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Abstract 

Hair cells are specialized mechanosensory receptors in vertebrates that detect 

and process auditory and vestibular information with remarkable precision, 

fidelity and efficiency  (Schwander et al., 2010). Most of our knowledge about 

these cells stems from in vitro preparations using isolated tissue, which creates 

the need for a relatively simple in vivo vertebrate model to study hair cells.  

The zebrafish (Danio rerio) is being increasingly used to study the genetic basis 

of hearing and deafness but also the function and physiology of hair cells 

(Nicolson, 2005). However, the use of the zebrafish as an in vivo model to study 

hair cell function is currently limited by our poor understanding of their 

biophysical properties. The aim of this study was to provide a detailed 

description of the biophysical properties of zebrafish hair cells both in the lateral 

line as well as inner ear during early and mature stages of fish development. I 

have used single cell patch-clamp electrophysiology to measure potassium 

currents and synaptic transmission in hair cells. 

I found that hair cells from the lateral line and inner ear show different current 

types, the expression of which depends upon the position of the cell within the 

lateral line neuromast or inner ear macula. Moreover, I found that the abundance 

of hair cell types in the lateral line changes over time, which potentially reflects 

adaptations to a changing sensory environment for the fish. The synaptic 

machinery of the lateral line hair cells is comparable in terms of efficiency to its 

mammalian counterpart, but less sensitive. Lastly, I have also developed an 

approach to study hair cell properties in vivo in the juvenile fish. 
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Both sound and body motion are external physical stimuli that are translated into 

an internal biological signal by a remarkable cell type, the hair cell. These cells 

are exceptional in their features since they are able to transduce these stimuli 

and transmit them to the brain with incredible precision and fidelity. 

Hair cells are specialised mechanosensory receptors that are in evolutionary 

terms very old and found in both lower vertebrates and mammals. Because of the 

different physiological demand and environment to which these cells are 

exposed, they have developed specialized biophysical and morphological 

characteristics. Each hair cell type is built to face and fulfil its unique task. 

In this chapter, I will cover how the morphological structure of the sensory organ 

is shaped and develops (point 1.1), how hair cells are able to transduce stimuli 

(point 1.2) and how hair cells encode their information at the specialized ribbons 

synapses (point 1.3). Each of these parts will be described in depth for fish and 

then briefly compared to hair cells of the auditory and vestibular systems of other 

lower vertebrates. 

1.1 Structure of the lateral line and inner ear in fish 

Hair cells are present in organs of different sizes and shapes and a selection will 

be described below. 

1.1.1 Structure of the zebrafish lateral line organ 

Fish and amphibians have mechanosensory hair cells on the body surface, along 

the lateral line organ, which functions to sense ‘touch at a distance’. In zebrafish, 

the lateral line organ is able to detect frequencies up to 200 Hz and consists of 

two parts: the anterior lateral line (ALL) located at the head and the posterior 

lateral line (PLL) on the tail of the zebrafish. Because the PLL has been the main 

focus of research, little is known about the development of the ALL. The cell 

bodies of the neurons contacting the lateral line are located in two ganglia close 

to the ear of the fish. 
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1.1.1.1 Structure of a lateral line neuromast 

Neuromasts are the functional unit of the lateral line and are located on the 

surface of the zebrafish under the skin. Neuromasts contain the hair cells, 

supporting cells and mantle cells (Figure 1.1 A). At larval stages, the neuromast 

has about 8 – 15 hair cells (Ghysen and Dambly-Chaudiere, 2007) and each of 

them is surrounded by five to six supporting cells, whose cell bodies are located 

under the sensory cells (Figure 1.1 A, Lopez-Schier et al., 2004). The apical part 

of the hair cell is sealed by the cuticular plate and all the hair cell cuticular plates 

are fused together to form a near-impermeable barrier (Ghysen and Dambly-

Chaudiere, 2007; Pujol-Marti and Lopez-Schier, 2013).  

From the cuticular plates, the hair cells extend their stereociliary bundles and 

kinocilia into the gelatinous cupula, which forms a protective dome over the hair 

cells and creates a direct connection with the aqueous environment (Figure 1.1 

A, Lopez-Schier et al., 2004). The cupula orchestrates simultaneous movement of 

all hair cells and is thought to be secreted by the mantle cells (for review see 

Ghysen and Dambly-Chaudiere, 2007).  

Hair cells within a single neuromast are subdivided into two groups of different 

polarity, that are present within the anterior or posterior compartment and can 

be distinguished by the location of the kinocilium. In the anterior group the 

kinocilium faces to the posterior and cells are excited by stimuli from the 

anterior-to-posterior direction. The posterior group faces the opposite way and 

is excited by stimuli from posterior to anterior as shown in Figure 1.1 B (Flock 

and Wersall, 1962). Because of this opposite polarity, the stimulation of the 

cupula will simultaneously excite one group of hair cells and inhibit the other, 

which results in bipolar responses on the fibre. The primary neuromasts show 

polarity along the anterior-posterior axis, whereas the secondary ones orientate 

perpendicularly and sense dorsal-ventral direction (Figure 1.1 B: Lopez-Schier et 

al., 2004). 
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Figure 1.1 Schematic of a neuromasts and its polarity. 

A, Lateral view of a neuromast. The hair bundle consists of the kinocilium (K) and 

the stereocilia (S), that protrude into the cupula. Neuromasts contain two 

populations of hair cells of opposing hair bundle polarities (B). Excitation of the 

hair cells occurs as follows: Water movement (blue arrow) displaces the cupula 

along the anterior-posterior axis. This depolarizes (+) one population of hair 

cells, whilst hyperpolarizing (−) the other. This leads to an increase (+) or a 

decrease (-) of the firing rate of the afferent neuron associated with each hair cell 

population. B, Top view of a primary (left, parallel) and a secondary (right, 

perpendicular) neuromast. Figure modified from Pujol-Marti and Lopez-Schier, 

2013. 

 

1.1.1.2 Development of the lateral line 

The lateral line starts developing during embryonic stages and is generated by 

several waves of outgrowth that start with a primordium. During development 

this will create ~ 30 neuromasts, which are distributed across each somite and 

on the fins to maximise sensitivity across the whole fish body. 

Posterior lateral line migration 

The PLL originates from the cephalic placode close to the head and just posterior 

to the otic placode (Stone, 1937) as reviewed in Ghysen and Dambly-Chaudiere, 

(2004). At around 18-20 hpf the PLL placode gives rise to the first primordium 

(primI). It is formed by two compartments, the anterior compartment that 

contains approximately 20 cells, which are  the future afferent neurons , and a 

bigger compartment with around 100 cells that will be the future neuromast 

(Pujol-Marti and Lopez-Schier, 2013). PrimI migrates caudally along the 

horizontal myoseptum on a pre-existing pathway (Stone, 1922, 1937; Smith et 

al., 1990). This migration process starts at 20 hpf and is finished by 40-48 hpf. 
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The primI deposits five pro-neuromasts each containing a group of 20 cells on its 

journey (termed L1-L5) (Figure 1.2 A and B), and fragments into another two or 

three to form the tail neuromasts, so that by 48 hpf there are 8 pro-neuromasts 

on the larval fish. When this first wave is completed, these pro-neuromasts are 

assumed to be fully functional since the fish respond to touch (Ghysen and 

Dambly-Chaudiere, 2004). The primI migration is accompanied by axons 

extending from the lateral line ganglion (Metcalfe, 1985; Gilmour et al., 2004). 

After the first primordium has completed its journey, two more primordia are 

formed, called primII and primD. PrimII commences its journey at ~ 40 hpf and 

is much slower than primI. It intersperses four to five secondary neuromasts 

between L1 and L2 (Figure 1.2 B) (Sapede et al., 2002). The secondary 

neuromasts are on average two somites apart. PrimII takes nearly a week to 

complete its journey to the anus, which is the halfway point between head and 

tail. Simultaneously to the primII migration start, a dorsal lateral line is formed 

by primD.  

When the primary and secondary neuromasts are deposited, they start to 

migrate ventrally (Ledent, 2002; Ghysen and Dambly-Chaudiere, 2004). This 

means that by 2-3 wpf the PLL consists of two paths of neuromasts, the line with 

neuromasts deposited by primI and II and a dorsal lateral line (Figure 1.2 B and 

C). Over the next weeks, the dorsal lateral line will also migrate ventrally, taking 

up a position at the midline of the fish. Finally, two new lines of neuromasts form 

in the very position where the embryonic primI and II and the dorsal ones first 

appeared (Figure 1.2 D green dots). In the final step of the lateral line outgrowth, 

the neuromasts form ‘’stitches’’, which are dorso-ventrally elongated clusters of 

neuromasts (Figure 1.2 E) (for review see Ghysen and Dambly-Chaudiere, 2007).  
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Figure 1.2 Development of the posterior lateral line. 
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A, At 32 hpf the primI is about halfway on its journey to the tip of the tail and has 

deposited two neuromasts. B, At 3 dpf, primI has reached the tip of the tail, primII 

started migration and primD initiates the dorsal line (D1-D3, blue). C, At 3 wpf, 

intercalary neuromasts are formed (red). PrimD and primII have completed their 

journey (blue). D, At the larval–juvenile transition, the lateral and dorsal lines are 

complete and are shifted ventrally. Two new lines have formed at the original 

positions at the embryonic lines: one along the horizontal myoseptum and one 

along the dorsal midline (light green). E, Young adult fish hair cells labelled with 

caged fluorescein. Neuromasts are organised into stitches. Inset, 48-hpf embryo 

at the same scale as the adult. Scale bars, 1 mm. Modified after Ghysen and 

Dambly-Chaudiere, 2007. 

 

1.1.2 The zebrafish inner ear 

The zebrafish inner ear consists of six sensory patches. The three cristae detect 

rotational acceleration. The three maculae, which include the utricle, sacculus 

and lagena, are responsible for sensing linear acceleration. While the utricle 

carries exclusively vestibular function, the sacculus and lagena are probably 

involved in both vestibular and auditory sensation (for review see Whitfield et 

al., 2002).  

In the sacculus, there are differences in hair cell density, with central regions 

having on average fewer hair cells than the periphery. Moreover, the goldfish 

sacculus, has been shown to be tonotopically organised with low frequencies 

around 100 Hz represented at the most posterior/caudal part and the highest 

frequencies up to 4000 Hz at the anterior/rostral part (Figure 1.3 B and E) (Bang 

et al., 2001; Smith et al., 2011). 

The utriculus is also divided in regions. The striolar region, which is in the 

anterior portion of the tissue, contains a low density of hair cells with long 

bundles, while the cotillus, which is posterior to the striolar region, and the 

juxtrastriolar region have a greater hair cell density (Figure 1.3 C and F) (Bang et 

al., 2001). 

In the lagena, different hair cell morphologies can be found. The central lagena 

features hair cells with tall and thick bundles, with a kinocilium matching bundle 
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height. In the periphery, the hair bundles are much shorter and the kinocilium is 

at least twice as long (Figure 1.3 A and D) (Bang et al., 2001). 

 

Figure 1.3 Structure of zebrafish maculae and hair cell density. 

Confocal reconstructions of phalloidin-labeled whole-mount preparations of the 

lagena (A), the sacculus (B) and the utricle (C). Hair cell ciliary bundles are 

represented by dots in the corresponding lower panels (D–F). C and F, In the 

utricle, the striola (STR) is a band of relatively few hair cells characterized by 

large bundles. The cotillus (COT) is a large area located posteriorly. The 

juxtastriolar regions (JXT) run on both sides of the striola. The lacinia (LAC) is a 

thumb-shaped extension of the striola pointing towards the ampulla of the lateral 

semicircular canal. Inset in B and E illustrate the dramatic growth of sensory 

patches in juvenile fish 29 dpf. Scale bars 100 mm. Modified after Bang et al. 2001. 

 

Similar to the vestibular system of mammals, all of the inner ear maculae show a 

segregation of hair cell polarity of some kind (Figure 1.4) (Platt, 1993), with hair 

cells orientating along a line of polarity reversal within the tissue as shown in 

Figure 1.4 (Platt, 1993). 
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Figure 1.4 Schematic drawing of polarity of hair cells within the maculae. 

Sensory maculae show different polarities of hair cell populations. Arrows 

indicate the excitatory direction of hair bundles. Dashed lines delineate line of 

polarity reversal. U – utricle; cot – Cotillus; str - striola L- Lagena; S – Sacculus. 

Modified after Platt, 1993. 

 

Development of the inner ear 

The zebrafish inner ear stems from the otic placode, which comes from the 

preplacodal region (PPR) at the anterior border of the neural plate and is induced 

at 10 hpf and becomes visible at 16 hpf. At this stage it begins to form an 

elongated and hollow epithelial ball, termed the otic vesicle. In amniotes the otic 

vesicle is formed by invagination and in fish it is formed by cavitation (Abbas and 

Whitfield 2002).  
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The first pairs of hair cells are specified at the anterior and posterior portion of 

the otic vesicle at around 22 hpf. At the same time neuroblasts that will form the 

statoacoustic (VIIIth) ganglion, are emerging in the anterior ventral region of the 

otic vesicle. The otic vesicle gives rise to most of the cell types that make up the 

inner ear, including the afferent neurons of the VIIIth cranial ganglion, which 

innervates both vestibular and auditory hair cells. There is a population of 

precursors that makes both hair cells and neuroblasts at the posteromedial part 

of the zebrafish ear (Sapede et al., 2012). Once the neuroblasts are specified, they 

leave the otic vesicle and accumulate beneath the inner ear in a so called ‘transit 

amplifying population’ (Vemaraju et al., 2012). 

The first maculae that arise from the otic placode are the utricle and sacculus at 

around 2 dpf (Haddon and Lewis, 1996) and the lagena develops much later, with 

hair cells appearing at 21-25 dpf (Bang et al., 2001). The saccular and lagenar 

maculae undergo morphological changes from larval and juvenile stages. The 

sacculus develops from a ball shape at 5 dpf to the characteristic spindle at 29 

dpf (Haddon and Lewis, 1996). The lagena starts off as an oval patch at 21 dpf 

and becomes a pear-shape while the utricle maintains its rounded shape 

(Haddon and Lewis, 1996; Bang et al., 2001). During the first two weeks the 

number of hair cells grows dramatically, up to 15 per day (Bang et al., 2001). After 

one year, there seem to be no more hair cells added, but only replacement of the 

ones that are damaged (Higgs et al., 2002). 

 

1.2 The hair cell is a mechanosensory transducer 

1.2.1 General structure of a hair cell 

Hair cells have a remarkably conserved structure both in different end-organs 

and between species from aquatic fish over to amphibians and mammals (Popper 

and Fay, 1997). 

Hair cell have two distinct parts: The apical pole transduces external physical 

signals into a biological signal and the basal part, which shapes the electrical 
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activity and transmits this information into coordinated transmitter release onto 

the afferent fibre (Figure 1.5). Each part of the hair cell is specialised for its 

unique task and many of these features are conserved throughout the animal 

kingdom. 

 

Figure 1.5 Schematic representation of the general structure and ion 

channels of a hair cell. 

Schematic drawing of hair cell. The apical part contains the stereociliary bundle 

and the basolateral membrane contains ion channels (K+-channels) and the 

synaptic machinery with the calcium channels and vesicles tethered to ribbons. 

 

1.2.1.1 The apical pole performs transduction 

The apical pole of hair cells contains the structure from which they get their 

name: the hair bundle. The hair bundle consists of tens to a few hundred 

stereocilia, which are modified microvilli. They are composed of actin filaments 

that are cross-linked by fimbrin and espin (Hackney et al., 1993). The stereocilia 

are rooted into the cell via the cuticular plate, which is an actin dense region. The 

thickness and length of each stereocilium varies between hair cell types, species 
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and location. For example, for hair cells sensing higher frequencies, the 

stereocilia are typically shorter and more numerous (Tilney and Saunders, 1983; 

Mulroy and Williams, 1987). Stereocilia are interconnected by lateral links (Flock 

et al., 1982). Most importantly, they are connected via tip-links that link the tip 

of the taller stereocilia to the shaft of the longer one (Pickles et al., 1984; Furness 

and Hackney, 1985; Kachar et al., 2000). Moreover, stereocilia are interconnected 

by cross-links, that are crucial as they orchestrate the whole bundle to move in 

unison upon stimulation (Hackney and Furness, 2013). Furthermore, it has been 

shown that Myosin VI is required for cuticular plate integrity in zebrafish and 

prevents the fusion of stereocilia, which is similar to findings in mice (Avraham 

et al., 1995, Self et al., 1999, Kappler et al., 2004, Seiler et al., 2004). Some hair 

cells express a kinocilium, which is either retained only during development, as 

in the mouse cochlea, or throughout life, as in zebrafish. 

The mechanotransduction machinery is located in the hair bundle at the top of 

the cell. The hair cells mechanosensitivity is exceptional. It can detect 

displacements at the atomic scale (about 0.2 nm) and it is able to encode 

frequencies exceeding 1000 Hz by several fold. The ion-channel, that allows the 

mechanoelectrical transduction current (IMet) to flow when the stereocilia are 

displaced, is unknown and the current candidates are members of the 

transmembrane-channel protein family (TMC1 and TMC2) (Fettiplace and Kim, 

2014). However, the properties of IMet are well characterised asa non-selective 

cation channel with fast activation and calcium-dependent adaptation (Fettiplace 

and Kim, 2014).  

1.2.1.2 The basal pole shapes the receptor potential and releases 

transmitter 

The basal part of hair cells contains ion channels that shape the receptor 

potential generated by the transducer current. The set and number of ion 

channels is largely dependent on the function and position of the cell and it differs 

between species. The synaptic machinery is located at the very base of the cell 

and in mammals is responsible for releasing neurotransmitter with sub-
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millisecond temporal precision over a wide dynamic range (Matthews and Fuchs, 

2010).  

Hair cells contain a specialised presynaptic structure called the synaptic ribbon 

(Figure 1.5, base of cell). This ribbon is an ancient presynaptic structure that is 

already found in craniates (jawless fish) such as lamprey and hagfish (Holmberg, 

1971; Khonsari et al., 2009). Synaptic ribbons are a speciality of sensory systems 

that use graded receptor potentials, e.g. auditory, vestibular and visual systems 

and they were first described in the 1950s (Sjostrand, 1953, 1958). Their 

function remains not fully understood, but they seem to be important to mediate 

continued exocytosis during fast and sustained stimulation (Dick et al., 2003; 

Heidelberger et al., 2005). 

Ribbons are electron dense bodies located at the presynaptic side opposite the 

afferent fibre bouton and consist of the protein ribeye (Matthews and Fuchs, 

2010). They tether between 20-400 vesicles (Moser et al., 2006) filled with 

glutamate and gather them over clusters of calcium channels (reviewed in 

Matthews and Fuchs, 2010; Moser et al. 2006). Each ribbon is contacted by on 

average one afferent bouton and the receptor on the bouton is the alphaamino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (Glowatzki and 

Fuchs, 2000). 

The majority of calcium channels on the presynaptic side are of the L-type family, 

which have an unusually negative activation range, close to the Vm. In rodents and 

zebrafish the L-type channels (Cav1.3) present at the presynaptic zone are  the 

main subtype (Brandt et al., 2003; Sidi et al., 2004) and  they are involved in 

spontaneous afferent activity (Keen and Hudspeth, 2006; Li et al., 2009). Hair 

cells have a demand for continuous and rapidly modulated transmitter release 

near the Vm, which is ensured by the fact that Cav1.3 shows very little or no 

inactivation (Amphibian: Lewis and Hudspeth, 1983; Rodriguez-Contreras and 

Yamoah, 2001; Mammal: Beutner and Moser 2001, Marcotti et al. 2003; Johnson 

et al. 2005; Zampini et al. 2013). 
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1.2.2 Zebrafish lateral line hair cells 

1.2.2.1 Mechanoelectrical transduction in lateral line hair cells 

Zebrafish hair cells, as opposed to mammalian cochlear hair cells, contain in their 

stereociliary bundle a kinocilium present at mature stages. This kinocilium is 

involved in mechanosensitivity and important for the correct development of tip-

link orientation at early stages (Kindt et al., 2012). 

Similar to mammals, the mechanosensitive apparatus in fish also contains the tip 

link proteins protocadherin 12 (PCDH15) and cadherin 23 (CDH23) (Sakaguchi 

et al., 2009) and fish with null mutations show no mechanoelectrical 

transduction (Nicolson et al., 1998). 

1.2.2.2 Basolateral membrane properties of lateral line hair cells 

Up until recently, electrophysiological recordings from single zebrafish hair cells 

were not achievable. Therefore, a lot of knowledge stems from afferent neuron 

recordings that give indirect information of basolateral membrane currents. 

Using them, it was shown that the resting membrane potential of zebrafish hair 

cells is thought to be set by two distinct currents. These are the hyperpolarisation 

activated cation current Ih and the transducer current at rest IMET  (Trapani and 

Nicolson, 2011). 

1.2.2.3 Synaptic transmission in lateral line hair cells 

Similar to all other hair cells, the neurotransmitter present in the synaptic 

vesicles of zebrafish hair cells is glutamate and the main calcium channel is Cav1.3 

(Sidi et al., 2004; Obholzer et al., 2008). The vesicles are loaded by the vesicular 

glutamate transporter, VGLUT3, which has been also found in hair cells of 

rodents and has been shown to be of great importance for proper vesicle filling 

in zebrafish lateral line neuromasts (Obholzer et al., 2008). The characteristic 

feature in zebrafish hair cells is also the ribbon body. Similar to frog and 

immature mouse inner hair cells (IHC) (Johnson et al., 2008) the ribbons in the 

zebrafish lateral line have a spherical shape. Each hair cell typically contains 3-5 
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ribbons, with double ribbons being rare (Sidi et al., 2004; Obholzer et al., 2008; 

Sheets et al., 2011). 

In contrast to mammals, zebrafish have two ribeye genes, namely ribeye a and 

ribeye b (Wan et al., 2005). In knockdown experiments, both ribeye a and b are 

important for calcium channel clustering to the presynaptic side. The loss of 

ribeye a and b leads to severe disruption of evoked action potentials and both 

proteins have been associated with a role in synaptogenesis (Sheets et al., 2011).  

1.2.3 Goldfish inner ear hair cells  

Before the zebrafish became a popular model to study hair cells, the goldfish 

inner ear received a lot more attention. The sacculus has two distinct types of 

hair cells expressed in the rostral and caudal region. In the rostral region, hair 

cells are short and have ovoid or egg plant like shapes. Their resting membrane 

potential is – 75 mV and they show oscillatory behaviour to stimulation (damped 

oscillations). This resonance occurs at frequencies of 40 to 200 Hz, but resonance 

is of poor quality compared to that in the turtle cochlea or frog sacculus. The 

rostral region of the goldfish sacculus is sensitive to frequencies of up to 4000 Hz 

(Smith et al., 2011). 

In the caudal region hair cells are longer and cylindrical and have an 

extraordinarily negative Vm (~ -100 mV). These cells show full spiking behaviour 

of about 50 mV in amplitude. The spikes are carried mainly by sodium and 

calcium and the cells have a small outward current, which is a delayed rectifier, 

IKD. The caudal region of the goldfish sacculus is sensitive to lower frequencies 

down to 100 Hz (Smith et al., 2011). These two types of hair cells were also 

present in the lagena and utricle of the goldfish (Sento and Furukawa, 1987). 

They are not fully segregated in terms of location and they are mixed within the 

organ.  

Furthermore, there are two types (S1 and S2) of afferent neurons contacting 

goldfish saccular hair cells. The S1 fibres contact rostral hair cells (oscillatory 

type, IKCa) and have a large synapse. S1 do not show spontaneous spiking and 
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have a low sensitivity to sound, adapt quickly and show vigorous phase-locking 

to higher frequency sound.  

S2 fibres make connections to the oscillatory and spike like (IKD) hair cells. S2 do 

show spontaneous spiking, they are very sensitive to low frequency sound with 

slow adaptation. There are two further subtypes for the S2 fibres with one 

showing burst-like spontaneous firing and the other shows irregular spiking. The 

burst like may receive input from the spike type hair cells. The irregular spiking 

ones may receive input from the oscillatory hair cells in the rostral region. 

1.2.4 Vestibular hair cells in mammals 

Vestibular hair cells in the mammal translate information on head movement as 

well as head tilt and therefore fulfil the same roles as in the zebrafish. Vestibular 

input is crucial for motor reflexes, eye movement and head and body position. 

There are type I and type II hair cells in the vestibular organs of vertebrates. 

1.2.4.1 Potassium currents of vestibular hair cells 

In the 1950s, it was discovered that there are two types of vestibular hair cell, 

which are distinguished by their postsynaptic contacts. Type II hair cells receive 

rounded, bouton like contacts from the afferent fibres. This is the same kind of 

contact all auditory hair cells and vestibular hair cells in fish and amphibians 

receive (Figure 1.6). Type I hair cell synapses are different and they have a 

cupped ending or ‘calyx’ shape (Figure 1.6). Even though fish and amphibians do 

show larger afferent endings, a fully hugging calyx is only found in amniotes. This 

late arrival of the calyx in evolution, suggests a distinct role for vestibular 

processing in amniotes. 

The basolateral membrane properties, especially the set of potassium channels 

expressed, are the most striking difference between type II and type I hair cells 

as illustrated in Figure 1.6  (Eatock et al., 1998; Eatock and Songer, 2011). For 

type II hair cells, this set is dependent on the region of the cell, whereas for type 

I this is unknown. 
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In Type II hair cells, the outward K+ channels show low open probability at the 

resting membrane potential. Potassium channels for outward currents include 

the rapidly activating and inactivating A-type current (IA) and slowly inactivating 

delayed rectifier (IK,DR) that activates positive to – 55mV. The A-type current 

varies in size between cells, but is always smaller than the delayed rectifier.  

Type I hair cells also express two outwardly rectifying K+ currents. The delayed 

rectifier (IK,DR) activates positive to – 55mV but is much larger in size than one in 

type II hair cells. The other delayed rectifier, IK,L, generates a large current with a 

very negative activation range (-90 to – 60 mV), slow activation and inactivation, 

and is calcium independent (Rüsch and Eatock, 1996). IK,L is also active at rest, 

making the input resistence very low (around 40 MΩ in type I hair cells). IK,L is 

carried by the KCNQ family of ion channels and may play a role in K+ clearance 

from the extracellular space (Kharkovets et al., 2000). Type I hair cells have more 

negative resting potentials and smaller input resistances than their type II 

counterparts (Bao et al., 2003). 

Both type II and I also express inward currents. Ih is an hyperpolarisation-

activated current  in type I and II hair cells (Holt and Eatock, 1995). Type II hair 

cells also express a fast IK1 that is active below – 40 mV (Masetto et al., 1994; Holt 

and Eatock, 1995; Sugihara and Furukawa, 1996; Rüsch et al., 1998). 
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Figure 1.6 Schematic of type I and type II hair cells in the mammalian 

utricle. 

Type I and II hair cells in the utricular macula. Type I are mainly found in the 

striolar region, whereas type II hair cells are mainly found in the extrastriolar 

region. The afferent contact morphology varies between types, with the majority 

of cells receiving dimorphic contacts but some receiving either bouton (type II) 

or calyx (type I) only. Modified from Eatock and Songer 2011. 
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1.2.4.2 Synaptic transmission in vestibular hair cells 

In most hair cells, the majority of the calcium current is carried by the L-type 

channel family member Cav1.3 (Brandt et al., 2003). In the vestibular system, the 

picture is more diverse. Other classes of calcium channels are L, N, P, Q, R and T. 

For example frog saccular hair cells seem to express the L- but also the N-type 

channels (Rodriguez-Contreras and Yamoah, 2001). In frog crista there is also the 

R-type additional to the L-type (Martini et al., 2000). Both mammalian type I and 

type II hair cells express the L-types (Almanza et al., 2003; Bao et al., 2003; Dou 

et al., 2004). However, since knockout mice for L-type calcium channels still show 

a large ICa, this suggests that different families are involved (Platzer et al., 2000; 

Dou et al., 2004). These different types of calcium channels are presumably 

associated with different functions, such as transmitter release or afferent fibre 

firing (Perin et al., 2000). 

1.2.5 Hair cells of other lower vertebrates as an example for electrical 

tuning 

Some hair cells are specially adapted to follow different frequencies. This 

frequency–filtering, also known as electrical tuning, occurs, for example, in the 

turtle and chicken, and is entirely intrinsic. Stimulation will drive the IMet equally 

across a range of frequencies. The amplitude and shape of the receptor potential 

is modulated by different sets of voltage-gated ion channels that change along the 

length of the papilla and give it a tonotopic organisation. The turtle papilla 

contains about 1000 hair cells along 1 mm of sensing epithelium and senses 

frequencies of 30-600 Hz (Sneary, 1988; Hackney et al., 1993).  

Electrical tuning (see Figure 1.7) is established by the interplay between calcium 

and potassium currents. When hair cells are stimulated continuously, in each 

cycle, the IMet depolarises the cells, which opens voltage gated calcium channels, 

thereby increasing the intracellular calcium concentration. This in turn activates 

large-conductance K+ (BK) channels which hyperpolarise the cell. During 

hyperpolarisation, the calcium channels close again and the BK-channel will be 

less activated due to a decrease in calcium.. This is the first cycle. Due to 
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continued stimulation via the IMet, the membrane will depolarise again which 

initiates the next cycle (Fettiplace and Fuchs, 1999). 

 

 

 

Figure 1.7 Electrical tuning in the turtle auditory cell. 

Schematic drawing of two hair cells from the turtle basilar papilla, with resonant 

frequencies (Fo) of 75 and 300 Hz. The low-frequency cell has a longer hair 

bundle, and a lower density of calcium-activated K+ (IK,Ca) channels. The number 

of channel complexes increases with (Fo). The timing of the extrinsic current is 

shown above the voltage records. Modified from Fettiplace and Fuchs, 1999; Art 

and Fettiplace, 1987 and Art et al., 1995. 

 

Membrane potential oscillations can be modified to adequately represent their 

best frequency by altering the BK channel density and kinetics, i.e. open and 

relaxation time (Art et al., 1995). The calcium sensitivity and conductance is 

unchanged between cells of different frequencies. The illustration in Figure 1.7 
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shows that hair cells with higher BK-channel densities can mediate higher 

frequencies sounds better. BK channels require a high calcium concentration in 

order to be activated, making a close association between the two channels 

necessary (Roberts et al., 1990; Wu et al., 1995).  

1.3 Lateral line afferent neurons contacting hair cells 

1.3.1 Organisation of lateral line afferent neurons 

The cell bodies of the afferent neurons that contact the neuromasts, are gathered 

into a single ganglion (Alexandre and Ghysen, 1999). For the anterior lateral line, 

this ganglion is situated anterior to the ear and for the posterior lateral line, this 

ganglion is situated behind the ear (Alexandre and Ghysen, 1999). Neurons from 

both ganglia project to the hindbrain, but at different levels. They branch and 

send extensions into the anterior (for ALL) and posterior parts (for PLL) of the 

hindbrain (Alexandre and Ghysen, 1999). 

The posterior lateral line ganglion (pllG) contains around 50 neurons at 5 dpf 

(Liao, 2010).  At this time the lateral line consists of 8 primary and 2-3 secondary 

neuromasts and 1-2 dorsal neuromasts, this means that there are 4 times more 

neurons than hair cells (Liao, 2010). In turn each neuromast receives between 4 

– 6 afferent contacts (Liao, 2010). The contacts on hair cells by afferent fibres are 

predominantly bouton-like (Nicolson, 2015).  

The afferent fibres in the lateral line exclusively contact hair cells from the same 

polarity (Nagiel et al., 2008). They mainly branch once and contact hair cells in 

two different neuromasts (Ma and Raible, 2009). This suggests that each group 

of neuromasts (around 5-10 hair cells) receives contacts from around 8 neurons, 

indicating a high degree of convergence. Two sets of efferents project to the 

posterior lateral line organ and modulate its activity. Set 1 is cholinergic, 

originates in the hindbrain and is responsible for feedback or feed forward. Set 2 

is dopaminergic, serves in excitatory modulation and comes from the forebrain 

(Ma and Raible, 2009).  There are only two efferent, dopaminergic neurons, one 

for each side of the fish body. They branch several times and innervate all 

neuromasts (Nagiel et al., 2008; Faucherre et al., 2009).   
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1.3.2 The lateral line ganglion shows somatotopic organisation 

The somatotopic organisation of the lateral line is represented within the 

ganglion (Alexandre and Ghysen, 1999). The afferents contacting the first 

primary neuromast enter the ganglion in the most anterior-dorsal region. The 

last primary neuromasts enter in the most posterior and ventral portion of the 

pllG (Alexandre and Ghysen, 1999). This somatotopic representation persists at 

the next level of integration. In the hindbrain, the most posterior or tail 

neuromast neurons project to the dorsal parts of the hindbrain whereas the 

anterior neuromasts of the lateral line project to more ventral parts (Alexandre 

and Ghysen, 1999; Ghysen and Dambly-Chaudiere, 2004). 

1.3.3 Physiology of lateral line afferents 

The lateral line afferents show two different cell types: one with large cell bodies 

and the other with smaller ones (Haehnel et al., 2012). These types presumably 

emerge at different time points of embryonic and larval development (Haehnel 

et al., 2012). 

Large cells develop earlier than small ones, have a lower input resistance 

combined with a low spontaneous firing rate of < 15 Hz. These contact mainly 

multiple primary neuromasts and particularly the tail neuromasts (Haehnel et 

al., 2012). The smaller neurons emerge after the large ones and have higher input 

resistence paired with higher spontaneous rate of > 30 Hz. These tend to contact 

the dorsal neuromasts and the secondary lateral line (Haehnel et al., 2012). 

Even though, details of this remain to be investigated, it seems likely that the two 

populations mediate different kinds of stimuli. Depending on the presynaptic 

side of the neuron, the small and high-spontaneous activity neurons could 

mediate phasic stimuli. On the contrary, the large and low-spontaneous activity 

neurons could be involved in transferring tonic stimuli. 
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1.4 Aims 

The aim of this PhD was to investigate the biophysical properties of zebrafish hair 

cells both in the lateral line and the inner ear.  Single cell electrophysiology was 

employed to study the conductances and the membrane behaviour of hair cells. 

This is important in order to use the full potential of the zebrafish as model to 

study hair cell function. 

Aim 1: Establish the technical approach to access zebrafish hair cells 

In order to perform electrophysiological experiments, the tissues that contain the 

hair cells had to be prepared and dissected in a physiological way. For the lateral 

line, this meant finding means to immobilise the fish and to access the hair cells. 

For the inner ear, this meant establishing a physiological dissection for all 

macular tissues, leaving as much of the epithelium and cells intact and also 

accessing the hair cells. 

Aim 2: Determine the ionic conductances present in zebrafish hair cells and 

how they affect the membrane behaviour. 

Single cell electrophysiology was used to assess the potassium currents 

expressed on both lateral line and inner ear hair cells. It was also investigated, 

how they are reflected in the membrane behaviour and what their gain and speed 

properties are.  

Aim 3: Investigate the development of the biophysical properties in 

zebrafish hair cells  

In the mouse inner ear, hair cells undergo developmental changes until they are 

fully mature (Corns et al., 2014). The lateral line hair cells are assumed to be 

mature by 5 dpf (Ghysen and Dambly-Chaudiere, 2004), but the 

electrophysiological phenotype of the mature lateral line hair cell is unknown. 

Moreover, it is unknown, whether the lateral line hair cells develop beyond 5 dpf, 

which is the cut-off point for most researchers, because fish are protected 
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animals after this point and experiments are more regulated then (Straehle et al., 

2012). 

For the zebrafish inner ear, it is known that the number of hair cells increases 

during development (Bang et al., 2001; Higgs et al., 2002) and that hearing 

becomes more sensitive to sound at later stages (Lu and DeSmidt, 2013). 

However, it is not clear whether these morphological and functional changes 

with age are accompanied by changes in the biophysical properties of the hair 

cells. 

Aim 4: Study details of the synaptic machinery of hair cells. 

The main focus was on the lateral line hair cells, as they have been widely used 

to study hair cell synaptic transmission using imaging techniques. I have 

investigated their calcium current and transmitter release.  

Aim 5: Establish an approach to study hair cell physiology in older fish. 

Zebrafish are protected after 5.2 dpf, which is the point of independent feeding. 

After this point experiments with fish are regulated and must conform with the 

local animal and welfare regulations. Studying the biophysical properties of 

lateral line hair cells in older fish requires an approach that involves anaesthesia 

and maintenance of blood oxygenation in order to block nociception and keeping 

the fish alive. 
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Chapter 2 General Methods 
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2.1 Ethics statement 

All zebrafish studies were licensed by the UK Home Office under the Animals 

(Scientific Procedures) Act 1986 and were approved by the University of 

Sheffield Ethical Review Committee. Every effort was made to minimise the 

number of animals used and their suffering.  

2.2 Animals and animal husbandry 

The predominant breed of animal used within this study was the zebrafish AB 

wildtype, which was chosen due to their success in breeding. These fish were 

acquired from the in-house aquarium facility at the University of Sheffield. At this 

facility the fish lived in a 14 hour light-10 hour dark cycle and were provided with 

food (Artemia) twice a day. For some experiments, myo6-rib-GFP transgenic fish 

from the laboratory of Dr. Katie Kindt were imported from Bethesda, USA. 

For experiments using the lateral line, larval zebrafish were raised in Embryo 

medium (E3 Table 2.1). To stop fungal growth at larval stages, ~ 3 drops of the 

0.5% methylene blue was added to the E3 medium. 

Table 2.1 Composition of embryo medium. 

 Final concentration 

(mM) 

 Embryo medium E3 

NaCl  4.9 

KCl  0.174 

CaCl2.2H2O  0.432 

MgSO4.7H2O 0.332 

Components and final concentration of the Embryo medium, in which fish were 

raised in until 5.2 dpf. 

 

2.2.1 Zebrafish husbandry <5.2 dpf 

Fertilised eggs were collected, washed in E3 and transferred to Petri dishes, 

which contained a maximum 50 eggs each. Unfertilised eggs were recognized by 
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their lack of epiboly at 5 hours post fertilisation (hpf) and discarded. Fertilised 

eggs were raised at 28.5 °C in the incubator (SLS, Hessle, UK) until 5.2 dpf and 

then destroyed in bleach. Larvae were checked on a daily basis and medium was 

changed. 

2.2.2 Zebrafish husbandry >5.2 dpf 

For experiments using >5.2 dpf zebrafish, fish were also initially raised in E3 

medium and after 5.2 dpf transferred to the aquarium system. The aquarium 

water was taken from the main systems water and was free from ammonia and 

nitrite (<60 mg/L nitrate, conductivity of 300 mS, temperature of 28.5 °C and a 

pH of 7.5). 

2.2.3 Euthanasia of zebrafish 

Zebrafish older than 5.2 dpf were euthanized by an overdose of the anaesthetic 

tricaine methanesulfonate (MS-222). Solution for schedule 1 procedure on fish 

was prepared as follows: stock solutions of MS-222 was received ready-made 

from the aquarium facility in a 0.4 % solution dissolved in water and buffered 

with Tris buffer to pH 7. Fish were immersed in 100 ml of 0.017 % MS-222 and 

either decapitated using a scalpel upon sedation or after complete cessation of 

circulation (Schedule 1 method). 

Other anaesthetics have also been used, including tri-bromo-ethanol (TBE, 

Sigma-Aldrich Co. Ltd, Gillingham, UK), which was prepared at 4 mg/L in water 

and benzocaine (Sigma-Aldrich Co. Ltd, Gillingham, UK) that was prepared at 20 

g/L in 100% ethanol and kept in the fridge until used. 

2.2.4 Tissue preparation 

Hair cells from different stages of the lateral line and inner ear were investigated. 

This tissue preparation of both lateral line and inner ear hair cells is described in 

Chapter 3. 
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Paralysing larval fish by α - bungarotoxin injection 

Larvae were paralysed by an injection of 125 μM α-bungarotoxin (α-Btx; Tocris 

Bioscience, Bristol, UK) into the heart (Trapani and Nicolson, 2010). α-Btx stock 

solution was prepared in water to 500 μM aliquots and frozen at – 20 °C. On the 

day of the experiment, 7.5 µl phenolred (0.5 % in DPBS, Sigma-Aldrich Co. Ltd, 

Gillingham, UK) was added to the 2.5 µl α-Btx stock (500 μM) which helped to 

visualize the injection site. Injection pipettes were pulled from borosillicate glass 

that had a filament inside (O.D. 1 mm; I.D. 0.5 mm, Harvard Apparatus Kent, UK) 

using a Narishige puller (Model PP-830; Narishige Japan) to a tip sizes of around 

1-3 μm and back filled with the α-Btx. Injections into the heart were performed 

with an Eppendorf Femtojet injection system (Eppendorf Stevenage, UK). The 

filled injection pipette was advanced towards the heart of the fish which is 

superficial and close to the head, and was then pressed gently against the skin 

until it penetrated. A bolus injection of α-Btx resulted in a visible expansion of the 

heart cavity and the heart and circulation could be visualised by the phenolred 

dye. 

2.3 Experimental solutions 

2.3.1 FM1-43 labelling 

Hair cells can be identified with a styryl dye called FM1-43 (N-(3-

Triethylammoniumpropyl)-4-(4-(Dibutylamino) Styryl) Pyridinium Dibromide) 

(Molecular Probes), which is a permeant blocker of the mechanoelectrical 

transducer channel, i.e. it enters the cell through the MET channel (Gale et al., 

2001). FM1-43 was prepared in water at a stock concentration of 3 mM. The 

entire larvae was briefly superfused with extracellular solution containing 6 μM 

FM1-43. Hair cells within each neuromast were viewed with an upright 

microscope equipped with epifluorescence optics and FITC filters (excitation 488 

nm, emission 520 nm) using the optics described above. Images were captured 

using a CCD camera (Spot Jr;Toronto Surplus&Scientific, Inc., North York, ON, 

Canada). These experiments were performed at room temperature (20-24ºC). 
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2.3.2 Extracellular Solution 

Hair cells of all tissues were continuously perfused by extracellular solution and 

depending on the experimental target, three different solutions were used (Table 

2.2). For standard current and voltage clamp experiments, the normal 

extracellular solution was used. This solution contained the typical set of ions 

thought to be present in the native environment (Wangemann and Schacht, 

1996) of murine hair cells and was similar to that used for zebrafish (Trapani et 

al., 2009). Note that the extracellular solution resembles that present around the 

basolateral membrane in murine hair cells. The apical part of mouse hair cells is 

bathed in the high K+ and low Ca2+ solution that is required to establish the 

endocochlear potential. In the vestibular system and the frog lateral line, this 

potential difference is much smaller or even absent with 0- 10 mV (Russell and 

Sellick, 1976). Therefore, using the standard low K+ extracellular solution 

described seems to be sufficient to study the basic properties of zebrafish lateral 

line hair cells. 

At the moment, the details of the potential between the zebrafish cupula and hair 

cell are unknown and, if it is present, it could provide the cells with a bigger and 

faster inward MET current that would attenuate their voltage responses. 

For experiments to investigate synaptic transmission, a high-calcium 

extracellular was used (Table 2.2), in order to emphasize the calcium current.  

For afferent fibre recordings, a slightly simpler solution was used (Table 2.2). 
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Table 2.2 Composition of extracellular solution for hair cell recordings. 

Component Final concentration (mM) 

 Normal 

extracellular 

High calcium 

extracellular 

NaCl 135 132.8 

CaCl2 1.3 2.8 

KCl 5.8 5.8 

MgCl2 0.9 0.9 

Hepes 10 10 

Glucose 5.6 5.6 

NaH2PO4 0.7 0.7 

NaPyruvate 2 2 

The pH was adjusted to 7.5 with NaOH. The osmolality was 308 mOsm/Kg. For 

the normal extracellular and high calcium solutions, MEM amino acids solution 

(50X, without L-Glutamine) and MEM vitamins solution (100X) were added from 

concentrates (Fisher Scientific, UK).  

 

2.3.3 Intracellular solutions 

The intracellular solution contained in the pipette was modified according to the 

type of experiment. For K+ and Vm recordings a KCl-based solution was used (See 

Table 2.4).  

Table 2.3 KCl-based intracellular solution. 

Component Final concentration 

(mM) 

 KCl 

KCl    131 

Na2Phosphocreatine  10 

MgCl2 3 

EGTA-KOH 1 

Na2ATP   5 

Hepes    5 

Components and final concentrations of the potassium-based intracellular 

solutions. The pH was adjusted to 7.28 with KOH. The osmolality was 293 

mOsm/Kg and the liquid junction potential was +4 mV. 
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Calcium current (Ica) and induced changes in membrane capacitance (ΔCm), 

which are normally used as an indication of synaptic transmission, in zebrafish 

hair cells was investigated using the intracellular solution described in Table 2.4.  

Ica was isolated from the total membrane current by blocking the K+ currents by 

adding 4-AP and TEA (Sigma-Aldrich Co. Ltd, Gillingham, UK) to the caesium-

based intracellular solution (Table 2.4).  

Table 2.4 Caesium-glutamic acid based intracellular solution. 

Component Final concentration 

(mM) 

L-Glutamic Acid    85.0 

CsCl    20.0 

Na2Phosphocreatine  10.0 

4-AP 15.0 

TEACl 20.0 

MgCl2 3.0 

EGTA-CsOH 1.0 

Na2ATP   5.0 

Hepes    5.0 

GTP 0.3 

Components and final concentrations of the caesium-based intracellular 

solutions. The pH was adjusted to 7.28 with CsCl (Sigma-Aldrich Co. Ltd, 

Gillingham, UK). The osmolality was 293 mOsm/Kg and the liquid junction 

potential was + 9 mV. 

 

2.3.4 Solutions for extracellular superfusion  

To investigate the identity of the different K+ currents present in hair cells or the 

effects of anaesthetics on cell physiology, the various compounds were added to 

the standard extracellular solution. Generally, experiments that required the use 

of superfusion included recordings before, during and after the application of the 

compound to be tested.  

In order to check the presence of the Ca2+-activated K+ current (IK,Ca), a calcium-

free extracellular solution containing 0.5 mM EGTA was used. To assess whether 
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the small conductance Ca2+-activated K+ current SK2 was present, 300 nM of the 

K+ channel blocker apamin (Tocris Bioscience, Bristol, UK) was superfused. 

Apamin was kept in aliquots of 1 mM stock concentration.  

Also a zero-calcium solution was perfused onto the cell, to assess whether any K+ 

currents were calcium-dependent. The composition of this solution was as 

follows: 142 mM NaCl, 3.9 mM MgCl2, 5.8 mM KCl, 10.0 mM Hepes, 5.6 mM 

glucose, 0.7 mM NaH2PO4, 0.5 mM NaEGTA. The pH was 7.48 and the osmolality 

was 306 mOsm. 

The presence of the h-type current (Ih) was assessed by using 5 mM BaCl2 (Sigma-

Aldrich Co. Ltd, Gillingham, UK) in the extracellular solution (Sugihara and 

Furukawa, 1989). BaCl2 was kept in a 10 mM stock solution.  

Dihydrostreptomycin (DHS) (0.1 mM or 1mM; Sigma-Aldrich Co. Ltd, Gillingham, 

UK) was used to test whether the resting mechanoelectrical transducer current 

(Marcotti et al., 2005) contributes to the hair cell resting membrane potential 

(Johnson et al., 2012). DHS was kept in aliquots of 100 mM stock concentration.  

MS-222 (0.01%) was also locally applied to hair cells to investigate its possible 

side-effects of the anaesthetic on hair cell membrane currents.  

Solutions containing drugs were applied through a multi-barrelled pipette, which 

was gravity fed and positioned close to the preparation (Figure 2.1). 

2.4 Electrophysiology 

2.4.1 Glass microelectrode preparation 

A Narishige PP-83 (Narishige international limited, London, UK) micropipette 

puller was used to pull glass capillaries with a resistence of 3-5 MΩ and tip 

diameter approximately 1-3 µm. Patch pipettes were made from soda glass 

capillary (inside diameter 0.94 mm, outside diameter 1.2 mm, Warner 

Instruments, USA). Capacitative properties of soda glass were reduced by 

applying surfboard wax to the pipette shaft (Mr. Zog’s SexWax, Inc., Carpinteria, 

CA, USA).  
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2.4.2 Experimental set-up and drug application 

Zebrafish hair cells from either from the lateral line or the inner ear were 

immobilised using a custom made recording chamber. The chamber was 

perfused with normal extracellular solution at a steady flow (~9 ml/min) using 

a peristaltic pump (Cole-Palmer, IL, USA), which was also sucking solution out 

from the chamber that was subsequently discarded. The solution was kept at 

room temperature and for some experiments, the solution in the chamber was 

heated using a peltier-element built in the stage. The ambient temperature was 

measured with a thermometer. Once the chamber was fixed onto the stage of an 

upright microscope, (Olympus BX51WI, Olympus, Japan), several other elements 

were positioned before commencing the experiments. For experiments 

performed at the zebrafish holding temperature (28.5°C), a thermocouple was 

positioned into the chamber using a micromanipulator. A home-designed 

multibarreled pipette connected to 10 ml syringes via silicon tubes was also 

positioned into the chamber, which allowed solutions containing the different 

compounds to be perfused by gravity (Figure 2.1) The recording pipette filled 

with intracellular solution was connected to an electrode holder that had a side 

port to allow the application of positive and negative pressure to the electrode 

tip. The recording pipette holder was attached to the headstage of the patch 

clamp amplifier. A short glass pipette filled with extracellular solution was placed 

in the recording chamber to act as a reference electrode. Both the recording 

electrode and the reference electrode were connected to the headstage as 

detailed in Figure 2.1. A micromanipulator (PatchStar, Scientifica, UK) was used 

to hold the headstage to allow the course and fine control of the microelectrode 

as it was positioned in the recording chamber.  

Signals from the recording electrode were pre-amplified by the headstage, 

filtered by a Bessel low pass filter set at 2-5 kHz, passed through the Optopatch 

amplifier (Cairn Research Ltd, Faversham, UK). The signal was then converted 

from an analogue to a digital signal by the Digidata 1322A (Molecular Devices, 

LLC, Sunnyvale, CA, USA) before being captured by the Clampex 9.2 or 10.3 

software (Molecular Devices). Recordings were sampled at 5 kHz or 100 kHz, low 
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pass filtered at 2.5 kHz or 10 kHz (8-pole Bessel) and stored on computer for 

offline analysis. 

 

Figure 2.1 Schematic of experimental set-up. 

Cartoon showing the main pieces of electrical (grey boxes) and other equipment 

(not to scale). 

 

2.4.3 Electrophysiological recordings in hair cells 

Electrical properties of hair cells from both the lateral line and inner ear of 

zebrafish (n = 248) were investigated using the whole-cell patch clamp technique 

(Hamill et al., 1981). 

Electrophysiological recordings in current and voltage clamp mode were 

performed to investigate the basolateral membrane properties of hair cells. 

Voltage clamp were used to assess the current profiles of hair cells, whereas 

current clamp to study the functional implications of the basolateral current 
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profile, which included the resting membrane potential and assess the change in 

membrane potential in response to current injections.  

Whole-cell patch clamp recordings were primarily performed at room 

temperature (21–24°C). Calcium current recordings, measurements of 

exocytosis and some of the voltage responses were conducted at the temperature 

at which zebrafish are kept (28.5°C).  

Membrane potentials in voltage clamp were corrected for the voltage drop across 

the uncompensated residual series resistance (Rs: 3.4 ± 0.1 MΩ, n = 248) and for 

a liquid junction potential, measured between electrode and bath solutions, of − 

4mV for the KCl intracellular solution and −9 mV for Cs-glutamate. Current 

responses are referred to a holding potential of −84 mV or −79 mV unless 

specified, and are set to 0-current for comparison between individual hair cells.  

Whole-cell patch clamp recordings 

An upright Olympus microscope with differential interference contrast (DIC) and 

an objective with x60 magnification was used to view the neuromast and viable 

hair cells. Hair cells were easily identified by their location along the horizontal 

axis, size and characteristic shape (Chapter 3). During the patch process, 

additional magnification of x1.5 or x2 before the x15 eyepieces (all from 

Olympus) was used to visualise details of the cell membrane.  

At the beginning of the experiments, a +10 mV command voltage was applied to 

the recording patch pipette using the pClamp software, which was used to assess 

the pipette resistence, seal formation and generation of whole cell configuration. 

Positive pressure was applied through the electrode after lowering it into the 

recording chamber solution. The resistence of the pipette was confirmed on the 

oscilloscope. At this point, fast capacitive transients caused by the build-up of 

charge on the patch-pipette during a +10mV test pulse, were cancelled out using 

the fast capacitance cancelling circuitry of the Optopatch amplifier. 

In voltage clamp mode the pipette offset was compensated using the amplifier’s 

offset dial.  The tip of the electrode was brought into the centre of the field of view 
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and lowered close to the neuromast using the course control of the manipulator. 

Then, using the fine control it was advanced to the target hair cell until the 

positive pressure caused a dimple to appear in the cell membrane. The positive 

pressure was released and the seal formation was observed by monitoring the 

current response changing to zero. A seal was considered to be good with 

resistances of ≥ 3 GΩ. During the sealing process the holding potential was 

decreased to a nominal value of –80 mV by an external calibrator. The holding 

potential was set using an external calibrator that applied a known dc voltage 

shift to the cell. The whole-cell configuration was achieved by a little suction and 

could be confirmed by the current response getting larger and by the appearance 

of slow membrane transients in response to the + 10 mV test voltage step. For 

lateral line hair cells, the cell resistance was usually in the order of one GΩ, so 

that a successful whole-cell configuration could sometimes be linked to the 

appearance of capacitative transients only due to the hair cell membrane 

properties. These transients were measured using the slow capacitance 

cancelling circuitry of the Optopatch amplifier. Measuring the slow capacitive 

transients allowed measurement of the capacitance of the cells membrane 

surface area. The series resistance was measured with the series-resistence dial 

of the patch-clamp configuration, important for calculating the voltage drop of 

the command voltage applied to the cell. For cells with a large capacitance a 

compensatory circuit (RS-comp) was enabled that directly altered the membrane 

time constant to overcome the filter properties of cells. This was rarely used in 

zebrafish hair cells, which are small and have a small time constant and therefore 

high cut off frequencies. Then the + 10 mV test-voltage step was switched off and 

the desired protocol was run. 

Voltage Clamp 

The procedure described above was already in voltage clamp, so current 

recordings were performed straight away using the protocols described in the 

results in Chapters 4 to 6. 
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Current Clamp 

For current clamp experiments, after reaching the whole-cell configuration, the 

amplifier was switched from big-cell (configuration under whole-cell) to small 

cell mode. Simultaneously, the amplifier was switched from voltage clamp mode 

to I-0 (no current injection) to current clamp mode. At this point, any 

compensatory current injections would be reduced or disabled by the amplifier 

to ensure that the cell is not overstimulated. Since the holding potential was set 

using an external calibrator, under current clamp conditions the calibrator was 

used to zero the voltage trace. This gave an indication of the hair cell’s resting 

membrane potential. The calibrator had no direct effect on the cell’s voltage 

responses in current clamp mode. 

Capacitance recordings 

Measurements of exocytosis are indirectly done by measuring changes in cell 

capacitance. This reflects the surface area of cells and when enough vesicles fuse 

with the membrane, this can be detected by a change in capacitance (ΔCm). 

Capacitance measurement are carried out in “track-in” mode of the Optopatch 

amplifier (Johnson et al., 2002). The ‘track in’ technique is an extension on the 

‘lock in’ technique that is used for piece-wise-linear capacitance measurements 

and utilises phase-sensitive lock-in amplifier to measure the passive properties 

of cell membranes (Lindau and Neher, 1988). The piece-wise-linear technique is 

popular for cells with large capacitance changes. However, hair cells are expected 

to have smaller changes, therefore ‘track in’ was developed (Johnson et al., 2002). 

Capacitance measurements start in voltage clamp mode in the whole cell 

configuration. After switching off the + 10 mV voltage step used during the 

establishment of the whole-cell configuration, the amplifier switched to track-in 

mode. A 2.5 – 4 kHz sine wave command potential was applied to the voltage 

clamped hair cell from the holding potential of -81 mV. The amplitude of the sine 

wave was 13 mV RMS (37 mV peak-to-peak). The command sine wave was 

interrupted for the duration of the voltage steps. This allowed recording of the 

inward ICa that triggered the ΔCm.  
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Membrane capacitance and series resistance signals were amplified by the 

Optopatch (50 and 5, respectively). They were sampled at 5 kHz, filtered at 

150 Hz (two-pole bessel) with additional 8-pole Bessel filtering at 250 Hz. 

2.5 Data acquisition and analysis 

Offline analysis was carried out using Clampfit software (Molecular Devices) to 

quantify holding currents, peak currents and leak conductances. OriginPro 

software (Origin lab, USA) was used to calculate the actual command voltages by 

correcting them for the voltage drop across the uncompensated series resistance. 

This was done using Ohm’s law V = R x I, where V is the voltage, R is the resistence 

and I is the current.  Steady state currents were measured in OriginPro. Average 

results are presented as mean ±S.E.M.  

Changes in membrane capacitance (ΔCm) were calculated by subtracting the 

mean capacitance calculated over a 100-200 ms period after the voltage step 

from the mean prepulse capacitance. 

Calculation of calcium channel number 

The number of calcium channels can be calculated with the following equation: 

𝑁 =
𝐼𝐶𝑎

𝑖𝑃𝑂
 

Equation 1 Calculating the total number of calcium channels. 

N – total number of channels, ICa – size of calcium current at peak [ICa = -11pA at 

peak], i – single channels conductance [i=−0.34 pA], Po – channel open probability 

[Po = 0.21 pA](Zampini et al., 2013). 

 

Statistics 

Statistical comparisons were made using the two-tailed Student’s t test or, for 

multiple comparisons, one-way ANOVA followed by a Bonferroni post hoc test. 
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Values are mean ± S.E.M. A P-value of < 0.05 indicates statistical significance. In 

some of the figures statistical significance is indicated by asterisks. 
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Chapter 3 Establishing Methods 

for Hair Cell Recordings in 

Zebrafish 
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Introduction for lateral line and inner ear 

The main aim of this project was to utilize the zebrafish as a model to study hair 

cell physiology in vivo. The most accurate read-out of single cell activity is patch-

clamp electrophysiology. However, this technique has never been successfully 

applied to the hair cells of the zebrafish because of several technical limitations, 

including the ability to make a stable contact between the patch electrode and 

the very small surface area of these sensory cells. Therefore, the successful 

implementation of single cell electrophysiology in zebrafish required the 

development of a novel experimental approach able to provide a controlled, 

repeatable and physiological method to probe hair cell activity. 

3.1 Methods for the zebrafish lateral line 

3.1.1 Identifying the stage of zebrafish development 

In order to investigate the functional development of the hair cells, I used 

zebrafish from larval to adult stages. Staging zebrafish larvae up to 5.2 dpf 

according to their age in hours is the most common and precise method (Kimmel 

et al., 1995). However, this staging method becomes unreliable for older fish (> 

5.2 dpf) because their size and level of maturation seem to depend largely on the 

housing conditions, which normally vary quite substantially among zebrafish 

aquarium facilities. Therefore, zebrafish older than 5.2 dpf are normally staged 

according to their length in cm (Parichy et al., 2009). The average lengths of 

larvae and juvenile zebrafish in the Sheffield zebrafish facility are shown in 

Figure 3.1. 
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Figure 3.1 Zebrafish length development. 

A, Growth of the zebrafish (Danio rerio) during the first 55 days post-fertilization 

(dpf) under the husbandry conditions used at the University of Sheffield. 

Numbers of zebrafish measured at each age were 44, 10, 14, 11 and 16, 

respectively (Olt et al., 2014). 

 

Under the husbandry conditions in place at the University of Sheffield and using 

information from previous studies, where characteristic features of larval and 

adult stages are correlated to fish length (Kimmel et al., 1995; Parichy et al., 

2009), the stage of zebrafish development was classified as follows:  

1) Larval stages: from 3 dpf to 2 weeks post fertilization (wpf) 

2) Juvenile stages: from 2 wpf to the point at which zebrafish become sexually 

mature (3–6 months) 

3) Adult stages: from 6 months onwards, when fish are sexually mature 
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3.1.2 Hair cell growth in the lateral line 

While the fish is growing in size, the number of hair cells per neuromast in the 

lateral line increases (Pujol-Marti and Lopez-Schier, 2013). I have assessed the 

number of hair cells per neuromast at different stages and found that in larval 

fish, the newly formed neuromasts contain about 6 to 12 hair cells and this 

increases to about 20–30 cells by the juvenile stage (Figure 3.2).  

 

 

Figure 3.2 Developmental increase in zebrafish hair cell number. 

Number of hair cells in each neuromast during the first 26 dpf of zebrafish 

development, which is within the age range at which electrophysiological 

recordings were obtained in the lateral line. Numbers of neuromasts investigated 

at each age were 66, 20, 24 and 20, respectively (Olt et al., 2014) 

 

Each neuromast is normally composed of hair cells with different degrees of 

functional development. Newly differentiating cells are thought to be present 

towards the edges of the neuromast (Williams and Holder, 2000; Lopez-Schier 
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and Hudspeth, 2007; Kindt et al., 2012). The small numbers of hair cells in the 

neuromast of larval zebrafish, compared to juveniles, made the distinction 

between the central (older hair cells) and edge (new hair cells) regions very 

difficult (Figure 3.3), and was only possible to do in a few cases. However, the 

stage of maturation of a given hair cell is unlikely to be linked to the age in dpf of 

the zebrafish (larval or juvenile) because new hair cells are being continually 

added within each neuromast throughout development and at adult stages for 

regeneration (Corwin and Oberholtzer, 1997; Lopez-Schier and Hudspeth, 2007; 

Kindt et al., 2012). Differences in the electrophysiological properties of hair cells 

in the edge and central regions within the neuromast were investigated and are 

described in Chapter 4 and Chapter 5. 

 

 

Figure 3.3 Morphological characteristics of the developing zebrafish lateral 

line. 

Diagram of neuromast structure showing the increase in hair cell number 

according to the degree of differentiation, with new hair cells emerging at the 

edge (grey) and older hair cells being present in the centre (white). Note that 

each neuromast is believed to contain hair cells at different degrees of functional 

development (Williams and Holder, 2000; Lopez-Schier and Hudspeth, 2007). 

The polarity of hair cells is indicated with the black arrows (left). 
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3.1.3 Tissue preparation of the lateral line 

3.1.3.1 Posterior lateral line preparation 

In the lateral line, all recordings were performed from the primary neuromasts 

(L1–L4) originating from the first primordium (primI) (Pujol-Marti and Lopez-

Schier, 2013). The primary neuromasts show planar polarity along the anterior-

posterior axis. Each neuromast contains two compartments, with the anterior 

compartment being responsive to stimuli from the anterior-posterior direction 

and the posterior part responding to stimuli from the opposite direction, which 

is also shown in Figure 3.3 (right) (Nicolson et al., 1998; Lopez-Schier et al., 

2004). Therefore, the fish was orientated perpendicular to the patch-pipette so 

that both polarities were accessible and could be studied. 

The in vivo larval preparation 

For in vivo hair cell recordings, larvae (3.0 dpf – 2 wpf) were briefly (10-30 

seconds) anaesthetised in a petri dish containing 0.017 % MS-222 (Henry Schein, 

Inc., Dumfries, UK) in normal extracellular solution and then transferred to the 

recording chamber.  

The recording chamber contained a microscope cover slide that was coated with 

~ 0.5 mm of the silicone elastomer, Sylgard (Dow Corning, Seneffe, Belgium). 

Sylgard was ideal due to its relative optical clarity and elasticity and the cover 

slides were prepared in advance and only used for one experimental day.  

Under a stereo microscope (MZ16, Leica Microsystems GmbH, Germany) 

zebrafish were pinned down onto the Sylgard using fine tungsten wire (0.015 

mm diameter, Advent Research Materials Ltd, Oxford, UK) through a region 

between their heart, inner ear and mouth (anterior pin) and their notochord 

close to the anal exit (posterior pin) (Figure 3.4). This approach was modified 

after (Trapani and Nicolson, 2010). 

 

 



46 
 

 

Figure 3.4 Schematic drawing and image of a pinned down zebrafish larvae. 

A, Cartoon drawing showing the approximate locations of tungsten pins (green) 

used to pin the larva to a Sylgard-lined cover slide in the recording chamber. One 

pin is inserted close to the head, just posterior to the inner ear (blue circle) and 

above the heart (orange circle) and the second pin is inserted into the notochord 

toward the distal end of the tail. B, Image of 5 dpf zebrafish with pins in place and 

inner ear (blue dashed circle) and heart (orange dashed circle) indicated. Scale 

bar: 1 mm. Cartoon in A modified from Olt et al., (2014). 

 

Larval zebrafish were subsequently paralysed by an injection of 125 μM α-

bungarotoxin as described in Chapter 2. The recording chamber with the pinned 

and paralysed larvae was then moved to the electrophysiological set-up and 

placed on a stage that allows 360° rotation, which permitted recordings to be 

made from hair cells in any position of the neuromast. The recording chamber 

was connected to a peristaltic pump (Masterflex L/S, Cole Palmer, London, UK) 

and the solution in the chamber containing MS-222 from the pinning and 

injection process was washed off immediately with normal extracellular solution. 

At this stage, the zebrafish was only paralysed by the α-Btx. 
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The in vitro juvenile preparation 

Injections of α-Btx could not be performed after 5.2 dpf as zebrafish become 

protected animals according to ASPA 1986. This means that experiments on > 5.2 

dpf zebrafish had to be performed in vitro/in situ.   

Therefore, juvenile zebrafish were anaesthetized with 0.017 % MS-222, 

decapitated with a scalpel and the digestive tract was carefully removed using 

fine forceps. The digestive tract had to be removed as it contains enzymes 

targeting proteins and fats, which would diffuse into the extracellular solution 

and damage the hair cells present on the surface of the fish. Zebrafish were then 

immediately washed from the anaesthetic with normal extracellular solution, 

transferred to a microscope chamber and immobilized onto a thin layer of 

Sylgard using fine tungsten wires with a diameter of 0.025 or 0.050 mm. Four 

pins were inserted into the fish, two in the tail fin and one in the dorsal and 

ventral fin (Figure 3.5). Occasionally, a pin was inserted through the neck for 

extra stability. The juvenile preparation was also continuously perfused with 

extracellular solution using the peristaltic. At juvenile stages, the primary 

neuromasts migrate slightly ventrally, which is shown in Figure 3.5. 

 

 

Figure 3.5 Schematic drawing and DIC of juvenile hair cells patch. 

Cartoon drawing showing the approximate locations of tungsten pins (green) 

used to pin the decapitated juveniles to a Sylgard-lined cover slide in the 

recording chamber. One to two pins are inserted in the skin where the head was 

cut off, the other pins are inserted into the back, ventral and tail fin.  
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The juvenile preparation – in vivo intubation 

Since the main aim of this study was to use the zebrafish as an in vivo model to 

study hair cell physiology, I had to develop an approach to perform in vivo 

experiments in older fish. This involved a search for an appropriate anaesthetic 

and will be described in depth in Chapter 5, Section 5.3.2. 

The anaesthetic was prepared as described in Chapter 2 and added to the normal 

extracellular solution. Young zebrafish (5.2 – 21 dpf) are small enough to 

maintain their oxygenation through their skin, therefore bathing them in normal 

extracellular solution with anaesthetic was sufficient to keep blood oxygenation 

high. However, zebrafish older than 21 dpf are much larger and mainly use their 

gills for oxygenation. So for in vivo experiments I had to develop a way to 

maintain oxygenation via the gills. I considered several methods of doing this 

(Chapter 5, Section 5.3.2) and found that intubating the fish provided the most 

reliable results. After brief anaesthesia in MS-222, zebrafish were intubated with 

a thin (0.2-0.3 mm diameter) plastic tube that was inserted carefully ~ 3 mm into 

the mouth without damaging the gills (Figure 3.6). The intubation cannula was 

fed by a gravity driven system and the level of the anaesthetics container could 

be adjusted to regulate the flow. The flowrate of the solution through the tube 

and gills was ~ 1 ml/min which was within an accepted physiological level 

(communication with Veterinarian at the University of Sheffield). The zebrafish 

was bathed in normal extracellular solution, whereas the solution flowing 

through the intubation tube contained the anaesthetic. All juvenile fish where 

pinned down through their dorsal and ventral fins and two pins were inserted 

through their tail fin (Figure 3.6). 
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Figure 3.6 Intubation of juvenile zebrafish. 

Image showing a 34 dpf old zebrafish that is intubated under anaesthesia using 

50 mg/L Benzocaine and pinned to a Sylgard-lined cover slide in the recording 

chamber. Scale bar is 1 cm. 

 

3.1.3.2 Identifying hair cells and the approach for patch clamping 

Approaching lateral line hair cells for patch-clamp experiments was achieved in 

the same way for hair cell across all ages. Hair cells were visualized using a 60× 

water immersion objective with additional magnification of 1.5x or 2x and a 15x 

eyepieces (all from Olympus).  

Neuromast structure 

The neuromast is the functional unit in which hair cells are grouped together 

with a uniform structure along the fish body. The hair cells are defined by the 

stereociliary hair bundle, together with the kinocilium, that projects from their 

apical surface into the cupula (Chapter 1, Section 1.1.1). The basal pole of the cell 

is where the contacts with afferent neurons are located. Each kinocilium 

originates from a single hair cell and can therefore be used to count the hair cell 

numbers within the neuromast. In the example shown in Figure 3.7 A the 

neuromast contains 8 hair cells. The apical surface of the hair cells form the 

cuticular plate, which are joined together in neuromasts, giving a total 

circumference of ~8 µm that is surrounded by a ring of skin cells (Figure 3.7 A, 

symbol (+)). Further down inside the neuromast, the outlines of the tear-drop 
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shaped hair cells are recognizable in the most central part (Figure 3.7 B, symbol 

(*)), which are surrounded by mantle cells (Figure 3.7 B, symbol (-)) and 

supporting cells (Figure 3.7 C, symbol (~)). Below the neuromast the muscle 

fibres become apparent (Figure 3.7 D). 

 

Figure 3.7 Structure of a neuromast. 

A-D, DIC images through a neuromast from apical (A) to basal below the hair cells 

(D). A, The kinocilia (k) are visible at the top of the neuromast, rooted in the 

cuticular plate and surround by skin cells (+). B, Below the skin, the round hair 

cells are visible (*) which are surrounded mantle cells (-). C, Further inside the 

cell bodies of supporting cells (~) become apparent. Scalebar is 10 µm. Figure 

modified after Olt et al., 2016. 
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Hair cell approach for electrophysiological recordings 

Accessing lateral line hair cells for patch-clamp experiments was performed in a 

series of steps which are depicted in Figure 3.8 showing DIC images at different 

levels of the neuromast, starting most apically where the kinocilia are visible.  

In order to gain access to the lateral line hair cells, other cells surrounding the 

neuromast were removed using a “cleaning” glass pipette (Borosillicate, Harvard 

Apparatus, Cambridge, UK) with a tip diameter of ~3–4 μm. This pipette, which 

was connected to a syringe via a silicon tube, was filled with the same 

extracellular solution as that bathing the fish. The application of positive and 

negative pressure through the syringe allowed the selective removal of skin cells 

and debris in a similar manner that has been previously described to access 

cochlear hair cell (Marcotti et al., 2003a). 

The procedure started with the removal of one or two large skin cells about 20-

30 μm away from the neuromast (Figure 3.8 A, B), just outside the ring of skin 

cells surrounding the cuticular plate. The aim of this approach was to avoid 

damage to the cupula and the embedded hair bundles. The damage of these 

structures resulted in a very short kinocilia or the bundles lying flat on the 

surface of the fish. Following this, the cleaning pipette was used to suck out 

connective tissue surrounding the neuromast. When one side of the neuromast 

was partially exposed, some supporting and mantle cells were removed too 

(Figure 3.8 C). The last step was to get access to part of the hair cell membrane 

by removing the remaining debris with gentle suction or expulsion of solution 

from the pipette. Once a hair cells membrane was exposed, the patch-pipette was 

advanced towards it (Figure 3.8 D). Hair cells were approached perpendicularly 

to the length of the zebrafish, which allowed access to cells of opposing planar 

polarity within individual neuromasts and current and voltage responses were 

recorded from each polarity. 

Positive pressure was applied through the patch-pipette to prevent any debris 

blocking the tip. A GΩ seal was generated between the patch pipette and the cell 
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by gently pushing the pipette tip against the basolateral membrane, which is 

visible by a dimple in the cell. The pressure was then released and seals readily 

formed in the order of 2-10 GΩ. The whole cell configuration was achieved by 

gentle negative pressure on the pipette, which ruptured the patch of membrane 

within the tip of the patch-pipette. 

 

 

Figure 3.8 Morphological characteristics of the neuromast and hair-cell 

patching procedure in the larval lateral line.  

A, Side view of a 3 dpf neuromast showing the hair cell kinocilia (K) projecting 

from its centre and surrounded by skin cells (asterisks). Mantle (MC) and 

supporting cells (SC) surround the hair cells (hc, orange). Note that the cleaning 

pipette approached the skin cells at about 20-30 µm from the hair cells, which is 

evident by the presence of the kinocilia seen in B. B, DIC top view of the 

neuromast with cleaning pipette (*) at the level of the cuticular plate and 

kinocilia, surrounded by skin cells. C, D, Diagram (C) and image (D) of the larval 

neuromast during the patching of a hair cell with a patch pipette. Scale bars in B 

and D are 10 µm. Figure modified after Olt et al., 2016. 
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Hair cells were identified visually by the hair bundle at the cell’s apical surface. 

Electrophysiologically, hair cells were identified by their high input resistence, 

which was in the order of 1-3 GΩ, and voltage dependent current responses. Only 

cells of healthy appearance were used for electrophysiological recordings.  

Healthy cells were defined as those with an intact hair bundle, cell membranes 

with a smooth surface, absence of vacuoles in the cytoplasm and lack of Brownian 

motion of mitochondria. Supporting cells were visually distinguished from hair 

cells based on their position within the neuromast, the absence of hair bundles 

and the deeper extension of their cell body into the neuromast. 

Electrophysiologically, supporting cells had a much lower input resistance (200-

400 MΩ) and showed linear current responses as previously described in 

goldfish (Sugihara and Furukawa, 1989). 

3.1.4 Methodological consideration 

Pinning down the larval fish to immobilize them in the recording chamber was 

originally performed to study the zebrafish spinal cord and neuromuscular 

junction. An additional method, that is widely used to immobilize the zebrafish, 

is to embed them in low melting point agarose, the major advantage of which is 

to provide a more stable preparation than that using the pins. The agar-approach 

was performed during the initial stages of this project but I discovered that the 

agar needed to be removed to gain access to the hair cells and this damaged the 

hair bundles. Hence, fish were pinned down. 

One of the issues I had to solve when using the pins was avoiding possible damage 

to the lateral line nerve. The neuromasts are innervated by several neurons that 

project along the horizontal midline above the notochord back to the posterior 

lateral line ganglion (pllG). Therefore the pin close to the head had to be inserted 

distal to the pllG and the inner ear to avoid damage of both the nerve and the pllG 

itself.  
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3.2 Methods for the zebrafish inner ear 

Similar to the lateral line, hair cell recordings from zebrafish inner ear tissue 

required the development of a reliable dissection method and subsequent 

approach to the target hair cells. 

3.2.1 Tissue preparation of the inner ear 

3.2.1.1 Dissection of the zebrafish inner ear 

Hair cell recordings were performed from the three otolithic organs (utricle, 

sacculus and lagena) of the adult zebrafish (> 1 year). In the lagena, I also 

investigated the juvenile stages (7–8 weeks) to provide an indication of possible 

developmental changes.  

Zebrafish were culled by immersion in a solution containing 0.017% MS-222. 

Upon cessation of circulation, the fish were transferred into a petri dish 

containing normal extracellular solution and then decapitated using a fine 

scalpel. The head, which included the inner ear was then moved into a new petri 

dish with normal extracellular solution in order to remove any remaining blood 

or other unwanted tissue before commencing with the fine dissection of the inner 

ear (Figure 3.9). The gills were then removed using fine forceps. The bony skull 

was broken between the eye and gill as well as between the eye and top of the 

skull (Figure 3.9 A and B). Then, the head was broken in two halves and the brain 

was removed. At this point, the otolithic organs could be seen inside the skull 

(Figure 3.9 C). Depending on the organ of interest the next steps were adapted. 

The general approach is shown in Figure 3.9 D. 

Dissection of the sacculus: the nerve fibres contacting the sacculus and lagena 

were cut. Because the sacculus and lagena are attached to one another, by holding 

the lagena and gently pulling it away from the skull, the sacculus was freed too. 

Then, the lagena was removed while making sure no damage was done to the 

sacculus. Finally, the bulla containing the saccullar macula was cut open from the 

anterior side and the otolith gently removed (Figure 3.9 D). Only the posterior 

part of the sacculus could be used for recordings. 
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Dissection of the lagena: The sacculus was held with the forceps and pulled out 

from the skull together with the lagena. The lagena was placed with the macular 

side (medial side of brain) facing upwards to avoid hair cell damage. Using very 

fine forceps, the membrane surrounding the otolith was cut open and the otolith 

was freed. On some occasions, additional nerve fibres below the sensory 

epithelium were removed in order to flatten the tissue. 

Dissection of the utricle: The utricle contains the biggest and most anterior 

sensory epithelium. To dissect it, the nerve was cut distal to the tissue and the 

utricle was gently removed from the skull. This was followed by cutting some of 

the surrounding membrane in order to isolate the sensory epithelium. The 

sphere-like shape of the utricle was cut on one side to make the tissue sufficiently 

flat for the recordings. 

The isolated sensory epithelium of the different inner ear organs was transferred 

to the microscope chamber and fixed using a nylon mesh attached to a stainless 

steel ring (Johnson et al., 2013). Care was taken to make sure that the mesh only 

touched the outer parts of the tissue in order to avoid any damage to the sensory 

hair cells and to allow access with the patch and cleaning pipette.  
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Figure 3.9 Schematic drawing of zebrafish inner ear dissection. 

A, Top view of the decapitated head. B, The skull was cut in half and the most 

anterior part was removed (dashed line). C, Inside view of one half of the head. 

The three maculae are shown, utricle (blue), sacculus (yellow) and lagena 

(green), the semicircular canals are indicated in white. D, Crossection through a 

macula, top: otolith (brown) directly on top of the hair bundles (dark green) 

protruding from the sensory epithelium (light green). Note the drawing is not to 

scale. 

 

3.2.1.2 Approach to inner ear hair cells 

In order to successfully patch macular hair cells, their basolateral membranes 

needed to be “cleaned” to allow GΩ seal formation. This was done in a similar way 

described for the lateral line hair cells (see above) using the same cleaning-

pipette set-up with a large diameter glass pipette (3–4 μm) filled with 
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extracellular solution and connected to a syringe allowing positive and negative 

pressure to be applied to the tip. 

First, the cleaning pipette was used to remove a few hair cells and supporting 

cells in order to access the deepest part of the epithelium where the basolateral 

membrane of cells reside. Then, healthy looking hair cells were selected and their 

basolateral membrane was carefully cleaned using negative pressure. Great care 

was taken to minimise pressure on the hair cell membranes and especially on 

their stereociliary bundle. Once access to the hair cell basolateral membrane was 

obtained, the patch pipette was brought into position with a little positive 

pressure and it was pushed gently against the cell. GΩ seals with the hair cells 

where readily achieved upon releasing the positive pressure. Healthy hair cells 

were identified by their intact hair bundles, cell membranes with a smooth 

surface, absence of vacuoles in the cytoplasm and lack of Brownian motion of 

mitochondria, similar to the lateral line hair cells. This method has been used 

successfully to record hair cells of the mammalian cochlea (Marcotti et al., 

2003a). 

3.2.3 Methodological consideration 

Successful electrophysiological recordings from zebrafish inner ear hair cells 

depended on the condition of the dissected tissue. Since hair cells are 

mechanosensory receptors, any mechanical stress must be avoided as this can 

damage the mechanoelectrical transduction apparatus and with it alter the Vm of 

cells, which will impact on the activity of ion channels. Also mechanical stress can 

lead to cell death. Intact hair bundles can be seen easily by the orientation and 

length of the stereocilia. Also the Vm of cells can be measured and used as a means 

to determine cell health. To avoid damage of the hair bundle, the epithelium could 

be turned upside down with the hair cells facing the top and the otolith the 

bottom. While the otolith was cut out with fine forceps, gravity would not push it 

onto the hair cells, which is the case in vivo. The continuous perfusion with fresh 

extracellular solution prolonged the lifetime of the preparation to 90 minutes. 

The use of enzymatic treatment is also to be avoided since it has been show to 
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provide a large variability in the voltage responses, which was not evident in our 

in situ recordings.  

3.2.4 Summary 

The reason to use zebrafish for this study, is that they provide the only tool at the 

moment that would enable direct in vivo investigations of hair cells. Therefore, 

the main aim is to establish an experimental protocol that leaves the whole fish 

as intact as possible. 

Firstly, damage to the hair cell has to be avoided and intact hair cells can be 

distinguished by their shape and by the Brownian motion of intracellular 

particles. Crucially, the stereociliary bundle must not be damaged as the MET 

channel is a major contributor to the Vm. Damaged bundles can either be seen 

directly, when they splay, or indirectly via a very hyperpolarised Vm. The links 

between the stereocilia cannot be seen either, so possible damage cannot be 

assessed. Although great care was taken, damage to the hair cell and its bundle 

cannot be ruled out completely.  

Crucially, the cupula, that provides a protective dome over the bundles, is not 

easily visible with the microscope used. It is likely, that the potential difference 

between the inside of the cupula and the hair cell is small, unlike in mammalian 

auditory hair cells. Therefore, the loss of the cupula may not significantly alter 

the K+ ion concentration to which the cells are exposed (see above, Russell and 

Sellick, 1976).  

Overall, the integrity of the mechanosensory apparatus cannot be assessed 

beyond doubt in the present preparation. This would be important for 

experiments involving direct stimulation of the bundle, which have not been 

carried out here. 

Secondly, the hair cell itself should not be affected and its membrane was exposed 

gently. This cleaning process involves removing neighbouring mantle and 

supporting cells, which may have removed the cupula or the efferent neurons 

that contact the hair cell. Neither could be assessed. The efferent system mainly 
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functions in modulating the Vm to increase or to decrease sensitivity (Schofield, 

2011). Changes in the Vm linked to the experimental approach cannot be ruled 

out, although they might be small. 

In general, the cleaning process can compromise cell membrane integrity, 

making them leakier. This feature can however be directly seen and measured in 

the electrophysiological recordings. Moreover, the K+ current recordings made 

under voltage clamp are unaffected by changes in the Vm, which was clamped to 

around – 80 mV. 

Thirdly, larval fish were paralysed via bungarotoxin injection. Even though this 

blocks nAChRs, it might also bind to the mAChR and therefore block efferent 

feedback to hair cells. This would be important to rule out, if the feedback 

mechanisms of hair cells are investigated. 

Overall, the presented experimental approach was designed to make a first 

description of the basolateral membrane properties of zebrafish hair cells in 

voltage clamp mode. In this way, the ion channel composition and properties can 

be assessed with great accuracy. This could usefully be applied to screen mutants 

and transgenic lines. 

On the other side, a more physiological readout of these cells requires current 

clamp experiments, but these are largely influenced by the condition of the cell. 

In this case, our experimental approach may not be the most physiologically 

useful. Afferent neuron activity, microphonic potential recordings or calcium 

imaging may provide a better and less invasive approach (Trapani and Nicolson, 

2010). 

One very interesting aspect would be to study the MET channel in an in vivo 

setting using the fish. Several attempts have been made to do so, with little 

success. The orientation of the bundle is not visible, the bundle is very short, 

making stimulation difficult, and the recordings are generally not stable for more 

than a few minutes. On the few occasion recordings were made, the MET current 

was extremely small and the cells did not last for long enough. In any case the 

MET current in these delicate cells is likely to be small. Therefore, single cell 
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electrophysiology to study mechanoelectrical transduction in zebrafish hair cells 

may be of limited value. 
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Chapter 4 Biophysical Properties 

of Larval Zebrafish Lateral Line 

Hair Cells 
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4.1 Introduction 

In the past two decades, zebrafish have emerged as a great genetic tool for 

studying hair cells in vivo. Several techniques have been used on normal and 

genetically modified zebrafish: mainly imaging (in fish with genetically encoded 

calcium indicators, GECI’s), but also immunostaining and behavioural assays 

(vestibulo-ocular-reflex – VOR; Mo et al., 2010). Studies utilising these techniques 

have yielded a great deal of knowledge about the specification of hair cell 

progenitors and lateral line development as well as about genes involved in 

normal hair cell function (Nicolson, 2005). 

However, to understand hair cell function in vivo it is crucial to know their 

electrical properties and, more importantly, how these cells detect sensory 

stimuli and transmit the encoded information onto the afferent fibre. In order to 

do this, two more specialised techniques had been developed and adapted: a) 

microphonics, which investigates mechanoelectrical transduction occurring at 

the cupula level using extracellular recordings and b) afferent fibre recordings, 

which elucidate details on the output of hair cells onto their neurons (Trapani 

and Nicolson, 2010). These two techniques have been used to describe action 

potential firing of the wildtype lateral line neurons and have been employed to 

study intracellular calcium signalling in the lateral line hair cells. Experiments 

using microphonics and afferent fibre recordings techniques can only provide an 

indirect indication of hair cell function. In order to understand the physiology at 

the single cell level, a more direct approach was required such as performing 

patch-clamp recordings.  

The first aim of this part of the project was to establish a methodological 

approach to access and record from single hair cells from the intact larval 

zebrafish. Details on the methodology are given in Chapter 3. The second aim was 

to understand the in vivo physiology of these cells.  

There is extensive knowledge on the properties and function of hair cells in both 

lower and higher vertebrates, both in the auditory and vestibular system. Bearing 

in mind that the lateral line functions as a low frequency sensing organ, with little 
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or no endocupular potential, I expect to find that zebrafish hair cells have 

properties that match those criteria. These cells might share great similarity with 

hair cells in the vestibular system of mammals or lower vertebrates. If lateral line 

hair cell roles extends beyond vestibular function, they will be expected to show 

features similar to the auditory cells of other lower vertebrates, such as the 

bullfrog, which would include electrical tuning. 

Moreover, the larval fish responds to water vibrations with an escape response 

as early as 3 dpf. This suggests, that at least some of the hair cells are functional 

by this time, although it is unclear whether these are located in the inner ear or 

lateral line. Therefore, if lateral line hair cells are involved in the perception of 

vibrations, I expect all of them to exhibit one K+ current phenotype. 

Specifically, this part of the project is aimed at investigating whether larval 

zebrafish hair cells (3-5.2 dpf) have a functional mechanoelectrical transducer 

current, which ion channels shape their receptor potential and details on the 

synaptic transmission. Moreover, it will provide some details on whether the 

function of hair cells is affected by the use of the common anaesthetic MS-222.  

4.2 Methods 

For a detailed description of the Materials and Methods see Chapter 2 as well as 

Chapter 3 for specifics on how to record from lateral line hair cells. 

Briefly, for lateral line experiments, only hair cells from the first primordium (see 

Figure 4.1) of 3-5.2 dpf zebrafish were investigated. The identification of the first 

primordium was made on the basis of the position of the primary neuromasts 

and their size. Zebrafish were immobilized to the bottom of the Sylgard coated 

recording chamber with tungsten wire pins inserted between the heart and ear 

(anterior) and after the anal exit (posterior). 
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Figure 4.1 Schematic representation of the lateral line organisation at 5 dpf. 

A, In red the primary lateral line consisting of 8 neuromasts including 3 terminal 

neuromasts (L6-8). B, Polarity of a single neuromast consisting of several hair 

cells: arrows indicate excitatory direction. The anterior portion is activated by 

stimuli from the anterior-posterior direction. The posterior portion is activated 

in the opposite direction. 

 

The majority of recordings were performed with larvae injected with 125 μM α-

Btx into the heart, which blocked transmission at the neuromuscular junction by 

binding competitively to the nicotinic acetylcholine receptor on the muscle fibre 

(Young et al., 2003). All recordings were performed at room temperature unless 

indicated otherwise for the specific experiment. 

The anesthetic MS-222 was locally applied to hair cells in a concentration of 0.01 

% to investigate its possible effects on membrane currents. Solutions containing 

drugs were applied through a multi-barrelled pipette positioned close to the 

preparation (Chapter 2). 

4.3 Results 

4.3.1 Current profiles and voltage responses of lateral line hair cells  

4.3.1.1 Mechanoelectrical transduction in larval hair cells 

Hair cell mechanoelectrical transduction occurs in response to movement of the 

stereociliary hair bundle that opens transducer channels located at the tips of the 

shorter stereocilia (Beurg et al., 2009). This process is extremely sensitive, 

detecting bundle movements of less than a nanometre, allowing the detection of 

sound and orientation with high sensitivity and precision. In the absence of 
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stimulation, when the hair bundle is in its resting position, the transducer 

channels are partially open (about 10%), which allows the constant influx of 

cations into the cells, causing their depolarization. This resting 

mechanotransducer current (IMet) is therefore a crucial determinant of Vm 

(Johnson et al., 2011). The resting membrane potential of all hair cells at 3 – 5.2 

dpf was -75.3 ± 0.9 mV (n = 12). To test whether the resting IMet was present and 

functional in our in vivo recording conditions, two approaches were taken.  

Firstly, FM1-43, a styryl dye that is a permeant blocker of the transducer channel 

(Gale et al., 2001) was perfused onto lateral line hair cells. FM1-43 selectively 

labelled unstimulated hair cells in the neuromasts (Figure 4.2 A bottom), 

confirming the presence of the resting transducer current, consistent with 

previous findings from mouse hair cells (Gale et al., 2001). Secondly, to evaluate 

the contribution of the resting IMet to the cells Vm, current clamp experiments 

were performed (Figure 4.2 Bi and C). In control conditions hair cells had a 

resting membrane potential of – 59.6 ± 1.0 mV (n = 3), which was significantly (P 

< 0.05 and P < 0.01, respectively, one-way ANOVA) more depolarised compared 

to that measured when the permeant blocker of the transducer channel 

dihydrostreptomycin (DHS) was applied onto the hair bundles (67.00 ± 0.3 mV; 

n = 3; Figure 4.2 Bii and C). DHS is an effective blocker of the MET channel in 

mouse (Marcotti et al., 2005). The Vm returned to control values when DHS was 

washed out (-59.5 ± 0.4 mV, n = 3; Figure 4.2 Biii and C). This indicates that the 

fraction of transducer channels open at rest is directly contributing to cells Vm in 

larval zebrafish hair cells. 
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Figure 4.2 Resting mechanoelectrical transducer current in hair cells from 

larval zebrafish. 

A, differential interference contrast (DIC) and fluorescence images from a 4 dpf 

larval neuromast (primI) showing that hair cells are labelled with FM1-43, 

indicating the presence of mechanotransducer channels open at rest, Scale bar: 

10 μm. Bi-iii, voltage responses to current injections of –10, 0 and +10 pA from 

the Vm of the individual cell (3 dpf, neuromast L4), in control conditions and 
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exposed to 1 mM dihydrostreptomycin (DHS). Note that blocking the 

mechanotransducer channels with DHS hyperpolarizes the cell, which was 

completely reversible after washout of the drug. C, average Vm measured using 

the three different conditions described in B from three hair cells using 0.1 mM 

(two cells) or 1 mM DHS (cell in B). Note that recordings in B and C were 

performed at 28.5°C for a more physiological approach. 

 

4.3.1.2 Pharmacological and electrical isolation of K+ currents in zebrafish 

larvae 

Membrane depolarization caused by IMet, which is also known as receptor 

potential, modulates the neurotransmitter release at the cell’s ribbon synapses. 

The time and voltage-dependence of the different ionic conductances in the 

basolateral membrane are crucial in shaping this receptor potential. These K+ 

currents have been unknown in zebrafish hair cells and a detailed description 

and identification will be given below. 

In order to characterise the different K+ currents expressed in larval hair cells, 

voltage clamp experiments were performed. Hair cells were subjected to a series 

of depolarizing voltage steps from –120 mV to +70 mV in 10 mV nominal 

increments from the holding potential of -84 mV. The identity of the individual 

K+ currents was evaluated using either voltage or pharmacological protocols.  

One current type found was a rapidly activating and inactivating outward K+ 

current termed IA. This was identified using a voltage protocol as previously 

described (Norris et al., 1992). IA is known to deactivate at potentials close to -40 

mV. Therefore, hair cells were initially held at -84 mV and subjected to a voltage 

step to -14 mV (Figure 4.3 Ai). The protocol was then repeated in the same cells 

but from the holding potential of –54 mV (Figure 4.3 Aii). The isolated IA was 

obtained by subtracting the current recorded at the holding potential of -54 mV 

from that obtained at -84 mV (Figure 4.3 Aiii).  
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Figure 4.3 Isolation of A-type current in a lateral line hair cell. 

Ai, Example of cell containing the A-type current. Currents were elicited by 

depolarizing steps as shown by the traces.  Aii, Recordings from same cell but 

with holding potential of -54 mV, where IA is nearly inactivated. Aiii, Isolated IA 

obtained by subtracting the current in panel Aii from the control in panel Ai.  

 

Another current type found was an outward Ca2+-activated K+ current (IK,Ca), 

which was determined based on two main features: the characteristic N-shaped 

of the I-V curve and pharmacologically. The calcium-dependence of this outward 

current was assessed by perfusing the hair cells with a calcium-free extracellular 

solution. A typical recording from a hair cell before (Figure 4.4 A, black trace) and 

during the application of a calcium -free extracellular solution (Figure 4.4 iiA, 

blue trace). The isolated IK,Ca, which was obtained by subtraction, is shown in the 

red trace of Figure 4.4 Aii. The I-V relation for the different recordings conditions 

described above are shown in Figure 4.4B.  
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Figure 4.4 Isolation of the Ca2+-activated K+ current in a lateral line hair cell. 

Ai, Example of cell containing IK,Ca. Currents were elicited by depolarizing and 

hyperpolarizing voltage steps in 10 mV nominal increments from the holding 

potential of −84 mV to the various test potentials ranging from –124 to +64 mV. 

For clarity only a few test potentials are shown next to the traces. Aii, Blue trace: 

recordings from the same cell as in panel Ai but during the perfusion of a calcium-

free extracellular solution. Aii, Red trace: isolated IK,Ca obtained by subtracting the 

current in panel Ai from the control in panel Ai. B, Steady-state (measured at 160 

ms) I-V relationship for all three conditions shown in Ai-Aiii. 

 

To identify whether IK,Ca was carried by small (SK) or large (BK) conductance K+ 

channels, hair cells were perfused with the highly selective SK channel blocker 
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apamin. The current was insensitive to the perfusion of apamin confirming its 

identity as a BK current (Figure 4.5 A-B).  

 

Figure 4.5 Identification of Ca2+-activated K+ current in a lateral line hair 

cell. 

Ai – ii, Example of K+ currents recorded from a hair cell (3 dpf) before (Ai) and 

during (Aii) the superfusion of 300 µM Apamin. Currents were elicited by 

depolarizing and hyperpolarizing voltage steps from the holding potential of −84 

mV to the test potentials shown by some of the traces. B, Steady-state (measured 

at 160 ms) I–V curves obtained from the recordings shown in Ai and Aii.  

 

Finally, a hyperpolarisation-activated K+-Na+ current termed Ih was found. This 

current is well characterised by its inward rectification, its negative activation 

range and very slow activation kinetics that creates a voltage sag in current clamp 

recordings in response to hyperpolarizing current injections (see Figure 4.8 

below). The only other inward current that is found in zebrafish hair cells is the 
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large and fast IK,1 in the zebrafish inner ear (see Chapter 6, Figure 6.2) or the 

goldfish sacculus (Sugihara and Furukawa, 1989). 

Both inward current candidates can be distinguished pharmacologically. BaCl in 

concentrations > 1mM is a known blocker of IK,1 (Marcotti et al., 1999) whereas 

Ih is known to be insensitive to its application. Figure 4.6 A shows that the inward 

current in lateral line hair cells was not affected by the perfusion of 5 mM BaCl, 

indicating the presence of Ih and not IK,1. The I-V curves further highlight that the 

inward Ih is unaffected, but that the outward IK,Ca is blocked (Figure 4.6 B) when 

Ca2+ was replaced with Ba2+ in the extracellular solution (as also described in 

Figure 5 above). This indicates that the perfusion of BaCl was successful and the 

undetectable effect it has on Ih is real. 
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Figure 4.6 Pharmacological isolation of K+ currents in larval zebrafish hair 

cells. 

Ai, Example of a cell containing both Ih and IK,Ca (black trace). Currents were 

elicited by depolarizing and hyperpolarizing voltage steps in 10 mV nominal 

increments from the holding potential of −84 mV to the various test potentials 

shown by the traces. Aii, Blue trace: perfusion of extracellular solution containing 

5 mM BaCl. B, I-V relationship for conditions shown in Ai and Aii. Note that BaCl 

affects the outward current but not Ih. 

 

4.3.1.3 Current and voltage responses of larval zebrafish hair cells in vivo  

The different K+ currents found in hair cells were then closely investigated in 

terms of their time and voltage behaviour and relative expression within a 

neuromast. 
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Current responses of lateral line hair cells 

The K+ currents in larval lateral line hair cells were then investigated further 

using voltage clamp. Currents were elicited by applying a series of depolarizing 

voltage steps from –120 mV in 10 mV nominal increments from the holding 

potential of -84 mV. This protocol has highlighted a wide range of current 

phenotypes (Figure 4.7). It is important to note that there was no correlation 

between type of K+ current and hair cell position within a neuromast, i.e. hair cells 

in the edge and centre of a neuromast express similar K+ currents. Therefore, the 

hair cells within a neuromast were classified into three main profiles depending 

on the complement of K+ currents they expressed: 

Type 1 cells showed a rapidly activating and inactivating outward A-type current 

(IA) in combination with a delayed rectifier current (IK,D) and no or little inward 

current  (Figure 4.7). About 14% of Type 1 cells showed an Ih. This current profile 

was seen in 17 % of all larvae cells investigated. 

Type 2 cells showed an IK,D with a small IA and no or little inward current (Figure 

4.7). Around 3 % of all hair cells tested show this current profile. 

Type 3 cells are mainly characterised by a Ca2+-activated K+ current (IK,Ca) with a 

small contribution from an IA and IK,D. About 34% of Type 3 cells also showed a 

hyperpolarised-activated current (Ih) (Figure 4.7). About 80% of all the hair cells 

investigated show this profile. The capacitance of all larval hair cells was 3.6 ± 0.1 

pF (n = 62). 

This classification was based solely on the presence and dominance of either 

current, i.e. a large IA or IK,CA. The Type 2 cells were classed because neither 

current was dominantAll these current profiles have been previously described 

in hair cells from other lower vertebrates such as the goldfish (Sugihara and 

Furukawa, 1989) and frog (Masetto et al., 1994; Holt and Eatock, 1995). 
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Figure 4.7 Potassium currents in hair cells from the larval zebrafish lateral 

line. 

Examples of K+ current recordings from hair cells in different neuromasts (L2–

L4) when fish were paralysed with α-Btx. Note that the three different current 

phenotypes were seen in hair cells within each neuromast from larval zebrafish. 

Currents were elicited by depolarizing and hyperpolarizing voltage steps in 10 

mV nominal increments from the holding potential of −84 mV to the various test 

potentials shown by the traces.  

Voltage responses of larval hair cells 

Next, I performed current clamp experiments, which reveal the contribution of 

the different conductances to the overall membrane potential behaviour. 

As described above, the complement of K+ currents varied among hair cells, 

indicating a possible variation of voltage responses. In both Type 1 and 2 cells, 
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hyperpolarizing current injection caused large negative sustained voltage 

responses, which reflects the absence or very small contribution of an inward K+ 

current at these negative membrane potentials (Figure 4.8, top and middle right). 

Type 3 cells responded to hyperpolarising current injections with a characteristic 

voltage sag that matched the activation of the Ih at hyperpolarised potentials 

(Figure 4.8, bottom left).  

Depolarizing current injections elicited voltage responses that reflected the time 

course of the different outward K+ current components. The largest voltage 

change to positive current injections was seen in Type 1 cells. These cells showed 

a slow time-dependent depolarisation (Figure 4.8, top right), which reflected the 

presence of the fast inactivating IA. The larger overall depolarization in these cells 

is due to the smaller sustained IK,D compared to the other cell types (Figure 4.8, 

top). Type 2 cells showed a faster, but smaller voltage change to positive currents 

injections (Figure 4.8, middle right) due to their larger sustained IK,D. Type 3 cells 

had the largest K+ currents and showed the smallest but fastest voltage changes 

to positive current injections (Figure 4.8, bottom right). Membrane oscillations 

during positive current injection, which was seen in hair cells of the inner ear 

(see Chapter 6, Figure 6.3), was absent in all recorded cells from the neuromast. 

The average resting membrane potential (Vm) was similar in all hair cells 

investigated between 3.0–5.2 dpf and was −71.4 ± 1.7 mV (n = 27).  
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Figure 4.8 Voltage responses in hair cells from the larval zebrafish lateral 

line. 

Left, Voltage responses to current injections of –30, 0, + 40 and + 70 pA from the 

Vm of the three types of hair cells. Voltage responses are from hair cells shown in 

Figure 4.7. Right, Inset of the first 25 ms of the recordings from left, note the 

dashed line indicates the time until the voltage change reached a first plateau. 
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4.3.1.4 Effect of MS-222 on larval hair cell K+ currents 

Larval zebrafish are commonly paralysed with an injection of α-Btx into the heart 

to stop movement. α-Btx is then distributed via the blood stream and binds 

reversibly to the nicotinic acetylcholine receptor on the muscle fibre and 

therefore blocks neurotransmission (Young et al., 2003). The anaesthetic MS-222 

is used to cull zebrafish but also sometimes to perform both in vitro and in vivo 

studies on zebrafish hair cells. Even though MS-222 is a known K+ channel 

blocker, its possible effect on the hair cell basolateral membrane physiology has 

never been assessed. Figure 4.9 shows that in the presence of MS-222 hair cells 

exhibit a similar combination of K+ currents, namely type 1, 2 and 3, to that 

reported in the absence of the anaesthetic.  
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Figure 4.9 Examples of larval hair cells recorded in the presence and 

absence of MS-222. 

A, examples of hair cells of the larval zebrafish neuromast (3.0–5.2 dpf) in the 

presence of 0.01 % MS-222. Currents were elicited by depolarizing and 

hyperpolarizing voltage steps in 10 mV nominal increments from the holding 

potential of −84 mV to the various test potentials shown by the traces. B, 

examples of hair cells of the larval zebrafish neuromast (3.0–5.2 dpf) without MS-
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222. Note that all larvae used haven been injected with α-Btx (B) and in (A) the 

MS-222 was contained in the extracellular solution. 

 

Even though the variety of K+ conductances found with and without MS-222 in 

the extracellular solution did not differ, it was unclear whether there were subtle 

alterations. Therefore, the possible interference of the anaesthetic on single hair 

cells was verified by locally superfusing hair cells with MS-222. One example of a 

type 2 hair cell recorded from a 4 dpf hair cell before and during the superfusion 

of 0.01% MS-222 is shown in Figure 4.10 Ai and Aii. The steady-state values of 

the K+ currents (Figure 4.10 B) were used to generate I–V curves and did not 

differ between control and MS-222 perfusion. The similar peak and steady-state 

amplitudes (Figure 4.10 C) of the outward K+ current indicate that MS-222 does 

not influence the current profile observed in hair cells from larval zebrafish. 

Therefore, it can be concluded that MS-222 is an appropriate anaesthetic to use 

on larval zebrafish (3-5.2 dpf). 
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Figure 4.10 Effect of MS-222 on potassium currents from larval lateral line 

hair cells.  

Ai – ii, Examples of K+ currents recorded from a hair cell (4 dpf) before (Ai) and 

during (Aii) the superfusion of 0.01% MS-222. Currents were elicited by 

depolarizing and hyperpolarizing voltage steps in 10 mV nominal increments 

from the holding potential of −84 mV to the various test potentials ranging from 

– 123 to + 66 mV. B, steady-state (measured at 160 ms) I–V curves obtained from 

the recordings shown in Ai and Aii. C, average peak and steady-state amplitude of 

the K+ current at 0 mV, including those shown in Ai and Aii. 

 

4.3.1.5 K+ current in early developing hair cells from different neuromasts  

In the first few days of development (<5.2 dpf) the posterior lateral line  

undergoes dramatic and quick morphological changes. Hence, it was investigated 

whether the current profiles identified above also changed within this small age 

range. The results showed that the set of K+ current types does not seem to differ 
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as a function of age (3, 4 or 5 dpf) as shown by the similar peak current size at 0 

mV (3 dpf: 466 ± 26 pA, n = 15; 4 dpf: 456 ± 23 pA, n =22; 5 dpf: 541 ± 41 pA, n = 

4 (Figure 4.11 A). The steady-state currents at 0 mV were also not significantly 

different with 3 dpf: 311 ± 29 pA, n = 15; 4 dpf: 339 ± 22 pA, n =22; 5 dpf: 408 ± 

86 pA, n = 4 (Figure 4.11 A). 

The PLL shows somatotopic organisation, with the most anterior neuromasts 

being most ventrally organised in the lateral line ganglion and the most posterior 

neuromasts being innervated by neurons from the ventral parts of the ganglion 

(Alexandre and Ghysen, 1999). Consequently, it was also tested whether there 

are differences in the occurrence of K+ current along the body axis of the fish. 

Figure 4.11 A shows that there is no significant difference in the peak and steady-

state values of the inward and outward currents between different neuromasts. 

Additionally, recordings from the three neuromasts were pooled to generate I-V 

relationships (Figure 4.11 C).  The three I–V curves showed similar overall 

amplitude and voltage dependence, indicating that the current profiles of hair 

cells within each neuromast showed similar levels of variability. 
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Figure 4.11 Hair cell K+ current abundance depending on larval stage and 

neuromast location. 

A, Average peak and steady-state amplitudes for the outward K+ current at 0 mV 

recorded from hair cells as a function of age in all neuromasts. B, Average steady-

state : peak amplitude ratio for the outward K+ current at 0 mV recorded from 

hair cells in the three neuromasts (open bars) or as a function of age in all 

neuromasts (filled bars). C, Average peak and steady-state (measured at 160 ms) 

I–V curves from hair cells in neuromasts L2–L4. I–V curves include all recordings 

(with MS-222 and α-Btx) obtained in each of the three neuromasts investigated. 

 

Another important morphological aspect in this sensory organ refers to the 

position of hair cells within a neuromast. New hair cells are born at the apical and 

basal poles of the neuromast and migrate around the periphery/edge so that the 

whole neuromasts grow from the outside to the inside (Lopez-Schier and 

Hudspeth, 2007). However, at this stage of development, larval neuromasts only 

contain about 10 hair cells, which makes it impossible to distinguish between the 

edge and centre of the organ. In those very few experiments (n = 12) where the 

exact location of larval hair cells within a neuromast could be determined, I found 

a similar current profile between centre and edge: all six cells in the edge and 

four of six hair cells in the centre showed Type 3 cells - IK,Ca, IK,D, and IA(s). Two 

cells from the centre exhibited Type 1, where IK,Ca was missing and only IK,D + IA(s) 
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remained. However, considering the large variety of K+ phenotypes the findings 

based on 12 cells are inconclusive and it appears that all three types occur 

throughout the neuromast. 

This indicates that at early larval stages, the different basolateral current profiles 

of newly formed hair cells are present within and across the different neuromasts 

and as a function of age.  

4.3.2 Synaptic Transmission in lateral line hair cells  

The receptor potential generated by IMet and shaped by the basolateral 

membrane currents causes the opening of voltage gated calcium channels of the 

Cav1.3 subtype that are part of the L-type family (Moser and Beutner, 2000; Sidi 

et al., 2004). Details about the properties of ICa and transmitter release are crucial 

to understand how zebrafish hair cells are able to function. The biophysical 

properties of ICa in lateral line hair cells were investigated using voltage clamp 

experiments. Figure 4.12 A shows a typical example of ICa recorded from a larval 

hair cells. Current traces from six hair cells were used to generate the I-V relation 

(Figure 4.12 B), which revealed the characteristic bell shape of this current. At 

potentials positive to –70 mV the channel started to open and peaked near – 31 

mV with a maximum size of −12.3 ± 1.1 pA (3.0–4.5 dpf). This I-V curve was fitted 

using Equation 2. 

𝐼 =  
𝑔𝑚𝑎𝑥(𝑉 − 𝑉𝑟𝑒𝑣)

1 + exp(
𝑉1

2⁄ − 𝑉

𝑆 )

 

Equation 2 Calcium current fit. 

Parameters are:  I is the current, gmax is the maximum chord conductance, V is the 

membrane potential, Vrev is the reversal potential of the current, V1/2 is the 

potential at which the conductance is half activated, and S is the slope factor that 

defines the voltage sensitivity of current activation. Fitting parameters for are 

larvae (for 3.0–4.5 dpf) gmax = 0.2 nS, Vrev = 17 mV, V½ = −48.2 mV and S = 6.6 mV. 
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The calcium current leads to the fusion of vesicles at the presynaptic membrane. 

Exocytosis was estimated by measuring changes in cell surface, which are 

reflected in its membrane capacitance (ΔCm) following depolarizing voltage step 

to the peak of the ICa at –31 mV. This is generally interpreted as a sign of 

neurotransmitter release from presynaptic cells (Moser and Beutner, 2000; 

Johnson et al., 2008; Johnson et al., 2013). An example of ΔCm recorded in 

response to a 1 s depolarizing voltage step from a larval hair cells is shown in 

Figure 4.12 C. On average, ΔCm in larval zebrafish was 2.3 ± 0.5 fF (n = 6). 

Assuming each vesicle is on average 37 aF (Lenzi et al., 1999), around 62 vesicles 

fused with the membrane after a 1s depolarizing step. 
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Figure 4.12 Calcium currents and neurotransmitter release in lateral line 

hair cells. 

A, Calcium currents (ICa) recorded from hair cells of the larval (3.0–4.5 dpf) 

zebrafish lateral line. Currents were elicited by depolarizing voltage steps (200 

ms in duration) from the holding potential of −79 mV to the potentials shown by 

the traces. For clarity only the traces at the holding potential and near the peak 

of ICa (−31 mV) are shown. B, average peak calcium current I–V curves from 3.0–

4.5 dpf (black) hair cells (n = 6), including the one shown in A. C, changes in 

membrane capacitance (ΔCm) recorded from hair cells of larval (3.0–4.5 dpf) 

zebrafish. Recordings were obtained in response to 1 s voltage steps from the 

holding potential of −79 mV to −31 mV. Recordings were obtained at 28 °C. 
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4.4 Summary  

The zebrafish lateral line has been used as a model for studying the genetics of 

hair cells in recent years. Yet, little was known about the electrical properties of 

the sensory cells in the neuromasts. This chapter provides a thorough description 

of the biophysical properties of larval hair cells. They were subdivided in three 

main subtypes, based on their current profile. 

Type 1 hair cells show an IA in combination with IK,D and no or little inward 

current. They respond with large voltage changes, both negative and positive to 

hyperpolarising and depolarising current injections. 

Type 2 hair cells have an IK,D with a small IA and no or little inward current. They 

show a similar voltage change to type 1, but slightly smaller and faster. 

Type 3 hair cells exhibit IK,Ca with a small contribution of IA and IK,D, sometimes 

with Ih. They prevent the membrane potential from large hyper- or 

depolarisation and mediate the fastest changes out of all three types.  

4.5 Discussion 

Lateral line hair cell function 

This chapter provides a more detailed insight into the electrical properties of the 

basolateral membrane of larval hair cells in the lateral line. 

Previously, it has been shown that all hair cells have a functional MET channel, as 

indicated by FM1-43 labelling and imaging studies (Kindt et al., 2012). This could 

be further tested with electrophysiological techniques, such as direct bundle 

stimulation with a water-jet device (Trapani and Nicolson 2010) and would allow 

more detailed investigation of the properties (e.g. size, IMet at rest, adaptation) of 

the MET machinery in lateral line hair cells. Unfortunately, this is technically very 

challenging and could not be successfully performed. 

However, an experiment that could be performed, was measuring the Vm with 

and without the MET channel blocker DHS, which revealed that the IMet was 
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indeed open at rest. In a number of other experiments the Vm was measured and 

averaged at about -75 mV, which is in contrast to the DHS experiments, where it 

was -60 mV. This discrepancy could have several origins: firstly, the sample size 

for the DHS experiment was low and only the more depolarised cells were 

measured. From previous studies, it is expected that the IMet channel is not 

homogenously functional throughout the neuromast, despite all hair cells 

labelling with FM1-43 (Kindt et al., 2012), and it could have different sizes of 

current active at rest. The overall Vm measured is relatively negative but it is still 

away from the K+ reversal potential of about -80 mV, which indicates that there 

is a cation influx at rest, albeit a small one. 

Secondly, this discrepancy could be, at least in part, due to destruction of the tip 

links, where the MET channel is located. This would abolish cation influx and 

hyperpolarise the cell. The Vm with broken tip-links is unknown, therefore it 

cannot be compared to my findings. It is likely to be in the order of -80 or -90 mV, 

which is close to the K+ reversal potential. Even though great care was taken to 

limit damage to the hair bundle, it cannot be completely ruled out. 

The overall finding that zebrafish lateral line hair cells show three K+ phenotypes 

is very surprising. These different K+ currents are found in a number of 

mechanosensory organs, but not in this combination. 

Initially, it was assumed that the hair cells in the lateral line would resemble 

those in the vestibular system. The latter comprises two cell types, one with an 

A-type current (Type II) and the other with a large K+ current (IK,L, Type I) but 

only the Type 1 in the fish (IA) resembles Type II of the vestibular system. A-type 

currents are found in various non-sensory cells to, where they function to 

modulate spiking latency (Norris et al., 1992). The function in vestibular hair cells 

and the lateral line could also be different. 

The A-type current mediates the slowest, largest voltage response in the cells 

investigated. In the intact system, where the bundle is deflected, it will clamp the 

membrane potential quickly after the MET channel is opened. During continued 

stimulation, the current through the MET channel will get smaller (slow 

adaptation). This coincides with inactivation of the A-type current, thus allowing 
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the depolarising response to be constant. This is important to signal constant 

stimulation of the lateral line. A second role of the Type 1 hair cells might lie in 

velocity or intensity detection. In contrast to type 2 and type 3 lateral line hair 

cells, it has the biggest gain. During continued stimulation, this will allow these 

cells to be gradually more depolarised the more the bundle is pushed as the fish 

swims faster or when it engages in shoaling behaviour. Type 1 cells in the fish are 

potentially limited to sensing low frequencies as they are similar to vestibular 

hair cells sensing up to a few Hz. 

In contrast, Type 3 (IK,D and IK,Ca) as well as Type 2 (IK,D and IA(s)) hair cells in the 

fish show currents found in the auditory hair cells of the bullfrog sacculus as well 

as turtle cochlea (Fettiplace and Fuchs, 1999). Both types mediate faster, smaller 

voltage changes than Type 1. Interestingly, neither the Type 3 nor Type 2 hair 

cells show electrical tuning, albeit they have the appropriate channels. The main 

reason for this is that the calcium current is most likely too small and neither 

channel is localised in close proximity. From a functional perspective, this almost 

rules out an auditory function of these cells. 

Even though BK channels are not found in vestibular hair cells (Eatock et al., 

1998), as these are associated with the need for electrical tuning above 50 Hz, 

they could still carry vestibular function for linear acceleration in the lateral line. 

In the intact fish, water stimulation of the neuromast will lead to a fast voltage 

change in the type 2 and 3 cells and quick transmitter release. This makes these 

cells ideal for escape responses, where the fish needs to integrate sudden stimuli 

quickly. During continued stimulation, Type 2 and Type 3 cells are most likely 

less sensitive than Type 1, because they have a smaller gain. Other functions of 

BK channels in non-neuronal cell types include regulation of cell excitability. This 

seems less likely in zebrafish hair cells, as the calcium current is very small and 

excitability of these cells is more likely mediated by the efferent system (Toro et 

al., 2015). 

The types of potassium currents described above do not reveal much of their 

function without detailed knowledge of the synaptic machinery of the cell and 

the afferent neuron that contacts it. Measurements of the size of the calcium 
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current in zebrafish lateral line hair cells show that it is on average 10 times 

smaller than in the mature mammalian IHC (Marcotti et al., 2003b) and two to 

three times smaller than in rat vestibular hair cells (Eatock and Hutzler, 1992); 

Bao et al., 2003). Even when the cell surface area is taken into consideration, with 

mammalian IHC being around 10 pF and rat vestibular hair cells 5 pF in size, the 

size of the calcium current in the lateral line is still considerably smaller. The size 

of the calcium current has been associated with increasing the precision of the 

synapse (Li et al., 2014) the bigger the current, the more accurate the 

postsynaptic response. This leads to the conclusion that zebrafish hair cell 

synapses are not as accurate as their auditory counterparts and that precision is 

achieved by incorporating the responses of several synapses of the same or 

different hair cells. Indeed, one neuromast is contacted by on average 4-6 

neurons that branch extensively (Liao 2010; Haehnel et al., 2012 and 2014). In 

this fashion, transmission of signal intensity can be achieved by subsequently 

recruiting more hair cells and increasing afferent nerve firing.  

In the vestibular system, differences between Type I and II extend beyond their 

K+ current set in ways that affect their gain and filtering properties (Songer and 

Eatock, 2011). As for the filter properties, this does not seem to be the case in 

lateral line hair cells. None of the three hair cell types seem to differ in terms of 

cell capacitance and they do not have any current at rest, which would influence 

the cell resistence and impact on the membrane time constant (τ). τ  is directly 

associated with the cut-off or roll-off frequency, which indicates the point where 

a low-pass RC circuit can no longer follow a frequency. This means, that all three 

cell types are most likely equal in terms of their ability to change their membrane 

voltage. However, this would need further investigation of their cell resistance, 

whereas in this study only the series resistance was measured. Moreover, 

experiments applying a sinewave current to the cell and measuring the 

membrane voltage change, will shed light on details of the filtering properties. 

As for the gain, this is indeed different in the different types, with Type 1 cells 

showing the largest gain, while Type 2 and 3 can be about a third smaller. This 

indicates, that Type 1 cells have a larger dynamic range, which could be in line 

with them transmitting velocity or intensity during swimming.  
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However, in this experiment, the stimulation was a square current. This is most 

likely different to the physiological shape of the MET current, that will adapt and 

become smaller over time. This can be adjusted with the experimental design and 

the injected current can be mimicking the in vivo MET current. 

  

Lateral line hair cell development 

It is perhaps surprising, that at these early larval stages the number of types or 

channels expressed does not differ either as a function of age (3 to 5 dpf) or as a 

function of distance along the fish body. However, the rapid development of 

zebrafish cannot be underestimated. By the time they hatch (2-3 dpf), fish have 

near complete sensory systems, which allow them to escape, shoal, smell and 

catch prey by 5 dpf (Straehle et al., 2012). Therefore, it is little surprise that the 

hair cells in larval fish are fully functional. However, the question remains as to 

why there are so many types present and whether this changes during adulthood. 

It has been shown in the vestibular system that a large proportion of immature 

hair cells show a delayed rectifier current between p 0 and p 3 (Rüsch et al., 1998) 

and then gradually develop their characteristic features such as IA (Type II) or IK,L 

(Type I). This means that some cells are immature, despite the animal being 

perfectly capable in terms of the righting reflex. Similarly, neuromast hair cells 

seem to undergo morphological changes up to at least 5 dpf, where the kinocilium 

and bundle height increase as well as more stereocilia being added to the apical 

surface (Kindt et al., 2012). This is accompanied by a refinement in the polarity 

of the transducer. All these changes occur in cells that are already present and 

apparently functional at 5 dpf. Unfortunately, our knowledge about this does not 

extend beyond 5 dpf, after which the fish are protected. 

In the time between hatching and adulthood, which is marked by reaching sexual 

maturity, the sensory systems do refine and adapt to new tasks. As the fish 

behaviour changes from slow, burst like swimming to faster, undulating 

swimming, the hair cell types might adapt to match the task. Therefore, in the 

next chapter I have investigated juvenile lateral line hair cells to shed more light 
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on the questions which hair cell type has which role and whether this changes 

over time as more hair cells are added to the neuromast. 
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Chapter 5 Biophysical Properties 

of Juvenile Zebrafish Lateral Line 

Hair Cells 
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5.1 Introduction 

Hair cells in the larval (< 5.2 dpf) zebrafish lateral line organ show K+ currents 

that I have grouped into three types based on their channel identity and current 

size (see Chapter 4). This finding was surprising as fewer types were initially 

expected. The reason for this variety in the current profiles could be related to 

differences in function or developmental stages. In the vestibular system of 

higher and lower vertebrates two distinct cell types are present, each assigned 

with a different function in transmitting stimuli.  On the other hand, in higher 

vertebrates, such as mice, it is well documented that the basolateral membrane 

currents largely change from immature to adult stages (Corns et al., 2014). 

Therefore, I investigated hair cells of juvenile zebrafish, which are around 4 

weeks older. If the three larval K+ types relate to developmental changes, this 

would lead to the juvenile fish showing a smaller number of current profiles. 

However, if they are related to function, the same phenotypes should be present 

throughout all ages. Potentially, the number of K+ profiles could even increase as 

the demands on sensory transduction change from larvae to juvenile fish. 

Moreover, the synaptic machinery will be investigated at older stages to assess 

whether its properties change over time. 

Experiments on juvenile or young adult zebrafish were performed under two 

main conditions: In vitro using decapitated animals and in vivo using zebrafish 

under non-recovery anaesthesia (Benzocaine). These results will be described in 

detail in the two main sections of this chapter. 

5.2 Methods 

For a detailed description of the general methods used to prepare the zebrafish 

for electrophysiological experiments see the Methods in Chapters 2 and 3. All 

recordings were performed at room temperature unless otherwise indicated. 

Calcium currents were investigated both in decapitated and in vivo juveniles. 

They were isolated from the total membrane current by blocking the K+ currents 

with 4-AP and TEA in the caesium-based intracellular solution (see main 
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Methods in Chapter 2). In the decapitated fish, MS-222 was added to the 

extracellular solution to stop involuntary muscle movement of the tail. 

The anesthetics MS-222 and Benzocaine were locally applied to hair cells to 

investigate possible effects on membrane currents. Solutions containing the 

drugs were applied through a multi-barreled pipette positioned close to the 

preparation (see main Methods in chapter 2). The stock solution of MS-222 (0.4 

% in water, see main Methods in Chapter 2) was prepared by the aquarium 

facility. The stock solution of Benzocaine was prepared at 20 g/L in 100% ethanol 

and kept in the fridge.  

Juvenile zebrafish have larger neuromasts than the larvae (>10 hair cells), which 

allowed us to determine whether hair cells were located either at the edge or at 

the centre of the organ (37 of 42 hair cells tested).  

Hair cells from juvenile zebrafish had a cell membrane capacitance of 3.2 ± 0.1 pF 

(n = 132). 

5.3 Results 

5.3.1 In Vitro properties of juvenile lateral line hair cells 

5.3.1.1 Current and voltage responses from juvenile lateral line hair cells 

The K+ currents of juvenile lateral line hair cells were investigated by applying 

depolarizing voltage step in 10 mV nominal increments (200 ms in duration) 

from –124 mV to + 66 mV starting from a holding potential of –84 mV. This set of 

experiments revealed a similar variability of K+ current profiles in juvenile hair 

cells, but only Type 1 and 3 are shown as examples, as that seen in larval fish. The 

four currents expressed in juvenile hair cells, Ih, IK,D, IA and IK,Ca, are normally 

expressed in the two main combinations shown in Figure 5.1. 
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Figure 5.1 Current responses in juvenile hair cells. 

A, B, Characteristic K+ currents recorded from lateral line hair cells (A; 29 dpf, B; 

28 dpf) in the neuromast. A, Hair cell expressing a prominent IA and the small Ih. 

B, Hair cell expressing the IK,Ca with a larger Ih. Currents were elicited as described 

in the text.  

 

In order to determine how the two different current profiles of juvenile hair cells 

shape their voltage responses, I performed current clamp experiments, in which 

cells were injected with currents ranging from -30 pA to +70 pA in 10 pA nominal 

increments from the Vm of the individual cell (Figure 5.2).  

In hair cells that mainly showed a large IA (Type 1, Figure 5.2 A), hyperpolarising 

current injections led to a large membrane hyperpolarisation of about 40 mV, 

indicating that inward currents (possibly Ih) were either not present or very 

small. Positive current injections led to large and slowly (~20 ms) developing 

membrane depolarization, which reflects the rapid activation and inactivation of 

IA (Type 3, Figure 5.2 A). In the cells expressing IK,Ca, hyperpolarizing current 

injections caused a voltage sag of ~-15 mV characteristic of the presence of Ih, 

which activates slowly and drives cations into the cell to prevent further 

hyperpolarisation. Large depolarising current injections led to small but fast (~2 

ms) voltage changes due to the large IK,Ca that allows substantial cation efflux 

(Figure 5.2 B). None of the hair cells responded with membrane oscillations as 

seen in hair cells of the inner ear (Chapter 6).  
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Figure 5.2 Voltage responses in hair cells from the juvenile zebrafish lateral 

line. 

Examples of voltage responses from cells in the centre (A) and edge (B) of the 

juvenile neuromasts. Voltage responses to current injections of –30, 0, + 40 and 

+70 pA from the Vm of the individual juvenile hair cells. Voltage responses are 

from the same hair cells as those shown in Figure 5.1 A and B. 

 

5.3.1.2 Development of potassium currents at juvenile stages 

As mentioned above, mammalian hair cells undergo dramatic developmental 

changes before the onset of hearing (Corns et al., 2014). Similarly, vestibular hair 

cells acquire their mature profile after around p 3 (Eatock et al., 1998). In 

zebrafish, it is unclear whether the lateral line hair cells undergo similar 

developmental changes and if yes, whether this was reflected in the different K+ 

current profiles. One hint that this indeed might have been the case comes from 

the fact that juvenile neuromasts contain more hair cells than their larval 

counterparts, and that newly formed hair cells originate at the periphery of the 

epithelium (Lopez-Schier and Hudspeth, 2007).  

Therefore, I investigated whether the variability in K+ current profiles was due to 

hair cells at different developmental stages within a neuromast, depending on 

the cells position within it, and whether these differences are the same between 
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larval and juvenile fish. All hair cells recorded were pooled according to position 

within a neuromast and age as follows:  3-5.2 dpf, 20-23 dpf and 26-29 dpf. 

Different current profiles in hair cells as a function of developmental stages  

Even though juvenile hair cells showed the same variability in current profiles as 

their young counterparts, the relative proportions of each type was unclear. 

Therefore, I investigated the numbers of each K+ profile found in the different age 

groups. In order to do this I counted the occurrence of the inward (Ih) and 

outward currents (IK,D, IK,Ca, IA) found in lateral line hair cells. 

The common feature at every age was the expression of the delayed rectifier 

(IK,D), which was found in all hair cells from all ages (Figure 5.3). The 

hyperpolarisation-activated current Ih is the only inward K+ current found in 

lateral line hair cells. At larval stages (3-5.2 dpf) it is expressed in around a third 

of hair cells. Later on, about 70 % and 40 % of hair cells expressed Ih  at 20-23 

dpf and 26-29 dpf respectively. These differences are not significant, suggesting 

that Ih is equally expressed throughout development (Figure 5.3). 

By contrast, the outward K+ currents (IK,Ca and IA) observed in lateral line  hair 

cells are not homogenously expressed throughout development.  

IK,Ca is the most prominent current in larval (3-5.2 dpf) hair cells with 80 % of 

them expressing this current (Figure 5.3). This current remains prevalent at early 

juvenile stages (20-23 dpf) with 85 % of cells expressing it. However, after 26 dpf 

only a quarter (26 %) of hair cells expressed IK,Ca (Figure 5.3).  

The A-Type current (IA) was found in 17 % of larval hair cells. Its abundance 

slightly increased at early juvenile stages (20-23 dpf) to 21 %. However, after 26 

dpf the occurrence increased dramatically and 52 % of all 26-29 dpf hair cells 

express this fast current (Figure 5.3). 

Overall it can be noted that the IA is the main current expressed by hair cells older 

than 26 dpf whereas IK,Ca is mostly found at larval stages. 

 



98 
 

 

Figure 5.3 Abundance of potassium currents during development. 

Fraction of hair cells expressing different currents at three stages of zebrafish 

development, which are larval (3-5.2 dpf, striped), early (20-23 dpf, black) and 

late (26-29 dpf, white) juvenile. 

  

Potassium currents in different locations of the neuromast 

Following the notion that newly originating hair cells develop at the edge of the 

neuromast (Lopez-Schier and Hudspeth, 2007), I have classed all hair cells 

depending on their position in the centre and edge and assessed which currents 

they express at the different ages. 

For larval neuromasts (3-5.2 dpf), a clear distinction between centre and edge 

was difficult due to their small size, and was only determined for 12 cells. From 

these cells I found a similar current profile between cells in the centre and edge: 

100 % of cells in the edge (n = 6) and 70 % of cells in the centre (n = 6) showed 
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an IK,Ca, IK,D, and IA(s). In 30 % of cells from the centre IK,Ca was missing and only 

IK,D + IA(s) remained (n = 6). 

Throughout all juvenile age groups, the IK,D was present in every hair cell and 

consequently equally distributed between centre and edge. The same was also 

true for the Ih which also had no preferred position (Figure 5.4). For early 

juveniles (23-26 dpf) Ih was found in 85 % of cells in the centre (n = 7) and 60 % 

in the edge (n = 7). After 26 dpf about 45 % expressed this current in the centre 

(n = 11) and 40 % in the edge (n = 8). 

 

Figure 5.4 Abundance and position dependence of the hyperpolarisation-

activated current during development. 

Fraction of hair cells in the centre and at the edge of a juvenile neuromast 

expressing Ih currents (left: 20–23 dpf; right: 26–29 dpf). 

 

When looking at the presence of IK,Ca in juvenile hair cells it was apparent that it 

was expressed widely in 20-23 dpf fish being in 85 % of cells in the centre (n = 7) 

and 85 % in the edge (n = 7) (Figure 5.5 A). However, at later juvenile stages after 
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26 dpf the IK,Ca was hardly found in the centre (10 %, n = 11) but stayed prominent 

in the edge (50 %, n = 8) (Figure 5.5 A). 

As for the fast IA in early juveniles (20-23 dpf), it was present in cells in the centre 

(40 %, n = 7) but was not found at all in those in the edge (n= 7) (Figure 5.5 B). 

At later juvenile stages (26-29 dpf) there was a large increase in its occurrence in 

cells in the centre with about 80 % expressing IA (n = 11) (Figure 5.5 B). However, 

it was still only seen in a small proportion of cells in the edge with only 12 % 

showing its presence (n = 8) (Figure 5.5 B).  

It should be noted that the segregation of the A-type current between cells in the 

centre or edge is much stronger than that found for the IK,Ca, especially 

considering there was no segregation for IK,Ca in early juveniles. The segregation 

of IA and IK,Ca in late juveniles showed a pattern with IA in the centre and IK,Ca in 

the edge. 
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Figure 5.5 Abundance and position dependence of the Ca2+- activated K+ 

current and A-type current during development. 

Fraction of hair cells in the centre and edge of a juvenile neuromast expressing 

IKCa (A) and IA (B) currents (left: 20–23 dpf; right: 26–29 dpf). 

  

Overall, I found that at larval stages, the current profiles in hair cells is variable 

throughout neuromasts. However, the location of each type could not be specified 

due to its small size. After 26 dpf they seem to segregate with IA being dominant 

in the centre and IK,Ca in the edge of the tissue. This coincides with the fact that 

new hair cells are formed at the periphery of the neuromast and suggests that the 

presence of IK,Ca is an indication of a younger cell, whereas the expression of IA is 

a sign of an older hair cell, which is predominant in the centre of the neuromast. 

Finally, I have compared the resting membrane potential of cells in the edge and 

centre of juvenile neuromast. The different K+ current phenotypes could be 

reflected in differences in the Vm of cells, if these currents are active around the 

resting membrane potential. However, this is not the case since the average Vm 
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values were comparable between hair cells (26–29 dpf) in the centre (−69.9 ± 2.5 

mV, n = 10) and edge (−68.3 ± 4.0 mV, n = 7). 

Size of potassium currents at different stages  

I measured the size of the outward K+ current at 0 mV to check possible 

differences in the current availability over development (Figure 5.6). From larval 

throughout to later juveniles stages, the current size was similar for both the 

peak, ranging from around 340 to 510 pA, and the steady-state current size, 

ranging from around 240 to 370 pA (Figure 5.6), indicating a similar level of 

channel expression at different ages.  

 

 

Figure 5.6 Potassium current size during development. 

Average peak and steady-state outward K+ current, extrapolated at 0 mV from 

the I–V curves, measured from hair cells as a function of age. The number of cells 

investigated is given above the data. Note that all recordings after 5.2 dpf have 

been performed in decapitated fish. 
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5.3.1.3 Synaptic Transmission in juvenile lateral line hair cells 

As described above, the K+ channels in the basolateral membrane of hair cells 

shape the receptor potential generated by the MET channel. This membrane 

potential change will lead to the opening of calcium channels and transmitter 

release. Similar to the larval hair cells, I have also investigated details of the 

synaptic transmission. 

A typical example of ICa from a juvenile (29–34 dpf) zebrafish hair cell is shown 

in Figure 5.7 A. This was recorded in the presence of 2.8 mM extracellular calcium 

at the physiological temperature for the zebrafish (28.5°C). For clarity, only 2 

traces are shown at -71 mV and – 31 mV. The average ICa-voltage relation (Figure 

5.7 B) was fitted using Equation 2 (Chapter 4). 

The I-V curve generated for ICa from six juvenile hair cells shows the current’s 

characteristic bell shape and reveals that it activates at around −70 mV (defined 

as 5% of gmax). At potentials positive to -30 mV the current gets smaller again 

when approaching the calcium reversal potential and reverses at around 15 mV. 

The maximum size of ICa in hair cells measured near −30 mV was found to be 

similar between early juvenile (−13.0 ± 2.9 pA, n = 5, 17-22 dpf) and later juvenile 

zebrafish (−10.5 ± 2.7 pA, n = 6, 29–34 dpf). 

The calcium current triggers the release of transmitter filled vesicles from the 

presynaptic membrane. Exocytosis was estimated by measuring changes in cell 

membrane capacitance (ΔCm) following depolarizing voltage steps, which is 

generally interpreted as a sign of neurotransmitter release from presynaptic cells 

(Moser and Beutner, 2000; Johnson et al., 2008; Johnson et al., 2013). An example 

of ΔCm recorded in response to a 1 s depolarizing voltage step to -31 mV (near 

the peak of the ICa) from a juvenile hair cell is shown in Figure 5.7 C. Juvenile hair 

cells of 17-22 dpf showed a ΔCm of 7.7 ± 2.3 fF (n = 4) which did not differ 

significantly from that measured at later juvenile stages 6.6 ± 0.6 fF (29-34 dpf, n 

= 5). 
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Figure 5.7 Calcium currents and neurotransmitter release in juvenile 

lateral line hair cells. 

A, Calcium currents (ICa) recorded from hair cells of the juvenile (29–34 dpf) 

zebrafish lateral line. Currents were elicited by depolarizing voltage steps (200 

ms in duration) from the holding potential of −79 mV to the potential as shown 

by the traces. For clarity only two of the traces are shown. B, Average peak 

calcium current I–V curve from 29–34 dpf hair cells (n = 6), including those 

shown in A. The fitting parameters for the ICa in juveniles (29–34 dpf) are gmax = 

0.2 nS, Vrev = 24 mV, V½ = −48.3 mV and S = 7.1 mV. C, change in membrane 

capacitance (ΔCm) recorded from a hair cells of a juvenile (29–34 dpf) zebrafish. 

The recording was obtained in response to a 1 s voltage step from the holding 

potential of −79 mV to near the peak of ICa (near −30 mV). Recordings were 

obtained at 28 °C. 
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I then investigated whether the sizes of the calcium current and synaptic 

transmission in lateral line hair cell change during development. Larval hair cells 

(3.0-5.2 dpf) showed a maximal ICa of −12.3 ± 1.1 pA (n = 6) which was not 

significantly different from that recorded in early juvenile hair cells (−13.0 ± 2.9 

pA, n = 5; 17-22 dpf) or at later juvenile stages (−10.5 ± 2.7 pA, n = 6; 29-34 dpf). 

Although I observed no change in the size of ICa size with development, the 

corresponding ΔCm did increase. In larval hair cells ΔCm was 2.3 ± 0.5 fF (n = 6) 

in response to 1 s voltage steps. By early juvenile stages (17-22 dpf) this 

significantly increased to 7.7 ± 2.3 fF (n = 4, significant at P < 0.05, two-tailed 

Student’s t test) and remained at around this value at later juvenile stages (29-34 

dpf) with a ΔCm of 6.6 ± 0.6 fF (n = 5, significant at P < 0.001 compared to larval 

cells, two-tailed Student’s t test). 

This reveals that although the calcium current remained the same size 

throughout development, the synaptic machinery becomes more efficient at 

juvenile stages eliciting the release of more synaptic vesicles for the same amount 

of calcium entry. 

5.3.1.4 Supporting cells 

In addition to hair cells, each neuromast also contains supporting cells that are 

positioned below the hair cell body (Chapter 1 and 3). Supporting cells of larval 

to juvenile hair cells (4-27 dpf) had a cell membrane capacitance of 4.1 ± 0.3 pF 

(4 – 27 dpf, n = 5) and did not show any voltage dependent currents in their 

basolateral membrane (Figure 5.8 A). The lack of membrane ion channels meant 

that the supporting cell voltage responses in current clamp were large and 

passive as shown in Figure 5.8 B. This profile did not differ in supporting cells 

between larval or juvenile stages. The average I-V curves measured in supporting 

cell from both larval and juvenile stages (4-27 dpf) are shown in Figure 5.8 C, 

showing an almost linear relation. Together, these results reflect the absence of 

voltage-gated ion channels.  
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Figure 5.8 Current and voltage recordings from supporting cells in the 

neuromast of the larval and juvenile zebrafish lateral line. 

A, Example of membrane currents recorded from a supporting cell (4 dpf) in 

neuromast L4. Currents were elicited by depolarizing and hyperpolarizing 

voltage steps from -124 to + 45 mV in 10 mV nominal increments from the 

holding potential of −84 mV to the various test potentials ranging from –124 to 

+45 mV. B, Voltage responses to current injections of –30, 0, +40 and +70 pA from 

the Vm of the individual juvenile supporting cell shown in A. C, Average peak and 

steady-state I–V curves from five supporting cells (4–27 dpf), including that 

shown in A.  

 

5.3.1.5 Effect of MS-222 on juvenile hair cells in vitro 

Although larval hair cells were not affected by MS-222 (Chapter 4), it has been 

shown using behavioural experiments that the zebrafish become more sensitive 

to MS-222 as they get older (Rombough, 2007). In MS-222, cessation of 

circulation and movement occurs earlier in adult compared to larval zebrafish 

(Rombough, 2007). Therefore, I decided to investigate whether MS-222 affects 
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the normal physiology of juvenile hair cells. Zebrafish below 5.2 dpf were injected 

with α-Btx into the heart to paralyse them. This approach was not possible for 

juveniles as they are protected animals so they were decapitated (see Chapter 2). 

Hair cells in juvenile zebrafish (21-26 dpf) were studied using voltage clamp 

experiments and subjected to a series of voltage steps in 10 mV nominal 

increments (200 ms in duration) from –124 mV to + 44 mV starting from a 

holding potential of –84 mV. Recordings were obtained before, during and after 

perfusing hair cells with extracellular solution containing 0.01 % MS-222 (Figure 

5.9). In the presence of MS-222 the outward current was partially reduced in size, 

and IK,Ca seemed the most affected (Figure 5.9 B), but this was fully reversed upon 

washout (Figure 5.9 C). 
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Figure 5.9 Current recordings from hair cells of the juvenile lateral line 

before and during local application of MS-222. 

A–C, examples of K+ currents recorded from hair cells at 21 dpf before (A), during 

(B) and after (C) local superfusion of 0.01% MS-222. Note that MS-222 mainly 

blocks the Ca2+-activated K+ current IK,Ca and the small A-type K+ current IA(s). Ih 

was not affected by the anaesthetic. Currents were elicited as described in the 

text. 

 

The average I-V curves derived from 4 cells in control conditions (Figure 5.10 A) 

and in the presence of MS-222 (Figure 5.10 B), show that MS-222 largely reduced 

the size of the outward component (Figure 5.10 B). The peak outward K+ current 

appeared to be most sensitive to the anaesthetic (P < 0.05, two-tailed Student’s t 

test) which is shown in Figure 5.10 C. Therefore it should be concluded that MS-

222 is not a suitable anesthetic for juvenile fish, since it affects the physiology 

and consequently the function of hair cells. 
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Figure 5.10 I-V relationship for recordings from hair cells of the juvenile 

lateral line before and during local application of MS-222. 

A, B, Average peak and steady-state I–V curves for the K+ currents recorded 

before (A) and during (B) the perfusion of 0.01% MS-222 in four hair cells of 21–

26 dpf zebrafish, including the recording shown in Figure 5.9. C, Peak and steady-

state currents extrapolated at 0 mV before (control, black bar) and during the 

superfusion of MS-222 (grey bar) in the same four cells. Note that the peak 

current was significantly reduced in MS-222. Asterisk indicates significance at P 

< 0.05, two-tailed Student’s t test. 

 

5.3.2 In Vivo properties of juvenile zebrafish hair cells 

5.3.2.1 Anaesthesia is required to study lateral line hair cells in vivo after 

5.2 dpf 

The main aim of this part of the project was to use the zebrafish to study the 

properties of lateral line hair cells in vivo. Using decapitated zebrafish, I found 

that the abundance of K+ profiles of lateral line hair cells changes at juvenile 
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stages. Therefore, in order to study the mature function of hair cells in vivo a new 

experimental approach involving an appropriate anaesthetic for older zebrafish 

had to be developed.  

Effect of different anaesthetics on zebrafish behaviour 

According to the regulations detailed in the Animals (Scientific Procedures) Act 

1986, zebrafish become protected after 5.2 dpf. After this point, experimental 

work with living zebrafish is tightly regulated and an anaesthetic has to be used. 

Other than MS-222, which I showed to be unsuitable for studying the function of 

juvenile hair cells due to its effect on the ion channels, there is a large number of 

anaesthetics available and a pre-selection was made on the basis of a study 

focusing on their behavioural effect (Readman et al., 2013). The anaesthetics 

listed in Table 5.1 below have been selected due to their low aversive properties, 

i.e. at 50% of the published effective dose they were not detected by the fish, 

which is required to minimise the stress levels of the animals during anaesthesia 

(Readman et al., 2013).  This pre-selection is compared to MS-222 in Table 5.1 

purely because this is the standard anaesthetic for zebrafish. 
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Table 5.1 Comparison of different anaesthetic agents. 

Comparison of different features of three candidate anaesthetics (MS-222, 

Benzocaine and TBE). 

 MS-222 Benzocaine Tri-bromo-

ethanol (TBE) 

Effective 

dose 

published 

100 mg/L 

(Carter et al., 2011; 

Pelkowski et al., 

2011) 

100 mg/L 

(Pelkowski et al., 

2011) 

4 mg/L 

(Pelkowski et al., 

2011) 

Target K+ channels 

(Rombough, 2007) 

Voltage-gated Na+ 

channels 

(Scholz, 2002) 

Generalised CNS 

depression, target 

unknown (Posner 

and Burns, 2009) 

Nociception NA  Yes 

(Zahl et al., 2012)  

unknown 

Solubility In water In Ethanol In water 

Price per 1 g £ 2.95 £ 0.28 £ 4.08 

Application Immersion Immersion Injection and 

immersion 

Used for 

fish before? 

Yes, mainly trout 

(Weber, 2011) 

Yes, Salmon 

(Weber, 2011) 

Mainly for rodents, 

as an injectant 

(Posner and Burns, 

2009) 

 

According to the literature, the effective anaesthetic dose of Benzocaine is 100 

mg/L (Weber, 2011) and 4 mg/L for TBE. In a pilot-experiment, two adult fish 

were exposed to each of the anaesthetics using the above doses and, while they 

became quickly sedated in Benzocaine, TBE had no noticeable effect and fish 

were culled using a Schedule 1 technique. This finding was not surprising since 

TBE is an injectable anaesthetic typically used for rodents (Posner and Burns, 

2009). In the Readman study it was used via immersion (Readman et al., 2013), 

but the lack of effect in my findings could be explained by it not being effective at 

all. 
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After this trial, only the potency of Benzocaine was further tested using different 

concentrations (see Table 5.2). The aim was to rapidly induce deep anaesthesia 

with simultaneous relaxation of muscle tone but keeping the heart beat (for 

review on stages of anaesthesia in fish see (Sneddon, 2012)). 

A concentration of 50 mg/L was deemed optimal, as the zebrafish became 

sedated within minutes, while the heart was still beating for nearly one hour and 

yet the dose was terminal. 

Table 5.2 Behavioural trial with Benzocaine. 

Zebrafish stages of sedation in different concentrations of Benzocaine. For each 

concentration, three adult (> 1 year) fish were immersed. The anaesthetic was 

dissolved from the stock in aquarium systems water. 

Concentration N Time     

  < 2 Min < 6 Min < 20 

Min 

< 40 

Min 

< 60 Min 

10 mg/L 3 No detectable reaction 

30 mg/L 3 Slowed 

swimming 

Drop to 

bottom of 

tank, 

responsive 

to touch 

Still responsive to touch, 

experiment abandoned 

50 mg/L 3 Drop to 

bottom of 

tank, gills 

moving 

Gill 

movement 

stopped 

Heart 

still 

beating 

(72-

102 

bpm) 

Heart 

still 

beating 

(49-85 

bpm) 

Cessation 

of 

circulation 

for 2/3 

zebrafish 

used 

75mg/L 3 Drop to 

bottom of 

tank 

Cessation of circulation 
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Maintaining gill oxygenation during in vivo experiments 

The anaesthetics abolish muscle activity, which includes the gill movement. At 

around 21 dpf zebrafish start using their gills to oxygenate their blood. This 

means that merely bathing the fish in oxygenated solution is not sufficient to 

maintain their blood oxygen levels. 

In order to overcome this, I decided to saturate the extracellular bathing solution 

by continuously bubbling it with a carbogen mixture of 95% O2 and 5% CO2 gas. 

However, this had the undesired side effect of filling the swimming bladder with 

excessive oxygen which made the zebrafish float and impossible to pin it down 

in the recording chamber. Therefore, zebrafish blood oxygenation was achieved 

by intubation and delivery of ambient oxygenated extracellular solution (for 

details see Chapter 3).  

5.3.2.2 Possible effect of Benzocaine on hair cell physiological properties 

Following the identification of Benzocaine as the ideal anaesthetic for in vivo 

recordings, I tested whether, like MS-222, it affected the physiology of hair cells.  

Possible effect of Benzocaine on potassium currents 

First of all, I investigated whether Benzocaine affected the K+ currents present in 

the hair cell basolateral membrane. This was done by locally superfusing 

benzocaine onto the hair cell during voltage clamp experiments (Figure 5.11). 

Hair cells were exposed to double the ideal dose for analgesia described above. 

K+ currents were recorded in normal extracellular solution and then with the 

addition of 100 mg/L Benzocaine. Two examples are given in Figure 5.11 Ai and 

Bi. This shows that the current size and kinetics were unaltered when Benzocaine 

is perfused onto hair cells (Figure 5.11 Aii and Bii). Both previously described 

hair cell phenotypes, those expressing IK,Ca and IA, were not affected. 
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Figure 5.11 Current recordings from juvenile hair cells before and during 

local application of 100 mg/L Benzocaine. 

A–B, Examples of two main types of K+ currents recorded from hair cells at 25 dpf 

before (Ai and Bi) and during (Aii and Bii) local superfusion with benzocaine (n = 

5). Currents were elicited by voltage steps as shown by the traces from the 

holding potential of −84 mV. 

 

To gain an overview on the effect of all recorded hair cells, they were pooled to 

generate I-V curves and compared between those in control conditions and those 

in the presence of Benzocaine (Figure 5.12). The average I-V curves contain data 

from cells with a variety of K+ phenotypes and are a good measure to assess an 

overall effect of the anaesthetic. The curves show that 100 mg/L Benzocaine did 

not change the size of the currents expressed (Figure 5.12 B). 
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I have also tested the effect of 50 mg/L, which was the ideal dose from a 

behavioural point of view. This did not change the size of the currents in the cells 

studied, which is shown in I-V curves in Figure 5.12 A. Lastly, the highest 

concentration of 300 mg/L did not have any effect on K+ currents, which can be 

seen in the I-V relationship in Figure 5.12 C. 

 

 

Figure 5.12 I-V relationship for hair cells from juvenile zebrafish during the 

perfusion of different concentrations of Benzocaine. 

Average peak I–V curves from primary hair cells in the three groups investigated: 

50 mg/L Benzocaine, n = 2 (A), 100 mg/L Benzocaine, n = 5 (B), and 300 mg/L, n 

= 7 (C). I–V curves include all recordings shown in Figure 5.11. The peak current 

is shown in control (black trace) and under 50mg, 100mg or 300 mg/L 

Benzocaine perfusion (grey trace).  
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Possible effect of Benzocaine on hair cell synaptic transmission 

After confirming that Benzocaine did not alter the basolateral K+ currents, I 

tested whether the anaesthetic affected synaptic transmission. 

The calcium current was studied using voltage clamp protocols as described 

earlier (Chapter 4). An example of ICa in control conditions and in the presence of 

100 mg/L Benzocaine is shown in Figure 5.13 A and B and reveals that it does not 

alter the size of the current at the peak (Figure 5.13 C).  

 

 

Figure 5.13 Calcium current recording from juvenile hair cells before and 

during Benzocaine perfusion. 

A, B, Example of calcium currents (ICa) recorded from hair cells of the juvenile (34 

dpf) zebrafish lateral line before (black) and during (grey) the local perfusion of 

100 mg/L Benzocaine. Currents were elicited by depolarizing voltage steps of 10 

mV increments (200 ms in duration) from the holding potential of −79 mV. For 

clarity only the traces at the holding potential and near the peak of ICa (−31 mV) 

are shown. C, Average size of the calcium current at its peak (~ -31 mV), before 

(black) and during (grey) the perfusion of 100 mg/L Benzocaine, n = 7. 

Recordings were performed at 28 °C. 

 

I then investigated whether the synaptic vesicle release that is induced by ICa was 

altered. Hair cells were depolarised for 1 sec to near the peak of the ICa and the 

induced exocytosis (ΔCm) was measured. An example is given in Figure 5.14 and 

shows that the size of the ΔCm is similar in control (A) and in the presence of 
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benzocaine (B). Average ΔCm (n= 4) further confirmed that benzocaine does not 

affect vesicle release (Figure 5.14 C). 

 

Figure 5.14 Capacitance changes recorded from juvenile hair cells before 

and during the perfusion of 100 mg/L Benzocaine  

A, B, Examples of ΔCm recorded from hair cells of 31 dpf zebrafish before (A) and 

during (B grey) the perfusion of 100 mg/L Benzocaine. Recordings were obtained 

in response to 1 s voltage steps from the holding potential of −79 mV to near the 

peak of ICa (near −30 mV). C, Average ΔCm size from 4 hair cells before (black bar) 

and during (grey bar) the perfusion of 100 mg/L Benzocaine. Recordings were 

obtained at 28 °C. 

 

5.3.2.3 In vivo properties of juvenile zebrafish hair cells 

This new in vivo approach was then used to assess the basolateral membrane 

properties of lateral line hair cells in a fully intact adult zebrafish and compared 

to those obtained from in vivo recordings from larval hair cells.  

Juvenile zebrafish were intubated using a cannula (Chapter 3) and hair cells from 

34 to 48 dpf fish were voltage clamped. Two examples of the currents (Type 1 

and 3) recorded are given below (Figure 5.15). They show the IA with little or no 

inward current (Ih) (Figure 5.15 A) and the IK,Ca with a small Ih (Figure 5.15 B). 

These current profiles have been found throughout all developmental stages.  

I then measured the size of the outward current at 0 mV for peak and steady-

state. These were compared by in vivo recordings of larval and juvenile zebrafish 
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and were significantly smaller in juveniles. (Figure 5.15 C, significant at P < 0.05, 

two-tailed Student’s t test).  

This further strengthens my previous finding that larval and juvenile hair cells 

have different proportions of K+ current types from larval to juvenile stages, even 

though the types of K+ current profiles expressed are similar. 

 

 

Figure 5.15 In vivo potassium currents in juvenile hair cells. 

A, B, Examples of K+ currents recorded from hair cells of 34 dpf (A) and 48 dpf 

(B) zebrafish. Currents were elicited by voltage steps as shown by the traces from 

the holding potential of – 84 mV. C, Comparison of the average size of the peak 

and steady state K+ current values recorded in vivo from larval and juvenile 

zebrafish hair cells, asterisk indicates statistical significance at P < 0.05, two-

tailed Student’s t test. N-numbers are given above the data. 
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5.4 Summary 

Zebrafish lateral line hair cells exhibit a variety of K+ currents at larval stages with 

three different subtypes (Chapter 4). Investigating juvenile hair cells yielded the 

following results: 

 Juvenile hair cells (> 20 dpf) exhibit all three K+ current phenotypes as 

well. 

 From larval to juvenile stages, the abundance of these types changes with 

the IK,Ca being dominant at larval stages and the IA becoming the main type 

in juveniles. 

 The synaptic machinery becomes more efficient at juvenile stages 

compared to larvae 

 Juvenile hair cells become more sensitive to MS-222, a common 

anaesthetic for zebrafish 

Furthermore, an approach to study older hair cells in vivo has been developed: 

 The ideal anaesthetic for this is Benzocaine, which is nociceptive 

 Benzocaine does not alter the basolateral membrane currents as well as 

the synaptic transmission 

 

5.5 Discussion 

Juvenile hair cell function 

The most striking finding of this chapter is that the three types found in larval 

lateral line hair cells are also present in juvenile fish about 4 weeks later. Juvenile 

hair cells still express cells with either an A-type current (Type 1), a BK-current 

(Type 3) or delayed rectifier with small A-type (Type 2). The effect these current 

have on the voltage change appears to be also unaltered at later stages, with Type 

3 cells mediating the fastest and smallest response, whereas Type 1 cells have 

slower and larger responses. This strengthens the notion, that these types are 

already functionally mature at larval stages. 
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Interestingly, the abundance of these types does change over time. There are 

several reason for this: Firstly, there could be a bias towards recording one type 

over the other, for reasons such as easier access or stability. Seeing that 146 cells 

were recorded in total in the juvenile and there was no great difficulty in 

obtaining recordings of any cell, this seems unlikely. 

Secondly, the sensory environment of the fish changes in such a way, it would 

require more cells with a specific function over the other. Indeed, even though 

the fish is functional at 5 dpf, there are some crucial behavioural changes that 

occur in the next few weeks. For example, during larval stages fish exhibit burst 

like swimming and escapse responses (Buss and Drapeau, 2001) while later on, 

they are capable of undulating swimming at different velocities (Mueller and van 

Leeuwen, 2003). This is due to the increase in size of the fish and the acquirement 

of a more streamlined body shape (Mueller and van Leeuwen, 2003). Zebrafish 

sleep without moving, which creates a need for a fast escape response especially 

at later stages. 

The fact that the types of currents do not change over time suggests that their 

function is still the same, but perhaps the requirement is altered. This is highly 

speculative, but if the Type 1 cells (A-type) are indeed required for continued 

transmission of stimulation, with a bigger gain and being involved in velocity 

sensing, this could become more important at later stages where the fish is able 

to swim faster and regulate it’s swimming pattern more. This correlation might 

be reflected in the presence of more A-type expressing cells. 

On the contrary, as for the Type 3 cells (BK-current) that allow fast transmission 

and almost on-off signalling, if these are still important for escape responses, it is 

not surprising that they are still present. It is unclear, why there are less of the 

Type 3 than Type 1, as certainly escape responses are more crucial for survival 

than velocity sensing. At the moment, details of the afferent innervation and 

escape circuitry at juvenile stages are unknown. But is has been shown that hair 

cell activity activates the Mauthner cell, which is directly involved in mediating 

the escape response (Lacoste et al., 2015). Perhaps, the number of Type 3 cells 

form stronger connections to the Mauthner cell over time, so there is no need for 
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a larger number of them. Equally, the Type 1 cells would be required in larger 

numbers. Since they seem to work in a more gradual fashion, more cells would 

be required to be recruited during stimulation, because the sensitivity of the 

individual cell is small. As for the Type 2 cells, it is intriguing whether they are 

similar to immature vestibular hair cells. Their expression of a delayed rectifier 

would make them functional in a basic way, but perhaps they acquire additional 

K+ currents later on. 

This hypothesis would need extensive further investigation, such as details on 

where the afferent neurons of each cell type go or whether there is any 

preference in innervation in the first place. It is very likely, that this is a 

complicated matter as has been shown in the vestibular system. Even though, it 

comprises two distinct cell types (Type I and II) and two distinct afferent neuron 

types (regular and irregular), the majority of synapses is mixed and there is no 

clear correlation between the types of hair cell and neuron but rather with 

position within the epithelium (Eatock and songer 2011). Equally the finding of 

different cell types in specific locations of the neuromast is puzzling and could be 

related to differentiation or regeneration in the periphery of the tissue. However, 

this does not rule out that most hair cells are functionally mature. 

The finding that the synaptic machinery becomes more efficient is intriguing. Due 

to the nature of the experiment that involves blocking K+ currents to isolate the 

ICa, it was not possible to determine which cell type was investigated. Despite the 

size of the calcium current staying small, the number of vesicles that fuse after a 

1 second stimulation is increased by around threefold. The most straightforward 

explanation for this is a closer association of the calcium channel to the ribbon 

body. In mouse hair cells, it has been shown that the calcium channel is scattered 

around the basolateral membrane at pre-hearing stages. Later on, it then 

localises tightly to the ribbon bodies at the presynaptic zone. A similar scenario 

in fish could be the case. Also, in larval fish, it has been shown that the ribbon 

clusters calcium channels to the presynaptic zone and ribeye knockouts have 

scattered calcium channels (Sheets et al., 2012). Even though it is unknown 

whether the ribbon body changes after 5 dpf in fish, it has been shown in gerbils 



122 
 

that it develops from a round, ball like shape to a ovoid shape. If this is the case 

in the fish too, this could be responsible for the increase in efficiency. 

Another possible explanation is an addition of more or different calcium sensors, 

that make the machinery more sensitive. Otoferlin or synaptotagmins would be 

candidates for this. Particularly synaptotagmin 4 has been shown to gain 

importance in adult IHC where it increases the sensitivity (Johnson et al., 2010). 

Finally, the increased vesicle release could be explained by alterations in 

intracellular calcium buffering at juvenile stages, where more calcium could be 

available to trigger release. 

Understanding the underlying reasons for the change in efficiency could be 

extremely difficult, mainly because the signal is so small and the 1 second 

stimulation will recruit both the ready releasable and secondary pool. This makes 

investigating the role of different calcium sensors or buffers highly unfeasible 

using electrophysiological techniques.  

On the other hand, TEM or immunostaining could give a very good idea as to 

whether the calcium channel cluster does indeed change and whether this is 

accompanied by a change in ribbon size or shape. 

Using anaesthethics to study juvenile hair cells 

The finding that the juvenile lateral line comprises a different number of hair cell 

types than the larvae and the fact that juvenile fish remains underexplored in 

general beyond 5 dpf has lead us to develop an approach to study juvenile fish in 

vivo. Benzocaine appears to be the ideal anaesthetic as it does not affect hair cell 

properties. However, as it works via blocking voltage gated sodium channels, it 

is expected to reduce neuronal firing. This poses a great obstacle for studies on 

afferent signalling from the hair cell and further investigations are required.  

For other studies that do not involve primarily neurons, such as hair cell 

regeneration, infection and bone regeneration the use of benzocaine could be a 

useful approach to study the juvenile fish. But further investigations into its 

safety and effect on neurons are required. 
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Chapter 6 Biophysical Properties 

of Zebrafish Inner Ear Hair Cells 
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6.1 Introduction 

The finding that the lateral line shows three different phenotypes for the 

basolateral membrane currents and the conclusion that these are likely to be 

linked to function consequently leads to the question of what the precise function 

is. 

Answering this question is difficult and time consuming. However, a first and 

straightforward attempt would be to compare it to a known entity. How do the 

lateral line hair cells compare to the hair cells in the zebrafish inner ear? The 

inner ear consists of six sensory epithelia. The cristae at the end of the 

semicircular canals sense rotational acceleration, while the maculae sense linear 

acceleration. The utriclular macula senses balance, whereas the sacculus is 

responsible for audition and the lagena is presumably involved in both. 

Comparing the properties of their hair cells to the lateral line might provide an 

indication of their role. The development of the inner ear starts around the same 

time as the lateral line during the first day post fertilisation and by 2 dpf the first 

hair cells appear. By 3 dpf, electrical activity of hair cells can be measured, 

suggesting their functionality (Lu and DeSmidt, 2013). 

In this chapter, the basolateral membrane properties, mainly the K+ currents, of 

hair cells in the three maculae will be briefly described. Since all three tissues 

carry different functions, this is expected to be reflected in their K+ profiles. 

Utricular hair cells might match vestibular hair cells in lower and higher 

vertrebrates with two distinct types. Saccular hair cells might exhibit electrical 

tuning, which is a common feature of lower vertebrate auditory hair cells. And 

finally lagenar hair cells potentially show a mixture of the two, reflecting their 

shared function. 

6.2 Brief methods 

For general methods about animal handling, electrophysiological recordings and 

statistical analysis see Chapter 2. Briefly, inner ear hair cells of all maculae of 

adult zebrafish (> 1 year) were investigated. For the lagena, hair cells of zebrafish 
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> 8 weeks could be dissected too. The dissection of the inner ear organs from the 

zebrafish are described in detail in Chapter 3. 

Membrane potentials in voltage clamp were corrected for the voltage drop across 

the uncompensated residual series resistance (Rs: 3.1 ± 0.2 MΩ, n = 54) and for a 

liquid junction potential (Chapter 2). Current responses are referred to a holding 

potential of −84 mV or −79 mV unless specified, and are set to 0-current for 

comparison between hair cells. All inner ear hair cells had a mean capacitance of 

3.6 ± 0.1 pF (n = 54). 

Calcium currents (ICa) were recorded in the presence of 2.8 mM extracellular 

calcium and at 28.5°C. The isolated ICa was obtained by blocking the known K+ 

conductances with a cocktail of blockers contained in the intracellular solution 

(Chapter 2). 

Phalloidin staining: Adult zebrafish were culled using 0.017 % MS-222 until 

cessation of blood circulation and then decapitated. Heads were placed in a 

fixative solution containing 4% formaldehyde in 0.1 M sodium phosphate for 2 

hrs at room temperature. Whole otolithic organs were carefully dissected from 

the labyrinth and washed three times in PBS. The dissected organs were 

incubated for 2 hrs in a solution containing 10% heat-inactivated horse serum, 

0.1% Triton X-100 (TX-100) and Texas Red-conjugated phalloidin to label F-actin 

(1:300; Molecular Probes, Inc., Eugene, Oregon, USA) in PBS. The tissue was then 

washed three times in PBS and mounted on glass coverslips using Vectashield 

mounting medium. Nail varnish was used to seal the coverslip onto the slide. 

Images were taken using an Olympus microscope equipped with a 20X objective 

and epifluorescence illumination. 

6.3 Results 

6.3.1 Electrical properties of saccular hair cells 

The sacculus, which detects up to about 3000 Hz in the zebrafish, is supposed to 

be tonotopically organised along its anterior posterior axis (Smith et al., 2011), 

with the anterior part containing the highest and posterior part the lowest 
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frequencies (Smith et al., 2011). Recordings were performed in different 

locations (Figure 6.1) to assess whether the cell properties vary with frequency 

location. Phalloidin staining shows the two different regions within the sacculus 

used to record the electrophysiological properties of hair cells: edge (yellow 

cloud) and centre (red cloud) (Figure 6.1). Because of the difficulties associated 

with the dissecting procedure, only the posterior/caudal portion of the sacculus 

could be dissected, which contains hair cells responding to a frequency range 

between 100 Hz (most posterior) and 800 Hz (medial part) (Smith et al., 2011).  

 

 

Figure 6.1 Recording sites in the adult sacculus. 

Phalloidin-stained hair bundles of  saccular hair cells from adult (>1 year) 

zebrafish showing the central region encoding medial frequencies (red) and the 

edge sensing a low frequency range (yellow). Both regions were sampled to 

obtain the electrophysiological recordings. 100, 800 and 4000 refers to the rough 

frequency range found in saccular hair cells (Smith et al., 2011). The dotted line 

delineates the entire sacculus, including the unlabelled portion that could not be 

successfully removed from the inner ear. P, posterior; D, dorsal. Scale bar: 120 

μm. 
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6.2.1.1 Current responses of saccular hair cells 

Voltage clamp experiments in saccular hair cells were used to record membrane 

ion currents elicited over a range of membrane potentials spanning from -140 

mV to +40 mV. This voltage range was selected in order to determine the full 

composition of the different voltage-gated membrane currents expressed in hair 

cells. Saccular hair cells showed two main current profiles (Figure 6.2 A, B). Cells 

located in the central part of the tissue, where frequencies of 800 Hz are sensed, 

showed an inward rectifier K+ current (IK,1). IK,1 is found in murine hair cells too 

and is characterised by its rapid activation, little inactivation and strong inward 

rectification negative to -80 mV (Marcotti et al., 1999). In zebrafish saccular hair 

cells, for the -140 mV step, the current showed time-dependent decay (Marcotti 

et al., 1999). These hair cells also have an outward delayed rectifier current 

termed IK,D, which showed a much slower activation kinetics than IK,1 (Figure 6.2 

B). Hair cells from the edge, which encoded frequencies around 100 Hz of the 

tissue showed a different K+ current profile with a slowly activating 

hyperpolarisation activated K+-Na+ current (Ih), and a rapidly activating and 

inactivating A-type outward current (IA), which were combined with a delayed 

rectifier (IK,D) (Figure 6.2 C). The current-voltage relation (I-V relation) for the 

two cell populations is shown in Figure 6.2 D and reveals no difference in the 

overall size of the peak outward currents. The presence of the different inward 

currents between hair cells of the edge and centre was also highlighted by the I-

V relation (Figure 6.2 C). The above current types have been identified based on 

their characteristic kinetics and voltage-dependence (Figure 6.2 C) which match 

very closely those previously described in other systems (Sugihara and 

Furukawa, 1989, 1995; Eatock et al., 1998). 
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Figure 6.2 Membrane currents from hair cells in the sacculus of adult 

zebrafish. 

A, B typical K+ currents from hair cells positioned in the centre (A) and edge (B) 

of the sacculus in adult (> 1 year) zebrafish. Currents were elicited by 

depolarizing and hyperpolarizing voltage steps in 10 mV nominal increments 

from the holding potential of −84 mV to the various test potentials shown by 

some of the traces. Note that in the central region four hair cells showed the 

profile depicted in A and one showed that in B. In the edge, all three cells were as 

in B. C, average peak I–V curves from hair cells in the centre (n = 5) and edge (n = 

3), including those in A and B.  
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6.2.1.2 Voltage responses of saccular hair cells 

Next, I have investigated the functional role, in terms of size and speed of the 

voltage change, of these different K+ current profiles on the membrane potential 

of saccular hair cells, which gives an indication of the speed and size of the 

response that the inner ear hair cells have in order to fulfil their task. 

In current clamp experiments, single hair cells were injected with currents 

ranging from -30 pA to +70 pA in -10 pA nominal increments from the resting 

membrane potential of the individual cell. Saccular hair cells had an average Vm 

of −70.7 ± 3.5 mV (n = 7) and capacitance of 3.2 ± 0.4 pF (n = 8).  The two cell 

types described above (Figure 6.3 B, C) showed distinct voltage responses. In the 

centre, hyperpolarising steps elicited small voltage changes in hair cells (Figure 

6.3 A). This is due to the large, fast and sustained activation of IK1 which drives K+ 

ions into the cell, thus preventing the membrane potential to hyperpolarise 

below about - 85 mV for a current injection of -30 pA. Depolarising steps elicited 

broad spikes or membrane oscillations lasting between 30 and 80 ms (Figure 6.3 

A), which is due to the activation of the calcium current that initially depolarises 

the cell membrane. Hair cell repolarization is achieved by the slowly-activating 

IK,D  (Figure 6.3 A). These spike-like changes in membrane potential resemble the 

electrical tuning found in many hair cells of lower vertebrate such as the frog and 

turtle (Fettiplace and Fuchs, 1999).  

Hair cells from the edge showed a voltage sag upon hyperpolarising current 

injection, indicative of the h-current (Figure 6.3 B). Cells from the edge could 

hyperpolarise more compared to cells from the centre, which is due to the Ih 

being relatively small in these cells. Depolarising current steps did not lead to a 

big voltage change in the membrane potential, which was quickly clamped with 

no oscillations during the 240 ms tested, which was due to the fast activation of 

the outward IA. The subsequent activation of the IK,D prevented further 

depolarisation.  
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Figure 6.3 Membrane voltage responses from adult hair cells of the 

sacculus. 

A, B, Voltage responses to the different current injections shown next to the 

traces in 10 pA nominal increments from the Vm of the individual cell. Voltage 

responses recorded from hair cells positioned in the centre (A) and edge (B) of 

the sacculus in the adult (> 1 year) zebrafish.  

 

6.3.2 Electrical properties of utricular hair cells 

Utricular hair cells are mainly associated with vestibular function and sense 

frequencies up to 10 Hz and their biophysical properties were investigated using 

the same protocols as described in Figure 6.2 and Figure 6.3. Similar to the 

sacculus, hair cells from the utricles were recorded from the centre and edge 

(Figure 6.4) in order to compare the current profile from the two different 

sensory organs. This was done to assess whether the two different functions 

carried by sacculus and utricle are reflected in their current profiles. 
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Figure 6.4 Recording sites in the adult utricle. 

Phalloidin-stained hair bundles of utricular hair cells from adult (> 1 year) 

zebrafish showing the central (red) and edge (yellow) regions used for the 

recording. A, anterior; D, dorsal. Scale bar: 120 μm. 

 

In voltage clamp experiments, the majority of utricular hair cells from both the 

centre and edge regions (nine out of 10 cells) expressed the fast outward IA 

combined with outward IK,D. The peak and steady-state overall size of the 

outward K+ current at 0 mV was 1432 ± 197 pA and 397 ± 83 pA (n = 10), 

respectively. They also express a slowly activating inward Ih (Figure 6.5 A), which 

is also reflected in the I-V curve (Figure 6.5 B). These utricular hair cells show 

current profiles similar to those seen in the edge of the sacculus (Figure 6.2).  
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Figure 6.5 Currents responses from hair cells of the utricle in adult 

zebrafish. 

A, Example of K+ currents recorded from a utricular hair cell; Currents were 

elicited by depolarizing and hyperpolarizing voltage steps in 10 mV nominal 

increments from the holding potential of −84 mV to the various test potentials 

shown by some of the traces. B, Average peak I–V curves from all hair cells in the 

centre and edge, including that in A. 

 

For the majority of the utricular hair cells, current clamp experiments revealed a 

similar behaviour of the membrane to current injection as seen in the sacculus 

(Figure 6.6). For negative current injections, utricular hair cells show a voltage 

sag that is due to the slowly activating Ih which prevents continued 

hyperpolarisation below 90 mV. To positive current injections, the cells respond 

with a small depolarisation that is quickly (~ 5 ms) clamped by IA with no 

oscillations. However, IA inactivates rapidly leading to a slow depolarisation, 

which is then maintained by the slow activating IK,D (Figure 6.6). Utricular hair 

cells had an average Vm of −71.2 ± 2.2 mV (n = 8) and capacitance of 3.2 ± 0.2 pF 

(n = 11). 
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Figure 6.6 Voltage responses from a hair cell in the utricle in adult 

zebrafish. 

Voltage responses to the different current injections shown next to the traces 

from the Vm. Voltage responses recorded from a hair cell positioned at the edge 

of the utricle. 

 

Only one out of 10 cells investigated, which was positioned at the edge of the 

epithelium (Figure 6.7 A, B), showed an inward IK1 instead of Ih and a large IK,D 

with a smaller IA This cell resembled that found in the centre of the sacculus but 

did not show any oscillations to positive current injections (Figure 6.7 B).  
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Figure 6.7 Membrane currents and voltage responses from a single hair cell 

in the edge of the utricle. 

A, Currents were elicited by depolarizing and hyperpolarizing voltage steps in 10 

mV nominal increments from the holding potential of −84 mV to the various test 

potentials shown by some of the traces. B, Voltage responses to the different 

current injections shown from the Vm. Voltage responses recorded from a hair 

cell positioned at the edge of the utricle of the adult (> 1 year) zebrafish. 

 

6.3.3 Electrical properties of lagenar hair cells 

6.3.3.1 Current and voltage responses from hair cells of the lagena  

As for the sacculus and utricle, recordings were performed from hair cells located 

in the centre and edge of the lagena (Figure 6.8), the aim of which was to identify 

possible positional specialization in the biophysical properties of these cells.  
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Figure 6.8 Recording sites in the adult lagena. 

Phalloidin-stained hair bundles in an adult (> 1 year) zebrafish lagena showing 

the central (red) and edge (yellow) regions of the posterior sensory organ used 

for the recordings. P, posterior; D, dorsal. Scale bar: 120 μm. 

 

In voltage clamp, hyper- and depolarising voltage steps caused hair cells to elicit 

two main current profiles (Figure 6.9 A and B). The current profile of hair cells 

located in the centre of the lagena is characterised by a slowly developing 

outward IK,D and an inward IK1 (Figure 6.9 A). The profile of cells positioned in the 

edge includes a rapid activating and inactivating IA and delayed outward rectifier 

IK,D and slowly developing inward Ih (Figure 6.9 B).  
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Figure 6.9 Membrane current responses from hair cells of the lagena in 

adult zebrafish. 

A, B, typical K+ currents from hair cells positioned in the centre (A) and edge (B) 

of the lagena. Note the different current profiles. Currents were elicited by 

depolarizing and hyperpolarizing voltage steps in 10 mV nominal increments 

from the holding potential of −84 mV to the various test potentials shown by 

some of the traces.  

 

In Figure 6.10 A, the I-V relationship for the peak current for all cells recorded in 

the centre (n = 3) and edge (n = 4) is shown. Hair cell in the edge of the lagena 

have a larger peak current size at 0 mV than in the centre, while the steady-state 

current size is comparable (Figure 6.10 B). 
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Figure 6.10 I-V curve and peak and steady current values from hair cells of 

the lagena. 

A, Average peak I–V curves from hair cells in the centre (open circles) and edge 

(closed circles), including those in Figure 6.9 A and B. B, average peak and steady-

state amplitudes of the total outward K+ current in the two different regions from 

adult (> 1 year) zebrafish lagena. 

 

Current clamp experiments from lagenar hair cells are shown in Figure 6.11. In 

the centre of the lagena, negative current injections caused small negative voltage 

changes in the order of ~ -85 mV, which was attributable to the large IK1 (Figure 

6.11 A). Depolarizing current injections of +70 pA elicited broad spikes in the 

order of ~ 40 ms in hair cells from the centre, similar to the sacculus (Figure 6.3 

E). In cells from the edge, hyperpolarising current injections of -30 pA elicited a 

larger change in Vm (~ -90 mV), including a small voltage sag that was due to the 

small Ih. Depolarising steps led to small voltage changes, that were clamped 

quickly (~ 5 ms) by IA with no oscillations (Figure 6.11 B). Further depolarisation 

is prevented by IK,D. Lagenar hair cells from the adult had a mean Vm of −74.4 ± 

2.0mV, (n = 8) in the edge and −72.5 ± 3.4mV, (n=6) in the centre. The capacitance 

of lagena hair cells of both regions was 3.1 ± 0.1 pF (n = 36). 
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Figure 6.11 Membrane voltage responses from hair cells of the lagena in 

adult zebrafish. 

A, B, Voltage responses from lagenar hair cells from the centre (A) and edge (B) 

of the adult (> 1 year) zebrafish. Note that only hair cells from the centre show 

membrane potential oscillations. Voltage responses to different current 

injections shown next to the traces from the Vm.  

 

6.3.3.2 Electrical properties of juvenile lagenar hair cells 

It has been shown that mouse cochlear hair cells undergo dramatic 

developmental changes in the basolateral membrane current profile up to 

around the onset of hearing (for review see Housley et al., 2006). Therefore, it 

was investigated whether lagenar hair cells undergo similar changes between 

young and adult stages. The lagena is the last macula to develop with hair cells 

appearing around three to four wpf (Bang et al., 2001). Recordings could first be 

performed at 7 wpf, because it was not until this stage that the tissue was big 
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enough to be dissected out from the inner ear. For zebrafish, 7 wpf is considered 

to be a juvenile stage. 

Juvenile lagenar hair cells showed a larger set of of K+ current profiles (Figure 

6.12) compared to that recorded in adult cells (Figure 6.9). At least three different 

current profiles were found in hair cells from the centre (n = 10): 60 % of cells 

had a combination of IK,D with a Ca2+ activated K+ current (IK,Ca) and IK1 (Figure 

6.12 Ai). Some cells showed IK,D with IA and IK1 (20 %, Figure 6.12 Aii) and some 

showed IA only (20%, Figure 6.12 Aiii). Cells in the edge had a more homogenous 

profile: the majority displays the IA with Ih (75 %, Figure 6.12 Bi), which is already 

similar to the phenotype found in the adult. Only 25 % show an IK,D with IK,Ca and 

IK1 (Figure 6.12 Bii).  

Despite the different current profile observed in hair cells from the centre of the 

larvae, the peak (1.7 ± 0.3 nA) and steady state (0.8 ± 0.1 nA, n = 9, measured at 

0 mV) values of their overall outward K+ current was similar to that of adult hair 

cells (Figure 6.12 C, black bar – adult, red bar - juvenile). The same was true for 

cells from the edge where the peak  (2.1 ± 0.3 nA) and steady state values (0.5 ±  

0.2 nA, n = 8) at 0 mV were not significantly different from those measured in hair 

cells from the same region of the adult lagena (Figure 6.12 C, black bar – adult, 

red bar - juvenile). However, even despite differences in the set of K+ currents 

between 7wpf and 1 year old fish, it is unclear whether this reflects differences 

in function or maturity of the hair cells. Electrical activity in the inner ear can be 

measured as early as 3 dpf, therefore at least a subset of inner ear cells must be 

functional. 
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Figure 6.12 Membrane currents from hair cells of the juvenile lagena. 

A, B, Typical K+ currents from hair cells positioned in the centre (Ai-Aiii) and edge 

(Bi-Biii) of the lagena in a juvenile (7 wpf) zebrafish. Note that the current profile 

recorded within each region was variable. Currents were elicited by depolarizing 

and hyperpolarizing voltage steps in 10 mV nominal increments from the holding 

potential of −84 mV to the various test potentials shown by some of the traces. C, 

average peak and steady-state amplitudes of the total outward K+ current in the 

two different regions from adult (> 1 year) and juvenile (7 week) zebrafish. 
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6.3.3.3 Calcium currents in lagenar hair cells of the adult zebrafish 

The receptor potential generated by the mechanoelectrical transducer current 

(Imet), and shaped by the basolateral membrane currents, leads to the opening of 

voltage gated calcium channels of the Cav1.3 subtype (Sidi et al., 2004). A typical 

example of the calcium current (ICa) recorded from lagenar hair cells at the edge 

is shown in Figure 6.13 A. ICa is a fast activating current that shows little 

inactivation (Moser and Beutner, 2000; Brandt et al., 2003). It activated at around 

−67 mV (5% of gmax) and reached its maximum size at −31 mV (−34 ± 6 pA, n = 

6). It then reverses at around 46 mV (Figure 6.13 B). The average peak ICa-V curve 

(Figure 6.13 B) was fitted using Equation 2 (Chapter 4). 

Measurements of vesicle release were not obtained, but they are likely to be small 

due to the small calcium current. 

 

Figure 6.13 Calcium currents in lagenar hair cells of adult zebrafish. 

A, Example of calcium currents (ICa) recorded from a lagenar hair cell at the edge 

of the adult (> 1 year) zebrafish. Currents were elicited by depolarizing and 

hyperpolarizing voltage steps in 10 mV nominal increments from the holding 

potential of −79 mV to the various test potentials shown by some of the traces. B 

Average peak I–V curve for the calcium currents (n = 6; from both regions), 

including that shown in A. The continuous line is a fit using Equation 2. Note that 

for values more depolarized than −20 mV, the fit was extrapolated. Recordings 

were obtained at 28 °C. 
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6.4 Summary and conclusion 

In recent years the zebrafish inner ear has been an applicable model for studying 

the genetic basis of development. Yet, relatively little was known about the 

electrical properties of the sensory cells in the inner ear tissues.  

This chapter has provided the first comprehensive description of the biophysical 

properties of the hair cells maintained in the sensory epithelium of the three 

maculae organs. I have identified two main current profiles: 

–Hair cells expressing IA + IK,D with Ih 

 These cells are found in edge of all maculae 

 Their membrane potential does not oscillate with depolarisation 

 This profile is characteristic of vestibular organs in birds (Masetto and 

Correia, 1997; Masetto et al., 2000) and mice (Rüsch et al., 1998), but 

is different to that of mammalian cochlear hair cells (Marcotti et al., 

1999; Marcotti et al., 2003a) 

–Hair cells expressing  IK,D with IK1 

 These cells are mainly found in the centre of the sacculus and lagena 

 The membrane potential shows oscillations in response to 

depolarisation that resemble electrical tuning in other lower 

vertebrates (Fettiplace and Fuchs, 1999) 

 The current profile is similar to auditory organs of other lower 

vertebrates: goldfish sacculus (Sugihara and Furukawa, 1989, 1995), 

and mammals, such as in immature mouse IHCs (Marcotti et al., 1999; 

Marcotti et al., 2003a) 
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6.5 Discussion 

In the inner ear, I have investigated the biophysical properties of the basolateral 

membranes of hair cells positioned in different locations within each of three 

sensory epithelia, the maculae. I found two different current profiles in the 

sacculus and lagena, these maculae have a primary function in hearing (Abbas 

and Whitfield, 2010). One group of cells expressed a rapidly activating A-type 

current (IA) together with an h-type K+-Na+ current (Ih), and the other expressed 

a delayed rectifier K+ current (IK,D) together with the inward rectifier K+ current 

(IK1). Hair cells with these different current profiles were spatially segregated 

within the macula, with those expressing IA being present at the edge region of 

the sensory epithelium and those with IK,D been located in its centre. Different 

from the sacculus and the lagena, 90 % of utricular hair cells, which are only 

responsible for balance, showed one current profile (A-type and h-type currents). 

The presence of two main current profiles in the sacculus and lagena agrees with 

that of an earlier preliminary study (Knirsch and Rüsch, 2003). However, a recent 

study reported a large variation in the current profile of enzymatically isolated 

hair cells from the zebrafish inner ear and up to six different combinations of K+ 

currents (Haden et al., 2013). One possible explanation for this discrepancy may 

refer to alterations in channel properties when cells are treated with enzyme, 

which is also suggested by the fact that the A-type current was barely visible and 

the h-type current was absent in the earlier recordings (Haden et al., 2013). 

Hair cells expressing the A-type, h-type and delayed rectifier currents have been 

shown to be characteristic of vestibular organs in bird (Masetto and Correia, 

1997; Masetto et al., 2000) and mice (Holt and Eatock, 1995; Eatock et al., 1998; 

Rüsch et al., 1998). IA and Ih are absent in hair cells of the mammalian cochlea 

(Marcotti and Kros, 1999; Marcotti et al., 2003a).  Zebrafish hair cells expressing 

IK,D and IK1 resembled those present in early postnatal cochlear outer hair cells 

(OHCs) and IHCs (Marcotti et al., 1999; Marcotti and Kros, 1999; Marcotti et al., 

2003a).  
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Similar current profiles to those recorded in the zebrafish inner ear have also 

been described in the goldfish sacculus. This macula senses sound up to 4000 Hz 

and is tonotopically organised, where cells at the edge or anterior region sense 

frequencies of around 100 Hz and cells more medial or central sense higher 

frequencies at around 800 Hz (Smith et al., 2011). The goldfish sacculus lacks 

micromechanical specialisations of the auditory organ, e.g. basilar membrane, 

such that frequency filtering has to be fulfilled by the hair cells. This is different 

to higher vertebrates and mammals, which have sophisticated mechanisms for 

extrinsic frequency filtering (Manley, 2000).  

Adult goldfish saccular hair cells in the posterior region (sensing around 100 Hz) 

exhibit the A-type current, similar to my finding in the zebrafish inner ear. A 

crucial characteristic of the A-type current is that it activates very rapidly, and as 

such is able to repolarize the Vm very quickly. However, due to the inactivation 

kinetics of IA it can only shape the Vm behaviour up to few hundred Hz. Its rapid 

effect on the Vm is particularly important for onset-encoding and phase-locking 

of the afferent fibre. Therefore, the presence of the A-type current in a low 

frequency region (up to 100 Hz) such as the anterior sacculus suggests that it 

could be involved in the precise transmission of stimulus timing at lower 

frequencies. This is in line with the properties of the afferent fibres in the rostral 

region of the sacculus that show vigorous phase-locking to sound (Sento and 

Furukawa, 1987). 

Since the IA cannot mediate stimulation above a few tens of Hz, due to its 

inactivation, a different current is required in the centre of the sacculus that 

senses around 800 Hz. This is a delayed rectifier K+ current (IK,D) (Sugihara and 

Furukawa, 1989) which is similar to my results in the zebrafish inner ear. In the 

zebrafish sacculus, cells in the centre showed membrane oscillations that 

resemble electrical tuning to higher frequencies (800 Hz) which is also found in 

other lower vertebrates (Fettiplace and Fuchs, 1999). Electrical tuning is a 

mechanism employed by lower vertebrates, including frogs and chicken, to 

precisely convey frequencies up to few hundred Hz where mechanical 

specialisation of the auditory organ is not well developed (Fettiplace and Fuchs, 
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1999; Manley, 2000). However, it needs to be noted, that the quality of electrical 

tuning is poorer in the zebrafish inner ear than in the turtle. 

Currently, there is no information regarding the electrophysiological properties 

of the mechanoelectrical transducer current (IMET) or the afferent fibres, which is 

crucial in order to understand the inner ear hair cell function. For example, the 

contribution of the IMET to the resting Vm remains to be elucidated, as this has an 

impact on the electrical behaviour of the cell. Similarly, it is unknown whether 

the afferent fibres contacting different sensory organs have different properties, 

as described in the vestibular and auditory systems of mammals (Eatock and 

Songer, 2011). These omissions in our knowledge are currently preventing an in 

depth understanding of how sensory signals are processed by hair cells with such 

precision and the exact role that these membrane currents have on signal 

transduction. 
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Chapter 7 General Discussion 
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In this study I have provided the first detailed investigation of the basolateral 

membrane properties of zebrafish hair cells both in the inner ear and lateral line. 

Zebrafish hair cells show several different current profiles and the abundance of 

which changes over time from larval or juvenile to older stages (Chapter 5 and 

6). I also described for the first time the properties of exocytosis at the ribbon 

synapses, allowing comparisons to be made with what we currently know in 

vertebrate hair cells and mammalian cochlear inner hair cells (IHCs). 

 

7.1 Comparison of lateral line and inner ear hair cells. 

The possible function of each of the individual hair cell types was discussed in 

detail in the respective chapter, but how do hair cells of the lateral line compare 

to the inner ear? 

Both organs have common K+ currents, such as the A-type current, but the roles 

seem to be very different. In the inner ear the A-type current mediates a faster 

voltage response, making it ideal to follow low frequencies. In the lateral line, it 

is much slower compared to the other Type 2 and 3 and making it likely to be 

involved in continued stimulation. How can the same current have two different 

functions? Firstly, the speed of the response has to be compared to the other cell 

types present and is unlikely to be different between inner ear and lateral line as 

can be estimated by the similar cell size (see Table 7.1). The inner ear IA is faster 

than the IK,D expressing cells in the same tissue, but not necessarily faster than in 

the lateral line. Secondly, in the inner ear the IA is much larger than in the lateral 

line, which will flatten the voltage response due to its inactivation. During fluid 

stimulation of the hair cell, when the transducer channel adapts and the IMet 

becomes smaller, this can show in the IA cells as a decrease in the voltage 

response, bringing the cell closer to a new activation of IA. As for the other types 

that have been found, an IK,D involved in electrical tuning and an IK,Ca seem to have 

very distinct roles. While IK,D is involved in mediating higher frequency sounds, 

IK,Ca is important for fast onset encoding.  
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Apart from their K+ current set, the cells in the lateral line and inner ear are 

remarkably similar in terms of their sizes (around 3-4 pF) and resting membrane 

potentials (around 70 mV) (Table 7.1). This is different to the vestibular system, 

where both types not only have different K+ currents but also different cell 

resistances. This could indicate that both the inner ear and lateral line are much 

less specialized than higher vertebrate sensory cells. 

Table 7.1 Properties of lateral line and inner ear hair cells 

Values given as mean ± S.E.M. 

 All Hair 

cells 

(3- 36 dpf) 

Larval 

Zebrafish 

(3-5.2 dpf) 

In vivo 

Juvenile Zebrafish (> 20 dpf) in vitro – 

decapitated 

Capacitance 

(pF) 

3.6 ± 0.1  

(n = 208) 

3.6 ± 0.1  

(n = 62) 

3.1 ± 0.1 (n = 146) 

 

Resistence 

(MΩ) 

3.2 ± 0.1  

(n = 208) 

3.4 ± 0.1  

(n = 62) 

3.7 ± 0.1 (n = 146) 

Vm (mV) -68.2 ± 1.5 

(n = 50) 

-70.7 ± 1.6 

(n = 26) 

centre: 

−69.9 ± 2.5 (n = 10) 

edge: 

−68.3 ± 4.0 (n = 7) 

 

 Lagena adult Lagena juvenile Sacculus 

adult 

Utricle 

adult 

 Centre Edge Centre Edge   

Capacitance 

(pF) 

3.1 ± 0.1  

(n = 36) 

4.8 ± 0.2  

(n = 15) 

3.2 ± 0.4  

(n = 8) 

3.2 ± 0.2  

(n = 11) 

Resistence 

(MΩ) 

4.4 ± 0.3  

(n = 16) 

3.1 ± 0.2 

(n = 15) 

3.8 ± 0.3  

(n = 8) 

1.6 ± 0.3  

(n = 11) 

Vm (mV) −74.4 ± 

2.0 

(n = 8) 

−72.5 ± 

3.4 

(n=6) 

-70.9 ± 

3.7 (n= 

5 

-73.6 ± 

2.1 (n= 

7) 

−70.7 ± 3.5 

(n = 7) 

−71.2 ± 2.2 

(n = 8) 
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Another question remains as to why the inner ear and lateral line are still more 

similar to each other than the cochlea and the vestibular system in mammals. One 

possible explanation for this is a much lesser degree of specialization in the 

zebrafish. Firstly, neurons from both the inner ear and lateral line contact the 

Mauthner cells to mediate the escape response, meaning that any activity is 

enough to trigger a simple response. Secondly, both organs send axons into the 

same areas in the brain indicating that both inputs are needed to compute 

behaviour (Highstein et al., 1992). Even though this is also the case in the 

mammal, where several sensory inputs are combined at different levels of the 

CNS, each sensory system has a distinct area in the brain. Thirdly, several lateral 

line hair cells are innervated by the same neuron, indicating convergence at 

approximately 6:1. This means, that the individual hair cell is not characterized 

by great precision as is the mammalian IHC. Whether the inner ear neurons 

branch and innervate several hair cells is unknown, but it seems likely judging by 

their small calcium current. 

Fourth, despite the properties of the afferent neurons in the lateral line not being 

fully explored, it seems certain that there are two populations (large and small 

diameter cell body) of neurons with spontaneous frequencies of 5-50 Hz 

(Haehnel et al., 2012). At the moment, it is not clear whether these neuron types 

preferentially innervate specific hair cells. What is clear is that they 

predominantly innervate neuromasts in certain position, e.g. in the tail or the 

dorsal lateral line. This could mean, that one single neuromast receives 

innervation by one type of fibre only. 

The notion that the lateral line is less specialized than the vestibular system in 

the mammal or the bullfrog auditory hair cell is not surprising when looking at 

the role of this sensory system during behaviour. A number of studies have 

addressed the issue of rheotaxis, i.e. how fish align to stimulation. And it has been 

shown that the lateral line is crucial to mediate this response. However, if the 

lateral line is blocked, rheotaxis is still possible based on visual cues (REF 

Montgomery 1997). Finally, the sensitivity for the direction of the stimulus in the 

lateral line is achieved by turning the neuromast either in an anterior-posterior 

way or dorsal to ventral, rather than specializing the cell. All these features make 
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the lateral line a sensory system that functions reliably but with less precision 

and accuracy than found in hair cells of higher vertebrates. 

 

7.2 Calcium current and exocytosis at hair cell ribbon synapses 

The zebrafish lateral line, due to its optical transparency, has been particularly 

popular for studying synaptic transmission using imaging techniques. Using 

genetically encoded calcium indicators (Dreosti and Lagnado, 2011), calcium 

transients within cells and between cells can be measured as well as vesicle 

release. However, whole-cell patch clamp is a more accurate way to measure the 

absolute size of the calcium current and vesicles released.  

In the zebrafish lateral line hair cells, I found a small but measurable calcium 

current (Chapter 4 and 5, Figure 4.12 and 5.7). This does not change between 

larval, early juvenile and later juvenile stages. The small ICa is consistent with 

what I found in the inner ear (Chapter 6, Figure 6.13) and  that reported in frog, 

rat and goldfish vestibular hair cells (Sugihara and Furukawa, 1989; Prigioni et 

al., 1992; Bao et al., 2003) and with recent data from hair cells of the larval 

zebrafish lateral line (Ricci et al., 2013). The calcium current in the lateral line 

hair cells is carried by Cav1.3 calcium channels that are clustered to the 

presynaptic active zones (Sidi et al., 2004). This is similar to what has been shown 

for hair cells in the mammalian auditory and vestibular systems (Platzer et al., 

2000; Bao et al., 2003; Brandt et al., 2003).  

The elementary properties of Cav1.3 calcium channels are well known (Zampini 

et al., 2013; Zampini et al., 2014), and were used to estimate the number of 

channels present at the presynaptic zone (Chapter 3, Equation 1). Considering 

that the peak size of ICa is around -11 pA (juvenile hair cells), the total number of 

calcium channels is likely to be in the order of 150.  Assuming that all 150 calcium 

channels are associated with ribbons (Sidi et al., 2004; Sheets et al., 2012), then 

each of the four ribbons that form active zones in zebrafish lateral line hair cells 

(Obholzer et al., 2008) is likely to contain about 38 calcium channels. This value 

is similar to what was previously estimated for the adult bullfrog (~ 36 channels 
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per ribbon, (Graydon et al., 2011) but is about five times smaller than that 

measured in cochlear hair cells (~180 calcium  channels: Zampini et al., 2013; 

Zampini et al., 2014).  

How does the number of channels relate to vesicle release? Even though, the size 

of ICa does not change during development, the efficacy of the neurotransmitter 

release does increase from larval (ΔCm 2.3 pF) to juvenile stages (ΔCm 7.7 pF) 

(Chapter 4 and 5, Figure 4.12 and 5.7). Assuming that each vesicle has a surface 

area of 37 aF (Lenzi et al., 1999), this means at larval stages on average 62 

vesicles fuse to the hair cell membrane using a 1 s stimulus, whereas at juvenile 

stages the number increases to 178 vesicles (Olt et al., 2014).  

Looking at the vesicle release per ribbon, these 178 vesicles in juvenile zebrafish 

equate to ~45 vesicles for each of the four active zones (Sidi et al., 2004; Obholzer 

et al., 2008). A similar depolarizing voltage step in mature mouse IHCs has been 

shown to recruit about 4000 vesicles which equals ~150 fF (Johnson et al., 2005) 

and ~270 vesicles per active zone. Even though, the values of vesicle release are 

different, the proportion of vesicles released per calcium channel in the fish is 1.2 

(44 vesicles per 38 calcium channels) which is comparable to the mouse inner 

hair cell with a proportion of 1.5 (270 vesicles per 180 calcium channel), 

assuming a nanodomain control of exocytosis (Moser et al., 2006). This similarity 

in the proportions indicates that the efficiency of neurotransmitter release in hair 

cells is likely to be very similar between the mammalian cochlea and zebrafish 

lateral line. However, as mentioned above, the scale of the responses is very 

different making the lateral line hair cells less sensitive than their mammalian 

counterparts. 

At the moment, it is unclear how the different basolateral membrane properties 

of developing hair cells affect synaptic signal encoding at the afferent fibre, 

mainly because we still know little about lateral line function and organization in 

the adult zebrafish. However, we do know that the neuromasts and afferent fibres 

of the zebrafish lateral line undergo extensive growth and reorganization during 

larval stages that result in a more complex organization in the adult, which is 
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likely to be essential to the fine-tuning of sensitivity to movement direction 

(Haehnel et al., 2012; Liao and Haehnel, 2012). 

 

7.3 Benzocaine as an anaesthetic to study the lateral line after 

5.2 dpf 

Since I am mostly interested in studying the role of hair cells in their adult 

configuration, which appears to happen from juvenile stages onwards where 

there are more Type 1 hair cells, I had to develop an in vivo approach (Chapter 5, 

Section 5.3.2). I found that MS-222 blocks part of the hair cell potassium current 

and as such alters their physiology. Therefore, there was the need to using a new 

anaesthetic and Benzocaine was selected based on its analgesic properties and 

the fact that it did not alter the basolateral membrane currents nor synaptic 

transmission (Chapter 5, Figure 5.11 – 5.14). 

The use of adult zebrafish has wider implications outside of zebrafish hair cell 

research. At the moment, the full potential of the zebrafish for functional in vivo 

studies is limited by the fact that most of the work is carried out at larval stages 

(Ampatzis et al., 2013; Stil and Drapeau, 2015). Currently, electrophysiological 

studies of neuronal activity from functionally mature systems such as in the 

olfactory system, motoneurons and specific brain areas are performed from in 

vitro dissected preparations (Sato et al., 2007; Gabriel et al., 2011; Vargas et al., 

2011; Vargas et al., 2012). Using Benzocaine and the intubation of the zebrafish 

to maintain oxygenation could be a useful approach for in vivo studies of older 

fish involving behaviour (Kalueff et al., 2014; Stewart et al., 2014; Tabor et al., 

2014), optical imaging and electrophysiology (e.g. motoneurons: Ampatzis et al., 

2013; Fidelin and Wyart, 2014; Purkinje cells: Hsieh et al., 2014; retina horizontal 

and ganglion cells: Sun et al., 2012; Johnston et al., 2014; hair cells: Olt et al., 

2014). 

 

 



153 
 

7.4 Future and ongoing experiments 

7.4.1 Role of different hair cells types on afferent fibre activity in the 

lateral line  

The present study has provided a better understanding into the properties of 

lateral line hair cells. However, it is still unclear how the afferent neurons that 

contact the hair cells behave in terms of biophysical properties during 

development. We know that the migrating primordium drags fibres with it as it 

provides the first innervation of the hair cells (Metcalfe, 1985; Gilmour et al., 

2004). Afferent fibres also branch and innervate at least two neuromasts and 

only contact hair cells from the same polarity (Nagiel et al., 2008; Liao, 2010). 

Not only are the properties of the lateral line afferent fibres unclear, but it is also 

unknown how the different hair cell types are able to influence neurotransmitter 

release to those fibres. It would also be interesting to know whether the newly 

formed hair cells that express BK- channels receive innervation or if it is only the 

A-type current expressing cells, that are innervated. This is crucial for 

understanding the potential regeneration of the system. Performing a 

combination of dual patch between hair cells, single neuron recordings and 

morphological studies should address at least some of these unknown aspects of 

sensory development and function in the lateral line. 

7.4.2 Patch-clamp electrophysiology as a tool to study transgenic 

zebrafish lines 

The ability to perform electrophysiological recordings from single zebrafish hair 

cells can also be used to screen transgenic lines with genetic modifications. In 

particular, zebrafish have been used to study the function of ribbon synapses in 

the hair cells in vivo and it was found that the removal of ribbons, leads to the 

presynaptic calcium channel being scarcely clustered (Sheets et al., 2011; Sheets 

et al., 2012; Nicolson, 2015). 

Very recently, I have received a transgenic line from T. Nicolson and K. Kindt, that 

has a ribeye-b overexpression (myo6-ribB-GFP) leading to very large ribbons 
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and supernumerary tethered vesicles. Performing patch-clamp 

electrophysiology, I found that the size of the calcium current is significantly 

increased in myo6-ribB-GFP (−13.2 ± 1.8 pA, n = 10) compared to that measured 

in wild-type hair cells (−7.0 ± 1.4 pA, n = 13, P < 0.05, two-tailed Student’s t test) 

(Figure 7.1 A and B). This is in line with previous studies, showing that the ribbon 

is important to cluster Cav1.3 to the presynaptic membrane and these results 

could indicate that this happens in a fashion that is dependent on the amount of 

ribeye protein present (Sheets et al., 2011). 

However, the increase in ICa was not accompanied by an increase in transmitter 

release ΔCm, which is similar between wild-type (9.0 ± 3.0 fF, n = 6) and myo6-

ribB-GFP (6.8 ± 1.0 fF, n = 7) (Figure 7.1 C and D). This indicates that despite the 

larger ribbon, the overall number of releasable vesicles is not increased in myo6-

ribB-GFP cells. The finding that ICa is increased is intriguing as it has been shown 

using TEM that myo6-ribB-GFP hair cells have significantly more vesicles 

tethered to the ribbon. This means that ribeye is important for clustering the 

channel and the vesicles, but parts of the machinery that are important for vesicle 

recruitment are missing. These could be the calcium sensor, buffer or proteins 

involved in vesicle priming. Alternatively, a larger ribbon might pose a physical 

obstacle for the calcium entry and might prevent it from reaching the higher up 

rows in the transgenic. This questions might be very difficult to answer 

experimentally in the fish, as the cells are small and manipulation of calcium 

signalling difficult. One way to find out, might be applying computational 

modelling to assess whether the size of the ribbon impacts on the diffusion 

distance of calcium. 
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Figure 7.1 Calcium currents and neurotransmitter release in wild-type and 

myo6-ribB-GFP lateral line hair cells. 

A, Calcium currents (ICa) recorded from wild-type (7 dpf, black) and myo6-ribB-

GFP (5 dpf, grey) zebrafish lateral line hair cells. Currents were elicited by a series 

of depolarizing voltage steps in 10 mV increments (200 ms in duration) from the 

holding potential of −79 mV. For clarity, only the trace at the holding potential 

and at the peak of ICa are shown. B, Average ICa peak size at −31 mV from wild-

type (black) and transgenic (grey) including cells in A. C, Changes in membrane 

capacitance (ΔCm) recorded from hair cells of larval wild-type (5 dpf, black) and 

myo6-ribB-GFP (6 dpf, grey) zebrafish. Recordings were obtained in response to 

1 s voltage steps from the holding potential of −79 mV to near the peak of ICa (−31 

mV). D, Average ΔCm elicited following 1s depolarization step to −31 mV from 

hair cells of both wild-type (6 – 8 dpf, black) and myo6-ribB-GFP (5 – 8 dpf, grey). 

Recordings were performed at 28 °C. 
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7.5 Conclusion 

In this study I have established a near physiological method to record electrical 

activity from hair cells of both the inner ear as well as the lateral line. I have 

shown that hair cells express several different current profiles both in the lateral 

line and inner ear. The newly developed in vivo approach to study juvenile hair 

cells using benzocaine and intubation of the fish, will help future studies utilise 

the full potential of the adult zebrafish lateral line for investigations into the 

function of hair cells in vivo. 

 

 

KEEP, so the ref stays 

(Lewis and Hudspeth, 1983),(Beutner et al., 2001),(Art and Fettiplace, 1987; Art 
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2010),(Corwin and Oberholtzer, 1997),(Ampatzis et al., 2013; Fidelin and Wyart, 

2014),(Hsieh et al., 2014),(Sun et al., 2012),(Johnston et al., 2014) 
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