
Operating System Kernels on
Multi-core Architectures

Hesham Moustafa Khaled Almatary

MSc by Research

University of York

Computer Science

January 2016

Abstract

Operating System (OS) kernels have been under research and develop-

ment for decades, mainly assuming single processor and distributed hard-

ware systems. With the recent rise of multi-core chips that may incorpo-

rate a network on chip (NoC), new challenges have appeared that were

not considered before. Given that a complete multi-core system that

works on a single system on chip (SoC) is now the normal case, di�er-

ent cores on a single SoC may share other physical resources and data.

This new sharing scheme on a SoC a�ects crucial aspects of an overall

system like correctness, performance, predictability, scalability and secu-

rity. Both hardware and OSs to �exibly cooperate in order to provide

solutions for such challenges.

SoC mimics the internet somehow now, with di�erent cores acting as

computer nodes, and the network medium is given in an advanced digital

fabrics like buses or NoCs, that are a current research area. However,

OSs are still assuming some (hardware) features like single physical mem-

ory and memory sharing for inter-process communication, page-based

protection, cache operations, even when evolving from uniprocessor to

multi-core processors. Such features not only may degrade performance

and other system aspects, but also some of them make no sense for a

multi-core SoC, and introduce some barriers and limitations. While new

OS research is considering di�erent kernel designs to cope up with multi-

core systems, they are still limited by the current commercial hardware

architectures.

The objective of this thesis is to assess di�erent kernel designs and

implementations on multi-core hardware architectures. Part of the con-

tributions of the thesis is porting RTEMS (RTOS) and seL4 microkernel

to Epiphany and RISC-V hardware architectures respectively, trading-

o� the design and implementation decisions. This hands-on experience

gave a better understanding of the real-world challenges regarding kernel

designs and implementations.

2

Contents

Abstract 2

List of Figures 5

Acknowledgements 7

Author's Declaration 8

1 Introduction 10

2 Field Survey and Review 15

2.1 Architecture of Multiprocessor Systems 15

2.1.1 Shared Memory Multiprocessor Architectures . . 16

2.1.2 Memory Consistency 20

2.1.3 Message Passing Networks-on-Chip-based Processors 20

2.2 Operating Systems . 22

2.2.1 RTOS . 22

2.2.2 Exokernel . 23

2.2.3 L4 Microkernel 24

2.2.4 Multikernel . 28

2.3 Multi-core Operating Systems Examples 31

2.3.1 RT PREEMPT and LITMUS - Linux 31

2.3.2 RTEMS . 31

2.3.3 seL4 . 34

2.3.4 Quest . 36

2.3.5 Corey . 39

2.3.6 FOS . 40

2.4 Operating Systems Design Issues on Multi-core Architec-

tures . 43

2.4.1 Memory System 44

2.4.2 Address Space . 46

3

2.4.3 Cache Coherency 46

2.4.4 Communication and Addressing 47

2.4.5 IO Management 48

2.4.6 Instruction Set Architecure 49

3 RTEMS on Epiphany multi-core NoC 50

3.1 Epiphany Architecture 50

3.1.1 eCore CPU . 51

3.1.2 Memory Architecture 52

3.1.3 eMesh network 53

3.1.4 SDK Environment 54

3.2 Porting RTEMS SMP to Epiphany 54

3.2.1 Toolchain and Parallela Board Setup 54

3.2.2 RTEMS Porting Process 55

3.2.3 Porting RTEMS to Epiphany 56

3.2.4 RTEMS SMP Implementation on Epiphany . . . 60

3.3 Performance Analysis of RTEMS port on Epiphany . . . 62

3.4 Conclusions . 64

4 seL4 microkernel on RISC-V Hardware Architecture 66

4.1 Introduction . 67

4.2 RISC-V User-Level ISA - Version 2.0 [101] 68

4.2.1 32-bit RISC-V Base Integer ISA 68

4.2.2 System Instructions 69

4.3 RISC-V Privilege-level ISA 70

4.3.1 RISC-V Privilege Modes 70

4.4 seL4 on RISC-V . 73

4.4.1 seL4/RISC-V Port Details and Trade-o�s 73

4.4.2 Simple Operating System Running on seL4 78

4.5 Conclusion . 82

5 Operating System Support on Multi-core Architecture 84

5.1 Discussion . 84

5.2 Proposed Solutions And Future Work 89

6 Conclusion 94

Abbreviations 97

Bibliography 99

4

List of Figures

1.1 Operating System Structures [108] 13

2.1 Basic structure of a centralized shared-memory multipro-

cessor based on a multi-core chip [56] 17

2.2 Distributed Shared Memory and Directory-based cc-

NUMA Architectures 19

2.3 The L4 family tree (simpli�ed). Black arrows indicate

code, green arrows Application Binary Interface (ABI) in-

heritance. Box colours indicate origin as per key at the

bottom left. [44] . 27

2.4 Comparison of the cost of updating shared state using

shared memory and message passing. The curves labelled

SHM1�8 show the latency per operation (in cycles) for

updates that directly modify 1, 2, 4 and 8 shared cache

lines respectively. The curves labelled MSG1 and MSG8,

show the cost of synchronous RPC to the dedicated server

thread. [23] . 30

2.5 SMP Initialization on RTEMS 34

2.6 Quest Components [41] 37

2.7 Migration Strategy [68] 39

2.8 Example address space con�gurations for MapReduce exe-

cuting on two cores. Lines represent mappings. In this

example a stack is one page and results are three pages.

[30] . 41

2.9 Time required to acquire and release a lock on a 16-core

AMD machine when varying number of cores contend for

the lock. The two lines show Linux kernel spin locks and

MCS locks (on Corey). A spin lock with one core takes

about 11 nanoseconds; an MCS lock about 26 nanosec-

onds. [30] . 42

5

2.10 OS and application clients executing on the fos-

microkernel [103] . 43

2.11 IPC costs of di�erent L4 microkernel implementations on

hardware architcures [44] 48

3.1 Epiphany Architecture [12] 51

3.2 Epiphany Global Address Map [12] 53

3.3 RTEMS Porting Process 57

3.4 RTEMS on Epiphany Timing and Memory Analysis.

Whole RTEMS column is the squeezed version where there

is no use of the external shared memory. All RTEMS in-

stances are placed in a local memory on each core. All

of the other columns are of the SMP version where some

parts of each RTEMS instance (mentioned in the column's

title) are placed in each core's local memory, and the re-

maining (shared) parts are placed in the shared external

DRAM memory. Execution time is given in cycles. . . . 62

4.1 RISC-V RV32I Instruction Encoding [101] 69

4.2 Encoding of virtualization management �eld VM[4:0].

[100] . 71

4.3 Exception Codes [100] 72

4.4 Sv32 Virtual Address Format [100] 72

4.5 Sv32 Physical Address Format [100] 72

4.6 Sv32 Page Table Entry Format [100] 72

4.7 Sv32 Page Table Entry Type Encodings [100] 73

4.8 Sv32 Page Translation Process. 74

4.9 Possible RISC-V Modes That seL4 Can Run In. 76

4.10 SOS Framework . 79

4.11 seL4/SOS bootstrap procedure 81

5.1 Wishbone Interface [57] 91

6

Acknowledgements

I would like to thank my father, who has always been my hero, and

supported all my decisions, my mother for spreading joy and my sister

for being a great friend. I would not have been what I am if it was

not for my family. Special thanks to my supervisor Neil Audsley for

helping me out during this great research journey, he has been of great

support during my time at the university. Thanks to Gedare Bloom and

Joel Sherrill of RTEMS, who not only provided me with resources and

advices about RTEMS, but also gave me personal opinions, ideas and

suggestions. Thanks for trusting me.

7

Author's Declaration

I declare that, except where explicit reference is made to the contribution

of others, that this thesis is the result of my own work and has not been

submitted for any other degree at the University of York or any other

institution.

Scienti�c and open-source development contributions that I have

made during the time of doing this degree and related to this thesis

are:

• RTEMS port to Epiphany Patches for RTEMS to support the

Epiphany architecture and Parallella BSP are merged with RTEMS

upstream repository. I am the only and �rst maintainer for this port

within RTEMS.

• RTEMS ports to RISC-V and MicroBlaze These ports are

held on my own public github repositories (not merged with

RTEMS upstream yet). There are future plans to merge these

ports with RTEMS upstream.

• seL4 port to RISC-V This is a project that I worked on part

of Google Summer of Code 2015 program with lowRISC/RISC-V

organizations. I gave a presentation about this project at ORCONF

2015 conference at CERN, Switzerland.

• Reducing the Implementation Overheads of IPCP and

DFP I co-authored this paper with Alan Burns and Neil Audsley.

The paper was accepted and presented by Alan Burns at RTSS

2015 conference, and to be published.

• Integration of VScale/RISC-V core with OpenRISC I

worked on changing the interface of the UC Berkeley's VScale core

8

implementation of RISC-V, and wrapped it up with a wishbone in-

terface to work with other open cores. This work was merged with

OpenRISC/FuseSoC.

9

Chapter 1

Introduction

Computer architecture has moved into a new era of the multi-core sys-

tem on chips to overcome the bottleneck of overheating and power con-

sumption within a high frequency uniprocessor system while preserv-

ing Moore's law, so that a single chip can accommodate smaller, and

more, numbers of transistors. This is achieved by dividing up computa-

tion cores from a single high performance uniprocessor, into smaller and

slower cores. Such cores can be identical (homogeneous) or di�erent (het-

erogeneous). Hardware designers have striven to make this architecture

change as transparent as possible to the programmer with the cost of

making the hardware more complex, and sometimes lower performance.

This is not an acceptable solution any more.

As Hennessy and Patterson state it clearly in their state-of-art com-

puter architecture book: �The La-Z-Boy programmer era of relying on

hardware designers to make their programs go faster without lifting a

�nger is o�cially over.� [56]

The software has to be re-designed to run in parallel on such multi-

core systems. This will make life (relatively) easier for hardware design-

ers, while increasing the software performance. Re-designing a software

that assumed uniprocessor systems for decades especially if this software

has thousands and millions lines of code is not an easy task. Program-

mers now not only have to worry about their code correctness, but also

they need to take parallelism, performance, scalability and security into

consideration, each with its own challenges. Moreover, hardware and

software designers have to work closely to introduce better solutions in-

stead of working on their own problems separately.

Typically, an OS kernel is the �rst piece of software that deals with

hardware directly, and provides common services to higher level applica-

10

tions. This means that OS kernel developers are the �rst to be exposed

to the new multi-core hardware architecture. On the one hand, con-

temporary monolithic OSs like Linux have been trying to modify their

design to work on multi-core systems in a Symmetric Multiprocessing

(SMP) manner, and developers have to deal with problems and bugs as

they arise. Furthermore, such adoption is not always scalable beyond

some number of cores due to the inherent hardware and software sharing

scheme such monolithic kernels have been designed for. On the other

hand, the research community is working on introducing new OS kernel

designs that are written from scratch [23, 41, 103] (rather than building

on an existing kernel) with multi-core architecture in mind. The later

has helped with introducing new better solutions that can help with scal-

ability, performance, and security.

As the internet has proven that it is scalable and reliable, the new

hardware and OS architectures are embracing many of the old distributed

systems ideas. In fact, network on chips have implemented some of the

same internet-based protocols to work on a single chip. The OS develop-

ers are also trying to adopt old distributed OS ideas that were working

over the internet, to work on a single chip. Since microkernel distributed

system design has been of a big success, current research OSs are inspired

by microkernel and message passing designs. Such research OS kernels

are like pure microkernel, multikernel and factored OSs.

Unfortunately such promising research OSs are still being limited

by the current commercial hardware architecture constraints such as

(non scalable) caches, page-based granularity for memory protections,

memory sharing for inter-process communication, etc. Some of them are

only prototypes that run on simulators only.

The goal of this thesis is to address the issues that di�erent OS de-

signs face when written (or ported) to run on multi-core hardware ar-

chitectures. In fact, hardware architecture greatly a�ects the design and

implementation of OS kernel designs and implementations. Some kernel

designs work well on multi-core architectures like microkernels and mul-

tikernels, basically because of their message passing model, scalability

and modularity, but others do not. Furthermore, the hardware architec-

ture might prevent an OS from implementing one or more of its design

principles. Basically, an OS manages the three basic components of a

hardware computing system: CPU(s), memories and IO, and it exports

11

an interface to applications in the form of services. That is what an OS

in general is for. OS designs di�er in which service goes into which layer

(kernel/privilege layer or user/application layer, and sometimes hypervi-

sor layer) and how di�erent OS and application components communicate

with each other (securely). Figure1.1 is an example of di�erent kernel

designs.

A basic set of services that a typical OS would provide are memory

management, scheduling, Inter Process Communication (IPC) and de-

vice drivers. Di�erent kernel designs tend to end up into two old rivals:

monolithic and microkernel. Other kernel designs like hybrid, multiker-

nel and factored OS can be considered as derivatives of the two major

ones.

On the one hand, monolithic kernels get the advantage of performance

and a rich set of services and device drivers implemented in a privileged

mode. Its high performance is due to the fact that the communication

between applications, kernel and services are just direct function calls

and/or system calls. On the other hand, microkernels get the advantage

of modularity between its subsystems that enable it to be split up into

separate physical hardware cores, making it highly scalable, unlike mono-

lithic kernels. However, such scalability and modularity features come

with a performance overhead incurred within the message-passing IPC

component as every microkernel subsystem (including the microkernel,

applications and device drivers) interacts with one another using this

IPC layer.

With the beginning of the multi-core era both designs are trying to

make use of the new cores and parallelism, and both face issues. To give

an example, some hardware architectures with low memory resources

might require the kernel services to be split up into di�erent cores with

distributed memory. This is possible with microkernels, but might be

impossible with monolithic kernels. Similarly, some hardware features

like cache coherency and shared memory work well with monolithic

kernel, but not with microkernels. Networks on chip and new hardware

security implementations can be easily/better utilised by microkernel's

components like message-passing and capability management to boost

performance and security, but might make no sense for a monolithic

kernel (if it does not break its functionality and/or design principles).

In order to get an actual real-world experience of these issues, this

12

F
ig
ur
e
1.
1:

O
pe
ra
ti
ng

Sy
st
em

St
ru
ct
ur
es

[1
08
]

13

thesis reports the e�ort of porting di�erent kernel designs like RTEMS

(as a monolithic RTOS), and seL4 microkernel to di�erent multi-core sys-

tems like Epiphany/Parallella and RISC-V architectures. RTEMS and

seL4 are cutting-edge OSs that have been deployed in important real-

world safety critical projects (involving NASA and military projects),

and both can be regarded as a state-of-art of its kind. Ports of RTEMS

to both OpenRISC and Epiphany are already upstream, and currently

being used and developed part of other projects. Furthermore, RTEMS is

on its early stages of supporting SMP, so porting it to Epiphany (with 16

cores), enabled us to investigate pros and cons of RTEMS SMP support

and Epiphany (as a new multi-core chip), along with proposing ideas to

improve both. It is noticed that trying to convert a monolithic kernel like

RTEMS to other designs was not practical on a multi-core architecture

like Epiphany. The thesis discusses the reasons why that was not possi-

ble, giving a motivation to investigate another kernel design like seL4 on

another hardware architecture. seL4 microkernel is more sophisticated

than RTEMS (from design perspective), and requires more hardware fea-

tures and resources. So, porting it to RISC-V architecture gives a better

understanding of the hardware requirements needed for microkernels not

only to run, but also to scale and maintain its simplicity and security

features.

Chapter 2 provides a literature review of hardware architecures along

with OS designs and examples. The chapter also dicusses how those

OS implementations �t with hardware architecures, and the issues in-

volved. Chapter 3 gives a hands-on experience (author's contribution) of

the challenges faced while porting RTEMS to Epiphany multi-core NoC.

The chapter concludes hardware limitations of Epiphany, and shows the

motivation to use a more �exible hardware like RISC-V. Chapter 4 gives

an overview of RISC-V hardware architecure and seL4 microkernel, and

summarizes the porting experience of seL4 to RISC-V. Chapter 5 dis-

cusses the issues of OSs on multi-core architecures, and proposes solu-

tions. Finally comes the conclusion in chapter 6.

14

Chapter 2

Field Survey and Review

The following sections cover the literature of the components of the stack

that are involved with the issues discussed in the introduction. These

components are OSs and multi-core hardware architectures. The review

will only deal with multi-core hardware and OSs research topics giving

some examples of them and how they propose solutions for scalability,

performance and security.

2.1 Architecture of Multiprocessor Systems

In this section the research about multi-core multiprocessor System on

Chip (SoC) is discussed, traditional single-core systems and clustered

internet-based distributed systems are beyond this survey as the focus

is on the single chip/board level. Designing and implementing Multi-

Processor System on Chip (MPSoC) have trade-o�s and challenges. Most

notably the trade-o� between hardware and software support for such a

system. Making the programmer's life easier comes with the cost of a

complex hardware support which consumes power, size, and sometimes

introduces programming limitations, performance degradation and suf-

fers from scalability issues (like cache-coherency). On the other hand, it

is possible to reduce the hardware cost and complexity by exposing the

MPSoC architecture to the programmer, who in turn can make the best

use of this parallel hardware, even better than the hardware support, or

might totally disrupt the hardware he/she is working on by writing buggy

and error-prone programs due to ignorance of how to deal with such a

new hardware design and software model (message passing model for ex-

ample). In the following section some of the hardware architectures are

provided and the focus will be on memory organisation of such systems

15

as it is the crucial component that a�ects correctness and performance

and OS kernel designs and implementations. In the section that follows

it, OS solutions are discussed.

2.1.1 Shared Memory Multiprocessor Architectures

Uniprocessors were easy to program, the programmer was only required

to write a correct sequential software while performance and instruction-

level parallelism techniques were left to the hardware designer. Since

2003, uniprocessors could not keep up with Moore's law by having more

transistors on the same uniprocessor chip, mainly because of power con-

sumption and heat bottlenecks that come with higher clock frequencies

and an increase in the number of transistors. Although multiprocessor

implementations were already there since the early days of computers,

they were only part of research and mainframes �elds (in data centres).

So, to get over such an issue, multiprocessor designs have been imple-

mented at the chip/board level that we know today as multi-core proces-

sors. Multiprocessor architectures vary but they fall into two super cate-

gories according to the memory organisation: Symmetric Shared Memory

Multiprocessors (SMP), and Distributed Shared Memory Multiprocessors

(DSM). Both architectures are discussed below.

Symmetric Shared Memory Multiprocessors

SMP means that for a system that has multiple processors sharing mem-

ory, each processor has the same memory access latency with one an-

other. Thus, all processors share the same physical main memory with

equivalent access latency as shown in �gure 2.1.

The adoption of caches, originally to increase performance and re-

duce memory latency, for this architecture makes it more complicated

than uniprocessors. If more than one processor have their own caches

that may contain a copy of a shared data in main memory, there must be

a way to enforce coherency of this shared data across di�erent processor's

caches when read and written. Di�erent cache coherency protocols have

been implemented to handle such a hurdle. Snoopy caches is a protocol

to achieve coherency. In snoopy caches, each processor's cache that has

a copy of a shared data monitors the memory bus for any updates by

other processors. The main problem with snoopy caches is that with the

increasing number of cores and caches, the monitoring process would add

16

Figure 2.1: Basic structure of a centralized shared-memory multiproces-
sor based on a multi-core chip [56]

17

a memory latency overhead due to bus contention, and might saturate

the memory bus. That is why snoopy caches and SMP do not scale well

beyond small number of processors. New solutions have been proposed

like multi-level caches, but still they do not scale well. So another archi-

tecture is needed if scalability is a concern, which is Distributed Shared

Memory.

Distributed Shared Memory Multiprocessors

Distributed Shared Memory with caches, also known as ccNUMA (an

abbreviation of Cache Coherent Non-Uniform Memory Access) is a way

to build scalable multiprocessor systems that avoid the issues discussed

in the previous SMP section. Attempts to build ccNUMA multiprocessor

machines to address scalability challenges at the hardware level go back

to the early 90s. DASH (Directory Architecture for Shared Memory) [67]

is one of these early attempts to build a ccNUMA machine developed by

Stanford University and is the �rst operational ccNUMA machine and is

considered the base of modern ccNUMA architectures known today (SGI

2000 [65], SGI Altix [105], IBM Bluegene [79] and modern clustered SMP

that will be discussed later). The motivation to build DASH was to �gure

out a way to build a scalable cache coherent machine that performs well

with the increasing number of processors and competes with the scalable

message-passing machines at this time. The solution was to divide up the

physical shared memory into smaller physical ones, all of these smaller

memories combined act as a single logical address space shared memory

that the programmer assumes with cache coherency retained. The trick

to construct this kind of physically scattered, logically shared address

space was hidden by the hardware implementation.

Figure 2.2 shows a transition from a single shared memory architec-

ture to ccNUMA.

A new hardware structure called the directory was introduced 1 to

avoid the scalability limitations that come with the traditional snoopy

caches. A directory is like a front-end gate of a small computing clus-

ter consisting of one or more processors with a shared (snoopy) cache

and physical memory; this directory connects the clusters to an intercon-

nection network which connects other clusters together. Each directory
1Directories can be implemented in SMP machines where the outermost cache

level (i.e. L3) implements a directory that keeps track of cache blocks held by private
caches, and that is how Intel i7 cores work. However the directory concept discussed
in this literature assumes DSM only.

18

F
ig
ur
e
2.
2:

D
is
tr
ib
ut
ed

Sh
ar
ed

M
em

or
y
an
d
D
ir
ec
to
ry
-b
as
ed

cc
N
U
M
A
A
rc
hi
te
ct
ur
es

19

keeps track of what data its memory has, and what data are cached in

this cluster, and it has references to other clusters containing a copy of

this data. This way the directory can make point-to-point invalidation

operations to the caches that are involved only instead of the non-scalable

broadcast method.

2.1.2 Memory Consistency

Memory consistency is a major concern when it comes to constructing

multiprocessor shared-memory systems. The main question is, what is

the order of memory operations from multiple processors as seen by the

memory and/or the program? �The set of allowable memory access or-

derings forms the memory consistency model or event ordering model

for an architecture.� [50]. The consistency model is also de�ned to be a

contract between the software and the memory [13]. There are di�erent

types of memory consistency models: strict, sequential [64], processor,

weak, [13] and release [50] consistency models. Some of the consistency

models are intuitive like strict consistency, but are ine�cient from a per-

formance point of view, while other models aim to relax the limitations

incurred by each other to increase performance, but usually this makes

it harder for the programmer.

2.1.3 Message Passing Networks-on-Chip-based Pro-

cessors

Shared memory architectures are intuitively not scalable especially

when there are many processors contending for a data structure on

the same physical location of memory. Even with DSM architectures

like directory-based ccNUMA that aims to enhance scalability, it is

believed that even ccNUMA will not be able to cope up with increasing

number of cores beyond 1000+ cores [103, 23] due to the complexity and

communication overhead needed to preserve coherency between caches.

As the internet-based distributed system proved it can be scalable

for millions of devices, current SoC trend tends to adopt the message

passing nature of the internet on the chip level, using NoCs. This

allows a processor to scale well on the chip/board level. Such NoC

based many-core systems already exist and even manufactured by

big semi-conductor companies like Intel [59], while it is currently an

20

important research area within universities [80, 5, 3].

Modern multi-core architectures tend to maintain a mixture of SMP

and DSM and some integrate NoCs to get the best features of each.

Tilera [39] is a recent non-uniform scalable multi-processor chip with

caches and cores connected to each other by iMesh NoC and it also

uses message passing. Coherency on Tilera is maintained by directories.

AMD Opteron has 48 cores, cache coherency is implemented by MOESI

protocol [106] while Intel Xeon has 80 cores divided up into 8 chips,

each of which has two 10 cores. Each chip maintains cache coherency

using snooping protocol, and broadcasting is used to achieve coherency

across di�erent chips. Sun Niagara 2 has 8 cores and each core is

able to handle 8 hardware threads, thus, it can run up to 64 hardware

threads. Communication between cores can occur using a crossbar

network and cache coherency is directory-based. Epiphany [12] is a new

NoC architecture with small 32/64 RISC cores each of which has its

own 32 KiB addressable local memory, while all of them can access a

shared o�-chip RAM. Epiphany NoC completely discards any caches,

and all the communication on the NoC is message-passing oriented. The

founders of Epiphany claim that their architecture can be scaled up to

millions of cores, with the only limitation being the size of the address

space (hence, number of addressable cores, since every core has 1 MiB

address space).

21

2.2 Operating Systems

OSs traditionally were the lowest level of software that is managing the

hardware directly. They provide all the required functionalities that ap-

plications need in order to execute and do their job in a way that makes

the hardware transparent to application developers. The core part of an

OS that is dealing with hardware directly is usually called the kernel.

Di�erent kernel designs have been implemented, each with its pros and

cons. Some kernel designs are better working on some hardware archi-

tectures than others. In this section a few well-known kernel designs

are discussed along with their abstractions and, when it applies, some of

their features that this thesis is concerned with.

2.2.1 RTOS

A Real-Time OS (RTOS) is mostly concerned with determinism and

predictability. That is, knowing when a task would be triggered, its

response time and when and for how long it can handle a speci�c

request, all of these are crucial aspects of an RTOS. It may even

sacri�ce performance for the sake of predictability. There are two super

categories of RTOSs (or real-time systems in general): hard real-time,

and soft real-time.

In hard real-time systems, a task has a strict deadline; a system will

fail if this deadline was not met. On the other hand, in soft real-time

systems, some tasks have (soft) deadlines that can be missed, and

the system would still operate correctly. Depending on application

requirements, hard and soft deadlines for tasks are determined.

RTOSs have applications mostly in safety-critical embedded system

world like: aerospace, medical devices, vehicle control, military applica-

tions, robots, cell phones, etc. There are many RTOSs, RTEMS [82] is a

successful open-source RTOS that has made it to planet Mars [109, 45],

and is discussed in details in the following section as an example of an

RTOS. Other RTOSs share the same features with RTEMS, especially

when it comes to scheduling algorithms. RTOSs may need some special

hardware features like counters and timers.

22

2.2.2 Exokernel

Exokernel [46] design motivates the idea that applications are the best

to know their requirements, and hence they can achieve great perfor-

mance boost without being restricted to the underlying traditional OS

interfaces. With exokernel, application developers should be aware of

the hardware they are dealing with, thus, making application program-

ming to require more knowledge and e�ort. Exokernel draws a �rm line

between what a kernel does, and what applications do. The exokernel

is only responsible for security/protection and multiplexing hardware re-

sources, no abstractions, management or policies are included part of the

exokernel layer. It then exposes the hardware resources to applications,

enabling them to have direct access to manage the hardware in an ef-

�cient and optimised way, given that they know what they are doing.

This way, the exokernel implementation can focus on the security, and

reduces the number of potential bugs, given that it would be very small,

and hence can be easily debugged. The application level is the layer that

is fully responsible of any management and policies, and it can be as big

as a full libOS (library OS), that entirely operates in user-level mode.

The library or applications are referred to as untrusted software. Unlike

microkernels (discussed later), exokernel excludes virtual memory man-

agement and Inter Process Communication (IPC) from the kernel layer,

and leaves it to the libOS. This is an issue with conventional hardware ar-

chitectures because some operations (like virtual memory management)

can not be done in user-level, and applications would need to trap to the

kernel anyway. This is an example of how a hardware architecture may

prevent a kernel design principle from being implemented.

For an application and/or a library OS to execute, exokernel has

three main mechanisms to expose hardware resources through a secured,

well-de�ned API:

• Secure Binding.

• Visible Resource Revocation.

• Abort Protocol.

Secure binding is a way to bind a libOS to a speci�c resource upon

request. So, a libOS would ask for a given resource from the exokernel,

and then the exokernel would check for potential protection violations,

and if there are not any, it would grant the resource to the libOS in the

23

form of encrypted key, and subsequent accesses to this resource from

the granted libOS would no longer require exokernel intervention (that

depends on the type of resource). Secure binding can be implemented in

three ways: 1) hardware, 2) software caching and 3) download code into

the kernel.

Resource revocation is an exokernel operation that takes back a

resource given to a libOS and may claim it to another libOS. The

revocation process noti�es the libOS that has the resource which is to be

revoked with hardware information (e.g. page frame number to be taken

back) so that it can take the proper actions. Code can be downloaded

into the kernel by a libOS so that every time a given resource is

to be revoked, the exokernel would automatically invoke this libOS

handler in its kernel context, without the overhead of notifying the libOS.

Abort protocol de�nes the actions to be taken if a libOS failed to

handle a resource revocation request from the exokernel; in this case,

the exokernel takes the appropriate actions such as taking back the

resources by force and/or killing the failed libOS and its associated

applications.

Exokernel design is simple, small, scalable and secure, it can act as a

hypervisor, the main issue is that it has not been researched well enough,

and it can be considered as an extreme version of a microkernel, not a

totally di�erent design. Furthermore, due to the feature that enables

applications to download code to the kernel to increase performance (e.g.

exception handlers that might implement policies), exokernel tends to be

converted to microkernels or even monolithic kernels. exokernel might

do well on distributed multi-core systems (with low memory resources)

thanks to its small-size and message-passing nature, but again, this has

not been tried out or researched yet.

2.2.3 L4 Microkernel

L4 Microkernel is the fourth generation of Liedtke's microkernel [69]

design. Microkernels were created to reduce the complexity of traditional

monolithic OSs that try to implement every possible abstraction an

application may request. Instead, microkernel embraces the idea of only

24

implementing the required code to manage the hardware in a privileged

manner, and move any other abstractions/policies (that do not require

privileged access) to user-level. This way, the kernel size would be

minimised and it would be easier to debug and maintain. Because other

discussed kernel designs (like exokernel, FOS and multikernel) tend to

be microkernel-like and/or derivatives, microkernel topic is discussed in

more details.

A microkernel should guarantee subsystems independence and in-

tegrity. Independence means that it is possible to create new subsystems

that can not mess with each other's contexts. The main abstractions of

a microkernel are:

• Address Spaces.

• Threads and IPC.

• Unique Identi�ers.

A microkernel should act as a manager of the underlying hardware

memory protection/translation mechanism (e.g. MMU). It should ab-

stract away the management of such resources transparently. This means

that a microkernel would keep track of each user-level thread mappings

(i.e. page-tables mapping and/or TLB entries). Operations on a given

address space are exposed by a microkernel to enable memory manage-

ment handling in user-space, thus, this supports building new address

spaces by user-level applications without knowing the hardware details.

The microkernel achieves this goal by providing some operations associ-

ated with an address space:

• Grant: Means that a thread that owns a page frame can give it to

another thread, and remove it from its own address space.

• Map: Unlike grant, mapping a page would enable the owner thread

and the other thread that the owner maps one of its pages into its

address space to access the same page.

• Flush: Revoke the pages (by the owner) that were given using

grant/map operations from non-owner address spaces.

Threads and IPC are major characteristics about microkernels, and

they are important topics when it comes to trade-o�s and performance

25

analysis. IPC is the way to exchange messages between microkernel-

based subsystems (between threads with each other, and/or between

threads and the microkernel). IPC is a critical microkernel operation as

it is the standard way of communication and its implementation has a

great e�ect on the overall performance of a microkernel-based system.

Thus, it should be carefully implemented and optimised to decrease its

inherent overhead. In fact, one of the major criticisms for microkernels is

its performance degradation due to IPC compared to monolithic kernel

function calls.

The microkernel should also provide a way to generate unique iden-

ti�ers for its subsystems. An example is when a thread wants to send

a message to another one, it will use an identi�er as an address for the

destination thread. Similarly, an address space may have identi�ers that

can be useful during context switches (ASID).

History and changes of L4 microkernels

L4 microkernels, originally developed by Liedtke [69], have been in exis-

tance for over 20 years. Since then, microkernels have been improved and

it was proven that the concepts of microkernels are not only applicable,

but also competitive to other kernel designs from a performance perspec-

tive. Some implementations of L4 microkernels have been deployed to

billions of mobile phones and safety critical systems [44], asserting micro-

kernel capabilities as well as security advantage compared to other kernel

designs. A time-line of microkernel implementations during the last 20

years is shown in �gure2.3.

Some of the design principles have changed since Liedtke's paper

that introduced [69] L4 microkernel, but all of the L4 derivatives adhere

the minimality principle. Elphinstone and Heiser [44] discus the trade-

o�s and changes to microkernels in details, some of them are given below.

Long IPC Long IPC in L4 was a way to transfer long strings from

a thread context (sender) to another (receiver). The problem with this

long IPC is that when doing a send syscall on an IPC context of the

sender that may not be fully mapped, the kernel may incur a page fault

during the copying process. This is not a desired behaviour as the kernel

assumes all interrupts and concurrency to be disabled. Moreover, L4

terminology is to handle page faults in user-level, not in the kernel, this

26

Figure 2.3: The L4 family tree (simpli�ed). Black arrows indicate code,
green arrows Application Binary Interface (ABI) inheritance. Box colours
indicate origin as per key at the bottom left. [44]

user-level handler may use one or more syscalls, hence it raises nested

exceptions in the kernel, a thing that is not desired. That is why almost

all of the L4 kernels have discarded long IPC features, and used shared

bu�ers.

IPC timeout has been abandoned in seL4 and OKL4. The main

reason is that there was no way to determine the exact time for a

timeout. Instead of making the kernel choose an arbitrary timeout,

this can be done by the user for example using a timer's wait system call.

Synchronous IPC have been the major model so far, but recently

some of the problems have appeared due to this model when it comes

to multi-core scalability and multi-threaded approaches. For example

a thread that wants to communicate with another thread will have to

initiate an inter-core request (which is costly) and blocks waiting for a

reply. The solution was given by seL4 by introducing asynchronous IPC.

As discussed before, original L4 model used thread IDs for commu-

nication between threads. There were some problems associated with

thread IDs like poor performance and the possibility that a server may

reply to the wrong thread. This was replaced in seL4 for example using

a new endpoint implementation. Endpoint is a middle-ware entity that

27

accepts requests from senders and sends it to receivers. Each thread

that wants to use any sort of communication should have a capability to

a given endpoint (discussed later in seL4 example).

The Clans and Chief model that manages the way IPC occurs

was believed to be very insu�cient. This was replaced by capability

access control in seL4 and Fiasco.OC

Microkernels have been known for their security, scalability and vir-

tualisation features. To enforce security, they need some hardware units

like MMU and di�erent CPU privilege levels. Thanks to their mini-

mality, modularity and message-passing IPC design principles, they can

work greatly on DSM, multi-core and NoC-based hardware architectures.

This might be the proper time for microkernels to rise again in the era

of multi-core systems.

2.2.4 Multikernel

Multikernel [23] is a new kernel design originally proposed by ETHZ

Systems Group and Microsoft Research. The authors of the paper argue

that current OS designs will not cope up with the increasing number of

cores and the MPSoC revolution, and propose the multikernel design as

a solution that introduces new principles for an OS to be scalable:

• Inter-core communication should be explicit.

• OS should be hardware agnostic.

• No shared data structures, instead the state would be duplicated.

The main motivation for such a new design is that experimental (and

practical) results exposed the ine�ciency of current shared-memory OS

designs that assume speci�c hardware features such as cache-coherency.

The results doubt that such OS designs on cache-coherent shared-

memory systems will scale to more than 80 cores. The reason is mainly

due to cache update contentions. Moreover, the concept of shared data

structures that OSs have been adopting limits scalability opportunities.

When moving from the single-core design to multi-core, OSs had to

implement new multiprocessor locking protocols. Such protocols either

assume a given speci�c hardware design (ccNUMA), or they would not

scale well. Besides, when re-factoring an OS that was written for a single

28

core system, to work on a multi-core environment, locking granularity

becomes a bottleneck for scalability, and for software developers, and

would introduce more bugs (i.e. a developer may forget to protect a

data structure with a lock).

For heterogeneous systems, it is almost impossible to port a

traditional OS to work with di�erent Instruction Set Architectures

(ISAs) at the same time, hence this restricts an OS to support only a

homogeneous SoC, while this SoC may have other co-processors or cores

that can be utilised to increase performance for custom application needs.

For the previous reasons, multikernel design adopts the no-sharing

and hardware agnostic principles. No-sharing would avoid the use of

locking at all, and consequently, its hardware dependency. Instead,

(asynchronous) message passing is used for communication between

di�erent cores (no implicit cache-coherent transactions assumed). While

there are arguments between the performance of shared-memory versus

message passing models, the paper shows that message passing outper-

forms shared-memory when the number of cores increases (see �gure

2.4). This way, a multikernel OS can resemble a distributed system and

adopt the scalable algorithms that were invented in such a �eld, but this

time, at the level of the SoC.

The main issue for the multikernel design, while it is a new promising

one, is that its few implementations (mainly Barrel�sh that was given

as the �rst multikernel prototype in the same paper) are still restricted

by the hardware limitations like cache-coherency despite the multiker-

nel hardware-agnostic abstraction. Barrel�sh has only been ported to

Intel-based architectures and ARM. It would be more convenient for a

multikernel implementation to work on FPGAs in order to easily discard

the hardware limitations introduced by ASIC processors, and to add new

features on the hardware level that �t with the multikernel requirements.

Moreover, like exokernel, multikernel can be considered as separate in-

stances of a microkernel running and communicating with each other. In

fact, seL4 and Quest (discussed later) OSs can be con�gured as multik-

ernels while they are originally microkernels.

29

Figure 2.4: Comparison of the cost of updating shared state using shared
memory and message passing. The curves labelled SHM1�8 show the
latency per operation (in cycles) for updates that directly modify 1, 2,
4 and 8 shared cache lines respectively. The curves labelled MSG1 and
MSG8, show the cost of synchronous RPC to the dedicated server thread.
[23]

30

2.3 Multi-core Operating Systems Examples

2.3.1 RT PREEMPT and LITMUS - Linux

Despite being a monolithic kernel that is intended to run on desktops

and servers, Linux has been patched to support hard real-time tasks

via a patch known as RT PREEMPT [6]. Originally, Linux was only

supporting soft real-time tasks. RT PREEMPT patch introduced some

(relatively) minimal changes in order to convert the Linux kernel into a

real-time one. The changes are mainly concerned with enabling kernel

pre-emption within contexts like: spin-locks, critical sections, interrupt

handling and interrupt-disable code.

The patch also implemented high resolution timers and timeouts,

making it possible to support high resolution POSIX operations in user

space. Moreover, it preserves priority inheritance implementation within

kernel mutexes and spinlocks.

Some of the RT PREEMPT patch has made it to the Linux kernel

mainline, while the rest is still kept synchronized against every release

of the Linux kernel in a set of patches. The RT PREEMPT patch is

currently maintained and has its own web-page [6] with details how

to get the patches, apply it and even run a real-time hello world example.

LITMUS [36] is the testbed based on Linux that investigates and anal-

yses real-time scheduling algorithms (global and partitioned) like Pfair

[58] and Global EDF on SMP multiprocessors, and compares their per-

formance.

2.3.2 RTEMS

RTEMS, Real-Time Executive for Multiprocessor Systems [82] is a

free open-source RTOS. It has been ported to over 16 architectures

and about 180 Board Support Packages (BSPs), and it includes API

standards such as POSIX. RTEMS has been widely used for automotive

control, robotics, medical devices, aerospace, military and industrial

applications. Most notably, NASA [7, 8] has utilised RTEMS. More

details are given about RTEMS (here and in the next chapter) as it is

used part of this thesis as a representative monolithic RTOS.

31

RTEMS is modular and extendible [9, 49], and is structured as a set

of managers (e.g. for semaphore, IO, barrier and memory), with a core

manager used by other managers.

RTEMS has support for many scheduling policies. The scheduling

framework in RTEMS [29] allows for user de�ned pluggable policies.

Standard RTEMS schedulers include: priority, earliest deadline �rst and

constant bandwidth scheduler.

SMP Support on RTEMS

RTEMS has basic support for SMP [83] on the SPARC [37], ARM, x86

and PowerPC CPUs.

The prerequisite for porting RTMES SMP support to a new archi-

tecture is the provision of an atomic operation. This can be achieved

using atomic operation support in GCC (if available for the platform),

or by extending RTEMS. Also, additional low-level functions are required

within RTEMS, including synchronization management via ticket locks.

Platform dependent core identi�cation functions are required, used

for a purposes like distinguishing between the boot processor and other

secondary processors, acquiring per-cpu information, assigning a thread

to a speci�c processor and other operations. RTEMS uses linear num-

bers for cores starting with 0, up to the number of cores minus one.

Normally a core with the 0 ID is called the boot processor, which is the

one that initialises the whole system including the secondary processors,

and makes them ready for executing parallel thread applications. Some

inter-processor interrupt functions must exist for cores to communicate

with each other.

SMP Initialisation

Figure 2.5 summarizes the current SMP initialisation process on RTEMS.

Boxes with black background refer to processes that happen on both

boot and secondary CPUs. Boxes with white background are for op-

erations done by the boot CPU only while grey background is for sec-

ondary CPU(s) operations. Operations on both types of CPUs (boot and

secondary) are done in parallel until the boot CPU indicates for other

CPUs to start multi-tasking. Once all CPUs have started multi-tasking,

they can execute threads, communicate, exchange messages and/or as-

32

sign threads to each other (if supported by the con�gured SMP sched-

uler). Currently, there are three types of messages that one CPU can

send to another one: 1) shut-down, 2) test, and 3) cache management. A

message type code is injected into _Per_CPU_Information structure

associated with the targeted CPU, then an inter-processor interrupt is

sent to this CPU.

A few SMP scheduling algorithms exist on RTEMS. The default one

is Priority Fixed SMP which is an extension to the uniprocessor Priority

Fixed Scheduler. It is a global scheduler that maintains ready threads in

a shared array with each entry pointing to a queue of threads having the

same priority level. Simple SMP scheduler is another extension to unipro-

cessor Simple Priority Fixed Scheduler. It uses just one queue (doubly

linked list) to maintain ready threads. Partition/Cluster Scheduler can

also be used using some utility functions. A major problem, that SMP on

RTEMS currently faces, is the usage of giant global lock. This giant lock

limits the peformance of the whole system especially when the numbers

of cores and threads (that need frequent access to the kernel e.g. system

calls and share kernel data structures) increase. Finer grained locks are

needed to make RTEMS more scalable and allow concurrency within the

kernel (hence increase performance).

33

Figure 2.5: SMP Initialization on RTEMS

2.3.3 seL4

seL4 is a new open-source L4 microkernel developed by NICTA and now

owned by General Dynamics C4 Systems. It gained its popularity being

�The world's �rst operating-system kernel with an end-to-end proof of

implementation correctness and security enforcement and is now open

source. [107]� seL4 developers believe that it is the state-of-art L4

microkernel currently. L4 simplicity concept has been achieved in seL4

34

given that it has about 10K lines of C code, compared to Fiasco.OC

which has 36K lines of C/C++ code. Currently seL4 is ported to only

two architectures: ARM and IA-32 2. Only the ARM port is formally

veri�ed, and both support only 32-bit implementation, however the

64-bit implementation is a work in progress. The IA-32 port supports

booting in multikernel mode unlike the ARM port.

There are di�erent types of kernel abstractions:

• CNode

• TCB

• Endpoints (synchronous and asynchronous)

• Virtual Address Space

• Interrupts

• Untyped memory

CNode, is a key implementation of the capability-based management

for access control. A CNode is a table of slots that may contain other

CNodes or capabilities. Like the hardware page-tables, CNodes are

constructed in multi-level tables layout. Each capability has its exclusive

address within the task, provided its root CNode. This address is used

to refer to this capability and do operations on it (i.e. mint, copy,

revoke, etc).

TCB (Task Control Block) is a control structure for seL4 threads.

Each thread has its own kernel TCB that contains related kernel data

about this task. TCBs have �xed size for each architecture.

Endpoints enables tasks to communicate with each other and

exchange messages through the IPC bu�er and/or physical message

registers. There are two kinds of Endpoints: synchronous and asyn-

chronous. Synchronous endpoints are mainly used for communication

between threads, while asynchronous endpoints can be used for inter-

rupts delivery.

2RISC-V port is already there but has not been upstream (yet).

35

Each task has its own address space as with most OSs3. Depending

on the architecture, address space structures are constructed and

managed through the kernel. The kernel keeps track of each task's

address space (page-tables) and ensures that there are no memory

violations between tasks and other seL4 system components. This is a

major abstraction for microkernels in general.

The kernel receives hardware interrupts and exceptions, and sends

them to the right thread (that may contain a handler) through an

asynchronous endpoint. There is a table for each IRQ that keeps track

of IRQ states.

After seL4 has mapped its own kernel image and user-level frames,

the remaining unused memory is given to the root task as untyped

memory. Untyped memory can be then used by the applications to

allocate new objects, and manage them, without the overhead of kernel

syscalls.

seL4 is used as a representative of microkernel design in this thesis.

It is discussed in more details in chapter 4.

2.3.4 Quest

Quest [104] is a new OS that can be con�gured for uniprocessor, SMP,

or as a distributed multikernel in multi-core systems with predictable

performance. It tries to make use of hardware virtualization capabilities

as well as supporting real-time oriented events. The need for applying

totally new OS policies and implementations motivated the authors of

Quest to create it from scratch to avoid dealing with complexity of the

existing large OS code (i.e. Linux) and not to go through con�icts with

traditional OS policies like UNIX. So, Quest has the freedom to make its

own design and implementation decisions. The most important resource

from Quest OS perspective is time, thus, it supports real-time tasks with

time-budget virtual CPUs separated from each other. Quest can support

both time-triggered conventional tasks and event (interrupt driven) tasks;

making it capable of scheduling both real-time and non real-time tasks.

3RTEMS is using a single address space for all tasks

36

Figure 2.6: Quest Components [41]

Scheduling

The scheduling in Quest depends on a major concept of virtual CPUs.

A virtual CPU acts like a physical one for each thread, and it is assigned

a time-budget. VCPUS are implemented by sporadic servers. There are

two types of VCPUS: 1) Main VCPUs that are responsible of scheduling

threads and 2) IO VCPUs that handle IO operations associated with

interrupt behaviour. IO VCPUs make interrupt handlers act like tasks

in terms of scheduling and priorities. Figure 2.6, from Quest web-page

[41] illustrates the relations between VCPUs and other components of

Quest.

Virtualization

Quest makes direct use of Intel hardware virtualization to provide fault

tolerant system and to isolate each sandbox from one another, thus, it

prevents a crash in a sub-system from bringing the whole system down.

Quest-V is a multikernel OS (o�ering virtualization features) on which

each core (or several ones) has its own kernel image and hardware re-

sources (sandbox) and can communicate with other cores on chip as

a distributed system. There is a monitor associated with each kernel

to help making migrations of applications easier by managing extended

page-table (EPT) technology. Monitors in Quest-V di�er from other

hypervisors in that each sandbox has its own monitor that helps boot-

strapping the kernels, and it eliminates the cost of VM-exits since the

kernel will resume right away. Other hypervisors use a single shared

37

monitor for all of its VMs.

Quest-V and Linux

Quest-V can communicate with Linux via well-de�ned communication

channels when Quest-V acts as a hypervisor and Linux as a guest OS.

Linux and other mixed criticality systems running on top of Quest-V

are separated from each other given that each of which runs on its own

sandbox. Thus, Linux applications and Quest real-time threads can run

on a single system. This is done by making use of hardware virtualization

features (Intel VT-x, VT-d, and EPT)

Communication

Quest uses shared memory channels managed by monitors to support

inter-sandbox communication. This makes it easy for real-time systems

and address space migration between sandboxes to exist. To notify a

sandbox with an arrival of a message, Quest uses inter-processor inter-

rupts (IPI) and polling on status bit for a given mailbox. For example

IPI is used for recovery purposes to tell other core(s) about a failure of

one core. The absence of a global clock and a global scheduler creates

new challenges including timing and thread migrations.

Migration

In Quest, both vCPUs and threads can be migrated between sand-

boxes for load balancing and performance purposes. IPI is used for

handshaking between sandboxes to initiate and notify about the end of

migration process. Monitors are used to map the source address space

to destination address space. Figure 2.7 from [68] shows the Quest

migration process.

The main issue with Quest is that it is privately maintained by Boston

University, and the open-source version is quite outdated. Also, Quest

heavily relies on Intel's hardware virtualization technologies, which makes

it very di�cult to port to another hardware architecture that does not

provide the same features. No formal manuals or speci�cations are pro-

vided for Quest.

38

Figure 2.7: Migration Strategy [68]

2.3.5 Corey

Corey [30] is an exokernel OS designed for many-core systems and runs

on AMD Opteron and Intel Xeon. It tries to make access to shared data

structures as minimum as possible. For example, it bounds accesses to

shared memory to only one core. Also, Corey makes use of the many cores

to create a set of them only to handle some speci�c functions/threads.

It also sheds lights on the importance of giving applications the rights

to control data structures instead of leaving the kernel managing these

data structures exclusively without previous knowledge of its application

needs.

Corey Abstractions

Corey de�nes three abstractions to give applications the control over

(shared) data, given that they know their sharing needs. These abstrac-

tion are:

• Address Ranges

• Kernel Cores

39

• Shares

Through address ranges, Corey makes it possible for applications

to specify some address ranges that can be private and others that are

shared for each core to avoid contention. If an address range is private,

no contention will happen and this will avoid TLB shootdowns. On

the other hand, if an address range is shared, the application speci�es

which cores use it, and contention is limited to these set of cores only.

Figure 2.8 explains how address space ranges work. MCS locks [72] are

implemented by Corey to handle synchronization and accesses to critical

sections. MCS locks have a great performance bene�t over Linux spin-

locks especially when the number of cores increases as shown in �gure 2.9.

To avoid contention, applications can bind speci�c kernel functions

and data to a given core by making use of kernel cores. The core

exclusively has access to the code/data of a speci�c kernel function (e.g.

device drivers), and can communicate with other cores requesting a

service from it or delivering interrupts by a shared memory IPC. This

mechanism enables the kernel core to keep the code/data in its cache

and avoid TLB invalidation. No shared data structures or locks are

needed this way to access this device as only one core uses it.

Every application can create a share that tells the kernel which part of

its data can be shared with other cores. These shares make it possible to

separate private data from shared ones. For example an application may

share memory with other cores by having a shared mapping (page-table).

Corey is very good with hardware architectures that provide MMU

(including page-based management and TLBs), as well as caches. How-

ever, some of its abstractions might not work (well) on architectures that

lack such hardware units, or provide other alternative ways of memory

management.

2.3.6 FOS

Factored OS (FOS) [103] is a new kernel design developed by MIT. FOS

takes OS scalability as its highest prioirty challenge that drive its design

aspects. The authors argue that a new OS design is needed to work on

future 1000+ core chips, and propose FOS design and implementation as

40

Figure 2.8: Example address space con�gurations for MapReduce exe-
cuting on two cores. Lines represent mappings. In this example a stack
is one page and results are three pages. [30]

41

Figure 2.9: Time required to acquire and release a lock on a 16-core AMD
machine when varying number of cores contend for the lock. The two
lines show Linux kernel spin locks and MCS locks (on Corey). A spin
lock with one core takes about 11 nanoseconds; an MCS lock about 26
nanoseconds. [30]

a prototype.

FOS is inspired by scalable internet services and L4 microkernel

designs, and it tries to replace the traditional time-sharing-oriented OSs

(that were originally designed for uniprocessors) with a space-sharing

design where services are pinned to physical cores and requests are made

to these services from other application cores. By having exclusively

allocated cores for FOS kernel's services, it is possible to avoid contention

between applications and kernel services on resources like TLBs and

caches, thus, providing a scalable, high performance OS.

FOS has de�ned its design principles as follows:

• Space multiplexing replaces time multiplexing.

• OS is factored into function speci�c services.

• Servers collaborate and communicate only via message passing.

• Servers are bound to speci�c cores.

• Applications communicate with servers via message passing.

42

Figure 2.10: OS and application clients executing on the fos-microkernel
[103]

• Servers leverage ideas (caching, replication, spatial distribution,

lazy update) from internet servers.

The architecture of FOS is shown in �gure 2.10. One major similarity

between FOS and multikernel design is that both embrace share-nothing

(no locks) and message passing techniques.

FOS design is inspired by microkernels design, and it provides sys-

tem services across one or more cores composing a �eet that acts as a

distributed server (i.e. page allocator). Communication is done through

message passing technique, which is known for its scalability.

2.4 Operating Systems Design Issues on

Multi-core Architectures

With the rise of system on chips, and the need for custom IP cores that

are doing some speci�c functions better than others (for example, GPU

chips are better than general purpose CPUs with graphics), both SoC and

OSs (including device drivers), have to handle this new heterogeneous

architecture model. It is no longer valid that OSs assume to be designed

for single core, or even homogeneous multi-core architectures; they have

to evolve.

Heterogeneous architecture can be a mix of CPU, memories, GPU,

NoC, UART, accelerators, DMA, FPGA, etc. each with its speci�c func-

43

tion. In fact, a heterogeneous system can be many CPU cores, with the

same ISA/ABI, but di�erent implementations, and features. An example

of this is the new RISC-V architecture, with one core acting as a master

with 3 levels of privileges that are able to run a complete OS, while there

are other application cores that can run only user-level code with only

one privilege level. Similarly, Parallella/Epiphany architecture that has

a master ARM core(s), as well as FPGA, memory, Epiphany cores (as

accelerators), and others.

The main problem is that for each new heterogeneous architecture,

the designers are inventing new mechanisms for addressing and com-

munication between such heterogeneous cores. Not only some of these

mechanisms need a lot of e�ort from OSs developers to adapt (typically

device drivers), but also some of them may not be valid from some OS

design principles and implementation.

There are major aspects of a multi-core SoC to consider when devel-

oping OSs:

1. Memory System

2. Virtual/logical Address Spaces

3. Cache Coherency

4. Communication and addressing of other cores

5. IO

6. ISA

2.4.1 Memory System

Memory is a major component (if not the most important one) to con-

sider from both hardware and software sides. Physically, memory aspects

including manufacturing technology, number of ports, data rate, align-

ments, physical structure whether one piece of hardware or distributed

ones, protection, all of these aspects a�ect how a complete system would

work. A single change to one of the previous attributes may lead to a

complete re-factoring of one (or more) OS components (e.g. memory

management library).

To give an example of how memory system a�ects an OS, let's con-

sider memory protection. Traditionally, almost all of the current OSs

44

(including the ones mentioned in this chapter) assume that there is a

memory management unit (MMU), which is page-based. This means

that the smallest memory unit to deal with when applying protection

attributes is of a page size, which is typically 4 KiB, and di�erent pro-

cessors can be con�gured to support di�erent sizes. Linux, seL4, Quest,

and Corey all assume this page-based protection, and they build on it

to provide other features like multi-tasking, virtualisation and demand

paging for instance. This MMU unit works �ne with monolithic and

microkernels, but does not do very well with embedded systems, RTOS,

and distributed memory systems. The main reasons are the overhead

of (n-level) address translation, TLB contentions (cenetralised hardware

structure and limited number of entries) and arbitrary page-size granu-

alities. 4 KiB is, in most architecure, the smallest page size, which might

be too big for embedded systems with low memory resources and require

n-level page tables translation.

RTEMS as an RTOS does need some form of memory protection for

some applications, but in most cases, it can not a�ord the cost of trans-

lation and TLB contention that conventional MMU units enforce. More-

over, being deployed in embedded systems, the memory sizes would not

be as big as several gigabytes as with desktops. Hence, dealing with 4 KiB

page size as the smallest unit causes a huge waste of memory resources.

The previous two reasons result in RTEMS discarding using (dynamic)

memory protection to best use resources and meet its real-time require-

ments. Clearly, this a�ects RTEMS design to exclude dynamic memory

management library for most of the supported architectures. Dynamic

memory management simply means that RTEMS provides support for

users to allocate and enfornce protection attributes on memory regions,

and update page tables in run-time. This process is costly as it needs to

take into consideration the overhead of updating page tables, consistency

of page table entries and TLBs (especially if working in SMP environ-

ment). Instead, RTEMS sets up page tables and MMU at start-up and

bootstrapping process with �xed mapping and protection attributes.

Physically distributed memory introduces other challenges and

complexities but improves scalability. Hardware designers have to

provide a standard for this model whether to make it transparent

for programmers or to provide consistency models with new (atomic)

instructions and requires programmers to ensure data consistency

themselves to some extent. OS developers then have to re-design their

45

shared data structures, taking into consideration the rate of contentions,

delays, consistency and correctness. Data structures include page tables,

which have to be consistent for the shared pages. Imagine 100 processors

are trying to update a shared page table/entry at the same time, this

is certainly a bottleneck especially when scalability is a requirement.

This is due to the fact that (shared) page tables are centralised shared

data structure. Because of this bottleneck, multikernel and FOS that

were discussed try to avoid any sharing. Even though, the multikernel

has to implement a form of software agreement protocol to maintain

consistency of globally-viewed data structures (if any).

2.4.2 Address Space

Address space is the range of addresses (physical or virtual) a process

or core can access. It is not only used for memory addressing, but it is

used for accessing other cores and memory mapped IO. According to

the core's register size, the maximum address space range is speci�ed.

For example 32-bit cores can address up to 4 GiB. What range of

address space can be accessed by a given core/process is speci�ed by a

memory management unit, or arbitrary during hardware manufacturing.

An address space can resemble logically adjacent addresses to access

physically scattered cores (including distributed memories). From the

OSs point of view, an address space term is correlated with a process,

giving it an access control to some amount of (virtual) memory, while

from IO devices and other cores, it is the range or physical addresses

they can access. Register sizes a�ect the unit of allocation and pointers

used within OSs data structures and algorithms.

2.4.3 Cache Coherency

Cache coherency is another big issue for multi-core scalable SoCs.

Like with the previous example of 100 processors contending over a

page table/entry, the same issue occurs with cache lines, when the 100

processors are contending over this shared line. This is clear with [72]

that introduces scalable locks depending on cache coherency protocols.

While MCS locks introduced in this paper are currently considered

scalable, this may not be the case with 1000+ cores as FOS [103]

46

predicts, and cache coherency would be a crucial barrier even with a

small amount of sharing. Multikernel uses MCS locks as well as cache

coherency hardware to communicate between cores. Similarly, RTEMS

tries to put some variables within data structures in di�erent cache lines

to avoid cache line contention and false sharing. This is clearly not

portable (or requires more e�ort and introduces bugs) to architectures

that have di�erent cache line size, or no caches at all. Also caches have

been known to a�ect predictability and determinism requirements.

OS performs context switches frequently between threads. Context

switches a�ect the overall performance, and have many parameters. If

an OS supports memory protection and/or cache coherency, a context

switch will incur an overhead of changing the page-tables including

TLB faults, and cache invalidation operations. Although some hardware

solutions are provided, contention occurs due to the shared nature of

such structures. That is why FOS suggests to avoid context switches

(time sharing) and embrace locality principle; di�erent subsystems

(including the kernel) should only care about how to e�ciently commu-

nicate and the performance of this communication (IPC) component.

Figure2.11, provides IPC performance costs of almost the same IPC

software implementation but on di�erent hardware implementations.

It is noticed that the hardware greatly a�ects a crucial microkernel

component like IPC, ranging from 36 clock cycles for Pistachio IPC

on Itanium 2 processor up to 2000 clock cycles for Hazelnut IPC on

Pentium 4 processor.

2.4.4 Communication and Addressing

Communication between di�erent cores on a multi-core system is the

responsibility of OSs, all of the discussed kernel designs and implemen-

tations have a communication library or component. Communication is

tightly dependent on hardware features provided for communication like

inter-processor interrupts, shared memory, sending packets, etc. The

most widely used method of communication is using shared memory

mainly because it is simple, and does not require special instructions.

RTEMS for example uses shared memory for its multi-processing

support. However, shared memory does not do very well when it comes

47

Figure 2.11: IPC costs of di�erent L4 microkernel implementations on
hardware architcures [44]

to scalability and performance (taking into consideration the previous

issues of cache coherency and page-based memory management). From

the hardware side, communication media like buses, network on chips,

point to point communication, all a�ect the way an OS on multi-core

chip works. Some of the OSs may choose to use one option to com-

municate between cores to meet its requirements such as simplicity

(shared memory), interrupts (performance), NoCs (scalability), buses,

etc. Communication is also a big concern for some kernel designs like

L4 microkernels because its IPC component acts as a main pillar of

its design and implementation. The ability to easily (and quickly)

communicate with other cores hugely a�ects kernel design decisions and

implementations.

2.4.5 IO Management

IO management (in the form of device drivers), di�ers between di�erent

kernel designs in the privileged mode they execute in. Monolithic kernels

like Linux include device drivers part of its components which adds

to code complexity and introduces more bugs to the kernel, while in

exokernel and microkernel designs, IO management is done by user-level

device drivers, thus, reducing kernel code size and bugs. Device drivers

have to coordinate sharing of its physical resources between di�erent

cores and processes. Also, there must be some sort of protection

between device drivers, applications, and the kernel itself. A device

48

driver that can do DMA access can (intentionality or not) corrupt

other kernel data structures, or worse, hack the system. Quest-V

relies on Intel hardware virtualisation extensions to provide protection

between system components and IO. Also even with exokernel design,

the implementation should use such hardware security features from the

kernel, and leave policy to user-level. So, providing a simple standard

IO interface would a�ect the OS design and implementation complexity,

scheduling, security and scalability.

2.4.6 Instruction Set Architecure

ISA is also another parameter for the design and implementation of OSs.

Except from RTEMS, all other discussed OSs assume there is at least

two levels of hardware privileged modes: user and kernel. Others may

provide more levels for use cases like hypervisors or machine emulation.

Privilege levels are a way to enforce protection on the CPU level

coordinating with an MMU unit for example to separate kernels and

applications, and providing security and integrity of a system. An ISA

that only provides one level of privilege modes would not be quali�ed to

run a typical OS like Linux or seL4.

In the next chapter, porting RTEMS as an RTOS to Parallella board

is discussed. Parallella has 16 Epiphany cores connected via a network

on chip and communicating with ARM, FPGA, local and global memory

(with no caches) cores. This gives us the opportunity to address the

issues of porting an OS that has been originally developed for single-core

system, to heterogeneous and SMP embedded system architecture like

Parallella, and what are the real-world issues of such a porting process

and what are the design issues from OSs point of view.

49

Chapter 3

RTEMS on Epiphany multi-core

NoC

The goal of this chapter is to assess both a monolithic kernel like RTEMS

which is in its early stages of supporting SMP, and a new multi-core

architecture called Epiphany, and how they �t together. Experience of re-

factoring RTEMS to work on a multi-core hardware with limited memory

resources is reported, as well as how the hardware architecture a�ects the

design and implementation of RTEMS, trading o� speed and size.

Three versions of RTEMS were implemented: 1) a squeezed, 2) SMP

and 3) factored version. The squeezed version tries to reduce RTEMS

size to less than 32 KiB to �t into the fast local memories, thus keeping

it monolithic but removing most of its features. SMP version follows

the current ongoing development of RTEMS SMP support (and other

similar monolithic kernels), assuming shared memory, this design requires

using the very slow DRAM o�-chip memory while preserving all RTEMS

features. So the trade-o� is which parts of RTEMS needed to be placed

in local memories, and which in the shared external slow memory and

how this a�ects the performance. The factored version tries to convert

RTEMS to something like a microkernel by placing the kernel and device

drivers on di�erent cores using only local memories to get the bene�t of

speed, and avoid using the slow shared memory. This attempt was not

practical due to the monolithic nature of RTEMS.

3.1 Epiphany Architecture

Epiphany [12] is a multi-core architecture developed by Adapteva. Cur-

rently, there are two variants of Epiphany chips: 16 and 64 core chips

50

(all 1GHz). The architecture is shown in Figure 3.1. Each CPU together

with a DMA unit and network controller forms a node, with nodes con-

nected via a 2D mesh networks, together with the memory. The memory,

CPU and tools are detailed in the remainder of this section.

Figure 3.1: Epiphany Architecture [12]

3.1.1 eCore CPU

The Epiphany core (eCore) [12] is a pipelined superscalar RISC CPU

designed for energy e�ciency and real-time. It is a dual issue out of

order CPU, with a 9-port 64-word register �le, IEEE-754 compliant FPU,

interrupt controller and memory protection unit.

The Instruction Set Architecture (ISA) has a variable length instruc-

tions (16 and/or 32 bit instructions). It is the responsibility of the com-

piler to decide which instruction version to generate depending on the

instruction being executed and its operands. This is done for e�cient

code density optimization. Instructions are categorized into: integer op-

erations, �oating point operations, branching, load/store, data movement

(between registers and immediate values only) and program �ow instruc-

tions. Loads and stores are the only way to access the memory. There

are di�erent addressing modes that can be used with load/store instruc-

tions like displacement addressing, index-addressing, and post-modify

addressing.

Each eCore has an interrupt controller supporting nested and priori-

tized interrupts. 10 di�erent kinds of exceptions are supported, including

sync/start, memory protection faults, two timer interrupts, message in-

51

terrupt, two DMA interrupts, WAND interrupts, user interrupts and

software exceptions (FP operations, invalid instruction and unaligned

memory access).

Timer interrupts can be used for scheduling purposes, eg. countdown

timer for deadline monitoring. Timers can also act as event counters �

eg. for pro�ling, idle clock cycles, number of valid integer instructions,

number of valid FP instructions, dual issue instructions, �ve di�erent

stalls events depending on the reason of the stall and �nally mesh tra�c

counter.

The WAND interrupt enables synchronization between workgroups

of CPUs � a multicast hardware synchronisation barrier. Once all CPUs

have set their WAND bits, then a WAND interrupt is generated to all

CPUs in the workgroup.

Message interrupts can be used as inter-processer interrupts in OSs,

and it is used in RTEMS part of the SMP implementation as shown in

later sections.

The Application Binary Interface (ABI) gives some rules for Epiphany

programmers that must be followed to guarantee a correct execution.

For example, it lists what general purpose registers must be saved by

the caller and others that the callee has to save during a subroutine call.

Also, the ABI states that the stack is growing down, and the start address

of the stack should be aligned to 8 bytes. Parameter passing, data types

and register usage are part of the ABI.

3.1.2 Memory Architecture

eCore have a 4GB address space consisting of 32-bit words (little en-

dian). Memory is accessed using bytes, halfwords, words or double-words

according to the load/store instruction type. Software exceptions are

caused by accessing a wrongly aligned address, eg. accessing a double

word using a store-double instruction with an address not aligned to 8

bytes.

Figure 3.2 shows a memory map for 64 core Epiphany chip. Each

core has its own local on-chip memory, whose address space ranges from

0x00000000 to 0x000FFFFF (1 MB). This is divided into 4 internal mem-

ory banks (each of which is 8 KB, with total space of 32 KB), memory

mapped registers and a reserved area. The address space of each core (in-

cluding memory mapped registers) can be globally accessed by all other

52

Figure 3.2: Epiphany Global Address Map [12]

cores � a 12-bit core ID is used in the most signi�cant bits of the ad-

dress. Note that external memory is not shown, being above the local

space in the map, but dependent upon the actual architecture of the

board containing the Epiphany chip.

Memory accesses can be normal read/write memory transactions, or

access another core's registers (general and/or special purpose). Local

memory accesses take 0 cycles, and occur in strict memory order. Ac-

cessing non-local memory is relatively costly, with weak memory order.

3.1.3 eMesh network

Epiphany has a scalable 2D mesh network (eMesh) that connects each

node directly with its neighbours and operates at 1GHz frequency. Scal-

ability is limited by address space size, eg. 32-bit address space can ac-

commodate upto 4096 nodes (4 GB divided by 1 MB) � a 64-bit address

space can accommodate considerably more.

The eMesh network consists of three separate networks:

1. cMesh � serves on-chip write transactions;

2. rMesh � for non-blocking read transaction;

53

3. xMesh � serves o�-chip memory transactions that go beyond the

chip.

On-chip writes are 8 bytes/cycle, with o�-chip write transactions 16x

time slower. Hence, tasks should try to communicate with each other on

the same chip. The networks support direct interactions between cores

by simply writing to a core's global address space. The edges of the

network connect the chip to the outside world like another Epiphany

chip(s), shared external memory, IO peripherals, etc.

3.1.4 SDK Environment

Adapteva provides eSDK (Epiphany Software Development Kit), includ-

ing GNU tools, a multi-core GDB debugger and a functional simulator.

GCC is built with the newlib embedded library. The e-lib supplied library

acts as a run-time library, and includes interrupt handling, core identi�ca-

tion, timer management, DMA handling and synchronization functions.

The e-hal library runs on the host side and provides functions to control

and communicate with Epiphany chip, loading programs, resetting the

system and con�guring/managing the behaviour of the Epiphany chip.

3.2 Porting RTEMS SMP to Epiphany

This section describes the main contribution of this chapter, namely the

port of RTEMS and RTEMS SMP support to the Epiphany architecture.

The target for the port is the Parallella board, model P1602 (for embed-

ded applications). This has an Epiphany 16-core CPU (E16G301), with

a Xilinx Zynq Dual-core ARM A9 XC7Z020 host CPU.

3.2.1 Toolchain and Parallela Board Setup

The toolchain used was GNU based, including binutils, GCC and GDB

(speci�c build epiphany-rtems4.11-*). GCC is built with an RTEMS

speci�c newlib, together with start-up code, system calls and BSPs for

bare board ports. We also note that recently there has been a new

approach developed for building the toolchain � RTEMS Source Builder

(RSB).

As noted above, the Parallela board contains both host (ARM) and

Epiphany CPUs. To utilise the board e�ectively for experimentation

54

Linux is installed on the ARM A9 as host. The RTEMS port (see next

section) can then be loaded onto Epiphany in two ways:

1. e-server � for debugging e-server opens ports for every Epiphany

core that a GDB client can attach to, load, execute and/or debug

programs on;

2. e-hal � the e-hal library API has functions to interact with the

Epiphany chip, including local memory access to load an RTEMS

image.

By default, the Linux image provided by Parallella community has all the

Epiphany tools installed along with e-hal and e-lib libraries, making

programming the Epiphany relatively straightforward.

3.2.2 RTEMS Porting Process

Porting a new CPU architecture (like Epiphany RISC CPU) to RTEMS

has to go through many stages. First, there must be a toolchain that

helps compiling/building RTEMS kernel and applications. RTEMS uses

GNU toolchain like binutils, GCC, and GDB. The resulting toolchain

programs should be something similar to epiphany-rtems4.11-*, where

Epiphany is the architecture, rtems4.11 is the RTEMS release number

and �nally the name of the program (gcc, g++, obdjump, nm, etc). It

only di�ers a little from the original elf toolchain used to build bare-metal

applications. Since RTEMS is targeting real-time embedded applications,

GCC is built with newlib as an embedded C library instead of GCC li-

brary. Bare-metal elf toolchains that use newlib library normally rely

on libgloss for providing start-up code, system calls and BSPs, however,

RTEMS does not use libgloss as it provides its own implementation of

the previously mentioned libgloss components. Recently, there has been

a new system that builds the toolchain (for supported RTEMS architec-

tures) from the source code; this system is called RTEMS Source Builder

(RSB), and it is now the main tool for building the toolchains.

RTEMS understands how the new architecture works internally via

the Abstract Binary Interface (ABI). A new directory with the name

of the architecture is added to cpukit/score/cpu; this directory con-

tains the de�nitions and/or con�gurations of the architecture required

by RTEMS. Key de�nitions are held in cpu.h � this de�nes which direc-

tion the stack grows, endianness, disabling/enabling interrupts, exception

55

control, structures to be �lled in and/or restored during context switches

or ISR handling. An assembly implementation for the thread context

initialisation, context switch and ISR handler are included. An RTEMS

port to a new architecture also requires a BSP, containing drivers for

console, clock, timers, DMA etc.

This part of the code would be shared with all BSPs that have this

CPU architecture. For example, there is only one ARM directory at

cpukit/score/cpu, while there are many ARM BSPs like real-view, Rasp-

berry Pi and Beagle boards that share the same code of ARM CPU.

The most important �le at the newly added directory is cpu.h which

contains code de�ning how RTEMS will deal with this architecture. It

de�nes which direction the stack grows, endianness, disabling/enabling

interrupts, exception control, structures to be �lled in and/or restored

during context switches or ISR handling. Then an assembly implemen-

tation for the context switch and ISR handler should be provided, along

with some code that initializes thread contexts during task creation.

For a new architecture to be tested, there must be at least one BSP

for it. BSPs contain code for peripherals like console driver, clock driver,

timers, DMA, etc. The peripherals are part of the board that embeds

the CPU architecture. Di�erent BSPs can have di�erent peripherals.

As we will see later, there is a BSP called Parallella that depends on

the Epiphany RISC CPU architecture. There is a one-to-one mapping

between a hardware board and a software BSP as well as between a CPU

ISA and RTEMS cpukit/score/cpu.

An initial port of RTEMS to a new architecture can be tested by

using the functions in the BSP, with default test cases (eg. hello world,

ticker). This ensures that the new architecture port and BSP are ba-

sically correct. There are more than 500 tests that cover almost all of

the features that RTEMS may have. A new framework called RTEMS

Tester, is being developed for automating running all of the 500 tests

and get some results/numbers of passed/failed tests. Figure 3.3 gives an

overall �owchart of the porting process of a new architecure to RTEMS

ecosystem.

3.2.3 Porting RTEMS to Epiphany

In this section, the steps of porting RTEMS to Epiphany with the Paral-

lella board as the �rst BSP used for veri�cation are listed. The Parallella

56

Figure 3.3: RTEMS Porting Process

57

board model used is P1602 (for embedded applications) that has a Xil-

inx Zynq Dual-core ARM A9 XC7Z020 host processor, Epiphany 16-core

CPU (E16G301), 1 GB DDR3, and other peripherals.

First, a Linux distribution has to be installed on the Zynq chip which

is provided by Parallella community and can be found on their website

with detailed instructions how to burn the Linux image to the SD card

and run it. The RTEMS executable can then run on the Epiphany chip

from Linux on the Zynq chip. There are two ways to load/run RTEMS

on the Epiphany chip, one way can be used for debugging using e-server

that opens ports for every Epiphany core that a GDB client can attach

to, load, execute and/or debug programs at, and the other way is to

use the e-hal library API that has a lot of functions to do almost every

vital operation with the Epiphany chip. Both methods can be used to

run RTEMS, but C programs that use e-hal to load and manage/monitor

RTEMS are more e�cient and have more control. For example, it's easier

to load a single RTEMS image to the 16 Epiphany cores and start them

with a single line of code rather than opening 16 GDB terminal clients for

each core (other than the e-server). By default, the Linux image provided

by Parallella community has all the Epiphany tools installed along with

e-hal and e-lib libraries, so it's ready for users to start programming

Epiphany once they run Linux.

As discussed earlier, a toolchain must exist to build programs for our

target�Epiphany. Almost any UNIX platform can be used to build the

toolchain. Linux was used during the porting process. The toolchain

includes binutils, newlib and GCC. Except for binutils, all other tools (in

source code format) are checked out from the head repositories. binutils

is cloned from Adapteva GitHub repository. A few set of patches has been

applied to all of the previous sources to make them recognize RTEMS at

the stage of con�guring and building these tools. The con�guration line

for these tools should have epiphany-rtems4.11 at a target option. The

resulting set of tools are all pre�xed with epiphany-rtems4.11-* (which

may be changed in future RTEMS releases). GCC is built with newlib

discarding all libgloss code.

cpu.h

cpu.h (in cpukit/score/cpu/epiphany) contains almost all of the im-

portant machine de�nitions. In terms of Epiphany the important char-

acteristics are:

58

• stack � Epiphany (eCore) stacks grown down, and are initialised at

a high address.

• interrupts � disable and enable functions are provided in that �le,

making use of gid and gie Epiphany assembly instructions for

global interrupt disable and enable respectively.

• thread context � data structure de�ned to hold all eCore context

for context switching and ISR handling.

A related �le (epiphany-utility.h) contains some important de�nitions

for registers, IO memory mapped addresses and for mapping Epiphany

core IDs to RTEMS CPU IDs and vice versa, as well as functions to get

the currently executing core ID.

Context Switch and Interrupts

Context switch code is located in epiphany-context-switch.S,

with epiphany-exception-handler.S containing the code for the

ISR_Handler assembly function which is the core of interrupt handling.

Interrupt handling proceeds in the following manner:

1. Space is reserved in the interrupted task stack to save a

CPU_Exception_frame context. Currently all of the 64 general

purpose registers are saved along with status, config and iret

special registers.

2. If SMP is enabled, another is_executing boolean variable has to be

added to the context control structure to indicate whether the heir

(to-be-restored) thread is executing on another processor or not,

and wait until it no longer executes on another processor, then sets

it. This process must be done as an atomic operation.

3. Increment nesting level and disable thread dispatching. At this

point, a decision must be made if it is needed to switch the stack

to RTEMS software interrupt stack depending on the nesting level.

4. Jump to the user C handler. The user C handler can be installed

dynamically. NB there are default handlers that are set by the BSP

at the start-up code.

59

5. After returning from the C handler, a check to see if a thread dis-

patch is necessary is made, and if so, it jumps to _Thread_Dispatch

to select a higher priority thread.

6. The �nal action is to restore the context of, and jump to, the next

thread by returning from the interrupt.

A context switch is essentially the same as the above, except that it does

not involve executing of an interrupt handler.

Drivers

Three other drivers are required for the port:

1. Clock driver � required for scheduling purposes. This in-

cludes epiphany_clock_initialize, epiphany_clock_at_tick,

and epiphany_clock_handler_install. Within this driver

epiphany_clock_initialize installs RTEMS Clock_isr function

address at corresponding timer0 entry of the C handlers vector ta-

ble, then it sets up the timer0 registers and starts it. Function

epiphany_clock_at_tick is called from Clock_isr at every clock

interrupt occurrence and it resets the timer0 value and runs it

again.

2. Console driver � this driver is a way to print out data. This driver

uses a shared-memory approach, communicating to Linux running

on the ARM host via a shared bu�er (and control bits) with Linux

polling and printing when data is available to print out.

3. Timer benchmark driver � helps with pro�ling and timing perfor-

mance analysis.

3.2.4 RTEMS SMP Implementation on Epiphany

Implementing RTEMS SMP on Epiphany requires initially a way to con-

vert Epiphany core IDs, to RTEMS linear IDs. Epiphany uses 12-bit IDs

� 6-bits for column and 6-bits for row. For example, a core on the 32nd

row and the 8th column has an ID of 0x808. Conversion of Epiphany

IDs to RTEMS linear IDs is achieved using (for the 16 core chip) 1:

1Alternatively a more expensive switch statement could be used, but was felt not
to be scalable as the number of cores increases.

60

movfs r17, coreid

mov r19, #0x003

mov r20, #0x0F0

and r19, r17, r19

and r20, r17, r20

lsr r20, r20, #4

add r17, r19, r20

This is used within start.S to decide whether the executing core is

the boot CPU and to index _Per_CPU_Information[] table to get the

proper stack address for the secondary processor(s). Within the port,

core ID 0x808 (row 32 and columns 8) is mapped to RTEMS CPU ID 0.

The ISR_Handler also uses the above to index _Per_CPU_Information[]

table with the current RTEMS CPU ID. The _Per_CPU_Information

entry holds data like stacks, interrupt level, and dispatching control.

Within cpukit/score/cpu/epiphany the new epiphany-atomic.c

�le is added � NB currently no available GCC atomic operations for

Epiphany. Within epiphany-atomic.c a fetch-and-increment operation

on a static global variable (the one lock) is implemented.

Within cpukit/score/cpu/epiphany �le epiphany-smp.c

holds code for low-level inter-CPU interrupts. Here

_Epiphany_Send_interrupt takes the Epiphany core ID and the

type of interrupt as arguments to construct the global address of the

targeted core's ILATS register (used to set interrupts for a core) and set

the corresponding bit according to the type of the interrupt. Function

_Epiphany_Send_interrupt calls _CPU_SMP_Send_interrupt with an

interrupt type of SMP_MESSAGE which maps to the message interrupt.

At the BSP layer, a new bspsmp.c �le is added that con-

tains bsp_start_on_secondary_processor function which is

called from start.S if the CPU is a secondary one. This func-

tion installs bsp_inter_processor_interrupt (that calls the

generic _SMP_Inter_processor_interrupt_handler function)

at the indirect interrupt vector table for this secondary core,

and disables interrupts before changing its state to become

PER_CPU_STATE_READY_TO_START_MULTITASKING and waiting for

the boot processor to give it the permission to start.

61

Figure 3.4: RTEMS on Epiphany Timing and Memory Analysis. Whole
RTEMS column is the squeezed version where there is no use of the
external shared memory. All RTEMS instances are placed in a local
memory on each core. All of the other columns are of the SMP version
where some parts of each RTEMS instance (mentioned in the column's
title) are placed in each core's local memory, and the remaining (shared)
parts are placed in the shared external DRAM memory. Execution time
is given in cycles.

3.3 Performance Analysis of RTEMS port on

Epiphany

In this section we give timing measurements of context switch, interrupt

handling and some scheduling functions for the squeezed and SMP ver-

sions. The squeezed version only uses local memories, while SMP version

uses both local and external shared memories. These are measured for

di�erent code placement strategies � ie. as the Epiphany core local mem-

ory is limited to 32Kb, we have to allocate code (and bu�ers etc.) across

local and external memory, with the timing dependent upon allocation.

Clearly, if more RTEMS is placed into local memory, then there is less

space for application code, and vice versa � although the trade-o� for

memory allocation between RTEMS and the application remain for fu-

ture work.

Figure 3.4 shows the timings (in cycles) for di�erent allocations of

RTEMS functionality to memory:

• Whole RTEMS (squeezed version) � all RTEMS placed into local

memory (via source code and compiler optimisation for space).

• Nothing local (SMP version) � only start code and interrupt vectors

placed into local memory.

• ISR_Handler + Stack (SMP version) � only start code, interrupt

vectors, ISR_Handler and stack in local memory.

62

• ISR_Handler (SMP version) � only start code, interrupt vectors

andISR_Handler in local memory.

• Context Switch + Bu�ers (SMP version) � only start code, context

switch and context bu�ers in local memory.

• Context Switch (SMP version) � only start code and context switch

in local memory.

As can be seen in the tables, the fastest is for all of RTEMS to be placed

in local memory, although this corresponds to the minimum amount of

free memory for applications2.

As mentioned previously, one Epiphany core local memory is only

32KB. We worked on two main versions of RTEMS: normal version and

squeezed version. The normal version places only the start code (.start

section) that is responsible for low-level initialization and interrupt hooks,

in local memory and all other code sections are placed on external mem-

ory including the stack, heap, .text and .data sections. The squeezed

version aggressively reduces the whole RTEMS size to �t into less than

32KB local memory by means of compiler's optimization �ags and source

code hacking. As you may have guessed, the squeezed version is much

more faster than the normal one.

As you can see in �gure3.4, the squeezed version that places the whole

RTEMS in a local memory is extremely fast compared to other versions.

We note that since Clock_isr (and its call tree) is a large piece of

kernel code, execution time rises signi�cantly when not in local memory

(see �gure3.4) � hence it appears a good trade-o� to place Clock_isr and

ISR_handler in local memory, as they are executed frequently every 10ms

to handle the default clock interrupt in RTEMS. As shown in �gure3.4

placing the interrupt stack in local memory also improves execution time.

Table2 in �gure3.4 shows context switch and dispatch timings.

_Thread_Dispatch is called from ISR_Handler if a new higher prior-

ity task has been scheduled (eg. potentially called from Clock_isr for

periodic thread release), and eventually calls _Context_Switch. Note

that timings for _Context_Switch and _Thread_Dispatch are marked

as N/A in the table, as they are essentially the same as nothing lo-

cal (unless the whole of RTEMS is in local memory) � this is due to

2Note that Adapteva are considering extending local memory to 64Kbytes for
future eCore and Epiphany architectures.

63

_Thread_Dispatch calling a lot of other routines which are in external

memory.

Timings for SMP features, including message passing and inter-CPU

interrupts remain for future work. Note that current observations suggest

inter-core interrupt latency is almost the same as with ISR_Handler plus

C user SMP handler.

3.4 Conclusions

Many core chips have become popular during the last decade, trending to-

wards massive multi-core / NoC architectures [103]. To respond, RTOSs

have to be re-designed to scale alongside the architecture scaling, noting

that synchronization between CPUs becoming increasingly important.

This chapter has considered the porting of a conventional monolithic

RTOS design, namely RTEMS, to the Epiphany NoC architecture. This

architecture has only limited local memory, hence the issue of how much

of the RTOS can be placed into local memory, rather than external mem-

ory, is important. It is noted that the relative costs of accessing external

memory to local memory suggest that getting the allocation of RTOS

to local and external memory is crucial to overall system performance.

Further investigation of this balance is required, with only basic consid-

eration (of key functionality) given in the chapter. One key conclusion

though of this chapter is that placing the whole of RTEMS into local

memory is not practical, for 32 KiB local memories.

Further work will investigate the true costs of SMP communication

(via shared memory and inter-CPU interrupts). We noted that initial

observations suggested that RTEMS SMP is e�cient, although this needs

to be quanti�ed fully.

To conclude the experience of porting RTEMS to Epiphany and re-

lated RTEMS design decisions, the issue points mentioned in section 2.4

are discussed here.

First, the most important observation gained from this experience is

the memory structure within a multi-core chip. OSs have a lot of data

structures, and they need to be laid out and accessed e�ciently in a

scalable way. This is the responsibility of both kernel developers and

hardware designers. The Epiphany architecture has two extreme types

of memories: fast small local memories, and slow big external memory.

Clearly with a considerable e�ort only on the kernel structure part, it

64

is not enough to get the best use of such architecture mainly because of

its memory structure. The hardware has to get involved and amended

to help achieving an overall optimal multi-core system. The good as-

pect about memory system in Epiphany (according to RTEMS), is that

there is no MMU unit. Thus, the port does not have to do any static

initialisation of MMU, or su�er from translation, TLB or fragmentation

overheads. However, a slightly more sophisticated OS like seL4 would not

simply work there, because of its needs to memory protection, privilege

levels and more memory footprint. The lack of cache units was also a big

win from RTEMS perspective to maintain its predictability requirements

and simple code base. Not to mention the scalability boost gained by

getting rid of non-scalable caches.

Second, Epiphany is very good when it comes to its address space

model. From the Epiphany chip, every core and IO device can be simply

accessed using addresses. This greatly simpli�es how di�erent (hetero-

geneous) cores communicate with each other. Such a �at address space

enabled the port to simulate a console driver using only shared memory.

There was a �nal attempt to get RTEMS working on only local mem-

ories (16 * 32 KiB) by re-designing it in a microkernel way with only one

kernel instance on one core, and other device drivers and applications on

other cores. Unfortunately this was not applicable for the following rea-

sons: 1) Run-time-wise, RTEMS is inherently a monolithic kernel, there

is no IPC layer like with microkernels between its di�erent subsystems,

2) the result of the building process of RTEMS is a single image (even on

SMP it assumes a shared memory address space) containing the kernel,

drivers, and applications, so it was not even possible to split up its com-

ponents during the building process, 3) Epiphany architecture does not

provide any protection/isolation between cores and IO, so maintaining

security on such platform is an open issue.

65

Chapter 4

seL4 microkernel on RISC-V

Hardware Architecture

The objective of this chapter is to investigate the hardware requirements

to run a more sophisticated OS (than RTEMS) like seL4 microkernel,

which needs to enforce security, simplicity and scalability as its design

principles. seL4 requires more memory footprint, hardware protection

features and IPC implementation layer, thus Epiphany was not a suitable

hardware platform candidate. RISC-V ISA is a new open-source hard-

ware speci�cation, which provides the previous hardware requirements

to run seL4 microkernel. Moreover, RISC-V speci�cation stands out

between other hardware architectures for being completely open-source

and de�ning how an implementation may add new hardware features in

a standard way according to its requirements. This allows implementing

new research ideas on both OS and hardware architectures, not being

restricted by one another.

Because of its simplicity and minimality, seL4 (as a microkernel) can

act as a hypervisor that can be quickly ported to new (research) hard-

ware architectures, while application layer can still be (relatively) hard-

ware agnostic and compatible. Application layer may involve a complete

monolithic server (like L4 Linux) with a very little e�ort compared to

porting Linux itself to a new (perhaps exotic) hardware architecture.

This way, new hardware features can be assessed (i.e new hardware se-

curity features or memory management mechanisms) without having to

re-factor thousands (or even millions) lines of code of a�ected OS com-

ponents (like memory management) while preserving application-level

compatibility, and getting the advantage of reusing a lot of other con-

ventional/legacy applications including monolithic kernels and their rich

66

device drivers repositories.

4.1 Introduction

In order to investigate new solutions in both hardware and software

for the previous issues, seL4 microkernel has been ported to RISC-V

hardware architecture. Both are completely open-source, allowing us

to modify and add new features �exibly. In this chapter, the RISC-V

architecture is introduced as well as the porting process of seL4 micro-

kernel to it. The focus is on assessing seL4 (as a microkernel design) and

RISC-V (as a new open-source ISA) features and how they �t together.

No performance analysis is done for some reasons: 1) RISC-V is an

ISA speci�cation rather than an implementation, the chapter is mostly

concerned with the ISA only, 2) because RISC-V is open-source, di�erent

implementations can trade-o� and add their own features according to

their requirements (power e�ciency, size, performance, scalability, etc),

3) because RISC-V is new, few (mature) open-source implementations

actually exist currently, the most reliable ones are Spike simulator and

FPGA-based Rocket Core which were used while porting seL4 and are

not quite feasible to get performance analysis for.

The reason for choosing seL4 is that it is currently considered the

state-of-art microkernel, that is simple, powerful and formally veri�ed

(has no bugs). Moreover, being a microkernel, it has to deal with mem-

ory management (MMU), and its subsystems communicate via message

passing channels. This allow us to target broader challenges of memory

management and protection as well as scalability, and such issues could

not be addressed within RTEMS that only works in privilege (kernel)

mode with no notion of user/kernel levels, and hence all service invoca-

tions are just direct function calls with passing parameters and sharing

memory rather than message-passing-oriented. Indeed, this is a current

bottleneck for RTEMS SMP support. Furthermore, RTEMS barely pro-

vides (dynamic) memory protection and isolation between threads. So,

seL4 acts as an optimal OS for NoC-based SoC (given that it is inherently

using hardware message passing), allowing us to address the memory pro-

tection challenges within NoC/SoC.

RISC-V [101] is a new open-source Instruction Set Architecture (ISA)

designed by UC Berkeley. It is mainly introduced for educational and

67

research purposes, and to avoid the patent issues involved with commer-

cial processors like Intel, ARM and MIPS. Giving that RISC-V is just

an architecture speci�cation, it allows any one to have their own hard-

ware (microarchitecture) implementation, but they all must comply to

the original ISA speci�cation. That is, an implementation can be con-

cerned with power consumption, code density, scalability, area or any

other trade-o�s.

Currently there are some RISC-V cores implemented by di�erent par-

ties, some of them are open-source and others are not. In the following

sections, RISC-V user and privilege level speci�cations are introduced.

4.2 RISC-V User-Level ISA - Version 2.0

[101]

RISC-V ISA is divided into base integer and extension ISA. The base

integer is mandatory for any RISC-V implementation, and it acts as the

core of the ISA. There are two versions of the RISC-V base integer ISA:

32 and 64 bit, with the feasibility of future 128 bit ISA. These are called

RV32I, RV64I and RV128I versions. An implementation can support

RV32I or RV64I or both of them.

Beyond the base integer ISA, there could be standard, but optional,

extensions like multiplication and �oating point units. There is a separate

Privilege-mode ISA speci�cation for OSs discussed later. The user-level

ISA was basically designed to be modular and simple, and not to rely on

any customized hardware features like caches, in/out-of-order execution,

thus, allowing an implementation to take place with its own extensions

if required.

The base ISA instruction encoding is �xed 32-bit length, with the

possibility of adding variable length instructions. There is also a 16-bit

compressed ISA but it is optional. In the following section, 32-bit ISA is

described.

4.2.1 32-bit RISC-V Base Integer ISA

RV32I ISA is a load-store architecture that has 32 registers (x0-x31).

It is little-endian and assumes byte-addressable memory. Instruction

encodings are divided up into categories as seen in �gure 4.1

68

Figure 4.1: RISC-V RV32I Instruction Encoding [101]

R-type encodes instructions that operate on registers and store the

result in a register also. Registers' addresses are �xed across di�erent

instruction encodings. Examples of R-type instructions are: add, and,

or, xor, all with three operands (rs1, rs2 and rd).

I-type encodes instructions that has one of its source operands in a

register (rs1) and the other is an immediate encoded part of the instruc-

tion taking a room of 12 bits. To ease sign extension decoding, MSB of

any immediate encoding is always placed in instruction[31] bit. Examples

of I-type instructions are: addi, andi, xori, and also has three operands

with rs2 replaced with an immediate value.

S-type instructions are usually used for encoding conditional branch

instructions with rs1 and rs2 source operands to be compared and 12-bit

immediate as the branch signed o�set giving a range of 4 KiB from the

current pc in either direction.

Finally, U-type instruction encodes unconditional jumps with 20-bit

signed o�set from pc with 1 MiB range.

Besides the previous instructions, there is a fence instruction to allow

the programmer to manage concurrency within a relaxed memory model.

Concurrency can take place between concurrent RISC-V threads or IO

devices for example.

4.2.2 System Instructions

There are system instructions used to change the RISC-V mode from

user-level to privilege-level to request a service from an OS for example.

ECALL and EBREAK are used for trapping and debugging purposes.

Furthermore, to help with scheduling and pro�ling, there are system

instructions to handle cycle and time counters.

69

4.3 RISC-V Privilege-level ISA

RISC-V Privilege-level ISA involves every state and operation that are

beyond User-Level ISA and typically provides the features for an OS to

execute. At the time of writing this thesis, the RISC-V privilege-level

speci�cation is in a draft [100] form that will most likely change in the

future. The components that are involved part of seL4 port are discussed

here.

4.3.1 RISC-V Privilege Modes

There are currently four RISC-V privilege modes: user, supervisor, hy-

pervisor and machine modes. Machine mode is the highest privilege level,

giving access to all hardware resources, and it is mandatory and must

be implemented in any RISC-V compliant core, while the others are op-

tional. To provide applications with protection, a minimal RISC-V core

would support both user and machine modes. Supervisor mode provides

page-based protection as most OSs expect. Hypervisor mode helps with

virtualisation, however it is not documented nor it has been implemented

yet. In the following section machine and supervisor modes are discussed

in more details.

RISC-V Machine Mode

Machine mode is the highest RISC-V privilege mode and is the �rst mode

to be entered on power reset. An application executing in machine mode

can access any register state, including lower privilege registers. Machine

mode registers are pre�xed with m letter.

mcpuid register gives information about the features the underlying

RISC-V provides like which ISA does it provide (RV32I, RV64I or any

other extensions). It also speci�es which privilege modes are there part

of this hardware implementation.

Machine Status Register mstatus is the most important register in

Machine mode that controls the RISC-V core and monitors its behaviour.

It manipulates interrupts, privilege modes, virtualisation management

and disabling/enabling other features like �oating point operations.

The 5-bits VM entry within the mstatus register represents how vir-

tualisation management is done during the current execution time. The

di�erent VM management modes are shown in �gure 4.2

70

Figure 4.2: Encoding of virtualization management �eld VM[4:0]. [100]

M, S and U refer to Machine, Supervisor and User modes respectively.

Mbare mode in entered on reset with no protection or translation.

Di�erent exceptions and interrupts can occur in machine mode and

RISC-V recognizes the cause of the exception by reading the mcause

register. Figure 4.3 shows di�erent exception types.

RISC-V Supervisor Mode

Supervisor mode is the proper mode that contemporary Unix-based OSs

and microkernels like seL4 expect. It provides page-based translation

and protection by a memory management unit (MMU) that involves

page tables and entries. There are few page-based modes each with its

page (table) and address space granularity.

Sv32 provides a 32-bit address space covering 4 GiB, with both 4

MiB mega pages and 4 KiB pages granularity laid out in a one or two

level page tables respectively. It works with RV32 ISA. Sv32 system is

discussed here as seL4 port has been ported for it, and also other Sv39

and Sv48 systems follow the same terminology.

The formats of virtual/physical addresses as well as page table entries

are shown in �gures 4.4, 4.5 and 4.6. VPN is 20-bit virtual page number

that is translated to 22-bit Physical Page Number (PPN). The page o�set

stays �xed and is not translated.

V bit refers to a valid Page Table Entry (PTE) when set. R and D

bits specify whether the corresponding page has been read or modi�ed

(dirty), and these might be managed/used by the OS. Type bits encode

the access control attributes of the page and whether it is a leaf PTE or

a pointer to the next page table level. Possible PTE types are provided

in �gure 4.7

71

Figure 4.3: Exception Codes [100]

Figure 4.4: Sv32 Virtual Address Format [100]

Figure 4.5: Sv32 Physical Address Format [100]

Figure 4.6: Sv32 Page Table Entry Format [100]

72

Figure 4.7: Sv32 Page Table Entry Type Encodings [100]

Figure 4.8 is a �owchart demonstrating how page translation and

protection is done in Sv32 mode. sptbr register holds the address of the

�rst-level page table (as known as page directory).

Similarly Sv39 and Sv48 work with RV64 ISA, providing 39-bit and

48-bit virtual address space respectively, with three level page tables.

4.4 seL4 on RISC-V

Porting seL4 to RISC-V requires a knowledge of both seL4 microkernel

and RISC-V design/implementation. The project succeeded to perform

a complete port of seL4 microkernel that enables running a simple OS

on top of it. Currently it can run on Sv32/RV32, Sv39/RV64 on both

Spike (the main RISC-V simulator), and also on Rocket Chip (FPGA).

There have been some implementation trade-o�s regarding the project,

described below.

4.4.1 seL4/RISC-V Port Details and Trade-o�s

32-bit or 64-bit? Both! seL4 only supports 32-bit targets currently,

on the other hand, RISC-V has been focusing on 64-bit implementations

right from the start with a little support for 32-bit; UC Berkeley team

has only 64-bit Rocket chip and there is no 32-bit hardware imple-

mentation so far (except for some simple educational repos). Luckily,

Spike has recently supported 32-bit mode (with a new �isa �ag). It is

73

Figure 4.8: Sv32 Page Translation Process.

74

easier to port seL4 for 32-bit architecture trying to follow/imitate the

existing ARM/IA-32 ports. A complete 64-bit implementation would

be more challenging as most of the seL4 data structures and scripts

assume 32-bit environment. The port successfully runs on Spike/RV32

simulator. In order enable it running on real hardware (64-bit Rocket

Chip), the page-tables and memory management related data structures

were laid out to comply with Sv39/RV64 system. All other instructions

and data structures are kept in 32-bit formats as seL4 was originally

designed for.

Working in which mode?

The latest privileged speci�cation introduces 4 modes that RISC-V soft-

ware can run in. Conceptually, seL4 might run in any of the three priv-

ileged modes separately, or even two or three of them simultaneously.

Figure 4.9 shows the possible seL4, guest OSs and applications con�gu-

rations regarding to which modes they can run at.

The number of which modes to run seL4 microkernel in was narrowed

down to two by the fact that there is no hypervisor implementation

yet. These two modes are: machine (M-mode), and supervisor (S-mode)

modes. The M-mode supports physical access control and Base-and-

Bounds checking, i.e. no mapping or address translation, only S-mode

does. seL4 microkernel on the other hand expects that it would run in

an address-translation-based mode, and would map its kernel image, IPC

bu�ers, bootframe and other areas of memory during bootstrap. So we

followed the current seL4 ports to work in S-Mode.

Loading the image(s) and mapping pages

The bare seL4 system basically consists of: 1) the kernel image, 2) ap-

plications. Current ARM and IA-32 seL4 ports di�er in the way they

load the kernel image and applications. Since IA-32 port can boot in

multikernel mode, it loads the images in way similar to grub. So the

kernel is the �rst part that takes control of the physical resources, and it

loads/maps the application images itself. The ARM port behaves di�er-

ently in that it archives the kernel and application images in cpio format.

There is a separate el�oader tool that reads the ELF images from the

cpio archive, loads it to the available physically-adjacent memory, sets up

75

F
ig
ur
e
4.
9:

P
os
si
bl
e
R
IS
C
-V

M
od
es

T
ha
t
se
L
4
C
an

R
un

In
.

76

the VM environment and �nally maps the ELF images according to their

ELF's section VMAs. Hence, the el�oader is the �rst to take control of

the physical resources, and then it passes control to the kernel (which

works in a VM environment right from the start) with some information

passed to it about the loading addresses of the kernel image itself and

the user image(s). The �nal image for the seL4/ARM system then con-

tains: 1) el�oader tool, 2) libelf, 3) libcpio, 4) kernel image and 5) user

applications. We followed the ARM port as it is more hardware agnostic,

and as a start the RISC-V wouldn't need to support multikernel mode.

Other seL4 components involved

seL4 microkernel itself needs other tools and libraries to work with. Such

tools are el�oader, building/con�guration systems and other user-space

utility libraries. The port involved working on:

libmuslc: libelf depends on libmuslc. I performed a very basic port

of musl c library to RISC-V architecture, enough to build it successfully

and produce the .a library.

libelf: This one is portable and architecture-independent. It has to

be included part of the elf loading process.

libcpio: like libelf, libcpio is also architecture-independent and is

used to read the cpio archive containing the kernel image and user images.

el�oader: This tool is developed by seL4 team for the ARM port, I

had to port it to RISC-V. It has to work in M-mode and it is acting as

riscv-pk, that is, any system calls from seL4 microkernel are redirected

to el�oader code, which handles it and returns (apart from its main

purpose which is loading the kernel/user images). el�oader currently

only supports write and exit system calls (to be able to get some printf

output and exit the spike simulator).

seL4 microkernel: The project is mainly about the seL4 microker-

nel. The port basically followed ARM port and even a lot of code is

copied from it. seL4 microkernel runs in S-mode right from the start

as mentioned previously. Some architecture-level capability data struc-

tures had to be modi�ed according to the RISC-V ISA, and the low-level

RISC-V VM handling code is now implemented to map the kernel image,

kernel frames, initial task and user images properly.

Build system: The build system for seL4 projects is the Linux

Kcon�g/Kbuild build system. The existing Kcon�g/Kbuild �les had

to be modi�ed to allocate a new entry for RISC-V architecture with

77

a new Spike platform. New riscv defcon�g, project-riscv.mk, make�les

and other �les were added to enable building a complete seL4/RISC-V

system (el�oader, libcpio, libelf, seL4 mircokernel and user image) like

in seL4tests project and other seL4 projects.

4.4.2 Simple Operating System Running on seL4

seL4 microkernel runs in privilege mode while device drivers and appli-

cations run in user-mode. To prove the port is reliable, and to put new

message passing and scalability issues under consideration, an interesting

use-case such as running an OS on top of seL4 would be useful. This also

might allow heterogeneous OSs to run on heterogeneous cores, with seL4

acting as a hypervisor, and this is an active area of both research and

industrial development currently.

What is SOS

Simple Operating System (SOS) is a server running on top of the seL4

microkernel. The SOS server is expected to provide a speci�ed system

call interface to its clients (Speci�ed in libs/libsos/include/sos.h). SOS is

used part of an advanced OS course o�ered by University of New South

Wales and currently only runs on Sabre Lite ARM-based board, seL4

on RISC-V can be considered the second supported platform for SOS,

and the �rst all-open-source seL4 system, providing that seL4 (and its

components), RISC-V ISA, Spike simulator (and Rocket-Chip on FPGA)

are all open-source. The SOS framework is described in �gure 4.10.

The components shown in the �gure are:

Harware: The hardware described in our case is the RISC-V plat-

form.

seL4 microkernel: This is the seL4 RISC-V port of the kernel (and

the third port after IA-32 and ARM). It provides the functionalities

needed to run our SOS project in the form of memory management,

scheduling, IPC, etc.

SOS: a stub OS running on top of seL4 microkernel. It is intended to

be developed and enhanced by students and/or people who are interested

to learn about seL4. SOS initializes a synchronous endpoint capability

for its clients/applications to use for communication. Interrupts are de-

livered using an asynchronous endpoint (seL4 has two types of endpoint

capability: synchronous and asynchronous).

78

Figure 4.10: SOS Framework

tty test: It serves as a simple application running on top of SOS

that simply prints out a hello word message. The application level would

need to issue system calls to SOS using the seL4 endpoint capabilities.

An example of such a system call is tty test application requesting (from

SOS) some data to be printed out. SOS on the other hand monitors the

system call requests from its clients (using seL4Wait system call), serves

it, and sends replies.

What is needed to support running SOS

Other than the seL4 microkernel internals, almost all of the current seL4

user-level libraries had to be supported to build SOS and its applications.

To be able to build/run SOS, the following components are involved:

seL4 microkernel: it now supports memory management capa-

bilities, context switch, traps from user applications, and a lot more

architecture-dependent functions were implemented.

libseL4: This is the user-level library for applications to deal with

seL4 microkernel via system calls. It de�nes the format of the system

calls, kernel objects de�nitions, user-level context and it exposes them

all to the user.

libmuslc: The C library that seL4 and its libraries depend on. It

has been ported to RISC-V part of this project, and now it is working

pretty �ne as expected.

79

libsel4muslcsys: A minimal muslc implementation for the root task

to bootstrap, it provides stdio related system call handlers and it is part

of the bootstrap procedure of the root task, de�ning the system call table

and entry point for muslc-based applications.

libplatsupport: Some platform related functions (BSP) for seL4

supported platforms. For example serial driver initialization and console

driver functions for a given board are provided there. libsel4platsupport

depends on it. I had to add Spike platform with very basic implementa-

tion just to get over build dependencies.

libsel4platsupport: For RISC-V it has to be ported to provide the

bootstrapping and the exe entry point __sel4_start for the root task.

It gets the boot frame address from the seL4 microkernel, constructs

the stack vector as muslc expects, and then jumps to the normal muslc

_start entry, enabling it to populate the libc environment's data struc-

tures with its details, initializes TLS, �les and stdio handlers, etc. Finally

the muslc task bootstrap procedure jumps to the user's main() function,

or the root task, which in our use case is SOS.

libcpio: used by SOS to parse the cpio archive, searching for user

binaries.

libcpio: This one is used by SOS to parse the ELF binaries extracted

from the cpio archive. Hence SOS can read the ELF's section headers,

and do the loading/mapping consequently.

libsel4cpace: a library provided to abstract away the details of seL4

CSpace management, this library had to also be ported for RISC-V. It

is used by SOS to construct tasks' CSpace.

mapping: SOS comes with mapping.c �le that is needed in con-

junction with elf.c to load/map the user ELF binaries. It is ported

to RISC-V and it invokes the newly provided RISC-V system calls like

seL4_RISCV_Page_Map and seL4_RISCV_PageTable_Map.

Other libraries (like libmuslcsys and libsel4vka) had to be modi�ed to

be aware of the new RISC-V architecture and just modi�ed to be built,

again to get over other required libraries dependency.

Figure 4.11 shows the run-time steps for a complete SOS/seL4 to

execute until it reaches the highest level application of the stack (tty

application).

80

Figure 4.11: seL4/SOS bootstrap procedure

81

4.5 Conclusion

seL4 microkernel is more sophisticated than RTEMS. It relies on message-

passing to communicate between its di�erent subsystems, which makes

it scalable, and a better �t to run on NoC-based SoC. A complete seL4

project would involve seL4 microkernel and many other tools and li-

braries (there were over 20 repositories that were involved to run SOS

on seL4). This makes it far bigger than an RTEMS systems. However,

thanks to its modular design and message passing mechanism that mi-

crokernels in general agree on, it is possible to scatter seL4-based system

across distributed cores that can be in a form of memories, heterogeneous

cores, accelerators, etc. That said, the small seL4 microkernel can run

on one or more (RISC-V) cores, and its libraries and applications might

run on other, possibly heterogeneous, cores that perform better on, and

all of these subsystems communicating with each other via a standard

(message-passing) interface. This way, it is no longer needed to constrain

a system to run a speci�c OS (that might not perform well with some

application requirements) and to run it on a homogeneous SMP (single

ABI/architecture) like with RTEMS on Epiphany NoC. We now have

the freedom to modify both software (seL4 as a hypervisor and its appli-

cations that can be other OSs) and hardware (RISC-V based SoC with

other pluggable heterogeneous cores and NoCs).

Now to link with issues mentioned in section 2.4. Regarding the

memory system, it is a very conventional one with MMU and 4 KiB

pages for both 32 and 64 bit address spaces. This makes seL4 (and Linux)

happy enough to run there, but does not give an advantage over any other

architecture, instead it inherits the page-based issues discussed in the

section 2.4. Perhaps this can be enhanced in the future due the �exibility

of RISC-V architecture. Cache coherency is irrelevant since it is not yet

part of RISC-V standard, but an implementation can choose whether to

implement it or not. The good thing is that RISC-V architecture can be

extended to support other new features (given that it is mainly a research

open-source architecture) and memory models as required.

The most irritating thing about porting seL4 to RISC-V (Rocket Core

and Spike), is its Host Target Interface (HTIF) interface. It is a totally

new interface, that needs programming and special handling to construct

and send packets with format a host device would understand. This

needs support from both a target OS (to construct commands and data

82

packets and send them, which requires M-mode instructions), and the

host device (to receive packets, interpret them and handle commands).

Luckily, HTIF is a good example of how a new core (and IO device)

interface should not be implemented. Moreover, RISC-V does debug/IO

access using special purpose CSRxx instructions, which is not portable,

neither easy to adopt, given that there is no current documentation for

this interface.

Finally, RISC-V does not provide (enough) speci�cations neither seri-

ously consider the multi-core heterogeneous issues and how cores commu-

nicate, at least not yet. Also, there is no implementation or speci�cation

details of the RISC-V hypervisor mode, which could be of a big bene�t

for seL4 given that microkernels have been successfully used as secured

software hypervisors.

83

Chapter 5

Operating System Support on

Multi-core Architecture

5.1 Discussion

This chapter concludes the research, programming and development

e�orts for this thesis, and according to that, it provides the requirements

for both OSs and (multi-core) hardware architectures, and �nally it

suggests solutions for such requirements.

The overall development e�ort includes:

1. RTEMS port to Epiphany, MicroBlaze, OpenRISC and RISC-V

architectures both SMP and shared memory multiprocessing.

2. seL4 microkernel Port to RISC-V architecture.

3. RISC-V Vscale core integration to OpenRISC wishbone-based Fus-

eSoC.

As noticed in the previous chapters, the trend is moving to hetero-

geneous multi-core architectures, but each vendor (or organization) de-

sign their own customized hardware that communicates in a di�erent

way than one another, whether from software or hardware perspectives.

Moreover, vendors most likely provide their own toolchain, and their own

device drivers sometimes enforcing license issues to them.

This makes it harder for OSs to be ported to such new architec-

tures. An example of this is an attempt to merge the work of RTEMS

(open-source) port to MicroBlaze (by Xilinx), and the main issue that

84

prohibited this merge is the commercial licence that Xilinx enforces to

its software code.

The opposite case is clear with RISC-V, which is all open-source, and

although it is a new architecture, there have been many people working

on OS ports to RISC-V. Currently there are: Linux, FreeBSD, seL4 and

RTEMS ports. seL4 and RTEMS ports are part of the e�ort of this thesis.

This thesis suggests (from OS point of view) that (heterogeneous)

multi-core hardware architectures should be:

1. Easy to program.

2. Portable (takes less e�ort to add OS support for it).

3. Scalable.

4. Communication-transparent.

5. Flexible.

6. Secure.

7. Easy to identify/address.

Easy to program The problem with some heterogeneous architectures

is that they provide their own special purpose instructions, registers or

interfaces to handle inter-core communications. This does require doc-

umentation from the architecture vendors and software developers are

required to understand and grasp how to write low-level code (at the

assembly level) that manages the cores. Moreover, it requires support

from the toolchain mainly the linker and compiler (in the case of GNU,

this is binutils and GCC).

Examples of this problem are the MicroBlaze's Fast Simplex Link

(FSL) and UC Berkeley's host-target interface (HTIF) for their RISC-

V SoC implementation. FSL core comes with documentation, but still

the programmer has to read and understand how it works from MicroB-

laze and other connected cores, as well as the programming interface.

The problem with RISC-V is even worse. It does not provide any doc-

umentation, except for some code examples. And from such examples,

the programmers have to know how to construct a packet to be sent

to the host using a system call via a usage of some special purpose

85

registers like (mtohost, mfromhost), and magic memory that contains

the data packet(s). Clearly this was a downside for people who wanted

to use the Rocket Core (the UC Berkeley implementation of RISC-V),

with HTIF. This made other projects like lowRISC to work on removing

such target-dependent interface. Similarly, I worked on integrating the

VScale/RISC-V core to OpenRISC-based projects, removing any use of

HTIF interface and only relying on wishbone interface. This actually

enabled a RISC-V to make use of many other open-source cores that are

wishbone compliant, and supported by other boards.

Portable (takes less e�ort to add OS support for it) This is

tightly correlated to the previous requirement. If there is a standard

way for cores to address each other, this will save programmers a lot

of time reading the documentation and programming the hardware. In

fact portability can be as easy as just copying C code for one driver that

works with some OS on a given CPU, and pasting it to a totally di�erent

OS that executes on another CPU.

An example of this is the NS16550 UART interface. The exact same

driver for one RTEMS BSP can be used for another RTEMS BSP with

another CPU. In fact, when I was implementing the UART driver for

seL4 port to RISC-V/QEMU, I just copied the source code of the driver

from RTEMS/OpenRISC port to seL4. This is certainly not the case

with HTIF interface, or similar SoCs that include MicroBlaze. Both

need a considerable e�ort, logic, and code size to implement a console

driver.

Scalable Scalability issues with mutli-core systems have di�erent pa-

rameters and aspects from hardware and software sides. Shared data

structures and shared physical memory are great bottlenecks with scal-

ability. The shared data structure issue is somehow solved by factoring

the OSs as discussed with FOS, or keeping each core's data structures

local with no sharing and only message passing to preserve consistency

as with Multikernel. While this is a good solution and improves scala-

bility issue, the hardware implementation is still a problem. Hardware

caches that are used with Barrel�sh port in x86-based architecture are

restricting the boost of the multikernel design.

86

Communication transparent Programmers do not have to worry

about what communication fabric is used to connect di�erent cores

whether it is a network on chip, bus or direct links. However, it may

sometimes be useful to actually control the communication medium as

discussed in [78] where software is controlling network on chips, and

with Raw microprocessor [93] where software controls the crossbar. Still,

security and privilege level should be considered when it comes to OS

management, but the good idea is to embrace exokernel and microker-

nel models by exporting such new hardware features to applications for

reasons like that applications better know their needs, and it is better to

keep the kernel small and simple (and veri�ed like with seL4).

Flexible One of the major problems that OSs are restricted to cur-

rently (even the research ones) are the limitation of some hardware fea-

tures that were originally developed for uniprocessor systems and evolved

from there. A clear example of this is cache units. Caches are huge bot-

tleneck for scalability especially when the number of cores increases. This

is mainly due to the requirement of achieving consistency between cached

versions on di�erent cores of a shared data structure. Even multikernel

design which embraces no sharing and locality of data structures is still

being restricted to using caches even if they do not need it. Further-

more, Barrel�sh is using cache lines for communication between di�erent

kernels on di�erent nodes. Other examples of making use of caches are

scalable locks that try to be placed on di�erent lines of caches not to be

contended over, replaced or false shared. Similarly, another restriction is

relying on virtualisation and protection features (i.e. page-size, MMU,

Intel's VTx) of a given hardware like with Quest-V on Intel.

The previous examples not only need considerable amount of un-

derstanding and implementation e�ort from the programmer, but also

are simply non portable. A software implementation that assumes some

very speci�c cache features like coherency protocol or cache line size will

simply fail when it moves to another di�erent architectures with minor

di�erences (i.e. cache line size). OSs should not rely on these kinds of

features at all, rather, it can provide access control only, and leave the

policy to applications. From the hardware side, architecture designers

should not force programmers to use some features like caches, MMU,

etc, at least to provide the option to simply disable them.

87

Secure Security is of major concern for OSs. From exokernel to mono-

lithic, all agree that the kernel at least should guarantee some form of

security between applications with each other and applications and the

kernel. Providing such security/protection scheme can be supported by

software-only libraries and mechanisms, or hardware enforcement. Most

current hardware architectures do provide help for software to enforce

protection. This can be a form of di�erent privilege levels for each soft-

ware type (kernel, application, hypervisors, etc), MMU, and/or even

some new hardware capability implementation like CHERI [102]. Se-

curity and protection can even be of physical separation like what FOS

suggests that each core holds its own kernel/application, without mess-

ing with other cores. Capability software for access control works great

like discussed earlier with seL4; it works to the level where seL4 has been

totally formally veri�ed being the �rst world's OS kernel proven to have

no bugs. While software-only capability model works well, it can work

better with hardware-capability implementation like CHERI, improving

performance, hardware security enforcement, and formal veri�cation.

Currently memory management units are mostly providing page-

based translation/protection. This might not be a good idea wasting

memory for applications that want smaller protection granularity. Also,

an RTOS like RTEMS with small memory footprints and performance

requirements would not work well with 4 KiB page-based protection. In

fact, most RTEMS targets just abandon using MMU because it can not

a�ord the overhead of: n-level page-table translations, few TLBs entries

with costly operations, cache (being non deterministic), and fragmenta-

tion caused when there is a need for protection over small amount of

memory less than the smallest page granularity o�ered by the hardware.

CHERI provides some hardware solutions for the previous issues, but

it has not been deployed by OSs that really need it like RTEMS and

seL4, not yet.

Identi�cation/addressing It is not a good idea that for each core in

a heterogeneous system, there is a di�erent way to identify and address

it. A standard way for addressing other cores in the system is preferred,

regardless of the type of the core whether it is CPU, FPGA, GPU, UART,

etc. Thus, dealing with other cores as black boxes with shared standard

interface would hugely ease the identi�cation, addressing and commu-

nication processes that are managed by the kernel. Furthermore, the

88

same exact code can be used for addressing di�erent cores by providing

di�erent parameters (i.e. core ID).

5.2 Proposed Solutions And Future Work

Using shared address space (not just for memory)

Shared address space is not just for memory. It can be used to address

other cores including IO memory mapped devices. The downside of this

is the waste of some address space bits. However, with 64-bit regis-

ters/addressing, especially with embedded systems, this would not be an

issue. Both Tilera and Epiphany, as scalable multi-core chips, provide

32 and 64 bit address spaces respectively, with only the former having a

cache unit and virtual addressing.

There are many advantages of using memory mapped cores (let's not

call it devices any more). Rather than using special instructions and

registers for controlling other cores, just use addresses. This is the case

with Epiphany and FuseSoC (OpenRISC-based) currently, and porting

RTEMS and seL4 to them was much more easier than RISC-V with

HTIF for example. Thus, controlling other cores and communicating

with it would not need any special instructions. A clear example of

this is copying the UART driver of RTEMS on OpenRISC to seL4 on

QEMU/RISC-V, without changing any code (except the base address).

This greatly helps with easy-to-program, and portable issues.

Partitioned Global Address Space (PGAS) is a promising subset

programming model of this idea. The RTEMS port on Epiphany

implicitly utilised such a model but from OS side. As discussed in

chapter 3, RTEMS made use of the local memories for some of its

critical data/code sections like context switch and interrupt handling,

while it placed other code and data structures on other remote memories

(both remote fast memories of other core's local memories and external

o�-chip DRAM).

The Heterogeneous System Architecture (HSA) foundation proposes

some standards for heterogeneous systems but their e�ort focuses on par-

allel computing (CPU and GPU). As with this thesis suggests, unedi�ed

address space is embraced. However, HSA still assumes virtual memory

89

management, page-tables, and cache coherency which may not be very

e�cient with scalability and real-time requirements.

Giving each core a memory mapped area part of the address space

that has a base address, and bound is enough. This area frame can con-

tain control registers, memories, interrupt control registers, bu�ers, etc.

An overall target-related �les can be then imported for both hardware

and software systems, including base addresses for each core and its size.

To use such cores it will be as easy as just including such a single header

�le with base addresses and use shared drivers, either existing part of the

OS library, or provided by the core's vendor.

A case study for that might be converting RTEMS shared memory

driver that is used by some targets to support multiprocessing (di�erent

RTEMS objects executing on di�erent nodes/cores), into hardware im-

plementation (memory mapped) for accessing another core (perhaps part

of the communication medium like NoC or wishbone bus). Hence, the

same exact code would not be changed, while the hardware implemen-

tation does. This way, the same code might work with shared memory,

NoC, or buses.

Standard Interface (cores dealt with as black boxes)

From the OS side, the single address space and memory mapped cores

can be considered a standard interface. From the hardware side, some

standard interface might be a good idea to just plug-in new cores. This

idea has proven its validity when I removed the HTIF interface of the

VScale/RISC-V core and wrapped it up with the standard wishbone

interface that FuseSoC/OpenRISC uses. It bene�ted from many other

open source cores that can be easily plugged there.

The interface does not have to assume any core attributes, core de-

signers have to just wrap their cores with such interface and it would be

ready to be integrated part of other SoCs.

It then would not matter what the interconnection fabric is (from

the core point of view), whether it is a bus, network on chip, or even a

cloud. The interconnection medium itself would do the job of routing and

serving the request. This way, a single core can be plugged to di�erent

network on chips, buses, or whatever, given that all of them comply with

some interface standard like wishbone or AXI.

90

Figure 5.1: Wishbone Interface [57]

Capabilities for access control of heterogeneous cores

Capabilities for access control receieved attention again with microkernels

like Fiasco.OC and seL4. It also helped with seL4 veri�cation, proving

that it has no bugs. Capabilities can be of any type. For example in seL4

there are frame, IPC, untyped memories and endpoints capabilities. For

heterogeneous system, new capabilities types can be added if needed,

giving an access control for one application running on one core to have

access to another core (including control register, data, memory, etc).

The capability type can be mapped to the core's type (CPU, UART, local

memory, etc), or just using frame capabilities if such cores are memory

mapped.

The above idea has actually been implemented above the seL4/RISC-

V port, giving the root-task a frame capability by which it can manage

booting/o�-loading RTEMS (and even another seL4 kernel instance) to

run on another RISC-V core.

CHERI on the same track, embracing capability model, is a hardware

implementation of capability model based on MIPS processor. Both seL4

and CHERI would be a best �t, reducing the software code for managing

91

capabilities in seL4, improving performance, and enforcing hardware se-

curity by features provided by CHERI, along with byte granularity, and

formal veri�cation goals that both share.

Protection can be enforced then using MMU (like with seL4 frames),

or either base and bound methods like with CHERI and machine mode

on RISC-V.

Space and Power-aware Scheduling

In the near future, we might have a system where the number of cores

would exceed the number of required processes; in this case there would

not be a need for costly operations like context switching, MMU/page-

table (or capabilities) that enforce security/virtualization, instead secu-

rity would be enforced by physically separating cores. This model could

be early noticed with RTEMS on Epiphany with 16 cores given that

RTEMS is simple enough that it does not need MMU, and 16 tasks are

more than enough for it.

Research then will focus on how these physically separated cores

share data and/or physical resources as well as how they communicate

with each other. As FOS predicts, the big issue at this time will be

how to do space scheduling (rather than the conventional time-sharing

scheduling on a single CPU) by dynamically assigning one or more

(heterogeneous) cores to a process to satisfy its requirements, including

location, distance, power management, communication medium and/or

types of the cores. An example of this is to place seL4 microkernel on

one core, and an application that handles matrix calculations (GPU

device driver) on another core. Both have to be close to each other, and

somehow the communication should be deterministic if it is a real-time

application. Another example which has been already implemented as a

prototype part of this thesis is running seL4 microkernel on a supervisor

core, while o�-loading RTEMS to another real-time friendly core.

The scheduler (whether it is implemented in user-mode, kernel-mode,

or even on hardware) can be extended to handle further operations like

load balancing, routing, and power management (voltage control or en-

abling/disabling cores for example). This will require the hardware to

provide new structures for OSs (schedulers) to monitor and handle such

operations. MMU protection would not make much more sense there,

rather, capabilities can take place to enforce access control of which/how

92

application/core can access other cores or data structures.

93

Chapter 6

Conclusion

Computer architecture is already taking serious �rst steps to the new era

of multi-core SoC, that would absolutely need both hardware and soft-

ware cooperation. With this new architecture in mind, it would require

some amount of compatibility support for software that assumes power-

ful features originally developed on uniprocessor systems. New challenges

have been already triggered while trying to adopt such concepts, along

with ensuring scalability of both the hardware and software, other new

features may even be invented.

This thesis addresses the design and implementation issues of OSs

on multi-core architectures, both theoretically and by attacking such is-

sues by getting hands-on experience of porting di�erent kernel designs to

multi-core hardware architectures.

The literature review chapter lists the evolution of hardware archi-

tectures from uniprocessor to multi-core processors, along with other

scalability related features like cache coherency and memory model.

Then OS kernel designs and examples were discussed, and how they

perform on di�erent hardware architectures. Each OS design has

advantages and disadvantages, so there has been a long-term trade-o�

between di�erent kernel designs like microkernels and monolithic kernels.

Some of them do well on given hardware architectures, but others do

not. For example, microkernels are scalable on many-core chips, but has

poor performance on one or few cores compared to monolithic kernels,

while monolithic kernels overtake microkernels on a single or few cores.

Security, real-time, virtualisation, scalability, performance, minimality

and safety-critical requirements are other examples of such trade-o�s

between di�erent kernel designs. Since the concern of this thesis is

multi-core chips (and scalability), examples of OSs running on SMP and

94

multi-core chips were discussed next like RTEMS, seL4, Quest and FOS,

and the trade-o�s are discussed in more details there.

In order to to have an actual real-world experience of the OSs

challenges on multi-core chips, chapter three reports the porting process

of RTEMS (SMP) as a real-time OS to Epiphany multi-core chip.

RTEMS SMP support is currently being developed, so this allowed

us to do some analysis of the challenges and design decisions taken

when adding support for originally uniprocessor OS, to run on SMP

and multi-core hardware. This chapter discussed SMP related data

structures involved within RTEMS that are target-independent as well as

how the Epiphany and Parallella architecture features �t with RTEMS

requirements. Such features are like addressing modes, communications

between (heterogeneous) cores and most importantly the memory model.

Three versions of RTEMS implementations were discussed, trading o�

kernel design, performance, size and features.

Because microkernels are superb when it comes to scalability, chapter

4 takes another L4 microkernel called seL4, which is considered the

most secure state-of-art microkernel currently, as an experimental kernel

design to run on a new research hardware architecture called RISC-V.

The experience of porting seL4 to RISC-V gave us the insight of what

are the basic requirements of seL4 as a secure microkernel that it needs

from a hardware architecture like RISC-V. Such requirements are like:

di�erent privilege modes, page-based protection and high performance

support from hardware to implement the most crucial component of

microkernels�IPC.

Finally chapter �ve gives some general requirements of OSs and multi-

core architectures followed by some proposed solutions that may do bet-

ter than the existing discussed ones, citing some new research hardware

implementation like capability-based hardware that might replace some

hardware features like MMU, and do even better especially with the

forthcoming many-core chips. Also chapter �ve credits the good (and

bad) hardware design and implementation decisions experienced during

porting RTEMS and seL4 to RISC-V/Spike, Epiphany/Parallella, Mi-

croBlaze and OpenRISC/FuseSoC hardware architectures, including ad-

dress space, addressing and communication between cores, simplicity of

95

programming and scalability issues.

96

Abbreviations

SMP Symmetric Multiprocessing

OS Operating System

SOS Simple Operating System

RTOS Rea-time Operating System

FOS Factored Operating System

RTEMS Real-Time Executive for Multiprocessor Systems

UMA Uniform Memory Access

NUMA Non-Uniform Memory Access

ccNUMA Cache Coherent Non-Uniform Memory Access

NoC Network on Chip

MPSoC Multiprocessor System on Chip

MMU Memory Management Unit

TLB Translation Lookaside Bu�er

PTE Page Table Entry

GPU Graphics Processing Unit

CHERI Capability Hardware Enhanced RISC Instructions

DSM Distributed Shared Memory

IPC Inter Process Communication

UART Universal Asynchronous Receiver/Transmitter

IO Input Output Devices

97

ISA Instruction Set Architecture

libOS Library Operating System

ASID Address Space Identi�cation

ABI Application Binary Interface

EDF Earliest Deadline First

BSP Board Support Package

GCC GNU Compiler Collection

TCB Task Control Block

DMA Direct Memory Access

IPI Inter Processor Interrupt

FP Floating Point

SDK Software Development Kit

HTIF Host Target Interface

98

Bibliography

[1] CoreLink System Memory Management Unit. http://www.arm.

com/products/system-ip/controllers/system-mmu.php. Ac-

cessed: 2015-07-21.

[2] Desktop Boards - Compatibility with Intel R© Virtualization

Technology (Intel R© VT). http://www.intel.com/support/

motherboards/desktop/sb/CS-030922.htm. Accessed: 2015-07-

21.

[3] lowRISC Project. http://www.lowrisc.org. Accessed: 2015-07-

23.

[4] OPEN SOURCE RESEARCH PROCESSOR. http://parallel.

princeton.edu/openpiton/. Accessed: 2015-07-23.

[5] PULP - an Open Parallel Ultra-Low-Power Processing-Platform.

http://iis-projects.ee.ethz.ch/index.php/PULP. Accessed:

2015-07-23.

[6] Real-Time Linux Wiki. https://rt.wiki.kernel.org/index.

php/Main_Page. Accessed: 2015-07-21.

[7] This is the third public release for the OS Abstraction Layer

library from NASA/GSFC Code 582. http://opensource.gsfc.

nasa.gov/projects/osal/OS_Abstraction_Layer_Release_

Notes.txt, 2007.

[8] NASA GFSC selects OAR for RTEMS Engineering and Analysis

again!!! http://www.rtems.com/node/34, 2014.

[9] RTEMS 4.10.99.0 On-Line Library. http://docs.rtems.org/

doc-current/share/rtems/html/, 2014.

[10] Trygve Aaberge. Analyzing the performance of the epiphany pro-

cessor. 2014.

99

http://www.arm.com/products/system-ip/controllers/system-mmu.php
http://www.arm.com/products/system-ip/controllers/system-mmu.php
http://www.intel.com/support/motherboards/desktop/sb/CS-030922.htm
http://www.intel.com/support/motherboards/desktop/sb/CS-030922.htm
http://www.lowrisc.org
http://parallel.princeton.edu/openpiton/
http://parallel.princeton.edu/openpiton/
http://iis-projects.ee.ethz.ch/index.php/PULP
https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
http://opensource.gsfc.nasa.gov/projects/osal/OS_Abstraction_Layer_Release_Notes.txt
http://opensource.gsfc.nasa.gov/projects/osal/OS_Abstraction_Layer_Release_Notes.txt
http://opensource.gsfc.nasa.gov/projects/osal/OS_Abstraction_Layer_Release_Notes.txt
http://www.rtems.com/node/34
http://docs.rtems.org/doc-current/share/rtems/html/
http://docs.rtems.org/doc-current/share/rtems/html/

[11] Keith Adams and Ole Agesen. A comparison of software and

hardware techniques for x86 virtualization. ACM Sigplan Notices,

41(11):2�13, 2006.

[12] Adapteva. Epiphany architecture reference, 2015.

[13] Sarita V Adve and Mark D Hill. Weak ordering�a new de�nition.

In ACM SIGARCH Computer Architecture News, volume 18, pages

2�14. ACM, 1990.

[14] Alexandra Aguiar and Fabiano Hessel. Virtual hell�re hypervisor:

Extending hell�re framework for embedded virtualization support.

In Quality Electronic Design (ISQED), 2011 12th International

Symposium on, pages 1�8. IEEE, 2011.

[15] James Anderson, Philip Holman, and Anand Srinivasan. Fair

scheduling of real time tasks on multiprocessors. Handbook of

scheduling: Algorithms, Models and Performance analysis, pages

31�1, 2004.

[16] James H Anderson and Anand Srinivasan. Early-release fair

scheduling. In Real-Time Systems, 2000. Euromicro RTS 2000.

12th Euromicro Conference on, pages 35�43. IEEE, 2000.

[17] Thomas E Anderson. The performance of spin lock alternatives for

shared-money multiprocessors. Parallel and Distributed Systems,

IEEE Transactions on, 1(1):6�16, 1990.

[18] Thomas E Anderson, Brian N Bershad, Edward D Lazowska, and

Henry M Levy. Scheduler activations: E�ective kernel support for

the user-level management of parallelism. ACM Transactions on

Computer Systems (TOCS), 10(1):53�79, 1992.

[19] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory

robustly in message-passing systems. Journal of the ACM (JACM),

42(1):124�142, 1995.

[20] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-

ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew War�eld.

Xen and the art of virtualization. ACM SIGOPS Operating Sys-

tems Review, 37(5):164�177, 2003.

100

[21] Sanjoy Baruah. Techniques for multiprocessor global schedulability

analysis. In rtss, pages 119�128. IEEE, 2007.

[22] Sanjoy K Baruah, Neil K Cohen, C Greg Plaxton, and Donald A

Varvel. Proportionate progress: A notion of fairness in resource

allocation. Algorithmica, 15(6):600�625, 1996.

[23] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim

Harris, Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian

Schüpbach, and Akhilesh Singhania. The multikernel: a new os

architecture for scalable multicore systems. In Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles,

pages 29�44. ACM, 2009.

[24] Michaª Bejda. E�cient code placement management for epiphany

architecture chips. Master's thesis, Jagiellonian University, 2003.

[25] Laszlo A. Belady. A study of replacement algorithms for a virtual-

storage computer. IBM Systems journal, 5(2):78�101, 1966.

[26] Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin

Joyce, Vince Leung, John MacKay, Mike Reif, Liewei Bao, John

Brown, et al. Tile64-processor: A 64-core soc with mesh intercon-

nect. In Solid-State Circuits Conference, 2008. ISSCC 2008. Di-

gest of Technical Papers. IEEE International, pages 88�598. IEEE,

2008.

[27] Nikhil Bhatia. Performance evaluation of intel ept hardware assist.

VMware, Inc, 2009.

[28] Tobias Bjerregaard and Shankar Mahadevan. A survey of re-

search and practices of network-on-chip. ACM Computing Surveys

(CSUR), 38(1):1, 2006.

[29] Gedare Bloom and Joel Sherrill. Scheduling and thread manage-

ment with rtems. ACM SIGBED Review, 11(1):20�25, 2014.

[30] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao,

M Frans Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein,

Ming Wu, Yue-hua Dai, et al. Corey: An operating system for

many cores. In OSDI, volume 8, pages 43�57, 2008.

101

[31] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao, Aleksey

Pesterev, M Frans Kaashoek, Robert Morris, Nickolai Zeldovich,

et al. An analysis of linux scalability to many cores. In OSDI,

volume 10, pages 86�93, 2010.

[32] Bjorn B Brandenburg. A fully preemptive multiprocessor

semaphore protocol for latency-sensitive real-time applications. In

Real-Time Systems (ECRTS), 2013 25th Euromicro Conference on,

pages 292�302. IEEE, 2013.

[33] Björn B Brandenburg, John M Calandrino, and James H Anderson.

On the scalability of real-time scheduling algorithms on multicore

platforms: A case study. In Real-Time Systems Symposium, 2008,

pages 157�169. IEEE, 2008.

[34] Alan Burns and Andy Wellings. Real-time systems and program-

ming languages.

[35] Alan Burns and Andy J Wellings. A schedulability compatible

multiprocessor resource sharing protocol�mrsp. In Real-Time Sys-

tems (ECRTS), 2013 25th Euromicro Conference on, pages 282�

291. IEEE, 2013.

[36] John M Calandrino, Hennadiy Leontyev, Aaron Block, UmaMa-

heswari C Devi, and James H Anderson. Litmus� rt: A testbed

for empirically comparing real-time multiprocessor schedulers. In

Real-Time Systems Symposium, 2006. RTSS'06. 27th IEEE Inter-

national, pages 111�126. IEEE, 2006.

[37] Daniel Cederman, Daniel Hellström, Joel Sherrill, Gedare Bloom,

Mathieu Patte, and Marco Zulianello. Rtems smp for leon3/leon4

multi-processor devices. Data Systems In Aerospace, 2014.

[38] Matthew Chapman and Gernot Heiser. vnuma: A virtual shared-

memory multiprocessor. In USENIX Annual Technical Conference,

2009.

[39] Tilera Corporation. Tilera Has Solved The Multi-Processor Scala-

bility Problem. http://www.tilera.com/, 2014.

[40] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Every-

thing you always wanted to know about synchronization but were

102

http://www.tilera.com/

afraid to ask. In Proceedings of the Twenty-Fourth ACM Sympo-

sium on Operating Systems Principles, pages 33�48. ACM, 2013.

[41] Boston University Department of Computer Science. Quest. http:

//www.questos.org, 2015.

[42] Ulrich Drepper. What every programmer should know about mem-

ory. Red Hat, Inc, 11, 2007.

[43] PF Dutot, G Mouni'e, and D Trystram. Operating systems in-

ternals and design principles. 5th International Edition, Prentice

Hall, pages 189�203, 2004.

[44] Kevin Elphinstone and Gernot Heiser. From l3 to sel4 what have we

learnt in 20 years of l4 microkernels? In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, pages

133�150. ACM, 2013.

[45] Todd A Ely, Courtney Duncan, E Glenn Lightsey, and Andreas

Mogensen. Real time Mars approach navigation aided by the Mars

Network. Pasadena, CA: Jet Propulsion Laboratory, National Aero-

nautics and Space Administration, 2006.

[46] Dawson R Engler, M Frans Kaashoek, et al. Exokernel: An operat-

ing system architecture for application-level resource management,

volume 29. ACM, 1995.

[47] ETHz. Pulp - an open parallel ultra-low-power processing-platform,

2015.

[48] Jose Flich, Samuel Rodrigo, Jose Duato, T Sodring, Å G Solheim,

Tor Skeie, and Olav Lysne. On the potential of noc virtualization

for multicore chips. In Complex, Intelligent and Software Intensive

Systems, 2008. CISIS 2008. International Conference on, pages

801�807. IEEE, 2008.

[49] S. Huber G. Bloom, J. Sherrill and C. Johns. Structure of the

RTEMS Real-Time Operating System. CRC Press, Taylor & Fran-

cis, 2015.

[50] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip

Gibbons, Anoop Gupta, and John Hennessy. Memory consistency

103

http://www.questos.org
http://www.questos.org

and event ordering in scalable shared-memory multiprocessors, vol-

ume 18. ACM, 1990.

[51] Robert P Goldberg. Architecture of virtual machines. In Proceed-

ings of the workshop on virtual computer systems, pages 74�112.

ACM, 1973.

[52] Zonghua Gu and Qingling Zhao. A state-of-the-art survey on real-

time issues in embedded systems virtualization. 2012.

[53] Gernot Heiser. Many-core chips�a case for virtual shared mem-

ory. In Proceedings of the 2nd Workshop on Managed Many-Core

Systems (MMCS), page 4. Citeseer, 2009.

[54] Gernot Heiser. Virtualizing embedded systems: why bother? In

Proceedings of the 48th Design Automation Conference, pages 901�

905. ACM, 2011.

[55] Gernot Heiser and Ben Leslie. The okl4 microvisor: convergence

point of microkernels and hypervisors. In Proceedings of the �rst

ACM asia-paci�c workshop on Workshop on systems, pages 19�24.

ACM, 2010.

[56] John L Hennessy and David A Patterson. Computer architecture:

a quantitative approach. Elsevier, 2011.

[57] Richard Herveille et al. Wishbone system-on-chip (soc) intercon-

nection architecture for portable ip cores. Revision B, 4, 2002.

[58] Philip Holman and James H Anderson. Adapting pfair scheduling

for symmetric multiprocessors. J. Embedded Computing, 1(4):543�

564, 2005.

[59] John Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal,

David Finan, Gregory Ruhl, Devon Jenkins, Howard Wilson, Nitin

Borkar, Gerhard Schrom, et al. A 48-core ia-32 message-passing

processor with dvfs in 45nm cmos. In Solid-State Circuits Con-

ference Digest of Technical Papers (ISSCC), 2010 IEEE Interna-

tional, pages 108�109. IEEE, 2010.

[60] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju

Park, Jae-Min Ryu, Seong-Yeol Park, and Chul-Ryun Kim. Xen on

104

arm: System virtualization using xen hypervisor for arm-based se-

cure mobile phones. In Consumer Communications and Networking

Conference, 2008. CCNC 2008. 5th IEEE, pages 257�261. IEEE,

2008.

[61] Asif Iqbal, Nayeema Sadeque, and Ra�ka Ida Mutia. An overview

of microkernel, hypervisor and microvisor virtualization approaches

for embedded systems. Report, Department of Electrical and In-

formation Technology, Lund University, Sweden, 2110, 2009.

[62] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony

Liguori. kvm: the linux virtual machine monitor. In Proceedings

of the Linux Symposium, volume 1, pages 225�230, 2007.

[63] Leslie Lamport. Time, clocks, and the ordering of events in a

distributed system. Communications of the ACM, 21(7):558�565,

1978.

[64] Leslie Lamport. How to make a multiprocessor computer that cor-

rectly executes multiprocess programs. Computers, IEEE Trans-

actions on, 100(9):690�691, 1979.

[65] James Laudon and Daniel Lenoski. The sgi origin: a ccnuma highly

scalable server. In ACM SIGARCH Computer Architecture News,

volume 25, pages 241�251. ACM, 1997.

[66] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop

Gupta, and John Hennessy. The directory-based cache coherence

protocol for the DASH multiprocessor, volume 18. ACM, 1990.

[67] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-

Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horowitz,

and Monica S Lam. The stanford dash multiprocessor. Computer,

25(3):63�79, 1992.

[68] Ye Li, Eric Missimer, and Richard West. Predictable migration

and communication in the quest-v multikernel. arXiv preprint

arXiv:1310.6301, 2013.

[69] Jochen Liedtke. On micro-kernel construction, volume 29. ACM,

1995.

105

[70] lowRISC. Tagged memory and minion cores in the lowrisc soc.

2015.

[71] Dave McCracken. Posix threads and the linux kernel. In Ottawa

Linux Symposium, page 330, 2002.

[72] John M Mellor-Crummey and Michael L Scott. Algorithms for

scalable synchronization on shared-memory multiprocessors. ACM

Transactions on Computer Systems (TOCS), 9(1):21�65, 1991.

[73] John M Mellor-Crummey and Michael L Scott. Scalable reader-

writer synchronization for shared-memory multiprocessors. In

ACM SIGPLAN Notices, volume 26, pages 106�113. ACM, 1991.

[74] John M Mellor-Crummey and Michael L Scott. Synchronization

without contention. In ACM SIGARCH Computer Architecture

News, volume 19, pages 269�278. ACM, 1991.

[75] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and

Luciano Ost. Hermes: an infrastructure for low area overhead

packet-switching networks on chip. INTEGRATION, the VLSI

journal, 38(1):69�93, 2004.

[76] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uh-

lig. Intel virtualization technology: Hardware support for e�cient

processor virtualization. Intel Technology Journal, 10(3), 2006.

[77] Rishiyur S Nikhil and Kathy R Czeck. Bsv by example. CreateS-

pace, Dec, 2010.

[78] Vincent Nollet, Théodore Marescaux, Diederik Verkest, Jean-Yves

Mignolet, and Serge Vernalde. Operating-system controlled net-

work on chip. In Proceedings of the 41st annual Design Automation

Conference, pages 256�259. ACM, 2004.

[79] Michael Ott, Jaroslaw Zola, Alexandros Stamatakis, and Srinivas

Aluru. Large-scale maximum liklihood-based phylogenetic analysis

on the ibm bluegene/l. In Proceedings of the 2007 ACM/IEEE

conference on Supercomputing, page 4. ACM, 2007.

[80] Gary Plumbridge, Jack Whitham, and Neil Audsley. Blueshell: a

platform for rapid prototyping of multiprocessor nocs and accelera-

tors. ACM SIGARCH Computer Architecture News, 41(5):107�117,

2014.

106

[81] Gerald J Popek and Robert P Goldberg. Formal requirements for

virtualizable third generation architectures. Communications of

the ACM, 17(7):412�421, 1974.

[82] The RTEMS Project. RTEMS Real Time Operating System

(RTOS). https://devel.rtems.org/wiki/Developer/SMP, 2014.

[83] The RTEMS Project. RTEMS SMP� Status of e�ort. https:

//devel.rtems.org/wiki/Developer/SMP, 2014.

[84] Xen Project. RT-XEN. http://www.xenproject.org/

directory/directory/projects/92-rt-xen.html, 2015.

[85] Zoran Radovi¢ and Erik Hagersten. Hierarchical backo� locks for

nonuniform communication architectures. In High-Performance

Computer Architecture, 2003. HPCA-9 2003. Proceedings. The

Ninth International Symposium on, pages 241�252. IEEE, 2003.

[86] Mendel Rosenblum. Vmware's virtual platformTM. In Proceedings

of hot chips, volume 1999, pages 185�196, 1999.

[87] Mendel Rosenblum and Tal Gar�nkel. Virtual machine monitors:

Current technology and future trends. Computer, 38(5):39�47,

2005.

[88] Rusty Russell. virtio: towards a de-facto standard for virtual i/o

devices. ACM SIGOPS Operating Systems Review, 42(5):95�103,

2008.

[89] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. Priority

inheritance protocols: An approach to real-time synchronization.

Computers, IEEE Transactions on, 39(9):1175�1185, 1990.

[90] Roy Spliet, Manohar Vanga, Bjorn B Brandenburg, and Sven Dzi-

adek. Fast on average, predictable in the worst case: Exploring

real-time futexes in litmusrt. In Real-Time Systems Symposium

(RTSS), 2014 IEEE, pages 96�105. IEEE, 2014.

[91] Udo Steinberg and Bernhard Kauer. Nova: a microhypervisor-

based secure virtualization architecture. In Proceedings of the 5th

European conference on Computer systems, pages 209�222. ACM,

2010.

107

https://devel.rtems.org/wiki/Developer/SMP
https://devel.rtems.org/wiki/Developer/SMP
https://devel.rtems.org/wiki/Developer/SMP
http://www.xenproject.org/directory/directory/projects/92-rt-xen.html
http://www.xenproject.org/directory/directory/projects/92-rt-xen.html

[92] Andrew S Tanenbaum. Distributed operating systems. Pearson

Education India, 1995.

[93] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzla�,

Fae Ghodrat, Ben Greenwald, Henry Ho�man, Paul Johnson, Jae-

Wook Lee, Walter Lee, et al. The raw microprocessor: A compu-

tational fabric for software circuits and general-purpose programs.

Micro, IEEE, 22(2):25�35, 2002.

[94] Joe Touch, Yu-Shun Wang, and Venkata Pingali. A recursive net-

work architecture. ISI, Tech. Rep, (2006-626), 2006.

[95] Francisco Triviño, José L Sánchez, Francisco J Alfaro, and José

Flich. Network-on-chip virtualization in chip-multiprocessor sys-

tems. Journal of Systems Architecture, 58(3):126�139, 2012.

[96] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando

Martins, Andrew V Anderson, Steven M Bennett, Alain Kägi, Fe-

lix H Leung, and Larry Smith. Intel virtualization technology.

Computer, 38(5):48�56, 2005.

[97] Prashant Varanasi and Gernot Heiser. Hardware-supported virtual-

ization on arm. In Proceedings of the Second Asia-Paci�c Workshop

on Systems, page 11. ACM, 2011.

[98] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosen-

blum. Operating system support for improving data locality on CC-

NUMA compute servers, volume 31. ACM, 1996.

[99] Carl A Waldspurger. Memory resource management in vmware esx

server. ACM SIGOPS Operating Systems Review, 36(SI):181�194,

2002.

[100] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A Patter-

son, and Krste Asanovi¢. The risc-v instruction set manual volume

ii: Privileged architecture version 1.7. 2015.

[101] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste

Asanovi. The risc-v instruction set manual. volume 1: User-level

isa, version 2.0. Technical report, DTIC Document, 2014.

[102] Robert NM Watson, Peter G Neumann, Jonathan Woodru�,

Jonathan Anderson, David Chisnall, Brooks Davis, Ben Laurie,

108

Simon W Moore, Steven J Murdoch, and Michael Roe. Capa-

bility hardware enhanced risc instructions: Cheri instruction-set

architecture. University of Cambridge, Computer Lab., Tech. Rep.

UCAM-CL-TR-850, 2014.

[103] David Wentzla� and Anant Agarwal. Factored operating systems

(fos): the case for a scalable operating system for multicores. ACM

SIGOPS Operating Systems Review, 43(2):76�85, 2009.

[104] Richard West, Ye Li, and Eric Missimer. Quest-v: A virtualized

multikernel for safety-critical real-time systems. arXiv preprint

arXiv:1310.6349, 2013.

[105] Wikipedia. Altix � wikipedia, the free encyclopedia, 2014. [Online;

accessed 24-July-2015].

[106] Wikipedia. Moesi protocol � wikipedia, the free encyclopedia,

2015. [Online; accessed 24-April-2016].

[107] Wikipedia. sel4 website, 2015. [Online; accessed 24-July-2015].

[108] Wikipedia. Monolithic kernel � wikipedia, the free encyclopedia,

2016. [Online; accessed 23-April-2016].

[109] Wikipedia. Rtems � wikipedia, the free encyclopedia, 2016. [On-

line; accessed 17-April-2016].

[110] M Yang. CAL code generator for epiphany architecture. PhD thesis,

Master Thesis, Halmstad University, 2013, in preparation, 2014.

109

	Abstract
	List of Figures
	Acknowledgements
	Author's Declaration
	Introduction
	Field Survey and Review
	Architecture of Multiprocessor Systems
	Shared Memory Multiprocessor Architectures
	Memory Consistency
	Message Passing Networks-on-Chip-based Processors

	Operating Systems
	RTOS
	Exokernel
	L4 Microkernel
	Multikernel

	Multi-core Operating Systems Examples
	RT PREEMPT and LITMUS - Linux
	RTEMS
	seL4
	Quest
	Corey
	FOS

	Operating Systems Design Issues on Multi-core Architectures
	Memory System
	Address Space
	Cache Coherency
	Communication and Addressing
	IO Management
	Instruction Set Architecure

	RTEMS on Epiphany multi-core NoC
	Epiphany Architecture
	eCore CPU
	Memory Architecture
	eMesh network
	SDK Environment

	Porting RTEMS SMP to Epiphany
	Toolchain and Parallela Board Setup
	RTEMS Porting Process
	Porting RTEMS to Epiphany
	RTEMS SMP Implementation on Epiphany

	Performance Analysis of RTEMS port on Epiphany
	Conclusions

	seL4 microkernel on RISC-V Hardware Architecture
	Introduction
	RISC-V User-Level ISA - Version 2.0 waterman2014risc
	32-bit RISC-V Base Integer ISA
	System Instructions

	RISC-V Privilege-level ISA
	RISC-V Privilege Modes

	seL4 on RISC-V
	seL4/RISC-V Port Details and Trade-offs
	Simple Operating System Running on seL4

	Conclusion

	Operating System Support on Multi-core Architecture
	Discussion
	Proposed Solutions And Future Work

	Conclusion
	Abbreviations
	Bibliography

