a method that can be used to 

monitor the relative changes that are occurring for selected microbes. This 

method was used on the time course samples collected from experiment one. 

Primers for qPCR were designed based on the initial sequencing data obtained 

from the Ion Torrent sequencing platform (Day 0 and Day 25) that was 

uploaded and assigned using MG-RAST. Eight targets were selected, based on 

species that appeared to show different population dynamics. Table 2.3 displays 

the primers used. 

 

End point PCR was carried out (Chapter 2.3.3.1) with the primer pairs to ensure 

a single band was formed for each target, when run on a 2 % agarose gel (Figure 

5.5), along with a melt curve to ensure there was only a single product. 
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Figure 5.5. PCR products showing single bands from the selected targets on a 

2 % agarose gel from experiment one. Lane 1. Q-step 4 ladder (Yor Bio), 2. 

Methanoculleus marisnigri 3. Dyadobacter fermentans 4. Syntrophomonas 

wolfei 5. Bacteriodes 3_1_19, 6. Bacteriodes vulgatus 7. Methanosarcina mazei 

8. Candidatus Cloacamonas 9. Pedobacter heparinus 10. Syntrophus 

acidotrophicus 

 

 

 

 

 1   2    3   4   5   6   7    8   9   10 

10,000 bp 

300 bp 
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qPCR was carried out (Chapter 2.3.3.2) to determine the dynamic changes of 

specific organisms that are occurring over the 39 day experiment in more detail. 

The two samples that were sent for sequencing provided a snapshot of the 

changes at those time points, but qPCR allows for the dynamic changes that are 

occurring in-between and beyond those time points to be monitored. Each 

measurement was run in triplicate and the data from each target was 

normalised against the first sample (Day 0), to display the relative changes 

compared to the starting population. The results from qPCR showed that the 

fold changes for the majority of the organisms selected are low (Figure 5.6 a).  

 

A significant change occurs for Methanoculleus species, which after 5 days had 

over a 15-fold increase, but after 11 days, this number had drastically reduced 

(Figure 5.6 b). During this point the VFA levels increased, although were 

initially low. Increasing VFA levels can increase the hydrogen concentrations 

within a system, and there appears to be a correlation between VFA levels and 

Methanoculleus abundance. Hori et al. (2006) showed that the numbers of 

Methanoculleus declined during the accumulation of VFAs. In fact, a different 

hydrogenotrophic methanogen dominated during this time, but the detection of 

other hydrogen consuming methanogens was not carried out in this experiment. 

Interestingly, Methanoculleus species and Syntrophus aciditrophicus increase at 

comparable rates during the trial. Syntrophus species ultilise benzoate and 

certain fatty acids in association with hydrogenotrophic methanogens to ensure 

the hydrogen levels remain low (Kim et al., 2013). This possibly explains the 

comparable increase in abundance of these two organisms during the trial, 

especially after day 11, as these microbes require may a close syntrophic 

association. Methanosarcina species, which are known aceticlastic methanogens 

(Sousa et al., 2013), had the largest increase of the eight microbes, with a fold 

increase after 39 days reaching over 1000 (Figure 5.6 c), although this number 

varied drastically throughout the experiment. M.mazei has the ability to grow on 

a variety of substrates including acetate and methanol (Jäger et al., 2009), and 

acetate was in abundance, possibly along with methanol, potentially explaining 

why the numbers of this organism increased throughout the trial. This 

correlation between high VFAs and Methanosarcina dominance has also been 

reported (Franke-Whittle et al., 2014). Additionally, Methanosarcina has been 

stated to have a higher growth rate during high acetate levels, especially 
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compared to other acetate utilising methanogens, such as Methanosaeta (Walter 

et al., 2012). This would explain the significant increase of this organism during 

high VFA levels and the subsequent decrease of the acetate concentration. 

Overall, the qPCR data shows that abundance changes for each of the microbes 

do not have a gradual change, but instead demonstrate that fluctuations in the 

microbial abundance is occurring over days. 
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Figure 5.6. qPCR data showing the relative change in abundance of markers 

believed to be associated with eight different organisms, (a) Dyadobacter, 

B.vulgatus, Cloacamonas, Pedobacter and Bacteroides sp 3_1_19, (b) 

Methanoculleus and Syntrophus, (c) Methanosarcina. 
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Although most organisms exhibited some change in abundance throughout the 

experiment it is probable that the MG-RAST program assigned sequences to 

organisms, even though they were not exact matches. A random gene from an 

assigned organism by the program was selected to form the probe. This could 

explain why such organisms as Methanoculleus and Methanosarcina have such a 

large increase in numbers – the possibility that the probe could have selected for 

two or more different strains of these organisms. 

 

Although the qPCR data was highly informative on the dynamic changes 

occurring within the system over the experiment, the main challenge associated 

with this technology is the limitation on the number of targets and the number 

of reactions. Therefore this limits the resolution. Additionally, only information 

on dynamic changes are obtained, not function. DNA sequencing offers a more 

cost-effective alternative to this, where not only the dynamic changes occurring 

throughout the experiment are obtained, but detailed information on the 

microbial functions. 

 

5.3.4  Illumina HiSeq Metagenomic Sequencing 
 
In addition to the initial sequencing using the Ion Torrent platform and qPCR 

data (from experiment one), DNA samples from the three experiments were 

sent to be sequenced using the Illumina Hi-Seq platform (Chapter 2.3.4). This 

sequencing platform allows for more in-depth sequence coverage to be obtained 

on the microbes and the dynamic changes. A total of 39 samples were 

sequenced (Table 5.2), from three independent experiments, as discussed in 

Chapter 4. 
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Experiment Sample (day) Concentration (ng/µl) 

One 0 146 

 5 59 

 8 123 

 11 151 

 15 116 

 18 82 

 22 152 

 25 104 

 32 123 

 36 143 

 39 127 

Two 1 126 

 2 129 

 3 132 

 4 130 

 5 134 

 5 (+2h) 140 

 5 (+5h) 148 

 5 (+8h) 142 

 6 137 

 7 138 

Three 1 1 – 98, 2 – 123, 3 – 97 

 10 1 – 79, 2 – 97, 3 – 109 

 21 1 – 95, 2 – 88, 3 - 76 

 31 1 – 80, 2 – 98, 3 - 83 

 43 1 – 140, 2 – 154, 3 – 149 

 52 1 – 156, 2 – 195, 3 - 139 

Table 5.2. Samples taken throughout the three experiments and DNA 

concentration of these samples sent for sequencing using Illumina HiSeq 

platform. 
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5.3.4.1 Contig assembly using Megahit 
 

The sequencing data obtained from the Illumina platform provides short read 

lengths, with 2 x 100 bp reads. These short reads need to be assembled into 

contigs, which are overlapping DNA segments. The main aim of assembling the 

short reads is to eventually reassemble the entire genome of organisms. 

 

Contigs were generated by Megahit (Chapter 2.4.2) using the sequencing data 

obtained from the three experiments that were sequenced using the Illumina 

HiSeq platform. This assembler was selected because it was the only one that 

could process the large dataset. This assembler produced 11,618 contigs over 10 

kb, the largest contig being 415.6 kb, for the three experiments. 

 

To begin to visualise and interpret the data, the 250 longest contigs from 

experiment one were plotted and it was noted there were groupings of these 

contigs that exhibit the same pattern of change throughout the trial, suggesting 

that they could belong to the same organism (Figure 5.7). The data were 

normalised to the starting sample so to display the relative changes occurring 

throughout the experiment. 
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Figure 5.7. Log change of the 250 longest contigs assembled using Megahit 

when normalised to the starting sample. 

 

5.3.4.2 K-means clustering 
 

Plotting the contigs into graph format enables a good visualisation of the data, 

and an appreciation for how the groups of contigs begin to cluster, showing 

distinct patterns. The limitation of this method however is that there are more 

than 11,000 contigs that were over 10 kb, and plotting these is time consuming.  

 

Therefore, an alternative method that grouped contigs based on similarities in 

change was required. The contigs that were generated using Megahit from the 

three experiments were assembled into clusters. Clustering was achieved by k-

means using SciKit-Learn module for Python (Chapter 2.4.3.1). The data is 

displayed in graphical form in Figure 5.8, where 64 of the 256 clusters are 

displayed as an example of the data generated. The graphs presented display 

the normalised change in abundance for each contig (y-axis), against the sample 

number (x-axis). The number of contigs in each graph is displayed. Samples 1-10 

are for experiment 2, 11-21 for experiment 1 and 22-39 for experiment 3.  
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Figure 5.8. The first 64 clusters formed using K-means clustering displaying the 

relative change of each cluster for each sample. Experiment one (blue), two 

(green) and three (red) are displayed. n=number of contigs assigned to that 

cluster.

*1  

*1  

*1  
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The K-means clustering from the three experiments is a useful method to 

display the changes in the contigs throughout each experiment, along with 

giving a comparison of those potential microbes that are present in one 

experiment but not others. This method however has the limitation that an 

arbitrary number of clusters have to be selected, in this instance 256. By 

selecting the number of groupings for the contigs this essentially forces contigs 

together that do not necessarily follow the same pattern. Furthermore, some 

contigs clearly exhibit the same pattern of change throughout the experiments 

(e.g. marked as *1 on Figure 5.8), but these are plotted in different graphs as the 

change is not on the same scale. Therefore, a different method for clustering is 

required, one that does not require an imposed limit on the number of clusters.  

 

5.3.5. Additional Sequencing and Alternative Assembly 
 

5.3.5.1 PacBio sequencer 
 

In addition to the Ilumina HiSeq sequencing, the same eleven samples from 

experiment one were sent for sequencing using the PacBio platform (Chapter 

2.3.5). This sequencing platform provides long read lengths compared to other 

technologies, and so has the advantage that the short read lengths obtained 

from such platforms as Illumina can be scaffold onto the longer reads, 

producing longer contigs. Longer reads also have the potential to close gaps on 

draft genomes. This is advantageous as it means more detailed information on 

the organisms function is reported.  

 

The total number of bases obtained from this technology was 135,590,359, and 

the total number of reads was 48,012. The longest read generated was 27 kb. The 

read lengths obtained from the technology are smaller than expected, as the 

majority of reads (68 %) were between 200-1999 bases, although the majority of 

the base sequences (76 %) were in the 2000-19999 group (Figure 5.9). This could 

have resulted from using the DNA extraction kit previously mentioned, as there 

is shearing of the DNA, and so to ensure longer DNA is obtained, a different 

extraction method might be required. 
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Figure 5.9. The read length distribution of sequences obtained from the PacBio 

sequencing platform using samples from experiment one. n=number of reads in 

each size group and mean=average length of each read. 

 

5.3.5.2 Alternative Assembly Strategy 
 

The sequencing data from experiment one that was generated using the 

Illumina HiSeq and the PacBio platforms were assembled using an alternative 

method to form contigs and these were then clustered (Chapter 2.4.2). The 

methodology is displayed in Figure 5.10. 
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Figure 5.10. The method used for contig building (based on Scholz et al. 2014) 

for sequencing data from experiment one. The Illumina reads were divided into 

three pools and assembled using IDBA-UD, whilst in parallel the same Illumina 

reads were assembled using MegaHit. The resulting contigs were filtered, 

comblined and assembled using Newbler if smaller than 2 Kb. Those greater 

than 2 Kb were loaded into Minimus 2, with the PacBio data, to form merged 

contigs and unincorporated singleton contigs. 
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The aim of using a variety of assemblers such as IDBA-UD and Megahit for 

contig formation was because these have slightly different assembly algorithms, 

based on the de Bruijn graph approach. This has the potential that the longest 

contigs possible were formed, in addition to the other reassemblies that were 

carried out to further enhance this. Minimus2 was used as this can merge 

contigs generated from numerous assemblers. The distribution of the contig 

sizes using IDBA-UD, Megahit and the final assembly is displayed in Figure 

5.11, and the mean contig lengths in Table 5.3. 

 

The selected assembly method for the experiment one sequencing data 

produced 21,162 contigs, accounting for 237,497,501 bases. The longest contig 

formed was 398,305 bases, and the minimum was 2,000 bases.
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Figure 5.11. Contig size distribution when using different assemblers, (a) IDBA-

UD, (b) MegaHit, and the (c) final assembly. n=number of clusters and 

mean=the average contig length (bases).                        
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 Contig Size (bases) 

Assembly 200-1,999 2,000-19,999 20,000-199,999 200,000+ 

IDBA-UD (1-4) 570 4,273 37,522 233,978 

IDBA-UD (5-8) 610 4,219 38,883 0 

IDBA-UD (9-11) 593 4,510 39,029 284,552 

Megahit 414 4,402 36,456 286,213 

Final Assembly 0 7,114 38,686 275,753 

 

Table 5.3. The mean contig lengths generated using different assemblers, 

showing that the mean size of the final assembly produces on average longer 

contigs. 

 

 

The assembled contigs were then clustered, as described in Chapter 2.4.3.2. This 

method produced a total of 1,929 clusters, with an average of 11 contigs per 

cluster. 

 

Figure 5.12 displays the log change in the 50 clusters that had the most sequence 

coverage, when normalised to the starting sample and Table 5.4 shows the 

parameters associated with these clusters. There are distinct clusters that follow 

others closely in a similar fashion, suggesting that these could potentially be one 

organism, or possibly two or more syntrophic organisms. It is also evident there 

are some clusters of contigs which are increasing in abundance, others which 

remain at a relatively similar level, and others which are decreasing. Plotting the 

data in a graph format alone only shows the dynamic changes and so further 

analysis of the data set was required. 
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Figure 5.12. The top 50 clusters, when normalised to the starting sample that 

contain the most sequence data. 

 

 

 

Cluster name Number of 

contigs 

Total DNA 

content (bases) 

Average contig 

length (bases) 

G+C content 

(%) 

272 422 6534294 15484 48.1 ± 3.9 

2147 295 4814055 16319 52.7 ± 3.7 

2030 73 3340573 45761 62.2 ± 3.5 

11549 77 2419280 31419 45.3 ± 1.9 

279 149 2225819 14938 47.8 ± 2.9 

13 46 2154827 46844 44.6 ± 2.2 

19 21 2009106 95672 71.9 ± 2.5 

278 45 1668273 37073 47.6 ± 4.6 

3513 48 1445705 30119 31.7 ± 3.4 

11549 42 1433558 34132 39.9 ± 1.2 

5989 132 1416866 10734 54.2 ± 4.2 

94 64 1209450 18898 38.8 ± 3.6 

3001 6 1174578 195763 59.5 ± 0.7 

1610 27 1083290 40122 63.2 ± 2.8 
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Cluster name Number of 

contigs 

Total DNA 

content (bases) 

Average contig 

length (bases) 

G+C content 

(%) 

3519 35 1075844 30738 44.7 ± 2.3 

92 33 978464 29650 36.6 ± 1.7 

438 49 884516 18051 45.6 ± 2.9 

7044 28 881686 31489 69.0 ± 1.8 

2308 48 881333 18361 63.6 ± 2.2 

95 35 871097 24888 63.2 ± 3.1 

8526 26 806975 31038 46.9 ± 3.2 

11280 33 764984 23181 60.8 ± 7.1 

3435 21 659978 31428 51.9 ± 1.4 

91 17 639820 37636 45.2 ± 1.0 

3861 76 637004 8382 62.7 ± 2.8 

274 77 631337 8199 60.7 ± 4.4 

10885 40 605383 15135 50.1 ± 3.4 

1939 20 568579 28429 64.7 ± 0.8 

312 7 516981 73854 54.2 ± 1.7 

11547 14 508412 36315 41.1 ± 1.9 

2688 24 505721 21072 44.7 ± 1.4 

1614 57 490367 8603 62.2 ± 3.8 

271 38 483608 12727 42.2 ± 7.29 

2460 29 481497 16603 37.9 ± 1.1 

97 15 479149 31943 30.2 ± 1.2 

5304 35 467644 13361 49.2 ± 4.3 

1620 47 453656 9652 63.0 ± 4.1 

1636 11 448588 40781 47.5 ± 3.5 

3436 10 440982 44098 52.9 ± 2.8 

99 19 428005 22527 35.6 ± 1.2 

1345 3 391485 130495 55.1 ± 2.7 

3023 7 381606 54515 41.6 ± 1.6 

2682 10 376067 37607 45.2 ± 1.7 

2309 5 362442 72488 41.5 ± 1.2 

3003 19 338410 17811 60.4 ± 1.5 

7042 14 337372 24098 29.3 ± 0.9 
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Cluster name Number of 

contigs 

Total DNA 

content (bases) 

Average contig 

length (bases) 

G+C content 

(%) 

3860 20 329752 16488 61.1 ± 3.7 

6873 11 273981 24907 47.6 ± 2.2 

2686 25 272809 10912 52.7 ± 4.8 

3514 13 270420 20802 42.9 ± 1.5 

 

Table 5.4. The data for the top 50 clusters which have the most coverage, 

displaying the cluster name, the number of contigs in each cluster, the total 

length of all the contigs in the cluster, average length of each contig and the 

average G+C content. 

 

 

The total number of contigs in the top 50 set is 2,362, out of the total 21,162 from 

the assembly, that account for 11.2 %. The average number of contigs per cluster 

for the top set was 49, and these top clusters accounted for 50,913,658 bases, out 

of the total set of 237,479,501 bases (21.4 %). The average number of bases per 

contig across the top 50 contigs was 1,060,701 bases. The G+C content of each 

cluster varies which suggests that each cluster could belong to a different 

organism. There is generally also a low standard deviation value for each 

cluster, giving confidence that the clustering method for the contigs works. 

Interestingly, there are clusters that have low G+C values such as cluster 97 and 

7042, with values of 30.2 % and 29.3 % respectively. There are also clusters with 

high G+C content values such as cluster 19, at 71.9 %. 

 

5.3.5.3 Metabolic activity and markers 
 

The nucleotide sequences of the top 50 clusters were analysed by Prokka 

(Chapter 2.4.4), where they were firstly translated to amino acids sequences, and 

then the potential open reading frames (ORFs) were determined.  

 

The results obtained using Prokka were uploaded to KEGG Automatic 

Annotation Server (Chapter 2.4.5) to determine which genes were present in 

each cluster, with the aim of obtaining an indication of the function of each 



 108 

putative organism. Genes that were associated with methane metabolism, 

according to KASS (M00567, M00357, M00356, M00563) in Figure 5.13, were 

selected as a method for determining if any of the clusters were methanogens 

(Table 5.5). Examples of genes associated with methane production include 

formythanofuran dehydrogenase, from the hydrogenotrophic pathway and 

acetyl-CoA decarboxylase/synthase complex, involved in the acetotrophic 

pathway (Li et al., 2013). The first 20 clusters are displayed as an example of 

those enzymes potentially involved in the methane metabolism pathways (so 

likely to be a gene found in a methanogen), is present in those clusters. 

 

 

 

 
 

 

Figure 5.13. The carbon metabolism pathways and those metabolic pathways 

associated with methanogen metabolism (highlighted in red) according to KASS 

(taken from www.kegg.jp). 
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The KASS assignments, as shown in Table 5.5, offer an indication if a 

methanogen is present for each cluster, but this is not enough detail alone. This 

method also demonstrated that genes assigned to the methane metabolism 

pathway are not all strictly found in methanogens, and so this data has to be 

treated with caution. For example, Heterodisulphide reductase (HDR) is an 

enzyme that is found in methanogens, being a key enzyme in both the 

aceticlastic and hydrogenotrophic pathways. HDR-like proteins are also found 

in other archaea as well as some bacteria (Refai et al., 2014). Therefore detection 

of this enzyme does not directly suggest if the organism is a methanogen. It was 

noted that those clusters found to contain the highest number of methane 

metabolism associated genes did actually represent methanogens, as discussed 

below. It was concluded that using KASS in the mentioned way (for 

metagenomic studies) is perhaps not the best method for data interpretation. 

Therefore using this program would be more appropriate for investigating 

complete draft genomes or metagenomic datasets that have more sequence, to 

determine exactly what enzymes are present in the organism, concluding what 

functions they are potentially carrying out. 

 

To further investigate this, the protein sequences of a selected group of clusters 

(274, 1620, 1614 and 3861), that had genes assigned to known methanogen 

metabolism pathways by KASS were BLAST (Altschul et al., 1997) searched to 

identify the closest database match. 

 

The results from the BLAST search are suggestive that the four clusters 

represent methanogens as the majority give the top result of Methanoculleus 

marisnigri JR1.  Further investigation into the BLAST results for these clusters 

indicate that actually the top search result is not the organism present, but a 

close relation to. For example, cluster 3861, where 15 genes were BLAST 

searched, 93 % returned a result of Methanoculleus marisnigri JR1, with 7 % being 

an Uncultured archaeon. The mean identity value for the Methanoculleus hits 

was 85 %, suggesting that the searched sequences are not that particular strain, 

but are likely to be from that genus. Similarly, cluster 1620 indicates comparable 

results, where 85 % of top search results were Methanoculleus marisnigri JR1, and 

of these the mean identity value was 91 %. Furthermore, as none of the searches 
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resulted in identical matches, it indicates that the clusters could actually be a 

previously undescribed organism.  

 

Interpretation of the results in this fashion starts to reveal interesting 

information regarding the clusters. This method however is time consuming 

and the number of genes searched is limited, especially as the number of ORFs 

in each cluster is high, such as 8,366 in cluster 272. Therefore an automated 

method for performing BLAST searches on all the clusters was required. 

 

5.3.5.4 Automated BLAST searches 
 

The writing of a custom script that allowed for a large number of BLAST 

searches to be conducted enables the interpretation of large datasets, as the top 

closest match is displayed (Chapter 2.4.6.2). 

 

The clusters that were BLAST searched were those that appeared to display 

interesting changes throughout the trial. In this instance, those showing an 

increase throughout the experiment were investigated (Figure 5.14). Distinct 

groups of clusters appeared to follow similar patterns of change, and so these 

were divided up into five groups: NC1, NC2, NC3, NC4 and NC5. Table 5.6 

displays the statistics for each cluster, the BLAST result and the group it belongs 

to. 
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Figure 5.14. The log change of nine clusters throughout experiment one. 

Clusters that have a similar behaviour have been grouped together: NC1 

(Cluster 312, 1345), NC2 (Cluster 274, 1614, 1620, 3861), NC3 (Cluster 3001), 

NC4 (Cluster 3023) and NC5 (Cluster 3436). 
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The results from the BLAST search are clearly indicative that those microbes 

increasing in number are methanogens. Group NC1, which included the clusters 

312 and 1345 both gave comparable information. For example, both clusters had 

long contigs, with the mean contig size being 73,854 bp for cluster 312 and 

48,228 bp for cluster 1345. Additionally the mean G+C content of the clusters 

were similar, 54.2 ± 1.7 and 55.1 ± 2.7, indicating they both could belong to the 

same organism. The G+C content is the measure of the guanine – cytosine 

content in the DNA sample. Each organism has a different G+C content and 

therefore could be reflective of how closely related organisms are, but is not a 

direct measure, just suggestive. Candidatus Methanomethylophilus alvus Mx1201 

accounted for 33.4 and 29.6 % of the top BLAST matches for clusters 312 and 

1345 respectively and Thermoplasmatales archaeon BRNA1 accounted for 19.2 and 

17.4 %. This strongly suggests that this group is a methanogen. The genome of 

Candidatus Methanomethylophilus alvus Mx1201 has recently been described by 

Borrel et al. (2012), isolated from the human gut. This organism was enriched 

using methanol as a substrate and the genome contained genes that encoded for 

methylotrophic methanogenesis. It is therefore suggestive that as Candidatus 

Methanomethylophilus alvus Mx1201 is the top result from the search, the 

organism in this cluster could be a methanol utiliser. It was suggested that as a 

result of the processing methods at the biodiesel facility, there would be 

methanol present within the feedstock. It is therefore expected that 

methanogens that can utilise methanol would be identified in the samples. 

 

Group NC2 included the clusters 274, 1620, 1614 and 3861. In comparison to 

NC1, the mean contig length was smaller: 26,463, 22,135, 23,419 and 36,858 bases 

for clusters 274, 1620, 1614 and 3861 respectively. The mean G+C values were 

comparable at 60.7, 63, 62.2 and 62.7, again consistent with the notion they 

belong to one organism. The top BLAST result for the ORFs in each of these 

clusters all gave the same organism as Methanoculleus marisnigri JR1 at 27.1, 27.8, 

28 and 29.5 % for clusters 274, 1620, 1614 and 3861. Methanoculleus bourgensis 

MS2 was the second top hit for the four clusters, showing that the genus 

Methanoculleus account for a significant proportion of the top results. Although 

the top BLAST result was Methanoculleus, it is likely that the organism belongs 

to this genus, but is not in the database. Methanoculleus marisnigri JR1 is a 

previously described organism that was noted to metabolise H2/CO2 and 
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formate to methane. It was also reported that the G+C content was 62.1 % 

(Anderson et al., 2009), which is consistent with the average G+C content of the 

four clusters, at 62.1 %. This is highly suggestive that the organism in question is 

highly related to Methanoculleus marisnigri. 

 

Group NC3 had large contigs with a mean size of 195,763 bases. The mean G+C 

content was 59.5 ± 0.7 and the top BLAST result was Candidatus 

Methanomethylophilus alvus Mx1201, but only at 9.8 % of returned top matches. 

This indicates that the organism in question is not closely related to the top 

match. 

 

NC4 contigs had an average of 49,439 bases and mean G+C of 41.6 ± 1.8. 

Methanosarcina mazei Go1 was the top match, at 32.4 %, closely followed by 

Methanosarcina mazei Tuc01 at 26.3 %. This is suggestive that the organism in 

question is highly related, or even a different strain of Methanosarcina mazei. 

Methanosarcina mazei species are capable of metabolising a wide range of 

compounds including acetate, methanol and methylamines to methane (Jäger et 

al., 2009). 

 

Group NC5 had a mean contig length of 54,386 bp and an average G+C content 

of 53.1 %. The top BLAST match was Methanosaeta concilii GP6 at 39.1 %. This 

organism is a known slow growing aceticlastic methanogen and the circular 

chromosome has a G+C content of 51.03 % (Barber et al., 2011), which is a 

similar value to that of the group. The presence of both Methanosarcina and 

Methanosaeata is expected as both these organisms can utilise acetic acid and 

during this experiment the acetic acid levels were high. 

 

5.3.5.5 Phylogeny 
 

Although the BLAST searches of the ORFs give an indication if a cluster closely 

matches a known microbe, it only presents the top match, which in most cases is 

not an exact match. Furthermore, the G+C content of the clusters also provides 

an indication of the number of organisms present in each cluster, and can also 

be suggestive if the organism is closely related to the top match. Therefore it is 

possible to estimate the number of organisms present in the cluster, and further 
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demonstrates that the chosen clustering method works, but this data only shows 

the closest known organism, not how closely related they are. 

 

Determining exactly where the organisms fit in a phylogenetic tree is essential 

to understanding what the organisms are, and also suggesting what the 

potential functions could be. Phylogenetic trees were drawn as detailed in 

Chapter 2.4.7. Figure 5.15 (a) displays a methanogen phylogenetic tree for 

groups NC1 and NC2 and Figure 5.15 (b) for groups NC3, NC4 and NC5. 

 

When the ORFs of group NC1 were BLAST searched, the top result was 

Candidatus Methanomethylophilus alvus, but based on the phylogenetic tree, 

Candidatus Methanoplasma termitum is a close known organism. This organism 

belongs to the order Methanomassiliicoccales, and reduces methanol using 

hydrogen, to produce methane (Lang et al., 2015). Methanoculleus marisnigri JR1 

was the top result for group NC2, and the phylogenetic tree suggests that the 

closest relation to group NC2 is this organism, and so almost certainly belongs 

to the Methanoculleus genus. 
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(a) 

 

(b) 

 

Figure 5.15. Phylogenetic tree of methanogens for groups NC1 and NC2 (a) 

and groups NC3, NC4 and NC5 (b), drawn using FigTree. 
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Group NC3 had no distinct matches when BLAST searching. In fact, the top 

result was Candidatus Methanomethylophilus alvus at under 10 %. According the 

placement on the phylogenetic tree, group NC3 is distant from Candidatus 

Methanomethylophilus alvus, and actually the closest known organism is 

Methanomassiliicoccus luminyensis. A recent description of Methanomassiliicoccus 

luminyensis showed that this organism uses hydrogen as an electron donor to 

reduce methanol and the circular chromosome has a G+C content of 60.5 

(Gorlas et al., 2012), which is consistent with the G+C content of the cluster (59.5 

%). NC4 is very closely related to Methanosarcina mazei Go1 and this data is 

confirmed from the BLAST data where the majority of top results were from 

Methanosarcina mazei species. Methanosarcina species are found in numerous 

environments and have an average G+C content of 42.5 %, which again is highly 

comparable to that of group NC4 (41.6 %). Group NC5 is related to Methanosaeta 

concilii GP6, which again agrees with the top BLAST search results. 

 

5.3.5.6 Genome mapping 
 

To further support the phylogenetic tree data, the sequencing data from 

individual groups can be mapped onto the genomes to which they are most 

closely related. This gives a clear indication of how much of the sequence maps 

onto the known genome, but also where the variations in sequence are. The 

gaps support that the group in question is not the organism that it is most 

closely related to, according to the phylogenetic tree. ACT (Carver et al., 2005) is 

a program that can be used to display assembled sequences against a completed 

genome, allowing for comparison (Chapter 2.4.8). Figure 5.16 displays the 

contigs from groups NC2, NC3 and NC4, when individually mapped against 

known genomes. 
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(a) 

 
 

(b) 
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(c) 

 

 

 

 

Figure 5.16. Group NC2 compared to the (a) M.marisnigri genome 

(CP000562.1), Group NC3 clusters mapped against the (b) M.luminyensis 

genome (CAJE01000001.1) and Group NC4 clusters compared to the complete 

genome of (c) M.mazei (NC_003901.1). Images generated using ACT. The red 

bands represent the forward matches and the blue represent the reverse 

matches. 
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Group NC2 sequence maps closely to the genome of the known organism. The 

gaps in NC2 sequence suggests that this cluster is not Methanoculleus marisnigri, 

but is closely related, and with so many matching regions of sequence, this is 

suggestive of a similar function, which backs up the data from the phylogenetic 

tree. 

 

Group NC3 maps well to certain regions of the M.luminyensis, further 

suggesting, as in the phylogenetic tree, that it is related to this organism. 

 

When group NC4 was aligned to the reference genome of M.mazei, it is evident 

that the group encoding for an organism is closely related to M.mazei, which 

further supports the phylogenetic tree. Although the group total contig size is 

small in comparison to the reference genome, the fact that the sequences are 

matching across the whole reference genome further suggests that the organism 

in question is highly related to M.mazei, but either further analysis of the 

metagenomic data or additional sequencing of the samples would be required. 

 

5.4 Conclusions 

 

The advancements in sequencing technology through NGS has revolutionised 

our view and understanding of even the most complex habitats. The large 

datasets generated through this technology give a wealth of information. The 

challenge though is how this information can be interpreted and turned into 

something useful. There are a variety of tools available to researchers to begin to 

interpret these large datasets, but as of yet, there is not a ‘complete package’, in 

terms of just placing the sequencing data in and obtaining the results. Instead 

there are a variety of tools and methods that can be used or adapted, allowing 

for subjective input and interpretation. Therefore this makes handling large 

datasets very challenging. None the less, we have complemented the use of both 

pre-existing programs as well as custom developed scripts to obtain useful 

information regarding the microbes involved in anaerobic digestion and how 

they change throughout the digestion process. The use of these methods has 

also suggested that there could be previously undescribed novel organisms 

within the systems. 
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Although there was a limited investigation into the dataset for experiment one, 

as the focus was directed towards those clusters that appeared to increase in 

abundance throughout the experiment, the ultimate question is how well do we 

think the method used to study the microbial dynamics has worked. To address 

this, numerous checks have been carried out whilst using and developing tools, 

giving the confidence that the method used is suitable. This is because: 

• Increased use of assemblers gave a higher proportion of longer contigs 

• The clustering of contigs has been shown to work – that contigs with the 

same pattern of change are clustered together 

• BLAST searches of each cluster reveal that a significant proportion of top 

matches are from the same organism 

• The G+C content of each cluster is consistent with low levels of variation 

• Large proportions of the assembled contigs (in clusters) map very well 

onto the closest known organisms 

 

These points are justified in Figure 5.17 and 5.18, where the contigs for each 

cluster is displayed (a), along with the cluster data in comparison to a known 

organism (b), where the organism is placed on a phylogenetic tree (c) and finally 

how well it maps to known a genome (d). The ultimate aim would be to develop 

a pipeline that performs all the above mentioned tasks. In theory this would be 

that numerous contig assemblies would take place, along with cluster 

formation. From this, the clusters would be automatically searched and placed 

on a phylogenetic tree, along with been compared to a known genome. If the 

majority of these processes were to be automated, this would allow for large 

datasets to be interpreted.  
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Figure 5.17. Summary of the NC2 group displaying the contig pattern of change 

throughout the experiment in each cluster (a), the cluster, G+C content and top 

BLAST match against the closest known organism (b), the placement of the 

cluster in a phylogenetic tree (c) and all the contigs from the cluster lined up 

against the complete genome (d). 
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Figure 5.18. Summary of the NC4 group displaying the contig pattern of change 

throughout the experiment in each cluster (a), the cluster, G+C content and top 

BLAST match against the closest known organism (b), the placement of the 

cluster in a phylogenetic tree (c) and all the contigs from the cluster lined up 

against the complete genome (d). 
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The methods developed demonstrate that the metagenomic approach provides 

more detail than that obtained by targeted sequencing. The data from 

experiment one has also shown that novel organisms have been sequenced. Out 

of the five groups that have been investigated, it appears that five are not 

described in the literature. To obtain more detail on these, further information 

on the genome is required. Draft genomes that are produced by contig assembly 

are usually independent contigs, where the positions along a sequenced genome 

are unknown (Lu et al., 2014). Therefore complete sequenced genomes would 

also require further rearrangement along with increased sequencing to ensure 

the entire genome can be assembled, giving highly informative data. 
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6  Discussion and Future Work 

 

This project has started to reveal the microbes that are involved in anaerobic 

digestion when run in the lab scale system, under certain conditions. It has 

highlighted those microbes, such as those assigned as Methanosarcina and 

Methanoculleus that are increasing throughout the experiment and also indicated 

the closest known organisms. Although only a limited number of groups have 

been explored, this initial analysis offers a clear indication and a confidence that 

the methods used are suitable. 

 

6.1 The Metagenomic Approach 

 

The traditional method for understanding microbes is to isolate them from their 

environment and culture these microbes as pure cultures. From this, the 

microbes can be identified using a variety of tests, e.g. Gram staining. Although 

these methods have proved to be successful, as well as informative, there can 

often be drawbacks associated with these methods. A main challenge of using 

these techniques is that many microorganisms cannot be grown in isolation, 

often requiring other microbes, possibly due to a syntrophic interaction (Qiu et 

al., 2004). Furthermore, the isolation and identification of microbes in a complex 

community environment will be challenging and time consuming due to the 

large variety of species. Alternative methods have been developed that are 

culture independent, such as DNA sequencing using NGS technologies. 

 

The targeted sequencing (16S rRNA) method appears to be a staple for 

numerous studies of complex communities, especially in AD e.g. Whiteley et al. 

(2012), St-Pierre & Wright (2014), Ziganshin et al. (2013), Garcia et al. (2011), 

Heeg et al. (2014), Tian et al. (2015), Kobayashi et al. (2014) and Jang et al. (2014). 

These publications offer interesting results, reporting the different microbial 

communities found. There have also been reports to bring together sequencing 

data from numerous anaerobic digesters e.g. Nelson et al. (2011) and Leclerc et 

al. (2004). A drawback associated with this method however is that PCR is 

known to introduce errors, such as bias introduced by primers and the 

amplification process (Urich et al., 2008). This in turn has the potential to give 
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inaccurate results that are not a true reflection of the microbes present within 

the samples. Furthermore, the sequencing of the 16S rRNA region does not 

provide information on the microbial functions. 

 

The shotgun sequencing of DNA samples using NGS technologies has 

revolutionised studies into complex microbial communities. The use of this 

technology eliminates the associated challenges known with targeted PCR 

amplification and provides much more informative detail on the individual 

microbes e.g. not only does this method provide information on the microbial 

community structure, but also what the potential function of those microbes 

could be (Vanwonterghem et al., 2014). It also has the key advantage that NGS 

allows for the discovery of novel microbes by assembling draft genomes, and 

this could ultimately reveal those microbes that are central to the AD process. 

By doing this there is the potential to optimise AD systems, such as increasing 

the amount of methane that is derived from the input material. 

 

High throughput sequencing is an exciting technology but is limited by 

computational analysis. The large data sets generated through the technology 

can be a challenge to analyse. There are a limited number of annotation software 

packages available that interpret the data, such as MG-RAST, where numerous 

authors e.g. Yang et al. (2014) and Kovács et al. (2015) have used this program. 

Although this program is a useful tool, it is considered that the assignments can 

be somewhat inaccurate, and other approaches many be more beneficial, 

especially when dealing with unknown organisms. The methodology taken in 

this thesis offers a different approach to analyse the sequencing data, by using a 

variety of contig assemblers as described in Scholz et al. (2014), and a novel 

clustering method that has been proven to work. These methods would need to 

be automated to ensure the data can be interpreted. 

 

6.2 Automated Analysis 

 

To build upon the current work of this thesis, the following areas require 

additional work. Most importantly, the automation of analysis, via the pipeline 

we have developed for the sequence data, would need to be established. The 
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current pipeline requires user intervention at the majority of the stages. This is 

mainly because at each stage checks were carried out to ensure that the data 

were processed in the intended manner. As it has been demonstrated that the 

processes used in this work are suitable, these now need to be joined together, 

so all the tasks carried out in this document are completed automatically (Figure 

6.1). This would ensure that the large sequencing datasets generated by NGS 

can be interpreted. If a pipeline were implemented, it would allow for further 

analysis on the remaining clusters identified in the first experiment. 

 

 

 

 

 

 

Figure 6.1. Proposed pipeline for the analysis of DNA sequencing data. The (a) 

initial sequencing data would be loaded into the (b) contig assemblers, where 

numerous assemblies would take place to generate the longest possible 

contigs, and then (c) clustered using the method described in this thesis. The 

clusters would then be used to produce an (d) output file for each of these, the 

ORFs (by Prokka) (e) automatically BLAST searched for the top match, (f) 

mapped onto the closest known genome, according to the BLAST results and 

(g) placed in a phylogenetic tree using a core set of genes database. The 

pipeline would produce a summary for each cluster, such as those in Figure 

5.17 and 5.18. 
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The initial results produced using the methods described in this thesis have 

highlighted microbes that are increasing in abundance within our model system 

and support the notion that these organisms have not been previously 

described, as none of the top BLAST results had identical matches. Although a 

draft genome assembly was attempted, the amount of sequence data was not 

enough.  

 

6.3 Additional Sequencing 
 

Although two different sequencing platforms providing long and short reads 

were used for the microbial community analysis, the amount of sequence 

returned was not enough to reassemble a complete draft microbial genome. The 

assembly of a complete microbial genome gives the potential to understand 

what the function of that microbe is within the system. The current analysis 

methods allow the length of sequence in question be compared to other 

organisms phylogentically, but this does not necessarily mean that the microbe 

from which the sequence was derived from will be performing the same 

functions as those microbes it is most closely related to. That said, with the 

current dataset it might be possible to investigate the genes in an organism, 

indicating its potential role in the AD process. Further sequencing of samples 

ensures that more of the microbial genomes are sequenced, and this coupled 

with longer read sequencing technologies, has the potential to produce complete 

draft assembled genomes of novel organisms. 

 

Furthermore, additional samples from experiment three, where three lab scale 

AD systems were run in parallel, would need to be sequenced to determine if 

the changes observed in process data are reflected in the microbial communities. 

The process data were suggestive that the microbial community structure 

outcome is shaped via deterministic factors. Further sequencing of the samples 

taken daily would be highly informative and would either disprove or further 

support this theory. 

 

The long reads obtained using PacBio are an important tool in analysing 

microbial communities. In this experiment, the reads obtained were not as long 

as anticipated, probably due to the DNA extraction method. To ensure that 
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longer reads are obtained when using this technology, a different DNA 

extraction method should be developed e.g. Bey et al. (2010) and Pang et al. 

(2008). 

 

 

6.4 Merging process and metagenomic data 

 

The aim of collecting both the process data from the experiments as well as 

investigating the microbial community dynamics using a variety of approaches 

e.g. qPCR and metagenomics, was to determine where correlations between 

system performance and the microbial community can be made (Figure 6.2). 
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Figure 6.2. The process and metagenomic data from experiment one. The F:M 

and OLR (a), total VFAs (b), the methane conversion efficiency (c) compared to 

the qPCR data for the two measured methanogens, Methanoculleus (d) and 

Methanosarcina (e) and the five methanogen groups (NC1-5) (f), identified by 

this work. 
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The methane conversion efficiency is initially high in experiment one, but after 

day 7 decreases, and thereafter gradually increases (Figure 6.2 c). Interestingly, 

the methanogens appear to undergo a significant increase that coincides with 

this initial increase in methane conversion efficiency. The qPCR data suggests 

that the Methanoculleus species increases during this time (over 15 fold, Figure 

6.2 d), but as the methane efficiency decreases, so do these organisms. The same 

pattern is observed for the Methanosarcina species (Figure 6.2 e) that have over a 

100 fold increase after 5 days, but again, decrease slightly. These Methanosarcina 

generally increase in abundance throughout the experiment, with some slight 

fluctuations and this increase correlates with an improved methane conversion 

efficiency. Curiously however, the metagenomic data do not match the qPCR 

data entirely. Cluster 3023 has been shown to be closely related to 

Methanosarcina mazei (which the qPCR was targeted to), and a similar trend in 

microbial dynamics can be observed, but the fold changes of these organisms 

are very different. For example, at day 25, the qPCR data suggests 

Methanosarcina species have increased by over 400 fold, compared to the starting 

sample, whereas the metagenomic data suggest this microbe has increased only 

10 fold. Furthermore our analysis suggests clusters 274, 1620, 1614 and 3861 are 

related to Methanoculleus marisnigri. The Methanoculleus data from qPCR 

suggests there is an initial increase (over 10 fold) of this organism by day 8, 

before a rapid decrease, but the metagenomic data imply that this organism 

does have an initial increase, but continues to increase in abundance throughout 

the experiment. Hori et al. (2006) reported that Methanoculleus decreased during 

high levels of VFAs, which correlated with the qPCR data, but Ma et al. (2015) 

suggested that Methanoculleus was not affected by changing VFA levels, as 

shown by the metagenomic data. A possible reason for differences between the 

two datasets could be the selected qPCR primers have actually targeted more 

than one organism showing the same behaviour, or possibly a different strain. 

This emphasises the need for careful primer selection. To determine if the qPCR 

data is accurate (especially for the Methanoculleus) further investigation into the 

primers used and therefore the product formed would be required. Although 

preliminary checks were conducted in the form of checking for single product 

formation and performing a melt curve, further investigations including 

sequencing of the PCR product could be carried out. It could also be that as only 

a small percentage of the sequencing data has been analysed, the microbes 
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displaying this behaviour are yet to be identified e.g. Methanoculleus measured 

by qPCR could be a different strain to that group of clusters, assigned also as 

Methanoculleus. Therefore the analysis method chosen to determine microbial 

abundance change could actually influence the result. It can be concluded 

however that both analysis methods can be useful and that some comparisons 

between the two datasets can be drawn. It is probable that the Methanosarcina 

species should exhibit an increase in abundance during this experiment as the 

acetic acid concentration was high (with a maximum at over 12 g/L), and this 

organism utilises this substrate to produce methane. Interestingly, Hao et al. 

(2013) suggested that the aceticlastic pathways was inhibited when the acetate 

concentration was above 50mM, and that hydrogenotrophic methanogens were 

more tolerant to high acetate levels, but these data suggest that the high acetic 

acid levels are having little effect on the methanogen activity or methane 

production. Methanosarcina has been reported to have a higher growth rate than 

Methansaeata during high acetate levels (Walter et al., 2012), but the 

metagenomic data suggests both these organisms are able to grow, at 

comparable levels, under the conditions of high acetate. This could explain the 

increasing methane output regardless of the high VFA levels.  

 

Complementary to sequencing DNA samples, investigating the transcriptome 

would begin to reveal those microbes and associated genes that are active 

within the AD systems. 

 

6.5 Transcriptomics 

 

The use of metagenomic shotgun sequencing of DNA has the advantage that it 

is a method to investigate microbial community structure, along with revealing 

the potential functions of organisms (Alneberg et al., 2014), along with 

discovery of new and novel genes (Urich et al., 2008). The drawback associated 

with this method however is that DNA sequencing and analysis can only 

provide information on the microbes that are present in the system and does not 

necessarily indicate that these microbes are active within the system for a 

specific function. Additionally, DNA sequencing does not provide information 

on the expression state of the genes and ultimately the functional roles (Urich et 
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al., 2008) of microbes. Those microbes that are increasing within the systems, as 

identified in this thesis, would be assumed to be contributing towards the 

digestion process, whereas others that appear to have no relative increase in 

numbers could actually be there, but not highly active. It could be possible that 

the microbes showing little change could actually be metabolically active but 

not growing at the same rates as other organisms. An alternative to sequencing 

DNA is RNA. Investigation into the transcriptome could potentially reveal those 

microbes that are active within the system, the functions of these and give a 

much clearer perspective of the process occurring within AD systems. 

 

6.6 Further lab experiments 

 

Experiments over longer timescales using the lab scale digester would be 

important to further investigate process data variations and the microbial 

communities involved in the process. In this thesis, the longest trial was run for 

57 days, although the analysis investigating the microbial communities has only 

been conducted on the 39 day trial (experiment one) thus far. For these 

experiments, the systems were run until maximum feed rates (F:M of 0.3, as 

done in industry) were achieved. If these systems were run for longer then it 

would give the opportunity to investigate the changes occurring both for 

process data and the microbial populations. The focus of two experiments in 

this thesis was to investigate the changes occurring within the microbial 

communities in the system, along with rate of change, until the maximum feed 

rate was achieved, but maximum feed rate does not necessarily mean maximum 

stable running conditions.  

 

Longer experiments also have the benefit of investigating how stable and robust 

the microbial communities are within AD systems. It has been reported (De 

Francisci et al., 2015) that if the composition of the feedstock is dramatically 

changed in a system, then the microbial population responds to this change, and 

that can result in a decrease in performance. Therefore longer experiments to 

further investigate this issue, such as varying the change of feedstock 

composition levels to determine how robust and stable the systems are to slight 

changes, along with greater ones. Variations in feedstock composition is an 
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important consideration as there can always be variability in feedstock 

compositions. Understanding how the microbial communities change under 

specific conditions, especially if run in triplicate (or more system) would be 

highly informative and an ultimate aim would be to build a predictive model of 

how the AD systems behave. The IWA Anaerobic Digestion Model 1 (ADM1) 

(Batstone et al., 2002) is a model that considers numerous processes to simulate 

all the reactions occurring in AD. These include both biological and physio-

chemical reactions (Jeong et al., 2005). This model is widely used and has often 

been adapted e.g. Galí et al. (2009). Having a computational model to simulate 

the AD process is advantageous as it can allow for predictions to be made, and 

shows confidence in the process. There is a lot of embedded expertise in those 

who operate the AD systems to ensure the systems are run properly, but there is 

a requirement for an updated predictive model to make the process more 

predictable, especially as the use of NGS has revealed novel microbes and the 

biochemistry of these is better understood. Experiment three can serve to act 

towards the goal of building a predictive model, once the DNA sequenced 

samples have been analysed. Further experiments using three or more lab 

systems can be used to start to understand the interactions within the AD 

systems, as well as used to predict and model the AD process. 
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Appendix A 

 

# 
# produce fasta files and some statistics for clusters 
# push clusters that are less than 20kb into a single file 
# JC 15/7/15 
# 
 
import csv 
import re 
from Bio import SeqIO 
from Bio.SeqUtils import GC 
from Bio.SeqRecord import SeqRecord 
 
# put all the fasta sequences into a dictionary 
# key to fasta_dict contains contig name 
# entry contains length of contig, contig %GC and contig 
sequence 
 
fasta_dict = {} 
 
print('Loading fasta files') 
 
handle = open('final_full.fasta', 'rU') 
for record in SeqIO.parse(handle, "fasta"): 
 fasta_entry = 
len(record.seq),GC(record.seq),record.seq,record.id 
 fasta_dict[record.name] = fasta_entry 
 
# put all the clusters into another dictionary 
# this code parses the file containing contigs 
# each cluster has a name in group_dict.keys 
# plus an entry which contains all of the matching contigs 
 
group_dict = {} 
 
print('Loading cluster details') 
 
with open('clustered_contigs.txt', 'r') as groups: 
 datafile = groups.read() 
 entry = '' 
 for character in datafile: 
  entry = entry+character 
  if character == '\n': 
   details = entry.split('[') 
   group_name = details[0] 
   others = details[1] 
   other = others.rsplit(']') 
   contig_list = other[0] 
   contigs = re.sub('[\']', '', contig_list) 
   group_dict[group_name] = group_name+', 
'+contigs 
   entry = '' 
 
# how to parse the group_dict 
 
#lumpy = group_dict.keys() 
#for lister in lumpy: 



 138 

# marge = group_dict[lister] 
# simpsons = marge.split(', ') 
# for list in range(len(simpsons)): 
#  print simpsons[list] 
 
 
# set up a dictionary with the abundance data (Windows.csv 
file) 
 
input_file = 'output_to_sort.csv' 
input_dict = {} 
 
print('Loading abundance data') 
 
with open(input_file, 'r') as input: 
       for row in input: 
               query_values = row.strip('\r\n') 
               query_parts = query_values.split(',') 
               query_id = query_parts[0] 
               query_values = query_parts[1:12] 
               input_dict[query_id] = query_values 
 
# now make a final dictionary (big_dict) 
# this contains clusters of contigs with interleaved fasta 
entries 
# and relative abundance data 
# appended to the end of each record are statistics on number 
of contigs 
# in cluster and total number of bp in each cluster 
 
big_dict = {} 
 
print('Assigning contigs to groups') 
 
cluster_list = group_dict.keys() 
fasta_names = fasta_dict.keys() 
 
for cluster in cluster_list: 
 contig_list = group_dict[cluster] 
 contig_names = contig_list.split(', ') 
 number_of_contigs = 0 
 length_of_contigs = 0 
 for contig_name in range(len(contig_names)): 
  cluster_name = contig_names[0] 
  current_entry = contig_names[contig_name] 
#  print ('Cluster name is %s' % cluster_name) 
  fasta_record = fasta_dict[current_entry] 
#  print ('Contig name is %s' % current_entry) 
#  print ('Record for contig is', fasta_record)  
  entry_length = fasta_record[0] 
#  print ('Contig is %d bp long' % entry_length) 
  entry_GC = fasta_record[1] 
#  print ('with GC content %d' % entry_GC) 
  if str('Group_'+cluster_name) in big_dict: 
  
 big_dict['Group_'+cluster_name].append(fasta_record) 
  else: 
   big_dict['Group_'+cluster_name] = 
[fasta_record] 
  abundance_data = input_dict[current_entry] 
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 big_dict['Group_'+cluster_name].append(abundance_data) 
  number_of_contigs += 1 
  length_of_contigs += entry_length 
 big_dict['Group_'+cluster_name].append(number_of_contigs
) 
 big_dict['Group_'+cluster_name].append(length_of_contigs
) 
#print big_dict 
  
# next step is to sort by total length of cluster and save 
file 'length' 
# then sort by number of contigs in cluster and save another 
file 'number' 
# initially save one file each for the top 20 plus one file 
for the rest 
# into different directories 
 
# sort by length 
 
print ('Sorting clusters by length') 
 
length_list = [] 
list_length = big_dict.keys() 
for loop1 in list_length: 
 longest = 0 
 for loop2 in list_length: 
  record1 = big_dict[loop2][-1] 
  if record1 >= longest: 
   longest = record1 
   longest_id = loop2 
 length_list.append(longest_id) 
 list_length.remove(longest_id) 
#add subroutine to print list with length of each cluster 
 
print ('Saving length-sorted clusters') 
 
top_20_length = 0 
for checker in length_list: 
 if top_20_length < 50: 
  file_name = str(checker) 
  data_name = file_name+'.csv' 
  file_name = file_name+'.fasta' 
  print file_name 
  contig_file = open(file_name, 'w') 
  data_file = open(data_name, 'w') 
  w = csv.writer(data_file) 
  w.writerow([0,5,8,11,15,18,22,25,32,36,39]) 
  for outputter1 in range(0, int(big_dict[checker][-
2]), 2): 
   sequence_going_out = 
big_dict[checker][outputter1] 
   numbers_going_out = 
big_dict[checker][outputter1+1] 
   x = SeqRecord(sequence_going_out[2], id = 
sequence_going_out[3], description = "length 
"+str(sequence_going_out[0])+" GC content 
"+str(sequence_going_out[1])) 
   SeqIO.write(x, contig_file, 'fasta') 
#   data_file.write(numbers_going_out) 
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   w = csv.writer(data_file) 
   w.writerow(numbers_going_out) 
  contig_file.close() 
  data_file.close() 
 else: 
  contig_file = open('below_top_20.fasta', 'w') 
  for outputter2 in range(0, int(big_dict[checker][-
2]), 2): 
   sequence_going_out = 
big_dict[checker][outputter2] 
                        x = SeqRecord(sequence_going_out[2], 
id = sequence_going_out[3], description = "length 
"+str(sequence_going_out[0])) 
                        SeqIO.write(x, contig_file, 'fasta') 
  contig_file.close() 
 top_20_length += 1 
 
# sort by number    
 
#print ('Sorting clusters by number of contigs') 
 
#number_list = [] 
#list_number = big_dict.keys() 
#for loop3 in list_number: 
#        most = 0 
#        for loop4 in list_number: 
#                record2 = big_dict[loop4][-2] 
#                if record2 >= most: 
#                        most = record2 
#                        most_id = loop4 
#        number_list.append(most_id) 
#        list_number.remove(most_id) 
 
#print ('Saving clusters with most contigs') 
 
#top_20_number = 0 
#for hecker in number_list: 
#        if top_20_number < 20: 
#                file_namer = str(hecker) 
#                file_namer = 'numbers_'+file_namer+'.fasta' 
#                print file_namer 
#                contig_filer = open(file_namer, 'w') 
#                for outputter3 in range(0, 
int(big_dict[hecker][-2]), 2): 
#                        sequence_going = 
big_dict[hecker][outputter3] 
#                        y = SeqRecord(sequence_going[2], id = 
sequence_going[3], description = "length 
"+str(sequence_going[0])) 
#                        SeqIO.write(y, contig_filer, 'fasta') 
#                contig_filer.close() 
#        else: 
#                contig_filer = 
open('numbers_below_top_20.fasta', 'w') 
#                for outputter4 in range(0, 
int(big_dict[hecker][-2]), 2): 
#                        sequence_going = 
big_dict[hecker][outputter4] 



 141 

#                        y = SeqRecord(sequence_going[2], id = 
sequence_going[3], description = "length 
"+str(sequence_going[0])) 
#                        SeqIO.write(y, contig_filer, 'fasta') 
#                contig_filer.close() 
#        top_20_number += 1 
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Appendix B 

 

from __future__ import print_function, division 
 
from Bio.Blast import NCBIXML 
import argparse 
import re 
 
REPORT_NO_HITS = False 
 
def check_description(title_string): 
    if re.search("[Hh]ypothetical", title_string): 
        return False 
    elif re.search("[Pp]utative", title_string): 
        return False 
 
    return True 
 
parser = argparse.ArgumentParser(description="Summarise 
BlastXML output files") 
parser.add_argument("files", metavar="<filename>", type=str, 
nargs='+', help="A blast XML output file to summarise") 
args = parser.parse_args() 
 
for filename in args.files: 
    infile = open(filename, 'r') 
 
    for blast_record in NCBIXML.parse(infile): 
        query_title = blast_record.query 
 
        for description in blast_record.descriptions: 
            if check_description(description.title): 
                print("\t".join([query_title, 
description.accession, description.title, 
str(description.e)])) 
                break 
        else: 
            if REPORT_NO_HITS: 
                print("No suitable hits for " + query_title) 
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Appendix C 

 

The core genes were identified using MicroScope – Microial Genome 

Annotation & Analysis Platform 

 

The following organisms were selected and searched using an MICFAM 

parameter of 50/80: 

 
Methanobrevibacter smithii ATCC 35061 
Methanobrevibacter sp. JH1 
Methanocaldococcus fervens AG86 
Methanocaldococcus jannaschii DSM 2661 
Methanococcoides burtonii DSM 6242 
Methanococcus aeolicus Nankai-3 
Methanococcus maripaludis C5 
Methanococcus maripaludis C6 
Methanococcus maripaludis C7 
Methanococcus maripaludis S2 
Methanococcus maripaludis X1 
Methanococcus vannielii SB 
Methanococcus voltae A3 
Methanocorpusculum labreanum Z 
Methanoculleus bourgensis MS2 type strain:MS2 
Methanoculleus marisnigri JR1 
Methanomassiliicoccus luminyensis B10 
Methanomethylovorans hollandica DSM 15978 
Methanopyrus kandleri AV19 
Methanoregula boonei 6A8 
Methanosaeta concilii GP-6 
Methanosaeta thermophila PT 
Methanosarcina acetivorans C2A 
Methanosarcina barkeri Fusaro 
Methanosarcina mazei Go1 
Methanosphaera stadtmanae DSM 3091 
Methanospirillum hungatei JF-1 
Methanothermobacter marburgensis Marburg 
Methanothermobacter thermautotrophicus Delta H 
Methanotorris igneus Kol 5 
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Abbreviations 
 

°C degrees celsius 

AD Anaerobic Digestion 

BLAST Basic Local Alignment Search Tool 

bp Base pair 

C/N Carbon to Nitrogen 

CAFT Cavitation Air Flotation Tank 

COD Chemical Oxygen Demand 

EtBr Ethidium Bromide 

F:M Feed to Mass 

g gram 

g/L gram per litre 

Gb Gigabase 

HRT Hydraulic Retention Time 

Kb Kilobase 

kD Kilodalton  

Kg Kilogram 

L Litre 

L/h Litre per hour 

m metre 

m3 Cubic metre 

ml millilitre 

ml/min millilitre per minute 

mM millimolar 

mm millimetre 

mRNA messenger ribonucleic acid 

Na2CO3 Sodium Carbonate 

NaOH Sodium Hydroxide 

ng nanogram 

nm nanometre 

ORF Open Reading Frame 

PCR Polymerase Chain Reaction 

qPCR Quantitative Real Time PCR 

RNA Ribonucleic acid 
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rRNA ribosomal ribonucleic acid 

sccm Standard cubic centermetres per minute 

SD Standard Deviation 

TAE Tris-Aceate-EDTA 

TFF Tangential Flow Filtration 

UK United Kingdom 

ul microlitre 

VFA Volatile Fatty Acid 

VS Volatile Solids 

VSS Volatile Suspended Solids 
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