Multilevel Mesh Adaptivity for Elliptic Boundary

Value Problems in Two and Three Space Dimensions

by

Rashid Mahmood

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds
School of Computing

January 2002

The candidate confirms that the work submitted is his own and that
appropriate credit has been given where reference has been made to the

work of others.

Acknowledgements
I thank The Almighty, for the courage and strength He granted me to
complete this project.

[would like to thank my supervisor Dr. Peter K. Jimack for his keen su-
pervision, unlimited availability and encouragement throughout this project.
I would also like to thank Professor Martin Berzins and Dr. Mark Walkley
for their helpful advice and fruitful discussions.

I would like to acknowledge Ministry of Education, Pakistan for the fi-
nancial support throughout this project in the form of the 100 merit schol-
arships scheme. My thanks also go to the General Office and Support staff
of the School for the help provided to me throughout my stay.

Thanks also to my colleagues Idrees Ahmad, Muhammad Rafiq Asim,
Sharifullah Khan, Sarfraz Ahmad Nadeem, Allah Nawaz and Nasir Touheed
for matters not necessarily relating to the research.

I especially wish to thank my parents, my wife and my son for their
constant love and support over the years. They have always been there for

me and for that I thank them. It is to them that I dedicate this thesis.

i

Abstract

In this work we have developed, implemented and tested a new multilevel
hybrid algorithm for the adaptive finite element solution of a general class
of variational problems. Our multilevel hybrid algorithm is a combination
of node movement, edge swapping and local h-refinement. The adaptive
strategy used in our hybrid algorithm is based upon the construction of a
hierarchy of locally optimal meshes starting with a coarse grid for which
the location and the connectivity of the nodes is optimised. The grid is
then locally refined and the new mesh is optimised in the same manner.
Our hybrid algorithm does not need any global solution of the problem, it
uses only local information to update the nodal solution values by solving
the local variational problems on a relatively small domain with only few
unknowns.

The node movement strategy is based upon knowledge of a steepest de-
scent direction for each node found by a gradient calculation. A derivation
of the gradient of stored energy with respect to the position of nodes is pro-
vided. A strategy for the movement of interior as well as boundary nodes
is then given. Edge/face swapping in two and three space dimensions is
explained and algorithms for node movement and edge swapping are given.
Detailed descriptions of the possible local refinement strategies in two and
three space dimensions are provided. Possible variants of our hybrid al-
gorithm are considered and aspects of our hybrid algorithm regarding the
quality of the meshes achieved and the computational work undertaken are
discussed with some preliminary results.

We have applied our hybrid algorithm on a number of test problems:
considering linear, nonlinear and system of equations in two and three space
dimensions. A detailed comparison of the results produced by our hybrid
algorithm with other adaptive approaches has been made for all of our test
problems. Results presented indicate that our hybrid algorithm can produce
better meshes, in both two and three space dimensions, than is possible by

more conventional adaptive strategies.

11

Contents

1 Introduction

1.1

1.2

1.3
1.4

1.5

1

Finite element method 2
1.1.1 Weak form or variational form 2
1.1.2 Energy minimisation 4
1.1.3 Variational methods 7
1.1.4 Formulation of the FEM 7
Solution of the FEM equations 11
1.2.1 Structured meshes 12
1.2.2 Unstructured meshes 12
1.2.3 Direct methods 13
1.2.4 Tterative methods 13
1.2.5 Condition number. 14
1.2.6 Preconditioning oL 16
Mesh adaptivityo oL 17
Refinement criteria L. 19
1.4.1 A priori error assessment 20
1.4.2 A posteriort error assessment 20
1.4.3 Error estimators 22
1.4.4 Error indicators 23
1.4.4.1 Geometrical criteria 24

1.4.4.2 Physical quantity criteria 25
Refinement schemes, 25
1.5.1 h-Adaptivity o 26
1.5.2 p-Adaptivityo 27
1.5.3 r-Adaptivityo 28

v

2

3

1.5.3.1 Mesh movement
1.5.3.2 Edge swapping
1.5.4 Moving mesh schemes
1.5.4.1 Moving finite element
1.5.4.2 Equidistributional principle

1.5.4.3 Direct minimisation principle

Multilevel r» and h-Refinement

2.1 Formulation of problem and notation

2.2 Nodemovement
2.2.1 Movement of boundary nodes
2.2.2 Derivation of gradient L.
2.2.3 Solution of the local problem
2.2.4 Node movement algorithm

2.3 Formulation for system of equations

24 Edge swapping
2.4.1 Edge swapping algorithm

2.5 Local h-refinemento

2.6 Multilevel hybrid algorithm

Implementation and Numerical Results in 2-Dimensions

3.1 Mesh quality
3.1.1 Exact / Inexact linesearch
3.1.2 One-to-two and one-to-four element refinement
3.1.3 Local solves vs. global solves
3.1.4 Order of nodes and edges
3.1.5 Order of refinement strategies

3.2 Adjustable parameters
3.2.1 Minimum area condition
3.2.2 Threshold for gradient
3.2.3 Convergence criteria

3.2.3.1 Convergence criterion for node movement

3.2.3.2 Convergence criterion for edge swapping . .

83

3.2.3.3 Convergence criterion for the optimised mesh 84

3.2.3.4 Stopping criterion for the hybrid algorithm

85

3.2.4 Admissible limit factor for node movement 85

3.2.5 Number of edges attached to one node 86
3.3 Numerical resultso 87
3.3.1 Problemone. 88
3.3.2 Problemtwo. 0oL 94
3.3.3 Problem three 000 99
3.34 Problemfour 0L 103
3.4 Summary ... 110
Further Algorithmic Assessment 114
4.1 An assessment of the main options in our hybrid algorithm . 115
4.1.1 Line minimisation strategies 116
4.1.2 Orderofnodes 117
4.1.3 Orderofedges. 119
4.1.4 Global solves at intermediate levels 120
4.2 Computational cost 122
4.2.1 Cost involved in various steps of our hybrid algorithm 122
4.2.2 Approximate movement of nodes 124
4.2.3 Approximate swapping of edges 125
4.3 Summary 126

Implementation and Numerical Results in 3-Dimensions 129

5.1 Nodemovement 131
5.2 Face/Edge swapping 133
5.2.1 Faceswapping 134
5.2.2 Edge swapping oL 138
52.3 GRUMMP. o o 142
5.3 Local A-refinement L. 145
53.1 TETRAD 153
54 Numericalresults L. 156
54.1 Problemone 157
54.2 Problemtwo. 162
5.5 Summary 166

vi

6 Conclusions and Future Work
6.1 Summary of work undertaken

6.2 Possible future worko

Vil

List of Figures

2.1
2.2

2.3

3.1

3.2

3.4

3.5

3.6

3.7

3.8

3.9

3.10

An illustration of local node movement
An illustration of the modification of a mesh by the swapping
of asingleedge. oL
An illustration of the refinement of certain (shaded) elements
of a mesh using one-to-four subdivision (top) and one-to-two

subdivision (bottom). L L

Some possibilities for the exact line search.
Some possibilities for the inexact line search.
U=10°2°(1—2)y> (1 —y) . . .« o i
Initial coarse mesh after applying local h-refinement and cor-
responding locally optimised mesh of 248 elements.
Initial coarse mesh after applying r-refinement and the cor-
responding locally refined mesh having 242 elements.

A situation where interior element ABC can flip to assign it
negative area oo
A situation where too many edges attached to one node . . .
An initial mesh (top left) followed by a sequence of meshes
obtained by r-refinement and then combinations of global
h-refinement with r-refinement.
A globally refined mesh of 512 elements and the correspond-
ing locally optimised mesh.
A sequence of meshes obtained by r-refinement of an ini-
tial coarse mesh (top left) and then combinations of local

h-refinement followed by r-refinement.

viil

3.11

3.12

3.13

3.14

3.15

3.16

3.17
3.18

3.19

3.20

3.21

3.22

A pair of meshes of 1048 elements obtained using local one-
to-four h-refinement (top left) followed by optimisation and
a pair of meshes of 784 elements obtained using local one-to-
two h-refinement (bottom left) followed by optimisation.

An illustration of the overhanging cantilever beam with a
vertical point load at the end of the cantilever.
An initial mesh followed by a sequence of meshes obtained
by r-refinement and then combinations of global h-refinement
with r-refinement. o000
A globally refined mesh of 1024 elements and the correspond-
ing locally optimised mesh.
A sequence of meshes obtained by r-refinement of an initial
coarse mesh and then combinations of local h-refinement fol-
lowed by r-refinement.
A pair of meshes of 674 elements obtained using local one-to-
four h-refinement (top) followed by optimisation (second) and
a pair of meshes of 462 elements obtained using local one-to-
two h-refinement (third) followed by optimisation (bottom).
An illustration of the domain for the singular problem.

A sequence of meshes obtained by r-refinement of an initial
coarse mesh (top left) and then combinations of global A-
refinement followed by r-refinement.
A globally refined mesh of 1792 elements and the correspond-
ing locally optimised mesh.
A sequence of meshes obtained by r-refinement of an ini-
tial coarse mesh (top left) and then combinations of local
h-refinement followed by r-refinement.
A pair of meshes of 1437 elements obtained using local one-
to-four h-refinement (top left) followed by optimisation and
a pair of meshes of 1413 elements obtained using local one-
to-two h-refinement (bottom left) followed by optimisation.

An initial mesh for the nonlinear problem.

X

98

. 100

104

3.23

3.24

3.25

3.26

4.1

4.2
4.3

5.1

5.2

3.3
5.4

3.5

2.6

5.7

5.8

A sequence of meshes obtained by r-refinement of an initial
coarse mesh (top left) and then combinations of global h-
refinement followed by r-refinement.
A globally refined mesh of 5120 elements and the correspond-
ing locally optimised mesh.
A sequence of meshes obtained by applying a combinations of
local A-refinement followed by r-refinement on an optimised
coarse mesh (shown in Figure 3.23 (top left)).
A pair of meshes of 4660 elements obtained using local one-
to-two h-refinement (top left) followed by optimisation and
a pair of meshes of 4896 elements obtained using local one-

to-four h-refinement (bottom left) followed by optimisation.

Energy distribution per element before and after optimisation
(note the difference in the vertical scale in each graph).
Energy versus number of iterations of node movement.

Energy versus number of iterations of edge swapping.

Possible configurations of five points where no four of the five
points are coplanar. L L.
Possible configurations of five points where four of the five
points are coplanar. L L
Face swapping for two interior coplanar faces.
Edge swapping for 5 tetrahedra to 6, where edge OP is sur-
rounded by 5 tetrahedra.00
Equatorial triangles after swapping edge OP, surrounded by
4,5,6 and 7 tetrahedra, including the number of unique rota-
tions for each configuration shown.
Regular refinement of a tetrahedron into 8 child tetrahedra,
by bisecting all of the edges.
Regular directional refinement of a tetrahedron into 4 child
tetrahedra by bisecting edges on one face.

Bisection of a tetrahedron into 2 child tetrahedra by bisecting

112

124
126
127

5.9 Division of a tetrahedron with 1 green node into 2 subtetra-
hedra. L
5.10 Division of a tetrahedron with 2 green nodes on opposite
edges, i.e. on two different faces, into 4 subtetrahedra.. . . .
5.11 Division of a tetrahedron with 2 green nodes on adjacent
edges, i.e. on one face, into 3 subtetrahedra.
5.12 Division of a tetrahedron with 3 green nodes on a single face
into 4 subtetrahedra. 00000
5.13 Division of a tetrahedron with 3 green nodes on two different
faces into 4 subtetrahedra.o 0oL
5.14 Division of a tetrahedron with 4 green nodes (three on one
face and one on a different face) into 5 subtetrahedra.
5.15 Division of a tetrahedron with 4 green nodes (two on each
face) into 6 subtetrahedra. oL
5.16 Division of a tetrahedron with 5 green nodes into 7 subtetra-
hedra.
5.17 Division of a tetrahedron with 1 green node into 6 subtetra-
hedra by introducing a node into the parent tetrahedron. . .
5.18 Division of a tetrahedron with 2 green nodes on one face
into 8 subtetrahedra by introducing a node into the parent
tetrahedron. o oL
5.19 Division of a tetrahedron with 2 green nodes on opposite
edges into 8 subtetrahedra by introducing a node into the
parent tetrahedron. 0oL
5.20 Refinement of adjacent green elements
5.21 Due to movement of green node j, the parent edge containing
J no longer remains valid for derefinement.
5.22 An illustration of an initial uniform mesh containing 384
tetrahedral elements.o
5.23 An initial locally optimised mesh (top left) followed by a
sequence of meshes obtained by combinations of global A-

refinement with r-refinement.

x1

151

5.24

5.25
5.26

5.27

6.1
6.2

An initial locally optimised mesh (top left) followed by a
sequence of meshes obtained by combinations of local h-
refinement with r-refinement. 160
An illustration of the overhanging cantilever beam 163
A sequence of meshes obtained by r-refinement and then com-
binations of global h-refinement with r-refinement. 168

A sequence of meshes obtained by combinations of local h-

refinement with r-refinement. 169
Refinement of a triangle in to three triangles. 175
Refinement of a tetrahedron in to four tetrahedra. 176

xii

List of Tables

3.1

3.2

3.4

4.1

4.2

4.3

5.1

5.2

3.3

5.4

Summary of the results obtained for Problem one (the global
energy minimum is 50.0000). L. 93
Summary of the results obtained for Problem two (the global
energy minimum is unknown). L. L. 99
Summary of the results obtained for Problem three (the global
energy minimum is 0.392699). 105
Summary of the results obtained for Problem four (the global

energy minimum is not known). L. 113

Summary of the results for exact and inexact line searches,
obtained for Problem One using exact and inexact line searches.

118

Solutions to Problem One using edge swapping: with and
without sorting the edges. 120

Results with and without global solves at intermediate levels 121

Number of unique tetrahedra and possible configurations for

edge swapping. 140
Summary of the results obtained for the first test problem

(the global energy minimum is 50.0000). 161
Summary of the results obtained for the first test problem
without edge swapping (the global energy minimum is 50.0000).

162

Summary of the results obtained for Problem Two (the global

energy minimum is unknown). L. L. 166

X111

Chapter 1

Introduction

Mathematical modelling of many real life situations, whether of a physi-
cal, chemical, biological, economic or other nature almost always involves
differential equations. Most of the differential equations involved in these
mathematical models are either so complex that analytical solutions to them
do not exist or it is too difficult to find an analytical solution. Then come
numerical techniques which are used to get an approximate solution by dis-
cretising the original problem. Popular numerical methods are the finite
difference method, the finite element method, the finite volume method
and the boundary element method. This work is devoted exclusively to the
Finite Element Method (FEM) for the solution of boundary value partial
differential equations (PDEs). The literature about this method is vast, and
we cite the standard textbooks by Ciarlet [40], Johnson [70] and Zienkiewicz

and Taylor [112] for a complete introduction and overview.

Ch. 1. Introduction

1.1 Finite element method

The finite element method is a numerical technique for obtaining approxi-
mate solutions to a wide variety of differential equations arising in engineer-
ing and mathematical physics. According to [88], some key features of the
FEM were first introduced in 1943, but it is formally presented by Clough,
Martin and Top in 1956 and the term “Finite Element” was first introduced
by Clough in 1960.

Differential equations in which the dependent variable, and possibly its
derivatives, are required to take specified values on the boundary are called
boundary value problems or BVPs. In the finite element method, a given
BVP is first transformed into a weak form and the domain for the BVP is
viewed as an assemblage of subdomains (known as elements). An approxi-
mate solution is sought over each subdomain in the same way as in classical
variational methods such as the Ritz method, the Galerkin method and the

weighted residual method.
1.1.1 Weak form or variational form

A weak form is a weighted integral statement of a differential equation in
which the differentiation is distributed among the dependent variable and
the weight function, and includes the natural boundary conditions of the
problem. The weak formulation has two desirable characteristics. First,
it requires weaker continuity of the dependent variable by distributing the

differentiation between the solution and the weight function w (due to its

Ch. 1. Introduction

weaker requirement of continuity, it has been given the name weak form).
Second, the natural boundary conditions of the problem are included in
the weak form, and the solution is required to satisfy only the essential
boundary conditions of the problem. Whenever the classical solution exists
it coincides with the weak solution of the problem.

We briefly describe how we can transform a classical boundary value
problem to a variational boundary value problem. A variational boundary
value problem is one of the form: find a function u that belongs to a Hilbert

space V and satisfies the equation

a(u,v) = (l,v) (1.1)

for all functions v € W, another Hilbert space. Here the space V is known
as the space of admissible functions and W is known as the space of test or
weight functions. They are both subspaces of a Sobolev space H™(Q) (i.e.
functions in L?(Q) whose m!" derivatives are also in L*() for some integer

m > 1) such that

V ={ue H"(Q) : u satisfies all essential boundary conditions}, (1.2)

W ={ve H"(Q) : v is zero on the essential boundary}.

We begin with a simple linear example of a Dirichlet problem, namely
Poisson’s equation with homogeneous Dirichlet boundary conditions. This
is,

—YV*u=finQ, u=0ondQ, (1.3)

Ch. 1. Introduction

with f € L*(Q). Here Q is the domain and 9 is the boundary of the
domain. We wish to derive the corresponding variational boundary value
problem (VBVP). First we select V to be Hj(2) (i.e. m = 1in (1.2) and
the subscript 0 implies that all functions in this space are zero on 92); next,
we multiply by an arbitrary function v from Hj(2) (note V = W for this

problem) and integrate over {2, to obtain

—/Q(ZQU)‘UC@: /vadg. (1.4)

Green’s theorem is now applied to the left-hand side of (1.4), to reduce this

to,

—/Q(ZQ'u)va@: —/8 (@)'Uds-l-/gzu-zvdi- (1.5)

Q On

Since v € Hy(f2) the boundary integral vanishes and so we get,
/QZU.ZM@ = /Qf'vdg, for all v € Hy(9). (1.6)
This is the VBVP corresponding to the BVP (1.3). Where,
a(u,v) = /QZU.ZM@ and (l,v) = /vadg. (1.7)
A weak form exists for all problems, linear or nonlinear that are described
by second and higher order differential equations, and since the VBVP (1.6)
is derived from the equation (1.3), every solution of (1.3) is a solution of

the VBVP. Conversely it can be shown that every solution of (1.6) that has

sufficient regularity solves the classical problem.
1.1.2 Energy minimisation

Traditionally the variational form means that the problem is formulated as

one in which it is required to minimise a particular functional. These are

Ch. 1. Introduction

often called variational problems, and may be posed in the following form

(or similar, according to the precise nature of the boundary conditions):

min/ F(z,v,Vv)dz (1.8)
Q

veV

for some energy density function F': R? x R x R? — R. Physically this
variational form may be used to model problems in linear and nonlinear
elasticity, heat and electrical conduction, motion by mean curvature and
many more (see, for example, [19, 61, 62]).

Now we show that minimising an energy functional of the form (1.8) is
equivalent to solving a VBVP. To illustrate this we continue with the simple
problem of Poisson’s equation subject to homogeneous Dirichlet boundary
conditions. The first stage is to introduce a functional .J, that is an operator,
which maps a function v(z) € H(f) to a real number. For the Poisson

problem the corresponding functional is defined as,

J(v) = /QF(Q, v, Vv)dz = l Q(Z'U)ng—/ﬂfvdg (1.9)

and the VBVP corresponding to the Poisson problem will be equivalent to

the following;
Find u such that J(u) < J(v) for all admissible v € Hg ().

To show the equivalence we assume that a minimum of (1.9) does exist
and that this minimum is achieved at the function u. If we replace v by
u+ev, where v is arbitrary, although a member of Hj(2), then we may treat

J(u + ev) as a function of the single variable €, and write J(u + ev) = H(€)

Ch. 1. Introduction

say. A minimum of H is then achieved at ¢ = 0, so this condition for a

minimum is therefore that

7o H(€) |e=0=0. (1.10)
From (1.9),
1O =[5 [0 v [ot] (@[oo [ro]ae
2 Ja o~ 2Ja Q Q =
(1.11)
Differentiation with respect to ¢, and evaluation at ¢ = 0 results in the

equation (1.10) reducing to

/Z’U.Zva@:/fvdg. (1.12)
Q Q

However this is derived for an arbitrary choice of v € H} () and so it is the
corresponding weak form of Poisson’s equation. Hence finding a minimum
of the functional (1.9) or solving the VBVP (1.6) are equivalent.

A similar argument to the above shows that a solution of the general
minimisation problem (1.8), if it exists, must satisfy the weak form of the

following classical differential equation:

d
—Fg(x,u,Z'u) + —F73](£7 u7zu) = 07 (113)

o dx;
for summation of j from 1 to n. Equations (1.13) are known as the Euler-
Lagrange equations, where F(.,.,.) represents differentiation of F with
respect to its k' dependent variable (and F's; is the j'* component of F3).
As mentioned earlier, a weak form for every differential equation of order
two or higher exists, however not all equations admit a functional formu-

lation such as (1.8). On the other hand variational methods and the finite

Ch. 1. Introduction

element method do not require a functional; a weak form is sufficient. If one
does have a functional at hand then the weak form may also be obtained

by taking its first variation (as illustrated above).
1.1.3 Variational methods

In these methods the boundary value problem is first transformed into a
variational boundary value problem or weak form and then an approximate

solution of the type,
N

uR > ua;, (1.14)
i=1

is sought where wu; are coefficients to be determined and ; are chosen ap-
proximating functions. The approximate solutions found via these methods
are continuous functions of position in the domain (and may be smooth if the
functions t; are). The main disadvantage of general variational methods
is the difficulty encountered in selecting appropriate approximating func-
tions. Clearly there is no unique way of constructing them, even given the
constraints of the boundary conditions. The selection becomes even more
difficult when the domain is geometrically complex and/or the boundary

conditions are unusually complicated. Further details of these methods can

be found in textbooks by Oden [82] and Forray [47].

1.1.4 Formulation of the FEM

The finite element method not only overcomes the above shortcomings of
general variational methods, but it is endowed with the features of an effec-

tive computational technique. A finite element model of a problem gives a

Ch. 1. Introduction

piecewise polynomial approximation to the governing equations. The basic
idea of the finite element method is that a solution region can be approxi-
mated by replacing it with an assemblage of discrete elements, usually called
a mesh. Since these elements can be put together in a variety of ways, they
can be used to represent very complex domain shapes. The mesh consists of
line segments in one dimension, in two dimensions it may consist of trian-
gles or quadrilaterals and in three dimensions it may consist of tetrahedra
or hexahedra. All these are known as finite elements or simply elements.
A variety of element shapes may be used, and, with care different ele-
ment shapes may be employed in the same solution region. If we partition
the domain € into a finite number E of elements 21,Q,,....Qz, then these
elements should be non overlapping and cover the domain) in the sense

that,
B
QQs=¢ for e#f and [|JO.=Q. (1.15)
e=1
The number and the type of elements to be used in a given problem are
matters of mathematical or engineering judgement (however see Section 1.4
for a discussion of error estimation).

The finite element method works by expressing the unknown field vari-
able in terms of assumed approximating functions within each element. The
approximating functions (sometimes called interpolation functions) are de-
fined in terms of linear combinations of algebraic polynomials called basis
functions and the values of the field variables at specified points called nodes

or nodal points. Nodes usually lie on element boundaries where adjacent ele-

Ch. 1. Introduction

ments are considered to be connected. The nodal values of the field variable
and the basis functions for the elements completely define the behaviour of
the field variable within the elements. For the finite element representation
of a problem the nodal values of the field variable become unknowns to be
determined.

The choice of algebraic polynomials as a basis function has two rea-
sons. First the interpolation theory of numerical analysis can be used to
develop the approximate functions systematically over an element. Second,
numerical evaluation of integrals of algebraic polynomials is easy. The de-
gree of the polynomial chosen depends on the number of nodes assigned to
the element, the nature and number of unknowns at each node and cer-
tain continuity requirements imposed at the nodes and along the element
boundaries. For example, in two dimensions on triangles the field vari-
ables may be approximated by linear polynomials p = a7 + asz + aszy,
with three nodes at the vertices of the triangle or by quadratic polynomials
p = o + @z + asy + asx? + asry + agy?, with six nodes, three at the
vertices and three at the mid points of the triangle edges. Basis functions

Y; have the following properties.
1. The functions t; are bounded and continuous, that is, ¥; € C(f).

2. The total number of basis functions is equal to the number of nodes
present in the mesh and each function ; is nonzero only on those

elements that are connected to node i: ¥;(z)|g, =0 if i & Q..

Ch. 1. Introduction

3. ®; is equal to 1 at node i, and equal to zero at the other nodes,

1 if 1=
pilzj) = ’

0 otherwise.

For a homogeneous Dirichlet boundary value problem! the finite element

solution can be written as,

N
u =3 ughy, (1.16)
i=1
where the values of u; are unknown (to be determined) for: = 1,..., N. Now

we are in a position to apply the finite element method to approximate the
solution of the VBVP (1.1). A Galerkin approximation u” to the solution
of (1.1) may be sought by constructing a finite dimensional subspace V" of
V', which is spanned by a finite number of basis functions ;, and we then

pose the problem of finding u* € V" that satisfies,
a(u",v") =< v > ¥V WP eVh (L.17)

For the Galerkin method to solve for u” we simply note that both u" and

v* must be linear combinations of the basis functions of V" so that,

N N
uh = E uz}j}z and ‘Uh = E C]QZ)] (118)
=1 7=1

" is arbitrary so are the coefficients ¢;. Substitution of

Of course, since v
(1.18) in (1.17) and use of the fact that a is bilinear and [is linear, lead to

the equation,

N N N
22 aPiiuic; =3 <L > ¢, (1.19)

1For the simplicity of this explanation we describe the FEM for a homogeneous Dirich-
let problem on a mesh with N vertices in the interior of the domain €.

10

Ch. 1. Introduction

or

N N
E Cj ([X’Z’]‘ui — f]) = 0, (120)
7=1 =1

where
[(ij = CL(‘;/JZ',L/)J‘) and f]' =< 1,77/)]‘ > . (1.21)
Since the coefficients ¢; are arbitrary, it follows that (1.20) only holds if the

term in brackets is zero for each j from 1 to N. The problem is thus reduced

to one of solving the set of simultaneous equations,

N
ZK”uZ = fj, J = 1, ,N (122)
=1

In Matrix form this is

Ku=f, (1.23)

where the matrix K is known as the stiffness matrix and f is known as the
load vector.

Since ©; = 0 for all elements that do not have node 2 as a node, it follows
that this property of basis functions will result in the matrix K having a
sparse structure or, with an appropriate ordering, a banded structure in

which all nonzero entries are clustered around the main diagonal.
1.2 Solution of the FEM equations

In engineering problems the size of the system of equations is generally quite
large. It is important to design the solution algorithm so that the arithmetic
operations in the solution phase can be performed as efficiently as possible.

The finite element mesh required for the solution of a PDE depends on the

Ch. 1. Introduction

nature of the problem. There are two general types of mesh: structured
meshes and unstructured meshes, and there are two main approaches to
solving the system of simultaneous equations: direct methods or iterative

methods, and there are many variants of each method.
1.2.1 Structured meshes

These type of mesh are also known as regular meshes. Structured meshes
are easy to generate for simple domain shapes and require no storage. They
are mostly used for simple geometries and high order elements because it
is difficult to generate a structured mesh for a complex geometry (and it
is also difficult in structured mesh to increase the number of elements just
in the regions where the variation in solution is sharp). Discussions of the
application and use of structured meshes can be found in [55] and [102] and

the references there in.
1.2.2 Unstructured meshes

These are also known as irregular meshes. The theory and applications
of numerical methods for unstructured meshes have been improved signifi-
cantly in recent years. Complicated geometrical domains can be discretised
relatively easily using unstructured meshes. Unstructured meshes can be
used easily to increase the number of elements in the regions where a so-
lution exhibits sharp features, either by moving nodes or by increasing the
number of elements in that region, for a better approximation of the solu-

tion. Our work is solely focused on these meshes.

Ch. 1. Introduction

1.2.3 Direct methods

Direct methods obtain the exact solution (in real arithmetic) for the system
of simultaneous linear equations (1.23). Direct methods use a finite number
of operations which can be specified in advance, so that the number of
operations performed is independent of the accuracy desired. An exact
solution would be obtained if there were no round off errors.

Direct methods are usually based on Gaussian elimination: however the
algorithms are constructed so that the sparsity of the matrix is exploited
in the interest of computational efficiency (see for example [44, 56]). In
general direct solvers are preferred when the stiffness matrix is not very large
and there are several load vectors. Also, direct solves are often used with
structured meshes, as the sparsity pattern can be exploited more efficiently
in these cases.

For very large order matrices, direct methods are too costly and require
too much storage. Also, when solving finite element equations it is not
the aim to solve them exactly because it would not affect the approximate

solution significantly to solve beyond the discretisation error.
1.2.4 TIterative methods

For solving finite element equations iterative methods are the more common
choice because, when carefully applied, less computational effort is required
to compute a solution than with direct methods. An iterative method gen-
erates a sequence of approximations which should converge to an exact

solution of the discrete system. The accuracy of the solution obtained de-

Ch. 1. Introduction

pends upon the number of iterations performed, the condition number of
the matrix, its size and the accuracy of the arithmetic performed by the
computer (as well as the particular algorithm used of course)

[terative methods are particularly efficient for solving finite element
equations when the system is very large, unstructured meshes are used and
if there are few load vectors. Iterative methods are also a popular choice
for parallel implementation, although this is not considered here. There
are many iterative methods (having their own advantages and disadvan-
tages). Some of them are the Jacobi method, the Gauss-Seidel method,
the successive over relaxation method, the conjugate gradient method, the
generalised minimal residual method (GMRES) (see for example [95]). A
potential drawback of iterative methods however is that they sometimes suf-
fer from the problem of failure to converge (or extremely slow convergence)

when the system of linear equations is very ill conditioned.
1.2.5 Condition number

The need for local resolution in physical models occurs frequently in prac-
tice, either when the boundary of the domain is not smooth, or to take care
of special local features of the solution, or when the operator coefficients
of the partial differential equation have singularities. To reduce the error
from the FEM discretisation significantly and to approximate the solution
efficiently it is necessary to refine the finite element mesh locally in the
neighbourhood of the singularities or the non-smooth features.

Unfortunately, this objective of efficiently and accurately adapting to

Ch. 1. Introduction

local features is often in conflict with the solution process. This is because
it often makes the linear system of equations ill conditioned, leading to slow
convergence of iterative methods. Equation solvers can degrade or even fail
to converge in the presence of small or varying discretisation scales. The
situation becomes even worse when elements are refined anisotropically (see
Berzins [29]), because anisotropic refinement makes the interior angles of
some elements very small and it is a known result that when the element
interior angles become small the condition number of the element matrix
increases (see Fried [49]).

The condition number is a value that is used to measure the tendency of
a problem to be ill-posed, see [100] for example. The convergence properties
of iterative methods for solving systems of linear equations can be estimated
in terms of the condition number of the linear system and the sensitivity of
the solution to a perturbation in the right-hand side can be bounded using
the condition number (see [21] and the references there in). In the Ly norm
the condition number, &, is defined as the ratio between the maximum and

minimum eigenvalues of the stiffness matrix K, i.e.
K= Amaz (K) > 1. (1.24)

Since convergence rates are determined by this condition number, if k & 1
one generally obtains fast convergence and accurate results whereas if k > 1
slow convergence and inaccurate results are usually observed.

It is a well known result (see Strang [101]) that, for each variational

problem, (1.17) say, and each choice of finite element there is a constant C

15

Ch. 1. Introduction

such that,

Kk < ChZ2m (1.25)

min 9

where 2m is the order of the corresponding strong form of the PDE. The con-
stant depends inversely on the smallest eigenvalue A, of the given continuous
problem, and it increases if the geometry of the elements become degenerate.
From this result we can see that when the mesh is refined near singularities
to approximate a non-smooth solution accurately and efficiently, it will in-
crease the condition number of the stiffness matrix significantly making the

iterative solver’s convergence potentially very slow.
1.2.6 Preconditioning

The term preconditioning is often used in numerical methods as an extra step
designed to accelerate the convergence. Preconditioning is an important
technique in iterative methods for solving large systems of linear equations
especially when the condition number deteriorates as described above. Both
the efficiency and robustness of iterative techniques can be improved by
using it. Preconditioning is simply a means of transforming the original
linear system into one which has the same solution, but which is better
conditioned and is therefore likely to be easier to solve with an iterative
solver. For the system of linear equations (1.23), a left preconditioner T is

constructed such that the following system is solved

T Ku=T""].

Ch. 1. Introduction

An equivalent right preconditioned system of the following form
KT v = fou= T,

could also be solved instead of the original system (1.23). The problem of
finding an efficient preconditioner lies in identifying a matrix 7" that should

satisfy the following properties.
e 1" should be a good approximation of K.

e The system Tu = v should be much easier and cheaper to solve than

the original system.

If a carefully constructed preconditioner is used, it is possible to obtain
a much faster convergence of the iterative method for the preconditioned
system and the solution in less time, than for the original system. For a

general introduction of the preconditioning see for example [95].
1.3 Mesh adaptivity

Finite element grid adaptation can be defined as an algorithmic procedure
for the generation of a finite element discretisation that aims to yield a
required accuracy for close to the minimum amount of computational effort.
If the solution is smooth everywhere in the domain then a uniform mesh
will generally be adequate to approximate the solution provided that it
contains a sufficient number of elements. On the other hand when the
solution exhibits sharp features such as steep gradients, boundary layers,

shock waves, singularities or discontinuities, then a uniform mesh will not

Ch. 1. Introduction

be a good mesh for the approximation of the solution. This is because
uniformly spaced nodes often waste computational effort in order to obtain
acceptable truncation errors in regions of large solution variation where
much smaller node separation than is necessary in regions of slow solution
variation must be used.

During the last decade adaptive mesh generation has become an in-
dispensable tool for the efficient numerical solution of partial differential
equations having large local variations. Differential equations having such
large local variations arise in many branches of computational mathematics
such as fluid dynamics, hydraulics, combustion, heat transfer and external
and internal aerodynamics. In many cases only a very small portion of the
domain requires small node separation; thus significant economies can be
obtained by adapting the nodes so that they remain concentrated about
areas of large solution variation.

For the accurate and efficient resolution of these problems one needs
a tool for assessing the error in the computed approximation and also a
strategy to improve the mesh (and hence the solution) in the light of this
information. Two different approaches may be used for assessing the error:
a priori error assessment (based on a prior knowledge of the nature of
the solution), see for example [5, 34], and a posteriori error assessment
(which uses the numerical solution to drive the refinement), see for example
(1, 2, 12].

The main strategies to improve solution accuracy are p-adaptivity (poly-

Ch. 1. Introduction

nomial enrichment), see for example [16, 28, 43], r-adaptivity (mesh move-
ment and edge and face swapping), see for example [17, 35, 36, 38, 48], and
h-adaptivity (mesh refinement), see for example [74, 75, 98, 109, 111]. In
practice we can combine different types of adaptivity: the popular adap-
tive schemes are hp-adaptivity, see for example [10, 12, 53, 106, 113] and
hr-adaptivity, see for example [36, 55, 84, 89, 104].

In principle any of the approaches for error assessment can be combined
with any of the strategies for adapting the spatial discretisation to produce
an adaptive strategy for finite element computations. The next two sections
consider these issues of assessment of the error and the possible adaptivity

techniques respectively.

1.4 Refinement criteria

In traditional finite element analysis, as the number of elements increases,
the accuracy of the solution improves. The accuracy of the problem can be
measured quantitatively or qualitatively with various physical entities, such
as strain energies, displacements and stresses, as well as with various error
estimation methods, such as described in [4] for example.

The goal is to be able to have control over the behaviour of the actual
finite element model by using error analysis methods. Refinement criteria
are based on the estimated approximation error of the discretisation method
and how this error is measured in some suitable norm. Since the exact

solution is unknown the error can not be measured exactly but only assessed

Ch. 1. Introduction

by lower and upper bounds.
1.4.1 A prior: error assessment

These criteria use knowledge of the exact solution behaviour and/or the in-
put data. They allow the prediction of the decrease of the error norm as the
discretisation becomes better. Knowledge of the numerical solution is not
necessary. For example, it has been shown by Apel [5] that isotropic as well
as anisotropic meshes graded a priori are useful for treating edge singular-
ities; both diminishing the error and achieving the optimal approximation
order.

As this approach does not make use of knowledge of the numerical solu-
tion, the size of the error in this solution can not be assessed. The technique
is valuable when there is some information of the solution behaviour, how-
ever it is not always the case that the locations of singularities etc. are
known a priori. Likely candidates for a priori refinement are re-entrant
corners, holes in the domain or regions where the forcing function is non-
smooth. For reliability however it is generally necessary to inspect the
distribution of an @ posteriort error estimate to find locations of large error

and to refine the FEM mesh in a more efficient way.
1.4.2 A posteriorit error assessment

A posteriori error assessment requires and employs the approximate so-
lution once it has been calculated. This error assessment criterion is an

indispensable ingredient of adaptive solution algorithms. Such algorithms

Ch. 1. Introduction

21

typically consist of the following steps.
Algorithm 1 :

1. Start with an initial mesh.
2. Solve the corresponding discrete system.

3. Compute a local a posteriort error estimate or indicator for each ele-

ment of the mesh.

4. When the global error is small enough then stop, otherwise obtain in-
formation for a new better mesh i.e. identify the regions where solution

error is largest.

5. Refine the mesh based on the information obtained in steps 3 and /
then goto 2.

A posteriori assessment criteria can be divided into two general types:
error estimates and error indicators. Error estimators approximate a mea-
sure of the actual error in a given norm i.e. they estimate the error quan-
titatively (e.g. [13, 14]). Error indicators on the other hand are based on
heuristic considerations. An error indicator only gives relative information
about the error, i.e. it measures the error qualitatively. For each particular
application, a readily available quantity is chosen, in an ad-hoc manner, as
an indicator of error (e.g. [36, 104]).

The history of a posteriori error assessment starts with Babuska and
Rheinboldt who presented a so called “residual error estimator” [11] and
“a local problem error estimator” [12]. Since then it has been applied in

virtually every area of computational PDEs, and there is a great wealth of

Ch. 1. Introduction

papers in this area. Surveys of the traditional approach to a posterior: error
assessment are given by Verfuth [107] and in the book by Ainsworth and

Oden [4] for example.
1.4.3 Error estimators

Error estimators are based on firm mathematical foundations and are usu-
ally more expensive to evaluate than error indicators. In exchange for that
they have a major advantage. They provide objective and quantitative in-
formation about the error. Moreover the range of applicability of a certain
error estimator is usually larger than for corresponding error indicators.
Error estimators may be classified into two groups: flux projection or re-
covery based estimators (e.g. [113, 114]) and residual type estimators (e.g.
(3, 11, 12, 15]).

Zienkiewicz and his coworkers propose error estimators based on a re-
covered gradient [113, 115] (nowadays often called Z7Z or Zienkiewicz-Zhu
error estimators). Later an improved estimator has been designed by means
of super-convergent patch recovery [114]. The basis for recovery based error
estimators is the fact that, on many occasions, the solution is most accu-
rately sampled at the nodes defining an element and that the gradients are
best sampled at some interior points. Such points often exhibit the quality
known as super-convergence (i.e. the values sampled at these points show
an error which decreases more rapidly than elsewhere). These methods per-
form well on highly regular grids but for irregular grids the existence of

super-convergent points is questionable (see Zienkiewicz [112]). Neverthe-

Ch. 1. Introduction

23

less ZZ-type error estimates often work very well on unstructured meshes
and are very cheap to compute.

An introduction into the general concept of residual based error control
for finite element methods has been given in the survey article by Eriksson,
Estep, Hansbo and Johnson [46]. In the methods proposed by Babuska and
coworkers the error estimate at each step is based on solving local problems
involving a local residual, and the refinements are carried out according to
the size of the solution of these local error problems. Bank and Weiser [24]
also derived different local problem error estimators. Eriksson, and Johnson
[45] have also contributed to the methodology of error estimation for various
differential equations. Verfurth [107] derived local lower bounds of the error
within a unified theory of error estimators, and considered numerous other

aspects of error estimation.
1.4.4 Error indicators

Various choices of error indicator can be found in the literature. From a
geometrical point of view, for instance, the element aspect ratio [48], or
more generally, the distortion can be used. For elliptic equations a com-
mon choice is the energy functional or its gradient [104]. Error indicators
are attractive because of their simplicity: they are based on very simple
intuitive considerations (geometrical, mechanical, physical etc.) and can
be computed easily and efficiently. Qualities used as error indicators are
always readily available in the finite element computation, so the overhead

cost is minimum. The draw back is that the judgement of the user, for

Ch. 1. Introduction

defining an appropriate indicator, is crucial and may be very specific to
each particular application. Moreover, error indicators only give relative
information. Since the error is not quantified an error indicator only tells

where the spatial discretisation must be richer, but not how much richer

should it be.

1.4.4.1 Geometrical criteria

To use the finite element method the domain must be decomposed into
simple geometric elements. Very complex domains can be discretised using
an automatic mesh generator, which uses adaptive mesh refinement, i.e.
it is possible to refine the mesh near holes and corners of the domain, or
where we can a priori predict that this area of the domain needs more
concentration of elements and nodes. For this purpose there are many
mesh generators available which can deal with very complex domains: for
example GRUMMP [52], Easymesh [105] and Meshme [69]. Combining
automatic mesh generation and adaptive refinement sometimes produces
poorly shaped elements that cause numerical difficulties when computing
the solution.

There are well known results that as an element’s maximum interior an-
gle becomes too large, the discretisation error in the finite element solution
increases [9] and as angles become too small, the condition number of the ele-
ment matrix increases [49]. Thus for meshes with highly distorted elements,
the solution is potentially less accurate and more difficult to compute. The

problem is more severe in three dimensions than in two dimensions, because

Ch. 1. Introduction

tetrahedra can be distorted to poor quality in more ways then triangles can.
But these poorly shaped elements can be improved using mesh movement
and edge or face swapping, by taking into account some geometric quality
measure. For a detailed description of geometric quality measures see [48]
and the references there in.

However for solution based optimisation procedures, which are the main
topics of this thesis, there are some occasions where stretched elements may
be desirable for certain solution shapes. The resulting mesh may include
some poor geometric quality elements, as discussed in [90], such that long
and thin elements can form part of a good mesh for strongly anisotropic

solutions.

1.4.4.2 Physical quantity criteria

Some times there are physical quantities present in the mathematical model
of a physical situation which may be used to dictate the refinement criteria.
For example, for flow problems if the edges of the mesh are aligned in the
direction of flow a better approximation of the solution may be obtained
[60, 93]. Also for computational fluid dynamics problems it is possible to
refine the mesh according to the behaviour of the flow variables (see for

example [85]).

1.5 Refinement schemes

Having briefly discussed some of the main refinement criteria used in adap-

tive algorithms, we now present a discussion of the main refinement schemes

Ch. 1. Introduction

that are available.
1.5.1 h-Adaptivity

The most widely used form of mesh adaptivity is the approach referred to as
h-adaptivity. This method of adaptivity consists of subdividing an existing
mesh, using the same type of element, so that the local element size matches
the requirements of solution. A generalisation of this approach also allows
elements to be merged together where the initial mesh is unnecessarily fine.

There are two general approaches to this type of refinement: isotropic,
[75, 98, 109] for example, and anisotropic, as in [6, 8, 26] for example.
[sotropic refinement implies that child elements are created by dividing all
of the edges of the element in half. This creates four child elements in 2D
and eight in 3D. Anisotropic refinement creates a minimum of two child ele-
ments in a selected direction depending on the solution or according to some
geometrical requirement. Anisotropic refinement sometimes produces simi-
lar accuracies to isotropic refinement but with fewer elements, particularly
for problems where solution is strongly oriented along a particular direction.
Such schemes can easily create highly nonuniform meshes adapted to the
singularities of a given solution.

Perhaps the biggest drawback of h-refinement is that the exact loca-
tions of grid points depend on the geometry of the father element (e.g., the
midpoint of an edge) and, inductively, on the structure of the initial coarse
triangulation. Often this presents no problem, but in other cases (e.g., that

of a steep front) it might be the case that moving the grid points a little

Ch. 1. Introduction

(to better align the mesh with the front) can reduce the error substantially.
Without such movement excessive subdivision of elements can sometimes

occur.
1.5.2 p-Adaptivity

The idea of p-adaptivity is to increase the order of the polynomials where a
richer interpolation is needed, and maintain polynomials of low order where
it is already rich enough. One obvious advantage of p-type finite elements
is that they allow solution adaptivity without requiring mesh refinement.
Furthermore this approach provides the fastest rate of convergence as the
number of degrees of freedom increases provided the solution is sufficiently
smooth (see Zienkiewicz [112]). In a p-type finite element method, the ba-
sis functions are constructed in such a way that the maximum polynomial
order of approximation can be selected independently for each edge, face
and solid in the mesh. The goal of p-type adaptivity is to select appropriate
polynomial orders for each edge which will lead to an overall solution pro-
viding good quality results in an acceptable elapsed time for the minimal
computing resources. Prescribed accuracies can also be obtained via this
method when used with an appropriate a posteriori error estimator.

There are two main drawbacks of p-type adaptivity. Firstly, the imple-
mentation is very tedious since special care is needed to match two adjacent
elements of different order. Secondly, the computational cost of solving the
linear equations (1.23) is high since the stiffness matrix becomes much less

sparse as p is increased. Finally, we note that this strategy is not appropri-

Ch. 1. Introduction

ate in the vicinity of shocks or other singularities in the solution.
1.5.3 r-Adaptivity

In this method the objective is not to alter the number of elements in the
finite element mesh, but to adapt their shape and position instead. The
meshes produced through the use of r-refinement are frequently capable of
allowing extremely accurate representation of sharp solution features, such
as cracks, shocks, boundary layers etc. This method of adaptivity can be
divided into two types: one in which the position of the nodes is changed
by relocating them but not changing the topology of the mesh, commonly
known as mesh movement techniques, and the other in which the position
of the nodes is fixed but the topology of the mesh is changed, commonly

known as edge swapping.

1.5.3.1 Mesh movement

In this technique an initial mesh is selected and this is allowed to evolve so
as to reduce (or equidistribute [57, 77, 87]) some measure of the error. This
measure may depend upon residual [18, 80] or energy [62, 104]. A number of
algorithms have been proposed for allowing such a relocation of mesh points
both for problems which are time dependent [18, 61] and those which are
steady state [36, 62]. Descriptions of some of these appear in Section 1.5.4
below.

The possible limitations associated with node movement methods are:

element distortion, geometric complexity and slow convergence of the alge-

Ch. 1. Introduction

braic equation solver. Also, as the number of nodes are fixed in this form
of adaptivity, it tends to lack of the robustness of h or p-refinement. It
may not be possible to reduce the error to within a required tolerance for
a given starting mesh for example. Once the location of nodes is optimal
(according to some measure of the error), a more accurate solution can only
be achieved by increasing the number of degrees of freedom either by h or
p-adaptivity. Also many techniques of movement are susceptible to falling
into local minimum traps which provide grids that may well be far from a

truly globally optimal mesh.

1.5.3.2 Edge swapping

In this variation of the method we change the topology of the mesh by swap-
ping the edges or faces to improved positions, i.e. we find an orientation of
edges or faces in the triangulation which reduces some measure of the error.
Edge swapping in two and higher dimensions is based on the work by Law-
son [72, 73]. The work by Gunzberger, Fix and Nicolaides [54] for example
demonstrates that the convergence rate of the FEM depends on the connec-
tivity of the mesh. For this problem, a commonly used uniform direction
triangulation yields a suboptimal convergence rate, where as, with the same
vertices but with a “criss cross” connectivity the optimal convergence rate
is achieved. It has been shown in [93] and [108] that for highly directional
flow problems (e.g. [86, 90, 97]), aligning the edges in the direction of the
flow improves the quality of the mesh with respect to solution of the mesh.

Iliescu [60] has shown that in 2D and 3D the solution accuracy for a linear

Ch. 1. Introduction

hyperbolic problem can be increased by simple mesh reconnection to better
align the mesh with the convection direction.

For the two spatial dimensions edges are swapped to get connectivity
improvements, see for instance, the work by Lawson [72], Chui and Hang [39]
and Ripa and Schiff [91]. One begins with an initial triangulation of domain
2 and we know that there are finitely many V-triangulations of Q. If e is
the common edge of two triangles in the triangulation and the quadrilateral
formed by these two triangles is strictly convex then the edge e can be
swapped to obtain another triangulation. If this new triangulation is better
for approximating the solution locally (for some given quality criterion)
then the triangulation before swapping is replaced by the swapped one. An
optimal triangulation in which each edge is at its optimal position can be
obtained by sweeping through all the internal edges in the mesh repeatedly,
and swapping them whenever this yields an improvement.

In three dimensions not only edges but faces can also be swapped to
get improved connectivities for tetrahedral meshes. Edge or face swapping
is much more complicated in three space dimensions, without adding more
nodes the number of elements can be increased by adding edges between two
adjacent elements having a common face. Similarly the number of elements
can be decreased by eliminating edges. We provide a detailed description
of edge and face swapping in three dimensions in Chapter 5.

The limitations associated with edge swapping are: the number of de-

grees of freedom are fixed, the outcome may depend heavily on the choice

Ch. 1. Introduction

of initial mesh, and that no prescribed accuracies can be obtained just by

edge swapping.
1.5.4 Moving mesh schemes

Mesh movement strategies seek to improve the accuracy of a solution with-
out adding more basis functions; instead it is the support of each basis
function which is adjusted. There are three main techniques for the move-
ment of nodes. One is based on residual minimisation (e.g. [18, 80, 81]),
another is based on equidistribution principles (e.g. [57, 77, 78]) and the
third is based on some form of optimisation (e.g. [36, 42, 104]). However it
should be noted that these three techniques overlap in many formulations.
For example, the moving finite element (MFE) method was originally for-
mulated as an Ly minimisation (see [80, 81]). However, for steady equations
of variational type, it has been shown in [63] that this technique corresponds
to satisfaction of a minimisation principle for the mesh.

In the following subsections we describe the above three generic mesh
movement approaches, which can be applied to a wide range of problems.
The fact that, when nodes move, the basis functions depend on the vertex
locations in a nonlinear fashion implies that all of these mesh movement
procedures are inherently nonlinear, even for linear PDEs, whilst h and

p-adaptive approaches can remain linear for linear problems.

Ch. 1. Introduction

1.5.4.1 Moving finite element

The moving finite element method is a numerical solution scheme for the
solution of time dependent partial differential equations, which allows the
automatic adaption of the finite element approximation space with time.
The MFE method was introduced by Gelinas, Dross and Miller [50] , Miller
and Miller [80] and Miller [81] in 1981, to obtain solutions of problems with
steep moving fronts.

It uses piecewise linear finite elements and generates the augmented
ODE system from the minimisation of the L; norm of the residual of the
PDE over the time derivatives of both the nodal positions and the solution
parameters. In this scheme a spatial mesh with a constant number of degrees
of freedom is allowed to deform continuously in time. The positions of the
nodes are treated as unknown time-dependent variables which, just like the
conventional finite element degrees of freedom, must be evaluated as part
of the solution procedure. This procedure is designed to simultaneously
determine at each time both a suitable spatial mesh and a finite element
solution on that mesh.

This scheme can also be applied to static problems with the aid of an
artificial time parameter (for detail see [62]). It has been proved that the
refinement which is induced by this approach can lead to an optimal min-
imiser of the energy functional for an elastostatic problem, over all variations
in the finite element mesh as well as variations in the nodal displacement

values.

Ch. 1. Introduction

The MFE method is widely applicable, however the method has a num-
ber of significant drawbacks. The method becomes singular when elements
collapse (mesh tangling) or when the gradient of approximation is constant
in neighbouring elements. There are various ways of preventing these singu-
larities, for instance by using penalty functions (see Miller [80]) or element
removal (see Baines [18]). By allowing the nodal positions to become degrees
of freedom the size of the discrete problem that must be solved is doubled
in one dimension and quadrupled in three dimensions. Also the equations
added by the unknown positions of nodes are inevitably nonlinear even for
a linear problem. This substantially increases the computational cost in-
volved. Finally, the connectivity of the mesh is fixed: one possible way to
overcome this problem however is to undertake occasional remeshing of the
grid to alter the connectivity and/or local density of the mesh (e.g. see

[37]).

1.5.4.2 Equidistributional principle

The use of an equidistributional principle (EP) provides another class of
moving mesh method in which the mesh point locations may either be com-
puted simultaneously with the solution via an augmented system of differ-
ential equations or computed iteratively. Equidistributional principles were
first introduced by de Boor [32, 33| for solving boundary value problems
for ordinary differential equations. It turns out to be an excellent approach
for formulating moving mesh equations too. This involves the selection of

mesh points such that some measure of the solution error is equalised over

Ch. 1. Introduction

each subinterval, which is usually done by the construction of a monitor
function which uses the discrete solution. This is constructed in such a way
that it captures the main characteristics of the error. A popular choice in

one spatial dimension is the arc length monitor,

M(z) = /1 + u2, (1.26)

which concentrates the nodes in the regions where the solution changes
rapidly.

A number of moving mesh methods have been developed depending on
equidistribution principles, for example see [27, 59, 78]. The approach has
been successfully applied in one spatial dimension but its extension to higher
dimension is still the subject of ongoing research [58, 77]. The drawbacks of
this method are the computational cost as the mesh equations are nonlinear.
Also how best to construct a monitor function for a given problem is not
obvious. Again for this method mesh tangling can appear while solving the
mesh equations if care is not taken. Some progress has been made by Huang
and Russell [58, 59] and Mackenzie et al. [77, 78] regarding these issues,
however further research is required in this area to overcome all of these

problems satisfactorily: especially in greater than one space dimension.

1.5.4.3 Direct minimisation principle

Since minimisation principles, such as (1.8) or (1.9), provide a functional
to monitor and reduce, it is possible to take advantage of standard optimi-
sation procedures in generating local minima with respect to mesh vertex

locations as well as solution values at these vertices. As has been proved in

Ch. 1. Introduction

Section 1.1.2 minimising the energy functional and solving the correspond-
ing VBVP are equivalent. Hence, where it exists, it is natural to use the
energy functional as a quality measure for the approximate solution and to
build an adaptive procedure which attempts to construct an approximation
to the solution yielding a functional value as close to the global minimum as
possible. An early attempt to include mesh adaptation into such a minimi-
sation principle was due to Delfour et al. [42] who sought a finite element
solution with free nodes for the variational formulation of a linear elliptic
PDE.

This approach has been considered by other authors since then, see for
example [36, 104]. Nevertheless, direct minimisation has many of the same
drawbacks as the MFE and EP methods, i.e. a high computational cost
and the need to avoid mesh tangling. Again, the coupling of the mesh
and the discrete equations results in a large nonlinear algebraic system,
even for linear problems, whose computational solution can be prohibitively
expensive. A final difficulty concerning this technique is that it is often
susceptible to falling into local minimum traps, which may well be far from

a globally optimal mesh.

Chapter 2

Multilevel r and h-Refinement

In Chapter 1 we have briefly described a variety of different strategies for
mesh refinement. The aim of this chapter is to provide details of our new
multilevel r and h-refinement algorithm that combines local h-refinement
with movement of vertices and with the local swapping of edges in order to
attempt to obtain locally optimal finite element meshes for variational prob-
lems which accept the energy formulation. Details, and some applications
of variational problems have been given in Section 1.1.2. In Section 2.1 we
introduce the notation to be used in the rest of this thesis and consider how
variational problems may be transformed into finite element problems. In
Section 2.2 we describe our node movement algorithm, including local gradi-
ent calculations and the solution procedure for the local problems that arise
when this approach is taken. This culminates in Subsection 2.2.4 where we
summarise the complete algorithm for node movement. Section 2.3 then
discusses the generalisation to systems of PDEs and then in Section 2.4 and
2.5 we describe details of the edge swapping and local h-refinement algo-

rithms respectively. Finally, in Section 2.6, we put all of these components

36

Ch. 2. Multilevel r and h-refinement

together to arrive at our new hybrid algorithm.
2.1 Formulation of problem and notation

As explained above, in this thesis we restrict our attention to variational
problems which accept an energy minimisation formulation, and which may

therefore be posed in the following form.

Find w eV suchthat FE(u)= Ejréi‘rle(v) = Ivréi‘rjl/g F(z,v,Vv)dz,

(2.1)
where V' is a linear space consisting of functions defined on a bounded
spatial domain 0 C R? such that F': RY x R x R? — R, the energy density
function, has a finite integral. In this work we are concerned with the
construction of an approximation, say u", to the solution u. For the finite
element method this continuous problem is replaced by a discrete problem
whereby the infinite dimensional space V' is replaced by finite dimensional

subspace V* C V. Hence, the discrete problem then takes the following

form.

Find «" € V" such that E(u") = min/ F(z,v,Vv)dz. (2.2)
Q

veVh -
Furthermore, it will be assumed that at least one isolated solution u € V
exists for (2.1), and that this solution has sufficient regularity that it can be
approximated satisfactorily by piecewise polynomials on appropriate finite
element meshes. For the time being it will be assumed that n=2, and
that the domain € is polygonal (however the case n = 3 with a polyhedral

domain is considered in Chapter 5). Furthermore an arbitrary point in the

Ch. 2. Multilevel r and h-refinement

closure of Q will be denoted by x = (1, 22) and daz = dz1dzy will denote an
infinitesimal area in the domain). The boundary of 2 will be denoted by
09 and it will be assumed that this boundary is the union of two disjoint

sets:

002 = 0Qp U 00y.

Here 092p denotes the Dirichlet part of the boundary and 09y denotes
the (possibly empty) Neumann part of boundary. As implied by (2.1), the

functional is assumed to be of the form
E(v) = [F(z,0,¥v)dz, (2.3)
Q

where the integrable function F' is a continuously differentiable function of
its arguments. In the finite element method the space V" is constructed by
subdividing the domain into non-overlapping computational cells, known as
elements, and choosing a convenient set of piecewise polynomial functions.
For this work however, only piecewise linear finite element trial functions
are considered, since we are interested in r and h (rather then p) refinement.
We use the term triangulation to refer to the set of elements. We consider
only meshes of triangles in two dimensions (and tetrahedra in three dimen-
sions) and we assume that all nodes lie at the vertices of triangles only (i.e.
we do not allow so called hanging nodes in the mesh). The phrase “mesh
optimisation” refers to the local minimisation of the discrete energy func-
tional E(u") over all allowable choices of the triangulations with a given

number of nodes.

Ch. 2. Multilevel r and h-refinement

2.2 Node movement

As described in Section 1.5.3 node movement may be used to relocate the
position of the nodes of the mesh such that some measure of the error v —u”"
is reduced. Our aim is to move the nodes such that the energy functional
(2.3) is locally minimised. We therefore define a locally optimal mesh with

respect to position of nodes for the finite element solution of (2.2) to be a

mesh with the following property.

e There exists some number € > 0 such that if any node is displaced
by any distance 6 < € in any direction (subject to the constraint that
a boundary node remains on the boundary and the domain is not
altered) the finite element solution on the new mesh has an energy
which is no less than the energy of the finite element solution on the

locally optimal mesh with respect to the position of nodes.

When v = u”, i.e. the solution of (2.2), the energy functional clearly depends
upon the choice of V* making it an implicit function of the position of
the nodes. As such, the position of nodes may be viewed as degrees of
freedom for the minimisation of the energy functional, thus ensuring that the
mesh optimisation problem is generally highly nonlinear. This nonlinearity
implies that it will be almost impossible to find globally optimal positions
for the nodes and so only locally optimal meshes are sought here!. Our node

movement algorithm (which is a generalisation of [48] and [104]) achieves

1As we will demonstrate in later chapters however the quality of these local optima
may be improved considerable through the use of a good algorithm

Ch. 2. Multilevel r and h-refinement

this through the use of an iterative procedure that moves only one vertex at
a time. Hence if there are N nodes in a given triangulation, the nonlinear
system consisting of O(N) equations, which must be solved fully (i.e. all
solutions found) in order to obtain a globally optimal solution, is replaced
by a sequence of smaller problems, that each involve only O(1) equations
at each iteration. Our algorithm achieves this by considering each node in
turn and combining a steepest descent method for the node relocation with
the solution of a local variational problem to update the approximation.

For each node in the mesh, j say, we consider only those elements in the
mesh which contain the node j, i.e. the polygon formed by the union of
all triangular elements which have j as a vertex. We refer to this polygon
as ;. The aim of relocating node j is to find a new admissible position
in §); such that the energy functional, evaluated on the modified mesh, is
reduced. Figure 2.1 shows a typical patch of elements surrounding a node
to form a polygon.

Like the approach of [104] our algorithm seeks to reduce the energy
functional monotonically by moving each node in turn until the derivative
with respect to the position of each node is zero (in practice it should be
less than some chosen threshold value). The algorithm is designed in such a
way that changes resulting from moving a node affect only the interior of its
patch. The algorithm consists of a number of sweeps through all nodes in
the mesh until convergence is achieved. For each sweep each node is visited

one at a time while keeping every other node fixed; thus yielding a kind of

Ch. 2. Multilevel r and h-refinement

nonlinear Gauss-Seidel iteration.
To find a new location for the node j, the local energy for the patch

containing the node j is first calculated by the expression,

Ej(v) =/Q F(z,v,Vv)dz, (2.4)

J

where v is the current approximation to the solution on the domain. The
algorithm then calculates the gradient of the energy functional with respect
to the position of node j (this is described in detail in Section 2.2.2 below).
The negative of the gradient is then used to provide the steepest descent
direction, which we use to determine along which line the node should be
moved within the patch to attempt to reduce the energy.

The node j can be moved anywhere on the line of steepest descent
between the points z; (initial position of the node j) and z; (point of in-
tersection of the steepest descent direction and the polygon containing the
node j) for a valid triangulation to be maintained. However, as a form of
under-relaxation, we impose a maximum admissible limit z, up to which
the node can be moved by multiplying the distance from its initial position
to the point of intersection z, by a factor w (0 < w < 1) (see Figure 2.1).
A one dimensional energy minimisation problem is then solved to find the
point on the line between z; and z, where the energy will be minimum
(with the solution value, say u;, at j held fixed).

Once a new position for the node has been found the value of u; must

be updated by solving the local problem

min/ F(z,v,Vv)dz. (2.5)
Q]

h
veVy

Ch. 2. Multilevel r and h-refinement

42

Xj N

Steepest descent direction

Figure 2.1: An illustration of local node movement

Here VJ is the space of piecewise linear functions on the patch ; with
fixed solution values on the boundary of €; (given by the latest estimate
of the solution). Hence this is a one dimensional problem when there is a
single dependent variable. Once the update for the node j is complete the
same process is undertaken for the next node. When each node has been
visited the sweep is complete. Provided convergence has not been achieved
the next sweep may then begin.

When the 2-norm of the gradient for each node is less than some pre-
defined tolerance the position of that node is not updated in that sweep.
Convergence is therefore considered to have been achieved when a com-
plete sweep through the nodes takes place without updating any of their

positions.
2.2.1 Movement of boundary nodes

It is necessary to distinguish between nodes on the boundary of) and in-
terior nodes since a slight modification is required to the above movement
algorithm in the case of boundary nodes. The interior nodes are permit-

ted to move in any direction within the polygon surrounding them, while

Ch. 2. Multilevel r and h-refinement

boundary nodes may only be moved tangentially along the boundary and
even this is subject to the constraint that the domain remains unchanged.
A boundary node np; in two dimensions has to satisty the following two

constraints if it is to be moved.
1. Npj Q 6QD N 8QN

2. There is a straight line along which the vertex can be moved without
modifying the computational domain. In particular, this excludes

points at corners or on curved boundaries.

Where these constraints are not violated the downhill direction of motion
along the boundary is easily computed by projecting the steepest descent
vector onto the boundary. Although, in general, this projection does not
coincide with the direction of steepest descent, it is expected that it will
still provide a downhill direction.

The one dimensional minimisation in this direction is then computed as
for any interior node. On Dirichlet boundaries the updated value of the
solution is of course prescribed, however on any other type of boundary it

must be computed by solving a local problem of the same form as of (2.5).
2.2.2 Derivation of gradient
In this section we provide an expression for the gradient of energy,

E= /Q F(z, u*, Yuh)de, (2.6)

with respect to the position of a node j. Note that u” is assumed to satisfy

(2.2). The approach which we follow here to derive an expression for the

Ch. 2. Multilevel r and h-refinement

gradient of the energy functional is based on [63] and is slightly different
from the approach adopted by [104]. However we shall then show that these
apparently different expressions for the gradient of the energy functional are
equivalent.

For simplicity and brevity we shall provide the derivation for polyg-
onal domains in two dimensions, assuming that the problem has a single
dependent variable and that the solution is zero on the boundary of 2. How-
ever the extensions to polyhedral domains in greater than two dimensions,
to problems with more than one dependent variable and to more general
boundary conditions are all relatively straightforward.

To get the expression for the gradient of the energy functional we first

note that the solution to (2.1) satisfies the corresponding Euler-Lagrange

equation:
d
_F,2(£7 'M,Zu) + —F73k(£7 U;ZU) = 0. (27)
dIk
Here F,(.,.,.) denotes differentiation with respect to the ¢;, dependent vari-

able of F'| other suffices refer to vector components (hence Fs; is the kyy
component of F3) and repeated suffices denote summation from 1 to 2.
Let M = (v,C) be a mesh of non-overlapping triangles which exactly
cover the domain 2. Here v = (vy,...,0n,Vn415 .-, Unyp) is an ordered set
of the position vectors of the vertices of the mesh (the first N being interior
points and the remaining B points being on the boundary), and C is a list
of all the edges. The finite element method seeks to approximate u, the

solution of (2.7) by a piecewise linear function, u", defined on the mesh

Ch. 2. Multilevel r and h-refinement

M = (v,C). As the connectivity of the mesh remains fixed in our node
movement algorithm, we shall refer to the mesh M = (v,C) only by the
ordered set v for notational convenience. We may write our approximation

u" in the form

N

ut(2) = 3 umthm(z, v)

m=1

where 1,, is the usual piecewise continuous linear basis function on the mesh
v:

V(0,5 0) = Oy, m=1,...,V; n=1,...N+ B.

Before deriving the expression for the gradient it is first necessary to estab-
lish some more notation and then to quote two preliminary lemmas. The

proofs of these lemmas can be found in [66] and [61] respectively.

e Suppose j € {l,...,N} is the number of an internal node of the
triangulation of the domain €. Then we denote by N(j) the number
of elements in the triangulation that have this node as a vertex (i.e.
in ;). Further, for ¢t = 1,...,N(j), let T'(j,¢) be a unique ordering
of these N(j) elements which have a vertex at v;, let Qp(;4 be the
region occupied by the triangle numbered 7'(7,1) and let Ap(; ;) be the

area of this region.

e Given any triangle within a finite element mesh we may represent the

vertices of that triangle by a local numbering as vy, v; and 9.

e We may also define a standard triangle, A, as the triangle whose

vertices are ey = (0,0)7,¢; = (1,0)7 and ¢, = (0, 1)7.

Ch. 2. Multilevel r and h-refinement 46

e Now define a mapping from an arbitrary element within the triangu-

lation onto that standard triangle by

(z,0) = Y e,y (z,0) (2.8)

where I/JL(L v) is the usual linear basis function (but with a local

numbering corresponding to a particular triangle) such that
¢L(£V72) = 5;Ll/7for u,v e {0,1,2}

e The inverse of the mapping (2.8) is
2
z(§,v) = Y 0,0u(8), (2.9)
u=0

where the J)u(@ are the piecewise linear basis functions on the stan-

dard triangle such that 'gzu(gl,) = 6,,. (Note that 1/;#(@ = gbi(g(é, v),v).)

Lemma 2.1

Iy) %

= —,, {i [=1,..N; d=1,2
8vmd a$d or
hence
ou” ou”
a’vmd 1/) &rd o

Lemma 2.2

Given a triangle with vertices ¥y, vy, v, and area A(ty, U;,7,), then

dA O

‘%yd &rd

A for v €{0,1,2} and de€ {l,2}.

Ch. 2. Multilevel r and h-refinement

Now to get an expression for the gradient of the energy with respect to the

nodal positions v;, assuming d = 1,2, we have

oF
a’Ujd al}]d

/Fru Vu)d

As for node j the integral is zero on all the elements which do not contain

this node we can write the above expression as

OFE 5 NU

= F] o h A d,
avjd avjd ; /QT(] t) (ﬁa ! ’Zu) L

N(s) 9 , de
- Z avjd/ F(z(v), u™(z(§v),v), D(w, v)) % d¢
dx
= —ld F d
{ al)]d f—I_/ e al)]d df f—l_

oul 9z, Ou” 8Dk dx
/F2 [m:kavjd a’Ujd] /]d df df}

Here z(£,v) is given by (2.9), A is the standard triangle, and D; represents

the value of % restricted to the triangle 7'(j,¢). (Note that this value is

independent of z since we are using piecewise linear finite elements.)

dz

We may now make use of the fact that the Jacobian, 2| in the above

transformation is equal to 2A7(; ;) on each triangle and so, by using Lemma

2.2, we can write,

9,

a‘l}jd

dg dé|

In addition we may use Lemma 2.1 and the fact that u(z) is piecewise

_
a$d

linear to deduce that, on each triangle 7'(j,1),

@Dk_ J [ou" _ g [out _ 0 _wauh __@';/)jauh
a‘Ujd_a‘U]’d a$k _al’k a‘U]'d _al’k]al’d N &rkam

We can now deduce that

n b
Z/{ a¢]+Flzzd¢]+F2[g Orat; + 0]—

al)]d]d

Ch. 2. Multilevel r and h-refinement

dg

ROy dxg | | dE

(using the fact that, by (2.9) Oz — 0iqth;)

? Bujd
N(s) Py 9 Ot
= Z/ {FE-I-F,MIZ)]‘_F,:akﬂ }
Q1,0

=1 afﬁd a:l?k a:l?d

dz

(again using Lemma 2.1).

As we know that ; is zero for all the elements which do not contain the
node j, the integral in the above equation can be taken over the whole

domain). Rearranging the terms in the above equation we get,

22 du’ v, _
Dora —/Q [F&lk — %F,3k] %d£+AF71d¢jd£. (2.10)

This expression may be used to provide the gradient of energy functional
with respect to the position of nodes.
To demonstrate how the gradient with respect to position of nodes is

computed in practice we consider the energy functional,

E:/F(g,uh,Zuh)c@:/ [%(Zuh)Q—fuh dz, (2.11)
Q Q

corresponding to Poisson’s equation (see for reference (1.9) where v is re-
placed by u"). For the energy density function F(z,u",Vu") in (2.11) we
have F'; = -V fu", Fy = —f, F3 = Yu". By plugging these values in
(2.10) we can get the gradient of energy functional, corresponding to the
Poisson’s equation. This gradient vector may be assembled in a single pass
through the elements.

We now prove here that the expression for the gradient of energy given

by (2.10) is equivalent to the expression derived by Tourigny and Hulsemann

Ch. 2. Multilevel r and h-refinement

49

in [104]. They derive the following expression for the gradient of the energy

functional with respect to the position of node j (expressed in the notation

of [104]):
oE - ——— _8F(u,Zu) o
a'—gj =0, = B;)J {/BK [F(u,Zu)%Q IVu Q%Zu] ds+
0F (u,Vu) OF (u, Vu)|
/K [Z' (OV u) T A
/ gVuh;ds.
EIYatlol

Here n is the unit normal vector, K is a triangle having node j as its vertex
and €; is the union of all triangles having node j as a vertex, as above. In
the above expression it has been assumed that /' = F(u, Vu) rather than
F(z,u,Yu) as is considered for the derivation of (2.10). The last term in
the expression is due to the presence of a Neumann boundary condition,
and so we discard this as we have assumed in our derivation of (2.10) that
the solution is zero throughout 9€). Also we replace u with u”, a piece-wise
linear function, in the above expression as, in our derivation of (2.10), u is
assumed to be a piecewise linear function. Multiplying the above expression

by an arbitrary constant vector ¢ and rearranging terms we get,

c-®, = ¢- Z { 81{F¢jﬂd8 5 h¢]Vu dz

KeQ;
oF 8F
ok OV uk 1 Fu'ds + /x av h);[;quhdg}
= I% { - F¢]C nds — /{ Wlp]zuh

aF oF
—_ . . rh . . - . . rh
- (%(g Vu") avuh) nds + /Kz (G vic- Yu c@}.

Applying Green’s theorem on the boundary integral terms in the above

Ch. 2. Multilevel r and h-refinement 50

equation we get,

0
c® o= > {/KY‘ (Fyjc)dx — ,W’%’Zuh - cdx

Applying the chain rule we get,

c-®; = I;{ /. lg-zF;/}ﬁg-ij %f@g-zuh] dx
~ /. [Q'Z’th¢j'%+£'2‘uh¢j2'%
V- aav o e w]@}
-z /. [eb] (v h)‘|"€/}j£'(aazihY'yuh)—l-Q'y’%F
auh¢]c Vu" — (¢ Vu")Vi; aa;;h]dg

Cancelling out the same terms with opposite sign and because V - Vu" = 0

on an element we get,

c 9, = > {/KQ-Z%F@

g o (o)

KeQ;
But since this is true for any choice of constant vector ¢ and v; will be

zero for all the elements which do not contain the j* node, the integral

Ch. 2. Multilevel r and h-refinement

in the above equation can be taken over the whole domain €1, so that the

above equation can be written as,

_ (2 ou vut| de
o= [[Fw] (i w])z]dL.

By rearranging the terms and writing in subscript notation the above equa-

tion can be written as,

ouh 0y,
Q. :‘/Q [Fédj — —Fg] —dﬁ,

J &xd > 8:0]-

which is exactly the same as the expression (2.10) derived before, in the

special case where F' = F(u",Vu") rather than F(z,u", Vu").
2.2.3 Solution of the local problem

In this section we demonstrate that by solving a sequence of local varia-
tional problems on a fixed mesh and updating the solution value for each
node in a Gauss-Seidel fashion it is possible to obtain the solution to the
finite element problem (2.2), at least in the case where F' is quadratic. This
observation is used to motivate our algorithm which, as described in the
Section 2.1, aims to reduce the energy functional by moving each node and
then solving a local Dirichlet form of the variational problem (2.2) for that
node by considering only the patch 1; as the domain. Hence there is no
need to solve the whole global problem (2.2) after moving each node.

For this demonstration we take a specific example by considering Pois-
son’s equation,

—YV*u=finQ, u = 0 on 0N. (2.12)

ol

Ch. 2. Multilevel r and h-refinement

Let u" be the finite element solution of this problem given by

N
ut =3 s, 2.13)
i=1
where u; are the solution values at nodes and ; are the usual basis func-

tions. As we have seen in Section 1.1.4, applying the finite element method

0 (2.12) gives a system of linear equations,
Y Kijuj=F, i=1,...N. (2.14)
J

For this example of Poisson’s equation the solution can also be deter-

mined by minimising the energy functional

I(w) = 2/)20 — /fuhdﬂ (2.15)

where u is the vector of nodal unknowns (uy,ua,...,uy)?. The necessary
condition for the minimisation of I(uy,us, ..., uy) is that
ol al al
Sl =0. (2.16)
Ouy Ous Jun

These give N linear algebraic equations in the N unknowns u which are
exactly the same as in (2.14). In order to solve this system of equations
(2.16) by an iterative method, such as Gauss-Seidel iteration, one starts
with an initial approximation and finds an update of the unknown wu; from
the j'* equation by using the latest values of the other unknowns involved
in that equation.

If we now consider the local Dirichlet variational problem for the patch

(1}, containing the node j we are required to minimise

u;) 2/ Qj—/Q fudq;, (2.17)

Ch. 2. Multilevel r and h-refinement

with all values of u other than u; held fixed. This implies solving % =0,
which is a single equation and is exactly the same as single Gauss-Seidel
update of u; in the system (2.16). Hence if we keep on solving the local
problems for a fized mesh and keep on updating the solution values for each
node iteratively we obtain a sequence of approximations which coincides
with that obtained using the Gauss-Seidel procedure to obtain the global

solution of the variational problem.
2.2.4 Node movement algorithm

We have now introduced all of ingredients contained within our node move-

ment algorithm. This is now presented.

Algorithm 2 :
Input: An initial mesh, an approximation of the solution of the variational

problem (2.2) on that mesh, and a list of nodes available for movement.
1. Find the global energy FE,q of this solution.
2. Put 3 =0.

3. If j is not equal to the last node available for movement put j equal

to the next node available for movement else, go to step 10.

4. Solve the local variational problem for the node j by assuming the
Dirichlet boundary conditions on the polygon Q; containing the node

J and find local energy of the solution for the polygon ;.

5. Find the gradient of the energy with respect to the position of node j
by using expression (2.10).

6. If the magnitude of the gradient is less than the threshold chosen for

this magnitude, go to step 3.

Ch. 2. Multilevel r and h-refinement

7. Find the mazimum admissible limit along the straight line (in the di-
rection of the negative gradient) in the polygon up to which the node

can be moved.

8. Find the new position for node j using one dimensional mintmisation
of the energy for the polygon Q;, and then update u; by solving the

local problem with this new node position.
9. Go to step 3.

10. Find the global energy E,., of the latest estimate of the solution on
the latest mesh.

11. If abs(Eyew— Eoiq) is greater than the threshold value chosen set Fyq =

E,c, and go to step 2.

12. End of node movement.

For each node j to be moved, we first minimise the energy over the po-
sition of the node within 2; and then minimise it over the solution value
u; by solving the corresponding local problem (2.5). This node movement
algorithm is a major component of our new multilevel hybrid algorithm pre-
sented in Section 2.6. It not only moves the nodes to their optimal positions
but also updates the solution values by solving the local problems (2.5) for
each node. Furthermore, it is guaranteed to be energy reducing at each

step.
2.3 Formulation for system of equations

All the above discussion of node movement and the derivation of the gradi-

ent with respect to node position, was for scalar problems (that is for one

o4

Ch. 2. Multilevel r and h-refinement

dependent variable). However in later sections of this thesis we also demon-
strate the application of our new hybrid algorithm to systems of equations.
We briefly describe here the main changes that appear when dealing with
systems of ¢ partial differential equations in d space dimensions (in the fol-
lowing case we consider ¢ = d). The energy minimisation problem will now

become the following.

Find w €V suchthat FE(u)=minFE(v)= min/ F(z,v,Vv)dz,
vEV veEV JQ
(2.18)
where V is a linear space consisting of the cartesian product of d func-
tions defined on a bounded spatial domain C R? such that F' : R? x

R? x R¥™*? — R, the energy density function, has a finite integral. The

corresponding discrete problem will be,

Find " € V* such that E(gh) = m\l{r)ll/ F(z,v,Vv)dz, (2.19)
ve Q

where V* C V. For the node movement, the new position for each node is
again found by solving a one dimensional energy minimisation problem in
the direction of steepest descent (see below). After moving the node j, the

solution vector is updated by solving the local variational problem

min/ F(z,v,Vv)dz (2.20)
Q]

veVE
Here VI C V" is the space of piecewise linear functions on the patch ; with
fixed solution values on the boundary of ©; (given by the latest estimate of
the solution). To get the expression for the gradient of the energy functional,

for system of equations we note that the solution to (2.18) satisfies the

Ch. 2. Multilevel r and h-refinement

corresponding Fuler-Lagrange equations

d
—Fom(z,u,Vu) + d—Egmk(g, u,Vu) =0, for m=1,...,d. (2.21)
Tk
Here F,(.,.,.) denotes differentiation with respect to the ¢;, dependent vari-

able of F, other suffices represent tensor components in the usual manner
and repeated suffices denote summation from 1 to d. The generalisation of
(2.10) for the gradient of the energy with respect to position of node j, now

becomes

oF ou’ oY,
= Fé.p — —"Fq | —Ld: Fio:de. 2.22
Ov;e /Q l F ox. 3 k] oxy L-I—/Q 1e¥de ()

Here the index e is for dimension 1 to d and repeated suffices are again

summed from 1 to d.
2.4 Edge swapping

The definition of mesh optimisation presented in Section 2.2 refers to “all
allowable choices of the triangulation with a given number of nodes”. The
algorithm in the previous section considers only the location of the nodes in
the triangulation. In this section we consider the positions of the edges (i.e.
the topological connectivity of the mesh) and how this may be optimised.
We define a locally optimal mesh with respect to the position of edges for

the finite element solution of (2.2) to be a mesh with the following property.

e If the position of any internal edge in the mesh is swapped (provided
the triangulation remains valid) then the finite element solution on
this modified triangulation has an energy which is no less than the

energy of the finite element solution on the unmodified mesh.

Ch. 2. Multilevel r and h-refinement

A brief introduction to how edges are swapped (for two dimensional tri-
angulation) is given in Section 1.5.3 and is shown in Figure 2.2. However
edge swapping in three dimensions is far more complicated than in two di-
mensions and we shall discuss edge or face swapping in three dimensions in

Chapter 5.

Figure 2.2: An illustration of the modification of a mesh by the swapping
of a single edge.

The algorithm which we use for edge swapping is based on Ripa and
Schiff [91]. It is undesirable to recompute the global solution after each
change to the mesh, as this will increase the computational cost so much
that the whole approach becomes useless. In [91] it is demonstrated that it
is possible to improve the mesh topology significantly (i.e. reduce the total
energy) by applying a simple edge swapping algorithm on the interpolant of
the current solution, thus eliminating the need to solve the global problem
repeatedly. A loop through each of the internal edges is completed and for
each swappable edge the local energy in the two triangles on either side is
computed. The edge is then swapped in the manner as described above and
the new local energy over the two triangles on either side is computed. If

this energy is less than the original local energy on the quadrilateral then

Ch. 2. Multilevel r and h-refinement

the edge swap is kept; otherwise it is rejected. Once the loop through each
of the edges has been completed it is repeated until there is an entire pass
for which no edges are swapped. At this point convergence to a locally
optimal mesh with respect to the position of the edges has been achieved.
Note that just like the node movement algorithm this approach reduces the

global energy monotonically.
2.4.1 Edge swapping algorithm

We now present the edge swapping algorithm that is used for the numerical
results presented in Chapter 3. For the three dimensional case in Chapter 5 a
significantly modified form of this algorithm (where faces are also swapped)

is used and discussed there.

Algorithm 3 : Input: An initial mesh, an approximation of the solution

of variational problem (2.2) on that mesh, and a list of internal edges.
1. Find the global energy FE,q of this solution.
2. Pute; =0.

3. If e; is not equal to the last internal edge put e; equal to the next
internal edge, else go to step 9.

4. If the quadrilateral formed by the two triangles which share the edge

e; 15 not convexr go lo step 3.

5. Find the local energy Ey of the quadrilateral formed by the two trian-
gles which share the edge e;.

6. Swap the edge and find the local energy Fy of this new quadrilateral.

7. If Fy < Ey keep the swapped edge, else reject the swap.

Ch. 2. Multilevel r and h-refinement

8. Go to step 3.
9. Find the global energy FE,., on the latest mesh.

10. if abs(Epew—Fod) ts greater than the threshold value chosen set F,1q =

FE,e and go to step 2.

11. End of edge swapping.

A very small value is chosen as the threshold for the edge swapping algo-
rithm (step 9) which effectively ruled out any edge swap after the application
of this algorithm, hence this is in agreement with the definition for a con-
verged mesh given above in this section. Node movement and edge swapping
are the two components of our r-refinement strategy which is combined with

local h-refinement to form our hybrid algorithm.

2.5 Local h-refinement

The main difficulty with the mesh optimisation strategy introduced in the
previous sections is that it is impossible to know a priori how many nodes
or elements will be required in order to get a sufficiently accurate finite ele-
ment solution to any given variational problem. For this reason some form
of h-refinement is necessary in addition to the above use of r-refinement.
Following the pattern of the rest of this chapter we discuss here lo-
cal h-refinement for two dimensional problems only (for three dimensional
problems it will be discussed in Chapter 5). Two different local h refine-
ment algorithms have been widely used for two dimensional problems. The

most popular one is the combination of red (regular) and green (irregular)

Ch. 2. Multilevel r and h-refinement

refinements which have been proposed by Bank et al. in [22] and then
implemented into the well known multigrid code PLTMG [20]. A red re-
finement subdivides all triangles which are to be refined into four children
by joining the mid points of all the three edges as illustrated in the top
half of Figure 2.3. Green refinements are only used to close the triangula-
tions (to remove the “hanging nodes”) and consist of simple bisections of
the neighbouring elements by connecting the hanging nodes to the opposite
vertices of the neighbouring elements (again see Figure 2.3). The second
refinement method is based on bisection only (see e.g. [25, 92]), as shown
in the bottom half of Figure 2.3. The edge to be bisected is important and
can be chosen on some geometric criteria or on some directional refinement
criteria. To remove any hanging nodes, the same green refinement strategy
is used as discussed above.

We have implemented both of these refinement schemes i.e. one-to-four
and one-to-two. For our one-to-four refinement algorithm we adopted the
strategy of [36]. We first mark those elements to be red refined. If any
element is not marked for red refinement but two of its edges are marked
for refinement (due to neighbours), we mark it for red refinement. Af-
ter applying the red refinement green refinement is applied to remove any
hanging nodes. For our one-to-two refinement algorithm we adopted the
strategy of [92] i.e. for each element to be refined we choose the longest
edge for bisection. Hanging nodes left at the end are removed by bisecting

the neighbouring elements (see Figure 2.3).

Ch. 2. Multilevel r and h-refinement

Figure 2.3: An illustration of the refinement of certain (shaded) elements
of a mesh using one-to-four subdivision (top) and one-to-two subdivision
(bottom).

There are at least two strategies for applying local adaptivity. The first
subdivides all elements for which the error is greater than X % of the largest
error value calculated on any single element. The second subdivides X% of
the elements (e.g. by making a list of elements in descending order with re-
spect to error magnitude, and then subdividing the first X% of the elements
in this list). Typically X is chosen to be somewhere between 40 and 80.
We have used the former approach based on the energy over each element
rather than the error (i.e. using energy as the error indicator). The solution
values for the newly inserted nodes are found by linear interpolation; i.e. by
taking the average of the solution values at the two ends of the edge which

has been bisected.

61

Ch. 2. Multilevel r and h-refinement

2.6 Multilevel hybrid algorithm

Combining the r-refinement and h-refinement approaches in an appropriate
manner should allow locally optimal meshes to be obtained which are better
(in terms of energy minimisation) than using either strategy alone. There
are many possible ways to do this and we conclude this chapter with an
outline of the approach that we adopted for our hybrid algorithm. A more
detailed explanation of this approach is given in Chapter 3.

We begin with a very coarse mesh which is optimised using r-refinement.
Once convergence with respect to the position of the nodes has been achieved
a further reduction in the energy of the solution is sought by applying the
edge swapping algorithm. After reaching convergence with respect to edges
the grid is no longer likely to be locally optimal with respect to the position
of nodes, since the edge swapping will generally cause the node locations
to become suboptimal. Hence it is necessary to alternate between the node
movement and the edge swapping algorithms until the whole process con-
verges. The down hill nature of each step in the process guarantees that
this will eventually occur (since we assume a solution to (2.1) exists and we
are approximating this solution from above).

At this stage we consider applying local A-refinement, as a locally optimal
mesh with a given number of nodes may not be adequate for obtaining a
solution of a desired accuracy. By applying h-refinement to the locally
optimal mesh we get a new mesh at the next level of refinement. In general

this is not locally optimal so we again apply the node movement and edge

Ch. 2. Multilevel r and h-refinement

swapping algorithms alternately to obtain a locally optimal mesh at this
new level. Hence, we are applying a hierarchical approach: starting with
a coarse grid and then optimising, refining, optimising, refining etc., to get
a final optimised mesh with a desired accuracy and a minimal number of
nodes.

There are of course other ways in which h-refinement might be combined
with r-refinement to produce a hybrid algorithm. Our experience suggests
that a robust approach is to always refine an optimised mesh and then to
interpolate the coarser solution onto the refined mesh as a starting point
for the next level of optimisation. Details of this observation are presented
in Chapter 3.

Having provided an overview the algorithms for r and A refinement we
now present our new hybrid algorithm explicitly.

Algorithm 4 :

Input: An initial coarse mesh which can reasonably approzimate the solu-

tion of the variational problem (2.2).

1. Solve the problem on the initial mesh to get an approximation u" on

this mesh.
2. Apply the node movement, Algorithm 2.

3. Calculate the global enerqy E,4 for the current approzimation u” on

the current mesh.
4. Apply the edge swapping, Algorithm 3.

5. Apply the node movement, Algorithm 2.

Ch. 2. Multilevel r and h-refinement

6. Calculate the global energy E, .., for the current approzimation u" on

the current mesh.

7. If abs(Epnew— Eoa) is greater than the threshold value chosen set oy =

E,., and go to step 4.
8. If the desired accuracy achieved go to step 10.
9. Apply local insertion algorithm and go to step 2.

10. End of mesh refinement process.

Output: A refined mesh and solution u" with a desired accuracy.

The above algorithm is entirely local, i.e. there is no need to solve any
global finite element systems at intermediate levels. After every step of edge
swapping and local h-refinement there is a step of node movement which not
only moves nodes but also has the effect of updating the solution estimate.
However global solves can be added to the algorithm as part of Step 9, local
refinement. This is discussed in Chapter 3. There is also an intermediate
option of doing some local solves without moving nodes to get better initial
approximation to the solution immediately after local refinement. This may
be cheaper than applying global solves and such local solves can eliminate
the need of any global solves at all in the algorithm (even for the initial

coarse mesh).

64

Chapter 3

Implementation and Numerical
Results in 2-Dimensions

In this chapter we describe implementation details of our hybrid algorithm
and some numerical results using this algorithm. This chapter has three
main sections. In Section 3.1 we define our notion of mesh quality and dis-
cuss the choices available within the algorithm regarding this quality. We
consider specific strategies which we have chosen during the implementa-
tion to achieve best quality meshes. In Section 3.2 we provide the details
of the numerous adjustable parameters used in our hybrid algorithm. Pos-
sible ranges of values for these parameters are given there, along with the
specific values used in Section 3.3, which is devoted to sample numerical
results. Four test problems are considered in order to show the most im-
portant features of the new hybrid algorithm. For each of the test problems
comparison has been made between our hybrid algorithm and more conven-

tional adaptive strategies.

65

Ch. 3. Implementation and numerical results in 2-D

3.1 Mesh quality

Our principle aim in this thesis is to achieve meshes of the best possible
quality, i.e. meshes having as small a number of elements as possible for a
desired accuracy (with respect to the energy of the solution on these meshes).
At this stage it is not necessarily our intention to make our hybrid algo-
rithm the most efficient algorithm (i.e. to achieve a desired accuracy with
the minimum possible number of floating point operations), instead we are
concerned with what is achievable in terms of the meshes produced and the
robustness of the hybrid algorithm. Hence we do not consider the compu-
tational costs involved in achieving these meshes in this chapter (but see
Chapter 4 for a discussion of the main cost issues), however we do try to
keep them feasible.

The main ingredients and the mathematical basis of our hybrid algo-
rithm have already been presented in Chapter 2. Many possible choices
occur when these ingredients are implemented using a computer program.
These possible choices directly affect the quality of the mesh achieved,
and usually also the overall computational expense. These various possible

choices within the hybrid algorithm are explained below.
3.1.1 Exact / Inexact line search

Our node movement algorithm involves the solution of a one dimensional
energy minimisation problem (2.5) for each node, i.e., to find a point on the

line of steepest descent, where the node should be moved to minimise the

Ch. 3. Implementation and numerical results in 2-D

67

local energy functional (2.4), while holding the solution value fixed. There is
another possibility of moving the nodes by solving a two dimensional energy
minimisation problem. That is to minimise the local energy (2.4) over the
position of nodes and the solution value by modifying the steepest descent
direction to get a gradient which reduces this extra variable also. However,
to solve a two dimensional minimisation problem is computationally expen-
sive and to keep the computational cost feasible we do not experiment with
this.

To solve a one dimensional energy minimisation problem there are two
possible choices for this: exact or inexact line minimisation. An exact
line search involves more computational work, but it may provide a better
position of the node for the local energy minimum. Conversely, an inexact
line search requires less computational effort but the new position of node
found may not be as good as via an exact line search. The motivation
behind using an inexact line search is the fact that, since this is just an
intermediate step, it is not really essential that the new position found
for a node be optimal at each iteration. Instead we expect to get this
eventually as our algorithm relocates each node iteratively, reducing the
energy monotonically. We now provide implementation details for each of
these approaches.

Let n = —VE(z;)/||VE(z;)|| be the unit vector in the direction of
steepest descent for the node j (n = 0if VE(z;) = 0), where VE(z;) is the

gradient of the energy with respect to the position, z;, of node j (2.10). Let

Ch. 3. Implementation and numerical results in 2-D

Smaz be the distance between the points z; and z,. Where z, is the point
on the line of steepest descent up to which the node j is allowed to move.

We have to find a new position,

2 =z, f s, (3.1)

such that the local energy functional (2.4) is minimised, where s will take
its value in the interval [0, $,,,.]. If there are more than one minima in this
interval we aim to choose the one closest to s = 0.

The algorithm that we use for exact line searches is based on the bisec-

tion method, taken from [110], and is given as follows.

Algorithm 5 :

Input: Node j, its position z;, the point x, on the line of steepest descent
up to which the node j is allowed to move, the unit vector n in the direction

of the steepest descent for the node j and the local energy (2.4) E;(z;) for

the node j positioned at x;.

1. Set itn =0 and g}’-ld =z;.
2. itn=11n-+1.
3. If itn > 100, set z; = gjld and stop.

4. Set z,, as the mid point of segment z; and z,.

5. Set two real numbers D1 = n-VF;(z,,) and D2 =n-VFE;(z,) as the
scalar product of n and the gradients of energies with node j positioned

at x,, and x, respectively.

6. If [D1 > 0] then

Ch. 3. Implementation and numerical results in 2-D

69

go to step 2
end if (see Figure 3.1 (top left)).

7. If fabs(D1) < tolerance] then
if [Ei(zy) < Ej(z;)] then
T =z,
stop
end if (see Figure 3.1 (top right))

f [Ej(2,) > Ej(z)] then

ia = £m
go to step 2
end if.

8. If [D1 <0 and D2 > 0] then
of [Bi(zy) < Ej(z;)] then
z; =z,
go to step 2
end if (see Figure 3.1 (bottom left))

of [Ei(zy) = Ej(z;)] then

Loy = Ty
go to step 2
end if.

9. If [D1 < 0 and D2 < 0] then
of [Eiz,) < Ej(z;)] then
z; =z,
stop
end if (see Figure 3.1 (bottom right))
if [Ej(z,) > Ej(z;)] then
T, =z, then

go to step 2
end if.

Ch. 3. Implementation and numerical results in 2-D

Ej Ej

E (Xi)

Ej (Xm)

Xij xm Xa Xj <m Xa
.
j §
Ej(Xj o
§(X) E(Xi)

Ej(Xm)

Ej(Xm)

Xj xm Xa Xj xm Xa

Figure 3.1: Some possibilities for the exact line search.

The algorithm that we use for inexact line searches is based on an idea
taken from Freitag and Gooch [48]. They move the nodes to minimise some
geometrical quality measure so as to improve the geometric quality of the
mesh (see Section 1.4.4). We generalised this idea and used it to minimise
the energy functional. The idea works by fitting a quadratic between the
points z; and z,. The minimum of this quadratic is then found and the
node j is moved to this minimum provided it lies between the two points
z; and z,. If the minimum lies beyond z, then node j is only moved to z,.
In each case this relocation will depend upon the condition that it reduces
the energy, otherwise the distance of z, is reduced to half of its previous
distance from z;, and the whole process is repeated. The algorithm for the

inexact line minimisation is therefore as follows.

70

Ch. 3. Implementation and numerical results in 2-D 71

Algorithm 6 :

Input: Node j, its position z;, the point x, on the line of steepest descent
up to which the node j is allowed to move, the unit vector n in the direction
of the steepest descent for the node j and the local energy (2.4) E;(z;) for

the node j positioned at z;.

1. Set itn =0 and g?ld =z;.

2. un=11n-+1.

NS

. Ifitn > 10 set z; = gjld and stop.

4. Set By = Ej;(z;) and B, = Ej(z,).

N

. Define a quadratic E(s) = ps? + qs + r, where the real numbers p,q
and r are to be determined such that E(0) = Ey, E(Smaz) = E, and
E'(0) = n-VEj(z;).

6. Find the minimum of the quadratic by putting E'(s) = 0= s = —q/2p
(see Figure 3.2 (left)).

<

. 1f [p < 0] then
i [(B,(2.) < By(a;))] then

stop

end if (see Figure 3.2 (vight))

if [(Ej(z,) = Ej(z;))] then
T, =2z, — (2, — 2;)/2
go to step 2

end if

8. If [p > 0] then

=zt sxn where

s = min{—q/2p, distance between z; and z,},

Ch. 3. Implementation and numerical results in 2-D

Ej Ej
. Ej(Xj Energy
Ei(X) g

Ener .
o Quadratic Quadratic

Xj -q/2p Xa Xj Xa

Figure 3.2: Some possibilities for the inexact line search.

if [Ej(2}) < E(z;)] then

end if
if [Fi(22°) > Fy(z;)] then

j
T, =2, — (2, — 2;)/2
go to step 2

end if.

In both of the above algorithms we allow a node to be displaced only
if this reduces the local energy, otherwise its previous position is retained:
with the assumption that this will be improved in the next node movement
sweep. A comparison of both the line minimisation strategies with respect to
the quality of meshes achieved and the computational work involved in each
is given in Chapter 4. Generally, exact line search provides better quality
meshes compared to using an inexact line search, however this involves more
computational work. Since our aim in this chapter is to achieve the best
possible quality meshes, we use exact line minimisation for the test problems

presented in Section 3.3.

72

Ch. 3. Implementation and numerical results in 2-D

3.1.2 One-to-two and one-to-four element refinement

For the local refinement part of our two dimensional algorithm we have
implemented both one-to-two and one-to-four element refinement schemes
as discussed in Section 2.5. Each of these have their benefits and their
drawbacks. For the one-to-two refinement scheme the geometric quality of
the mesh (as given in Section 1.4.4) deteriorates as the number of local
insertions increases. Long and thin elements may appear more frequently
than when using the one-to-four refinement scheme and this can reduce the
geometric quality of the mesh. However, for some problems long and thin
elements can be beneficial for the accurate approximation of some sharp
features of the solution. In this case the one-to-two refinement scheme can
perform better. Also the number of nodes inserted in one pass of the one-
to-two refinement scheme is much less than with the one-to-four refinement
scheme and it may be possible to achieve a desired accuracy with fewer
elements.

With the one-to-four refinement scheme the geometric quality of the
mesh can be better maintained. However, more elements may be required
to obtain a desired accuracy, as compared to the one-to-two refinement
scheme. For our test problems presented in Section 3.3, we have used both

of the approaches discussed here for comparison.
3.1.3 Local solves vs. global solves

It is shown in Section 2.2.3 that by solving a sequence of local problems

iteratively on a fixed mesh it is possible to obtain a global solution of the

Ch. 3. Implementation and numerical results in 2-D

minimisation problem (2.2) on that mesh. Our hybrid algorithm is therefore
designed in such a way that it never needs a global solve of the problem,
except possibly on the initial fixed coarse mesh. Instead, it updates the
nodal solution values during the node movement step by solving the local
problems (2.5) for each node iteratively immediately after the position of
that node has been updated. After every application of the edge swapping,
Algorithm 3, and the local h-refinement step, a node movement step is
undertaken which has the effect of updating the solution estimate.

It has been observed however that, although not necessary to achieve
convergence, if the global problem is solved at intermediate points in the
Algorithm 4 the convergence of the optimisation process may be acceler-
ated. Furthermore, this may lead to a different down hill energy path being
followed which can lead to a desired accuracy being obtained with fewer
elements or with fewer refinement levels. Since it is our intention to achieve
the best quality mesh that we can, even at the expense of some additional
computational work, we modify the hybrid algorithm to incorporate a global
solve after every step of local h-refinement. We consider the issue of the
quality of the mesh achieved and the additional computational work in-

volved through the inclusion of such global solves in Chapter 4.
3.1.4 Order of nodes and edges

In our node movement algorithm, the nodes which are available for move-
ment are moved one by one, in a Gauss Seidel fashion, to reduce the energy

functional. The order in which the nodes should be moved is significant as

Ch. 3. Implementation and numerical results in 2-D 75

changing this order may lead to convergence to a different local minimum
and thus produce a change to the converged mesh and the solution obtained.
There are many possible strategies which can be used to determine the order
in which we update the nodes. One possible strategy is to sort the nodes
by the magnitude of the gradients with respect to their positions, and then
update them in descending order of the magnitude of this gradient. Alter-
natively we could sort them by the value of the initial local energy for each
node and then update the nodes in descending order of their local energy.
Perhaps the easiest choice is simply to update them in lexicographic order.
For the test problems considered in Section 3.3 we sort the nodes by
the magnitude of their gradients at the start of the sweep and update them
in descending order of this magnitude. We have adopted this strategy as
a result of numerical tests which indicate that the quality of the meshes
produced were at least no worse than those from any of the other strategies
considered. It is to be noted that after moving the first node the sorted list
may not remain valid. However, to sort the nodes again after moving each
node is likely to increase the computational cost too significantly.
Similarly, for the edge swapping, Algorithm 3, we swap internal edges by
considering them one by one. In contrast to node movement, Algorithm 2,
however it is observed that changing the order in which the edges are visited
does not produce such a significant change in the converged mesh. However,
we do note that if we sort the edges by the energy of the quadrilateral in

which they are contained, then swapping first the edge of that quadrilateral

Ch. 3. Implementation and numerical results in 2-D 76

which has the largest energy and so on, appears to reduce the number of
iterations needed to converge. This must be balanced against the additional
computational work that is needed to sort the edges of course. For the test
problems featured in Section 3.3 of this chapter we sort the edges with
respect to the energy of the quadrilateral containing each edge. The quality
of the meshes achieved and the computational cost associated with sorting

the nodes and the edges is discussed in Chapter 4.
3.1.5 Order of refinement strategies

Our hybrid algorithm combines r and h-refinement. There are many pos-
sible orders in which these refinement strategies can be combined. The
classical approach to refinement typically uses h-refinement first, to create
a mesh with reasonable topology, and then applies node movement for fine
tuning [23]. However we apply these algorithms in the reverse order for the
reasons explained below.

We start with a coarse initial mesh, which can crudely approximate the
solution. It is highly unlikely that such a coarse initial mesh will permit
all of the sharp features of the solution to be captured. If we apply local
h-refinement first then it is possible that some of the regions where the
solution variation is very sharp may be missed and the majority of the
new nodes may be inserted in regions where the solution variation is not as
sharp as elsewhere. Our hope is that if we first apply the node movement
algorithm then when we come to do h-refinement the base mesh will be the

best possible for its size and so the possibility of picking out the correct

Ch. 3. Implementation and numerical results in 2-D

\

\
|
EERREREEN

EREEEERRN
HERERRN
\
|
|

|
HERERNY

1\

R

|
HERER

HEER

Figure 3.3: U = 10°2°(1 — 2)y°(1 — y)

regions in which to refine the mesh will be increased.

We observe this effect during a typical test problem. The problem is
such that it has two regions of solution variation, one is very sharp and the
other is less sharp (see Figure 3.3). First we applied one-to-four local k-
refinement on the initial coarse mesh of 128 elements by refining only those
elements whose local energy exceeded X = 40% of the maximum local
energy on any element. As the element size in the region of sharp solution
variation is so large, the local refinement scheme is unable to detect the need
for refinement in that region, however it does detect the region where the
solution variation is less sharp. As a result all of the refinement takes place
in this region (see Figure 3.4), which is far from ideal. When we optimise
this mesh (solving Poisson’s equation) the energy of the solution on that
mesh is —55.878820. When local h-refinement (one-to-four with X = 40%)

is applied after node movement however, the realignment of the initial mesh

7

Ch. 3. Implementation and numerical results in 2-D

Figure 3.4: Initial coarse mesh after applying local h-refinement and corre-
sponding locally optimised mesh of 248 elements.

mwj‘gg

=
\&N@{é‘

Figure 3.5: Initial coarse mesh after applying r-refinement and the corre-
sponding locally refined mesh having 242 elements.

ensures that the additional nodes are inserted at better locations, and the
energy of the solution on that mesh reduces to —56.657943 (see Figure 3.5).
Note that the second mesh in Figure 3.4 is locally optimal but the second
mesh in Figure 3.5 (which is not locally optimal) permits a significantly
better solution.

Order of edge swapping and node movement does not make such a sig-

nificant difference however we always apply the node movement algorithm

78

Ch. 3. Implementation and numerical results in 2-D

after every application of edge swapping algorithm. This is because it inte-
grates the two tasks of moving the nodes and updating the solution values
with the help of local solves. Hence after each application of edge swapping
algorithm an application of node movement algorithm eliminates the need
of a global finite element solve. Overall therefore, our final hybrid algo-
rithm consists of optimising the mesh first using node movement and then
edge swapping and node movement (interleaved), then refining this opti-
mised mesh and interpolating the coarser solution onto the refined mesh as
a starting point for the next level of optimisation. At this point we also
include the possibility of applying a global solve on the new mesh so as to

improve upon the interpolated solution values.
3.2 Adjustable parameters

Having presented a justification for the structure of Algorithm 4 we now
note that there are numerous adjustable parameters within the algorithm,
that the user must select. So far as possible however we do not treat these
as tuning parameters, i.e. it is not necessary to change these parameters for
different problems. Some of these parameters have already been introduced
briefly in our discussion of the quality of the mesh in Section 3.1. We discuss

all of them in detail below.
3.2.1 Minimum area condition

During the implementation of the node movement algorithm we have en-

forced a constraint imposing a minimum allowable area of elements in the

Ch. 3. Implementation and numerical results in 2-D

80

A A

Figure 3.6: A situation where interior element ABC can flip to assign it
negative area

mesh. This requires that the area of each of element be bounded below by
a positive number A,,;,. During node movement when the meshes become
highly distorted tangling can occur quite quickly and it is insufficient just
to monitor the area of the element into which the node is moving. Figure
3.6 demonstrates this. Here the position of node A has been locally opti-
mised and nodes B or (' are moved next. Either of these could be moved
far enough upwards to cause triangle ABC to flip over, giving it a negative
area and causing the mesh to be tangled. Even without such occurrences,
when the number of node movement sweeps is large, some of the nodes in
the mesh can get so close to each other that elements formed by them can
become arbitrarily small.

To avoid these situations, for each node j to be moved we allow its
move to a new position in ; only if the area of each element in ; does

not violate the minimum area condition after this move. For all of our

Ch. 3. Implementation and numerical results in 2-D

test problems a very small value for A,,;, = 107!° has been chosen. For
this value of A,.;,, and the test problems considered in this chapter, this
constraint never becomes active when the mesh is coarse. However at the
third or fourth level of local/global refinement this constraint does become
active for some of the cases. We tried different values of A,,;, and found
that if a large value is chosen the node movement algorithm converges in
fewer iterations, however with a larger value of energy. If a very small value
is chosen the node movement algorithm takes more iterations to converge,
however the reduction in energy is not significant. For example, for the
first test problem in Section 3.3, when we use A,,;, = 107° the energy at
the final level (with global refinement, see Table 3.1) comes out as 50.0242
and when A,,;, = 107'* the energy comes out to be 50.0157 (as opposed to
50.0158 when A,,;, = 107'°. Hence we recommend A,,;, should be in the

range 107% to 10712

3.2.2 Threshold for gradient

The gradient of the energy with respect to the position of node j (2.10), is
used to decide whether or not node j should be moved and in which direc-
tion. If the magnitude of this gradient is more than some chosen threshold
value the node is moved, otherwise it is not. The reason for including this
condition is that moving a node for which the magnitude of the gradient
vector is very small is unlikely to cause a significant reduction in the energy
functional. Furthermore, at convergence to a local minimum all of these

gradients should be zero. The design of the node movement algorithm is

Ch. 3. Implementation and numerical results in 2-D

such that, at each sweep through the nodes, it tries to reduce the energy
functional. As we approach a local minimum this will begin to cause a
reduction in the magnitude of the gradient vector for each node. As the
number of sweeps increases, more and more nodes come to their locally op-
timal positions and by including this condition we can skip those nodes for
which the gradient of the energy functional is very small.

In principal, knowledge of the gradient only does not provide any infor-
mation about whether we are near a local maximum, a saddle point or a
local minimum. It is possible therefore that we could skip a node which is
at a local energy maximum rather than a minimum. In practice however
this does not appear to present a problem since this situation is unstable
and, by moving neighbouring nodes in their steepest descent directions, any
nodes near to a local maximum are likely to be available for movement at
the next sweep.

For all of our test problems we have chosen this threshold to be equal
to 107°. Again a very small value for this parameter will cause unnecessary
repetitions of the node movement algorithm (for very small gain), and a
larger value will freeze the nodes at suboptimal positions. For our test
problems we tried different values for this parameter and we recommend

that a suitable range for this parameter should be between 107* to 10~7.
3.2.3 Convergence criteria

As our hybrid algorithm is a combination of node movement, edge swapping

and local h-refinement, it requires some stopping or convergence criteria for

Ch. 3. Implementation and numerical results in 2-D

each of these components. We describe each of these in turn. Since our
hybrid algorithm and its components are iterative processes by increasing
or decreasing the convergence criteria the desired accuracy can be decreased
or increased. In each case outlined below we have used a tolerance of 107°

for the results presented in Section 3.3.

3.2.3.1 Convergence criterion for node movement

Our node movement algorithm is an iterative algorithm, rather like the
Gauss-Seidel iterative method for solution of linear or nonlinear equations.
We consider one node at a time and decide whether it is to be moved or
not and if it is moved we then update the local solution for it immediately.
One node movement sweep, or iteration, is completed when we have vis-
ited through each of the nodes. The global energy of the solution is then
computed after completing each iteration. The algorithm guarantees that
this energy functional is reduced monotonically by each node movement
and therefore each full iteration. The convergence criterion for the node
movement algorithm is deemed to be satisfied when the difference in the
energy functional computed in two consecutive iterations is less than some
constant value chosen by the user (given above as 107 in our examples).
We stop our node movement process when either this convergence criterion

is satisfied or the maximum number of iterations (set by the user) is reached.

3.2.3.2 Convergence criterion for edge swapping

The edge swapping algorithm is also an iterative process. We swap all in-

ternal edges in a Gauss-Seidel fashion, considering one edge at a time and

Ch. 3. Implementation and numerical results in 2-D

deciding whether it is to be swapped or not. Unlike the node movement algo-
rithm we do not update any local solution after swapping an edge. One edge
swapping iteration is completed when we have visited each of the internal
edges and the global energy of the solution is computed after each iteration.
The convergence criterion for the edge swapping algorithm is deemed to be
satisfied when the difference between global energy functional computed at
two consecutive iterations is less than the tolerance given above. In prac-
tice, such a small value of the convergence parameter tends to ensure that

no edge is swapped in the last iteration before convergence.

3.2.3.3 Convergence criterion for the optimised mesh

By optimising the mesh we mean that each of its nodes as well as each
of its internal edges are at their locally optimal positions. After getting a
locally optimal mesh with respect to the position of the nodes (as defined in
Section 2.2) we apply the edge swapping algorithm to make the mesh locally
optimal with respect to position of the edges too (as defined in Section 2.4).
But swapping edges to their locally optimal positions will generally make
the positions of nodes suboptimal. Hence we apply the node movement and
edge swapping algorithms in turn making an iterative process. One iteration
is completed when both of the algorithms have been applied. We compute
the global energy before and after applying the combination of these two
algorithms. The combination of these two is converged when the difference
of global energy functionals computed at two consecutive iterations is less

than the convergence tolerance chosen.

Ch. 3. Implementation and numerical results in 2-D

3.2.3.4 Stopping criterion for the hybrid algorithm

We optimise the mesh at the first level and then we refine the mesh locally.
After applying local h-refinement, the position of the nodes and edges are
no longer locally optimal. To make the new mesh locally optimal we re-
apply the combination of node movement and edge swapping, which leads
to an optimised mesh at the second level. To get the mesh at next level we
again refine locally. We repeat the whole process of r-refinement and local
h-refinement until the difference between two energies at consecutive levels

is less than the convergence criterion or the maximum mesh size is reached.
3.2.4 Admissible limit factor for node movement

The maximum admissible limit factor w, as explained in Section 2.2, plays
an important role in the convergence of the node movement algorithm. By
changing its value one can significantly change the nature of the locally
optimal mesh and the value of global energy on this converged mesh, as
well as altering the number of iterations needed to converge. We have tried
a number of different values of w for different problems for the purpose of
experimentation. We observed that the algorithm never fails for any value
of w lying in the interval (0, 1). However, for different values of w it either
converges to a different mesh with a different value of energy, or it converges
to the same mesh but in a different number of iterations.

We observed from our experiments that when an exact line search is
used a high value of w, around 0.9 produced better results, but when an

inexact line search is used a more cautious value of around 0.5 appeared

Ch. 3. Implementation and numerical results in 2-D

best. For all of the test problems in Section 3.3 we use exact line search
with w = 0.9, except for the last one where a different choice is explained.

For example, for the third test problem in Section 3.3, when exact line
searches are used and w = 0.1,0.5 and 0.9 are chosen we get energies for
the optimised initial mesh of 0.550093, 0.549725 and 0.549242 respectively.
When inexact line searches are used and w = 0.1,0.5 and 0.9 are chosen
we get energies for the optimised initial mesh of 0.551730, 0.549901 and

0.551321 respectively.
3.2.5 Number of edges attached to one node

In the algorithm for edge swapping, the only criterion for accepting an edge
swap is that it reduces the energy. Typically it turns out that application
of the edge swapping algorithm usually improves the geometrical quality
of the mesh produced, after each application of the node movement algo-
rithm (even though the criteria for each edge swap is energy minimisation).
This observation is made by comparing the area of the smallest element
before and after applying the edge swapping algorithm, which almost al-
ways increases the area of the smallest element. However, in the absence of
any additional conditions for edge swapping, in some very rare cases, the
algorithm tries to attach very large numbers of edges to one node. This
situation is probably not particularly desirable as it may well increase the
number of long and thin elements unnecessarily and will certainly damage
the sparsity pattern of the finite element stiffness matrix.

To overcome this potential problem we introduce an integer E,,,., the

Ch. 3. Implementation and numerical results in 2-D

87

Figure 3.7: A situation where too many edges attached to one node

maximum number of edges that may be attached to one node. For each
edge to be swapped, we count the number of edges attached to the other
two nodes of the quadrilateral (to which the edge would be attached after
swapping). If for either of these nodes this number is greater than or equal
to E,uaz, we do not allow the edge swap. For each of our test problems in
Section 3.3 we take F,.,. to be equal to 15. For all of these test problems
the situation where this constraint becomes active is very rare (with this
choice of upper limit). We believe that F,,., = 15 will not cause our edge
swapping algorithm to become trapped in any local minima (that it would
not otherwise have found) and that it will improve the geometric quality of

the mesh.

3.3 Numerical results

Now we present the numerical results for the full hybrid algorithm applied
to a number of test problems. All of the parameters involved in the hybrid

algorithm have been described in the previous sections, except the details

Ch. 3. Implementation and numerical results in 2-D 88

of the quadrature rule used for evaluating integrals numerically. For all of
the test problems considered in this chapter, we use the 13-point rule given

in [41], which is exact for polynomials of degree less than or equal to 7.
3.3.1 Problem one

The first test problem that we consider is the simple two-dimensional reaction-

diffusion equation
1
—Au+—Zu=0, z€Q=(0,1)x(0,1), (3.2)
€
with Dirichlet boundary conditions,
u=e"1/e, (3.3)

assumed throughout 9Q. This problem is a little artificial since the solution
(also given by (3.3)) is essentially one dimensional. Nevertheless, we feel
this is a good test of our hybrid algorithm. A moderate value of ¢ = 0.01
is chosen to produce a weak boundary layer in the solution near z; = 0. It
can be easily verified that (3.3) is also the exact solution of (3.2) over the
whole domain €. The energy functional corresponding to the problem (3.2)

is given by

ou Ou u? _
/ [&x axZ 5_2] dz, (3:4)
and this is clearly of the form of problem defined in Section 2.1. As the

exact solution for this problem is known,

1
E=_]1 ¢ 3.5
25[G (3.5)

Ch. 3. Implementation and numerical results in 2-D

89

Figure 3.8: An initial mesh (top left) followed by a sequence of meshes
obtained by r-refinement and then combinations of global A-refinement with
r-refinement.

is the minimum of (3.4), which can be obtained by substituting the exact
solution into (3.4). By putting the chosen value of ¢ = 1072 in (3.5) we get
E = 50.0000.

Initially the problem is solved on a uniform coarse mesh containing just
32 elements. This mesh is then optimised using r-refinement, i.e. the com-
bination of node movement and edge swapping. The total energy reduces
from 374.473 to 50.8937, reflecting the fact that before optimisation there

were no degrees of freedom in the boundary layer near z; = 0. Following

Ch. 3. Implementation and numerical results in 2-D

90

Figure 3.9: A globally refined mesh of 512 elements and the corresponding
locally optimised mesh.

[104] this optimal mesh may now be uniformly refined to produce 128 ele-
ments which may themselves be optimised. This leads to a solution with a
total stored energy of 50.1137. A further global refinement and optimisation
then leads to a solution with a total stored energy of 50.0158 on a mesh of
512 elements: this sequence of locally optimal meshes is shown in Figure
3.8.

Figure 3.9 illustrates two further meshes of 512 elements: the first ob-
tained by global refinement of the initial uniform mesh and the second by
optimising this mesh directly. The energies of the solutions on these meshes
are 103.630 and 50.2311 respectively thus illustrating, for this example at
least, the superiority of the hierarchical approach when r-refinement is com-
bined with global h-refinement. It is clear from this pair of meshes that al-
though the second mesh is locally optimal it suffers from the problem that
too many of the degrees of freedom, inherited from the first mesh, lie in a

part of the domain that is far from the boundary layer.

Ch. 3. Implementation and numerical results in 2-D

91

Figure 3.10: A sequence of meshes obtained by r-refinement of an initial
coarse mesh (top left) and then combinations of local h-refinement followed
by r-refinement.

Figure 3.10 shows a sequence of meshes obtained by applying our hybrid
algorithm which combines r-refinement with local h-refinement. The first
mesh is the same one, containing 32 elements, that appears in Figure 3.8,
whilst the second, third and fourth meshes contain 42, 94 and 323 elements
respectively and were obtained by refining into 2 children only those ele-
ments whose local energy exceeded X = 60% of the maximum local energy
on any element. The total energies of the solutions on these four meshes

are 50.8937, 50.3408, 50.1010 and 50.0085 respectively: clearly illustrating

Ch. 3. Implementation and numerical results in 2-D

92

Figure 3.11: A pair of meshes of 1048 elements obtained using local one-to-
four h-refinement (top left) followed by optimisation and a pair of meshes
of 784 elements obtained using local one-to-two h-refinement (bottom left)
followed by optimisation.

the superiority of the use of local rather than global A-refinement within
the hybrid algorithm.

To conclude our discussion of this example we illustrate the advantage of
applying the hybrid approach hierarchically by contrasting it with the use
of local h-refinement alone, possibly followed by a single application of r-
refinement. Figure 3.11 shows two meshes of 1048 elements and two meshes

of 784 elements that were obtained in this manner (again using a threshold

Ch. 3. Implementation and numerical results in 2-D

93

Elements | Energy | Description
32 374.473 | Figure 3.8 (top left)
32 50.8937 | Figure 3.8 (top right)
128 50.1137 | Figure 3.8 (bottom left)
512 50.0158 | Figure 3.8 (bottom right)
(
(

512 103.630 | Figure 3.9 (left)
512 | 50.2311 | Figure 3.9 (right)
32 50.8937 | Figure 3.10 (top left)
42 50.3408 | Figure 3.10 (top right)
94 50.1010 | Figure 3.10 (bottom left)
323 50.0085 | Figure 3.10 (bottom right)
(
(
(
(

1048 54.8553 | Figure 3.11 (top left)

1048 50.0536 | Figure 3.11 (top right)
784 51.4939 | Figure 3.11 (bottom left)
784 50.0714 | Figure 3.11 (bottom right)

Table 3.1: Summary of the results obtained for Problem one (the global
energy minimum is 50.0000).

of X = 60% for the local refinement). The total energies of the solutions on
the 1048 element meshes (obtained by local one-to-four refinement alone and
then a single application of the mesh optimisation at the end) are 54.8553
and 50.0536 respectively, whilst the total energies of the solutions on the
784 element meshes (obtained by local one-to-two refinement plus a final
optimisation) are 51.4939 and 50.0714 respectively.

We see that in both cases, despite the fact that the second of each pair
of meshes is locally optimal, the quality of these local optima are not as
good as that obtained using the hierarchical approach. A summary of all

of the computations made for this test problem is provided in Table 3.1.

Ch. 3. Implementation and numerical results in 2-D

94

Figure 3.12: An illustration of the overhanging cantilever beam with a
vertical point load at the end of the cantilever.

3.3.2 Problem two

We now consider the more challenging problem of calculating the displace-
ment field for a two-dimensional linear elastic model of an overhanging can-
tilever beam supporting a vertical point load at the end of the cantilever,
as illustrated in Figure 3.12. This problem is taken from [62] and [103] and
corresponds to a system of PDEs as outlined in Section 2.3.

For this problem m = n = 2 and the energy functional is given by

1 6u2 8uk

= [2o, Sy —/ biui d —/Gmd. 3,
5 anjC’]M T Q,0 u; dx ., u; ds (3.6)

E
8@

Here, all repeated suffices are summed from 1 to 2, C is the usual fourth
order elasticity tensor (in this case corresponding to a Young’s modulus
E = 100 and a Poisson ratio v = 0.001), pb provides the external body
forces due to gravity and @ represents the traction boundary condition (in
this case a point load as illustrated in Figure 3.12). The left half of the lower

boundary is fixed whilst the rest of the boundary, dy say, is free. Unlike for

Ch. 3. Implementation and numerical results in 2-D

95

VAVAVAVAVAVAVAVAV(Y}VAY‘WAVAV \/]
NOINININNININVYKT V4
R
SRR

(
?
N
g

%4
4
o
il
VA vavary

WZA

NN

VAVAVAVAL

7>

</
v

A
N
b
s
§i
%fg\,

N
0%
\VAVAV,
XK
1&VAV \/

>
S
g

x
S

75

LK
o
N

QAN

Q

7
o

VA
w117 VAVAVAYS 7

<7\

\A7OEEs

Figure 3.13: An initial mesh followed by a sequence of meshes obtained by r-
refinement and then combinations of global A-refinement with r-refinement.

/\

%
i
/

a0

the first example we do not know an exact solution for this problem and so
the optimal value for the stored energy is not known a priore.
As before we begin by solving the problem on a uniform coarse mesh,

this time containing 64 elements. This mesh is then optimised using the r-

refinement algorithm to reduce the total energy from —0.201352 to —0.253210.

This optimal mesh may now be uniformly refined to produce 256 elements

which are also optimised, leading to a solution with a total stored energy

Ch. 3. Implementation and numerical results in 2-D

96

Figure 3.14: A globally refined mesh of 1024 elements and the corresponding
locally optimised mesh.

of —0.302353. One further global refinement and optimisation then leads
to a solution with a total stored energy of —0.338964 on a mesh of 1024
elements. This sequence of locally optimal meshes is shown in Figure 3.13.

Figure 3.14 illustrates two further meshes of 1024 elements. The first of
these is obtained by global refinement of the initial uniform mesh and the
second by optimising this mesh directly. The energies of the solutions on
these meshes are —0.306791 and —0.329249 respectively and so we again
observe the superiority of the hierarchical approach when r-refinement is
combined with global h-refinement.

As for the previous example, our goal is to assess the hybrid algorithm
that combines r-refinement with local h-refinement hence Figure 3.15 shows
a sequence of meshes obtained in this manner. The first mesh is the same
one, containing 64 elements, that appears in Figure 3.13, whilst the second

and third meshes contain 224 and 455 elements respectively and were ob-

Ch. 3. Implementation and numerical results in 2-D

97

Figure 3.15: A sequence of meshes obtained by r-refinement of an initial
coarse mesh and then combinations of local h-refinement followed by r-
refinement.

tained by refining into 2 children only those elements whose local energy
exceeded 60% of the maximum local energy on any element. The total en-
ergies of the solutions on these three meshes are —0.253210, —0.308351 and
—0.363313 respectively: again illustrating the superiority of the use of local
rather than global h-refinement within the hybrid algorithm.

We again conclude our example by illustrating the advantage of ap-
plying the hybrid approach hierarchically by contrasting it with the use
of local h-refinement alone, possibly followed by a single application of r-
refinement. Figure 3.16 shows two meshes of 674 elements and two meshes

of 462 elements that were obtained in this manner (again using a threshold

Ch. 3. Implementation and numerical results in 2-D

98

Figure 3.16: A pair of meshes of 674 elements obtained using local one-
to-four h-refinement (top) followed by optimisation (second) and a pair of
meshes of 462 elements obtained using local one-to-two h-refinement (third)
followed by optimisation (bottom).

of X = 60% for the local refinement). The total energies of the solutions on
the 674 element meshes (obtained by local one-to-four refinement alone and
then a single application of the mesh optimisation at the end) are —0.325679
and —0.342525 respectively, whilst the total energies of the solutions on the
462 element meshes (obtained by local one-to-two refinement plus a final
optimisation) are —0.325879 and —0.342355 respectively. As before it is

clear that the quality of the locally optimal meshes obtained in this manner

Ch. 3. Implementation and numerical results in 2-D

99

Elements | Energy | Description

61 | 0.201352 | Figure 3.13 (top)

64 -0.253210 | Figure 3.13 (second)
256 -0.302353 | Figure 3.13 (third)
1024 -0.338964 | Figure 3.13 (bottom)
1024 -0.306791 | Figure 3.14 (top)
1024 -0.329249 | Figure 3.14 (bottom)

61 | 0.253210 | Figure 3.15 (top)
224 -0.308351 | Figure 3.15 (middle)
455 -0.363313 | Figure 3.15 (bottom)
674 | -0.325679 | Figure 3.16 (top)
674 -0.342525 | Figure 3.16 (second)
462 -0.325879 | Figure 3.16 (third)
462 -0.342355 | Figure 3.16 (bottom)

Table 3.2: Summary of the results obtained for Problem two (the global
energy minimum is unknown).

is inferior to that of meshes obtained using the hierarchical approach. A
summary of all of the computations made for this test problem is provided

in Table 3.2.

3.3.3 Problem three

For the third two-dimensional problem that we consider, we return to an
example with just one dependent variable, however it features a solution
which is singular at the origin. This problem appears in [20, 70, 104].

The energy functional corresponds to the Laplacian operator and is given

by
Ou Ou
= — —dz ,
2 Ja Ox; 0x; —

(3.7)

where the presence of repeated suffices again implies summation from 1 to
2. The domain, 2, is the unit disc with a 45° sector removed, as illustrated

in Figure 3.17, and Dirichlet boundary conditions consistent with the exact

Ch. 3. Implementation and numerical results in 2-D

45°

Figure 3.17: An illustration of the domain for the singular problem.

2/7sin 2 are applied throughout 9. Since the exact solution

solution u = r -

is known in this case, so is the true value of the global minimum of £ in
(3.7): 0.392699.

As with the previous examples the problem is first solved on a coarse
initial mesh, in this case with just 28 elements, which is then optimised.
This locally optimal mesh is then refined globally and optimised to three
further levels, giving meshes of 112, 448 and 1792 elements respectively.
These meshes are shown in Figure 3.18 and their corresponding solutions
have energies of 0.549242, 0.434828, 0.404352 and 0.396215.

Once again, it may be observed that the approach of optimising the
mesh at each level after global refinement is superior to applying global
h-refinement alone and then optimising the resulting mesh. Figure 3.19
shows two meshes, each containing 1792 elements, that were obtained by
this method. The energies of the solutions on these meshes are 0.438164

(uniform h-refinement only) and 0.405547 (after optimisation), which are

100

Ch. 3. Implementation and numerical results in 2-D 101

\/

W

KT >

XN

A

N

]

7/,
71N

_“]

4\

\
[~/

20
24
S

7

7
/
v;f
%‘ﬁ

SN

SRR

AR
RO
DORAT

=

l’/

/
~

Yy,

A
d
N
K

/
J
)
1

u

\
\

N
N\
N

ﬁlm\\%\\\\;

7
i
///////7/7 /j//f””"'iw“
A
Figure 3.18: A sequence of meshes obtained by r-refinement of an initial
coarse mesh (top left) and then combinations of global A-refinement followed

i
/W/ i %
by r-refinement.

significantly worse than for the final mesh of Figure 3.18.

To conclude this example, we now consider the application of local h-
refinement in our hybrid algorithm. Figure 3.20 shows a sequence of four
meshes of 28, 107, 255 and 1275 elements respectively. In order to contrast
the solutions on these meshes with those obtained on the meshes shown in
Figure 3.18 we have forced refinement of each of the edges on the circular
boundary so that the domains correspond to the four domains in Figure

3.18. Further refinement (one element to two children) has then been per-

Ch. 3. Implementation and numerical results in 2-D

N/

S N7
N\ W N
i N
SNSRI D, SNV,
SN o2, SO,
NN ALK AN ANNRWN &7
SRS s SN W AZ2,
S cse,. SRSSRNEN o
SSESSNNNIIHKAA S SRS AT E 2,
mm&s&‘&é‘\\\ \V// KA TZ gm§§§§§\\§\\\\\\1§lﬂﬂfggﬂﬂﬂ,ﬁ,l,"4/4’j¢
‘§S§§§§§“ W SS§§§§§§§$ Nl e~ !4/4 ’;ﬁ% 2
SSSSSL ===== e
s e
== =
m%%%%f%’%f‘% W %%%Zé%;?%%%mm\\;%{\\\
AT =< N
AR RN
RN NN
RN K AN
AR RS AR
0NN W R
AR 7 TN
777N 7777/

Figure 3.19: A globally refined mesh of 1792 elements and the corresponding
locally optimised mesh.

mitted locally for any elements whose energy is greater than X = 60% of the
maximum energy on any single element. This local refinement is executed
repeatedly on each domain until it is necessary to refine the boundary ele-
ments again. The total energies of the solutions on the four meshes shown
in Figure 3.20 are 0.549242 (the same mesh as in Figure 3.18), 0.431777,
0.402413 and 0.395183 respectively.

Again we have seen the advantage of using the hierarchical mesh opti-
misation approach with local, rather than global, refinement. Furthermore,
when local h-refinement is used on its own, even if this is followed by mesh
optimisation, the resulting meshes are not as good. Two pairs of such
meshes, containing 1437 (one-to-four refinement) and 1413 (one-to-two re-
finement) elements respectively, are illustrated in Figure 3.21. For these
examples the corresponding finite element solutions have total energies of
0.407613 and 0.398523 (1437 elements before and after optimisation) and

0.402199 and 0.398123 (1413 elements before and after optimisation) re-

102

Ch. 3. Implementation and numerical results in 2-D

D
ATAANIXKN
RN
DAY
RS

vy

AR

LELPRR
AN

Figure 3.20: A sequence of meshes obtained by r-refinement of an initial
coarse mesh (top left) and then combinations of local h-refinement followed
by r-refinement.

spectively. (For the purposes of comparison, we have artificially refined
those edges on the circular boundary so as to ensure that the domains are
identical to the final domains in Figures 3.18 to 3.20.) A summary of all of

the computations made for this test problem is provided in Table 3.3.
3.3.4 Problem four

The final two-dimensional problem that we consider also involves just one

dependent variable. This problem is taken from [104]. The energy functional

103

Ch. 3. Implementation and numerical results in 2-D

104

N 77 A 7,
SR, R
SN, SO,
SN2, SRR
SNz, SR bE e

== h ET AN
==X SO
Sy \ Zar Ve TN
G NN S NN
i TINININN AR
qiifiiﬁﬂmy “ﬂm‘\‘\“ llll’//lﬂm‘ﬂ“\\ \\\\\\\
Ry NS

Q
SR SOREL,
o L),
e s A3
NECRRE AR e 4 AN
SN 7SS o AT
SNIERE 9
SN S
9('/170'45;» SN 47’4‘?@5@@?&@%#&
AT E S\ 2RI
AR PPN
G NLR m\\ Sy AUNAUSNNAY iy
VAV AN\ S RATD
NGRS 7 NS
T COfREIRY

Figure 3.21: A pair of meshes of 1437 elements obtained using local one-to-

four h-refinement (top left) followed by optimisation and a pair of meshes
of 1413 elements obtained using local one-to-two h-refinement (bottom left)

followed by optimisation.

to be minimised is given by,

/ Ou Ju
E_/Q 1+a$28$2d17

(3.8)

where the repeated suffices implies summation from 1 to 2. The domain 2

is given by,

O={zeR*:1/4<|z| <1}

Dirichlet boundary conditions,

u,(z) = a{cosh_1(|£|/a) — cosh_l(l/a)},

(3.9)

Ch. 3. Implementation and numerical results in 2-D

Elements | Energy | Description
28 0.549242 | Figure 3.18 (top left)
112 0.434828 | Figure 3.18 (top right)
448 0.404352 | Figure 3.18 (bottom left)
1792 0.396215 | Figure 3.18 (bottom right)
1792 0.438164 | Figure 3.19 (left)
1792 0.405547 | Figure 3.19 (right)
28 0.549242 | Figure 3.20 (top left)
107 0.431777 | Figure 3.20 (top right)
(
(
(
(
(
(

255 0.402413 | Figure 3.20 (bottom left)
1275 0.395183 | Figure 3.20 (bottom right)
1437 0.407613 | Figure 3.21 (top left)

1437 0.398523 | Figure 3.21 (top right)
1413 0.402199 | Figure 3.21 (bottom left)
1413 0.398123 | Figure 3.21 (bottom right)

Table 3.3: Summary of the results obtained for Problem three (the global
energy minimum is 0.392699).

are applied over the boundary, where a is a given parameter in (0,1/4). The
interesting feature of this test problem is the fact that the corresponding

Euler-Lagrange equation, whose weak form is given by

Vu-Vodz =0, (3.10)

1
h e

is nonlinear.
It can be verified that the analytic solution u is given by the extension

of the boundary function u, to the whole domain, i.e.,
u(z) = u,(z) Vel

This exact solution shows that, when a — 1/4, Vu develops a line singular-
ity along the circle |z| = 1/4. Therefore for a close to 1/4, uniform meshes in
the radial direction can be expected to provide sub-optimal approximations

of the solution.

105

Ch. 3. Implementation and numerical results in 2-D

Figure 3.22: An initial mesh for the nonlinear problem.

Since this problem is nonlinear we choose not to solve a global nonlinear
problem at any step due to the complexity of this. Instead we use local solves
only and rely on the fact that solving a sequence of local problems iteratively
eventually provides us with a global solution (as has been explained in
Section 2.2.3). We start with an initial approximation of the solution as
zero on all of the interior vertices. We then solve the sequence of local
problems for each interior node iteratively, to get an improved solution for

each node. The iteration continues until we get,

< Chre, (3.11)

Ei o Ei—l
B

where E' is the global energy of the solution after the ' iteration. We have
chosen the same value of @ = 1/4 — 107 and C,,. = 107>, as are chosen in
[104]. For this value of a the global minimum of energy is 3.4468778 (for
the circular domain).

There was a discrepancy in the results shown in [104] for this problem.

The initial mesh shown was of 48 elements and further global refinement

106

Ch. 3. Implementation and numerical results in 2-D 107

was made to this mesh. However the results tabulated were for an ini-
tial mesh of 60 elements, and the corresponding globally refined meshes.
Another confusion with this problem is that for the meshes used in [104]
they state that they approach the global minimum of energy from below
(whereas the Galerkin method always overestimates the global minimum).
The explanation for this is that after each level of global refinement in [104]
the authors are stretching out the nodes to better approximate the circular
domain (which causes the energy minimum to increase at each refinement
level). To remove this confusion we deliberately decided not to change the
domain at each refinement level in our example. The initial mesh we used
(shown in Figure 3.22) is of 80 elements and therefore provides a slightly
better approximation to the circular domain than the initial mesh used in
[104]. For this non-circular domain the global minimum of the energy is not
known analytically however.

For this problem we use w = 0.25 (defined in Section 3.2.4). This may
be regarded as an under-relaxation parameter to aid convergence. If a node
is allowed to move too large a distance, the initial approximation (which is
the nodal solution at current node position) required for Newton’s method
to converge becomes a poor initial guess, and for some of the cases that we
encountered the solution for the local problem (2.5) does not converge. To
avoid this situation we choose a smaller value of w and w = 0.25 works well.

As before the problem is solved on a uniform coarse mesh to begin

with, containing 80 elements. This mesh is then optimised by applying r-

Ch. 3. Implementation and numerical results in 2-D 108

refinement, and the energy reduces from 3.455935 to 3.450755. The resulting
mesh is then globally refined and optimised, which gives a mesh of 320
elements having energy 3.422683. The mesh at the next level, having 1280
elements, is obtained by globally refining the previous optimised mesh. This
mesh is then optimised to reduce the energy further to 3.415145. The mesh
at the final level, having 5120 elements, is obtained by globally refining and
optimising the optimised mesh at the previous level, and the energy of the
solution is reduced to 3.413707. This sequence of locally optimal meshes is
shown in Figure 3.23.

We now globally refine the initial coarse mesh to get a mesh of 5120
elements. The global energy of the solution on this mesh is 3.448782. This
mesh is then optimised using r-refinement to reduce the energy to 3.447841.
The results clearly indicate the superiority of hierarchical approach. These
two meshes are shown in Figure 3.24.

To conclude this example, we now consider the application of local h-
refinement in our hybrid algorithm. We start with the same optimised mesh
of 80 elements shown in Figure 3.23 (top left). Refinement (one element to
two children) has then been applied locally for any elements whose energy
is greater than X = 60% of the maximum energy on any single element.
The advantage of using the hierarchical mesh optimisation approach with
local, rather than global, refinement can be seen from the results presented
in Table 3.4. However more computational work has been done than in our

previous examples as many more refinement levels have been used. Figure

Ch. 3. Implementation and numerical results in 2-D

Wi

////im

/;/

i
/

il
/]

N \
<\,
SN W72
AN\l s
Ak W ota
SNz,
SN 7
SR =
=== << B= =
—— =
////////,,;/mmm\g\\\\\\\\\
D
LTINS

Figure 3.23: A sequence of meshes obtained by r-refinement of an initial
coarse mesh (top left) and then combinations of global A-refinement followed
by r-refinement.

3.25 shows four meshes of 266, 738, 1720 and 3523 elements at intermediate
levels, using this approach.

To complete this set of results, when local h-refinement is used on its
own, even if this is followed by mesh optimisation, the resulting meshes
are not as good. Two pairs of such meshes, containing 4660 (one-to-two
refinement) and 4896 (one-to-four refinement) elements respectively, are
illustrated in Figure 3.26. For these examples the corresponding finite ele-

ment solutions have total energies of 3.421024 and 3.414235 (4660 elements

109

Ch. 3. Implementation and numerical results in 2-D

RN RN
A7 SR
SRR g
SR N7
RN NN 0 SRR N A 77
AN RO N At 22
AN 7 157 SRR 77 L 20 70
SRR W% SRS 27
AR N i K 2505 AR v £
AR R % SRR v 777 17
SRR N SR
ISS W SRR -
AN
ﬁs‘&:“\ \V, AV X
SSNSSS 2 v S
IENANANAS Y AV v SRS
SRS T rAVA VAV SRS
A AN G AV v v Ve S
AN AN AN AN AR L v Ve v v v AN
BEEEEEE] 7l Vel Vet Vet Vet Vet 2| BEET
| P et 2t 2t 2t 2t 2 N ANANANANANAN | e)
|Vt et Pt Pt Pt g AN AN AN AN AN AN |V e P
e v vavav S AN A ANANANAN] [P v v
VAVAVAVA:;FAﬁi;j \:tzsaﬂﬂﬂ |V e Pt g
[aavava 2 SN == =SS
Eezeec o NAASSRY Ei2==52% S
Ceoo s NNSSSSS e : SSSS
AT RS DA% A A RN A AN,
55 N AT % il SN A RN A Y,
o XX O 07 N RN
A SRR R L S NN
DG A R A i N NN AR
G AN SRR ERRRERS S AR RS
M R R R R R R R R
NS NS
2 Ty V] N\ QX 20500, Ay TN AN G S O VA
7 il \ DY Ny iy i R R Y
A SN i S
V7NN NN RRNRER AN NIRRT
T KRR L RAVARRRRRN
VNN NN et VV/7/NNNINYHRRRY
A NN A WA
LA/ Y77 /NN

Figure 3.24: A globally refined mesh of 5120 elements and the corresponding
locally optimised mesh.

before and after optimisation), and 3.418394 and 3.415132 (4896 elements
before and after optimisation) respectively.

A summary of all of the computations made for this test problem is
provided in Table 3.4. It is again apparent that a hierarchical approach
has led to better local optima than obtained by using multiple levels of A-
refinement followed by optimisation. In this particular case, the problem is
such that the advantage of local rather than global h-refinement is not so

great.

3.4 Summary

In this chapter we have provided details of the possible implementation
choices available within our algorithm. A number of adjustable parameters
are used within our hybrid algorithm and possible ranges of values for them
are provided. A variety of challenging test problems have been considered

to test the benefits achieved and the robustness of our multilevel hybrid

110

Ch. 3. Implementation and numerical results in 2-D 111

>, Ny
A\yé!(R ilza 708
SIS ARSI,
‘v)w‘s\._,_, Y, e N SN
CDRAARKYY O i
’ [\ ‘ K RIS
N
ANARH

NAVAYAAY v e
NVAVAVAY 4V,
COORORRS

9
S
<]
</
SN
v
X8
P
o
0

N
i i'%
awy
A‘Q
9
X/
S
)
%
\

]
47

4%

N

A

g
>

K

\/

I

N
N

£

7Y
KECK
DS
\

X ‘l‘"k“-;‘vn
KOS

4§'
i
A
NN

=
i’
K]
\/
2
IR
5
KK

%%
A
%
N
N

X

A7

]
W
N

K|
v{A
o

Figure 3.25: A sequence of meshes obtained by applying a combinations
of local h-refinement followed by r-refinement on an optimised coarse mesh

(shown in Figure 3.23 (top left)).

algorithm.

The test problems considered have clearly illustrated that the quality of
the final mesh produced when using the proposed hybrid algorithm is better,
in the sense that the finite element solution has a lower energy, than that ob-
tained by using either h-refinement or r-refinement alone. Furthermore it is
demonstrated that combining the mesh optimisation with local A-refinement
is superior to the global refinement approach used in [104]. Finally, the ad-

vantage of using the hierarchical approach, whereby the intermediate level

Ch. 3. Implementation and numerical results in 2-D 112

NN N7
RN NN .
NN AT NN
NN RN NN
NN g e RN
NN SRR 2R 220,
NN X NN 22 Tt 250N
X NN 7 SRR 279/ 7 B2,
R SNV SRR R A L A8,
SO Ne\Whg 77 SRR REA 0,
NS < N7 AN, VA S WA S gﬂeV("A
SO i 177 S s S i O)
SSRSEN 7 AN ISaSA S At
SRR oo SSS: S
= TANANA AATAT 72wl NS (AN 2N
S ey S SEZZ
e > SRS (P v Pt e
= |t et et e [ANANANANAN) |t et et e
Feeeeee SSEESS ceeee
ENANANAN| | P v v v v INNANANANAN
S |Vt Wt et Pt Pt NN AN AN AN AN
SIS | Pt et 2t 2 e V2 SNANANANANAN]
S |V e P e ISISISIS
]S F:F:T‘ S ,ESS
TAVARI A == e ~ s
SSSSS Ee NS
RS G NS
: N CeBe oA A
R NENNRNNRE e i RS
ik HMMNRN v Ay R X S
A A R IR D A A R SRR
Ay AN G NNNY S o TN NTIIAN GIN A N OVA
VRN VNRRRANGR R AN AR
e T R) e S S N RS
NN INTRIRRRS A NN NSRRI
7NN RRRRINNR iy A Y AN
/NN Y77 /NNNINTNS

Figure 3.26: A pair of meshes of 4660 elements obtained using local one-to-
two h-refinement (top left) followed by optimisation and a pair of meshes of
4896 elements obtained using local one-to-four h-refinement (bottom left)

followed by optimisation.

meshes are optimised, is also apparent: an excellent combination of small
mesh sizes and low energies for the corresponding finite element solutions
being achieved. The fact that no tuning of the adjustable parameters is re-
quired for a variety of test problems indicates the robustness of our hybrid
algorithm.

When discussing the merits of our proposed algorithm it is important

to note that there are some problems for which the benefits may not be

Ch. 3. Implementation and numerical results in 2-D

Elements | Energy | Description

80 3.450755 | Figure 3.23 (top left)

320 3.422683 | Figure 3.23 (top right)
1280 3.415145 | Figure 3.23 (bottom left)
5120 3.413707 | Figure 3.23 (bottom right)
5120 3.425569 | Figure 3.24 (left)
5120 | 3.414361 | Figure 3.24 (right)

80 3.450755 | Figure 3.23 (top left)

128 3.429835

266 3.420375 | Figure 3.25 (top left)

442 3.417730

578 3.415652

738 3.415428 | Figure 3.25 (top right)
1324 3.414515
1720 3.414160 | Figure 3.25 (bottom left)
2454 3.413940
3523 3.413543 | Figure 3.25 (bottom right)
4660 3.421024 | Figure 3.26 (top left)
4660 3.414235 | Figure 3.26 (top right)
4896 3.418394 | Figure 3.26 (bottom left)
4896 3.415132 | Figure 3.26 (bottom right)

Table 3.4: Summary of the results obtained for Problem four (the global

energy minimum is not known).

quite so substantial as those observed in the first three examples above. A
common feature to each of the first three examples is the desirability of
clustering the majority of the mesh elements in a relatively small subset
of the domain. When a problem is such that the optimal mesh is more
uniformly distributed across the domain the local refinement algorithm will
show little advantage over the global approach of [104]. Nevertheless, even

in this case, our variant of the algorithm performed better than the globally

refined approach.

113

Chapter 4

Further Algorithmic
Assessment

As explained previously, the goal of this work is to undertake an investi-
gation into the use of adaptive techniques to obtain high quality locally
optimal meshes for variational problems. In particular, our emphasis is on
understanding the limits of what meshes it is possible to obtain if one is
prepared to invest sufficient computational effort. For this reason we have
so far avoided any detailed discussion of the computational costs of the dif-
ferent components of the adaptive techniques that we have considered. In
this chapter we take a look at some of the trade-offs between mesh qual-
ity and computational time that must be considered when selecting some
of the options available within our hybrid algorithm. We also provide an
indication of the overall cost of our, unoptimised, implementations of the

key components.

114

Ch. 4. Further algorithmic assessment

4.1 An assessment of the main options in our
hybrid algorithm

In this section we consider the main options available within our multilevel
hybrid algorithm (which have already been explained in Section 3.1) and
their effect on both the mesh quality and computational cost. We continue
to measure mesh quality in terms of the total stored energy (2.3) of the
computed solution to (2.2), hence for a fixed number of nodes a mesh will
be of best quality if the energy of the solution on that mesh is minimum.
The options discussed in this section are concerned mainly with the
optimisation part of our hybrid algorithm which is a combination of node
movement, Algorithm 2, and edge swapping, Algorithm 3. In particular, we
consider whether it is necessary to undertake exact line minimisation when
each node is relocated (see Section 3.1.1) or whether an inexact approach (as
in Section 3.1.1) is sufficient. We also consider the affect of pre-ordering the
nodes and edges before undertaking sweeps of the node movement and edge
swapping algorithms respectively. Finally, we consider the value of keeping
the hybrid algorithm completely local in nature, or whether some global
solves are worthwhile after h-refinement (as suggested in Section 3.1.3)
The choices made for the above mentioned options are significant. Choos-
ing a different option may lead to a different local minimum and/or the
number of iterations needed for the algorithms to converge may change.
We have no analytical proof to guarantee that any specific option will find

a better local minimum or will yield converged mesh and solution in less

115

Ch. 4. Further algorithmic assessment

computational time. However we provide here some sample numerical re-
sults to illustrate the effects of these different options and provide some
recommendations on the basis of these empirical results. Wherever a time
is quoted it is in CPU seconds on single SG R10000 processor running under

the Irix operating system on an Origin 2000 computer.
4.1.1 Line minimisation strategies

As explained in Section 3.1.1, there are two possible choices concerning the
movement of a node along its line of steepest descent: exact or inexact
line minimisation. It is clear from Algorithms 5 and 6 presented in Section
3.1.1 that the exact line search approach is computationally more expensive
than our proposed inexact line search when finding the new position for a
single node in general. It is possible however that the exact approach may
reduce the overall number of iterations for the node movement algorithm to
converge, or it may lead to a better local minimum being found. Of course,
we are unlikely to be able to guarantee that one approach will always be
superior to the other.

In Table 4.1 results for the solution of Problem One from the previous
chapter are presented using both the exact and inexact line search algo-
rithms. We start with an initial coarse mesh of just 32 elements. This is
then optimised with respect to the position of the nodes and their solution
values, and then global refinement (one-to-four) is undertaken. This gives
a mesh of 128 elements which has its solution values updated using a global

solve before it too is optimised. This process is repeated to yield a locally

116

Ch. 4. Further algorithmic assessment

optimal mesh of 512 elements. The times quoted in each row correspond to
the combination of the global solution and the optimisation at that level.
In each case two sets of results are presented: one which sweeps through
the nodes in lexicographic order, and one which pre-orders the nodes at
the start of each sweep according to the magnitude of their gradient with
respect to the node position.

It is evident from these results that the inexact line search approach is
converging in much less time than the exact line search algorithm for both
the sorted and the unsorted node orderings. There is no clear pattern for the
minimum of the energy functional at each level however. In this particular
case the exact line search with the sorted order of nodes finds the lowest
value of the energy functional at the final level, however the advantage is
very small. Such an outcome is typical but may not always be seen. In view
of this very small improvement for a significant difference in computational
time we reach the following conclusion.

Recommendation 1: Regarding the efficiency of the mesh movement al-

gorithm, inexact line search is the better choice.

4.1.2 Order of nodes

The number of iterations needed to converge and the particular local mini-
mum of the energy found by our node movement algorithm may depend on
the order in which the nodes are visited at each sweep. The movement of
nodes is similar to the Gauss-Seidel method since it treats one component

of the problem at a time using the most recent information available while

117

Ch. 4. Further algorithmic assessment

Elements | Energy time | Description
32 50.902834 | 23.07 | Exact line search
128 50.196339 | 41.45 | with order of nodes
512 50.045417 | 106.09
32 50.966222 | 3.69 | Inexact line search
128 50.210542 | 12.67 | with order of nodes
512 50.050063 | 24.86
32 50.902128 | 12.14 | Exact line search
128 50.215151 | 55.71 | without order of nodes
512 50.051433 | 88.06
32 50.936809 | 7.413 | Inexact line search
128 50.209973 | 16.76 | without order of nodes
512 50.049033 | 29.13

Table 4.1: Summary of the results for exact and inexact line searches, ob-
tained for Problem One using exact and inexact line searches.

keeping the other unknowns fixed. Our numerical experiments confirm the
expectation that the ordering of the nodes influence the local energy min-
imum that is found and/or the number of iterations needed to converge.
Other than ensuring that convergence is possible for all orderings we have
no theory to prove that any particular order will produce a better local
minimum, or will reduce the number of iterations needed to converge.

For the results presented in Table 4.1 we see that with the nodes pre-
ordered (sorting of the nodes as explained in Section 3.1.4) a better local
minimum of energy is found when exact line searches are used. When
the inexact line search algorithm is used the unsorted node order produces
better results. For O(N) nodes, a good sorting strategy has a complexity
of O(NlogzN), hence sorting the nodes is a moderate and probably non-
negligible expense for large meshes. From the results presented in Table

4.1, the benefit of this sorting overhead is not evident.

118

Ch. 4. Further algorithmic assessment

Recommendation 2: Sorting of nodes is not necessary to gain efficiency

or a significantly improved mesh quality.
4.1.3 Order of edges

As discussed in Section 3.1.4 that the order in which edges are to be swapped
may produce a change in the number of iterations needed for convergence or
in the local minimum found by the edge swapping algorithm. In this section
we provide some typical numerical results to illustrate how the order of the
edges affects the performance of Algorithm 3. We considered two orders for
the swapping of edges: the lexicographic order and the sorted order, where
sorting of the edges is undertaken as explained in Section 3.1.4 (i.e. based
upon the stored energy of the latest solution estimate over the quadrilateral
in which the edge is contained).

In Table 4.2 results for the solution of Problem One using meshes of
32, 128, 512, 2048 elements are presented. For each regular initial mesh
edge swapping, using Algorithm 3, is applied with and without pre-sorting
of the edges. For the meshes of 32, 128 and 512 elements sorting the edges
produces slightly better results at the expense of a slightly longer time to
converge. For the mesh of 2048 elements sorting the edges provides no
advantage with respect to either quality or time. The lack of consistency in
this, and similar, examples leads us to reach the following recommendation.
Recommendation 3: Sorting of edges is not necessary to gain efficiency

and quality of the mesh.

119

Ch. 4. Further algorithmic assessment

Elements | Initial energy | Final energy | time | Description
32 374.472889 357.666756 | 0.12 | Edge swapping
128 189.646235 180.401346 | 0.43 | with sorting
512 103.630270 99.7761695 | 1.59
2048 67.400215 65.1759131 | 7.00
32 374.472889 357.670496 | 0.12 | Edge swapping
128 189.647236 180.443140 | 0.37 | without sorting
512 103.630270 99.9357822 | 1.24
2048 67.400215 64.9645894 | 6.30

Table 4.2: Solutions to Problem One using edge swapping: with and without
sorting the edges.

4.1.4 Global solves at intermediate levels

Our hybrid algorithm may be described as purely local since it does not need
a global finite element solve at any stage. Global solves can be included in
the algorithm at appropriate points however. As suggested in Section 3.1.3,
by including a global finite element solve immediately after h-refinement
has taken place, it is possible that the convergence process of our hybrid
algorithm may be accelerated and/or a better local minimum might be
found. Our numerical experiments confirm this expectation. However some
extra computational work is required to undertake these global solves at
these intermediate stages. On the other hand the node movement algorithm
may converge in fewer iterations following a global solve since it updates
the nodal solution values (by solving the local problems (2.5)) as well as the
nodal positions.

In this subsection we present some typical numerical results to discuss
this issue. In Table 4.3 we present timings and energies for the solutions

to Problem One with and without global solves at intermediate levels. It is

120

Ch. 4. Further algorithmic assessment

Elements | Energy time | Description
32 50.893721 | 63.72 | With global solves at
128 50.113745 | 133.65 | intermediate levels
512 50.015823 | 256.22
32 50.893721 | 63.72 | Without global solves
128 50.137345 | 195.17 | at intermediate levels
512 50.035632 | 327.29

Table 4.3: Results with and without global solves at intermediate levels

clear from the results that the quality of the mesh achieved at each refined
level is better when the option of intermediate global solves is used. In addi-
tion, the overall solution time is reduced. When the option of undertaking
global solves at intermediate levels is not used the node movement algo-
rithm, which not only moves the nodes but also updates the nodal solution
values, is clearly doing more work.

We have used the software SPARSKIT [94] (which uses the Generalised
Minimal RESidual (GMRES) method [95]) for the global solution of the
problem. This iterative solver, with right ILU preconditioning, is very ef-
ficient and so only a small time is required to solve the global problem on
these meshes. However for problems where the global solve is more expen-
sive, such as very large nonlinear problems for example, this option may
not be as beneficial, with respect to the efficiency gain, as for this example.
Nevertheless we reach the following conclusion.

Recommendation 4: The inclusion of an intermediate global solve after

h-refinement is a good option.

121

Ch. 4. Further algorithmic assessment

4.2 Computational cost

It is clear from the results presented in Section 3.3 that, for a given number
of elements, the approximations of the solutions obtained using our multi-
level hybrid algorithm are more accurate (the accuracy of the approximation
being measured in terms of the total stored energy), than the other adaptiv-
ity approaches used in Section 3.3 for comparison. We deliberately do not
include any efficiency comparison of our hybrid algorithm with the other
adaptive approaches since our goal is to strive for the best possible meshes.
Furthermore, a fair numerical comparison is only possible when each of the
approaches is most efficiently implemented, using the best iterative solvers,
data structures, software optimisation, etc. However, for completeness, in
this section we provide some indications of the computational cost (in terms
of time) involved in various steps of our hybrid algorithm. For all of the
results presented in this section the initial mesh considered is a uniform
mesh of 512 elements and the test problem solved is again Problem One

from Chapter 3.

4.2.1 Cost involved in various steps of our hybrid al-
gorithm

Computationally the most expensive part of our multilevel hybrid algorithm
is the node movement algorithm. When the node movement algorithm (with
sorting of nodes and exact line searches) is applied on the initial mesh, the
time consumed in the first iteration of node movement is 0.96 seconds and

the overall time consumed up to the convergence of the node movement

122

Ch. 4. Further algorithmic assessment

algorithm is 138.12! seconds. From the recommendations in the previous
section we may use inexact line searches and the lexicographic node ordering
however. In this case the time required for a single node movement iteration
is 0.10 seconds, and the overall time up to convergence is 59.01 seconds.

Edge swapping is computationally much less expensive than node move-
ment and can produce significant energy reduction. Generally the edge
swapping algorithm only takes a few iterations to converge. From our nu-
merical experiments we concluded that for a mesh of £ elements less than
log. F iterations are needed for its convergence and this observation is true
for all of our test problems. Moreover there are only two valid options
available for an edge to be swapped (in two dimensions), determination of
the optimum of these two choices is computationally inexpensive. Hence
the time consumed in the first iteration of edge swapping is 0.60 seconds
and the total time consumed up to convergence of the edge swapping algo-
rithm is 1.59 seconds. Time for the convergence of the combination of node
movement and edge swapping algorithm, with inexact line search and no
ordering of the nodes and the edges, is 140.83 seconds.

To illustrate the affect of this mesh optimisation, Figure 4.1 shows the
energy distribution per element (in a sorted order) before and after apply-
ing the iterative combination of the node movement and edge swapping
algorithms. Before optimising the mesh, the maximum energy on any one
element is 5.13 and after optimising the maximum energy on a single ele-

ment is 1.37. It is clear from these figures that the optimisation part of our

1The initial mesh considered here is a uniform mesh of 512 elements

123

Ch. 4. Further algorithmic assessment 124

hybrid algorithm is very effective in reducing the energy for this particular
problem. It is also clear that this improvement is extremely computationally
expensive. Especially if the node movement is undertaken to full conver-

gence.

6 T T T T T 14

12 | B

0.8 B

3Lk

0.6 —
Energy

Energy
2k

0.4 B

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Elements Elements

Figure 4.1: Energy distribution per element before and after optimisation
(note the difference in the vertical scale in each graph).

4.2.2 Approximate movement of nodes

It may be observed that the energy decreases more rapidly in first few
iterations of node movement than in later iterations. This is illustrated in
Figure 4.2 where the total stored energy of the solution is plotted against
the number of iterations of the node movement procedure. It is clear from
this figure that most of the significant change appears only for the first few

iterations. After this the change in the energy is relatively small. Given

Ch. 4. Further algorithmic assessment

that the timings quoted in the previous subsection show that most work
is undertaken in the node movement algorithm, an efficient version of this
algorithm requires a strategy that stops the node movement iteration before
full convergence.

The obvious way to overcome this situation is to increase the thresh-
old for convergence of the node movement algorithm. Our node movement
algorithm reduces the energy monotonically but the energy does not re-
duce by a constant factor in each iteration. It is possible that when nodes
have moved close enough to a local minimum, they start moving towards
another better local minimum and the increased convergence criteria may
be satisfied before the nodes have settled down for a local minimum. The
other possible ways are to put a reasonable limit on the maximum number
of node movement iterations or to monitor the rate at which the energy is
being reduced. More research is needed to develop a suitable strategy that
stops the node movement algorithm before its full convergence. In this way
efficiency of our hybrid algorithm can be increased a lot on a slight loss of

the quality of the mesh.
4.2.3 Approximate swapping of edges

We observe in practice that most of the edges are swapped in the first two
or three iterations on typical meshes. Figure 4.3 shows the total stored
energy of the solution versus the number of iterations of the edge swapping
algorithm considered in isolation. It is possible for the implementation of the

edge swapping algorithm to provide a stopping criterion before convergence

125

Ch. 4. Further algorithmic assessment

58 T T T T T

57 q

56 - B

55 i B

54 g

Energy

53 B

52 -

51 H B

50 ! ! ! ! !
0 50 100 150 200 250 300

Iterations

Figure 4.2: Energy versus number of iterations of node movement.

is achieved. This could involve the use of a small tolerance, a reasonable
limit on the number of maximum edge swapping iterations or be based upon
the rate at which the energy is being reduced. It is likely that less significant
efficiency gains can be achieved by adopting this strategy than is the case

with the node movement algorithm however.
4.3 Summary

In this chapter we have considered the four main options within our hybrid
algorithm and discussed them with respect to the efficiency and the quality
of the meshes achieved. We provide some simple empirical recommendations

on the basis of these typical computational results. We have also provided

126

Ch. 4. Further algorithmic assessment 127

104 T T T T

103.5

103

102.5

102

Energy

101.5

101

100.5

100

99.5 1 1 1 1

Iterations

Figure 4.3: Energy versus number of iterations of edge swapping.

some results to give an idea of how much time is consumed in different
parts of our hybrid algorithm for a specific problem. These computations
show that the expense of obtaining the highest quality optimal meshes and
solutions is too great to be included as part of a practical adaptive algorithm.
We have therefore outlined a number of ways in which the costs can be
substantially reduced with only very small affects on the quality of the final
meshes produced.

We have not provided any comparison of our hybrid algorithm with other
adaptive approaches with respect to computational cost or efficiency. This is

because we have developed our hybrid algorithm keeping in mind primarily

Ch. 4. Further algorithmic assessment

the robustness and the quality of meshes achieved rather than the efficiency.
Furthermore, it would be extremely difficult to carry out fair comparisons
since a large amount of time and effort would need to be spent optimising
the code produced. Nevertheless, we believe that there is considerable scope
for developing our hybrid algorithm to enhance the efficiency, as explained
in the previous sections: by having inexact line searches and non converged
node movement and edge swapping, for example. Theoretically it is possible
to achieve any desired accuracy by the use of h-refinement alone (either local
or global). However the time consumed to solve a problem increases with
the number of elements in the mesh. To achieve roughly the same accuracy,
as achieved by our hybrid algorithm for test Problem One with 323 elements
(see Table 3.1), more than a million elements are required for a uniformly
spaced mesh. For a locally refined mesh about 150000 elements are required
to get roughly the same accuracy. It is in this context that the relatively

high cost of our hybrid algorithm should be considered.

128

Chapter 5

Implementation and Numerical
Results in 3-Dimensions

In this chapter we consider the extension of the preceding work on multi-
level r and h-refinement into three dimensions. This is done by providing
implementation details of a generalisation of the two dimensional hybrid
algorithm and then presenting some numerical results in three dimensions.
Many of the implementation details in three dimensions are the same as in
two dimensions, as given in Chapter 3, hence it is the differences in the im-
plementation that will be discussed in this chapter. The most significant of
these differences concern the edge swapping and node insertion algorithms,
which are far more complex in three dimensions than two, and so much of
this chapter is devoted to these issues.

We begin the chapter with a brief description of the differences in the
implementation of node movement for three dimensions. These differences
are quite minor and therefore require only a short description. Section
5.2 however is devoted to face/edge swapping and Section 5.3 describes

the refinement algorithm that we use in three dimensions. To test the

129

Ch. 5. Implementation and numerical results in 3-D 130

effectiveness of the hybrid algorithm, two sample problems are considered
in Section 5.4 and corresponding results are presented for these problems to
those presented for the two-dimensional problems in Chapter 3. In Section
5.5 we provide a summary of this chapter.

Unlike in two dimensions, for these three dimensional numerical sim-
ulations we have not developed the codes for edge swapping and local h-
refinement algorithms ourselves from scratch. Instead, we make use of other
available software for edge swapping and mesh refinement as tools, and mod-
ify them to fulfill our criteria of energy minimisation. For edge swapping
we make use of the software package GRUMMP [52] which is in the public
domain as open source. This is based on the improvement of the geometric
quality of the mesh and we briefly describe how it works and the alterations
that we have made to it in Section 5.2.3. For mesh refinement we use the
private package TETRAD [99] which was developed within School of Com-
puting, Leeds. This is based on refinement and derefinement of tetrahedra
according to user defined criteria, provided to it through a given interface.
Details of TETRAD are given in Section 5.3.1. It should be noted that we
must implement our node movement algorithm within the constraints of the
existing interface for TETRAD. Fortunately this proved to be reasonably
straightforward in practice.

To modity GRUMMP and to provide a suitable interface for TETRAD
for use in our hybrid algorithm were not easy tasks, but were definitely

more straightforward than developing such codes independently. However

Ch. 5. Implementation and numerical results in 3-D 131

there are two main drawbacks in using these tools. First, each of them uses
different data structures and file formats for input, so they can not easily
be integrated. The output file generated from one tool must be modified
in order to provide input to the other tool. Second, unlike with our im-
plementations of edge swapping and refinement in two dimensions, we have
less freedom to choose and contrast different options within the hybrid al-
gorithm, such as the maximum number of edges attached to one node, the
use of different types of refinement, the orders in which edges are swapped,
etc. Nevertheless, using GRUMMP and TETRAD as tools, enabled us to
combine the three components of node movement, face/edge swapping and
local h-refinement to generalise our new multilevel hybrid algorithm to three

dimensions and to obtain provisional computational results.
5.1 Node movement

In three dimensions the strategy and the theory behind node movement is
the same as presented for two dimensions in Section 2.2. The derivatives
of the energy with respect to the nodal positions may still be computed
using (2.10) (the index d now runs from 1 to 3) with a single loop over
the elements of the mesh. If desired, this list may then be sorted and,
beginning with the largest values of |%|7 the nodes may be moved in turn.
In each case moving the node, j say, in the polyhedron ; (formed by the

union of all elements which contain node j) requires the solution of a local

one-dimensional energy minimisation problem in the direction of steepest

Ch. 5. Implementation and numerical results in 3-D 132

descent (given by (2.4)). Once the updated location of node j has been
found it is a simple matter to modify the corresponding solution value by
solving local problem (2.5) on the patch of elements, 2;, surrounding the
node j.

In three dimensions nodes on the surface of the domain are allowed to
move in any direction subject to the constraint that the domain remains
unchanged. Points which lie on a planar part of boundary are allowed to
move only on that planar boundary section. Points which lie on the line of
intersection of two planes or at a line of intersection of two different types
of boundary condition are allowed to move only on that line. Although
we have not considered any problem domains having a curved boundary
in this chapter, the same rules apply as given in Section 2.2.1; the points
at the corners or lying on the curved boundaries are not allowed to move.
It could be possible to allow constrained movement of some points along
curved boundary sections but this is not considered in this work.

As with the two dimensional case, we also introduce artificial constraints
on the node movement to prevent the possibility of mesh tangling. The min-
imum area limit A,,;, used in Section 3.2.1 is replaced by V,.;,, a minimum
volume limit of an element in the mesh. We have taken V,,;, = 1077 for
all of the test problems presented in Section 5.4 but the exact choice is not
critical. The maximum admissible limit (as defined in Section 2.2) up to
which the node 7 can be moved in the polyhedron ; is defined in a more

cautious way than in two dimensions, as there are more chances of tangling

Ch. 5. Implementation and numerical results in 3-D

in three dimensions. We find the smallest edge length L,,;, in ; and allow
the node 7 to move in the direction of steepest descent up to a maximum
distance of w x L,,;,, where w is maximum admissible limit factor as defined

in Section 3.2.4.
5.2 Face/Edge swapping

The aim of undertaking face or edge swapping in three dimensions is the
same as discussed in Section 2.4 for two dimensions, i.e. to reduce the overall
solution energy by reconnecting the mesh locally. We have generalised the
two dimensional minimum energy triangulation algorithm of Ripa and Schiff
[91] to three dimensions. This is achieved by applying face or edge swapping
on the interpolant of the current solution, thus eliminating the need to solve
the global problem repeatedly. Unfortunately, to achieve an optimal mesh
with respect to connectivity of the vertices in three dimensions, based upon
the two-dimensional definition given in Section 2.4, may not be possible: this
is explained later in this section. We begin however with a brief description
of the two classes of local mesh reconfiguration method that are available

to use in three dimensions:
o face swapping,
o edge swapping.

These two techniques are discussed in detail below.

133

Ch. 5. Implementation and numerical results in 3-D 134

5.2.1 Face swapping

Face swapping is a three dimensional version of the common two dimensional
diagonal edge swap. It is based on the possible configurations of sets of five
distinct non-coplanar three dimensional points [67, 73]. Each interior face
in a tetrahedral mesh separates two tetrahedra which contain a total of
five points between them. However these five vertices may be reconnected
to form two, three, or four new tetrahedra as shown in Figure 5.1. The
five different configurations of five non-coplanar points A,B,C,D and E are
shown in Figure 5.1 and Figure 5.2. The most common configuration to
arise is configuration 1 in Figure 5.1, but the others can all occur depending

on the geometry of the points ABC DO.

[¢] o]
T1=ABCO T1=ABDO o T1=ABCD
T2=ABCD T2=BCDO - T2=ABCO
T3=A0CD T3=ABOD
T4=BDCO
c 2:3 c
- /) Il _ == A
A A A e
Cc
D
D D
Configuration 1A Configuration 1B Configuration 2

Figure 5.1: Possible configurations of five points where no four of the five
points are coplanar.

In the two configurations shown in Figure 5.1, no four of the five points
are coplanar. For all of the figures in this chapter solid lines are used to
show the front view of the diagram, lines with dashes show the back of the

diagram and dotted lines are used in the interior of the convex hull of the

Ch. 5. Implementation and numerical results in 3-D 135

T1=ACBO T1=ADBO
T2=ADCO T2=BDCO
2:2
A -
c c
D
Configuration 3A Configuration 3B
o

T1=ADBO T1=ADBO

T2=BDCO T2=ABCO
T3=BDCO

Configuration 5
Configuration 4 igurati

Figure 5.2: Possible configurations of five points where four of the five points
are coplanar.

points. In configuration 2 the point B is in the interior of the convex hull
formed by the points A, C', D and O. Face swapping is possible only if
the five points are in configuration 1 where the triangulation changes from
the A to the B version or vice versa. In the three configurations shown
in Figure 5.2, the points A,B,C and D are coplanar, forming the possible
configurations for these planar points. In configuration 4 points A, B and
C' are collinear. Face swapping is possible only if the five points are in
configuration 3 where configurations 34 and 3B are interchangeable.

For face swapping, each reconfigurable case has only two valid config-

Ch. 5. Implementation and numerical results in 3-D 136

urations [73], hence a simple and quick comparison to find the one with
the lower energy is possible. For this discussion of swappable and non-
swappable configurations of these five points we follow the notation used
by Joe [68]. Face swapping can be implemented by making a loop over all
internal faces in the mesh and assigning a type Sy, or Ny,, where S stands
for a swappable and N stands for a non-swappable face, b is for the number
of tetrahedra before the swap and a is the number of tetrahedra after swap.
The possible types of faces are Sy3, S32, S22, Saa, N3z, Nag, N3g, Nyg and
Ny4. These are in all nine types and we explain each of them in turn.

For each of these face types we consider the configuration of the five
points in the two tetrahedra which share this face. For the case Ss3, consider
the configuration 1A in Figure 5.1. Face ABC will be assigned a type
Sa3, as by introducing an edge in this five point configuration we can get
configuration 1B with three tetrahedra. For S3; consider the common face
BOD of tetrahedra ABDO and BC' DO in configuration 1B of Figure 5.1.
The edge OD is surrounded by three tetrahedra and can be removed from
this five point configuration giving configuration 1A of two tetrahedra. If
tetrahedron AOCD is not present there (i.e. edge OD is surrounded by
more than three tetrahedra), then face BOD will be assigned a type Nsa,
as the three to two re-configuration is not possible for these five points. For
the case Sy consider the configuration 34 and the face OAC in Figure 5.2.
The four coplanar points ABC'D are on the boundary of two tetrahedra

in 3A and the face OAC can be swapped to face OBD to yield two new

Ch. 5. Implementation and numerical results in 3-D 137

tetrahedra as in 3B. Hence the face OAC in 3A will be of type Sj;. This
type of face is possible only if the two tetrahedra which share the face in
consideration have one face on the boundary.

For the case Ny, consider configuration 2 in Figure 5.1. Face OBD is
of type Nyo. For the case Ny, consider the configuration 4 in Figure 5.2.
Face OBD is of type Nyo. For the case N3, consider the configuration 5
in Figure 5.2. Face OBD is of type Nso. All of these three configurations
are non convex and are the only possible configurations for these given five
points.

There are two special cases, Sy and Nyq, considered in assigning a type
to a face. These special cases arise when for a face, four of the five points
forming the two tetrahedra (which shares the face in consideration) are
coplanar and these coplanar points are not on the boundary. Consider the
face OBC in Figure 5.3, where points A, B, C' and D are coplanar. If
these coplanar points are backed by exactly two tetrahedra, as is the case in
Figure 5.3, then face O BC' will be of type S44, indicating that it is possible
to swap face OBC with OAD. If these coplanar points are not backed by
exactly two tetrahedra on each side then face OBC will be of type Ny, as
the face OBC can not be swapped with OAD.

Face swapping has two significant advantages. First, because there are
at most two valid reconfigurations determining the optimum of these con-
figurations is computationally inexpensive. Second, implementation of face

swapping is relatively straightforward compared to implementation of edge

Ch. 5. Implementation and numerical results in 3-D
° T1=0ABC ° T1=OABD
T2=0BDC T2=0ADC
T3=PABC T3=PABD
T4=PBDC T4=PADC
A A
4:4
D - D
P P

Figure 5.3: Face swapping for two interior coplanar faces.
swapping, as described below.
5.2.2 Edge swapping

Edge swapping in three dimensions is not really a swap but a removal of an
edge followed by its replacement by one, two or many edges depending upon
how many elements surround that edge (see Figure 5.4 for example). Edge
swapping reconfigures the E tetrahedra incident on an edge of the mesh by
removing that edge and replacing these K tetrahedra by 2F — 4 new tetra-
hedra. As an example, consider an initial configuration with five tetrahedra
incident to an edge. The left side of Figure 5.4 shows five tetrahedra incident
to an edge OP and the right side shows one possible reconfiguration of this
submesh into six tetrahedra. This new configuration is specified by defining
three “equatorial triangles”, i.e. which are not incident on either of vertices
O and P. In Figure 5.4 these triangles are A124, A234 and A145. There
are four other possible configurations for this case (each corresponding to

a different set of equatorial triangles), which can be obtained by rotating

138

Ch. 5. Implementation and numerical results in 3-D 139

the interior triangle in Figure 5.4. As edge swapping replaces E original
tetrahedra into 2F — 4 tetrahedra, when F > 4 more elements are created
than are removed.

In addition, the number of possible ways that elements can be recon-

nected after deleting an edge increases with increasing £ and is given by

(2E — 4)!

Cr = (£ —1)I(E —2)!

(5.1)

(see [51]). When FE = 5 this gives the five possibilities noted in the previ-
ous paragraph. However, as £ grows the number of possible configurations
grows very rapidly and so, following [48], we only consider edges with £ < 8
as candidates for edge swapping. The possible configurations for 4 < F <7
are shown diagrammatically in Figure 5.5, where equatorial triangles are
shown along with the number of unique rotations for each configuration.
An optimisation method therefore has to search through a large number of
connectivity permutations for large F in order to determine which reconfig-
uration of the original F tetrahedra has the lowest energy. For this we have
to compute the energy for each tetrahedron in each configuration. Fortu-
nately, when F is large, the number of unique tetrahedra is much smaller
than the number of configurations times the number of tetrahedra since
many tetrahedra appear in more than one configuration. This is shown in
Table 5.1 (see [48]) and means that the cost of performing a local mesh
optimisation is not quite as high as (5.1) initially suggests.

Edge swapping is normally used as a supplement to face swapping. As

we saw in the previous subsection there are many situations where face

Ch. 5. Implementation and numerical results in 3-D

Tets before | Tets after | Configurations | Tets x configs | Unique tets
4 4 2 8 8
5 6 5 30 20
6 8 14 112 40
7 10 42 420 70

Table 5.1: Number of unique tetrahedra and possible configurations for edge
swapping.

T1=012P T1=0145
T2=01P5 T2=0124
T3=02P3 T3=0234
T4=0P34 T4=P145
1 T5=0P45 56 14 -, T5=P124
4 e 4 T6=P234
2 2
p P

Figure 5.4: Edge swapping for 5 tetrahedra to 6, where edge OP is sur-
rounded by 5 tetrahedra.

swapping is not possible hence edge swapping is then invoked to deter-
mine whether removing an edge is advantageous or not. There are two
main disadvantages to the edge swapping technique. First, for each original
configuration, determining the optimum configuration requires comparing
multiple configurations which can be a computationally expensive process
when F is moderate or large. Second, the practical implementation of edge
swapping is relatively difficult.

Now we explain why an optimal mesh with respect to connectivity of
vertices (according to the definition given in Section 2.4) may not be possi-
ble. In two dimensions exactly two elements share an internal edge, while

in three dimensions an internal edge is shared by three or more elements.

140

Ch. 5. Implementation and numerical results in 3-D

~ PP
O~ HOHOOO

Figure 5.5: Equatorial triangles after swapping edge OP, surrounded by
4,5,6 and 7 tetrahedra, including the number of unique rotations for each

configuration shown.

Thus local mesh reconfiguration in three dimensions involves changing the
connectivity of two (for a simple face swap), three or many elements, with
the possibility of introducing new elements and edges. It is clearly far from
straightforward to guarantee the termination of an energy minimisation al-
gorithm based upon this approach. Moreover, from a programmatic point
of view, it is quite impossible to consider all edge swaps, as in principle a
single edge swap (when F is very large) may involve changing the connectiv-
ity of more than a dozen elements with thousands of possible configurations

for these elements (see (5.1)), to check for one optimal local configuration.

141

Ch. 5. Implementation and numerical results in 3-D 142

Despite this fact we have observed that for each of our test problems (given
in Section 5.4), when GRUMMP (modified to minimise energy rather than
geometric quality), which does not consider any edge swap for £ > 7, was
applied it always terminated successfully. Whilst the final mesh may not
therefore be locally optimal in a strict sense our expectation is that it will

still be of a high quality.

5.2.3 GRUMMP

GRUMMP [52] stands for Generation and Refinement of Unstructured Mixed-
Element Meshes in Parallel. It is a set of libraries, written in C++, for
manipulating unstructured meshes, and a set of executables built on those
libraries. GRUMMP is available on the WWW from the GRUMMP home
page http://tetra.mech.ubc.ca. Source code of GRUMMP is available
for licence without fee, for educational and non-profit research purposes, to
use 1t with or without modifications. It can be configured on almost all
operating systems.

The software is still in the process of development and some of its fea-
tures such as parallelism, mixed-element meshing and generation of meshes
for non-flat surfaces, are still unimplemented. However GRUMMP is capa-
ble of generating and optimising meshes, using smoothing and swapping,
for quite complex multi-domains in two and three space dimensions.

We briefly describe how GRUMMP works and then we provide details
of the alterations that we have made to it. GRUMMP uses geometric

quality criteria to optimise the mesh. It tries to improve the geometric

Ch. 5. Implementation and numerical results in 3-D 143

quality of each poor quality tetrahedron by face/edge swapping, smooth-
ing or by adding points at strategic positions. It also removes the bad
geometric quality tetrahedra which can not be improved by any strategy.
Its face/edge swapping routines use three geometric quality measures to

determine whether to locally reconnect a tetrahedral mesh.

e The maxmin sine of dihedral angle criterion chooses the configura-
tion that maximises the minimum sine of the dihedral angles of the

tetrahedra in a patch.

e The minmax dihedral angle criterion minimises the maximum dihedral

angle of the tetrahedra.

e The in-sphere criterion, appropriate only for face swapping, selects the
configuration in which no tetrahedra in the five point local submesh

contains the other point in its circumsphere.

Our aim of optimisation is to reduce the energy of the solution rather
than any of the above geometric criteria. In fact our optimal meshes may
include some poor geometric quality elements since, as discussed in [90]
for example, long and thin elements can form part of good mesh for an
anisotropic solution. Hence, the first task of modifying GRUMMP was to
isolate the face/edge swapping routines from the other mesh improvement
routines.

The second task in modifying GRUMMP was to introduce a field for the

solution value for each node. As GRUMMP is totally based on improving

Ch. 5. Implementation and numerical results in 3-D 144

the geometric quality of the mesh it does not need, or support, any solution
value within it. We introduced solution values by modifying the GRUMMP
data structure ‘node to vertices’. This was achieved by increasing the di-
mension of the vertices for the three dimension routines from three (i.e.
X,y,z) to also include a solution value for each node. Accomplishment of
this task was not entirely straightforward however. GRUMMP routines use
a C++ function ‘assert’ which checks the dimension of vertices at hundreds
of places in the software, and if this dimension does not match with the
previous ones, an error is generated. Also, if one routine is passing this
dimension to the other routines, they must match. It was necessary there-
fore to take great care to change this dimension wherever it appeared in
the software. In a second version, when we applied GRUMMP to systems
of equations, we changed this dimension to accept three solution values for
each node.

The third task in modifying GRUMMP was to replace its geometric
quality criteria with our energy quality criterion. This involved replacing
the GRUMMP routines which compute the geometric quality of each tetra-
hedron with our own routine which computes the energy over each tetrahe-
dron in the original and possible configurations. We put a minimum volume
limit, V. (= 1077 say), for each tetrahedron in the original and possible
configurations. If any of the elements has volume less than V,,;, we assign
that tetrahedron a very large value of energy, which rules out its inclusion

in the final configuration. It should be noted that GRUMMP reconfigures

Ch. 5. Implementation and numerical results in 3-D 145

the submesh formed by E tetrahedra if every new tetrahedron in a possi-
ble reconfiguration has a better quality than the worst of the original £
tetrahedra. This is in contrast to our energy quality criterion. Qur recon-
figuration of this submesh should be based on the cumulative energy of each
tetrahedron in the submesh. Hence a final modification to GRUMMP was
necessary such that a reconfiguration will be performed if the cumulative
energy of the submesh formed after face/edge swapping is lower than the

cumulative energy of the original configuration of the submesh.

5.3 Local h-refinement

Our local h-refinement is again based on reducing the solution energy, by
increasing the number of elements in specific regions. Refinement in three
dimensions is much more complicated than in two dimensions, due to ex-
tensive programming efforts and visualisation difficulties. To discuss refine-
ment in three dimensions we use the terms (as discussed in Section 2.5),
reqular/red refinement for refining the elements and irregular/green refine-
ment for treating the hanging nodes, which appear due to local regular
refinement in the neighbouring elements.

There are three common types of refinement for three dimensional tetra-
hedral elements. In explaining these types of refinement we use the terms
(as used in [98]), parent elements for the elements which are refined and
child elements for the elements created by refining the parent element. The

most popular type of refinement in the literature appears to be the one

Ch. 5. Implementation and numerical results in 3-D 146

which divides the parent element into 8 child elements by bisecting all of
the edges of the parent element. This type of refinement is also named as
reqular refinement and is presented in, e.g. [76, 83, 98]. Figure 5.6 shows
a tetrahedron divided into 8 tetrahedra by introducing nodes at the mid
points of each edge. Each new node is then connected to the other two new
nodes lying on each face. This cuts off four subtetrahedra at the corners
of the parent tetrahedron. Finally, joining any two new nodes on uncon-
nected parent edges by an internal diagonal dissects the remaining central
octahedron into another four child elements. The choice of which internal
diagonal to insert is important: the approach in [76, 98] is to choose the

longest one. Other approaches in choosing this diagonal are also possible

[83].

T1= OIIN

T2= IKAL
T3= JBKM
T4= NMLC
T5= JMKL
T6= LIJN
T7=LIJK
T8= LMJN

Figure 5.6: Regular refinement of a tetrahedron into 8 child tetrahedra, by
bisecting all of the edges.

The second type of regular refinement is directional regular refinement,
which is considered in [98]. This type of refinement is important to resolve
certain flow features such as boundary layers in viscous problems [31]. It
is based upon a directional dissection of the parent tetrahedra. Figure 5.7

shows a tetrahedron divided into 4 child elements using directional refine-

Ch. 5. Implementation and numerical results in 3-D 147

ment. Three edges on one face are bisected. The new nodes are joined
to each other and to the opposite vertex of the tetrahedron. The choice

of which face to subdivide depends on the direction in which refinement is

required.
A A
M
T1= OANM
B o 1:4 B o T2=0CLN
[
T3=OBML
T4=OLMN
L
C C

Figure 5.7: Regular directional refinement of a tetrahedron into 4 child
tetrahedra by bisecting edges on one face.

The third type of regular refinement is bisection, which bisects the parent
tetrahedron. The bisection method in three dimensions is presented by
[26, 79] for example. Figure 5.8 shows a tetrahedron divided into 2 child
elements using the bisection method. In this method any of the edges
is bisected and the newly created node is joined to the opposite vertices
as shown in Figure 5.8. The edge to be bisected can be chosen on some
geometric quality criteria (e.g. to bisect the longest edge [92]) or some

directional refinement criteria.

o o T1=0BAN
T2=0ACN

B B

Figure 5.8: Bisection of a tetrahedron into 2 child tetrahedra by bisecting
one edge.

Ch. 5. Implementation and numerical results in 3-D 148

The consequence of a local regular refinement is the existence of tetrahe-
dra with hanging/green nodes. These are tetrahedra which were not refined
themselves but at least one of their edges is common with a regularly re-
fined element. For the conformality of the mesh these hanging nodes must
be removed, which is generally achieved through the use of a transitional
refinement layer. There are two common types of irregular refinement; one
which does not insert a node at the centre of the parent element, e.g. [7, 30],
and the other which does introduce a node into the parent element, e.g.
[71, 98]. For both of these types six refinement possibilities can arise (i.e.
1 to 6 edges of a tetrahedron have hanging nodes). However for each type,
if all of the six edges have hanging nodes the best strategy is to refine the
parent element regularly as shown in Figure 5.6, see e.g. [30] and [98]. Both
irregular refinement types and the remaining five possibilities are discussed
below.

For the green refinement which does not introduce nodes into the parent
element only four cases (shown in Figures 5.9—5.12) have been considered
in [7, 30]. For the rest of the cases, where three or more edges have hanging
nodes not belonging to a common face, regular refinement is used as shown
in Figure 5.6. For this red refinement closure new nodes on the rest of the
edges are introduced and it may be that some of them lie at edges of green
tetrahedra. Hence the refinement process must be treated as being iterative.
For the completeness of our discussion of this type of irregular refinement,

we present the rest of the cases as shown in Figures 5.13—5.17. In all of

Ch. 5. Implementation and numerical results in 3-D 149

these cases the hanging nodes are connected without the introduction of

any new nodes to the mesh.

T1=0OBAN

o o
T2=0ACN
1:2
—>
A c A c
N
B B

Figure 5.9: Division of a tetrahedron with 1 green node into 2 subtetrahedra.

T1=MBAN

o o
T2=0CNM
T3=MACN
M T4=0BMM
1:4
A [= A ¢
N
B B

Figure 5.10: Division of a tetrahedron with 2 green nodes on opposite edges,
i.e. on two different faces, into 4 subtetrahedra.

T1=0BNM

o o
f T2=0AMN
T3=0ACM
1:3
A C - A c
N M
B B

Figure 5.11: Division of a tetrahedron with 2 green nodes on adjacent edges,
i.e. on one face, into 3 subtetrahedra.

For all of the cases shown in Figures 5.9—5.17, if two or more green
nodes lie on one face they are joined together (i.e. in the same face). When

exactly two green nodes lie on one face then one of them must be joined

Ch. 5. Implementation and numerical results in 3-D 150

o o T1=0ANM
T2=0CLN
T3=0BML
T4=0LMN

1:4
A C - A c
M L
B B

Figure 5.12: Division of a tetrahedron with 3 green nodes on a single face
into 4 subtetrahedra.

to the opposite vertex in the same face. Special care must be taken for
the other element sharing this face, i.e. to consider the same orientation of
the new introduced edges. For the cases where it is necessary to join the
two nodes lying on two different faces by an internal diagonal, only these

two should be joined to the opposite vertex in their own face as shown in

Figures 5.15 and 5.16.

o T1=0BML
T2=0ALM
T3=0ALN
T4=ALNC
A C L» C

B

Figure 5.13: Division of a tetrahedron with 3 green nodes on two different
faces into 4 subtetrahedra.

This type of green refinement is advantageous in the sense that the tran-
sitional layer formed by the green refinement has fewer elements than the
red refined element. For all of the possibilities the number of green child
elements is never greater than 7. However significant additional program-

ming effort is needed for this type of refinement because many different

Ch. 5. Implementation and numerical results in 3-D 151

o T1=0ANM
T2=0BML
T3=OLMN
T4=0OPLN
T5=PCLN
A c i» c

B

Figure 5.14: Division of a tetrahedron with 4 green nodes (three on one face
and one on a different face) into 5 subtetrahedra.

T1=PLBM
T2=PLMC
T3=PALC
T4=PALN
T5=PLNO
T6=POLB

(e}

B

Figure 5.15: Division of a tetrahedron with 4 green nodes (two on each face)
into 6 subtetrahedra.

cases arise, with different numbers of child elements, when the pattern of
same number of green nodes changes (see the cases shown in Figures 5.14
and 5.15 for example).

The second type of green refinement that we describe here introduces an
extra node into the parent tetrahedron, which is subsequently connected to

T1=PIMP
T2=PBLM
T3=PLJN

T4=PLBO
T5=PLMJ
T6=PLNO
T7=AJLN

1:7

B

Figure 5.16: Division of a tetrahedron with 5 green nodes into 7 subtetra-

hedra.

Ch. 5. Implementation and numerical results in 3-D 152

all of the parent vertices and any additional nodes which bisect the parent
edges. Three cases of this type of refinement are shown in Figures 5.17—5.19.
For all of the cases of this type of green refinement, if two or more green
nodes are lying on one face they must be joined together (in the same
face). The rest of the possibilities, which are not shown here, can be drawn

according to similar patterns to those shown in Figures 5.17—5.19.

o T1=0ANM
T2=0ABN
T3=NABC
T4=ONMC
T5= ONBM
T6=NMCB

B

Figure 5.17: Division of a tetrahedron with 1 green node into 6 subtetrahe-
dra by introducing a node into the parent tetrahedron.

T1=0OLMN
T4=0LNB
T5=0ONBM
T2=ALMN
T3=NAMC
T6=NABC
T7=NMCB
T8=NABL

1:8

B

Figure 5.18: Division of a tetrahedron with 2 green nodes on one face into
8 subtetrahedra by introducing a node into the parent tetrahedron.

The six green node possibilities give rise to between 6 and 14 green
child elements. The good things about this type of refinement are that

the same number of green child elements are created for a given number

Ch. 5. Implementation and numerical results in 3-D 153

T1=0ANM
T4=0BNM
T5=0LBN
T2=0ALN
T3=NBCM
T6=NLBC
T7=NACL
T8=NACM

B

Figure 5.19: Division of a tetrahedron with 2 green nodes on opposite edges
into 8 subtetrahedra by introducing a node into the parent tetrahedron.

of green nodes, whatever the pattern of green nodes, and two green nodes
lying on two different faces are never joined together. This provides an easy
way of dealing with any pattern of parent edge refinement [98]. However the
drawback in this type of refinement is that it introduces more elements than
needed in the transitional layer, of which many may be of poor geometric

quality.
5.3.1 TETRAD

TETRAD stands for TETRahedral ADaptivity [99]. It was developed
within School of Computing, Leeds. It is capable of refinement and dere-
finement of tetrahedral meshes according to user defined criteria provided
to it by an interface. We first provide a brief introduction to TETRAD and
then we describe its interface.

The approach taken for adaptivity in TETRAD is hierarchical in nature.
The mesh adaption strategy assumes that there exists a good quality ini-
tial unstructured tetrahedral meshing of the computational domain, which

is taken to be the invariant base mesh of the region. TETRAD uses two

Ch. 5. Implementation and numerical results in 3-D 154

types of refinement, regular refinement and green refinement. For regular
refinement it subdivides each parent element into 8 child elements as shown
in Figure 5.6. For green refinement it subdivides parent elements by intro-
ducing a node into the parent element as shown in Figures 5.17—5.19. The
five green refinement possibilities (if all of the edges are refined it refines the
element regularly) give rise to between 6 and 14 interior child elements. Due
to the implementation of the refinement strategy in TETRAD green refine-
ment of this type (which introduces some poor geometric quality elements)
does not cause significant difficulties with mesh quality however. This is
because the refinement hierarchy is implemented in such a way that a green
element may not be further refined. That is, if a green element has an edge
targeted for refinement, then the green refinement of the parent element is
replaced by a set of regularly refined child elements which may themselves
be further refined if necessary. Consequently green elements always signal
a change between mesh levels.

TETRAD works on the principle that some (or all) of the mesh elements
are flagged for adaption. This results in each mesh edge being targeted
either for refinement, derefinement or no action. To construct the list of
edges and elements to be refined, each element adjacent to an edge targeted
for refinement is examined. If the element is green, then its parent element
is placed on the list of elements whose child elements are to be refined. To
see how this works, consider Figure 5.20. The refinement of edge ‘a’ implies

that the green Tetrahedron T1 must be processed. Since further refinement

Ch. 5. Implementation and numerical results in 3-D

is ruled out, T'1 and its sibling tetrahedra must be replaced by a regular set.
This in turn requires the refinement of edge ‘b’, with the same argument

now applying to tetrahedron T2 and so on.

Tla
T

2

T2

Figure 5.20: Refinement of adjacent green elements

The main problem we faced in using TETRAD for the mesh refinement
component of our hybrid algorithm is its strategy of green refinement and
derefinement. When node positions are changed it may not be possible for
TETRAD to derefine the mesh. The TETRAD refinement and derefine-
ment strategy works for parent edges and after moving nodes parent edges
are generally no longer valid for derefinement (as shown in Figure 5.21 for
example). The main effect of this on our hybrid algorithm is that we have to
disable the derefinement of green elements before they are further refined.
If we were just applying h-refinement alone this would be potentially very
damaging to the quality of some of the elements in our mesh. Fortunately
however, the use of edge swapping and node movement within the hybrid

algorithm appears to prevent this from becoming a problem.

155

Ch. 5. Implementation and numerical results in 3-D 156

Figure 5.21: Due to movement of green node j, the parent edge containing
J no longer remains valid for derefinement.

5.4 Numerical results

In this section we study two representative test problems in order to as-
sess the quality of our new three-dimensional multilevel hybrid algorithm.
For the results presented in this section we do not apply the hybrid algo-
rithm with full convergence of the node movement and face/edge swapping
algorithm, as presented in our full multilevel hybrid algorithm in Section
2.6. There are three reasons for this. The first is that, as noted above,
we have no theoretical guarantee of the convergence of the edge swapping
algorithm. The second reason is the expense of the node movement and
edge swapping steps in three dimensions. Hence, since the vast majority of
the energy reduction always appears to occur in the first couple of sweeps,
we simply apply node movement (up to approximate convergence) then
face/edge swapping (up to convergence within GRUMMP) and then node
movement again (up to convergence), for the meshes at each level. The
final reason for not iterating the hybrid algorithm to full convergence is due

to the green refinement strategy adopted by TETRAD. During the local

Ch. 5. Implementation and numerical results in 3-D 157

h-refinement many poor shaped elements are introduced, hence when many
steps of node movement and face/edge swapping are applied it is more likely
that some elements will reach the minimum volume limit. In the next step
of local h-refinement these elements then give rise to child elements having
volume less than this limit.

The overall strategy that we have adopted appears to work well despite
the fact that the meshes produced are not precisely optimal. Furthermore,
it is quite efficient since we are not converging the process of node movement

and face/edge swapping in combination.
5.4.1 Problem one

For an initial test problem we consider the following generalisation of the

first two dimensional problem solved in Section 3.3.1.
1
—Au + U= 0, z2ze€Q=(0,1)x(0,1)x(0,1), (5.2)
subject to the Dirichlet boundary conditions
u=e /e (5.3)

throughout 9. As with the two dimensional example, (5.3) is the true
solution of (5.2) over all of ©, and the corresponding energy functional ((3.4)
but with this modified £ and summation of the repeated suffices from 1 to
3) has a minimum value given by (3.5). We again choose ¢ = 0.01 to yield
a thin boundary layer near 1y = 0 and an optimal energy £ = 50.0000.
Following the approach used in Section 3.3, for testing the two-dimensional

algorithm, we begin by assessing the performance of three-dimensional mul-

Ch. 5. Implementation and numerical results in 3-D

Figure 5.22: An illustration of an initial uniform mesh containing 384 tetra-
hedral elements.

tilevel mesh optimisation when combined with global h-refinement. Initially
the test problem is solved on a regular coarse grid of 384 tetrahedral ele-
ments, as illustrated in Figure 5.22. This mesh is then optimised locally
using node movement and face/edge swapping and the total energy of the
solution reduces from 378.62763 to 62.113265. However the number of ele-
ments increases from 384 to 407 due to the application of face/edge swap-
ping. Three levels of uniform refinement, each followed by optimisation,
then yield solutions with energies of 51.223148, 50.200687 and 50.048211 on
meshes of 3330, 27346 and 220769 elements respectively. For each of these
three levels the number of elements increased by slightly more than a factor
of eight due to the face/edge-swapping. The sequence of meshes obtained
in this way is shown in Figure 5.23.

To see that this final mesh is superior to one obtained without multilevel

optimisation the problem is then solved on a three level uniform refinement

158

Ch. 5. Implementation and numerical results in 3-D

| H‘ -
"‘W\Av

I Y ==
(NNL ==

-v‘ TN
%N 7

L7
AT
i Ty v
2K P CTAT)
S
PR INCT AT AT AT
PRSP S AN
DS A
S
K&
i
(5

Figure 5.23: An initial locally optimised mesh (top left) followed by a se-
quence of meshes obtained by combinations of global A-refinement with
r-refinement.

of the initial mesh, (with 196608 elements therefore), to yield a solution
with energy 67.278957. When this mesh is optimised, however the energy
only decreases to a value of 52.338504 with an increase in the number of
elements to 197070 due to face/edge swapping.

We now demonstrate that the potential advantages of using local re-
finement with the multilevel optimisation also appear to apply in three

dimensions. Starting with the locally optimal 384 element grid, a sequence

159

Ch. 5. Implementation and numerical results in 3-D 160

of three further meshes is obtained through local h-refinement (by refining
those elements whose local energy exceeded X = 60% of the maximum lo-
cal energy on any element) followed by local optimisation. These meshes
contain 2931, 18741 and 110170 tetrahedral elements and the corresponding
solutions have energies of 51.226773, 50.200292 and 50.043149 respectively.
The sequence of meshes obtained in this way is shown in Figure 5.24. The

first mesh is the same initial locally optimised mesh shown in Figure 5.23.

=

= . ‘—4—4 7

==

;
[

Il “ﬂ{“

e
HNl——=—
| N
; \.\\2\ N

i e B

‘\" v
| e
\\m m‘,;%l% ’
"1\"\‘\ ‘{égﬂ/
WAL ‘\W
‘ "“

Figure 5.24: An initial locally optimised mesh (top left) followed by a se-
quence of meshes obtained by combinations of local h-refinement with r-
refinement.

Ch. 5. Implementation and numerical results in 3-D 161

Finally, we demonstrate the superiority of this final mesh over one ob-
tained using only local h-refinement followed by local optimisation at the
end. This comes from the observation that a grid of 232140 elements ob-
tained using only local h-refinement yields a solution energy of 54.813215
and, when this is optimised, the solution energy only reduces to 51.443760.
A summary of all of these computational results is provided in Table 5.2.

It is worth noting at this point just how important the edge swapping
part of the hybrid algorithm really is. In [65] we solved this same problem
before the edge swapping algorithm was implemented and the results from
this are shown in Table 5.3. It is clear that these are significantly worse

than the corresponding results shown in Table 5.2.

Elements | Energy | Description

384 378.62763 | Energy on initial mesh.
407 62.113265 | Multilevel optimisation and
3330 51.223148 | global h-refinement.
27346 50.200687
220769 | 50.048211
196608 | 67.278957 | Global h-refinement followed
197070 | 52.338504 | by optimisation.

407 62.113263
2931 51.226773 | Multilevel optimisation and
18741 50.200292 | local h-refinement.

110170 | 50.043149
232140 | 54.813215 | Local h-refinement followed
233506 | 51.443760 | by optimisation.

Table 5.2: Summary of the results obtained for the first test problem (the
global energy minimum is 50.0000).

It can be observed from the Figures 5.23 and 5.24 and the results pre-

sented in Table 5.2, that the final mesh obtained by our suggested multilevel

Ch. 5. Implementation and numerical results in 3-D

Elements | Energy | Description

384 378.62763 | Energy on initial mesh.

384 104.85725
3072 59.907732 | Multilevel optimisation and
24576 52.398871 | global h-refinement.

196608 | 50.755212
196608 | 67.279033 | Global h-refinement followed
196608 | 52.434265 | by optimisation.

384 104.85704
2655 59.902412 | Multilevel optimisation and
16933 52.381223 | local h-refinement.

100866 | 50.746025
573834 | 54.885230 | Local h-refinement followed
573834 | 51.332477 | by optimisation.

Table 5.3: Summary of the results obtained for the first test problem without
edge swapping (the global energy minimum is 50.0000).

hybrid algorithm has the lowest energy, with least number of elements. The
final mesh in Figure 5.24 certainly seems to possess the required qualities of
being both fine in the direction perpendicular to the boundary layer (near

the face #1 = 0) and quite coarse in the directions parallel with the layer.
5.4.2 Problem two

The second problem that we consider is a three dimensional generalisation
of the second problem presented in Section 3.3, which is a calculation of
the displacement field for a three dimensional linear elastic model of an

overhanging cantilever beam. The domain €2 is

Q={(z,y,2):0<2<4,0<y<1,0<z<1}.

The bottom half of the beam is fixed as illustrated by the shaded region in

Figure 5.25.

162

Ch. 5. Implementation and numerical results in 3-D 163

Figure 5.25: An illustration of the overhanging cantilever beam

The energy functional is given by,

1 8u2 8uk

- - —,—d—/bﬂ-d. A
2 Q@:cjcjkéaxg £ Qp wi oL (5:4)

E
Here, all repeated suffices are summed from 1 to 3, C is the usual fourth
order elasticity tensor, chosen to correspond to an isotropic material with
a non dimensionalised Young’s modulus £ = 100 and a Poisson ratio v =
0.001, pb provides the external body forces due to gravity. The small value of
Poisson’s ratio is chosen to make the material sufficiently elastic to ensure
that it bends under its own weight. This makes the problem a suitable
problem for mesh adaptivity.

As before we begin by solving the problem on a uniform coarse mesh,
this time containing 192 elements. This mesh is then optimised using
the r-refinement algorithm to reduce the total energy from —0.168295 to
—0.208546. For this particular mesh the face/edge swapping keeps the num-
ber of elements same. This optimal mesh is now uniformly refined to pro-
duce 1536 elements which are also optimised, leading to a solution with a

total stored energy of —0.262773, with an increased number of elements,

1548, due to the face/edge swapping. A further global refinement gives

Ch. 5. Implementation and numerical results in 3-D 164

12384 elements which is then optimised leading to a solution with total
stored energy of —0.280849 on a mesh of 12415 elements. We further refine
this mesh globally to get a mesh of 99320 elements. This mesh is then op-
timised leading to a solution with a total stored energy of —0.285704 over
99349 elements. The sequence of meshes obtained in this manner is shown
in Figure 5.26.

We consider two further meshes of 98304 elements and 98370. The first
of these is obtained by global refinement of the initial uniform mesh and
the second by optimising this mesh directly. The energies of the solutions
on these meshes are —0.272196 and —0.283207 respectively and so we again
observe the superiority of the hierarchical approach when r-refinement is
combined with global h-refinement.

As for the previous example, our goal is to assess the hybrid algorithm
that combines r-refinement with local h-refinement hence we consider a
sequence of meshes obtained in this manner. The first mesh is the same
optimised mesh, containing 192 elements, shown in Figure 5.26. The energy
of the solution on this mesh is —0.208546. The second mesh is then obtained
by refining those elements whose local energy exceeded X = 60% of the
maximum local energy on any element. This local refinement produces
a mesh having 947 elements. It is then optimised which reduces the total
stored energy to —0.252279, and the number of elements is increased to 958.
To get the mesh at the next level we further refine this mesh locally. Which

produces a mesh of 4499 elements, after optimising the solution energy

Ch. 5. Implementation and numerical results in 3-D 165

reduces to —0.267699, and the number of elements increases to 4529, due
to face/edge swapping. Another level is then obtained by refining the mesh
at previous level locally. This produces a mesh of 15082 elements and after
optimising we get a mesh of 15315 elements with the total stored energy
reduced to —0.281052. This mesh is then further refined locally to produce
a mesh of 48184 elements. When this mesh is optimised we get a mesh
of 48403 elements with the total stored energy of the solution reduced to
—0.286102. The sequence of meshes obtained in this manner is shown in
Figure 5.27.

We again conclude our example by illustrating the advantage of applying
the hybrid approach hierarchically by contrasting it with the use of local
h-refinement alone, possibly followed by a single application of r-refinement.
We refine locally the initial mesh of 192 elements in five levels to achieve a
mesh of 132698 elements (again using a threshold of X = 60% for the local
refinement). The total energy of the solution on this mesh is —0.278015.
The mesh is then optimised to reduce the total stored energy to —0.284321,
with increased number of elements, 132958, due to face/edge swapping. As
before it is clear that the quality of the locally optimal meshes obtained
in this manner is inferior to that of meshes obtained using the hierarchical
approach. A summary of all of the computations made for this test problem
is provided in Table 5.4.

Again, from the results presented in Table 5.4, it is clear that our multi-

level hybrid algorithm is performing better than all of the other approaches

Ch. 5. Implementation and numerical results in 3-D

Elements | Energy | Description
192 -0.208546
1548 -0.26773 | Multilevel optimisation and

12415 | -0.280849 | global h-refinement.

99349 | -0.285704
98304 -0.272196 | Global h-refinement followed
98370 -0.283207 | by optimisation.

958 -0.252279
4529 -0.267699 | Multilevel optimisation and
15315 -0.281052 | local h-refinement.

48403 | -0.286102
132698 | -0.278015 | Local A-refinement followed
132958 | -0.284321 | by optimisation.

Table 5.4: Summary of the results obtained for Problem Two (the global
energy minimum is unknown).

considered here. One remark about the figures presented for local refine-
ment; the problem is symmetric about the line y = 0.5, but the meshes
shown in Figure 5.27 appear non symmetric about this line. This is due to

the fact that the initial mesh is unsymmetric about the line y = 0.5.
5.5 Summary

This chapter not only provides the implementation details of our multi-
level hybrid algorithm but also includes details of face/edge swapping and
local h-refinement in three dimensions. A brief introduction to the tools
GRUMMP and TETRAD, which have been used for face/edge swapping
and local h-refinement respectively, is also provided, including the details of
modifications made to them. For face/edge swapping the modified version
of GRUMMP worked well to minimise the solution energy, and also avoided

the necessity of implementing this from scratch.

166

Ch. 5. Implementation and numerical results in 3-D 167

There were two reasons for using TETRAD as our local h-refinement
tool. First, it is developed within the School and its source code is available
as tested and robust software. Second, it was possible to integrate our node
movement algorithm within the interface for TETRAD so as to simplify the
implementation and improve the efficiency. The coupling with GRUMMP
was not integrated however.

Results have been presented for two three-dimensional test problems.
For these test problems the hierarchical optimisation provides a better final
mesh than is obtained by only optimising the mesh at the highest level of
refinement. The use of local h-refinement was clearly superior to the use of
global h-refinement. However further improvement may be possible when a
consistent green node removal strategy (which does not introduce nodes into
the parent elements as discussed in Section 5.3) is used within our hybrid
algorithm.

Overall the results in this section are very encouraging. Furthermore, the
inclusion of face/edge swapping clearly demonstrated to yield an improved
quality of solution over corresponding solutions obtained on meshes using
node movement and local refinement alone (see Tables 5.2 and 5.3). So
far we have not considered the efficiency of our implementation in three
dimensions and so no timings are provided. Nevertheless we believe that
there is scope for a sufficiently efficient implementation to make these ideas

worthwhile in practice.

Ch. 5. Implementation and numerical results in 3-D 168

aw
A

D>

PAVAVAVAVA
VAV
ARSI

QO
: Vs‘ﬁva
N NN

TATUVATSY TVY TN AT va ey ayawavy
SN iy WSS
vavavay,Tav ik "-“ PRAASOCOS
*v‘i"‘ﬁﬂl!tuﬂmiu "{" SR
SO VAN,
3 AT 1!,1:.lkllll..
£ v %‘2‘;}’2
OV A
e WA Wl Wt

Figure 5.26: A sequence of meshes obtained by r-refinement and then com-
binations of global A-refinement with r-refinement.

169

ical results in 3-D

meric

nd nu

Ch. 5. Implementation a

of local h-

of meshes obtained by combinations

refinement with r-refinement.

Figure 5.27: A sequence

Chapter 6

Conclusions and Future Work

6.1 Summary of work undertaken

In this thesis we have considered mesh adaptivity for the finite element solu-
tion of variational problems which accept the energy formulation. The main
contribution of this thesis is the development, implementation and testing
of a new multilevel hybrid algorithm in two and three space dimensions for
unstructured triangular and tetrahedral meshes. We have applied this algo-
rithm to a variety of test problems including linear, nonlinear and systems
of equations. It is evident from the results presented in previous chapters
that our hybrid algorithm is very effective in achieving an excellent com-
bination of small mesh sizes and low energies for the corresponding finite
element solutions. Here we provide a short summary of the work presented
in this thesis.

In Chapter 1 we have presented a general overview of the variational
problems and the finite element method. We also discuss some related
topics regarding the solution of the discrete finite element equations. The

philosophy behind mesh adaptivity is introduced and then numerous error

170

Ch. 6. Conclusions and future work 171

estimators and indicators are discussed for driving the adaptivity. A general
introduction to the most common adaptive schemes is provided. We then
discuss edge swapping and moving mesh algorithms in some detail, and we
present a number of possible moving mesh schemes.

Our main work begins from Chapter 2. We first present the formulation
of the problem and the notation to be used in the thesis. We explain the
strategy of node movement and then we present the derivation of the gradi-
ent of the energy functional with respect to the position of nodes (2.10) and
the local problem (2.5). We then present our proposed algorithm for node
movement. Edge swapping and local h-refinement in two space dimensions
are also discussed and possible algorithms for these are provided. Finally
our new multilevel hybrid algorithm is presented by putting together the
three components of node movement, edge swapping and local h-refinement.

In Chapter 3 we provide some implementation details of our hybrid al-
gorithm. Algorithms for line minimisation considering exact and inexact
line searches are provided. The algorithm for an inexact line search was
originally considered in [48] to improve the geometric quality of the mesh.
We have modified it to minimise the energy functional. Results presented
in Chapter 4 indicate that the inexact line search algorithm has great po-
tential to improve the efficiency of our node movement algorithm. Some
more options which can affect the performance of the hybrid algorithm are
also discussed in Chapters 3 and 4. In the former, parameters which arise

during the implementation of the hybrid algorithm are considered and their

Ch. 6. Conclusions and future work 172

possible range of values is provided; backed by empirical results. The final
section of Chapter 3 introduces four test problems which have been con-
sidered. The results produced by our hybrid algorithm are compared with
corresponding results produced by some other adaptive strategies for each
of the test problems. These show that the mesh quality obtained is gen-
erally very good although we do not consider the computational costs of
obtaining these optimal meshes.

In Chapter 4 we discuss some of the most significant of the options
available within our hybrid algorithm by considering one particular repre-
sentative test problem with respect to both the computational costs and the
quality of the meshes achieved. Some recommendations have been made on
the basis of these numerical results. Some possible options to improve the
efficiency of the hybrid algorithm are also provided with some preliminary
numerical results.

In Chapter 5 we discuss in detail edge swapping and local h-refinement
in three dimensions. Here we provide an overview of GRUMMP [52] and
TETRAD [99]. The modifications we have made in GRUMMP and TETRAD
are discussed in order that we have been able to use them as tools for our
applications of edge swapping and local h-refinement respectively in three
dimensions. Finally we presented some preliminary test problems and the
results produced by our hybrid algorithm are compared with the results pro-
duced by some other adaptive strategies for each of the test problems. These

results are extremely encouraging overall. To our knowledge the algorithms

Ch. 6. Conclusions and future work 173

presented for node movement and face/edge swapping have never been im-
plemented before in three dimensions in order to reduce the energy of the
solution. Results presented in Chapter 5 show that edge swapping in three
dimensions is an extremely important component of the overall adaptive al-
gorithm. When considered in isolation node movement and edge swapping
are hardly competitive with other adaptive strategies, however when these
are combined with local h-refinement in either two or three space dimen-
sions they produce an extremely effective algorithm, when assessed in terms

of the quality of the meshes produced.

6.2 Possible future work

The results presented in the previous chapters demonstrate that the quality
of meshes achieved by our hybrid algorithm is generally better than obtained
from the other adaptive approaches which we have considered for compar-
ison. Further enhancements that need to be investigated relate mainly to
the efficiency of the hybrid algorithm.

The results presented in Chapter 4 demonstrate that the most time con-
suming part of our hybrid algorithm is the node movement process. In order
to make our hybrid algorithm a practical tool the node movement part of
our hybrid algorithm definitely needs some mechanism which make its con-
vergence faster. One possibility, as suggested in Chapter 4, is that it is not
necessary to converge the node movement process. Significant amounts of

computational time can be saved by stopping the node movement process at

Ch. 6. Conclusions and future work 174

an appropriate point. This needs some analysis or experimentation in order
to determine the minimum number of node movement iterations that are
required before stopping the process. Moreover, how much this will affect
the overall performance of the hybrid algorithm needs to be understood.

Although our hybrid algorithm does not need any global finite element
solves at intermediate points, the preliminary results presented in Chapter
4 indicate that this option is a better choice. However the cost-benefit
of the intermediate global solves may not be so substantial for problems
where the computation of a global solution is expensive. We have proved
in Section 2.2.3 that solving a sequence of local problems (2.5) iteratively is
equivalent to a global solve of the problem. We suggest therefore that before
applying the node movement algorithm, the nodal solution values should be
updated approximately by doing some iterations of solving the sequence of
local problems. This needs some research in order to better understand how
approximately the nodal solution values should be updated and in order to
best improve the efficiency of the algorithm. It may be the case however
that this provides the best compromise between undertaking a global solve
after each h-refinement or just using the interpolated nodal solution values
as the starting point for the node movement algorithm.

It is also suggested in Chapter 4 that some efficiency can be gained
by not applying the edge swapping algorithm up to convergence. It needs
some additional work to ascertain when it is best to stop the edge swapping

algorithm, and how much the performance of our hybrid algorithm will be

Ch. 6. Conclusions and future work 175

affected by stopping the edge swapping algorithm at such an appropriate
point.

In our current implementations of the local h-refinement (in both two
dimensions and three dimensions) we are inserting the new nodes at the
centre of each edge marked for refinement. It is claimed in [84] that ‘it is
possible to simultaneously optimise the new node position as well as split the
edge’. We believe that this can be incorporated within our hybrid algorithm
setting. This idea is worthwhile to try in order to see if it will be beneficial
or not.

For local h-refinement we have seen that many new unnecessary elements
are introduced in order to remove the hanging nodes that are produced by
our refinement algorithms (this situation is especially noticeable in three
dimensions). It is possible to consider another type of refinement which does
not introduce any hanging nodes. In two dimensions any element marked
for refinement can be refined in to three elements as shown in Figure 6.1. In
three dimensions an element can be refined into four elements as shown in

Figure 6.2. In each case a new node is added at the centroid of the element.

1:3

Figure 6.1: Refinement of a triangle in to three triangles.

There are a number of disadvantages to this type of refinement that tend

to make it unpopular in practice. Firstly, the geometric quality of the re-

Ch. 6. Conclusions and future work

o T1=ABCD
: T2=ABCO
T3=ABOD
T4=BDCO

Figure 6.2: Refinement of a tetrahedron in to four tetrahedra.

fined elements can become very poor. Secondly, the boundary of the domain
can not be refined. When used as part of our hybrid algorithm however the
geometric quality of the refined elements will be improved by the combina-
tion of node movement and face/edge swapping. To overcome the problem
of boundary refinement we can introduce a mixed element refinement strat-
egy: every interior element (having no face/edge on the boundary) may be
refined as discussed above, and each boundary element marked for refine-
ment may be bisected so that the new node inserted should be on boundary.
It would be interesting to test how this idea works practically.

A less radical alteration to the A-refinement procedure used in this work
would be to implement an element bisection algorithm [26] in three dimen-
sions (as opposed to the refinement into 8 children currently used). The
only potential problem with this type of refinement is that poor geometric
quality elements can appear. However as part of our hybrid algorithm the
combination of node movement and face/edge swapping will improve this.
We have implemented this type of h-refinement in two dimensions. The
results presented in Section 3.3 show that within the setup of our hybrid

algorithm this type of refinement can produce better results than the one-

176

Ch. 6. Conclusions and future work 177

to-four element refinement scheme. Also there is a need to carry out more
tests in three dimensions. These include implementing a suitable strategy
for green node removal (as discussed in Section 5.3), considering some more
test problems and producing an integrated version of the face/edge swap-
ping within the hybrid algorithm.

Finally, it is possible in principle to implement a parallel version of
this hybrid algorithm. There has been some advancement in implementing
GRUMMP [52] in parallel, which uses edge swapping and smoothing to
improve the geometric quality of the mesh. There has also been work on a
parallel version of TETRAD, [96], for parallel local mesh refinement. With
an appropriate colouring of the nodes of the mesh it should also be possible
to implement the node movement algorithm in parallel, provided no two
neighbouring nodes are updated simultaneously. If these steps could be
combined as part of a completely parallel hybrid adaptive algorithm then
the outlook for an efficient high quality parallel adaptive procedure would

be good.

Bibliography

[1]

2]

3]

[4]

[5]

S Adjerid, B Belguendouz, and J E Flaherty. A Posterior: finite
element error estimation for diffusion problems. Siam Journal on

Scientific Computing, 21(2):728-746, 2000.

M Ainsworth and J T Oden. A posteriort error estimators for second
order elliptic systems part 2: An optimal order process for calculating

self equilibrating fluxes. Comput. Math Appl., 26:75-87, 1993.

M Ainsworth and J T Oden. A unified approach to a posteriori error
estimation using element residual methods. Numerische Mathematik,

65:23-50, 1993.

M Ainsworth and J T Oden. A posteriori error estimation in finite

element analysts. John Willey and sons, 2000.

T Apel. An adaptive finite element technique with a priori mesh
grading. Technical Report 9, Bicom Institute of Computational Math-

ematics, 1993.

178

Bibliography

[6]

(7]

8]

[9]

[11]

[12]

[13]

T Apel, S Grosman, P K Jimack, and A Meyer. A new methodology
for anisotropic mesh refinement based upon error gradients. Submitted

to Applied Numerical Mathematics, 2001.

T Apel and G Lube. Anisotropic mesh refinement in stabilized

galerkin methods. Numer. Math., 74:261-282, 1996.

T Apel and S Nicaise. The finite element method with anisotropic
mesh grading for elliptic problems in domains with corners and edges.

Math. Methods Appl. Sci., 21:519-549, 1998.

I Babuska and A Aziz. On the angle condition in the finite element

method. SIAM Journal on Numerical Analysis, 13:214-226, 1976.

I Babuska and B Q Guo. Approximation properties of the hp version of
the finite element method. Comp. Meth. Appl. Mech. Eng., 133:319—

349, 1996.

I Babuska and W C Rheinboldt. Error estimates for adaptive finite

element computations. Siam J Num. Anal, 15:736-754, 1978.

I Babuska and W C Rheinboldt. A posterior: error estimates for the
finite element method. Journal Numer. Method Eng., 12:1597-1615,

1978.

I Babuska and W C Rheinboldt. A posteriori error analysis of finite
element solutions for one dimensional problems. Siam J Numer. Anal,

18:565-589, 1981.

179

Bibliography 180

[14] T Babuska, T Strouboulis, and K S Gangaraj. A posteriori estimation
of the error in the recovered derivatives of the finite element solution.

Computer Methods in Appl. Mech. Eng., 150:369-396, 1997.

[15] T Babuska, T Strouboulis, and C S Upadhyay. A model study of the
quality of a posteriori error estimators for linear elliptic problems.
error estimation in the interior of patch wise uniform grids of triangles.

Comput. Methods Appl. Mech Eng., 114:307-378, 1994.

[16] 1 Babuska, B A Szabo, and I N Katz. The p-version of the finite
element method. Siam Journal on Numerical Analysts, 18:515-545,

1981.

[17] M J Baines. Grid adaption via node movement. Appl Numer. Math,

26:77-96, 1998.

[18] M J Baines. Moving finite element, least squares, and finite volume ap-

proximations of steady and time-dependent pdes in multidimensions.
Journal Of Computational And Applied Mathematics, 128:363-381,

2001.

[19] J M Ball, P K Jimack, and T Qi. Elastostatics in the presence of
a temperature distribution or inhomogeneity. Zeitschrift Fur Ange-

wandte Mathematic Und Phystk, 43:943-973, 1992.

[20] R E Bank. PLTMG Users’ Guide 7.0. Siam, Philadelphia, 1994.

Bibliography

[21] R E Bank and L R Scott. On the conditioning of finite element equa-
tions with highly refined meshes. Siam J. Numer. Anal., 26(6):1383—

1394, 1989.

[22] R E Bank, A H Sherman, and A Weiser. Refinement algorithms and
data structures for regular local mesh refinement. Scientific Comput-

ing, 1983.

[23] R E Bank and R K Smith. Mesh smoothing using a posteriori error

estimates. Siam J Numer Anal, 34:979-997, 1997.

[24] R E Bank and A Weiser. Some a posteriori error estimators for elliptic

partial differential equations. Math Comp, 44:283-301, 1985.

[25] E Béansch. An adaptive finite element strategy for the 3-dimensional
time-dependent navier-stokes equations. Journal of Computational

and Applied Mathematics, 36:3—28, 1991.

[26] E Béansch. Local mesh refinement in 2 and 3 dimensions. Impact of

Comuting tn Science and Engineering, 3:181-191, 1991.

[27] G Beckett, J A Mackenzie, A Ramage, and D M Sloan. On the numer-
ical solution of one-dimensional pdes using adaptive methods based on
equidistribution. Journal of Computational Physics, 167(2):372-392,

2001.

181

Bibliography 182

[28] E Bertoti and B Szabo. Adaptive selection of polynomial degrees of
a finite element mesh. International Journal for Numerical Methods

in Engineering, 42:561-578, 1998.

[29] M Berzins. A solution-based triangular and tetrahedral mesh qual-
ity indicator. Siam Journal On Scientific Computing, 19:2051-2060,

1998.

[30] J Bey. Tetrahedral grid refinement. Computing, 55:355-378, 1995.

[31] R Biswas and R C Strawn. Mesh quality control for multiply refined

tetrahedral grids. Appl. Numerical Methods, 13, 1994.

[32] C D Boor. A practical guide to splines. Springer-Verlag, New York,

1978.

[33] C D Boor and J R Rice. An adaptive algorithm for multivariate
approximation giving optimal convergence rates. J. Approz. Theory,

25:337-359, 1979.

[34] Liu By. The analysis of a finite element method with streamline dif-
fusion for the compressible navier-stokes equations. SIAM Journal on

Numerical Analysis, 38(1):1-16, 2000.

[35] W M Cao, W Z Huang, and R D Russell. An r-adaptive finite element
method based upon moving mesh pdes. Journal of Computational

Physics, 149:221-244, 1999.

Bibliography 183

[36] P J Capon and P K Jimack. On the adaptive finite element solution
of partial differential equations using hr-refinement. Research report

96.13, School of computer studies, University of Leeds, 1996.

[37] N N Carlson and K Miller. Design and application of a gradient-
weighted moving finite element code II: in two dimensions. SIAM

Journal on Scientific Computing, 19, 1998.

[38] J H Cheng. Adaptive grid optimization for structural analysis geom-
etry based approach. Computer Methods in Applied Mechanics and

Engineering, 107:221-243, 1993.

[39] C K Chui and D Hong. Swapping edges of arbitrary triangulations to
acheive the optimal order of approximations. Siam J. Numer. Anal.,

34:1472-1482, 1997.

[40] P G Ciarlet. The finite element method for elliptic problems. North

Holland, Amesterdam, 1978.

[41] G R Cowper. Gaussian quadrature formulas for triangles. Internat.

J. Numer. Methods FEngrg, 7:405-410, 1973.

[42] M Delfour, G Payre, and J P Zolesio. An optimal triangulation for sec-
ond order elliptic problems. Computer Methods in Applied Mechanics

and Engineering, 50:231-261, 1985.

Bibliography 184

[43] M R Dorr. The approximation of solutions of elliptic-boundary value
problems via the p-version of the finite element method. Siam J of

Numer. Anal., 23:58-77, 1986.

[44] TS DUFF, A M Erisman, and J K Reid. Direct methods for sparse

matrices. Oxford University Press, London, 1986.

[45] K Erikson and C Johnson. Adaptive finite element methods for
parabolic problems i: A linear model problem. Siam J. Num. Anal.,

28:43-77, 1991.

[46] K Eriksson, D Estep, P Hansbo, and C Johnson. Introduction to
adaptive methods for differential equations. Acta Numerica (A. Iser-

les, ed.), pages 105-158, 1995.

[47] M J Forray. Variational calculus in science and engineering. McGraw-

Hill, New York, 1968.

[48] L A Freitag and C Ollivier Gooch. Tetrahedral mesh improvement
using swapping and smoothing. International Journal for Numerical

Methods in Engineering, 40:3979-4002, 1997.

[49] I Fried. Condition of finite element matrices generated form nonuni-

form meshes. ATAA, 10:219-221, 1972.

[50] R J Gelinas, S K Doss, and K Miller. The moving finite element
method: application to general partial differential equations with mul-

tiple large gradients”. J. Comput. Phys., 40:202-249, 1981.

Bibliography 185

[51] P L George. Delaunay triangulation and meshing: Application to

Finite elements. Editions HERMES, Paris, 1998.

[52] C O Gooch. GRUMMP Users’ Guide 7.0. University of British

Columbia, 1999.

[53] W Gui and I Babuska. The h,p and h-p version of the finite element

method in 1 dimension. Numerische Math, 48:557-683, 1986.

[54] M D Gunzberger, G J Fix, and R A Nicolaides. On finite element
methods of the least squares type. Comp. and Maths. with Appls.,

5:87-98, 1979.

[55] W G Habashi, J Dompierre, Y Bourgault, D A A Yahia, M Fortin, and
M Vallet. Anisotropic mesh adaptation: towards user-independent,
mesh-independent and solver-independent cfd. part i: general prin-

ciples. International Journal for Numerical Methods in Fluids,

32(6):725-744, 2000.

[56] M Heath. Parallel direct methods for sparse linear systems, chapter
Parallel Numerical Algorithms, pages 55-90. Academic Publishers,

1997.

[57] W Huang, Y Ren, and R D Russell. Moving mesh partial differential
equations (mmpdes) based on the equidistribution principle. Siam J.

Numerical Analysts, 31:709-730, 1994.

Bibliography

[58]

[59]

[60]

[61]

[62]

[63]

[64]

W Huang and R D Russell. A high dimensional moving mesh strategy.

Appl. Numer. Math., 26:63-76, 1998.

W Huang and R D Russell. Moving mesh strategy based on a gradient
flow equation for two-dimensional problems. Siam journal on scientific

computing, 20:998-1015, 1999.

T Iliescu. A 3d flow-aligning algorithm for convection-diffusion prob-

lems. Applied Mathematics Letters, 12(4):67-70, 1999.

P K Jimack. A best approximation property of the moving finite
element method. SIAM Journal on Numerical Analystis, 33:2206—2232,

1996.

P K Jimack. An optimal finite element mesh for elastostatic structural

analysis problems. Computers and Structures, 64:197-208, 1997.

P K Jimack. Local minimisation of errors and residuals using the
moving finite element method. Technical report, School of computer

studies, University of Leeds, 1998.

P K Jimack and R Mahmood. A multilevel approach for obtaining
locally optimal finite element meshes. In Developments in Engineering
Computational Technology, ed. B.H.V. Topping (Civil-Comp Press),

pages 191-197, 2000.

186

Bibliography 187

[65] P K Jimack, R Mahmood, M Walkley, and M Berzins. A multilevel
approach for obtaining locally optimal finite element meshes (in 2 and

3 dimensions). Submitted to Advances in Engineering Software, 2000.

[66] P K Jimack and A J Wathen. Temporal derivatives in the finite
element method on continuously deforming grids. SIAM Journal on

Numerical Analysis, 28:990-1003, 1991.

[67] Barry Joe. Three-dimensional triangulations from local transforma-
tions. SIAM Journal on Scientific and Statistical Computing, 10:718—

741, 1989.

[68] Barry Joe. Construction of three-dimensional improved-quality tri-
angulations using local transformations. SIAM Journal on Scientific

Computing, 16:1292-1307, 1995.

[69] A Johnson. Meshme. University of Minnesota, http://www

.arc.umn.edu/ johnson/meshme.html.

[70] C Johnson. Numerical solution of partial differentia equations by the

finite element method. Cambridge University Press, 1987.

[71] Y Kallinderis, V Parthasarathy, and J Wu. A new euler scheme and
adaptive refinement /coarsening algorithm for tetrahedral grids. ATAA

Paper 92-0446, 1992.

Bibliography

[72]

73]

[74]

[75]

[79]

C L Lawson. Software for ¢! surface interpolation. In J R Rice,
editor, Mathematical software IlI, Academic Press, New York, pages

161-194, 1977.

C L Lawson. properties of n-dimensional triangulations. Computer

Aided Geometric Design, 3:231-246, 1986.

L Y Li, P Bettess, and J W Bull. Mesh refinement formulations in
adaptive finite element methods. Journal of Mechanical Engineering

Science, 210:353-361, 1996.

R Lohner. An adaptive finite element scheme for transient problems
in cfd. Computer Methods in Applied Mechanics and Engineering,

61:267-281, 1987.

R Lohner and J D Baum. Adaptive h-refinement on 3d unstruc-
tured grids for transient problems. Int. J. Numer. Methods in Fluids,

14:1407-1419, 1992.

J A Mackenzie. The efficient generation of simple two dimensional

adaptive grids. Stam J. Sei. Comput., 19:1340-1365, 1998.

J A Mackenzie and M L Robertson. The numerical solution of one-
dimensional phase change problems using an adaptive moving mesh

method. Journal of Computational Physics, 161:537-557, 2000.

J L Maubach. Local bisection refinement for n-simplicial grids gener-

ated by reflection. Siam J. Sci. Comput., 16:210-227, 1995.

188

Bibliography 189

[80] K Miller and R N Miller. Moving finite elements i. SIAM Journal of

Numerical Analysis, 18:1019-1032, 1981.

[81] Keith Miller. Moving finite elements ii. Siam Journal of Numerical

Analysis, 18:1033-1057, 1981.

[82] J T Oden and J N Reddy. Variational methods in theoretical mechan-

ics. Springer-Verlag, 2nd edition, 1983.

[83] M E Ong. Uniform refinement of tetrahedron. Siam J. Sci. Comput.,

15, 1994.

[84] C C Pain, A P Umpleby, C R E deOliveira, and A J H Goddard.
Tetrahedral mesh optimisation and adaptivity for steady-state and

transient finite element calculations. Computer Methods in Applied

Mechanics and Eng., pages 3771-3796, 2001.

[85] S V Pennington, P K Jimack, and K McFarlane. Adaptive numerical
simulation of the remediation of soil contamination by in-situ gas

venting. Computational Geosciences, 3:135-160, 1999.

[86] J Peraire, M Vahdati, K Morgan, and O C Zienkiewicz. Adaptive
remeshing for compressible flow computations. Academic press, INc.,

1991.

87] Y Qiu, D M Sloan, and T Tang. Numerical solution of a singularly
perturbed two-point boundary value problem using equidistribution:

analysis of convergence. J. Comput. Appl. Math., 116:121-143, 2000.

Bibliography

[33]

[89]

[90]

[91]

[93]

[94]

J N Reddy. An Introduction to the Finite Element Method. McGraw-

Hill, 1993.

J Riccius, K Schweizerhof, and M Baumann. Combination of adap-
tivity and mesh smoothing for the finite element analysis of shells

with intersections. [International Journal for Numerical Methods in

Engineering, 40:2459-2474, 1997.

S Ripa. Long and thin triangles can be good for linear interpolation.

Stam Journal of Numerical Analysis, 29:257-270, 1992.

S Ripa and B Schiff. Minimum energy triangulations for elliptic
problems. Computer Methods in Applied Mechanics and Engineer-

ing, 84:257-254, 1990.

M C Rivara. Design and data structure of a fully adaptive multigrid
finite element software. ACM Trans. on Math Software, 10:242-264,

1984.

P Roe. Compounded of many simplices. reflections on the role of
model problems in cfd. In Barriers and Challenges in Computational

Fluid Dynamics, pages 241-258. Kluwer Academic, 1998.

Y Saad. A basic tool kit for sparse matrix computation, version 2.
Technical report, Centre for Supercomputing Research and Develop-

ment, University of Illinois, Urbama, 1994.

190

Bibliography

[95]

[97]

[98]

[100]

[101]

[102]

[103]

Y Saad. [terative Methods for Sparse Linear Systems. PWS, Boston,

1996.

P M Selwood and M Berzins. Portable parallel adaption of unstruc-
tured tetrahedral meshes. J. Parallel Distrib. Comput., 52:150-177,

1998.

R B Simpson. Anisotropic mesh transformation and optimal error

control. Applied Numerical Math, 14:183-198, 1994.

W Speares and M Berzins. A 3-d unstructured mesh adaptation al-
gorithm for time-dependent shock dominated problems. International

Journal for Numerical Methods in Fluids, 25:81-104, 1997.

W Spears. TETRAD Users’ Guide V103. School of Computing, Uni-

versity of Leeds, 1995.

J Stoer and R Bulirsch. Introduction to Numerical Analysis. Springer-

Verlag, Berlin, Heidelberg, New York, 2nd edition, 1993.

G Strang and G J Fix. An analysis of the finite element method.

Prentice-Hall, 1973.

J Szmelter, J Marchant, and M J Evans. 2-dimensional navier stokes
equations with adaptivity on structured meshes. Computer Methods

in Applied Mechanics and Engineering, 101:355-368, 1992.

BH V Topping and A T Khan. Parallel Finite Element Computations.

Saxe-Coburg Publications Edinburgh, 1996.

Bibliography

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Y Tourigny and F Hulsemann. A new moving mesh algorithm for
the finite element solution of variational problems. SIAM Journal on

Numerical Analysis, 35:1416-1438, 1998.

University of Trieste,Italy, http://www-dinma.univ.trieste.it/

nirftc/research/easymesh. Fasymesh, version 1.4 edition, 1999.

L. Vardapetyan and L. Demkowicz. hp-adaptive finite elements in

eletromagnetics. Comp. Meth. Appl. Mesh. Eng., 169:331-344, 1999.

R Vertirth. A review of a posteriort error estimation and adaptive
mesh refinement techniques. Wiley-Teubner, Chichester; Stuttgart,

1996.

M Walkley, P K Jimack, and M Berzins. Mesh quality for three-
dimensional finite element solutions on anisotropic meshes. In Pro-

ceedings of FEM3D (to appear) , Univ. of Jyvaskyla, Finland, 2000.

N P Weatherill. Grid adaptation using a distribution of sources ap-
plied to inviscid compressible flow simulations. International Journal

for Numerical Methods in Fluids, 19:739-764, 1994.

H P William. Numerical recipes in C : the art of scientific computing.

Cambridge University Press, 2nd edition, 1992.

X Xu, C C Pain, A J H Goddard, and C R E deOliveira. An automatic
adaptive meshing technique for delaunay triangulations. Computer

Methods in Applied Mechanics and Engineering, 161:297-303, 1998.

192

Bibliography 193

[112] O C Zienkiewicz and R L Taylor. The finite element method, volume 1.

Butterworth-Heinemann, 5th edition, 2000.

[113] O C Zienkiewicz and J Z Zhu. A simple error estimator and adaptive
procedure for practical engineering analysis. International Journal of

Num. Meth. Eng., 24:337-357, 1987.

[114] O C Zienkiewicz and J Z Zhu. The superconvergent patch recovery
(spr) and adaptive finite element refinement. Comput. Methods Appl.

Mech. Eng., 101(1):207-224, 1992.

[115] O C Zienkiewicz, J Z Zhu, and N G Gong. Effective and practical hp
version adaptive analysis procedures for the finite element method.

International Journal of Num. Meth. Eng., 28:879-891, 1989.

