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Abstract 

Members of the ABC-F subfamily of ATP-binding cassette (ABC) proteins mediate resistance 

to a broad array of clinically-important antibiotic classes that target the ribosome of 

Gram-positive pathogens. The mechanism by which the ABC-F proteins mediate antibiotic 

resistance is poorly defined, although two hypotheses have been proposed; drug efflux and 

ribosomal protection. Here, this mechanism of resistance was investigated using a 

combination of bacteriological and biochemical techniques. Results obtained from the 

bacteriological assays provided preliminary data in support of ribosomal protection. 

Subsequently, the heterologous expression and purification of two ABC-F proteins, Vga(A) 

and Lsa(A), allowed the function of these proteins to be assessed in staphylococcal 

transcription-translation (T/T) reactions. Addition of Vga(A) and Lsa(A) to T/T assays subject 

to antibiotic inhibition caused drug specific, dose-dependent, rescue of translation. Several 

previously described resistance phenotypes attributed to these proteins were successfully 

recapitulated in T/T assays, corroborating the idea that rescue of translation observed in vitro 

is representative of the action of these proteins in whole cells. Finally, ribosome binding 

assays showed Lsa(A) to be capable of displacing antibiotics from staphylococcal ribosomes. 

Collectively, the experiments described in this thesis provide the first direct evidence to 

support a mechanism of ARE ABC-F resistance based on ribosomal protection. 
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1. Introduction 

1.1 The importance of antibacterial agents and the rise of antibiotic resistance 

The advent of modern antimicrobial chemotherapy represented a seminal moment in the 

ongoing fight against infectious disease. Prior to the widespread integration of antibiotics 

into the toolkit of modern medicine, clinicians lacked effective options for the treatment of 

bacterial infections and bacterial pathogens were a major cause of morbidity and mortality. 

In 1930, around 1 in 5 deaths in the USA was attributable to conditions associated with 

bacterial infection such as pneumonia, tuberculosis, gastrointestinal disease, and childbirth-

associated septicaemia (Murphy, 1931). However, by the end of the 20th century, lower 

respiratory tract infections were the only bacterially associated disease to be ranked among 

the top 10 causes of death within the USA (Wenzel and Edmond, 2000). Similarly, in 1941 

staphylococcal bacteraemia was associated with an 80% mortality rate, but by 2004 only 20% 

of systemic staphylococcal infections resulted in death (van Hal et al., 2012, Skinner and 

Keefer, 1941). These dramatic decreases in mortality associated with bacterial infections 

coincide with entry into the “antibiotic era”, which began with the introduction of Salvarsan 

for treatment of syphilis in the 1910s (Aminov, 2010), and the subsequent introduction of 

the sulphonamides and penicillin into widespread clinical use during the 1930s and 40s 

respectively (Domagk, 1986, Chain et al.). The following three decades (1940 – 1970) 

represented a “Golden Era” of antibiotic discovery, in which the majority of antibiotic classes 

in clinical use today were identified (Aminov, 2010), heralding an end to the “age of 

pestilence” and enabling modern medical procedures such as anti-cancer chemotherapy, 

organ transplantation and routine surgery (Omran, 2005).  

The enormous progress made in the field of antimicrobial chemotherapy during the 20th 

century is now in danger of being compromised. The increasing prevalence of bacterial 

strains resistant to multiple classes of antibiotics threatens to bring about a post-antibiotic 
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era, in which clinicians once more lack the necessary tools to treat bacterial infection and 

deaths resulting from bacterial disease begin to increase. As of 2014, antimicrobial resistance 

is estimated to result in 700 000 deaths annually world-wide, with this figure predicted to 

rise as high as 10 million if current trends in development of antibiotic resistance are left 

unchecked, these figures include infections caused by drug resistant malaria and HIV in 

addition to bacteria (HM Government review on antimicrobial resistance, 2014). In the 

developing world, community acquired infections such as tuberculosis caused by drug 

resistant Mycobacterium tuberculosis pose a significant challenge; the estimated 480,000 

cases of drug resistant TB in 2013 threaten to erode the current treatment success rate of 

86% (WHO, 2014). Whereas, within industrialised nations infections caused by multi-drug 

resistant bacteria within are predominantly hospital-associated, with the so called ESKAPE 

pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) posing a 

particular threat (Boucher et al., 2009).  

The clinical impact of antibiotic resistance is exacerbated by a lack of new antibiotic classes 

coming to market. Between 1940 and 1970 more than 20 new classes of antibiotics were 

developed, but since then only three novel classes have entered the clinic (Coates et al., 

2011). Additionally, the development of analogues of existing classes is not proceeding 

quickly enough to match the accumulation of resistance (Boucher et al., 2009, Coates et al., 

2011). The combination of the increasing frequency of infections caused by drug-resistant 

bacteria and the lack of new antibiotics has led to numerous calls to action (Commission, 

2011, Wise, 2011, Spellberg et al., 2008). These reports all emphasise the urgent need to 

develop new classes and analogues of antibiotics, particularly those active against 

Gram-negative bacteria. A complementary strategy to develop inhibitors of resistance 

mechanisms to be used in combination with existing antibiotics has also been proposed 

(Pages et al., 2005, Drawz and Bonomo, 2010). Efforts to develop antibiotics and inhibitors 
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to circumvent currently existing resistance can be informed and accelerated by a thorough 

understanding of how antibiotic-resistance mechanisms work. 

1.1.1 Antibiotic targets and mechanisms of antibiotic resistance 

Antibiotics act by interfering with essential cellular biochemistry and physiology, thereby 

causing cell death or cessation of growth. In order to exert these effects, the majority of 

antibiotics inhibit or compromise one of five essential cellular targets; the cell membrane, 

nucleic acid synthesis, folic acid biosynthesis, peptidoglycan biosynthesis, or protein 

synthesis (Figure 1.1) (Wright, 2010). As these bacterial targets are either absent or different 

in eukaryotic cells, antibiotics are able to selectively inhibit bacteria whilst causing minimal 

toxicity to a mammalian host.  

It was already understood in the early years of the antibiotic era that bacteria could in some 

cases resist the growth-inhibitory and lethal effects of antibiotics, a situation that can 

compromise treatment of infection in the patient (Abraham and Chain, 1940). The 

considerable threat that this poses to effective antibacterial chemotherapy has prompted 

intensive research efforts towards understanding the phenomenon of antibiotic resistance. 

An important facet of these efforts has been to dissect the mechanisms underlying antibiotic 

resistance; in other words, to establish exactly how bacteria evade the inhibitory action of 

antibiotics. Aside from yielding information that is of fundamental biological interest and 

providing novel insights into evolution, these studies also serve an important practical 

purpose; they offer essential intelligence for those engaged in antibacterial drug discovery 

to enable the development of new approaches to circumvent or overcome antibiotic 

resistance. 

The ability of a bacterium to resist inhibition or killing by an antibiotic may result from 

inherent properties of the cell (‘intrinsic’ or ‘natural’ resistance), or may evolve in a bacterial 

population that was previously antibiotic-susceptible (‘acquired’ resistance). In both cases, 
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the mechanism by which resistance is ultimately achieved are the same; by preventing, or 

mitigating the effects of, an antibiotic binding to its cellular target. However, this effect can 

be achieved in a number of ways; the mechanisms by which bacteria resist antibiotics can be 

grouped into four major categories, and are summarised in Figure 1.1. 

The work described in this study is concerned with a group of antibiotic resistance proteins 

that mediate resistance to ribosomally-targeted protein synthesis inhibitors. Accordingly, 

antibiotics that target the ribosome, and resistance mechanisms to these antibiotics, are 

discussed in more detail below (Sections 1.2 and 1.3).  
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Figure 1.1. The major sites of antibiotic action, and mechanisms by which bacteria resist antibiotics. The majority of antibiotics elicit their inhibitory effects 
through action at one of the following cellular targets; the cell membrane or cell wall, DNA or RNA synthesis, folic acid biosynthesis, or protein synthesis (left 
of figure). Bacteria resist these inhibitory effects through alteration of the antibiotic, alteration of the antibiotic target, utilisation of an alternative molecule 
to bypass the inhibitory effect to the drug, and/or, decreasing cellular permeability and/or increasing efflux to decrease drug accumulation within the cell 
(right of figure). Figure adapted from (Wright, 2010). 
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1.2 The ribosome as an antibiotic target 

Protein synthesis is essential for bacterial growth. Growing cells use ~50% of the energy they 

consume to make proteins, and 20–40% of protein synthesis in Escherichia coli (E. coli) is 

devoted the production of ribosomes and other translation factors (Russell and Cook, 1995). 

The ribosome is an RNA-based macromolecular machine around which the multi-step 

process of protein synthesis is centred. It provides a platform on which amino acids are 

polymerised into polypeptides according to the genetic information contained within 

messenger RNA (mRNA). Given the vital nature of protein synthesis, and the key role of the 

ribosome within this process, it is perhaps unsurprising that the ribosome is one of the main 

antibiotic targets in the bacterial cell. 

The bacterial 70S ribosome is composed of two subunits; a smaller 30S subunit, made up of 

the 16S ribosomal RNA (rRNA) and 21 proteins, and a larger 50S subunit containing two 

rRNAs (the 23S and 5S rRNAs) and 33 different proteins (Schluenzen et al., 2000, Wilson and 

Nierhaus, 2005). The 30S subunit contains the decoding centre, where anti-codons within 

mRNA are paired with cognate transfer RNA (tRNA). By contrast, the 50S subunit provides 

the peptidyl-transferase centre (PTC), which catalyses formation of the peptide bond, and 

the peptide exit tunnel, where nascent polypeptides leave the ribosome. At the interface 

between the two subunits lies three pockets which bind tRNA; the acceptor site (A-site), the 

peptidyl site (P-site) and the exit site (E-site) (Ban et al., 2000, Wilson and Nierhaus, 2005).  

Protein synthesis can be divided into four phases; initiation, elongation, termination, and 

recycling. During initiation, the 30S and 50S subunits assemble, forming the 70S ribosome 

and establishing the reading frame of mRNA through positioning of the initiator tRNA (fMet-

tRNA) on the start codon in the P- site. This process is promoted by three initiation factors; 

IF1, IF2 and IF3. The elongation step involves the cyclic movement of tRNA from the A- to P- 

to E- site. At the A-site incoming amino-acyl tRNA, which is brought to the ribosome by 
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elongation factor Tu (EF-Tu), is screened and selected in accordance with the corresponding 

codon being displayed by mRNA. The P-site contains the peptidyl-tRNA, however, during 

catalysis of peptide bond formation in the PTC, the growing peptide chain is transferred from 

the peptidyl-tRNA in the P-site to the amino-acyl tRNA in the A-site. A second elongation 

factor, EF-G, drives translocation of tRNAs from the P- to E- site and A-to P site, leaving the 

A-site free to accommodate the next incoming tRNA. Eventually, the mRNA at the A-site will 

display a stop codon, resulting in progression to the termination and recycling phases. During 

termination, release factors 1  and  2 (RF1 and RF2) act to hydrolyse the peptidyl-tRNA bond, 

releasing the nascent polypeptide to leave through the polypeptide exit tunnel in the 50S 

subunit. Finally, a third release factor (RF3) causes dissociation of RF1 and RF2 and the 70S 

ribosome is split into its constituent subunits by EF-G in tandem with the ribosome recycling 

factor. The ribosomal subunits and ribosome associated factors, are then free to begin 

another round of protein synthesis (Schmeing and Ramakrishnan, 2009, Wilson, 2014a, 

Starosta et al., 2014) (see Figure 1.2 for an overview of translation). 

Despite the complexity of protein synthesis, the majority of antibiotics that target this 

process act to inhibit elongation. This is true of all clinically important classes of protein 

synthesis inhibitors, namely the aminoglycosides, amphenicols, fusidic acid, lincosamides, 

macrolides, oxazolidinones, type A and B streptogramins, and tetracyclines (Figure 1.2) 

(Wilson, 2009, Wilson, 2014). Although some compounds do target the initiation phase (e.g. 

avilamycin, edeine, evernimicin, kasugamycin, pactamycin, thermorubin, and thiostrepton), 

due to problems of poor solubility and toxicity they are not currently in clinical use (Wilson, 

2014a). Inhibitors of termination and recycling frequently have a more pronounced effect 

during elongation, with the exception of fusidic acid and blasticidin S, which inhibit recycling 

and termination, respectively, at lower concentrations than are required to inhibit 

elongation (Suematsu et al., 2010, Svidritskiy et al., 2013).  
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Figure 1.2. Sites of antibiotic inhibition during protein synthesis. During initiation of translation, the 30S and 50S 

ribosomal subunits assemble to from the 70S ribosome and the fMet-tRNA is positioned on the start codon in the 

P- site. At the 30S subunit, this phase of translation is inhibited by edeine (EDE), kasugamycin (KSG), pactamycin 

(PCT), and thermorubin (THB), while avilamycin (AVN), evernimicin (EVN), and thiostrepton (THS) act at the 50S 

subunit. The elongation cycle requires delivery of the cognate tRNA into the A-site, a process that is inhibited by 

antibiotics of the tetracycline class (TET). Peptide bond formation between the peptidyl-tRNA at the P-site and 

amino-acyl tRNA at the P-site occurs at the PTC and is inhibited by amphenicols (AMP), blasticidin S (BLS), 

oxazolidinones (OXA), pleuromutilins (PLU), puromycin (PUR), type A streptogramins (SGA), and sparsomycin 

(SPA). Translocation of tRNAs is catalysed by EF-G and is inhibited by antibiotics of the aminoglycoside (AMG) 

class and fusidic acid (FUS), although this antibiotic primarily acts to prevent recycling. Elongation of the nascent 

chain is the target of antibiotics in the macrolide (MAC), ketolide (KET), and type B streptogramin (SGB) class. 

Although, it should be noted that selected macrolides also inhibit peptide bond formation. Termination of protein 

synthesis is inhibited by peptidyl-transferase targeted antibiotics such as BLS, CAM, PUR and SPA, whereas, FUS 

acts to trap EF-G in complex with the ribosome and thereby prevent recycling. Figure adapted from (Wilson, 

2014). 
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1.2.1 Antibiotics that target the ribosome 

Although the ribosome is a large and complex structure, the sites at which antibiotics bind 

to mediate their inhibitory effects are relatively few. In the 30S subunit, antibiotics primarily 

bind close to the positions at which mRNA and tRNA are accommodated into the ribosome. 

In this manner, they mediate inhibition of translation by either blocking the association of 

tRNAs with the A-site, as is the case for tetracyclines, or by preventing translocation, as 

exemplified by aminoglycosides (Brodersen et al., 2000). Within the 50S subunit, the 

majority of antibiotic classes exert their inhibitory effects through binding sites in the vicinity 

of the PTC. Exceptions include the orthomycins and thiopeptides, which target sites away 

from the PTC and interfere with the association of initiation and elongation factors (Belova 

et al., 2001, Mikolajka et al., 2011). The binding sites of antibiotics at the PTC overlap the 

binding sties of A-site tRNA (amphenicols, lincosamides, oxazolidinones, puromycin, and 

sparsomycin), P-site tRNA (blasticidin S), both A- and P-site tRNA (pleuromutilins and type A 

streptogramins), or are found adjacent to the PTC at a constriction in the peptide exit tunnel 

(macrolides, type B streptogramins) (Figure 1.3). At the PTC, antibiotic binding acts to 

interfere with the correct positioning of the amino-acyl moieties at the ends of tRNAs, 

thereby inhibiting peptide bond formation (Polacek and Mankin, 2005, Wilson, 2009, Wilson, 

2014). By contrast, type B streptogramins and 14-membered ring macrolides do not interfere 

with the PTC reaction, but instead act to prevent exit of the growing peptide chain from the 

ribosome, prompting premature termination of protein synthesis and the release of 

peptidyl-tRNA from the ribosome (Di Giambattista et al., 1989, Hansen et al., 2002, Mao and 

Robishaw, 1971). 

The structures of a representative member of each class of ribosomal antibiotic that has been 

used in clinical or veterinary medicine are shown in Figure 1.4, Page 11. 
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Figure 1.3. The points at which the majority of antibiotics bind the 50S subunit of the ribosome. The PTC 

(indicated) is the target of amphenicols, blasticidin S, lincosamides, oxazolidinones, pleuromutilins, puromycin, 

streptogramin As, and sparsomycin. Whereas, macrolides and streptogramin Bs bind in proximity to a constriction 

in the peptide exit tunnel (indicated). A schematic of the 50S subunit is shown in grey. The amino acyl- and 

peptidyl- tRNAs are represented as copper or dark grey spheres respectively. A surface representation of the 

peptide exit tunnel is shown, yellow surface represents the outside of the tunnel and blue surface represents the 

tunnel interior. Ribosomal proteins L4 and L22, which contact the wall of the tunnel, forming a constriction, are 

shown as green ribbons. Figure adapted from (Jenni and Ban, 2003). 
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Figure 1.4. Chemical structures of representative members of clinically used antibiotics that target the 

ribosome. (A) Classes targeting the 50S subunit; phenicols (chloramphenicol), lincosamides (clindamycin), 

macrolides (erythromycin), oxazolidinones (linezolid), pleuromutilins (retapamulin), type A streptogramins 

(virginiamycin M1), and type B streptogramins (virginiamycin S1). (B) Classes targeting the 30S subunit; 

aminoglycosides (kanamycin) and tetracyclines (tetracycline). 

. 
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1.3 Mechanisms of resistance to ribosomal antibiotics 

Ribosomally active antibiotics play important roles in clinical and veterinary medicine. Of the 

30S targeted antibiotic classes, aminoglycosides and tetracyclines are important agents for 

the treatment of both Gram-positive and Gram-negative infections. Of the antibiotic classes 

that bind the 50S subunit in the vicinity of the PTC, seven are used in clinical and veterinary 

medicine for the treatment of primarily Gram-positive infections, namely the amphenicols, 

lincosamides, macrolides, oxazolidinones, pleuromutilins, and type A and B streptogramins. 

Although all of these antibiotics have potent antibacterial effects and form a large proportion 

of the antibiotic armamentarium, the development of resistance poses a threat to their 

continued efficacy. 

Most Gram-negative bacteria are intrinsically resistant to 50S targeted antibiotics due to the 

inability of these predominantly hydrophobic drugs to penetrate the Gram-negative outer 

membrane (Wilson, 2014). By contrast, the mechanisms by which Gram-positive and 

sensitive Gram-negative bacteria resist the action of ribosomal antibiotics can be separated 

into three groups; alteration of the target, through modification and dissociation; alteration 

of the drug, through modification or destruction; and decreased accumulation, through 

efflux. Examples of each mechanism are described below. 

1.3.1 Resistance through antibiotic modification and degradation 

A number of plasmid-borne enzymes have been identified that mediate drug inactivation 

through destruction or degradation of aminoglycosides, amphenicols, lincosamides, 

macrolides, both type A and B streptogramins, and tetracyclines. However, to date, no 

resistance genes encoding enzymes that modify or destroy antibiotics belonging to either 

the pleuromutilin or oxazolidinone class have been identified. Drug modification generally 

acts through the addition of functional groups which prevent the antibiotic from binding to 
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its target site, whereas drug degradation relies on cleavage of chemical bonds that are 

integral to the compounds activity. 

1.3.1.1 Inactivation of aminoglycosides 

Resistance to the aminoglycoside antibiotics in both Gram-positive and Gram-negative 

pathogens is predominantly mediated by modification of the drug through N-acetylation, 

O-adenylation or O-phosphorylation. Addition of these bulky chemical groups to any one of 

a number of OH or NH2 groups on the aminoglycoside molecule disrupts the interaction of 

the drug with its target, the ribosomal RNA. Over 100 aminoglycoside modifying enzymes 

(AMEs) catalysing such reactions have been identified, and they are grouped into three 

classes according to the type of chemical modification catalysed: aminoglycoside 

acetyltransferases (AACs), aminoglycoside nucleotidyltransferases (ANTs) and 

aminoglycoside phosphotransferases (APHs) (Ramirez and Tolmasky, 2010).  

Some AMEs are bifunctional enzymes, possessing the ability either to perform more than 

one type of chemical modification, or to modify more than one type of substrate. The 

enzyme AAC (6’)-APH(2”) is one such bifunctional AME, and is one of the most common 

mediators of aminoglycoside resistance in S. aureus. The N-terminal portion of this enzyme 

possesses AAC activity, whilst the C-terminal domain has APH activity. The dual catalytic 

activity of this enzyme appears to have arisen as a consequence of fusion of two ancestral 

genes to yield a single, bifunctional enzyme possessing a broad substrate profile that 

encompasses nearly all the members of the aminoglycoside class (with the exception of 

streptomycin and spectinomycin) (Zhang et al., 2009). 

1.3.1.2 Inactivation of amphenicols 

The most frequently encountered inactivating modification of chloramphenicol is acetylation 

of the drug via chloramphenicol acetyltransferases (CATs). CATs can be classified into two 

groups based on differences in their structure: class A and class B (also known as xenobiotic 
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CATs). Both groups of enzyme act by catalysing O-acetylation of the 3-hydroxyl group of 

chloramphenicol. The synthetic chloramphenicol analogue florfenicol is refractory to the 

action of CATs due to the replacement of the hydroxyl group at C-3 by a fluorine moiety. 

(Schwarz et al., 2004).  

1.3.1.3 Inactivation of macrolides 

Erythromycin is the target of esterases that render the compound inactive through hydrolysis 

of its macrolactone ring. The genes encoding these enzymes were originally identified in E. 

coli and have been designated ere(A) and ere(B) (Ounissi and Courvalin, 1985, Arthur et al., 

1986). Although ere mediated degradation is not a common resistance mechanism, ere 

genes confer a very high-level of resistance (≥1600 µg / ml in E. coli) (Nakamura et al., 2000) 

and have been found on mobile genetic elements [that provide a means of dissemination 

(Biskri and Mazel, 2003, Plante et al., 2003). It is of note that an erythromycin esterase has 

also been identified in a clinical strain of S. aureus (Wondrack et al., 1996).  

A second enzymatic mechanism for inactivation of macrolides is phosphorylation. Three 

genes encoding macrolide kinases have been identified; two in E.coli, [mph(A) and mph(B)], 

and one in S. aureus; [mph(C)]. Genes encoding macrolide kinases are not currently 

widespread, but confer high-level (>2 mg/ml) resistance to 14- and 16- member macrolides 

and ketolides (Matsuoka and Sasaki, 2004, Wright, 2005). 

1.3.1.4 Inactivation of lincosamides 

Lincomycin nucleotidyltransferases catalyse inactivation of lincomycin and clindamycin 

through adenylation. To date, seven distinct lincomycin nucleotidyltransferases have been 

identified and designated lnu(A) to (F) (http://faculty.washington.edu/marilynr/ermwe

bA.pdf, last accessed 28th September 2015). Although the majority of these genes are 

confined to Gram-positive bacteria, lnu(F) was identified in E. coli (Zhao et al., 2014).  
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1.3.1.5 Inactivation of streptogramins 

The vat genes encode enzymes that inactivate type A streptogramins through acetylation 

(Wright, 2005). Whereas the vgb genes encode lyases that degrade type B streptogramins 

(Allignet et al., 1988). Type A and B streptogramins are usually co-administered, as binding 

of a streptogramin A antibiotic to the ribosome increases the affinity of the streptogramin B 

binding site, resulting in synergy between the two compounds (Harms et al., 2004). 

Inactivation of one of the two compounds results in a small decrease in susceptibility to the 

synergistic mixture. However, plasmids encoding both vgb and vat genes have been shown 

to confer full resistance to synergistic streptogramin combinations (Allignet et al., 1998, 

Allignet and El Solh, 1999).  

1.3.2 Resistance through target site modification 

Modification of the binding sites of antibiotics that target the PTC and peptide exit tunnel 

decreases the affinity of the drugs for their target. These alterations can occur through post-

transcriptional modification of 23S rRNA, via mutations in genes encoding rRNA and proteins, 

or through a direct interaction of a protein or peptide with the ribosome. 

1.3.3.1 Mutations in rRNA and ribosomal proteins 

The majority of ribosome targeting antibiotics interact exclusively with rRNA (Wilson, 2009, 

Wilson, 2014). Thus, mutations to rRNA genes can result in modification of the conformation 

of antibiotic binding sites and thereby lead to decreased affinity of the drug. Most bacterial 

pathogens possess multiple alleles of rRNA genes organised into operons, with the notable 

exceptions of Helicobacter pylori (Versalovic et al., 1996), Mycobacterium spp. (Menendez 

et al., 2002) and select propionibacteria, which have only one or two rRNA operons [(Ross et 

al., 1997)]. Thus the effects of resistance conferring mutations in a single rRNA gene are 

frequently masked by the multiple copies of wild-type drug susceptible rRNA being 

simultaneously expressed. In Gram-positive pathogens such as Staphylococcus and 
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Streptococcus spp., which possess six and four rRNA operons respectively, mutation of the 

majority of rRNA alleles is generally required for resistance. For example, the MICs of 

macrolide and oxazolidinone antibiotics have been shown to increase in parallel with the 

number of mutated rRNA operons (Prunier et al., 2003, Besier et al., 2008, Marshall et al., 

2002). 

However, mutations do not always have to arise independently; the processes of mutation 

and recombination may also act together to evolve an antibiotic-susceptible 23S rRNA to a 

more resistant form.  This is exemplified by mutational resistance to linezolid that has 

emerged in bacterial genera harbouring four to six copies of the 23S rRNA gene (Eliopoulos 

et al., 2004). Such linezolid-resistant isolates carry resistance mutations in domain V of the 

23S23S rRNA, and the mutations are usually found in two to five of the alleles encoding the 

23S rRNA. These multiple resistance alleles are not the result of independent mutational 

events, but are instead the consequence of ‘gene conversion’; following emergence of a 

resistance mutation in a single 23S rRNA allele, this mutation is then introduced to one or 

more of the ‘susceptible’ alleles by homologous recombination within the cell, thereby 

converting them to the resistant form (Lobritz et al., 2003). 

Although ribosomal proteins do not normally interact directly with ribosome targeted 

antibiotics, mutations to genes encoding ribosome proteins, which are normally present as 

a single copy, can in some instances result in resistance. This appears to arise indirectly, 

through changes in protein structure inducing conformational changes in rRNA. For example, 

mutations in in rplD and rplV, which encode ribosomal proteins L4 and L22, have been shown 

to confer macrolide resistance in clinical strains of Streptococcus pneumoniae, Haemophilus 

influenzae, and Staphylococcus aureus (Peric et al., 2003, Prunier et al., 2005, Franceschi et 

al., 2004). The L4 and L22 proteins converge to form a narrowing in the peptide exit tunnel 

adjacent to the macrolide-binding site (Figure 1.3, Page 10) and mutations in these proteins 
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result in distortions to the erythromycin-binding pocket and decreased affinity of the 

ribosome for the drug (Lovmar et al., 2009a). 

1.3.3.2 Modification of rRNA 

Modification of single nucleotides within the 23S rRNA in the vicinity of the PTC by mono or 

dimethylation can prevent a range of antibiotics from binding their target sites. 

Methyltransferase enzymes of the erythromycin rRNA methylase (Erm) family mediate 

resistance to macrolide, lincosamide and streptogramin B antibiotics (MLSB phenotype) via 

methylation of a single adenine of the 23S rRNA (nucleotide position 2058 in E. coli). The Erm 

family represent the most widespread mechanism of resistance to macrolides and 

lincosamides in pathogenic bacteria, and to date over 30 different members of this family 

have been identified (Roberts, 2008). Another methylase, termed Cfr (for 

chloramphenicol/florfenicol resistance), methylates nucleotide A2053 (E. coli numbering) in 

the 23S rRNA. The cfr gene was originally identified as a plasmid-borne amphenicol 

resistance determinant in Staphylococcus sciuri, however, further analysis of the cfr 

phenotype showed that the methylase also mediates resistance to lincosamides, 

oxazolidinones, pleuromutilins and streptogramin As (PhLOPSA phenotype), providing the 

first example of horizontally-acquired resistance to the oxazolidinone linezolid (Long et al., 

2006). Recently, a Cfr homologue, Cfr(B), was identified in two clinical isolates of 

Enterococcus faecium (75% amino acid identity to Cfr). As with cfr, cfr(B), was found on a 

mobile genetic element and when expressed in S. aureus also conferred the PHLOPSA 

phenotype (Deshpande et al., 2015). Although linezolid resistance is currently rare amongst 

clinical strains (Mendes et al., 2014) the potential for wide spread dissemination of cfr genes 

has necessitated the development of second generation oxazolidinones, such as tedizolid 

and radezolid, which are refractory to Cfr-mediated resistance (Shaw and Barbachyn, 2011, 

Mendes et al., 2014).  



18 
 

  

The detection of cfr organised into an operon also encoding erm(B) (termed the mlr operon) 

in the clinical methicillin-resistant Staphylococcus aureus strain CM05 is a particularly 

worrying development (Locke et al., 2012, Smith and Mankin, 2008). The mlr operon 

mediates resistance to members of all seven clinically used antibiotic classes that bind in the 

vicinity of the PTC and is present in a in a highly mobile region of the chromosome, providing 

potential for further dissemination (Locke et al., 2012). 

Methylation of the 16S rRNA can also lead to antibiotic resistance. This mechanism is of 

particular importance for self-protection in aminoglycoside producing Streptomyces spp. 

and Micromonospora spp. (Cundliffe, 1989). These organisms possess chromosomally 

encoded 16S methyltransferases (16S-RMTases) that methylate rRNA at numerous different 

positions (Wachino and Arakawa, 2012). At present, this resistance mechanism is not 

frequently found in pathogenic bacteria, however, clinical isolates of Acinetobacter 

baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa showing high-level 

aminoglycoside resistance, due to horizontally acquired 16S-RMTases, have been identified 

(Galimand et al., 2003, Yokoyama et al., 2003, Tada et al., 2014). 

1.3.3.3 Dissociation of drugs from the ribosome 

Protein mediated dissociation of antibiotics from their ribosomal binding site represents an 

important mechanism of resistance to the tetracyclines. A family of determinants termed 

the ribosomal protection proteins (RPPs) mediate resistance to tetracyclines in both Gram-

positive and Gram-negative bacteria (Connell et al., 2003a). To date, more than ten RPPs 

have been identified (http://faculty.washington.edu/marilynr/tetweb1.pdf last accessed 

28th September 2015), and detailed study of the two most prevalent RPPs [Tet(M) and 

Tet(O)] has provided much of our understanding of this family of resistance proteins 

(Dönhöfer et al., 2012, Spahn et al., 2001). RPPs exhibit homology to bacterial house-keeping 

G-proteins that participate in protein synthesis, particularly the enzyme elongation factor-G 



19 
 

  

(EF-G) that associates transiently with the ribosome to bring about translocation, and their 

site and mode of binding to the ribosome appear to closely mimic that of EF-G. However, 

whilst domain IV of the EF-G protein acts to reach into the decoding site of the ribosome 

where it prompts translocation by driving the movement of A-site tRNA to the P-site, the 

equivalent domain of the RPPs directly interacts with the binding site of tetracycline, thereby 

acting to displace the drug from the ribosome (Dönhöfer et al., 2012, Spahn et al., 2001). 

Resistance to antibiotics of the macrolide class can be mediated by the expression of short 

peptides of four to six amino acids (Tenson et al., 1996, Tenson et al., 1997, Tenson and 

Mankin, 2001, Verdier et al., 2002, Vimberg et al., 2004, Lovmar et al., 2006, Lovmar et al., 

2009b). This resistance mechanism was discovered when a pentapeptide encoding open 

reading frame (ORF) within the gene encoding E. coli 23S rRNA was shown to confer low-

level erythromycin resistance (Tenson et al., 1996). Subsequently, characterisation of 

random pentapeptide libraries has identified several alternative peptides capable of 

mediating resistance to different drugs within the macrolide class (Tenson et al., 1997). 

These peptides are thought to act in cis, directly upon the ribosomes from which they are 

translated, to mediate displacement of macrolide antibiotics from their binding sites (Tenson 

and Mankin, 2001, Verdier et al., 2002, Vimberg et al., 2004). The expression of macrolide 

resistance peptides could therefore increase the amount of drug-free ribosomes within the 

cell, permitting continued protein synthesis in the presence of macrolide antibiotics (Tenson 

and Mankin, 2001, Verdier et al., 2002, Vimberg et al., 2004). It is currently unclear whether 

this erythromycin resistance mechanism is physiologically important, as due to the 

association of 23S rRNA with ribosomal proteins and sequestration of the Shine-Dalgarno 

region of the ORF within the secondary structure of 23S rRNA, the pentapeptide encoding 

mini-gene is not expressed unless the 23S rRNA gene is subjected to mutation or 

fragmentation (Tenson and Mankin, 2001). No peptides that confer resistance to any other 

PTC-targeted drugs have been identified to date (Vimberg et al., 2004).  
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1.3.3 Resistance through active efflux 

By restricting the accumulation of an antibiotic inside the cell, a bacterium may experience 

only low (sub-inhibitory) antibiotic concentrations at the drug target, even under conditions 

where extracellular concentrations of antibiotic are high. Bacteria have evolved an array of 

membrane-located proteins capable of actively transporting intracellular molecules across 

the membrane(s) and out of the cell. A subset of these efflux transporters includes within 

their substrate profile one or more antibiotic classes, and can therefore act to reduce the 

intracellular accumulation of antibacterial drugs. The transporter proteins involved in 

antibiotic resistance are distributed across five protein families; the major facilitator 

superfamily (MFS), small multidrug resistance (SMR) family, resistance-nodulation-cell 

division (RND) family, multidrug and toxin extrusion (MATE) family, and ABC family (Piddock, 

2006, Li and Nikaido, 2009). To achieve active transport of antibiotics against a concentration 

gradient, these transporters require a source of energy; efflux proteins belonging to the SMR, 

MFS, MATE and RND families all utilise the proton-motive force generated by cellular 

metabolism to drive transport, whilst transporters of the ABC family derive the necessary 

energy from the hydrolysis of ATP.  

In Gram-positive bacteria, resistance to targets that bind the ribosome at the PTC is mediated 

by MFS and ABC efflux systems, some of which are specific for one antibiotic class, whilst 

others are capable of recognising and exporting a wide range of structurally-diverse 

molecules.  

1.3.2.1 Efflux of PTC-targeted antibiotics by MFS proteins 

The MFS efflux proteins found in Gram-positive bacteria can be split into two groups, those 

that confer multidrug resistance (MDR) and those specific to a single antibiotic class. 

Examples of MDR MFS systems include the chromosomally encoded S. aureus proteins LmrS 

and MdeA. Expression of LmrS in an antibiotic-hypersensitive strain of E. coli has been shown 

to confer resistance to amphenicols, lincosamides, macrolides, and oxazolidinones, in 
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addition to a broad range of antibiotics and antibacterial compounds (Floyd et al., 2010). 

Similarly, overexpression of MdeA in S. aureus has been shown to result in resistance to 

streptogramins, as well as numerous non-ribosomal antibiotics (Huang et al., 2004). 

Although these MDR MFS proteins have shown to confer resistance in vitro, they have not 

yet been associated with antibiotic resistance in clinical strains of S. aureus. 

In contrast, the tetracycline-specific Tet efflux proteins are the predominant mechanism of 

tetracycline resistance in Gram-negative bacteria and are also found in Gram-positive 

organisms. Tetracycline was the first antibiotic for which efflux was identified as a 

mechanism of resistance (McMurry et al., 1980). Since that time, over 20 different 

tetracycline efflux proteins have been described, and all are members of the MFS transporter 

family (http://faculty.washington.edu/marilynr/tetweb1.pdf, last accessed 28th 

September 2015). The widespread emergence of resistance to first and second generation 

tetracyclines, through efflux and ribosomal protection, led to a systematic search for a new 

generation of tetracycline analogues. The result was the glycylcyclines, of which the best 

known is tigecycline; these antibiotics are not susceptible to current efflux mechanisms. 

However, it has been demonstrated in vitro that mutations to pre-existing Tet efflux pumps 

can elicit resistance to glycylcyclines, suggesting a route by which resistance to these drugs 

may develop with sustained clinical use (Guay et al., 1994, Chopra and Roberts, 2001).  

A second example group of drug specific MFS proteins with an important role in clinical 

antibiotic resistance can be found in the Mef proteins. These proteins mediate resistance to 

14- and 15- membered macrolides, but not to 16- membered macrolides, type B 

streptogramins or lincosamides. This resistance profile is frequently observed in clinical 

strains of streptococci and is designated the M-phenotype (Sutcliffe et al., 1996). The 

resistance genes that underpin this resistance mechanism, mef(A) and mef(E) were originally 

identified in Streptococcus pyogenes (Clancy et al., 1996) and Streptococcus pneumoniae  

respectively (Tait-Kamradt et al., 1997).  
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1.3.2.2 Efflux of ribosomal antibiotics by ABC proteins 

The first MDR ABC transporter to be characterised in bacteria was the LmrA protein of 

Lactococcus lactis (van Veen et al., 1998). Due the homology exhibited by LmrA to an ABC 

transporter frequently found to be upregulated in mammalian tumour cells (MDR1), LmrA 

has been the subject of multiple functional and structural studies (Poelarends et al., 2002, 

Federici et al., 2007). When expressed in an antibiotic-hypersensitive strain of E. coli LmrA 

confers resistance to a broad range of structurally dissimilar compounds, including multiple 

antibiotics, several of which target the PTC (Poelarends et al., 2002). However, the 

physiological function of this protein in its natural host is unclear (van den Berg van Saparoea 

et al., 2005), and, although a homologue has been identified in S. aureus (van Veen and 

Konings, 1998), LmrA mediated MDR is not currently common in pathogenic bacteria.  

Members of a large subgroup of ABC proteins, termed the ABC-F or type II ABC subfamily, 

confer resistance to several structurally diverse classes of antibiotic that target the PTC and 

exit tunnel of the 50S ribosomal subunit (Kerr et al., 2005, Reynolds et al., 2003). Although 

frequently cited as mediators of efflux, a long standing controversy exists regarding the 

mechanism by which ABC-F proteins confer antibiotic resistance. Due to the lack of a 

definitive explanation for their mechanism of action, this subgroup of ABC proteins was 

chosen as the subject of this thesis and is discussed in more detail below. 

1.4 The ABC-F sub-family of ABC proteins mediates resistance to ribosomally 

active antibiotics 

Members of the ABC-F subgroup of ABC superfamily proteins specifically mediate resistance 

to PTC-targeted antibiotics through a poorly characterised mechanism and, for that reason, 

are the subject of this study. The classification of ABC-F proteins within the context of the 

ABC superfamily is discussed below (Section 1.4.2). Additionally the phylogeny, phenotype, 

and potential mechanism of ABC-F proteins involved in antibiotic resistance are outlined. 
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1.4.1 The ABC domain 

Proteins of the ABC superfamily are universally distributed across all three domains of life 

(Dassa and Bouige, 2001). These proteins are named for their stereotypical ABC domains 

(also known as the nucleotide binding domain, NBD) that permit binding and hydrolysis of 

ATP, releasing energy to drive a wide variety of biological processes (Davidson et al., 2008, 

Dorrian, 2009). ABC domains, each around 200 amino acids in length, are characterized by 

five unequivocally conserved short sequence motifs, which should be present in the 

following order to qualify as an ABC ATPase: the Walker A motif, a highly conserved 

glutamine residue in the Q-loop, the signature motif which is characteristic of ABC ATPases, 

the Walker B motif and finally, a highly conserved histidine residue within the H-loop or 

Switch region (Davidson et al., 2008, Dorrian, 2009, Dassa, 2011) (Figure 1.5 A).  

A single ABC domain is composed of two structurally distinct sub-domains: A RecA-like 

domain, which contains the Walker A and B motifs, and a helical domain that is unique to 

ABC ATPases and includes the signature motif (Figure 1.5 B) (Davidson et al., 2008, Dorrian, 

2009, Dassa, 2011). The two domains are joined by two loops, one of which is the Q-loop 

(Davidson et al., 2008, Dorrian, 2009, Dassa, 2011) and is important for interactions of the 

ABC domain with other cellular proteins (Davidson et al., 2008, Chen et al., 2014). Crystal 

structures of ABCs bound to ATP have shown that ATP co-ordination requires formation of a 

“nucleotide-sandwich dimer” containing two ABC domains (Jones and George, 1999, 

Hopfner et al., 2000, Smith et al., 2002). The two monomers in the complex align in a “head 

to tail” orientation, resulting in the formation of two ATP binding pockets in which the Walker 

A and B motifs of one monomer act in concert with the signature motif of the other monomer 

to bind the nucleotide (Jones and George, 1999, Hopfner et al., 2000, Smith et al., 2002). 

Thus the binding and hydrolysis of ATP results in conformational changes throughout the 

complex that are used to elicit biological effects. 
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Figure 1.5. The motifs and domain architecture characteristic of ATP binding cassette proteins. (A) A linear 

representation of the five unequivocally conserved motifs characteristic of ABC ATPases. The Walker A motif and 

the Walker B motif, shown as large polygons, form the nucleotide-binding fold of the P-loop ATPase family. The 

signature motif is unique to ABC proteins and also interacts with ATP. The Q-loop and H-loop, represented as 

triangles, contain single covered residues. These residues make contacts with the γ-phosphate of ATP and the Q-

loop is also involved in interactions with other cellular proteins. The consensus sequence of each motif is shown 

using the single-letter amino acid code, where x and h stand for any and hydrophobic amino acids respectively. 

(B) Localization of conserved motifs within the structure of an ABC monomer (HisP of Salmonella typhimurium, 

PDB: 1B0U (Hung et al., 1998)). The same colour code as for the linear representation is used. The RecA-like 

domain is shown in purple, the helical domain in cyan. Figure adapted from Dassa (2011). 
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1.4.2 Classification of ABC proteins 

ABC transporters represent the architecture most frequently associated with ABCs. Here, 

two cytoplasmic, hydrophilic ABC domains associate with two hydrophobic trans-membrane 

domains (TMDs). The four domains may be expressed as separate polypeptides or as various 

configurations of domain fusions (Davidson et al., 2008, Dassa, 2011). The resulting 

functional complex uses the energy derived from ATP-hydrolysis to drive conformational 

changes that result in the cellular import or export of a wide variety of substrates (Jones and 

George, 1999). However, it has become increasingly evident that ABCs also participate in 

cellular processes other than transport (Dassa and Bouige, 2001).  

Classification by Dean et al. (Dean et al., 2003) of ABC systems in accordance with sequence 

homology in eukaryotic ABC proteins has divided the ABC superfamily into seven sub-

families, designated ABC-A to ABC-G (Dean et al., 2003, Kerr, 2004). The majority of these 

groups constitute ABC transport systems. However, two groups, ABC-E and ABC-F, are 

composed of proteins that possess tandemly repeated ABC domains and lack TMDs. ABC-E 

and ABC-F proteins have been shown to play non-transport roles in all three domains of life 

(Kerr, 2004). 

More recently, an alternative system for classification of ABC proteins was proposed by Elie 

Dassa (Dassa, 2011) in which proteins are grouped based on sequence homology and 

function. This analysis includes sequences from all three domains of life, and separates ABC 

proteins into three major classes and multiple further sub-classes. The three classes appear 

to correlate to architecture and function of ABC proteins; class 1 is made up of the majority 

of ABC exporters, class 2 comprises soluble proteins with two tandemly repeated ABC 

modules and no recognised TMDs, and class 3 is predominantly composed of bacterial 

importers that require an extracellular or periplasmic substrate binding domain for their 

function (Figure 1.6). 
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The large subgroup of ABC proteins that specifically mediate resistance to PTC-targeted 

antibiotics are found within the ABC-F and class 2 groups of the Dean and Dassa classification 

schemes respectively. In accordance with the most current literature (Boel et al., 2014, Chen 

et al., 2014, Lenart et al., 2015), these proteins are referred to throughout this study as 

antibiotic resistance (ARE) ABC-F proteins. 

 

 

 

Figure 1.6. Classification of ABC proteins. The Dassa scheme of classification separates the ABC superfamily into 

three major classes. Class 1 and class 3 are canonical ABC transport proteins, comprising a functional complex of 

two hydrophobic TMDs and two hydrophilic intracellular ABC domains, class 3 proteins are frequently also 

associated with an extracellular or periplasmic SBD. In contrast, class 2 proteins, which comprise two tandemly 

repeated ABC domains, lack recognised TMDs. These Dassa classes broadly correlate with the function of their 

members, class 1 are primarily export proteins, whereas class 3 proteins are primarily involved with import within 

bacteria. Class 2 appear to play predominantly non-transport roles, although the mechanism of antibiotic 

resistance proteins within this class is unknown. Within the dean classification scheme, ABC proteins with 

tandemly repeated NBDs and no associated TMDs fall within the ABC-E and ABC-F sub-families, which correlate 

to class 2 in the Dassa system (Dean et al., 2003, Kerr, 2004, Dassa, 2011).



27 
 

  

1.4.3 The ARE ABC-F proteins mediate resistance to ribosomally active antibiotics 

In Gram-positive bacteria, a sub-group of ABC-F proteins mediates resistance to antibiotics 

that exert their action on the ribosome. These proteins are found in both antibiotic-

producing bacteria (e.g. the streptomycetes), and in pathogenic bacteria that include the 

staphylococci, streptococci, enterococci, and, in one instance, the Gram-negative zoonotic 

pathogen Pasteurella multocida.  (Figure 1.7). Collectively, the ARE ABC-F family of proteins 

mediates resistance to the majority of antibiotic classes that bind to either the PTC or peptide 

exit tunnel of the ribosome, including the ketolides (Reynolds and Cove, 2005), lincosamides 

(Novotna and Janata, 2006, Singh et al., 2002), macrolides (Ross et al., 1990), oxazolidinones 

(Wang et al., 2015), phenicols (Wang et al., 2015), pleuromutilins (Gentry et al., 2008), 

streptogramin As (Allignet et al., 1992, Singh et al., 2002), and streptogramin Bs (Ross et al., 

1990) (Figure 1.7). However, no single ARE ABC-F determinant confers resistance to every 

listed class, and three phenotypic resistance profiles are distinguished in clinical isolates. 

Combined lincosamide, streptogramin A (and sometimes pleuromutilin) resistance, referred 

to as the LSA (or LSAP) phenotype is conferred by vga-, lsa- and sal- type genes (Tesse et al., 

2013, Singh et al., 2002, Hot et al., 2014), concurrent resistance to macrolides, streptogramin 

Bs (and sometimes ketolides) (MSB phenotype) by the msr-type determinants (Ross et al., 

1990, Reynolds and Cove, 2005), and resistance to phenicols and oxazolidinones by the 

recently identified optrA gene (Wang et al., 2015) (Figure 1.7). 

In antibiotic-producing bacteria, ARE ABC-F mediated resistance appears to be specific to the 

particular antibiotic produced by each species. However, as levels of resistance to other PTC-

targeted antibiotics have predominantly not yet been determined, it is unclear whether 

these proteins mediate any further cross resistance. It is of note that the lincomycin-

resistance determinant lmr(C) from Streptomyces lincolnensis has been shown to 

additionally confer low-level erythomycin resistance (Peschke et al., 1995), suggesting that 

ARE ABC-F proteins from antibiotic-producing bacteria may show similar resistance spectra 

to those found in bacterial pathogens.  
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Figure 1.7. Phylogenetic tree and antibiotic resistance profiles of the ARE ABC-F proteins found in Gram-positive pathogens and producer organisms. An overview of the resistance phenotypes 

conferred by the different subgroups of determinant are shown at the right of the figure (although variations in individual resistance phenotypes within each subgroup are not). Alignments 

were performed using the  MUSCLE alignment program (Edgar, 2004) and the phylogenetic tree was generated using the maximum likelihood method. Analysis was performed using the MEGA 

6.0.6 software package (Tempe, AZ, USA). 
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1.4.4 Domain architecture of ARE ABC-F proteins 

As with all members of the ABC-F sub-family, ARE ABC-F proteins comprise a single 

polypeptide containing two ABC domains separated by an inter-domain linker of ~80 amino 

acids and do not include any predicted membrane-spanning domains. Equally, genes 

encoding ARE ABC-F proteins are not linked in operons with any identified genes encoding 

TMDs. Within ABC-F proteins of Gram-positive pathogens, Pfam (Marchler-Bauer et al., 

2015) identifies a conserved domain separate from the two ABC domains within the linker 

region (PF12848 or ABC_tran_2); however, this domain is not recognised in ARE ABC-F 

proteins of antibiotic-producing bacteria (Figure 1.8). The linker region of msr-type ARE ABC-

F proteins is additionally identified as a Q-linker (Wootton and Drummond, 1989). Q-linkers 

comprise a class of interdomain sequences that are typically rich in glutamine and other 

hydrophilic amino acids and have a characteristic spacing of hydrophobic amino acids. 

Amongst ARE ABC-F proteins, the Q-linker appears to be confined to msr-type determinants 

as the inter-domain linkers of OptrA and Vga- or Lsa- type proteins do not meet these criteria. 

Studies of Vga(A) have shown the amino acid composition of sequence of the linker to 

influence the spectrum of resistance mediated by the protein. Initially, a Vga(A) variant, 

Vga(A)LC, that conferred enhanced levels of resistance to lincosamide antibiotics in 

comparison to Vga(A), was identified in several clinical isolates of Staphylococcus 

haemolyticus. Sequence analysis showed the Vga(A)LC protein to differ from Vga(A) by seven 

amino acid substitutions, four of which were shown to influence the resistance phenotype 

and were clustered within an 18 amino acid region of the linker. Subsequently, a detailed 

mutational analysis of the Vga(A) interdomain linker found that the sequence of an eight 

amino acid stretch (amino acids 212 to 220) was responsible for determining different levels 

of resistance to streptogramin As, lincosamides and pleuromutilins. With one amino acid 

substitution (K219T) conferring high levels of resistance to antibiotics of all three classes. 
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Both OptrA and Vga-type proteins possess a C-terminal extension of ~40 and ~110 amino 

acids respectively. Deletion of the final 18 amino acids of this extension in Vga(A) resulted in 

a four-fold reduction in the level of resistance conferred to a streptogramin A antibiotic, 

suggesting that the C-terminal extension of both proteins may be of functional importance 

(Jacquet et al., 2008), although no corresponding modification of OptrA has been performed. 

 

 

 

Figure 1.8. Predicted domains of representative members of five ARE ABC-F subgroups. Domains were 

assigned using the CDD: NCBI's conserved domain database (Marchler-Bauer et al., 2015).  
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1.5 Genetic environment and clinical prevalence of ARE ABC-F resistance 

determinants 

Several studies have attempted to document the genetic environment of ARE ABC-F genes 

in clinical strains of staphylococci and enterococci. From the resulting data, it is clear that 

ARE ABC-F determinants are found in a diverse array of genetic environments; with optrA, 

vga-, lsa- and msr-type genes frequently located within mobile genetic elements, such as 

plasmids and transposons, or integrated into the chromosome where they may be coupled 

with factors to facilitate their mobilisation (Ross et al., 1990, Singh et al., 2002, Novotna and 

Janata, 2006, Gentry et al., 2008, Schwendener and Perreten, 2011, Hauschild et al., 2012, 

Tesse et al., 2013, Hot et al., 2014, Wang et al., 2015, Li et al. 2016). Although the majority 

of ARE ABC-F determinants found in Gram-positive pathogens confer acquired resistance, 

three genes, lsa(A), msr(C) and sal(A), are chromosomally encoded and thought to be 

intrinsic resistance determinants of E.  faecalis, E. faecium and Staphylococcus sciuri 

respectively (Singh, Weinstock and Murray 2002; Hot, Berthet and Chesneau 2014; Singh, 

Malathum and Murray 2001). As such, lsa(A) is responsible for the innate resistance of 

E. faecalis to antibiotics of the lincosamide and streptogramin A classes, sal(A) confers the 

same resistance phenotype in S. sciuri, and msr(C) confers macrolide and streptogramin B 

resistance in E. faecium, although there is some debate as to whether the gene an intrinsic 

to all E. faecium isolates (Werner, Hildebrandt and Witte 2001).  

The prevalence of ARE ABC-F determinants in clinical strains of staphylococci and enterococci 

exhibiting resistance to antibiotics targeting the large ribosomal subunit has been 

documented in several reports. For macrolide and streptogramin B antibiotics, it is evident 

that although ribosomal methylation is the predominant mechanism of resistance to these 

drugs, msr-type determinants, particularly msr(A), can also be contributing factors 

(Gatermann, Koschinski and Friedrich 2007). The frequency at which msr(A) is found as the  
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sole resistance determinant in strains exhibiting the MSB phenotype varies between <10% 

(Nawaz et al. 2000) to 100% (Eady et al. 1993) amongst different hospitals and geographical 

areas . However, from the available data, it can be roughly estimated that msr(A) is the sole 

determinant underlying around a tenth of strains exhibiting the MSB phenotype (Martineau 

et al. 2000; Szczuka et al. 2016; Aktas et al. 2007; Gatermann, Koschinski and Friedrich 2007; 

Eady et al. 1993). Equivalent information regarding the clinical prevalence of vga-type 

determinants is lacking, however a study in which a large staphylococcal strain collection 

(5,676 strains) was screened for retapamulin resistance found that although the incidence of 

resistance was low (~1%), the vga(A) and vga(A)v genes were the sole resistance genes 

associated with this phenotype (Gentry et al. 2008). Similarly, as the optrA gene has only 

been recently identified, only one study has investigated its prevalence in human clinical 

isolates. This screen of 595 clinical enterococcal isolates from a Chinese hospital detected 

optrA in 2% of strains (Wang et al. 2015). A concurrent screen of 290 enterococcal strains 

isolated from animals in a variety of locations within China found optrA to be present in 

15.9% of strains (Wang et al. 2015). It is also of note that optrA has been found co-resident 

with the ribosomal methylase cfr on a plasmid isolated from Staphylococcus sciuri; a 

particularly worrying development given that optrA confers resistance to tedezolid, the 

second commercially available oxazolidinone, which ordinarily shows activity against 

staphylococcal strains expressing cfr (Li et al. 2016).  

1.6 The mechanism of ARE ABC-F mediated resistance 

The mechanism by which the ARE ABC-F proteins mediate antibiotic resistance has been a 

subject of long-standing controversy, with two competing hypotheses having each attracted 

considerable support; antibiotic efflux and ribosomal protection (Ross et al., 1990, Reynolds 

et al., 2003, Kerr et al., 2005, Chesneau et al., 2005, Kerr, 2004, Nunez-Samudio and 

Chesneau, 2013, Lenart et al., 2015). The efflux hypothesis posits that ARE ABC-F proteins 

associate with as-yet-unidentified TMDs to form a functional efflux complex capable of 
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exporting antibiotics out of the cell, whilst the ribosomal protection hypothesis suggests that 

these resistance proteins act instead to reduce the accessibility or affinity of the antibiotic 

binding sites in the 50S subunit, thereby directly protecting the translational machinery from 

antibiotic-mediated inhibition (Reynolds et al., 2003, Kerr et al., 2005, Reynolds, 2005, 

Dorrian, 2009) (Figure 1.9). Evidence in support of each hypothesis is discussed below. 

 

 

 

 

 

Figure 1.9. Potential mechanisms of ARE ABC-F mediated resistance. In the absence of the resistance 

determinant translation is inhibited by the antibiotic, arresting growth of the bacterial cell. ARE ABC-F proteins 

(green) are proposed to rescue translation from inhibition either by recruiting an unknown membrane-spanning 

protein to promote active efflux of the antibiotic (left), or, by displacing the antibiotic from its ribosomal binding 

site (right). Figure adapted from (Kerr et al., 2005). 
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1.6.1 Evidence in support of a mechanism of ARE ABC-F mediated resistance driven by 

efflux 

Early studies of the first ARE ABC-F resistance determinant to be characterised, msr(A), 

showed that expression of the msr(A) gene was associated with reduced intracellular 

accumulation of radiolabelled erythromycin in S. aureus (Ross et al., 1990) and was not 

associated with any erythromycin inactivating enzyme activity (Ross et al., 1989). 

Erythromycin accumulation experiments showed an initial uptake phase, followed by a 

decrease in the level of intracellular drug, which was abolished by addition of arsenate and 

strongly inhibited by dinitrophenol, leading to the hypothesis that Msr(A) functions in 

tandem with unidentified TMDs to drive ATP-dependent drug efflux. Subsequently, a similar 

study was conducted using the vga(A) variant vga(A)LC, which like msr(A) was shown to 

mediate ATP-dependent reduced accumulation of its target antibiotic, radio-labelled 

lincomycin, when expressed in S. haemolyticus (Novotna and Janata, 2006).  

Interpretation of the data generated by these accumulation studies is complicated by the 

observation that decreased accumulation of ribosomally active antibiotics can also result 

from protection of their target site. Addition of an excess of unlabelled erythromycin, or a 

streptogramin B antibiotic (which has an overlapping binding site to erythromycin), has been 

shown to result in decreased accumulation of radiolabelled erythromycin in S. aureus 

(Reynolds et al., 2003, Barre et al., 1986). Furthermore, the presence of the erm(B) ribosomal 

methylase has been shown to confer decreased erythromycin accumulation in S. pyogenes 

(Canton et al., 2005). This phenomenon is thought to occur due to the fact that erythromycin 

passes through the cell membrane by passive diffusion and accumulates in cells because it 

bind to ribosomes, which act as a “sink” and thereby maintain the concentration gradient 

(Barre et al., 1986, Capobianco and Goldman, 1990). Protection of the erythromycin 
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ribosomal binding site by a competing antibiotic or through methylation would abolish this 

gradient and thereby negate the driving force for import (Kerr et al., 2005).  

A further observation that has been proposed as evidence for efflux can be found is studies 

of the sub-cellular localisation of ARE ABC-F proteins. Investigation of Vga(A) localisation 

though western blotting of cell fractions generated by centrifugation has shown that in 

clinical strains of Staphylococcus epidermidis the protein is solely present in the membrane 

fraction (Chesneau et al., 2005). Similarly, expression of vga(A) from the vegII promoter in a 

laboratory strain of S. epidermidis primarily resulted in membrane localisation of Vga(A), with 

around 20% of the protein present in the cytosol (Chesneau et al., 2005). A similar analysis 

of the cellular localisation of a maltose-binding protein tagged fusion of the N-terminal 

domain of Ole(B), an ARE ABC-F protein that mediates self-protection in the oleandomycin 

producer Streptomyces anitbioticus, showed the protein to be present in both the membrane 

and cytosolic fractions (Olano et al., 1995). Membrane localisation of multiple ARE ABC-F 

proteins appears to support the efflux hypothesis. 

In order for ARE ABC-F proteins function to drive efflux they must co-opt TMDs. In classical 

ABC-transport proteins it is the TMDs that confer substrate specificity (Dassa and Bouige, 

2001). However, if ARE ABC-F proteins are “hijacking” existing TMDs then a requirement is 

that they either confers substrate specificity themselves or alter the specificity of pre-existing 

TMDs. Work by Jacquet et al. investigated the ATPase activity of Vga(A) and, after 

demonstrating that ATPase activity was essential for biological function, found that 

pristinamycin IIA inhibited ATPase activity in a non-competitive manner, suggesting a direct 

interaction between the protein and antibiotic (Jacquet et al., 2008). 

More recently, an investigation into the cellular localisation of msr(D), a streptococcal 

macrolide resistance determinant, was proposed to provide the first example of an ARE ABC-

F protein working in tandem with an efflux transporter. In streptococci, the msr(D) gene is 
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co-transcribed with the mef(E) MFS macrolide efflux transporter from a conserved operon 

found within large chromosomal elements that resemble defective transposons (Santagati 

et al., 2000, Gay and Stephens, 2001, Del Grosso et al., 2002). Through the use of E. coli 

strains expressing GFP-tagged Msr(D) and Mef(E) the sub-cellular localisation of each protein 

was investigated. Expression of GFP-tagged Msr(D) alone showed the protein was 

homogeneously distributed throughout the cytoplasm and expression of GFP-tagged Mef(E) 

alone showed several fluorescence spots throughout the bacterium. However, co-expression 

of both resistance determinants resulted in localisation of Mef(E) at the poles of the cell. Pull 

down assays were subsequently used to show an interaction of Msr(D) and Mef(E), leading 

to the conclusion that Msr(D) might act as an enhancer of macrolide efflux mediated by the 

MFS Mef(E) (Nunez-Samudio and Chesneau, 2013).  

1.6.2 Evidence in support of a mechanism of ARE ABC-F mediated resistance through 

ribosomal protection 

There is currently a lack of direct experimental evidence in support of ARE ABC-F mediated 

ribosomal protection. However, indirect evidence in support of this hypothesis can be found 

in the apparent correlation between resistance phenotypes of ARE ABC-F proteins and the 

binding sites of their target antibiotics within the 50S subunit. For example, the msr-type 

determinants mediate resistance to macrolide and streptogramin B antibiotics, which bind 

close to the peptide exit tunnel within the 50S subunit (Hansen et al., 2002, Tu et al., 2005). 

Whereas vga- and lsa- type determinants give resistance to streptogramin A, lincosamide, 

and pleuromutilin drugs, which bind to overlapping sites within the PTC (Harms et al., 2004, 

Tu et al., 2005, Davidovich et al., 2007). The apparent requirement of ARE ABC-F resistance 

phenotypes for an overlap in ribosomal binding site, rather than common chemical 

composition of their target drugs, suggests that these proteins mediate their effects while 

their target drugs are ribosomally associated. 
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Further indirect support for ribosomal protection can be found through analysis of the 

functions of members of the ABC-F sub-family not involved in antibiotic resistance. These 

proteins have been shown to function in non-transport processes, including regulation of 

translation. Three of these translational regulators have been shown to be associated with 

ribosomes. In fungi, the highly conserved ABC-F protein eEF3 binds to the ribosome and 

promotes release of tRNA from the E site. In eukaryotes and archaea the ABC-F protein 

ABCE1 acts in concert with both initiation factors and release factors to facilitate recycling of 

ribosomes, rescue of stalled ribosomes and subsequent promotion of initiation. In bacteria, 

the ABC-F protein EttA preferentially binds to the 70S ribosome with fMet-tRNA at the P-site 

and regulates translation in response to changes in the cellular ATP: ADP ratio. Thus, ABC-F 

proteins from all domains of life have been shown to interact with the ribosome and 

influence translation. 

1.7 Objectives 

This study was undertaken due to the lack of a coherent explanation for the mechanism 

governing antibiotic resistance mediated by ABC-F proteins. The primary objective of this 

work was therefore to provide a definitive answer to the efflux vs protection question, or to 

identify any other plausible mechanistic explanations. In order to achieve this goal, studies 

of ARE ABC-F proteins were required. The first step in this process was the optimisation of 

conditions for the heterologous expression and subsequent purification of members of the 

ARE ABC-F subfamily. Secondly, appropriate assays were established with which to 

distinguish between efflux and ribosomal protection and screening for conditions to 

promote crystallisation of ARE ABC-F proteins was performed. In tandem with biochemical 

approaches using purified protein, complimentary methods using DNA manipulation and 

bacteriology were used to further investigate ARE ABC-F resistance phenotypes. Finally, the 

data derived from this study was assessed in the context of the wider scientific literature to 
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re-evaluate the hypotheses for the ARE ABC-F resistance mechanism and an appropriate 

model has been proposed. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Bacterial strains, plasmids, and growth media 

Strains of bacteria used in this study are listed in Table 2.1. Plasmids used during this study 

are listed in Table 2.2. Routine culture of E. coli strains used Luria-Bertrani (LBB) broth and 

(LBA) agar (Sigma-Aldrich, Poole, UK). S. aureus and E. faecalis strains were propagated using 

Mueller-Hinton broth (MHB) and agar (MHA) (Oxoid, Basingstoke, UK) unless otherwise 

stated. For long-term maintenance bacterial strains were stored as saturated cultures 

supplemented with 16% (v/v) glycerol at -80°C. Purified plasmid DNA was stored at -20°C. 

2.1.2 Chemicals and antibiotics 

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich. All solutions 

were prepared using deionised water, and either heat-sterilised (121°C for 20 min) or filter-

sterilised (0.22 μm filters Merck Millipore, Darmstadt, Germany). Antibiotics used in this 

study are listed in Table 2.3, along with related solvents and suppliers. Radiolabelled 3H-

lincomycin was from Quotient Bio Research (Nottingham, UK).  
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Table 2.1. Bacterial strains used in this study 

Organism Strain Comments Reference / Source 

Enterococcus 
faecalis 

ATCC 29212 Source of lsa(A) gene Kim et al., (2012) 
ATCC 

Enterococcus 
faecium 

E1679 Source of msr(C) gene Gift from W. Schaik 
(Department of 
Medical 
Microbiology, 
University Medical 
Center Utrecht). 

Staphylococcus 
aureus 

RN4220 Restriction deficient derivative of 
S. aureus 8325-4. Used for routine 
cloning and antibiotic susceptibility 
testing. 

Fairweather et al., 
(1983) 

 CYL557 RN4220 containing the accessory 
plasmid pLL2787 encoding the ϕ11 int 
gene. 

Luong and Lee, (2007) 

Escherichia coli DH5α For routine cloning procedures. 

Genotype: fhuA2 lac(del)U169 phoA 
glnV44 Φ80' lacZ(del)M15 gyrA96 
recA1 relA1 endA1 thi-1 hsdR17 

Invitrogen (Paisley, 
UK) 

 XL10-Gold For use during site directed 
mutagenesis. 

Genotype: endA1 glnV44 recA1 thi-1 
gyrA96 relA1 lac Hte Δ(mcrA)183 
Δ(mcrCB-hsdSMR-mrr)173 tetR 
F'[proAB lacIqZΔM15 Tn10(TetR Amy 
CmR)] 

Agilent Technologies 
(Cheshire, UK) 

 BL21 (λDE3) 
Gold 

For expression of genes from the T7 
promoter. 

Genotype: F-ompT gal dcm lon 
hsdSB(rB- mB-) λ(DE3 [lacI lacUV5-T7 
gene 1 ind1 sam7 nin5]) 

Agilent Technologies  

 BL21-CodonPlus 
(λDE3) RIL 

For expression of genes from the T7 
promoter. Designed to enhance 
expression of genes with a high AT-
content. 

Genotype: B F- ompT hsdS(rB- mB-) 
dcm+ Tetr gal λ(DE3) endA Hte [argU 
ileY leuW Camr] 

Agilent Technologies  

 CopyCutter 
EPI400 

Used to maintain plasmid pC19Saluc 
at low-copy number, can be induced 
to higher copy number for improved 
plasmid yield. 

Genotype: F-mcrA∆(mrr-hsdRMS-
mcrBC) φ80dlacZ∆M15 ∆lacX74 recA1 
endA1 araD139 ∆(ara,leu)7697 galU 
galK λ– rpsL nupG tonA ∆pcnB dhfr. 

Epicentre (Madison, 
WI, USA) 



41 
 

 

Table 2.2. Plasmids used during this study. 

Vector Comments Reference / Source 

pEPSA5 S. aureus / E. coli shuttle vector. For expression of genes in S. 
aureus from pT5X xylose-inducible promoter. ampicillinER, 

chloramphenicolSR 

Forsyth et al., (2002)  
Elitra Pharmaceuticals, 
(San Diego, CA, USA) 

pLL39 Single copy integration vector for integration at the L54a 
attP or ϕ11 attP sites on the S. aureus chromosome. 

spectinomycinlER, tetracyclineSR  

Luong and Lee, (2007) 
Gift from C.Y. Lee 
(University of 
Arkansas for Medical 
Sciences, USA) 

pIVEX2.3d Optimised for expression in in vitro T7 T/T systems, also used 
for expression in E. coli. Encodes a non-cleavable C-terminal 
6-His tag. ampicillinER 

Roge and Betton, 
(2005) 5 PRIME 
(Düsseldorf , 
Germany) 

pDIA17 Encodes lacI gene. Co-transformed with pIVEX2.3d to 
improve transformation efficiency. chloramphenicolER 

Roge and Betton, 
(2005) Gift from J.M. 
Betton (Inst Pasteur, 
Paris, France) 

pET28a-Tev Modified pET28a expression vector encoding an N-Terminal 
10xHis-tag followed by a Tobacco Etch Virus (TEV) protease 
recognition site. Vector used to allow affinity purification. 
kanamycinER  

Novagen  

pET28a-SUMO Modified pET28a expression vector encoding N-Terminal 
6xHis  and SUMO (type 3) tags followed by a recognition site 
for U1p protease. Vector used to improve protein solubility 
allow affinity purification. kanamycinER 

Novagen  

pET28a-MAL Modified pET28a expression vector encoding an N-Terminal 
6xHis and maltose binding protein (MBP) tags followed by a 
PreScission protease cleavage site. Vector used to improve 
protein solubility allow affinity purification. kanamycinER 

Novagen  

pET28a-GST Modified pET28a expression vector encoding  N-Terminal 
6xHis and Glutathione S-transferase (GST) tags followed by a 
PreScission protease cleavage site. Vector used to improve 
protein solubility and allow affinity purification. kanamycinER 

Novagen  

pBEST Contains firefly luciferase (luc) gene under the control of the 
E. coli tac promoter. ampicillinER  

Promega (Madison, 
WI, USA) 

pBEST19Saluc Contains luc gene under the control of the strong 
staphylococcal Cap1A promoter and a staphylococcal origin 
of replication. ampicillinER, chloramphenicolSR 

Acquired from J.K. 
Hobbs (University of 
Leeds, unpublished 
work) 

pBSSC12 Source for vga(E) Schwendener and 
Perreten, (2011) Gift 
from V. Perreten 
(University of Berne, 
Switzerland) 

* ER denotes resistance phenotype in E. coli. SR denotes resistance phenotype in S. aureus   
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Table 2.3.  Antibiotics used in this study 

Compound Solvent Source 

Ampicillin Water Sigma-Aldrich (Poole, UK) 

Blasticidin S Water Merck Chemicals (Nottingham, UK) 

Chloramphenicol 50% (v/v)Ethanol Sigma-Aldrich  

Erythromycin 50% (v/v) Ethanol Sigma-Aldrich  

Fluorphenicol 50% (v/v) Ethanol Sigma-Aldrich  

Kanamycin Water Sigma-Aldrich  

Leucomycin DMSO Santa Cruz Biotechnology (Dallas, TX, 

USA) 

Lincomycin Water Sigma-Aldrich  

Linezolid DMSO Sigma-Aldrich  

Puromycin Water Sigma-Aldrich  

Retapamulin DMSO Gift from GlaxoSmithKline 

(Brentford, UK) 

Sparsomycin DMSO Gift from E. Cundliffe (University of 

Leicester, UK) 

Spiramycin DMSO Santa Cruz Biotechnology  

Tetracycline Water Sigma-Aldrich  

Tiamulin DMSO Sigma-Aldrich  

Tylosin Water Santa Cruz Biotechnology  

Virginiamycin M DMSO Sigma-Aldrich  
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2.2 Molecular biology techniques 

2.2.1 Determination of DNA concentration 

DNA was quantified spectrophotometrically by reading absorbance at 260 nm using a P300 

nanophotometer (Implem, Munich, Germany). The purity of DNA samples was assessed by 

determining the ratios of absorbance at 260 nm / 280 nm and 260 nm / 230 nm (Sambrook 

et al., 2001). 

2.2.2 Isolation of plasmid DNA 

Plasmid DNA was isolated from E. coli DH5α and BL21 strains using the QIAprep Spin 

Miniprep Kit (Qiagen, Venlo, Limburg, Netherlands) according to manufacturer’s 

instructions. The same kit was also used for extracting plasmid DNA from S. aureus. However, 

in order to degrade staphylococcal cell walls buffer P1 was supplemented with 100 μg/ml 

recombinant lysostaphin (affinity purified in our laboratory) and the P1-cell suspension was 

incubated at 37°C for 10 min before proceeding to alkaline lysis.  

In order to isolate large quantities of plasmid pC19SA5 for use in in vitro T/T assays (2.5.2) 

100 ml of LBB containing 100 μg/ml ampicillin was inoculated with a single colony of E. coli 

CopyCutter EPI400 carrying the pC19SA5 plasmid and grown overnight at 37°C with vigorous 

aeration. The following day, 500 ml of LBB containing 100 μg/ml ampicillin and 500 μl 

CopyCutter Induction Solution (Epicentre, Madison, WI, USA) was inoculated with 56 ml of 

saturated overnight culture and grown for 4 h. Cells were harvested by centrifugation (5000 

x g, 15 min) and then processed using a HiSpeed Plasmid Maxi Kit (Qiagen) according to 

manufacturer’s instructions.  

2.2.3 Isolation of genomic DNA 

The PurElute Bacterial Genomic Kit (Edge BioSystems, Gaithersburg, MD, USA) was used to 

isolate chromosomal DNA from E. faecalis and E. faecium according to manufacturer’s 

instructions. This kit was also used to isolate chromosomal DNA from S. aureus; however, 



44 
 

 

prior to the initial cell lysis step, spheroplast buffer was supplemented with lysostaphin and 

incubated as detailed in Section 2.2.2. 

2.2.4 Concentration of DNA 

DNA was concentrated by ethanol precipitation. Briefly, a 1/10 volume of 3M sodium acetate 

(pH 5.2) was added to one volume of DNA before addition of 2-3 volumes of 100% (v/v) 

ethanol. The resulting suspension was placed at -80°C for 1 h and subsequently centrifuged 

at 30 000 x g for 30 min at 4°C. Supernatant was carefully removed from the resultant DNA 

pellet. The pellet was washed in 2-3 volumes of 70% (v/v)  ethanol and centrifuged at 30 000 

x g for 10 min at 4°C. Finally, the supernatant was carefully removed and the DNA pellet was 

air-dried for 5 min and resuspended in an appropriate volume of 10 mM Tris-Cl (pH 8.5). 

2.2.5 Polymerase chain reaction 

Oligonucleotide primers were obtained from Eurofins MWG operon (Ebersberg, Germany), 

diluted to 100 pmol/μl in 10 mM Tris-Cl (pH 8.5), and stored at -20°C. Nucleotides were from 

Promega (Madison, WI, USA). PCRs were performed in a Techne TC-3000 thermal cycler 

(Bibby Scientific, Staffordshire, UK) using Q5 High-Fidelity DNA Polymerase (New England 

Biolabs [NEB], Ipswich, Massachusetts, USA). Q5 High-Fidelity DNA Polymerase catalysed 

PCRs were carried out according to manufacturer’s instructions and reaction conditions were 

optimised where appropriate. Primer melting temperatures and corresponding PCR 

annealing temperatures were calculated using the “NEB-Tm calculator” at 

http://tmcalculator.neb.com/ (last accessed 27-07-2015). Oligonucleotide primers used for 

PCR during this study are listed in Table 2.4. 
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Table 2.4. Oligonucleotide primers used in this study. Restriction sites and sequences complementary to the 

pLL39 vector used for Gibson assembly are italicised and lower case, codons targeted for mutagenesis are 

underlined, and expression signals (promoters and ribosome binding sites) are shown in bold. 

Designation Description Sequence (5’-3’) 

VgaA_E105Q_fwd 

For mutagenesis of catalytic 
glutamine in N-terminal ABC 

AAAAATCCAGAACTGCTATTAGCAGATCAGC

CAACAACTAACTTAGATAATAAC 

VgaA_E105Q_rev 
GTTATTATCTAAGTTAGTTGTTGGCTGATCT

GCTAATAGCAGTTCTGGATTTTT 

VgaA_K219T_fwd 

For mutagenesis of the vgaA 
interdomain linker  

AAGTATGGCTTTGCTCCCGTTATTTTGCCTTC

AGATAAACTTAAGTTTTTCG 

VgaA_K219T_rev 
CGAAAAACTTAAGTTTATCTGAAGGCAAAAT

AACGGGAGCAAAGCCATACTT 

VgaA_cap1a39_fwd 
For introduction of vga(A) 
into plasmid pLL39 under 
control of the cap1A 
promoter 

agcttagatctaatcgaattcgagctcggtaccCAGA

GTTTGCAAAATATACAGGGGATTATATATA

ATGGAAAACAAGAAAGGAAAATAGGAGGT

TTATATGGCAAAAATAATGTTAGA 

VgaA_cap1a39_rev 

tgtaggtaataaaaaagcttgcatgcctgcaggtcgac

tctagaggatTTATTTATCCAAATTTCTTTTTTC

A 

VgaA_pEPSA5_fwd 
For introduction of vga(A) 
into plasmid pEPSA5 
 

GCTAgagctcATAAGAGGATGAGAAAATATG

GCAAAAATAATGTTAGAGGGACT 

VgaA_pEPSA5_rev 
GACTCggatccTTATTTATCCAAATTTCTTTTTT

CAT 

Cfr_pEPSA5_fwd 
For introduction of cfr into 
plasmid pEPSA5 

GCAACgagctcATAGGAGGATCAGAAAATAT

GAACTTTAACAACAAAACGAAATATGG 

Cfr_pEPSA5_rev 
GCAACggatccTTACTGGGAGTTCTGATAGTT

ACC 

VgaA_pIVEX_fwd For introduction of vgaA into 
plasmid piVEX2.3d 

CTccatggCAAAAATAATAGAGGGAC 

VgaA_pIVEX_rev CTgggcccTTTATCCAAATTTCTTTTTTC 

VgaA_28a_fwd 

For introduction of vga(A) 
into pET28a based vectors 

GCGCTAGGATCCATGGCAAAAATAATGTTA

GAGG 

VgaA_28a_rev 
CGACTAAAGCTTTTATTTATCCAAATTTCTTT

TTTCAT 

VgaAv_28a_fwd 

For introduction of vga(A)v 
into pET28a based vectors 

GCGCTAggatccATGAAAATATTGTTAGAGGC

TCTTC 

VgaAv_28a_rev 
CGACTActcgagTCAATTATCTAAATTTCTTTT

CTCGT 
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Table 2.4 continued. Oligonucleotide primers used in this study. 

VgaC_28a_fwd 

For introduction of vga(C) into 
pET28a based vectors 

GCGCTAggatccATGGTTTTACTAGAGGC 

VgaC_28a_rev 
CGACTAaagcttTTACTCCTTTAACTTACTTTTT

T 

VgaE_28a_fwd 

For introduction of vga(E) into 
pET28a based vectors 

GCGCTAggatcc 

ATGTTATTATTTGAAGGTACAT 

VgaE_28a_rev 
CGACTAaagcttTTATAGTTTTTTAGTCAGTTC

TT 

MsrA_28a_fwd For introduction of msr(A) 
into pET28a based vectors 
 

GCGCTAggatccATGGAACAATACACCATCAA

AT 

MsrA_28a_rev CGACTAaagcttTTAGGTGATGTCGTGCAG 

MsrC_28a_fwd 
For introduction of msr(C) 
into pET28a based vectors 
 

gcgctaggatccATGGAAAATTTAGCAGTAAAT

ATAAC 

MsrC_28a_rev 
CGACTAgagctcTTAAAAATTTCTCGTAAGTA

CTTTTTTTA 

LsaA_28a_fwd 
For introduction of lsa(A) into 
pET28a based vectors 
 

GCGCTAggatccATGTCGAAAATTGAACTAAA

ACAAC 

LsaA_28a_rev 
CGACTAaagcttTTATGATTTCAAGACAATTTT

TTTATCTGT 

  

2.2.6 Colony PCR 

Colony PCR was performed using GoTaq Green Master Mix (Promega). A colony PCR primer 

stock was prepared by diluting forward and reverse primers to 2.5 pmol/μl in a volume of 

200 μl. Single colonies were suspended in 20 μl phosphate buffered saline (PBS). Reactions 

were composed of 12 μl GoTaq Green Master Mix, 10 μl colony PCR primer stock (1 μM) and 

2 μl PBS-colony suspension. Reactions underwent an initial denaturation at 95°C for 10 min, 

followed by 18 cycles of 30 s denaturation at 95°C, 30 s annealing at 50°C and 1 min/kb 

extension at 72°C. Reactions were held at 4°C before analysis by agarose gel electrophoresis 

(Section 2.2.8). 
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2.2.7 Site-directed mutagenesis 

The Agilent Technologies Quick Change Lightning site-directed mutagenesis kit was used 

according to manufacturer’s guidelines. Mutagenised plasmids were transformed into ultra-

competent cloning strain E. coli XL1-Gold (Table 2.1). The plasmid DNA of putative mutants 

was extracted (Section 2.2.2) and mutations were confirmed by DNA sequencing (Section 

2.2.14). 

2.2.8 Agarose gel electrophoresis 

Agarose gels (30 ml) were composed of between 0.5% and 1.2% (w/v) agarose in TAE buffer 

containing 3 μl 10 000X SYBR Safe DNA stain (Life technologies, Carlsbad, CA, USA). Agarose 

content was tailored to give optimum resolution for the DNA fragments undergoing analysis. 

DNA samples were mixed with 6x loading dye (Promega) in a 6:1 ratio and loaded into the 

gel. Electrophoresis was typically performed at 90 V for 28 min in TAE buffer. For 

quantification of purified ribosomal RNA, denaturing agarose gels were composed of 1% 

agarose (w/v) in TBE buffer containing 1M urea and SYBR-Gold DNA stain (Life Technologies). 

Electrophoresis of rRNA was performed at 90 V for 60 min in TBE buffer. 

2.2.9 Restriction digests 

Restriction enzymes and appropriate buffers were from NEB. Preparative digests of PCR 

products and plasmids were performed in a reaction volume of 50 μl. Typically, DNA was 

digested simultaneously with two restriction enzymes in reactions comprising 5 μl CutSmart 

buffer, 2 μg DNA and 800 units of each restriction enzyme. Reactions were incubated at 37°C 

for 3 h and digested DNA was gel or column purified (Section 2.2.10). 

2.2.10 Purification of DNA  

DNA amplified by PCR reactions was purified using the QIAquick PCR Purification Kit (Qiagen).  

In order to remove enzymes and exchange buffers following restriction digests, digested and 

undigested DNA was separated by electrophoresis (Section 2.2.8), the relevant band was 
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excised from the agarose gel and DNA was extracted from the gel using the QIAquick Gel 

Extraction Kit according to manufacturer’s instructions (Qiagen).   

2.2.11 DNA Ligation 

DNA ligations were performed using the NEB Quick Ligation Kit according to manufacturer’s 

guidelines. Reactions typically contained 50 ng of digested plasmid and a 3 molar excess of 

digested insert. Ligation reactions were incubated at 25°C for 10 min. 

2.2.12 Transformation of E. coli strains 

Chemically competent E. coli strains were prepared according to the Inoue method 

(Sambrook et al., 1989). For transformation, cells were thawed on ice and 1-10ng of DNA 

was added. The cell-DNA suspension was incubated on ice for 30 min, heat-shocked at 42°C 

for 30 s and allowed to recover on ice for 2 min. SOC media (Hanahan, 1983) was added to a 

final volume of 1 ml and the resulting culture was grown at 37°C for 1 h with vigorous 

aeration. Finally, volumes of culture were plated onto LBA containing appropriate antibiotics 

for selection and incubated at 37°C overnight. If the cells were transformed with a ligation 

reaction, resulting colonies were screened for the presence and correct orientation of a 

ligated insert by colony PCR (Section 2.2.6). 

2.2.13 Transformation of S. aureus strains 

Electrocompetent strains of S. aureus were prepared according to a method previously 

defined by Monk et al. (Monk et al., 2012).  For electroporation, cells were thawed on ice for 

5 min before being centrifuged (10 000 × g for 1 min) and resuspended in 50 µl of 10% 

glycerol (v/v) and 500 mM sucrose (filter sterilized). Plasmid DNA (1-50 ng for pEPSA5, 1-5 

μg for pLL39) was added to the cells, the DNA-cell suspension was transferred to a 1-mm 

electroporation cuvette (Geneflow, Elmhurst, UK), and pulsed at 21 kV/cm, 100 Ω, and 25 

µF. TSB supplemented with 500 mM sucrose (filter sterilized) was immediately added to a 

final volume of 1 ml and the resulting culture was incubated at 37°C for 1 h before plating 
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onto MHA containing appropriate antibiotics for selection. Plates were incubated at 37°C 

overnight. 

2.2.14 DNA sequencing 

DNA sequencing was used to confirm the correct orientation and sequence of cloned inserts 

following ligation (Section 2.2.11), and the introduction of point mutations following site 

directed mutagenesis (Section 2.2.7). Sequencing was performed by Beckman-Coulter 

Genomics (MA, USA) by Sanger sequencing (Sanger et al., 1977). 

2.3 Determination of susceptibilities to antibacterial agents 

2.3.1 Standardised susceptibility testing 

MICs of antibacterial agents against various S. aureus strains were determined according to 

Clinical and Laboratory Standards Institute (CLSI) guidelines (Cockerill et al., 2012), by 

exposing bacteria to serial two-fold dilutions of antibiotic agents in MHB. S. aureus strains 

carrying the pEPSA5 plasmid (Table 2.2) used MHB supplemented with 2% (w/v) d-xylose to 

induce expression of resistance genes from the pT5Xpromoter.  

2.3 Expression of recombinant proteins 

2.3.1 Auto-induction media 

Media for the production of proteins using the auto-induction method was prepared as 

previously described (Studier, 2005).  

2.3.2 Small-scale expression trials 

Prior to large scale production of proteins, expression levels of recombinant ARE ABC-F genes 

were assessed in 10 ml cultures. A single-colony from a freshly transformed E. coli 

BL21(DE3λ) strain was used to inoculate 10 ml of auto-induction media in a 50 ml sterile 

Falcon tube. This culture was grown at 25°C with vigorous aeration for 1-2 d. An aliquot of 1 

ml was removed and centrifuged at 10 000 x g 2 min to harvest cells. The resultant pellet was 
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resuspended in 200 μl lysis buffer (see Table 2.4, Page 52 for buffer composition) and 

subjected to three cycles of rapid freezing at -80°C followed by thawing at 4°C. In order to 

separate the insoluble and soluble fractions, lysate was centrifuged at 30 000 x g at 4°C for 

10 min. The supernatant corresponding to the soluble fraction was added in a 1:1 ratio to 2x 

sodium dodecyl sulphate (SDS) loading buffer (Sambrook et al., 2001). The pellet, 

corresponding to the insoluble fraction, was dissolved in 300 μl 8M urea solution and added 

in a 1:1 ratio to 2x SDS loading buffer. Samples were analysed by SDS-PAGE (Section 2.3.4).  

2.3.3 Preparative scale expression of recombinant proteins 

FusB was expressed as previously described (Cox et al., 2012). For large-scale expression of 

Vga(A) and Lsa(A), a single colony of BL21 (DE3) Gold containing pIVEX2.3d-vga(A) or 

BL21 (DE3) CodonPlus RIL containing pET28aSUMO-lsa(A) was used to inoculate 400 ml of 

sterile auto-induction media in 2 L baffled flasks. The cultures were incubated at 25°C (for 

vgaA expression) or 18°C (for lsaA expression) for 3 (vgaA) or 4 (lsaA) d with vigorous 

aeration. Cells were harvested by centrifugation (6 000 x g, 20 min), washed with PBS, 

weighed, and stored as pellets at -80°C. 

2.3.4 SDS-PAGE 

Protein samples containing SDS-PAGE loading buffer (4% (w/v) SDS, 20% (v/v) glycerol, 

0.004% (w/v) bromophenol blue, 200 mM DTT and 0.125 M TrisHCl [pH6.8]) (Sambrook et 

al., 2001) were denatured by heating to 95°C for 5 min prior to separation by SDS-PAGE. 

Electrophoresis using pre-cast 4-20% (w/v) gradient polyacrylamide gels (Expedeon, 

Cambridge, UK) in TEO-Tricine buffer was performed at 175 V for 35 min. When improved 

resolution was required, acrylamide gels were cast with stacking and resolving layers of 4% 

(w/v) and 14% (w/v) acrylamide/bis-acrylamide (Severn Biotech, Kidderminster, UK) 

respectively and run in electrophoresis buffer (0.1% (w/v) SDS, 25 mM Tris base, 192 mM 

glycine) at 12 W for 3-4 h. Gels were stained by soaking in Coomassie stain: Coomassie 
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Brilliant Blue R-250 (150 mg/l), in 25 % (v/v) methanol, 10% (v/v) acetic acid and de-stained 

by soaking in de-stain solution: 40% (v/v) methanol, 10% (v/v) acetic acid. Alternatively, if 

SDS-PAGE results were required quickly, cells were stained with InstantBlue (Expedeon). 

2.4 Purification of recombinant proteins 

2.4.1 Preparation of buffer solutions 

Buffers were prepared as detailed in Table 2.4. All buffers to be used with the ÄKTA purifier 

system (GE Healthcare, Buckinghamshire, UK) were degassed and filtered (0.22 μM filters, 

Merck Millipore) prior to use.  
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Table 2.4. Buffers used during purification of Vga(A) and Lsa(A) 

Buffer Composition 

Lysis  50 mM NaH2PO4, pH 8.0; 300 mM NaCl, 10 mM 

imidazole, 1 mM MgCl2 

VgaA-IMAC-W 50 mM NaH2PO4, pH 8.0; 2 M NaCl, 20 mM imidazole, 

10% (v /v) glycerol, 1 mM MgCl2 

VgaA-IMAC-E 50 mM NaH2PO4 pH 8.0, 2 M NaCl, 250 mM imidazole, 

10% (v/v) glycerol, 1 mM MgCl2 

VgaA-GF 50mM HEPES, pH 7.4; 2M NaCl, 1mM DTT, 1 mM MgCl2 

VgaA-IEX 50 mM HEPES, pH 7.4; 50 mM NaCl, 1 mM DTT 

LsaA-IMAC-W 50 mM NaH2PO4, pH 8.0; 300 mM NaCl, 20 mM 

imidazole, 10% (v/v) glycerol  

LsaA-IMAC-E 50 mM NaH2PO4, pH 8.0; 300 mM NaCl, 

250 mMimidazole, 10% (v/v)  glycerol  

LsaA-IMAC-S 50 mM NaH2PO4, pH 8.0; 300 mM NaCl, 40 mM 

imidazole, 10% (v/v) glycerol  

Storage buffer* 50 mM HEPES, pH 7.4; 300 mM NaCl, 1 mM DTT 

 * Additionally used for LsaA gel filtration 

2.4.2 Preparative scale lysis of E. coli cells 

Cell pellets were thawed on ice and resuspended in 3 ml Lysis buffer (Table 2.4) per-g wet-cell weight. 

Cell suspensions were incubated with 7000 U chicken egg-white lysozyme (7000 U/ mg, Sigma-

Aldrich), one EDTA-free protease inhibitor tablet / cell pellet (Roche, Basel, Switzerland) and 17 units 

Basemuncher endonuclease/ ml of suspension  (Expedeon) at 4°C for 30 min and lysed by sonication 

(20s on / 40s off, 50% amplitude, large probe). During sonication samples were packed with ice and 



53 
 

 

checked regularly to prevent heating. Lysates were clarified by centrifugation (30,000 x g, 20 min) and 

kept on ice for all subsequent purification steps.  

2.4.3 Purification of Vga(A) 

Purification of Vga(A) was optimised as described in Chapter 3. The optimised protocol for Vga(A) 

purification using  immobilized metal ion affinity chromatography (IMAC), gel filtration (GF) and ion 

exchange (IEX) is detailed below.  

Cleared lysate was equilibrated with 3 mL Ni-NTA agarose (Expedeon) for 15 min and subsequently 

loaded into a 25-mL free-flow gravity column (GeneFlow). Unbound protein was allowed to flow 

through the column before washing with 10-column volumes of Vga-IMAC-W buffer (Table 2.4). 

Bound protein was eluted with 5 ml VgaA-IMAC-E buffer (Table 2.4) and dialysed overnight into 

Vga-GF buffer (Table 2.4) using SnakeSkin Dialysis Tubing (Life Technologies, 10 kDa MWCO). Dialysed 

protein was loaded onto a Superdex 200 (16/60) column (GE Healthcare) pre-equilibrated with VgaA-

GF buffer. Fractions corresponding to Vga(A) were collected and concentrated to a volume <5 ml with 

Pierce Protein Concentrators (Life technologies). Once concentrated, Vga(A) was exchanged into 

VgaA-IEX buffer (Table 2.4) using five HiTrap Desalting columns (GE Healthcare) connected in series 

and subsequently loaded onto a 6 ml resource S column (GE Healthcare) for purification by cation-

exchange. The resource S column was eluted with a 50 mM-1M NaCl linear gradient. Fractions 

corresponding to Vga(A) were collected, concentrated, exchanged into Storage buffer, and stored at -

80 oC.  

2.4.4 Purification of Lsa(A) 

Purification of Lsa(A) by IMAC was performed as detailed in Section 2.4.3 with the following buffer 

substitutions (Table 2.4); LsaA-IMAC-W for VgaA-IMAC-W; LsaA-IMAC-E for VgaA-IMAC-E. Following 

IMAC, the eluate was dialysed (Section 2.4.3) against LsaA-IMAC-S buffer (Table 2.4) in the presence 

of U1p SUMO protease. After dialysis, the sample was re-applied to the Ni-TNA column in order to 

separate the cleaved 6-His-SUMO tag, which bound the column, from Lsa(A), which was eluted in the 
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flow through. Once the flow-through had been collected, it was concentrated to a volume < 5ml 

(Section 2.4.3) and loaded onto a Superdex 200 (16/60) column (GE Healthcare) pre-equilibrated with 

Storage buffer. Fractions corresponding to Lsa(A) were collected, concentrated, and stored at ‒80°C. 

2.4.5 Purification of FusB 

FusB was purified by IMAC and gel filtration as previously described (Cox et al., 2012). 

2.4.6 Determination of protein concentration 

Recombinant protein concentration was determined by measurement of UV absorbance at 280 nm 

using a P300 nanophotometer (Implem). Levels of contamination of protein samples with nucleic acid 

were assessed using the same instrument to measure absorbance at 260 nm and calculating the 

260/280 ratio. Extinction coefficients were derived using the ProtParam tool on the ExPASy 

proteomics server at http://web.expasy.org/protparam/ (last accessed 27-07-2015).  

The Bradford assay (Bradford, 1976) was used to determine the concentration of protein present in 

S30 fractions (Section 2.5.1). Sample concentrations were determined relative to a bovine γ-globulin 

standard curve. Bradford reagent was from Bio-Rad (Hercules, CA, USA). 

2.5 In vitro transcription-translation assays 

2.5.1 Preparation of S30 extracts 

Staphylococcal S30 extract was prepared from S. aureus RN4220 in accordance with the protocol of 

Murray et al. (Murray et al., 2001) with limited modifications, as detailed below.  

Cells were grown in Brain-Heart Infusion (BHI) broth to saturation, harvested by centrifugation (6000 

x g, 20 min, 4°C), and washed successively in ice-cold buffer A (10 mM Tris-acetate pH8, 14 mM 

magnesium acetate, 1 mM DTT) containing 1 M KCl and cold buffer A containing 50 mM KCl. Cell pellets 

were weighed and frozen at -80°C. Subsequent steps were undertaken within 3 d, performed at 4°C 

unless otherwise stated, and kept strictly RNase free. Cell pellets were thawed on ice and resuspended 

in 2 ml buffer B (10 mM Tris-acetate pH8, 20 mM magnesium acetate, 50 mM KCl, 1 mM DTT) / g wet-
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cell weight plus 15 U/ml RNasein (Invitrogen). Cell suspensions were transferred to SS34 centrifuge 

tubes and lysostaphin (Sigma-Aldrich) was added to a final concentration of 20 mg/ml. The suspension 

was incubated for between 30-60 min at 37°C, until it became visibly viscous. The lysed cells were 

fractionated by centrifugation (30 000 x g, 30 min, 4°C) and the resulting supernatant was dialysed 

using Float-A-Lyzer G2 dialysis tubing (3500 MWCO) (Spectrum Laboratories, Breda, Netherlands) 

against buffer A supplemented with 60 mM potassium acetate. Dialysis was performed for 1 h and 

repeated three times. Samples were concentrated to 10mg/ml using polyethylene glycol 8000, flash 

frozen using liquid nitrogen and stored at ‒80°C. Protein concentration was determined using the 

Bradford assay (Section 2.4.6).    

E. coli S30 extract was purchased from Promega (E. coli T7 S30 Extract System for Circular DNA, L1130). 

2.5.2 In vitro transcription-translation assays 

The ability of Vga(A) and Lsa(A) to protect translation was investigated using the S30 extracts 

described in Section 2.5.1. An optimised quantity of S30 extract was added to a reaction mixture of 

amino acids (Promega), S30 pre-mix (Promega) and 1 μg p194SAluc/pBESTluc (Table 2.2). Antibiotics 

and purified proteins were added in accordance with assay requirements. Reactions were incubated 

for 1 h at 37°C and the level of transcription/translation was quantified by the addition of a saturating 

concentration of luciferase assay reagent (Promega) and subsequent measurement of luminescence 

using a FluoStar Optima plate reader (BMG labtech, Ortenberg, Germany). Concentrations of 

Virginiamycin M, fusidic acid and lincomycin were optimised to give 90% inhibition (IC90) compared to 

a drug free, exogenous protein free, control. 
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2.6 Assays of lincomycin binding to staphylococcal ribosomes 

2.6.1 Purification of staphylococcal ribosomes 

Staphylococcal ribosomes were purified using an l-cysteine Sulfolink (Thermo Scientific, Waltham, MA, 

USA) column and ultracentrifugation as previously described (Maguire et al., 2008).  

An l-cysteine Sulfolink column suitable for use with an ÄKTA purifier system (GE Healthcare) was 

prepared as follows. A total of 100 mL of a 50% (v/v) slurry of Sulfolink coupling gel was centrifuged 

(500 x g, 5 min), and the storage buffer carefully decanted. The gel was washed three times with 

200 ml of Sulfolink coupling buffer (50 mM Tris, 5 mM EDTA-Na; pH 8.5) using the centrifuge-decant 

method. Next, 100 ml of a 50 mM solution of l-cysteine in coupling buffer was added and the slurry 

gently shaken for 1 h at 25°C. Residual l-cysteine was removed by centrifuge-decant to afford l-cystein 

Sulfolink resin. A 50% (v/v) slurry of l-cystein Sulfolink resin was produced by addition of dH2O and the 

resin was packed into a XK 16/20 column (GE Healthcare) according to the protocol detailed in Column 

Packing the Movie (GE Healthcare).  The resulting column was stored in 20% (v/v) ethanol and reused 

multiple times. 

Staphylococcal cell pellets for extraction of ribosomes were prepared and stored as detailed in Section 

2.5.1. Pellets were thawed on ice and resuspended in 2 ml of Ribosome Lysis buffer (10 mM Tris 

acetate, pH 8.0; 20 mM magnesium acetate, 1 mM DTT) supplemented with 60 mM NH4Cl/ g of cell 

wet-weight. Cell suspensions were transferred to SS34 centrifuge tubes and lysostaphin (Sigma-

Aldrich) was added to a final concentration of 20 mg/ml. The suspension was incubated for between 

30-60 min at 37°C, until the cell pellet began to become visibly viscous. The lysed pellet was 

fractionated by centrifugation (30 000 x g, 30 min, 4°C) and the resulting supernatant was loaded onto 

an l-cystein Sulfolink column pre-equilibrated with ribosome lysis buffer using repeated applications 

of a 10ml superloop (GE Healthcare). The column was eluted using a 0-100% gradient (10 column 

volumes) of lysis buffer supplemented with 1 M NH4Cl. Eluted fractions containing protein were 

collected and subjected to ultracentrifugation (100 000 x g, 16 h at 4°C using a SW32Ti rotor and 
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Optima L-80 XP Ultracentrifuge (Beckman Coulter, Brea, CA, USA) to obtain ribosome pellets. Finally 

pellets were resuspended in Ribosome Lysis buffer and stored at ‒80°C. Ribosome concentration was 

determined as detailed in Section 2.6.2. 

2.6.2 Quantification of staphylococcal ribosomes 

For quantification of rRNA, serial dilutions of purified ribosomes (Section 2.6.1) were run on a 

denaturing agarose gel (Section 2.2.8) alongside serial dilutions of RiboRuler High Range RNA Ladder 

(Life technologies). Alternatively, ribosomal protein was quantified using SDS-PAGE to separate erial 

dilutions of purified ribosomes and of bovine serum albumin (BSA). Images of gels were captured with 

the use of a GeneGenius UV transilluminator (Syngene, Cambridge, UK) and analysed by 2D 

densitometry using AIDA software (Raytest, Straubenhardt, Germany). Ribosome concentration was 

determined through comparison of 16S rRNA with a standard curve calibrated with RiboRuler and 

comparison of ribosomal protein L3 with a BSA calibrated standard curve. Results obtained from 

quantification of rRNA and ribosomal protein were averaged. 

2.6.3 Lincomycin Ribosome binding assays 

The ability of LsaA to protect the ribosome from lincomycin binding was assessed using a modification 

of a previously described tetracycline binding assay (Wilson, 2014).  Ribosomes (500 nM) were pre-

incubated in 50 μl reactions with LsaA, BSA or unlabelled lincomycin (concentrations described in 

Section 4.4.4) in assay buffer (10 mM Tris, pH 7.5; 60 mM KCl, 10 mM NH4Cl, 300 mM NaCl, 6 mM 

MgCl2, 0.1 mM ATP) at 37°C. After 10 min, 3H-lincomycin (1 μM) was added, the reactions were 

incubated a further 10 min, vacuum-filtered through a 0.45 µm nitrocellulose filter and washed twice 

with 200 μl of ice-cold wash buffer (50 mM Tris-Cl, 50 mM KCl, 20 mM magnesium acetate) to remove 

unbound 3H-lincomycin. Ribosome-associated 3H-lincomycin was then quantified by scintillation 

counting. The ability of Lsa(A) to dissociate pre-bound lincomycin was investigated using the same 

assay conditions, however 3H-lincomycin was pre-incubated with ribosomes for 10 min at 37°C prior 
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to the addition of LsaA, BSA or unlabelled lincomycin, incubation for a further 10 min at 37°C, washing, 

and scintillation counting.  

2.7 Pull down assays 

Polyhistidine pull-down assays were performed to establish putative interactions of Vga(A), or Lsa(A), 

with intracellular components. Assays were performed as follows. Aliquots of 50 μl Ni-NTA agarose 

resin were equilibrated in lysis buffer (Table 2.4, 50 mM KH2PO4, pH 8.0; 300 mM NaCl; 10 mM 

imidazole) and 100 µg purified VgaA or LsaA was immobilised by incubation with resin for 15 min at 

4°C. Subsequently, immobilised protein was incubated with samples containing potential binding 

partners for 30 min at 37°C or 4°C. These samples were as follows: (i) S30 fraction derived from S. 

aureus RN4220 (Section 2.5.1), (ii) S30 fraction derived from E. coli (Section 2.5.1), and (iii) purified 

staphylococcal ribosomes (Section 2.6.1). Incubation was in the presence of 2 μg/ml virginiamycin M 

with 100 μM ATP or 100 μM AMP-PNP (Roche) as detailed in Section 4.4.5. Samples were applied to 

Pierce Micro-Spin Columns and centrifuged (100 x g, 1 min) to remove unbound protein. Columns 

were repeatedly washed (3 x 20 CV, 50 mM KH2PO4, pH 8.0; 300 mM NaCl, 20 mM imidazole) to 

remove non-specifically bound protein. SDS-PAGE loading buffer (Section 2.3.4) supplemented with 

100 mM EDTA was used to elute the column and samples were examined by SDS-PAGE. Bands 

corresponding to putative binding partners were excised from the gel and analysed by peptide-mass 

fingerprinting (Section 2.8). 

2.8 Peptide-mass fingerprinting 

Bands excised from SDS-PAGE gels were de-stained and subjected to tryptic digest. The resulting 

peptides were separated by liquid chromatography and identified by MALDI-TOF mass-spectrometry. 

De-staining, digest and LC-MS was carried out by Dr James Ault (Mass Spectrometry Facility, University 

of Leeds). 
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2.9 Screening for protein crystallisation conditions 

Crystal screens from Hampton Research (California, USA; Crystal Screen I/II, Index, Salt RX), Molecular 

Dimensions (Florida, USA; Midas, Morpheus), and Rigaku Reagents (Washington, USA; Wizard I/II) 

were assessed for their ability to confer conditions suitable for crystallisation. Conditions were tested 

in sitting drops (0.4 μl drops) using the vapour diffusion reagent (60 μl reservoir volume)  in the 

presence or absence of 100 μM AMP-PNP. Screens were set up in 3 drop,  96-well plates (Hampton 

Research, CA, USA) using a Formulatrix NT8 robot (Formulatrix, MA, USA) and incubated at 4°C or 25°C 

in a Rock Imager 1000 (Formulatrix). Crystal growth was examined after one day and then monitored 

at regular intervals up to two months. 
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3. Expression and purification of the ARE ABC-F proteins Vga(A) 

and Lsa(A) 

3.1 Abstract 

Efforts to determine the mechanism underpinning ABC-F-mediated antibiotic resistance 

would be facilitated by the production of homogenously purified ARE ABC-F proteins suitable 

for functional and structural studies. To date, only one ARE ABC-F has been purified in its 

native form; Vga(A). Here, an optimised method for purification of Vga(A) is described. 

Additionally, conditions conducive to the soluble expression and subsequent purification of 

a second ARE ABC-F protein, Lsa(A), are outlined. Attempts to crystallise the two proteins in 

order to pursue structural studies were unsuccessful, possibly due to proteolytic degradation 

observed even at low temperatures. However, optimised methodology for the homogenous 

purification of Vga(A) and Lsa(A) provides a platform from which to launch further structural 

and mechanistic investigations into the ARE ABC-F protein subfamily. 

3.2 Introduction 

To date, functional studies of ARE ABC-F determinants have concentrated on three proteins; 

Msr(A), Vga(A)and Ole(B), of which only Vga(A) and a fragment Ole(B) have previously been 

heterologously expressed and purified. The vga(A) resistance determinant is located on 

mobile genetic elements and mediates acquired resistance to streptogramin A and 

lincosamide antibiotics (with variants also conferring pleuromutilin resistance) (Lenart et al., 

2015, Novotna and Janata, 2006)) in several species of staphylococci (Allignet et al., 1992, 

Novotna and Janata, 2006, Lozano et al., 2012), whilst, the chromosomally encoded ole(B) 

gene confers self-protection in the oleandomycin producer, Streptomyces antibioticus 

(Olano et al., 1995). Functional studies of Ole(B) used only a fragment of the full-length 

protein, the N-terminal ABC domain, which was fused to the E. coli maltose binding protein 

(MBP) to promote solubility (Olano et al., 1995). In contrast, although Vga(A) has also been 
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expressed as an MBP-fusion (Chesneau et al., 2005), a Vga(A) construct modified solely by 

the addition of a C-terminal hexa-histidine tag that does not alter the proteins biological 

activity, has also been expressed and purified (Jacquet et al., 2008). Using purified protein, 

the ATPase activity of Vga(A) and the N-terminal domain of Ole(B) have been thoroughly 

characterised. However, functional studies of these two ARE ABC-F proteins have not 

provided a definitive explanation of the mechanism by which they mediate antibiotic 

resistance. Additionally, to date, no structural information is available for any member of the 

ARE ABC-F subfamily.  

3.3 Aims 

Work presented in this chapter provides optimised conditions for heterologous expression 

and purification of proteins belonging to the ARE ABC-F subfamily. Optimisation of a 

previously described method for production of Vga(A) is described. Conditions conducive to 

the production of soluble ARE ABC-F proteins other than Vga(A) were assessed and methods 

for purification of resulting soluble proteins was developed. Attempts to find conditions to 

promote crystallisation of ARE ABC-F proteins are outlined.  

3.4 Results 

3.4.1 Expression of Vga(A) 

The optimisation of conditions conducive to the production of soluble protein permits 

subsequent purification steps to be conducted under native conditions and removes any 

requirement for denaturation and refolding of the target protein. Previous work had 

reported low-level production of soluble of Vga(A) with a C-terminal hexa-histidine tag when 

the vga(A) gene was expressed from the IPTG-inducible pIVEX2.3d vector in E. coli BL21 

(DE3λ) Gold (Jacquet et al., 2008). The pIVEX plasmids are a somewhat unusual choice of 

vector for performing E. coli-based protein production given that they are primarily 

optimized for in vitro production of proteins. However, as pIVEX2.3d had been successfully
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used to produce soluble Vga(A), the pIVEX2.3d-vga(A) plasmid was constructed with the 

intention of optimising Vga(A) production (G. Cox, unpublished work). Auto-induction is an 

alternative method for production of proteins using the T7-system that has been shown to 

increase bio-mass and target-protein yield in comparison to IPTG induction (Studier, 2005). I 

therefore sought to establish whether the Vga(A) protein could be produced using auto-

induction of the pIVEX2.3d-vga(A) plasmid in E. coli BL21 (DE3) Gold (Jacquet et al., 2008). 

The pIVEX2.3d-vgaA plasmid was transformed into E. coli BL21 (DE3) Gold and subjected to 

small-scale auto-induction expression trials. Expression trials of vga(A) were performed 

alongside the ARE ABC-F gene msr(A) and tetracycline-resistance determinant tet(M), both 

of which had been codon optimised for expression in E. coli, synthesised, and cloned into 

pET28a by Genscript (New Jersey, USA), prior to transformation into E. coli BL21 (DE3λ) Gold.  

Initial expression trials tested the ability of two auto-induction media of differing 

composition (2ZYM 2X Lac and 8ZYM 4X Lac) to induce protein production when incubated 

for 2 d at 25°C. 8ZYM 4X Lac is designed to permit growth to a higher cell-density than 

2ZYM 2X Lac as it contains double the amount of glucose, lactose and glycerol, and four-

times the amount of yeast extract and tryptone, than 2ZYM 2XLac. Both media produced a 

small amount of soluble Vga(A) (60.2kDa) that was amenable to purification using a small-

scale Ni-NTA spin-column (Figure 3.1 A and B). The richer of the two media, 8ZYM 4X Lac, 

produced high-levels of insoluble Vga(A), Tet(M) (72.5 kDa), and Msr(A) (55.8 kDa). In an 

effort to increase the fraction of soluble protein generated using 8ZYM 4X Lac media, the 

incubation temperature was lowered to 18oC and growth time extended to 3-days, however, 

this did not produce detectable amounts of protein (Figure 3.1 C). 

As auto-induction with 8ZYM 4X Lac was able to produce soluble Vga(A), expression was 

scaled up and purification was attempted (Section 3.4.2). Expression of msr(A) was 

investigated further at a later point (Section 3.4.5). The tet(M) resistance determinant was 

not investigated further. 
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Figure 3.1. Small scale expression trials of vga(A) varying auto-induction media and temperature. (A) 2 ZYM 2X 

Lac at 25oC for 2days. (B) 8 ZYM 4X Lac at 25oC for 2days. (C) 8ZYm 4X Lac at 18oC for 3days.  

T - total cellular protein, I – Insoluble fraction, S – Soluble fraction, N – Eluate from Nickel-NTA mini-spin-column. 

M – Protein marker (Broad Range (2-212 kDa), New England Biolabs) showing molecular weight (Mw) in kDa.  

Molecular weights:- Msr(A) 55.8 kDa, Tet(M) 72.5 kDa, Vga(A) 60.2kDa.  
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3.4.2 Initial strategy for Vga(A) purification 

Initial efforts to purify Vga(A) utilised a three-step strategy; capture of Vga(A) using 

immobilised metal ion affinity chromatography (IMAC), followed by ion-exchange (IE) and 

gel filtration (GF) chromatography. Conditions for IMAC were optimised through evaluation 

of two resins, nickel-nitrilotriacetic acid (Ni-NTA) agarose (Expedeon) and TALON cobalt 

Affinity Resin (Clontech, CA, USA), washed with increasing concentrations of imidazole 

(Figure 3.2 A and B). A greater imidazole concentration was required to elute Vga(A) from 

Ni-NTA resin than cobalt  resin, suggesting that Ni-NTA exhibited higher affinity for Vga(A) 

(Figure 3.2 A vs. B). Ni-NTA agarose was therefore used for IMAC throughout this study in 

tandem with 20 mM imidazole in all IMAC wash buffers. Application of cleared auto-induced 

cell lysate to Ni-NTA agarose repeatedly showed that the most prominent band found within 

the eluted fraction migrated as if it had a similar molecular weight to that expected of Vga(A) 

(Figure 3.2 C). Analysis of this band by peptide mass fingerprinting (PMF) confirmed its 

identity as Vga(A) (Personal communication, J. Ault, Biomolecular Mass Spectrometry 

Facility, University of Leeds).  

Repeated attempts to further purify Vga(A) by cation-exchange were unsuccessful. After 

buffer exchange, the protein failed to bind the resource S IE column and was present in the 

flow through (Figure 3.2 D). Subsequent application of the flow through to an S200 GF 

column did not give a single peak corresponding to the molecular weight of Vga(A) (Figure 

3.2 E). Analysis of the fractions by SDS-PAGE revealed Vga(A) to be eluted in the void volume 

and present in fractions corresponding to a molecular weight higher than 60.2 kDa, 

suggesting aggregation of the protein (Figure 3.2 F).  
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Figure 3.2. Initial purification of Vga(A). SDS-PAGE showing optimisation of imidazole concentration for Vga(A) 

purification by IMAC using (A) Ni-NTA agarose and (B) TALON cobalt resin. (C) SDS-PAGE analysis of fractions 

generated by purification of an auto-induced, cleared, cell-lysate using Ni-NTA agarose, washed with the 

imidazole concentration as optimised in A. (D) Chromatogram resulting from application of Ni-NTA IMAC eluate 

from C to a resource S IE column. (E) Chromatogram resulting from application of flow through from Resource S 

described in D to an S75 GF column. (F) SDS-PAGE analysis of fractions 1-7 resulting from GF column described in 

E. 

Abbreviations used to annotate the SDS-PAGE gel images are as follows; M denotes protein marker (Broad Range 

2-212 kDa, New England Biolabs); I, insoluble cell fraction; S, soluble cell fraction; FT, flow through; W, wash; and 

E, eluate. The blue trace on the presented chromatograms represents absorbance at 280 nm, whereas the green 

trace indicates a 10-500 mM NaCl gradient. 
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3.4.3 Removal of nucleic acid during Vga(A) purification 

Jacquet et al.(Jacquet et al., 2008) reported that removal of nucleic acid contamination 

through incubation of the cell lysate with Benzonase nuclease (150 units / g wet-cell weight 

) (Merck Millipore) and protamine sulphate (0.8 mg / g wet-cell weight g wet-cell weight) 

(Sigma Aldrich) for one hour at room temperature, followed by an ultracentrifugation step 

(200 000 x g for 1 h) to precipitate protamine sulphate bound nucleic acid, improved the 

efficiency of the IE purification step (Jacquet et al., 2008). The purification protocol was 

modified to reflect these changes. As I observed auto-induction to produce a cell pellet of 

around 5x the wet-weight of a pellet resulting from an IPTG-induced culture of equivalent 

volume, the relative amounts Benzonase and protamine sulphate were adjusted accordingly. 

The cell lysate of the pellet resulting from 400 ml of auto-induced cleared culture was treated 

with Benzonase and protamine sulphate, then purified by IMAC. Following buffer exchange, 

the IMAC eluate was again applied to the resource S IE column (Figure 3.3 A), yielding a single 

eluted peak. Analysis of the fractions from IMAC, desalting and IE showed the eluted peak to 

correspond to Vga(A) (Figure 3.3 B), Purification using this methodology yielded 1.5 mg of 

purified protein (3.75 mg / litre culture); however, this amount was insufficient for screening 

of crystallisation conditions. Consequently, purification was scaled up to process 2.8 litres of 

auto-induced cultured and repeated; however, attempts to purify Vga(A) from larger culture 

volumes repeatedly failed to yield protein that was amenable to purification by IE 

(Figure 3.3 C). Protein produced using scale up through reversion to IPTG-induction also gave 

no eluted peak for IE (Figure 3.3 D). 
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Figure 3.3. Purification of Vga(A) using the method described in Jacquet et al. (Jacquet et al., 2008).  

(A) Chromatogram showing peaks resulting from application of IMAC eluate resulting from a small scale 

purification using 400ml auto-induced culture to a resource S IE column. (B) SDS-PAGE analysis of fractions from 

the same small-scale purification. Ni-NTA E denotes the eluted fractions from IMAC, Desalt E; the same sample 

following desalting using a HiTrap desalting column, IE FT 1, 2, and 3 are the fractions resulting from the IE column 

shown in A. Chromatograms (C) and (D) show Resource S IE purification of protein resulting from IMAC eluates 

generated from 1.2 L of auto-induced culture, and 2.4 L IPTG-induced culture, respectively. 

The blue trace on the presented chromatograms represents absorbance at 280 nm, whereas the red and green 

traces indicate 10-500 mM NaCl gradients. 
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After numerous attempts, it became clear that I was not able to consistently replicate the 

methodology developed by Jacquet et al. to remove contaminating nucleic acid from 

preparations of Vga(A). I therefore performed a series of purifications under different 

conditions and assessed their efficacy for removal of contaminating nucleic acid by 

monitoring the ratio of absorbance at 260 nm to absorbance at 280 nm (A260/280). Protein 

with an A260/280 ratio <0.7 was deemed free of contaminating nucleic acids (Ariza et al., 

2013). Results are summarised in Table 3.1. 

Monitoring the A260/280 ratio showed that although recapitulation of the conditions 

developed by Jacquet et al. caused a drop in A260/280, it did not produce protein free of 

nucleic acid (Table 3.1 condition B vs A). This explains the previously observed failure of 

desalted IMAC eluate to bind a cation-exchange column and subsequent elution of Vga(A) in 

the void volume during GF. Substitution of a large amount of DNase I and RNase A for 

Benzonase nuclease and increasing the incubation temperature to 37°C produced no 

alteration in A260/280 compared to the original method (Table 3.1 condition C vs B). 

However, the inclusion of 2 M sodium chloride in IMAC wash and elution buffers produced 

protein free of nucleic acid following IMAC (Table 3.1 condition C vs D). Unfortunately protein 

subjected to these conditions was prone to aggregation and could not be purified further. As 

increasing the sodium chloride concentration in IMAC buffers resulted in a decrease in 

A260/280, I included 2M sodium chloride in the GF buffer and removed initial steps to digest 

and precipitate nucleic acid IMAC (Table 3.1 condition E). This methodology was successful, 

removing nucleic acid across both purification steps and yielding protein with an A260/280 

<0.7 following GF. As a result this method was subsequently used for routine purification of 

Vga(A) (Section 2.4.3). A final condition that used streptomycin sulphate for precipitation of 

nucleic acid in place of protamine sulphate also yielded Vga(A) free of nucleic acid (Table 3.1 

condition F), however, due to the risk of residual streptomycin interfering with subsequent 

in vitro transcription-translation assays (4.4.3), this method was not used for routine 

purification of Vga(A) during this study. 
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Table3.1. Optimisation of conditions for removal of contaminating nucleic acid from preparations of Vga(A). With the exception of condition B, buffers were; Lysis; 50 mM NaH2PO4 (pH 8.0), 20 mM 
NaCl, 1 mM MgCl2, 10 mM imidazole; IMAC Wash, 50 mM NaH2PO4 (pH 8.0), 20 mM imidazole, supplemented with NaCl as described; IMAC Elution, 50 mM NaH2PO4 (pH 8.0), 250 mM imidazole, 
supplemented with NaCl as described; GF, 50 mM HEPES pH 7.4, 1 mM DTT, supplemented with NaCl as described.  
Buffers for condition B were from Jacquet et al. (Jacquet et al., 2008); Lysis, 50 mM NaH2PO4 (pH 7.0), 20 mM NaCl, 1 mM MgCl2, 1 mM imidazole, and 0.5% (v / v) Triton X-100. IMAC wash; 50 mM 
NaH2PO4, (pH 7.0), 400 mM NaCl, 20 mM imidazole; IMAC elution, 50 mM NaH2PO4, (pH 7.0), 400 mM NaCl, 250 mM imidazole; GF, 25 mM Tris-HCl pH 7.0, 150 mM NaCl, 7 mM β-mercaptoethanol 

Condition A260/280 of 
Ni-NTA eluate 

A260/280 of 
 GF eluate 

A  No steps taken to remove nucleic acid.  

 Ni-NTA eluate applied directly to S200 GF column. 1.9 

1.8 
Aggregate eluted in 

void volume 

B  Incubation of cell lysate at room temperature (RT) for 30 min with Benzonase (150 units / g wet-cell weight), addition of 
protamine sulphate (0.8 mg / g wet-cell weight) and further incubation at RT for 30 min. 

 Centrifugation at 200 000 x g for 1 h.  

 IMAC wash, IMAC elution and GF buffers supplemented with 300 mM NaCl. 

 Method from Jacquet et al. (Jacquet et al., 2008). 

1.2 
- 

Not assessed 

C  Incubation of cell lysate at 37°C with DNase I (600 units / g wet-cell weight)(Sigma-Aldrich) and  RNase A (140 units / g wet-cell 
weight)(Qiagen) for 30 min followed by addition of protamine sulphate (0.8 mg / g wet-cell weight) and incubation at RT for 30 
min. 

 Centrifugation at 200 000 x g for 1 h.  

 IMAC wash and elution buffers supplemented with 300 mM NaCl. 

1.2 
- 

Protein precipitated 
during dialysis. 

D  Treatment of cell lysate as described in condition C 

 Centrifugation at 30 000 x g for 30 min.                

 IMAC Wash and elution buffers supplemented with 2M NaCl.  
0.60 

- 
Protein precipitated 

during dialysis. 

E  Benzonase (25 units / wet-cell weight) added prior to cell lysis to reduce viscocity.  

 No incubation of cell lysate with nuclease or precipitant.  

 Centrifugation at 30 000 x g for 30 min. 

 IMAC wash, IMAC elution and GF buffers supplemented with 2M NaCl. 

 Ni-eluate dialysed into GF buffer overnight and applied to S200 GF column. 

0.95 0.65 

F  Incubation of soluble fraction at 4°C with Benzonase (300 units / g wet-cell weight) for 30 min followed by addition of 
streptomycin sulphate (5 mg / g wet-cell pellet weight) and incubation at 4°C for 30 min. 

 Centrifugation at 30 000 x g for 30 min. 

 IMAC wash, IMAC elution and GF buffers supplemented with 2M NaCl. 

 Ni-eluate dialysed overnight and applied to S200 GF column. 

0.68 0.68 
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3.4.4 An optimised method for Vga(A) purification 

The development of methodology to consistently remove contaminating nucleic acid from 

preparations of Vga(A) allowed us to optimise a purification protocol to reliably produce 

homogenous protein. The protocol involved four chromatography steps; initial capture of 

Vga(A) from cleared cell-lysate by Ni-NTA IMAC (Figure 3.4 A), removal of residual 

contaminating nucleic acid by GF (Figure 3.4 B), desalting (Figure 3.4 C), and a final polishing 

step using cation-exchange (Figure 3.4 D). Analysis of chromatograms from GF performed under 

high ionic strength revealed separation of the IMAC eluate into two distinct peaks. The initial 

peak eluted in the void volume and absorbed strongly at 260 nm, likely corresponding to 

aggregates of nucleic acid (Figure 3.4 B). This peak also repeatedly contained a small amount of 

Vga(A) and a contaminating band of higher molecular weight (Figure 3.4 C, lanes 1, 2 and 3). 

The second peak eluted corresponds to Vga(A) free of bound nucleic acid. In order to exchange 

the GF eluate into a buffer with lower-ionic strength suitable for IE, fractions were concentrated 

and applied to desalting columns. During desalting, two peaks were routinely observed; an 

initial larger peak with an A260/280 ratio <0.7 and a second peak that absorbs more strongly at 

260 nm. Although both peaks contained Vga(A) (Figure 3.4 F, lanes 7 and 8), only the initial peak 

was collected and further purified. At this point, although Vga(A) was close to homogeneity, I 

consistently observed feint bands of ~40 kDa. LC-MS analysis confirmed that these bands were 

the result of degradation of Vga(A) (Personal communication, J. Ault, University of Leeds). A 

final IE step was employed to purify Vga(A) away from degradation products. Chromatograms 

of the IE step showed a single peak, eluted at a sodium chloride concentration of ~ 300 mM, 

with a small tail. Analysis of the peak by SDS-PAGE revealed that IE was able to reduce 

contamination by degradation products, with full-length Vga(A) primarily eluting in the main 

peak (Figure 3.4  F, lanes 11, 12 and 13) and bands of a lower molecular weight predominantly 

eluting in the tail (Figure 3.4  F, lanes 14, 15 and 16). Homogenously purified Vga(A) was either 

used immediately for functional assays or stored at -80°C. This methodology resulted in yields 

of ~3mg of WT Vga(A) per litre of culture. 
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 Figure 3.4. An optimised method for purification of Vga(A). Representative acrylamide gels and chromatograms. 

(A) SDS-PAGE showing Vga(A) capture from cleared cell lysate using IMAC and washing / elution with a buffer 

containing 2M NaCl. (B) Chromatogram showing application of the IMAC eluate to an S200 GF column (C) SDS-PAGE 

analysis of fractions from GF. Lane numbers correspond to labelled fractions in chromatogram B. (D) Chromatogram 

showing application of second GF peak to a HiTrap desalting column. (E) Chromatogram to show binding and elution 

of Vga(A) to a resource S IE column. (F) SDS-PAGE analysis of fractions from desalting and IE. Lane numbers 

correspond to labelled fractions in chromatograms D and E  Abbreviations used to annotate the SDS-PAGE gel images 

are as follows; M denotes protein marker (Broad Range 2-212 kDa, New England Biolabs); conc., a protein that has 

been concentrated; I, insoluble cell fraction; S, soluble cell fraction; FT, flow through; W, wash; and E, eluate. 
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3.4.5 Expression of alternative ARE ABC-F proteins 

In order to investigate the mechanism of ARE ABC-F proteins other than Vga(A), I sought to 

establish conditions for the production of alternative ARE ABC-F proteins in a soluble form. 

To this end, a panel of expression constructs was generated for the production of ARE ABC-

F proteins fused to a variety of tags designed to enhance solubility and enable affinity 

purification. Specifically, small ubiquitin-like modifier (SUMO), maltose-binding protein 

(MBP), and glutathione S-transferase (GST) were chosen to be fused to the N-terminus of 

ARE ABC-F proteins. All three proteins have been reported to enhance solubility of the 

proteins to which they are fused. However, as it is not currently possibility to predict whether 

they will enhance solubility of the target protein, I chose to undertake an empirical approach 

and screen all three.  Cloning was performed using a traditional restriction enzyme-based 

approach and the orientation, sequence, and frame of each insert was verified by DNA 

sequencing. Expression constructs generated during this study are shown in Table 3.2. Small 

scale expression trials were performed using 8ZYM 4X Lac auto-induction media and the E. 

coli strain BL21-CodonPlus(DE3λ)-RIL, which was chosen as it contains an accessory plasmid 

encoding tRNAs shown to enhance expression of heterologous proteins derived from 

organisms with AT-rich genomes, such as S. aureus. 
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Table 3.2. Constructs generated for the expression of ARE-ABC protein-tag fusions. 

Plasmid ARE ABC-F gene Tag 

pET28a-Tev  vga(A) 

 vga(A)v 

 vga(E) 

 msr(A) 

 msr(C) 

 lsa(A) 

Cleavable N-terminal 10-histidine 

pET28a-SUMO  vga(A) 

 vga(A)v 

 vga(E) 

 msr(A) 

 msr(C) 

 lsa(A) 

Cleavable N-terminal 6-histidine 
and SUMO (Yeast SMT-3)  

pET28a-GST  vga(A) 

 vga(A)v 

 msr(A) 

 msr(C) 

 lsa(A) 

Cleavable N-terminal 6-histidine 
and Glutathione S-transferase 
(GST) 

pET28a-Mal  vga(A) 

 vga(E) 

 msr(A) 

 lsa(A) 

Cleavable N-terminal 6-histidine 
and maltose binding protein (MBP) 

pIVEX2.3d  vga(A)v 

 vga(E) 

 msr(A) 

Non-cleavable C-terminal 
6-histidine  

 

Expression of ARE-ABC-F proteins as N- or C- terminally his-tagged, GST tagged, and MBP 

tagged, fusions resulted solely in the production of insoluble protein (Figure 3.5, A, C, D, E, 

black arrows). However, expression of both Vga(A) and Lsa(A) with a SUMO tag resulted in 

the production of soluble protein (Figure 3.5 B, white arrows). Analysis of the SDS-PAGE band 

through to correspond to SUMO-Lsa(A) confirmed its identity and as a result, expression of 

the pET28a-SUMO-lsa(A) construct was scaled up and a protocol for purification was 

developed. 
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3.4.6 Purification of Lsa(A) 

Lsa(A) has a lower predicted pI than Vga(A) (5.77 vs. 9.06) and as a result purification of 

Lsa(A) was not complicated by a propensity to bind nucleic acid (Section 3.4.3). Lsa(A) was 

therefore amenable to purification using a simplified three-step strategy. Following initial 

capture and purification by IMAC using Ni-NTA agarose (Figure 3.6 A, page 76), 6-histidine 

and SUMO tags were cleaved, and the protein was reapplied to the IMAC column. Untagged 

Lsa(A) exhibited low affinity for Ni-NTA and was separated from the majority of cleaved 

histidine-SUMO tag using an imidazole gradient (Figure 3.7 B).  Finally Lsa(A) was applied to 

an S200 GF column, where it eluted as a single peak (Figure 3.7 C) corresponding to 

homogenous Lsa(A) (Figure 3.7 D). Using this methodology, yields of ~12mg of Lsa(A) per litre 

of culture were obtained. 
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Figure 3.5. SDS-PAGE analysis of expression trials of ARE ABC-F proteins conducted using E. coli BL21 (DE3) RIL 

transformed with constructs based on vectors; (A) pET28a-Tev; (B) pET28a-SUMO; (C) pET28aGST; (D) 

pET28aMal; (E) pIVEX2.3d. Proteins overexpressed in the insoluble and soluble fractions are indicated by black 

and white arrows respectively. Isoleucile tRNA synthetase (IleS) and spectinoymcin 3’ adenyltransferase (spw) 

were included as postivie controls for the production of  soluble protein. Abbreviations used to annotate the SDS-

PAGE gel images are as follows; M denotes protein marker (Broad Range 2-212 kDa, New England Biolabs); I, 

insoluble cell fraction; S, soluble cell fraction.  
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Figure 3.6. Purification of Lsa(A). Representative SDS-PAGE images showing analysis of (A) Initial capture using 

IMAC, (B) removal of cleaved 6-histidine-SUMO tag by IMAC (11 kDa), (C) gel filtration using an S200 column as 

shown in representative chromatogram D.  Abbreviations used to annotate the SDS-PAGE gel images are as 

follows; M denotes protein marker (Broad Range 2-212 kDa, New England Biolabs); Pre, protein sample prior to 

loading onto specified column; I, insoluble cell fraction; S, soluble cell fraction; FT, flow through; W, wash; and E, 

eluate.  
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3.4.7 Screening for crystallisation conditions 

Once methodology to purify Vga(A) and Lsa(A) to homogeneity was established, I attempted 

to find conditions for crystallisation of each protein with the intention of performing 

structural studies.  Vga(A) and Lsa(A) were amenable to concentration in 50 mM HEPES (pH 

7.4), 300 mM NaCl, 1 mM DTT buffer to a maximum of 5 and 15 mg/ml respectively. 

Concentrated protein was used to set up eight commercially available crystallisation screens 

as detailed in Section 2.9. The protein concentration, incubation temperature, and ratio of 

crystallisation reagent to protein in each drop, was varied for each screen. Additionally, 

screens were established in the presence and absence of the non-hydrolysable ATP analogue 

AMP-PNP. During this study, no conditions conducive to crystallisation of Vga(A) or Lsa(A) 

were found. For both Vga(A) and Lsa(A), the majority of wells showed the formation of 

granular precipitates within three days of incubation, either at 4°C or 25°C. The addition of 

AMP-PNP did not appear to alter the rate at which the proteins precipitated and did not lead 

to formation of any needles, microcrystals or phase separation. 

3.4.8 Degradation of Vga(A) and Lsa(A) 

Throughout this study I repeatedly observed a loss of activity (assessed by the ability to 

protect transcription-translation assays from antibiotic inhibition, Section 4.4.3) following 

storage of Vga(A) and Lsa(A) at 4°C. Lsa(A) maintained its activity for ~4 days, whereas Vga(A) 

only remained active for ~2 days. As a result, all functional studies described in Chapter 4 

were performed immediately following purification or using protein that had been stored at 

-80°C and thawed only once. Analyis of protein samples following storage at 4°C by SDS-PAGE 

revealed extensive degradation of the full-length proteins (Figure 3.7 A and B). Addition of 

neither protease inhibitors nor various compounds to the buffer during storage of Lsa(A) was 

able to prevent degradadation without causing precipitation of the protein (Figure 3.7 B). 

Analysis of degraded Vga(A) by SDS-PAGE (Figure 8A) revealed numerous protein fragments 

ranging in size from 25 to 40 kDa (Figure 3.7 A). As the N-terminal ABC, linker, and C-terminal 
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ABC domains of Vga(A) have masses of 17, 15 and 30 kDa respecitvely, the size range of 

fragments suggest non-specific cleavage within the linker, generating trucated protein 

composed of one ABC and differing lengths of linker. Peptide-mass fingerprinting analysis of 

the two distinct SDS-PAGE bands resulting from Lsa(A) degradation also revealed no distinct 

site of cleavage, with each band containing fragments corresponding to all three domains.  

 

 

 

Figure 3.7. SDS-PAGE analysis of protein degradation. (A) Vga following 7 days storage at 4°C and (B) Lsa(A) 

following 5 days storage at 4°C. Several additives were screened for ability to protect Lsa(A) from degradation; 

1, no additive; 2, 10% glycerol, 3, 0.1% (v / v) Tween 20; 4, 1mM MgCl2; 5, cOmplete EDTA-free protease inhibitors 

(Roche); 6, 5mM Proteoloc protease inhibitors (Expedeon); 7, 5mM Proteoloc + EDTA (Expedeon); 8, 1mM EDTA; 

9, 5% (v/v) EtOH. The final three conditions, 7, 8 and 9 caused precipitation of the protein.  
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3.4.9 Thermal stability of Vga(A)  

In order to optimise buffer conditions for future work requiring Vga(A), I assessed the 

thermal stability of the protein in the presence of a range of additives. Measurement of 

intrinsic tryptophan fluorescence is an established technique used to follow protein 

unfolding, as the maximum emission wavelength of tryptophan differs depending on its 

environment (Eftink, 1994). Measurement of the ratio of fluorescence intensities at 350 nm 

and 330 nm during heating of the sample allows determination of the protein melting point 

(Tm, where half of the protein is folded and the other half is unfolded). The data revealed 

that Vga(A) with no additives was marginally stable at 37°C (Tm of 37.8°C, Figure 3.8, Table 

3.3). Kosmotropes, glycerol and AMP-PNP increased the thermal stability of the protein, 

whereas chaotropes destabilised Vga(A) (Figure 3.8, Table 3.3). Of specific note was the 

addition of ammonium sulphate and glycerol, both of which increased Vga(A) thermal 

stability by more than 5°C. Future work requiring Vga(A) may benefit from inclusion of these 

additives in storage buffers. 
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Figure 3.8. The effect of buffer additives on thermal stability of Vga(A). Vga(A) concentrated to 5 mg /ml (83 

μM) was in GF buffer (50mM HEPES pH 7.4, 300 mM NaCl, 1 mM DTT), supplemented with additives to 500 mM, 

with the exception of AMP-PNP which was at 0.1 mM and glycerol (v/v) as shown below.  

 

 

Table 3.3. Melting temperatures (Tm) of Vga(A) supplemented with a variety of buffer additives. Tms were 

determined from the maximum of the first derivative of data shown in in Figure 3.8. 

Additive Concentration Tm (°C) 

No additive - 37.8 
AMP-PNP 0.1 mM 39.3 
(NH₄)₂SO₄, 500 mM 46.4 
KCH3COO 500 mM 40.7 
NaCl 500 mM 39.3 
LiCl 500 mM 37.7 
CaCl2 500 mM 31.2 
NaSCN 500 mM - 
Glycerol  10% (v / v) 40.4 
Glycerol 20% (v / v) 43 
Glycerol 40% (v / v) 43 
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3.5 Discussion 

An important step in attempts to elucidate the mechanism of ABC-F mediated antibiotic 

resistance is the production of homogenously purified proteins that are representative of 

the group. As Vga(A) is the best characterised of the ARE ABC-F proteins, I began this study 

with an attempt to replicate the expression and purification conditions previously described 

by Jacquet et al. (2008). However, despite numerous attempts, treatment of Vga(A) with 

Benzonase and protamine sulphate did not remove contaminating nucleic acid efficiently 

enough to facilitate reproducible purification of the protein. As a result, an alternative 

method of purification was developed, which uses high concentrations of sodium chloride to 

dissociate nucleic acid from Vga(A) and results in a marginally increased yield in comparison 

to that of Jacquet et al. (3 mg / l vs 1-2 mg / l). Similar methodology has previously been used 

in the purification of viral nucleocapsid proteins that specifically bind RNA (Ariza et al., 2013, 

Carter et al., 2012). However, the propensity of Vga(A) to bind nucleic acid throughout 

purification does not appear to be of functional significance. Although a ribosomal protection 

based resistance mechanism may involve interaction of Vga(A) directly with rRNA, 

purification of Lsa(A), which elicits a similar resistance phenotype to Vga(A) was not 

complicated by nucleic acid contamination. Instead, Vga(A) nucleic acid binding is likely 

non-specific and the result of its high isoelectric point (pI, predicted 9.06), a property not 

universally conserved amongst Vga-type determinants or ARE ABC-F proteins in general 

(Table 3.4).  
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Table 3.4. Predicted pIs of ARE ABC-F proteins found in non-producer organisms. The pI of each protein was 

predicted from its primary sequence using the ProtParam server (Wilkins et al., 1999). 

ARE ABC-F  Predicted pI 

Vga(A) 9.06 

Vga(A)v 6.54 

Vga(B) 8.89 

Vga(C) 8.69 

Vga(D) 7.26 

Vga(E) 6.21 

Msr(A) 6.05 

Msr(C) 9.12 

Msr(D) 6.28 

Msr(E) 6.02 

Lsa(A) 5.77 

Lsa(B) 5.79 

Lsa(C) 8.76 

Lsa(E) 6.36 

 

The optimised methodology for purification of Vga(A) and Lsa(A) described in this chapter 

yielded homogenously purified protein that was suitable for functional studies as outlined in 

Chapter 4. However, as there has been no structural determination of any ARE ABC-F protein 

to date, I attempted to find conditions for crystallisation of Vga(A) and Lsa(A) to permit 

structural studies. Despite conducting numerous screens under a variety of conditions, with 

or without ligand, no conditions conducive to crystallisation were found.  

Recently, the structure of the bacterial ABC-F protein EttA was determined by X-ray 

crystallography and cryro-electron microscopy (cry-EM) (Boel et al., 2014, Chen et al., 2014), 

providing the first structural information regarding an ABC-F protein. EttA, which regulates 

bacterial translation in response to changes in the relative levels of cellular ATP and ADP, 

shares 21% and 26% amino acid identity with Vga(A) and Lsa(A) respectively. Functional 

insights into the ARE ABC-F proteins obtained from analysis of the EttA structure are outlined 

in chapter 4, however, EttA also serves to demonstrate that despite the presence of a flexible 

interdomain linker, ABC-F proteins do possess the structural uniformity required for 

formation of X-ray diffracting crystals, even in the absence of bound nucleotide. It is likely 
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therefore, that the inability to find conditions to promote crystallisation of Vga(A) and Lsa(A) 

during this study is the result of a factor other than intrinsic disorder of either protein. 

Degradation of both Vga(A) and Lsa(A) at 4°C provides a simple alternative explanation. 

Although crystal screens were established within a day of purification, in the absence of any 

crystallisation condition that could effectively stabilise the protein and prevent degradation, 

the protein sample would quickly become heterogeneous and unable to form crystals. The 

cause of protein degradation observed during this study is not clear, neither the addition of 

a variety of commercially available protease inhibitor cocktails during and after purification, 

nor purification under aseptic conditions, prevented degradation. It is of note that truncated 

fragments resulted from cleavage of the interdomain linker in both Vga(A) and Lsa(A). As 

structural studies of the ABC-F EttA have revealed inherent flexibility in the interdomain 

linker and as proteases preferentially bind and cleave flexible or unfolded domains (Fontana 

et al., 2004), it is likely that the degradation pattern of Vga(A) and Lsa(A) is the result of 

cleavage of the interdomain linker by trace amounts of contaminating protease that are not 

sufficiently inhibited by the protease inhibitors tested in this study. 

Stabilisation of the globular structure of Vga(A) and Lsa(A) may decrease flexibility of the 

linker domain and thereby reduce proteolytic degradation. To this end, I assessed the 

thermal stability of Vga(A) under various conditions. At physiological temperatures purified 

Vga(A) was found to be partially unfolded, exhibiting a Tm of close to 38°C. Although 

examples of proteins that are unstructured in solution but are capable of mediating 

antibacterial resistance can be found, as exemplified by the heavy metal resistance 

determinants PcoE and SilE (Zimmermann et al., 2012, Gupta et al., 1999), the mechanisms 

by which ARE ABC-F proteins are proposed to act do not immediately suggest a role for 

transitions between a folded and unfolded state. It is therefore likely that the low Tm of 

Vga(A) is the result of sub-optimal buffer composition failing to adequately replicate the 

staphylococcal intracellular environment. As the thermal stability of Vga(A) was improved by 
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addition of kosmotropes and glycerol, future buffers for crystallographic studies of Vga(A) 

should be altered accordingly.  

3.6 Conclusions 

Work outlined in this chapter describes optimisation of methodology for the expression and 

purification of two ARE ABC-F proteins; Vga(A) and Lsa(A). Expression of Lsa(A) was facilitated 

through fusion of a solubility enhancing SUMO tag to the N-terminus of the protein and 

purification of Vga(A) was reliant upon successful removal of contaminating nucleic acid. 

Degradation of the two proteins was likely the result of proteolytic cleavage of the 

interdomain linker and may be the cause of a failure to identify conditions for crystallisation. 

The homogenously purified proteins generated using methods described in this chapter were 

used to conduct functional studies as described in Chapter 4.
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4. Investigating the mechanism of ARE ABC-F mediated antibiotic 

resistance  

4.1 Abstract 

The mechanism by which ARE ABC-F proteins mediate resistance to several antibiotic classes 

that target the 50S subunit of the bacterial ribosome is not understood. However, two 

competing hypotheses exist; antibiotic efflux and ribosomal protection. Here, this 

mechanism was investigated using a combination of biochemical and bacteriological 

techniques. Using bacteriological assays, the resistance phenotypes mediated by ARE ABC-F 

proteins were found to be negated by protection of the ribosome through methylation and 

shown to correlate with the overlap of antibiotic ribosome binding sites. For the first time, 

vga(A) and lsa(A) were shown to mediate cross-resistance to select antibiotics of the 

macrolide class. Preparation of staphylococcal cell extracts suitable for 

transcription-translation (T/T) assays allowed the function of ARE ABC-F proteins Vga(A) and 

Lsa(A) to be assessed in the absence of a cell-membrane. Addition of Vga(A) and Lsa(A) to 

staphylococcal T/T reactions subject to antibiotic inhibition caused a drug specific, dose-

dependent, rescue of translation. Several previously described Vga(A) and Lsa(A) conferred 

phenotypes were recapitulated in T/T assays, thereby verifying that rescue of translation 

observed in vitro is representative of the action of these proteins in whole cells. Finally, 

ribosome binding assays using radiolabelled lincomycin showed Lsa(A) to be capable of 

displacing the drug from staphylococcal ribosomes. Collectively, the experiments outlined in 

this chapter provide the first direct evidence to support a mechanism of ARE ABC-F resistance 

based on ribosomal protection. 

  



86 
 

 

4.2 Introduction 

Two models to explain the action of ARE ABC-F proteins have been suggested (Kerr et al., 

2005, Reynolds et al., 2003). In the first model, these proteins function as classical ABC 

transporters, associating with as yet unknown trans-membrane domains and use energy 

released by ATP hydrolysis to drive transport of antibiotics out of the cell. Alternatively, in 

the second model, ARE ABC-F proteins act to reduce the accessibility or affinity of the 

antibiotic binding sites within the 50S ribosomal subunit, thereby protecting the translational 

machinery. Experimental evidence permitting a definitive conclusion regarding the 

mechanism by which they mediate resistance is lacking; however, ARE ABC-F resistance 

determinants are most frequently cited as efflux proteins in the literature (Matsuoka et al., 

1993, Olano et al., 1995, Chesneau et al., 2005, Nunez-Samudio and Chesneau, 2013).  

The predominance of the efflux hypothesis perhaps stems from the characterisation of the 

first ARE ABC-F protein to be described; the macrolide and streptogramin B resistance 

determinant Msr(A) (Ross et al., 1989, Ross et al., 1990). The dual observations of Msr(A) 

homology to ABC-transporters and Msr(A) induced, ATP-dependent, decreased 

accumulation of erythromycin, understandably led to the conclusion that Msr(A) and 

subsequently other ARE ABC-F proteins mediate resistance through active efflux. However, 

the paper detailing this work included a cautionary note; that decreased accumulation of 

erythromycin could also result from ribosomal protection, a hypothesis that was later proven 

experimentally (Reynolds et al., 2003). More recently, as an increasing number of ARE ABC-

F proteins have been described, a correlation between the resistance phenotypes conferred 

by ARE ABC-F determinants and the positions at which antibiotics bind within the 50S 

ribosomal subunit has become apparent (Kerr et al., 2005, Dorrian, 2009). This is evident 

when comparing vga- and lsa- type determinants, which confer resistance to antibiotics from 

structurally unrelated classes that bind overlapping sites within the peptidyl-transferase 

centre, with msr-type genes, which show specificity for antibiotics binding within the peptide 
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exit tunnel. This observation, coupled with the fact that several ABC-F proteins not involved 

in antibiotic resistance have recently been shown to interact directly with the ribosome or 

with ribosomally-associated proteins (Kerr, 2004), has made the hypothesis that that ARE 

ABC-F proteins mediate ribosomal protection increasingly plausible.  

Methodology for the characterisation of antibiotic resistance proteins that act to protect 

translation has been previously established. For example, the mechanism underlying 

horizontally-transmissible fusidic acid resistance was initially determined using 

staphylococcal T/T assays, which showed FusB-type proteins were able to restore translation 

in the presence of fusidic acid (O'Neill and Chopra, 2006). Subsequently, pull-down 

experiments using immobilised FusB and staphylococcal cell-lysates identified a direct 

interaction with elongation factor-G (EF-G), the target of fusidic acid (O'Neill and Chopra, 

2006). Building on these findings, an X-ray crystallography based structural characterisation 

of two FusB-type proteins has been completed (Cox et al., 2012, Guo et al., 2012), the 

interaction with EF-G has been characterised (Cox et al., 2013), and an appreciation of the 

molecular basis of fusidic acid resistance mediated by FusB-type proteins now exists. 

Similarly, characterisation of the tetracycline ribosomal protection proteins (RPPs) began 

with cell-free protein synthesis assays that showed extracts derived from bacteria expressing 

the RPP Tet(M) were resistant to tetracycline inhibition, whilst extracts containing the 

tetracycline efflux protein, Tet(L), were not (Burdett, 1986). This mechanism was studied 

further using ribosome binding assays in which the ability of Tet(M) and Tet(O) to displace 

bound tetracycline was discovered (Trieber et al., 1998, Burdett, 1996), and, more recently, 

the structure of both Tet(M) and Tet(O) in complex with the E. coli ribosome has been 

determined using cryo-electron microscopy (cryo-EM) (Arenz et al., 2015, Li et al., 2013).  

Due to the paucity of evidence in support of ARE ABC-F mediated antibiotic efflux, and the 

increasing amount of indirect evidence indicating a mechanism of ribosomal protection, I 



88 
 

 

aimed to use the established biochemical methodology outlined above, in-tandem with 

bacteriological assays to investigate ARE ABC-F resistance phenotypes, to provide a definitive 

explanation of the ARE ABC-F resistance mechanism.   

4.3 Aims  

Work described in this chapter aimed to determine the mechanism by which ARE ABC-F 

proteins mediate antibiotic resistance.  

4.4 Results 

4.4.1 Probing the correlation between ARE ABC-F resistance phenotypes and the 

binding sites of 50S targeted antibiotics. 

In initial experiments using staphylococci expressing the Vga(A) protein, I sought preliminary 

support for a mechanism of resistance involving either ribosomal protection or efflux. 

Previous studies have noted a correlation between the resistance phenotypes mediated by 

ARE ABC-F proteins and the extent of overlap between binding sites of protein synthesis 

inhibitors within the 50S subunit (Reynolds et al., 2003, Kerr et al., 2005). A testable 

prediction is that, if ARE ABC-F proteins do mediate resistance through ribosomal protection, 

they would likely offer cross-resistance to further classes of structurally-unrelated antibiotic 

that bind the ribosome in close proximity to their target antibiotics.  

In order to test this hypothesis, the ARE ABC-F genes msr(A), lsa(A), and vga(A), were cloned 

using the S. aureus / E. coli shuttle vector pEPSA5 (Forsyth et al., 2002) and transferred into 

S. aureus RN4220. Whilst this study was in progress, a paper detailing a mutational 

characterisation of the Vga(A) interdomain linker was published (Lenart et al., 2015), in which 

an expanded spectrum mutant of Vga(A), Vga(A)K219T, was characterised. As Vga(A)K219T 

conferred increased levels of resistance to lincosamides and pleuromutilins, it follows that it 

may exert an effect on a larger area of the PTC than wild-type Vga(A) and therefore provide 
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an increased chance of finding previously undescribed cross-resistance. Consequently, 

pEPSA5-vga(A) was subjected to site-directed mutagenesis to generate pEPSA5-vga(A)K219T 

and following confirmation of the mutation by sequencing, pEPSA5-vga(A)K219T was included 

in the screen. Subsequently, the MICs of numerous protein synthesis inhibitors were 

determined against the four constructed strains and RN4220 containing only the pEPSA5 

vector (Table 4.1). 

As previously described, strains expressing vga(A) showed cross-resistance to streptogramin 

A (64 fold, virginiamycin M), lincosamide (8 fold lincomycin) and pleuromutilin (4 fold 

retapamulin) antibiotics. Strains expressing vga(A)K219 exhibited resistance to the same 

classes, but gained the ability to confer tiamulin resistance (512 fold) and showed elevated 

levels of resistance to lincomycin (LNC, 128 fold) and retapamulin (1024-fold). Similarly, 

expression of lsa(A) conferred resistance to virginiamycin M (VGM, 64 fold), LNC (64 fold), 

retapamulin (128 fold), and tiamulin (512 fold). In contrast, of the compounds tested, msr(A) 

only conferred resistance to erythromycin (256 fold). No cross-resistance to, fluorphenicol, 

blasticidin S, sparsomycin, or the 16-membered macrolides tylosin and spiramycin, was 

observed amongst any of the tested strains. However, expression of vga(A) was shown to 

elicit reduced susceptibility to the 16-member macrolides leucomycin A1 (4 fold) and 

carboymycin (4 fold), antibiotics with binding sites predicted to partially overlap that of VGM 

(Di Giambattista et al., 1987). In contrast, lsa(A) mediated reduced susceptibility to 

carbomycin (4 fold), but not leucomycin A1. To my knowledge this is the first report of a vga-

type or lsa-type resistance determinant mediating any degree of macrolide resistance. 

   



 
 

 

Table 4.1. Activity of protein synthesis inhibitors that target the PTC and peptide exit tunnel against S. aureus RN4220 expressing the ARE ABC-F genes msr(A), lsa(A), vga(A) and 

vga(A)K219T. All MICs were determined in the presence of 2% xylose in order to induce expression from the pT5X promoter of plasmid pEPSA5. 

Antibacterial 

compound 

MIC (µg/ml) against S. aureus RN4220 strain 

pEPSA5 (no insert) 

 

pEPSA5-msr(A) pEPSA5-lsa(A) pEPSA5-vga(A) pEPSA5-vga(A)K219T 

Virginiamycin M 1 1 64 64 64 

Lincomycin 0.25 0.125 8 2 32 

Retapamulin 0.03125 0.03125 4 0.125 32 

Tiamulin 0.25 0.125 128 0.125 64 

Erythromycin 0.5 128 0.5 0.5 0.5 

Linezolid 2 2 2 2 2 

Puromycin 8 4 8 8 8 

Blasticidin S 128 128 128 128 128 

Sparsomycin 32 32 32 32 32 

Fluorphenicol 4 4 4 4 4 

Leucomycin A1 0.25 0.25 0.25 1 1 

Carbomycin 0.5 0.5 1 2 2 

Tylosin 0.5 0.5 0.5 0.5 0.5 

Spiramycin 1 1 1 1 1 
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4.4.2 Function of vga(A) in cells with protected ribosomes 

A common feature of antibiotic resistance mechanisms involving efflux is that, when co-

resident in a bacterial cell with another determinant mediating resistance to the same 

antibacterial agent but which acts to protect the drug target, a synergistic or additive 

increase in resistance is observed. For example, S. aureus strains in which the tetracycline 

RPP, tet(M), and efflux pump, tet(K), are both present have been shown to engender higher 

tetracycline MICs than strains harbouring only one of these resistance determinants 

(Trzcinski et al., 2000). By contrast, no such enhancement in antibiotic resistance may be 

observed when two resistance determinants, both of which act at the level of the drug target, 

co-exist in a bacterial cell. As exemplified by the fact that carriage of both an endogenous 

fusA gene possessing mutations resulting an production of a fusidic acid resistant EF-G 

protein and a gene encoding FusB does not lead to a synergistic interaction between the two 

resistance mechanisms. Instead the level of resistance in strains co-expressing these 

resistance mechanisms is determined by the protein giving highest protection (O'Neill and 

Chopra, 2006). It is therefore reasonable to assume that failure of Vga(A) to exhibit an 

additive or synergistic effect when co-resident in a cell with a ribosomal protection 

mechanism of antibiotic resistance would suggest that Vga(A) does not mediate resistance 

by efflux.  

In order to establish a system in which this hypothesis could be assessed, I utilised the 

Cfr-ribosomal methylase. The cfr gene encodes an rRNA methyltransferase that methylates 

23S rRNA at position 8 of adenine 2503 (E. coli numbering), thereby protecting ribosomes 

from binding of several antibiotic classes including those encompassed within the spectrum 

of activity of Vga(A) (Long et al., 2006). The cfr gene was cloned into plasmid pEPSA5 under 

control of the inducible pT5X promoter and both pEPSA5 and pEPSA5-cfr were transformed 

into S. aureus CYL557. The vga(A) gene was cloned into plasmid pLL39 under control of the 

strong staphylococcal cap1a promoter and transformed into S aureus strain CYL557, 



92 
 

 

9
2 

whereupon it integrated into the chromosome. Integration was confirmed by PCR using a 

primer pair specific for vga(A) and the ϕ11 attP site on the S. aureus chromosome. 

Subsequently, pEPSA5 and pEPSA5-cfr were separately transformed into strain 

CYL557containing integrated vga(A). 

Susceptibility to virginiamycin M, and linezolid was determined for S. aureus RN4220 

expressing vga(A) alone, or vga(A) and cfr. As expected, expression of vga(A) mediated 

resistance to virginiamycin M, but not to linezolid, whilst expression of cfr alone gave 

resistance to both drugs (Table 4.5). Co-expression of both resistance determinants did not 

confer a decrease in susceptibility for any of the drugs beyond that exhibited by the strain 

solely expressing cfr, establishing that co-expression of the two resistance proteins does not 

produce an additive or synergistic effect (Table 4.5), and further reinforcing the idea that 

resistance is more likely mediated through ribosomal protection than efflux. 

Table 4.5. The effect of Cfr-mediated ribosomal methylation on vga(A).  

 

Antibacterial 
compound 

MIC (µg/ml) against S. aureus CYL557strain 

pEPSA5  
(no insert) 

pLL39-vgaA pEPSA5-cfr pEPSA5-cfr 
+pLL39-vgaA 

Virginiamycin M 1 64 128 128 

Linezolid 2 2 8 8 

 

4.4.3 The activity of Vga(A) and Lsa(A) in transcription-translation assays  

Initial bacteriological work (Sections 4.4.1 and 4.4.2) was indicative of an ARE ABC-F 

mechanism based on ribosomal protection and prompted investigations to determine 

whether ARE ABC-F proteins could mediate antibiotic resistance in a system where efflux 

was not possible. This system was established through the generation of staphylococcal S30 

extracts, and their use to perform T/T assays (Section 2.5). During T/T assays, plasmid 

pC19Saluc provided a template for the expression of firefly luciferase and subsequent 
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addition of luciferin allowed the level of translation to be assessed through measurements 

of luminescence. As I observed that different preparations of S30 extract showed varying 

levels of activity, all results described below are expressed as a percentage of an uninhibited 

positive control, run in parallel, which contained no exogenous proteins or antibiotics. 

Homogenously purified Vga(A) (Section 3.4.4) and Lsa(A) (Section 3.4.6) were introduced into 

inhibited T/T assays and the ability of these proteins to rescue translation from antibiotic 

inhibition was assessed.  

Introduction of 4 μM purified Vga(A) into T/T assays inhibited with the IC90 of VGM resulted 

in a restoration of translational activity to 59% of the uninhibited control (Figure 4.1 A, 

columns 1, 3 and 5). This effect was Vga(A) specific, as neither addition of the fusidic acid 

resistance protein FusB (Section 2.4.5) nor heat-denatured Vga(A) were able to protect 

translation (Figure 4.1 A, columns 4 and 10). Furthermore, addition of 4 μM Vga(A) to T/T 

assays inhibited with the IC90 of fusidic acid did not rescue activity, demonstrating Vga(A)-

mediated protection as specific to VGM (Figure 4.1 A, columns 8 and 9). Protection of 

translation from VGM by Vga(A) occurred in a dose-dependent manner between 1 and 4 μM 

Vga(A) (Figure 4.1 B). However, restoration was not complete and plateaued at 59% with no 

increase observed upon further addition of Vga(A) (Figure 4.1 B).  

In order to investigate whether the ability to protect staphylococcal translation in vitro was 

a common property of ARE ABC-F proteins and not exclusive to Vga(A), the phylogenetically 

distant ARE ABC-F protein Lsa(A) (25 % amino acid identity) was titrated into staphylococcal 

S30 extracts inhibited with an IC90 of VGM (Figure 4.1 C) or LNC (Figure 4.1 D). As with Vga(A), 

rescue of translation was concentration dependent, but not complete, reaching a maximum 

of 49% and 68% for VGM and LNC inhibited reactions respectively (Figure 4.1 C and 1D). A 

lower concentration of Lsa(A) was required to restore translational activity in LNC inhibited 

reactions (Figure 4.1 D) than those knocked down with VGM (Figure 4.1 C). As with Vga(A), 

heat denaturation of Lsa(A) resulted in a loss of ability to protect translation from VGM 

(Figure 4.1 A, columns 3, 6, 7). 
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Figure 4.1. Vga(A) and Lsa(A) rescue staphylococcal translation from antibiotic inhibition. (A) Numbered columns indicate 

reactions containing the following: 1, control with no exogenous protein or antibiotic; 2, 4 μM Vga(A) but no antibiotic, 3; 

IC90 of virginiamycin M (VGM) with no exogenous protein; 4, IC90 of VGM with 4 μM heat-denatured Vga(A) (Denat.); 5, IC90 

of VGM with 4 μM Vga(A); 6, IC90 of VGM with 4 μM heat-denatured Lsa(A); 7, IC90 of VGM with 4 μM Vga(A); 7, IC90 of VGM 

with 4 μM Lsa(A); 8, IC90 of fusidic acid (FA) with no exogenous protein; 9, IC90 of fusidic acid (FA) with 4 μM Vga(A); 10, , 

IC90 of VGM with 4 μM FusB. (B) The effect of Vga(A) (0–6 μM) on T/T inhibited by an IC90 of VGM. (C) The effect of Lsa(A) 

(0–6 μM) on T/T inhibited by an IC90 of VGM. (D) The effect of Lsa(A) (0–4 μM) on T/T inhibited by an IC90 of LNC. All data 

points derive from assays conducted at least in triplicate. All error bars correspond to standard deviations. 
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To provide confirmation that the observed ability of ARE ABC-F proteins to protect an in vitro 

translation assay from antibiotics reflects the activity of these proteins in whole cells, and to 

further explore this phenomenon of protection, I sought to recapitulate in the T/T assay 

several phenotypes that have been associated with these proteins in bacteria.   

The Vga(A) protein is not functional in E. coli, failing to confer any reduction in susceptibility 

to streptogramin A antibiotics even when detectably overproduced in this bacterium 

(Jacquet et al., 2008). This result was mirrored in an in vitro T/T assay using E. coli S30 extract; 

addition of increasing concentrations of Vga(A) (Figure 4.2 A) or Lsa(A) (Figure 4.2 B) to 

maximum of 4 μM into T/T reactions inhibited with ≥IC90 of virginiamycin M produced no 

rescue of translation. 

It has previously been demonstrated that substitution for glutamine of the catalytic 

glutamate residue following the Walker B motif in either nucleotide binding domain of 

Vga(A) results in a non-functional protein incapable of mediating resistance to virginiamycin 

M in cells of Staphylococcus epidermidis (Jacquet et al., 2008). I confirmed that this also holds 

true in S. aureus, with expression of Vga(A)E105Q in S. aureus RN4220 having no effect on 

virginiamycin M susceptibility (Figure 4.2 C). This same loss of ability of Vga(A)E105Q to mediate 

virginiamycin M resistance was also seen in vitro, with addition of up to 4 μM purified 

Vga(A)E105Q to a T/T assay employing S. aureus S30 extract producing no restoration of 

translational activity (Figure 4.2 D).  

A single amino acid substitution (K219T) in the linker region between the two nucleotide 

binding domains of Vga(A) has recently been reported to increase the level of phenotypic 

resistance to lincosamides from low-level (4-fold) to high-level (64-fold) (Figure 4.2 E) (Lenart 

et al., 2015). This shift in resistance profile was successfully recapitulated in the S. aureus T/T 

assay; addition of purified Vga(A)K219T to a T/T reaction inhibited with lincomycin resulted in 

restoration translation activity to ~30% of the uninhibited control, whilst 4 μM wild-type 

Vga(A) did not protect translation against lincomycin (Figure 4.2 F). 
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Figure 4.2. T/T assay results reconstitute previously described phenotypes.  Addition of increasing concentrations of exogenous (A) Vga(A) or (B) Lsa(A) to a coliform T/T reaction containing an IC90 of 

VGM. (C) Table showing MIC values of VGM against S. aureus RN4220 expressing wild-type vga(A), an ATPase deficient vga(A)E105Q mutant, or transformed with the pEPSA5 plasmid only.   (D) Addition 

of exogenous Vga(A)E105Q, or wild-type Vga(A), to a staphylococcal T/T reaction containing an IC90 of VGM. (E) Table showing MIC values of lincomycin against S. aureus RN4220 expressing wild-type 

vga(A), an expanded spectrum vga(A)K219T mutant, or transformed with the pEPSA5 plasmid only. (F) Addition of the exogenous Vga(A)K219T, or wild-type Vga(A), to a staphylococcal T/T reaction inhibited 

with a >IC90 of LNC. Data points derive from assays conducted at least in triplicate. 
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4.4.4 The activity of Lsa(A) in ribosome binding assays 

As both Vga(A) and Lsa(A) were shown to protect staphylococcal translation from antibiotic 

inhibition in vitro, it follows that these proteins may function by preventing the binding of 

antibiotics to the ribosome, or by causing dissociation of the drug once it has bound. As 

previous binding assays to investigate the function of tetracycline RPPs had used 

radiolabelled drug to follow binding, and as the neither VGM or LNC are intrinsically 

fluorescent attempts were made to procure radiolabelled VGM and LNC. As radiolabelled 

VGM was not commercially available, the ability of purified Lsa(A) to mediate changes in 

binding of tritium-labelled lincomycin (3H-LNC) to ribosomes was assessed. In order to 

establish an assay suitable to investigate this hypothesis, staphylococcal ribosomes were 

purified (Section 2.6.1) and quantified through comparisons of ribosomal protein L2 and 16S 

rRNA to known quantities of BSA (Figure 4.3 A) and RNA ladder (Figure 4.3 B). All binding 

assays were performed using a 2x molar excess of 3H-LNC to ribosomes in the presence of 

ATP. As I observed that radioactivity of 3H-LNC decreased over time, all results described 

below are expressed as a percentage of a positive control containing ribosomes and 3H-LNC, 

but no exogenous protein or unlabelled drug. 

Pre-incubation of staphylococcal ribosomes with between 1:1 and 8:1 Lsa(A) : ribosome 

molar ratios caused a dose-dependent decrease in ribosome associated 3H-LNC, before 

reaching a plateau past which addition of Lsa(A) at did not cause further reduction in binding 

(Figure 4.4 A [i], page 99). Addition of an 8-fold excess of Lsa(A) (0.5 μM ribosomes, 4 μM 

LNC) resulted in the largest decrease in LNC binding, to 43% of the level observed in Lsa(A) 

free ribosomes (Figure 4.4  A [ii]). In comparison, pre-incubation of ribosomes with 4 μM BSA 

or 4 μM denatured Lsa(A) did not cause any reduction in levels of ribosomally associated 3H-

LNC (Figure 4.4  A [ii]), whereas addition of a 50-fold excess of unlabelled LNC resulted in 

almost complete removal of 3H-LNC binding (Figure 4.4 A [ii]).  
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In order to test whether Lsa(A) might displace bound LNC, 3H-LNC was pre-incubated with 

ribosomes prior to the addition of 4 μM Lsa(A). Subsequent addition of Lsa(A) caused 

dissociation of 3H-LNC, resulting in a 73% reduction in the amount of ribosomally associated 

drug in comparison to the protein-free control (Figure 4.4 B). BSA had no effect on the 

release of 3H-LNC from ribosomes and 3H-LNC was exchanged with unlabelled LNC, resulting 

in almost complete removal of the radiolabelled compound from the ribosome (Figure 4.4 

B).  

 

 

 

Figure 4.3. Purification and quantification of staphylococcal ribosomes. Purified staphylococcal ribosomes were 

quantified through comparisons of ribosomal protein L2 with known quantities of BSA (A), and 16S rRNA with RNA ladder 

RiboRuler HR. 
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Figure 4.4. Lsa(A) protects ribosomes from 3H-LNC binding and displaces pre-bound drug. (Ai) Pre-incubation of increasing 

concentrations of Lsa(A) with 0.5μM staphylococcal ribosomes. (ii) Pre-incubation of 0.5μM ribosomes with either; a 50x 

excess of unlabelled LNC (Cold LNC), 4 μM BSA, 4 μM Lsa(A), or 4 μM denatured Lsa(A). (B) Addition of either a 50x excess 

of unlabelled LNC, 4 μM Lsa(A), or 4 μM BSA to staphylococcal ribosomes that have been pre-incubated with LNC. Error 

bars correspond to standard deviations. Data points derive from assays conducted a minimum of three times. 
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4.4.5 Screening for protein: protein interactions involved in ARE ABC-F mediated 

resistance 

As Vga(A) and Lsa(A) rescue S. aureus, but not E. coli, translation from antibiotic inhibition, I 

speculated that Vga(A) and Lsa(A) may directly interact with staphylococcal proteins to exert 

their protective effect, and that these proteins are either different or absent in E. coli. To 

examine this hypothesis, and to identify any putative binding partners of Vga(A) and Lsa(A), 

pull-down experiments were performed on cell lysates, using either Vga(A) or Lsa(A) as 

immobilised “bait”. In order to reproduce conditions in which Vga(A) and Lsa(A) mediate 

protection, experiments were performed at 37°C in the presence of 1 μg / ml (1.9 μM) VGM. 

Previously, studies of the ABC-F protein EttA, which regulates translation in E. coli through a 

direct interaction with the ribosome, have shown that a double EttA mutant incapable of 

hydrolysing ATP mediates pull-down of E. coli ribosomes whilst wild type EttA does not (Chen 

et al., 2014). Given the homology between Vga(A) and Lsa(A) with EttA (25% and 24.5% 

amino acid identity respectively), I predicted that pull-down of ribosomes by ARE ABC-F 

proteins may also require the proteins to be trapped in an ATP-bound conformation. 

Therefore, I generated pIVEX2.3d-vga(A)E105Q-E410Q using site-directed mutagenesis. This 

construct encodes vga(A) with a glutamate to glutamine substitution of the catalytic 

glutamate in each ABC domain; a double mutation that permits ATP-binding, but not 

hydrolysis, in other ABC proteins (Chen et al., 2014, Orelle et al., 2003). However, expression 

from the pIVEX-vga(A)E105Q-E410Q construct did not produce soluble Vga(A)E105Q-E410Q under the 

conditions that had successfully been used to express WT Vga(A), Vga(A)E105Q, or Vga(A)K219T. 

As an alternative, I conducted pull down experiments using WT Vga(A) or Lsa(A) in the 

presence of ATP, or, the non-hydrolysable ATP analogue adenosine 5′-(β,γ-

imido)triphosphate (AMP-PNP).  

The use of his-Vga(A) and his-SUMO-Lsa(A) as immobilised bait and staphylococcal cell-

extracts as prey resulted in pull-down of proteins that formed four distinct bands when 
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analysed by SDS-PAGE, none of which appeared in control experiments using E. coli cell 

lysates (Figure 4.5). These bands, plus an additional band present solely in pull-downs using 

E. coli cell-lysates, were excised and sent for identification by peptide mass fingerprinting. 

From each band, several proteins were identified (Personal communication, James Ault, 

University of Leeds) (Figure 4.5). Although analysis of SDS-PAGE bands though peptide 

fingerprinting and LC-MS does not give a direct measure of the proportion of each protein in 

a band, the percentage of coverage of each primary sequence by LC-MS identified peptides 

is indicative of prevalence of each protein in a sample (Personal communication, James Ault, 

University of Leeds). However, the identification of multiple proteins per band, and of the 

same protein in multiple bands (seemingly independent of molecular weight e.g. elongation 

factor Tu [EF-Tu], Pyruvate kinase, SlyD, Figure 4.5), complicates interpretation of the data 

arising from these pull-down experiments. It is therefore only possible to conclude from this 

data that Vga(A) and Lsa(A) appear to interact with proteins participating in a range of 

cellular processes, including translation, and that these interactions differ in S. aureus and E. 

coli. It is of note that a two-hybrid screen conducted in E. coli to investigate a possible 

interaction between Vga(A) and EF-Tu did not provide evidence of an interaction (Personal 

communication, Chris Randall, University Of Leeds). 

As Lsa(A) has been shown here to displace LNC from the staphylococcal ribosome (Section 

4.4.4) and ribosomal proteins were identified as putative binding partners for Vga(A) and 

Lsa(A) in both S. aureus and E. coli cell-lysates, a final set of pull-down experiments was 

conducted using purified staphylococcal ribosomes as prey and Lsa(A) or Vga(A) as bait. 

However, no pull-down of ribosomal proteins was observed (Figure 4.6, page 103).  

Pull down assays using cell-lysates identified EF-Tu as a potential binding partner of Vga(A) 

and Lsa(A). As Ef-Tu is a ribosomally associated protein, the possibility of the protein co-

purifying with ribosomes was assessed. A single band identified in preparations of 
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staphylococcal ribosomes that appeared to correspond to a protein with a similar molecular 

weight to Ef-Tu (black arrow, Figure 4.6) was sent for identification by peptide mass 

fingerprinting. However, the only protein detected in this band was Enolase (70% coverage, 

Personal communication, James Ault, University of Leeds), an enzyme associated with 

glycolysis and cell adhesion in S. aureus (Carneiro et al., 2004).  
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Figure 4.5. Pull down experiments using cell-lysates as prey to identify putative binding partners of Vga(A) and Lsa(A). SDS-

PAGE images showing the results of immobilisation of (A) His-Vga(A) or (B) His-SUMO-Lsa(A) on Ni-NTA agarose and their 

subsequent use as bait to identify putative binding partners from staphylococcal and coliform S30 extracts. Assays were 

performed in the presence of 1μg / ml virginiamycin M and included either ATP or AMP-PNP. Control experiments assessed 

non-specific biding of proteins in the S30 extract to Ni-NTA agarose. Four bands specific to staphylococcal S30 extracts (1, 2, 3, 

5) and one band specific to E. coli S30 extracts  were sent for analysis by peptide mass fingerprinting, the results of which are 

shown on the right of the figure. 
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Figure 4.6. Pull down experiments using purified staphylococcal ribosomes as prey to identify putative binding 

partners of Vga(A) and Lsa(A). SDS-PAGE images showing the results of immobilisation of His-Vga(A) or His-

SUMO-Lsa(A) on Ni-NTA agarose and their subsequent use as bait to identify putative binding partners from 

purified staphylococcal ribosomes. Assays were performed in the presence of 1μg / ml virginiamycin M and 

included either ATP or AMP-PNP. Control experiments assessed non-specific biding of ribosomal proteins to Ni-

NTA agarose. A single band of around 48 kDa (black arrow) was sent for identification by peptide mass 

fingerprinting and was identified as Enolase (70% coverage). 
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4.5 Discussion 

The mechanism by which ARE ABC-F proteins mediate antibiotic resistance has remained 

obscure since their discovery 25 years ago (Ross et al., 1990). Experiments described in this 

chapter were therefore designed to distinguish between the two proposed models of 

resistance. Previous studies using in vitro translation experiments to investigate tetracycline 

resistance in streptococci proved able to differentiate between functions of Tet(L), a 

tetracycline efflux protein, and Tet(M), a RPP (Burdett, 1986). Similar experiments conducted 

here found that Vga(A) and Lsa(A) mediated dose-dependent protection of a staphylococcal 

cell-free T/T system from inhibition by streptogramin A and lincosamide antibiotics, showing 

that these proteins confer resistance in a system where antibiotic efflux is not possible. The 

subsequent in vitro reconstitution of resistance phenotypes observed in whole cells indicate 

that results derived from the T/T assay are representative of the mechanism by which Vga(A) 

and Lsa(A) mediate antibiotic resistance in whole cells.  

It is of note that neither protein restored translational activity to its uninhibited level. This 

result is in contrast to that seen for the tetracycline RPP Tet(M), which when added to E. coli 

in vitro translation assays has been shown to restore activity to uninhibited levels (Burdett, 

1996). This may result from the proposed ability of Tet(M) to prevent rebinding of 

tetracycline by promoting alterations to the conformation of the drug binding site that 

persist following dissociation of Tet(M) from the ribosome (Connell et al., 2002, Connell et 

al., 2003b, Dönhöfer et al., 2012). In contrast, titration of the fusidic acid resistance protein 

FusB into staphylococcal fusidic acid inhibited T/T assays, resorted activity to a maximum of 

only 40% (O'Neill and Chopra, 2006). Fusidic acid inhibits protein synthesis by binding to 

ribosome associated EF-G and preventing its dissociation following GTP hydrolysis, leading 

to ribosomal stalling and cessation of translation (Bodley et al., 1969, Tanaka et al., 1968). 

FusB accelerates the release of EF-G from the ribosome and thereby overcomes the 

inhibitory effect of fusidic acid (Cox et al., 2012). As fusidic acid has a low affinity for non-
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ribosome associated EF-G (Bodley et al., 1969), the drug is released on dissociation of EF-G 

from the ribosome and is free to re-bind Ribosome : EF-G : GDP complexes. FusB mediated 

fusidic acid resistance is therefore the result of FusB driving the equilibrium of fusidic acid 

binding to EF-G towards dissociation. Although it is difficult to extrapolate from an in vitro 

T/T assay to whole cells, where both Vga(A) and Lsa(A) function effectively, it is possible to 

speculate that the incomplete restoration of activity in vitro could indicate that these 

proteins mediate resistance in a similar manner to FusB, driving the equilibrium of ribosome 

: drug binding towards dissociation, rather than modifying the ribosome to prevent drug 

re-binding as proposed for tetracycline RPPs (Connell et al., 2003b). ° 

An alternative explanation for the dose-dependent restoration of translational activity 

observed in staphylococcal T/T assays is direct sequestration of the drug by Vga(A) and 

Lsa(A). Previous studies of Vga(A) and the N-terminal ABC domain of Ole(B) have proposed a 

direct interaction of the proteins with their target antibiotic (Buche et al., 1997, Jacquet et 

al., 2008), which would permit protection through sequestration (although a more recent 

analysis of Vga(A) binding to VGM and LNC using surface plasmon resonance failed to detect 

this interaction (Lenart et al., 2015)). However, neither Vga(A) or Lsa(A) rescued activity in 

coliform T/T assays performed using identical materials and methods to staphylococcal T/T 

assays. Nor did the protective effect mediated by Vga(A) and Lsa(A) in staphylococcal T/T 

assays continue indefinitely as more protein was titrated into the assay. It is therefore 

possible to rule out a sequestration based mechanism and conclude that protection is 

mediated by a specific interaction between Vga(A) or Lsa(A) with a component of the 

staphylococcal S30 extract.  

Addition of Lsa(A) to staphylococcal ribosomes was shown to displace bound LNC. It follows 

that in order to drive displacement, Lsa(A) must interact directly with staphylococcal 

ribosomes or a co-purifying soluble factor. However, although several putative binding 
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partners involved in translation were amongst the proteins identified from pull-down 

experiments using staphylococcal S30 extract, comparable experiments using purified 

ribosomes did not suggest any Vga(A) or Lsa(A) mediated ribosomal binding. Due to time 

constraints, the specificity of the interactions found using cell extracts as bait could not be 

further investigated by repetition or through conducting pull down assays using immobilised 

putative binding partners as bait and cell extracts containing Vga(A) or Lsa(A) as prey. Similar 

pull down assays conducted to investigate the mechanism by which the ABC-F protein EttA 

regulates E. coli translation in response to relative cellular levels of ATP / ADP showed that 

only an EttA double mutant, able to bind but not hydrolyse ATP, captured ribosomes during 

pull-down experiments conducted in vivo (Boel et al., 2014). Equally, studies of Tet(M) and 

Tet(O) resistance determinants have shown that complexes amenable to purification by gel 

filtration only form between RPPs and E. coli ribosomes in the presence of the non-

hydrolysable GTP analogous guanosine 5'-O-[gamma-thio]triphosphate (GTPγS) and 5'-

Guanylyl imidodiphosphate (GMP-PNP) (Trieber et al., 1998, Dantley et al., 1998). However, 

as addition of AMP-PNP to Vga(A) and Lsa(A) pull down assays did not reveal an interaction 

between the ARE ABC-F proteins and the ribosome, further work is required to explain the 

discrepancy between Lsa(A) mediated displacement of lincomycin from ribosomes and the 

inability to detect ribosome binding in pull-down assays. Due to constrains of time and 

material, a dissection of the effects of various adenosine nucleotides on the ability of Lsa(A) 

to displace LNC from the ribosome was not conducted during this study. Such an experiment 

may inform the discovery of conditions conducive to formation of a stable ribosome : ARE 

ABC-F complex. Additionally, investigation of complex formation through analytical gel 

filtration using untagged, Vga(A) and Lsa(A), free of any conformational restrictions imposed 

by immobilisation on Ni-NTA agarose may lead to an understanding of the conditions 

required to promote binding to ribosomes.  
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Indirect evidence suggestive of a direct interaction of ARE ABC-F proteins with the ribosome 

stems from the apparent correlation between the resistance phenotypes conferred by ARE 

ABC-F determinants and the degree of overlap of their target antibiotic binding sites within 

the 50S subunit. During this study, determination of the MICs of a panel of antibiotics that 

bind the 50S ribosomal subunit against S. aureus expressing representative genes from the 

vga-type, lsa-type and msr-type groups confirmed several previously reported resistance 

phenotypes.  

The alignment of multiple crystal structures of ribosome : antibiotic complexes permits a 

structural representation of ARE ABC-F resistance phenotypes (Figure 4.7). Proteins 

belonging to the vga- and lsa- type groups confer resistance to antibiotics that overlap both 

the A-site and P-site (streptogramin As and pleuromutilins) or the A-site and entrance to the 

peptide exit tunnel (lincosamides) (Figure 4.7 B). In contrast, msr-type determinants confer 

resistance to 14- and 15-membererd ring macrolides, ketolides and type B streptogramins, 

all of which bind to overlapping sites in the nascent polypeptide exit tunnel (Figure 4.7 C). 

However, the msr(A) gene did not confer resistance to any of the 16-membered macrolides 

tested, a result also observed for msr(C) and msr(D) (Reynolds and Cove, 2005). Although the 

14- and 16- membered macrolides bind the ribosome in an overlapping position, 16-

membered macrolides are predicted to form an additional covalent bond with the ribosome, 

resulting in increased affinity for their binding site (Hansen et al., 2002), and perhaps 

explaining the lack of resistance to 16-member macrolides mediated by msr-type 

determinants.  

The recently characterised optrA gene confers resistance to phenicols and oxazolidinones, 

which share an overlapping binding site at the ribosomal A-site (Figure 4.7 D). During this 

study, vga(A) and lsa(A) did not confer any detectable level of resistance to fluorphenicol or 

linezolid, equally, optrA, has been shown to confer no resistance to type A streptogramins, 
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lincosamides, or pleuromutilins (Wang et al., 2015). It is evident, that although phenicols and 

oxazolidinones, share a degree of overlap in their binding sites with pleuromutilins, 

lincosamides, and type A streptogramins, it is not sufficient for a single ARE ABC-F protein to 

confer cross-resistance to antibiotics of every class, as is the case with the ribosomal 

methylase Cfr (Long et al., 2006). An explanation of this discrepancy in resistance phenotypes 

may lie in the precise interactions of ARE ABC-F proteins with elements of the PTC, details of 

which could be obtained through structural studies.  

No resistance to antibiotics binding in direct competition with tRNA within the PTC was 

observed amongst the ARE ABC-F determinants screened during this study (Figure 4.7 E). 

However, for the first time, vga(A) and lsa(A) genes were shown to confer decreased 

susceptibility to the 16-membered macrolides leucomycin A1 and carbomycin. A possible 

explanation of this phenotype can be gleaned from a detailed analysis of the ribosomal 

binding sites and structure-activity relationships of various macrolides. Macrolides are 

composed of a macrolactone ring of varying size to which differing numbers of sugars are 

attached (Figure 4.8 A). 14-membered macrolides, such as eryhtomycin, act by binding in the 

peptide exit tunnel and blocking the egress of nascent polypeptides (Schlunzen et al., 2001, 

Hansen et al., 2002, Tu et al., 2005). The 16-membered macrolides bind in an overlapping 

site to erythromycin and also block the peptide exit tunnel, however, in addition, these 

antibiotics inhibit peptidyl-transferase activity to various degrees (Omura et al., 1968, Haupt 

et al., 1976, Poulsen et al., 2000). The level of inhibition is determined by the extent to which 

the groups attached to the C5 position of the macrolactone ring protrude towards the A-site 

of the PTC. Erythromycin has a monosaccharide at this position and therefore does not 

inhibit peptidyltransferase activity, whereas spiramycin, tylosin, leucomycin A1, and 

carbomycin, possess disaccharides at this position and protrude further into the PTC, 

inhibiting peptidyltransferase activity (Hansen et al., 2002) (Figure 4.8 B). Leucomycin and 

carbomycin protrude furthest towards the A-site due to an isobutyrate extension of the 
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disaccharide. This results in greater degree of overlap with the binding site of type A 

streptogramins, the point at which Vga(A) and Lsa(A) appear to mediate displacement 

(Figure 4.8 B).  

The information derived from a structural analysis of antibiotic binding sites within the PTC 

and peptide exit tunnel supports the notion that the resistance phenotypes of ARE ABC-F 

proteins are determined not by the chemical composition of their target antibiotics, but by 

the precise molecular details of antibiotic binding sites within the 50S ribosomal subunit. 

Coupled with the dual findings of protection of translation in staphylococcal T/T assays and 

Lsa(A) mediated displacement of lincomycin from the staphylococcal ribosome, these results 

support a mechanistic model in which ARE ABC-F proteins bind directly to ribosome and 

displace antibiotics from their binding sites. Such a model is discussed in the context of 

information available within the scientific literature in chapter 5. 

 



111 
 

 

 

Figure 4.7. Binding sites of antibiotics within the peptidyl-transferase centre and peptide exit tunnel of the 50S 

subunit. (A) The Thermus thermophilus ribosome with tRNA occupying the A-site (blue), P-site (green) and E-site 

(yellow). The 50S and 30S subunits are shown in red and black respectively. Co-ordinates from PDB: 4V5C. Magnified 

view of antibiotics at the peptidyl-transferase centre and peptide exit tunnel. (B) Binding sites of antibiotics to which 

vga-type and lsa-type ARE ABC-F proteins confer resistance; dalfopristin (streptogramin A, orange, PDB: 1SM1), 

retapamulin (pleuromutilin, pink, PDB: 2OGO), and clindamycin (lincosamide, blue, PDB: 4V7V). (C) Binding sites of 

antibiotics to which msr-type determinants confer resistance; erythromycin (14-membered macrolide, light brown, 

PDB: 4V7U) and quinupristin (streptogramin B, dark yellow, PDB: 1SM1). (D) Binding sites of antibiotics to which OptrA 

confers resistance; chloramphenicol (phenicol, yellow, PDB: 4V7T) and linezolid (oxazolidinone, red, PDB: 3DLL). (E) 

Antibiotics to which no identified ARE ABC-F confers resistance; blasticidin S (black, PDB: 1K8A), puromycin (green, 

PDB: 1Q82) and sparsomycin (green, PDB: 1M90). Figure generated in PyMOL through alignment of co-ordinates for 

antibiotic:ribosome complexes with PDB: 4V5C.  
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Figure 4.8. Macrolides that bind at the peptide exit tunnel of the 50S ribosomal subunit. (A) Chemical structures 

of macrolides used during this study (B)  Binding sites of macrolide antibiotics; erythromycin (light brown), tylosin 

(grey, PDB:1KD1), spiramycin (white, PDB: 1KD1) and carbomycin (black, PDB: 1K8A). A transparent surface 

representation of tRNA occupying the A-site (blue), P-site (green) is shown (Co-ordinates from PDB: 4V5C). No co-

ordinates describing the ribosomal binding site of leucomycin A1 are currently available. 
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4.6 Conclusions 

The experiments described within this chapter provide direct and indirect evidence to 

support a mechanism of ARE ABC-F mediated resistance that acts at the level of translation, 

rather than through efflux. The observations of Lsa(A) mediated displacement of lincomycin 

from staphylococcal ribosomes and dependency of ARE ABC-F resistance phenotypes on the 

precise details of antibiotic binding sites, suggest a mechanism involving direct binding of the 

ribosome by ARE ABC-F proteins. However, further work will be required to confirm, and 

elucidate the molecular basis of, such an interaction. These results are discussed together 

with information from the scientific literature regarding the ARE ABC-F mechanism of action 

in Chapter 5.  
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5. Discussion 

The experimental findings of this thesis, which are discussed in detail in Sections 3.5 and 4.5, 

provide strong support for a mechanism of ARE ABC-F mediated antibiotic resistance based 

on ribosomal protection. However, at present the prevailing view held by the scientific 

community is that ARE ABC-F proteins mediate antibiotic resistance through efflux 

(Wondrack et al., 1996, Matsuoka et al., 1993, Roberts et al., 1999, Chesneau et al., 2005, 

Jacquet et al., 2008, Nunez-Samudio and Chesneau, 2013). Here, the results obtained during 

this study are considered alongside information derived from the published scientific 

literature in order to re-evaluate the evidence proposed to support a mechanism of 

ARE ABC-F mediated efflux. In addition, the homology of ARE ABC-F proteins to other ABC 

proteins involved in translation is used to propose a model describing the details underlying 

the ribosomal protection mechanism. Finally, the plausibility of a blanket application of the 

ribosomal protection hypothesis to all proteins within the ARE ABC-F subfamily is discussed. 

5.1 A re-evaluation of the evidence proposed in support of antibiotic efflux 

The genesis of the efflux hypothesis lies in the 1990 study in which the deduced amino acid 

sequence of the first ARE ABC-F protein to be identified, Msr(A), was used to search an early 

protein sequence database developed at the University of Leeds (Bleasby and Wootton, 

1990, Ross et al., 1990). This bioinformatics approach revealed a high degree of homology 

between Msr(A) and the ABC domains of ATP transport proteins, leading the authors to infer 

a mechanism of resistance through efflux and subsequently conduct transport experiments 

to assess the accumulation of erythromycin in strains expressing msr(A) (Ross et al., 1990). 

In the intervening 25 years, due to the accumulative body of work regarding ABC proteins 

and the dramatic expansion in the size of protein databases, it has become increasingly 

apparent that Msr(A) and other ARE ABC-F proteins exhibit the greatest degree of homology 
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not with the ABC domains of transporters, but with ABC proteins that participate in cellular 

processes other than transport (Kerr, 2004, Dorrian, 2009, Lenart et al., 2015). 

Nevertheless, a cursory inspection of the transport experiments conducted during early 

studies of Msr(A) and, more recently, of Vga(A), leads even an informed reader down the 

road of antibiotic efflux. Only upon closer inspection do the pitfalls in these studies become 

clear. It has been consistently shown the expression of msr(A) and vga(A) results in an 

energy-dependent reduction in intracellular drug accumulation (Ross et al., 1990, Wondrack 

et al., 1996, Matsuoka et al., 1999, Novotna and Janata, 2006). However, experimental 

evidence that the expression of Erm-type methylases results in decreased accumulation of 

macrolides (Canton et al., 2005, Piatkowska et al., 2012), along with the observation that 

addition of an excess of an unlabelled macrolide or streptogramin B antibiotic to transport 

experiments using radiolabelled erythromycin also results in decreased accumulation (Barre 

et al., 1986, Reynolds et al., 2003), demonstrates that such accumulation experiments are 

inherently flawed: they are unable to distinguish between efflux and ribosomal protection.  

Although decreased drug accumulation due to ARE ABC-F expression is the only direct 

experimental evidence proposed in support of the efflux hypothesis, studies in which ARE 

ABC-F determinants have consistently been found within the membrane fraction of lysed 

cells have frequently been cited as indirect corroborative evidence for resistance through 

efflux (Matsuoka et al., 1993, Olano et al., 1995, Chesneau et al., 2005, Nunez-Samudio and 

Chesneau, 2013). This observation suggests, that like the ABC domains of ABC transporters, 

ARE ABC-F proteins may be peripherally associated with the membrane. Furthermore, a 

study in which the presence of Vga(A) in ribosome preparations was assessed showed no 

co-localisation of Vga(A) with the L24 ribosomal protein in S. epidermidis and was interpreted 

as an absence of evidence for ribosomal protection (Chesneau et al., 2005). The significance 

of membrane localisation of ARE ABC-F proteins in the context of ribosomal protection 
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remains unclear. It is of note however, that a portion of the ARE ABC-F proteins assessed in 

these cellular localisation studies has repeatedly been found within the soluble fraction when 

the proteins are overproduced (Chesneau et al., 2005, Nunez-Samudio and Chesneau, 2013, 

Olano et al., 1995). Additionally, a fraction of cellular ribosomes has previously been shown 

to be membrane associated in S. aureus (Adler and Arvidson, 1984). 

An important prediction of the efflux hypothesis is that in order for ARE ABC-F proteins to 

participate in efflux, they must associate with TMDs. Two studies have been undertaken in 

an effort to identify such TMDs in S. aureus. In the first such study, DNA sequence analysis of 

the S. epidermidis plasmid on which the msr(A) gene was originally identified (pUL5050) 

revealed a putative ABC transporter upstream of msr(A) that was proposed as a candidate 

to provide the missing TMDs (Ross et al., 1995). Two open reading frames were identified 

within this region; a single ABC domain (designated stp) and a single TMD (smp). These 

sequences were consistently found to be associated with msr(A) on staphylococcal plasmids, 

and are also present on the chromosome of erythromycin sensitive S. aureus (Ross et al., 

1995). It was therefore suggested that an interaction between Msr(A) and this ABC 

transporter could explain the observation that msr(A) isolated from S. epidermidis was able 

to mediate resistance in S. aureus in the absence of any other plasmid encoded sequences 

(Ross et al., 1995). However, subsequent work showed that the msr(A) resistance phenotype 

was unaffected following inactivation of the endogenous S. aureus RN4220 stp and smp 

sequences through allelic replacement (Ross et al., 1996), establishing that these sequences 

are not required for Msr(A)-mediated resistance. The second study to search for Msr(A) 

associated TMDs utilised transposon mutagenesis of an S. aureus RN4220 strain containing 

a single chromosomal copy of msr(A). Despite screening of over 3000 mutants for reduced 

susceptibility to macrolides, no such TMDs were identified (Reynolds, 2005).  
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Although efforts to identify TMDs of ABC transport proteins with which ARE ABC-F proteins 

may interact have not been successful, a recent study of the streptococcal macrolide 

resistance determinants msr(D) and mef(E) provided the first report of an interaction 

between an ARE ABC-F protein and a membrane-located MFS transporter (Nunez-Samudio 

and Chesneau, 2013). The use of fluorescently labelled Msr(D) and Mef(E) in a heterologous 

host, E. coli, allowed an analysis of the cellular localisation of the two proteins. In the absence 

of msr(D) expression, Mef(E) was distributed unevenly into several focal points throughout 

the cytoplasm, a result which was also observed when a catalytic mutant of Msr(D), 

Msr(D)E434Q, was co-expressed with mef(E). However, when functional msr(D) and mef(E) 

genes were co-expressed, Mef(E) localised to the poles of the cell. Unlike msr(A) (Ross et al., 

1990) or vga(A) (Chesneau et al., 2005), and contrary to a previous report regarding msr(D) 

(Reynolds, 2005), heterologous expression of msr(D) in a macrolide susceptible E. coli strain 

conferred erythromycin and azithromycin resistance (16-fold). By contrast, heterologous 

expression of mef(E) in E. coli resulted in only a two-fold increase in erythromycin MIC and 

no azithromycin resistance, compared with the high-level resistance (up to 200-fold) to both 

drugs observed in its native host, S. pneumoniae (Wierzbowski et al., 2005). Co-expression 

of both determinants had a synergistic effect, increasing levels of erythromycin and 

azithromycin resistance 32 fold. Subsequently, an in vitro pull-down assay using histidine 

tagged Msr(D) as bait detected an interaction between Msr(D) and Mef(E) through Western 

blotting.  

From these observations the authors concluded that in the absence of Msr(D), the Mef(E) 

protein is predominantly aggregated. Co-expression of msr(D) is proposed to ensure the 

correct integration of Mef(E) into the cell membrane and Msr(D) is thought to enhance or 

hijack the Mef(E) pump, broadening its substrate specificity. Although the observation that 

expression of msr(D) alone conferred macrolide resistance was noted, a result previously 

described in S. pneumoniae (Daly et al., 2004) and S. aureus (Reynolds and Cove, 2005), the 
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authors did not speculate as to the mechanism underlying this phenotype. Analysis of the 

data arising from this study with the assumption that Msr(D) is acting to protect the 

ribosomes offers an alternative interpretation. The large decrease in the level of macrolide 

resistance conferred by mef(E) when expressed in E. coli in comparison to S. pneumoniae, 

together with the detection of several focal points throughout the cytoplasm, suggests that 

mef(E) is poorly expressed in E. coli in the presence of macrolide antibiotics and the Mef(E) 

protein is predominantly aggregated. Lifting of macrolide-mediated protein synthesis 

inhibition by co-expression of msr(D) may permit higher levels of mef(E) expression and 

correct folding of the transport protein, allowing membrane integration and promoting a 

synergistic effect between efflux and ribosomal protection. Although pull-down assays 

analysed through western blotting showed an interaction between Msr(D) and Mef(E), both 

determinants have previously been shown to function as independent resistance 

determinants in S. pneumoniae (Daly et al., 2004). In order to establish the specificity of this 

interaction it would be useful to see an SDS-PAGE analysis of the pull-down assays, as work 

outlined in Section 4.4.5 of this thesis showed Vga(A) and Lsa(A) to pull-down multiple 

proteins from cell-extracts, unfortunately no such analysis was included in the paper (Nunez-

Samudio and Chesneau, 2013).  

The msr(D) determinant was not included in the screen to obtain conditions for soluble ARE 

ABC-F proteins conducted during this study (Section 3.4.5); however, the use of E. coli 

expressing msr(D) to conduct pull-down assays suggests that this protein may be amenable 

to large scale purification. Future work in which homogenously purified Msr(D) could be 

tested for its ability to protect E. coli and S. aureus T/T assays would be beneficial. I predict 

such experiments would show Msr(D) to act in the same manner as Vga(A) and Lsa(A), and 

that any interaction with Mef(E) is secondary to the primary function of Msr(D) as a 

ribosomal protection protein. 
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5.2 Resistance through ribosomal protection 

5.2.1 A re-evaluation of the lack of evidence for ribosomal protection 

The work outlined in this thesis provides several lines of indirect and direct evidence that 

together offer support for a mechanism of resistance involving ribosomal protection. By 

contrast, previous studies in which attempts have been made to provide evidence of 

ribosomal protection have been unsuccessful. Possible explanations for these failures are 

provided below. 

Previously, translation assays composed of centrifugally purified ribosomes, S150 fractions, 

and poly(A) transcripts, have shown no difference in the erythromycin sensitivity of assays 

derived from msr(A) expressing drug resistant strains and wild-type drug sensitive strains 

(Wondrack et al., 1996). Perhaps the key difference between these translation experiments 

and the T/T assays described in this thesis is the addition of exogenously purified protein. It 

is possible to speculate that due to the membrane association of Msr(A), the centrifugation 

steps required for purification of ribosomes and S100/150 fractions remove the majority of 

the ARE ABC-F protein from the system, resulting in sensitivity of these translation assays to 

the drug (Matsuoka et al., 1993, Wondrack et al., 1996). This poses questions regarding the 

effect of membrane localisation of the protein may have upon resistance mediated through 

protection in vivo. Is there sufficient protein within the cytoplasm to mediate ribosomal 

protection? Can results obtained through addition of exogenously purified protein to T/T 

assays be said to accurately depict events occurring in whole cells? The results described 

within Section 4.4.3 of this work are therefore of particular importance. The recapitulation 

of phenotypes observed in whole cells within the T/T assays allows conclusions drawn from 

these in vitro experiments to be extrapolated to events occurring in vivo, and eliminates the 

possibility that these results are merely an artefact of the T/T assay. The relationship 

between membrane localisation of ARE ABC-F proteins and their ability to mediate ribosomal 
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protection remains an open question, however, it is of note that when cellular localisation 

of GFP-tagged Msr(D) in E. coli was assessed in vivo the protein was seen to be evenly 

distributed throughout the cytoplasm, whereas within the same study, analysis of 

centrifugally derived cell fractions by western blotting showed that the protein was present 

in both the soluble and membrane factions (Nunez-Samudio and Chesneau, 2013). Although 

speculative, it is possible to suggest that in the case of ARE ABC-F proteins, results obtained 

from cellular fractionation may not necessarily reflect events in whole cells. This is in contrast 

to studies of tetracycline RPPs, in which ribosomes and S150 fractions isolated from strains 

expressing tet(M) have proven to be refractory to the inhibitory action of tetracycline 

(Burdett, 1986, Burdett, 1991). An in vivo assessment of the cellular localisation of a 

fluorescently labelled ARE ABC-F protein in its native host may provide useful insights with 

which to reconcile the ribosomal protection model and previous cellular fractionation 

studies.   

5.2.2 A model for ribosomal protection mediated by ARE ABC-F proteins 

The results described in this thesis, coupled with the lack of conclusive evidence in support 

of efflux, indicate that ARE ABC-F proteins mediate their effects at the level of translation, 

through displacement of the drug from its ribosomal binding site. The observation that Lsa(A) 

mediated displacement of lincomycin from a preparation purified staphylococcal ribosomes, 

in which ribosomally associated proteins such as EF-Tu did not appear to be present, suggests 

that ARE ABC-F proteins act directly upon the ribosome and mediate resistance in a manner 

analogous to the tetracycline RPPs. 

The tetracycline RPPs show homology to the ribosome-associated GTPases EF-G and EF-Tu 

(Doyle et al. 1991), and bind the ribosome at the same position as these elongation factors 

(Li et al., 2013, Arenz et al., 2015). Analysis of the literature pertaining to ABC proteins not 

involved in transport yields three characterised proteins that have been shown to directly 
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bind the ribosome: ABCE1, a highly conserved protein that plays a role in ribosome recycling 

and rescue of stalled ribosomes in eukaryotes and archaea (Andersen et al., 2006); eEF3, a 

fungal protein that plays an essential role in elongation and recycling (Becker et al., 2012); 

and EttA a widely distributed bacterial protein involved in energy dependent regulation of 

translation (Boel et al., 2014, Chen et al., 2014). Of these proteins both eEF3 and EttA fall 

into the ABC-F subfamily, whereas ABCE1 belongs to the closely related ABC-E subfamily, a 

group of dual ABC domain proteins that also lacks TMDs. All three proteins contain tandemly 

repeated ABC domains separated by a linker. However, ABCE1 and eEF3 contain additional 

N-terminal HEAT repeat and iron-sulphur cluster (FeS) domains respectively, which are 

essential to their interaction with the ribosome (Andersen et al., 2006, Becker et al., 2012). 

Of these three proteins, the predicted domain architecture of ARE ABC-F determinants most 

resembles that of EttA (Figure 5.1 A).  

EttA regulates translation in E.coli in response to changing cellular energy levels, specifically 

the ATP/ADP ratio of the cell (Boel et al., 2014, Chen et al., 2014). The protein is thought to 

contribute either to survival of the organism in stationary phase, or to aid its transition from 

stationary phase to logarithmic growth. In order to perform these functions, EttA binds to 

the ribosome at the E-site, bringing the L1 stalk and P-site, and modulates the conformation 

of the PTC through contracts with ribosomal proteins, rRNA and P-site fMet-tRNA 

(Figure 5.1 B [i] and [ii]) (Boel et al., 2014, Chen et al., 2014). It is currently thought that the 

ADP-bound form of EttA, which is predominant in stationary phase, binds to the vacant E site 

of ribosomes positioned at the start codon and inhibits translation. Whereas ATP-bound 

EttA, which is predominant during logarithmic growth, promotes formation of the first 

dipeptide bond, hydrolyzes ATP and dissociates from the E site (Boel et al., 2014, Chen et al., 

2014). Although this model provides an initial framework for understanding EttA function, 

there is an open question as to exactly how ATP hydrolysis can promote the release of EttA 

from the ribosome, whereas ADP can stabilize EttA and cause translation inhibition.
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The functional and structural characterisation of EttA (Boel et al., 2014, Chen et al., 2014) 

infomred the conclisions drawn during a recent study of Vga(A) conducted by Lenart et al. 

(2015). Using site-directed mutagenesis mapping of Vga(A), they demonstrate that the 

spectrum of antibiotic resistance mediated by the protein can be altered by mutations to an 

8-residue variable region within the interdomain linker (Lenart et al., 2015). Lenart et al. 

point out that the PtIM of EttA is conserved in Vga(A), with an extension of 30 amino acids 

inserted at its centre, into which the 8-amino acid antibiotic specificity determining region 

falls. They therefore propose that the Vga(A) linker acts analogously to the EttA linker, but 

the extension allows further penetration towards the PTC, where it causes dissociation of its 

target drugs either directly, or through contacts with the P-site tRNA (Figure 5.1 B [ii]) (Lenart 

et al., 2015). This model of ribosomal protection fits with the data outlined in this study. 

However, it is important to note that EttA interaction with the ribosomal L1-stalk is mediated 

by a second functionally important structural motif, a 44 amino acid insertion between the 

Q-loop and signature motif of the N-terminal ABC domain referred to as the arm region, 

which is not present in ARE ABC-F proteins. This position is important for determining the 

protein : protein interactions in which ABC proteins participate (Dassa and Bouige, 2001, 

Davidson et al., 2008, Dassa, 2011), insertion of a chromodomain into the equivalent position 

of the C-terminal ABC domain of eEF3 mediates interaction with a different region of the 

ribosome (Andersen et al., 2006). Therefore although the interdomain linker of ARE ABC-F 

proteins may interact with the P-site tRNA in a similar manner to EttA, the position of ARE 

ABC-F ribosomal binding may not be identical.  

EttA preferentially binds to ribosomes containing fmet-tRNA at the A-site and competes with 

deacetylated tRNA within the E-site for its binding position (Boel et al., 2014, Chen et al., 

2014). Although 14-membered macrolide antibiotics such as erythromycin are unable to 

inhibit elongating ribosomes (Andersson and Kurland, 1987), at least one example of an 

antibiotic that inhibits the peptidyl-transferase reaction, lincomycin, exhibits inhibitory 

action against ribosomes in the post-translocation conformation. 
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Figure 5.1. (A) Domain architectures of ABC proteins that directly bind the ribosome. A comparison between 

the ARE ABC-F subfamily, represented here by Vga(A), to other ABC proteins that directly bind the ribosome. 

Unlike the ARE ABC-F proteins ABCE1 and eEF3 lack an extended inter ABC linker and possess additional N-

terminal domains important for their interaction with the ribosome. In contrast, like ARE ABC-F proteins, EttA is 

composed by two ABC domains separated by an extended interdomain linker, which is recognised as a 

ABC_tran_2 conserved domain. (B) The interaction of EttA with the ribosome. (i) EttA (blue) binds at the E-site 

of the 70S ribosome where it contacts the acceptor arm of the P-site tRNA (red) as shown in (ii). ARE ABC-F 

proteins possess an extended linker domain which may protrude further towards the PTC (depicted as green 

circle) in order to displace 50S targeted drugs from their binding sites. Figure adapted from Starosta et al. (2014).  
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(Kallia-Raftopoulos et al., 1994). This poses the question of how an ARE ABC-F protein would 

mediate antibiotic displacement from an elongating ribosome. Although EttA preferentially 

binds pre-translocation ribosomes, in vitro peptide synthesis assays have shown the protein 

as capable of binding post-translocation complexes albeit at a lower affinity. The ribosomal 

E-site was shown not to stably retain deacetylated tRNA in these assays, providing an 

opportunity for the EttA to bind (Boel et al., 2014). Perhaps ARE ABC-F proteins act in a 

similar manner in vivo, binding the vacant E-site and promoting displacement of the 

antibiotic. Such a system would not prevent rebinding of the displaced antibiotic and would 

therefore require cyclic ARE ABC-F association, antibiotic displacement, and dissociation of 

the ARE ABC-F protein, processes likely to be driven by the different conformational states 

resulting from binding and hydrolysis of ATP. The plausibility of this model is dependent on 

peptide bond formation occurring at a faster rate than rebinding of the antibiotic. Further 

work is required in order to establish the precise details of such a model. 

5.2.3 Do all ARE ABC-F proteins mediate ribosomal protection? 

The work described in this thesis provides strong support for a mechanism of ribosomal 

protection for the Lsa-type and Vga-type ARE ABC-F proteins. Previously, the efflux 

hypothesis was derived predominantly from experiments concerning Msr(A), Vga(A) and 

Ole(B) and applied to all ARE ABC-F proteins. Is it equally appropriate to apply the ribosomal 

protection hypothesis to all members of the subfamily? The homology exhibited by ARE ABC-

F proteins found in Gram-positive pathogens, coupled to the consistent correlation of 

resistance phenotypes amongst this group with the precise ribosomal binding sites of their 

target antibiotics, suggests that the ribosomal protection model can be applied to this entire 

group. Efforts to identify conditions conducive to the soluble expression of an Msr- 

determinant during this work were unsuccessful; however, work in which strains expressing 

Msr(D) have been used in pull down assays suggests that purification of this protein may be 

possible (Nunez-Samudio and Chesneau, 2013), analysis of this protein in the T/T assay may 
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further validate the application of the ribosomal protection hypothesis to all ARE ABC-F 

proteins found in Gram-positive pathogens. 

Observations derived from experiments regarding ARE ABC-F proteins found in Gram-

positive antibiotic producers makes application of the ribosomal protection model to this 

group of proteins more difficult. For example, deletion of either the N- or C-terimal ABC 

domains of the oleandomycin resistance determinant Ole(B) has been shown not to affect 

its ability to confer resistance (Olano et al., 1995). Similarly, macrolide resistance conferred 

by the LmrC lincomycin resistance determinant from Streptomyces lincolnensis expressed 

within the heterologous host Lactococcus lactis has been shown to occur independently of 

the proteins ability to bind ATP (Dorrian et al., 2011). Heterologous expression, purification, 

and analysis within a T/T assay of one or more of the ARE ABC-F determinants found within 

antibiotic producing bacteria would prove useful in an effort to determine whether all 

ARE ABC-F proteins mediate ribosomal protection. 

5.3 Future work 

An important step to enable further characterisation of the ribosomal protection model is 

the isolation of stable ARE ABC-F : ribosome complexes. In order for this to be achieved, an 

analysis of the relative effects of different adenosine nucleotides on Lsa(A) binding to 

ribosomes should be performed and examined through analytical gel filtration or surface 

plasmon resonance using an immobilised ARE-ABC-F protein. Similar experiments have 

previously been used to identify the requirements for binding of tetracycline RPPs to the 

ribosome (Dantley et al., 1998, Trieber et al., 1998). Other parameters that could be varied 

are salt concentration (as increasing ionic strength has been shown to cause dissociation of 

tetracycline RPPs from ribosomes (Burdett, 1991)) and magnesium concentration. Attempts 

to purify a Vga(A) double catalytic mutant(Vga(A)E105Q,E410Q), that is capable of binding but not 

hydrolysing ATP, were not successful during this project. A similar mutant, EttA-EQ2, was 
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used to obtain complexes of EttA bound to the ribosome, however, rather than attempting 

pull down assays using purified EttA-EQ2 these complexes were isolated through an “in vivo 

pull-down” in which induction of a tightly regulated construct encoding EttA-EQ2 followed by 

cell lysis and IMAC resulted in a one-step purification of the EttA-EQ2 : ribosome complex 

(Chen et al., 2014). A similar experiment could be conducted in S. aureus using 

vga(A)E105Q,E410Q present in a tightly regulated vector such as pAJ96 (O'Neill et al., 2007).  

The isolation of a stable ARE ABC-F : ribosome complex would permit structural studies of 

the complex using cryo-EM. Similar investigations have yielded structural information 

regarding the interactions of tetracycline RPPs and translation associated ABC proteins, 

including EttA, with the ribosome (Boel et al., 2014, Li et al., 2013, Arenz et al., 2015, 

Andersen et al., 2006, Becker et al., 2012). Further attempts to crystallise Vga(A) and Lsa(A) 

may benefit from the analysis of buffer components for stabilisation of Vga(A) described in 

Section 3.4.9, although it is clear that the problem of protein degradation will need to be 

solved in order to obtain a high-resolution structure of either protein. If such a structure was 

obtained, in tandem with information derived from a cryo-EM study of the protein : 

ribosome complex, this information could potentially prove useful in the rational 

modification of 50S targeted antibiotics to circumvent ARE ABC-F mediated resistance. Such 

work would translate the dissection of the fundamental biology underlying the resistance 

mechanism described within this thesis into useful intelligence in the ongoing fight against 

antibiotic resistance.   
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