
NegationinLogic and Deductive DatabasesXuegang WangSchool of Computer StudiesThe University of Leeds
ASeptember 1999Submitted in accordance with the requirementsfor the degree of Doctor of Philosophy.The candidate con�rms that the work submitted is his own and the appropriatecredit has been given where reference has been made to the work of others.

In memory of my father, Caibing Wang,andto my mother, Shixiu Ding.

AbstractThis thesis studies negation in logic and deductive databases. Among otherthings, two kinds of negation are discussed in detail: strong negation and nonmono-tonic negation.In the logic part, we have constructed a �rst-order logic CF0 of strong negationwith bounded quanti�ers. The logic is based on constructive logics, in particular,Thomason's logic CF. However, unlike constructive logic, quanti�ers in our systemas in Thomason's are static rather than dynamic. For the logicCF0, the usual Kripkeformal semantics is de�ned but based on situations instead of conventional possibleworlds. A sound and complete axiomatic system of CF0 is established based onthe axiomatic systems of constructive logics with strong negation and Thomason'scompleteness proof techniques. CF0 is proposed as the underlying logic for situationtheory. Thus the connection between CF0 and infon logic is briey discussed.In the database part, based on the study of some main existing semantic theoriesfor logic programs with nonmonotonic negation, we have de�ned a novel semanticsof logic programs called quasi-stable semantics. An important observation is that anonmonotonic negation such as is required for logic programs should be computedby a nonmonotonic, revision process. Only a process that allows one to withdraw byrevising provisionally held negative information can hope to be adequate to modela non-monotonic negation. In light of this, we propose a model of negation thatowes much to the stable semantics but allows, through a mechanism of consistency-recovery, for just this withdrawal of previously assumed negative information. Ithas been proved that our new semantics maintains the desired features of boththe well-founded semantics and the stable model semantics while overcoming theirshortcomings. In addition, the quasi-stable semantics has been generalised to logicprograms with both strong negation and nonmonotonic negation, giving rise to thequasi-answer set semantics. i

AcknowledgmentsI should like to thank my supervisor, Peter Mott for his direction, supervision,criticism and encouragement throughout the whole process of my study. Without hisvalued help, I would have not studied at Leeds, let alone �nish the thesis. Thanksalso to my advisor, Professor Tony Cohn for his encouragement and instructiveadvice.There have been many other people giving me various kinds of timely help inone way or another in my life. I should like to thank them too.Finally I wish thank and acknowledge funding from an Overseas Research Stu-dents (ORS) Award (#ORS-95023007), a Tetley & Lupton Scholarship, a LeedsUniversity Foundation Scholarship, and a departmental grant.

ii

Contents1 Introduction 11.1 Negation in Logic : 21.1.1 Negation in Classical Logic : 21.1.2 Negation in Intuitionistic Logic : : : : : : : : : : : : : : : : : 31.1.3 Negation in Constructive Logics : : : : : : : : : : : : : : : : : 41.2 Situation Theory and Negation : 61.3 Negation in Deductive Databases : 81.4 Outline of the Thesis : 102 Negation in First-order Logic 142.1 Two levels of �rst-order logic : 142.2 Failure vs Inconsistency : 162.2.1 Negation as Failure to Support : : : : : : : : : : : : : : : : : 172.2.2 Negation as Inconsistency : 182.3 Two-valued vs Three-valued : 212.3.1 Two-valuedness : 212.3.2 Three-valuedness : 232.4 Non-persistence vs Monotonicity : 252.4.1 Non-persistence : 262.4.2 Monotonicity : 27iii

2.5 Concluding Remark : 283 First-Order Logic CF0 293.1 Constructive Logics with Strong Negation : : : : : : : : : : : : : : : 303.2 Motivations behind Logic CF0 : 303.2.1 Dynamic vs. Static Quanti�ers : : : : : : : : : : : : : : : : : 313.2.2 Expanding vs Constant Domains of Quanti�cation : : : : : : : 323.2.3 From Thomason's Logic CF to Our Variant CF0 : : : : : : : 343.3 Logical System CF0 With Strong Negation : : : : : : : : : : : : : : : 363.3.1 Language L of CF0. : 363.3.2 Persistent Formulas : 383.3.3 Formal Semantics : 403.3.4 Axiomatic System for CF0 : 453.3.5 Derived Rules for CF0. : 473.4 Completeness of CF0 : 503.5 First-Order Logic CF0 and Infon Logic : : : : : : : : : : : : : : : : : 554 Deductive Databases 584.1 From Relational to Deductive Databases : : : : : : : : : : : : : : : : 584.2 Logic Programs and Deductive Databases : : : : : : : : : : : : : : : 614.3 Why Negation? : 654.3.1 Nonmonotonicity of not : 704.3.2 Strong Negation in Logic Programs : : : : : : : : : : : : : : : 725 Non-monotonic Negation 745.1 Introduction : 755.2 Semantics for De�nite Logic Programs : : : : : : : : : : : : : : : : : 765.3 Program Completion and Negation as Failure : : : : : : : : : : : : : 79iv

5.4 Fitting Semantics : 815.5 Closed World Assumption : 845.6 Well-founded Semantics : 885.7 Stable Semantics : 955.7.1 Two-valued Stable Semantics : : : : : : : : : : : : : : : : : : 955.7.2 Three-valued Stable Semantics : : : : : : : : : : : : : : : : : : 1006 Quasi-stable Semantics 1056.1 The Quasi-stable Semantics : 1066.1.1 Informal description of the Quasi-stable semantics : : : : : : : 1066.1.2 Formal De�nition of Quasi-stable Semantics : : : : : : : : : : 1106.2 Properties of Quasi-stable Semantics : : : : : : : : : : : : : : : : : : 1186.3 Examples : 1246.4 Discussion : 1286.4.1 Supportedness : 1286.4.2 Inference Forms in the Quasi-stable Semantics : : : : : : : : : 1306.5 Related Work : 1326.5.1 WFS Extensions : 1326.5.2 Stable Model Semantics and Its Variants : : : : : : : : : : : : 1336.6 Concluding Remarks : 1357 Quasi-stable Semantics with Strong Negation 1367.1 Strong Negation in Logic Programs : : : : : : : : : : : : : : : : : : : 1377.2 Extended Logic Programs : 1387.3 Semantics of Extended Programs : 1407.3.1 The Answer Set Semantics : 1407.3.2 The Quasi-answer Set Semantics : : : : : : : : : : : : : : : : 1427.4 Why Not Classical Negation? : 145v

7.5 Knowledge Representation Using Strong Negation : : : : : : : : : : : 1477.6 Relation between Strong Negation and Non-monotonic Negation : : : 1508 Conclusions and Future Work 1538.1 Conclusions : 1538.1.1 Strong Negation : 1538.1.2 Nonmonotonic Negation : 1548.2 Further Work : 1558.2.1 Possible Extensions of CF0 : 1558.2.2 Issues Relevant to the Quasi-stable Semantics : : : : : : : : : 1568.2.2.1 Non-WFE-based Quasi-stable Semantics : : : : : : : 1568.2.2.2 Non-ground Quasi-stable Semantics : : : : : : : : : : 1578.2.2.3 Implementation of the Quasi-stable Semantics : : : : 158

vi

Chapter 1IntroductionThe notion of negation is basic not only to any formal or informal logic system (see[43]) but also to logic programming and deductive databases (see [87]). Historically,there were serious objections against the use of negation in intuitionistic mathemat-ics by Griss (see [56] and related citations there). However, it was argued by Heyt-ing [56] that, without negation, there would be no calculus of propositions becauseonly true propositions make sense, and thus the logic of negationless mathematicswould be di�cult to formalise. In the contexts of logic programming and deductivedatabases, logic programs without negation would have a limited expressive power(see [1]). Thus we take it for granted that the use of negation is indispensable.Our task is to have a good understanding of negation from the logical and prag-matic viewpoints. In this introductory chapter, we have a brief informal look atvarious kinds of negation in di�erent logics, in logic programming, and in deductivedatabases. We assume basic familiarity with logic, and logic programming.
1

1. Introduction 21.1 Negation in Logic1.1.1 Negation in Classical LogicIn logic, the most important form of negation is probably the negation in classical�rst-order logic, called classical negation. The importance of classical negation de-rives from the importance of classical �rst-order logic, which has been widely appliedto various subjects, including mathematics and its foundations, physics, computerscience, etc.Informally, classical negation as a unary operator expresses something like \it isnot the case that ... " in natural language. A negative sentence :p is true wheneverp is false, and false whenever p is true.It is worth noting that the above simple form of classical negation is based on theassumption that any sentence is either true or false, which in turn is connected withthe two basic assumptions implicitly made in the semantics of �rst-order logic. Oneis that every name in a �rst-order language must refer to an object in the domain ofquanti�cation, that is there are no denotation failures. We call this the denotationassumption. The other is that all predicates p(x) are completely de�ned in the sensethat for any individual a, p(a) is either true or false. In other words, models used in�rst-order logic are assumed to represent a complete scenario of states of the wholeworld. We shall call the second assumption the completeness assumption. Underthese two assumptions, �rst-order logic is semantically two-valued. A �rst-ordersentence is either true or false. On this the bivalence is built the notion of classicalnegation: the negation of a true sentence is false, and the negation of a false sentenceis true. An important feature of classical negation is that it satis�es the principleof the excluded third and the principle of the double negation.The two semantic assumptions, among other things, have been criticised fromdi�erent perspectives. Free logic and partial logic have resulted by dropping one or

1. Introduction 3both of the assumptions respectively (see [14] and [18]). The denotation assumptionis somewhat philosophical. From the database viewpoint, we need not worry aboutit. By restricting interpretations to Herbrand interpretations, this assumption willbe automatically satis�ed. As to the completeness assumption, we shall argue thatit is not necessary to give up the simple bivalence of classical �rst-order logic if wedrop the assumption. We shall show this in the next chapter.1.1.2 Negation in Intuitionistic LogicThe use of classical logic, though spread wide, is not without any problems evenin mathematics itself. We mentioned in the previous section that criticism of thesemantic assumptions of �rst-order logic resulted in two non-classical logics: freelogic and partial logic. The principle of the excluded middle is criticised from theBrouwerian constructive approach to mathematics, known as intuitionism1.One of basic tenets behind intuitionism is that any mathematical propositionmust have a mathematical construction with certain given properties. A proposi-tion p is asserted if we have a mathematical construction of the proposition; anda negative proposition � p can be asserted if and only if there is a constructionwhich from the assumption that a construction for p were carried out leads to acontradiction. Furthermore, all other logical connectives and quanti�ers also need aconstructive meaning. As a result, the principle of the excluded middle cannot beacceptable from the constructive viewpoint (see [56], pp. 97-99, [13], pp. 404-408,and [100], pp. 8-11).Interestingly, through the work of Gentzen [50], it is known that the naturaldeduction system for intuitionistic logic can be obtained by removing just the prin-ciple of the excluded middle from the natural deduction system for classical logic.1For an introduction to intuitionism, see [56], and for a concise but more comprehensive surveyto various principal constructivist schools, see [100].

1. Introduction 4The resulting negation, which we shall call intuitionistic negation, is stronger thanclassical negation.Along with the principle of the excluded middle, the other classical principlesof double negation, de Morgan, etc have also to be partially dismissed from intu-itionistic logic. For example, it is known that intuitionistic logic has the disjunctionproperty (see [102]):p _ q is provable i� p is provable or q is provable.But the following does not hold for intuitionistic logic::(p ^ q) is provable i� :p is provable or :q is provable,which seems necessary for a truly constructive negation. Because of this unsymmet-ric characteristic, we may say that intuitionistic negation does not completely adhereto constructivity despite its constructive demand for negatively asserted mathemat-ical propositions. This shortcoming and other undesirable features of intuitionisticnegation have been overcome by another kind of negation, called strong negationwhich we discuss in the next subsection.1.1.3 Negation in Constructive LogicsIn the logic community, strong negation was introduced by Nelson [76], based on adistinction between two proof methods for the negation of a sentence: a sentencecan be refuted either by reductio ad absurdum or by construction of a counter-example. Essentially, strong negation expresses the notion of directly establishedfalsity. Independently, Markov [68] also introduced strong negation from the pointof view of constructive logic.Strong negation was later incorporated into various logical systems, Nelson'spropositional systems N and N1, that is, the propositional parts of Nelson's system

1. Introduction 5N1 of constructible falsity (see [76], and Routley [94]), and their �rst-order exten-sions are initial examples (see Almukdad and Nelson [4]2). Two similar systems Fand G, or equivalently,HF and HG (using Routley's notation), have been studiedby Fitch [39]. For the di�erence between Fitch's systems and Nelson's systems, see[94], and see also Thomason's footnote on page 255 of [98]. There are also an intu-itionistic logic with strong negation H by Gurevich [54], constructive predicate logicwith strong negation S by Akama [2], and �rst-order logic CF by Thomason [98],constructive propositional calculus with strong negation by Vorob'ev [107] and thesemantics of the calculus in terms ofN -lattices in Rasiowa [89]. Furthermore, Wans-ing [114] has systematically investigated the whole family of substructural subsys-tems of Nelson's systems from the point of view of the �ne-structure of informationprocessing.3We shall refer to the resulting logics loosely as constructive logics with strongnegation. In comparison to intuitionistic logic, these logic systems demonstrateseveral satisfying features, including symmetry, and partiality. See Chapter 3 fordetails. Constructive logics have another important feature { persistence, which isalso shared by intuitionistic logic but not by classical �rst-order logic. We shalldiscuss this feature in Chapter 2 and Chapter 3.Compared with intuitionistic negation, it turns out that strong negation is sim-pler and more straightforward. Moreover, the notion of directly established falsityexpressed by strong negation lends itself to the explicit expression of negative infor-mation in logic programming and deductive databases. We shall discuss this utilityof strong negation in the context of logic programming in Chapter 7.2In [4], Almukdad and Nelson use N and N� for their �rst-order systems, where N� is theproper subsystem of N without the axiom schema ' � (� ' �).3Wansing uses N� and N instead of N and N1 respectively. N� and N are formulated insymmetrical sequent calculus (see pp. 24-25 of [114]).

1. Introduction 61.2 Situation Theory and NegationRecently, classical �rst-order logic has also been challenged by situation theorists(see [10] and [32]). The basic insight of situation theory is that cognitive activitiessuch as thought, speech, communication, and inference are all situated relative to asituation or context. Situations are introduced to model limited portions of the worldin which agents carry out their activities. As information sources, situations can beseen as concise representations of various kinds of context sequences in possible worldsemantics. Another related novel characteristic of situation theory is its emphasison information content. More generally, situation theory concerns the developmentof a general theory of meaning and information, in particular, the development ofan information-based theory of inference.In [10], Barwise and Etchemendy put forward a model of information contentcalled infon algebra in order to develop an information-based theory of inference. Aninfon algebra I = hSit; I;); j=i consists of a non-empty collection Sit of situations,a distributive lattice hI; j=i on infons, together with the makes-factual or supportrelation j= between situations and infons satisfying certain additional conditions.In an infon algebra I, infons represent pieces of information, and situations areintended to be limited portions of the world. Thus situations provide us with akind of incomplete information; that is to say, the support relation j= is essentiallypartial: a situation may support some infons and refute others but remain silenton many. It follows that any algebraic theory of infons is de�nitely not Boolean.Furthermore, they argue that the situation-theoretic model of infons is at least acomplete distributive lattice, that is Heyting algebra. Therefore, they conclude thatalgebraic structure of infons satis�es the axioms for Heyting algebra but not allthe axioms for a Boolean algebra. Thus, the logic for situation theory is at leastintuitionistic but not classical.

1. Introduction 7This argument immediately poses at least two questions. One is about negation,the other about the interpretation of quanti�ers. Here we only consider the questionabout negation, leaving the other one to Chapter 3.We recall that in situation theory there are two kinds of basic infons: one is� R; a1; a2; :::; an; 1 �, the other � R; a1; a2; :::; an; 0 �, where R is an n-placerelation, a1; a2; :::; an are objects with a restriction of appropriateness. Note thata1; a2; :::; an need not necessarily be individuals. 0 and 1 are the polarity of infons.For basic infons, negation is de�ned through a dual operation as follows:� R; a1; a2; :::; an; 1� = � R; a1; a2; :::; an; 0� (1.1)� R; a1; a2; :::; an; 0� = � R; a1; a2; :::; an; 1� (1.2)So, we have � R; a1; a2; :::; an; 1� = � R; a1; a2; :::; an; 1� (1.3)� R; a1; a2; :::; an; 1� = � R; a1; a2; :::; an; 1� (1.4)However, it is well-known that intuitionistic negation does not satisfy (1.3) thoughit satis�es (1.4).Furthermore, the negation of compound infons in situation theory is de�ned bythe following version of de Morgan's laws (see Barwise [8], p. 235, and Fernando [38],p. 108). Even in [10], p. 55, Barwise and Etchemendy do mention that (1.5) issometimes assumed in situation theory. However, (1.5) does not hold though (1.6)does for intuitionistic negation. � ^ � = � _ � (1.5)� _ � = � ^ � (1.6)

1. Introduction 8Therefore, we conclude that the situation-theoretic negation is not intuitionistic.Moreover, the above way of treating negation by situation theorists to some extentsuggests that the negation used in situation theory is in fact strong negation. Moreimportantly, it turns out that intuitionistic negation can in fact be simulated bystrong negation (see [68] and [2]).In light of this, we are inclined to see constructive logic with strong negation asthe underlying logic for situation theory rather than intuitionistic logic.We shall argue in Chapter 3 that the intuitionistic interpretation of universalquanti�ers is not satisfying either from the situation-theoretic viewpoint. In fact,universal quanti�ers used in related situation theory literature are classical as in the�rst-order logic. This motivates the construction of a logic with strong negation andclassical quanti�ers. See Chapter 3 for details.1.3 Negation in Deductive DatabasesThe notion of negation in logic programming and deductive databases is more com-plicated and involved than that in logic. This as we shall see later is mainly becauselogical negation has proved unsuitable to application domains where the form ofreasoning is usually nonmonotonic. A di�erent kind of negation has been intro-duced through semantics associated with a logic program. Roughly speaking, themain idea behind is that a piece of negative information is implicitly or \by default"assumed whenever there is no su�cient evidence to the contrary, where the exactmeaning of \su�cient evidence" depends on what semantics is associated with alogic program. Whatever semantics is used, a common characteristic of this newform of negation is nonmonotonicity, that is a piece of assumed-by-default negativeinformation could be given up later when more information is available. So, we may

1. Introduction 9as well call this kind of negation nonmonotonic negation4.Two initial examples of nonmonotonic negation developed in logic programminglanguages are the THNOT construct in PLANNER [55] and the not operator inPROLOG (see [25] and its citations). Both of them express something which waslater termed by Clark [25] as the negation as failure (NAF) inference rule. It statesto the e�ect that a negative conclusion not p is inferred if any search for a proof of pfails �nitely. Here, the �niteness condition is indispensable unless a system has somemechanism for detecting an in�nite process. So the rule is sometimes also called thenegation-as-�nite-failure rule.First formalisations of nonmonotonic negation include Reiter's closed world as-sumption (CWA) [90] and Clark's program completion semantics [25]. The CWA isessentially an inference rule, stating that if a ground atom p is not a logical conse-quence of a program, then infer not p. The completion semantics is introduced withthe aim of reducing the negation-as-�nite-failure rule to a derived rule of �rst-orderlogic so as to justify the use of the rule.In Chapter 5 we shall show that both the CWA and the completion semanticshave serious shortcomings. They can only be applied to a limited class of logicprograms without causing any inconsistency or other problems. In the past twodecades, various kinds of more �ne-grained semantics for logic programs have beenproposed, including the Fitting semantics [40], the strati�ed semantics [21], thestable semantics [47], the default semantics [16], and the well-founded semantics[105]. These semantical theories to a great extent draw on nonmonotonic logicdeveloped in early 1980's5. For example, the default semantics is based on default4In the literature, it is also called negation as failure [25], negation by default [16] or simplynegation when there is only one kind of negation is involved [1]. There is even a further classi�cationof this kind of negation according to speci�c semantics used [73]. We prefer to use nonmonotonicnegation because nonmonotonicity captures the essential characteristic of negation in question,and is more general in comparison to other terms.5The history of nonmonotonic logic traces back to the work by McCarthy [69] in the late 1950's.The initial formal theories of nonmonotonic logic were collected in an issue of the Arti�cial Intel-ligence Journal (1980), devoted exclusively to nonmonotonic reasoning. An important reference

1. Introduction 10logic [91], and the stable semantics has its root in autoepistemic logic [74].In logic programming and deductive databases, the stable model semantics andthe WFS have become two dominant semantical theories. We shall see in Chapter5 that they are more �ne-grained than the CWA and the NAF. The introductionof these two semantics is an important step towards understanding nonmonotonicnegation. Nevertheless, it can be argued that they are still not fully satisfying. Inparticular, we shall argue that the underlying de�nition of stable models in the stablemodel semantics is to some extent inconsistent with the essential characteristics ofnonmonotonic negation used in logic programs. Based on the WFS and hypotheticalreasoning, we shall propose a novel semantics in Chapter 6. It turns out that thenewly introduced semantics is very similar to the stable model semantics but avoidsits shortcomings. So we call it the quasi-stable semantics.1.4 Outline of the ThesisIn addition to this introductory chapter, the thesis includes a further seven chapters.We summarise the contents of these chapters as follows.Chapter 2: Negation in �rst-order logic. We begin with the analysis ofclassical negation at the semantic and proof-theoretic levels, showing that classicalnegation at the semantic level is entirely di�erent from the negation at the proof-theoretic level. Given the discrepancy, we had better divide classical negation intotwo notions: one is the semantical notion of classical negation, and the other proof-theoretical one. We also show that, more generally, there exists a sharp di�erence in�rst-order logic between the semantical and proof-theoretic levels. Although �rst-order logic is proof-theoretically monotonic, nevertheless, it is non-persistent at thesemantical level. The monotonic inference of �rst-order logic is not suitable forbook on the subject is Nonmonotonic Logic by Marek and Truszczynski [67]. For a survey ofnonmonotonic logic, see [72].

1. Introduction 11the retrieval of negative information even in the context of relational databases.Instead it is the semantic notion of classical negation that is used in relationaldatabases. These arguments will be used in Chapter 4 to facilitate understandingof the relationships among various di�erent kinds of negation, and to enable us tosee what is needed to be done if we are going to use the deductive approach todatabases.Chapter 3: First-order Logic CF0 We study the logic of strong negation. A�rst-order logic CF0 with strong negation and bounded quanti�ers is constructed.The logic is based on constructive logics, in particular, Thomason's logic CF. How-ever, unlike constructive logic, quanti�ers in our system as in Thomason's are staticrather than dynamic. The usual Kripke formal semantics is de�ned for the logicCF0, based on situations instead of conventional possible worlds. A sound andcomplete axiomatic system of CF0 is established based on the axiomatic systems ofconstructive logics with strong negation and Thomason's completeness proof tech-niques. CF0 is proposed as the underlying logic for situation theory. Thus theconnection between CF0 and infon logic is briey discussed. The work on the logicCF0 has been previously published in [112].Chapter 4: From Relational to Deductive Databases In this chapter,we �rst consider the limited expressive power of the conventional relational modelof databases and briey discuss how the deductive approach to databases gives astraightforward solution to the expressive problem of the relational model. It is thenfollowed by the formal de�nitions of logic program and deductive database. Finally,we give some arguments to show why negation is one of central problems in thedeductive approach.Chapter 5: Nonmonotonic Negation. This chapter is to review some mainsemantic theories for logic programs, including the semantics of de�nite logic pro-grams mainly by van Emden and Kowalski [103], Clark's program completion se-

1. Introduction 12mantics and the associated SLDNF[25], Reiter's closed world assumption [90], Fit-ting's semantics [40], the well-founded semantics by Gelder, Ross and Schlipf [105],stable semantics by Gelfond and Lifschitz [47], and a three-valued version of thestable model semantics by Przymusinski [85]. There is no doubt that these seman-tic theories give us instructive insights into understanding nonmonotonic negation.Nevertheless, it can be argued that they all to some extent have shortcomings ofone sort or another. We shall argue that the stable model semantics and its three-valued version are conceptually awed, based on the observation that the stablemodel semantics has no mechanism whatsoever for revising provisionally assumednegative information in light of newly discovered information while it aims to modelan essentially nonmonotonic negation. The critical argument on the stable modelsemantics has been previously reported in [113].Chapter 6: Quasi-stable Semantics. Based on the study of some mainexisting semantic theories, we proposed a novel semantics for logic programs, calledquasi-stable semantics. An important characteristic of the quasi-stable semanticsis the introduction of a mechanism of consistency-recovery. As a result, the quasi-stable semantics is able to revise tentatively held negative information wheneverconicts occur. It has been proved that (i) every logic program has at least onequasi-stable extension, (ii) a quasi-stable extension of a logic program P is a totalmodel of P, (iii) a quasi-stable extension of P is minimal in the sense that no positiveliteral can be replaced in the extension by a negative one without its ceasing to be amodel of P, (iv) the well-founded partial model for a logic program P is included inevery quasi-stable extension of P, (v) every stable model is a quasi-stable extension.The work in this chapter has been previously reported in [111].Chapter 7: Quasi-stable Semantics with Strong Negation. Normal logicprograms are extended with strong negation, resulting in logic programs with bothnonmonotonic negation and strong negation. Such logic programs are called extended

1. Introduction 13logic programs. The dominant Semantics for extended logic programs is the so-calledanswer set semantics [48], which is derived from the stable model semantics [47].However, the stable model semantics is problematic as we shall show in Chapter 5,we instead de�ne a semantics for extended logic programs, based on our quasi-stablesemantics.Chapter 8: Conclusions and Future Work Finally we give a brief summaryabout the our research on both strong negation and nonmonotonic negation, anddiscuss some potential extensions of the logic CF0 and related issues about thequasi-stable semantics.

Chapter 2Negation in First-order LogicIn this chapter, we are going to analyse the notion of negation at the semantic andproof-theoretic levels. The analysis will reveal that classical negation at the semanticlevel is entirely di�erent from the negation at the proof-theoretic level. Given thedi�erence, we had better divide classical negation into two notions: the semanticalnotion of classical negation, and the proof-theoretical one. More generally, theanalysis will show that, partly as a consequence of the di�erence, there exists asharp discrepancy in �rst order logic between the semantical and proof-theoreticlevels.The main purposes of the analysis are to facilitate the understanding of relation-ship among various di�erent kinds of negation, and to enable us to see what needsto be done if we are going to use the deductive approach to databases.2.1 Two levels of �rst-order logicIt is well-known that �rst-order predicate calculus is semantically complete, as shownby G�odel's semantic completeness theorem [51]. That is to say logical consequencein �rst-order logic has a neat correspondence with theoremhood: a sentence is a14

2. Negation in First-order Logic 15theorem of a theory if and only if it is the logical consequence of the theory.But logical consequence is a very strong notion. We have to consider all possiblemodels. For a formula ' is a logical consequence of a theory T if and only if wheneverT is true of a model, so is '. Here, speci�c semantic elements are abstracted away.In practical applications such as the �eld of databases, however, we are usually moreconcerned with what is true of speci�c databases than what is true of all the possibledatabases. The above neat correspondence given by the G�odel completeness theoremno longer holds when speci�c semantic elements come into focus. Instead, what wesee is a sharp discrepancy between the semantic level and the proof-theoretic levelin �rst-order logic:(T1) The meaning of negation at the semantic level is di�erent from that at theproof-theoretic one.(T2) Semantically, it is two-valued: a sentence is either true or false in a givenmodel. In contrast, any formal system of �rst-order logic is \three-valued" inthe sense that a sentence may be provable or refutable or neither from a giventheory relative to the system.(T3) Semantically, �rst-order logic is not persistent whereas proof-theoretically itis monotonic1.In order to appreciate (T1), I shall show that in �rst-order logic, negation ex-presses a kind of \failure" at the semantic level whereas it expresses inconsistencyin the formal system. The notion of negation as failure is much weaker than that ofinconsistency. It is from this di�erence that (T2) follows as we shall show below2.It also partially contributes to (T3). We mentioned in Chapter 1 that negation as1See Section 2.4 for the de�nition of persistence and monotonicity.2Another factor contributing to (T2) is due to classical universal quanti�ers. But we onlyconsider negation here.

2. Negation in First-order Logic 16failure was originally introduced by Clark in [25] as a procedural rule for derivingnegative facts in logic programming. We shall come back to this topic in Chapter 5when we review some main semantic theories of logic programs. Here, by an abuseof the phrase, I am using it for negation as failure to support.The above di�erence is reminiscent of another famous theorem by G�odel, usu-ally called the First Incompleteness Theorem (see the related historical remarks in[13]). It says to the e�ect that \in a formal system satisfying certain precise con-ditions there is an undecidable proposition, that is, a proposition such that neitherthe proposition itself nor its negation is provable in the system." (cited from theeditor's comment [52], p. 592). The incompleteness theorem also highlights the gulfbetween the semantic level and the theorem-proving level of �rst-order logic. Butour emphasis here is that there exists crucial di�erence even at the conceptual level.2.2 Failure vs InconsistencyFix a �rst-order language L. Let j= be the semantic satisfaction or support relationbetween interpretations of L and L-sentences of �rst-order logic, and ` the deduc-tion relation between sets of L-sentences and L-sentences. An interpretation as usualconsists of some domain of discourse over which all constant and predicate symbolsof L are assigned a meaning. In �rst-order logic an interpretation is arti�cial, andarbitrary in the sense that its domain can be any set of objects, and all constantsymbols can be assigned any elements of the domain. In the database context, weneed not consider arbitrary interpretations. Instead, much more restricted interpre-tations called Herbrand interpretations, are used. In a Herbrand interpretation, thedomain of discourse consists of the constant symbols of L, and the constant symbolsare interpreted literally.Usually, a Herbrand interpretation is identi�ed with a set of positive atomic

2. Negation in First-order Logic 17sentences [64]. An outstanding characteristic of a Herbrand interpretation is itsdouble status: it can be taken as a theory as well as a particular model. Whenrestricted to �nite domains, a Herbrand model can also be taken as a relationaldatabase, and vice versa in a straightforward way. We shall make use of the doublestatus characteristic of Herbrand interpretations in the following discussion.2.2.1 Negation as Failure to SupportAt the semantic level, the meaning of negation is determined by the well-knownTarski truth de�nition (see [13]) as follows3:(M1) I j= :' if and only if I 6j= '.where I is a Herbrand interpretation, ' is a sentence. When I j= ', we say that Isupports ', and when I 6j= ', we say that I fails to support '. According to M1,we may say that the meaning of negation at the model-theoretic level is failure tosupport: :' holds relative to I if and only if I fails to support '.For an atomic sentence R(a1; a2; :::; an), I supports R(a1; a2; :::; an) if and onlyif R(a1; a2; :::; an) is in I by the Tarski's truth de�nition again and the de�nition ofHerbrand interpretation (see [64]). It then follows that I supports :R(a1; a2; :::; an)if and only if I 6j= R(a1; a2; :::; an) if and only if R(a1; a2; :::; an) is not in I. So wehave(M2) I j= :R(a1; a2; :::; an) if and only if R(a1; a2; :::; an) is not in I.Since R(a1; a2; :::; an) is either in I or not in I but cannot be in both, we have Ieither supports R(a1; a2; :::; an) or supports :R(a1; a2; :::; an), but cannot supportboth. In general, M2 does not hold for any sentence. However, it can be shown thatfor any sentence ',3Our notation is slightly di�erent from that used in [13] though.

2. Negation in First-order Logic 18(M3) I j= ' or I j= :'.(M4) Not both I j= ' and I j= :'.The proof of M3 can be obtained easily from M1, which at bottom is based on M2.To show M4, an induction on the complexity of ' is enough.The above is a basic scenario about negation from the semantic viewpoint. Weshall refer to negation characterised by M1 - M4 as the semantic notion of classicalnegation. In particular, we shall take M2 as a semantic inference rule for inferringnegative information given the form of M2. We now turn to the formal system tosee how classical negation is dealt with proof-theoretically, and see what deductiveinference mechanism is available for inferring negative information.2.2.2 Negation as InconsistencyThere are many formal systems of �rst-order logic, including Hilbert-style axiomsystem, the tableau method (see [13] and relevant historical and bibliographicalremarks there), and Gentzen's natural deduction system [50]. They have all beenproved equivalent. So, without losing any generality, we consider Gentzen's calculusNK [50] for simplicity. In this system, rules relevant to negation in one way oranother are listed as follows, where ? stands for the false proposition.(R1) '...?:' (R2) ?'(R3) ' _ :' (R4) ';:'?We have seen that negation at the semantic level is negation as failure to support.

2. Negation in First-order Logic 19Given the above rules about negation, what does classical negation mean at thetheorem-proving level? Have these rules fully characterised the semantic notion ofclassical negation? Let us begin with the �rst question.According to R1, only when the given set � of sentences is not consistent withR(a1; a2; :::; an) can we conclude that :R(a1; a2; :::; an) from �. In fact, it can beproved that, in a natural deduction system,� ` :' if and only if �; ' ` ?: (N)So, we can derive :' from � if and only if � and ' are not consistent. If � and 'are consistent, then we cannot deduce the negative conclusion :'.By (N) we may say that classical negation expresses inconsistency at the proof-theoretical level. This conclusion can be justi�ed using a more formal argumentgiven by Gabbay. In [43], he investigates how to characterise negation in a logicalsystem. The basic idea in his de�nition of negation in a system is that � ` :' holdsif and only if � and ' together lead to some undesirable result, say a contradiction.So we may take (N) as de�ning what classical negation means at the theorem-provinglevel. For the detailed exposition, readers are invited to refer to [43].Now we come to the second question about whether rules R1-R4 characterisethe semantic notion of classical negation. It is not very di�cult to show that rulesR3 and R4 correspond with properties M3 and M4 of negation with semantic el-ements being abstracted away. To see this, we note that M3 follows from R3 ina straightforward way, and conversely, R3 also follows from M3 using the G�odel'ssemantic completeness theorem. A similar correspondence between M4 and R4 canbe established using the same argument.However, the correspondence stops there. Unlike M3 and M4, we �nd that M1and M2 are not represented by the corresponding rules R1 and R2. Worse still, M1

2. Negation in First-order Logic 20and M2 in fact are not characterised by the whole deductive system of �rst-orderlogic.Given a set T of atomic sentences and an atomic sentence R(a1; a2; :::; an), ifR(a1; a2; :::; an) is not in T , then T as an Herbrand interpretation will fail to supportR(a1; a2; :::; an), and thus will support :R(a1; a2; :::; an). However, T as a theorycannot be used to derive the negative fact at the proof-theoretical level since T isin fact consistent with R(a1; a2; :::; an).Therefore, we conclude that the formal system of �rst-order logic provides us withonly a very weak inference mechanism for inferring negative information. The weakmechanism only partially reects the semantic notion of negation. In particular,rules R1 - R4 together only partially characterise the semantic notion of negation,and it does not capture the semantic inference mechanism of M2 at all.Before moving on to the next di�erence of �rst-order logic between the semanticand proof-theoretic levels, we give some comments about rules R1 and R2. It isnatural to ask what role R1 and R2 play in the deductive system since that they donot characterise the corresponding semantic rules M1 and M2?Although rule R1, according to its form, can be used to derive a negative con-clusion, the resulting notion of negation is that of inconsistency as we pointed outbefore. In other words, its function in essential is to characterise classical negationas inconsistency at the proof-theoretical level, a notion stronger than that of failureto support.The rule R2 is relevant to negation since ' may be any sentence. In particular 'may be a negative sentence. It says to the e�ect that, from absurdity, we can infereverything. In reality, it is certainly not the case. The discovery of contradictions,say in a database, does not enable us to derive everything but only signals thatthere is the violation of integrity constraints. So, it is hardly acceptable from theperspective of information retrieval. Moreover, we would not lose anything without

2. Negation in First-order Logic 21the rule. Then, we may wonder why the rule is there in the deductive system of�rst-order logic? Briey, it has a great deal to do with the semantic interpretationof material implication and the ideal requirement of semantic completeness. Animplication proposition with the false antecedent is vacuously valid, and thus forthe sake of semantic completeness, a similar rule is required for the proof of suchimplication propositions in a deductive system. So, the purpose of rule R2 is onlyto reect the semantic constraint of material implication.2.3 Two-valued vs Three-valued2.3.1 Two-valuednessAt �rst glance, it seems that the two-valuedness of �rst-order logic at the semanticlevel is a straightforward consequence of the semantic property M3. However, in factit is the other way around. That is to say, it is on two-valuedness that the simplesemantic concept of classical negation is built. As to the two-valuedness itself, itis connected with the two basic assumptions as we mentioned in Chapter 1: thedenotation assumption and the completeness assumption.The denotation assumption originally comes from Frege's requirement of a log-ically perfect formal language [42]. The assumption alone is no more than an ex-pedient to avoid unnecessary complications that may arise otherwise. Nevertheless,the assumption has the important ontological commitment that every singular termdenotes an existing object when combined with Quine's famous dogma [86]: to beis to be a value of a bound variable, endowing the quanti�ers with existential im-port. It is objection to these commitments that leads to the development of freelogics (see [14]). Our concern here is not the related philosophical arguments butthe use of logic in the database area. From the database viewpoint, it su�ces toconsider Herbrand interpretations. For such interpretations, denotation failures are

2. Negation in First-order Logic 22automatically avoided since every constant symbol denotes itself. That is to say,as far as the application of logic to databases is concerned, it will not make anydi�erence whether the assumption is made or not.In contrast, the completeness assumption seems doubtful from the database view-point. Given a relational database, taken as a Herbrand interpretation, there is noreason to assume that the interpretation represents a complete scenario of statesof the whole world. So, a relation r in the database is not necessarily complete; itmay be partial, that is, for a certain individual a, it may be the case that neitherr(a) nor :r(a) holds. Various logical theories have been developed to accommodatepartiality, including partial logic and constructive logics. We shall consider how touse strong negation to deal with partiality in Chapter 3 and Chapter 7.Nevertheless, the introduction of strong negation does not mean that we have togive up classical negation, in particular, its semantical component. Although strongnegation as we shall see has proved very useful in some application domains, thesemantical notion of classical negation also has its own advantages which is closelyassociated with the way in which negative information is represented. It is well-known that, in a relational database, only positive facts are explicitly expressed. Anegative fact is implicitly assumed provided its positive counterpart is not explicitlyavailable. The implicit representation certainly has one great advantage. As pointedout by Reiter [90], the number of negative facts about a given domain is in generalmuch greater than the number of positive ones. So, it is not practical to includenegative facts in a database explicitly.How can we still have the semantical notion of classical negation without thecompleteness assumption? An alternative to the assumption is to borrow an ideafrom nonmonotonic logic. When a complete knowledge about a given domain is notavailable, we simply jump to the negative conclusion in any case whenever its positivecounterpart is not present. The consequence is that negative information concluded

2. Negation in First-order Logic 23in this way is defeasible. When more information is available, the conclusion mayhave to be given up. In other words, rule M2 is now taken as a non-persistent rule4rather than a semantic condition based on the completeness assumption. We shallgive another argument to support our view on rule M2 in the next section.Given a Herbrand model I and an atomic sentence ', I supports either ' or not'. If I supports ' then ' is true relative to I; otherwise we simply jump to theconclusion that ' is false relative to I even without the completeness assumption.So, any atomic sentence is either true or false relative to a Herbrand model. Itfollows that any sentence will also be either true or false relative a Herbrand model.As a result, we still have the simple semantical notion of classical negation whilegiving up the completeness assumption.2.3.2 Three-valuednessNow we consider the \three-valuedness" of �rst-order logic from the proof-theoreticviewpoint. We have seen that to infer the negation of a sentence ' from a theory Tis equivalent to proving that ' is not consistent with T . From which it follows thatto infer ::' from T is equivalent to proving that :' is not consistent with T . Bythe principle of double negation, we have that to infer ' from T if and only if :' isnot consistent with T . So, given a theory, we can neither infer :' if ' is consistentwith the theory, nor infer ' if :' is consistent with the theory. Since it is possiblenot only that a sentence is consistent with a theory but also that its negation isconsistent with the theory, we conclude that a sentence may neither be proved norrefuted from a theory.So, though it is always the case that either ' or :' is true relative to any model,it may be the case that we can prove neither of them. To prove ' (or :') from atheory requires that ' (:' respectively) be true across all the models of the theory4We use non-persistent instead of nonmonotonic to emphasise the semantic aspect.

2. Negation in First-order Logic 24by the G�odel's completeness theorem. The uniformity condition is very strong fromthe database viewpoint. In the context of databases, we need not consider anyinterpretation beyond Herbrand interpretations (see [1]). So it is not surprising tosee that the uniformity requirement makes the inference mechanism of �rst-orderlogic not suitable for the retrieval of negative information in the area of databases5.Let us consider an example by way of illustration.Example 2.3.1 Consider a situation s, consisting of a database DB of an imaginarymathematics department. Suppose that DB contains the following facts:teach(frege;�rst-order-logic):teach(cantor; set-theory):teach(tarski;model-theory):teach(turing; recursion-theory):teach(godel; proof-theory):Take DB as a theory with only atomic sentences. We can add to DBteach(turing;�rst-order-logic) or its negation without causing any contradiction,so we have neither teach(turing;�rst-order-logic) nor its negation. In other words,it is impossible from the theory to infer either teach(turing;�rst-order-logic) or itsnegation.But from the semantic viewpoint, DB can also be taken as a Her-brand interpretation. Then from DB we may reach the conclusion that:teach(turing;�rst-order-logic) using M2. Moreover, this conclusion is what wewant when we make a query to the database DB about whether or not Turingteaches �rst-order logic. 25As far as positive information is concerned, it does not make any di�erence whether we considerall the interpretations or just Herbrand interpretations. See [64] for related discussion in the contextof de�nite logic programs.

2. Negation in First-order Logic 25The example underlines the weakness of �rst-order logic as a deductive mecha-nism for inferring negative information. The weak deductive mechanism has to bestrengthened somehow if we are going to take a deductive approach to databases.2.4 Non-persistence vs MonotonicityIn this section, we look at another pair of properties of �rst-order logic: persistenceand monotonicity. We shall see that classical �rst-order logic is monotonic but it isnot persistent.Persistence is a model-theoretic property. It means whatever is supported by amodel is still supported by a larger one. Formally, persistence can be formulated asfollows: if I j= '; I � I 0 then I 0 j= '.where I and I 0 are Herbrand interpretations, ' is a L-sentence, and � is the subsetrelation. In the general context, � should be replaced with the sub-model relation�. In comparison to persistence, monotonicity is a proof-theoretic property. It ex-presses the cumulativity of deductive consequences: what is proved is still provedwhen more information is added. Formally, monotonicity can be formulated asfollows: if � ` ' and � � �0 then �0 ` 'where �;� are sets of L-sentences, and ' is a L-sentence, and � ` ' means there isa deduction of ' from �.From the informational viewpoint, both persistence and monotonicity expressa kind of the preservation of information. The discussion in the previous sectionssuggests that, in �rst-order logic, the way in which information is dealt with at the

2. Negation in First-order Logic 26semantic level is di�erent from that at the proof-theoretic level. As a result, we haveanother pair of di�erences between the semantics of �rst-order logic and its formalsystem. Let us consider non-persistence �rst.2.4.1 Non-persistenceWe have shown that negation at the semantic level means failure to support. Foratomic sentences, the failure can be reduced to absence according to the semanticrule M2. In the previous section, we argued that we had better take M2 as a non-persistent rule rather than as a rule based on the completeness assumption. It isthe non-persistence of the rule that contributes to the non-persistence of �rst-orderlogic: with the addition of new facts, what is originally absent may become present,and thus what is originally not true may become true. More generally, by inductionon the complexity of ', it is not di�cult to show that :' is not usually persistenteither.Consider the departmental database DB in the last section again. Weknow that s supports that Turing does not teach �rst-order logic sinceteach(turing;�rst-order-logic) is not in DB. But when we move to a larger sit-uation, say a situation s1 of the university which contains another database DB2of a philosophy department in addition to DB1. If Turing happens to be a jointprofessor in the two departments, and DB2 does have the fact that Turing teaches�rst-order logic, then s1 will support this fact, and as a result, s1 no longer supportsthat Turing does not teach �rst-order logic. Thus, with the addition of the newfacts to s, what is originally not true now becomes true.It is interesting to note that the non-persistence of �rst-order logic explains thenon-persistence6 of �rst-order queries to relational databases (see [1]). Conversely,6In [1], term monotonic is used. But monotonic is usually used to describe the property of theformal system of �rst-order logic. Since the property in question is semantic, we prefer to use termpersistent.

2. Negation in First-order Logic 27the fact that there exist non-persistent queries gives us another argument to supportour view on rule M2. Had we insisted that M2 be based on the completenessassumption, then it would be meaningless to talk about non-persistent queries. Sinceour knowledge about the given domain is complete, there would be no space for theaddition of new information, and thus there would be no non-persistent queries.2.4.2 MonotonicityNow consider the monotonicity of �rst-order logic. Given a formal system of �rst-order logic, conceptually, the monotonicity follows directly from the characterisationof the deduction relation ` among sentences relative to the system. Alternatively,the monotonic property has been used in the de�ning characteristic of a formalsystem such Gentzen's natural deductive system NK. So, the monotonicity holdsautomatically.Speci�cally, any deductive consequence of a theory relative to a formal system isdetermined by the theory and inference rules, and also the axioms of the system if itis a logistic calculus. Applications of an inference rule solely depend on the explicitpresence of information both in the theory and derived from the theory. The use ofinference rules is not sensitive to the absence of any information as the use of M2 is.The point is that all inference rules in the system are monotonic: with the additionof new information to the theory, more information will be inferred, and previouslyinferred information cannot be retracted or revised in any way. A logic with onlymonotonic inference rules can only be monotonic.The discrepancy between the monotonicity of �rst-order logic and its non-persistence once again indicates that the �rst-order formal system only partiallycharacterises its semantics.

2. Negation in First-order Logic 282.5 Concluding RemarkWe have shown that classical negation in fact should be divided into two di�erentnotions: one is semantic, and the other proof-theoretic. The semantic notion of clas-sical negation expresses failure to support whereas the proof-theoretic one expressesinconsistency. The notion of negation as failure to support is much weaker thanthat of negation as inconsistency. More generally, we have shown that, in �rst-orderlogic, there exists a big discrepancy between the semantic and proof-theoretic levels.One the one hand, �rst-order logic is semantically two-valued and non-persistent.On the other hand, it is proof-theoretically three-valued and monotonic.In the area of relational databases, it is the semantic not proof-theoretic notionof classical negation that is used to deal with the retrieval of negative informa-tion. First-order logic only provides us with a monotonic deductive mechanism,which is not adequate for dealing with negative information even in the area of re-lational databases. This implies that if we are going to take a deductive approachto databases, then we have to extend the inference mechanism of �rst-order logic soas to at least accommodate non-persistent inferences in one way or another. This isa topic we shall cover in later chapters.

Chapter 3First-Order Logic CF0The purpose of this chapter1 is to study strong negation in formal logic systems.We shall construct a �rst-order logic CF0 with strong negation and bounded quanti-�ers. The logic is based on constructive logics, in particular, Thomason's logic CF.However, unlike constructive logics, quanti�ers in our system as in Thomason's arestatic rather than dynamic.For the logic CF0, the usual Kripke formal semantics is de�ned but based onsituations instead of conventional possible worlds. Situations as limited portions ofthe world seemmore suitable than possible worlds for characterising the partiality ofconstructive logics with strong negation. A sound and complete axiomatic system ofCF0 is established based on the axiomatic systems of constructive logics with strongnegation and Thomason's completeness proof techniques. With the use of boundedquanti�ers, CF0 allows the domain of quanti�cation to be empty and allows for non-denoting constants. CF0 is proposed as the underlying logic for situation theory.Thus the connection between CF0 and infon logic is briey discussed.1This chapter mainly is based on the work published in [112].29

3. First-Order Logic CF0 303.1 Constructive Logics with Strong NegationIn the �rst chapter, we noted that strong negation was introduced independently byNelson [76] and Markov [68] from the constructive perspective. Various constructivelogics with strong negation have been developed. In comparison to intuitionisticlogics, these logic systems demonstrate some satisfying features, including symmetryand partiality.First of all, since negative information is treated as of equal importance with pos-itive information, such logics are more symmetrical than intuitionistic logics and sat-isfy very natural duality laws. In particular, strong negation avoids non-constructivefeatures possessed by intuitionistic negation (see [54], and [114]). Secondly, con-structive logics with strong negation can be provided with a more satisfying inter-pretation than the well-known Brouwer-Heyting-Kolmogorov(BHK) interpretationfor intuitionistic logics (see [114], and Lopez-Escobar [65]). Moreover, they permita sentence to be undetermined and thus can accommodate the partiality of infor-mation (see [98], and [114]).Another desirable characteristic of constructive logics with strong negation is theheredity or persistence of information,2 to the e�ect that what is true at a state ofinformation is still true at all later states. This is also true of intuitionistic logic.3.2 Motivations behind Logic CF0Since that we have already various constructive logics with strong negation, it isnatural to ask why we need to construct another one. In this section, we give somearguments to show why the existing constructive logics are not satisfying. Two is-2The terminology of the heredity of information is used in [114] whereas the persistence ofinformation is the situationists' parlance. Note that [114] is only concerned with propositionallogics. For the property of predicate logic, see lemma 3.1 on page 53 of [54]. In intuitionistic logic,the property is called monotonicity (See the lemma on page 78 of [100]).

3. First-Order Logic CF0 31sues are to be addressed briey. One is about the the semantic interpretation ofquanti�cation, and the other about domains of quanti�cation. The basic philosoph-ical stance here is taken from Situation Theory. Indeed, as we pointed out in thebeginning, CF0 originally is intended as an underlying logic for Situation Theory.See section 3.5 for the discussion about the connection between CF0 and infon logic.3.2.1 Dynamic vs. Static Quanti�ersThere are two main semantic interpretations of universal quanti�ers: dynamic andstatic. In the dynamic interpretation, a sentence 8x'(x) is true at a state of infor-mation s only when '(a)3 is true at all states of information t � s for all individualsa in the domain of t (where � orders states by increasing information). In the staticinterpretation, a sentence 8x'(x) is true at a state of information s provided that'(a) is true for all individuals a in the domain of s. The dynamic interpretation ofuniversal quanti�ers at a state of information s requires us to look at all the statesbeyond s and their domains. In contrast, the static interpretation of a sentence8x'(x) at a state of information s only involves the state s and the individualsin the domain of s. So, the satisfaction condition on universal quanti�ers by thedynamic interpretation is much stronger than that by the static interpretation.Which interpretation is more natural from the situation-theoretic viewpoint?Consider the situation s of a room full of people. The sentence \All men here arehungry" will be true at s provided that all the men in the room are hungry. Herethe quanti�er is taken as restricted to the men in that room. We do not look atwider situations and (possibly) wider extensions of \men". So if we take a point sin a Kripke model as a situation rather than a state of information, then it seemswe should evaluate the quanti�er statically.Unfortunately, dynamic universal quanti�ers are used in most of existing �rst-3Hereafter, we use a as a name for a.

3. First-Order Logic CF0 32order constructive logics with strong negation, including Almukdad and Nelson's�rst-order systems [4], Gurevich's H [54], Akama's S [2]. It is not di�cult to seethat these logics would not be persistent had the static universal quanti�ers beenused. In other words, the persistence of constructive logics is bought at the cost ofthe very strong dynamic satisfaction condition on universal quanti�ers.Thomason's �rst-order logic [98] CF does interpret universal quanti�ers stati-cally rather than dynamically. His semantical model is a hybrid of a Kripke modelfor propositional intuitionistic logic (as the conditional is intuitionistic) and a clas-sical model for predicate logic (as the universal quanti�er is static).4 Nevertheless,his semantical framework requires di�erent stages to have the same domain. Thisleads us to the issue of the domains of quanti�ers.3.2.2 Expanding vs Constant Domains of Quanti�cationFrom the standpoint which treats stages as situations, it is obvious that this restric-tion is inappropriate. From an intuitionistic viewpoint, it is not suitable either. Asis well-known, Kripke models for intuitionistic logic also require expanding domains.But the connection of intuitionistic logic with expanding domains is both more com-plicated and more tenuous than is the case with Situation Theory. In order to seethis, let us consider the following schema which we call the Distribution Schema:(DS) 8x(' _ (x)) � (' _ 8x (x)), where x is not free in '.If we add to intuitionistic logic all instances of (DS), we obtain a logic whose modelsare exactly the Kripke models with constant domain. Thus to motivate expandingdomains from an intuitionistic viewpoint is to motivate the rejection of this schema.4It should be pointed out that his model for propositional logic, strictly speaking, is not in-tuitionistic since the falsity of an atomic sentence at a stage of construction is treated as beingdiscovered directly rather than being decided by later stages.

3. First-Order Logic CF0 33The BHK interpretation is of little help. According to that we need to showhow a proof of 8x(' _ (x)) could be extended to a proof of ' _ 8x (x). Well,to have a proof of 8x(' _ (x)) is to have a construction C which transforms aproof of a 2 D (D the intended range of the variable x) into a proof of ' _ (a).If the construction C transforms a proof of a 2 D into a proof of ', then since xis not free in ', we would have a proof of '. Otherwise, it transforms a proof ofa 2 D into a proof of (a) and thus from the construction C we derive a proof of8x (x). Either way we have a proof of ' _ 8x (x) (for the BHK interpretation,see p. 9 of Troelstra and van Dalen [100]). The informal semantics of intuitionisticlogic does not, at least not obviously, show what is wrong with (DS). Why, then,is (DS) rejected at all? Very briey, it happens that certain Brouwerian principlesof continuity which are more or less self-evident from an intuitionistic standpointare formally inconsistent in classical logic. These principles say roughly that anassertion about an in�nite sequence � must be decided by a �nite initial segmentof �, and hence will be decided the same way for all sequences � that agree onthat initial segment. Adding (DS) to intuitionistic logic will restore inconsistencywith these same principles. Dummett [36] contains a treatment of the semantics ofintuitionistic logic which discusses these issues in detail.There is a further point. Kripke models are not the only semantic structures forintuitionistic logic. Beth trees may be used instead. In the Beth semantics we havea more complicated rule (see p. 106 of Troelstra [99]) for evaluating disjunctions:s j= ' _ i� 8t � s9u � t(u j= ' or u j=)This evaluates a disjunction true provided that however knowledge is extended even-tually one or other of the disjuncts will become true. With this it is easy to �nd acounter-example to (DS) that makes no appeal to expanding domains.

3. First-Order Logic CF0 34The upshot is that expanding domains seem more an artifact of the Kripkesemantics than an essential part of the interpretation of intuitionistic logic. However,they are quite central to Situation Theory, which to some extent supports our choicenot to use intuitionistic logic as a basis for Situation Theory (for more, see the �nalpart below)If we are to allow expanding domains, there is a technical problem to over-come. Speci�cally, the semantical completeness proof of CF depends on an aux-iliary lemma, that is, lemma 2 on page 250 in [98], and the proof of the lemmain turn makes use of the conditional introduction rule �I. However, it is easy tocheck that if di�erent stages in the semantical models are allowed to have di�erentdomains, then the rule is generally not sound since universally quanti�ed sentences,when interpreted statically instead of dynamically, generally are not persistent (seebelow 2.2 and 2.5). So, the condition of a constant domain has to be imposed on hismodels for the sake of CF's semantic completeness, that is to say, in order to havestatic universal quanti�ers, we are forced to adopt a model with constant domain.Conversely, from the model theoretic standpoint, the models forCF0 are a specialcase of the intuitionistic models. Accordingly, the dynamic condition for quanti�erscollapses into the static one. Since the dynamic condition is not suitable and expand-ing domains are desired as we said above from the situation theoretic viewpoint, it isnatural to ask if we can have a logic for situation theory with both static quanti�ersand expanding domains.3.2.3 From Thomason's Logic CF to Our Variant CF0Motivated by the above arguments, we propose a �rst-order logical systemCF0 withstrong constructive negation like Thomason's but that allows for expanding domains.Our semantical analysis is still based on Kripke frames hS;�;Di but we have it inmind to interpret S as a collection of situations rather than conventional possible

3. First-Order Logic CF0 35worlds. Accordingly, � is a pre-order on situations, and D is a function assigning aset of individuals to each situation. Situations are limited parts of the world. Thus,generally, situations provide us with only incomplete information. The partialityof situations to some extent also justi�es the use of situations in our semanticalframework since, as we pointed out before, constructive logics with strong negationare partial. In addition, we note that another source of the partiality of the logic isfrom the use of inexact predicates (see [4], Wagner [109], and related citations there).We treat universally quanti�ed sentences statically instead of dynamically. Andsince static unbounded universally quanti�ed sentences are generally not persistent,we instead consider bounded ones, say 8�x'(x) where � is a bounder. This isreminiscent of Devlin's infon logic. Devlin [32] considers 8x 2 u� where u is a setand � is an infon. Such compound infons are persistent because the set u boundsthe quanti�er. In our framework the bounder � may itself be non-persistent inthe sense that the extension of � is liable to change from situation to situation,and consequently 8�x'(x) is in general not persistent either. Thus, we furtherdistinguish persistent bounders from non-persistent ones (see the next section).We summarise the various approaches to the universal quanti�er in the followingtable, where INT is intuitionistic predicate logic,H is Gurevich's intuitionistic logicwith strong negation [54], and CF is Thomason's �rst-order logic [98]. For a unifyingexposition of both Kripke and Beth models, see van Dalen [102].Logics Quanti�ers 8x Models DomainsINT, H dynamic Kripke models expandingINT static Beth models constantCF static Kripke models constantCF0 static Kripke models expanding

3. First-Order Logic CF0 36In the following, we shall �rst introduce the logical system CF0, and then proveits soundness and completeness. Finally, we discuss its connection with situationtheory, its possible extensions as well as its potential applications.3.3 Logical System CF0 With Strong Negation3.3.1 Language L of CF0.The language5 of our logical system CF0 consists of an in�nite set VL of individualvariables (as metavariables for variables we use x; x0; x1; :::), a set CL of individualconstants (metavariables: c; c0; c1; :::), and for each n; n � 0, a set P nL of n-arypredicate symbols (metavariables: R1; R2; R3; :::). In addition, L has a set BL ofbounders with a subset BPL of persistent bounders (metavariables: �; �0; �1; ::: withor without superscript P), and a relation symbol 2.The set TL of terms of L is VL[CL. We use t; t0; t1; ::: as metavariables for terms.Atomic formulas of L are R(t1; t2; :::; tn) and c 2 �, where t1; t2; :::; tn 2 TL; c 2CL; R 2 P nL and � 2 BL. The well-formed formulas of L are de�ned recursivelyfrom atomic formulas using the connectives _;�, and �, and for each bounder � ,a bounded universal quanti�er 8� as follows:(i) atomic formulas are formulas;(ii) if ' is a formula, then so is � ';(iii) if '; are formulas, then so are ' _ ;' � ;(iv) if ' is a formula, x is a variable, and � is a bounder , then 8�x'(x) is also aformula. For simplicity, we write 8x 2 �'(x) for 8�x'(x).5Function symbols introduce nothing new. For simplicity, we avoid them here.

3. First-Order Logic CF0 37A formula of form 8x 2 �'(x) is called a bounded universally quanti�ed formula.Such formulas can be used to express local generality since the bound variablesthereof are to range over a subset of the individuals in the universe. In contrast,the generality expressed by unbounded universally quanti�ed formulas is a kindof overall generality (see Frege [41]). In order to express overall generality by avariable, we only need a device for the scope of the variable whereas, in order toexpress local generality, we need in addition the range of the variable. So, generallyspeaking, in order to express generality via a variable, we need both a mechanismfor the scope of the variable and a parameter for its range. In other words, a logicalquanti�er consists of the scope of a variable and the range of the variable. Fromthe pragmatic point of view, it is clear that bounded formulas are more frequentlyused than unbounded ones. In translating natural language, restricted quanti�ersare usually represented as unrestricted quanti�ers over a material conditional orsomething equivalent. Thus, \All birds y" is formalised as 8x(� Bird(x)_Flies(x))or 8x(Bird(x) ! Flies(x)) if the material conditional ! is de�ned. In CF0 it isrepresented as 8x 2 �Flies(x), where � is a bounder for birds. We prefer ourapproach to the usual one. In our opinion, it is tidy, and emphasises the two aspectsof local generality. More importantly, as we mentioned in the introduction, boundeduniversally quanti�ed formulas, can be used to express the persistence of information(see below). That is the primary motive for our use of bounded formulas instead ofunbounded ones.Syntactically bounders6 are ags on quanti�ers. Semantically they are to beinterpreted as sets, that is in the same way as predicates are in classical �rst-orderlogic. Then, it may be asked, why do we have a special syntax for bounders insteadof treating them simply as unary predicates? The answer is that a predicate suchas \Flies(x)" gives three possibilities: an object may y, it may not y, or it may6It is worth pointing out that bounders are very similar to sorts in a sorted logic (see [31])though we will not explore any connection between them in this thesis.

3. First-Order Logic CF0 38be undecided whether it ies or not. But a bounder supplies only two possibilities:an object is included in the bounder or it is not. The consequence is that 8x(� (x)_'(x)) in fact says a little more than 8x 2 �'(x) (see Formal Semantics belowfor exact comparison). It is the latter that captures the informal reading of \Allbirds y" rather than the former.Conjunction and bounded existential quanti�cation are de�ned as follows:' ^ =df � (� ' _ �)9x 2 �'(x) =df � 8x 2 � � '(x):The concept of free and bound variables is de�ned as usual. Bound variables are usedas position markers only and thus 8x 2 �'(x) and 8y 2 �'(y) would be countedas the same formula. We use as above '; ; �; ::: as metavariables for formulas, and�;� (with or without subscripts) for arbitrary sets of formulas.3.3.2 Persistent FormulasWe have met the concept of persistence in Chapter 2. Put it in terms of situations,it says that what is true in one situation is still true in a larger situation. Formally,there is the so-called persistence principle, stated asIf s � s0 and s j= �, then s0 j= �,where s; s0 are situations, � is an infon, and j= is a support relation between situ-ations and infons. If an infon � satis�es the persistence principle, we say that � ispersistent (see Barwise [8]). We have seen that in Chapter 2, one source of non-persistence comes from the semantic notion of classical negation, which in essenceis a kind of negation as failure. In contrast, strong negation expresses a directlyestablished negative truth, and thus is both persistent and monotonic (see sections2.3 and 2.4 for the formal characterisation).

3. First-Order Logic CF0 39However there is another source of non-persistence which comes from static uni-versal quanti�cation. Informally speaking, universally quanti�ed sentences in nat-ural language are not persistent. \Everyone here is hungry" may be veri�ed whenevaluated from the situation in one poor household, but falsi�ed when evaluatedfrom a larger situation including comfortable ones. There is a tension betweenquanti�cation and persistence. If we take it that the persistence principle is trueof every infon, then it seems universally quanti�ed sentences have to be excludedfrom the category of infons. And conversely, if universally quanti�ed sentences aretaken as infons then the persistence principle would only hold partially (see pp.234{236 of [8]). However, quanti�ed sentences are such important forms for ex-pressing information that they can hardly be excluded from the category of infons.We also want to retain the persistence principle because, as situation theorists haveargued, it captures our intuition \that what goes on in part of the world still goeson when one has a broader perspective"(see p. 236 of [8]). For the sake of bothpersistence and a rich algebraic structure of infons, we only consider bounded quan-ti�ed formulas for which these problems do not arise. However, as we pointed outin the introduction, in our present framework, a bounder � in 8x 2 �'(x) may benon-persistent. So we introduce an auxiliary notion of persistent bounders. Syntac-tically, persistent bounders are treated as a primitive notion. The semantic meaningof persistent bounders will be given below (see condition (iii) on an interpretationin Formal Semantics). Pragmatically, persistent bounders can be obtained by in-corporating context into bounders in universally quanti�ed sentences. Then we cande�ne persistent formulas of L recursively as follows :(i) R(t1; t2; :::; tn) and � R(t1; t2; :::; tn) are persistent for any n-ary predicate R,terms t1; t2; :::; tn, and c 2 � and � c 2 �P are persistent for any bounders �and �P ;

3. First-Order Logic CF0 40(ii) if '; are persistent, then so are ' _ and ' ^ ;(iii) ' � is persistent for any formulas '; ;(iv) if ' is persistent, then 8x 2 �P'(x) is persistent;(v) if ' is persistent, then 9x 2 �'(x) is persistent for any � 2 BL.Given a set � of formulas, let �P be f' 2 � : ' is persistentg. So the persistentformulas of L will be F PL , where FL is the set of all L-formulas. Note that, inthe de�nition of persistent formulas, negation is restricted to only atomic formulas.Nevertheless, this will not lose any generality since the negation of a compoundformula, according to related rules (see Derived Rules for CF0 below), is equivalentto another compound formula in which negation is applied to only atomic formulas.By the de�nition, non-persistence of formulas is only due to the non-persistenceof bounders in universally quanti�ed formulas. So, pragmatically, the persistenceof such formulas can be recovered by incorporating context into related bounders.Nevertheless, there exists indeed a kind of unrecoverable non-persistence. In fact,such non-persistence is the consequence of the partiality of situations. If a situationis silent on � then it certainly does not preclude a larger more extensive situationsettling �. In order to express the unrecoverable non-persistence, we need to add akind of modal operators such as \de�nitely" into our language. Such an extension,however, is outside the scope of this thesis (for more, see Mott [75]).The syntactic de�nition of persistence will be used in Derived Rules for CF0below.3.3.3 Formal SemanticsOur semantical analysis is essentially similar to Thomason's, but it is based ongeneral Kripke frames instead of particular ones, that is, we allow di�erent points

3. First-Order Logic CF0 41in a Kripke frame to have di�erent domains. A Kripke frame F is a triple hS;�;Disuch that(i) S is a non-empty set;(ii) � is a pre-order on S, that is, � is a reexive and transitive binary relationon S;(iii) D is a monotone function assigning sets of individuals to the elements of S,that is, for any s; s0 2 S; if s � s0 then D(s) � D(s0).S is to be thought of as a set of situations, � is the containment relation amongsituations, and for each s 2 S;D(s) is the set of individuals existing at situation s.An interpretation I of language L on a Kripke frame F = hS;�;Di is a functionsuch that: for any s; s0 2 S; c 2 CL; R 2 P iL; �; �P 2 BL,(i) Is is a partial function from CL intoD(s), and (a) if s � s0 and Is(c) is de�ned,then Is0(c) is de�ned too and Is(c) = Is0(c); and(b) for each d in D(s), Is(d) isde�ned and Is(d) = d.7(ii) Is(R) is a partial function from the Cartesian product D(s)i into fT, Fg, andif s � s0, then Is0(R) is an extension of Is(R).(iii) Is is a total function from BL into P(D(s)) such that if s � s0, then Is(�) �Is0(�) and Is(�P) = Is0(�P).Clause (iii) in the de�nition of interpretation gives us the semantic meaning of per-sistent sets. In other words, it is the semantic requirement for a set of individualsto be persistent. It is worth pointing out the restriction incorporated in (iii) is com-patible with the situation theoretic viewpoint though it may look ad hoc. Anyway,7We are assuming that every object has a name. In e�ect we work with the expansion oflanguage L to accommodate all the objects of all the countable domains.

3. First-Order Logic CF0 42situations are treated as �rst-class citizens in situation theory. So, one possible wayto ensure the persistence of universal quanti�ed formulas would be to incorporatereference to situations into them (see p. 236 of [8]). In this paper, however, weinstead adopt the device of persistent bounders.A Kripke model M is a pair hF ; Ii consisting of a Kripke frame F and aninterpretation I on F .Before we continue the formulation of formal semantics, some remarks seem inorder about the de�nition of Kripke models. First, note that, in a Kripke modelM = hS;�;D; Ii, D(s) can be empty for any (and all) s 2 S. The use of boundersmeans that the usual restriction to non-empty domains is unnecessary. Thus CF0is inclusive in the sense that it allows the domain of quanti�cation to be empty (seepp. 379-382 of Bencivenga [14]).Second, note that the function Is�CL is partial. So CF0 allows for non-denotingconstants as a free logic does (see [14]). In a free logic, an extra unary predicate Eor something equivalent is introduced to deal with reference failure. Nevertheless, inCF0, we do not need such a special predicate. Bounders of quanti�ers can play therole of the predicate E of free logic. It may be that bounders are preferable to anexistence predicate, at least if one wishes to con�ne existence to a purely semanticrole (as we would). Anyway, it will be no surprise that some axioms and inferencerules of CF0 will correspond to axioms and inference rules of a free logic.Next, note that the function Is�P nL (n � 0) is also partial. That is to say, it maybe the case that a basic sentence R(c1; c2; :::; cn) is neither true nor false, so CF0allows truth value gaps. Such gaps may arise from the use of inexact predicates,but we emphasise that there is another source of truth value gaps { the partialityof situations.When a predicate has truth value gaps, we call it a partial predicate, otherwisea total predicate. A total predicate can be interpreted as a set, that is in the

3. First-Order Logic CF0 43same way as predicates are in classical �rst-order logic. With partial predicates,however, we have to associate two sets: one is for the positive assertions, the otherfor the strong negative assertions. So we might as well divide a partial predicate intotwo parts, a positive part corresponding to the positive assertions, and a negativepart corresponding to the strong negative assertions. We recall that, syntactically,bounders are ags on quanti�ers. Semantically, as can be seen from the clause (iii)in the de�nition of interpretation, bounders are interpreted as sets. What sets, then,should we associate with a bounder �? There are two natural candidates. We couldsay that � was assigned all the objects in the current situation. Then 8x 2 �'(x)would be supported by s provided that s made true '(a) for each object a in D(s).In this case, bounder � is nothing more than a denotational variant of the existentialpredicate E of free logic (see pp. 251-252, Garson [45]). An alternative would seebounders in a more restricted way as corresponding to the positive parts of particularpredicates, so that 8x 2 �'(x) would be interpreted as asserting of all the objectsthat were � in the current situation that they were also '. In fact, we choose herenot to restrict bounders beyond requiring that the objects a bounder � is associatedwith in a situation s are all objects that belong to the situation s.Given a Kripke model M = hS;�;D; Ii, we de�ne a satisfaction relation j=+M(or simply j=+) and a refutation relation j=�M (or simply j=�) between situationss 2 S and L-sentences ' relative to M as follows, by induction on the complexityof ':(i) s j=+ R(c1; c2; :::; cn) i� Is(c1); Is(c2); :::; Is(cn) are all de�ned andIs(R)(Is(c1); Is(c2); :::; Is(cn)) = Ts j=� R(c1; c2; :::; cn) i� Is(c1); Is(c2); :::; Is(cn) are all de�ned andIs(R)(Is(c1); Is(c2); :::; Is(cn)) = Fs j=+ c 2 � i� Is(c) is de�ned and Is(c) 2 Is(�)s j=� c 2 � i� either Is(c) is not de�ned or

3. First-Order Logic CF0 44Is(c) is de�ned and Is(c) 2 D(s) � Is(�)(ii) s j=+ ' _ i� s j=+ ' or s j=+ s j=� ' _ i� s j=� ' and s j=� (iii) s j=+� ' i� s j=� 's j=�� ' i� s j=+ '(iv) s j=+ ' � i� for all s0 such that s � s0 if s0 j=+ ' then s0 j=+ s j=� ' � i� s j=+ ' and s j=� (v) s j=+ 8x 2 �'(x) i� for all d 2 D(s), if s j=+ d 2 � then s j=+ '(d)s j=� 8x 2 �'(x) i� for some d 2 D(s), s j=+ d 2 � and s j=� '(d).Basic semantic notions such as consequence, satis�ability and validity can be de�nedin the usual way in terms of the satisfaction relation j=+. For any sentence ' andset � of sentences, we write j= ' to indicate that ' is valid, � � ' to indicate that' is a semantic consequence of �, and � � � to indicate that there is a subsetf'1; '2; :::; 'ng of � such that '1 _ '2 _ :::_ 'n is a semantic consequence of �.Lemma 3.3.1 (Persistence Lemma) Let M = hS;�;D; Ii be a Kripke model,' a persistent formula of L.(i) if s � s0 and s j=+ ' then s0 j=+ ';(ii) if s � s0 and s j=+ � then s0 j=+ �P .Proof. For (i), routine induction on the complexity of '. (ii) is a straightforwardcorollary of (i).The persistence lemma (i) gives us the semantic meaning of persistence. It canbe viewed as a variant of the persistence principle.

3. First-Order Logic CF0 453.3.4 Axiomatic System for CF0Our axiomatic system CF0 is based on the axiomatic systems for constructive logicswith strong negation (see [94], [54], and [2]). It takes as axioms the following list ofschemas:(A1) 'P � : � 'P(A2) ' � (� �) � : ' � � : ' � �(A3) ' ^ � '(A4) ' ^ � (A5) 'P � : � 'P ^ (A6) ' � ' _ (A7) � ' _ (A8) ' � � � : � � � : ' _ � �(A9) ' � : � ' � (A10) c 2 � ^ '(c) � 9x 2 �'(x)(A11) 8x 2 �'(x) � � c 2 � _ '(c)(A12) 8x 2 �(' _ (x)) � (' _ 8x 2 � (x))(A13) � (' ^) � � ' _ � (A14) � (' _) � � ' ^ � (A15) �� ' � '(A16) � (' �) � ' ^ �

3. First-Order Logic CF0 46(A17) � 8x 2 �'(x) � 9x 2 � � '(x)(A18) � 9x 2 �'(x) � 8x 2 � � '(x)(A19) c 2 � _ � c 2 �In axioms A1 and A5, 'P means that ' has to be persistent, which is the small pricewe have to pay for the relaxation of the dynamic condition on universal quanti�ersto the static one. In order to see why this restriction is necessary, let us considerthe following formula ' 8x 2 �R(x) � > � 8x 2 �R(x)For this formula, our persistence condition on 8x 2 �R(x) is actually to require that� is a persistent bounder. If � is not persistent, it is not di�cult to �nd out that 'cannot be valid based on our formal semantics for CF0.In axiom A12, x is required not to be free in '. In addition, note that axiom A12is not assumed in constructive logics (see [54], and [2]). We emphasise our situationtheoretical standpoint rather than intuitionistic or constructive viewpoint. So thereseems nothing preventing us from assuming the axiom.With axiom A19, we are assuming that, at any situation, we can always decideif a constant c is in � or not. The assumption is consistent with the semanticinterpretation of � given above. In addition, note that axioms A13 and A18 canin fact be derived from the other axioms and related de�nitions, and thus can beomitted.CF0 has the following inference rules:(R1) '; ' � (R2) c 2 � ^ '(c) � 9x 2 �'(x) �

3. First-Order Logic CF0 47(R3) � (� c 2 � _ '(c)) � 8x 2 �'(x)In rules R2 and R3, the constant c is required not to occur in .The axiomatic systemCF0 is a �rst-order modi�cation of Almukdad and Nelson'sN as well as Thomason's CF.8 If we delete axiom A9 fromCF0, denoted CF0�, thenwe have a system which is a modi�cation of Almukdad and Nelson'sN�. Since axiomA9 is not available in CF0�, we need another axiom to the e�ect that c 2 � and� c 2 � do not hold at the same time, say c 2 � ^ � c 2 � � ?. So, with logicCF0�, inconsistent situations are allowed, but the inconsistency of situations doesnot arise from the contradictory statements of form c 2 � ^ � c 2 �.Basic notions (relative to CF0) such as thesishood, consequence, and consistencycan be de�ned in the usual way. For any sentence ', and set � of sentences, we write` ' to indicate that ' is a thesis of CF0, � ` ' to indicate that ' is a consequencein CF0 of �, and � ` � to indicate that there is a subset f'1; '2; :::; 'ng of � suchthat '1 _ '2 _ ::: _ 'n is a consequence of �.From the de�nition of thesishood and consequence, it is easy to prove the fol-lowing lemma.Lemma 3.3.2 Let �;� be sets of L-sentences. If � ` �, then �0 ` �0 for some�nite subsets �0 and �0 of � and �, respectively.3.3.5 Derived Rules for CF0.In this section, we list some rules for the deducibility-relation ` of CF0 between setsof L-sentences that are needed in the proof of semantical completeness. It is notdi�cult to derive them from the axioms and rules of CF0 given before. We dividethese rules into three groups. Group I consists of two structural rules, and group II8Note that neither N nor CF is formulated in axiomatic formalism.

3. First-Order Logic CF0 48some operational rules. For CF0�, rule � E is to be replaced by a rule equivalentto c 2 � ^ � c 2 � � ?. Group III is about connection between strong negationand other connectives. Lacking the �-introduction rule, we have to use numerousnegation rules to connect negation and other connectives by driving strong negationback and forth across them. Note that, because there is no rule of �-introduction,we are able to use multiple-conclusion rules without in general being able to derivethe Law of Excluded Middle (see the related remarks on p. 82 by Gentzen [50], andthe example about the derivation of the law on p. 85 of [50])Group I.R: If � and � are not disjoint, then � ` �.T: � ` ��;� ` �;�Group II._I: � ` '; ;�� ` ' _ ;� _E: �; ' ` �; �; ` �; � ` ' _ ;�� ` �� I: �P ; ' ` �P ` ' � � E: � ` ' � ;�; � ` ';�� ` ;�� E: � ` ';�; � ` � ';�� ` �8I: � ` � c 2 � _ '(c);�� ` 8x 2 �'(x);� 8E: � ` 8x 2 �'(x);�� ` � c 2 � _ '(c);�In 8I, c has no occurrence in '(x), or in any member of � or of �;

3. First-Order Logic CF0 49Group III.� _I: � ` � ';�; � ` � ;�� ` � (' _);�� _E: � ` � (' _);�� ` � ';� � ` � (' _);�� ` � ;��� I: � ` ';�� ` �� ';��� E: � ` �� ';�� ` ';��� I: � ` ';�; � ` � ;�� ` � (' �);��� E: � ` � (' �);�� ` ';� � ` � (' �);�� ` � ;�� 8I: � ` c 2 � ^ � '(c);�� ` � 8x 2 �'(x);�� 8E: � ` � 8x 2 �'(x);�; �; c 2 � ^ � '(c) ` �� ` �In � 8E, c does not occur in '(x), or in any member of � or of �.Theorem 3.3.1 (Soundness of CF0) Let � be a set of L-sentences, and ' a L-sentence. and M = hS;�;D; Ii a model of L, s a situation in M. If � ` ', ands j=+ �, then s j=+ '.Proof. Proof is routine and thus omitted.Note that the soundness of CF0 would fail if we included a rule of �-introduction(�-I) to the e�ect that from �; ' ` � we can infer � `� ';�. To see this, observethat, by derived rule R of CF0, ' ` '. By �-I it then follows that `� ';'. And so

3. First-Order Logic CF0 50`� ' _ ' by rule _-I. But it is not di�cult to see that � ' _ ' is not valid in thecurrent semantic framework. This shows that �-I is not sound in CF0.3.4 Completeness of CF0In this section, we show that �rst-order logic CF0 is semantically complete, basedon Thomason's completeness proof techniques in [98]. We �rst introduce relatedde�nitions and prove some auxiliary lemmas.De�nition 3.4.1 A set � of L-sentences is L-!-complete if for all L-formulas '(x),we have � ` 8x 2 �'(x) if � ` � c 2 � _ '(c) for all c 2 CL. And � is L-saturatedif it meets the following �ve conditions: for any L-sentences ', ,(i) � is consistent;(ii) � is deductively closed, that is, if � ` ', then ' 2 �;(iii) if � ` ' _ , then � ` ' or � ` ;(iv) if � 8x 2 �'(x) 2 �, then for some constant c 2 CL, c 2 � ^ � '(c) 2 �;(v) � is L-!-complete.Lemma 3.4.1 (Saturation Lemma I) Let � be a set of L-sentences, and ' a L-sentence. Suppose � 6` '. Let C = fc0; c1; c2; :::g be a countable set of constantsforeign to L, B a set of bounders of L [C, and L0 = L [C [B. Then there is aL0-saturated set �! such that � � �! and �! 6` '.Proof. In order to obtain required �!, we de�ne two sequences h�iii and h�iii byinduction as follows. Let h'iii enumerate all L0-sentences, and h'i;1 _ 'i;2ii, h8x 2�i'i(x)ii and h� 8x 2 �i'i(x)ii enumerate with in�nite repetition all disjunctive,bounded universal and bounded existential sentences of L0 respectively.

3. First-Order Logic CF0 51Let �0 = � and �0 = f'g. Suppose that �k and �k have been de�ned. Tode�ne �k+1 and �k+1, we distinguish the following �ve cases.Case 1. k = 4n, �k ` 'n;1 _ 'n;2, and 'n;1 62 �k and 'n;2 62 �k. Put�k+1 = �k [f'n;ig;�k+1 = �k;where i is the least of f1; 2g such that �k [f'n;ig 6` �k.Case 2. k = 4n + 1. �k ` � 8x 2 �n'n(x);�k and for all constants c 2 CL0 ,(c 2 �n ^ � 'n(c)) 62 �k. Put�k+1 = �k [fck 2 �n ^ � 'n(ck)g;�k+1 = �k;where ck is the �rst member of CL0 not to occur in 'n(x) or in any member of �kor of �k.Case 3. k = 4n + 2, there are two subcases.Case 3.1. �k; 'n ` �k. Put �k+1 = �k;�k+1 = �k [f'ng;Case3.2. 'n 62 �k and �k; 'n 6` �k. Put�k+1 = �k [f'ng;�k+1 = �k:

3. First-Order Logic CF0 52Case 4. k = 4n + 3. �k;8x 2 �n'n(x) ` �k, and for all constants c 2 CL0 ,(� c 2 �n _ 'n(c)) 62 �k. Put�k+1 = �k;�k+1 = �k [f� ck 2 �n _ 'n(ck)g;where ck is the �rst member of CL0 not to occur in 'n(x) or in any member of �kor of �k.Case 5. None of the cases above applies, put�k+1 = �k;�k+1 = �k:It is then not di�cult to check by induction that for any k 2 !, �k 6` �k usingthe derived rules for CF0. To illustrate, let us consider case 3.1. We need to showthat if �k; 'n ` �k, then �k 6` �k [f'ng. Suppose �k ` �k [f'ng. We assumethat 'n;�k and �k [f'ng are the same set of formulas. By rule T and rule _I,we have �k ` 'n _ 'n;�k. Since we are assuming that �k; 'n ` �k, it follows that�k ` �k by rule _E. But this contradicts the induction hypothesis. So we have�k 6` �k [f'ng.Now let �! = [f�k : k 2 !g and �! = [f�k : k 2 !g. We can showthat �! 6` �!, �! = FL0 � �! and �! is L0-saturated as desired. The details ofveri�cation are omitted.Lemma 3.4.2 (Saturation Lemma II) Let � be a set of L-sentences, and ' and L-sentences, and BPL all the persistent bounders in L. Suppose ' � 62 �. LetC = fc0; c1; c2; :::g be a countable set of constants foreign to L, B a set of boundersof L[C, and L0 = L[C[B. Then there is a L0-saturated set �! such that �P � �!,

3. First-Order Logic CF0 53' 2 �! but 62 �! and (� cj 2 �Pi) 2 �! for any cj 2 C; �Pi 2 BPL .Proof. The proof is similar to that of Saturation Lemma I except that this time welet �0 = �P [f'g [f� cj 2 �Pi : cj 2 C & �Pi 2 BPL g and �0 = f g.De�nition 3.4.2 (Canonical Model Construction) Let C1; C2; C3; ::: be a countablesequence of disjoint countable sets of constants foreign to L. Let C�n be C1 [C2 [::: [Cn, and Bn a set of bounders of L [C�n such that Bl � Bm for any l � m � n.Then for language L! = L [([Cn) [([Bn) , we can de�ne a Kripke model M =hS;�;D; Ii as follows:(i) S consists of all � such that for some n, L� = L [C�n [Bn, and � isL�-saturated.(ii) for any L�-saturated set � and L�-saturated set � with L� = L[C�m[Bmand L� = L [C�n [Bn (m < n), � � � if and only if �P � � and for anyc 2 C�n � C�m and �P 2 BL� , (� c 2 �P) 2 �.(iii) if � is L�-saturated and L� = L [C�n [Bn then D(�) = CL [C�n.(iv) I�(c) = 8><>: c if c 2 CL [C�n;unde�ned otherwise.(v) I�(�) = fc 2 CL [C�n : (c 2 �) 2 �g:(vi) I�(R)(c1; c2; :::; cn) =8>>>><>>>>: T if R(c1; c2; :::; cn) 2 �;F if � R(c1; c2; :::; cn) 2 �;unde�ned otherwise.Lemma 3.4.3 (Truth Lemma) Suppose M = hS;�;D; Ii is a canonical Kripkemodel associated with L. Then for all � 2 S, and all L�-sentences �, we have� j=+ � if and only if � 2 �.

3. First-Order Logic CF0 54Proof. By induction on the complexity of �.Case 1. � is an atomic sentence R(c1; c2; :::; cn) or c 2 �, the lemma holds by thede�nition of a canonical Kripke model.Case 2. � is an atomic sentence � R(c1; c2; :::; cn), the lemma holds again by thede�nition of a canonical Kripke model. If � is � c 2 �, suppose that � j=+� c 2 �,that is � j=� c 2 �. By de�nition, either I�(c) is not de�ned or I�(c) is de�nedand I�(c) 62 I�(�). In either case, (c 2 �) 62 �. By axiom A19 and saturatedness of�, we get (� c 2 �) 2 �. For converse, let (� c 2 �) 2 �. By axiom A9 and theconsistency of �, we get (c 2 �) 62 �. From this it follows that � j=+� c 2 �.Case 3. � is ' _ . Straightforward and thus omitted.Case 4. � is � (' _). Straightforward and thus omitted.Case 5. � is ' � . Suppose ' � 2 �. We show � j= ' � . For any �such that � � �, we have �P � �. Since ' � 2 � and ' � is persistent, weget ' � 2 �P � �. It follows that if ' 2 �, then 2 � by rule � E. By thehypothesis of induction, then, for all such �, if � j= ', then � j= ; and therefore� j= ' � .Conversely, suppose ' � 62 �, then ' � 62 �P , so �P [f'g 6` by rule� I. Using the Saturation Lemma II, we can get a saturated set � 2 S such that� � �; ' 2 �, but 62 �. By the hypothesis of induction, we get � j= ' but� 6j= . Thus � 6j= ' � .Case 6. � is � (' �). � j=+� (' �) if and only if � j=� ' � if and onlyif � j=+ ' and � j=� if and only if � j=+ ' and � j=+� , and this if and only if' 2 � and � 2 � by the hypothesis of induction. But ' 2 � and � 2 � if andonly if � (' �) 2 � by rules �� I and �� E.Case 7. � is �� '. Straightforward and thus omitted.Case 8. � is 8x 2 �'(x). Suppose � j=+ 8x 2 �'(x), then for all c 2 D(�),if � j=+ c 2 �, then � j=+ '(c). But � j=+ c 2 � _ � c 2 �. It follows that for

3. First-Order Logic CF0 55all c 2 D(�), � j=+� c 2 � _ '(c), so (� c 2 � _ '(c)) 2 � by the hypothesisof induction. Thus 8x 2 �'(x) 2 � by the L�-!-completeness of �. Conversely,suppose 8x 2 �'(x) 2 �, then for any c 2 D(�), (� c 2 � _ '(c)) 2 � by rule8E, so � c 2 � 2 � or '(c) 2 � by the saturatedness of �. Since � is consistent, ifc 2 � 2 �, then � c 2 � 62 �, so '(c) 2 �. That is, for any c 2 D(�), if � j=+ c 2 �then � j=+ '(c) by the hypothesis of induction, so � j=+ 8x 2 �'(x).Case 9. � is � 8x 2 �'(x). The proof is similar to that for case 8 except thatwe use condition (iv) of L�-saturatedness of � and rule � 8I, completing the proof.Theorem 3.4.1 (Strong Completeness for CF0) Let ' be a L-sentence and �a set of L-sentences. If � � ' then � ` '.Proof. Suppose � 6` '. By canonical model construction, we can associate L� witha canonical Kripke model M = hS;�;D; Ii. Saturation Lemma I then guaranteesus that there is a � 2 S such that � � � and ' 62 �. By Truth Lemma, � j= �but � 6j= '. Therefore, � 6� '.3.5 First-Order Logic CF0 and Infon LogicThe main result of this chapter is the proposal of a �rst-order logic CF0 with strongnegation and bounded static quanti�ers, which is a variant of Thomason's logic CF.Di�erent from most constructive logics, quanti�ers in our system as in Thomason'sare static rather than dynamic. Our intention is to develop CF0 further so that itcan serve as a logic for situation theory.Originally, situation theorists were not much concerned with developing theirown logical systems. Their semantic theory of consequence emphasised the exter-nal signi�cance of language and the role of non-linguistic contexts. Consequence isfor them no longer a relation between syntactic elements. There is no exact cor-respondence between the information conveyed by an utterance and the sentence

3. First-Order Logic CF0 56used to convey. In fact \... there can be no syntactic counterpart, of the kindtraditionally sought in proof theory and theories of logical form, to the [situation]semantic theory of consequence." (see pp. 44-45 of Barwise and Perry [11]). How-ever the desire to use situation theory and situation semantics to give an accountof inference eventually led Barwise and Etchemendy to construct a situation theo-retical model of inference, emphasising information content. They called this infonlogic; that is a logic whose elementary formulas represent items of information andwhose compounds correspond to ways of compounding those items (see Barwise andEtchemendy [10], [32]).In [10], Barwise and Etchemendy argue that infon logic is at least intuitionisticbut not classical. This argument is problematic. There are at least two issues asso-ciated with the argument as we pointed out in the �rst chapter. One is about whatkind of negation is used in infon logic. Is intuitionistic or strong negation used in in-fon logic? The other is about the form of universal quanti�ers. Are dynamic or staticquanti�ers used in infon logic? We have argued in the �rst chapter that negation ininfon logic should be strong negation rather than intuitionistic one. As to universalquanti�ers, from the situation-theoretic viewpoint, static universal quanti�ers aremore desirable than dynamic ones for the reasons we discussed in this chapter. Infact, quanti�ers in related situation theoretical literature are interpreted in one wayor another statically rather than dynamically (see p. 271 of [8], pp. 134-136 of [32],and p. 109 of [38]) though they are not treated in Barwise and Etchemendy's infonlogic [10]. Since it is intuitionistic negation and dynamic universal quanti�ers thatare used in intuitionistic logic, we conclude that infon logic cannot be intuitionisticeither.Instead, we are inclined to use constructive negation, more generally, to useconstructive logic with strong negation as the underlying logic for situation theorybut to interpret quanti�ers statically rather than dynamically. That is the way we

3. First-Order Logic CF0 57arrive at the logic CF0 from situation theorists' work on infon logic. However, we donot claim that our logic is fully-edged. For one thing, the components in a basicformula R(a1; a2; :::; an), or using the notation of infon logic,� R; a1; a2; :::; an; i�are still individuals whereas infon logic allows them to be any objects. Nevertheless,we do intend to claim that our logic preserves many features of infon logic since(i) CF0 is partial in the sense that a formula can be neither true nor false; (ii)it has a rich algebraic structure of persistent formulas; (iii) with strong negationavailable, CF0 has in fact two kinds of basic formula very similar to the two kindsof basic infons of situation theory; (iv) the negation of compound formulas satis�esDeMorgan's laws which are assumed to hold in situation theory; (iv) quanti�ersin CF0 are static, as is consistent with the situation theoretical interpretation ofquanti�ers.

Chapter 4Deductive DatabasesFrom this chapter onwards, we are going to discuss both nonmonotonic negationand strong negation in deductive databases. The discussion will be in the moregeneral context of logic programming. Our emphasis, however, is on the databaseviewpoint. In the present chapter, we �rst of all briey consider one of limitationsin expressive power under the conventional relational model. This should motivatethe deductive approach to databases. Then we give the formal de�nitions of a logicprogram and a deductive database. Finally, we consider one of central problems inthe deductive approach, that is the problem of negation, which is closely related tononmonotonic reasoning.4.1 From Relational to Deductive DatabasesIn the area of database theory, the relational model, introduced by Codd in 1970sin a series of papers [26], [27], [29], [28], [30], has become dominant. As its namesuggests, the model has relations as its data structures. Based upon relationalalgebra or the equivalent relational calculus, manipulation of data in a relationaldatabase is a model-theoretic process (see [77] and [92]): the database is treated as58

4. Deductive Databases 59an interpretation of the query language, and queries and integrity constraints arelogical formulas that are to be evaluated over the interpretation using the well-knownTarski's truth de�nition (see [13]). A typical characteristic of a relational system isits declarativeness: the user may query or update a database in a declarative way bysaying what is wanted, rather than in a procedural way by saying how the operationis computed. With its simplicity and declarativeness, the relational database modelhas enjoyed widespread success. The leading database vendors produce relationalsystems1, including IBM's DB2, Oracle, Informix, INGRES, Sybase, and MicrosoftAccess.However, it has long been recognised that the relational model is not perfectand has one or another limitation (see [61] and [92]). One conspicuous de�ciencyis its expressive power2. In order to see this, we recall that non-recursive datalogwith negation is one of three syntactically di�erent but equivalent relational querylanguages, the other two being the relational algebra and relational calculus [1]. Inthe non-recursive datalog with negation, recursion is explicitly forbidden, that is tosay the relational model itself does not provide any facilities for expressing generalrules. As a result, the transitive closure of a relation cannot be de�ned in a rela-tional query language without interfacing with a host procedural language. Indeed,practical relational query languages like Structured Query Language (SQL) are usu-ally embedded in full programming languages such as C programming language toexpress recursion (see [61] and [1]).Although with SQL being embedded in a full programming language, SQL state-ments are allowed to be coupled with host language programs, and thus recursion canbe provided by \while" loops in the host language; nevertheless, the declarativenessof the relational systems is thereby compromised.1These systems may be object-oriented as well.2For the study of the expressive power of a relational query language in a formal framework,see [1] and citations there.

4. Deductive Databases 60There has been much e�ort devoted to extending the relational model instead ofcoupling a relational query language with a host programming language. Deductivedatabase systems are one such extension (see [44], [92], [71], [15], [87]). In com-parison to relational systems, deductive systems adopt a proof-theoretic paradigmrather than the model-theoretic one3. Accordingly, a database is not taken as aninterpretation but as a theory consisting of a set of �rst-order sentences, and exe-cuting a query or satisfying an integrity constraint is regarded as proving that somespeci�ed formula is a logical consequence of the theory (see [77] and [92]).Another important thrust to the development of deductive databases is owed tologic programming, more generally to automatic theorem proving. See [71] for a his-torical introduction of the development of deductive databases, and the relationshipbetween deductive databases and logic programming. Indeed, deductive databasescan be seen as the integration of relational databases with logic programs, withrelational query languages being extended to logic programming languages. Fornon-recursive datalog with negation, this means that it is extended to (recursive)datalog with negation (see [1]).With the presence of general rules in deductive databases, the transitive closureof a relation can be recursively de�ned in a straightforward way, and thus it be-comes possible to query a deductive database about recursively de�ned relations.So, deductive systems provide a simple solution to the weak expressive power of therelational model. The increased expressive power of deductive database systems, aspointed out in [87], \is important in a variety of application domains, including deci-sion support, �nancial analysis, scienti�c modeling, various applications of transitiveclosure (e.g. bill-of-materials, path problems), language analysis, and parsing." (seealso [88]).In addition to the stronger power, the proof-theoretic approach to database the-3In [92], it is shown that how the model-theoretic perspective on databases can be reinterpretedin purely proof-theoretic terms.

4. Deductive Databases 61ory against the model-theoretic one has logic as a single uniform formalism fordescribing facts and rules in databases, queries and integrity constraints, and fora variety of other apparently di�erent problems, including veri�cation of integrityconstraints, program correctness proofs and many others (see [44]). More impor-tantly, with logic programming languages as declarative database query languages,deductive database systems preserve the important property of being declarative.The proof-theoretic approach to databases despite its merits does have its owndi�culties to overcome. Before we move on to discuss the problem of negation indeductive databases, we give the main concepts and notations.4.2 Logic Programs and Deductive DatabasesFrom the database viewpoint, deductive databases are an extension of the traditionalrelational databases. In a deductive database, there are not only ground atoms,which correspond to tuples of the relations in relational databases, but also generalrules, which constitute the extended part.From the logic programming viewpoint, deductive databases can also be equallyseen as logic programs. A major di�erence between deductive databases and logicprograms is that deductive databases are usually restricted to function-free lan-guages. Another di�erence between deductive databases and logic programs is thatdatabases usually have more facts than rules whereas logic programs are other wayaround. See [1] for a brief summary of the di�erences between two �elds. Froma theoretical viewpoint, these di�erences are inessential and can be ignored. Sodeductive databases and logic programs are often used interchangeably.Although there is no great di�erence between deductive databases and logicprograms at the theoretical level, we shall nonetheless de�ne logic programs and de-ductive databases in a slightly di�erent way. This as we shall see mainly is concerned

4. Deductive Databases 62with the representation of negative information.Both deductive databases and logic programs use the language of �rst-order logicas their underlying language. But, the terminology and notations used are to greatextent di�erent from that in �rst-order logic. Following the convention of logicprogramming, we shall use comma \," for conjunction, use \not" for non-monotonicnegation, and use uppercase letters X;Y;Z; :::: for variables, and lowercase lettersfor predicates, constants and functions if there are any. The word ground is used tomean variable-free.De�nition 4.2.1 A normal logic program or simply a program , consists of a �niteset of rules of the formp :� q1; q2; :::; qm; not qm+1; : : : ; not qn:where m;n � 0, and p and qi are atoms. p is called the head of the rule, the qimake up the body of the rule. An atom is of form p(t1; t2; :::; tn), where p is an n-arypredicate symbol and t1; t2; :::; tn are terms which are de�ned as usual.If p is an atom, then p is a positive literal, notp is its negative literal, and they arecomplements of each other. For any literal l, we use l for its complement. For anyrule r in a logic program, we use head(r) for its head, body(r) for its body. A literall 2 body(r) is called a subgoal. For a set L of literals, we use L+ for positive atomsin L, L� for atoms whose negative literals are in L. For a set � of atoms, we usenot�� for the set fnotp : p 2 �g. Thus, we have body(r) = body(r)+[not�body(r)�.If a rule has no negative literals in its body, then it is a de�nite rule. A normallogic program is de�nite provided that the program consists of only de�nite rules.De�nition 4.2.2 The Herbrand universe of a program P, denoted HUP , is the set ofall ground terms constructed from only the constant symbols and function symbols

4. Deductive Databases 63in the program. In the case the program P does not contain a constant symbol, weadd an arbitrary one to the universe HUP so that HUP is not empty.The Herbrand base of P, denoted HBP , is the set of all ground atoms constructedfrom predicates in Pwhose arguments are in HUP .We shall assume that all rules in a logic program are ground. That is to say,we assume all variables in logic program P are already instantiated relative to itsHerbrand universe.De�nition 4.2.3 Given a normal logic program P, and a set L of ground literalswhose atoms are in the Herbrand base HBP of P. If there is no ground atom p suchthat both p and notp are in L, then L is said conict-free; otherwise, it is conicting.For a conict-free set L of literals, if L contains every atom of the Herbrand baseor its negation, then L can be taken as a Herbrand interpretation (see [64]) with theunderstanding that missing atoms from a Herbrand interpretation are now explicitlyrepresented as the negative literals in L.A literal l is said to be true in a set L of literals if the literal l is in L; and falsein L if its complement l is in L. For a Herbrand interpretation L, a rule of P issatis�ed in L if whenever all subgoals are true in L, the head is also true in L. Ifevery rule of P is satis�ed in a Herbrand interpretation L, then L is a model of P.In the above de�nition of logic program, facts are integrated with rules; facts aretaken as special rules with the empty body. In the following de�nition of deductivedatabases, we shall have facts separate from rules, dividing information into twocategories: facts and rules (see [87]).De�nition 4.2.4 A deductive database DDB is a tuple hDB;Pi of a set DB of facts(also called data), and a set of rules, that is a normal program P.

4. Deductive Databases 64Facts are represented by ground atoms. The data DB are referred to as theextensional database and the normal logic program P as the intensional database.Given a deductive database hDB;Pi, its predicates are accordingly divided intotwo categories: extensional predicates and intensional predicates. An extensionalpredicate is a predicate occurring either in DB or only in the body of a rule. Anintensional predicate is a predicate occurring as the head of some rule of P. Fur-thermore, there is a similar division among atoms. An extensional atom is an atomwhose predicate is extensional. An intensional atom is an atom whose predicate isintensional.An extensional predicate may occur in the body of a rule but not the head ofany rule. In contrast, an intensional predicate may occur both in the head of a ruleand in the body of the same rule, but if an intensional predicate occurs only in thehead of a rule, we call it a simply intensional predicate. A simply intensional atomis an atom whose predicate is simply intensional. The notion of simply intensionalatom will be used in the de�nition of quasi-stable semantics in Chapter 6.Given a deductive database hDB;Pi, one of main tasks is to determine the ex-tensions of intensional predicates, that is the semantics of its intensional componentP since the the meaning of its extensional component DB is clear cut: all exten-sional atoms are taken as true if they are in DB, and false otherwise. Based on thisobservation, we may as well assume that P is purely intensional in the sense thatthere are not any extensional atoms occurring in the body of rules of P. If there isany such extensional atom p, we can always reduce P based upon DB to a purelyintensional program in the following way:(1) if p occurs in the body of some rule of P,� if p is in DB then remove it from the rule;� p is not in DB then remove the rule since then the rule will never be �red

4. Deductive Databases 65to infer any information;(2) if not p occurs in the body of some rule of P,� if p is not in DB, then remove not p from the rule;� if p is in DB, then remove the rule since then the rule will never be �redto infer any information.For a purely intensional component P of a deductive database hDB;Pi, it isnot di�cult to see that its meaning is independent of the corresponding extensionalcomponent DB. So we may restrict our discussions to logic programs.The point of separating facts from rules in a deductive database as we mentionedearlier is concerned with the representation of negative information. This is a goodplace to o�er an explanation of this. In the extensional component of a deductivedatabase, positive facts are explicitly represented whereas negative facts are implic-itly represented. In contrast, the same strategy of implicitly representing negativeinformation as we shall see in the next chapter is not always adequate for the in-tensional component in the sense that the computation of extensions of intensionalpredicates may involve explicit representation of negative information. With factsand rules separated, we may still use the strategy of implicitly representing negativefacts for extensional databases.4.3 Why Negation?Given a database, we are concerned with what can be drawn from it from the in-formational viewpoint. In the context of relational databases, information retrieval,as we mentioned in the beginning of this chapter, is a model-theoretic process. Arelational database is taken as an interpretation. The truth of atomic queries, that isatomic queries of form p against a relational database is determined by its presence

4. Deductive Databases 66or absence in the database. The truth of more complex queries is then evaluatedusing Tarski's truth de�nition. In contrast, the information retrieval in the contextof logic programs is a proof-theoretic process. A logic program is taken as a theory.The truth of a query against a deductive database is determined by its provabilityfrom the database. Unfortunately, provability is a very strong condition which isnot suitable from the database viewpoint.In the second chapter, with the analysis of classical negation at the semanticand proof-theoretic levels, we have shown that on the one hand, a monotonic de-ductive inference mechanism is not adequate for dealing with negative informationeven in the area of relational databases. This is because classical negation at theproof-theoretic level expresses inconsistency which is monotonic whereas negativeinformation concerned in the area of databases is usually nonmonotonic. On theother hand, the semantic rule M2 does provide us with a mechanism for derivingdesired negative information in the context of relational databases.Unfortunately, the semantic rule M2 is no longer valid in the context of deductivedatabases. Consider the following logic program P, which is an extension of therelational database we discussed in the second chapter:

4. Deductive Databases 67teach(frege;�rst-order-logic):teach(cantor; set-theory):teach(tarski;model-theory):teach(turing; recursion-theory):teach(godel; proof-theory):teach(tarski; proof-theory):teach(turing; proof-theory):teach(X; set-theory) :� teach(X;model-theory):teach(X; set-theory) :� teach(X; recursion-theory):teach(X; set-theory) :� teach(X; proof-theory):and two queries to it, q1 : Who does not teach proof-theory?q2 : Who does not teach set-theory?Intuitively, we want ffrege; cantorg to be the answer to q1 since P contains neitherteach(cantor; proof-theory) nor teach(frege; proof-theory). But the �nal rule of P isonly concerned with set-theory instead of proof-theory, so it cannot be used to in-fer any information about teach(cantor; proof-theory) or teach(frege; proof-theory).However, �rst-order logic itself does not enable us to reach the intended an-swers to the query q1. To logically infer that :teach(cantor; proof-theory) and:teach(frege; proof-theory), we have to show that teach(frege; proof-theory) _teach(cantor; proof-theory) is not consistent with P. From the given information,however, this is impossible since we can �nd a model for teach(frege; proof-theory)_teach(cantor; proof-theory) and P. So we cannot logically reach the conclusion.As to the second query q2, we want ffregeg to be the answer to it. Using

4. Deductive Databases 68the same argument as for q1, we know that this conclusion cannot be logicallyreached either. But this time, we do not want to include tarski, or turing orgodel in the answer. Although Pdoes not directly contain teach(tarski; set-theory),teach(turing; set-theory), or teach(godel; set-theory), nevertheless, they can be in-ferred logically from P using the �nal rule. That is to say, in the context of logicprograms, we cannot obtain desired negative information by simply employing asimple rule like M2. In order to obtain intended answers to q1 and q2, we have toseek a di�erent inference mechanism.The logic program we just discussed is only an example of datalog. As we shallsee, the problem of negation in datalog is not very di�cult. The real challengecomes from logic programs with negation in their bodies, especially when negationis involved in recursion. In order to see such logic programs do exist in practicalapplications, let us consider an example, which is based on similar examples from[105] and [1], It is worth pointing out that the example is one of the motivationalexamples for both the stable model semantics [47] and the well-founded semantics[105], and also closed related to a game described by Kolaitis [60].Example 4.3.1 Consider a game between two players. The game consists of a seriesof states. The possible moves of the game are held in an extensional relation moves,where moves(a; b) means that a player, when in state a, may choose to move to b.A player wins if the opponent has no moves. Let winning(X) denote X is awinning state; that is a state has a winning strategy for a player. Then the winningrule can be expressed by the following program Pw:winning(X) :� move(X;Y); not winning(Y):Suppose the game has three states a; b; c, with the following sample instance ofrelation moves: moves = f(a; b); (b; a); (b; c)g

4. Deductive Databases 69which is graphically represented as
a b cThe Herbrand instantiation of the program is as follows:winning(a) :� move(a; a); not winning(a):winning(a) :� move(a; b); not winning(b):winning(a) :� move(a; c); not winning(c):winning(b) :� move(b; a); not winning(a):winning(b) :� move(b; b); not winning(b):winning(b) :� move(b; c); not winning(c):winning(c) :� move(c; a); not winning(a):winning(c) :� move(c; b); not winning(b):winning(c) :� move(c; c); not winning(c):where there are three rules in which winning depends negatively on itself. Accordingto the winning rule, it is not di�cult to see that winning(b) should be true but notwinning(a) and winning(c). But, how shall we compute the set of winning statesfor any instance of the relation moves? What we need is a general mechanism todetermine winning states. It turns out that in this case, the well-founded semantics[105] does provide us with such a mechanism to �nd the intended answer. 2The treatment of negative information in deductive databases, more generallyin logic programming, turns out to be extremely di�cult, especially when negationis involved in recursion. In the past two decades, much e�ort has been devotedto the research about negation in deductive databases and in logic programmingby proposing various kinds of semantic theories for logic programs. Indeed, as

4. Deductive Databases 70pointed out in [87], a very important thrust to the study of deductive databasesand logic programming, \has been the problem of coping with negation or non-monotonic reasoning, where classical logic does not o�er, through the conventionalmeans of logical deduction, an adequate de�nition of what some very natural logicalstatements `mean' to the programmer."4.3.1 Nonmonotonicity of notSince logic does not help, it is inevitable for us to devise some non-logical mechanismto deal with the use and retrieval of negative information in the context of logicprograms. More generally, we have to de�ne what can be inferred from a logicprogram. From the semantic perspective, this is the same as determining what is trueand what is false relative to a given logic program. Consequently it will also providean interpretation of not. Di�erent semantics may have di�erent interpretations ofnot in one way or another (see the next chapter for more details). This roughlyexplains why we said in the �rst chapter that the exact meaning of a piece ofnegative information represented by not p depends on the speci�c semantics used.Whatever semantics is used, however, nonmonotonicity is a common and essentialcharacteristic of this kind of negation.It is interesting to note that the nonmonotonicity can in fact be envisaged inadvance independently of any semantics. Indeed, from the database viewpoint, thenonmonotonicity of not can be argued quite directly. In relational databases, it is thesemantic notion of classical negation that we use to deal with negative informationin evaluating a query expressed in non-recursive datalog with negation. But wehave seen that classical negation at the semantic level is nonmonotonic, so is thenegation not used in non-recursive datalog. Equivalently, in the relational algebra44Recall the relational algebra and the non-recursive datalog with negation are two of threedi�erent but equivalent relational query languages [1].

4. Deductive Databases 71negation is expressed by exploiting the set di�erence operation. The R's that arenot S's are just R�S. This notion of negation is clearly non-monotonic, for initiallyx may be in R � S but when more is learned of x we may add x 2 S and so losethe previous negative item of information. When we extend non-recursive datalogwith negation to allow recursion we should preserve this non-monotonicity so that,whenever the semantics is applied within a non-recursive datalog program, we stillhave the same result as we would from a relational database using the conventionalrelational theory. Thus not has to remain nonmonotonic.Combining the examples in the previous section with the above argument, wecan now formulate the relationship between nonmonotonic negation and classicalnegation. The examples in the previous section shows that nonmonotonic nega-tion not should be di�erent from classical negation at both the semantical andproof-theoretical levels. On the one hand, compared with classical negation at thesemantical level, nonmonotonic negation not should be more general so that not willbe suitable in the context of logic program, a wider context than that of relationaldatabases. Moreover, the nonmonotonicity argument above shows that nonmono-tonic negation should be in fact an extension of classical negation at the semanticlevel. On the other hand, compared with classical negation at the proof-theoreticallevel, nonmonotonic negation not should be much weaker so that the negative in-formation required from the database viewpoint can be adequately inferred andexpressed by not. As a result, nonmonotonic negation should also to some extentextend classical negation at the proof-theoretic level in the context of logic programs.We shall see in the next chapter, such a proof-theoretic extension of classical nega-tion is achieved through a kind of nonmonotonic reasoning introduced in a semanticsof logic programs.

4. Deductive Databases 724.3.2 Strong Negation in Logic ProgramsFrom the knowledge representation viewpoint, non-monotonic negation can onlyrepresent inde�nite negative knowledge. A piece of nonmonotonically negative in-formation might be given up later when more information is available. But thereare situations where such a negation is not adequate. When de�nitely negativeknowledge is required, a stronger negation seems indispensable.Let us consider an example from [3]:convicted(X) : �charged(X);� innocent(X):The intended interpretation to the above formula is that a person charged with acrime should be convicted if there is a direct evidence against him or her. Here wecannot replace � with non-monotonic negation. Otherwise, it would mean that aperson charged with a crime should be convicted when there is no evidence showingthat he or she is innocent. This is certainly not consistent with judicial practice.Since non-monotonic negation is not suitable in the above example, we haveto use a di�erent one. Obviously, this di�erent kind of negation has to be at leastmonotonic so that when more information is added, what is originally negated shouldnot be overturned5. Classical negation at the proof-theoretical level is a candidate.But the semantic principle of bivalence behind the classical negation makes it notsuitable. In addition, there are also computational di�culties associated it (see [63]).Without the restriction of bivalence, the classical negation becomes intuitionistic.So, another choice may as well be intuitionistic negation. But in chapter 3 wehave shown that intuitionistic negation is less desirable than the strong negation ofconstructive logics. In logic programming and deductive databases, the applicationof strong negation for explicit representation of negative information is originallyproposed in [79]. See also [108], [109], [110]. Gelfond and Lifschitz in [48], [49]5We are assuming that the evidence supporting the negation correct and reliable.

4. Deductive Databases 73also proposed to extend logic programs with classical negation from the knowledgerepresentation viewpoint. But, as it is pointed out in [109], what is named classicalnegation in [48] is in fact strong negation.Back to our example, it turns out that strong negation can perfectly capture thenegation in question. A direct evidence against a person p will enable us to explicitlyassert that he or she is not innocent, that is � innocent(p). One might suggest toreplace � innocent(X) with guilty(X) to eliminate the use of strong negation atall. The problem with the replacement, as it is pointed out by Wagner [109], is thatwe will lose reasoning capabilities based on inconsistency.Augmented with strong negation, logic programming can represent both de�-nitely positive and de�nitely negative knowledge. Without the restriction of biva-lence, logic programs with strong negation may also deal with incomplete informa-tion in the sense that the answer to a ground query need not be yes or no. It maybe neither. Motivated by the above, we shall also study extended logic programs,that is logic programs extended by strong negation, after we study logic programs.

Chapter 5Non-monotonic NegationA great number of interesting semantic theories for logic programs with nonmono-tonic negation have been proposed in the past two decades. The purpose of thischapter is to review several main semantic theories for logic programs, showing hownon-monotonic negation is dealt with in them. The choice of reviewed semantictheories is mainly based on their relevance to our proposed semantics in the nextchapter. So it is by no means intended to be a comprehensive overview of the area,and does not imply any prejudice to other theories either. Readers are invited torefer to [64] for an elementary introduction to logic programming, and [15], [72],[33], and [34] for detailed surveys on negation in logic programming.The semantics reviewed here include the semantics of de�nite logic programsmainly by van Emden and Kowalski [103], Clark's program completion semanticsand the associated SLDNF[25], Reiter's closed world assumption [90], Fitting's se-mantics [40], the well-founded semantics by Gelder, Ross and Schlipf [105], stablesemantics by Gelfond and Lifschitz [47], and a three-valued version of the stablemodel semantics by Przymusinski [85]. The review is discussed in the context oflogic programs. We shall show that these semantics in spite of their shortcom-ings in one way or another do give us an instructive insight towards understanding74

5. Non-monotonic Negation 75nonmonotonic negation.5.1 IntroductionSemantics of Logic programs can be dealt with using many di�erent approaches.Here we concentrate on two di�erent but related interpretations: the model-theoreticinterpretation and the deductive one. The model-theoretic interpretation, declar-ative in nature, is to take a logic program as a �rst-order theory. To de�ne thesemantics for the program is to choose some models of this theory and use them toassign a meaning to the program.The deductive interpretation, more procedural in nature, is to take a logic pro-gram as a set of inference rules. To de�ne semantics for a logic program is to �nd outwhat can be inferred from the program; here inference is not necessarily logical rea-soning: it may be non-monotonic reasoning or other forms. Using the terminologyof default logic1, the deductive approach is to take logic program rules as defaults.That is a logic program is taken as a default theory. Then we use concepts likeextensions or weak extensions associated with the theory to provide the programwith a meaning (see [66]).Note that there are various classi�cations of di�erent approaches to semantictheories for logic programs with nonmonotonic negation. In [105], semantic theoriesare classi�ed into the \program completion" approach and the \canonical model"approach. In [33] they are divided into logic-programming-semantics, which is basedon the idea of negation-as-�nite-failure [25], and non-monotonic reasoning-semantics,which is inspired by logics of common sense reasoning such as default logic [91], andautoepistemic logic [74].We are not attempting to give any classi�cation of existing semantics. Instead1In [16], default logic has been used a uniform formalism for de�ning semantics of logic programs.

5. Non-monotonic Negation 76we only consider the model-theoretic approach and the deductive approach withthe emphasis on the latter one. We shall make use of the concept of extensionsrather than that of models as much as we can. We take classical two-valued logicas our underlying logic. As we shall see in this chapter, the Fitting semantics andthe well-founded semantics are in general partial in the sense that some atoms in alogic program may be neither true nor false. From the model-theoretic perspective,�xpoints in the Fitting semantics and the well-founded semantics, when taken asmodels, have to be viewed in the framework of three-valued logic. From the de-ductive perspective, they can also taken as incomplete extensions as in default logic[91]. This way, classical logic is augmented with logic programming rather thanbeing replaced by a three-valued logic.5.2 Semantics for De�nite Logic ProgramsSemantics for de�nite logic programs is now well established. There are three di�er-ent but equivalent approaches to de�ning the semantics, resulting in model-theoreticsemantics, �xpoint semantics, and procedural semantics2. Since procedural seman-tics involves introducing some kind of refutation procedure based on the resolutioninference rule such as SLD-resolution [6], which we will not cover later in the discus-sion of normal logic programs, we shall only have a brief look at the model-theoreticand �xpoint semantics. See [64] for a detailed introduction to the three approaches.The model-theoretic semantics of logic programs is based on the semantics of�rst-order logic. The truth value of an atom relative to a logic program P is deter-mined by the logical consequences of P, that is fp(t1; : : : ; tn) : P � p(t1; : : : ; tn)g,where P � p(t1; : : : ; tn) means that P logically implies p(t1; : : : ; tn). It is shown in[103] that the logical consequences of P are equal to the intersection of all Herbrand2In [1], it is also called proof-theoretic semantics since it is based on obtaining proofs of factsfrom a logic program.

5. Non-monotonic Negation 77models of P, which is itself a Herbrand model, and thus is called the least Herbrandmodel for P. So we may reduce the logical consequences of a de�nite logic programto its unique least Herbrand model, and determine the truth of an atom using theleast Herbrand model as follows: if an atom is in the model then it is taken as true;otherwise taken as false. So it is natural to assign the least model as the declarativemeaning of a de�nite program.Note that when we say an atom is taken to be false if it is not in the least model,we are moving out of the realm of logical reasoning into that of nonmonotonicreasoning. An atom is not in the least model of a de�nite program only means thatthe atom is not a logical consequence of the program, which is di�erent from thatthe negation of the atom is a logical consequence of the program. When we assignthe truth-value false to all the atoms not in the least model, we are implicitly usingthe CWA, which is nonmonotonic as we shall see later in this chapter.The �xpoint semantics is also based upon a theorem by van Emden and Kowalski[103] (see also Apt and van Emden [6]). The theorem shows that the least Herbrandmodel is equal to a least �xpoint, which in turn can be characterised in a constructiveway, using �xpoint theory, that is using Knaster-Tarski's and Kleene's theorems (see[6] and [64] for details). To de�ne the �xpoint characterisation, an operator TP onHBP , now usually called the immediate consequence operator [1], is introduced asfollows: TP (L) = fp 2 HBP : 9r 2 P(head(r) = p ^ 8q2 body(r)q 2 Lg.It is easy to prove that TP is monotonic. In fact it can be proved more strongly thatTP is continuous. See [64] for relevant details. It then follows that TP has a least�xpoint lfp(TP), which can be computed in a constructive way. Since we shall usethe computation for other monotonic operators, we state it here as a lemma in ageneral form for reference later.

5. Non-monotonic Negation 78Lemma 5.2.1 Assume the underlying complete lattice is either HBP or (HBP [not �HBP) with the containment � as its natural and default ordering3, where P is alogic program. For a monotonic operator � on the complete lattice, the least �xpointlfp(�) can be characterised by the following:lfp(�) =[� " �and there exists an ordinal � such that for any � > �lfp(�) = � " �where � " 0 = ;:� " � = �(� " (� � 1)); if � is a successor ordinal.� " � = Sf� " � : � < �g; if � is a limit ordinal.De�nition 5.2.1 The closure ordinal for the sequence h� " �i� is the least ordinal �such that � " � = lfp(�).Although it is universally accepted that for any de�nite logic program P, itsleast Herbrand model can be used to de�ne the meaning of P, it is much morecontroversial about how to assign an appropriate meaning to a normal logic program.In comparison to a de�nite logic program, a normal logic program may have morethan one minimal Herbrand model. For example, P = fp :� not qg has fpg andfqg as its minimal models.The operator TP is usually not monotonic and may have no �xpoint at all. Forexample, let P = fp : �not pg. TP is not monotonic. Indeed, TP " � alternatesbetween ; and fpg. The program also gives us an example of TP having no �xpointat all. For some programs, even if TP has a least �xpoint, the �xpoint may not3Later in the discussion of 3-valued stable models, we shall see a di�erent ordering.

5. Non-monotonic Negation 79be approximated by the sequence TP " �. See [1] for some more counterexampleprograms.So, various equivalent forms of semantics for de�nite logic programs cannot besimply generalised to normal logic programs. In the following sections, we presentsome main contributions to de�ning semantics of normal logic programs.5.3 Program Completion and Negation as FailureThe program completion semantics and its associated SLDNF-resolution were initi-ated by Clark in [25] and further developed by many others (see [64], [105] and itscitations there).The notion of a program completion4, as its name may suggest, is to complete aprogram by making explicit what is implicit in the program. Speci�cally, the basicpoint is to take a rule as a partial de�nition for the predicate in the rule head,and use all rules with same head predicate to make a complete de�nition for thepredicate. But this viewpoint about a program is not explicitly represented in alogic program due to the conditional form of rules in a program. The process ofcompleting a program is to make explicit the point that a program is taken as a setof de�nitions.So, given a program P, a completed program Comp(P) is de�ned as follow:replace all rules with the same predicate in the head with a single bi-conditionalformula whose left operand is the head of the original rules and whose right operandis a disjunction of the original rule bodies; for predicates not in the head of any rule,a negative literal for the predicate is added. In addition, a theory of equality is alsorequired to impose restrictions on the possible interpretations of =. For the formaldetails of the de�nition, see [25] and [64].4In [25] this was called the completion of a data base.

5. Non-monotonic Negation 80The introduction of the completion of a program was used to provide a valida-tion of negation as failure rule, a rule for augmenting SLD-resolution, resulting inSLDNF-resolution. It is well-known that SLD-resolution is a particular refutationprocedure, but can only deal with positive literals (see [64] for details). For negativeliterals, some additional mechanism is required. Negation as failure is such a one.The basic idea is to de�ne a \proof" of a negative subgoal as �nite failure to obtaina proof of corresponding positive subgoal5. Such a way to deal with negation wasnot novel. As it was pointed out by Clark in [25], it had already been used in bothPLANNER and PROLOG (see [25] and related citations there). Clark observed thata negated fact inferred from a program by negation as failure can also be reachedthrough deduction by completing the original program. So he proposed to justifythe use of negation as failure by reducing the rule to a derived rule of �rst-orderlogic.In [25], it is proved that for consistent completed programs, SLDNF is sound,that is if all SLD derivations starting from p are �nite and none of them producesan SLD-refutation, then not p is a logical consequence of the completed program.For an inconsistent completed program, the soundness is trivial. The completenessof the SLDNF, as it is pointed in [25], does not hold in general since a query may bea logical consequence of Comp(P), and at the same time neither succeed nor fail buthave an in�nite derivation tree. A limited form of completeness was proved in [25]by imposing constraints on logic program and its queries. See also [64] for relateddiscussion about completeness of SLDNF.It has been argued that neither program completion nor SLDNF-resolution issatisfying. In comparison to the original program, the logical consequences of acompleted program do indeed include negative literals as well as positive literals.But the program completion approach is completely based upon logical deduction.5This implies non-determinism when in�nite failure occurs.

5. Non-monotonic Negation 81So it is not surprising to discover that it is still a very weak inference mechanismfor dealing with negative information. In addition, a completed program may beeither inconsistent or unintuitive. Moreover, SLDNF is also problematic. It doesnot always terminate, and may run into in�nite looping. And the matching withcompletion semantics, as we mentioned above, is not perfect.We shall not involve SLDNF any more in our further discussion. Our interest ismainly about the completion of a program. Various existing semantics are relatedone way or another with completed programs. These connections will be pointedout at suitable places later.5.4 Fitting SemanticsThe Fitting semantics [40] is taken as an important result in the program-completionapproach in [105]. We have seen in chapter 2 that classical logic is three-valuedfrom the deductive viewpoint. Since Clark's program completion semantics is basedupon logical deduction, it is then easy to see that this approach implicitly de�nesa 3-valued interpretation6 for a consistent completed program: truth value trueis assigned to those atom that are logical consequence of the completed program,and truth value false to those atoms whose negations are logical consequences, and(unknown) to all other atoms. Obviously, a 3-valued interpretation is equivalent toa set of literals in a natural correspondence.The 3-valued interpretations were made explicitly in Fitting's semantics [40].Based upon a 3-valued constructive logic, it is shown in [40] that the completionof every program has a unique minimum 3-valued Herbrand model, that is a set ofliterals. Technically, the central point behind Fitting semantics is the introductionof the following operator NP on sets of literals, which is used to generate negative6Given the fact that the truth of each literal is based on traditional 2-valued logic, a 3-valuedinterpretation is also awkwardly called the 2-valued program completion interpretation in [105].

5. Non-monotonic Negation 82facts:De�nition 5.4.1 NP (E) = fp 2 HBP : 8r 2 P(head(r) = p! 9l 2 body(r)l 2 E)gCombining the operator NP with the operator TP de�ned in section 5.2, anotheroperator, denoted FP , on sets of literals can be de�ned as follows.De�nition 5.4.2 FP (E) = TP (E) [not �NP (E)We shall call FP the Fitting operator. The operator TP is used to draw only positivefacts whereas the operator NP produces only negative facts. Combined together, theoperator FP can be used to conclude both negative and positive facts. It is an easyexercise to show that FP is monotonic, and thus has a least �xpoint lfp(FP), whichis also a 3-valued model of the completed program of P according to the followingtheorem.Theorem 5.4.1 (Fitting [40]) Given a logic program P. A 3-valued interpretationE is a 3-valued model of the completed program of P if and only if E = FP (E).Although the original de�nition of the Fitting semantics was carried out in a3-valued logic, the use of a 3-valued logic is inessential. Instead of taking the least�xpoint lfp(FP) as a 3-valued model of the completion of a program P, and workingin a 3-valued logic, Fitting's semantics can be taken as extending the inference mech-anism of classical logic for deriving negative information in 2-valued logic framework,by complementing the operator TP with the operator NP . Such a view is no morethan to take a logic program as a set of inference rules, or using the terminologyfrom default logic [91], a set of defaults. And then the least �xpoint lfp(FP) is usedto de�ne the extension associated with the default theory corresponding to the logicprogram (see [16], and [67]).

5. Non-monotonic Negation 83Some comments are in order. First of all, the inference based upon lfp(FP)is non-monotonic. In particular, lfp(FP) extends the semantic rule M2 proof-theoretically. For any extensional atom p, if p is not in the extensional database,then the condition of NP will hold vacuously and thus p will be included in NP . Sonot p in lfp(FP). Consider a simple example program Pwith following two rulesp :� not q:r :� q:Obviously, lfp(FP) = fnot q; p; not rg. But when P is augmented with q, we havelfp(FP[fqg) = fq; r; not pg. So what is originally not true now becomes true whenmore information is added. The example also illustrates that the non-monotonicityapplies not only to extensional atoms but intensional atoms as well, such as theatom r in the present example. Moreover, what is originally true is a�ected too.This is because of the use of the rule p : �not q, by which p is infected with thenon-monotonicity of not q. We shall come back to this point later when we discusssupportedness in the next chapter.Secondly, the fact that the original de�nition of the Fitting semantics was carriedout in a 3-valued logic itself suggests that the inference mechanism of the Fittingsemantics is very weak since some atoms may have no truth value at all. As pointedout by Bidoit in [15], the Fitting semantics does not generalise the �xpoint semanticsfor de�nite programs in the sense that what is not true in the �xpoint semanticsmay be unde�ned in the Fitting semantics.Thirdly, for �nite logic programs, the closure ordinal of FP is �nite. Otherwise,the closure ordinal of FP may be beyond !; that is the computation of lfp(FP) maygo beyond ! because the operator FP is in general not continuous. A counterexampleclari�es the point.

5. Non-monotonic Negation 84Example 5.4.1 Let p and q be two unary predicates, c a constant, and s a functionsymbol. Let P be a logic program with the following three rules:q(c) :� :q(s(X)) :� q(X):p(c) :� not q(X):The Herbrand universe of PHUP = fs0(c); s1(c); s2(c); : : : ; sn(c); : : :g, where s0(c) isfor c, s1(c) for s(c), s2(c) for s(s(c)), and so on. Let P0 be the instantiated programof P relative to HUP . Then P0 is not �nite, and we haveFP 0 " n = fq(sm(c)) : m 6 ng;FP 0 " ! = fq(sm(c)) : m < !g;FP 0 " ! + 1 = fnotp(c)g [fq(sm(c)) : m < !g:lfp(FP 0) = FP 0 " ! + 1:2 Last but not least, Kunen's work should be mentioned. In [62], Kunen describes avariant, which does have at most ! iteration. The resulting 3-valued interpretationis recursively enumerable but may not be a 3-valued model. What is signi�cantis probably that Kunen's 3-valued interpretation characterises the 3-valued logicalconsequences of the completed program. We emphasise the underlying two-valuedlogic instead of 3-valued logic, so we shall not use Kunen's 3-valued interpretationin the further discussion.5.5 Closed World AssumptionThe Closed World Assumption was introduced by Reiter in [90] in the the context ofdeductive databases. As we mentioned earlier, the deductive approach to databases

5. Non-monotonic Negation 85has to deal with negative information retrieval. In order to obtain a piece of negativeinformation, one straightforward way is to include various negative facts in additionto positive ones in EDB. Unfortunately, this is not feasible since the number ofnegative facts about a given domain generally far exceeds the number of positiveones (see [90]). Instead, Reiter proposes to merely explicitly represent positive factsof a database DB, and treat negative facts as implicitly present provided that theirpositive counterparts are not provable from the database DB. This is the so-calledClosed World Assumption (CWA), or more preferably the Closed World Rule giventhe form of its formulation [64]. It is a rule used to infer negative information froma databases in proof-theoretic contexts.De�nition 5.5.1 Given a normal logic program P, the CWA states that one can infera negated atom not p from P if P 6` p:CWA(P) = fnot p : P 6` pgNote that, if a normal logic program P consists of a purely extensional databaseEDB, that is P has an empty intensional database IDB and thus there is no de-duction involved, the CWA is no more than a complement operation in a relationaldatabase: P implicitly contains a negative fact provided its positive counterpart isnot explicitly present in P. For a general case, P with both EDB and IDB, apositive fact not explicitly present in EDB may still be derived by rules in IDB, so\not provable from P" in the CWA is crucial: a negative fact is taken as implicitlypresent in P if its positive counterpart cannot be provable from P.Another important point to note is that the CWA can lead to inconsistency.For example, let P be a program with a single rule p :�not q. Then CWA(P) =fnotp; notqg since we have both P 6` p and P 6` q. ButPSCWA(P) is not consistent.Since the CWA is not consistent with all programs, the problem of consistency hasto be taken into account. This motivates the following de�nition.

5. Non-monotonic Negation 86De�nition 5.5.2 A logic program P is consistent with CWA if PSCWA(P) is con-sistent.A natural question is which programs are consistent with the CWA. Reiter hasshown that, if a logic program P is de�nite, then P is consistent with CWA. Moregenerally, it can be shown that various kinds of strati�able programs are consistentwith the CWA (see [1]).Although the CWA can be applied to a large natural class of logic programs, suchas de�nite logic programs and strati�able programs, it can be argued that the CWAis not satisfactory. There are many unstrati�able programs. In fact, any programswith a recursive application of negation is not strati�able since the strati�cationcondition prohibits such structure. A trivial example is P= fp! not q; q! not pg.Instead of restricting logic programs to those consistent with the CWA, we canrestrict the CWA itself so that it is consistent for all programs. In [70], Minkerproposed a restriction of the CWA, called the Generalised Closed World Assumption(GCWA), which can be applied to any normal logic program7. To understand theGCWA, we need to know that the issues of logic program consistency with theCWA can also be addressed from a semantic point of view. This was initiated byvan Emden (see [70] and its citations). He de�nes the notion of a \minimal model"for a program as the intersection of all its models. If this minimal model is itself amodel of the program, then the program is consistent with the CWA. In [103] vanEmden and Kowalski show that de�nite programs have a minimal model and thusare consistent with the CWA. However, the notion of minimal model is very strongin the sense that, for non-de�nite logic programs, the minimal model may not be amodel and thus a non-de�nite logic program may not be consistent with the CWA.In [70], Minker generalises the notion of minimal model, de�ning it with respect to7In [70] the GCWA is applied to both de�nite and inde�nite logic programs. Since we arenot going to discuss inde�nite logic programs in this thesis, we apply the GCWA to normal logicprograms.

5. Non-monotonic Negation 87set inclusion instead of using the intersection of models.De�nition 5.5.3 Given a logic program, a model M of P is minimal if no smallersubset M 0 of M is a model of P.De�nition 5.5.4 Given a normal program P, the GCWA states that not p may beinferred from P if p is not in any minimal model of P:GCWA(P) = fnot p : for any minimal model M of P; p 62MgFor any atom p, if it is not in any minimal model of P, then it is safe to assignany truth value to the atom without any inconsistency. The GCWA chooses toassign false to such atoms. As a result, the GCWA can be consistently applied toany normal logic program. Although consistency is guaranteed, the price paid bythe GCWA is high. Indeed, it turns out that the GCWA is very restricted. Let usconsider an example from [105].Example 5.5.1 Let P be the following program:p(a) :� p(c);not p(b):p(b) :� not p(a):p(e) :� not p(d):p(c):p(d) :� q(a);not q(b):p(d) :� q(b);not q(c):q(a) :� p(d):q(b) :� q(a):It is not di�cult to see that P has four minimal models:

5. Non-monotonic Negation 88M1 = fp(a); p(c); p(e)gM2 = fp(b); p(c); p(e)gM3 = fp(a); p(c); p(d); q(a); q(b)gM4 = fp(b); p(c); p(d); q(a); q(b)gIt can be seen that q(c) is not in any minimalmodel above. According to the GCWA,q(c) is false. Obviously, p(c) is a logical consequence of P, so it is a common memberof all minimal models of P and is taken as true by the GCWA. However, the GCWAis silent on all other atoms though it seems reasonable to treat fp(d); q(a); q(b)gas false. So, though the GCWA can be consistently applied to all the programs,its weak reasoning ability is hardly satisfactory. A more �ne-grained mechanism isneeded for inferring negative information. 25.6 Well-founded SemanticsThe WFS [105] can be seen as another approach to avoiding the inconsistency causedby the application of the CWA to an arbitrary logic program. Instead of inferringall the negated atoms from a given program according to the unprovability of theirpositive counterparts, the WFS only accepts those negated atoms whose positivecounterparts satisfy a stricter and more speci�c condition than unprovability. Sincewe shall use the WFS later, let us have a closer look at the de�nition of the WFSto see how the WFS derives negative information.The central notion of the WFS is that of unfounded sets, which nicely combinestogether Fitting's approach to the derivation of negative literals and the notion ofclosed sets (see [105] and citations there).De�nition 5.6.1 Given a program P, its associated Herbrand base HBP , and a set

5. Non-monotonic Negation 89L of literals8, a set X � HBP is said to be an unfounded set of Pwith respect to Lif it satis�es : X � �P;L(X),where �P;L is de�ned by�P;L(X) = fp 2 HBP :8r 2 P(head(r)= p! (9q 2 body(r)q 2 L _ 9q 2 body(r)+q 2 X))g.Informally, �P;L(X) expresses all the atoms p satisfying one of the following condi-tions:(1) There is no rule r in P such that head(r) = p;(2) The head of some rule r in P is p, and for each such rule,(2.1) either some subgoal q of the body is false in L;(2.2) or some positive subgoal of the body occurs in X.The WFS uses unfounded sets to draw negative conclusions, inferring simulta-neously all atoms in any unfounded set to be false. It is worth pointing out thatconditions (1) and (2.1) above are used by Fitting in his semantics [40] to draw neg-ative conclusions. And condition (2.2) is used by Ross and Topor in [93] to de�neclosed sets. The WFS integrates them together. Consequently, the WFS is able toinfer more negative information than either Fitting semantics or closed sets.In order to capture all the atoms in every unfounded set of P with respect toL, an operator UP (L) is introduced. It is the greatest unfounded set of P withrespect to L. Since the union of arbitrary unfounded sets is an unfounded set too,the greatest unfounded set does exist and is equal to the union of all sets that areunfounded with respect to P and L.8In [105], L is called an interpretation if it does not contain both an atom and its complement.This is from the model-theoretic viewpoint. Since we shall emphasise the deductive viewpoint, weuse the general notion of set rather than interpretation.

5. Non-monotonic Negation 90De�nition 5.6.2 Given a logic program P, a set L of literals, UP (L) is de�ned as thegreatest set satisfying the condition:X � �P;L(X).Some comments about UP (I) are in order. First of all, we note that the abovede�nition of UP (L) has the form of a coinduction rather than the form of an induction(see [9]).Secondly, note that the authors of [105] did not explicitly tell us how to obtainUP (L) constructively. Subsequently, some equivalent constructions of well-foundedpartial models were proposed. In [104], van Gelder de�ned the alternating �xpointconstruction. In [16], Bidoit and Froidevaux used the notion of a potentially foundedset, the dual of the notion of unfounded sets. However, it is worth noting a con-struction is in fact implicitly there in [105]. Since �P;L is a monotonic operator onthe Herbrand base HBP and UP (L) is the greatest �xpoint of �P;L (see Lloyd [64],p. 26), this can be constructed using the following well-known characterisation ofthe greatest �xpoint (see [64], pp. 27-28):�P;L # 0 = HBP�P;L # � = �P;L(�P;L # (�� 1)); if � is a successor ordinal�P;L # � = \f�P;L # � : � < �g; if � is a limit ordinalGenerally speaking, the least ordinal � such that �P;I # � = UP (I) can be beyond! (see [64], p. 31). But for the cases in which programs are function-free and theEDB is �nite, the least ordinal is �nite.Finally, note that the main strength of an unfounded set, and thus the mainstrength of the WFS, in comparison to Fitting semantics, lies its ability to deal withcircular atoms in a program P. This is owing to the use of both the condition (2.2)above and the coinductive de�nition of UP (I). Then, what atoms are circular?

5. Non-monotonic Negation 91De�nition 5.6.3 Let p �+ q if and only if p is the head of a rule in P and q is apositive literal in the body of the same rule; and p �� q if and only if p is the headof a rule in P and q is a negative literal in the body of the same rule.A path beginning with p in P ending with q is a sequence hp; q1; : : : ; qn; qi suchthat p �� q1 �� : : : �� qn �� p,where �� is either �+ or ��.A circular atom is an atom p such that all the paths beginning with p in P leadto itself positively: p �+ q1 �+ : : : �+ qn �+ p,The following example about circuits is from [101], showing how circular atomsmay arise in real-life applications.Example 5.6.1 Consider a circuit of an unusual sort of logic gates g(X;Y;Z), whereg(X;Y;Z) means that a gate has positive input X, negative input Y and positiveoutput Z. These inputs and outputs can be taken as terminals or wire nets. Lett0(X) represent that input terminal X is externally set be 1 (\true"). Let t(X)represent that input terminal X is \internally" set to be 1.Given a gate g(X;Y;Z), the circuit value of Z is 1 if and only if X is 1 and Y is0 (\false"). Then the following rules de�ne the operation of the gates:t(Z) :� t0(Z):t(Z) :� g(X;Y;Z); t(X); not t(Y):Suppose that the EDB consist of the following facts: t0(2), g(5; 1; 3), g(1; 2; 4),g(3; 4; 5) which represents the following circuit

5. Non-monotonic Negation 92
3

2

1 5

4t(2) :� t0(2):t(3) :� g(5; 1; 3); t(5); not t(1):t(4) :� g(1; 2; 4); t(1); not t(2):t(5) :� g(3; 4; 5); t(3); not t(4):It is easy to see that atoms t(3) and t(5) are circular. 2As Barwise and Etchemendy pointed out in [9], when working with circular phe-nomena (in this case �nding out all circular atoms) it is the coinductive de�nitionthat is more natural to use, suggesting the above de�nition of UP (I) and explain-ing why the greatest �xpoint of �P;I is needed (see Barwise and Etchemendy [9],pp. 53-54). In the same book, Barwise and Etchemendy gave an elegant informalexplanation about coinductive de�nition: \Instead of working from the bottom up[since there is no bottom base when dealing with circular phenomena], asking whichobjects are forced into the de�ned class, we work from the top down, asking whichobjects are legitimately excluded. This feature guarantees that circular members ...are not excluded." (see [9], pp. 62-63).In order to de�ne the WFS, another operator is needed to decide what positiveconclusions can be drawn from P. The operator used in [105] is the same as theimmediate consequence operator TP except that it is de�ned on sets of literals ratherthan sets of atoms. By abuse of notation, we still use TP to denote the operator:

5. Non-monotonic Negation 93De�nition 5.6.4 TP (L) = fp 2 HBP : 9r 2 P(head(r) = p ^ 8q2 body(r)q 2 L)g.With the operators UP and TP available, we can now de�ne another operatorWP .De�nition 5.6.5 WP (L) = TP (L) [not � UP (L)The three operators UP ; TP ;WP are all monotonic on HBP [not � HBP . There-fore, there is a least �xpoint lfp(WP). It is the least �xpoint that is used to de�nethe well-founded semantics of a logic program P in [105].In [105], it is pointed out that TP treated positive and negative subgoals sym-metrically in the sense that, in deciding whether a negative subgoal not q is true,the presence of not q rather than the absence of q is required. The point can bemisleading.9 We need to bear in mind that this symmetry is di�erent from thatbetween positive and strong negative information. A piece of negative informationinferred through UP is still nonmonotonic whereas a piece of strong negative infor-mation established through direct observation is monotonic. So it would have beenbetter to say we need to explicitly keep all negative information inferred throughUP in the process of computing lfp(WP).In [105], the least �xpoint lfp(WP) is called the well-founded partial model.Because we adopt a deductive rather than a model-theoretic viewpoint, we shallcall it the well-founded extension (WFE) instead. An advantage with the deductiveviewpoint is that we can still use two-valued logic as our underlying logic. It is well-known that the well-founded semantics is in general partial in the sense that someatoms in a logic program may be neither true nor false. As a result, the well-foundedpartial model of a logic program has to be viewed as a model in three-valued logic.From the deductive viewpoint, however, we can still work in two-valued logic.9Note that in [1], p. 385, there is a similar misleading comment about the super�cial symmetrybetween positive and negative information.

5. Non-monotonic Negation 94The WFS demonstrates many desirable features. It is de�ned for all logic pro-grams. For any logic programP, there exists a unique well-founded partial extension,de�ned as the least �xpoint lfp(WP) ofWP . Using the characterisation of a least �x-point, the well-founded partial extension of a logic program can then be de�ned in aconstructive way although the construction might be a process of possibly trans�niteiteration.As we mentioned before, the WFS extends the Fitting semantics, inferring morenegative information and thus possibly more positive information than the Fittingsemantics. The WFS also naturally extends the semantics for a large class of logicprograms, including de�nite logic programs, strati�ed programs, and locally strati-�ed programs. (see [83] and [105]).Despite its merits, it can be argued that the WFS is too \sceptical". The infer-ence mechanism provided by WFS is still not strong enough. Indeed, the extensiongiven by the WFS is usually partial, leaving some atoms unde�ned. For many pro-grams it even gives the empty set as their intended meaning. Incompleteness itself isnot very problematic given that the information in a program is itself not complete.So, it is understandable that we may still not be able to reach any conclusion aboutsome atoms even though we are allowed to use non-monotonic inference mechanism.The problem with WFS is that, in many programs, it seems reasonable to expectto derive some information but WFS is silent on them. The following example from[105] illustrates the problem.Example 5.6.2 Let P be the logic program with the following four rules:a :� not b:b :� not a:p :� a:p :� b:

5. Non-monotonic Negation 95The program P has the empty set as its well-founded partial extension. But it isreasonable to expect that p should hold since it is a logical consequence of P. Thisexample indicates that the WFS does not allow case-based reasoning. 2There are many proposals for extending the WFS, such as the generalised well-founded semantics GWFS [7], the well-founded-by-case-semantics WFSC [97], theextended well-founded semantics WFSE [57], the strong well-founded semanticsWFSS [22], and the O-semantics [81]. The relationship between these semantictheories for logic programming is also studied in [33] and [34].5.7 Stable SemanticsThe stable model semantics was introduced in Gelfond [46], further developed byGelfond and Lifschitz in [47], and also by Marek and Truszczynski in [66]. Theoriginal stable model semantics is based on a two-valued framework. Subsequently,various di�erent but equivalent three-valued versions of stable model semantics wereproposed, including 3-stable models [85], partial stable models [95] and preferred ex-tensions [37]. In this section, we only consider the two-valued stable model semanticsby Gelfond and Lifschitz [47] and its three-valued version by Przymusinski [85].5.7.1 Two-valued Stable SemanticsStable model semantics has its root in Moore's autoepistemic logic [74]. In [46],Gelfond observed that rules of logic programs can be naturally translated into for-mulas of autoepistemic logic. For example, the rule p : �q;� r can be expressedas q ^ :Lr ! p in autoepistemic logic, where L is the belief operator of the logic.Through this kind of translation, the declarative semantics of a logic program canthen be characterised in terms of expansions of autoepistemic theory associated with

5. Non-monotonic Negation 96the program (see [46] and [66]). The basic idea is to de�ne a stable model of a logicprogram P as one that is able to reproduce itself from P in a certain sense.Alternatively, stable model semantics can also be de�ned without reference toautoepistemic logic as it is shown by Gelfond and Lifschitz [47]. This is achieved byusing a di�erent transformation, called Gelfond-Lifschitz transformation, based onthe same idea that a stable model of a logic program P is a set of atoms that is ableto reproduce itself from P (see the de�ning equation of stable model below). In thefollowing, our discussion will be based on this transformation.De�nition 5.7.1 Given a logic program P, and a set � of atoms in HBP . Thestability transformation of P with respect to �, denoted by SP;�, is the de�nitelogic program obtained from P by deleting:(i) any rule that has a negative literal not q in its body with q 2 �;(ii) all negative literals not q in the bodies of the remaining rules.The transformation above makes use of the information from � only to decidenegative subgoals10 in rules of P. If a negative notq occurs in a rule body and q 2 �then we eliminate the rule as it depends on an item of negative information when� supplies the positive. If a negative not q occurs in a rule body and q =2 � thenthe negative subgoal is considered satis�ed because failure to be in � commits tofalsehood.For any set � of atoms, the transformed program SP;� is a de�nite logic program,so it has a unique minimal model [103], which coincides with the least �xed point ofthe immediate consequence operator TP [103]. Recall that the least �xpoint lfp(TP)of TP can be computed via the so-called ordinal powers of TP . The computation is10It is worth pointing out that a stable model could not be guaranteed to be a minimal Herbrandmodel had we also made use of the information from � to decide positive subgoals in rules of Pthough otherwise there seems no reason to prevent us from doing so.

5. Non-monotonic Negation 97a process of successively adding information. We shall use this observation shortlyin our criticism of the stable model semantics.A set � of atoms is a stable model of a logic program Pprovided it is the minimalmodel of the stability transformation of P [47]:De�nition 5.7.2 Given a logic program P. A set � of atoms is called a stable modelof P if and only if � is the minimal model of SP;�, that is � satis�es the followingstable equation: lfp(TSP;�) = �.In the above stable equation, � represents an initial global decision as to whatis false (everything not in �). However, the process of computing the lfp of SP;�consists in adding truths. This process of adding new positive information shouldresult at times in a reduction of the existing negative information, just as increasein the size of S results in decrease in the size of R � S in the relational algebramodel of negation. But the structure of the stable model semantics is such thatthis reduction cannot occur. The negative facts are �xed once and for all at theoutset. Despite the increase of information, what is not true cannot be revised. Yetwe aim to model an essentially nonmonotonic negation. This tension is, we suggest,at the heart of the existence problem(s) and anomalies of the stable semantics. Letus consider some examples by way of illustration.Example 5.7.1 Consider a trivial but typical example program P1 with the followingrules: q :� not p:p :� q:It is not di�cult to check that P1 has no stable model. We need to consider the fourcomplete assignments to p and q to see this. In each case we start with an initial

5. Non-monotonic Negation 98assignment (left column), compute the stability transformation for this assignment(centre column), and then the least �xed point of the transformed program (rightcolumn) which represents the �nal assignment. The initial assignment is a stablemodel provided it is the same as the �nal assignment. The table below shows thatno assignment satis�es this so that there is no (two-valued) stable model for thisprogram. � Transform Fixpointq :� :; p :� q: fp; qgfpg p :� q: ;q :� :fqg p :� q: fp; qgfp; qg p :� q: ;Our point is not that none of these proposed models turn out to be stable. Itis that the computational process over the transformed program never manages togenerate the correct solution fpg so that stability or otherwise can be tested forit. This we contend is inevitable because there is no element of revision withinthe process, it is strictly monotonic and you cannot hope to adequately represent anonmonotonic negation with a strictly monotonic process.We admit that we cannot prove this. Nevertheless, we shall show in the nextchapter that the introduction of an appropriate revising mechanism does enable usto assign the proper meaning to the program P1 (see also [111]). 2Example 5.7.2 Consider the program P2 with the following four rules, which is bor-

5. Non-monotonic Negation 99rowed from [105]: a :� not b:b :� not a:p :� not p:p :� not b:It is easy to see that the program P12 with only the �rst two rules has two stablemodels: fa; notbg and fnota; bg. But when the third rule is added to P12, the resultingprogram P22 has no stable models at all. Such an e�ect is certainly undesirable sincethe third rule is independent of the �rst two in the sense that atoms p and a; b arenot related each other in any rule. Moreover, note that p :� not p logically impliesp, so it is reasonable to expect that P22 should have fa; not b; pg and fnot a; b; pg asits intended meaning.As pointed out in [105], the fourth rule also has an anomalous e�ect on P22 in thestable semantics. Since p is already a logical consequence of P22, the addition of thefourth rule to P22 should not have any e�ect. Nevertheless, it stabilises one of twominimal models of P22, giving us a unique stable model for the full program P2. 2The second example shows a sort of oscillating behaviour, sometimes we have astable model, sometimes not, and there seems no motivation for it to be one ratherthan the other. It is our belief that these anomalies arise because we are trying tocompute a non-monotonic negation via a process that does not allow the retractionof previously assumed negative information in the light of new positive conclusions.A non-monotonic negation such as is required for logic programs (at least in adatabase context) should be computed by a non-monotonic, revision process. In thenext chapter, we shall propose a model of negation that owes much to the stablesemantics but allows, through a mechanism of consistency-recovery, for just thiswithdrawal of previously assumed negative information. We shall show that theexample just given is not anomalous in this system.

5. Non-monotonic Negation 1005.7.2 Three-valued Stable SemanticsIn the last section, a stable model was represented as a set of ground atoms. Anatom is true of a model if it is in the model; otherwise, it is taken false by default.So, the original de�nition of the stable models is in the two-valued framework.In [83], a three-valued version of stable model semantics is introduced. Three-valued stable semantics requires us to extend the basic notion of de�nite logic pro-grams by introducing into the bodies of rules special atoms 0, 1/2, 1 to representtruth-values false, unknown and true respectively, which gives us 3-de�nite logicprograms.Given a 3-de�nite logic program, a least �xpoint can be constructed by using avariant of Fitting operator. The variant operator will not operate on the naturaltopology but a di�erent one of HBP [not � HBP , which is de�ned as follows:De�nition 5.7.3 Let E1 and E2 be sets of literals. De�ne an ordering � among a setof literals by E1 � E2 i� E+1 � E+2 & E�1 � E�2 .Equipped with the ordering �, HBP [not �HBP now has as the bottom membernot � HB instead of the usual empty set ;. The variant Fitting operator FP willoperate on HBP [not � HBP with the ordering �. We shall use FP;� to denote thevariant operator:De�nition 5.7.4 FP;�(L) = TP;�(L) [not �NP;�(L)whereTP;�(L) = fp 2 HBP : 9r 2 P(head(r) = p ^ 8q2 body(r)(q 2 L _ q = 1))gNP;�(L) = fp 2 HBP : 8r 2 P(head(r) = p! 9q 2 body(r)(q 2 L _ q = 0))g

5. Non-monotonic Negation 101For any 3-de�nite logic programs, it is easy to prove that FP;� is monotonic withrespect to �, and thus has a least �xpoint, computed iteratively:lfp(FP;�) = SFP;� " �where FP;� " 0 = not � HBPFP;� " � = FP;�(FP;� " (�� 1)); if � is a successor ordinalFP;� " � = Sf(FP;� " �)+ : � < �g [Tf(FP;� " �)� : � < �g;if � is a limit ordinalAs in the two-valued case we now proceed by transforming a logic program intoa de�nite program. But this time the transformation is with respect to a set ofliterals rather than a set of atoms, and the transformed program is a 3-de�nite logicprogram, that is to allow the inclusion of the truth-values 0, 1/2, 1 in the bodies ofthe rules of the transformed program.De�nition 5.7.5 Given a logic program P, and a set L of literals inHBP [not�HBP .The stability transformation of P with respect to L, denoted by SP;L11, is the 3-de�nite logic program obtained from P by replacing:(i) any negative subgoal not q in a rule such that q 2 L� with truth value 1;(ii) any negative subgoal not q in a rule such that q 2 L+ with truth value 0;(iii) any negative subgoal not q in a rule such that q 62 L+ and q 62 L� with1/2.De�nition 5.7.6 Given a normal logic program P. A set L of literals is called a3-valued stable model of P if and only if L satis�es the following stable equation:11We rely on context to distinguish which transformation we are refer to.

5. Non-monotonic Negation 102lfp(FSP;L ;�) = L.In the previous subsection, we have argued that the underlying de�nition ofstable models is to some extent inconsistent with the essential characteristics ofnegation not used in logic programs. It is this kind of inconsistency that underliesthe existence problem(s) of the stable model semantics. It can be argued that ourcriticism continues to apply to the three-valued version of the stable semantics,indeed is perhaps stronger against the three-valued than the original two-valuedversion.Our general contention is that a fully satisfactory account of a non-monotonicnegation must allow the retraction of what was previously assumed false \by default"in the light of newly discovered information. The 2-valued stable semantics does notdo this since the stable equation requires that the negative facts are e�ectively �xedas true for the duration of the computation. The same criticism applies to thethree-valued semantics.Let us consider the example program P1 in the last section again. This time,however, let � = fnot pg, that is explicitly assume that p is false. Relative to �, P1is now transformed into: q :� 1:p :� q:Similarly three-valued stable semantics simply excludes � as a three-valued stablemodel of P1 instead of revising the initial assumption so as to reach the intendedconclusion that p is true.Note that although this program does not have any two-valued stable model, itdoes have a unique three-valued model. This is not accidental. In fact it has beenproved that each normal logic program has at least one 3-stable model (see [1]). Itseems that 3-valued stable model semantics solves the existence problem of 2-valuedstable semantics. However, it can be argued that the solution is not fully satisfying.

5. Non-monotonic Negation 103Indeed, the unique three-valued stable model of P1 is the empty set though it isreasonable to expect that p is true. It seems that the non-existence property oftwo-valued stable semantics is just converted to a truth-value gap of atoms in thethree-valued stable semantics. The three-valued stable semantics does not reallysolve the non-existence problem of two-valued stable semantics.The program P2 considered in the previous subsection can also be used to showthat three-valued stable semantics has similar anomalies. Moreover, the introductionof a third truth-value 1/2 is not without cost. There are at least two problems,showing that the three-valued stable semantics can be worse than the original one.One is illustrated by the following example.Example 5.7.3 Let P3 be the logic program with the following two rules:a :� not b:b :� not a:p :� a:p :� b:The program P3 has fp; ag and fp; bg as its stable models. Note that p is a logicalconsequence of P3, so it is reasonable to expect that p should be always true. Inthe three-valued stable semantics, unfortunately, P3 has as its three-valued stablemodels the empty set ; in addition to fp; a; not bg and fp; b; not ag. 2The other problem concerns the transformation of a logic program relative to aset of literals. In the three-valued semantics the atoms q such that neither q nornot q are in � are taken to be \unknown" and are replaced by the value 1/2. Thethree-valued immediate consequence operator allows us to infer both positive andnegative information. Thus it should allow us to infer q or not q on occasions evenwhen q was initially unknown. That notq could well occur in the body of a rule, but

5. Non-monotonic Negation 104even though q or not q is subsequently established the rule may not be used becauseit has been "frozen" with replacing not q by a constant 1/2 which, of course, noamount of reasoning can ever establish or refute. It is even less appropriate to �xwhat is \unknown" at the outset of a computation than it is to �x what is \false bydefault". Also to �x q as unknown at the outset and then infer q or notq subsequentlyis almost like assigning an atom incompatible truth-values.

Chapter 6Quasi-stable SemanticsIn the last chapter we have reviewed some of main semantic theories proposed inboth the logic programming community and the deductive database community. Inparticular, we have shown that the two dominant semantic theories, the well-foundedsemantics and the stable model semantics, are not fully satisfying. In this chapter,we describe a new semantics for logic programs which we term the \quasi-stablesemantics"1 given its close relationship with the stable model semantics. We shallshow that our new semantics maintains the desired features of both the well-foundedsemantics and the stable model semantics while overcoming their shortcomings.Our general contention is that a non-monotonic negation such as is required forlogic programs should be computed by a non-monotonic revision process. Only aprocess that allows one to withdraw by revising provisionally held negative infor-mation can hope to be adequate to model a non-monotonic negation. Motivatedby this, we propose a model of negation that owes much to the stable semanticsbut allows, through a mechanism of consistency-recovery, for just this withdrawalof previously assumed negative information.In the following, we shall �rst give an informal introduction to the quasi-stable1The work on quasi-stable semantics have been previously reported in [111].105

6. Quasi-stable Semantics 106semantics, followed by its formal de�nition, and then prove some main results aboutthe semantics to show the relationship among the quasi-stable semantics, the well-founded semantics and the stable model semantics. In the Example section, weconsider some example programs from the literature to show how the quasi-stablesemantics has overcome the shortcomings of the well-founded semantics and thestable model semantics. In the Discussion section, we argue why the so-called sup-portedness property cannot be justi�ed though it has been taken as a indispensablefeature of a proper semantics for logic programs in the logic programming commu-nity. Finally, we discuss some related work on the extensions of the WFS and thestable model semantics.6.1 The Quasi-stable Semantics6.1.1 Informal description of the Quasi-stable semanticsThe basic idea behind the quasi-stable semantics is extremely simple. Essentiallyit is to iteratively extend the WFE using hypothetical reasoning. We may roughlyformulate the quasi-stable semantics as follows:Quasi-stable Semantics = WFE + hypothetical reasoning.Given a logic program P, we �rst of all compute its WFE. Note that, by doing this,we are using both deductive and non-monotonic reasoning based upon the operatorWP . When we �nd the well-founded extension of P, we will not be able to infer anymore information using only the operators TP and UP . Then, it is the time to applyhypothetical reasoning: choose an atom among the atoms undetermined so far, andassume that it is false.2 We emphasise the assumption consists of only a singleliteral rather than a set of literals. As soon as an assumption is made, it is natural2Note that we are implicitly using a variant of the closed world assumption [90].

6. Quasi-stable Semantics 107to continue reasoning using WP . Unfortunately, things are not so straightforward.To begin with, we need to understand a problem that exists when we continuereasoning with WP . The problem is that, although the unique well-founded exten-sion is consistent, any further derivation based upon WP may contain contradictionswhen an assumption is made. Further, it would not be clear whether it is the as-sumption or the non-monotonic reasoning based upon UP that is causing the trouble.Let us consider the logic program P with the following rules to see how theambiguity may actually come come up:a :� not b:b :� not c:c :� not a:It is easy to check that the well-founded extension is the empty set. Choose anunde�ned atom, say b, and assume not b. Using the assumption, it follows fromP that a holds, and thus not c by UP , and thus b by TP , a contradiction. Thecontradiction may be caused either by the assumption notb or by the non-monotonicreasoning. We cannot be sure which is causing the trouble.Secondly, we need to make decision about how to deal with such ambiguity.We choose to avoid the ambiguity. Our strategy is to make use of a more restrictedoperator for non-monotonic reasoning instead of WP based on the notion of a simplyintensional atom which we introduced in Chapter 4 (see page 64). We note that, forany simply intensional atom p, if all the rules of Pwhose head is p have a false body,then p can be taken to be false without causing any contradiction. This motivatesthe following de�nition of an operator NP;L for non-monotonically inferring negativeinformation, which is a variant of the negative component NP of Fitting operatorFP . For convenience of formulation, we shall use the notion of coveredness from [78].

6. Quasi-stable Semantics 108De�nition 6.1.1 Given a logic program Pand a set L of literals. An atom p is coveredby L if p is in L+ [L�; otherwise it is uncovered by L.De�nition 6.1.2 Given a logic program P, a set L of literals, we de�ne two operatorsNP and FP on HB [not � HB as follows:NP;L(E) = fp 2 HBP : p is simply intensional & not covered by L &8r 2 P(head(r) = p! 9l 2 body(r)l 2 EgFP;L(E) = L [TP (E) [not �NP;L(E)where E � HB[not �HB, and the operator TP is de�ned as in the previous section.Theorem 6.1.1 The operator FP;L de�ned above is monotonic and thus there existsa least �xed point lfp(FP;L).Note that, with the use of the operator NP;L, assumptions may be restricted tothe atoms in the body of a rule in P since any simply intensional atom can then bedealt with by either TP or NP;L.Generally, the least �xed point lfp(FP;L) for any set L of literals may still containcontradictions. This time, however, we may be sure it is the assumptions in Lthat are to be blamed not the non-monotonic reasoning (see lemma 6.1.4), thuseliminating the ambiguity.With the ambiguity removed, the next step of the re�ning process is to note thatlfp(FP;L) may contain no explicit contradiction even though P is not consistent withL. For example, consider the following program Pp :� a:p :� b:a :� not b:b :� not a:

6. Quasi-stable Semantics 109Let L = fnot pg. Then we have lfp(FP;L) = fnot pg with no contradiction. But Plogically implies p and thus is not consistent with L. Note that the contradictioncomes up if we add either a or not a. In order to make this explicit, we introducethe notion of conict-freeness and that of consistency with respect to P. We showthat conict-freeness is weaker than consistency in lemma 6.1.4.De�nition 6.1.3 Given a logic program P, and a set L of literals.(i) L is said to be conict-free with respect to P if lfp(FP;L) is conict-free.(ii) L is said to be consistent with respect to P if there is no atom p such thatP;L ` p and P; L ` not p.where ` is the deductive relation of the full propositional logic.Finally, with the restricted operator FP;L, the related notions of conict-freenessand consistency, we are ready to �nish the process of re�ning our basic idea byinformally reformulating our semantics as follows. Given a logic program P anda sequence3 H = h�q1; � � � ; �qn�1; �qni of assumptions, we set the least �xed pointlfp(FP;H) = lfp(FP;L), where L is the set corresponding to the sequence H, and �qis either a negative literal with q as its atom or just the atom q.Suppose that lfp(FP;H) contains both an atom p and not p. Since we knowthat it is the assumptions in L that are to be blamed, then in order to removethe conict, we have to change some assumptions. We choose to change the latestassumption made, that is the last element �qn in the sequenceH. We call the processconsistency-recovery for H, and proceed as follows.Case I. The last element �qn is a negative literal. In this case, we do not simplywithdraw the assumption. We assume the atom instead. In this way, the sequenceof assumptions may contain both negative and positive literals. But positive literals3We use sequence instead of set in order to emphasise the order of assumptions made. We shallmake the use of the order when we withdraw an assumption for the convenience of formulation.

6. Quasi-stable Semantics 110only appear where negative ones may not be assumed. So negative literals havepriority. When the negative assumption is replaced by the corresponding positiveassumption, we then do reasoning based upon FP;H 0, and do consistency-recoveryagain if necessary, where H 0 = h�q1; � � � ; �qn�1; qni.Case II. The last element of H is a positive literal. Since the only way thepositive literal is assumed is that its negative literal cannot be, we conclude that thesubsequence H 0 = h�q1; � � � ; �qn�1i is not consistent even though it is conict-free.We then drop the assumption and do consistency-recovery for H 0.When lfp(FP;H) is conict-free (either immediately or after consistency-recovery), we make another assumption by choosing another uncovered body atomand assuming it is false. Continue this process until no body atoms are left uncov-ered in the Herbrand base HBP . As a result, we obtain a total extension, which wecall a quasi-stable extension.6.1.2 Formal De�nition of Quasi-stable SemanticsAlthough the informal formulation of the quasi-stable semantics is not di�cult, itturns out that its formal de�nition is somehow involved. This mainly is due tothe process of consistency-recovery, a process which we insist is indispensable formodeling non-monotonic negation (see [113]).Before we give the formal de�nition of quasi-stable extension, we need the fol-lowing de�nition and a series of related results.De�nition 6.1.4 Given a logic program P, the well-founded extension WFE for P,and some ordering O of the body atoms of P, we de�ne by induction the followingsequence of sets:Let H0 = ; and E0 = WFE. Suppose En and Hn have been de�ned, and Hn =h�q1; � � � ; �qi�1; �qi; � � � ; �qmi. If all body atoms are covered by En then En+1 = En,

6. Quasi-stable Semantics 111Hn+1 = Hn. Otherwise, let q be the �rst uncovered body atom. Let Hn+1 and En+1be de�ned by the following:Hn+1 = 8>>>>>>><>>>>>>>: Hn ^hnot qi if lfp(FP;En[fnot qg) is conict-free;Hn ^hqi if lfp(FP;En[fnot qg) is not conict-freebut lfp(FP;En[fqg) is conict-free;H 0n otherwise.En+1 = lfp(FP;E0[Hn+1):where ^ stands for the concatenation of two sequences, and H 0n = h�q1; � � � ; �qi�1; qiiis derived from Hn in the following way: i is the greatest index of Hn such that�qi = not qi and h�q1; � � � ; �qi�1; qii is conict-free.For example, for the following program Pp :� a:p :� b:a :� not b:b :� not a:we have H0 = ; and E0 = ; since the well-founded extension WFE of P is ;. So,body atoms a and b are not covered by E0. Take the body atom a, it is easy to seethat lfp(FP;E0[fnot ag) is conict-free, so we have H1 = hnotai and E1 = lfp(FP;H1) =hnota; b; pi. Now all the body atoms have already been covered by E1. By the abovede�nition, we thus have En+1 = En, Hn+1 = Hn.Usually a semantics is given by the least �xed point of an operator or equivalently,as a union of sets. In our case this second option is not immediately available becausethe sequence hEni is not increasing and the union of all its members is anyway likely

6. Quasi-stable Semantics 112to be inconsistent with P. Instead we prove the existence of an increasing, consistentsubsequence hHni i of hHni and thus the existence of an increasing, conict-freesubsequence hEnii of hEni. We then use these two subsequences to de�ne the quasi-stable extension of P with respect to an ordering O of body atoms. We must �rstshow, however, that de�nition 6.1.4 is correct.We need to show that En and Hn are properly de�ned for each n. For this weneed the consistency of E0 with respect to P and some lemmas.In [105], it is shown that WFE can be extended into a model of P by adding toWFE all atoms uncovered by WFE. It then follows:Lemma 6.1.1 (Van Gelder et al. [105]) Given a logic program P. Let WFE bethe well-founded partial extension of P, and � = HBP � (WFE+ [WFE�). ThenWFE [� is consistent with respect to P. In particular, WFE is consistent withrespect to P.The following lemma states the relationship between literals in lfp(FP;L) andthe consequences of P[L.Lemma 6.1.2 (i) If a literal l 2 lfp(FP;L) and l is not simply intensional thenP[L ` l. (ii) If an atom p 2 lfp(FP;L), then P[L ` p.Proof. (i) By induction on � with � = 0 trivial. For a limit ordinal �, thelemma is also trivial. Suppose l 2 FP;L " � + 1. As l is not simply intensional,the NP;L operator was not used. If l 2 L the result is trivial. Otherwise there is arule l : � l1; � � � ; lm with fl1; � � � ; lmg � FP;L " �. Using the induction hypothesisP[L ` li for 1 � i � m and hence P[L ` l.(ii) By lemma 5.2.1, lfp(FP;L) = SFP;L " �. If p 2 lfp(FP;L), then there is aordinal � such that p 2 FP;L " � + 1 = L [TP (FP;L " �) [NP;L(FP;L " �). As pis an atom, p cannot be in NP;L(FP;L " �). If p 2 L the result is trivial. Otherwise

6. Quasi-stable Semantics 113there is a rule p :� l1; � � � ; lm with fl1; � � � ; lmg � FP;L " �. Since none of li is simplyintensional, by lemma 6.1.2 (i), P[L ` li for 1 6 i 6 m and hence P[L ` p. 2The following is a technical lemma needed for the proof of theorem 6.1.3.Lemma 6.1.3 Given a logic program P. Let L be a set of literals and l a body literalsuch that L [flg is consistent with respect to P. Let L0 = lfp(FP;L) We havelfp(FP;L) � lfp(FP;L[flg) (6:1)lfp(FP;L[flg) = lfp(FP;L0[flg) (6:2)Proof. (i) We prove (6.1) by proving the following:FP;L " � � FP;L[flg " � (6:3)By induction on � with limit ordinals trivial. Obviously L � L [flg. Using theinduction hypothesis and the monotonicity of TP , TP (FP;L " �) � TP (FP;L[flg " �).Since any simply intensional atom p uncovered by L is also uncovered by L [flg,we have NP;L(FP;L " �) � NP;L[flg(FP;L[flg " �) by the induction hypothesis. ThusFP;L " �+ 1 � FP;L[flg " � + 1.(ii) In order to prove (6.2), we �rst prove lfp(FP;L[flg) � lfp(FP;L0[flg). For thiswe prove by induction the following:FP;L[flg " � � FP;L0[flg " � (6:4)For limit ordinals, (6.4) holds trivially. Since L � lfp(FP;L), L [flg � L0 [flg. Bythe induction hypothesis and monotonicity of TP , TP (FP;L[flg " �) � TP (FP;L0[flg "�). Now for any p 2 NP;L[flg(FP;L[flg " �), if notp 2 L0 then notp 2 lfp(FP;L0[flg) "

6. Quasi-stable Semantics 114�+1. Suppose not p 62 L0. p cannot be in L0 either, otherwise p 2 L0 = lfp(FP;L) �lfp(FP;L[flg) and thus lfp(FP;L[flg) is not conict-free, contradicting the assumptionof L [flg being consistent with respect to P. So for any p 2 NP;L[flg(FP;L[flg " �),if not p 62 L0, then p is not covered by L0 [flg and thus p 2 NP;L0[flg)(FP;L0[flg " �)by the induction hypothesis. Thus, (6.4) holds for �+ 1.In order to prove the converse of (6.2), we proveFP;L0[flg " � � lfp(FP;L[flg) (6:5)Once again we prove (6.5) by induction on �. Limit ordinals are trivial. By (6.1)L0 [flg � lfp(FP;L[flg). Using the induction hypothesis and monotonicity of TP ,TP (FP;L0[flg " �) � TP (lfp(FP;L[flg)) � lfp(FP;L[flg). Since L � L0, any sim-ply intensional atom uncovered by L0 [flg is also uncovered by L [flg. Thusnot � NP;L0[flg(FP;L0[flg " �) � not � NP;L[flg(lfp(FP;L[flg)) � lfp(FP;L[flg) by theinduction hypothesis. It then follows that (6.5) holds for �+ 1. 2The following lemma shows that the notion of being conict-free w.r.t. P isweaker than that of consistency w.r.t. to P. Moreover, it also shows that whenevera conict occurs in lfp(FP;L) then L is to be blamed.Lemma 6.1.4 Given a logic program P. Let L be a set of literals If L is consistentwith respect to P, then L is conict-free with respect to P, that is lfp(FP;L) is conict-free.Proof. lfp(FP;L) = SFP;L " � and we prove that each FP;L " � is conict free.Suppose that FP;L " � is the least � which is not conict free. Clearly � > 0,but � > 1 as well because FP;L " 1 = L [TP (;) [not �NP;L(;) = L [TP (;), P [Lis assumed consistent and TP draws only logical consequences. Now FP;L " � =L[TP (FP;L " �� 1)[not �NP;L(FP;L " �� 1). If this is not conict free it contains

6. Quasi-stable Semantics 115p and not p for some atom p. We consider three cases:Case I. not p 2 L and p 2 TP (FP;L " � � 1). There must be some rule p :� l1; � � � ; lm 2 P with fl1; � � � ; lmg � FP;L " ��1. As none of li are simply intensionalwe can apply lemma 6.1.2 (i) to conclude that P[L ` li for each 1 6 i 6 m. ThusP[L ` p contradicting our assumption that P[L is consistent.Case II. p 2 L and not p 2 not �NP;L(FP;L " �� 1). But then L covers p and noinference using NP;L can be made.Case III. p 2 TP (FP;L " �� 1) and p 2 NP;L(FP;L " �� 1). Then, by the �rst ofthese, for some rule p :� l1; � � � ; lm 2 P, we �nd fl1; � � � ; lmg � FP;L " �� 1. But bythe second, some li must be in FP;L " � � 1 again contradicting the leastness of �.2Theorem 6.1.2 Given a logic program P, Hn and En are properly de�ned for all n.Proof. Suppose that Hn and En are de�ned, and there remain atoms uncovered byEn. Let q be the �rst uncovered atom. If not q or q can be added we are done.Suppose then that neither can be added. Thus lfp(FP;E0[Hn[fqg) is not conict-free.There must therefore be some negative literal in Hn. For otherwise Hn [fqg is aset of atoms which by construction are not covered by E0, and hence E0 [Hn [fqgis consistent with respect to P by lemma 6.1.1. By lemma 6.1.4 it follows thatlfp(FP;E0[Hn[fqg) is conict-free. Since there is some negative literal in Hn there is aleast such and by the argument just given if that is replaced by its atom a conict-free least �xed point will result. Thus we may choose the greatest j such that Hnincludes h�q1; � � � ; �qj�1; not qji and where lfp(FP;E0[h�q1;���;�qj�1;qji) is conict-free.Then we set Hn+1 = h�q1; � � � ; �qj�1; qji and En+1 = lfp(FP;E0[Hn+1). 2Once we have seen that hEni and hHni are properly de�ned, the next task is toshow how to extract two canonical subsequences respectively from hEni and hHni

6. Quasi-stable Semantics 116to be used in de�ning the quasi-stable extension of P. We begin with two auxiliarylemmas.Lemma 6.1.5 Given a logic program P. Let E0 = WFE, H = h�q1; � � � ; �qmi be asequence of assumptions, E = lfp(FP;E0[H). If E is conict-free and all the atomsHBP are covered by E, then E is a Herbrand model of P and thus consistent withrespect to P.Proof. Since E is conict-free and all the atoms in HBP are covered, E is a Herbrandinterpretation. By E = lfp(FP;E0[H), we know E is closed under TP . Then it followsthat every rule inPis satis�ed by E and hence E is a Herbrand model of P. Obviously,E as a set of literals is satis�ed by E as a Herbrand model. So both P and E have Eas their model, and thus E is consistent with respect to P. 2Lemma 6.1.6 Given a logic program P and an ordering O of the body atomsof P. Let hHni and hEni be as in de�nition 6.1.4. Suppose that Hn =h�q1; � � � ; �qi�1; not qi; �qi+1; � � � ; �qmi is a sequence of assumptions, where i is thegreatest i such that H 0n = h�q1; � � � ; �qi�1; not qii is not consistent with P [E0but h�q1; � � � ; �qi�1; qii is conict-free, then there is an n1 > n such that Hn1 =h�q1; � � � ; �qi�1; qii.Proof. Since H 0n = h�q1; � � � ; �qi�1; not qii is not consistent with P[E0, there mustbe some �nite set Pfin of rules of P such that H 0n is not consistent with Pfin [E0.Let Ofin be the smallest fragment of O containing all body atoms in Pfin. We nowprove the lemma by induction on the number of atoms in Ofin.If kOfink = 1, let q be the uncovered atom in Ofin. Since H 0n is not consis-tent with Pfin [E0 and H 0n is a subsequence of Hn, neither lfp(FPfin ;En[fnot qg) norlfp(FPfin ;En[fqg) can be conict-free by lemma 6.1.5. It then follows that neitherlfp(FP;En[fnot qg) nor lfp(FP;En[fqg) can be conict-free So by the de�nition of hHni,Hn+1 = h�q1; � � � ; �qi�1; qii.

6. Quasi-stable Semantics 117Suppose that the lemma holds for kOfink 6 k. We show that the lemma holdsfor kOfink = k + 1 too. Let q be the �rst uncovered body atom in Ofin. There arethree cases to consider.Case I. Hn ^hnot qi is conict-free. According to de�nition of hHni, Hn+1 =Hn ^hnot qi. We further consider two sub-cases. (i) Hn ^hqi is conict-free too.Then we have H 0n+1 = Hn+1. By applying the induction hypothesis to Hn+1, thereis an n1 > n+1 such that Hn1 = Hn ^hqi. Now by applying the induction hypothesisto Hn1 and H 0n1 = H 0n, there is an n2 > n1 such that Hn2 = h�q1; � � � ; �qi�1; qii. (ii)Hn ^hqi is not conict-free. Then we have H 0n+1 = Hn. By applying the inductionhypothesis to Hn+1, there is an n1 > n+ 1 such that Hn1 = h�q1; � � � ; �qi�1; qii.Case II. Hn ^hnot qi is not conict-free but Hn ^hqi is conict-free. Accord-ing to the de�nition of hHni, Hn+1 = Hn ^hqi. Then we have H 0n+1 = H 0n. Byapplying the induction hypothesis to Hn+1, there is an n1 > n + 1 such thatHn1 = h�q1; � � � ; �qi�1; qii.Case III. Neither Hn ^hnot qi nor Hn ^hqi is conict-free. According to the de�-nition of hHni, Hn+1 = h�q1; � � � ; �qi�1; qii. 2Theorem 6.1.3 (Canonical Subsequences) Given a logic program P, there existsan increasing subsequence hEnii of the sequence hEni and an increasing subsequencehHni i of hHni such that (i) E0 [Hni is consistent with respect to P, (ii) and thus Eniis conict-free, and (iii) Eni covers q1; � � � ; qi in the ordering O of body atoms.Proof. By lemma 6.1.1 E0 is consistent with P. Set n0 = 0. Both (ii) and (iii)are trivial.Now suppose that ni be de�ned, Let qj be the �rst body atom uncovered by Eni .By the induction hypothesis j > i + 1. (If there is no such atom, then Eni+1 = Eniand the theorem holds.) We consider two cases.Case I. P;E0 [Hni ` qj. Since E0 [Hni is consistent with respect to P, it

6. Quasi-stable Semantics 118follows that E0 [Hni [fqjg is also consistent with respect to P. By (6.2) of lemma6.1.3 and lemma 6.1.4, lfp(FP;Eni[fqjg) is conict-free. We further consider twosubcases. (i) lfp(FP;E0[Hni[fnot qjg) is conict-free. Then Hni+1 = Hni ^hnot qji. Bylemma 6.1.6, there exists an integer m > ni + 1 such that Hm = Hni ^hqji. Setni+1 = m. (ii) lfp(FP;E0[Hni[fnot qjg) is not conict-free. Then Hni+1 = Hni ^hqji.Set ni+1 = ni + 1. In either subcase, E0 [Hni+1 is consistent with respect to P, andEni+1 = lfp(FP;E0[Hni+1) is conict-free.By (6.1) of lemma 6.1.3, Eni � Eni+1 . Since qj was the �rst atom uncovered byEni , Eni+1 covers q1; � � � ; qj. As j > i+ 1, Eni+1 covers q1; � � � ; qi+1.Case II. P;E0[Hni 6` qj. Then E0[Hni ^hnot qji is consistent with P. By lemma6.1.4, lfp(FP;E0[Hni ^hnot qji) is conict-free. By de�nition 6.1.4,Hni+1 = Hni ^hnotqji,and Eni+1 = lfp(FP;E0[Hni ^hnot qji). So set ni+1 = ni + 1. E0 [Hni+1 is consistentwith respect to P, and Eni+1 is thus conict-free. And by the argument above Eni+1covers q1; � � � ; qi+1. 2Finally we may de�ne the quasi-stable extension (QSE) of a logic program Pwith respect to an ordering O of the body atoms of P. Let hEnm i and hHnm i be thecanonical subsequences of P. Set H = SHnm . Then QSE = lfp(FP;E0[H).6.2 Properties of Quasi-stable SemanticsTheorem 6.1.3 shows that the QSE always exists for arbitrary logic programs andis unique for a given ordering. We can also conclude:Corollary 6.2.1 The QSE of a logic program P is a Herbrand model of P.Proof. As each E0 [Hni is consistent with respect to P, so is E0 [H. It then followsthat QSE is conict-free.

6. Quasi-stable Semantics 119By (6.1) of lemma 6.1.3, Eni � QSE. By part (iii) of theorem 6.1.3, QSE coversall the body atoms of P. We show QSE also covers each head atom.If p is a simply intensional atom there is a rule p :� l1; � � � ; ln in P. If for somesuch rule, each li 2 S Eni then p 2 S Eni by the TP operator. Otherwise, for eachsuch rule, some li 2 SEni � QSE then not p 2 QSE by the NP;L operator. Ineither case QSE covers all atoms of the Herbrand base of P. So QSE is a Herbrandinterpretation.Since QSE is a �xed point of FP;E0[H, QSE is closed under TP . That is to sayeach rule of P is satis�ed by QSE. Therefore, QSE is a Herbrand model of P. 2Corollary 6.2.2 If an atom p is a logical consequence of P, then p is in any quasi-stable extension of P.Proof. This is immediate from corollary 6.2.1. 2It is proved in [47] that any stable model of a logic program P is a minimalHerbrand model of P. It can be shown that any quasi-stable extension also has thesame property. An auxiliary result is �rst needed about the well-founded partialextension of a logic program.Lemma 6.2.1 Given a logic programP. Let E0 be the well-founded partial extensionof P. For any atom p 2 E0, there is a rule r 2 P such that head(r) = p and body(r)is satis�ed by E0 � fpg.Proof. By lemma 5.2.1, E0 = SWP " �. For any atom p 2 E0, let � be the leastordinal such that p 2 WP " �. Since p 2 WP " �, there must be a rule r 2 P suchthat head(r) = p and body(r) � WP " � � 1. By the leastness of �, p 62 body(r). Itthen follows that body(r) is satis�ed by WP " � � 1 � E0 � fpg. 2Theorem 6.2.1 Any quasi-stable extension of P is a minimal Herbrand model ofP.

6. Quasi-stable Semantics 120Proof. Let QSE be a quasi-stable extension of P. We show that QSE is also aminimal Herbrand model. We only have to show QSE is minimal. In order to doso, we show that, for any atom p in QSE, (QSE�fpg)[fnot pg is not model of P.We �rst note that for any atom p 2 QSE, P;E0 [H ` p by lemma 6.1.2 (ii). Itthen follows that there exists a least ni such that P;E0 [Hni ` p. We show thatthere exists an integer j such thatP; E0 [Hnj ` p and p 62 Hnj : (6:6)If p 62 Hni , we are done. If p 2 Hni . By the choice of ni, it must be the casethat Hni = Hni�1 ^hpi and p 62 Hni�1 . It follows from the de�nition of hHni thatP;E0 [Hni�1 ` p. So we have shown that (6.6) holds.Now let E 0 = (E � fpg) [fnot pg. If p 2 E0, by lemma 6.2.1, there is a rulefalsi�ed by E0 � fpg and hence by E 0. So E 0 is not a model of P. If p 62 E0, then wehave E 0 is a Herbrand model of E0 [Hnj but it is not a model of p, it follows from(6.6), E 0 is not a model of P. 2The reverse is not true. For a counterexample, see the program P4 in the nextsection.In [105], it is shown that the well-founded semantics has a very close relationshipwith the stable semantics. Speci�cally, it is shown that well-founded total modelsare unique stable models, and the well-founded partial model of a logic program P isa subset of every stable model of P. This relationship holds between the well-foundedsemantics and the quasi-stable semantics, as is immediate from the de�nition of thequasi-stable semantics. We put the facts about the relationship in the following twotheorems:

6. Quasi-stable Semantics 121Theorem 6.2.2 If a logic program P has a well-founded total model, then the modelis the unique quasi-stable extension of P.Theorem 6.2.3 The well-founded partial model of P is a subset of every quasi-stableextension of P.We have shown that the quasi-stable semantics has as close a relationship withthe well-founded semantics as the stable model semantics does. Furthermore, wecan show that there is a sense in which the quasi-stable semantics is a generalisationof the stable model semantics.We recall that, in its original form, a stable model is two-valued. Any stablemodel is represented as a set of positive atoms, with missing atoms from the modelbeing taken as its negative literals. If we explicitly represent its negative literals, weobtain a natural representation of a stable model as a set of literals. In the following,for any stable model �, we shall use �1 for its representation as a set of literals.That is �1 = � [not ��, where � = HBP ��.In de�nition 5.7.2, a stable model is de�ned by the stability transformation. Butit can also be characterised using a parametric form of the operator TP as follows.Lemma 6.2.2 Given a logic program P, and a set � of atoms, let SP;� be the sta-bility transformation of P relative �. Then � is a stable model i� � = lfp(TP;not��),where TP;not��(E)) = TP (E [not ��)Proof. By the de�nition of stable model, � is stable if and only if � is the minimalmodel of SP;�, which can be characterised as the least �xed-point of TSP;� [103].By lemma 5.2.1, we have the following:lfp(TSP;�) = [TSP;� " �lfp(TP;not��) = [TP;not�� " �

6. Quasi-stable Semantics 122So, in order to prove the lemma, we show that for each �,TSP;� " � = TP;not�� " � (6:7)For limit ordinals, (6.7) holds trivially. Suppose that (6.7) holds for �. We showthat it also holds for � + 1. For any p 2 TSP;� " � + 1, there must exist a rule inSP;� such that head(r) = p and body(r) � TSP;� " �. By the induction hypothesis,we have body(r) � TP;not�� " �. But for a rule r in SP;�, there must exist a rule r0in P such that head(r0) = head(r) and body(r0)+ = body(r) and body(r0)� � �. Itthen follows that p 2 TP;not�� " �+ 1. So we have TSP;� " � � TP;not�� " �.Similarly, we can show TP;not�� " �+1 � TSP;� " �+1. So, (6.7) holds for �+1.2 The following indicates a relationship between the least �xed point of FP;L andthe representation of a stable model � as a set �1 of literals.Lemma 6.2.3 Given a logic program P. For any stable model �1 of P, If L � �1,then lfp(FP;L) � �1.Proof. By lemma 5.2.1, lfp(FP;L) = SFP;L " �. So, we have to show that for each�, FP;L " � � �1 (6:8)For limit ordinals, (6.8) holds trivially. Suppose that (6.8) holds for �. We needto show (6.8) holds too for � + 1. For any literal l 2 FP;L " � + 1. We have toconsider three cases.Case I. If l 2 L, then by the given assumption in the lemma we have l 2 �1.Case II. If l 2 TP (FP;L " �), then l is a positive literal p, and there exists a ruler 2 P such that p = head(r) and body(r) � FP;L " �. By the induction hypothesis,

6. Quasi-stable Semantics 123we have FP;L " � � �1. So we have that body(r) � �1. By lemma 6.2.2, it thenfollows that p 2 � � �1.Case III. If l 2 not �NP;L(FP;L " �), let l = not p. Then for any rule r 2 Pwithhead(r) = p, either there exists an atom qi such that not qi 2 FP;L " � or thereexists a literal not qj such that qj 2 FP;L " �. By the induction hypothesis, we haveeither qi 62 � or qj 2 �. In either sub-case, we conclude by lemma 6.2.2 that therule will not contribute to the derivation of p from P relative to � [not ��. So wehave l 2 not ��. 2With the representation of a stable model as a set of literals and the above twolemmas, we can now state the relationship between the stable model semantics andthe quasi-stable semantics.Theorem 6.2.4 Given a logic program P. If � is a stable model of P, then �1 isa quasi-stable extension of P.Proof. We �rst construct a sequence hEni of extensions and a sequence hHni ofsequences as follows:Let E0 = WFE, and H0 = ;, where WFE is the well-founded partial extensionof P. Suppose En and Hn have been de�ned. Let En+1 and Hn+1 be de�ned by thefollowing: Hn+1 = Hn ^hnot qiEn+1 = lfp(FP;E0[Hn+1):where q is an atom in � that is not covered by En.According to a result about the relationship between stable models and WFSpartial models [105], we have E0 � �1. From the above construction of hHni,Hn � �1. It then follows that each E0[Hn is consistent with respect to P, and thus

6. Quasi-stable Semantics 124En is conict-free. So, Hn and En are in fact the canonical subsequences of P.To �nish the proof, we have to prove that the construction above will end upwith �1. We show that �1 = QSE.Since E0 � �1 and Hn � �1, by lemma 6.2.3, QSE � �1. We have shownthat QSE covers all the atoms of P in corollary 6.2.1, so it must be the case thatQSE = �1. 2Note that the converse of theorem 6.2.4 is not necessarily true. We say that thequasi-stable semantics generalises the stable model semantics. For a counterexample,see the program P3 in the next section.6.3 ExamplesIn this section, we consider some example programs often used in literature.Example 6.3.1 Let P be the logic program with the following four rules:a :� not b:b :� not a:p :� a:p :� b:We have seen in Chapter 5 that the program Phas the empty set as its well-foundedextension though it is reasonable to expect that p should hold.In order to �nd its quasi-extensions, we start from the empty set ;, choose theatom a from the uncovered body atoms a and b, and assume it false4; that is not a.Using this assumption, it follows that b and p from P. So fnot a; b; pg is a quasi-stable extension of P. Through backtracking, we get another quasi-stable extensionfa; not b; pg of P.4Recall that our assumptions can be restricted to body atoms.

6. Quasi-stable Semantics 125Note that this program also has fnot a; b; pg and fa; not b; pg as its stable mod-els. This evidence can also be used to strengthen our claim that the quasi-stablesemantics is similar to the stable model semantics. 2Example 6.3.2 Although the quasi-stable semantics may coincide with the stablemodel semantics for some logic programs, the two semantics may behave quite dif-ferently for other programs. The stable model semantics may have some unpleasantfeatures for certain programs. One of the problems associated with the stable seman-tics, as we shown in Chapter 5, is the non-existence property. This seems inevitablegiven the conceptual aw of the stable model semantics. An often cited example isthe program P2 with the following single rule:p :� not p:The two-valued stable semantics is not de�ned for the program P2, that is to say P2has no stable model. The three-valued stable semantics is de�ned for P2. But theunique three-valued stable extension of P2 is the empty set. So the non-existenceproperty of two-valued stable semantics is converted to truth-gap of atoms in thethree-valued stable semantics. The three-valued stable semantics does not reallysolve the non-existence problem of two-valued stable semantics.In contrast, the quasi-stable semantics has fpg as its unique quasi-stable ex-tension. Obviously not p cannot be assumed without inconsistency, one step ofconsistency-recovery enables us to establish p, giving us the unique quasi-stableextension fpg. 2Example 6.3.3 Consider another program P1 with the following rules:q :� not p:p :� q:

6. Quasi-stable Semantics 126We have shown in Chapter 5 that this program has no two-valued stable modelthough it does have the empty set ; as its unique three-valued stable model. Giventhe fact that p is a logical consequence of P1, it is reasonable to require that anysemantics should assign truth-value true to p.In the quasi-stable semantics, P1 has fpg or equivalently fp; not qg as its uniquequasi-stable extension. To see this, �rst we compute the well-founded extension ofP1. It is the empty set ;. Then we make a negative assumption say not p from theuncovered atoms p; q. It follows that we have q and thus p, a contradiction. Byrevising the assumption, we get p. Since we cannot infer anything from P1 using p,we make another assumption not q. There is no further contradiction and there isno atom left, so we conclude with fp; not qg as desired. Note if our �rst assumptionis not q instead of not p, we still get the same result. 2Example 6.3.4 Consider the program P3 with the following four rules:a :� not b:b :� not a:p :� not p:p :� not b:We have seen in Chapter 5 that the program P13 with only the �rst two rules hastwo stable models: fa; not bg and fnot a; bg. Anomalously, when the third rule isadded to P13, the resulting program P23 has no stable models at all. The addition ofthe fourth rule to P23 also has an anomalous e�ect; it stabilises one of two minimalmodels of P23, giving us an unique stable model for the full program P3.Given the fact that the third rule is independent of the �rst two, and the factthat that p :� not p logically implies p, it is reasonable to expect that P23 shouldhave fa; not b; pg and fnot a; b; pg as its intended meaning.

6. Quasi-stable Semantics 127Since p is already a logical consequence of P23, the addition of the fourth rule toP23, should not have any e�ect on its meaning; that is both P23 and P3 should havethe same meaning.In the quasi-stable semantics, P13 has two quasi-stable extensions: fa; not bg andfnot a; bg, both P23 and P3 still have two quasi-stable extensions fa; not b; pg andfnot a; b; pg as expected. 2Example 6.3.5 Let P4 be the logic program with the rulep :� not q:The minimalmodels of P4, represented as sets of literals, are fnotq; pg and fnotp; qg.In the community of logic programming, it is fnot q; pg that is accepted as theintended meaning of P4. The WFE of P4 is fnot q; pg. So, in this case, the well-founded semantics can capture the intended meaning of P4. Since all the atoms inP4 are covered by fnot q; pg, P4 has fnot q; pg as its unique quasi-stable extension,giving us a simple counterexample to the converse of theorem 6.2.1.Recall that the inference mechanism behind the quasi-stable semantics is thecombination of non-monotonic and hypothetical reasoning as well as deductive one.It is the use of non-monotonic reasoning that enables us to capture the intendedmeaning of P4. Without appealing to non-monotonic reasoning, some extra criteriasuch as admissibility [37] are needed in order to assign an appropriate meaning toP4. 2

6. Quasi-stable Semantics 1286.4 Discussion6.4.1 SupportednessIn the community of logic programming and deductive databases, the notion of asupported model introduced in [5] has been claimed to be an important one. A setL of literals is supported by a logic program if for any positive literal p 2 L, thereis rule r in P such that head(r) is p and body(r) � L.In [15], supportedness is taken as a desirable property of the intended meaningof a logic program although it is recognised that the property itself is not a su�cientcondition for assigning an appropriate meaning to a logic program.The quasi-stable semantics is not supported in the sense that a quasi-stableextension is not necessarily supported. For instance, consider a program Pwith thefollowing rules: q :� not p:p :� q:The program P has an unique quasi-stable extension fp; not qg. But the extensionis not supported since p is not any immediate consequence of P and fp; not qg, thatis there is no rule r in P such that head(r) is p and body(r) � L.However, the fact that the quasi-stable semantics is not supported does not meanthat the quasi-stable semantics is not an adequate model of nonmonotonic negation.Indeed, it can in fact be argued that the supportedness cannot be justi�ed in thecontext of nonmonotonic reasoning.To begin with, we note that to insist that proper models of logic programs besupported is to restrict inference forms whereby positive information can be inferred.In particular, the requirement of supportedness implicitly prevents us from using anypossible non-monotonic reasoning to infer positive information. However, this seemsnot consistent with the fact that non-monotonic reasoning is one of main features

6. Quasi-stable Semantics 129of logic programming.We have said many times before that the essential characteristic of negation notis nonmonotonic. A piece of negative information such as notq may be given up laterwhen more information is available. However, we should not neglect the fact thatpositive information may also be infected with the non-monotonicity of negativeinformation, a fact which we noted in the discussion of the Fitting semantics before.This fact is still true of the stable model semantics as the same example illustratesas follows.Let P3 consist of following two rulesp :� not q:r :� q:P3 has fp; not q; not rg as its unique stable model. When P3 is augmented with q,its stable model changes to fq; r; not pg. So what is originally not true now becomestrue when more information is added. Moreover, like that in the Fitting semantics,what is originally true is also a�ected. Once again, this is because of the use of therule p : �not q, by which p is infected with the non-monotonicity of not q.Since positive information can be nonmonotonic just as negative informationeven in the stable model semantics (which is supported), there seems no reasonto forbid us from nonmonotonically inferring a piece of positive information. Inother words, it would not be unreasonable for us to conclude p if the assumptionnot p is not consistent. Recall that the main feature of the quasi-stable semantics isthe introduction of consistency-recovery mechanism, which in turn is based on theClassical Reductio ad absurdum (RAA): p is inferred whenever not p cannot be con-sistently assumed. The non-supportedness of the quasi-stable semantics in essentialis the consequence of RAA. Since the inference form of RAA is not unreasonable aswe just argued, there seems no reason to rule out non-supportedness.

6. Quasi-stable Semantics 130Moreover, there is another point to consider. Remember that one of the mainmotivations for the use of nonmonotonic negation is that classical logic only providesus with a monotonic mechanism for inferring negative information. And further thenon-persistent semantic rule M2 is not adequate in the context of logic programming.A logic program can be regarded as a default theory to extend classical logic. Assuch, it is natural to require that any adequate semantics for a logic program shouldassign the truth-value true to those atoms which are logical consequences of theprogram as we did in the quasi-stable semantics. Unfortunately, the supportednesscondition may prevent us from doing so. Hence we conclude that to require modelsof logic programs to be supported is to violate but not extend classical logic, andthus once again cannot be justi�ed.6.4.2 Inference Forms in the Quasi-stable SemanticsAnother characteristic of our semantics is its use of both hypothetical and non-monotonic reasoning to extend classical logic. The non-monotonic reasoning we useis in a very speci�c form. It is based upon the operations used in the WFS [105]and the Fitting semantics [40], that is the operator UP and a variant of the Fittingoperator FP .Our use of hypothetical reasoning is reminiscent of Poole [82] and Dung [37]. In[82], Poole applies hypothetical reasoning to extend classical logic for dealing withnon-monotonic reasoning. He argued that if one allows hypothetical reasoning, then�rst-order logic itself is adequate to handle non-monotonic reasoning.In logic programming, there is a similar proposal based upon abduction. Byincorporating abducibles into the rules of a logic program, logic programming isextended to allow abductive reasoning, resulting in abductive logic programming[58]. In an abductive framework for logic programming, negative literals are in-terpreted as abducible hypotheses that can be assumed to hold subject to certain

6. Quasi-stable Semantics 131integrity constraints. Based upon the abductive interpretation of negative literals,an argumentation-theoretic framework for logic programming has been proposed in[37]. Furthermore, in [19] it is claimed that the framework can be further abstractedso as to provide an argumentation-theoretic approach to default reasoning in general.However, the use of hypothetical reasoning in [82] and [37] is somewhat limitedin one sense. Deductive reasoning is carried out from the given theory augmentedwith a set of assumptions. No non-monotonic reasoning is involved. Indeed, themotivation for the use of hypothetical reasoning is to replace non-monotonic reason-ing [82]. In the context of logic programming, as a result, additional criteria suchas admissibility [37] for choosing among sets of assumptions are needed in orderfor the argumentation-theoretic framework to properly de�ne the semantics of logicprogramming. The resulting semantics called preferred extension semantics in [37],however, still has similar problems to the three-valued stable semantics (see the nextsection).In contrast, our use of hypothetical reasoning does not have the above restriction.We shall use not only hypothetical but also non-monotonic reasoning in addition todeductive reasoning. Consequently, we do not need to appeal to any extra criteriasuch as admissibility for choosing among di�erent sets of assumptions. We shallshow by example that this is because of the use of non-monotonic reasoning.In addition, the use of hypothetical reasoning for us is also di�erent. Assumptionsare made individually. That is to say, each time, we only consider a single assumptionrather than a set of assumptions as in [82], [37]. If an assumption results in acontradiction, we may modify or withdraw it, depending on whether it is negativeone or positive one.For us, deductive reasoning, non-monotonic reasoning and hypothetical reason-ing are interleaved, subject to the constraint that assumptions be made only whenlogical reasoning and non-monotonic reasoning can no longer infer any more infor-

6. Quasi-stable Semantics 132mation. In other words, we have implicitly used the following priority relation5among the di�erent kinds of reasoning in the de�nition of quasi-stable semantics:Logical Reasoning � Hypothetical ReasoningNon-monotonic Reasoning � Hypothetical Reasoningwhere the left hand side of the relation � has priority over the right hand side.6.5 Related WorkIn the study of semantics for logic programs, a whole spectrum of semantic theoriesfor logic programs with nonmonotonic negation have been proposed, ranging fromthose that may infer very little information from a logic program (\sceptical") tothose that always infer a great deal (\credulous"). At the sceptical extreme thereis the well-founded semantics WFS [105] while at the credulous one is the stablemodel semantics [47]. The WFS and the stable model semantics are usually takenas two dominant ones. In this section, we briey discuss some related work on theextensions of the WFS and the stable model semantics.6.5.1 WFS ExtensionsOn the one hand, we have seen in the last chapter that the WFS has many desirablefeatures, and based on this we have chosen the WFS [105] as our starting point. Onthe other hand, the WFS despite its merits has been criticised for being too \scep-tical" since, for many programs, it gives the empty set as their intended meaning.We have shown by example in Chapter 5 that the WFS may be silent on all atoms5For us, logical reasoning and non-monotonic reasoning are independent of each other in thesense they cannot be applied to the same rule. So we shall not impose any priority relation onthem though it is reasonable to require that logical reasoning have priority over non-monotonicreasoning.

6. Quasi-stable Semantics 133which are logical consequences of a logic program.It is the sceptical characteristic of the WFS that motivates its various extensionsincluding the generalised well-founded semantics GWFS [7], the well-founded-by-case-semantics WFSC [97], the extended well-founded semantics WFSE [57], thestrong well-founded semantics WFSS [22], and the O-semantics [81]. The relation-ship between these semantic theories for logic programming is also studied in [33]and [34]. Furthermore, an abstract axiomatic framework for de�ning semantics oflogic programs is introduced in [34]. In particular, a well-behaved semantics is pro-posed. All these semantic theories have to some extent extended the WFS in oneway or another so that more information can be inferred from a logic program. Acommon feature among these theories is that they are all deterministic.The quasi-stable semantics proposed in this chapter gives another extension ofthe WFS. Without exception, our extension is also motivated by the sceptical char-acteristic of the WFS. However our approach to extending the WFS is di�erent.We use nonmonotonic and hypothetical reasoning in our approach, which is a mainfeature of the quasi-stable semantics as we discussed before. Consequently it is notsurprising to see that the quasi-stable semantics di�ers from the semantical theoriesmentioned above in that it is non-deterministic. We do not know what relationshipholds between the deterministic part of the quasi-stable semantics, that is the inter-section of all quasi-stable extensions, and the existing deterministic extensions. Itis worth further investigation.6.5.2 Stable Model Semantics and Its VariantsThe other dominant semantic model for logic programs is the stable model seman-tics [47]. Compared with the WFS, the stable model semantics is \credulous": itderives much more information than the WFS though this is non-deterministic or\disjunctive" in the sense that there may be several stable models for a given logic

6. Quasi-stable Semantics 134program. In the previous chapter, we have shown that a stable model is not de�nedfor all logic programs and the stable model semantics may give rise to anomaliesin some circumstances. These shortcomings, we have argued, arise because the un-derlying de�nition of stable models is to some extent inconsistent with the essentialcharacteristics of negation not used in logic programs. It is this kind of tension thatunderlies the existence problem(s) of the stable model semantics.A modi�cation of the stable model semantics is the three-valued stable seman-tics [84]. In this three-valued version, all logic programs have at least one model.The three-valued version seemingly solved the existence problem. But the solutionis rather super�cial. Although each program has at least one three-valued stablemodel, the model may leave all atoms undetermined for some programs, which isnot fully satisfying as it seems once again to say that nothing can be concluded.The non-existence of the stable model semantics is now converted to truth gaps inthe three-valued version. It is our opinion that the problem is still there though in asomewhat di�erent form. More importantly, our criticism concerning the conceptualaw of the stable model semantics continues to apply to the three-valued version.There are also other variants of the stable model semantics, including partialstable model semantics [95] and preferred extension semantics [37]. Although wedid not discuss these variants, we believe that our criticism is still true of them sinceit has been proved that they are in fact equivalent to each other. For the equiva-lence between partial models and three-valued models, see [96]; for the equivalencebetween partial stable models and preferred extensions, see [59]. In [34] and [35]two other variant of stable model semantics, STABLE' and STABLE+ are proposedrespectively by combining the well-founded semantics and stable models in di�erentways. Like the stable model semantics, neither STABLE' nor STABLE+ has anymechanism for revising provisionally assumed negative information when inconsis-tency occurs. Moreover, both STABLE' and STABLE+ are somewhat arti�cial.

6. Quasi-stable Semantics 135It turned out that the quasi-stable semantics we described in this chapter hasa close relationship with the stable model semantics, as was shown by theorems6.2.2, 6.2.3 and 6.2.4 in section 6.2. It is based on this close connection that wecalled our semantics the quasi-stable extension semantics or simply the quasi-stablesemantics. In comparison to the stable model semantics, our semantics avoids itsdi�culties. This is because of the introduction of consistency-recovery mechanismwhich allows us to revise tentatively-made negative assumptions if necessary in lightof newly discovered information. Such a mechanism we believe is indispensable tomodel nonmonotonic negation.6.6 Concluding RemarksIn this chapter, we have introduced a new semantics, called the quasi-stable seman-tics. It naturally extends the well-founded semantics using hypothetical reasoning.We have shown that the quasi-stable semantics solves the non-existence problem,and demonstrated by example that it also dissolves anomalies associated with thestable semantics.In summary, the quasi-stable semantics has the following features (i) every logicprogram has at least one quasi-stable extension, (ii) a quasi-stable extension of alogic program P is a total model of P, (iii) a quasi-stable extension of P is minimalin the sense that no positive literal can be replaced in the extension by a negativeone without its ceasing to be a model of P, (iv) the well-founded partial model fora logic program P is included in every quasi-stable extension of P, (v) every stablemodel is a quasi-stable extension.

Chapter 7Quasi-stable Semantics withStrong NegationThe normal logic programs we studied in the last two chapters have only one kindof negation: non-monotonic negation. In this chapter, we study the semantics oflogic programs with two di�erent kinds of negation: non-monotonic negation andstrong negation. Our discussion shall be mainly based on the work in Gelfond andLifschitz [48], [49], Pearce and Wagner [80], Wagner [110], and our own work inthe last chapter. In the following, we shall �rst of all review the main motivationsbehind the two kinds of negation, and then give the de�nition of an extended logicprogram, followed by a review of the answer set semantics and its modi�cation underthe quasi-stable semantics. Then we consider some examples from the literatureto argue why the term classical negation in [48] and [49] is a misnomer and toshow how strong negation can be used in extended logic programs for knowledgerepresentation. Finally we briey discuss the relation between strong negation andnon-monotonic negation. 136

7. Quasi-stable Semantics with Strong Negation 1377.1 Strong Negation in Logic ProgramsGelfond and Lifschitz in [48] and [49] point out that a ground query against anormal logic program will always return a de�nite yes or no. However (as we notedin Chapter 2) classical logic allows three possibilities: the query can be proved, itcan be refuted or neither is the case. The third possibility should be admitted intologic programs: it should be possible to answer unknown to a ground query.To achieve this they proposed to extend logic programs with what they called\classical negation". This results in extended logic programs.Although their criticism is true of de�nite logic programs, it is in general nottrue of normal logic programs. Under the WFS, a ground query against a normallogic program may be undetermined. Under the stable model semantics there isindeterminacy because a logic program may have more than one stable model.The problem with traditional logic programming, in our opinion, is not so muchwhether it is able to deal with incomplete information but how incomplete informa-tion is dealt with.Normal logic programs provide negative information through one or anothernon-monotonic inference mechanism. Negative instances of extensional predicatesare implicitly assumed through closed-world reasoning. Negative instances of in-tensional predicates are obtained in a much more complicated way, depending onwhat semantics is used. Under the quasi-stable semantics, non-monotonic inferenceis the combination of the operator UP , the Fitting operator FP;L, and hypotheticalreasoning. Whatever semantics is used, information expressed by non-monotonicnegation is defeasible.In Chapter 4, we briey argued that there are situations where non-monotonicnegation is not suitable. Instead, what is needed is a kind of negation which can beused to express negative information in a monotonic (that is persistent) way. This

7. Quasi-stable Semantics with Strong Negation 138consideration led us to the use of strong negation. The idea of using strong negationin logic programming and deductive databases is not novel. It was proposed byPearce and Wagner in [79] and [80], and further developed by Wagner in [108], [109]and [110]. Although [48] and [49] call the second negation \classical negation",it is argued in [109], that this is in fact strong negation. See section 7.4 for theargument and related example in [109]. We shall give further arguments to showterm \classical negation" is indeed a misnomer.In contrast to non-monotonic negation, the strong negation of an atomic factis to be established directly just as positive atomic facts are. From the databaseviewpoint, this requires the explicit inclusion of strong negative facts in extensionaldatabases. In other words, strong negation can be used to express explicit negativeinformation. One signi�cant implication is the persistence of strong negative infor-mation; a piece of strong negative information will not be subject to change whenmore information is added.Another desirable characteristics of strong negation is its capacity for handlingincomplete information. We have pointed out in Chapter 3 that constructive logicwith strong negation can accommodate partiality. So it is not surprising to discoverthat logic programs with strong negation inherit the same capability.The introduction of strong negation does not give rise to any new computationaldi�culties. In comparison to classical negation, it has been proved that strongnegation is simpler to implement (see [109] and [12]).7.2 Extended Logic ProgramsExtended logic programs introduced in [48] and [49] have two kinds of negation:non-monotonic negation and classical negation. We have pointed out in the lastsection that term classical negation is a misnomer, so we shall de�ne an extended

7. Quasi-stable Semantics with Strong Negation 139logic program as a logic program with non-monotonic negation and strong negation.De�nition 7.2.1 An extended logic program is a set of rules of the formsl0 :� sl1; sl2; : : : ; slm; not slm+1; : : : ; not sln:where n � m � 0, and each sli is an atom p or the strong negation of an atom � p.In [49], a literal is an atom p or the strong negation1 of the atom � p. Since wehave used the term literal either for an atom p or for its non-monotonic negationnot p, we instead use the term strong literal for an atom or its strong negation.In the above de�nition of an extended logic program, strong negation is allowedto appear both in the head and in the body of a rule. That is to say, an extendedlogic program may have a strong negative conclusion as well as positive one. So,positive and strong negative information in an extended logic program are treatedwith equal importance. It is interesting to note that such an equal importancefollows directly from the symmetry of the logic of strong negation.In contrast, positive and non-monotonic negative information are treated in dif-ferent ways in normal logic programs. Non-monotonic negation may only appearin the body of a rule, and the derivation of negative facts is di�erent from that ofpositive ones as we have seen in the last two chapters. Such di�erence still exists inextended logic programs.Similarly, a deductive database hDB;Pi can also be extended by incorporatingstrong negation into the extensional database DB and the intensional one P. Anextended extensional database consists of strong literals rather than just atoms, andan extended intensional database is an extended logic program. Since an extendedextensional database may contain both positive facts and strong negative facts, werequire no atom and its strong negation to occur in it at the same time to preserveconsistency. Semantics for extended databases can be reduced to semantics for1They use the term classical negation instead of strong negation.

7. Quasi-stable Semantics with Strong Negation 140extended logic programs, so we shall concentrate on only extended logic programsin the following.7.3 Semantics of Extended Programs7.3.1 The Answer Set SemanticsIn [49], the semantics of an extended program is de�ned by its answer sets, resultingin the answer set semantics. Answer sets are similar to stable models except thatthey consist of strong literals rather than atoms. The de�nition of answer sets in[49] is done in two steps.Firstly, consider extended programs without nonmonotonic negation not. So weshall call them extended de�nite programs. Similar to de�nite logic programs, everyextended de�nite program Pmay be associated with a unique set of strong literals,called the answer set of P. Informally speaking, an answer set consists of all strongliterals inferred from the rules of P. We have seen in Chapter 5 that there arethree di�erent but equivalent approaches to assigning one set of atoms to a de�niteprogram, but we consider here only the �xpoint approach to formally de�ning theanswer set of extended de�nite programs. For other approaches, see [110].Recall that, in order to de�ne the �xpoint characterisation of de�nite programs,the operator TP on HBP is used. For extended de�nite programs we need a similaroperator T�P , which is de�ned on SL = HBP [� HBP instead of HBP as follows.T�P (X) = fsl0 2 SL : 9r 2 P(head(r) = sl0 ^ 8sl 2 body(r)sl 2 X)gIt is straightforward to prove that the operator T�P is monotonic and thus hasa least �x-point lfp(T�P). Although the least �x-point lfp(TP) of an de�nite logicprogram P contains only positive atoms, lfp(T�P) of an extended de�nite logic pro-gram, may contain both positive and strong negative literals, in particular, both q

7. Quasi-stable Semantics with Strong Negation 141and � q as the following simple example shows.Example 7.3.1 Let P consist of three rulesp :� :q :� p:� q :� p:P has fp; q;� qg as its least �x-point lfp(T�P), which contains both q and � q. 2In classical logic, all strong literals (among other things) can be inferred from acontradiction. Based on this fact, Gelfond and Lifschitz in [49] gave the followingnotion of the answer set for extended de�nite logic programs.De�nition 7.3.1 For any extended de�nite program P, the answer set �(P) of P isde�ned as follows:�(P) = 8><>: lfp(T�P) if lfp(T�P) contains no pair of p and � p;SLP otherwise.where SLP is the set of all strong literals of P.Before we de�ne answer sets of arbitrary extended programs, a remark on in-consistency is in order. In the above de�nition, the way inconsistency is dealt withis classical. This is not the only approach to inconsistency. The so-called paracon-sistent approach which is contradiction-tolerant can be taken as it is done in [17].For us, it seems wrong from the informational viewpoint to say that we can infereverything from a contradiction. Rather, it would be more reasonable to take a con-tradiction as a signal that something is wrong. In the present context, a contradic-tion means that the extended program in question is problematic. A contradictoryprogram needs to be modi�ed so as to remove the contradiction. So, we shall reject

7. Quasi-stable Semantics with Strong Negation 142any inconsistent set as an answer set on the basis of the very inconsistency, and notde�ne any answer set for a contradictory program as we shall see in our de�nition ofsemantics for extended logic programs in the next subsection. There we shall alsoshow another problem associated with the above de�nition.Now we move on to de�ne answer sets of arbitrary extended programs. Thisis done in a similar way to the de�nition of a stable model through reducing anextended program to a program without not. Given a set � of strong literals, letP� the extended program obtained from P by deleting(1) each rule that has a formula not sl in its body with sl 2 �;(2) all literals of the form not sl in the body of the remaining rules.De�nition 7.3.2 (Gelfond and Lifschitz [49]) Given an extended logic program P. Aset � of strong literals is called an answer set of P if and only if � coincides theanswer set of P�, that is the following equation holds:� = �(P�).It is easy to see that the two de�nitions of answer set coincide when applied toa program P without not. Moreover, the second more general de�nition of answerset is also a generalisation of the de�nition of stable model.7.3.2 The Quasi-answer Set SemanticsIn the last subsection, we reviewed the answer set semantics. Its de�nition is sim-ilar to that of the stable model semantics. Alternatively, the answer set semanticscan be de�ned through �rstly transforming an extended program into a normalprogram, and then applying the stable semantics to the resulting transformed nor-mal program. This transformation-based approach is in fact preferable in the sense

7. Quasi-stable Semantics with Strong Negation 143that we need not be restricted to only the stable semantics. Indeed any other se-mantics can be used on the transformed program. Naturally, we prefer to use thequasi-stable semantics. We �rst consider how to transform extended programs intonormal programs.Let P be an extended program. For any predicate p(t1; � � � ; tn) occurring in P,introduce a new predicate with the same arity, denoted sn p(t1; � � � ; tn), where snin sn p(t1; � � � ; tn) is for strong negation. For any strong literal sl, de�ne its positiveform, denoted sl+ as follows:sl+ = 8><>: p(t1; � � � ; tn) if sl is a positive literal p(t1; � � � ; tn);sn p(t1; � � � ; tn) if sl is a strong negative literal � p(t1; � � � ; tn).De�nition 7.3.3 (Gelfond and Lifschitz [49]) To transform an extended program Pinto a normal program, denoted P+, is to replace any rule r in P of formsl0 :� sl1; sl2; : : : ; slm; not slm+1; : : : ; not sln:by the following rule r+sl+0 :� sl+1 ; sl+2 ; : : : ; sl+m; not sl+m+1; : : : ; not sl+n :The transformation2 consists in replacing every occurrence of strong negation� p(~t) by a new positive atom sn p(~t). After transforming an extended program Pinto a normal program P+, we may apply any semantics to the resulting program P+in a straightforward way. We shall consider the stable semantics and quasi-stablesemantics respectively. For any set S � SL, let S+ = fsl+ : sl 2 Sg.In [49], it is proved that for a set S of strong literals, if S contains no pair of pand � p, then S is an answer set of P if and only if S+ is a stable model of P+. So,we may alternatively de�ne the notion of answer set as follows.2Based on the same idea, Wagner in [109] shows how to transform an arbitrary formula to aformula without any occurrence of strong negation, and also to apply the transformation to transferan extended de�nite program into a de�nite logic program.

7. Quasi-stable Semantics with Strong Negation 144De�nition 7.3.4 For any set S � SLP of strong literals, if S contains no pair of pand � p, and S+ is a stable model of P+, then S is an answer set of P.The consistency assumption is indispensable. Without it, the correspondencebetween stable models and answer sets would no longer hold as the following examplefrom [49] shows.Example 7.3.2 p :� not � p:q :� p:� q :� p:This program has no answer sets whereas its transformation P+ does have fp; q;�qg+ as its unique stable model. 2This example to some extent also suggests that the same consistency conditionmight be added into the original de�nition of answer set given in the last section.With this slight modi�cation, we shall not only have a neat correspondence betweendi�erent de�nitions of answer sets but also remove the annoyance that everythingcan be inferred from a contradiction. Motivated by these considerations, we o�erthe following de�nition of quasi-answer sets.De�nition 7.3.5 For any set S � SLP of strong literals, if S+ is a quasi-stableextension of P+ and contains no pair of sl and sn sl, then S is a quasi-answer setof P.With this de�nition available, it is straightforward to generalise various proper-ties about the quasi-stable extensions we have proved in Chapter 6 to quasi-answersets (with appropriate modi�cations). For example, we can show that if � is ananswer set of P and contains no pair of p and � p, then it is also a quasi-answer-extension. One exception that we need to bear in mind is that an extended logic

7. Quasi-stable Semantics with Strong Negation 145program may have no quasi-answer extension at all though any logic program doesalways have at least one quasi-stable extension as our simple example above indi-cates.Another point worth mentioning is that, like positive atoms, the monotonicityof strong negative literals may be compromised when strong negation and non-monotonic negation are both used in an extended logic program. A piece of strongnegative information when inferred from an extended logic program rather than es-tablished directly may be infected with non-monotonic negation and thus no longermonotonic. If we want to maintain the monotonicity of a piece of strong nega-tive information, then we should be careful not have it depend on non-monotonicnegation.7.4 Why Not Classical Negation?In this section, we have a closer look at why classical negation used in [48] and [49]is in fact strong negation. The misnomer was pointed out in [109]. Nevertheless,the term classical negation is still widely used in literature, such as [12], [20], etc.This is due to the inuence of [48] and [49], which presumably in turn comes fromthe dominant role of stable models in semantics of logic programs.We �rst of all consider the argument given by Wagner in [109]. His criticismis based on the fact that classical �rst-order logic is semantically two-valued. Thisbivalence entails the principle of the excludedmiddle which, as shown by the examplein [109], is violated under the answer set semantics of extended logic programs givenby [49]. It follows that the second negation in [48] and [49] cannot be classical. Hereis the counterexample program used in [109].

7. Quasi-stable Semantics with Strong Negation 146Example 7.4.1 Let P consist of the following two rules,p :� q:p :� � qHad we interpreted� in the above program as classical negation, it would have beenreasonable for p to be true relative to whatever semantics is used for the program.But it is easy to see that the answer set of P is the empty set ;. One the other hand,if when � is taken as strong negation, then P does have ; as its unique answer set.2 Let us now analyse an example from [49] to further support the conclusion thatthe use of the term \classical negation" is not appropriate.Example 7.4.2 This example from [49] contains two programs P1 and P2, where P1consists of � p :� :p :� � q:and P2 � p :� :q :� � p:The example was used in [49] to show that the answer set semantics is not \con-trapositive" with respect to : � and �3, in the sense that the semantics assignsdi�erent meanings to the rules p : � � q and q : � � p. Indeed, according tothe answer set semantics, P1 has a unique answer set f� pg, and P2 has a uniqueanswer set f� p; qg. Since classical logic is contrapositive with classical implication! and classical negation, they instead claim that non-contrapositiveness is becausethat their semantics interprets program rules as inference rules rather than classicalconditionals.3In [49], ! and : are used instead of :� and �.

7. Quasi-stable Semantics with Strong Negation 147We argue that even if program rules are interpreted as inference rules, any propersemantics should assign the same set to these two programs as long as in the frame-work of classical �rst-order logic. It is not controversial to assign the set f� p; qg asthe meaning of P2. So we need to show why P1 should also have the same set as itsmeaning when classical negation is used.Let r0 denote the program rule p :� � q, � the classical implication symbol,and `r0 the deductive relation of the classical propositional logic4 augmented withthe inference rule r0. Recall that in propositional logic there is a famous theoremcalled the Deduction Theorem relative to the deductive relation `. When propo-sitional logic is extended with the inference rule r0, the Deduction Theorem stillholds relative to `r0 . With these notes at hand, the remaining task is straightfor-ward. First of all, we have � q `r0 p using the inference rule r0. By the DeductionTheorem, we then have `r0� q � p. From which it follows that `r0� p � q by thecontrapositiveness of �rst-order logic. By the deductive theorem again, we thus have� p `r0 q. That is to say, q is a logic consequence of P1, and it thus is reasonable toassign f� p; qg as the meaning of P1 if classical negation is used.On the other hand, if the negation in the programs P1 and P2 is interpreted asstrong negation, then we can no longer infer q fromP1, giving us a proper explanationwhy these two programs have di�erent meaning under the answer set semantics. 27.5 Knowledge Representation Using StrongNegationAlthough non-monotonic negation has proved to be quite useful in various domainsand application frameworks, it is not su�cient in some situations, and its use in4Since we are only concerned of ground logic programs here, propositional logic is enoughwithout using classical �rst-order logic.

7. Quasi-stable Semantics with Strong Negation 148logic programs can lead to undesirable results. In this section, we give some moreexamples from literature to show how how strong negation can be used to eliminateundesirable results caused by the use of non-monotonic negation.Example 7.5.1 This example is from [49]. As pointed out in [49], the example isactually credited to John McCarthy. Consider the following regulation about cross-ing railway tracks: A school bus may cross railway tracks under the condition thatthere is no approaching train. How shall we express this regulation as a programrule? The key point is to interpret the negation in the condition that there is noapproaching train. Had the negation been interpreted as non-monotonic negationnot, the regulation would be expressed ascross(school bus; railway tracks) :� not approaching(train):This would mean that a school bus may cross railway tracks whenever there is no evi-dence that train is approaching. Although the exact meaning of no evidence dependson speci�c semantics used, the point is that the truth of not approaching(train) isdefeasible. When more information is available, we may �nd that there is in fact anapproaching train. In this case, we certainly do not want the bus to cross tracks.So the above representation is not desirable.Instead of non-monotonic negation not, a more satisfying representation can beobtained with the use of strong negation �:cross(school bus; railway tracks) :� � approaching(train):Now a school bus will not cross railway tracks unless it had the strong negative fact� approching(train), which is established on the basis of direct observation andthus will not be subject to any change later. 2Example 7.5.2 This example from [49] is about the representation of terminal ver-tices of a directed graph, showing how they can be de�ned by using an extended

7. Quasi-stable Semantics with Strong Negation 149logic program: � terminal(X) :� arc(X;Y):terminal(X) :� not � terminal(X):2Example 7.5.3 This example comes from [3].runs :� not broken:� runs :� :broken :� flatT ire:broken :� badBattery:Given a car not running, we cannot conclude that the car is not broken withoutinconsistency. So it must be broken, as might be caused by a at tire or badbattery. 2Example 7.5.4 This is also from [49] though with a slight modi�cation. The exampleillustrates how both non-monotonic negation and strong negation are used. Supposethat an anonymous college uses the following regulations for awarding scholarshipsto its students:(1) Every student with the GPA of at least 3.8 is eligible.(2) Every minority student with the GPA of at least 3.6 is eligible.(3) No student with the GPA under 3.6 is eligible.(4) The students whose eligibility is not determined by previous rules are in-terviewed by the scholarship committee.

7. Quasi-stable Semantics with Strong Negation 150The above regulations can be respectively encoded into the �rst four rules in thefollowing extended program,eligible(X) :� highGPA(X):eligible(X) :� minority(X); fairGPA(X):� eligible(X) :� � fairGPA(X):interview(X) :� not eligible(X); not � eligible(X):fairGPA(X) :� highGPA(X):The last rule is added to capture the relation between predicates highGPA andfairGPA, that is, a GPA of at least 3.8 is also a GPA of at least 3.6. Its inclu-sion in the program can help to prevent us from putting � fairGPA(ann) andhighGPA(ann) into an extended database on the basis of consistency.27.6 Relation between Strong Negation and Non-monotonic NegationIn this section, we make some informal remarks about the relation between strongnegation and non-monotonic negation. We have seen that the main utility of strongnegation is to express monotonic negative information, whereas information ex-pressed by non-monotonic negation is not monotonic and usually subject to changewhen more information is available. Non-monotonic negation is weaker than strongnegation, that is to say, if it is true that � p, then it is also true that not p, butthe reverse is usually not true. Given this fact, we might be tempted to make thisrelation explicit by expressing it asnot p :� � p: (7:1)

7. Quasi-stable Semantics with Strong Negation 151But this is not appropriate for two reasons. One is that, in logic programming, notis used only in the body but not in the head. The other is that we have nothingto lose without (7.1), that is, (7.1) is in fact redundant. Let us consider a simpleexample by the way of illustration.Example 7.6.1 Let P consist of the following two rules.� q :� :p :� not q:With (7.1), we can easily infer p from the program. However, it is not di�cult tosee that we can still infer p even without using (7.1). 2Both strong negation and non-monotonic negation can be applied to incompletepredicates. But there is an important di�erence between them. The logic of strongnegation is three-valued whereas the logic of non-monotonic negation is two-valued.The three-valuedness of strong negation comes from the incompleteness of its as-sociated predicates. However the two-valuedness of non-monotonic negation comesfrom the non-monotonic characteristic of inference and thus has nothing to do withits associated predicates.There is another di�erence worth mentioning between strong negation and non-monotonic negation, which is in fact the consequence of the di�erence above. Al-though the answer set is identical to the stable model when the answer set semanticsis applied to a normal logic program, it was pointed out in [49] that there is a crucialsemantic di�erence: answer sets and stable models gave di�erent meaning to thoseatoms not explicitly expressed in them. An atom not in a stable model is interpretedas false in the framework of the stable model semantics whereas an atom not in ananswer set is interpreted as unknown. This is certainly an important observation.However we need to be clear that the di�erence between false and unknown is only

7. Quasi-stable Semantics with Strong Negation 152true of predicates to which strong negation is applied. For all other predicates, weshould continue to use the strategy of representing negative information implicitly;otherwise we may have an undesired result as illustrated by the following example.Example 7.6.2 Let P consist of the following rules:even(0) :� :even(s(s(X))) :� even(X):Where the predicate even(X) means that X is an even number, and s(X) denotesthe successor function of Peano arithmetic. Both the answer set and quasi-answerset of P is feven(0); even(s(s(0))); even(s(s(s(s(0))))); � � � ; gSince strong negation is not applied to the predicate even, we use non-monotonicnegation with it by default. Thus the answer to the query even(s(0)) is false asintended. Without using this default convention, we would have to conclude thatthe answer to the query even(s(0)) was unknown, contrary to the intended meaningof even.In [49], it was proposed to avoid this problem by adding� even(X) :� not even(X):to the original program instead of using our default strategy. However, this seemsunnecessary. Moreover it may result in overuse of strong negation. In contrast, oursolution is simpler, more straightforward, and thus preferable. 2

Chapter 8Conclusions and Future Work8.1 ConclusionsIn this thesis, we have studied negation in logic and deductive databases. Amongother things, two kinds of negation are discussed in detail: strong negation andnonmonotonic negation. We have built a �rst-order logic system CF0 with strongnegation, and proposed a novel model of nonmonotonic negation, called quasi-stablesemantics.8.1.1 Strong NegationMotivated by Barwise and Etchemendy's work on infon logic [10], we were led tostrong negation and argued that negation used in situation theory is in fact strongnegation rather than intuitionistic one. But the usual logics of strong negation, thatis constructive logics, have intuitionistic quanti�cation which has a too strong dy-namic satisfaction condition on universal quanti�ers. We have argued the conditionis not appropriate from the situation-theoretic viewpoint. Based on these argu-ments, we have built a �rst-order logic system with strong negation and boundedstatic quanti�ers, called CF0, that owes much to Thomason's logic CF [98] but153

8. Conclusions and Future Work 154allows for expanding domains.The logic system CF0 is intended to be used as infon logic, the underlying logicfor situation theory. We admit that CF0 needs to be extended in di�erent ways inorder to be a fully-edged infon logic.In addition to the foundational role for situation theory, CF0 may have potentialapplications in database theory. The utility of strong negation in the communityof logic programming and deductive databases is to express explicit monotonic neg-ative information. Although logic involved in extended logic programs is only asa fragment of constructive logics without implicational operator, our logic systemCF0 does provide a general logical framework for further extensions. It may also beused as logical basis for the study of deductive databases in a more general contextwhere more than one database may be involved at the same time.8.1.2 Nonmonotonic NegationThe introduction of strong negation into logic programming and deductive databasesis to complement but not to replace a more common kind of negation, that is non-monotonic negation. A whole spectrum of semantic theories for logic programs withnonmonotonic negation have been proposed, ranging from those that may infer verylittle information from a logic program (\sceptical") to those that infer a great deal(\credulous"). In this thesis, we have reviewed and analysed just a few of var-ious existing semantic theories, including the Fitting semantics, the well-foundedsemantics, the stable model semantics.The analysis has shown that these semantics are not fully satisfying. Never-theless, they do provide us with profound insight towards understanding of non-monotonic negation. It is based on these semantics and the analysis of the essentialcharacteristic of nonmonotonic negation that we have come up with the quasi-stablesemantics. An important observation is that, given the nonmonotonicity of nega-

8. Conclusions and Future Work 155tion not, a model of negation not cannot be appropriate unless it has a mechanismto allow the retraction of tentatively assumed negative information in the light ofnewly discovered information. In other words, a non-monotonic negation such as isrequired for logic programs (at least in a database context) should be computed bya non-monotonic, revision process. Such a process has been introduced through amechanism of consistency-recovery in the quasi-stable semantics. As a result, thequasi-stable semantics has avoided the conceptual aw su�ered by the stable modelsemantics. In the quasi-stable semantics, the existence problem of the stable modelsemantics is genuinely solved rather transformed into a di�erent form as it is in thethree-valued version of stable semantics. We have also shown by example that thequasi-stable semantics does not give rise to anomalies as the stable model semanticsdoes. We have proved that the quasi-stable semantics has many desirable featuressimilar to that of the stable model semantics. It is our belief that the quasi-stablesemantics provides us with an adequate model of nonmonotonic negation, and thusenables us to assign an appropriate meaning to a logic program.8.2 Further Work8.2.1 Possible Extensions of CF0Although CF0 is a full �rst-order logic system, it is only fragmentary from thesituation theoretical viewpoint. For one thing, the components in a basic formulaR(a1; a2; :::; an), or using the notation of infon logic,� R; a1; a2; :::; an; i� are stillindividuals whereas infon logic allows them to be any objects.CF0 can be extended in many ways. A natural extension is to replace basicformulasR(a1; a2; :::; an) ofCF0 with basic infons�R; a1; a2; :::; an; i�, emphasisingthat components a1; a2; :::; an in basic infons can be any objects not just individuals.Such structures lend themselves to the treatment of complex objects.

8. Conclusions and Future Work 156Another possible extension is to incorporate an operator into CF0 in order toexpress non-persistence.1 What is true in one situation is still true in a largerone. However what is undetermined in a situation may become true or false whenmore information is available. It is then natural to introduce an operator suchas `de�nitely' (see [75]) or, more directly, an `undetermined' operator U . Usingthis operator U , the indeterminacy of both the assertion and the (strong) negationof an infon � can be expressed by means of U� and U � � respectively. If anagent, querying a situation s for a decision whether �, fails to establish both � and� �, (s)he can then thereby establish U�. In a larger situation, however, what isoriginally absent in a smaller situation may become available, thus the same agentmay verify � so that U� is rejected. So, U� is not persistent. Similarly, if a queryto a situation s fails to refute �, then it rejects the claim that � is refuted by s andthereby establishes U � �. For the same reason, U � � is not persistent either. Thedistinction between strong negation and U is similar to Barwise and Etchemendy'sdistinction between negation and denial(see Barwise and Etchemendy [9]). However,our approach is di�erent from Barwise and Etchemendy's. Among other things, theinclusion of U in our logic will lead us into nonmonotonic logic whereas Barwiseand Etchemendy claim that \Closing the class of propositions under conjunction,disjunction, and denial would result in a notion of proposition whose logic is entirelyclassical."(see p. 169 of [9]). Full details of such an extension remain to be done.8.2.2 Issues Relevant to the Quasi-stable Semantics8.2.2.1 Non-WFE-based Quasi-stable SemanticsIn the current formulation of the Quasi-stable semantics, the computation of a quasi-stable extension begins with the WFE, further extended using hypothetical reason-1Readers are invited to refer to Veltman's paper Defaults in Update Semantics [106]. Therehe introduces operators like `presumably' to deal with non-persistence within the framework ofupdate semantics.

8. Conclusions and Future Work 157ing and operator FP;L. As a result, the WFE is automatically contained in everyquasi-stable extension. We admit that the use of the WFE is only a shortcut andwe are liable to be accused of cheating, though we insist that the shortcut is notunreasonable given that it has been universally accepted that any extension of alogic program should contain at least the WFE. Alternatively, we might have notstarted from the WFE. We would have just used hypothetical reasoning and theoperator FP;L, and then shown that theWFE is indeed included in each quasi-stableextension. This approach would be conceptually more economical and thus may bepreferred.8.2.2.2 Non-ground Quasi-stable SemanticsThe study of the quasi-stable semantics in this thesis is restricted to ground logicprograms. A non-ground logic program is �rst instantiated relative to its Herbranduniverse. Stable models, well-founded models, and quasi-stable extensions are rep-resented as sets of ground atoms. In [53] the stable and well-founded semantics oflogic programs, and the answer set semantics of extended logic programs are gen-eralised based on non-ground interpretations; that is sets of atoms rather than setsof ground atoms are used to represent stable models, well-founded models and an-swer sets, resulting in non-ground semantic theories for logic programs and extendedlogic programs. A set of atoms usually provides a more compact representation of itsground counterpart. Consequently, the non-ground stable, well-founded semantics,and answer set semantics are more e�cient than the corresponding ground versions.The key technical notion used is that of an \anticover" of a set of substitutions.Informally, an anticover of a set X of substitutions is described as \a set of substi-tutions, all of which are incompatible (i.e. they share no common instance) withthe substitutions in X, and such that each substitution that is incompatible withall members of X is an instance of some substitution in the anticover." [53]. It

8. Conclusions and Future Work 158would be interesting to know whether the notion of anticover can also be extendedto non-ground quasi-stable extensions so as to to give a non-ground quasi-stablesemantic theory.8.2.2.3 Implementation of the Quasi-stable SemanticsThere have been various implementations of deductive databases. See [87] for asurvey. Implementations mentioned in [87] are mainly under the strati�ed, locallystrati�ed or well-founded semantics. Recently, there have been di�erent e�orts one�ective and e�cient implementations for computation of stable models for logicprograms.Based on mixed integer programming, three di�erent algorithms for computingstable models of logic programs have been proposed and implemented in a proto-type compiler in [12]. It is reported in the same paper that these algorithms andimplementations have also been extended to handle logic programs with both non-monotonic negation and strong negation2. One signi�cant point is that deductionis performed at compile-time rather than run-time. As a result, run-time queryexecution can be reduced to the traditional relational database operations and thuscan be performed relatively more e�ciently than otherwise.In [78] a direct and e�cient implementation of the well-founded and stable modelsemantics has been proposed for range-restricted function-free logic programs. Thecomputation of stable models for ground logic programs makes use of bottom-upbacktracking search and a powerful pruning method based on a well-founded typeapproximation for stable models. The implementation also contains an algorithmfor instantiating a logic program to its ground version. The instantiation algorithmonly produces a subset of ground instances of the program without losing any stablemodels. The implementation can compute all stable models, decide whether a logic2In [12], the term classical negation is used instead of strong negation.

8. Conclusions and Future Work 159program has a stable model, and decide whether a given formula is satis�ed in someor all of the stable models of a program.The above two implementations are for ground logic programs. A logic programhas to be instantiated relative to its Herbrand universe before the computation of sta-ble models for the program. In [24], a di�erent implementation of the well-foundedand stable model semantics has been proposed for non-ground logic programs. Thecomputation of stable models, based on the so-called assume-and-reduce algorithm,is still relative to ground logic programs. But the computation of well-founded se-mantics is for non-ground logic programs. A prototype system called SLG [23] hasbeen developed for goal-oriented query evaluation under the well-founded semantics.Given a query, SLG produces a residual program containing answers for all subgoalswhich are relevant to the query. In [24] SLG is extended to accommodate the stablemodel semantics. For a given query, SLG �rst produces a residual program of thequery and then computes stable models relative to the residual program rather thanoriginal programs. In this way, SLG provides integrated query evaluation underboth the well-founded semantics and stable model semantics. SLG itself, however,is elective about which semantics to use, that is the user may choose either semanticsfor �nding answers to the query.Given the close relation of the quasi-stable semantics with the stable model se-mantics, we believe that these implementations with appropriate modi�cation couldalso be adapted to the quasi-stable semantics. Given the problems of the stablemodel semantics, it is our opinion that a further e�ort is worthwhile to implementthe quasi-stable semantics.

References[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, Reading, MA, 1995.[2] S. Akama. Constructive predicate logic with strong negation and model theory.Notre Dame Journal of Formal Logic, 29:18{27, 1988.[3] J. J. Alferes, L. M. Pereira, and T. C. Przymusinski. Strong and explicitnegation in non-monotonic reasoning and logic programming. In J. J. Alferes,L. M. Pereira, and E. Orlowska, editors, Logics in arti�cial intelligence, Lec-ture Notes in Arti�cial Intelligence 1126, pages 143{163. Springer, 1996.[4] A. Almukdad and D. Nelson. Constructible falsity and inexact predicates.Journal of Symbolic Logic, 49:231{233, 1984.[5] K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowl-edge. In J. Minker, editor, Foundations of Deductive Databases and LogicProgramming, pages 89{148. Morgan-Kaufmann, San Mateo, Calif., 1988.[6] K. R. Apt and M. H. van Emden. Contributions to the theory of logic program-ming. Journal of the Association for Computing Machinery, 29(3):841{862,1982.[7] C. Baral, J. Lobo, and J. Minker. Generalized well-founded semantics forlogic programs. In M. E. Stickel, editor, The 10th International Conference160

on Automated Deduction, Lecture Notes in Arti�cial Intelligence 449, pages102{116. Springer-Verlag, 1990.[8] J. Barwise. The Situation in Logic. Number 17 in CSLI Lecture Notes. CSLIPublications, Stanford, 1989.[9] J. Barwise and J. Etchemendy. The Liar: An Essay on Truth and CircularPropositions. Oxford University Press, New York, 1987.[10] J. Barwise and J. Etchemendy. Information, infons, and inference. In K. MukaiR. Cooper and J. Perry, editors, Situation Theory and Its Applications, volume1, CSLI Lecture Notes 22, pages 33{78. CSLI Publications, Stanford, 1990.[11] J. Barwise and J. Perry. Situations and Attitudes. MIT Press, Cambridge,MA, 1983.[12] C. Bell, A. Nerode, R. T. Ng, and V. S. Subrahmanian. Mixed integer pro-grammingmethods for computing nonmonotonic deductive databases. Journalof the Association for Computing Machinery, 41(6):1178{1215, 1994.[13] J. L. Bell and M Machover. A Course in Mathematical Logic. North-Holland,Amsterdam, 1977.[14] E. Bencivenga. Free logics. In D. Gabbay and F. Guenthner, editors, Handbookof Philosophical Logic, Vol III: Alternatives in Classical Logic, pages 373{426.D. Reidel, Dordrecht, 1986.[15] N. Bidoit. Negation in rule-based database languages. Theoretical ComputerScience, 78:3{83, 1991.[16] N. Bidoit and C. Froidevaux. Negation by default and unstrati�able logicprograms. Theoretical Computer Science, 78:85{112, 1991.161

[17] H. Blair and Subrahmanian V. S. Paraconsistent logic programming. Theo-retical Computer Science, 68:135{154, 1989.[18] S. Blamey. Partial logic. In D. Gabbay and F. Guenthner, editors, Handbookof Philosophical Logic, Vol III: Alternatives in Classical Logic, pages 1{70. D.Reidel, Dordrecht, 1986.[19] A. Bondarenko, P. M. Dung, R. Kowalski, and F. Toni. An abstract,argumentation-theoretic approach to default reasoning. Arti�cial Intelligence,93:63{101, 1997.[20] G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. InA. G. Cohn, L. Schubert, and S. C. Shapiro, editors, Principles of KnowledgeRepresentation and Reasoning, pages 86{97. Morgan-Kaufmann, 1998.[21] A. K. Chandra and D. Harel. Horn clause queries and generalizations. Journal,Logic Programming, 2(1):1{15, 1985.[22] J. Chen and S. Kundu. The strong well-founded semantics for logic programs.In Z. W. Ras and M Zemankova, editors, The 6th International Symposium onMethodologies for Intelligent Systems, Lecture Notes in Arti�cial Intelligence542, pages 490{499. Springer-Verlag, 1991.[23] W. Chen, T. Swift, and D. S. Warren. E�cient top-down computation ofqueries under the well-founded semantics. Journal of Logic Programming,24(3):161{199, 1995.[24] W. Chen and D. S. Warren. Computation of stable models and its integrationwith logical query processing. IEEE Transactions on Knowledge and DataEngineering, 8(5):742{757, 1996. 162

[25] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic& Data Bases, pages 293{322. Plenum Press, New York, 1978.[26] E. F. Codd. A relational model of data for large shared data banks. Commu-nications of the Association for Computing Machinery, 13(6):377{387, 1970.[27] E. F. Codd. A database sublanguage founded on the relational calculus. InACM SIGFIDET Workshop on Data Description, Access, and Control, pages35{61, San Diego, California, 1971.[28] E. F. Codd. Further normalization of the data base relational model. InR Rustin, editor, Courant Computer Science Symposium 6: Data Base Sys-tems, pages 33{64. Prentice-Hall, Englewood Cli�s, NJ, 1972.[29] E. F. Codd. Relational completeness of database sublanguages. In R Rustin,editor, Courant Computer Science Symposium 6: Data Base Systems, pages65{98. Prentice-Hall, Englewood Cli�s, NJ, 1972.[30] E. F. Codd. Recent investigations in relational data base systems. InJ. L. Rosenfeld, editor, Information Processing 74, pages 1017{1021. North-Holland, Amsterdam, 1974.[31] A. G. Cohn. Order-sorted logic. In S. C. Shapiro, editor-in-chief, Encyclopediaof Arti�cial Intelligence, Volume 1, 2rd ed., pages 864{866. John Wiley &Sons, Inc., New York, 1992.[32] K. Devlin. Logic and Information. Cambridge University Press, Cambridge,1991.[33] J. Dix. A classi�cation theory of semantics of normal logic programs: I. strongproperties. Fundamenta Informaticae, 12(3):227{255, 1995.163

[34] J. Dix. A classi�cation theory of semantics of normal logic programs: II. weakproperties. Fundamenta Informaticae, 12(3):257{288, 1995.[35] J. Dix and M. M�uller. The stable semantics and its variants: a comparison ofrecent approaches. In L. Dreschler-Fischer and B. Nebel, editors, Proceedingsof the 18th German Annual Conference on Arti�cial Intelligence (KI '94),Lecture Notes in Arti�cial Intelligence 861, pages 82{93. Springer-Verlag, 1994.[36] M. Dummett. Elements of Intuitionism. Oxford Logic Guides. ClarendonPress, Oxford, 1977.[37] P. M. Dung. An argumentation-theoretic foundation for logic programming.Journal of Logic Programming, pages 151{177, 1995.[38] T. Fernando. On the logic of situation theory. In K. Mukai R. Cooper andJ. Perry, editors, Situation Theory and Its Applications, volume 1, CSLI Lec-ture Notes 22, pages 97{116. CSLI Publications, Stanford, 1990.[39] F. B. Fitch. Symbolic Logic. Ronald Press Co., New York, 1952.[40] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of LogicProgramming, 4:295{312, 1985.[41] G. Frege. Begri�sschrift (Chapter I). In P. Geach and M. Black, editors,Translations from the Philosophical Writings of Gottlob Frege, 3rd ed., pages1{20. Blackwell, Oxford, 1980.[42] G. Frege. On sense and meaning. In P. Geach and M. Black, editors, Transla-tions from the Philosophical Writings of Gottlob Frege, 3rd ed., pages 56{78.Blackwell, Oxford, 1980. 164

[43] D. M. Gabbay. What is negation in a system? In F. R. Drake and J. K.Truss, editors, Logic Colloquium '86, pages 95{112. North-Holland, Amster-dam, 1988.[44] H. Gallaire and J. Minker (ed.). Logic & Data Bases. Plenum Press, NewYork, 1978.[45] J. W. Garson. Quanti�cation in modal logic. In D. Gabbay and F. Guenthner,editors, Handbook of Philosophical Logic, Vol. II: Extensions of Classical Logic,pages 249{307. D. Reidel, Dordrecht, 1985.[46] M. Gelfond. On strati�ed autoepistemic theories. In Proceedings of the6th National Conference on Arti�cial Intelligence, pages 207{211. Morgan-Kaufmann, 1987.[47] M. Gelfond and L. Lifschitz. The stable model semantics for logic programs. InR. A. Kowalski and K. A. Bowen, editors, Proceedings of the 5th InternationalConference and Symposium on Logic Programming, pages 1070{1080. MITPress, 1988.[48] M. Gelfond and L. Lifschitz. Logic programs with classical negation. InD. Warren and P. Szeredi, editors, Proceedings of the 7th International Con-ference on Logic Programming, pages 579{597. MIT Press, 1990.[49] M. Gelfond and L. Lifschitz. Classical negation in logic programs and disjunc-tive databases. New Generation Computing, pages 365{385, 1991.[50] G. Gentzen. Investigation into logical deduction. In M. E. Szabo, editor, TheCollected Papers of Gerhard Gentzen, pages 68{131. North-Holland, Amster-dam, 1969. 165

[51] K. G�odel. The completeness of the axioms of the functional calculus of logic. InJ. van Heijenoort, editor, From Frege to G�odel: a source book in mathematicallogic, 1879-1931, pages 582{591. Harvard University Press, Cambridge, 1967.[52] K. G�odel. On formally undecidable propositions of Principia mathematica andrelated systems I. In J. van Heijenoort, editor, From Frege to G�odel: a sourcebook in mathematical logic, 1879-1931, pages 596{616. Harvard UniversityPress, Cambridge, 1967.[53] G. Gottlob, S. Marcus, A. Nerode, and V. S. Subrahmanian. Non-groundstable and well-founded semantics. Available from LPNMR archives athttp://www.cs.engr.uky.edu/ lpnmr/papers.html.[54] Y. Gurevich. Intuitionistic logic with strong negation. Studia Logica, 36:49{59,1977.[55] C. E. Hewitt. Planner: a language for proving theorems in robots. In First In-ternational Joint Conference on Arti�cial Intelligence, pages 295{301, Wash-ington, 1969.[56] A. Heyting. Intuitionism, An Introduction. North-Holland, Amsterdam, 1956.[57] Y. Hu and L. Y. Yuan. Extended well-founded model semantics for generallogic programs. In K. Furukawa, editor, The 8th International Conference onLogic Programming, pages 412{425. MIT Press, 1991.[58] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming.Journal of Logic and Computation, 2(6):719{770, 1992.[59] T. Kakas and P. Mancarella. Preferred extensions are partial stable models.Journal of Logic Programming, 14:341{348, 1992.166

[60] P. G. Kolaitis. The expressive power of strati�ed programs. Information andComputation, 90(1):50{66, 1991.[61] R. Kowalski. Logic for data description. In H. Gallaire and J. Minker, editors,Logic & Data Bases, pages 77{103. Plenum Press, New York, 1978.[62] K. Kunen. Negation in logic programming. Journal of Logic Programming,4:289{308, 1987.[63] H. J. Levesque. Making believers out of computers. Arti�cial Intelligence,30:81{107, 1986.[64] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,1984.[65] E. G. K. Lopez-Escobar. Refutability and elementary number theory. Inda-gationes Mathematicae, 34:362{374, 1972.[66] V. W. Marek and M. Truszczynski. Autoepistemic logic. Journal of the As-sociation for Computing Machinery, 38(3):588{619, 1991.[67] V. W. Marek and M. Truszczy�nski. Nonmonotonic Logic: Context-DependentReasoning. Springer-Verlag, 1993.[68] A. A. Markov. Constructive logic (in russian). Uspekhi Matemati�ceskih Nauk,5:187{188, 1950.[69] J. McCarthy. Mechanization of thought processes. In M. Minsky, editor, Se-mantic Information Processing, pages 403{418. MIT Press, Cambridge, Mass.1968. Originally published in Proceedings of the Symposium of the NationalPhysics Laboratory, vol. 1, pages 77-84. London, 1958.167

[70] J. Minker. On inde�nite databases and the closed world assumption. InProceedings of the 6th Conference on Automated Deduction, Lecture Notes inComputer Science 138, pages 292{308. Springer-Verlag, Berlin, 1982.[71] J. Minker. Perspectives in deductive databases. Journal of Logic Programming,5(1):33{60, 1988.[72] J. Minker. An overview of non-monotonic reasoning and logic programming.Journal of Logic Programming, 17:95{126, 1993.[73] J Minker and C. Ruiz. Mixing a default rule with stable negation. In Pro-ceedings of the Fourth International Symposium on Arti�cial Intelligence andMathematics, pages 122{125. Fort Lauderdale, Florida, 1996.[74] R. Moore. Semantical considerations on nonmonotonic logic. Arti�cial Intel-ligence, 25(1):75{94, 1985.[75] P. L. Mott. Intuitionistic logic with a `de�nitely' operator. Research Report97.05, School of Computer Studies, University of Leeds, 1997.[76] D. Nelson. Constructible falsity. Journal of Symbolic Logic, 14:16{26, 1949.[77] J. M. Nicolas and H Gallaire. Data base: theory vs. interpretation. In H. Gal-laire and J. Minker, editors, Logic and Data Bases, pages 33{54. PlenumPress,New York, 1978.[78] I. Niemel�a and P. Simons. E�cient implementation of the well-foundedand stable model semantics. Available from http://www.uni-koblenz.de/ag-ki/DLP/#pubs, 1996.[79] D. Pearce and G. Wagner. Reasoning with negative information I{strongnegation in logic programs. Acta Philosophica Fennica, 49:430{453, 1990.168

[80] D. Pearce and G. Wagner. Logic programming with strong negation. InP. Schroeder-Heister, editor, Proceedings of Workshop on Extensions of LogicProgramming, pages 311{326. Springer, Berlin, 1991.[81] L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Adding closed world assump-tions to well-founded semantics. Theoretical Computer Science, 122:49{68,1994.[82] D. Poole. A logic framework for default reasoning. Arti�cial Intelligence,36:27{47, 1988.[83] T. C. Przymusinski. On the declarative semantics of deductive databases andlogic programs. In J. Minker, editor, Foundations of Deductive Databases andLogic Programming, pages 193{216. Morgan Kaufmann, 1988.[84] T. C. Przymusinski. Extended stable semantics for normal and disjunctivelogic programs. In Proceedings of the 7th International Conference on LogicProgramming. MIT Press, 1990.[85] T. C. Przymusinski. Well-founded semantics coincides with three-valued stablesemantics. Fundamenta Informaticae, XIII, 1990.[86] W. V. Quine. From a Logical Point of View : 9 Logico-philosophical Essays.Harvard University Press, Cambridge, Mass., 1953.[87] R. Ramakrishnan and J. D. Ullman. A survey of deductive database systems.Journal of Logic Programming, 23(1):125{149, 1995.[88] R. Ramakrishnan (ed.). Applications of Logic Databases. Kluwer AcademicPublishers, 1994.[89] H. Rasiowa. N -lattices and constructive logic with strong negation. Funda-menta Mathematicae, 46:61{80, 1958.169

[90] R. Reiter. On closed world databases. In H. Gallaire and J. Minker, editors,Logic and Databases, pages 55{76. Plenum Press, New York, 1978.[91] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132,1980.[92] R. Reiter. Towards a logical reconstruction of relational database theory.In J. Brodie, M. L. Mylopoulos and J. W. Schmidt, editors, On ConceptualModelling, pages 191{238. Springer-Verlag, New York, 1984.[93] K. A. Ross and R. W. Topor. Inferring negative information from disjunctivedatabases. Journal Of Automated Reasoning, 4:397{424, 1988.[94] R. Routley. Semantical analyses of propositional systems of Fitch and Nelson.Studia Logica, 33:283{298, 1974.[95] D. Sacc�a and C. Zaniolo. Stable models and non-determinism in logic programwith negation. In Proceedings of the 9th ACM PODS Symposium, pages 205{218. ACM Press, New York, 1990.[96] D. Sacc�a and C. Zaniolo. Partial models and three-valued models in logicprograms with negation. In A. Nerode, W. Marek, and V. S. Subramanian,editors, Proceedings of the 1st International Workshop on Logic Programmingand Nonmonotonic Reasoning, pages 87{104. MIT Press, 1991.[97] J. S. Schlipf. Formalizing a logic for logic programming. Annals of Mathematicsand Arti�cial Intelligence, 5:279{302, 1992.[98] R. H. Thomason. A semantical analysis of constructible falsity. Zeitschrift f�urMathematische Logik und Grundlagen der Mathematik, 15:247{257, 1969.[99] A. S. Troelstra. Choice Sequences: A Chapter of Intuitionistic Mathematics.Oxford Logic Guides. Clarendon Press, Oxford, 1977.170

[100] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, volume 1.North-Holland, Amsterdam, 1988.[101] J. D. Ullman. Assigning an appropriate meaning to database logic with nega-tion. In Computers as Our Better Partners, pages 216{225. World Scienti�cPress, 1994.[102] D. van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenthner, editors,Handbook of Philosophical Logic, Vol III: Alternatives in Classical Logic, pages225{339. D. Reidel, Dordrecht, 1986.[103] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as aprogramming language. JACM, 23(4):733{742, 1976.[104] A. van Gelder. The alternating �xpoint of logic programs with negation.Journal of Computer and System Sciences, 47:185{221, 1993.[105] A. van Gelder, K. A. Ross, and Schlipf J. S. The well-founded semantics forgeneral logic programs. Journal of the Association for Computing Machinery,38(3):620{650, 1991.[106] F. Veltman. Defaults in update semantics. Journal of Philosophical Logic,25:221{261, 1996.[107] N. N. Vorob'ev. Constructive propositional calculus with strong negation (inRussian). Doklady Akademii Nauk SSSR, 85:465{468, 1952.[108] G. Wagner. A database needs two kinds of negation. In B. Thalheim, Demetro-vics J., and H.-D. Gerhardt, editors, The 3rd Symposium on MathematicalFundamentals of Database and Knowledge Bases Systems MFDBS-91, pages357{371. Springer, 1991. 171

[109] G. Wagner. Logic programming with strong negation and inexact predicates.Journal of Logic and Computation, 1:835{859, 1991.[110] G. Wagner. Vivid Logic: Knowledge-Based Reasoning with Two Kinds ofNegation. Springer-Verlag, Berlin, 1994.[111] X. G. Wang and P. Mott. Quasi-stable semantics for logic programs. ResearchReport 98.14, School of Computer Studies, University of Leeds, available fromhttp://csis1.leeds.ac.uk/pmottpub.htm, 1998.[112] X. G. Wang and P. Mott. A variant of Thomason's �rst-order logic CF basedon situations. Notre Dame Journal of Formal Logic, 39(1):74{93, 1998.[113] X. G. Wang and P. Mott. A critical note on stable model semantics. Submittedfor publication, available from http://csis1.leeds.ac.uk/pmottpub.htm, 1999.[114] H. Wansing. Logic of Information Structures. Number 681 in Lecture Notesin Arti�cial Intelligence. Springer-Verlag, Berlin, 1993.

172

