Negation

in
Logic and Deductive Databases

Xuegang Wang

School of Computer Studies

The University of Leeds

September 1999

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy.

The candidate confirms that the work submitted is his own and the appropriate

credit has been given where reference has been made to the work of others.

In memory of my father, Caibing Wanyg,
and

to my mother, Shixiu Ding.

Abstract

This thesis studies negation in logic and deductive databases. Among other
things, two kinds of negation are discussed in detail: strong negation and nonmono-
tonic negation.

In the logic part, we have constructed a first-order logic CF' of strong negation
with bounded quantifiers. The logic is based on constructive logics, in particular,
Thomason’s logic CF. However, unlike constructive logic, quantifiers in our system
as in Thomason’s are static rather than dynamic. For the logic CF’, the usual Kripke
formal semantics is defined but based on situations instead of conventional possible
worlds. A sound and complete axiomatic system of CF’ is established based on
the axiomatic systems of constructive logics with strong negation and Thomason’s
completeness proof techniques. CF’ is proposed as the underlying logic for situation
theory. Thus the connection between CF’ and infon logic is briefly discussed.

In the database part, based on the study of some main existing semantic theories
for logic programs with nonmonotonic negation, we have defined a novel semantics
of logic programs called quasi-stable semantics. An important observation is that a
nonmonotonic negation such as is required for logic programs should be computed
by a nonmonotonic, revision process. Only a process that allows one to withdraw by
revising provisionally held negative information can hope to be adequate to model
a non-monotonic negation. In light of this, we propose a model of negation that
owes much to the stable semantics but allows, through a mechanism of consistency-
recovery, for just this withdrawal of previously assumed negative information. It
has been proved that our new semantics maintains the desired features of both
the well-founded semantics and the stable model semantics while overcoming their
shortcomings. In addition, the quasi-stable semantics has been generalised to logic
programs with both strong negation and nonmonotonic negation, giving rise to the

quasi-answer set semantics.

Acknowledgments

I should like to thank my supervisor, Peter Mott for his direction, supervision,
criticism and encouragement throughout the whole process of my study. Without his
valued help, I would have not studied at Leeds, let alone finish the thesis. Thanks
also to my advisor, Professor Tony Cohn for his encouragement and instructive
advice.

There have been many other people giving me various kinds of timely help in
one way or another in my life. I should like to thank them too.

Finally I wish thank and acknowledge funding from an Overseas Research Stu-
dents (ORS) Award (#ORS-95023007), a Tetley & Lupton Scholarship, a Leeds

University Foundation Scholarship, and a departmental grant.

i

Contents

1 Introduction

1.1

1.2
1.3
1.4

Negation in Logic

1.1.1

1.1.2 Negation in Intuitionistic Logic

1.1.3 Negation in Constructive Logics

Situation Theory and Negation
Negation in Deductive Databases

Outline of the Thesis

2 Negation in First-order Logic

2.1

2.2

2.3

2.4

Two levels of first-order logic

Failure vs Inconsistency
2.2.1 Negation as Failure to Support
2.2.2 Negation as Inconsistency
Two-valued vs Three-valued
2.3.1

Two-valuedness

2.3.2 Three-valuedness

Non-persistence vs Monotonicity

2.4.1

Non-persistence

2.4.2 Monotonicity

il

Negation in Classical Logic . . .

2.5 Concluding Remark o oo

First-Order Logic CF’

3.1 Constructive Logics with Strong Negation

3.2 Motivations behind Logic CF'
3.2.1 Dynamic vs. Static Quantifiers
3.2.2 Expanding vs Constant Domains of Quantification
3.2.3 From Thomason’s Logic CF to Our Variant CF'

3.3 Logical System CF’ With Strong Negation
3.3.1 Language Lof CF'..
3.3.2 Persistent Formulas 000000
3.3.3 Formal Semantics o oo
3.3.4 Axiomatic System for CF'
3.3.5 Derived Rules for CF'.

3.4 Completeness of CF'

3.5 First-Order Logic CF" and Infon Logic

Deductive Databases

4.1 From Relational to Deductive Databases

4.2 Logic Programs and Deductive Databases

4.3 Why Negation?
4.3.1 Nonmonotonicity of not L.

4.3.2 Strong Negation in Logic Programs

Non-monotonic Negation
5.1 Introduction Lo
5.2 Semantics for Definite Logic Programs

5.3 Program Completion and Negation as Failure

v

29
30
30
31
32
34
36
36
38
40
45
47
50
35

58
38
61
65
70
72

5.4 Fitting Semanticso oo 81
5.5 Closed World Assumption 84
5.6 Well-founded Semantics L. 88
5.7 Stable Semantics Lo 95
5.7.1 Two-valued Stable Semantics 95
5.7.2 Three-valued Stable Semantics. 100
Quasi-stable Semantics 105
6.1 The Quasi-stable Semantics 106
6.1.1 Informal description of the Quasi-stable semantics 106
6.1.2 Formal Definition of Quasi-stable Semantics 110
6.2 Properties of Quasi-stable Semantics 0. 118
6.3 Examples 124
6.4 Discussion Lo 128
6.4.1 Supportedness oo 128
6.4.2 Inference Forms in the Quasi-stable Semantics 130
6.5 Related Work 132
6.5.1 WFS Extensions 0oL 132
6.5.2 Stable Model Semantics and Its Variants 133
6.6 Concluding Remarks 0oL 135
Quasi-stable Semantics with Strong Negation 136
7.1 Strong Negation in Logic Programs 137
7.2 Extended Logic Programs 138
7.3 Semantics of Extended Programs 140
7.3.1 The Answer Set Semantics 140
7.3.2 The Quasi-answer Set Semantics 142
7.4 Why Not Classical Negation? 145

7.5 Knowledge Representation Using Strong Negation 147

7.6 Relation between Strong Negation and Non-monotonic Negation . . . 150
Conclusions and Future Work 153
8.1 Conclusions 153
8.1.1 Strong Negation oL 153
8.1.2 Nonmonotonic Negation 154

8.2 Further Work 155
8.2.1 Possible Extensions of CF' 155
8.2.2 Issues Relevant to the Quasi-stable Semantics 156
8.2.2.1 Non-W F E-based Quasi-stable Semantics. 156

8.2.2.2 Non-ground Quasi-stable Semantics 157

8.2.2.3 Implementation of the Quasi-stable Semantics 158

vi

Chapter 1

Introduction

The notion of negation is basic not only to any formal or informal logic system (see
[43]) but also to logic programming and deductive databases (see [87]). Historically,
there were serious objections against the use of negation in intuitionistic mathemat-
ics by Griss (see [56] and related citations there). However, it was argued by Heyt-
ing [56] that, without negation, there would be no calculus of propositions because
only true propositions make sense, and thus the logic of negationless mathematics
would be difficult to formalise. In the contexts of logic programming and deductive
databases, logic programs without negation would have a limited expressive power
(see [1]). Thus we take it for granted that the use of negation is indispensable.
Our task is to have a good understanding of negation from the logical and prag-
matic viewpoints. In this introductory chapter, we have a brief informal look at
various kinds of negation in different logics, in logic programming, and in deductive

databases. We assume basic familiarity with logic, and logic programming.

1. Introduction 2
1.1 Negation in Logic

1.1.1 Negation in Classical Logic

In logic, the most important form of negation is probably the negation in classical
first-order logic, called classical negation. The importance of classical negation de-
rives from the importance of classical first-order logic, which has been widely applied
to various subjects, including mathematics and its foundations, physics, computer
science, etc.

Informally, classical negation as a unary operator expresses something like “it s
not the case that ... 7 in natural language. A negative sentence —p is true whenever
p 1s false, and false whenever p is true.

It is worth noting that the above simple form of classical negation is based on the
assumption that any sentence is either true or false, which in turn is connected with
the two basic assumptions implicitly made in the semantics of first-order logic. One
is that every name in a first-order language must refer to an object in the domain of
quantification, that is there are no denotation failures. We call this the denotation
assumption. The other is that all predicates p(x) are completely defined in the sense
that for any individual a, p(«a) is either true or false. In other words, models used in
first-order logic are assumed to represent a complete scenario of states of the whole
world. We shall call the second assumption the completeness assumption. Under
these two assumptions, first-order logic is semantically two-valued. A first-order
sentence is either true or false. On this the bivalence is built the notion of classical
negation: the negation of a true sentence is false, and the negation of a false sentence
is true. An important feature of classical negation is that it satisfies the principle
of the excluded third and the principle of the double negation.

The two semantic assumptions, among other things, have been criticised from

different perspectives. Free logic and partial logic have resulted by dropping one or

1. Introduction 3

both of the assumptions respectively (see [14] and [18]). The denotation assumption
is somewhat philosophical. From the database viewpoint, we need not worry about
it. By restricting interpretations to Herbrand interpretations, this assumption will
be automatically satisfied. As to the completeness assumption, we shall argue that
it is not necessary to give up the simple bivalence of classical first-order logic if we

drop the assumption. We shall show this in the next chapter.

1.1.2 Negation in Intuitionistic Logic

The use of classical logic, though spread wide, is not without any problems even
in mathematics itself. We mentioned in the previous section that criticism of the
semantic assumptions of first-order logic resulted in two non-classical logics: free
logic and partial logic. The principle of the excluded middle is criticised from the
Brouwerian constructive approach to mathematics, known as intuitionism®.

One of basic tenets behind intuitionism is that any mathematical proposition
must have a mathematical construction with certain given properties. A proposi-
tion p is asserted if we have a mathematical construction of the proposition; and
a negative proposition ~ p can be asserted if and only if there is a construction
which from the assumption that a construction for p were carried out leads to a
contradiction. Furthermore, all other logical connectives and quantifiers also need a
constructive meaning. As a result, the principle of the excluded middle cannot be
acceptable from the constructive viewpoint (see [56], pp. 97-99, [13], pp. 404-408,
and [100], pp. 8-11).

Interestingly, through the work of Gentzen [50], it is known that the natural

deduction system for intuitionistic logic can be obtained by removing just the prin-

ciple of the excluded middle from the natural deduction system for classical logic.

!For an introduction to intuitionism, see [56], and for a concise but more comprehensive survey
to various principal constructivist schools, see [100].

1. Introduction 4

The resulting negation, which we shall call intuitionistic negation, is stronger than
classical negation.

Along with the principle of the excluded middle, the other classical principles
of double negation, de Morgan, etc have also to be partially dismissed from intu-
itionistic logic. For example, it is known that intuitionistic logic has the disjunction

property (see [102]):
pV q is provable iff p is provable or ¢ is provable.
But the following does not hold for intuitionistic logic:
=(p A q) is provable iff =p is provable or —¢ is provable,

which seems necessary for a truly constructive negation. Because of this unsymmet-
ric characteristic, we may say that intuitionistic negation does not completely adhere
to constructivity despite its constructive demand for negatively asserted mathemat-
ical propositions. This shortcoming and other undesirable features of intuitionistic
negation have been overcome by another kind of negation, called strong negation

which we discuss in the next subsection.

1.1.3 Negation in Constructive Logics

In the logic community, strong negation was introduced by Nelson [76], based on a
distinction between two proof methods for the negation of a sentence: a sentence
can be refuted either by reductio ad absurdum or by construction of a counter-
example. Essentially, strong negation expresses the notion of directly established
falsity. Independently, Markov [68] also introduced strong negation from the point
of view of constructive logic.

Strong negation was later incorporated into various logical systems, Nelson’s

propositional systems N and Ny, that is, the propositional parts of Nelson’s system

1. Introduction 5

N; of constructible falsity (see [76], and Routley [94]), and their first-order exten-
sions are initial examples (see Almukdad and Nelson [4]?). Two similar systems F
and G, or equivalently, HF and HG (using Routley’s notation), have been studied
by Fitch [39]. For the difference between Fitch’s systems and Nelson’s systems, see
[94], and see also Thomason’s footnote on page 255 of [98]. There are also an intu-
itionistic logic with strong negation H by Gurevich [54], constructive predicate logic
with strong negation S by Akama [2], and first-order logic CF by Thomason [98],
constructive propositional calculus with strong negation by Vorob’ev [107] and the
semantics of the calculus in terms of A-lattices in Rasiowa [89]. Furthermore, Wans-
ing [114] has systematically investigated the whole family of substructural subsys-
tems of Nelson’s systems from the point of view of the fine-structure of information
processing.”

We shall refer to the resulting logics loosely as constructive logics with strong
negation. In comparison to intuitionistic logic, these logic systems demonstrate
several satisfying features, including symmetry, and partiality. See Chapter 3 for
details. Constructive logics have another important feature — persistence, which is
also shared by intuitionistic logic but not by classical first-order logic. We shall
discuss this feature in Chapter 2 and Chapter 3.

Compared with intuitionistic negation, it turns out that strong negation is sim-
pler and more straightforward. Moreover, the notion of directly established falsity
expressed by strong negation lends itself to the explicit expression of negative infor-
mation in logic programming and deductive databases. We shall discuss this utility

of strong negation in the context of logic programming in Chapter 7.

2In [4], Almukdad and Nelson use N and N~ for their first-order systems, where N~ is the
proper subsystem of N without the axiom schema ¢ O (~ ¢ D ¢).

3Wansing uses N~ and N instead of N and N respectively. N~ and N are formulated in
symmetrical sequent calculus (see pp. 24-25 of [114]).

1. Introduction 6

1.2 Situation Theory and Negation

Recently, classical first-order logic has also been challenged by situation theorists
(see [10] and [32]). The basic insight of situation theory is that cognitive activities
such as thought, speech, communication, and inference are all situated relative to a
situation or context. Situations are introduced to model limited portions of the world
in which agents carry out their activities. As information sources, situations can be
seen as concise representations of various kinds of context sequences in possible world
semantics. Another related novel characteristic of situation theory is its emphasis
on information content. More generally, situation theory concerns the development
of a general theory of meaning and information, in particular, the development of
an information-based theory of inference.

In [10], Barwise and Etchemendy put forward a model of information content
called infon algebra in order to develop an information-based theory of inference. An
infon algebra Z = (Sit, I, =, =) consists of a non-empty collection Sit of situations,
a distributive lattice (I, =) on infons, together with the makes-factual or support
relation |= between situations and infons satisfying certain additional conditions.

In an infon algebra Z, infons represent pieces of information, and situations are
intended to be limited portions of the world. Thus situations provide us with a
kind of incomplete information; that is to say, the support relation |= is essentially
partial: a situation may support some infons and refute others but remain silent
on many. It follows that any algebraic theory of infons is definitely not Boolean.
Furthermore, they argue that the situation-theoretic model of infons is at least a
complete distributive lattice, that is Heyting algebra. Therefore, they conclude that
algebraic structure of infons satisfies the axioms for Heyting algebra but not all
the axioms for a Boolean algebra. Thus, the logic for situation theory is at least

intuitionistic but not classical.

1. Introduction 7

This argument immediately poses at least two questions. One is about negation,
the other about the interpretation of quantifiers. Here we only consider the question
about negation, leaving the other one to Chapter 3.

We recall that in situation theory there are two kinds of basic infons: one is
< R,ay,a9,...,a,;1 >, the other < R, ay,as,...,a,;0 >, where R is an n-place
relation, ay,as,...,a, are objects with a restriction of appropriateness. Note that
ai, as, ..., a, need not necessarily be individuals. 0 and 1 are the polarity of infons.

For basic infons, negation is defined through a dual operation as follows:

<L Ryoay,aq9,...,a,1 > = K Roag,ag,...,a,;0> (1.1)

< R,ay,a9,...,a,;0> = K Ryay,ag,...,a,;1 > (1.2)
So, we have

< R,ay,a9,...;a,;1 > = K Ryay,ag,...,a,;1 > (1.3)

< R,ay,a9,...;a,;1 > = K Ryay,ag,...,a,;1 > (1.4)

However, it is well-known that intuitionistic negation does not satisfy (1.3) though
it satisfies (1.4).

Furthermore, the negation of compound infons in situation theory is defined by
the following version of de Morgan’s laws (see Barwise [8], p. 235, and Fernando [38],
p. 108). Even in [10], p. 55, Barwise and Etchemendy do mention that (1.5) is
sometimes assumed in situation theory. However, (1.5) does not hold though (1.6)

does for intuitionistic negation.

(1.5)

Q|
<
al

ocNT =

(1.6)

Q|
>
al

ocVT1T =

1. Introduction 8

Therefore, we conclude that the situation-theoretic negation is not intuitionistic.
Moreover, the above way of treating negation by situation theorists to some extent
suggests that the negation used in situation theory is in fact strong negation. More
importantly, it turns out that intuitionistic negation can in fact be simulated by
strong negation (see [68] and [2]).

In light of this, we are inclined to see constructive logic with strong negation as
the underlying logic for situation theory rather than intuitionistic logic.

We shall argue in Chapter 3 that the intuitionistic interpretation of universal
quantifiers is not satisfying either from the situation-theoretic viewpoint. In fact,
universal quantifiers used in related situation theory literature are classical as in the
first-order logic. This motivates the construction of a logic with strong negation and

classical quantifiers. See Chapter 3 for details.

1.3 Negation in Deductive Databases

The notion of negation in logic programming and deductive databases is more com-
plicated and involved than that in logic. This as we shall see later is mainly because
logical negation has proved unsuitable to application domains where the form of
reasoning is usually nonmonotonic. A different kind of negation has been intro-
duced through semantics associated with a logic program. Roughly speaking, the
main idea behind is that a piece of negative information is implicitly or “by default”
assumed whenever there is no sufficient evidence to the contrary, where the exact
meaning of “sufficient evidence” depends on what semantics is associated with a
logic program. Whatever semantics is used, a common characteristic of this new
form of negation is nonmonotonicity, that is a piece of assumed-by-default negative

information could be given up later when more information is available. So, we may

1. Introduction 9

as well call this kind of negation nonmonotonic negation?.

Two initial examples of nonmonotonic negation developed in logic programming
languages are the THNOT construct in PLANNER [55] and the not operator in
PROLOG (see [25] and its citations). Both of them express something which was
later termed by Clark [25] as the negation as failure (NAF) inference rule. It states
to the effect that a negative conclusion not p is inferred if any search for a proof of p
fails finitely. Here, the finiteness condition is indispensable unless a system has some
mechanism for detecting an infinite process. So the rule is sometimes also called the
negation-as-finite-failure rule.

First formalisations of nonmonotonic negation include Reiter’s closed world as-
sumption (CWA) [90] and Clark’s program completion semantics [25]. The CWA is
essentially an inference rule, stating that if a ground atom p is not a logical conse-
quence of a program, then infer not p. The completion semantics is introduced with
the aim of reducing the negation-as-finite-failure rule to a derived rule of first-order
logic so as to justify the use of the rule.

In Chapter 5 we shall show that both the CWA and the completion semantics
have serious shortcomings. They can only be applied to a limited class of logic
programs without causing any inconsistency or other problems. In the past two
decades, various kinds of more fine-grained semantics for logic programs have been
proposed, including the Fitting semantics [40], the stratified semantics [21], the
stable semantics [47], the default semantics [16], and the well-founded semantics
[105]. These semantical theories to a great extent draw on nonmonotonic logic

developed in early 1980’s®. For example, the default semantics is based on default

4In the literature, it is also called negation as failure [25], negation by default [16] or simply
negation when there is only one kind of negation is involved [1]. There is even a further classification
of this kind of negation according to specific semantics used [73]. We prefer to use nonmonotonic
negation because nonmonotonicity captures the essential characteristic of negation in question,
and is more general in comparison to other terms.

>The history of nonmonotonic logic traces back to the work by McCarthy [69] in the late 1950’s.
The initial formal theories of nonmonotonic logic were collected in an issue of the Artificial Intel-
ligence Journal (1980), devoted exclusively to nonmonotonic reasoning. An important reference

1. Introduction 10

logic [91], and the stable semantics has its root in autoepistemic logic [74].

In logic programming and deductive databases, the stable model semantics and
the WFS have become two dominant semantical theories. We shall see in Chapter
5 that they are more fine-grained than the CWA and the NAF. The introduction
of these two semantics is an important step towards understanding nonmonotonic
negation. Nevertheless, it can be argued that they are still not fully satisfying. In
particular, we shall argue that the underlying definition of stable models in the stable
model semantics is to some extent inconsistent with the essential characteristics of
nonmonotonic negation used in logic programs. Based on the WES and hypothetical
reasoning, we shall propose a novel semantics in Chapter 6. It turns out that the
newly introduced semantics is very similar to the stable model semantics but avoids

its shortcomings. So we call it the quasi-stable semantics.

1.4 Outline of the Thesis

In addition to this introductory chapter, the thesis includes a further seven chapters.
We summarise the contents of these chapters as follows.

Chapter 2: Negation in first-order logic. We begin with the analysis of
classical negation at the semantic and proof-theoretic levels, showing that classical
negation at the semantic level is entirely different from the negation at the proof-
theoretic level. Given the discrepancy, we had better divide classical negation into
two notions: one is the semantical notion of classical negation, and the other proof-
theoretical one. We also show that, more generally, there exists a sharp difference in
first-order logic between the semantical and proof-theoretic levels. Although first-
order logic is proof-theoretically monotonic, nevertheless, it is non-persistent at the

semantical level. The monotonic inference of first-order logic is not suitable for

book on the subject is Nonmonotonic Logic by Marek and Truszczynski [67]. For a survey of
nonmonotonic logic, see [72].

1. Introduction 11

the retrieval of negative information even in the context of relational databases.
Instead it is the semantic notion of classical negation that is used in relational
databases. These arguments will be used in Chapter 4 to facilitate understanding
of the relationships among various different kinds of negation, and to enable us to
see what is needed to be done if we are going to use the deductive approach to
databases.

Chapter 3: First-order Logic CF’ We study the logic of strong negation. A
first-order logic CF’ with strong negation and bounded quantifiers is constructed.
The logic is based on constructive logics, in particular, Thomason’s logic CF. How-
ever, unlike constructive logic, quantifiers in our system as in Thomason’s are static
rather than dynamic. The usual Kripke formal semantics is defined for the logic
CF’, based on situations instead of conventional possible worlds. A sound and
complete axiomatic system of CF' is established based on the axiomatic systems of
constructive logics with strong negation and Thomason’s completeness proof tech-
niques. CF’ is proposed as the underlying logic for situation theory. Thus the
connection between CF’ and infon logic is briefly discussed. The work on the logic
CF' has been previously published in [112].

Chapter 4: From Relational to Deductive Databases In this chapter,
we first consider the limited expressive power of the conventional relational model
of databases and briefly discuss how the deductive approach to databases gives a
straightforward solution to the expressive problem of the relational model. It is then
followed by the formal definitions of logic program and deductive database. Finally,
we give some arguments to show why negation is one of central problems in the
deductive approach.

Chapter 5: Nonmonotonic Negation. This chapter is to review some main
semantic theories for logic programs, including the semantics of definite logic pro-

grams mainly by van Emden and Kowalski [103], Clark’s program completion se-

1. Introduction 12

mantics and the associated SLDNF[25], Reiter’s closed world assumption [90], Fit-
ting’s semantics [40], the well-founded semantics by Gelder, Ross and Schlipf [105],
stable semantics by Gelfond and Lifschitz [47], and a three-valued version of the
stable model semantics by Przymusinski [85]. There is no doubt that these seman-
tic theories give us instructive insights into understanding nonmonotonic negation.
Nevertheless, it can be argued that they all to some extent have shortcomings of
one sort or another. We shall argue that the stable model semantics and its three-
valued version are conceptually flawed, based on the observation that the stable
model semantics has no mechanism whatsoever for revising provisionally assumed
negative information in light of newly discovered information while it aims to model
an essentially nonmonotonic negation. The critical argument on the stable model
semantics has been previously reported in [113].

Chapter 6: Quasi-stable Semantics. Based on the study of some main
existing semantic theories, we proposed a novel semantics for logic programs, called
quasi-stable semantics. An important characteristic of the quasi-stable semantics
is the introduction of a mechanism of consistency-recovery. As a result, the quasi-
stable semantics is able to revise tentatively held negative information whenever
conflicts occur. It has been proved that (i) every logic program has at least one
quasi-stable extension, (ii) a quasi-stable extension of a logic program P is a total
model of P, (iii) a quasi-stable extension of P’ is minimal in the sense that no positive
literal can be replaced in the extension by a negative one without its ceasing to be a
model of P, (iv) the well-founded partial model for a logic program P is included in
every quasi-stable extension of P, (v) every stable model is a quasi-stable extension.
The work in this chapter has been previously reported in [111].

Chapter 7: Quasi-stable Semantics with Strong Negation. Normal logic
programs are extended with strong negation, resulting in logic programs with both

nonmonotonic negation and strong negation. Such logic programs are called extended

1. Introduction 13

logic programs. The dominant Semantics for extended logic programs is the so-called
answer set semantics [48], which is derived from the stable model semantics [47].
However, the stable model semantics is problematic as we shall show in Chapter 5,
we instead define a semantics for extended logic programs, based on our quasi-stable
semantics.

Chapter 8: Conclusions and Future Work Finally we give a brief summary
about the our research on both strong negation and nonmonotonic negation, and
discuss some potential extensions of the logic CF’ and related issues about the

quasi-stable semantics.

Chapter 2

Negation in First-order Logic

In this chapter, we are going to analyse the notion of negation at the semantic and
proof-theoretic levels. The analysis will reveal that classical negation at the semantic
level is entirely different from the negation at the proof-theoretic level. Given the
difference, we had better divide classical negation into two notions: the semantical
notion of classical negation, and the proof-theoretical one. More generally, the
analysis will show that, partly as a consequence of the difference, there exists a
sharp discrepancy in first order logic between the semantical and proof-theoretic
levels.

The main purposes of the analysis are to facilitate the understanding of relation-
ship among various different kinds of negation, and to enable us to see what needs

to be done if we are going to use the deductive approach to databases.

2.1 Two levels of first-order logic

It is well-known that first-order predicate calculus is semantically complete, as shown
by Godel’s semantic completeness theorem [51]. That is to say logical consequence

in first-order logic has a neat correspondence with theoremhood: a sentence is a

14

2. Negation in First-order Logic 15

theorem of a theory if and only if it is the logical consequence of the theory.

But logical consequence is a very strong notion. We have to consider all possible
models. For a formula ¢ is a logical consequence of a theory T'if and only if whenever
T is true of a model, so is p. Here, specific semantic elements are abstracted away.
In practical applications such as the field of databases, however, we are usually more
concerned with what is true of specific databases than what is true of all the possible
databases. The above neat correspondence given by the Godel completeness theorem
no longer holds when specific semantic elements come into focus. Instead, what we
see is a sharp discrepancy between the semantic level and the proof-theoretic level

in first-order logic:

(T1) The meaning of negation at the semantic level is different from that at the

proof-theoretic one.

(T2) Semantically, it is two-valued: a sentence is either true or false in a given
model. In contrast, any formal system of first-order logic is “three-valued” in
the sense that a sentence may be provable or refutable or neither from a given

theory relative to the system.

(T3) Semantically, first-order logic is not persistent whereas proof-theoretically it

is monotonic!.

In order to appreciate (T1), I shall show that in first-order logic, negation ex-
presses a kind of “failure” at the semantic level whereas it expresses inconsistency
in the formal system. The notion of negation as failure is much weaker than that of
inconsistency. It is from this difference that (T2) follows as we shall show below?.

It also partially contributes to (T3). We mentioned in Chapter 1 that negation as

1See Section 2.4 for the definition of persistence and monotonicity.
2Another factor contributing to (T2) is due to classical universal quantifiers. But we only
consider negation here.

2. Negation in First-order Logic 16

failure was originally introduced by Clark in [25] as a procedural rule for deriving
negative facts in logic programming. We shall come back to this topic in Chapter 5
when we review some main semantic theories of logic programs. Here, by an abuse
of the phrase, I am using it for negation as failure to support.

The above difference is reminiscent of another famous theorem by Godel, usu-
ally called the First Incompleteness Theorem (see the related historical remarks in
[13]). It says to the effect that “in a formal system satisfying certain precise con-
ditions there is an undecidable proposition, that is, a proposition such that neither
the proposition itself nor its negation is provable in the system.” (cited from the
editor’s comment [52], p. 592). The incompleteness theorem also highlights the gulf
between the semantic level and the theorem-proving level of first-order logic. But

our emphasis here is that there exists crucial difference even at the conceptual level.

2.2 Failure vs Inconsistency

Fix a first-order language L. Let |= be the semantic satisfaction or support relation
between interpretations of £ and L-sentences of first-order logic, and - the deduc-
tion relation between sets of L-sentences and L-sentences. An interpretation as usual
consists of some domain of discourse over which all constant and predicate symbols
of L are assigned a meaning. In first-order logic an interpretation is artificial, and
arbitrary in the sense that its domain can be any set of objects, and all constant
symbols can be assigned any elements of the domain. In the database context, we
need not consider arbitrary interpretations. Instead, much more restricted interpre-
tations called Herbrand interpretations, are used. In a Herbrand interpretation, the
domain of discourse consists of the constant symbols of £, and the constant symbols
are interpreted literally.

Usually, a Herbrand interpretation is identified with a set of positive atomic

2. Negation in First-order Logic 17

sentences [64]. An outstanding characteristic of a Herbrand interpretation is its
double status: it can be taken as a theory as well as a particular model. When
restricted to finite domains, a Herbrand model can also be taken as a relational
database, and vice versa in a straightforward way. We shall make use of the double

status characteristic of Herbrand interpretations in the following discussion.

2.2.1 Negation as Failure to Support

At the semantic level, the meaning of negation is determined by the well-known

Tarski truth definition (see [13]) as follows®:
(M1) I |= —¢p if and only if I [~ ¢.

where [is a Herbrand interpretation, ¢ is a sentence. When [|= ¢, we say that [
supports o, and when I [£ ¢, we say that [fails to support ¢. According to M1,
we may say that the meaning of negation at the model-theoretic level is failure to
support: = holds relative to [if and only if [fails to support .

For an atomic sentence R(ay,as, ...,a,), I supports R(ay,as,...,a,) if and only
if R(ay,az,...,a,) is in I by the Tarski’s truth definition again and the definition of
Herbrand interpretation (see [64]). It then follows that [supports ~R(aq, as, ..., a,)
if and only if I £ R(ay,as, ...,a,) if and only if R(ay,as,...,a,) is not in 1. So we

have
(M2) I = —R(ay,as,...,a,) if and only if R(ay,as,...,a,) is not in [.

Since R(ay,as,...,a,) is either in [or not in [but cannot be in both, we have [
either supports R(ay,az,...,a,) or supports = R(ay,az,...,a,), but cannot support
both. In general, M2 does not hold for any sentence. However, it can be shown that

for any sentence ¢,

30ur notation is slightly different from that used in [13] though.

2. Negation in First-order Logic 18

(M3) I = or I E .
(M4) Not both I = ¢ and I | —¢.

The proof of M3 can be obtained easily from M1, which at bottom is based on M2.
To show M4, an induction on the complexity of ¢ is enough.

The above is a basic scenario about negation from the semantic viewpoint. We
shall refer to negation characterised by M1 - M4 as the semantic notion of classical
negation. In particular, we shall take M2 as a semantic inference rule for inferring
negative information given the form of M2. We now turn to the formal system to
see how classical negation is dealt with proof-theoretically, and see what deductive

inference mechanism is available for inferring negative information.

2.2.2 Negation as Inconsistency

There are many formal systems of first-order logic, including Hilbert-style axiom
system, the tableau method (see [13] and relevant historical and bibliographical
remarks there), and Gentzen’s natural deduction system [50]. They have all been
proved equivalent. So, without losing any generality, we consider Gentzen’s calculus
NK [50] for simplicity. In this system, rules relevant to negation in one way or

another are listed as follows, where L stands for the false proposition.

¥
Ry (R2)
L @
P
(R3) ¢V~ (R1) T
1

We have seen that negation at the semantic level is negation as failure to support.

2. Negation in First-order Logic 19

Given the above rules about negation, what does classical negation mean at the
theorem-proving level? Have these rules fully characterised the semantic notion of
classical negation? Let us begin with the first question.

According to R1, only when the given set 7 of sentences is not consistent with
R(ay,as,...,a,) can we conclude that = R(ay,az,...,a,) from 7. In fact, it can be

proved that, in a natural deduction system,

7Tk -opifand only if 7,0 F L. (N)

So, we can derive mp from 7 if and only if 7 and ¢ are not consistent. If 7 and ¢
are consistent, then we cannot deduce the negative conclusion —.

By (N) we may say that classical negation expresses inconsistency at the proof-
theoretical level. This conclusion can be justified using a more formal argument
given by Gabbay. In [43], he investigates how to characterise negation in a logical
system. The basic idea in his definition of negation in a system is that 7 = —¢ holds
if and only if 7 and ¢ together lead to some undesirable result, say a contradiction.
So we may take (N) as defining what classical negation means at the theorem-proving
level. For the detailed exposition, readers are invited to refer to [43].

Now we come to the second question about whether rules R1-R4 characterise
the semantic notion of classical negation. It is not very difficult to show that rules
R3 and R4 correspond with properties M3 and M4 of negation with semantic el-
ements being abstracted away. To see this, we note that M3 follows from R3 in
a straightforward way, and conversely, R3 also follows from M3 using the Godel’s
semantic completeness theorem. A similar correspondence between M4 and R4 can
be established using the same argument.

However, the correspondence stops there. Unlike M3 and M4, we find that M1

and M2 are not represented by the corresponding rules R1 and R2. Worse still, M1

2. Negation in First-order Logic 20

and M2 in fact are not characterised by the whole deductive system of first-order

logic.
Given a set T of atomic sentences and an atomic sentence R(ay,az,...,d,), if
R(ay,asq,...,a,) is not in T', then T as an Herbrand interpretation will fail to support

R(ay,as,...,a,), and thus will support = R(ay,as, ...,a,). However, T as a theory
cannot be used to derive the negative fact at the proof-theoretical level since T' is
in fact consistent with R(aq, as, ..., a,).

Therefore, we conclude that the formal system of first-order logic provides us with
only a very weak inference mechanism for inferring negative information. The weak
mechanism only partially reflects the semantic notion of negation. In particular,
rules R1 - R4 together only partially characterise the semantic notion of negation,
and it does not capture the semantic inference mechanism of M2 at all.

Before moving on to the next difference of first-order logic between the semantic
and proof-theoretic levels, we give some comments about rules R1 and R2. 1t is
natural to ask what role R1 and R2 play in the deductive system since that they do
not characterise the corresponding semantic rules M1 and M27?

Although rule R1, according to its form, can be used to derive a negative con-
clusion, the resulting notion of negation is that of inconsistency as we pointed out
before. In other words, its function in essential is to characterise classical negation
as inconsistency at the proof-theoretical level, a notion stronger than that of failure
to support.

The rule R2 is relevant to negation since ¢ may be any sentence. In particular ¢
may be a negative sentence. It says to the effect that, from absurdity, we can infer
everything. In reality, it is certainly not the case. The discovery of contradictions,
say 1n a database, does not enable us to derive everything but only signals that
there is the violation of integrity constraints. So, it is hardly acceptable from the

perspective of information retrieval. Moreover, we would not lose anything without

2. Negation in First-order Logic 21

the rule. Then, we may wonder why the rule is there in the deductive system of
first-order logic? Briefly, it has a great deal to do with the semantic interpretation
of material implication and the ideal requirement of semantic completeness. An
implication proposition with the false antecedent is vacuously valid, and thus for
the sake of semantic completeness, a similar rule is required for the proof of such
implication propositions in a deductive system. So, the purpose of rule R2 is only

to reflect the semantic constraint of material implication.

2.3 Two-valued vs Three-valued

2.3.1 Two-valuedness

At first glance, it seems that the two-valuedness of first-order logic at the semantic
level is a straightforward consequence of the semantic property M3. However, in fact
it is the other way around. That is to say, it is on two-valuedness that the simple
semantic concept of classical negation is built. As to the two-valuedness itself, it
is connected with the two basic assumptions as we mentioned in Chapter 1: the
denotation assumption and the completeness assumption.

The denotation assumption originally comes from Frege’s requirement of a log-
ically perfect formal language [42]. The assumption alone is no more than an ex-
pedient to avoid unnecessary complications that may arise otherwise. Nevertheless,
the assumption has the important ontological commitment that every singular term
denotes an existing object when combined with Quine’s famous dogma [86]: to be
is to be a value of a bound variable, endowing the quantifiers with existential im-
port. It is objection to these commitments that leads to the development of free
logics (see [14]). Our concern here is not the related philosophical arguments but
the use of logic in the database area. From the database viewpoint, it suffices to

consider Herbrand interpretations. For such interpretations, denotation failures are

2. Negation in First-order Logic 22

automatically avoided since every constant symbol denotes itself. That is to say,
as far as the application of logic to databases is concerned, it will not make any
difference whether the assumption is made or not.

In contrast, the completeness assumption seems doubtful from the database view-
point. Given a relational database, taken as a Herbrand interpretation, there is no
reason to assume that the interpretation represents a complete scenario of states
of the whole world. So, a relation r in the database is not necessarily complete; it
may be partial, that is, for a certain individual a, it may be the case that neither
r(a) nor =r(a) holds. Various logical theories have been developed to accommodate
partiality, including partial logic and constructive logics. We shall consider how to
use strong negation to deal with partiality in Chapter 3 and Chapter 7.

Nevertheless, the introduction of strong negation does not mean that we have to
give up classical negation, in particular, its semantical component. Although strong
negation as we shall see has proved very useful in some application domains, the
semantical notion of classical negation also has its own advantages which is closely
associated with the way in which negative information is represented. It is well-
known that, in a relational database, only positive facts are explicitly expressed. A
negative fact is implicitly assumed provided its positive counterpart is not explicitly
available. The implicit representation certainly has one great advantage. As pointed
out by Reiter [90], the number of negative facts about a given domain is in general
much greater than the number of positive ones. So, it is not practical to include
negative facts in a database explicitly.

How can we still have the semantical notion of classical negation without the
completeness assumption? An alternative to the assumption is to borrow an idea
from nonmonotonic logic. When a complete knowledge about a given domain is not
available, we simply jump to the negative conclusion in any case whenever its positive

counterpart is not present. The consequence is that negative information concluded

2. Negation in First-order Logic 23

in this way is defeasible. When more information is available, the conclusion may
have to be given up. In other words, rule M2 is now taken as a non-persistent rule?
rather than a semantic condition based on the completeness assumption. We shall
give another argument to support our view on rule M2 in the next section.

Given a Herbrand model [and an atomic sentence ¢, I supports either or not
. If I supports ¢ then ¢ is true relative to [; otherwise we simply jump to the
conclusion that ¢ is false relative to I even without the completeness assumption.
So, any atomic sentence is either true or false relative to a Herbrand model. It
follows that any sentence will also be either true or false relative a Herbrand model.
As a result, we still have the simple semantical notion of classical negation while

giving up the completeness assumption.

2.3.2 Three-valuedness

Now we consider the “three-valuedness” of first-order logic from the proof-theoretic
viewpoint. We have seen that to infer the negation of a sentence ¢ from a theory T
is equivalent to proving that ¢ is not consistent with 7". From which it follows that
to infer == from T' is equivalent to proving that —¢ is not consistent with 7. By
the principle of double negation, we have that to infer ¢ from T'if and only if —p 1s
not consistent with T'. So, given a theory, we can neither infer —¢ if ¢ is consistent
with the theory, nor infer ¢ if - is consistent with the theory. Since it is possible
not only that a sentence is consistent with a theory but also that its negation is
consistent with the theory, we conclude that a sentence may neither be proved nor
refuted from a theory.

So, though it is always the case that either ¢ or =y is true relative to any model,
it may be the case that we can prove neither of them. To prove ¢ (or =) from a

theory requires that ¢ (—¢ respectively) be true across all the models of the theory

*We use non-persistent instead of nonmonotonic to emphasise the semantic aspect.

2. Negation in First-order Logic 24

by the Godel’s completeness theorem. The uniformity condition is very strong from
the database viewpoint. In the context of databases, we need not consider any
interpretation beyond Herbrand interpretations (see [1]). So it is not surprising to
see that the uniformity requirement makes the inference mechanism of first-order
logic not suitable for the retrieval of negative information in the area of databases®.

Let us consider an example by way of illustration.

FExample 2.3.1 Consider a situation s, consisting of a database DB of an imaginary

mathematics department. Suppose that DB contains the following facts:

teach(frege, first-order-logic).
teach(cantor, set-theory).

(

(
teach(tarski, model-theory).
teach(turing, recursion-theory).
(

teach(godel, proof-theory).

Take DB as a theory with only atomic sentences. We can add to DB
teach(turing, first-order-logic) or its negation without causing any contradiction,
so we have neither teach(turing, first-order-logic) nor its negation. In other words,
it is impossible from the theory to infer either teach(turing, first-order-logic) or its
negation.

But from the semantic viewpoint, DB can also be taken as a Her-
brand interpretation. Then from DB we may reach the conclusion that
—teach(turing, first-order-logic) using M2. Moreover, this conclusion is what we
want when we make a query to the database DB about whether or not Turing

teaches first-order logic. O

% As far as positive information is concerned, it does not make any difference whether we consider
all the interpretations or just Herbrand interpretations. See [64] for related discussion in the context
of definite logic programs.

2. Negation in First-order Logic 25

The example underlines the weakness of first-order logic as a deductive mecha-
nism for inferring negative information. The weak deductive mechanism has to be

strengthened somehow if we are going to take a deductive approach to databases.

2.4 Non-persistence vs Monotonicity

In this section, we look at another pair of properties of first-order logic: persistence
and monotonicity. We shall see that classical first-order logic is monotonic but it is
not persistent.

Persistence is a model-theoretic property. It means whatever is supported by a
model is still supported by a larger one. Formally, persistence can be formulated as

follows:
if I =@, 1 CI'then I" | .

where I and I’ are Herbrand interpretations, ¢ is a L-sentence, and C is the subset
relation. In the general context, C should be replaced with the sub-model relation
<.

In comparison to persistence, monotonicity is a proof-theoretic property. It ex-
presses the cumulativity of deductive consequences: what is proved is still proved

when more information is added. Formally, monotonicity can be formulated as

follows:
if?7Fpand? C 7' then 7' F ¢

where 7, A are sets of L-sentences, and @ is a L-sentence, and 7 F ¢ means there is
a deduction of ¢ from 7.

From the informational viewpoint, both persistence and monotonicity express
a kind of the preservation of information. The discussion in the previous sections

suggests that, in first-order logic, the way in which information is dealt with at the

2. Negation in First-order Logic 26

semantic level is different from that at the proof-theoretic level. As a result, we have
another pair of differences between the semantics of first-order logic and its formal

system. Let us consider non-persistence first.

2.4.1 Non-persistence

We have shown that negation at the semantic level means failure to support. For
atomic sentences, the failure can be reduced to absence according to the semantic
rule M2. In the previous section, we argued that we had better take M2 as a non-
persistent rule rather than as a rule based on the completeness assumption. It is
the non-persistence of the rule that contributes to the non-persistence of first-order
logic: with the addition of new facts, what is originally absent may become present,
and thus what is originally not true may become true. More generally, by induction
on the complexity of ¢, it is not difficult to show that = is not usually persistent
either.

Consider the departmental database DB in the last section again. We
know that s supports that Turing does not teach first-order logic since
teach(turing, first-order-logic) is not in DB. But when we move to a larger sit-
uation, say a situation s; of the university which contains another database DB,
of a philosophy department in addition to DB;. If Turing happens to be a joint
professor in the two departments, and DB, does have the fact that Turing teaches
first-order logic, then s; will support this fact, and as a result, s; no longer supports
that Turing does not teach first-order logic. Thus, with the addition of the new
facts to s, what is originally not true now becomes true.

It is interesting to note that the non-persistence of first-order logic explains the

non-persistence® of first-order queries to relational databases (see [1]). Conversely,

In [1], term monotonic is used. But monotonic is usually used to describe the property of the
formal system of first-order logic. Since the property in question is semantic, we prefer to use term
persistent.

2. Negation in First-order Logic 27

the fact that there exist non-persistent queries gives us another argument to support
our view on rule M2. Had we insisted that M2 be based on the completeness
assumption, then it would be meaningless to talk about non-persistent queries. Since
our knowledge about the given domain is complete, there would be no space for the

addition of new information, and thus there would be no non-persistent queries.

2.4.2 Monotonicity

Now consider the monotonicity of first-order logic. Given a formal system of first-
order logic, conceptually, the monotonicity follows directly from the characterisation
of the deduction relation - among sentences relative to the system. Alternatively,
the monotonic property has been used in the defining characteristic of a formal
system such Gentzen’s natural deductive system NK. So, the monotonicity holds
automatically.

Specifically, any deductive consequence of a theory relative to a formal system is
determined by the theory and inference rules, and also the axioms of the system if it
is a logistic calculus. Applications of an inference rule solely depend on the explicit
presence of information both in the theory and derived from the theory. The use of
inference rules is not sensitive to the absence of any information as the use of M2 is.
The point is that all inference rules in the system are monotonic: with the addition
of new information to the theory, more information will be inferred, and previously
inferred information cannot be retracted or revised in any way. A logic with only
monotonic inference rules can only be monotonic.

The discrepancy between the monotonicity of first-order logic and its non-
persistence once again indicates that the first-order formal system only partially

characterises its semantics.

2. Negation in First-order Logic 28

2.5 Concluding Remark

We have shown that classical negation in fact should be divided into two different
notions: one is semantic, and the other proof-theoretic. The semantic notion of clas-
sical negation expresses failure to support whereas the proof-theoretic one expresses
inconsistency. The notion of negation as failure to support is much weaker than
that of negation as inconsistency. More generally, we have shown that, in first-order
logic, there exists a big discrepancy between the semantic and proof-theoretic levels.
One the one hand, first-order logic is semantically two-valued and non-persistent.
On the other hand, it is proof-theoretically three-valued and monotonic.

In the area of relational databases, it is the semantic not proof-theoretic notion
of classical negation that is used to deal with the retrieval of negative informa-
tion. First-order logic only provides us with a monotonic deductive mechanism,
which is not adequate for dealing with negative information even in the area of re-
lational databases. This implies that if we are going to take a deductive approach
to databases, then we have to extend the inference mechanism of first-order logic so
as to at least accommodate non-persistent inferences in one way or another. This is

a topic we shall cover in later chapters.

Chapter 3

First-Order Logic CF’

The purpose of this chapter! is to study strong negation in formal logic systems.
We shall construct a first-order logic CF’ with strong negation and bounded quanti-
fiers. The logic is based on constructive logics, in particular, Thomason’s logic CF.
However, unlike constructive logics, quantifiers in our system as in Thomason’s are
static rather than dynamic.

For the logic CF’, the usual Kripke formal semantics is defined but based on
situations instead of conventional possible worlds. Situations as limited portions of
the world seem more suitable than possible worlds for characterising the partiality of
constructive logics with strong negation. A sound and complete axiomatic system of
CF' is established based on the axiomatic systems of constructive logics with strong
negation and Thomason’s completeness proof techniques. With the use of bounded
quantifiers, CF’ allows the domain of quantification to be empty and allows for non-
denoting constants. CF’ is proposed as the underlying logic for situation theory.

Thus the connection between CF’ and infon logic is briefly discussed.

!This chapter mainly is based on the work published in [112].

29

3. First-Order Logic CF’ 30

3.1 Constructive Logics with Strong Negation

In the first chapter, we noted that strong negation was introduced independently by
Nelson [76] and Markov [68] from the constructive perspective. Various constructive
logics with strong negation have been developed. In comparison to intuitionistic
logics, these logic systems demonstrate some satisfying features, including symmetry
and partiality.

First of all, since negative information is treated as of equal importance with pos-
itive information, such logics are more symmetrical than intuitionistic logics and sat-
isfy very natural duality laws. In particular, strong negation avoids non-constructive
features possessed by intuitionistic negation (see [54], and [114]). Secondly, con-
structive logics with strong negation can be provided with a more satisfying inter-
pretation than the well-known Brouwer-Heyting-Kolmogorov(BHK) interpretation
for intuitionistic logics (see [114], and Lopez-Escobar [65]). Moreover, they permit
a sentence to be undetermined and thus can accommodate the partiality of infor-
mation (see [98], and [114]).

Another desirable characteristic of constructive logics with strong negation is the
heredity or persistence of information,? to the effect that what is true at a state of

information is still true at all later states. This is also true of intuitionistic logic.

3.2 Motivations behind Logic CF’

Since that we have already various constructive logics with strong negation, it is
natural to ask why we need to construct another one. In this section, we give some

arguments to show why the existing constructive logics are not satisfying. Two is-

2The terminology of the heredity of information is used in [114] whereas the persistence of
information is the situationists’ parlance. Note that [114] is only concerned with propositional
logics. For the property of predicate logic, see lemma 3.1 on page 53 of [564]. In intuitionistic logic,
the property is called monotonicity (See the lemma on page 78 of [100]).

3. First-Order Logic CF’ 31

sues are to be addressed briefly. One is about the the semantic interpretation of
quantification, and the other about domains of quantification. The basic philosoph-
ical stance here is taken from Situation Theory. Indeed, as we pointed out in the
beginning, CF’ originally is intended as an underlying logic for Situation Theory.

See section 3.5 for the discussion about the connection between CF’ and infon logic.

3.2.1 Dynamic vs. Static Quantifiers

There are two main semantic interpretations of universal quantifiers: dynamic and
static. In the dynamic interpretation, a sentence Vap(x) is true at a state of infor-
mation s only when ¢(a)? is true at all states of information ¢ > s for all individuals
a in the domain of ¢ (where > orders states by increasing information). In the static
interpretation, a sentence Vap(x) is true at a state of information s provided that
@(a) is true for all individuals « in the domain of s. The dynamic interpretation of
universal quantifiers at a state of information s requires us to look at all the states
beyond s and their domains. In contrast, the static interpretation of a sentence
Vaep(x) at a state of information s only involves the state s and the individuals
in the domain of s. So, the satisfaction condition on universal quantifiers by the
dynamic interpretation is much stronger than that by the static interpretation.

Which interpretation is more natural from the situation-theoretic viewpoint?
Consider the situation s of a room full of people. The sentence “All men here are
hungry” will be true at s provided that all the men in the room are hungry. Here
the quantifier is taken as restricted to the men in that room. We do not look at
wider situations and (possibly) wider extensions of “men”. So if we take a point s
in a Kripke model as a situation rather than a state of information, then it seems
we should evaluate the quantifier statically.

Unfortunately, dynamic universal quantifiers are used in most of existing first-

3Hereafter, we use a as a name for a.

3. First-Order Logic CF’ 32

order constructive logics with strong negation, including Almukdad and Nelson’s
first-order systems [4], Gurevich’s H [54], Akama’s S [2]. It is not difficult to see
that these logics would not be persistent had the static universal quantifiers been
used. In other words, the persistence of constructive logics is bought at the cost of
the very strong dynamic satisfaction condition on universal quantifiers.
Thomason’s first-order logic [98] CF does interpret universal quantifiers stati-
cally rather than dynamically. His semantical model is a hybrid of a Kripke model
for propositional intuitionistic logic (as the conditional is intuitionistic) and a clas-
sical model for predicate logic (as the universal quantifier is static).? Nevertheless,
his semantical framework requires different stages to have the same domain. This

leads us to the issue of the domains of quantifiers.

3.2.2 Expanding vs Constant Domains of Quantification

From the standpoint which treats stages as situations, it is obvious that this restric-
tion is inappropriate. From an intuitionistic viewpoint, it is not suitable either. As
is well-known, Kripke models for intuitionistic logic also require expanding domains.
But the connection of intuitionistic logic with expanding domains is both more com-
plicated and more tenuous than is the case with Situation Theory. In order to see

this, let us consider the following schema which we call the Distribution Schema:
(DS) Va(e Vip(xz)) D (¢ V Vay(x)), where a is not free in .

If we add to intuitionistic logic all instances of (DS), we obtain a logic whose models
are exactly the Kripke models with constant domain. Thus to motivate expanding

domains from an intuitionistic viewpoint is to motivate the rejection of this schema.

It should be pointed out that his model for propositional logic, strictly speaking, is not in-
tuitionistic since the falsity of an atomic sentence at a stage of construction is treated as being
discovered directly rather than being decided by later stages.

3. First-Order Logic CF’ 33

The BHK interpretation is of little help. According to that we need to show
how a proof of Va(¢ V ¢(x)) could be extended to a proof of ¢ V Va(x). Well,
to have a proof of Va(¢ V ¢(x)) is to have a construction C' which transforms a
proof of @ € D (D the intended range of the variable x) into a proof of ¢ V ¢(a).
If the construction C transforms a proof of @ € D into a proof of ¢, then since z
is not free in ¢, we would have a proof of ¢. Otherwise, it transforms a proof of
a € D into a proof of ¢(a) and thus from the construction C we derive a proof of
Va(x). Either way we have a proof of ¢ V Vay(x) (for the BHK interpretation,
see p. 9 of Troelstra and van Dalen [100]). The informal semantics of intuitionistic
logic does not, at least not obviously, show what is wrong with (DS). Why, then,
is (DS) rejected at all? Very briefly, it happens that certain Brouwerian principles
of continuity which are more or less self-evident from an intuitionistic standpoint
are formally inconsistent in classical logic. These principles say roughly that an
assertion about an infinite sequence o must be decided by a finite initial segment
of «, and hence will be decided the same way for all sequences 3 that agree on
that initial segment. Adding (DS) to intuitionistic logic will restore inconsistency
with these same principles. Dummett [36] contains a treatment of the semantics of
intuitionistic logic which discusses these issues in detail.

There is a further point. Kripke models are not the only semantic structures for
intuitionistic logic. Beth trees may be used instead. In the Beth semantics we have

a more complicated rule (see p. 106 of Troelstra [99]) for evaluating disjunctions:

sEeVYiff Vi > s3u > t(u |E @ oru =)

This evaluates a disjunction true provided that however knowledge is extended even-
tually one or other of the disjuncts will become true. With this it is easy to find a

counter-example to (DS) that makes no appeal to expanding domains.

3. First-Order Logic CF’ 34

The upshot is that expanding domains seem more an artifact of the Kripke
semantics than an essential part of the interpretation of intuitionistic logic. However,
they are quite central to Situation Theory, which to some extent supports our choice
not to use intuitionistic logic as a basis for Situation Theory (for more, see the final
part below)

If we are to allow expanding domains, there is a technical problem to over-
come. Specifically, the semantical completeness proof of CF depends on an aux-
iliary lemma, that is, lemma 2 on page 250 in [98], and the proof of the lemma
in turn makes use of the conditional introduction rule DI. However, it is easy to
check that if different stages in the semantical models are allowed to have different
domains, then the rule is generally not sound since universally quantified sentences,
when interpreted statically instead of dynamically, generally are not persistent (see
below 2.2 and 2.5). So, the condition of a constant domain has to be imposed on his
models for the sake of CF’s semantic completeness, that is to say, in order to have
static universal quantifiers, we are forced to adopt a model with constant domain.

Conversely, from the model theoretic standpoint, the models for CF' are a special
case of the intuitionistic models. Accordingly, the dynamic condition for quantifiers
collapses into the static one. Since the dynamic condition is not suitable and expand-
ing domains are desired as we said above from the situation theoretic viewpoint, it is
natural to ask if we can have a logic for situation theory with both static quantifiers

and expanding domains.

3.2.3 From Thomason’s Logic CF to Our Variant CF’

Motivated by the above arguments, we propose a first-order logical system CF’ with
strong constructive negation like Thomason’s but that allows for expanding domains.
Our semantical analysis is still based on Kripke frames (S, <, D) but we have it in

mind to interpret S as a collection of situations rather than conventional possible

3. First-Order Logic CF’ 35

worlds. Accordingly, < is a pre-order on situations, and D is a function assigning a
set of individuals to each situation. Situations are limited parts of the world. Thus,
generally, situations provide us with only incomplete information. The partiality
of situations to some extent also justifies the use of situations in our semantical
framework since, as we pointed out before, constructive logics with strong negation
are partial. In addition, we note that another source of the partiality of the logic is
from the use of inexact predicates (see [4], Wagner [109], and related citations there).
We treat universally quantified sentences statically instead of dynamically. And
since static unbounded universally quantified sentences are generally not persistent,
we instead consider bounded ones, say V’x¢(z) where 3 is a bounder. This is
reminiscent of Devlin’s infon logic. Devlin [32] considers Va € uo where u is a set
and o is an infon. Such compound infons are persistent because the set u bounds
the quantifier. In our framework the bounder [may itself be non-persistent in
the sense that the extension of (3 is liable to change from situation to situation,
and consequently VPzp(x) is in general not persistent either. Thus, we further
distinguish persistent bounders from non-persistent ones (see the next section).
We summarise the various approaches to the universal quantifier in the following
table, where INT is intuitionistic predicate logic, H is Gurevich’s intuitionistic logic
with strong negation [54], and CF is Thomason’s first-order logic [98]. For a unifying

exposition of both Kripke and Beth models, see van Dalen [102].

Logics Quantifiers Va Models Domains

INT, H dynamic Kripke models expanding
INT static Beth models constant
CF static Kripke models constant

CF static Kripke models expanding

3. First-Order Logic CF’ 36

In the following, we shall first introduce the logical system CF’, and then prove
its soundness and completeness. Finally, we discuss its connection with situation

theory, its possible extensions as well as its potential applications.

3.3 Logical System CF’ With Strong Negation

3.3.1 Language L of CF'.

The language® of our logical system CF’ consists of an infinite set V; of individual
variables (as metavariables for variables we use x, xq, 21, ...), a set C¢ of individual
constants (metavariables: ¢, co,¢q,...), and for each n,n > 0, a set P} of n-ary
predicate symbols (metavariables: Ry, R, Rs,...). In addition, £ has a set B of
bounders with a subset BL of persistent bounders (metavariables: 3, 3o, 31, ... with
or without superscript P), and a relation symbol €.

The set T of terms of L is V,UC:. We use t, g, 11, ... as metavariables for terms.

Atomic formulas of £ are R(t1,1s,...,t,) and ¢ € 3, where t1,t5,...,1, € T, c €
Ce, R € PP and 8 € Bz, The well-formed formulas of £ are defined recursively
from atomic formulas using the connectives V, D, and ~, and for each bounder 3 ,

a bounded universal quantifier V? as follows:

(i) atomic formulas are formulas;
(ii) if ¢ is a formula, then so is ~ ¢;
(iii) if @, are formulas, then so are ¢ V ¢, ¢ D ¥,

(iv) if o is a formula, = is a variable, and 3 is a bounder , then ¥’z (z) is also a

formula. For simplicity, we write Vo € By (z) for VPrp(z).

SFunction symbols introduce nothing new. For simplicity, we avoid them here.

3. First-Order Logic CF’ 37

A formula of form Va € Bp(x) is called a bounded universally quantified formula.
Such formulas can be used to express local generality since the bound variables
thereof are to range over a subset of the individuals in the universe. In contrast,
the generality expressed by unbounded universally quantified formulas is a kind
of overall generality (see Frege [41]). In order to express overall generality by a
variable, we only need a device for the scope of the variable whereas, in order to
express local generality, we need in addition the range of the variable. So, generally
speaking, in order to express generality via a variable, we need both a mechanism
for the scope of the variable and a parameter for its range. In other words, a logical
quantifier consists of the scope of a variable and the range of the variable. From
the pragmatic point of view, it is clear that bounded formulas are more frequently
used than unbounded ones. In translating natural language, restricted quantifiers
are usually represented as unrestricted quantifiers over a material conditional or
something equivalent. Thus, “All birds fly” is formalised as Va(~ Bird(z)V Flies(x))
or Vo(Bird(z) — Flies(x)) if the material conditional — is defined. In CF’ it is
represented as Va € [(Flies(x), where 3 is a bounder for birds. We prefer our
approach to the usual one. In our opinion, it is tidy, and emphasises the two aspects
of local generality. More importantly, as we mentioned in the introduction, bounded
universally quantified formulas, can be used to express the persistence of information
(see below). That is the primary motive for our use of bounded formulas instead of
unbounded ones.

Syntactically bounders® are flags on quantifiers. Semantically they are to be
interpreted as sets, that is in the same way as predicates are in classical first-order
logic. Then, it may be asked, why do we have a special syntax for bounders instead
of treating them simply as unary predicates? The answer is that a predicate such

as “Flies(x)” gives three possibilities: an object may fly, it may not fly, or it may

It is worth pointing out that bounders are very similar to sorts in a sorted logic (see [31])
though we will not explore any connection between them in this thesis.

3. First-Order Logic CF’ 38

be undecided whether it flies or not. But a bounder supplies only two possibilities:
an object is included in the bounder or it is not. The consequence is that Va(~
Y(x)Ve(x)) in fact says a little more than Va € Jp(x) (see Formal Semantics below
for exact comparison). It is the latter that captures the informal reading of “All
birds fly” rather than the former.

Conjunction and bounded existential quantification are defined as follows:

Ay =y ~(~p Vo~

dv € Bp(x) =g ~Vrep~p(r).

The concept of free and bound variables is defined as usual. Bound variables are used
as position markers only and thus Va € Bp(x) and Yy € Bp(y) would be counted
as the same formula. We use as above ¢, 1, x, ... as metavariables for formulas, and

7, A (with or without subscripts) for arbitrary sets of formulas.

3.3.2 Persistent Formulas

We have met the concept of persistence in Chapter 2. Put it in terms of situations,
it says that what is true in one situation is still true in a larger situation. Formally,

there is the so-called persistence principle, stated as
If s < s’ and s = o, then &' | o,

where s, s’ are situations, o is an infon, and |= is a support relation between situ-
ations and infons. If an infon o satisfies the persistence principle, we say that o is
persistent (see Barwise [8]). We have seen that in Chapter 2, one source of non-
persistence comes from the semantic notion of classical negation, which in essence
is a kind of negation as failure. In contrast, strong negation expresses a directly
established negative truth, and thus is both persistent and monotonic (see sections

2.3 and 2.4 for the formal characterisation).

3. First-Order Logic CF’ 39

However there is another source of non-persistence which comes from static uni-
versal quantification. Informally speaking, universally quantified sentences in nat-
ural language are not persistent. “Everyone here is hungry” may be verified when
evaluated from the situation in one poor household, but falsified when evaluated
from a larger situation including comfortable ones. There is a tension between
quantification and persistence. If we take it that the persistence principle is true
of every infon, then it seems universally quantified sentences have to be excluded
from the category of infons. And conversely, if universally quantified sentences are
taken as infons then the persistence principle would only hold partially (see pp.
234-236 of [8]). However, quantified sentences are such important forms for ex-
pressing information that they can hardly be excluded from the category of infons.
We also want to retain the persistence principle because, as situation theorists have
argued, it captures our intuition “that what goes on in part of the world still goes
on when one has a broader perspective”(see p. 236 of [8]). For the sake of both
persistence and a rich algebraic structure of infons, we only consider bounded quan-
tified formulas for which these problems do not arise. However, as we pointed out
in the introduction, in our present framework, a bounder [in Va € S¢(a) may be
non-persistent. So we introduce an auxiliary notion of persistent bounders. Syntac-
tically, persistent bounders are treated as a primitive notion. The semantic meaning
of persistent bounders will be given below (see condition (iii) on an interpretation
in Formal Semantics). Pragmatically, persistent bounders can be obtained by in-
corporating context into bounders in universally quantified sentences. Then we can

define persistent formulas of £ recursively as follows :

(i) R(ty,tq,...,t,) and ~ R(t1,1s,...,t,) are persistent for any n-ary predicate R,
terms t1,%,...,t,, and ¢ € 3 and ~ ¢ € 3 are persistent for any bounders 33

and 7

3. First-Order Logic CF’ 40

(ii) if o, are persistent, then so are ¢ V ¢ and ¢ A ¢;

(iii) ¢ D 4 is persistent for any formulas ¢, ¢;

(iv) if ¢ is persistent, then Va € ﬁpc,o(x) is persistent;

(v) if ¢ is persistent, then Jz € Bp(x) is persistent for any 5 € By.

Given a set ? of formulas, let 7% be {¢ € 7 : ¢ is persistent}. So the persistent
formulas of £ will be FY', where I is the set of all L-formulas. Note that, in
the definition of persistent formulas, negation is restricted to only atomic formulas.
Nevertheless, this will not lose any generality since the negation of a compound
formula, according to related rules (see Derived Rules for CF’ below), is equivalent
to another compound formula in which negation is applied to only atomic formulas.

By the definition, non-persistence of formulas is only due to the non-persistence
of bounders in universally quantified formulas. So, pragmatically, the persistence
of such formulas can be recovered by incorporating context into related bounders.
Nevertheless, there exists indeed a kind of unrecoverable non-persistence. In fact,
such non-persistence is the consequence of the partiality of situations. If a situation
is silent on o then it certainly does not preclude a larger more extensive situation
settling o. In order to express the unrecoverable non-persistence, we need to add a
kind of modal operators such as “definitely” into our language. Such an extension,
however, is outside the scope of this thesis (for more, see Mott [75]).

The syntactic definition of persistence will be used in Derived Rules for CF’

below.

3.3.3 Formal Semantics

Our semantical analysis is essentially similar to Thomason’s, but it is based on

general Kripke frames instead of particular ones, that is, we allow different points

3. First-Order Logic CF’ 41

in a Kripke frame to have different domains. A Kripke frame F is a triple (5, <, D)

such that
1) S is a non-empty set:
pty ;

(ii) < is a pre-order on S, that is, < is a reflexive and transitive binary relation

on S;

(iii) D is a monotone function assigning sets of individuals to the elements of 5,

that is, for any s,s" € 5, if s < s’ then D(s) C D(s').

S is to be thought of as a set of situations, < is the containment relation among
situations, and for each s € S, D(s) is the set of individuals existing at situation s.
An interpretation [of language £ on a Kripke frame F = (S5, <, D) is a function

such that: for any s,s' € S,c € C¢, R € PL, 3,87 € By,

(i) Is is a partial function from C into D(s), and (a) if s < " and I4(¢) is defined,
then Iy(c) is defined too and I5(c) = Iy (c); and(b) for each d in D(s), I5(d) is
defined and I,(d) = d.”

(ii) I5(R) is a partial function from the Cartesian product D(s)" into {T, F}, and

if s < &', then I,(R) is an extension of [;(R).

ni) Is 1s a total tunction from b, mmto s)) such that if s < ', then /g -
i) I | function f; B into P(D h that if !, then [

[,(B) and L,(87) = I,(8").

Clause (iii) in the definition of interpretation gives us the semantic meaning of per-
sistent sets. In other words, it is the semantic requirement for a set of individuals
to be persistent. It is worth pointing out the restriction incorporated in (iii) is com-

patible with the situation theoretic viewpoint though it may look ad hoc. Anyway,

"We are assuming that every object has a name. In effect we work with the expansion of
language £ to accommodate all the objects of all the countable domains.

3. First-Order Logic CF’ 42

situations are treated as first-class citizens in situation theory. So, one possible way
to ensure the persistence of universal quantified formulas would be to incorporate
reference to situations into them (see p. 236 of [8]). In this paper, however, we
instead adopt the device of persistent bounders.

A Kripke model M is a pair (F,[) consisting of a Kripke frame F and an
interpretation [on F.

Before we continue the formulation of formal semantics, some remarks seem in
order about the definition of Kripke models. First, note that, in a Kripke model
M = (S,=<,D,I), D(s) can be empty for any (and all) s € S. The use of bounders
means that the usual restriction to non-empty domains is unnecessary. Thus CF’
is inclusive in the sense that it allows the domain of quantification to be empty (see
pp. 379-382 of Bencivenga [14]).

Second, note that the function IJC is partial. So CF’ allows for non-denoting
constants as a free logic does (see [14]). In a free logic, an extra unary predicate E
or something equivalent is introduced to deal with reference failure. Nevertheless, in
CF’, we do not need such a special predicate. Bounders of quantifiers can play the
role of the predicate E of free logic. It may be that bounders are preferable to an
existence predicate, at least if one wishes to confine existence to a purely semantic
role (as we would). Anyway, it will be no surprise that some axioms and inference
rules of CF' will correspond to axioms and inference rules of a free logic.

Next, note that the function I,[P? (n > 0) is also partial. That is to say, it may
be the case that a basic sentence R(cy,ca,...,c,) is neither true nor false, so CF’
allows truth value gaps. Such gaps may arise from the use of inexact predicates,
but we emphasise that there is another source of truth value gaps — the partiality
of situations.

When a predicate has truth value gaps, we call it a partial predicate, otherwise

a total predicate. A total predicate can be interpreted as a set, that is in the

3. First-Order Logic CF’ 43

same way as predicates are in classical first-order logic. With partial predicates,
however, we have to associate two sets: one is for the positive assertions, the other
for the strong negative assertions. So we might as well divide a partial predicate into
two parts, a positive part corresponding to the positive assertions, and a negative
part corresponding to the strong negative assertions. We recall that, syntactically,
bounders are flags on quantifiers. Semantically, as can be seen from the clause (iii)
in the definition of interpretation, bounders are interpreted as sets. What sets, then,
should we associate with a bounder 37 There are two natural candidates. We could
say that 3 was assigned all the objects in the current situation. Then V& € Bp(x)
would be supported by s provided that s made true ¢(a) for each object a in D(s).
In this case, bounder (is nothing more than a denotational variant of the existential
predicate E of free logic (see pp. 251-252, Garson [45]). An alternative would see
bounders in a more restricted way as corresponding to the positive parts of particular
predicates, so that Yo € Bp(x) would be interpreted as asserting of all the objects
that were 3 in the current situation that they were also ¢. In fact, we choose here
not to restrict bounders beyond requiring that the objects a bounder [is associated
with in a situation s are all objects that belong to the situation s.

Given a Kripke model M = (S, =<, D, I), we define a satisfaction relation =7,
(or simply =) and a refutation relation =3, (or simply =") between situations
s € S and L-sentences ¢ relative to M as follows, by induction on the complexity

of ¢:

(i) s Bt Rlei,caen) iff Lie), L(cs), s I(cy) are all defined and
L(R)(L(c1), L(c3), ey Io(ca)) = T
s B Rlei,enncy) i L(er), I(c2), oy I(c) are all defined and
L(R)(L(c1), L(c2), o, () = F
s |t e € Biff L(c) is defined and I,(c) € L,(3)

s =7 ¢ € §iff either I5(c) is not defined or

3. First-Order Logic CF’ 44

I(¢) is defined and [(c) € D(s) L I,(3)

(i) sEY eV il sEY por s ET ¢

sET VY iff sE" pand s "¢
(i) s Et~piff s 7 ¢
sET~piff s ET o

(iv) s ET ¢ D o iff for all s’ such that s < s"if s’ E' ¢ then s’ T ¢

sET DY il sET pand s 7 o

(v) s =t Ve € Bo(x) iff for all d € D(s), if s =T d € 3 then s = o(d)
s B Vo € Bo(x) iff for some d € D(s), s ET d € p and s E~ ¢(d).

Basic semantic notions such as consequence, satisfiability and validity can be defined
in the usual way in terms of the satisfaction relation =". For any sentence ¢ and
set 7 of sentences, we write = ¢ to indicate that ¢ is valid, 7 F ¢ to indicate that
@ 1s a semantic consequence of 7, and 7 F A to indicate that there is a subset

{1,925, n} of A such that 1V @2 V...V ¢, is a semantic consequence of 7.

Lemma 3.3.1 (Persistence Lemma) Let M = (S, <, D, I) be a Kripke model,

@ a persistent formula of L.
(i) f s < s and s EY ¢ then s =T ¢;

(ii) if s < s’ and s =t 7 then s’ =T 77,

Proof. For (i), routine induction on the complexity of ¢. (ii) is a straightforward

corollary of (i).

The persistence lemma (i) gives us the semantic meaning of persistence. It can

be viewed as a variant of the persistence principle.

3. First-Order Logic CF’ 45

3.3.4 Axiomatic System for CF’

Our axiomatic system CF’ is based on the axiomatic systems for constructive logics
with strong negation (see [94], [54], and [2]). It takes as axioms the following list of

schemas:
(AL) " D ¥ D"

(A2) D (¥ DX)D.¢ D¢ D.9p DX

(A3) A Dy

(Ad) oA D

(A5) " D v Dl AW

(A6) ¢ DoV

(AT) ¥ DoV

(A8) y DX D. ¥ DX D.eVY Dy

(A9) o D. ~p D

(A10) ¢ € B A p(c) D 3z € Be(x)

(A11) Vz € Bp(z) D ~ce BV p(c)

(A12) V€ B V() D (¢ V Va € B(x))
(AL3) ~ (pAY) =~V ~

(Ald) ~ (pV)=~p A~

(ALS) ~~p =0

(AL6) ~(pDY)=@ A~

3. First-Order Logic CF’ 46

(AL7) ~Vz € Bp(r) =3z € B~ ¢(x)
(A18) ~ dz € Bp(x) =Vr € B~ ¢(x)
(A19) ce BV ~cep

In axioms Al and A5, ¢ means that ¢ has to be persistent, which is the small price
we have to pay for the relaxation of the dynamic condition on universal quantifiers
to the static one. In order to see why this restriction is necessary, let us consider

the following formula ¢
Ve e fR(x) D T D Ve € BR(x)

For this formula, our persistence condition on Va € FR(x) is actually to require that
0 is a persistent bounder. If 3 is not persistent, it is not difficult to find out that ¢
cannot be valid based on our formal semantics for CF'.

In axiom A12, z is required not to be free in ¢. In addition, note that axiom A12
is not assumed in constructive logics (see [54], and [2]). We emphasise our situation
theoretical standpoint rather than intuitionistic or constructive viewpoint. So there
seems nothing preventing us from assuming the axiom.

With axiom A19, we are assuming that, at any situation, we can always decide
if a constant ¢ is in # or not. The assumption is consistent with the semantic
interpretation of 3 given above. In addition, note that axioms Al13 and A18 can
in fact be derived from the other axioms and related definitions, and thus can be
omitted.

CF’ has the following inference rules:

0, p D¢
P

(R1)

cE€BNpe) D
v € Bo(x) D4

(R2)

3. First-Order Logic CF’ 47

YD (~cEBVyple))
W DV € fp(r)

(R3)

In rules R2 and R3, the constant ¢ is required not to occur in .

The axiomatic system CF’ is a first-order modification of Almukdad and Nelson’s
N as well as Thomason’s CF.® If we delete axiom A9 from CF’, denoted CF'~, then
we have a system which is a modification of Almukdad and Nelson’s N™. Since axiom
A9 is not available in CF'~, we need another axiom to the effect that ¢ € 3 and
~ ¢ € 3 do not hold at the same time, say ¢ € 3 A ~c € D L. So, with logic
CF’'~, inconsistent situations are allowed, but the inconsistency of situations does
not arise from the contradictory statements of form ¢ € 8 A ~ ¢ € (3.

Basic notions (relative to CF') such as thesishood, consequence, and consistency
can be defined in the usual way. For any sentence ¢, and set 7 of sentences, we write
F ¢ to indicate that ¢ is a thesis of CF’, 7 I ¢ to indicate that ¢ is a consequence
in CF' of 7, and 7 F A to indicate that there is a subset {¢1, @2, ..., 0, } of A such
that @1 V@ V... V¢, is a consequence of 7.

From the definition of thesishood and consequence, it is easy to prove the fol-

lowing lemma.

Lemma 3.3.2 Let 7, A be sets of L-sentences. If 7 F A, then 7' F A’ for some

finite subsets 7' and A" of 7 and A, respectively.

3.3.5 Derived Rules for CF'.

In this section, we list some rules for the deducibility-relation F of CF’ between sets
of L-sentences that are needed in the proof of semantical completeness. It is not
difficult to derive them from the axioms and rules of CF’ given before. We divide

these rules into three groups. Group I consists of two structural rules, and group II

8Note that neither N nor CF is formulated in axiomatic formalism.

3. First-Order Logic CF’ 48

some operational rules. For CF'~, rule ~ E is to be replaced by a rule equivalent
toce€ fAN~ce D L. Group Il is about connection between strong negation
and other connectives. Lacking the ~-introduction rule, we have to use numerous
negation rules to connect negation and other connectives by driving strong negation
back and forth across them. Note that, because there is no rule of ~-introduction,
we are able to use multiple-conclusion rules without in general being able to derive
the Law of Excluded Middle (see the related remarks on p. 82 by Gentzen [50], and
the example about the derivation of the law on p. 85 of [50])

Group 1.

R: If 7 and A are not disjoint, then 7 - A.

TEA
T:
7,0k = A
Group II.
TEp, A T AT A TRV A
VI - VE:
TEeVY, A TEA
7P ok TEe DY, A T F e A
oL D E:
P D TEY A
TR AT E A~ A
T ¥ ¥
TEA
TE~cefBVele)A T Ve z), A
" BV ple) I Be(x)
7 EVz e fp(r), A Th~cefVe(e),A

In VI, ¢ has no occurrence in ¢(x), or in any member of 7 or of A;

3. First-Order Logic CF’ 49

Group III.
Th~p, Ay TE~Y, A
~ VI:
ThE~(p Vi), A
. ThE~(pVy)A TE~(pVy)A
~ VI
TF o~ A 7 F~, A
7o, A
7 F ~~ o A
7 F ~~ o A
~~ E: =
7o, A
TEO, A T E~Y A
~D I
ThE~(pDe),A
. TE~(pD¥)A TE~(pD¥)A
~D
7o, A 7 F~, A
PFeeBA~p(c),A
L BA~pc)
T E~Vre fp(r), A
g TE Vo€ Bp(a),A; TcE€BA~ple) FA

THEA

In ~ VE, ¢ does not occur in (), or in any member of ? or of A.

Theorem 3.3.1 (Soundness of CF') Let 7 be a set of L-sentences, and ¢ a L-
sentence. and M = (S, <, D,I) a model of L, s a situation in M. If 7 F ¢, and

s =T 7, then s =1 .
Proof. Proof is routine and thus omitted.

Note that the soundness of CF’ would fail if we included a rule of ~-introduction
(~-I) to the effect that from 7, F A we can infer 7 F~ ¢, A. To see this, observe

that, by derived rule R of CF', ¢ - p. By ~-I it then follows that F~ ¢, ». And so

3. First-Order Logic CF’ 50

F~ @ V ¢ by rule V-I. But it is not difficult to see that ~ ¢ V ¢ is not valid in the

current semantic framework. This shows that ~-I is not sound in CF’.

3.4 Completeness of CF’

In this section, we show that first-order logic CF’ is semantically complete, based
on Thomason’s completeness proof techniques in [98]. We first introduce related

definitions and prove some auxiliary lemmas.

Definition 3.4.1 A set 7 of L-sentences is L-w-complete if for all L-formulas ¢(z),
we have 7 FVz € fp(z)if 7 F ~ce V() forall c € Cpz. And ? is L-saturated

if it meets the following five conditions: for any L-sentences ¢, 1,
(i) ? is consistent;
(ii) 7 is deductively closed, that is, if 7 F ¢, then ¢ € 7;
(iii) if ? F @ Ve, then 7 F @ or 7 o;
(iv) if ~ Vo € Bp(x) € 7, then for some constant ¢ € Cz, c € B A ~ p(c) € 7,
(v) 7 is L-w-complete.

Lemma 3.4.1 (Saturation Lemma I) Let 7 be a set of L-sentences, and ¢ a L-
sentence. Suppose 1t/ @. Let C = {co,c1,¢a,...} be a countable set of constants
foreign to L, B a set of bounders of LUC, and L = LU C U B. Then there is a

L'-saturated set 7, such that 7 C 7, and 7,V .

Proof. In order to obtain required 7, we define two sequences (7;); and (A;); by
induction as follows. Let (¢;); enumerate all L'-sentences, and (p;1 V @;2)i, (Vo €
Bipi(x)); and (~VYa € Bip;(x)); enumerate with infinite repetition all disjunctive,

bounded universal and bounded existential sentences of L' respectively.

3. First-Order Logic CF’ 51

Let 7 = 7 and A¢ = {¢}. Suppose that 7, and A, have been defined. To
define 71y and Agyq, we distinguish the following five cases.

Case 1. k=4n, Tp F @u1 Vina, and ¢,1 € 7 and @, 2 € T5. Put

Trr1 = TrU{enit,

Ak-l—l = A]ﬁ

where i is the least of {1,2} such that 7, U{¢n.} ¥ Ay.

Case 2. bk =4n+1. 7 b ~ Vo € Brpa(x),Ar and for all constants ¢ € Cp,

(c€ B, N~e,(c)) &7y Put

Tt = TpU{ck € Bn A~ onler)l,

Ak-l—l = A]ﬁ

where ¢ is the first member of C'z not to occur in ¢,(x) or in any member of 7
or of Ayg.
Case 3. k = 4n + 2, there are two subcases.

Case 3.1. 7,0, F Ag. Put

?k-l—l = ?k7

A = Ay U{enls

Case3.2. ¢, & 7y and 74,0, ¥ Ay, Put

Terr = TrU{ent,

Ak+1 — Ak

3. First-Order Logic CF’ 52

Case 4. k = 4n + 3. 7, Vo € Bupn(x) B Ay, and for all constants ¢ € Cp,

(~c€BnVepnlc) & Ay Put

?k-l—l = ?k7

Ak_|_1 = Ak U {N Cp € ﬁn \ S‘Qn(ck)}v

where ¢ is the first member of C'z not to occur in ¢,(x) or in any member of 7
or of Ayg.

Case 5. None of the cases above applies, put

?k-l—l = ?k7

Ak+1 — Ak

It is then not difficult to check by induction that for any & € w, 7, F/ Ay using
the derived rules for CF’. To illustrate, let us consider case 3.1. We need to show
that if 74,0, F Ag, then 7,/ Ap U {p,}. Suppose 75 F Ap U {p,}. We assume
that ¢,, Ax and Ay U {p,} are the same set of formulas. By rule T and rule VI,
we have 71 F ¢, V ¢,, Ar. Since we are assuming that 7z, ¢, F Ay, it follows that
71 B Ay by rule VE. But this contradicts the induction hypothesis. So we have
T ApU{ent

Now let 7, = U{?; : k € w} and A, = U{A, : k € w}. We can show
that 7, / Ay, 7, = Foo LA, and 7, is L'-saturated as desired. The details of

verification are omitted.

Lemma 3.4.2 (Saturation Lemma II) Let ? be a set of L-sentences, and ¢ and
Y L-sentences, and BE all the persistent bounders in L. Suppose p D b & 7. Let
C = {co,1,Ca,...} be a countable set of constants foreign to L, B a set of bounders

of LUC, and L' = LUCUB. Then there is a L'-saturated set 7, such that 77 C 7,

3. First-Order Logic CF’ 53

o€, butp €, and (~c; €)€, for anyc; € C.3F € BE.

Proof. The proof is similar to that of Saturation Lemma I except that this time we

let 7o =P U{plU{~¢c; €8 :c; € C & BF € BE} and Ag = {2}

Definition 3.4.2 (Canonical Model Construction) Let Cy,Cy, Cs, ... be a countable
sequence of disjoint countable sets of constants foreign to £. Let C be €, U Cy U
..U, and B, a set of bounders of LU (7 such that B; C B, for any [<m < n.
Then for language £, = L U (UC,) U (UB,,) , we can define a Kripke model M =
(S, =, D, I) as follows:

(i) S consists of all 7 such that for some n, Lr = LU C} U B,, and 7 is

Lr-saturated.

(ii) for any Lr-saturated set 7 and La-saturated set A with Lr = LUC UB,,
and Lo = LUCYU B, (m < n),? < Aifand only if 77 C A and for any

c€Cr L Crand B € By, (~ce BP) € A.
(iii) if ? is Lp-saturated and Lr = LU C U B, then D(?) = C, U C}.

_ c ifce CoUCT
(iv) Ir(c) =

undefined otherwise.
(v) Ir(B)={ceC,UCr:(cepB)e?]

T if R(eq,c2,.00) €75
(vi) Ir(R)(c1,¢ayeyCn) =< F if ~ R(er,e2,.000) €75

undefined otherwise.

Lemma 3.4.3 (Truth Lemma) Suppose M = (S, <, D,I) is a canonical Kripke

model associated with L. Then for all 7 € S, and all Lr-sentences v, we have

TEY X ifand only if x € 7.

3. First-Order Logic CF’ 54

Proof. By induction on the complexity of y.

Case 1. y is an atomic sentence R(cy, ¢g, ..., ¢,) or ¢ € 3, the lemma holds by the
definition of a canonical Kripke model.

Case 2. y is an atomic sentence ~ R(¢q, ¢z, ..., ¢,), the lemma holds again by the
definition of a canonical Kripke model. If y is ~ ¢ € 3, suppose that ? =t~ c € 3,
that is 7 == ¢ € (. By definition, either Ir(¢) is not defined or Ir(c) is defined
and Ir(c) € Ir(3). In either case, (¢ € 3) ¢ 7. By axiom A19 and saturatedness of
7, we get (~ ¢ € 3) € 7. For converse, let (~ ¢ € #) € 7. By axiom A9 and the
consistency of 7, we get (¢ € 3) ¢ 7. From this it follows that ? =T~ ¢ € .

Case 3. x is ¢ V . Straightforward and thus omitted.

Case 4. x is ~ (¢ V ¢). Straightforward and thus omitted.

Case 5. y is ¢ D 1. Suppose ¢ D ¢ € 7. We show 7 |E ¢ D . For any A
such that 7 < A, we have 77 C A. Since ¢ D) € 7 and ¢ D ¥ is persistent, we
get o D € 7P C A. It follows that if ¢ € A, then ¥ € A by rule D E. By the
hypothesis of induction, then, for all such A, if A = ¢, then A |= v; and therefore
T Ee D

Conversely, suppose ¢ D & 7, then ¢ D € 77 so 77 U {p} I/ ¥ by rule
D [. Using the Saturation Lemma II, we can get a saturated set A € S such that
7T < Ajp € A but ¥ € A. By the hypothesis of induction, we get A = ¢ but
A . Thus 7 e D .

Case 6. xis ~ (¢ D). 7 ET~ (p Do) if and only if 7 =" D ¢ if and only
if? =t pand ? =" ¢ if and only if 7 =1 ¢ and 7 =T~ ¢, and this if and only if
@ €7 and ~ ¢y € 7 by the hypothesis of induction. But ¢ € 7 and ~ ¢ € ? if and
only if ~ (p D) € 7 by rules ~D T and ~D E.

Case 7. x is ~~ . Straightforward and thus omitted.

Case 8. x is Vo € Bp(x). Suppose 7 ET Vo € By(x), then for all ¢ € D(7),

if 7 T ce p,then 7 EY ¢(c). But ? Et c € 8V ~ ¢ € (. It follows that for

3. First-Order Logic CF’ 55

all c € D(7), 7 Et~c € BV p(c),so(~c€ V() €? by the hypothesis
of induction. Thus V& € Bp(x) € 7 by the Lr-w-completeness of 7. Conversely,
suppose Vx € Be(x) € 7, then for any ¢ € D(?), (~ c € BV p(c)) € 7 by rule
VE, so ~c€ €7 or p(c) €7 by the saturatedness of 7. Since ? is consistent, if
cepe? then~cefd? s0p(c)e?. Thatis, for any c € D(?),if 7 Et ce g
then 7 =1 (c) by the hypothesis of induction, so ? E* Va € ().

Case 9. x is ~ Va € Bp(x). The proof is similar to that for case 8 except that

we use condition (iv) of Lp-saturatedness of 7 and rule ~ VI, completing the proof.

Theorem 3.4.1 (Strong Completeness for CF’) Let ¢ be a L-sentence and ?

a set of L-sentences. If 7 F ¢ then 7 F .

Proof. Suppose 7 I/ ¢. By canonical model construction, we can associate L with
a canonical Kripke model M = (5, <, D,). Saturation Lemma I then guarantees
us that there is a A € S such that 7 C A and ¢ ¢ A. By Truth Lemma, A |=?

but A = ¢. Therefore, 7 H .

3.5 First-Order Logic CF’ and Infon Logic

The main result of this chapter is the proposal of a first-order logic CF’ with strong
negation and bounded static quantifiers, which is a variant of Thomason’s logic CF.
Different from most constructive logics, quantifiers in our system as in Thomason’s
are static rather than dynamic. Our intention is to develop CF’ further so that it
can serve as a logic for situation theory.

Originally, situation theorists were not much concerned with developing their
own logical systems. Their semantic theory of consequence emphasised the exter-
nal significance of language and the role of non-linguistic contexts. Consequence is
for them no longer a relation between syntactic elements. There is no exact cor-

respondence between the information conveyed by an utterance and the sentence

3. First-Order Logic CF’ 56

used to convey. In fact “... there can be no syntactic counterpart, of the kind
traditionally sought in proof theory and theories of logical form, to the [situation]
semantic theory of consequence.” (see pp. 44-45 of Barwise and Perry [11]). How-
ever the desire to use situation theory and situation semantics to give an account
of inference eventually led Barwise and Etchemendy to construct a situation theo-
retical model of inference, emphasising information content. They called this infon
logic; that is a logic whose elementary formulas represent items of information and
whose compounds correspond to ways of compounding those items (see Barwise and
Etchemendy [10], [32]).

In [10], Barwise and Etchemendy argue that infon logic is at least intuitionistic
but not classical. This argument is problematic. There are at least two issues asso-
ciated with the argument as we pointed out in the first chapter. One is about what
kind of negation is used in infon logic. Is intuitionistic or strong negation used in in-
fon logic? The other is about the form of universal quantifiers. Are dynamic or static
quantifiers used in infon logic? We have argued in the first chapter that negation in
infon logic should be strong negation rather than intuitionistic one. As to universal
quantifiers, from the situation-theoretic viewpoint, static universal quantifiers are
more desirable than dynamic ones for the reasons we discussed in this chapter. In
fact, quantifiers in related situation theoretical literature are interpreted in one way
or another statically rather than dynamically (see p. 271 of [8], pp. 134-136 of [32],
and p. 109 of [38]) though they are not treated in Barwise and Etchemendy’s infon
logic [10]. Since it is intuitionistic negation and dynamic universal quantifiers that
are used in intuitionistic logic, we conclude that infon logic cannot be intuitionistic
either.

Instead, we are inclined to use constructive negation, more generally, to use
constructive logic with strong negation as the underlying logic for situation theory

but to interpret quantifiers statically rather than dynamically. That is the way we

3. First-Order Logic CF’ 57

arrive at the logic CF' from situation theorists’ work on infon logic. However, we do
not claim that our logic is fully-fledged. For one thing, the components in a basic
formula R(ay,as, ..., a,), or using the notation of infon logic, < R, ay,az,...;a,;1 >
are still individuals whereas infon logic allows them to be any objects. Nevertheless,
we do intend to claim that our logic preserves many features of infon logic since
(i) CF' is partial in the sense that a formula can be neither true nor false; (ii)
it has a rich algebraic structure of persistent formulas; (iii) with strong negation
available, CF’ has in fact two kinds of basic formula very similar to the two kinds
of basic infons of situation theory; (iv) the negation of compound formulas satisfies
DeMorgan’s laws which are assumed to hold in situation theory; (iv) quantifiers
in CF’ are static, as is consistent with the situation theoretical interpretation of

quantifiers.

Chapter 4

Deductive Databases

From this chapter onwards, we are going to discuss both nonmonotonic negation
and strong negation in deductive databases. The discussion will be in the more
general context of logic programming. Our emphasis, however, is on the database
viewpoint. In the present chapter, we first of all briefly consider one of limitations
in expressive power under the conventional relational model. This should motivate
the deductive approach to databases. Then we give the formal definitions of a logic
program and a deductive database. Finally, we consider one of central problems in
the deductive approach, that is the problem of negation, which is closely related to

nonmonotonic reasoning.

4.1 From Relational to Deductive Databases

In the area of database theory, the relational model, introduced by Codd in 1970s
in a series of papers [26], [27], [29], [28], [30], has become dominant. As its name
suggests, the model has relations as its data structures. Based upon relational
algebra or the equivalent relational calculus, manipulation of data in a relational

database is a model-theoretic process (see [77] and [92]): the database is treated as

38

4. Deductive Databases 59

an interpretation of the query language, and queries and integrity constraints are
logical formulas that are to be evaluated over the interpretation using the well-known
Tarski’s truth definition (see [13]). A typical characteristic of a relational system is
its declarativeness: the user may query or update a database in a declarative way by
saying what is wanted, rather than in a procedural way by saying how the operation
is computed. With its simplicity and declarativeness, the relational database model
has enjoyed widespread success. The leading database vendors produce relational
systems', including IBM’s DB2, Oracle, Informix, INGRES, Sybase, and Microsoft
Access.

However, it has long been recognised that the relational model is not perfect
and has one or another limitation (see [61] and [92]). One conspicuous deficiency

2. In order to see this, we recall that non-recursive datalog

1s its expressive power
with negation is one of three syntactically different but equivalent relational query
languages, the other two being the relational algebra and relational calculus [1]. In
the non-recursive datalog with negation, recursion is explicitly forbidden, that is to
say the relational model itself does not provide any facilities for expressing general
rules. As a result, the transitive closure of a relation cannot be defined in a rela-
tional query language without interfacing with a host procedural language. Indeed,
practical relational query languages like Structured Query Language (SQL) are usu-
ally embedded in full programming languages such as C programming language to
express recursion (see [61] and [1]).

Although with SQL being embedded in a full programming language, SQL state-
ments are allowed to be coupled with host language programs, and thus recursion can

be provided by “while” loops in the host language; nevertheless, the declarativeness

of the relational systems is thereby compromised.

IThese systems may be object-oriented as well.
2For the study of the expressive power of a relational query language in a formal framework,
see [1] and citations there.

4. Deductive Databases 60

There has been much effort devoted to extending the relational model instead of
coupling a relational query language with a host programming language. Deductive
database systems are one such extension (see [44], [92], [71], [15], [87]). In com-
parison to relational systems, deductive systems adopt a proof-theoretic paradigm

3. Accordingly, a database is not taken as an

rather than the model-theoretic one
interpretation but as a theory consisting of a set of first-order sentences, and exe-
cuting a query or satisfying an integrity constraint is regarded as proving that some
specified formula is a logical consequence of the theory (see [77] and [92]).

Another important thrust to the development of deductive databases is owed to
logic programming, more generally to automatic theorem proving. See [71] for a his-
torical introduction of the development of deductive databases, and the relationship
between deductive databases and logic programming. Indeed, deductive databases
can be seen as the integration of relational databases with logic programs, with
relational query languages being extended to logic programming languages. For
non-recursive datalog with negation, this means that it is extended to (recursive)
datalog with negation (see [1]).

With the presence of general rules in deductive databases, the transitive closure
of a relation can be recursively defined in a straightforward way, and thus it be-
comes possible to query a deductive database about recursively defined relations.
So, deductive systems provide a simple solution to the weak expressive power of the
relational model. The increased expressive power of deductive database systems, as
pointed out in [87], “is important in a variety of application domains, including deci-
sion support, financial analysis, scientific modeling, various applications of transitive
closure (e.g. bill-of-materials, path problems), language analysis, and parsing.” (see

also [88]).

In addition to the stronger power, the proof-theoretic approach to database the-

3In [92], it is shown that how the model-theoretic perspective on databases can be reinterpreted
in purely proof-theoretic terms.

4. Deductive Databases 61

ory against the model-theoretic one has logic as a single uniform formalism for
describing facts and rules in databases, queries and integrity constraints, and for
a variety of other apparently different problems, including verification of integrity
constraints, program correctness proofs and many others (see [44]). More impor-
tantly, with logic programming languages as declarative database query languages,
deductive database systems preserve the important property of being declarative.
The proof-theoretic approach to databases despite its merits does have its own
difficulties to overcome. Before we move on to discuss the problem of negation in

deductive databases, we give the main concepts and notations.

4.2 Logic Programs and Deductive Databases

From the database viewpoint, deductive databases are an extension of the traditional
relational databases. In a deductive database, there are not only ground atoms,
which correspond to tuples of the relations in relational databases, but also general
rules, which constitute the extended part.

From the logic programming viewpoint, deductive databases can also be equally
seen as logic programs. A major difference between deductive databases and logic
programs is that deductive databases are usually restricted to function-free lan-
guages. Another difference between deductive databases and logic programs is that
databases usually have more facts than rules whereas logic programs are other way
around. See [1] for a brief summary of the differences between two fields. From
a theoretical viewpoint, these differences are inessential and can be ignored. So
deductive databases and logic programs are often used interchangeably.

Although there is no great difference between deductive databases and logic
programs at the theoretical level, we shall nonetheless define logic programs and de-

ductive databases in a slightly different way. This as we shall see mainly is concerned

4. Deductive Databases 62

with the representation of negative information.

Both deductive databases and logic programs use the language of first-order logic
as their underlying language. But, the terminology and notations used are to great
extent different from that in first-order logic. Following the convention of logic
programming, we shall use comma “,” for conjunction, use “not” for non-monotonic
negation, and use uppercase letters X, Y, Z. for variables, and lowercase letters
for predicates, constants and functions if there are any. The word ground is used to

mean variable-free.

Definition 4.2.1 A normal logic program or simply a program , consists of a finite

set of rules of the form

p:L gi,q2, .., Gy Ol Gna1, . .., 0L qp.

where m,n > 0, and p and ¢; are atoms. p is called the head of the rule, the ¢;
make up the body of the rule. An atom is of form p(t1,1s,...,1,), where p is an n-ary

predicate symbol and t1,1,, ..., 1, are terms which are defined as usual.

If p is an atom, then p is a positive literal, notp is its negative literal, and they are
complements of each other. For any literal {, we use [for its complement. For any
rule r in a logic program, we use head(r) for its head, body(r) for its body. A literal
[€ body(r) is called a subgoal. For a set L of literals, we use L* for positive atoms
in L, L~ for atoms whose negative literals are in L. For a set A of atoms, we use
not- A for the set {notp : p € A}. Thus, we have body(r) = body(r)* Unot-body(r)~.

If a rule has no negative literals in its body, then it is a definite rule. A normal

logic program is definite provided that the program consists of only definite rules.

Definition 4.2.2 The Herbrand universe of a program P, denoted HU p, is the set of

all ground terms constructed from only the constant symbols and function symbols

4. Deductive Databases 63

in the program. In the case the program P does not contain a constant symbol, we
add an arbitrary one to the universe HU p so that ‘HU p is not empty.
The Herbrand base of P, denoted H Bp, is the set of all ground atoms constructed

from predicates in P whose arguments are in HU p.

We shall assume that all rules in a logic program are ground. That is to say,
we assume all variables in logic program P are already instantiated relative to its

Herbrand universe.

Definition 4.2.3 Given a normal logic program P, and a set L of ground literals
whose atoms are in the Herbrand base HBp of P. If there is no ground atom p such

that both p and notp are in L, then L is said conflict-free; otherwise, it is conflicting.

For a conflict-free set L of literals, if L contains every atom of the Herbrand base
or its negation, then L can be taken as a Herbrand interpretation (see [64]) with the
understanding that missing atoms from a Herbrand interpretation are now explicitly
represented as the negative literals in L.

A literal [is said to be true in a set L of literals if the literal [is in L; and false
in L if its complement [is in L. For a Herbrand interpretation L, a rule of P is
satisfied in L if whenever all subgoals are true in L, the head is also true in L. If
every rule of P is satisfied in a Herbrand interpretation L, then L is a model of P.

In the above definition of logic program, facts are integrated with rules; facts are
taken as special rules with the empty body. In the following definition of deductive
databases, we shall have facts separate from rules, dividing information into two

categories: facts and rules (see [87]).

Definition 4.2.4 A deductive database DDB is a tuple (DB, P) of a set DB of facts

(also called data), and a set of rules, that is a normal program P.

4. Deductive Databases 64

Facts are represented by ground atoms. The data DB are referred to as the
extensional database and the normal logic program P as the intensional database.
Given a deductive database (DB,P), its predicates are accordingly divided into
two categories: extensional predicates and intensional predicates. An extensional
predicate is a predicate occurring either in DB or only in the body of a rule. An
intensional predicate is a predicate occurring as the head of some rule of P. Fur-
thermore, there is a similar division among atoms. An extensional atom is an atom
whose predicate is extensional. An intensional atom is an atom whose predicate is
intensional.

An extensional predicate may occur in the body of a rule but not the head of
any rule. In contrast, an intensional predicate may occur both in the head of a rule
and in the body of the same rule, but if an intensional predicate occurs only in the
head of a rule, we call it a simply intensional predicate. A simply intensional atom
is an atom whose predicate is simply intensional. The notion of simply intensional
atom will be used in the definition of quasi-stable semantics in Chapter 6.

Given a deductive database (DB, P), one of main tasks is to determine the ex-
tensions of intensional predicates, that is the semantics of its intensional component
[P since the the meaning of its extensional component DB is clear cut: all exten-
sional atoms are taken as true if they are in DB, and false otherwise. Based on this
observation, we may as well assume that P is purely intensional in the sense that
there are not any extensional atoms occurring in the body of rules of P. If there is
any such extensional atom p, we can always reduce P based upon DB to a purely

intensional program in the following way:

(1) if p occurs in the body of some rule of P,

o if pisin DB then remove it from the rule;

e pisnotin DB then remove the rule since then the rule will never be fired

4. Deductive Databases 65

to infer any information;
(2) if not p occurs in the body of some rule of P,

e if p is not in DB, then remove not p from the rule;

e if pisin DB, then remove the rule since then the rule will never be fired

to infer any information.

For a purely intensional component P of a deductive database (DB,P), it is
not difficult to see that its meaning is independent of the corresponding extensional
component DB. So we may restrict our discussions to logic programs.

The point of separating facts from rules in a deductive database as we mentioned
earlier is concerned with the representation of negative information. This is a good
place to offer an explanation of this. In the extensional component of a deductive
database, positive facts are explicitly represented whereas negative facts are implic-
itly represented. In contrast, the same strategy of implicitly representing negative
information as we shall see in the next chapter is not always adequate for the in-
tensional component in the sense that the computation of extensions of intensional
predicates may involve explicit representation of negative information. With facts
and rules separated, we may still use the strategy of implicitly representing negative

facts for extensional databases.

4.3 Why Negation?

Given a database, we are concerned with what can be drawn from it from the in-
formational viewpoint. In the context of relational databases, information retrieval,
as we mentioned in the beginning of this chapter, is a model-theoretic process. A
relational database is taken as an interpretation. The truth of atomic queries, that is

atomic queries of form p against a relational database is determined by its presence

4. Deductive Databases 66

or absence in the database. The truth of more complex queries is then evaluated
using Tarski’s truth definition. In contrast, the information retrieval in the context
of logic programs is a proof-theoretic process. A logic program is taken as a theory.
The truth of a query against a deductive database is determined by its provability
from the database. Unfortunately, provability is a very strong condition which is
not suitable from the database viewpoint.

In the second chapter, with the analysis of classical negation at the semantic
and proof-theoretic levels, we have shown that on the one hand, a monotonic de-
ductive inference mechanism is not adequate for dealing with negative information
even in the area of relational databases. This is because classical negation at the
proof-theoretic level expresses inconsistency which is monotonic whereas negative
information concerned in the area of databases is usually nonmonotonic. On the
other hand, the semantic rule M2 does provide us with a mechanism for deriving
desired negative information in the context of relational databases.

Unfortunately, the semantic rule M2 is no longer valid in the context of deductive
databases. Consider the following logic program P, which is an extension of the

relational database we discussed in the second chapter:

4. Deductive Databases 67

teach(frege, first-order-logic).

teach(cantor, set-theory).

teach(tarski, model-theory).

teach(turing, recursion-theory).

teach(godel, proof-theory).

teach(tarsku, proof-theory).

teach(turing, proof-theory).

teach(X, set-theory) : L teach(X, model-theory).

teach(X, set-theory) : L teach(X, recursion-theory).
(

teach(X, set-theory) : L teach(X, proof-theory).

and two queries to it,

q1 : Who does not teach proof-theory?

g2 : Who does not teach set-theory?

Intuitively, we want { frege, cantor} to be the answer to ¢; since P contains neither
teach(cantor, proof-theory) nor teach(frege, proof-theory). But the final rule of P is
only concerned with set-theory instead of proof-theory, so it cannot be used to in-
fer any information about teach(cantor, proof-theory) or teach(frege, proof-theory).
However, first-order logic itself does not enable us to reach the intended an-
swers to the query ¢1. To logically infer that —teach(cantor, proof-theory) and
—teach(frege, proof-theory), we have to show that teach(frege, proof-theory) Vv
teach(cantor, proof-theory) is not consistent with P. From the given information,
however, this is impossible since we can find a model for teach(frege, proof-theory) v
teach(cantor, proof-theory) and P. So we cannot logically reach the conclusion.

As to the second query ¢z, we want {frege} to be the answer to it. Using

4. Deductive Databases 68

the same argument as for ¢;, we know that this conclusion cannot be logically
reached either. But this time, we do not want to include tarski, or turing or
godel in the answer. Although P does not directly contain teach(tarski, set-theory),
teach(turing, set-theory), or teach(godel, set-theory), nevertheless, they can be in-
ferred logically from P using the final rule. That is to say, in the context of logic
programs, we cannot obtain desired negative information by simply employing a
simple rule like M2. In order to obtain intended answers to ¢; and ¢z, we have to
seek a different inference mechanism.

The logic program we just discussed is only an example of datalog. As we shall
see, the problem of negation in datalog is not very difficult. The real challenge
comes from logic programs with negation in their bodies, especially when negation
is involved in recursion. In order to see such logic programs do exist in practical
applications, let us consider an example, which is based on similar examples from
[105] and [1], It is worth pointing out that the example is one of the motivational
examples for both the stable model semantics [47] and the well-founded semantics

[105], and also closed related to a game described by Kolaitis [60].

Example 4.3.1 Consider a game between two players. The game consists of a series
of states. The possible moves of the game are held in an extensional relation moves,
where moves(a,b) means that a player, when in state a, may choose to move to b.
A player wins if the opponent has no moves. Let winning(X) denote X is a
winning state; that is a state has a winning strategy for a player. Then the winning

rule can be expressed by the following program P,
winning(X) : L move(X,Y), not winning(Y).

Suppose the game has three states a, b, ¢, with the following sample instance of

relation moves:

moves = {(a,b), (b,a),(b,c)}

4. Deductive Databases 69

which is graphically represented as

D

The Herbrand instantiation of the program is as follows:
winning(a) : L move(a, a), not winning(a).
winning(a) : L move(a,b), not winning(b).

winning(a) : L move(a, ¢), not winning(c).

, not winning(a).

winning(b) : L move(b, a

(
, not winning(b).
winning(b) : L move(d, ¢), not winning(c).
(
(
(

winning(c) : L move(e, a), not winning(a)

winning(c) : L move(e,b), not winning(b)

(a) (
(a) (
(a) (
(0) (b,a)
winning(b) : L move(b, b)
(0) (b, ¢)
(¢) (¢,0)
(¢) (¢,0) :
(c) (¢, ¢), not winning(c).

winning(c) : L move(e, ¢

where there are three rules in which winning depends negatively on itself. According
to the winning rule, it is not difficult to see that winning(b) should be true but not
winning(a) and winning(c). But, how shall we compute the set of winning states
for any instance of the relation moves? What we need is a general mechanism to
determine winning states. It turns out that in this case, the well-founded semantics

[105] does provide us with such a mechanism to find the intended answer. O

The treatment of negative information in deductive databases, more generally
in logic programming, turns out to be extremely difficult, especially when negation
is involved in recursion. In the past two decades, much effort has been devoted
to the research about negation in deductive databases and in logic programming

by proposing various kinds of semantic theories for logic programs. Indeed, as

4. Deductive Databases 70

pointed out in [87], a very important thrust to the study of deductive databases
and logic programming, “has been the problem of coping with negation or non-
monotonic reasoning, where classical logic does not offer, through the conventional
means of logical deduction, an adequate definition of what some very natural logical

statements ‘mean’ to the programmer.”

4.3.1 Nonmonotonicity of not

Since logic does not help, it is inevitable for us to devise some non-logical mechanism
to deal with the use and retrieval of negative information in the context of logic
programs. More generally, we have to define what can be inferred from a logic
program. From the semantic perspective, this is the same as determining what is true
and what is false relative to a given logic program. Consequently it will also provide
an interpretation of not. Different semantics may have different interpretations of
not in one way or another (see the next chapter for more details). This roughly
explains why we said in the first chapter that the exact meaning of a piece of
negative information represented by not p depends on the specific semantics used.
Whatever semantics is used, however, nonmonotonicity is a common and essential
characteristic of this kind of negation.

It is interesting to note that the nonmonotonicity can in fact be envisaged in
advance independently of any semantics. Indeed, from the database viewpoint, the
nonmonotonicity of not can be argued quite directly. In relational databases, it is the
semantic notion of classical negation that we use to deal with negative information
in evaluating a query expressed in non-recursive datalog with negation. But we
have seen that classical negation at the semantic level is nonmonotonic, so is the

negation not used in non-recursive datalog. Equivalently, in the relational algebra?

4Recall the relational algebra and the non-recursive datalog with negation are two of three
different but equivalent relational query languages [1].

4. Deductive Databases 71

negation is expressed by exploiting the set difference operation. The R’s that are
not S’s are just R L .S. This notion of negation is clearly non-monotonic, for initially
x may be in B L S but when more is learned of * we may add = € S and so lose
the previous negative item of information. When we extend non-recursive datalog
with negation to allow recursion we should preserve this non-monotonicity so that,
whenever the semantics is applied within a non-recursive datalog program, we still
have the same result as we would from a relational database using the conventional
relational theory. Thus not has to remain nonmonotonic.

Combining the examples in the previous section with the above argument, we
can now formulate the relationship between nonmonotonic negation and classical
negation. The examples in the previous section shows that nonmonotonic nega-
tion not should be different from classical negation at both the semantical and
proof-theoretical levels. On the one hand, compared with classical negation at the
semantical level, nonmonotonic negation not should be more general so that not will
be suitable in the context of logic program, a wider context than that of relational
databases. Moreover, the nonmonotonicity argument above shows that nonmono-
tonic negation should be in fact an extension of classical negation at the semantic
level. On the other hand, compared with classical negation at the proof-theoretical
level, nonmonotonic negation not should be much weaker so that the negative in-
formation required from the database viewpoint can be adequately inferred and
expressed by not. As a result, nonmonotonic negation should also to some extent
extend classical negation at the proof-theoretic level in the context of logic programs.
We shall see in the next chapter, such a proof-theoretic extension of classical nega-
tion is achieved through a kind of nonmonotonic reasoning introduced in a semantics

of logic programs.

4. Deductive Databases 72

4.3.2 Strong Negation in Logic Programs

From the knowledge representation viewpoint, non-monotonic negation can only
represent indefinite negative knowledge. A piece of nonmonotonically negative in-
formation might be given up later when more information is available. But there
are situations where such a negation is not adequate. When definitely negative
knowledge is required, a stronger negation seems indispensable.

Let us consider an example from [3]:
convicted(X) : Lcharged(X), ~ innocent(X).

The intended interpretation to the above formula is that a person charged with a
crime should be convicted if there is a direct evidence against him or her. Here we
cannot replace ~ with non-monotonic negation. Otherwise, it would mean that a
person charged with a crime should be convicted when there is no evidence showing
that he or she is innocent. This is certainly not consistent with judicial practice.
Since non-monotonic negation is not suitable in the above example, we have
to use a different one. Obviously, this different kind of negation has to be at least
monotonic so that when more information is added, what is originally negated should
not be overturned®. Classical negation at the proof-theoretical level is a candidate.
But the semantic principle of bivalence behind the classical negation makes it not
suitable. In addition, there are also computational difficulties associated it (see [63]).
Without the restriction of bivalence, the classical negation becomes intuitionistic.
So, another choice may as well be intuitionistic negation. But in chapter 3 we
have shown that intuitionistic negation is less desirable than the strong negation of
constructive logics. In logic programming and deductive databases, the application

of strong negation for explicit representation of negative information is originally

proposed in [79]. See also [108], [109], [110]. Gelfond and Lifschitz in [48], [49]

®We are assuming that the evidence supporting the negation correct and reliable.

4. Deductive Databases 73

also proposed to extend logic programs with classical negation from the knowledge
representation viewpoint. But, as it is pointed out in [109], what is named classical
negation in [48] is in fact strong negation.

Back to our example, it turns out that strong negation can perfectly capture the
negation in question. A direct evidence against a person p will enable us to explicitly
assert that he or she is not innocent, that is ~ innocent(p). One might suggest to
replace ~ innocent(X) with guilty(X) to eliminate the use of strong negation at
all. The problem with the replacement, as it is pointed out by Wagner [109], is that
we will lose reasoning capabilities based on inconsistency.

Augmented with strong negation, logic programming can represent both defi-
nitely positive and definitely negative knowledge. Without the restriction of biva-
lence, logic programs with strong negation may also deal with incomplete informa-
tion in the sense that the answer to a ground query need not be yes or no. It may
be neither. Motivated by the above, we shall also study extended logic programs,

that is logic programs extended by strong negation, after we study logic programs.

Chapter 5

Non-monotonic Negation

A great number of interesting semantic theories for logic programs with nonmono-
tonic negation have been proposed in the past two decades. The purpose of this
chapter is to review several main semantic theories for logic programs, showing how
non-monotonic negation is dealt with in them. The choice of reviewed semantic
theories is mainly based on their relevance to our proposed semantics in the next
chapter. So it is by no means intended to be a comprehensive overview of the area,
and does not imply any prejudice to other theories either. Readers are invited to
refer to [64] for an elementary introduction to logic programming, and [15], [72],
[33], and [34] for detailed surveys on negation in logic programming.

The semantics reviewed here include the semantics of definite logic programs
mainly by van Emden and Kowalski [103], Clark’s program completion semantics
and the associated SLDNF[25], Reiter’s closed world assumption [90], Fitting’s se-
mantics [40], the well-founded semantics by Gelder, Ross and Schlipf [105], stable
semantics by Gelfond and Lifschitz [47], and a three-valued version of the stable
model semantics by Przymusinski [85]. The review is discussed in the context of
logic programs. We shall show that these semantics in spite of their shortcom-

ings in one way or another do give us an instructive insight towards understanding

74

5. Non-monotonic Negation 75

nonmonotonic negation.

5.1 Introduction

Semantics of Logic programs can be dealt with using many different approaches.
Here we concentrate on two different but related interpretations: the model-theoretic
interpretation and the deductive one. The model-theoretic interpretation, declar-
ative in nature, is to take a logic program as a first-order theory. To define the
semantics for the program is to choose some models of this theory and use them to
assign a meaning to the program.

The deductive interpretation, more procedural in nature, is to take a logic pro-
gram as a set of inference rules. To define semantics for a logic program is to find out
what can be inferred from the program; here inference is not necessarily logical rea-
soning: it may be non-monotonic reasoning or other forms. Using the terminology
of default logic', the deductive approach is to take logic program rules as defaults.
That is a logic program is taken as a default theory. Then we use concepts like
extensions or weak extensions associated with the theory to provide the program
with a meaning (see [66]).

Note that there are various classifications of different approaches to semantic
theories for logic programs with nonmonotonic negation. In [105], semantic theories
are classified into the “program completion” approach and the “canonical model”
approach. In [33] they are divided into logic-programming-semantics, which is based
on the idea of negation-as-finite-failure [25], and non-monotonic reasoning-semantics,
which is inspired by logics of common sense reasoning such as default logic [91], and
autoepistemic logic [74].

We are not attempting to give any classification of existing semantics. Instead

n [16], default logic has been used a uniform formalism for defining semantics of logic programs.

5. Non-monotonic Negation 76

we only consider the model-theoretic approach and the deductive approach with
the emphasis on the latter one. We shall make use of the concept of extensions
rather than that of models as much as we can. We take classical two-valued logic
as our underlying logic. As we shall see in this chapter, the Fitting semantics and
the well-founded semantics are in general partial in the sense that some atoms in a
logic program may be neither true nor false. From the model-theoretic perspective,
fixpoints in the Fitting semantics and the well-founded semantics, when taken as
models, have to be viewed in the framework of three-valued logic. From the de-
ductive perspective, they can also taken as incomplete extensions as in default logic
[91]. This way, classical logic is augmented with logic programming rather than

being replaced by a three-valued logic.

5.2 Semantics for Definite Logic Programs

Semantics for definite logic programs is now well established. There are three differ-
ent but equivalent approaches to defining the semantics, resulting in model-theoretic
semantics, fixpoint semantics, and procedural semantics?. Since procedural seman-
tics involves introducing some kind of refutation procedure based on the resolution
inference rule such as SLD-resolution [6], which we will not cover later in the discus-
sion of normal logic programs, we shall only have a brief look at the model-theoretic
and fixpoint semantics. See [64] for a detailed introduction to the three approaches.

The model-theoretic semantics of logic programs is based on the semantics of
first-order logic. The truth value of an atom relative to a logic program P is deter-
mined by the logical consequences of P, that is {p(t1,...,t,) : P F p(t1,...,t.)},
where P E p(t1,...,1,) means that P logically implies p(¢y,...,t,). It is shown in

[103] that the logical consequences of P are equal to the intersection of all Herbrand

2In [1], it is also called proof-theoretic semantics since it is based on obtaining proofs of facts
from a logic program.

5. Non-monotonic Negation 77

models of P, which is itself a Herbrand model, and thus is called the least Herbrand
model for P. So we may reduce the logical consequences of a definite logic program
to its unique least Herbrand model, and determine the truth of an atom using the
least Herbrand model as follows: if an atom is in the model then it is taken as true;
otherwise taken as false. So it is natural to assign the least model as the declarative
meaning of a definite program.

Note that when we say an atom is taken to be false if it is not in the least model,
we are moving out of the realm of logical reasoning into that of nonmonotonic
reasoning. An atom is not in the least model of a definite program only means that
the atom is not a logical consequence of the program, which is different from that
the negation of the atom is a logical consequence of the program. When we assign
the truth-value false to all the atoms not in the least model, we are implicitly using
the CWA, which is nonmonotonic as we shall see later in this chapter.

The fixpoint semantics is also based upon a theorem by van Emden and Kowalski
[103] (see also Apt and van Emden [6]). The theorem shows that the least Herbrand
model is equal to a least fixpoint, which in turn can be characterised in a constructive
way, using fixpoint theory, that is using Knaster-Tarski’s and Kleene’s theorems (see
[6] and [64] for details). To define the fixpoint characterisation, an operator Tp on
‘HBp, now usually called the immediate consequence operator [1], is introduced as

follows:

Tp(L)={p € HBp :3Ir € P(head(r) = p ANV¥q€ body(r)q € L}.

It is easy to prove that Tp is monotonic. In fact it can be proved more strongly that
Tp is continuous. See [64] for relevant details. It then follows that Tp has a least
fixpoint [fp(Tp), which can be computed in a constructive way. Since we shall use
the computation for other monotonic operators, we state it here as a lemma in a

general form for reference later.

5. Non-monotonic Negation 78

Lemma 5.2.1 Assume the underlying complete lattice is either HBp or (HBp U
not-HBp) with the containment C as its natural and default ordering®, where P is a
logic program. For a monotonic operator 7 on the complete lattice, the least fixpoint

[fp(?) can be characterised by the following:

p()=J? ta

and there exists an ordinal 3 such that for any o > 3

ip(?)=11a

where

710 = 0.
Tta = 71 (aLll)), if ais a successor ordinal.
Tta = \H? 108 <al, if aisalimit ordinal.
Definition 5.2.1 The closure ordinal for the sequence (7 T «), is the least ordinal «

such that 7 T a = [fp(?).

Although it is universally accepted that for any definite logic program P, its
least Herbrand model can be used to define the meaning of P, it is much more
controversial about how to assign an appropriate meaning to a normal logic program.
In comparison to a definite logic program, a normal logic program may have more
than one minimal Herbrand model. For example, P = {p : L not ¢} has {p} and
{q} as its minimal models.

The operator T is usually not monotonic and may have no fixpoint at all. For
example, let P = {p : Lnot p}. Tp is not monotonic. Indeed, Tp 1 « alternates
between () and {p}. The program also gives us an example of T having no fixpoint

at all. For some programs, even if Tp has a least fixpoint, the fixpoint may not

3Later in the discussion of 3-valued stable models, we shall see a different ordering.

5. Non-monotonic Negation 79

be approximated by the sequence Tp 1 «. See [1] for some more counterexample
programs.

So, various equivalent forms of semantics for definite logic programs cannot be
simply generalised to normal logic programs. In the following sections, we present

some main contributions to defining semantics of normal logic programs.

5.3 Program Completion and Negation as Failure

The program completion semantics and its associated SLDNF-resolution were initi-
ated by Clark in [25] and further developed by many others (see [64], [105] and its
citations there).

The notion of a program completion?, as its name may suggest, is to complete a
program by making explicit what is implicit in the program. Specifically, the basic
point is to take a rule as a partial definition for the predicate in the rule head,
and use all rules with same head predicate to make a complete definition for the
predicate. But this viewpoint about a program is not explicitly represented in a
logic program due to the conditional form of rules in a program. The process of
completing a program is to make explicit the point that a program is taken as a set
of definitions.

So, given a program P, a completed program Comp(P) is defined as follow:
replace all rules with the same predicate in the head with a single bi-conditional
formula whose left operand is the head of the original rules and whose right operand
is a disjunction of the original rule bodies; for predicates not in the head of any rule,
a negative literal for the predicate is added. In addition, a theory of equality is also

required to impose restrictions on the possible interpretations of =. For the formal

details of the definition, see [25] and [64].

“In [25] this was called the completion of a data base.

5. Non-monotonic Negation 80

The introduction of the completion of a program was used to provide a valida-
tion of negation as failure rule, a rule for augmenting SLD-resolution, resulting in
SLDNF-resolution. It is well-known that SLD-resolution is a particular refutation
procedure, but can only deal with positive literals (see [64] for details). For negative
literals, some additional mechanism is required. Negation as failure is such a one.
The basic idea is to define a “proof” of a negative subgoal as finite failure to obtain
a proof of corresponding positive subgoal®. Such a way to deal with negation was
not novel. As it was pointed out by Clark in [25], it had already been used in both
PLANNER and PROLOG (see [25] and related citations there). Clark observed that
a negated fact inferred from a program by negation as failure can also be reached
through deduction by completing the original program. So he proposed to justify
the use of negation as failure by reducing the rule to a derived rule of first-order
logic.

In [25], it is proved that for consistent completed programs, SLDNF is sound,
that is if all SLD derivations starting from p are finite and none of them produces
an SLD-refutation, then not p is a logical consequence of the completed program.
For an inconsistent completed program, the soundness is trivial. The completeness
of the SLDNF, as it is pointed in [25], does not hold in general since a query may be
a logical consequence of Comp(P), and at the same time neither succeed nor fail but
have an infinite derivation tree. A limited form of completeness was proved in [25]
by imposing constraints on logic program and its queries. See also [64] for related
discussion about completeness of SLDNF.

It has been argued that neither program completion nor SLDNF-resolution is
satisfying. In comparison to the original program, the logical consequences of a
completed program do indeed include negative literals as well as positive literals.

But the program completion approach is completely based upon logical deduction.

>This implies non-determinism when infinite failure occurs.

5. Non-monotonic Negation 81

So it is not surprising to discover that it is still a very weak inference mechanism
for dealing with negative information. In addition, a completed program may be
either inconsistent or unintuitive. Moreover, SLDNF is also problematic. It does
not always terminate, and may run into infinite looping. And the matching with
completion semantics, as we mentioned above, is not perfect.

We shall not involve SLDNF any more in our further discussion. Our interest is
mainly about the completion of a program. Various existing semantics are related
one way or another with completed programs. These connections will be pointed

out at suitable places later.

5.4 Fitting Semantics

The Fitting semantics [40] is taken as an important result in the program-completion
approach in [105]. We have seen in chapter 2 that classical logic is three-valued
from the deductive viewpoint. Since Clark’s program completion semantics is based
upon logical deduction, it is then easy to see that this approach implicitly defines
a 3-valued interpretation® for a consistent completed program: truth value true
is assigned to those atom that are logical consequence of the completed program,
and truth value false to those atoms whose negations are logical consequences, and
(unknown) to all other atoms. Obviously, a 3-valued interpretation is equivalent to
a set of literals in a natural correspondence.

The 3-valued interpretations were made explicitly in Fitting’s semantics [40].
Based upon a 3-valued constructive logic, it is shown in [40] that the completion
of every program has a unique minimum 3-valued Herbrand model, that is a set of
literals. Technically, the central point behind Fitting semantics is the introduction

of the following operator Np on sets of literals, which is used to generate negative

6Given the fact that the truth of each literal is based on traditional 2-valued logic, a 3-valued
interpretation is also awkwardly called the 2-valued program completion interpretation in [105].

5. Non-monotonic Negation 82

facts:
Definition 5.4.1 Np(E) = {p € HBp :V¥r € P(head(r) = p — 3 € body(r)l € E)}

Combining the operator Np with the operator Tp defined in section 5.2, another

operator, denoted Fp, on sets of literals can be defined as follows.
Definition 5.4.2 Fp(E) = Tp(F)Unot - Np(FE)

We shall call Fp the Fitting operator. The operator T is used to draw only positive
facts whereas the operator Np produces only negative facts. Combined together, the
operator Fp can be used to conclude both negative and positive facts. It is an easy
exercise to show that Fp is monotonic, and thus has a least fixpoint [fp(Fp), which
is also a 3-valued model of the completed program of PP according to the following

theorem.

Theorem 5.4.1 (Fitting [40]) Given a logic program P. A 3-valued interpretation
E is a 3-valued model of the completed program of P if and only if E = Fp(FE).

Although the original definition of the Fitting semantics was carried out in a
3-valued logic, the use of a 3-valued logic is inessential. Instead of taking the least
fixpoint [fp(Fp) as a 3-valued model of the completion of a program P, and working
in a 3-valued logic, Fitting’s semantics can be taken as extending the inference mech-
anism of classical logic for deriving negative information in 2-valued logic framework,
by complementing the operator Tp with the operator Np. Such a view is no more
than to take a logic program as a set of inference rules, or using the terminology
from default logic [91], a set of defaults. And then the least fixpoint [fp(Fp) is used
to define the extension associated with the default theory corresponding to the logic

program (see [16], and [67]).

5. Non-monotonic Negation 83

Some comments are in order. First of all, the inference based upon [fp(Fp)
is non-monotonic. In particular, [fp(Fp) extends the semantic rule M2 proof-
theoretically. For any extensional atom p, if p is not in the extensional database,
then the condition of Np will hold vacuously and thus p will be included in Np. So

not p in [fp(Fp). Consider a simple example program P with following two rules

p :L notq.

r 11 q.

Obviously, [fp(Fp) = {not q,p,not r}. But when P is augmented with ¢, we have
Lfp(Fpuggy) = {q,7m,not p}. So what is originally not true now becomes true when
more information is added. The example also illustrates that the non-monotonicity
applies not only to extensional atoms but intensional atoms as well, such as the
atom r in the present example. Moreover, what is originally true is affected too.
This is because of the use of the rule p : Lnot ¢, by which p is infected with the
non-monotonicity of not g. We shall come back to this point later when we discuss
supportedness in the next chapter.

Secondly, the fact that the original definition of the Fitting semantics was carried
out in a 3-valued logic itself suggests that the inference mechanism of the Fitting
semantics is very weak since some atoms may have no truth value at all. As pointed
out by Bidoit in [15], the Fitting semantics does not generalise the fixpoint semantics
for definite programs in the sense that what is not true in the fixpoint semantics
may be undefined in the Fitting semantics.

Thirdly, for finite logic programs, the closure ordinal of Fp is finite. Otherwise,
the closure ordinal of Fp may be beyond w; that is the computation of { fp(Fp) may
go beyond w because the operator Fp is in general not continuous. A counterexample

clarifies the point.

5. Non-monotonic Negation 84

Example 5.4.1 Let p and ¢ be two unary predicates, ¢ a constant, and s a function

symbol. Let P be a logic program with the following three rules:

q(c) L
q(s(X)) L q(X)
p(c) 1L not g(X).

The Herbrand universe of P HU p = {s%(¢), s'(¢), s*(¢), ..., s"(c),...}, where s°(c) is
for ¢, s'(c) for s(c), s*(c) for s(s(c)), and so on. Let P’ be the instantiated program

of P relative to HU p. Then P’ is not finite, and we have

Fpitn = {q(s™(¢)) :m <k

Fpitw = {a(s™(c)) :m <w;

Fprtw+1 = {notp(c)} U{q(s™(c)) : m < w}.
Up(Fp) = Fptw+l.

Last but not least, Kunen’s work should be mentioned. In [62], Kunen describes a
variant, which does have at most w iteration. The resulting 3-valued interpretation
is recursively enumerable but may not be a 3-valued model. What is significant
is probably that Kunen’s 3-valued interpretation characterises the 3-valued logical
consequences of the completed program. We emphasise the underlying two-valued
logic instead of 3-valued logic, so we shall not use Kunen’s 3-valued interpretation

in the further discussion.

5.5 Closed World Assumption

The Closed World Assumption was introduced by Reiter in [90] in the the context of

deductive databases. As we mentioned earlier, the deductive approach to databases

5. Non-monotonic Negation 85

has to deal with negative information retrieval. In order to obtain a piece of negative
information, one straightforward way is to include various negative facts in addition
to positive ones in KDB. Unfortunately, this is not feasible since the number of
negative facts about a given domain generally far exceeds the number of positive
ones (see [90]). Instead, Reiter proposes to merely explicitly represent positive facts
of a database DB, and treat negative facts as implicitly present provided that their
positive counterparts are not provable from the database DB. This is the so-called
Closed World Assumption (CWA), or more preferably the Closed World Rule given
the form of its formulation [64]. It is a rule used to infer negative information from

a databases in proof-theoretic contexts.

Definition 5.5.1 Given a normal logic program P, the CWA states that one can infer

a negated atom not p from P if Pt/ p:
CWA(P)={notp: P p}

Note that, if a normal logic program P consists of a purely extensional database
EDB, that is P has an empty intensional database I DB and thus there is no de-
duction involved, the CWA is no more than a complement operation in a relational
database: P implicitly contains a negative fact provided its positive counterpart is
not explicitly present in P. For a general case, P with both KFDB and IDB, a
positive fact not explicitly present in £ DB may still be derived by rules in /DB, so
“not provable from P” in the CWA is crucial: a negative fact is taken as implicitly
present in P if its positive counterpart cannot be provable from P.

Another important point to note is that the CWA can lead to inconsistency.
For example, let PP be a program with a single rule p : L not ¢. Then CWA(P) =
{notp, notq} since we have both Pt/ pand Pt/ ¢q. But P|JCW A(P)is not consistent.
Since the CWA is not consistent with all programs, the problem of consistency has

to be taken into account. This motivates the following definition.

5. Non-monotonic Negation 86

Definition 5.5.2 A logic program P is consistent with CWA if P | JCW A(P) is con-

sistent.

A natural question is which programs are consistent with the CWA. Reiter has
shown that, if a logic program P is definite, then P is consistent with CWA. More
generally, it can be shown that various kinds of stratifiable programs are consistent
with the CWA (see [1]).

Although the CWA can be applied to a large natural class of logic programs, such
as definite logic programs and stratifiable programs, it can be argued that the CWA
is not satisfactory. There are many unstratifiable programs. In fact, any programs
with a recursive application of negation is not stratifiable since the stratification
condition prohibits such structure. A trivial example is P = {p — not ¢,q — not p}.

Instead of restricting logic programs to those consistent with the CWA, we can
restrict the CWA itself so that it is consistent for all programs. In [70], Minker
proposed a restriction of the CWA | called the Generalised Closed World Assumption
(GCWA), which can be applied to any normal logic program”. To understand the
GCWA, we need to know that the issues of logic program consistency with the
CWA can also be addressed from a semantic point of view. This was initiated by
van Emden (see [70] and its citations). He defines the notion of a “minimal model”
for a program as the intersection of all its models. If this minimal model is itself a
model of the program, then the program is consistent with the CWA. In [103] van
Emden and Kowalski show that definite programs have a minimal model and thus
are consistent with the CWA. However, the notion of minimal model is very strong
in the sense that, for non-definite logic programs, the minimal model may not be a
model and thus a non-definite logic program may not be consistent with the CWA.

In [70], Minker generalises the notion of minimal model, defining it with respect to

“In [70] the GCWA is applied to both definite and indefinite logic programs. Since we are
not going to discuss indefinite logic programs in this thesis, we apply the GCWA to normal logic
programs.

5. Non-monotonic Negation 87

set inclusion instead of using the intersection of models.

Definition 5.5.3 Given a logic program, a model M of P is minimal if no smaller

subset M’ of M is a model of P.

Definition 5.5.4 Given a normal program P, the GCWA states that not p may be

inferred from P if p is not in any minimal model of P:

GCW A(P) = {not p : for any minimal model M of P,p & M}

For any atom p, if it is not in any minimal model of P, then it is safe to assign
any truth value to the atom without any inconsistency. The GCWA chooses to
assign false to such atoms. As a result, the GCWA can be consistently applied to
any normal logic program. Although consistency is guaranteed, the price paid by
the GCWA is high. Indeed, it turns out that the GCWA is very restricted. Let us

consider an example from [105].

Fxample 5.5.1 Let P be the following program:

(
p(b) : L not p(a)
p(e) : L not p(d)
pc).
p(d) : L q(a),not q(b)
p(d) : L q(b), not ¢(c)
q(a) : L p(d).
q(b) : L g(a).

It is not difficult to see that P has four minimal models:

5. Non-monotonic Negation 88

It can be seen that ¢(c) is not in any minimal model above. According to the GCWA,
q(c) is false. Obviously, p(c) is a logical consequence of P, so it is a common member
of all minimal models of P> and is taken as true by the GCWA. However, the GCWA
is silent on all other atoms though it seems reasonable to treat {p(d),q(a),q(b)}
as false. So, though the GCWA can be consistently applied to all the programs,
its weak reasoning ability is hardly satisfactory. A more fine-grained mechanism is

needed for inferring negative information. O

5.6 Well-founded Semantics

The WF'S [105] can be seen as another approach to avoiding the inconsistency caused
by the application of the CWA to an arbitrary logic program. Instead of inferring
all the negated atoms from a given program according to the unprovability of their
positive counterparts, the WFS only accepts those negated atoms whose positive
counterparts satisfy a stricter and more specific condition than unprovability. Since
we shall use the WFS later, let us have a closer look at the definition of the WFS
to see how the WFS derives negative information.

The central notion of the WFS is that of unfounded sets, which nicely combines
together Fitting’s approach to the derivation of negative literals and the notion of

closed sets (see [105] and citations there).

Definition 5.6.1 Given a program P, its associated Herbrand base HBp, and a set

5. Non-monotonic Negation 89

L of literals®, a set X C HBp is said to be an unfounded set of P with respect to L

if it satisfies :

X C7pn(X),

—)

where 7 pp, is defined by
?p7L(X) = {p € HBP :
Vr € P(head(r)=p—(3q € body(r)g € LV 3q € body(r)Tq € X))}

Informally, ? p1,(X) expresses all the atoms p satisfying one of the following condi-

tions:

(1) There is no rule r in P such that head(r) = p;
(2) The head of some rule r in P is p, and for each such rule,

(2.1) either some subgoal ¢ of the body is false in L;

(2.2) or some positive subgoal of the body occurs in X.

The WF'S uses unfounded sets to draw negative conclusions, inferring simulta-
neously all atoms in any unfounded set to be false. It is worth pointing out that
conditions (1) and (2.1) above are used by Fitting in his semantics [40] to draw neg-
ative conclusions. And condition (2.2) is used by Ross and Topor in [93] to define
closed sets. The WFS integrates them together. Consequently, the WF'S is able to
infer more negative information than either Fitting semantics or closed sets.

In order to capture all the atoms in every unfounded set of P with respect to
L, an operator Up(L) is introduced. It is the greatest unfounded set of P with
respect to L. Since the union of arbitrary unfounded sets is an unfounded set too,
the greatest unfounded set does exist and is equal to the union of all sets that are

unfounded with respect to P and L.

8In [105], L is called an interpretation if it does not contain both an atom and its complement.
This is from the model-theoretic viewpoint. Since we shall emphasise the deductive viewpoint, we
use the general notion of set rather than interpretation.

5. Non-monotonic Negation 90

Definition 5.6.2 Given a logic program P, a set L of literals, Up(L) is defined as the

greatest set satisfying the condition:
X C?pr(X).

Some comments about Up([) are in order. First of all, we note that the above
definition of Up (L) has the form of a coinduction rather than the form of an induction
(see [9]).

Secondly, note that the authors of [105] did not explicitly tell us how to obtain
Up(L) constructively. Subsequently, some equivalent constructions of well-founded
partial models were proposed. In [104], van Gelder defined the alternating fixpoint
construction. In [16], Bidoit and Froidevaux used the notion of a potentially founded
set, the dual of the notion of unfounded sets. However, it is worth noting a con-
struction is in fact implicitly there in [105]. Since ? py, is a monotonic operator on
the Herbrand base HBp and Up(L) is the greatest fixpoint of 7 py, (see Lloyd [64],
p. 26), this can be constructed using the following well-known characterisation of

the greatest fixpoint (see [64], pp. 27-28):

'pr 0 = HBp
tprda = Tpr(Tpr) (aL1)), if ais a successor ordinal

Tprla = ﬂ{?P,L 1 B: 0 < a}, if ais alimit ordinal

Generally speaking, the least ordinal « such that ?p; | o = Up([) can be beyond
w (see [64], p. 31). But for the cases in which programs are function-free and the
E DB is finite, the least ordinal is finite.

Finally, note that the main strength of an unfounded set, and thus the main
strength of the WFS, in comparison to Fitting semantics, lies its ability to deal with
circular atoms in a program P. This is owing to the use of both the condition (2.2)

above and the coinductive definition of Up([I). Then, what atoms are circular?

5. Non-monotonic Negation 91

Definition 5.6.3 Let p <% ¢ if and only if p is the head of a rule in P and ¢ is a
positive literal in the body of the same rule; and p <~ ¢ if and only if p is the head
of a rule in P and ¢ is a negative literal in the body of the same rule.

A path beginning with p in P ending with ¢ is a sequence (p, q1,. .., ¢n,q) such

that
p=<*q <*...<"q, <"p,

where <* is either <* or <™.
A circular atom is an atom p such that all the paths beginning with p in P lead

to itself positively:
p<Tq <t...<Tq, <p,

The following example about circuits is from [101], showing how circular atoms

may arise in real-life applications.

Fxample 5.6.1 Consider a circuit of an unusual sort of logic gates g(X,Y, 7), where
9(X,Y,7Z) means that a gate has positive input X, negative input Y and positive
output Z. These inputs and outputs can be taken as terminals or wire nets. Let
t0(X) represent that input terminal X is externally set be 1 (“true”). Let ¢(X)
represent that input terminal X is “internally” set to be 1.

Given a gate g(X,Y, 7Z), the circuit value of 7 is 1 if and only if X is 1 and Y is

0 (“false”). Then the following rules define the operation of the gates:

HZ):Lt0(7).
HZ): L g(X,Y, Z),t(X),not t(Y).

Suppose that the EDB consist of the following facts: t0(2), ¢(5,1,3), ¢(1,2,4),

9(3,4,5) which represents the following circuit

5. Non-monotonic Negation 92

12 10(2).

o~

3 9(5,1,3),t(5), not t(1).

o~

4 g(1,2,4),t(1), not 1(2).

(2) L
(3) L
(4) L
t(5) :L

5 9(3,4,5),t(3), not t(4).

It is easy to see that atoms #(3) and ¢(5) are circular. O

As Barwise and Etchemendy pointed out in [9], when working with circular phe-
nomena (in this case finding out all circular atoms) it is the coinductive definition
that is more natural to use, suggesting the above definition of Up([) and explain-
ing why the greatest fixpoint of ? p; is needed (see Barwise and Etchemendy [9],
pp. 53-54). In the same book, Barwise and Etchemendy gave an elegant informal
explanation about coinductive definition: “Instead of working from the bottom up
[since there is no bottom base when dealing with circular phenomena], asking which
objects are forced into the defined class, we work from the top down, asking which
objects are legitimately excluded. This feature guarantees that circular members ...
are not excluded.” (see [9], pp. 62-63).

In order to define the WFS, another operator is needed to decide what positive
conclusions can be drawn from P. The operator used in [105] is the same as the
immediate consequence operator Tp except that it is defined on sets of literals rather

than sets of atoms. By abuse of notation, we still use T to denote the operator:

5. Non-monotonic Negation 93

Definition 5.6.4 Tp(L) ={p € HBp : Ir € P(head(r) = p ANVq€ body(r)q € L)}.

With the operators Up and Tp available, we can now define another operator

Wp.
Definition 5.6.5 Wp(L) =Tp(L)Unot - Up(L)

The three operators Up, Tp, Wp are all monotonic on HBp U not - HBp. There-
fore, there is a least fixpoint [fp(Wp). It is the least fixpoint that is used to define
the well-founded semantics of a logic program P in [105].

In [105], it is pointed out that Tp treated positive and negative subgoals sym-
metrically in the sense that, in deciding whether a negative subgoal not g is true,
the presence of not ¢ rather than the absence of ¢ is required. The point can be

9 We need to bear in mind that this symmetry is different from that

misleading.
between positive and strong negative information. A piece of negative information
inferred through Up is still nonmonotonic whereas a piece of strong negative infor-
mation established through direct observation is monotonic. So it would have been
better to say we need to explicitly keep all negative information inferred through
Up in the process of computing [fp(Wp).

In [105], the least fixpoint [fp(Wp) is called the well-founded partial model.
Because we adopt a deductive rather than a model-theoretic viewpoint, we shall
call it the well-founded extension (WFE) instead. An advantage with the deductive
viewpoint is that we can still use two-valued logic as our underlying logic. It is well-
known that the well-founded semantics is in general partial in the sense that some
atoms in a logic program may be neither true nor false. As a result, the well-founded

partial model of a logic program has to be viewed as a model in three-valued logic.

From the deductive viewpoint, however, we can still work in two-valued logic.

“Note that in [1], p. 385, there is a similar misleading comment about the superficial symmetry
between positive and negative information.

5. Non-monotonic Negation 94

The WFS demonstrates many desirable features. It is defined for all logic pro-
grams. For any logic program PP, there exists a unique well-founded partial extension,
defined as the least fixpoint [fp(Wp) of Wp. Using the characterisation of a least fix-
point, the well-founded partial extension of a logic program can then be defined in a
constructive way although the construction might be a process of possibly transfinite
iteration.

As we mentioned before, the WEFS extends the Fitting semantics, inferring more
negative information and thus possibly more positive information than the Fitting
semantics. The WFS also naturally extends the semantics for a large class of logic
programs, including definite logic programs, stratified programs, and locally strati-
fied programs. (see [83] and [105]).

Despite its merits, it can be argued that the WFS is too “sceptical”. The infer-
ence mechanism provided by WFS is still not strong enough. Indeed, the extension
given by the WFS is usually partial, leaving some atoms undefined. For many pro-
grams it even gives the empty set as their intended meaning. Incompleteness itself is
not very problematic given that the information in a program is itself not complete.
So, it is understandable that we may still not be able to reach any conclusion about
some atoms even though we are allowed to use non-monotonic inference mechanism.
The problem with WFS is that, in many programs, it seems reasonable to expect
to derive some information but WES is silent on them. The following example from

[105] illustrates the problem.

Frample 5.6.2 Let P be the logic program with the following four rules:

a 1 notb.
b 1L nota.
p L a.
p L b

5. Non-monotonic Negation 95

The program P has the empty set as its well-founded partial extension. But it is
reasonable to expect that p should hold since it is a logical consequence of P. This

example indicates that the WES does not allow case-based reasoning. O

There are many proposals for extending the WFS, such as the generalised well-
founded semantics GWFS [7], the well-founded-by-case-semantics WES¢ [97], the
extended well-founded semantics WFSg [57], the strong well-founded semantics
WFSs [22], and the O-semantics [81]. The relationship between these semantic

theories for logic programming is also studied in [33] and [34].

5.7 Stable Semantics

The stable model semantics was introduced in Gelfond [46], further developed by
Gelfond and Lifschitz in [47], and also by Marek and Truszczynski in [66]. The
original stable model semantics is based on a two-valued framework. Subsequently,
various different but equivalent three-valued versions of stable model semantics were
proposed, including 3-stable models [85], partial stable models [95] and preferred ex-
tensions [37]. In this section, we only consider the two-valued stable model semantics

by Gelfond and Lifschitz [47] and its three-valued version by Przymusinski [85].

5.7.1 Two-valued Stable Semantics

Stable model semantics has its root in Moore’s autoepistemic logic [74]. In [46],
Gelfond observed that rules of logic programs can be naturally translated into for-
mulas of autoepistemic logic. For example, the rule p : Lg,~ r can be expressed
as ¢ A = Lr — p in autoepistemic logic, where L is the belief operator of the logic.
Through this kind of translation, the declarative semantics of a logic program can

then be characterised in terms of expansions of autoepistemic theory associated with

5. Non-monotonic Negation 96

the program (see [46] and [66]). The basic idea is to define a stable model of a logic
program P as one that is able to reproduce itself from P in a certain sense.
Alternatively, stable model semantics can also be defined without reference to
autoepistemic logic as it is shown by Gelfond and Lifschitz [47]. This is achieved by
using a different transformation, called Gelfond-Lifschitz transformation, based on
the same idea that a stable model of a logic program P is a set of atoms that is able
to reproduce itself from P (see the defining equation of stable model below). In the

following, our discussion will be based on this transformation.

Definition 5.7.1 Given a logic program P, and a set A of atoms in HBp. The
stability transformation of PP with respect to A, denoted by Spa, is the definite

logic program obtained from P by deleting:
(i) any rule that has a negative literal not ¢ in its body with ¢ € A;

(ii) all negative literals not ¢ in the bodies of the remaining rules.

The transformation above makes use of the information from A only to decide
negative subgoals'® in rules of P. If a negative not ¢ occurs in a rule body and ¢ € A
then we eliminate the rule as it depends on an item of negative information when
A supplies the positive. If a negative not ¢ occurs in a rule body and ¢ ¢ A then
the negative subgoal is considered satisfied because failure to be in A commits to
falsehood.

For any set A of atoms, the transformed program Sp a is a definite logic program,
so it has a unique minimal model [103], which coincides with the least fixed point of
the immediate consequence operator Tp [103]. Recall that the least fixpoint [fp(Tp)

of Tp can be computed via the so-called ordinal powers of Tp. The computation is

10Tt is worth pointing out that a stable model could not be guaranteed to be a minimal Herbrand
model had we also made use of the information from A to decide positive subgoals in rules of P
though otherwise there seems no reason to prevent us from doing so.

5. Non-monotonic Negation 97

a process of successively adding information. We shall use this observation shortly
in our criticism of the stable model semantics.
A set A of atoms is a stable model of a logic program P provided it is the minimal

model of the stability transformation of P [47]:

Definition 5.7.2 Given a logic program PP. A set A of atoms is called a stable model
of PP if and only if A is the minimal model of Spa, that is A satisfies the following

stable equation:
lfp(Tsp,) = A.

In the above stable equation, A represents an initial global decision as to what
is false (everything not in A). However, the process of computing the Ifp of Spa
consists in adding truths. This process of adding new positive information should
result at times in a reduction of the existing negative information, just as increase
in the size of S results in decrease in the size of R L S in the relational algebra
model of negation. But the structure of the stable model semantics is such that
this reduction cannot occur. The negative facts are fixed once and for all at the
outset. Despite the increase of information, what is not true cannot be revised. Yet
we aim to model an essentially nonmonotonic negation. This tension is, we suggest,
at the heart of the existence problem(s) and anomalies of the stable semantics. Let

us consider some examples by way of illustration.

Example 5.7.1 Consider a trivial but typical example program Py with the following

rules:

g 1 notp.
p L q.
It is not difficult to check that P; has no stable model. We need to consider the four

complete assignments to p and ¢ to see this. In each case we start with an initial

5. Non-monotonic Negation 98

assignment (left column), compute the stability transformation for this assignment
(centre column), and then the least fixed point of the transformed program (right
column) which represents the final assignment. The initial assignment is a stable
model provided it is the same as the final assignment. The table below shows that

no assignment satisfies this so that there is no (two-valued) stable model for this

program.
A Transform | Fizpoint
qg:L .
0 Jp:la {p.q}
{r} |p:la 0
qg:L .
{a} |p:laq {p.a}
{pat |p:Llaq 0

Our point is not that none of these proposed models turn out to be stable. It
is that the computational process over the transformed program never manages to
generate the correct solution {p} so that stability or otherwise can be tested for
it. This we contend is inevitable because there is no element of revision within
the process, it is strictly monotonic and you cannot hope to adequately represent a
nonmonotonic negation with a strictly monotonic process.

We admit that we cannot prove this. Nevertheless, we shall show in the next
chapter that the introduction of an appropriate revising mechanism does enable us

to assign the proper meaning to the program Py (see also [111]). O

FExample 5.7.2 Consider the program P, with the following four rules, which is bor-

5. Non-monotonic Negation 99

rowed from [105]:

a 1 notb.
b 1L nota.
p L notp.
p L mnothb.

It is easy to see that the program P3 with only the first two rules has two stable
models: {a,notb} and {nota,b}. But when the third rule is added to P}, the resulting
program P2 has no stable models at all. Such an effect is certainly undesirable since
the third rule is independent of the first two in the sense that atoms p and «a,b are
not related each other in any rule. Moreover, note that p : L not p logically implies
p, 80 it is reasonable to expect that P2 should have {a,not b, p} and {not a,b, p} as
its intended meaning.

As pointed out in [105], the fourth rule also has an anomalous effect on P3 in the
stable semantics. Since p is already a logical consequence of P3, the addition of the
fourth rule to P3 should not have any effect. Nevertheless, it stabilises one of two

minimal models of P2, giving us a unique stable model for the full program P,. O

The second example shows a sort of oscillating behaviour, sometimes we have a
stable model, sometimes not, and there seems no motivation for it to be one rather
than the other. It is our belief that these anomalies arise because we are trying to
compute a non-monotonic negation via a process that does not allow the retraction
of previously assumed negative information in the light of new positive conclusions.
A non-monotonic negation such as is required for logic programs (at least in a
database context) should be computed by a non-monotonic, revision process. In the
next chapter, we shall propose a model of negation that owes much to the stable
semantics but allows, through a mechanism of consistency-recovery, for just this
withdrawal of previously assumed negative information. We shall show that the

example just given is not anomalous in this system.

5. Non-monotonic Negation 100

5.7.2 Three-valued Stable Semantics

In the last section, a stable model was represented as a set of ground atoms. An
atom is true of a model if it is in the model; otherwise, it is taken false by default.
So, the original definition of the stable models is in the two-valued framework.

In [83], a three-valued version of stable model semantics is introduced. Three-
valued stable semantics requires us to extend the basic notion of definite logic pro-
grams by introducing into the bodies of rules special atoms 0, 1/2, 1 to represent
truth-values false, unknown and true respectively, which gives us 3-definite logic
programs.

Given a 3-definite logic program, a least fixpoint can be constructed by using a
variant of Fitting operator. The variant operator will not operate on the natural

topology but a different one of HBp U not - HBp, which is defined as follows:

Definition 5.7.3 Let Fy and F, be sets of literals. Define an ordering < among a set

of literals by
Ey =< Ey iff EfCEf & FE[DE;.

Equipped with the ordering <, HBp Unot-HBp now has as the bottom member
not - HB instead of the usual empty set (). The variant Fitting operator Fp will
operate on HBp U not - HBp with the ordering <. We shall use Fp < to denote the

variant operator:
Definition 5.7.4 Fp<(L) =1Tp<(L) Unot - Np<(L)
where

Tp<(L) = {p€HBp:IrcPlhead(r) =pAYqec body(r)(qe LV qg=1))}

Np<(L) = {p€ HBp:Vr € P(head(r)=p — 3q € body(r)(g€ LV ¢=0))}

5. Non-monotonic Negation 101

For any 3-definite logic programs, it is easy to prove that Fp < is monotonic with

respect to <, and thus has a least fixpoint, computed iteratively:

Lfp(Fp<)=UFp<Ta

where

Fpé TO = nOt'HBp
Fp<ta = Fp<(Fp< T (aL1)),if ais a successor ordinal

Fp<ta = HUIp< 18T : B <a}U{(Ip<T8)” : 8 <al,

if @ is a limit ordinal

As in the two-valued case we now proceed by transforming a logic program into
a definite program. But this time the transformation is with respect to a set of
literals rather than a set of atoms, and the transformed program is a 3-definite logic
program, that is to allow the inclusion of the truth-values 0, 1/2, 1 in the bodies of

the rules of the transformed program.

Definition 5.7.5 Given a logic program PP, and a set L of literals in HBpUnot-HBp.
The stability transformation of P with respect to L, denoted by Spr't, is the 3-

definite logic program obtained from P by replacing:
(i) any negative subgoal not ¢ in a rule such that ¢ € L~ with truth value 1;
(ii) any negative subgoal not g in a rule such that ¢ € L™ with truth value 0;

(iii) any negative subgoal not ¢ in a rule such that ¢ ¢ Lt and ¢ € L~ with
1/2.

Definition 5.7.6 Given a normal logic program PP. A set L of literals is called a

3-valued stable model of P if and only if L satisfies the following stable equation:

1We rely on context to distinguish which transformation we are refer to.

5. Non-monotonic Negation 102

lfp(FSP,ij) = L.

In the previous subsection, we have argued that the underlying definition of
stable models is to some extent inconsistent with the essential characteristics of
negation not used in logic programs. It is this kind of inconsistency that underlies
the existence problem(s) of the stable model semantics. It can be argued that our
criticism continues to apply to the three-valued version of the stable semantics,
indeed is perhaps stronger against the three-valued than the original two-valued
version.

Our general contention is that a fully satisfactory account of a non-monotonic
negation must allow the retraction of what was previously assumed false “by default”
in the light of newly discovered information. The 2-valued stable semantics does not
do this since the stable equation requires that the negative facts are effectively fixed
as true for the duration of the computation. The same criticism applies to the
three-valued semantics.

Let us consider the example program P in the last section again. This time,
however, let A = {not p}, that is explicitly assume that p is false. Relative to A, Py

is now transformed into:
qg 1L 1.

p L q.
Similarly three-valued stable semantics simply excludes A as a three-valued stable
model of P instead of revising the initial assumption so as to reach the intended
conclusion that p is true.

Note that although this program does not have any two-valued stable model, it
does have a unique three-valued model. This is not accidental. In fact it has been
proved that each normal logic program has at least one 3-stable model (see [1]). It
seems that 3-valued stable model semantics solves the existence problem of 2-valued

stable semantics. However, it can be argued that the solution is not fully satisfying.

5. Non-monotonic Negation 103

Indeed, the unique three-valued stable model of P; is the empty set though it is
reasonable to expect that p is true. It seems that the non-existence property of
two-valued stable semantics is just converted to a truth-value gap of atoms in the
three-valued stable semantics. The three-valued stable semantics does not really
solve the non-existence problem of two-valued stable semantics.

The program Py considered in the previous subsection can also be used to show
that three-valued stable semantics has similar anomalies. Moreover, the introduction
of a third truth-value 1/2 is not without cost. There are at least two problems,
showing that the three-valued stable semantics can be worse than the original one.

One is illustrated by the following example.

Fxample 5.7.3 Let P3 be the logic program with the following two rules:

a 1 notb.
b 1L nota.
p L a.
p L b

The program P5 has {p,a} and {p,b} as its stable models. Note that p is a logical
consequence of P3, so it is reasonable to expect that p should be always true. In
the three-valued stable semantics, unfortunately, P3 has as its three-valued stable

models the empty set () in addition to {p,a,not b} and {p,b,not a}. O

The other problem concerns the transformation of a logic program relative to a
set of literals. In the three-valued semantics the atoms ¢ such that neither ¢ nor
not ¢ are in A are taken to be “unknown” and are replaced by the value 1/2. The
three-valued immediate consequence operator allows us to infer both positive and
negative information. Thus it should allow us to infer ¢ or not ¢ on occasions even

when ¢ was initially unknown. That not ¢ could well occur in the body of a rule, but

5. Non-monotonic Negation 104

even though ¢ or not ¢ is subsequently established the rule may not be used because
it has been "frozen” with replacing not ¢ by a constant 1/2 which, of course, no
amount of reasoning can ever establish or refute. It is even less appropriate to fix
what is “unknown” at the outset of a computation than it is to fix what is “false by
default”. Also to fix ¢ as unknown at the outset and then infer ¢ or notq subsequently

is almost like assigning an atom incompatible truth-values.

Chapter 6

Quasi-stable Semantics

In the last chapter we have reviewed some of main semantic theories proposed in
both the logic programming community and the deductive database community. In
particular, we have shown that the two dominant semantic theories, the well-founded
semantics and the stable model semantics, are not fully satisfying. In this chapter,
we describe a new semantics for logic programs which we term the “quasi-stable
semantics”! given its close relationship with the stable model semantics. We shall
show that our new semantics maintains the desired features of both the well-founded
semantics and the stable model semantics while overcoming their shortcomings.

Our general contention is that a non-monotonic negation such as is required for
logic programs should be computed by a non-monotonic revision process. Only a
process that allows one to withdraw by revising provisionally held negative infor-
mation can hope to be adequate to model a non-monotonic negation. Motivated
by this, we propose a model of negation that owes much to the stable semantics
but allows, through a mechanism of consistency-recovery, for just this withdrawal
of previously assumed negative information.

In the following, we shall first give an informal introduction to the quasi-stable

!The work on quasi-stable semantics have been previously reported in [111].

105

6. Quasi-stable Semantics 106

semantics, followed by its formal definition, and then prove some main results about
the semantics to show the relationship among the quasi-stable semantics, the well-
founded semantics and the stable model semantics. In the Example section, we
consider some example programs from the literature to show how the quasi-stable
semantics has overcome the shortcomings of the well-founded semantics and the
stable model semantics. In the Discussion section, we argue why the so-called sup-
portedness property cannot be justified though it has been taken as a indispensable
feature of a proper semantics for logic programs in the logic programming commu-
nity. Finally, we discuss some related work on the extensions of the WFS and the

stable model semantics.

6.1 The Quasi-stable Semantics

6.1.1 Informal description of the Quasi-stable semantics

The basic idea behind the quasi-stable semantics is extremely simple. Essentially
it is to iteratively extend the W F'E using hypothetical reasoning. We may roughly

formulate the quasi-stable semantics as follows:
Quasi-stable Semantics = W F'E + hypothetical reasoning.

Given a logic program P, we first of all compute its WFE. Note that, by doing this,
we are using both deductive and non-monotonic reasoning based upon the operator
Wp. When we find the well-founded extension of P, we will not be able to infer any
more information using only the operators Tp and Up. Then, it is the time to apply
hypothetical reasoning: choose an atom among the atoms undetermined so far, and

2

assume that it is false.” We emphasise the assumption consists of only a single

literal rather than a set of literals. As soon as an assumption is made, it is natural

ZNote that we are implicitly using a variant of the closed world assumption [90].

6. Quasi-stable Semantics 107

to continue reasoning using Wp. Unfortunately, things are not so straightforward.
To begin with, we need to understand a problem that exists when we continue
reasoning with Wp. The problem is that, although the unique well-founded exten-
sion is consistent, any further derivation based upon Wp may contain contradictions
when an assumption is made. Further, it would not be clear whether it is the as-
sumption or the non-monotonic reasoning based upon Up that is causing the trouble.
Let us consider the logic program P with the following rules to see how the

ambiguity may actually come come up:

a :L nothb.
b :L notec.

¢ 1l nota.

It is easy to check that the well-founded extension is the empty set. Choose an
undefined atom, say b, and assume not b. Using the assumption, it follows from
P that a holds, and thus not ¢ by Up, and thus b by Tp, a contradiction. The
contradiction may be caused either by the assumption notb or by the non-monotonic
reasoning. We cannot be sure which is causing the trouble.

Secondly, we need to make decision about how to deal with such ambiguity.
We choose to avoid the ambiguity. Our strategy is to make use of a more restricted
operator for non-monotonic reasoning instead of Wp based on the notion of a simply
intensional atom which we introduced in Chapter 4 (see page 64). We note that, for
any simply intensional atom p, if all the rules of P whose head is p have a false body,
then p can be taken to be false without causing any contradiction. This motivates
the following definition of an operator Np, for non-monotonically inferring negative
information, which is a variant of the negative component Np of Fitting operator

Fp. For convenience of formulation, we shall use the notion of coveredness from [78].

6. Quasi-stable Semantics 108

Definition 6.1.1 Given a logic program PP and a set L of literals. An atom p is covered

by L if pisin LT U L~; otherwise it is uncovered by L.

Definition 6.1.2 Given a logic program P, a set L of literals, we define two operators

Np and Fp on HB Unot - HE as follows:

Npi(F) {p € HBp : pis simply intensional & not covered by L &

Vr € P(head(r) = p — 31 € body(r)l € £}

FP7L(E) = LU TP(E) U not - NP,L(E)

where ¥ C HBUnot-HB, and the operator Tp is defined as in the previous section.

Theorem 6.1.1 The operator Fipy, defined above is monotonic and thus there exists

a least fized point [fp(Fpr).

Note that, with the use of the operator Npp,, assumptions may be restricted to
the atoms in the body of a rule in P since any simply intensional atom can then be
dealt with by either Tp or Np.

Generally, the least fixed point [fp(Fpy) for any set L of literals may still contain
contradictions. This time, however, we may be sure it is the assumptions in L
that are to be blamed not the non-monotonic reasoning (see lemma 6.1.4), thus
eliminating the ambiguity.

With the ambiguity removed, the next step of the refining process is to note that
[fp(Fpr) may contain no explicit contradiction even though P is not consistent with

L. For example, consider the following program P

p L a.
p L b
a 1 notb.
b 1L nota.

6. Quasi-stable Semantics 109

Let L = {not p}. Then we have [fp(Fp) = {not p} with no contradiction. But P
logically implies p and thus is not consistent with L. Note that the contradiction
comes up if we add either a or not a. In order to make this explicit, we introduce
the notion of conflict-freeness and that of consistency with respect to P. We show

that conflict-freeness is weaker than consistency in lemma 6.1.4.

Definition 6.1.3 Given a logic program P, and a set L of literals.
(i) L is said to be conflict-free with respect to P if [fp(Fp) is conflict-free.

(ii) L is said to be consistent with respect to P if there is no atom p such that

P,LFpand P, LF notp.
where = is the deductive relation of the full propositional logic.

Finally, with the restricted operator Fpy, the related notions of conflict-freeness
and consistency, we are ready to finish the process of refining our basic idea by
informally reformulating our semantics as follows. Given a logic program P and
a sequence® H = (xqy, -, *q,_1,*q,) of assumptions, we set the least fixed point
Lfp(Fpu)=1fp(FpL), where L is the set corresponding to the sequence H, and *q
is either a negative literal with ¢ as its atom or just the atom g¢.

Suppose that [fp(Fpy) contains both an atom p and not p. Since we know
that it is the assumptions in L that are to be blamed, then in order to remove
the conflict, we have to change some assumptions. We choose to change the latest
assumption made, that is the last element *¢q,, in the sequence H. We call the process
consistency-recovery for H, and proceed as follows.

Case I. The last element *q, is a negative literal. In this case, we do not simply
withdraw the assumption. We assume the atom instead. In this way, the sequence

of assumptions may contain both negative and positive literals. But positive literals

3We use sequence instead of set in order to emphasise the order of assumptions made. We shall
make the use of the order when we withdraw an assumption for the convenience of formulation.

6. Quasi-stable Semantics 110

only appear where negative ones may not be assumed. So negative literals have
priority. When the negative assumption is replaced by the corresponding positive
assumption, we then do reasoning based upon Fp ., and do consistency-recovery
again if necessary, where H' = (xq1, -+, *qu_1, ¢n)-

Case II. The last element of H is a positive literal. Since the only way the
positive literal is assumed is that its negative literal cannot be, we conclude that the
subsequence H' = (%qy,---,*q,_1) is not consistent even though it is conflict-free.
We then drop the assumption and do consistency-recovery for H’.

When [fp(Fppg) is conflict-free (either immediately or after consistency-
recovery), we make another assumption by choosing another uncovered body atom
and assuming it is false. Continue this process until no body atoms are left uncov-
ered in the Herbrand base HBp. As a result, we obtain a total extension, which we

call a quasi-stable extension.

6.1.2 Formal Definition of Quasi-stable Semantics

Although the informal formulation of the quasi-stable semantics is not difficult, it
turns out that its formal definition is somehow involved. This mainly is due to
the process of consistency-recovery, a process which we insist is indispensable for
modeling non-monotonic negation (see [113]).

Before we give the formal definition of quasi-stable extension, we need the fol-

lowing definition and a series of related results.

Definition 6.1.4 Given a logic program P, the well-founded extension W F'FE for P,
and some ordering O of the body atoms of P, we define by induction the following
sequence of sets:

Let Hy = () and & = WFE. Suppose &, and H, have been defined, and H, =

(kq1, -y *Gi—1, %qiy -+, %G). 1 all body atoms are covered by &, then &,41 = &,,

6. Quasi-stable Semantics 111

H,.1 = H,. Otherwise, let ¢ be the first uncovered body atom. Let H,.; and &,

be defined by the following:

H, Mnot q) if Lfp(Fpe,ufnotqy) is conflict-free;

i H,"q) if Lfp(Fpe,ufnot 1) 18 not conflict-free
n+l —

but [fp(Fpe,uqe) is conflict-free;

H! otherwise.

Ent1 = Lp(Fregun,,)

where ”* stands for the concatenation of two sequences, and H! = (*q1,- -, *qi—1, q:)
is derived from H,, in the following way: ¢ is the greatest index of H, such that

«q; = not ¢; and (xqq, -+, *q;_1,¢;) is conflict-free.

For example, for the following program P

p L a.
p L b
a 1 notb.
b 1L nota.

we have Hy = () and & = 0 since the well-founded extension WFE of P is (). So,
body atoms a and b are not covered by &. Take the body atom «, it is easy to see
that [fp(Fpe,unotay) is conflict-free, so we have Hy = (nota) and & = [fp(Fppy,) =
(nota,b,p). Now all the body atoms have already been covered by & . By the above
definition, we thus have &,.1 = &,,, H,41 = H,.

Usually a semantics is given by the least fixed point of an operator or equivalently,
as a union of sets. In our case this second option is not immediately available because

the sequence (£,) is not increasing and the union of all its members is anyway likely

6. Quasi-stable Semantics 112

to be inconsistent with P. Instead we prove the existence of an increasing, consistent
subsequence (H,) of (H,) and thus the existence of an increasing, conflict-free
subsequence (&,,) of (£,). We then use these two subsequences to define the quasi-
stable extension of P with respect to an ordering O of body atoms. We must first
show, however, that definition 6.1.4 is correct.

We need to show that &, and H,, are properly defined for each n. For this we
need the consistency of & with respect to P and some lemmas.

In [105], it is shown that W F'E can be extended into a model of PP by adding to
W FE all atoms uncovered by W FE. It then follows:

Lemma 6.1.1 (Van Gelder et al. [105]) Given a logic program P. Let WFE be
the well-founded partial extension of P, and A = HBp L (WFETUWFE™). Then
WFEUA s consistent with respect to P. In particular, WFE is consistent with

respect to P.

The following lemma states the relationship between literals in [fp(Fpy) and

the consequences of PU L.

Lemma 6.1.2 (i) If a literal [€ [fp(Fpyr) and [is not simply intensional then

PULE L (ii) If an atom p € [fp(Fpyr), then PU L+ p.

Proof. (i) By induction on « with o = 0 trivial. For a limit ordinal «, the
lemma is also trivial. Suppose [€ Fpr T a+ 1. As [is not simply intensional,
the Npj, operator was not used. If [€ L the result is trivial. Otherwise there is a
rule [+ L Iy, -+ 1, with {l1,---,1,,} € Fpr T a. Using the induction hypothesis
PULt [forl <:<mand hence PUL F [.

(i1) By lemma 5.2.1, {fp(F'pr) = U Fpr T . If p € {fp(FpL), then there is a
ordinal o such that p € Fprp, T a4+ 1= LUTp(Fpr T a)U Npr(Fpr T «). Asp

is an atom, p cannot be in Npr(Fpr T). If p € L the result is trivial. Otherwise

6. Quasi-stable Semantics 113

thereisarule p: L [y, -+ [, with {l1,---, 0} € Fpr T a. Since none of [; is simply

intensional, by lemma 6.1.2 (i), PU L - [; for 1 <¢ < m and hence PU L Fp. O

The following is a technical lemma needed for the proof of theorem 6.1.3.

Lemma 6.1.3 Given a logic program P. Let L be a set of literals and [a body literal

such that L UA{l} is consistent with respect to P. Let L' = [fp(Fpr) We have

Lfp(Frr) CLfp(Fprug) (6.1)

Lfp(Fprom) = Lp(Fpoug) (6.2)

Proof. (i) We prove (6.1) by proving the following:

FprtaCFprop T a (6.3)

By induction on « with limit ordinals trivial. Obviously L C L U{l}. Using the
induction hypothesis and the monotonicity of Tp, Tp(Fpr T o) C Tp(Fprum T a).
Since any simply intensional atom p uncovered by L is also uncovered by L U {{},
we have Npp(Fpr T a) C Nprogy(Fpoogy T a) by the induction hypothesis. Thus
Fprta+1C Fprum Ta+ 1.

(ii) In order to prove (6.2), we first prove { fp(Fpruuy) C {fp(Fprupy). For this

we prove by induction the following:

Fprogy Ta € Fprpum T a (6.4)

For limit ordinals, (6.4) holds trivially. Since L C [fp(Fpy), LU{l} C L’ U{l}. By
the induction hypothesis and monotonicity of Tp, Tp(Fprumy T a) € Te(Fppup T

a). Now for any p € Np o (Fprog T @), if notp € L' then notp € [fp(Fprugy) T

6. Quasi-stable Semantics 114

a+ 1. Suppose not p € L'. p cannot be in L’ either, otherwise p € L' =1 fp(Fpy) C
Lfp(Fprogy) and thus [fp(Fprogy) is not conflict-free, contradicting the assumption
of L U {l} being consistent with respect to PP. So for any p € Np oy (Froup T a),
if not p ¢ L', then p is not covered by L' U {l} and thus p € Np o) (Fprup T o)
by the induction hypothesis. Thus, (6.4) holds for o + 1.

In order to prove the converse of (6.2), we prove

Fprom TaClfp(Fprop) (6.5)

Once again we prove (6.5) by induction on «a. Limit ordinals are trivial. By (6.1)
L'U{l} C Ifp(Fprupy). Using the induction hypothesis and monotonicity of Tp,
Te(Fprum T o) € Tp(lfp(Fprowy)) € Ufp(Fproqy). Since L C L', any sim-
ply intensional atom uncovered by L’ U {l} is also uncovered by L U {l}. Thus
not - Nppuuy(Fpougy T a) € not - Neropy (L p(Frruqy)) € Lfp(Fprupy) by the

induction hypothesis. It then follows that (6.5) holds for « 4+ 1. O

The following lemma shows that the notion of being conflict-free w.r.t. P is
weaker than that of consistency w.r.t. to P. Moreover, it also shows that whenever

a conflict occurs in [fp(Fpyr) then L is to be blamed.

Lemma 6.1.4 Given a logic program P. Let L be a set of literals If L ts consistent

with respect to P, then L is conflict-free with respect to P, that is [fp(Fpy) is conflict-

free.

Proof. 1fp(F'pr) =J Fpr T a and we prove that each Fpy, 1 « is conflict free.
Suppose that Fpy 1T « is the least o which is not conflict free. Clearly a > 0,

but o > 1 as well because Fpy 1= LUTp(0)Unot- Npp(0) =LUTp(0), PUL

is assumed consistent and Tp draws only logical consequences. Now Fpy T o =

LUTp(Fpr T aLll)Unot- Npp(Fpr T o L1). If this is not conflict free it contains

6. Quasi-stable Semantics 115

p and not p for some atom p. We consider three cases:

Case I. not p € L and p € Tp(Fpr T a L 1). There must be some rule p :
Ly, ool € Pwith{ly, -, 1.} C Fpr T aL1. Asnone of [; are simply intensional
we can apply lemma 6.1.2 (i) to conclude that PU L = [; for each 1 < i < m. Thus
P U L F p contradicting our assumption that PP U L is consistent.

Case II. p € L and not p € not- Npr(Fpr T o L 1). But then L covers p and no
inference using Npj, can be made.

Case lIl. p € Tp(Fpr TaL1l)and p € Npr(Fpr T o L 1). Then, by the first of
these, for some rule p: L I, 1, € P,we find {l4,---,0,} € Fpr T o L 1. But by
the second, some [; must be in Fpr T o L1 again contradicting the leastness of «a.

a

Theorem 6.1.2 Given a logic program P, H, and &, are properly defined for all n.

Proof. Suppose that H, and &, are defined, and there remain atoms uncovered by
E.. Let g be the first uncovered atom. If not ¢ or ¢ can be added we are done.
Suppose then that neither can be added. Thus { fp(Fpe,um,u{qy) is not conflict-free.
There must therefore be some negative literal in H,,. For otherwise H, U {q} is a
set of atoms which by construction are not covered by &, and hence & U H,, U {q}
is consistent with respect to P by lemma 6.1.1. By lemma 6.1.4 it follows that
Lfp(Fpe,um,uig) is conflict-free. Since there is some negative literal in [, there is a
least such and by the argument just given if that is replaced by its atom a conflict-
free least fixed point will result. Thus we may choose the greatest j such that H,

includes (*qi,---,*qg;_1,not ¢;) and where [fp(Fpe,u y) is conflict-free.

*Q1, kG5 —1,97

Then we set H,qq = (xq1, -+, *qj—1,q;) and Epy = Lfp(Fpe,um,,,)- 0

Once we have seen that (£,) and (H,,) are properly defined, the next task is to

show how to extract two canonical subsequences respectively from (£,) and (H,)

6. Quasi-stable Semantics 116

to be used in defining the quasi-stable extension of P. We begin with two auxiliary

lemmas.

Lemma 6.1.5 Given a logic program P. Let & = WFE, H = (xq1,- -, *qn) be a
sequence of assumptions, € = lfp(Fpe,um). If € is conflict-free and all the atoms
HBp are covered by &, then £ is a Herbrand model of P and thus consistent with

respect to P.

Proof. Since € is conflict-free and all the atoms in HBp are covered, £ is a Herbrand
interpretation. By € = [fp(Fpe,um), we know & is closed under Tp. Then it follows
that every rule in P is satisfied by € and hence &£ is a Herbrand model of P. Obviously,

& as a set of literals is satisfied by £ as a Herbrand model. So both P and & have &

as their model, and thus & is consistent with respect to P. O

Lemma 6.1.6 Given a logic program P and an ordering O of the body atoms
of P. Let (H,) and (&,) be as in definition 6.1.4. Suppose that H, =
(kq1, -+, *Gi—1, N0l Giy*Giy1, -+, *qQm) is a sequence of assumptions, where 1 is the
greatest 1 such that H! = (xqi,---,*q—1,n0t q;) is not consistent with P U &,

but (xqu,---,%qi—1,q;) is conflict-free, then there is an ny > n such that H, =

<*Q17 TR, QZ>

Proof. Since H] = (xqq,---,*q;—1,not ¢;) is not consistent with P'U &, there must
be some finite set Py, of rules of P such that H) is not consistent with Py;, U &.
Let Oy, be the smallest fragment of O containing all body atoms in Py;,. We now
prove the lemma by induction on the number of atoms in Oy;,.

If ||Oyin]| = 1, let ¢ be the uncovered atom in Oy,,. Since H! is not consis-
tent with Py, U & and H) is a subsequence of H,, neither lfp(FpﬁmgnU{notq}) nor
Lfp(Fpy,, e.0()) can be conflict-free by lemma 6.1.5. It then follows that neither

Lfp(Fpe,ufnot) nor Lfp(Fpe, ugqy) can be conflict-free So by the definition of (H,),

Hn—l—l = <*q17 ct kG-, q2>

6. Quasi-stable Semantics 117

Suppose that the lemma holds for ||Oy;,|| < k. We show that the lemma holds
for ||Oyin|| = k£ + 1 too. Let ¢ be the first uncovered body atom in Oy;,. There are
three cases to consider.

Case I. H,(not q) is conflict-free. According to definition of (H,), H,11 =
H, "(not q). We further consider two sub-cases. (i) H,"(q) is conflict-free too.
Then we have H) , = H,,. By applying the induction hypothesis to H,, there
isan ny > n+1 such that H,, = H, "(¢). Now by applying the induction hypothesis
to H,, and H) = H), thereis an ny > ny such that H,, = (*qi, -, *qi_1,¢;). (ii)
H, "{q) is not conflict-free. Then we have H] , = H,. By applying the induction
hypothesis to H,41, there is an ny > n + 1 such that H,, = (*q1,- -, *qi—1, q).

Case 1. H,"(not ¢) is not conflict-free but H, "(q) is conflict-free. Accord-
ing to the definition of (M), H,y1 = H,"(q). Then we have H] , = H]. By
applying the induction hypothesis to H,y;, there is an n; > n 4+ 1 such that
Hyy = (kqu, o %Gim1, 43).

Case III. Neither H, "(not ¢) nor H, "(q) is conflict-free. According to the defi-

nition of (H,,), Hut1 = (*%q1, - -+, *qGi—1, Gi)- -

Theorem 6.1.3 (Canonical Subsequences) Given a logic program P, there exists
an increasing subsequence (E,,) of the sequence (E,) and an increasing subsequence
(H,,) of (H,) such that (i) E&U H,, is consistent with respect to P, (ii) and thus &,

is conflict-free, and (iii) &E,, covers qi,---,q; in the ordering O of body atoms.

Proof. By lemma 6.1.1 & is consistent with PP. Set no = 0. Both (ii) and (iii)
are trivial.

Now suppose that n; be defined, Let ¢; be the first body atom uncovered by &,,.

By the induction hypothesis 7 > ¢ 4+ 1. (If there is no such atom, then &,,,, = &,,

i41
and the theorem holds.) We consider two cases.

Case I. P.& U H,, = ¢q;. Since & U H,, is consistent with respect to PP, it

6. Quasi-stable Semantics 118

follows that & U H,,, U{q;} is also consistent with respect to P. By (6.2) of lemma
6.1.3 and lemma 6.1.4, [fp(Fpg, ugy,y) is conflict-free. We further consider two
subcases. (i) lfp(FP,EOUHniU{not o;3) is conflict-free. Then H,, y, = H,, "(not q;). By
lemma 6.1.6, there exists an integer m > n; 4+ 1 such that H,, = H,, "(g;). Set
nit1 = m. (ii) lfp(FRgOLJHniU{notq]}) is not conflict-free. Then H,,+1 = H,, "(q;).

Set n;y 1 = n; + 1. In either subcase, & U H,,,,, is consistent with respect to P, and

it1
bl

Nit1

By (6.1) of lemma 6.1.3, £,, C &,

= lfp(FP,EoaniH) is conflict-free.

41 Since g; was the first atom uncovered by
Engy Engyy covers qr, -+ ,q;. As g =21+ 1, &, covers g, ,qis1.
Case II. P, & U H,,, t g;. Then & U H,,, “(not ¢;) is consistent with P. By lemma

6.1.4, [f p(F'p.gyu,, Mnot ,)) 1s conflict-free. By definition 6.1.4, H,,,, = H,, "(notq;),

it1

and &

i = lfp(proani/\(notqﬁ). So set niyy = n; + 1. & U M, is consistent

with respect to P, and &,,,, is thus conflict-free. And by the argument above &,,_,

it1

COVErS q1, "+, Git1- O

Finally we may define the quasi-stable extension (QSE) of a logic program P
with respect to an ordering O of the body atoms of P. Let (£,) and (H,,,) be the

canonical subsequences of P. Set H =|J H,,,,. Then QSE = [fp(Fpeyum)-

6.2 Properties of Quasi-stable Semantics

Theorem 6.1.3 shows that the QS FE always exists for arbitrary logic programs and

is unique for a given ordering. We can also conclude:

Corollary 6.2.1 The QSFE of a logic program P is a Herbrand model of P.

Proof. As each & U H,, is consistent with respect to PP, so is & U H. It then follows

that QSFE is conflict-free.

6. Quasi-stable Semantics 119

By (6.1) of lemma 6.1.3, &,, € QSFE. By part (iii) of theorem 6.1.3, QS E covers
all the body atoms of P. We show)SF also covers each head atom.

If p is a simply intensional atom there is a rule p : L [;,---,{, in P. If for some
such rule, each [; € |J&,, then p € |J&,, by the Tp operator. Otherwise, for each
such rule, some [; € |J&,, € QSE then not p € QSE by the Npy operator. In
either case Q.S E covers all atoms of the Herbrand base of P. So QS F is a Herbrand
interpretation.

Since QSFE is a fixed point of Fpeum, QSE is closed under Tp. That is to say
each rule of PP is satisfied by QSE. Therefore, QSE is a Herbrand model of P. O

Corollary 6.2.2 If an atom p is a logical consequence of P, then p is in any quasi-

stable extension of P.
Proof. This is immediate from corollary 6.2.1. O

It is proved in [47] that any stable model of a logic program P is a minimal
Herbrand model of P. It can be shown that any quasi-stable extension also has the
same property. An auxiliary result is first needed about the well-founded partial

extension of a logic program.

Lemma 6.2.1 Given a logic program P. Let & be the well-founded partial extension
of P. For any atom p € &, there is a rule r € P such that head(r) = p and body(r)
is satisfied by E L {p}.

Proof. By lemma 5.2.1, & = [JWp 1 a. For any atom p € &, let o be the least
ordinal such that p € Wp 1 a. Since p € Wp 1 a, there must be a rule » € P such
that head(r) = p and body(r) C Wp T o L 1. By the leastness of a, p & body(r). It

then follows that body(r) is satisfied by Wp T o L1 C & L {p}. O

Theorem 6.2.1 Any quasi-stable extension of P is a minimal Herbrand model of

P.

6. Quasi-stable Semantics 120

Proof. Let QQSE be a quasi-stable extension of P. We show that QQSFE is also a
minimal Herbrand model. We only have to show ()SFE is minimal. In order to do
so, we show that, for any atom p in QSFE, (QSE L{p})U{not p} is not model of P.

We first note that for any atom p € QSFE, P,& U H F p by lemma 6.1.2 (ii). It
then follows that there exists a least n; such that P,& U H,, = p. We show that

there exists an integer 7 such that

P,&UH,, Fpandp g H,,. (6.6)

If p € H,,, we are done. If p € H,,. By the choice of n;, it must be the case
that H,, = H,,_, "(p) and p € H,,_,. It follows from the definition of (H,) that
P,&U H,,_, F p. So we have shown that (6.6) holds.

Now let & = (€ L {p}) U {not p}. If p € &, by lemma 6.2.1, there is a rule
falsified by & L {p} and hence by £'. So £’ is not a model of P. If p & &, then we
have £ is a Herbrand model of & U H,,; but it is not a model of p, it follows from
(6.6), £ is not a model of P. O

The reverse is not true. For a counterexample, see the program P, in the next

section.

In [105], it is shown that the well-founded semantics has a very close relationship
with the stable semantics. Specifically, it is shown that well-founded total models
are unique stable models, and the well-founded partial model of a logic program P is
a subset of every stable model of P. This relationship holds between the well-founded
semantics and the quasi-stable semantics, as is immediate from the definition of the
quasi-stable semantics. We put the facts about the relationship in the following two

theorems:

6. Quasi-stable Semantics 121

Theorem 6.2.2 [f a logic program P has a well-founded total model, then the model

is the unique quasi-stable extension of P.

Theorem 6.2.3 The well-founded partial model of P is a subset of every quasi-stable

extension of P.

We have shown that the quasi-stable semantics has as close a relationship with
the well-founded semantics as the stable model semantics does. Furthermore, we
can show that there is a sense in which the quasi-stable semantics is a generalisation
of the stable model semantics.

We recall that, in its original form, a stable model is two-valued. Any stable
model is represented as a set of positive atoms, with missing atoms from the model
being taken as its negative literals. If we explicitly represent its negative literals, we
obtain a natural representation of a stable model as a set of literals. In the following,
for any stable model A, we shall use A; for its representation as a set of literals.
That is Ay = AUnot - A, where A = HBp L A.

In definition 5.7.2, a stable model is defined by the stability transformation. But

it can also be characterised using a parametric form of the operator T as follows.

Lemma 6.2.2 Given a logic program PP, and a set A of atoms, let Spa be the sta-
bility transformation of P relative A. Then A is a stable model iff A = [fp(Tp, . %),

where TP,notK(E)) = Tp(E Unot - A)

Proof. By the definition of stable model, A is stable if and only if A is the minimal
model of Spa, which can be characterised as the least fixed-point of Tspa [103].

By lemma 5.2.1, we have the following:

lfp(TSP,A) = UTSP,A T a

lfp(TP,notZ) = U TP,notZ T a

6. Quasi-stable Semantics 122

So, in order to prove the lemma, we show that for each «,

TSP,A T a = TP,notZ T a (67)

For limit ordinals, (6.7) holds trivially. Suppose that (6.7) holds for a. We show
that it also holds for o + 1. For any p € Ts,, T a + 1, there must exist a rule in
Spa such that head(r) = p and body(r) C Ts, , T a. By the induction hypothesis,
we have body(r) C TP,notK 1 a. But for a rule r in Spa, there must exist a rule »’
in P such that head(r') = head(r) and body(r')* = body(r) and body(r')~ C A. It
then follows that p € T, , x T @+ 1. So we have Ts, , t o CTp, .5 T .

Similarly, we can show T x Ta+1 CTs,, T a+1. So, (6.7) holds for a + 1.

The following indicates a relationship between the least fixed point of F'p and

the representation of a stable model A as a set A; of literals.

Lemma 6.2.3 Given a logic program P. For any stable model Ay of P, If L C Ay,

then lfp(Fpr) C Ay.

Proof. By lemma 5.2.1, [fp(Fpr) =J Fpr T a. So, we have to show that for each

a,

FP,L T « g Al (68)

For limit ordinals, (6.8) holds trivially. Suppose that (6.8) holds for a. We need
to show (6.8) holds too for o + 1. For any literal [€ Fpy T o4+ 1. We have to
consider three cases.

Case I. If [€ L, then by the given assumption in the lemma we have [€ A;.

Case II. If [€ Tp(Fpr T «), then [is a positive literal p, and there exists a rule

r € P such that p = head(r) and body(r) C Fpy, T a. By the induction hypothesis,

6. Quasi-stable Semantics 123

we have Fpr, T o C Ay. So we have that body(r) C A;. By lemma 6.2.2, it then
follows that p € A C A;.

Case III. If [€ not - Npp(Fpr T), let [= not p. Then for any rule r € P with
head(r) = p, either there exists an atom ¢; such that not ¢; € Fpr T o or there
exists a literal not g; such that ¢; € Fpr 1 a. By the induction hypothesis, we have
either ¢; ¢ A or ¢; € A. In either sub-case, we conclude by lemma 6.2.2 that the
rule will not contribute to the derivation of p from P relative to A Unot - A. So we

have [€ not - A. O

With the representation of a stable model as a set of literals and the above two
lemmas, we can now state the relationship between the stable model semantics and

the quasi-stable semantics.

Theorem 6.2.4 Given a logic program P. If A is a stable model of P, then Ay is

a quasi-stable extension of P.

Proof. We first construct a sequence (&,) of extensions and a sequence (H,) of
sequences as follows:

Let & = WFE, and Hy = (), where W FE is the well-founded partial extension
of P. Suppose &, and H,, have been defined. Let &,,1 and H, i be defined by the

following:

H,.1 = H,"(not q)

Ent1 = Ufp(Fpeum,,)-

where ¢ is an atom in A that is not covered by &,.
According to a result about the relationship between stable models and WES
partial models [105], we have & C A;. From the above construction of (H,),

H, C A;. It then follows that each & U H,, is consistent with respect to P, and thus

6. Quasi-stable Semantics 124

&, 1s conflict-free. So, H, and &, are in fact the canonical subsequences of P.

To finish the proof, we have to prove that the construction above will end up
with A;. We show that Ay = QSFE.

Since & C A; and H, C Ay, by lemma 6.2.3, QSE C A;. We have shown
that QS FE covers all the atoms of P in corollary 6.2.1, so it must be the case that

QSE:Al O

Note that the converse of theorem 6.2.4 is not necessarily true. We say that the
quasi-stable semantics generalises the stable model semantics. For a counterexample,

see the program P3 in the next section.

6.3 Examples

In this section, we consider some example programs often used in literature.

Frample 6.3.1 Let P be the logic program with the following four rules:

a 1 noth.
b : 1 nota.
p L a.
p L b.

We have seen in Chapter 5 that the program PP has the empty set as its well-founded
extension though it is reasonable to expect that p should hold.

In order to find its quasi-extensions, we start from the empty set (), choose the
atom a from the uncovered body atoms a and b, and assume it false?; that is not a.
Using this assumption, it follows that b and p from P. So {not a,b,p} is a quasi-
stable extension of PP. Through backtracking, we get another quasi-stable extension

{a,not b,p} of P.

“Recall that our assumptions can be restricted to body atoms.

6. Quasi-stable Semantics 125

Note that this program also has {not a,b,p} and {a,not b, p} as its stable mod-
els. This evidence can also be used to strengthen our claim that the quasi-stable

semantics is similar to the stable model semantics. O

Example 6.3.2 Although the quasi-stable semantics may coincide with the stable
model semantics for some logic programs, the two semantics may behave quite dif-
ferently for other programs. The stable model semantics may have some unpleasant
features for certain programs. One of the problems associated with the stable seman-
tics, as we shown in Chapter 5, is the non-existence property. This seems inevitable
given the conceptual flaw of the stable model semantics. An often cited example is

the program Py with the following single rule:

p L notp.

The two-valued stable semantics is not defined for the program P,, that is to say P
has no stable model. The three-valued stable semantics is defined for Ps. But the
unique three-valued stable extension of P, is the empty set. So the non-existence
property of two-valued stable semantics is converted to truth-gap of atoms in the
three-valued stable semantics. The three-valued stable semantics does not really
solve the non-existence problem of two-valued stable semantics.

In contrast, the quasi-stable semantics has {p} as its unique quasi-stable ex-
tension. Obviously not p cannot be assumed without inconsistency, one step of
consistency-recovery enables us to establish p, giving us the unique quasi-stable

extension {p}. O

Fzrample 6.3.3 Consider another program Py with the following rules:

g 1 notp.

p L q.

6. Quasi-stable Semantics 126

We have shown in Chapter 5 that this program has no two-valued stable model
though it does have the empty set () as its unique three-valued stable model. Given
the fact that p is a logical consequence of Py, it is reasonable to require that any
semantics should assign truth-value true to p.

In the quasi-stable semantics, Py has {p} or equivalently {p, not ¢} as its unique
quasi-stable extension. To see this, first we compute the well-founded extension of
P,. It is the empty set (). Then we make a negative assumption say not p from the
uncovered atoms p,q. It follows that we have ¢ and thus p, a contradiction. By
revising the assumption, we get p. Since we cannot infer anything from Py using p,
we make another assumption not q. There is no further contradiction and there is
no atom left, so we conclude with {p, not ¢} as desired. Note if our first assumption

is not ¢ instead of not p, we still get the same result. O

Frample 6.3.4 Consider the program P3 with the following four rules:

a 1 noth.
b : 1 nota.
p 1L notp.
p L noth.

We have seen in Chapter 5 that the program P with only the first two rules has
two stable models: {a,not b} and {not a,b}. Anomalously, when the third rule is
added to P3, the resulting program P3 has no stable models at all. The addition of
the fourth rule to P2 also has an anomalous effect; it stabilises one of two minimal
models of P2, giving us an unique stable model for the full program Ps.

Given the fact that the third rule is independent of the first two, and the fact
that that p : L not p logically implies p, it is reasonable to expect that PZ should

have {a,not b, p} and {not a,b,p} as its intended meaning.

6. Quasi-stable Semantics 127

Since p is already a logical consequence of P3, the addition of the fourth rule to
P2, should not have any effect on its meaning; that is both P2 and P5 should have
the same meaning.

In the quasi-stable semantics, P} has two quasi-stable extensions: {a,not b} and
{not a,b}, both P2 and P still have two quasi-stable extensions {a,not b, p} and

{not a,b,p} as expected. O

Frample 6.3.5 Let P4 be the logic program with the rule

p L notg.

The minimal models of Py, represented as sets of literals, are {notq, p} and {notp, ¢}.
In the community of logic programming, it is {not ¢,p} that is accepted as the
intended meaning of Py. The WFE of P4 is {not q,p}. So, in this case, the well-
founded semantics can capture the intended meaning of PP4. Since all the atoms in
P, are covered by {not q,p}, P4 has {not q,p} as its unique quasi-stable extension,
giving us a simple counterexample to the converse of theorem 6.2.1.

Recall that the inference mechanism behind the quasi-stable semantics is the
combination of non-monotonic and hypothetical reasoning as well as deductive one.
It is the use of non-monotonic reasoning that enables us to capture the intended
meaning of PP4. Without appealing to non-monotonic reasoning, some extra criteria
such as admissibility [37] are needed in order to assign an appropriate meaning to

P, O

6. Quasi-stable Semantics 128

6.4 Discussion

6.4.1 Supportedness

In the community of logic programming and deductive databases, the notion of a
supported model introduced in [5] has been claimed to be an important one. A set
L of literals is supported by a logic program if for any positive literal p € L, there
is rule r in P such that head(r) is p and body(r) C L.

In [15], supportedness is taken as a desirable property of the intended meaning
of a logic program although it is recognised that the property itself is not a sufficient
condition for assigning an appropriate meaning to a logic program.

The quasi-stable semantics is not supported in the sense that a quasi-stable
extension is not necessarily supported. For instance, consider a program P with the
following rules:

g 1 notp.

p L q.
The program P has an unique quasi-stable extension {p,not ¢}. But the extension
is not supported since p is not any immediate consequence of P and {p,not ¢}, that
is there is no rule r in P such that head(r) is p and body(r) C L.

However, the fact that the quasi-stable semantics is not supported does not mean
that the quasi-stable semantics is not an adequate model of nonmonotonic negation.
Indeed, it can in fact be argued that the supportedness cannot be justified in the
context of nonmonotonic reasoning.

To begin with, we note that to insist that proper models of logic programs be
supported is to restrict inference forms whereby positive information can be inferred.
In particular, the requirement of supportedness implicitly prevents us from using any
possible non-monotonic reasoning to infer positive information. However, this seems

not consistent with the fact that non-monotonic reasoning is one of main features

6. Quasi-stable Semantics 129

of logic programming.

We have said many times before that the essential characteristic of negation not
is nonmonotonic. A piece of negative information such as notq may be given up later
when more information is available. However, we should not neglect the fact that
positive information may also be infected with the non-monotonicity of negative
information, a fact which we noted in the discussion of the Fitting semantics before.
This fact is still true of the stable model semantics as the same example illustrates
as follows.

Let P3 consist of following two rules

p :L notq.

r 11 q.

P53 has {p,not ¢,not r} as its unique stable model. When Pj3 is augmented with ¢,
its stable model changes to {q,r,not p}. So what is originally not true now becomes
true when more information is added. Moreover, like that in the Fitting semantics,
what is originally true is also affected. Once again, this is because of the use of the
rule p: Lnot g, by which p is infected with the non-monotonicity of not q.

Since positive information can be nonmonotonic just as negative information
even in the stable model semantics (which is supported), there seems no reason
to forbid us from nonmonotonically inferring a piece of positive information. In
other words, it would not be unreasonable for us to conclude p if the assumption
not p is not consistent. Recall that the main feature of the quasi-stable semantics is
the introduction of consistency-recovery mechanism, which in turn is based on the
Classical Reductio ad absurdum (RAA): p is inferred whenever not p cannot be con-
sistently assumed. The non-supportedness of the quasi-stable semantics in essential
is the consequence of RAA. Since the inference form of RAA is not unreasonable as

we just argued, there seems no reason to rule out non-supportedness.

6. Quasi-stable Semantics 130

Moreover, there is another point to consider. Remember that one of the main
motivations for the use of nonmonotonic negation is that classical logic only provides
us with a monotonic mechanism for inferring negative information. And further the
non-persistent semantic rule M2 is not adequate in the context of logic programming.
A logic program can be regarded as a default theory to extend classical logic. As
such, it is natural to require that any adequate semantics for a logic program should
assign the truth-value true to those atoms which are logical consequences of the
program as we did in the quasi-stable semantics. Unfortunately, the supportedness
condition may prevent us from doing so. Hence we conclude that to require models
of logic programs to be supported is to violate but not extend classical logic, and

thus once again cannot be justified.

6.4.2 Inference Forms in the Quasi-stable Semantics

Another characteristic of our semantics is its use of both hypothetical and non-
monotonic reasoning to extend classical logic. The non-monotonic reasoning we use
is in a very specific form. It is based upon the operations used in the WFS [105]
and the Fitting semantics [40], that is the operator Up and a variant of the Fitting
operator [p.

Our use of hypothetical reasoning is reminiscent of Poole [82] and Dung [37]. In
[82], Poole applies hypothetical reasoning to extend classical logic for dealing with
non-monotonic reasoning. He argued that if one allows hypothetical reasoning, then
first-order logic itself is adequate to handle non-monotonic reasoning.

In logic programming, there is a similar proposal based upon abduction. By
incorporating abducibles into the rules of a logic program, logic programming is
extended to allow abductive reasoning, resulting in abductive logic programming
[58]. In an abductive framework for logic programming, negative literals are in-

terpreted as abducible hypotheses that can be assumed to hold subject to certain

6. Quasi-stable Semantics 131

integrity constraints. Based upon the abductive interpretation of negative literals,
an argumentation-theoretic framework for logic programming has been proposed in
[37]. Furthermore, in [19] it is claimed that the framework can be further abstracted
so as to provide an argumentation-theoretic approach to default reasoning in general.

However, the use of hypothetical reasoning in [82] and [37] is somewhat limited
in one sense. Deductive reasoning is carried out from the given theory augmented
with a set of assumptions. No non-monotonic reasoning is involved. Indeed, the
motivation for the use of hypothetical reasoning is to replace non-monotonic reason-
ing [82]. In the context of logic programming, as a result, additional criteria such
as admissibility [37] for choosing among sets of assumptions are needed in order
for the argumentation-theoretic framework to properly define the semantics of logic
programming. The resulting semantics called preferred extension semantics in [37],
however, still has similar problems to the three-valued stable semantics (see the next
section).

In contrast, our use of hypothetical reasoning does not have the above restriction.
We shall use not only hypothetical but also non-monotonic reasoning in addition to
deductive reasoning. Consequently, we do not need to appeal to any extra criteria
such as admissibility for choosing among different sets of assumptions. We shall
show by example that this is because of the use of non-monotonic reasoning.

In addition, the use of hypothetical reasoning for us is also different. Assumptions
are made individually. That is to say, each time, we only consider a single assumption
rather than a set of assumptions as in [82], [37]. If an assumption results in a
contradiction, we may modify or withdraw it, depending on whether it is negative
one or positive one.

For us, deductive reasoning, non-monotonic reasoning and hypothetical reason-
ing are interleaved, subject to the constraint that assumptions be made only when

logical reasoning and non-monotonic reasoning can no longer infer any more infor-

6. Quasi-stable Semantics 132

mation. In other words, we have implicitly used the following priority relation®

among the different kinds of reasoning in the definition of quasi-stable semantics:

Logical Reasoning < Hypothetical Reasoning

Non-monotonic Reasoning ~< Hypothetical Reasoning

where the left hand side of the relation < has priority over the right hand side.

6.5 Related Work

In the study of semantics for logic programs, a whole spectrum of semantic theories
for logic programs with nonmonotonic negation have been proposed, ranging from
those that may infer very little information from a logic program (“sceptical”) to
those that always infer a great deal (“credulous”). At the sceptical extreme there
is the well-founded semantics WFS [105] while at the credulous one is the stable
model semantics [47]. The WFS and the stable model semantics are usually taken
as two dominant ones. In this section, we briefly discuss some related work on the

extensions of the WIS and the stable model semantics.

6.5.1 WPFS Extensions

On the one hand, we have seen in the last chapter that the WFS has many desirable
features, and based on this we have chosen the WFS [105] as our starting point. On
the other hand, the WFS despite its merits has been criticised for being too “scep-
tical” since, for many programs, it gives the empty set as their intended meaning.

We have shown by example in Chapter 5 that the WFS may be silent on all atoms

For us, logical reasoning and non-monotonic reasoning are independent of each other in the
sense they cannot be applied to the same rule. So we shall not impose any priority relation on
them though it is reasonable to require that logical reasoning have priority over non-monotonic
reasoning.

6. Quasi-stable Semantics 133

which are logical consequences of a logic program.

It is the sceptical characteristic of the WFE'S that motivates its various extensions
including the generalised well-founded semantics GWFS [7], the well-founded-by-
case-semantics WFS¢ [97], the extended well-founded semantics WFSg [57], the
strong well-founded semantics WFSg [22], and the O-semantics [81]. The relation-
ship between these semantic theories for logic programming is also studied in [33]
and [34]. Furthermore, an abstract axiomatic framework for defining semantics of
logic programs is introduced in [34]. In particular, a well-behaved semantics is pro-
posed. All these semantic theories have to some extent extended the WFS in one
way or another so that more information can be inferred from a logic program. A
common feature among these theories is that they are all deterministic.

The quasi-stable semantics proposed in this chapter gives another extension of
the WES. Without exception, our extension is also motivated by the sceptical char-
acteristic of the WFS. However our approach to extending the WFS is different.
We use nonmonotonic and hypothetical reasoning in our approach, which is a main
feature of the quasi-stable semantics as we discussed before. Consequently it is not
surprising to see that the quasi-stable semantics differs from the semantical theories
mentioned above in that it is non-deterministic. We do not know what relationship
holds between the deterministic part of the quasi-stable semantics, that is the inter-
section of all quasi-stable extensions, and the existing deterministic extensions. It

is worth further investigation.

6.5.2 Stable Model Semantics and Its Variants

The other dominant semantic model for logic programs is the stable model seman-
tics [47]. Compared with the WFS, the stable model semantics is “credulous”: it
derives much more information than the WEFS though this is non-deterministic or

“disjunctive” in the sense that there may be several stable models for a given logic

6. Quasi-stable Semantics 134

program. In the previous chapter, we have shown that a stable model is not defined
for all logic programs and the stable model semantics may give rise to anomalies
in some circumstances. These shortcomings, we have argued, arise because the un-
derlying definition of stable models is to some extent inconsistent with the essential
characteristics of negation not used in logic programs. It is this kind of tension that
underlies the existence problem(s) of the stable model semantics.

A modification of the stable model semantics is the three-valued stable seman-
tics [84]. In this three-valued version, all logic programs have at least one model.
The three-valued version seemingly solved the existence problem. But the solution
is rather superficial. Although each program has at least one three-valued stable
model, the model may leave all atoms undetermined for some programs, which is
not fully satisfying as it seems once again to say that nothing can be concluded.
The non-existence of the stable model semantics is now converted to truth gaps in
the three-valued version. It is our opinion that the problem is still there though in a
somewhat different form. More importantly, our criticism concerning the conceptual
flaw of the stable model semantics continues to apply to the three-valued version.

There are also other variants of the stable model semantics, including partial
stable model semantics [95] and preferred extension semantics [37]. Although we
did not discuss these variants, we believe that our criticism is still true of them since
it has been proved that they are in fact equivalent to each other. For the equiva-
lence between partial models and three-valued models, see [96]; for the equivalence
between partial stable models and preferred extensions, see [59]. In [34] and [35]
two other variant of stable model semantics, STABLE’ and STABLE™ are proposed
respectively by combining the well-founded semantics and stable models in different
ways. Like the stable model semantics, neither STABLE’ nor STABLE™T has any
mechanism for revising provisionally assumed negative information when inconsis-

tency occurs. Moreover, both STABLE’ and STABLE" are somewhat artificial.

6. Quasi-stable Semantics 135

It turned out that the quasi-stable semantics we described in this chapter has
a close relationship with the stable model semantics, as was shown by theorems
6.2.2, 6.2.3 and 6.2.4 in section 6.2. It is based on this close connection that we
called our semantics the quasi-stable extension semantics or simply the quasi-stable
semantics. In comparison to the stable model semantics, our semantics avoids its
difficulties. This is because of the introduction of consistency-recovery mechanism
which allows us to revise tentatively-made negative assumptions if necessary in light
of newly discovered information. Such a mechanism we believe is indispensable to

model nonmonotonic negation.

6.6 Concluding Remarks

In this chapter, we have introduced a new semantics, called the quasi-stable seman-
tics. It naturally extends the well-founded semantics using hypothetical reasoning.
We have shown that the quasi-stable semantics solves the non-existence problem,
and demonstrated by example that it also dissolves anomalies associated with the
stable semantics.

In summary, the quasi-stable semantics has the following features (i) every logic
program has at least one quasi-stable extension, (ii) a quasi-stable extension of a
logic program P is a total model of P, (iii) a quasi-stable extension of P is minimal
in the sense that no positive literal can be replaced in the extension by a negative
one without its ceasing to be a model of P, (iv) the well-founded partial model for
a logic program P is included in every quasi-stable extension of P, (v) every stable

model is a quasi-stable extension.

Chapter 7

Quasi-stable Semantics with

Strong Negation

The normal logic programs we studied in the last two chapters have only one kind
of negation: non-monotonic negation. In this chapter, we study the semantics of
logic programs with two different kinds of negation: non-monotonic negation and
strong negation. Our discussion shall be mainly based on the work in Gelfond and
Lifschitz [48], [49], Pearce and Wagner [80], Wagner [110], and our own work in
the last chapter. In the following, we shall first of all review the main motivations
behind the two kinds of negation, and then give the definition of an extended logic
program, followed by a review of the answer set semantics and its modification under
the quasi-stable semantics. Then we consider some examples from the literature
to argue why the term classical negation in [48] and [49] is a misnomer and to
show how strong negation can be used in extended logic programs for knowledge
representation. Finally we briefly discuss the relation between strong negation and

non-monotonic negation.

136

7. Quasi-stable Semantics with Strong Negation 137

7.1 Strong Negation in Logic Programs

Gelfond and Lifschitz in [48] and [49] point out that a ground query against a
normal logic program will always return a definite yes or no. However (as we noted
in Chapter 2) classical logic allows three possibilities: the query can be proved, it
can be refuted or neither is the case. The third possibility should be admitted into
logic programs: it should be possible to answer unknown to a ground query.

To achieve this they proposed to extend logic programs with what they called
“classical negation”. This results in extended logic programs.

Although their criticism is true of definite logic programs, it is in general not
true of normal logic programs. Under the WFS, a ground query against a normal
logic program may be undetermined. Under the stable model semantics there is
indeterminacy because a logic program may have more than one stable model.

The problem with traditional logic programming, in our opinion, is not so much
whether it is able to deal with incomplete information but how incomplete informa-
tion is dealt with.

Normal logic programs provide negative information through one or another
non-monotonic inference mechanism. Negative instances of extensional predicates
are implicitly assumed through closed-world reasoning. Negative instances of in-
tensional predicates are obtained in a much more complicated way, depending on
what semantics is used. Under the quasi-stable semantics, non-monotonic inference
is the combination of the operator Up, the Fitting operator Fpz,, and hypothetical
reasoning. Whatever semantics is used, information expressed by non-monotonic
negation is defeasible.

In Chapter 4, we briefly argued that there are situations where non-monotonic
negation is not suitable. Instead, what is needed is a kind of negation which can be

used to express negative information in a monotonic (that is persistent) way. This

7. Quasi-stable Semantics with Strong Negation 138

consideration led us to the use of strong negation. The idea of using strong negation
in logic programming and deductive databases is not novel. It was proposed by
Pearce and Wagner in [79] and [80], and further developed by Wagner in [108], [109]
and [110]. Although [48] and [49] call the second negation “classical negation”,
it is argued in [109], that this is in fact strong negation. See section 7.4 for the
argument and related example in [109]. We shall give further arguments to show
term “classical negation” is indeed a misnomer.

In contrast to non-monotonic negation, the strong negation of an atomic fact
is to be established directly just as positive atomic facts are. From the database
viewpoint, this requires the explicit inclusion of strong negative facts in extensional
databases. In other words, strong negation can be used to express explicit negative
information. One significant implication is the persistence of strong negative infor-
mation; a piece of strong negative information will not be subject to change when
more information is added.

Another desirable characteristics of strong negation is its capacity for handling
incomplete information. We have pointed out in Chapter 3 that constructive logic
with strong negation can accommodate partiality. So it is not surprising to discover
that logic programs with strong negation inherit the same capability.

The introduction of strong negation does not give rise to any new computational
difficulties. In comparison to classical negation, it has been proved that strong

negation is simpler to implement (see [109] and [12]).

7.2 Extended Logic Programs

Extended logic programs introduced in [48] and [49] have two kinds of negation:
non-monotonic negation and classical negation. We have pointed out in the last

section that term classical negation is a misnomer, so we shall define an extended

7. Quasi-stable Semantics with Strong Negation 139

logic program as a logic program with non-monotonic negation and strong negation.

Definition 7.2.1 An extended logic program is a set of rules of the form
slo L sly,sly, ..., sl,,not slyyq, ..., not sl,.

where n > m > 0, and each s/; is an atom p or the strong negation of an atom ~ p.

In [49], a literal is an atom p or the strong negation® of the atom ~ p. Since we
have used the term literal either for an atom p or for its non-monotonic negation
not p, we instead use the term strong literal for an atom or its strong negation.

In the above definition of an extended logic program, strong negation is allowed
to appear both in the head and in the body of a rule. That is to say, an extended
logic program may have a strong negative conclusion as well as positive one. So,
positive and strong negative information in an extended logic program are treated
with equal importance. It is interesting to note that such an equal importance
follows directly from the symmetry of the logic of strong negation.

In contrast, positive and non-monotonic negative information are treated in dif-
ferent ways in normal logic programs. Non-monotonic negation may only appear
in the body of a rule, and the derivation of negative facts is different from that of
positive ones as we have seen in the last two chapters. Such difference still exists in
extended logic programs.

Similarly, a deductive database (DB, P) can also be extended by incorporating
strong negation into the extensional database DB and the intensional one P. An
extended extensional database consists of strong literals rather than just atoms, and
an extended intensional database is an extended logic program. Since an extended
extensional database may contain both positive facts and strong negative facts, we
require no atom and its strong negation to occur in it at the same time to preserve

consistency. Semantics for extended databases can be reduced to semantics for

!They use the term classical negation instead of strong negation.

7. Quasi-stable Semantics with Strong Negation 140

extended logic programs, so we shall concentrate on only extended logic programs

in the following.

7.3 Semantics of Extended Programs

7.3.1 The Answer Set Semantics

In [49], the semantics of an extended program is defined by its answer sets, resulting
in the answer set semantics. Answer sets are similar to stable models except that
they consist of strong literals rather than atoms. The definition of answer sets in
[49] is done in two steps.

Firstly, consider extended programs without nonmonotonic negation not. So we
shall call them extended definite programs. Similar to definite logic programs, every
extended definite program P may be associated with a unique set of strong literals,
called the answer set of P. Informally speaking, an answer set consists of all strong
literals inferred from the rules of P. We have seen in Chapter 5 that there are
three different but equivalent approaches to assigning one set of atoms to a definite
program, but we consider here only the fixpoint approach to formally defining the
answer set of extended definite programs. For other approaches, see [110].

Recall that, in order to define the fixpoint characterisation of definite programs,

the operator Tp on HBp is used. For extended definite programs we need a similar

operator T3, which is defined on SL = HBp U ~ HBp instead of HBp as follows.
Tp(X) ={slop € SL: Ir € P(head(r) = slo ANVsl € body(r)sl € X)}

It is straightforward to prove that the operator T'5 is monotonic and thus has
a least fix-point [fp(Tp). Although the least fix-point [fp(Tp) of an definite logic
program P contains only positive atoms, [fp(TF) of an extended definite logic pro-

gram, may contain both positive and strong negative literals, in particular, both ¢

7. Quasi-stable Semantics with Strong Negation 141

and ~ ¢ as the following simple example shows.

FExample 7.3.1 Let PP consist of three rules

p L
q L p
~q 1L p

P has {p, ¢, ~ ¢} as its least fix-point [fp(T5), which contains both ¢ and ~ ¢. O

In classical logic, all strong literals (among other things) can be inferred from a
contradiction. Based on this fact, Gelfond and Lifschitz in [49] gave the following

notion of the answer set for extended definite logic programs.

Definition 7.3.1 For any extended definite program P, the answer set a(P) of P is

defined as follows:

) Lfp(Tp) if Ifp(TF) contains no pair of p and ~ p;
o =

SLp otherwise.

where SLp is the set of all strong literals of P.

Before we define answer sets of arbitrary extended programs, a remark on in-
consistency is in order. In the above definition, the way inconsistency is dealt with
is classical. This is not the only approach to inconsistency. The so-called paracon-
sistent approach which is contradiction-tolerant can be taken as it is done in [17].
For us, it seems wrong from the informational viewpoint to say that we can infer
everything from a contradiction. Rather, it would be more reasonable to take a con-
tradiction as a signal that something is wrong. In the present context, a contradic-
tion means that the extended program in question is problematic. A contradictory

program needs to be modified so as to remove the contradiction. So, we shall reject

7. Quasi-stable Semantics with Strong Negation 142

any inconsistent set as an answer set on the basis of the very inconsistency, and not
define any answer set for a contradictory program as we shall see in our definition of
semantics for extended logic programs in the next subsection. There we shall also
show another problem associated with the above definition.

Now we move on to define answer sets of arbitrary extended programs. This
is done in a similar way to the definition of a stable model through reducing an
extended program to a program without not. Given a set A of strong literals, let

P2 the extended program obtained from P by deleting

(1) each rule that has a formula not sl in its body with sl € A;

(2) all literals of the form not sl in the body of the remaining rules.

Definition 7.3.2 (Gelfond and Lifschitz [49]) Given an extended logic program P. A
set A of strong literals is called an answer set of P if and only if A coincides the

answer set of P2, that is the following equation holds:
A = a(P?).

It is easy to see that the two definitions of answer set coincide when applied to
a program P without not. Moreover, the second more general definition of answer

set is also a generalisation of the definition of stable model.

7.3.2 The Quasi-answer Set Semantics

In the last subsection, we reviewed the answer set semantics. Its definition is sim-
ilar to that of the stable model semantics. Alternatively, the answer set semantics
can be defined through firstly transforming an extended program into a normal
program, and then applying the stable semantics to the resulting transformed nor-

mal program. This transformation-based approach is in fact preferable in the sense

7. Quasi-stable Semantics with Strong Negation 143

that we need not be restricted to only the stable semantics. Indeed any other se-
mantics can be used on the transformed program. Naturally, we prefer to use the
quasi-stable semantics. We first consider how to transform extended programs into
normal programs.

Let P be an extended program. For any predicate p(ty,---,1,) occurring in P,
introduce a new predicate with the same arity, denoted sn_p(ty,---,t,), where sn
in sn_p(ty,---,t,) is for strong negation. For any strong literal s/, define its positive

form, denoted s/™ as follows:

o+ plte, - 1) if sl is a positive literal p(t1,---,t,);
s =

sn_p(ty,---,t,) if sl is a strong negative literal ~ p(ty,---,t,).
Definition 7.3.3 (Gelfond and Lifschitz [49]) To transform an extended program P

into a normal program, denoted PT, is to replace any rule r in P of form
slo L sly,sly, ..., sl,,not slyyq, ..., not sl,.
by the following rule r*

+ + gt + + +
sly L osly,sly, ... sl7 not sl ... ,not sl

The transformation? consists in replacing every occurrence of strong negation
~ p(f) by a new positive atom Sn_p(ﬂ. After transforming an extended program P
into a normal program P*, we may apply any semantics to the resulting program P+
in a straightforward way. We shall consider the stable semantics and quasi-stable
semantics respectively. For any set S C SL, let ST = {si* : sl € S}.

In [49], it is proved that for a set S of strong literals, if S contains no pair of p
and ~ p, then S is an answer set of P if and only if ST is a stable model of P*. So,

we may alternatively define the notion of answer set as follows.

?Based on the same idea, Wagner in [109] shows how to transform an arbitrary formula to a
formula without any occurrence of strong negation, and also to apply the transformation to transfer
an extended definite program into a definite logic program.

7. Quasi-stable Semantics with Strong Negation 144

Definition 7.3.4 For any set S C SLp of strong literals, if S contains no pair of p

and ~ p, and ST is a stable model of P*, then S is an answer set of P.

The consistency assumption is indispensable. Without it, the correspondence
between stable models and answer sets would no longer hold as the following example

from [49] shows.

Example 7.3.2

This program has no answer sets whereas its transformation P+ does have {p, ¢, ~

g}t as its unique stable model. O

This example to some extent also suggests that the same consistency condition
might be added into the original definition of answer set given in the last section.
With this slight modification, we shall not only have a neat correspondence between
different definitions of answer sets but also remove the annoyance that everything
can be inferred from a contradiction. Motivated by these considerations, we offer

the following definition of quasi-answer sets.

Definition 7.3.5 For any set S C SLp of strong literals, if ST is a quasi-stable
extension of P* and contains no pair of sl and sn_sl, then S is a quasi-answer set

of P.

With this definition available, it is straightforward to generalise various proper-
ties about the quasi-stable extensions we have proved in Chapter 6 to quasi-answer
sets (with appropriate modifications). For example, we can show that if A is an
answer set of P and contains no pair of p and ~ p, then it is also a quasi-answer-

extension. One exception that we need to bear in mind is that an extended logic

7. Quasi-stable Semantics with Strong Negation 145

program may have no quasi-answer extension at all though any logic program does
always have at least one quasi-stable extension as our simple example above indi-
cates.

Another point worth mentioning is that, like positive atoms, the monotonicity
of strong negative literals may be compromised when strong negation and non-
monotonic negation are both used in an extended logic program. A piece of strong
negative information when inferred from an extended logic program rather than es-
tablished directly may be infected with non-monotonic negation and thus no longer
monotonic. If we want to maintain the monotonicity of a piece of strong nega-
tive information, then we should be careful not have it depend on non-monotonic

negation.

7.4 Why Not Classical Negation?

In this section, we have a closer look at why classical negation used in [48] and [49]
is in fact strong negation. The misnomer was pointed out in [109]. Nevertheless,
the term classical negation is still widely used in literature, such as [12], [20], etc.
This is due to the influence of [48] and [49], which presumably in turn comes from
the dominant role of stable models in semantics of logic programs.

We first of all consider the argument given by Wagner in [109]. His criticism
is based on the fact that classical first-order logic is semantically two-valued. This
bivalence entails the principle of the excluded middle which, as shown by the example
in [109], is violated under the answer set semantics of extended logic programs given
by [49]. It follows that the second negation in [48] and [49] cannot be classical. Here

is the counterexample program used in [109].

7. Quasi-stable Semantics with Strong Negation 146

Example 7.4.1 Let PP consist of the following two rules,

p L q.

p L ~q

Had we interpreted ~ in the above program as classical negation, it would have been
reasonable for p to be true relative to whatever semantics is used for the program.
But it is easy to see that the answer set of P is the empty set (). One the other hand,
if when ~ is taken as strong negation, then P does have) as its unique answer set.

a

Let us now analyse an example from [49] to further support the conclusion that

the use of the term “classical negation” is not appropriate.

Fxample 7.4.2 This example from [49] contains two programs Py and Py, where Py

consists of

~ D 1

p L o~gq
and P,

~p

q L ~p.

The example was used in [49] to show that the answer set semantics is not “con-
trapositive” with respect to : L and ~2, in the sense that the semantics assigns
different meanings to the rules p : I ~ g and ¢ : L ~ p. Indeed, according to
the answer set semantics, P has a unique answer set {~ p}, and Py has a unique
answer set {~ p,¢}. Since classical logic is contrapositive with classical implication
— and classical negation, they instead claim that non-contrapositiveness is because
that their semantics interprets program rules as inference rules rather than classical

conditionals.

3In [49], — and — are used instead of : — and ~.

7. Quasi-stable Semantics with Strong Negation 147

We argue that even if program rules are interpreted as inference rules, any proper
semantics should assign the same set to these two programs as long as in the frame-
work of classical first-order logic. It is not controversial to assign the set {~ p, ¢} as
the meaning of P5. So we need to show why Py should also have the same set as its
meaning when classical negation is used.

Let ro denote the program rule p : L ~ ¢, D the classical implication symbol,
and ,, the deductive relation of the classical propositional logic* augmented with
the inference rule ry. Recall that in propositional logic there is a famous theorem
called the Deduction Theorem relative to the deductive relation . When propo-
sitional logic is extended with the inference rule rg, the Deduction Theorem still
holds relative to -, . With these notes at hand, the remaining task is straightfor-
ward. First of all, we have ~ ¢ I-,, p using the inference rule ry. By the Deduction
Theorem, we then have =, ~ ¢ D p. From which it follows that F=,,~ p D ¢ by the
contrapositiveness of first-order logic. By the deductive theorem again, we thus have
~ p ., q. That is to say, ¢ is a logic consequence of Py, and it thus is reasonable to
assign {~ p, ¢} as the meaning of P; if classical negation is used.

On the other hand, if the negation in the programs Py and P is interpreted as
strong negation, then we can no longer infer ¢ from Py, giving us a proper explanation

why these two programs have different meaning under the answer set semantics. O

7.5 Knowledge Representation Using Strong
Negation

Although non-monotonic negation has proved to be quite useful in various domains

and application frameworks, it is not sufficient in some situations, and its use in

4Since we are only concerned of ground logic programs here, propositional logic is enough
without using classical first-order logic.

7. Quasi-stable Semantics with Strong Negation 148

logic programs can lead to undesirable results. In this section, we give some more
examples from literature to show how how strong negation can be used to eliminate

undesirable results caused by the use of non-monotonic negation.

Fxample 7.5.1 This example is from [49]. As pointed out in [49], the example is
actually credited to John McCarthy. Consider the following regulation about cross-
ing railway tracks: A school bus may cross railway tracks under the condition that
there is no approaching train. How shall we express this regulation as a program
rule? The key point is to interpret the negation in the condition that there is no
approaching train. Had the negation been interpreted as non-monotonic negation

not, the regulation would be expressed as
cross(school bus, railway tracks) : L not approaching(train).

This would mean that a school bus may cross railway tracks whenever there is no evi-
dence that train is approaching. Although the exact meaning of no evidence depends
on specific semantics used, the point is that the truth of not approaching(train) is
defeasible. When more information is available, we may find that there is in fact an
approaching train. In this case, we certainly do not want the bus to cross tracks.
So the above representation is not desirable.

Instead of non-monotonic negation not, a more satisfying representation can be

obtained with the use of strong negation ~:
cross(school bus, railway tracks) : L ~ approaching(train).

Now a school bus will not cross railway tracks unless it had the strong negative fact
~ approching(train), which is established on the basis of direct observation and

thus will not be subject to any change later. O

FExample 7.5.2 This example from [49] is about the representation of terminal ver-

tices of a directed graph, showing how they can be defined by using an extended

7. Quasi-stable Semantics with Strong Negation 149
logic program:

~ terminal(X) L are(X,Y).

terminal(X) : L not ~ terminal(X).

Fxample 7.5.3 This example comes from [3].

runs : 1 not broken.
~runs Ll
broken :1 flatTire.
broken :1 badBattery.

Given a car not running, we cannot conclude that the car is not broken without
inconsistency. So it must be broken, as might be caused by a flat tire or bad

battery. O

Fxample 7.5.4 This is also from [49] though with a slight modification. The example
illustrates how both non-monotonic negation and strong negation are used. Suppose
that an anonymous college uses the following regulations for awarding scholarships

to its students:
(1) Every student with the GPA of at least 3.8 is eligible.
(2) Every minority student with the GPA of at least 3.6 is eligible.

(3) No student with the GPA under 3.6 is eligible.

(4) The students whose eligibility is not determined by previous rules are in-

terviewed by the scholarship committee.

7. Quasi-stable Semantics with Strong Negation 150

The above regulations can be respectively encoded into the first four rules in the

following extended program,

eligible(X highGPA(X).

eligible(X minority(X), fairGPA(X).
~ fairGPA(X).
not eligible(X'),not ~ eligible(X).

interview(X

(X)
(X)
~ eligible(X)
(X)
(X)

e

fairGPA(X highGPA(X).

The last rule is added to capture the relation between predicates highGPA and
fairGPA, that is, a GPA of at least 3.8 is also a GPA of at least 3.6. Its inclu-
sion in the program can help to prevent us from putting ~ fairGPA(ann) and
highG P A(ann) into an extended database on the basis of consistency.

a

7.6 Relation between Strong Negation and Non-
monotonic Negation

In this section, we make some informal remarks about the relation between strong
negation and non-monotonic negation. We have seen that the main utility of strong
negation is to express monotonic negative information, whereas information ex-
pressed by non-monotonic negation is not monotonic and usually subject to change
when more information is available. Non-monotonic negation is weaker than strong
negation, that is to say, if it is true that ~ p, then it is also true that not p, but
the reverse is usually not true. Given this fact, we might be tempted to make this

relation explicit by expressing it as

not p: L ~ p. (7.1)

7. Quasi-stable Semantics with Strong Negation 151

But this is not appropriate for two reasons. One is that, in logic programming, not
is used only in the body but not in the head. The other is that we have nothing
to lose without (7.1), that is, (7.1) is in fact redundant. Let us consider a simple

example by the way of illustration.

Frample 7.6.1 Let P consist of the following two rules.

~q 1

p L notgq.

With (7.1), we can easily infer p from the program. However, it is not difficult to

see that we can still infer p even without using (7.1). O

Both strong negation and non-monotonic negation can be applied to incomplete
predicates. But there is an important difference between them. The logic of strong
negation is three-valued whereas the logic of non-monotonic negation is two-valued.
The three-valuedness of strong negation comes from the incompleteness of its as-
sociated predicates. However the two-valuedness of non-monotonic negation comes
from the non-monotonic characteristic of inference and thus has nothing to do with
its associated predicates.

There is another difference worth mentioning between strong negation and non-
monotonic negation, which is in fact the consequence of the difference above. Al-
though the answer set is identical to the stable model when the answer set semantics
is applied to a normal logic program, it was pointed out in [49] that there is a crucial
semantic difference: answer sets and stable models gave different meaning to those
atoms not explicitly expressed in them. An atom not in a stable model is interpreted
as false in the framework of the stable model semantics whereas an atom not in an
answer set 1s interpreted as unknown. This is certainly an important observation.

However we need to be clear that the difference between false and unknown is only

7. Quasi-stable Semantics with Strong Negation 152

true of predicates to which strong negation is applied. For all other predicates, we
should continue to use the strategy of representing negative information implicitly;

otherwise we may have an undesired result as illustrated by the following example.

Frample 7.6.2 Let P consist of the following rules:

even(0) :L

even(s(s(X))) L even(X).

Where the predicate even(X) means that X is an even number, and s(X) denotes
the successor function of Peano arithmetic. Both the answer set and quasi-answer

set of PP is

{even(0), even(s(s(0))), even(s(s(s(s(0))))),---, }

Since strong negation is not applied to the predicate even, we use non-monotonic
negation with it by default. Thus the answer to the query even(s(0)) is false as
intended. Without using this default convention, we would have to conclude that
the answer to the query even(s(0)) was unknown, contrary to the intended meaning
of even.

In [49], it was proposed to avoid this problem by adding

~ even(X): L not even(X).

to the original program instead of using our default strategy. However, this seems
unnecessary. Moreover it may result in overuse of strong negation. In contrast, our

solution is simpler, more straightforward, and thus preferable. O

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have studied negation in logic and deductive databases. Among
other things, two kinds of negation are discussed in detail: strong negation and
nonmonotonic negation. We have built a first-order logic system CF’ with strong
negation, and proposed a novel model of nonmonotonic negation, called quasi-stable

semantics.

8.1.1 Strong Negation

Motivated by Barwise and Etchemendy’s work on infon logic [10], we were led to
strong negation and argued that negation used in situation theory is in fact strong
negation rather than intuitionistic one. But the usual logics of strong negation, that
is constructive logics, have intuitionistic quantification which has a too strong dy-
namic satisfaction condition on universal quantifiers. We have argued the condition
is not appropriate from the situation-theoretic viewpoint. Based on these argu-
ments, we have built a first-order logic system with strong negation and bounded

static quantifiers, called CF’, that owes much to Thomason’s logic CF [98] but

153

8. Conclusions and Future Work 154

allows for expanding domains.

The logic system CF’ is intended to be used as infon logic, the underlying logic
for situation theory. We admit that CF’ needs to be extended in different ways in
order to be a fully-fledged infon logic.

In addition to the foundational role for situation theory, CF’ may have potential
applications in database theory. The utility of strong negation in the community
of logic programming and deductive databases is to express explicit monotonic neg-
ative information. Although logic involved in extended logic programs is only as
a fragment of constructive logics without implicational operator, our logic system
CF' does provide a general logical framework for further extensions. It may also be
used as logical basis for the study of deductive databases in a more general context

where more than one database may be involved at the same time.

8.1.2 Nonmonotonic Negation

The introduction of strong negation into logic programming and deductive databases
is to complement but not to replace a more common kind of negation, that is non-
monotonic negation. A whole spectrum of semantic theories for logic programs with
nonmonotonic negation have been proposed, ranging from those that may infer very
little information from a logic program (“sceptical”) to those that infer a great deal
(“credulous”). 1In this thesis, we have reviewed and analysed just a few of var-
ious existing semantic theories, including the Fitting semantics, the well-founded
semantics, the stable model semantics.

The analysis has shown that these semantics are not fully satisfying. Never-
theless, they do provide us with profound insight towards understanding of non-
monotonic negation. It is based on these semantics and the analysis of the essential
characteristic of nonmonotonic negation that we have come up with the quasi-stable

semantics. An important observation is that, given the nonmonotonicity of nega-

8. Conclusions and Future Work 155

tion not, a model of negation not cannot be appropriate unless it has a mechanism
to allow the retraction of tentatively assumed negative information in the light of
newly discovered information. In other words, a non-monotonic negation such as is
required for logic programs (at least in a database context) should be computed by
a non-monotonic, revision process. Such a process has been introduced through a
mechanism of consistency-recovery in the quasi-stable semantics. As a result, the
quasi-stable semantics has avoided the conceptual flaw suffered by the stable model
semantics. In the quasi-stable semantics, the existence problem of the stable model
semantics is genuinely solved rather transformed into a different form as it is in the
three-valued version of stable semantics. We have also shown by example that the
quasi-stable semantics does not give rise to anomalies as the stable model semantics
does. We have proved that the quasi-stable semantics has many desirable features
similar to that of the stable model semantics. It is our belief that the quasi-stable
semantics provides us with an adequate model of nonmonotonic negation, and thus

enables us to assign an appropriate meaning to a logic program.

8.2 Further Work

8.2.1 Possible Extensions of CF’

Although CF’ is a full first-order logic system, it is only fragmentary from the
situation theoretical viewpoint. For one thing, the components in a basic formula
R(ay,as,...,a,), or using the notation of infon logic, < R, ay,as, ..., a,;i > are still
individuals whereas infon logic allows them to be any objects.

CF’ can be extended in many ways. A natural extension is to replace basic
formulas R(ay, az, ..., a,) of CF’ with basic infons <R, ay,as, ..., a,; 1>, emphasising
that components ay, as, ..., a, in basic infons can be any objects not just individuals.

Such structures lend themselves to the treatment of complex objects.

8. Conclusions and Future Work 156

Another possible extension is to incorporate an operator into CF’ in order to

! What is true in one situation is still true in a larger

express non-persistence.
one. However what is undetermined in a situation may become true or false when
more information is available. It is then natural to introduce an operator such
as ‘definitely’ (see [75]) or, more directly, an ‘undetermined’ operator U. Using
this operator U, the indeterminacy of both the assertion and the (strong) negation
of an infon ¢ can be expressed by means of Us and U ~ o respectively. If an
agent, querying a situation s for a decision whether o, fails to establish both ¢ and
~ o, (s)he can then thereby establish Uo. In a larger situation, however, what is
originally absent in a smaller situation may become available, thus the same agent
may verify o so that Uo is rejected. So, Uc is not persistent. Similarly, if a query
to a situation s fails to refute o, then it rejects the claim that o is refuted by s and
thereby establishes U ~ o. For the same reason, U ~ o is not persistent either. The
distinction between strong negation and U is similar to Barwise and Etchemendy’s
distinction between negation and denial(see Barwise and Etchemendy [9]). However,
our approach is different from Barwise and Etchemendy’s. Among other things, the
inclusion of U in our logic will lead us into nonmonotonic logic whereas Barwise
and Etchemendy claim that “Closing the class of propositions under conjunction,

disjunction, and denial would result in a notion of proposition whose logic is entirely

classical.” (see p. 169 of [9]). Full details of such an extension remain to be done.

8.2.2 Issues Relevant to the Quasi-stable Semantics

8.2.2.1 Non-W F E-based Quasi-stable Semantics

In the current formulation of the Quasi-stable semantics, the computation of a quasi-

stable extension begins with the W F'E, further extended using hypothetical reason-

'Readers are invited to refer to Veltman’s paper Defaults in Update Semantics [106]. There
he introduces operators like ‘presumably’ to deal with non-persistence within the framework of
update semantics.

8. Conclusions and Future Work 157

ing and operator Fpy. As a result, the WFE is automatically contained in every
quasi-stable extension. We admit that the use of the W FFE is only a shortcut and
we are liable to be accused of cheating, though we insist that the shortcut is not
unreasonable given that it has been universally accepted that any extension of a
logic program should contain at least the W F'E. Alternatively, we might have not
started from the WFFE. We would have just used hypothetical reasoning and the
operator Fpy, and then shown that the W ' E is indeed included in each quasi-stable
extension. This approach would be conceptually more economical and thus may be

preferred.

8.2.2.2 Non-ground Quasi-stable Semantics

The study of the quasi-stable semantics in this thesis is restricted to ground logic
programs. A non-ground logic program is first instantiated relative to its Herbrand
universe. Stable models, well-founded models, and quasi-stable extensions are rep-
resented as sets of ground atoms. In [53] the stable and well-founded semantics of
logic programs, and the answer set semantics of extended logic programs are gen-
eralised based on non-ground interpretations; that is sets of atoms rather than sets
of ground atoms are used to represent stable models, well-founded models and an-
swer sets, resulting in non-ground semantic theories for logic programs and extended
logic programs. A set of atoms usually provides a more compact representation of its
ground counterpart. Consequently, the non-ground stable, well-founded semantics,
and answer set semantics are more efficient than the corresponding ground versions.
The key technical notion used is that of an “anticover” of a set of substitutions.
Informally, an anticover of a set X of substitutions is described as “a set of substi-
tutions, all of which are incompatible (i.e. they share no common instance) with
the substitutions in X, and such that each substitution that is incompatible with

all members of X is an instance of some substitution in the anticover.” [53]. It

8. Conclusions and Future Work 158

would be interesting to know whether the notion of anticover can also be extended
to non-ground quasi-stable extensions so as to to give a non-ground quasi-stable

semantic theory.

8.2.2.3 Implementation of the Quasi-stable Semantics

There have been various implementations of deductive databases. See [87] for a
survey. Implementations mentioned in [87] are mainly under the stratified, locally
stratified or well-founded semantics. Recently, there have been different efforts on
effective and efficient implementations for computation of stable models for logic
programs.

Based on mixed integer programming, three different algorithms for computing
stable models of logic programs have been proposed and implemented in a proto-
type compiler in [12]. It is reported in the same paper that these algorithms and
implementations have also been extended to handle logic programs with both non-
monotonic negation and strong negation?. One significant point is that deduction
is performed at compile-time rather than run-time. As a result, run-time query
execution can be reduced to the traditional relational database operations and thus
can be performed relatively more efficiently than otherwise.

In [78] a direct and efficient implementation of the well-founded and stable model
semantics has been proposed for range-restricted function-free logic programs. The
computation of stable models for ground logic programs makes use of bottom-up
backtracking search and a powerful pruning method based on a well-founded type
approximation for stable models. The implementation also contains an algorithm
for instantiating a logic program to its ground version. The instantiation algorithm
only produces a subset of ground instances of the program without losing any stable

models. The implementation can compute all stable models, decide whether a logic

2In [12], the term classical negation is used instead of strong negation.

8. Conclusions and Future Work 159

program has a stable model, and decide whether a given formula is satisfied in some
or all of the stable models of a program.

The above two implementations are for ground logic programs. A logic program
has to be instantiated relative to its Herbrand universe before the computation of sta-
ble models for the program. In [24], a different implementation of the well-founded
and stable model semantics has been proposed for non-ground logic programs. The
computation of stable models, based on the so-called assume-and-reduce algorithm,
is still relative to ground logic programs. But the computation of well-founded se-
mantics is for non-ground logic programs. A prototype system called SLG [23] has
been developed for goal-oriented query evaluation under the well-founded semantics.
Given a query, SLG produces a residual program containing answers for all subgoals
which are relevant to the query. In [24] SLG is extended to accommodate the stable
model semantics. For a given query, SLG first produces a residual program of the
query and then computes stable models relative to the residual program rather than
original programs. In this way, SLG provides integrated query evaluation under
both the well-founded semantics and stable model semantics. SLG itself, however,
is elective about which semantics to use, that is the user may choose either semantics
for finding answers to the query.

Given the close relation of the quasi-stable semantics with the stable model se-
mantics, we believe that these implementations with appropriate modification could
also be adapted to the quasi-stable semantics. Given the problems of the stable
model semantics, it is our opinion that a further effort is worthwhile to implement

the quasi-stable semantics.

References

1]

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, Reading, MA, 1995.

S. Akama. Constructive predicate logic with strong negation and model theory.

Notre Dame Journal of Formal Logic, 29:18-27, 1988.

J. J. Alferes, .. M. Pereira, and T. C. Przymusinski. Strong and explicit
negation in non-monotonic reasoning and logic programming. In J. J. Alferes,
L. M. Pereira, and E. Orlowska, editors, Logics in artificial intelligence, Lec-

ture Notes in Artificial Intelligence 1126, pages 143-163. Springer, 1996.

A. Almukdad and D. Nelson. Constructible falsity and inexact predicates.
Journal of Symbolic Logic, 49:231-233, 1984.

K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowl-
edge. In J. Minker, editor, Foundations of Deductive Databases and Logic

Programming, pages 89-148. Morgan-Kaufmann, San Mateo, Calif., 1988.

K. R. Apt and M. H. van Emden. Contributions to the theory of logic program-
ming. Journal of the Association for Computing Machinery, 29(3):841-862,
1982.

C. Baral, J. Lobo, and J. Minker. Generalized well-founded semantics for

logic programs. In M. E. Stickel, editor, The 10th International Conference

160

[11]

[12]

[13]

[14]

[15]

[16]

on Automated Deduction, Lecture Notes in Artificial Intelligence 449, pages
102-116. Springer-Verlag, 1990.

J. Barwise. The Situation in Logic. Number 17 in CSLI Lecture Notes. CSLI
Publications, Stanford, 1989.

J. Barwise and J. Etchemendy. The Liar: An Essay on Truth and Circular

Propositions. Oxford University Press, New York, 1987.

J. Barwise and J. Etchemendy. Information, infons, and inference. In K. Mukai
R. Cooper and J. Perry, editors, Situation Theory and Its Applications, volume
1, CSLI Lecture Notes 22, pages 33-78. CSLI Publications, Stanford, 1990.

J. Barwise and J. Perry. Situations and Attitudes. MIT Press, Cambridge,

MA, 1983,

C. Bell, A. Nerode, R. T. Ng, and V. S. Subrahmanian. Mixed integer pro-
gramming methods for computing nonmonotonic deductive databases. Journal

of the Association for Computing Machinery, 41(6):1178-1215, 1994.

J. L. Bell and M Machover. A Course in Mathematical Logic. North-Holland,
Amsterdam, 1977.

E. Bencivenga. Free logics. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, Vol I11: Alternatives in Classical Logic, pages 373-426.
D. Reidel, Dordrecht, 1986.

N. Bidoit. Negation in rule-based database languages. Theoretical Computer
Science, 78:3-83, 1991.

N. Bidoit and C. Froidevaux. Negation by default and unstratifiable logic

programs. Theoretical Computer Science, 78:85-112, 1991.

161

[17]

[18]

[20]

[21]

[22]

23]

[24]

H. Blair and Subrahmanian V. S. Paraconsistent logic programming. Theo-

retical Computer Science, 68:135-154, 1989.

S. Blamey. Partial logic. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, Vol II1: Alternatives in Classical Logic, pages 1-70. D.
Reidel, Dordrecht, 1986.

A. Bondarenko, P. M. Dung, R. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence,

93:63-101, 1997.

G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. In
A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, Principles of Knowledge

Representation and Reasoning, pages 86-97. Morgan-Kaufmann, 1998.

A. K. Chandra and D. Harel. Horn clause queries and generalizations. Journal,

Logic Programming, 2(1):1-15, 1985.

J. Chen and S. Kundu. The strong well-founded semantics for logic programs.
In Z. W. Ras and M Zemankova, editors, The 6th International Symposium on
Methodologies for Intelligent Systems, Lecture Notes in Artificial Intelligence
542, pages 490-499. Springer-Verlag, 1991.

W. Chen, T. Swift, and D. S. Warren. Efficient top-down computation of
queries under the well-founded semantics. Journal of Logic Programming,

24(3):161-199, 1995.

W. Chen and D. 5. Warren. Computation of stable models and its integration
with logical query processing. [EEFE Transactions on Knowledge and Data
Engineering, 8(5):742-757, 1996.

162

[25]

[26]

28]

[29]

[30]

31]

32]

33]

K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic
& Data Bases, pages 293-322. Plenum Press, New York, 1978.

E. F. Codd. A relational model of data for large shared data banks. Commu-

nications of the Association for Computing Machinery, 13(6):377-387, 1970.

E. F. Codd. A database sublanguage founded on the relational calculus. In
ACM SIGFIDET Workshop on Data Description, Access, and Control, pages
35-61, San Diego, California, 1971.

E. F. Codd. Further normalization of the data base relational model. In
R Rustin, editor, Courant Computer Science Symposium 6: Data Base Sys-
tems, pages 33—64. Prentice-Hall, Englewood Cliffs, NJ, 1972.

E. F. Codd. Relational completeness of database sublanguages. In R Rustin,
editor, Courant Computer Science Symposium 6: Data Base Systems, pages

65-98. Prentice-Hall, Englewood Cliffs, NJ, 1972.

E. F. Codd. Recent investigations in relational data base systems. In
J. L. Rosenfeld, editor, Information Processing 7/, pages 1017-1021. North-

Holland, Amsterdam, 1974.

A. G. Cohn. Order-sorted logic. In S. C. Shapiro, editor-in-chief, Encyclopedia
of Artificial Intelligence, Volume 1, 2rd ed., pages 864-866. John Wiley &
Sons, Inc., New York, 1992.

K. Devlin. Logic and Information. Cambridge University Press, Cambridge,
1991.

J. Dix. A classification theory of semantics of normal logic programs: 1. strong

properties. Fundamenta Informaticae, 12(3):227-255, 1995.

163

[34]

[35]

[36]

37]

38]

39]

[40]

[41]

[42]

J. Dix. A classification theory of semantics of normal logic programs: II. weak

properties. Fundamenta Informaticae, 12(3):257-288, 1995.

J. Dix and M. Miiller. The stable semantics and its variants: a comparison of
recent approaches. In L. Dreschler-Fischer and B. Nebel, editors, Proceedings
of the 18th German Annual Conference on Artificial Intelligence (KI "94),

Lecture Notes in Artificial Intelligence 861, pages 82-93. Springer-Verlag, 1994.

M. Dummett. FElements of Intuitionism. Oxford Logic Guides. Clarendon
Press, Oxford, 1977.

P. M. Dung. An argumentation-theoretic foundation for logic programming.

Journal of Logic Programming, pages 151-177, 1995.

T. Fernando. On the logic of situation theory. In K. Mukai R. Cooper and
J. Perry, editors, Situation Theory and Its Applications, volume 1, CSLI Lec-
ture Notes 22, pages 97-116. CSLI Publications, Stanford, 1990.

F. B. Fitch. Symbolic Logic. Ronald Press Co., New York, 1952.

M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic

Programmaing, 4:295-312, 1985.

G. Frege. Begriffsschrift (Chapter I). In P. Geach and M. Black, editors,
Translations from the Philosophical Writings of Gottlob Frege, 3rd ed., pages
1-20. Blackwell, Oxford, 1980.

G. Frege. On sense and meaning. In P. Geach and M. Black, editors, Transla-
tions from the Philosophical Writings of Gottlob Frege, 3rd ed., pages 56-78.
Blackwell, Oxford, 1980.

164

[43]

[46]

[48]

[49]

[50]

D. M. Gabbay. What is negation in a system? In F. R. Drake and J. K.
Truss, editors, Logic Colloquium 86, pages 95-112. North-Holland, Amster-

dam, 1988.

H. Gallaire and J. Minker (ed.). Logic & Data Bases. Plenum Press, New
York, 1978.

J. W. Garson. Quantification in modal logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, Vol. II: Extensions of Classical Logic,

pages 249-307. D. Reidel, Dordrecht, 1985.

M. Gelfond. On stratified autoepistemic theories. In Proceedings of the
6th National Conference on Artificial Intelligence, pages 207-211. Morgan-
Kaufmann, 1987.

M. Gelfond and L. Lifschitz. The stable model semantics for logic programs. In
R. A. Kowalski and K. A. Bowen, editors, Proceedings of the 5th International
Conference and Symposium on Logic Programming, pages 1070-1080. MIT
Press, 1988.

M. Gelfond and L. Lifschitz. Logic programs with classical negation. In
D. Warren and P. Szeredi, editors, Proceedings of the 7th International Con-

ference on Logic Programming, pages 579-597. MIT Press, 1990.

M. Gelfond and L. Lifschitz. Classical negation in logic programs and disjunc-

tive databases. New Generation Computing, pages 365385, 1991.

G. Gentzen. Investigation into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68-131. North-Holland, Amster-
dam, 1969.

165

[51]

[53]

[56]

[57]

K. Godel. The completeness of the axioms of the functional calculus of logic. In

J. van Heijenoort, editor, From Frege to Godel: a source book in mathematical

logic, 1879-1931, pages 582-591. Harvard University Press, Cambridge, 1967.

K. Godel. On formally undecidable propositions of Principia mathematica and
related systems 1. In J. van Heijenoort, editor, From Frege to Godel: a source
book in mathematical logic, 1879-1931, pages 596-616. Harvard University
Press, Cambridge, 1967.

G. Gottlob, S. Marcus, A. Nerode, and V. S. Subrahmanian. Non-ground
stable and well-founded semantics. Available from LPNMR archives at

http://www.cs.engr.uky.edu/ lpnmr/papers.html.

Y. Gurevich. Intuitionistic logic with strong negation. Studia Logica, 36:49-59,
1977.

C. E. Hewitt. Planner: a language for proving theorems in robots. In First In-
ternational Joint Conference on Artificial Intelligence, pages 295-301, Wash-

ington, 1969.
A. Heyting. Intuitionism, An Introduction. North-Holland, Amsterdam, 1956.

Y. Hu and L. Y. Yuan. Extended well-founded model semantics for general
logic programs. In K. Furukawa, editor, The 8th International Conference on

Logic Programming, pages 412-425. MIT Press, 1991.

A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming.
Journal of Logic and Computation, 2(6):719-770, 1992.

T. Kakas and P. Mancarella. Preferred extensions are partial stable models.

Journal of Logic Programming, 14:341-348, 1992.

166

[60]

[61]

[64]

[65]

[66]

[67]

[68]

[69]

P. G. Kolaitis. The expressive power of stratified programs. Information and

Computation, 90(1):50-66, 1991.

R. Kowalski. Logic for data description. In H. Gallaire and J. Minker, editors,

Logic & Data Bases, pages 77-103. Plenum Press, New York, 1978.

K. Kunen. Negation in logic programming. Journal of Logic Programming,

4:289-308, 1987.

H. J. Levesque. Making believers out of computers. Artificial Intelligence,
30:81-107, 1986.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
1984.

E. G. K. Lopez-Escobar. Refutability and elementary number theory. Inda-

gationes Mathematicae, 34:362-374, 1972.

V. W. Marek and M. Truszczynski. Autoepistemic logic. Journal of the As-

sociation for Computing Machinery, 38(3):588-619, 1991.

V. W. Marek and M. Truszczynski. Nonmonotonic Logic: Context-Dependent

Reasoning. Springer-Verlag, 1993.

A. A. Markov. Constructive logic (in russian). Uspekhi Matematiceskih Nauk,

5:187-188, 1950.

J. McCarthy. Mechanization of thought processes. In M. Minsky, editor, Se-
mantic Information Processing, pages 403—-418. MIT Press, Cambridge, Mass.
1968. Originally published in Proceedings of the Symposium of the National

Physics Laboratory, vol. 1, pages 77-84. London, 1958.

167

[70]

[74]

[75]

78]

J. Minker. On indefinite databases and the closed world assumption. In
Proceedings of the 6th Conference on Automated Deduction, Lecture Notes in

Computer Science 138, pages 292-308. Springer-Verlag, Berlin, 1982.

J. Minker. Perspectives in deductive databases. Journal of Logic Programming,

5(1):33-60, 1988.

J. Minker. An overview of non-monotonic reasoning and logic programming.

Journal of Logic Programming, 17:95-126, 1993.

J Minker and C. Ruiz. Mixing a default rule with stable negation. In Pro-
ceedings of the Fourth International Symposium on Artificial Intelligence and

Mathematics, pages 122-125. Fort Lauderdale, Florida, 1996.

R. Moore. Semantical considerations on nonmonotonic logic. Artificial Intel-

ligence, 25(1):75-94, 1985.

P. L. Mott. Intuitionistic logic with a ‘definitely’” operator. Research Report
97.05, School of Computer Studies, University of Leeds, 1997.

D. Nelson. Constructible falsity. Journal of Symbolic Logic, 14:16-26, 1949.

J. M. Nicolas and H Gallaire. Data base: theory vs. interpretation. In H. Gal-
laire and J. Minker, editors, Logic and Data Bases, pages 33-54. Plenum Press,
New York, 1978.

[. Niemela and P. Simons. FEfficient implementation of the well-founded

and stable model semantics. Available from http://www.uni-koblenz.de/ag-

ki/DLP /#pubs, 1996.

D. Pearce and G. Wagner. Reasoning with negative information I-strong

negation in logic programs. Acta Philosophica Fennica, 49:430-453, 1990.

168

[30]

[81]

[85]

[36]

[33]

[89]

D. Pearce and G. Wagner. Logic programming with strong negation. In
P. Schroeder-Heister, editor, Proceedings of Workshop on FExtensions of Logic

Programming, pages 311-326. Springer, Berlin, 1991.

L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Adding closed world assump-
tions to well-founded semantics. Theoretical Computer Science, 122:49-68,

1994.

D. Poole. A logic framework for default reasoning. Artificial Intelligence,

36:27-47, 1988.

T. C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In J. Minker, editor, Foundations of Deductive Databases and

Logic Programming, pages 193-216. Morgan Kaufmann, 1988.

T. C. Przymusinski. Extended stable semantics for normal and disjunctive

logic programs. In Proceedings of the 7th International Conference on Logic

Programming. MI'T Press, 1990.

T. C. Przymusinski. Well-founded semantics coincides with three-valued stable

semantics. Fundamenta Informaticae, X111, 1990.

W. V. Quine. From a Logical Point of View : 9 Logico-philosophical Essays.

Harvard University Press, Cambridge, Mass., 1953.

R. Ramakrishnan and J. D. Ullman. A survey of deductive database systems.

Journal of Logic Programming, 23(1):125-149, 1995.

R. Ramakrishnan (ed.). Applications of Logic Databases. Kluwer Academic
Publishers, 1994.

H. Rasiowa. N -lattices and constructive logic with strong negation. Funda-

menta Mathematicae, 46:61-80, 1958.

169

[90]

[91]

[92]

[93]

[94]

[95]

[96]

(98]

[99]

R. Reiter. On closed world databases. In H. Gallaire and J. Minker, editors,
Logic and Databases, pages 55-76. Plenum Press, New York, 1978.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132,

1980.

R. Reiter. Towards a logical reconstruction of relational database theory.
In J. Brodie, M. L. Mylopoulos and J. W. Schmidt, editors, On Conceptual
Modelling, pages 191-238. Springer-Verlag, New York, 1984.

K. A. Ross and R. W. Topor. Inferring negative information from disjunctive

databases. Journal Of Automated Reasoning, 4:397-424, 1988.

R. Routley. Semantical analyses of propositional systems of Fitch and Nelson.

Studia Logica, 33:283-298, 1974.

D. Sacca and C. Zaniolo. Stable models and non-determinism in logic program
with negation. In Proceedings of the 9th ACM PODS Symposium, pages 205—
218. ACM Press, New York, 1990.

D. Sacca and C. Zaniolo. Partial models and three-valued models in logic
programs with negation. In A. Nerode, W. Marek, and V. S. Subramanian,
editors, Proceedings of the 1st International Workshop on Logic Programming

and Nonmonotonic Reasoning, pages 87-104. MIT Press, 1991.

J. 5. Schlipf. Formalizing a logic for logic programming. Annals of Mathematics
and Artificial Intelligence, 5:279-302, 1992.

R. H. Thomason. A semantical analysis of constructible falsity. Zeitschrift fir
Mathematische Logik und Grundlagen der Mathematik, 15:247-257, 1969.

A. S. Troelstra. Choice Sequences: A Chapter of Intuitionistic Mathematics.

Oxford Logic Guides. Clarendon Press, Oxford, 1977.

170

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, volume 1.

North-Holland, Amsterdam, 1988.

J. D. Ullman. Assigning an appropriate meaning to database logic with nega-
tion. In Computers as Our Better Partners, pages 216-225. World Scientific

Press, 1994.

D. van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, Vol I11: Alternatives in Classical Logic, pages
225-339. D. Reidel, Dordrecht, 1986.

M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. JACM, 23(4):733-742, 1976.

A. van Gelder. The alternating fixpoint of logic programs with negation.

Journal of Computer and System Sciences, 47:185-221, 1993.

A. van Gelder, K. A. Ross, and Schlipf J. 5. The well-founded semantics for
general logic programs. Journal of the Association for Computing Machinery,

38(3):620-650, 1991.

F. Veltman. Defaults in update semantics. Journal of Philosophical Logic,
25:221-261, 1996.

N. N. Vorob’ev. Constructive propositional calculus with strong negation (in

Russian). Doklady Akademii Nauk SSSR, 85:465-468, 1952.

G. Wagner. A database needs two kinds of negation. In B. Thalheim, Demetro-
vics J., and H.-D. Gerhardt, editors, The 3rd Symposium on Mathematical
Fundamentals of Database and Knowledge Bases Systems MFDBS-91, pages

357-371. Springer, 1991.

171

[109] G. Wagner. Logic programming with strong negation and inexact predicates.

Journal of Logic and Computation, 1:835-859, 1991.

[110] G. Wagner. Vivid Logic: Knowledge-Based Reasoning with Two Kinds of

Negation. Springer-Verlag, Berlin, 1994.

[111] X. G. Wang and P. Mott. Quasi-stable semantics for logic programs. Research
Report 98.14, School of Computer Studies, University of Leeds, available from

http://csisl.leeds.ac.uk/pmottpub.htm, 1998.

[112] X. G. Wang and P. Mott. A variant of Thomason’s first-order logic CF based

on situations. Notre Dame Journal of Formal Logic, 39(1):74-93, 1998.

[113] X. G. Wang and P. Mott. A critical note on stable model semantics. Submitted

for publication, available from http://csisl.leeds.ac.uk/pmottpub.htm, 1999.

[114] H. Wansing. Logic of Information Structures. Number 681 in Lecture Notes

in Artificial Intelligence. Springer-Verlag, Berlin, 1993.

172

