
CRYSTAL NUCLEATION AND GROWTH 

IN BARIA-SILICA GLASSES 

A Thesis presented by 

ANTHONY HUGH RANNSDEN 

For the degree of 

Doctor of Philosophy 

of 

The University of Sheffield 

Department of Ceramics, Glasses and Polymers, 
The University of Sheffield September, 1977 



BEST COPY 

c AVAILABLE 

Variable print quality 



ACKNOWLEDGEMENTS 

I am immensely indebted to my supervisor, Dr P. F. James, 

and would like to thank him for his guidance and encouragement 

throughout the course of this work. 

I am also grateful to Dr J. O. Isard for many discussions 

and advice on the electric field phenomenon. 

Many thanks are due to the technical staff of the department, 

particularly Mx R. Bacon, for their co-operation and assistance. 

I also wish to acknowledge Mrs M. Hodgins for her patience 

and skill in typing this thesis. 

Finally, I gratefully acknowledge the Science Research Council 

for financial support. 



CONTENTS 

Acknowledgements 

Table of Contents 

Summary 

List of General Symbols 

Page 

CHAPTER ONE - General Introduction 1 

CHAPTER TWO - Liquid-liquid immiscibility in glass- 6 
forming systems 

CHAPTER THREE - Kinetics of phase transformations in 15 
glass-forming systems 

CHAPTER FOUR - The relation between liquid-liquid 43 
immiscibility and crystallization 

MAPTER FIVE - Experimental methods 52 

CH1PTER SIX - Crystal nucleation and liquid-liquid 
immiscibility. 
Results and Discussion 

75 

CHAPTER SEVEN - Crystal growth in baria-silica glasses 119 

CHAPTER EIGHT - The effect of electric fields on crystal 146 
nucleation and growth in glasses 

CHAPTER NINE - Summary, conclusions and suggestions for 164 
further work 

Appendix 

References 



SUMMARY 

The kinetics of crystal nucleation and growth of barium disilicate 

were studied in baria-silica glasses containing 25 to 35 mole% baria. In 

this composition range, liquid-liquid immiscibility exerted a pronounced 

influence on crystal nucleation kinetics. The progressive shift in 

composition of the baria-rich matrix phase with time caused changes in 

both the thermodynamic driving force and in the kinetic barrier to nucleation 

which in turn caused a marked increase of nucleation rate. Study of the 

nucleation kinetics in relation to quantitative data of the morphology of 

the two liquid phases showed no evidence of heterogeneous nucleation at the 

liquid-liquid interfaces. 

Crystal growth measurements at lower temperatures showed appreciable 

induction times which were caused by a change in growth morphology from 

spheres to rapidly growing needles nucleated at the sphere-glass interfaces. 

The induction time decreased with rise in temperature. 

Comparison of crystal growth rates in phase separating and non-phase 

separating glasses showed that phase separation increased the growth rates 

due to the accompanying shift in composition of the baria-rich phase during 

heat treatment. This composition shift also caused an apparent reduction 

in the measured activation enthalpies for growth in the phase separated 

glasses. The morphology of the two liquid phases had no influence on 

crystal growth rates. 

All the glasses gave constant growth rates, except at high temperatures 

where growth rates increased with time. Reasons for this behaviour are 

discussed. 

No effects on the kinetics of nucleation and growth in a baria-silica 



based glass were observed on application of electric fields of 4 kV cm 1. 

A theoretical calculation showed that the field necessary to observe an 

effect would be much larger than is possible to achieve in practice, due 

to joule heating and electrical breakdown. 



SYMBOLS 

Operator Signs 

d 

a 

e 
E 

In 

10510 

Ordinary differential 

Partial differential 

Excess of final over initial value 

Summation 

Natural logarithm 

Logarithm to base 10 

Capital Roman Characters 

A 

A and AD 

A1 and A2 

Area of cross-section of glass (p. 155) 

Pre-exponential constant (p. 28 and 

Refers to adjustable parameters in equations for AmH 

using sub-regular solution model (p. 12). 

A* Surface area of critically sized embryo (p. 

Aaß, AOY, Aa, 
r 

Area of a-$, ß-Y, a-y interface. 

ABS2 Glass molt 1A1203,66SiO2,33BaO. 

An Surface area of embryo Qn (p. 18). 

ASTM American Society for Testing Materials. 

18-19). 

B Constant governing the relation between alumina content 

and its influence on nucleation kinetics of a Ba02SiO2 

glass (p. 91). 
irz. R3 llw Constant in electric field equations (= +3J p. 148) 

Bottom disc in electric field experiment. 

Constant in surface nucleation model of crystal growth 
(p. 35) . 
Half width of spot on SAD (p. 127). 



BS2 

B3S5 

B5S8 

B2S 3 

BS 

B2S 

C 

0 C 

Co 

Cr 

D 

D 
V 

D 
vi 

DTA 

E 

G 

Ga 

BaO2SiO2 

3BaO5SiO2 

5BaO8SiO2 

2BaO3SiO2 

BaOSiO2 

2BaOSiO2 

Constant defining particle shape in equation (5.1) used 

to evaluate Nv (For sphere C- 2/n; p. 71). 
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Equilibrium solubility of a particle of infinite radius 

(p. 39). 

Solubility of a particle radius r (p. 39). 

Diffusion coefficient 

Mean perpendicular distance between tangent planes to 
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Differential thermal analysis 

Electric field strength 

Critical field strength required to increase or decrease 

the nucleation rate by e times. 
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(p. 9) . 

Extra high tension 

Gibbs free energy. 

Gibbs free energy of phase a (p. 6). 

Gcrystal and Free energy (per mole*') of crystal and liquid 

G liquid respectively (p. 15). 

AG Thermodynamic driving force for crystal nucleation and 

growth (defined as the change in Gibbs free energy per 
sale*1 of solid phase when a solid phase is formed in a 
liquid, neglecting any interfacial free energy contributions) 

*1 or molecule 



ecD 

AGD' 

AmG 

AG v 

H 

AH 

AHD' 

eMH 

AH 

Hz 

I 

Ih 

Io 

t 
. i: 

The kinetic barrier to crystal nucleation, (defined as 

the diffusion activation free energy per mole or 

molecule for motion across the matrix-embryo or matrix- 

nucleus interface). 

Kinetic barrier to crystal growth (defined as the diffu- 

sion activation free energy per mole or molecule for 

crystal growth. 

Free energy of mixing of a solution (defined as the 

difference between the free energies of a solution and 

the unmixed components). 

Volume free energy change during crystal nucleation and 

growth (i. e. AG/VM). 

Enthalpy 

Enthalpy of fusion per mole or molecule of a solid phase. 

Activation enthalpy of crystal growth (p. 33). 

Enthalpy of mixing of a solution (defined similar to 

emG) . 

Induction time activation enthalpy 

Hertz (measures frequency) 

Nucleation rate 

Heterogeneous nucleation rate (p. 32). 

Steady state nucleation rate. 

Nucleation rate in the absence of an electric field 

(p. 148). 

Nucleation rate at time t. 

Constant (p. 27) 

°Kelvin 

L 

M 

N 

Length from objective lens to SAD pattern (p. 96). 

Middle disc in electric field experiment 

Avogadro's Number 

Number of molecules or atoms in the system (p. 18). 



N* 

14 
A 

NA 
i 

NL 

Nn 

Ns 

N 
V 

P 

Q 

QC 

Qn 

R 

Number of critically sized embryos in Volmer-Weber 

embryo distribution (p. 18-19). 

Number of particles intersected per unit area. 

Number of particles in size class i. 

Number of intersections of a test line with interfaces 

between phases (used to calculate Sv, p. 73-74). 

Number of Qn embryo in the Volmer-Weber embryo 
distribution (p. 18). 

Number of contacting molecules of matrix at the surface 

of a heterogeneity. 

Number of crystalline nuclei in a glass 

Total number of counts needed to attain a defined degree 

of accuracy (p. 73). 

Embryo 

Critically sized embryo 

Embryo of size n 

Universal gas constant 

Resistance 

General symbol for alkali metal 

R Rate of change of Qn the number of Qn embryos to Qn 
+1 

embryos (p. 18). 

Rg Resistance of glass (p. 155). 

S Entropy, also dimension of a crystal (p. 36). 

ASD' Activation entropy of crystal growth (p. 33). 

AmS Entropy of mixing of a solution (defined similar to 

SAD 

SE 

AmG) . 

Selected area diffraction 

Standard error (used to calculate statistical error, 
see Appendix 5.2). 
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T 

AT 

C 
T 

Tg 

Tý 

TL 

TM 

TM. 

T 
max 

TN 

TS 

TSS2 

UR 

V 

V 
P 

Vf 

VK 

VL 

VM 

VT 

Surface area between phases in a phase separated glass. 

Top disc in electric field experiment 

Temperature 

TL -T or undercooling (defined as the supercooling below 

the melting point or liquidus temperature). 

Consolute temperature. 

Glass transformation temperature (referred to as 'DTA Tg' 

when determined by DTA). 

Phase separation temperature, prior to nucleation heat 

treatment. 

Liquidus temperature 

Immiscibility temperature (also known as the miscibility 

or binodal temperature). 

Equilibrium melting temperature of a phase. 

Temperature corresponding to maximum crystal nucleation 

temperature. 

Nucleation temperature 

Spinodal temperature 

A glass, mol% lTiO2,66SiO2,33BaO 

Reduced growth rate (p. 37). 

Voltage or volts or potential difference (p. d. ). 

Volume of phase ß 

Volume fraction of a phase in a phase separated glass 

Potential difference across Keithley (p. 154-155). 

Molar volume of parent glass (p. 22). 

Molar volume of a phase (p. 22). 

Potential difference across Keithley and glass (p. 155). 



11 orWo Total free energy change for the formation of a cluster 

or embryo (including interfacial free energy contri- 
butions). 

W* Total free energy change for the formation of a critical 

nucleus. 

W* het 

wE 

W 
n 

X. x 

Xi'xi 

YA 

Z 

Thermodynamic barrier of heterogeneous nucleation. 

¬m f (a) E2r3 

Contribution of an electric field to the free energy of 

formation of a cluster or embryo 

L 
I n_ ldtil It i r. .. =v" . 

Free energy change (including surface energy contribu- 

tions) involved in forming a Qn embryo (p. 18). 

Mole fraction 

Mole fraction of the 'i'th component. 

Mole fraction of A1203(p. 91). 

Number of nearest neighbours surrounding each atom. 

Also defined to be the reciprocal of the intersection 

diameter of particles on a plane section under considera- 

tion (used to calculate N, p. 71). 

Also refers to number of embryos in Becker-Doring embryo 

distribution. 

Number of Qc embryos in Becker-Doring embryo distribution. 

Small Roman Characters 

aA 

8. C. 

Activity of A in solution with respect to the pure 
component. 

Alternating current. 

ax Growth coefficient (p. 36). 

b Constant 

c Number of oomponente 



Interplanar distance of the planes responsible for a 

spot on a SAD pattern or a peak on a X-ray diffractro- 

gram. 

d. c. 

e 

f 

f (a) 

Direct current. 

Universal constant (= 2.71828) 

Active site fraction factor in screw dislocation 

crystal growth model. 

Function of a(Z+X , p. 146) 

f(e) Function of 0 

Ag Thermodynamic driving force for liquid-liquid imisci- 

bility (defined similar to AG). 

h Planck's Constant 

Constant in electric field equations 

-3cmf (}. ) 147) 8n 

i 
k 

k 
s 

kv 

1 

n v 

r 

r 0 

r 

CIO 

8 

Current flowing through glass and Keithley (p. 155). 

Boltzmann's Constant. 

Crystal shape factor (p. 28). 

Kilovolt 

Length of glass (p. 157). 

Number of liquid droplets in a phase separated glass. 

Radius of cluster embryo or nucleus. 
Distance separating a diffracted spot from the central 

spot in a SAD pattern (p. 61). 

Mean radius of a particle at onset of coarsening (p. 39). 

Radius of a critical nucleus. 

Average distance between interfacial boundaries. 

Crystal dimension (radius of sphere or cylinder or 
half-width of plate) (p. 36). 

t Time 



t 

t' 

U 

ý 

Xi'xi 

x 

x 

x' 

Y 

Y 

. Y 

Greek characters 

a 

Mean time to build radius of a cluster to the critical 

size. 

Crystal thickness, radii of spherulite. 

Crystal growth rate 

Reduced growth rate (p. 37). 

Mole fraction of 'i'th component 

Mole fraction of multimer (p. 11). 

Fractional concentration of a immiscible liquid (p. 11). 

Mole fraction of mixed oxide. 

Mole fraction of multimer (p. 11). 

Fractional concentration of a immiscible liquid (p. 11). 

Mole fraction of mixed oxide. 

Shape factor (p. 27). 

Factor relating AmH and composition in regular 

solutions (p. 9). 

11 Chemical potential. 

11 i Chemical potential of 'i'th component. 

in viscosity 

A Correlation length (related to the average distance 

between boundaries r') (p. 40). 

a Cc/6m (p. 146) 

Jump distance (p. 32-33). 
Wavelength of X-ray and electron beam 

v Jump or vibration frequency of atoms or molecules 
facing an interface (p. 32-33). 

E 
C 

Dielectric permittivity of precipitating crystal. 
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m 

X 

P 

9 

Mil 

8 

0 

Q 
co 

Q 

T#T1r T2 

T1 

Dielectric permittivity of parent glass 

Electrical conductivity 

Electrical resistivity 

Ohm (measure of resistance) 

Megaohms 

Contact angle in heterogeneous nucleation 

Also X-ray diffraction and electron diffraction angle 

equals 2e. 

Standard deviation of data (usually Vf, Sv, Nv, nv 

The standard deviation was used to estimate the 

statistical error (Appendix 5.2). 

Surface or interfacial energy 

Macroscopic surface energy 

Surface energy of a-ß, ß-y, a-Y interfaces. 

Average surface energy 

Intercept or induction time in nucleation. 

Crystal growth induction. time. 
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1.1 INTRODUCTION 

In the 1950's S. D. Stookey at the Corning Glass Works crystallized 

glasses under controlled conditions and produced what are now known as 

glass ceramics The internal structure of these materials consisted 

of numerous small randomly orientated crystals and their properties, such 

as mechanical strength, chemical durability, electrical resistivity and 

thermal expansion were often greatly improved compared with the original 

glasses. As a consequence glass ceramics have increased in importance 

for industrial and domestic applications. Examples are cooking ware, 

telescope mirror blanks, printed circuit boards and reactor control rods 
(2-5). 

The controlled crystallization of glasses involves a two stage heat 

treatment: a) at a nucleation temperature that encourages the formation 

of many small crystals, and b) at a higher temperature, usually where 

nucleation is negligible, but where the crystals are grown until crystall- 

ization is complete. The most effective nucleation temperature is usually 

just above the glass transformation temperature Tg, the latter defining 

the minimum temperature limit where structural relaxation can still occur. 

I, s Tg is approached the relaxation and nucleation become exceedingly slow 

and the excessive nucleation time required will greatly add to the expense 

of crystallizing the glass. The growth temperature must satisfy a balance 

between the demands of rapid crystallization and the occurrence of article 

distortion at high temperatures. 

Changes in the heat treatment process can alter the initial micro- 

structure and produce glass ceramics having different properties. The wide 

range of glass forming systems available for controlled crystallization 

enables the manufacture of a large number of different types of glass 

ceramics covering a wide diversity of properties. In fact it is possible 

to engineer a glass ceramic with it required property, such as thermal 
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expansion coefficient, by a careful control of the overall composition and 

an accurate monitoring of the heat treatment process. 

The type of nucleation where crystals form at interfaces of particles 

or inclusions within the glass, is known as heterogeneous. when crystals 

form internally without such aid they are said to nucleate homogeneously. 

In glasses where homogeneous nucleation does not readily occur, catalysts 

have to be introduced to produce numerous internal sites within the glass 

where crystals can heterogeneously nucleate. Thus heterogeneous nucleation 

is often of great importance in the successful production of glass ceramics. 

The variety of nucleation catalysts is very large and includes, for example, 

metals (e. g. Pt, Cu, Ag, Au); oxides (e. g. TiO2, P205, Zr02) and halides 

(e. g. NaP, Na3ALF6, CaF2) 
(2,3) 

The role of these nucleating catalysts has been studied extensively. 

In the case of metallic agents, metal particles of colloidal dimensions 

precipitate in the glass and grow sufficiently large to act as heterogeneous 

nucleation sites for the precipitation of major crystalline phases. This 

method was employed by Stookey in forming the first satisfactory glass 

ceramics. 

The oxide catalysts are thought to have two main actions, either to 

a) cause the precipitation of very fine crystals of the particular oxide or 

a compound containing the oxide, which subsequently heterogeneously nucleate 

the major crystalline phases, or to b) cause a reduction in the crystal- 

liquid interfacial energy and thus increase the nucleation rate of the 

major phases. In some cases these oxides also promote liquid. -liquid phase 

separation, either on cooling from the melt or during the early stages of 

heat treatment, and this phase separation may play a part in the crystal 

nucleation mechanism. 

The role of liquid--liquid phase separation in influencing crystal 

nucleation is still open to question. It is thought by some workers 
(687) 
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that the creation of interfaces or compositional zones adjacent to the 

interfaces by liquid immiscibility could enhance nucleation. Others believe 

that the local changes in glass composition caused by liquid-liquid phase 

separation can increase or decrease the thermodynamic driving force for 

crystallization($'9) All of these mechanisms may contribute towards the 

increase of nucleation rates in glasses. 

Recently a modest electric field was observed to enhance the nucleation 

of liquid droplets in a corderite based glass composition(10). This 

observation is of obvious significance for the glass ceramic process where 

rapid crystal nucleation is desirable. A theoretical analysis based on the 

free energy changes induced by electric fields has shown that under certain 

circumstances nucleation rates can be altered 
(11) 

1.2 AIMS OF THE PROJECT 

In the first part of the work, experiments were designed to discover 

whether liquid immiscibility played an important role in influencing crystal 

nucleation and growth in the BaO-SiO2 glass-forming system. In particular, 

attemrIts vmre made to understand how the kinetics of crystal nucleation and 

growth were influenced by liquid-liquid immiscibility. Also, the morphology 

and crystallography of early stage growth of Ba02SiO2 crystals werü studied 

and compared with recent theories of crystal growth mechanisms. 

In the latter part of the work, the nucleation and growth characteristics 

of BaO-SiO2 glasses subjected to electric fields were studied quantitatively. 

The modifications of Isard(12) to Yaschiev's theory of field induced nuclea- 

tion were employed in a calculation of the theoretical critical field strength 

required to alter the crystal nucleation rate. 't'hese results allowed a 

prediction of the potential influence of electric fields on the controlled 

crystallization processes to be made. 



1.3 TEE BARIA-SILICA GLASS FORMING SYSTEM 

In this system various investigations have been made of the phase 

. 
(diagram, 

of liquid-liquid immiscibility and crystallization 

Recently a detailed study was made of the kinetics of nucleation and 

growth for the barium disilicate composition 
(18) 

. 

The work in the thesis provides information on compositions in the 

BaO"-SiO2 system for which the nucleation and crystal growth kinetics have 

not been previously studied in detail. 

The BaO--SiO2 system was chosen for investigation for the following 

reasons : 

a) The system exhibits internal crystal nucleation without the 

deliberate additions of nucleation catalysts, hence simplifying the inter- 

pretation of the results. 

b) A large zone of metastable liquid immiscibility exists from 

approximately 70 to 100 mol% SiO2 in this system (see Figure 1.1). 

c) Glass formation extends from 0 to about 40 mold BaO. Within 

this range several stable compounds occur, (see Figure 1.1). Compositions 

containing less than about 24 mol% 60O liquid phase separate very rapidly 

on quenching from the melt and too rapidly for convenient study. However, 

compositions between 24 and 40 mol% BaO can crystallize and/or phase 

separate under controlled conditions. Thus it was convenient to prepare 

glasses in this range for the experiments. 

d) The electrical resistivity of these glasses is sufficiently high 

to support considerable electric fields without significant joule heating. 

It is hoped that accumulation of information in the relatively simple 

systems, such as BaO"SiO2, may lead to a better understanding of the 

formation of glass ceramics in more complicated and commercially important 

systems and ultimately to improvements in the whole glass ceramic process. 



Figure 1.1 The phase diagram of a section of the 

baria-silica system. The dashed line 

denotes the liquid-liquid immiscibility 

boundary. 

Liquidus data, ref (13) 

Immiscibility data, ref (144) 

a, 2Bao3SiO2 

b, 5BaO8SiO2 

c, 3Bao5SiO2 

d, Ba02SiO2 
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1.4 PLAN OF THE THESIS 

In Chapter Two the derivation of phase diagrams from free energy 

functions is outlined. Some important solution models are considered and 

the origin of liquid immiscibility and its relation to free energy diagrams 

is discussed. 

The theories of phase transformations in terms of nucleation, growth 

and coarsening are covered in Chapter Three. The results of experiments 

designed to test the applicability of the theories to glasses are described. 

The effect of liquid-liquid immiscibility or., crystal nucleation 

kinetics is briefly considered, theoretically in Chapter Four. A literature 

survey of the experimental results of previous work is presented. 

The general experimental procedures are described in Chapter Five. 

In Chapter Six results for the kinetics of crystal nucleation and 

the effects of liquid--liquid immiscibility are presented and discussed. 

In Chapter Seven the crystal growth kinetics results are presented 

and the effects of liquid-liquid immiscibility assessed. Alsq the electron 

microscopic study of the early stages of crystal growth is discussed. 

The mechanism of spherulitic growth in the glasses is considered. 

In Chapter Eight experiments to study the effects of electric fields 

on crystal nucleation and growth are described. The results are discussed 

in relation to Kaschiev's theory of field induced nucleation and the 

modification of Isard to this theory. 

The final chapter contains a summary of the main conclusions and 

suggestions for future work. 
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LIQUID-LIQUID IMMISCIBILITY IN GLASS- 
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2.1 TfiERMDDYNADiIC DERIVATION OF PHASE DIAGRANS 

The conditions for phase equilibria are most conveniently described 

by the use of the Gibbs free energy function G. First, consider a system 

subject to no external forces except hydrostatic pressure, and in which the 

energy due to interfaces is negligible. From standard thermodynamic 

treatments 
(19) 

the Gibbs free energy of a phase a is given by; 

C 
Ga =1 u°G x" 

i=1 ii 
(2.1) 

where C is the number of components, uia is the chemical potential of 

the 'ith' component and xia is the mole fraction of the 'ith' component. 

An important criterion for equilibrium is that the Gibbs free energy 

in equation (2.1) is a minimum at constant temperature, pressure and 

composition. At equilibrium (pressure and temperature being constant) 

all components are distributed among the different phases in such a way 

that the total free energy is a minimum. 

If the pressure on the system is constant, the free energies of the 

phases are functions of T and x that can be expressed as surfaces in an 

isobaric T, G and x space. From these surfaces an equilibrium surface 

corresponding to minimum free energy may be determined. Figure (2.1) shows 

how such a surface can be constructed from a knowledge of the free energy 

functions for two solid solution phases a and ß and a liquid phase for a 

given temperature. At this temperature the liquid phase cannot exist at 

equilibrium. When 0<x< xA the phase a exists solely at equilibrium 

because this phase provides the lowest free energy. Similarly, when 

xAß <x<l, ß is the only phase present, However at compositions 

xAa x< xA ß the total free energy can be layered to values indicated by 

the common tangent if a and 0 coexist. The compositions of the phases in 



Figure 2.1 Isothermal cut through a free energy 

surface (G) for a two-component system. 

a and ß denote two solid solution phases, 

XA is the mole fraction of A. 



L- 
Q 
B 

Iýý 

rIL 

xa Xtý a, 



equilibrium are given by the common tangent to the a and ß free energy 

curves i. e. xpa, xAß. The proportion of each phase is calculated by the 

Lever Rule, i. e. for composition x=D, the molar ratio of phase a to 

phase ß is: 

xAß -D 

D- xÄ 

The common tangent construction to the free energy curves of the 

various phases, as the temperature is altered, will outline the composition 

boundaries of the two phase coexistence area at constant pressure on the 

phase diagram. Figure (2.2) shows how this can be done for a hypothetical 

binary eutectic system. 

The liquidus and solidus compositions are fixed by common tangent 

intersections between the liquid free energy curves and the stable solid 

composition curves. The variation of these intersections as a function of 

temperature traces the liquidus and solidus curves on the phase diagram. 

2.2 SIIMPLE SOLU'. Ic1 MODELS Mori LIQUID--LIQUID Ic IISCISILITY 

The free energy of mixing AmG of a homogeneous solution is defined as 

the dUfference between the free energies of the solution and unmixed 

components. Entropy AmS and enthalpy AmM of mixing are defined similarly. 

If the solution consists of atoms A and B randomly mixed on a regular 

lattice, from statistical considerations it can be shown 
(20) 

that-, 

AmS=-R [xAl*1xr + (1 "" xA) ln (1 - xA) ] 

In an ideal solution the enthalpy o mixing is. 



Figure 2.2 Schematic free energy (G) diagrams and 

(two pages) their relation to a hypothetical binary 

eutectic phase diagram. a and ß denote 

two. solid solution phases. 



G 

To . Tt 
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ns=o ýý 

and AmG= RT[xPlnx, + (1 - xý) ln(l - xA) ] (2.2) 

where R is the gas content and xA is the mole fraction of A. From 

equation (2.2) AmG is always negative and is plotted in Figure (2.3). 

(21) 
More generally, for non ideal solutions 

AmG = RT [x`, 1naA + xElnaB] (2.3) 

where aA and aB are the activities of A and B in solution with respect to 

the pure components. R. aoult"s Law is valid in an ideal solution: 

an s xTý 

So equation (2.3) reduces to (2.2). 

The ideal solution model predicts accurately the behaviour of some 

liquid solutions but cannot explain the ability of systems to undergo 

liquid immiscibility. The regular solution model, proposed `-, y Hildebrand! 
22) 

has had much greater success in this direction. This model assumes that: 

dus = ems (ideal) 

From simple considerations the enthalpy of mixing is given as: 

L1ýH = rxxp (1 - xr, ) 



Figure 2.3 Schematic plot of free energy of 

mixing (AmG) versus composition 
for an ideal solution. 



AmG 

MOLE FRACTION B 
COMPOSITION 
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where a= r1z F-Z 
703 - 1ý (8Tj + EB$) ] 

where E, EBB and LAB are the energies of the various bonds between the 

atoms, Z is the number of nearest neighbours surrounding. each atom and N 

is Avogadro's Number. Plots of -'. tt. m 
S, 

MH 
and 

m 
against composition for 

regular solutions are shown in Figure (2.4). 

Der'endincg on the sign of AmH, the curve PG versus composition may 

have one minimum or two minima and one maximum. A solution within the 

minimas will divide into two phases whose compositions are given by the 

common tangent construction. The locus of the two minimas as a function 

of temperature forms the binodal and similarly the locus of the inflexion 

points traces out the spinodal. The equation of the binodal and its 

dependence on temperature is calculated by differentiating the AmG 

equation with respect to conposition, setting the resulting equation to zero 

and solving for T. 

x ("lxA - 1) 
Tm 

F: (1n(xA/1 - xA)] 

'one curve of Tm, the miscibility teraperature, against coup, sition is shown 

to be symmetrical in Figure (2.5). Similarly the curve of the spinodal can 
d2A G 

be estimated by equating the differential (- ) to zero and solving for T: 

Ta 
S 

2axA(1 - xA) 

The e-±inodal and binodal are sý, uunetrical about xA 0.5 and coincide with 

each other at the consolute temperature Tc. This leads to the simple 

relation between a and Tc 



Figure 2.4 Schematic diagrams of -T AmS; Amß 

and AmG versus composition: 
top: EAB <ý (EAA + EBß) 

bottom: EAB > /(E 
AA 

+ EBB) 
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Figure 2.5 Schematic plot of binodal and spinodal 

temperature versus composition. 

binodal temperature 

--------- spinodal temperature 





a=2RT 
c 

When Tc occurs above the liquidus temperature in a given system, 

there is a region of stable immiscibility. Examples of glass-forming 

systems that exhibit stable immiscibility include silica with the following 

oxides 
(23). 

MgO, FeO, NiO, ZnO, CaO, SrO, MnO and CoO. 

If Tc exists below the liquidus then metastable immiscibility can 

occur if the system fails to crystallize. The presence of the impending 

immiscibility dome imposes a significant inflexion on the liquidus curve. 

This is illustrated by the strongly sigmoidal liquidus curves in the 

U20-SiO2 and BaO-SiO2 systems that both exhibit metastable immiscibility (24)0 

Schematic free energy curves for a glass-forming system exhibiting 

both metastable and stable phase separation are shown in figure (2.6) taken 

from Cahn and Charles 
(25,24). 

The regular solution model is useful in describing metal solutions 

where the assumption of random mixing of discrete atoms A and B implicit 

in this model is quite accurate, but for silicate solutions where a compli- 

cated three dimensional network of SiO4 tetrahedra exists, the liquid 

immiscibility and free energy data do not show the symmetrical features 

predicted. For example, in the binary-lithia and soda-silica systems the 

critical couposition (corresponding to Tc) occurs at a mole fraction of 
(26, 

alkali oxide of about 0.1 rather than 0.527) 

Haller at xl(28) have developed a model involving the regular mixing 

of polynomials or 'multimers' of (S102)m and R20°nS102. They selected 

appropriate values for m� n and AS (representing the additional entropy 

change due to changes in internal degrees of freedom of liquids on mixing) 

for L120-., lMa2O- and BaO-SiO2. At the unmixing boundary the following 

process occurs in a homogeneous liquid: 



Figure 2.6 Schematic free energy (G) diagrams of 

(two pages) two hypothetical binary systems 

exhibiting 

metastable liquid-liquid immiscibility 

(Facing -age) 

stable liquid-liquid immiscibility 

(Following page) 
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x[sio2; y[ý'. 201 ý-_r' x'[s-'o21 m+ y'[R2o- nSio2] (2.4) 

where x and y are the role fractions of the mixed oxides and x, y' are 

the mole fractions of the multirers. From equation (2.4) 

x= x'm + y'n 

yxý. 

The fractional concentrations of the immiscible liquids are denoted by 

x and y calculated according to 

y'/(x'+y') 

xs x'/(x' + y') 

Applying regular solution theory they obtained: 

T 
m 

T 
C 

and 

_ (2 +- AS {+. (2.5) 
ln[1 är) /yj + (1 2i! )-ýS'-R 

T 

s AS 
=2 (2 + ---) Tý R 1ý 

ýiý 
(1- 

y) j+ -25 

where Tm and Ts are the miscibility and spirtodal temperatures respectively. 

For Li20-SiO2 a good fit is obtained if m 6, n=2 and AS = 1.2R. 

Similarly, -the experimental data agrees well with the predicted data for 

Na20-SiO2 if m=8, n=3 and AS = 0.3R. BaO-Si02 results show reasonable 

correlation with the theory when m-8, n-2 and AS = 0.3R. The lowest 
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common denominator of the silica multimer in the three systems is (SiO2)v+1 

and it would be an interesr_inc sequel to these calculations if the existence 

of such a multimer could be proved. 

2.3 OTHEP SOLUTION MÖIILS 

A sub-regular solution model, proposed by Hardy(29), defines the 

enthalpy and entropy of ; nixing as follows: 

AMH_ (Al + A2xA)xA(1 -xA) 

G5=Aq 
M 'n (ideal) 

where Al and A2 are adjustable parameters determined from the prase 

boundary data. In the sub-regular solution 'l the bimodal curve is 

not symmetrical and must be defined by equating the chemical potentials of 

component A in both phases, and similarly for B. 

Burnett 
(30) 

found that fairly good agreement was obtained with theory 

for CaO-SiO2 and Li20"-5i02 systems, and hence this model gives an approxi- 

mate empirical description of the liquid immiscibility in these two chosen 

systems. 

A. variation of the sub-regular solution that takes into account the 

different atomic sizes of I and B was proposed by Lumsden(31) for metallic 

systems, and has been used by Harnne1(32) to calculate the driving force for 

nucleation of phase separation in a: iO2--i, Ia2O 'CaO glass. Comparisons of 

the theoretical determinations of nucleation rates with experiment were 

good. 

More complicated solution models have ben developed but they do not 

always describe the jruniscibility in glasses accurately. The van der Tborn 
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and Tiedema model(33) obtained by expanding the excess free energy of 

mixing as a series in xZ has 30 far been of little practical use in 

silicate sy, ýYstems(34). Howeve3, the associated solution modelý35ý in which 

complexes of silica are assumes to mix idr. al'_y with a metal oxide, can 

predict phase separation(30). Clearly this model has a close relationship 

with the approach of -Taller et al 
28) 

mentioned earlier. It appears at 

present that association of silica units can allow conventional solution 

theories to predict accurately the characteristics of phase separation. 

Tether this is a reflection of a real situation or is simply fortuitous 

cannot be resolved without further experiment. 

I THE PUUASE DIFGRAM OF BP. IZIA-SILICA 

The phase diagram of this system was first derived experimentally by 

Eskola; 
36ý 

and later modified by Greigi37). The following compounds were 

known to exist: EaOSiO2(BS), RaO2SiO2(852), 2BaCSiO2(B2S), 2BaO3SiO2(B2S3) 

and a solid solution was believed to occur between BS2 and P2S3. Controversy 

arose over the existence of the solid solution, and thi. s problem was finally 

resolved by Roth and Levin 
(13) 

who reported two further compounds: 

5i3aOBSiO2 (B5S8) and the incongruently melting 3BaO5Siý')2 (B3S5), both in the 

previously proposed solid solution area. The polymorphic nature of Ba02SiO2 

was also discovered b Roth and Levin 
(13) 

by , the transformation taking place 

at 1350 °C. The structure of the low 'temperature form 2, --B92 was deduced by 

Douglass 
(38) 

and is found in nature as the mineral sanbornite. Similarly, 

the structure of the high form h-BS2 was described by Katscher et a1(39) 

Full crystal data of all BaO-SiO2 compounds, including the d ." spacings, are 
(4O) 

given by Oehlschlegal. The structure of 2Ba03SiO2,5BaO6SiO2 and 

3BaO5SiO2 can be found in references 41,42 and 43 respectively. 

Metastable phase separation in the BaG"Si02 system was first suspected 
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by Greig 
(37) 

and later by Kracek( 
) 

on the basis of the highly sigmoidal 

liquidus shape. Levin and Cleek(44) have linearly extrapolated the conao- 

lute curve in the BaO-B203-Si02 ; -stem from the region of stable immisci- 

bility to the sub-liquidus region of the BaO-SiO2 binary and estimated the 

critical point at 8mol% BaO and 1430°C. Cahn and Charles 
(45) have 

similarly extrapolated the immiscibility data of Toropov et a1(46) from 

the ternary system BaO-CaO-SiO2 to the BaO--SiO2 binary. Reasonable agree-- 

ment with the results of Levin and Cleek L'J(. ts found. Calculations by 

Charles 
(47) 

of thermodynamic activities in the BaO-SiO2 system also indi- 

cated a critical point at 8mol% BaO but at 1600°C. The experimental inves- 

tigation of Argyle and Hummel 
(48) 

suggested immiscibility with a Tc value 

of 1655°C. Seward et al 
(14) 

using a specially designed rapid quenching 

apparatus, established a binodal curve with a critical point of 1460°C and 

lOmoi% BaO. The model cf Haller et al(28), assuming. regular mixing between 

Ba02SiO2 and (8102)8 'multimer. y', can be fitted to the data of Seward et al 
(14) 

very successfully. The data of Seward et al is probably the most reliable 

to date. 
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The decomposition of a phase into one or more phases may generally 

be divided into three stages= a) formation of nuclei of the new phase, 

b) growth of the nuclei until mutual impingement or depletion of the 

matrix, c) coarsening. Depending on thermodynamic considerations stage 

a) may occur in two ways. If fluctuations in concentration, small in 

amplitude but large in extent, occur spontaneously, the reaction may 

proceed by spinodal decomposition with a continuous fall in free energy. 

If, however, all small fluctuations tend to decay, there is said to be 

a nucleation barrier. Although unstable, such fluctuations exist and 

occasionally one becomes so large that it is stable and grows to micros- 

copic dimensions. In this case we are dealing with fluctuations that are 

large in amplitude and small in extent. It is primarily the purpose of 

this next section to discuss the kinetics of this latter process of 

nucleation. 

3.1 PJLTCtiFATICN IN GLASS--FOPMTNG üYSTFt1S 

3.1.1 The thermodynamic barrier 

Nucleation theory was first proposed for the condensation of a pure 

va: our from a liquid but with some modifications it may also be a plied to 

crystal nucleation in glass systems. 

The driving force for a liquid to crystal phase transformation in a 

one component system is given by the difference between the free energies 

per mole of cr! 'stal and liquid, i. e. GcrystFi - Gliquid, henceforth known 

as AC, the thermodynamic driving force (see Figure (3.1)). Assuming that 

a spherical particle of radius r forms when T' < "Tm,, where Tm. is the 

equilibrium melting temperature, then the total free energy change is. 

41rr3LG 
+ 47rr2v =W 3V (3.1) 

m 



Figure 3.1 Free energy (G) per mole of crystal 

and liquid phases as a function of 
temperature 

Figure 3.2 Free energy (W) of formation of a 

spherical cluster as a function of 
its radius 
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where a is the interfacial ener y and Vm is the molar volume of the 

precipitating phase. Strain energy may also be involved in condensed 

systems, hut for glasses the flow of the matrix will remove strains 

induced during trimsfornmations. 

The theory assumes the presence of homogeneous phases, the existence 

of a sharp interface between the two phases and a constant value of a that 

is identified as a,,,, the macroscopic surface energy. The latter assumption 

may not be justified since a varies with the size of the droplet, but theory 

indicates (4 ) 
that in the extreme case of a closed packed cluster of 

13 atoms a is only 15% less than a,,. 

; more rigorous treatment of diffuse interfaces by Cahn and 

Hilliard 
(5r), 51) leads to results that are comparable with the classical 

nucleation theory. 

The constant value of a may be a true representation of conditions 

during the condensation of a vapour or the separation of a liquid phase 

but during the crystallization of a glass, surface energy will depend on 

the crystal plane in contact with the melt. The faceting of a crystal will 

be controlled to a large extent by the surface energies of the various 

planes in contact with the melt and as a result the shape of the crystal 

will deviate from a sphere to favour facets of low surface energy. 

The relative magnitude of tC and a control the size of the critical 

nucleus. When T< Tm,, AG <0 and a curve of W against r will increase to 

a maximum and then decrease again as shown in Figure (3.2). The position of 

the maximum is given by (r) 0 and the value of the critical radius is 

given by: 

r* m- 2Q m/aG (3.2) 



Particles of radius r< r* will tend to dissolve since an increase in size 

leads to an increase in td, whilst _)art_icles of radius r> r* will tend to 

grow since an increase in radius decreases W. Particles with r< r* are 

often referred to as embryos and those with r> r* as nuclei. 

The maximum value of W is found by substituting (3.2) into (3.1) to 

give equation (3.3) 

16r Q 3Um2 
ca* ý 3ýGý_ 

(3.3) 

where is the thermodynamic barrier. 

If AG > C) then W does not have a maximum value but increases rapidly 

with r. Under these conditions all embryos dissolve. 

3.1.2 The Volmer and Weber theory of nuCleatzon(5ä) 

The formation of a nucleus can be envisaged as a step process where 

individual molecules or 'formula units' can add on to the embryo thus; 

PQ 139 

12p +Q1 : ýý Cp+1 

.0 

qn ? 41 -----1 cri+1 etc. 

where p is the smallest possible entity that can be recognised as a new 

phase. 

There is a certain probability per unit time that a 'formula unit' 

or molecule will add on to the surface of the embryo Qn converting it into a 
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Qn+1 embryo. This probability is givan by- 

i\nkT DGD 
P= -h exp (. . _}, T) 

where kT/h is the atomic vibration factor, AGD is the activation energy 

per 'molecule' cr formula unit for motion across the matrix--embryo 

face, An is the area of the embrµyo, Qn" 

The rate of change of the number of Qn embryos 

given by. 

AN kT AG 

exp (- L) 
h kT 

inter- 

to rn+1 emx: ryos is 

where 1\In is the number of embryos and is approximately given by the 

following a _, luation 

t+T 

Nn = Nexp(- kT 
(3.4) 

where N is the number of molecules in the system and W is the free energy 
r. 

ch, inge involved in forming a cn embryo. 

Voliner and Weber 
(52) 

assumed 1) that the distribution of embryos is 

the same as the equilibrium distribution given by equation (3.4), 2) once 

the enbryc reaches a critical size it is effectively removed from the 

system and is -iot considered further. This means that the nucleation rate 

is governed by the following reaction- 

QC +Qi; nC+l 
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with no consideration given to the reverse reaction. Thus the nucleation 

rate I is given by. 

AG 
I= 

Y. ThF-* 
exp (- 

kT) exp (... kD) 

where T is the surface area of the critically sized erd)ryo 0 

3.1.3 The Becker and Doring theory of nucleation 
(53) 

(3.5) 

The main defects of the Volmer and Weber theory of nucleation are: 

1) the assumption that the steady state distribution of embryos is given 

by equation (3.4), and 2) neglect of the possibility that nuclei greater 

than the critical size can shrink. The distribution function does not 

fall to zero at Nn = N* but approaches zero when Nn is very large 

(Figure 3.3). 

Becker and Doring(53) developed a theory that took into account the 

possibility that critical Sized nuclei can decrease in size, (i. e. 

ny+1 - Q1 -} Qc) and avoided the agsian ition of the eruilihrium distribution 

of embryos given by equation (3.4). The net nucleation rate is given by- 

kh (ý*A* - Zc+1Ac+1) exp(-, 
d.. 
-G, kT 

) 

where Z* is the number of embryos of critical size in the Beek'ýr and 

Doring distribution. The mathematical details involves'.. in evaluating I 
(5) 

and the final equation are given by Christian 

I= AIkTX: *Vm 
( 3W*-) A 

exp (3.6) 
h 4nr* 3 rkT kr 



Figure 3.3 Distribution function of embryos 

according to Volmer and Weber 
(52) 

and Hecker and Dozing 
(53) 
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The main effect is to modify the term in the pre-exponential factor 

by about a hundred. This '. s not a gorge factor because values of TAI* in 

the exponential term are extremely sensitive to very small changes in 

temperature. For example, Turnbull 
(55) 

found that the nucleation rate of 

crystals in liquid mercury varied by 104 for a temperature drop of 3°C. 

Thus equation (3.6) can be approximated as: 

Iý 2ýýT 
ex 

(cl* ý AG 
D) 

h `v 
[- 

kT 
ý (3.7) 

Other modifications to the theory have been proposed and details are 
(5ý') 

given by Christian None of them change the general form of the 

equation derived by Volmer and Weber. 

3.1.4 Time dependent nucleation rate 

The equations previously derived assume that the nucleation rate is 

independent of time. This condition is usually valid for vapour-liquid 

transitions where initial transient effects are of very short duration. 

In condensed systems however. the existence of an activation energy barrier 

to the addition and removal of molecules from embryos may mean that the 

distribution is approached only slowly. 

she establishment of a steady state distribution of embryos is 

shown in Figure (3.4). The initial curve A. represents the distribution 

after the system has been quenched rapidly from above to below the phase 

transformation temperature. At very short times the rate of formation of 

small embryos is a maximum. For large critical size embryos the rate of 

production is small at t=0, rises to a maximum and then falls off 

(see Figure 3.5). 

The process is described by a complex partial differential equation 

known as the Zeldovitch-Frenkel(54) equation. A crude approximation to 



Figure 3.4 Schematic curves to illustrate the 

change in embryo distribution with 

time in a quenched sample. 

Figure 3.5 Rate of formation of embryos as 

a function of time 



EMBRYO RADIUS 
C 
or 

TIME 



._ 21 -- 

the solution of this equation is given in the form of 

It = Io @xp (- tl) (3.8) 

where T1 is a time constant and Io is the steady state nucleation rate. 

Other approximate solutions by Kantrowitz and Probstein are discussed 

54ý 
. by Christian 

A more rigorous attempt to solve the Zeldovitch-. T'renkel equation 

without involving the assumptions of earlier theories was made by 

(56) 
Kaschiev. From the solution he obtained a value for the nucleation 

rate: 

co 2 
Sý = Io [1 +2 E(- 1) n exp ("" nTt) ] (3.9) 

n=1 2 

where T2 is a time lag or induction time. The nucleation rate equation (3.9) 

is plotted schematically in Figure (3.6). The plot consists of two parts: 

(a) an interval ;, where the nucleation rate is slowly increasing as the embryos 

are created, and (b) a steady state zone. Equation (3.9) represented as a 

function of temperature is shown schematically in Figure (3.7). The upper 

limit to nucleation is imposed by the relatively small value of t1G, and the 

lower limit of nucleation is caused by the ever increasing kinetic barrier 

for diffusion from matrix to nucleus. 

A specific analysis of thn induction times for glass systems has been 

given by i F1i_llig 
(57). 

He assumed that a yivý! n solute atom behaves as a 

perfect absorber c pturing all other solute atoms that irrpinge on to it in 

the course of taking a random walk through the r: aterial. The mean time 

t required to build the radius of the resulting cluster to the critical 

size r* is given approximately by: 



Figure 3.6 Schematic representation of number of 

nuclei formed per unit vol per unit 
time versus time. Magnitudes of slope 

and intercept are specific to the 

solution of equation (3.9) by Kaschiev(56) 

Figure 3.7 Duration time before nucleation rate 
exceeds a specified value, as a 
function of temperature. 



,l T{ýý 
.. »,,.., ý..... *. r. ý. ý. , ý. ý...., ýý. 

Il. a rp. dt I It 
p.. ww .ý ýmýi " 

0 
ýýYY 

6 

I 

LOG TIME 



t- 
nVL2 r*2 

4D Vý2Vf2 

where VL = molar volume of parent glass 

Vs molar volume of A 
m 

D- diffusion coefficient of transport of A 

Vf = volume fraction of A 

Hallig emphasises that the mean time will be much shorter than the 

actual time to achieve steady state conditions because of the neglect 

of the inherent thermodynamic instability of sub-critical embryos. 

3.1.5 Nucleation in binary systems 

With a few modifications the equations previously describing a one 

component system may be applied to a binary system. 

Figure (3.8) shows the free energy-composition curve for a 

hypothetical binary system. If a homogeneous phase of composition xo' 

consisting of M moles is present, then it will tend to split into two 

phases. At a very early stage in the transformation a new phase of m 

moles forms of composition z and the composition of the other phase shifts 

slightly to y. Assuming m << M and neglecting surface energies we may 

write the changes of free energy as: 



Figure 3.8 The free energy (G) versus composition 

curve for a hypothetical binary system 
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AG = m(712 +(Pi -- rn) G1 - LtGo 

rrom the Lever Rule the proportion of phases are 

m .. y. 

M" mz -" xo 

and Mr (x 
0z- y) 

(3.10) 

(3.11) 

From equation (3.10) and (3.11) and assuming that the fraction of preci- 

pitated phase is very small 

AG - mr. (G2 - C1) ... (z -- y) (ý)ýXJl (3.12) 

ierom equation (3.12) it can be seen that the chance in free energy 

per i: iole to form a phase z from a homogeneous phase xo is given by the 

value - ab; i. e. the vertical distance between the free energy curve at 

the precipitating comp osition and the tangent drawn to the free energy 

curve at the initial composition. The minus sign indicates that the free 

energy is lowere,.. in the process. As further separation proceeds the 

tangent rotates as the composition of the matrix shifts to the left. The 

driving force decreases until equilibrium is attained. Conversely. if the 

tangent lies below the separating composition the free energy must increase 

to promote the separation. Thus although the overall energy is 

lowered by decomposition of xo, a free energy barrier must initially be 

surmounted since the tangent lies below the free energy curve until P is 

reached. 



One other alteration to the nucleation equation mast be considered. 

This concerns the term AGL which =., >ac defined previously as the kinetic barrier 

per molecule for transport across the embryo--matrix interface. For bin- 

ary systems it is more reasonable to identify L1GD with the free energy 

barrier for diffusion of the slowest rate determining species. 

Compositions between the points of inflexion do not face a free 

energy barrier because the tangent to the free energy curve lies above the 

curve. Consequently only long ran, e diffusion of the rate determining 

species controls the rate of phase separation. 

Liquid phase separation within the two inflexion points (aäß) =0 

is known as spinodal decomposition. The boundary between the phases is 

no longer sharp. within the spinodal the critical nucleus resembles a 

fluctuation small in degree but large in extent. The decomposition of a 

matrix within the spinodal necessitates long range diffusicnal processes 

because of the scale of the fluctuationj. and the transformation may prefer 

to take place by a nucleation and growth process which will be less favoured 

energetically but more favoured kinetically. 

Within the spinodal the composition is unstable to small fluctuations 

of wavelength greater than a critical value X 
C. 

The rate of growth of the 

fluctuation is greatest when as Xcv2- (58-60). 

Calm 
(61) 

has constructed a mathematical model of the process by 

considering a series of sine waves with the same wavelength but with 

random phases, amplitudes and orientations in space. He then superimposed 

the waves and considered two dimensional sections through the structure. 

The spinodal texture was found to consist of two interpenetrating phases. 

The free energy driving force for the precipitation of a crystal 

phase can also be determined using the tangency rule derived above. 

However, unless solid solution or severely non-stoichiometric compounds 
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form in the system, crystallization is unlikely to take place by a gradual 

composition shift as described for liquid immiscibility. 

The free energies of two solid solutions a and B is shown in Figure 

(3.9). The lowest free energy possible for composition Co is G1 and the 

composition consists of an a and f3 mixture. If for kinetic reasons a 

does not form, the free energy of Cc is given by G2. The tangent to the ß 

free energy curve at Co intersects the a curve at C'a. Using the principles 

derived aboveP1 can only nucleate a solid solution of compositions left of 

C'a (as seen in Figure (3.9)). 

Figure (3.10) shows hok" the formation of a stable phase ß can be 

suppressed in the presence of a metastable phase y. If for reasons of 

kinetics a, ß and d fail to form at composition Co then y will constitute 

the sole (metastable) phase. A tangent drawn at Co illustrates how ß is 

unable to form irrespective of the fact that it is a stable phase. If ß 

was introduced into the system it would dissolve in y. On the other hand, 

a and the metastable phase 6 can form from y, and immediately the common 

tangent to the a and y curves intercept the ß curve then decomposition to 

is favoured thermodynamically, 

The monotectic system 
(8,62) illustrates how these principles can be 

ß 

applied to show how phase separation must in some ci. rcume tznces occur before 

crystallization is possible. Figure (3.11) shows a . nonotectic phase diagram 

and the free energy diagrams at various temperatures. At T= T1 in region I] 

the solid is metastable in contact with the single phase liquid and will 

crystallize from it but will dissolve in the presence of two liquids. 

When T- T2 in zone IV, solid cannot form from a single phase liquid and 

any existing solid will dissolve. However, after phase separation the solid 

is quite stable. In area V solid is stable with respect to a single liquid 

but immiscibility can increase the driving force and enhance the solid 

stability. 



Figure 3.9 Graphical method of obtaining the 

free energy (G) of a two-phase 

mixture 

Figure 3.10 In the presence of a single meta- 

stable phase y of composition Co, 

a stable phase 0 cannot form 
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Figure 3.11 Schematic phase diagrams and free 

energy (G) diagrams of a monotectic system. 
The dashed tangents defines the metastable 
liquidus. The continuous tangents define 

the stable liquidus 
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3.1.6 Applications of nucleation theory to glasses 

Both transient and steady state nucleation behaviour have been 

reported by several workers during the crystalliz-tion and liquid phase 

separation studies on glass-forming systems. 

Burnett and Douglas 
(15) 

have measured the steady state nucleation 

rate Io of Ba02SiO2 in a 66.6 wt. % SiO2,16.7% BaO , 16.7% Na2O glass, and 

demonstrated a very sharp decrease in Io at low temperatures where the 

diffusion term predominates. The simplest equation often quoted to describe 

transient nucleation (equation (3.8)) was shown to hold approximately for 

their results. 

Several attempts at quantitatively applying the nucleation theory 

to vapour-liquid transformations have been performed but only a few examples 

are known of attempts to fit the theory to glass-forming systems (see 

ref. (64) for a review). Glasses are useful materials for such work because 

diffusion and viscous flow are slow and phase transformations occur at an 

experimentally convenient rate. 

The earliest attempt to fit the theory to glass-forming systems was 
(32) 

due to Hammel. He compared the measured nucleation kinetics of liquid 

droplets in a 76 mold Si02-13 Na20--11 CaO glass specially selected near the 

binodal where classical theory should apply, with calculated rates given 

by the nucleation equation. AG was estimated by fitting a solution model 

to the experimentally determined immiscibility gap. The free energy curves 

of the liquid phase could then be plotted. The variation of solubility 

temperature with particle radius enabled an estimate of a to be made. 

AGD was found by measuring particle grow rates and assuming that the 

diffusion mechanisms involved in nucleation and growth were the same. 

Excellent agreement between experimental and calculated results was obtained 
(31) 

when the Lumfsden solution model was used. However agreement was not 
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good where the Van der Toorn-Tiedema solution model 
(33) 

was used. 

James 
(65) 

has studied non-steady state crystal nucleation in two 

L120-SiO2 glass compositions. He has compared the theoretical curve 

predicted by Kaschiev's equation (3.9) with the experimental curves 

obtained at short nucleation times by plotting a graph of Nv/Io T vs 

t/t. The close agreement obtained justified the methods he used to 

estimate Io and t (see Figure (3.6)). The temperature variations of the 

induction time yielded activation energies that were closely in agree- 

went with those obtained from the viscosity data of Matusita and Tashiro(66) 

It would appear that the transport processes involved in viscous flow 

Were similar to those involved in the nucleation processes. Estimates 

of the induction time using Kaschiev's theory 
(56) 

and the Stokes--Einstein 

relation, were about an order of magnitude smaller than the experimental 

values. Very good agreement was obtained with induction times calculated 
(57) 

using Hillig's theory 

An alternative use of the nucleation equation has been to calculate 

data from experimental nucleation curves, assuming that the nucleation equa-, 

tion is obeyed. Matusita and Tashiro(66) have used the following form of 

the nucleation equation equation to compute crystal-glass interfacial 

energies: 

log t1 I- log x** -a 
o3 Vm2 

2.3 äG2 kT 

where K" is a constant n is the viscosity of the glass 

a is a shape factor Vm is the molar volume of the crystal 

AG is the molar free energy 

change in crystallization 
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By constricting a graph of log In against l/AG2T it is possible to obtain 

a from the slope of the resulting straight line. The experimental method 

consisted of measuring the nucleation rates I and viscosity n for a 

Li202: iO2 glass at various temperatures. The free energy changes between 

liquid and crystal were found from the literature. Substitution of the 

data into the equation enabled them to estimate the value of a as 

196 ergs cm-2. The nucleation of crystals in Na20-2SiO2 and K20-S102 

was.: immeasurably small and thus a could be only approximately calculated. 

Comparison of the at n and AG data for Li2O2SiO2, Na2O2SiO2, K2O2S1O2 

enabled them to understand the relative importance of each parameter in 

controlling the nucleation: behaviour for these three glasses. 

Nucleation theory has been used by P. owlands(18) to determine tiie 

unknown parameters a, AHD and AD the average crystal-liquid surface energy, 

tha activation enthalpy of diffu3ion and a pre-exponential factor for 

glasses in the TA202Si. 02- Bao2Sio2 system. Three methoc: s were used, each 

involving the elimination of one of the three unknown parameters. For 

example, i. n method a) the nucleation rates (11,12) at two temperatures 

(T1, T2) were used to eliminate AHI}. The equation obtained was. 

TLnIl-__T21n12. 
= In A 

k5 ; 3-- 
-7 Zl - T2 D kiT1-T2) OG - prýý 

ASD 
where k5 is a crystal shape factor, AD =A exp(- T-), ASD is the activation 

entrcpy for diffusion, and AGrv1 and AGv2 are the voltune free energies 

(ire. 
VG ) for crystallization at y'1 and T2 respectively. BY plotting a 

suitable graph, a straight line with a sloped and an intercept In AD 

was obtained for T>T 
mar. , 

the temperature of maximum nucleation rate. 

AHD, the eliminated parameter, was calculated by substituting a and ASD 
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back into the nucleation equation. Rowlands obtained values of a between 

the crystal phase and the stoich: iometric glass composition as 222 and 

132 ergs cm- for Li2O2SiO2 and Ba02SiO2 respectively. The main assumption 

of this method is that a and AD are independent of temperature. For 

T°<. T 
max 

(the maximum nucleation rate temperature)., straight lines were not 

obtained -nd the above equation did not fit experimental data. 

In method b) the parameter AHD was eliminated by utilising the fact 

that 
dF is zero at Tmax 

Viscosity data was used in the third method to determine 4GD indepen- 

dent of nucleation measurements. 

The nucleation parameters were used to calculate the entire nucleation 

curve as a function of temperature. Agreement between theory and experiment 

was good %: hen T> Tmax but for other temperatures the theory predicted 

nucleation rate values far greater than those measured. 

Finally, Rowlands showed that the nucleation kinetics cannot simply 

be described as two parts obtained by ignoring G1* and AGD at temperatures 

below and above Tmax respectively. 

3.1.7 Heterogeneous nucleation 

Previously the formation of a nucleus has been regarded as a homo- 

geneous process occurring with equal probability in all parts of the melt. 

Most phase transformations take place heterogeneously on container walls, 

impurity particles or structural imperfections. The thermodynamic barrier 

for this process will be less than for homogeneous nucleation if the 

activating site is to act as a catalyst. 

Consider an interface between phases a and Y. Assuming that a is 

metastable with respect to ß, a phase of the same composition; that the 

a"-y interface is a favouraLle place for nucleation of ß and that the surface 
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energies are independent of orientation; then if r is the radius of the 

sphere circumscribing ß (Figure (3.12)) and y is incompressible, the surface 

energy to form the ß phase is(54): 

äß r26aß + äY r2 (aßyr 6aY) 

where Aa,, Aay, aay, a,, P are area factors and interfacial energies of the 

a"-ß and a--y interfaces respectively and aßy is the energy of the ß-y 

interface. The free energy of formation of a nucleus may be written: 

)] Vß r3 
G+ 

r2 [A 
aßaaß+A aY 

(a BY -a aY ý ý7 

where VR is a volume factor for ß and Vm is the molar volume of ß. 

(3.13) 

Differentiating equation (3.13) with respect to r, equating to zero and 

solving for r we obtain: 

r* =2 
Vm(Aaß 0a5 + Aa( Cy Qarf) I 

het 3 Vß 4G 

Substituting r* into equation (3.13) we arrive at: 

r 

vß, 

3 
W* =4 

m[Aaß aaß + AaY(aßY ! aaY) (3.14) 
het 27 Va 4 AG 

The problem of heterogeneous nucleation becomes one of evaluating 

Aas and Amy for the particular case under consideration. Consider. for 

ex le, a spherical cap (Figure (3.12)). From geometry it can be seen 

that. 



Figure 3.12 Heterogeneous formation of a precipitate 
0 on a substrate y 
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v=3 (2 + cos)) (1 -- cos9) 2 

Aaß = 2n (1 -- cos8) 

*=-, r sin2O 
ay 

Substituting into equations (3.13) and (1.14) 

a aß 
3Vm (2 + cose)(1 - cose)2 

ý'ý7* 
het 

lb7f 
äG 4 

and rhet 
20, 

ýßm 
AG 

In fact W* heterogeneous = jv* homogeneous x f(O) 

where f(A) = 
(2 + cosE') (3. cos8) 2 

_4 

(3.15) 

(3.16) 

When f (0) < 1, corresponding to o<0< n/2,, heterogeneous nucleation 

takes place in preference to homogeneous nucleation, the action of the 

catalyst becoming more potent as 0 -* 0. The smaller the angle 0 the greater 

the ease at which heterogeneous nucleation takes place. A ß-y surface of 

love energy is required where the atomic planes in ß facing the planes in y 

d +. 
should have similar arrangements with very small mismatch. The action of a 

catalyst is now seen to be the replacement of a surface of high energy with 

a coherent surface c low energy. 

The nucleation rates for embryos formed on the surface y may be 
. 
pound 

by methods analogous to those used previously for homogeneous nucleation, 

i. e. 

N= rt exp(- 
C'f (8) 

) 
s kT 

where Ns is the number of molecules of a in contact with Y per unit area 

and Nn is the number of ý embryos of size On. The corresponding steady 
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state nucleation rate is: 

T4s k'3' (w*f (8) + Acr, ) 
Ih 

kT . ___ ý 

where Ih is the number of nuclei per unit area of y per unit tim--. 

the nucleation rate is prnporti. onal to the surface area of y. 

3.2 GROWTH OF PHASES IN GLASS -F'OR-, yING SYSTEMS 

(3.17) 

Hence 

Once a. stable nucleus has been forrned, crystal growth may proceed by 

the addition of atoms to the nucleus at a rate which is determined by condi 

tions within the melt and at the int; -=Iace. The heat of crystallization 

liberated �as the interface advances, is assumed to be transmitted away from 

the crystal sufficiently rapidly for growth to occur under isothermal 

conditions. This assumption is often justified in glass-Forming melts of 

high. viscosity where growth rates are relatively slow. 

3.2.1 interface controlled growth 

In crystallization of melts not undergoing changes in composition, the 

arow :i kinetics and morpholoc; y of crystals is dependent on the nature of 

the interface and on the ways in 'thich the individual atoms can attach 

themselves to the growing crystal. 

Three different growth models have been proposed.. In the normal 

gro th model atoms can be added to or taken from any Fppropriate site on 

the crystal interface bar an activated process. Turnbull and Fisher 
(67 

derived the 

growth rate equation using the tLeory of reaction rates; 

G' 
u- avexp(- D `1 

RT 



where v is the jump frequency of atoms, facir: g the interface, A is the jump 

distance to cross the interface -1 atom layer of new phase, AGD' is the 

kinetic barrier to growth per mole of crystal phase (see Figure (3.13)). 

Equation (3.13) can be approximated in certain circumstances to 

yiald a much simpler equation. For example, when growth occurs at large 

undercoolings then AG » RT and 

GG ' 
u~ avexp (- -- n'--D 

) 

AGD' can be expressed as 

AG- 0= All, 
ý" - TASD" 

(3.19) 

(3.20) 

where AHD' and ASD' are the activation enthalpy and entropy per 

mole for diffusion respectively. Substituting equation (3.20) into 

equation (3.19) anca assuming the entropy term is independent of temperature: 

ex ' 
u= Aexp (- ýD-= 

where A= avexp (R-) 

(3.21) 

A plot of in u against 1/T should yield a strai-71t line whose gradient is 

c, H'/ý)" 
The diffusion coefficient for transport across the interface can be 

written as : 

ý ,.. uG 
1? - X2vexp(- -.. ýll-) (3.22) 



Figure 3.13 Free energy (G) per atom as a function 

of position relative to a crystal 

liquid interface 
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Substituting equation (3.22) into (3.18) we obtain the Eillig-Turnbull 

equation 
(68) 

exp 1 
ý) 

When AT is small and AG « RT, equation (3.23) becomes. 

u=DIAJ- 

The free energy of crystallization AG can be written as: 

ATAE3 
Tm " 

(3.23) 

where AT is the undercooling, AH is the enthalpy of fusion per mole and 

Tm is the melting temperature 

DeTAti 
i. e. u° RT V (3.24) 

or ua AT when tT is small. 

The screw dislocation model of growth allows atoms to add to step 

sites provided by a screw dislocation intersecting the interface. Such 

dislocations would provide a self-perpetuating ledge as atoms are added 

to the interface. The model describes growth accurately when the inter- 

face is smooth on an atomic scale. The equation describing growth rate is 

similar to (3.24) except for an active site fraction factor f which must 

be included in the equation. The growth rate at small AT is(60). 

fDARAT DR(T)2 
us RT Tm- 2n RT Tm-t (3.25) 

or ua (AT) 2 
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The third model assumes that the interface is smooth and free of 

defects, and hence growth can occur only if new layers are nucleated at the 

surface. The growth rate is(69); 

ua exp{- Tý� where B is a constant AT 

The surface nucleation model predicts that for small AT the growth 

rate is unobservably low due to the. nucleation barrier. in fact, due to 

the presence of screw dislocations, this mechanism is less likely to be 

observed. 

Jackson 
(70 has related a bulk thermodynamic parameter - the entropy 

of fusion, to the configuration of the interface. 

? iost materials can be allocated to three classes depending on their 

entropy of fusion. Class one includes those materials where ASf < 2R 

and all planes are atomically rough. The normal growth model is the most 

likely mechanism of growth. Only slight anisotropy is expected in the growth 

and consequently the crystal. -liquid surface should be non-faceted. 

when AS is approximately 4R. to 6R the most closely packed planes 

should be smooth, the less closely packed planes should be rough and hence 

the growth rate anisotropy should be large. The most closely packed planes 

will be faceted and the growth kinetics should be described by the disloca- 

tion model for the close packed planes and the normal growth model for the 

less closely packed planes. 

The third class includes the high AS materials. At large undercoolings 

nucleation of new crystals of different orientations may take place on or 

ahead of the advancing crystal-liquid interface. Such nucleation, which can 

give rise to spherulitic growth, should be favoured by relatively low 

molecular mobility and the presence of impurities. 
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3.2.2 Diffusion controlled grcrsth 

During the discussion of interface controlled growth we assumed a 

linear growth law. This assumption is reasonable provided the interface 

advances into a region of matrix with constant composition. This situation 

does not always apply when a particle of prase ß is growing into phase a 

of different composition. If ß is richer in solute there may be a region 

depleted in solute surrounding the ß particle. The continued growth of 

will then require long range chemical diffusion of constituents across the 

depleted layer. When the particle is first formed it is likely that 

processes near the interface will control the growth but eventually 

diffusion will be the dominant parameter in the growth rate equations. 

The change of dimension of the ß particle may initially be linear with 

time but should change to a square root of time derendence later. 

It can be shown that 
(71) 

S° aý(bt)Is 

where D is the atomic diffusion coefficient 

ax is the growth coefficient and is a function of 

concentration 

S is a dimension (radius of sphere or cylinder or 

half width of plate). 

The precise dependence of a, on concentration has been calculated by 
(72) 

Zener 

In situations where the ;. )article is large compared to the charac- 

teristic diffusion distance, the interface should advance at a rate which 
(92) 

is indec, endent of time. For the specific case of a rod of constant 

diameter with addition of atoms taking place only near the ends, the 

length and volume are expected to increase linearly with time. In this 

example the end of the rod can be considered to be advancing into a region 

of constant composition. 
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3.2.3 Applications of growth- theory to glasses 

In discussing the experimental results obtained in glasses, it will be 

convenient to define the reduced growth rate UR(73) 

UR ut1 

1 exp RT T. 
m 

Using the Stokes-Einstein relation 

D= kT/3n an 

u= eýj_ 
AH AT 

), p l RT Z'm' 

where b= kT/31T X 

:. UR - bf/a 

and hence UR is independent of AT for normal growth and is proportional to 

AT for screw dislocation growth. 

The results of experimental studies on the kinetics of growth show good 

agreement with these predictions. For low entropy of fusion materials, such 

(73) (74) 
as GeO2 and 8102 , 1JR was independent of temperature and the interface was 

non--faceted, whilst for high entropy of fusion materials, such as Na2O2SiO2( 
5) 

O-terphenyl ? 
6ý 

and tri-a-napthybenzene 
ý77ý (78) 

and PbO2232. this interface o3 
, 

was faceted and UR varied according to AT but not in the way predicted by 

the screw dislocation mechanism. Thus Na2O2SiO2 showed two definite trends 

in the curve and the other three materials showed a positive curvature over 

the whole range of undercooling. The work of Matusita and Tashiro(79) on 

L12O2SiO2 crystals in a stoichiometric melt revealed that fa AT, indicating 

that screw dislocations may be important in controlling the growth rates. 
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The kinetic barrier to growth was found to be equal to that for viscous 

flow in the melt. 

The crystallization studies of other : ystems, where large changes of 

composition occur, generally shos"7ed a growth rate independent of time (e. g. 

Ha O-RO Si0 
(80) 

Na O S102 
(81) 

r 
(82) 

and BaC"" 
(83) 

22 3-° 2,22, U20' ., i02 -Na20-S102 ), 

This behaviour was not expected for growth involving long range diffusion 

except when the crystal was large compared with the mean diffusion path. 

The growth was sraheruliric ýri. th fibrils observed to grow from a centre with 

large length to diameter ratios. 

The growth of liquid droplets in a phase separated glass is nearly 

always controlled by long range diffusion. 

growth kinetics of licui. d phase droplets observed by Burnett and 

(84) 
Douglas in a 8O: si02 lONa20 1OCaO mole% glass composition, and by 

(85,86) 
f#ammel and Ohlberg in a 76SiO2 13Na2O llCaO and 20CaO 14A1203 

lW2O3 54SiO2 mole% glasses, were observed to be diffusion controlled with 

i 
ra t1, where r is the mean particle radius. 

3.3 IPI GLASS -FORMING SYSTEMS 

The driving force for coarsening is the tendency of the system to 

reduce its overall surface energy. In liquid immiscibility the large 

particles grow at the expense of smaller particles and in crystallization, 

morphological changes that reduce the interfacial area may occur. 

The kinetics of coarsening is most conveniently studied in liquid 

phase separated glasses where variations of nv (number of particles), 

SV (surface area of particles) and Vf (volume fraction) with time can be 

easily measured. 

The solubility of a s; 1harical 

Gi: bbs--Thomson equation. 

particle of radius ri is liven by the 
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(2. a V 
Cr = Co explr RT li 

where C is the solubility of a particle radius r 
r 

Co is the eauilibriuui _ solubility of a particle of 

infinite radius 

VM is the molar volume of the particle phase 

Following an earlier treatment by Greenwood 
(67), 

Lifshitz and Slyozov(88) 

developed a theory of coarsening based on the aJ, ove equation to obtain for 

small volume fractions 

SQ DCo Vý2 t 

r3 _, 
r3 = 

0 9RT 

r0 is the mean radius at the onset of coarsening 

r is the mean radius at a time t 

D is the diffusion coefficient of solute in the matrix 

if r0 is small then ra t)ý3and since the volume fraction of the dispersed 

phase during coarsening must be unchanged, we have Nv a t-1. On the other 

hand,, coarsening by an interface mechanism occurring in systems where 

diffusion is rapid compared with the incorporation of the species into the 

droplet will, according to Wagner(, 
89) 

characterized by the relations: 

ra t1/2, Nva t-a/2 vf = constant. 

Haller 
(90) has shown theoretically for a highly interconnected system 

that Sp a t--1/3 when coarsening is diffusion controlled and Sv, a t-1/2 for 

interface controlled coarsening. 

Most investigators have observed a diffusion controlled mechanism 

in the coarsening process using replica techniques 91,26) 
and thin 

(93) (9 
sections . James and McMillan 

3) 
employed a three dimensional stereo 
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micrograph technique in their calculations of r, nv and Vf. Reasonable 

agreement with the Lifshitz-Slyozov theory was obtained. 

Diffusion controlled particle coarsening has also been followed by 

small angle X-ray scattering by Zarzycki and Naudin(94) in the PbO-B20y 

system and Neilson 
(95) 

in the Na2O-5iO2 system. 

The coarsening of a highly interconnected structure has been studied 

by Mahoney et al 
96) 

on a sodium borosilicate glass. They defined a 

correlation length A which is related to the average distance between 

boundaries rlon the electron micrograph by A-0.63 rl. They found that 

rl. (and A) at 
/3 

thus indicating that the coarsening was diffusion con- 

trolled. 

Burnett and Douglas 
(84) 

studied the coarsening kinetics of liquid- 

liquid immiscibility in two glasses - glass 75 (75 mol% SiO2.12.5% Na20, 

12.5% CaO) and glass 80 (80 mold SiO2,10% CaO, 10% Na20). At temperatures 

just below TM glass 80 separated rapidly into droplets which grew by a 

coarsening mechanism. No evidence of the initial growth before coarsening 

1 
could be found. Vf was constant with time and Sv at 

/3, 
as expected for 

diffusion controlled coarsening. Glass 75 was characterised by a tempera- 

ture range, just below Tm where growth of the droplets could occur but 

nucleation was absent. This was utilised to estimate the nucleation rate 

at a particular temperature. The results showed that the nucleation rate 

was not constant with time at a given temperature but required a finite 

period before a steady state constant value was achieved -a behaviour 

which was in agreement with nucleation theory. The number of particles 

nv increased initially due to nucleation but reached a maximum and then 

decreased due to coarsening. Over the same period of time the particles 

grew initially with ra t% and later changed to ra t1/3. 



3.4 CRYSTALLI7, ATI OTI OF BARI A-SI LI CA GLF., r SES 

We have described the phase diagram, liquid-liquid immiscibility and 

crystal nucleation studies in baria-silica glasses. The results of other 

work in this system will now be briefly described. 

The first comprehensive study of the crystallization of baria-silica 

was made by MacDowe11(16)r using X-ray diffraction and electron microscopy, 

in the composition range Ba02SiO2 to 2BaO3SiO2. The region of good glass 

formation using conventional quenching, extended from 41 mol% to 29 mol% 

BaO. Outside these compositions either crystallization or liquid phase 

separation took place. All the glasses nucleated crystals internally 

without addition of nucleating agents. The first crystalline particles to 

appear were small radial spherulites at 750°C and these grew until impinge-- 

at 850°C. At 1000°C the morphology resembled block or lath-shaped crystals, 

although X-ray diffraction did not indicate any change. in phase. The 

spherulite to lath transformation was followed by DTA where an exothermic 

reaction at 975°C occurred. 

Rowlands 
(18) 

confirmed the observations of MacDowell in BaO2SiO2 

glasses. An x-ray diffracticn pattern of the crystallized glass, consisting 

of broad diffuse peaks resembling poorly crystallized Ba02SiO2, was obtained 

at temperatures below the spherulite-lath transformation, whi. Jst at tempera- 

tures exceeding this transformation the apparent degree of crystallinity 

was greater. 

Rowlands 
(18) 

also investigated the crystal growth mechanisms in the 

Ba02Si02-Li202Si02 and Ba02Si02-Na202Si02 systems. A eutectic growth model 

was fitted to the data from glasses in the 1420 system exhibiting eutectic 

crystals. A screw dislocation model was fitted to the data from glasses 

in the Na20 system. Only slight variations of activation onthalpy were found 

as a function of composition, except near Ba02Si02 where a marked increase 

SHEFFIELD 
UNIVERSITY 
Lýr 'ý Y 
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occurred. This was reflected in a decrease in the growth rates. The 

activation enthalpy of crystal growth was calculated as 115 kcals mole-1 

over a temperature range 749 to 868°C. 

Burnett and Douglas 
(15) have described in detail the growth of 

Ba02Si02 spherulites in a 70 mol% SiO2,2OBao, 1CUda20 glass at a temperature 

of 600°C. Small spheres of h-BS2 were first to appear. These nucleated 

needles of R-BS2 and the characteristic spherulitic appearance began to 

take shape. After a long period of heating the spherulites transformed 

into laths and the remaining h-BS2 reverted to R-BS2. Slow heating rates 

during a DTA rum enabled the exothermic effects of the crystallization of 

h and Q, -"B$2 to be separated. 

Freiman et al 
(17) 

have observed similar changes in microstructure 

from spherulite to laths in a 3BaO5SiO2 glass. The transformation was 

accompanied by sharp changes in the electrical resistivity and heat 

evolution. The growth rate was independent of time except during the onset 

of. 'imppingement when a parabolic law was followed. They described four stages 

of crystallization, 1) classical nucleation, 2) spherulitic growth, 

3) secondary crystallization in which glassy remnants crystallize, 

4) spherulite to lath crystal transformations. 

Oehlschle al 
97) 

has also reported the q presence of a four stage 

crystallization process in the 3naO5Sio2 composition. According to his 

results the third stage mentioned above corresponds to the crystallization 

of h-BS2, and at stage 4) 38aoSS102 decomposes to ß-Ba028io2 and £-5BaO8SiO2 

For Ba02SiO2 glass, stage 3) represents the conversion of h to £-Ba02Si02. 

Tanikawa and Tanaka (98) followed the nucleation and crystallization 

processes by dsnsity. change, permittivity measurements, DTA, X--ray analysis 

and electron microscope observations. Although early stage crystallization 

could not be identified, the eventual crystal form corresponded to 

R-Ba02SiO2. The transformation to lath crystals was also noted. 
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4.1 INTRßUUCTICO 

According to nucleation theory discussed in section (3.1) the rate of 

nucleation is a sensitive function of the thermodynamic driving force AG 

(which is related to undercooling AT), a the interfacial free energy between 

crystal and melt and 6GD the kinetic barrier to nucleation. If liquid 

phase separation is to influence crystal nucleation then at least one of 

these parameters must be altered during or after the process of separation. 

Similarly, crystal growth rates may be increased or decreased if phase 

separation causes a change in AG or AGD', the kinetic barrier to crystal 

growth. 

The most obvious way in which liquid phase separation may influence 

nucleation and growth is by producing local changes in composition which 

in turn may result in changes in -<;, a, AGD and AGD'. 

( 
According to Uhlmann; 

) 
four mechanisms could control the relation 

between liquid immiscibility and crystal nucleation: 

"a) The separation can result in a driving force for nucleation 

of a crystalline phase where none existed with the homogeneous 

liquid. ... 0 

b) The separation results in interfaces between the phases and 

the associated interfacial energy can result in the interfaces 

being preferred sites for the nucleation of the crystalline 

phases. 

c) The separation can result in one of the liquid phases having 

appreciably higher atomic mobilities in the range of large under- 

cooling than in the parent homogeneous phase. 

d) The interfacial regions between the separated phases may be 

enriched in some component providing a locally larger driving 

force for nucleation or a locally higher mobility. " 
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Uhlmann expresses the c, inion that mobility changes induced by liquid 

phase separation is the most important factor. 

The relevance of the above rnentionec four points to the results 

presented in this thesis on the 13aO-"SiO« system will be discussed later 

(Chapter Six). 

4.2 EXPERIMENTAL OBSERVATIONS OF LIQUID-LIQUID IMMISCIBILITY AND 

CRYSTAL NUCLZATICN 

.! iany examples are known of oxides (particularly TiO2) that enhance 

(2,99) 
crystal nucleation . The addition of oxides can result in the 

precipitation of small colloidal particles of the oxides. These can act 

as heterogeneous nucleation sites that initiate bulk crystallization. 

Hillig(57) has shown that crystal nucleation of BaO2SiO2 in the system 

uaO-SiO2-TiO2 can be explained satisfactorily in terms of the liquidus 

temperatures and viscosity. A simple analysis of heterogeneous nucleation 

demonstrated that a readily nucleating precursor phase was expected to be 

a poor catalyst for a more difficult nucleating phase. However; liquid 

unmixing(°9, 
lOO, lOl)ýcaused by the addition of a catalyst, could encourage 

crystal nucleation by chancing the thermodynamic driving force, viscosity 

or crystal-liquid interfacial energy. 

The appearance of liquid phase separation before crystallization has 

prompted several workers to conclude that immiscibility is a pre-requisite 

(102) 
for crystallization. For exarp le, Kalinin a et al observed a hazy blue 

opalescence in a Li2O-Si02 glass although X-rays could detect no crystall- 

inity at the early stages of heat treatments. Btzhinskii et al 
(103) 

have 

observed three stages in the crystallization of a Li20"T. 1203vi02glass. The 

first stage was attributed to liquid immiscibility and the second stage was 

characterized by the appearance of ß eucryptite. Althouch they concluded 
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that the liquid phase separation and crystallization process were related, 

no specific experiient to test his hypothesis was undertaken. 

The i. ork of Vogel and Gerth(7'104-6) has included studies of liquid 

phase separation and crystallization in the following glasses: LiF-BeF2 

Li20"SiO2, MgO-P2O5-TiO2 and SiO -Al203-TiO2-Li2O-MgO-ZnO. electron 

micrographs showed crystals growing on the interfaces or in the matrix or 

within the droplets. It was deduced that phase separation may promote 

crystal nucleation heterogeneously or homogeneously. 

Ohlberg, Golob and Strickler 
(6) 

studied liquid phase separation and 

i02 and Li20-3190-, A1203- crystallization in M90" 1A1203"-Si02-Ti02, Li20-C40--SiO2-'ß 

SiO2 glasses, They suggested from their results that the internal crystal 

nucleation was the result of liquid phase separation and that crystalliza"" 

tion was initiated at the droplet-matrix interfaces. 

Maurer 
(107,108) 

made light scattering studies on a Si02 -MgO-Al203-Ti02 

glass heat treated at different temperatures and found that the scattering 

centres became increasingly anisotropic. This was interpreted as a 

crystallization of liquid droplets. 

Direct observations of crystallization in thin sections of a Li20-A1203- 

(Si02 
glass containing T102 was made by Doherty et a11O9). Their results 

indicated that liquid phase separation preceded the crystallization of an 

unknown phase containing Ti and Al. This in turn nucleated t3-eucryptite. 

The base composition without Tint phase separated but did not internally 

nucleate. Thus the Ti02 was probably responsible for the internal nuclea- 

tion rather than the liquid-liquid immiscibility. 

Tl, ý,. e are other observations of phase droplets initiating crystalliza- 

tioai heterogeneously. These include Na2o-S102-TiO2(110), fluor-richterite(111) IT 

alkaline earth alumina-silicates 
(112) 

, fluorine additions in a CaO-MgO- 

P205-SiO2 glassý113) and. an unspecified crystal in a SiO2-TiO2-Can-Li2O 
i114) 

glass. 
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The catalytic effect of P205 on the crystal nucleation rate in Li20- 

Si02 glasses was first reported by Partridge and McMi1lan(115). Phillips 

and Mciiillan(116) also found the addition of P205 to several L120-Sio2 

glasses promoted liquid phase separation. Their results suggested that P205 

enhanced crystal nucleation by increasing the tendency of the glasses to 

phase separate. However, their work was not conclusive since the influence 

of P205 on the nucleation kinetics may be due to its effect on liquidus 

temperature, viscosity and glass-crystal surface energy. 

James 
(117) has obtained evidence indicating the increase in nucleation 

rates is due solely to P205 additives and is not connected directly with the 

occurrence of liquid phase separation. 

Harper et a1(118) have suggested that liquid phase separation affects 

the nucleation kinetics by shifting the composition of the L120-rich phase 

closer to the more rapidly nucleating L1202Si02 composition. They studied 

the liquid-liquid immiscibility and internal crystallization in two glasses 

glass 1 3OLi2O, 70£i02, glass 2 3OLi20,69Si02,1 P205 mol%. Both glasses 

phase separated but with fairly similar morphologies (and similar values of 

interfacial areas). Thus the crystal nucleation was probably not dependent 

on interface morphology. To explain the very large effect of P205 on the 

nucleation rates (the crystal nucleation rate is increased 200 times), it was 

further suggested that in addition to the compositional shift, nucleation 

may also be enhanced, either by precipitation of phosphate crystals that act 

as heterogeneous sites, or by a lowering of the crystal-liquid interfacial 

energy. 

Heterogeneous nucleation by phosphate crystals was also suggested by 

Harper and McMillan(119)0 

Nakagawa and Izumitani (120) 
have studied the liquid immiscibility 

effect on crystal nucleation in a L12()-SiO2 and a Li20-Si02-Ti02 glass. 
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They obtained evidence that in the latter glass liquid immiscibility can 

increase the crystal nucleation rate. Micrographs were published showing 

crystals of lithium titanate forming heterogeneously at the liquid droplets. 

These crystals acted as nucleation sites for the main crystal phases. 

Titania free glass with the same Li2G: SiC2 ratio showed less tendency to 

nucleate. It was probable that liquid phase separation stimulated the 

nucleation of the titanate phase and thus indirectly enhanced crystal 

nucleation of L12O2SiO2. 

romozawa(121) compared the kinetics of liquid phase separation for 

Li2o-Sio2 glasses with crystal nucleation as a function of temperature and 

time. The nucleation rate in a glass outside the immiscibility gap was 

constant with time but for glasses that phase separated and underwent 

crystal nucleation at the same time, a temporary but marked increase in 

nucleation rate was observed. This phenomenon was related to the commence- 

ment of phase separation. The number of crystals in the phase separated 

glass eventually exceeded that in the homogeneous glass outside the immix 

cibility gap. The temporary increase in crystal nucleation was attributed 

to the presence of a diffusion zone (depleted in silica) surrounding the 

silica-rich droplets which acted as a favourable site for crystal nucleation 

by lowering the effective surface energy. Tomozawa was unable to explain 

the results in terms of a compositional change in the matrix brought about 

by the liquid phase separation, which would give changes in the driving 

force, in surface energy and diffusion rate. However, it may be noted that 

apart from the heterogeneous mechanism suggested by Tomozawa, depletion of 

silica around the droplets (as envisaged by Tomozawa) could also provide a 

locally higher driving force (ai. u larger mobility) for crystal nucleation. 

Further work in this system is needed to test these ideas. 

Matusita and Tashiro(122) determined the effect of a series of oxide 

additives on the crystal nucleation and growth of a Li2O2SiO2 glass. They 
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showed that changes in nucleation rate caused by the additives (except 

P205 and V205) were due to changes in viscosity. Their results suggested 

that P205 and V205 additives influenced the nucleation kinetics by inducing 

liquid phase separation. 

ý1 
Matusita et.; al2 

ý 
have also examined the effect of oxide additions 

(ROn) on the crystal nucleation and growth kinetics of Li202Si02 in 

Li203SiO2°ROn glasses. The ratios of the number of nuclei between glasses 

L12O3SiO2*ROn and L12O2SiO2*rOn and also the ratios of the crystal growth 

rates were shown to increase with Tm, the immiscibility temperatures of 

Li2O3SiO2^RO,,. The results were partly explainable on the basis that liquid 

immiscibility in the higher Tm glasses produced a liquid phase closer to 

the Li2O2SiO2 composition. However, the ratios of the growth rates between 

the two glasses were always less than the nucleation rates ratio. From 

nucleation theory they showed that nucleation rates were more sensitive than 

the growth rates to composition shifts in the matrix phase produced by phase 

separation. Thus the nucleation ratios should be less than the growth ratios.. 

It was suggested that the nucleation ratios in the phase separated glass 

were higher than expected because crystals nucleated heterogeneously on the 

phase droplets. 

The influence of fluorides on the nucleation of crystallization in soda- 

lime-silica glasses was determined quantitatively by Mukherjee and rogers(124) 

Two systems were chosen for study, 1) CaO-Na20-A1203-Si02 and CaF2 

2) Na2O-CaO-Si. 02 and CaF2. The base glass in the first series nucleated 

only with difficulty but CaF2 containing glasses readily nucleated and phase 

separated at:. the holding temperature. The second series of glasses nucle- 

ated with difficulty despite extensive phase separation. The activation 

energy for nucleation in the first series was similar to the sodium ion 

diffusion activation energy in a Na20-CaO-Si02 glass. Since sodium ion 
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diffusion is essential during phase separation they suggested that phase 

separation controlled the nucleation kinetics. Their results were based on 

the assumption that the nucleation kinetics at the low temperature end can 

be represented thus: 

A'D 
Ia exp (- ==--. ) 

RT 

where AGD is a diffusion activation energy. Roulands analysisAlB-of the 

nucleation kinetics shows that this approximation is probably inaccurate 

for silicate systems. Thus the effect of liquid immiscibility on the 

nucleation kinetics in this series may be open to question. 

The role of fluorides in the crystallization of Na20-CaO-NgO-Al2O3-Si02 

glasses was studied by Lyng(l25). DTA data sugc, ested that fluorides 

increased nucleation rates. All glasses showed liquid phase separation but 

only in a fluoride glass with MgO content less than 5 wt% did crystals 

appear to grow from the interfaces. 

Kokubo et a1(126) have studied the effects of additions of A1203 and 

the occurrence of phase separation on the crystal products in two glasses: 

40Pb0,25TiO2,35SiO2 (glass 1), 40Pb0,25Tio2vlOA1203,25Si02 (glass 2). 

Glass 1 crystallized metastable lead titanate followed by the transformation 

to perovskite. Glass 2 decomposed into a silica-rich matrix and droplets 

rich in PbCT102. The latter precipitated perovskite. The A1203 component 

in glass 2 induced liquid phase separation which stimulated perovskite 

formation. 

Some examples of systems that do not exhibit phase separation and yet 

crystallize on a fine scale are L12O-Al2O3-SiO2, I4igO-A12o3-SiO2, L120-Ga203- 
(127) 

SiO2 and L120-A1203-"Ge02 with Ti02 Phase separation is also not 

essential for fine internal crystallization to occur in several simple 

binary systems, such as U20-SiO2 and BaO-SiO2. 
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Barry et al 
(123) have investigated the role of titania and liquid 

immiscibility in the crystallization of L12O-A12O3-SiO2 glasses. No sign 

of liquid immiscibility was detected in the U20-S102-0 spodu ne and 

L12OSiO2-ß eucryptite joins and yet some compositions were highly nucleating. 

They showed that titania acted to modify the kinetics of crystal growth by 

preferentially concentrating cn particular faces of ß eucryptite and 

inhibiting growth at these faces. It was also shown that titania could 

enhance crystal nucleation kinetics by acting as a surface active agent 

(i. e. reducing a) and inducing a redistribution of non-bridging oxygen ions 

to the periphery of completely bridged network regions. 

4.3 SUMMARY OF CHAPTER FOUR 

The precise nature of the liquid phase separation effect on crystal 

nucleation has still not been clearly resolved. The influence of phase 

separation is probably specific to different glass systems. Theoretically, 

liquid phase separation should influence crystal nucleation in one or more 

of the ways according to the points discussed by Uhlmann. In practice it is 

difficult to determine which mechanism is involved. The apparent observation, 

in some cases, of heterogeneous nucleation of crystals on the surface of 

droplets could imply that crystals prefer to form here either due to concen- 

tration of components near the interface, which locally increase the driving 

force, or the mobility. There is a possibility that interfaces may migrate 

during heat treatment, and any relation between the interface and the crystals 

they nucleate may be lost. However, the dependence of the nucleation rate 

on the parameters describing phase separation morphology would still be 

retained, and hence it should be possible to study experimentally the 

importance of interfaces in nucleating crystals. 
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It is clear that in many cases phase separation can produce another 

liquid phase which can undergo crystal nucleation much more easily than the 

original composition before separation. (See for example the work of 

Burnett and Douglas 
(15) 

on Na20-TaO -SiO2 glasses). In this sense phase 

separation can be very useful since it effectively increases the range of 

compositions which can be crystallized to form glass ceramics. 

The coincidence of liquid phase separation with crystal nucleation, as 

reported by several workers, does not provide sufficient evidence to conclude 

that the two are directly related as for example, by a heterogeneous nuclea- 

tion process. Only nucleation experiments carried out on phase separated 

and homogeneous glasses of similar compositions can show if, ard how phase 

separation influences crystal nucleation. In the case of nucleation 

catalysts it is probable that large additions of catalyst can increase 

nucleation rates on the basis of altering the liquidus temperature, 

diffusion rates and surface energies rather than causing liquid immisci- 

bility to occur. 

Thus although numerous experiments have been perfonned, the effects of 

phase separation on crystal nucleation and growth have by no means been 

clearly established. 
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5.1 PREPARATION OF THE GLASSES 

Eight binary BaO-SiO2 glasses were melted with nominal batch composi- 

tions of 37,35,33,32,31,30,28 and 26 mol% BaO. The batch materials 

used to prepare the glasses were analar BaCO3, manufactured by Fisons, with a 

total impurity level not greater than 0.2 wt%, and acid washed Belgian sand 

with an iron content of less than 0.01 wt%. Accurately weighed quantities 

of the two materials were very thoroughly mixed. The blending action was 

achieved by a prolonged manual grinding process. Automatic mixing was not 

satisfactory because aggregation of the BaC03 occurred. The batch was 

sintered in a mullite crucible in an electric furnace at 1300°C for 16 hours 

to encourage reaction between Si02 and BaC03 and to facilitate homogenization. 

The material was ground to pass a 30 mesh sieve and after further mixing 

the batch was melted in a platinum crucible in a gas furnace at 1550-1600°C. 

Ten minutes after the batch had completely melted, a platinum blade was 

introduced into the melt and stirring was immediately commenced. After six 

hours of stirring, the blade was withdrawn and within five minutes the glass 

was cast on a corrugated stainless steel plate. The resultant rods were 

allowed to cool to room temperature without an annealing treatment. The 

glass was crushed in a mortar and pestle until it passed a 30 mesh sieve and 

the melting schedule (excluding sintering) was repeated twice. It was 

necessary to follow this process closely in order to obtain reasonably 

homogeneous glasses. Omission of the sintering process produced a glass 

containing a solid surface layer of unmelted batch. This glass could not be 

stirred and consequently the final product was inhomogeneous. 

The opalescent appearance of the two most baria--rich glasses (designated 

glasses 26 and 28) indicated the presence of liquid phase separation. Since 

the aim of the project was to study the influence of liquid phase separation 

on crystallization, it was necessary to quench glasses 26 and 28 more rapidly 
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between two cold stainless steel plates to prevent phase separation from 

occurring. The 'milkiness' was largely removed by the rapid quenching. 

aowever, a slight blue haze was still retained in some areas of glass 26. 

The nucleation results, to be described later., showed a variation with 

composition and heat treatment. As a successful interpretation of the 

experiments depended on comparing nucleation rates in different glass samples, 

it was vital that representative sections of homogeneous glass should be 

obtained. 

Each glass was tested by nucleating six to eight samples, taken from 

widely different regions of the glass, at 700°C for one hour, followed by a 

growth treatment at 840°C for a suitable time (usually about 10 mina to 30 

mina). Visual observation of the microstructure in the optical microscope 

enabled quite small differences (about 20-30%) in the number of crystals to 

be detected. If a large variation was found in the number of crystals per 

unit volume measured in different parts of the same glass melt (for example 

a variation by a factor of two), the glass was deemed to be unsatisfactory 

and was remelted. Generally one or two premeltings were sufficient to 

obtain a satisfactory homogeneous glass with only a small variation in 

nucleation density (no more than 20.30% maximum variation). In order to 

standardise melting procedure, all glasses were melted a total of three times. 

5.2 c E)UCAL ANALYSIS OF TEE GLASSES 

A prolonged treatment of sintering, melting and crushing was required 

to prepare the glasses, and this can cause changes in overall composition to 

occur. Estimates of Bao content and the level of impurities were carried 

out on all glasses. 
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5.2.1 Estimates of baria 

Two chips of glass were fractured from different regions and tested 

individually. The glass was ground thoroughly in an agate mortar and 

pestle and the resulting powder dried in an oven and weighed in a platinum 

dish. A small amount of distilled water was added to moisten the powder, 

followed by aliquots of 4C% HF and HC1O4. The SiO2 content combines with 

HF to form the volatile SiF4 (boiling point -90°C), the reaction being 

catalysed by HC104. Remnants of SiF4 were removed on a steam bath and 

HC104 (boiling point 180°C) was fumed on a hot plate. The chemical treat- 

ment was repeated to remove all traces of Si02. The BaO component was 

precipitated as BaS04 by addition of excess concentrated H2S04. All 

remaining liquids were fumed on a hot plate and then evaporated in a 

muffle furnace at 500°C. The precipitate was weighed and T3a0 was calculated 

as BaS04. This method had an accuracy of about ±0.5 mol% BaO at the 

compositions analysed, and all results for each pair of samples were within 

this error. 

5.2.2 Estimate of alumina 

Silica was removed by HF, as preciously described, and the barium- 

rich precipitate dried on a hot plate. This was dissolved in distilled 

water and reprecipitated as BaSO4 on adding H2SO4 . The A1203 and iron 

compounds remained in solution. The mixture was filtered and the residue 

washed. The resulting filtrate was analysed for A1203 content. Excess 

0.01 M EDTA solution was used to complex the aluminium. The pH of the 

solution was adjusted by adding 18N ammonia solution with methyl orange 

as indicator until neutrality was achieved. This was buffered at 5.6 pH 

with ammonium acetate solution. A short boiling treatment ensured that 
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all aluminium was coniplexed with EDTA. Or. cooling, the excess EDTA was 

combined with zinc by titration against a standard O. O1M ZnSO4 solution 

using xylenol orange as indicator. Boiling for two minutes with excess 

NaF released the EDTA combined. with A1203; and this was titrated against 

ZnSO4 solution. The difference between the two titration readings was a 

measure of the A1203 content according to the relation: 

1 ml of 0.01 M EDT; __ 0.0005 g of. A1203 

5.2.3 Estimate of total iron 

mother sample of filtrate was boiled down to 50 mis and poured into 

a 100 ml flask. 5 mis of 254 tartaric acid prevented aluminium from 

complexing with the indicator. The solution was buffered at a pH of 2.9 

as follows: 2-3 drops of p nitrophenol and then O. 88N ammonia solution 

were added until the solution was slightly yellow. On cooling, the pH 

was adjusted with 3N HC1 until the solution was colourless. The transfer 

of ferric to ferrous was achieved by first adding 2 mis of 10% hydroxy- 

ammonium chloride and then complexing with 10 mis of 0.1% orthophenan- 

throline. After standing, a red colour characteristic of the complex was 

developed. The solution was made up to 100 mis and the intensity of its 

colour was measured with an Evans electroselenium colorimeter at a wave- 

length of 510 nm. The iron content was found by contrasting the colour 

absorption with standard solutions of iron. 

The chemical analysis revealed significant changes in the composi- 

tion of the glass during the melting procedure (see Table 5.1). A possible 

explanation for the loss of baria from the original batch composition was 

the tendency of baria-rich glass to sink towards the bottom of the crucible 

during stirring. Since some glass was inevitably left in the crucible after 

pouring, the poured glass tended to be slightly silica-rich. 
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TABLE 5.1 

GLASS COMPOSITIONS 

Nominal Glass General BaO A1203 Total Fe 
Composition Designation Appearance mol% mol% m01% 

mol% BaO of cast rods (Analysed) 

26 26 Opalescent 25.3 . 15 . 030 

28 28 Opalescent 25.7 . 48 . 068 

30 30 Clear 28.5 . 34 . 030 

31 31 Clear 27.4 o2 . 025 

32 32 Clear 30.4 . 19 . 046 

33 33 Clear 28.7 . 03 . 016 

35 35 Clear 34.0 no values 

37 37 Clear 35.4 no values 

The amount of alumina detected in some of the glasses was larger than 

expected. Subsequently, it was found that the crystallization and liquid 

phase separation were affected noticeably by relatively small changes in 

the. alumina impurity levels in the different glasses. It was, therefore, 

important to know the levels accurately to successfully interpret the 

results. It should be noted that the first four glasses to be melted 

(26,28,30,32) contain higher levels of A1203 than the rest. The main 

cause of alumina contamination was probably the sintering stage in the 

mullite crucible. Although great care was taken after sintering to reject 

batch immediately in contact with the mullite crucible, this precaution was 
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not sufficient to exclude all iii unity. However, the contamination problem 

for the last four glasses to he melted (31,33,35,37) was considerably 

reduced by only using sintered batch from the very central zone of the 

crucible for subsequent melting. Sintering in platinum was not a viable 

alternative to sintering in mullite or alumina since the sintering caused 

pitting of the crucible. 

5.3 BEAT TREATMENTS 

5.3.1 Nucleation and growth 

Small slices of glass rods 3 mm in thickness were cut using a 

diamond saw. Samples of each glass were given nucleation treatments at 

appropriate temperatures and times. The heat treatments necessary to grow 

the crystals to sizes that just avoided impingement within reasonable times, 

(10 mina to 1 hour) were carried out at 840°C. It was possible to deter- 

mine when sufficient growth had occurred by noting the point at which the 

appearance of the glass began to change from transparent to translucent. 

This could be ascertained by shining a light through the sample while still 

in the furnace. When the glass started to appear 'frosty' the growth 

treatment was stopped. 

Ideally the glass should not nucleate at the growth temperature. 

In practice it was sometimes necessary to allow for the relatively small 

amount of nucleation occurring at the growth temperature, and also to allow 

for some nucleation which occurred during the initial cooling down of the 

original glass melt and during the subsequent heating up and cooling. A 

correction for the nucleation at the growth temperature (340°C) was made by 

plotting a graph of number of crystals per unit volume (Nv) versus time for 

glass samples heated at 840°C. However, in most cases the nucleation occurr- 

ing at 840°C was negligible compared with that at the first stage nucleation 

treatment. 
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There is also a possibility that nuclei, having exceeded the critical 

size during the nucleation treatment, might redissolve at the growth tempera- 

ture. The error was experimentally determined to be negligible for Li20-SiO2 

glasses(65). This was expected because growth at the nucleation temperature, 

although small, was sufficient for most crystals to exceed the critical size 

at the growth temperature. 

The samples were nucleated in a Kanthal wound tubular furnace con- 

trolled to within ± °C using a Eurotherm temperature controller type 072. 

The gradient in the constant zone varied by less than 1°C over 2 cros. The 

glass samples were positioned in the middle of the constant zone. This was 

achieved by pushing them to a stop inserted at the appropriate place. A 

platinum wound furnace, also controlled by a Eurotherm controller, was used 

to grow the samples. 

The specimens were supported in the furnace in pre-heated mullite 

boats. About three minutes or less elapsed before the samples attained the 

temperature of the furnace, and this was considered negligible when compared 

with the duration of the heat treatments. The temperature was measured with 

a Pt/Pt 13% Rh thermocouple inserted adjacent to the samples, the emf being 

accurately measured by a potentiometer using a mixture of ice and water as 

the cold junction. Continuous monitoring of the temperature was carried out 

on a Cambridge Chart Recorder. 

5.3.2 Liquid-liquid immiscibility temperature measurements 

Small chips of glass were heat treated at a sufficiently high tempera- 

ture to cause opalescence within a reasonable time. They were then reheated 

at a series of higher temperatures. The maximum temperature above which the 

glasses visibly cleared was taken as the immiscibility temperature TT, and 

could be obtained with an accuracy of about t5°C by this method. Electron 
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micrographs of the glasses heat-treated according to the 'clearing' method 

revealed liquid droplets in the opalescent glass and no evidence of separa- 

tion in the transparent glass. 

Some measurements were also carried out by noting the temperature at 

which opalescence first appeared in an initially clear glass. However, this 

'opalescence' method was not considered to be as reliable as the clearing 

method. In general, the 'opalescent' method will tend to underestimate Tm 

due to the very slow kinetics of phase separation at temperatures just below 

the binodal -a finite undercooling being required for detectable nucleation 

to occur. However, droplets redissolve very rapidly at temperatures just 

above Tm and no evidence of phase separation was detected by electron 

microscopy (i. e. the 'clearing' method is expected to give the more accurate 

estimate of Tm). 

For compositions with lower miscibility temperature accurate measure- 

ments of Tm became impossible due to the occurrence of rapid internal 

crystallization (for example glass 32). Thus no liquid phase separation 

could be observed. 

Difficulty was found in measuring Tm for glass 26 because rapid 

crystallization curtailed the time of heat treatment to a period of two or 

three minutes. Temperature equilibrium was not reached in such short times 

and hence the Tm for this glass may have been overestimated. 

S. 4 OPTICAL MICROSCOPY 

After heat treatment each glass sample was ground flat with 220 

carborundum grit and several specimens were mounted together on a glass 

slide with pitch. Grinding was carried out on a lap wheel with successively 

finer carborundum grit (220,440 and 600 grades) and finally polished 

thoroughly on a cerium oxide (cerirouge) felt wheel. 



The glass samples were etched in a 0.2 HC1 0.5 volt HF solution for 

the minimum time consistent with reasonable contrast. Usually ten seconds 

were sufficient to reveal the microstructure in detail. The etching proce- 

dure must necessarily dissolve one phase preferentially and this will 

modify the flatness assumed when calculating nucleation rates. This error 

was found by James 
(65) 

to be negligible in Li2O2SiO2 glass even for a quite 

heavy etch. Moreover, any error introduced by etching will be approximately 

the same for all glasses and the relative values will remain unchanged. 

The microstructure was observed and photographed on a Leitz metallux 

microscope using reflected light. This method was used since a large number 

of crystals per unit volume Nv could be measured (and hence higher nuclea- 

tion rates) than were possible using thin sections in transmission. With 

thin sections the overlapping of crystals more severely limited the maximum 

Nv that could be measured. In certain cases the insertion of a graticule 

in one of the eyepieces permitted the dimensions of any object to be 

directly determined without using photography. 

5.5 ELECTRAN ? NICROSCOPY 

The electron microscope was a powerful tool for examining liquid phase 

separation morphology and early stage crystal development in the glasses. 

Thus thin glass films and carbon-platinum replicas of etched surfaces were 

prepared for detailed observation in the electron microscope. 

The replicas were deposited by evaporation of carbon-platinum on to 

an etched glass surface mounted on a water repellant silicone rubber. The 

angle of shadow was 10°. A porcelain chip partly covered with silicone 

oil provided a method of estimating the thickness of the deposited film. 

A thin replica was preferrable for maximum contrast. The replica was 

separated frr.. n the surface by scoring areas of 1 mn2 and then immersing the 
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glass in HF solution. Specimens of replica were scooped on to a copper 

grid and dried by evaporation. observations of the replicas were carried 

out in an Hitachi HU 11A instrument at 75 W. 

The morphology of phase separation and crystallization were studied 

with replicas. More detailed information of the internal microstructure of 

crystals was obtained when thin films of glass were used. Selected area 

diffraction has been used 
(129) 

to identify the crystals and determine the 

mechanisms of the early stages of crystal growth in Li20--5102 glasses. 

For the purpose of identifying crystals it was necessary to deter- 

mine the camera constant (LX) of the electron microscope. L is the length 

from the objective lens to the SAD pattern and X is the wavelength of the 

electron beam. The following relation was used 

rdaLa 

where r is the distance separating a diffracted spot from the central spot 

and d is the interplanar distance of the planes responsible for the 

diffracted spot. Mo03 crystals of known unit cell dimensions were used to 

calculate LA. It was thus possible to calculate d for any spot on the 

selected area diffraction pattern of any unknown crystal. 
(129) 

James and Kecwn( were able to study the early stages of spheru- 

litic crystallization in a L12O. 2SiO2 glass using a chemical thinning 

technique developed by James and McP¬: illan(230). Although chemical thinning 

was also applied successfully to the partially crystallized Bao-Si02 glasses, 

it was found that somewhat better results were obtained for these glasses 

using ion beam thinning. 

Specimens for ion beam thinning were prepared as follows. A flat 

piece of glass was cut into circular cross sections 3mm in diameter and 

1 mm thick using an ultrasonic drill. These were mounted on a slide with 
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Canada Balsam and both sides ground. with successively finer carborundum 

grit and polished with 6u and 3u diamond dust pads until the thickness had 

been reduced to 20-25u. Dissolution of the Canada Bälsam in methanol 

separated the sample from the slide. The thin section was attached to a 

copper grid with lacomit. 

The final thinning process was carried out in an Edwards IBMA2 ion 

beam thinning apparatus. The sample was bombarded by argon ions using a 

potential difference of 5kV. An ancle of 20° was sufficient to thin the 

sample within a reasonable time limit and yet still retain large areas of 

uniformly thin sample transparent to an electron beam. A Phillips 301 

electron microscope was used to examine and photograph the microstructure. 

5.6 X-RAY DIFFRACTIaN 

The major crystal phases formed when the glasses had been heat 

treated, were identified by conventional X--ray diffraction techniques 

using Cu Ka radiation on a Phillips powder diffractometer. The output was 

in the form of a trace that recorded the intensity of radiation diffracted 

as a function of angle of rotation. The 'd' spacings corresponding to the 

intensity peaks were collated and the identification of phases made with 

the ASTM index. 

5.7 DIFFERENTIAL THERMAL ANALYSIS 

Changes in heat content that are characteristic of glasses when they 

crystallize or undergo relaxation at the glass transformation temperature 

Tg were recorded on a Standata differential thermal analysis (DTA) apparatus. 

The output was in the form of a trace consisting of an endothermic dip 

produced by structural relaxation and an exothermic peak produced by 
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crystallization or crystal transformation. Hence the interpretation of the 

thermograms yielded values of Tg and crystallization or transformation 

temperatures. Figure (5.1) shows how these are obtained from a schematic 

thermogram. 

The DTA compares heat absorption and evolution of a finely divided 

glass powder with a reference standard (AR calcined alumina powder) as a 

function of temperature. The powders were held in two small platinum 

crucibles surrounded by a sintered alumina block. Pt/Pt 13% Rh thermocouples 

measured the temperature of the ceramic block and the differential tpr^e! s- 

ture of the two samples. A platinum wound furnace surrounding the DTA 

'head' was heated at a rate of 10°C per minute using a programmed temera- 

ture controller. 

It must be noted that the dynamic estimate of Tg described above will 

give a higher value (usually about 30°C) than a static determination. 

Static measurements of Tg usually correspond to a temperature where the 

viscosity is 1013 poise. The DTA estimate of Tg determined in this work 

(using a heating rate of 10°C per min) will be referred to as 'DTA Tg'. 

5.8 EXPERIMENTS TO STUDY THE EFFECT OF LIQUID-LIQUID IMMISCIBILITY CN 

CRYSTAL NUCLEATION 

Glasses 33,32,31,30,28 and 26 occupy an interesting area of the 

phase diagram extending from outside the immiscibility zone to regions well 

within the zone. 

Two types of experiments were devised to study the effects of liquid- 

liquid immiscibility on crystal nucleation kinetics. In the first type of 

experiment all the glasses, including those compositions capable of phase 

separating and those which could not, were given heat treatments at a series 

of temperatures from 673°C to 807°C for a constant time (1 hour). Nucleation 



Figure 5.1 Schematic DTA thermogram showing how 

Tg, Tx, Tx', T5e', Ty and Tz were 

determined. 

AT is the difference in temperature 

between the sample and the A1203 
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of the barium disilicate crystalline phase occurred in this temperature 

range. After the nucleation heat treatment, each glass was given a growth 

treatment at 840°C to grow the crystals to observable dimensions for the 

optical microscope. The values of NV were determined and compared for the 

various glasses. The morphology of liquid-liquid immiscibility in the 

glasses given only a crystal nucleation treatment was also studied and 

compared with the nucleation results (the growth stage was omitted in this 

case). 

Interpretation of the results for the first type of experiment was 

subsequently found to be complicated by the presence of small amounts of 

alumina impurity which made direct comparison of the glasses more difficult. 

However, some useful conclusions were obtained as will be described later. 

In the second type of experiment, studies were carried out on single 

compositions (26 and 30) in which the morphology and extent of liquid phase 

separation were varied systematically and the effects on nucleation kinetics 

determined. Thus the problem of alumina contamination was not important. 

Slight opalescence in glass 26 indicated the presence of liquid phase separa- 

tion and some samples were reheated to above Tm and then rapidly quenched 

into silicone oil to remove phase separation. Samples quenched in silicone 

oil and samples rapidly cooled in air were given a crystal nucleation heat 

treatment at 700°C and a growth treatment at 840°C. These were compared 

with samples that had been given heat treatments designed to fully phase 

separate the glasses, followed again by nucleation at 700°C and growth. 

The temperatures and times chosen to induce liquid-liquid immiscibility 

(goo°C 10 mins; 800°C 1 hour) were chosen to satisfy the requirements of 

negligible or very low crystal nucleation rates, since it was desired to 

have negligible crystal nucleation present prior to the main nucleation 

treatment at 700°C. Also, it was necessary for these heat treatments to 

produce microstructures of separation on quite different scales, thus 
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enabling any relation between NV and the phase separation morphology to be 

determined. 

The nucleation times at 700°C were from 0.5 hours to 17 hours. 

As well as taking samples for growth treatment to determine crystal nuclea- 

tion densities Nv for the different times, samples of the glass heated 

only at 700°C (not grown) for identical times were used to study the liquid 

phase separation quantitatively. Carbon replicas were made from these 

samples and photographed in the electron microscope to determine the various 

parameters characterising the phase morphology, i. e. number of particles 

of liquid separation per unit volume Nv, volume fraction of dispersed phase 

Vf and interfacial area Sv. This work was carried out to monitor the 

development of liquid phase separation quantitatively at the same time as 

determining the crystal nucleation kinetics. These experiments were 

designed to a) reveal the consequences of phase separation occurring at the 

same temperature as nucleation, b) to assess whether the morphology of phase 

separation influenced nucleation. 

The experiment described is illustrated schematically in Figure (5.2), 

which shows the relations between the heat treatments at 700°, 8oo°, 900°C 

and the composition of the equilibrium phases that form at each initial 

temperature for an initial composition C. 

The crystal nucleation temperature TN (700°C) was selected to satisfy 

the following requirements: 

a) TN was near the maximum nucleation rate temperatures for the glass. 

in practice, use of this temperature enabled greater accuracy of r'. 
v measure- 

ments to be obtained since almost negligible nucleation occurred during 

heating or cooling compared with the nucleation produced at TN. 

b) Liquid phase separation had to proceed gradually over a period of 

several hours before the coarsening stage began. This criterion was 

necessary in order to sustain over a long period the differences in 



Figure 5.2. Diagram showing relation between 

composition of phases separating from 

a glass of composition C, as a function 

of temperature 
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nucleation behaviour between the initially homogeneous samples and the 

initially phase separated sanmles. On the other hand, if coarsening was 

delayed too long then any changes associated with continued phase separation 

would have involved detera, ining an Nv that exceeded the limits of the 

optical microscopic method (-. 2x 1010 cm-3). The TN of 700°C satisfied 

these conditions. 

The pre-heat treatment temperature TH (used for some of the samples) 

was chosen on the grounds of a) very low or negligible nucleation rate for 

crystals, b) very rapid phase separation, c) non-proximity to Tm the 

immiscibility temperature. For glass 26 the range of temperatures satisfying 

these conditions were wide. However, for glass 30 where Tm was 905°C, for 

temperatures approaching m liquid phase separation occurred on a coarse 

scale with only small changes in composition between the equilibrium phases. 

Two TH temperatures were chosen for experiments on glass 26, but for glass 30 

the low Tm, allowed only one value to be selected (780° C). Each temperature 

of heat treatment for 26 and 30 produced a quite different phase separation 

morphology. This was, of course, intended so that the crystal nucleation 

behaviour of glasses of widely different values of Sv, nv and Vf for 

phase separation could be directly compared. 

In the case of glass 30, pairs of samples of the as-poured glass were 

taken. One of each pair was given a liquid phase separation treatment to 

equilibrium at 780°C for cne hour while the other was given no heat treatment. 

The pairs of samples were then nucleated for crystals at 700°C for a series 

of times ranging from 2 to 60 hours. In this way the nucleation behaviour 

of the initially separated glass could be compared with the as-cooled glass. 

The normal air quenching method was sufficient to suppress phase separation 

and no rapid quenching technique was employed. 

Summarising, the second type of experiment compares the crystal 
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nucleation behaviour of samples of the same glass composition in the 

following initial states: a) a homogeneous sample that had been oil 

quenched (little or no phase separation), b) a very fine scale but incom-" 

pletely separated sample that had been cooled rapidly in air and c), d) 

samples completely phase separated at two different temperatures designed 

to produce a medium and a coarse 'droplet' microstructure. For glass 30 

the crystal nucleation behaviour of the following were compared, a) an air 

cooled initially homogeneous glass and b) a completely phase separated 

glass. 

Control samples were used to estimate the nucleation (if any) during 

the prior heat treatment and growth procedures. 

There are many ways in which liquid phase separation might affect the 

Nv versus time plots for crystal nucleation. Although it is not proposed 

to discuss all of these ways in this chapter, it will be useful to consider 

a few of the possibilities before detailed results are presented later. 

These are represented schematically in Figure (5.3). For simplicity only 

two curves are considered: the as-cooled glass sample and the glass prior 

heat treated to induce initial phase separation. If the curves are coinci 

dental as in a), then phase separation has had no effect on the crystal 

nucleation at temperature TN. The case represented by b) where the curves 

are eventually parallel, is the result of compositional changes being of 

paramount importance. Figure (5.3(c)) illustrates a continual and permanent 

divergence between the curves. This observation would imply that the 

morphology is exerting a considerable influence on crystal nucleation. If, 

for example, crystals nucleated on the surface of the liquid droplets then 

gv, the interfacial area, would be important, and as this factor is different 

for the various glass samples, the overall tendency would be for the glasses 

to nucleate at different rates. 



Figure 5.3 Schematic representation of the effect of 
liquid-liquid immiscibility on crystal 

nucleation 

a) Liquid-liquid immiscibility has no effect 

on crystal nucleation 

b) Liquid-liquid immiscibility affects crystal 

nucleation only by causing compositional 

shifts in the nucleating phase 

c) Crystals prefer to nucleate on interface 
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5.9 MEASUREMENTS OF CRYSTAL GROWTH RTI ES IN PHASE SEPARATED AND NC 1- 

PHASE SEPARATED GLASSES 

In general it was not possible to carry out experiments designed to 

compare the growth rates in phase separated and non-phase separated samples 

of a glass of a given composition, because of the very rapid development of 

liquid-liquid irnniscibility at the temperatures where crystal growth rates 

could be measured conveniently by optical microscopy. An exception was 

glass 30 in a specific temperature zone just below the immiscibility 

boundary. Here the nucleation of phase separation was very slow and samples 

opalesced only if they were given a prior heat treatment at lower 

temperatures. 

From theoretical considerations the Arrhenius plot of In (growth rate) 

versus l/T is expected at high undercoolings below the liquidus temperature, 

to be approximately a straight line with a constant activation enthalpy 

of growth. 

The compositions selected for the growth experiments consisted of 

glasses 26,28,30 and 32. Glasses 26 and 28 had immiscibility temperatures 

T well above the range of temperatures used for crystal growth measurements. 
m 

For glass 32 the Tm was lower than the growth range and for glass 30 the Tm 

was in the middle of the growth range. 

six quenched samples of each glass were heat treated at specified 

temperatures for different periods of time. The temperature range utilised 

for the growth experiments usually extended from about 750°C to 900-950°C. 

At the low temperature end the nucleation rates were high, and due to 

impingement crystals were prevented from growing to sizes convenient for 

measurement in the optical microscope. At the high temperature end measure- 

ments were limited by furnace temperature stabilisation during short growth 

times (< 3 mina). The average of the radii of ten of the largest spherulites 
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was measured and plotted as a function of time. The slope of the graph 

gave the crystal growth rate at the particular temperature. If only a few 

spherulites were available for measurement the experiment was repeated on 

a pre-nucleated glass sample. This ensured that the polished section 

passed through the centres of a reasonable number of the spherulites. 

Thus several of the maximum size spherulite sections could be measured with 

little scatter in the radii values. 

A thin glass sample was ground and polished on both sides and the 

growth of the spherulites was determined using transmitted light. These 

results were entirely in agreement with the method described above using 

surface reflected light. Thus when the microstructure contained many large 

spherulites the techniques described produced satisfactory measurements of 

the crystal growth rate. 

The growth rates calculated according to the largest diameter spheru- 

lites on the polished section, gave more consistent results than those taken 

from the thickness of surface growth. In fact the layer thickness was 

apparently very dependent on the nature of the surface that initiated 

crystal growth. The surface formed by the glass in contact with the steel 

mould during casting was rough and the glass-air interface was usually 

smooth. In addition, the angle that the surface made with the cross-section 

under examination also affected the layer thickness. Since there was no 

accurate control over these factors, it was decided to use the internal 

spherulites when measuring growth rates. 

5.10 EARLY CRYSTAL DEVELOPMENT IN BARIA-SILICA GLASSES 

The techniques of X-ray diffraction, replica and thin film electron 

mjcrosCo y were used to provide additional information on the crystals 

nucleated internally, particularly the morphology of the development and the 
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crystallographic mechanism of the growth processes. 

A particularly high internally nucleating glass containing nominally 

35 molt BaO was prepared. The chemical analysis indicated that the final 

composition was 34.0 molt BaO and was very close to the stoichiometric 

disilicate composition. Thus this glass possessed a very high nucleation 

rate for the BaO2Si02 crystal phase. Heat treatment at 700°C - close to 

the maximum nucleation temperature, was carried out for a series of times 

until crystal impingement occurred (- 160 hours). The samples were slowly 

heated and cooled to prevent stresses from shattering the glass. The time 

of heating and cooling was approximately ten minutes in each case and was 

considered to be negligible compared with the period of heat treatment at 

700°C. The nucleation was so high that a reasonable number of crystals was 

visible in the glass in the electron microscope and the crystal development 

could be traced back to the very early stages. 

5.11 CALCULATION OF THE MORPHOLOGICAL CHARACTERISTICS 

5.11.1 Nucleation measurements 

The crystal nucleation rate was calculated from the slope of the number 

of crystals per unit volume (Nv) versus time (t) plot. The equations derived 

by ru1lman(131)and Dehof£ and Rhines(132,133) were used to calculate Nv 

from micrographs of plane sections of the glass. The particle intersections 

were close to circular in shape ands therefore, the particles were assumed to 

be spherical. 

Pullman's formula is based on the probability of a random plane inter- 

. acting particles of different sizes and shapes. The number of particles 

interesected per unit area NA is related to Nv by the equation: 

NA s NV DV 
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where Dv is the mean perpendicular distance between tangent; planes for 

each particle under consideration. The formula is valid for any particle 

shape and size distribution. Dv can be determined if a function Z is 

introduced so that 

Dvi Zi =C 

where C is a constant defining particle shape but not size and D 
vi 

is 

the average value of Dv for particles in the size interval i. The particle 

number can now be written as 

N 
NA Z 

V C 

Z must be a unit of dimension (length)-1 and is the reciprocal of the 

intersection diameter. For a sphere, C has the value of 2/it and 

N a' VR 

Since 

2ýNZ 
N=i Ai i 

n (5.1) 

The main problem was to evaluate i NAi Zi . This was done by measuring 

the diameters of 300-400 particles on enlarged prints from optical micro- 

graphs to within 0.25 mm using an accurately calibrated graticule. All the 

particles were consigned to one of ten or more groups depending on their 

Zi iNF1iZi 
ýN 
i Ai 

211 
Az 

size. The value of NAi Zi was calculated for each group and then summed. 

A sample calculation is given in Appendix (5.1). 



The interpretation of the results required the careful comparison of 

nucleation rates between glasses of different compositions and identical 

glasses subjected to varying thermal histories. The errors probably arise 

from two main sources: the random sampling error (purely statistical in 

nature), and errors due to small compositional variations in the glass from 

one region to another. The latter could, for example, cause small systematic 

variations in the number of crystals nucleated in the glass in different 

regions. It was possible to assess the total effect of these sources of 

errors by analysing the results from different areas of the same glass 

sample. Appendix (5.2) shows that a count of 300-400 particles gave Nv 

with 95% confidence limits of about t15%. 

For the crystal growth measurements the best values of the slopes of 

loglo(growth rate) versus 1/(T°K) and crystal thickness versus time were 

obtained by the method of least squares. A sample calculation is given in 

Appendix (5.5). 

5.11.2 Determination of stereological parameters for the phase separated 

glasses 

The volume fraction can be used to characterise the stage of develop- 

ment of liquid-liquid immiscibility. According to other workers 
(84) 

the 

volume fraction in phase separated glasses varies sigmoidally with time 

until a constant value is attained. At this stage phase separation is 

complete and coarsening commences. 

A convenient property of a system containing a large number of phase 

particles is that the volume fraction of the phase constituting the particles 

is equal to the area fraction of the phase on any plane provided that the 

depth of etch is not great(133,134). The area fraction was estimated by 

determining the fractional number of points in an array that fell within 



the boundaries of the dispersed phase. The points were distributed at the 

corners of a square lattice. This method provided a more accurate result 

for a given number of counts than any other method of area or linear point 

counting. The optimum density of points corresponded to approximately one 

point for each particle. Two sets of four lines were inscribed on a sheet 

of perspex at right angles to each other at a suitable distance apart. 

The intersection of the lines provided a sixteen point grid which was 

applied randomly to the micrographs. The proportion of the points lying 

in one phase was the volume fraction Vf of that phase. A point falling 

within the dark boundary surrounding each particle was considered to belong 

equally to either phase and counted as one half. After the completion of 

a few trials the mean value of Vf was substituted into the equation: 

P-ä [Vf(1 - Vf)] (5.2) 

where P is the total number of points needed to attain 95% confidence 

limits within an error of ±10% of the mean value and v is the appropriate 

standard deviation of the normally distributed Vf values. The point 

counting process was continued for P/16 times and the average value of Vf 

was computed. An example of the calculations is given in Appendix (5.3) 

and shows that sixty trials on a phase separated structure with a volume 

fraction of about 30% gives 95% confidence limits within ±10%. 

The surface areas of internal boundaries were calculated by the smith 
(133,135) 

and Guttman method . The interfacial area of the dispersed phase 

per unit volume sv is given in terms of the number of intersections per 

unit length of a test line with the interface NL by 

Sv -2 NL (5.3) 
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A straight line of 10 cm length was scored on a thin perspex sheet 

and placed randomly across the print of the microstructure. From the 

number of intersections per unit length, Sv was calculated. 

in the case of two particles that apparently coalesced the convergence 

of the dark outline was assumed to indicate a close approach but not a 

contact between the two particles. The disappearance of the outline was 

taken to represent a true joining together of the droplets. 

About 40 trials were required to obtain SV with 95% confidence limits 

within ±8% of the mean. An example of the calculation of SV and the 95% 

confidence limits is supplied in Appendix (5.4). 
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6.1 CRYSTA:, ';.. LLATION AND LIQUID- I-WID IMMISCIBILITY IN GLASSES 

(33,32,31,30,28,26) - EXP? P. TMNT 1 

6.1.1 Crystal nucleation results 

Samples of glasses 33,32,31,30,28 and 26 were nucleated over a 

temperature range from 650°C to 807°C for one hour and given a growth 

treatment at 840°C or 902°C for a suitable time. The nucleation results, 

expressed as the number of crystals per cm3, are given in Table (6.1). 

The letters below each entry symbolise the visual appearance of the 

glass samples after a nucleation. For instance, C denotes that the glass 

was clear, SO slightly opalescent, VO very opalescent. 

Plots of log10Nv versus temperature are shown in Figures (6.1) and 

(6.2). For clarity the glasses are subdivided into two groups: 1) 26,31, 

32,33 with an alumina content less than 0.2 mol%, and 2) 30,28 with an 

alumina content greater than 0.2 mol%. The results labelled 35G are extra- 

(18) 
polated from data supplied by Rowlands for a glass containing nominally 

331/3 mol% BaO. This data (Table (6.2)) dives the number of crystals formed 

after one hour of heat treatment as a function of temperature. The- Ba02SiO2 

(35G) results, as given by Rowlands, were in the form of an Nv (number of 

crystals) versus time (t) plot for each temperature. At high temperatures 

the Nv versus time plot was linear and data could be easily extrapolated. 

However, at lower temperatures, where induction times were considerable, the 

plot was no longer linear, and estimation of values by extrapolation was 

less reliable. 

The nucleation results for glasses 26 to 33 are more dispersed at the 

low temperature end (see Figures (6.1) and (6.2)). For example, the gap of 

nearly 1.5 orders of magnitude at 693°C that;; , -ns the results for glasses 

26,31 and 32 is reduced to 0.5 orders at 773°C. Similar observations can 

be made for glasses 30 and 28. It should also be noted that there is a 



Figure 6.1 Plot of log10 Nv (cm-3) versus temperature 

(°C) for glasses containing less than 

0.2 mol% A1203(i. e. glasses 26,31,32 and 
33) 
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Figure 6.2 Plot of log10 Nv (cm'3) versus temperature 

(°C) for glasses containing more than 

0.2 mol% A1203 (i. e. glasses 28 and 30) 
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TABLE 6.1 

NUMBER OF CRYSTALS (N ) cm-3 IN GLASSES 26,28,30,31,32 

AND 33 AFTER A NUCLEATION TREATMENT OF ONE HOUR 

AS A FUNCTION OF TENPERATURE 

Nucleation Glass 
Temperature 

0C 26 28 30 31 32 33 

650 7.91 x 103 negligible 2.57 x 104 1.37 x 104 9.95 x. 104 7.80 x 104 

CCCCCC 

673 4.44 x 104 1.58 x 103 1.70 x 105 8.42 x 105 4.78 106 8.15 x 105 

CCCCCC 

693 

709 

721 

745 

773 

6.61 x 106 7.69 x 105 8.57 x 106 5.80 x 107 1.28 x 108 1.38 x 108 

CCCCCC 

4.13 x 107 1.70 x 107 2.28 x 107 1.38 x 108 3.24 x 108 2.53 x 108 

CCCCCC 

1.02 x 1o8 1.21 x 107 3.00 x 107 1.87 x 109 2.90 x 108 2.92 x 108 

CCCCCC 

4.91 x 107 6.37 x 106 6.34 x 106 1.67 x 108 9.48 x 107 6.45 x 107 

CCCCC SO 

7.21 x 106 4.47 x 105 4.19 x 105 1.38 x 107 8.52 x 106 4.68 x 106 

CC00C0 

807 1.11 x 105 5.86 x 103 4.12 x 104 2.81 x 105 na 2.21 x 105 

00 VO VO CC 

na , not available 

TäF}L8 6.2 

Ht*=R OF CRYSTALS (Nim) cm- 3 P+ORMED IN BaO2SiO2 GLASS (35G) 

AT ONE HOUR (EXTRAPOLATED FROM DATA GIVEN IN REF. 18) 

Temperature °C 660 680 700 715 

Ný-3 5.89 x 107 8.32 x 108 5.89 x 109 4.79 x 109 v 

1yeperature °C 729 740 748 760 780 

biVcan3 3.16x109 2,09x109 1.20x109 7.59x108 9.33x107 
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constant dif: srence (about an order of magnitude) in the number of crystals 

nucleated in glasses 32 and 35G over a temperature range 693 to 773°C 

(i. e. the nucleation curves for these two glasses do not converge at high 

temperatures) . 

Figure (6.3) compares visually the number of crystals nucleated at one 

hour for glasses 26 and 32 at 709,721,745,773°C. 

6.1.2 The DTA results 

The values of 'DTA Tg', Tx, Tx', Tx"', Ty and Tz (see Figure 5.1) 

are given in Table (6.3). 

The crystallization peak X does not show any systematic variation 

between the glass compositions. This shows that the crystallization peaks 

are mainly influenced by the growth rates since the nucleation rates vary 

between the glasses. 

The origin of the peaks Y and Z was not investigated. However, it 

should be noted that Z is absent in 35 and becomes increasingly prominent 

with silica content. Thus it is likely that Z identifies precipitation of 

cristobalite. Also, the position of Y is almost identical to the spherulite- 

lath transformation reported by Rowlands 
(18) 

The glass transformation temperature is generally considered to 

correspond to a constant viscosity value. (1013 poise, although the DTA Tg 

corresponds to a somewhat lower value than this). If the Stokes-Einstein 

relation is valid for crystal growth (Chapter 3), the kinetic term involving 

AGD in the crystal growth equation should be proportional to 1/viscosity. 

Now, at large aupercoolings the crystal growth rates are controlled by 

the kinetic term (Chapter 3). Thus growth rates might be expected to depend 

on the value of Tg for similar composition* higher Tg values indicating 

lower growth rates at a given temperature and vice versa. 



Figure 6.3 Optical micrographs from experiment 1 

(two pages) comparing nucleation behaviour of glasses 

32 and 26. 

This page: 

Top left: glass 32 nucleated 709°C for 1 hour 

Mag x240 
Top right: glass 26 nucleated 709°C for 1 hour 

Mag x240 
Bottom glass 32 nucleated 721°C for 1 hour 
left: 

Mag x240 

Bottom glass 26 nucleated 721°C for 1 hour 
right: Mag x240 

Second page: 

Top left: glass 32 nucleated 745°C for 1 hour 

Mag x240 

Top right: glass 26 nucleated 745°C for 1 hour 

Mag x240 

Bottom glass 32 nucleated 773°C for 1 hour 
left: 

Mag x120 
Bottom glass 26 nucleated 773°C for 1 hour 
right: 

Mag x120 
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TABLE 6.3 

DTA DATA FOR BiRIA-SILICA LASSES 

Glass Analysed Heat Tg T T' T" TT 
Designation BaO content Treatment °C CC °C C °C 

35 34.0 as poured 691 833 861 887 1001 acne 

33 28.7 as poured 691 834 862 937 1046 1179 

32 30.4 as poured 694 847 877 893 1032 none 

31 27.4 as poured 691 835 862 902 1021 na 

30 28.5 as poured 683 853 883 931 1017 na 

30 28.5 as poured 683 na 864 933 1033 1079 

and phase 

separated 

780°C 1 hr 

28 25.7 as poured 684 853 866 938 1031 1075 

26 25.3 as poured 690 840 870 913 1014 na 

26 25.3 as poured 681 838 869 914 1023 1161 

and phase 

800°C 1 hr 

na, not available 

From the results (Table (6.3)) there is no systematic variation in 

UM Tg for the glasses for an overall variation in Bao content from 25 to 

34 mol%. Also the maximum variation in DTA Tg observed is only 10°C. Since 

phase separation will not have time to take place during the DTA run at 

temperatures below Tg, the values listed should correspond to the 'as- 

poured' non-phase separated glasses. We will refer again to these results 

in Section (6.4) when discussing the causes of change in the nucleation 

behaviour. 



6.1.3 Ligtzj_cJ-l squid immiscibility results 

The location of the actual glass compositions relative to the liquid 

immiscibility dome is shown in Figure (6.4). The numbers along the base 

of the figure refer to the glasses (26,28,30,31,32 and 33) positioned 

at the v. zpropriate compositions. The solid curve delineates the boundary 

of liquid immiscibility and is calculated from the equations (2.5) derived 

by Haller et a1(28). 

The experimentally determined immiscibility temperatures for the 

present work are given in Table (6.4) and plotted in Figure (6.4) as squares 

if the glass contained very low quantities of A1203(26,31,32,33), or 

triangles for slightly higher A1203 containing glasses (28 and 30). 

The six glasses (26 - 33) are within the immiscibility dome at some 

of the nucleation temperatures while 35G, melted by Rowlands, is outside. 

In the case of glass 32, T 
M was theoretically determined to be 760°c. Howevez 

no trace of liquid immiscibility could he detected below 760°C. This 

glass is an example of the phenomenon mentioned earlier, whereby crystalliza- 

tion occurs before liquid immiscibility. The driving force for liquid phase 

separation is so small at temperatures between Tg and 760°C that liquid 

unmixing is extremely slow. 

Carbon replicas of freshly etched glass surfaces were examined in the 

electron microscope. Micrographs of the phase separation morphology of 

glasses 26 and 31 nucleated at temperatures 773,745,721 and 709°C are 

shows, in Figure (6.5). A brief description of the morphology of liquid 

phase separation for each glass after a crystal nucleation treatment of one 

hour at temperatures 807,773,745,721,709°C is given in Table (6.5). 

Glasses 26 and 28 were shown to have phase separated in the as-cast state 

although little or no trace of opalescence was present. 

The slight scattering that produces the characteristic milkiness is 

dependent on the size of the droplets and the refractive indices of the 



Figure 6.4 The immiscibility dome of baria-silica 

glasses calculated from the equations of 

Haller et al(2$). Also included are the 

experimentally determined immiscibility 

temperatures for glasses 33,31,30,28 

and 26. The symbols along the base of the 

figure represent the following glasses: 

a (35G), b (32), c (33), d (30), e (31), 

f (28), g (26) 
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Figure 6.5 Electron. micrographs of phase separation 

(two pages) morphology of glasses 31 and 26 in 

experiment 1. 

This page: 
Top left- glass 31, air quenched. 

Mag x 46000 

Top right; glass 26, air quenched 

iag x79000 

Bottom glass 31, heated 722°C, 1 hour 
left: 

t.; ag x460u0 
Bottom glass 26, heated 722°C, 

_1 
Dour 

right: Mag x 46000 

Second page: 
Top left: class 31, heated 745°C, 1 hour 

Nag x 46000 

Top right: glass 26, heated 745°C, 1 hour 

i lag x46000 

Bottom glass 31, heated 773°C, 1 hour 
left: 

Mag x46000 

Bottom glass 26, heated. 773°C, 1 hour 

right- Mag x46000 







TABLE 6.4 

IMMISCIBILITY DATx:. OF BARIA-SILICA GLASSES 

Glass Experimentally determined Theoretically calculated 
T °C T (using equations of 
m Waller et al(28))°C 

33 890 890 

32 No immiscibility detected 760 

31 1010 960 

30 905 900 

28 1070 1050 

26 1140 1070 

TABLE 6.5 

DESCRIPTICN OF PHASE SEPARATIO*? MORPHOLOGY OF FIVE 

GLASSES HEAT TIMATED FOR ONE HOUR AT SEVERAL TEMPERATURES 

(FROM ELECTRON MICROSOOPE REPLICAS) 

Glass 

Temp 'C 26 28 
807 overlapping discrete as 28 

31 32 

particles, particles particles 

773 `' discrete 
particles 

745 to it it ei 11 

discrete no structure no structure, 

721 is 11 " no structure 

709 it 

n, ýý 
As cast 

no struc- 
ture 

of 

of is 

33 

It 

no structure N it 



two phases present. Certain glasses when quenched from the melt do not have 

sufficient time to phase separate fully during the brief time that the 

temperature exceeds Tg (i. e. the volume fraction and phase compositions 

have not reached equilibrium). This was the case for 26 as later results 

will show and probably also for 28. Thus the separation was on a very fine 

scale and in addition the separated phases were probably quite close in 

composition (and hence refractive index), so that there was no visible 

opalescence in the rapidly quenched samples. 

In some of the other glasses the rate of liquid unmixing was suffi- 

ciently slow for the homogeneous (i. e. nor. phase separated) structure to be 

'frozen-in', when using normal air quenches. Thus glasses 30 and 31 phase 

separated readily on heating but showed no evidence of liquid immiscibility 

in the quenched state. 

The experimental determination of Tm for glass 33 yielded a value of 

890°C. However, no liquid immiscibility could be detected for this glass 

when heated at 807°C for one hour, whereas at lower temperatures (e. g. 773- 

745°C) the occurrence of phase separation was obvious. It is likely that 

at 807°C the thermodynamic driving force for immiscibility (which will be 

referred to as Ag) was insufficient to produce classical nucleation of phase 

droplets after only one hour, whereas at lower temperature nucleation became 

more rapid. 

Burnett and Douglas 
(84) 

also reported the existence of a similar 

temperature gap for a Na20-CaO-SiO2 glass where liquid immiscibility could 

not be induced to occur. In their case Tm was about 690°C and phase separa- 

tion was observed over a temperature range 580-670°C. 

In general, it was found that for the compositions studied, the greater 

the silica content of the glasE; the more rapidly nucleation of liquid phase 

droplets occurred at any given temperature. Glass 31, for example, was 
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observed to nucleate liquid phase droplets at 709°C, whereas for 33 there 

was no evidence of liquid droplets after one hour at temperatures below 

745°C (Table 6.5). This is probably due to the increased driving force for 

nucleation of liquid immiscibility (Og) in the silica-rich glasses which is 

illustrated in Figure (6.6). At temperature T (say 700°C) the composition 

of the separated liquid phases is E and H. The driving force inducing 

liquid immiscibility is least for glass 32 (equal to Ag1) but increases for 

glasses nearer the spinodal. According to Haller et al 
(28) 

and Seward et 

al(Z4) the spinodal at 700°C is 24 mol% BaO. The composition of glass 26 

lies just outside the spinodal (see S in Figure 6.6)). Hence glass 26 has 

the greatest driving force which indicates a higher nucleation rate of 

silica rich droplets on the basis of the classical theory. 

This is a somewhat oversimplified picture since we have assumed that 

the equilibrium silica-rich phase precipitates initially according to 

classical theory. Strictly we should consider the more comprehensive theory 

(50 , due to Cahn and Hilliard 51). However, the above picture is sufficient 

for present purposes. 

6.1.4 General discussion of the influences of liquid-liquid immiscibility 

on crystal nucleation kinetics 

Before discussing the results of experiment I in detail let us 

consider the possible effects of liquid-liquid immiscibility on crystal 

nucleation. 

Uhlmann(9) has described four ways that liquid phase separation can 

influence nucleation rates (see Section 4.2). Considering point (a), 

Figure (6.7) illustrates schematically how AG for crystallization depends 

on whether liquid immiscibility occurs for a system A-B similar to BaO2SiO2- 

5102. Nucleation of phase A, which is very sensitive to the driving force, 



Figure 6.6 Schematic free energy diagram of liquid 

in the S102-BaO2SiO2 system at an 

arbitrary temperature 
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Figure 6.7 a) Schematic phase diagram for a system 

similar to Ba02Sio2-S'02: 

....... unstable liquidus of A 

"-"-"-"- metastable liquidus of A 

b) Free energy diagram for a system similar 

to BaO2SiO2-SiO2 at temperature T, 

c) Diagram illustrating thermodynamic driving 

force (AG) as a function of composition for 

a system similar to BaO2SiO2-SiO2 at 

temperature T. The solid line between a, b, 

c denotes DG for a non-phase separated glass. 

The dot dash line between a, b, c represents 

AG for a phase separated glass. 
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will be enhanced by liquid phase separation between a and b but retarded 

between c and b. 

The interface between the two liquids might act as a heterogeneous 

nucleating site for the crystals (point b). This mechanism will be effective 

only if the crystals can form a low energy interface with one of the liquids. 

Effective heterogeneous action by liquid-liquid interfaces is not likely 

to be significant in BaO-SiO glasses. This can be demonstrated as follows. 

The thermodynamic barrier for heterogeneous nucleation Whet is related 

to the homogeneous nucleation thermodynamic barrier Whom by the relation: 

Whet homo f (s) 

Thus f(9) is a measure of the potency of the nucleation catalyst and for the 

case illustrated in Figure (6.8): 

COS© s 
aMy aßY 

a010 

Consider in (Figure 6.8) the nucleation of a spherical cap of crystall- 

ine BaO2SiO2(ß) on a droplet of silica rich phase (y) in a matrix of baria 

rich phase (a). For simplicity assume that y is pure 5102 liquid and a is 

pure Ba02SiO2 liquid. From Rowlands 
(18) 

auß - 132 ergs cm-2 and probably 

ad6 < Qßß, Also Hammel's work on the Na2O-CaO-SiO2 system suggests that the 

interfacial energy between liquid phases is likely to be small compared with 

that between crystal and liquid phases (less than 5 ergs cm`2), i. e. 

(I aY 
« 6ßY" Thus nose will be approximately -1 and f (e) - +1 and whet -. 

omo, 
i. e. the heterogeneous mechanism is not significant. h 

In other glass forming systems examples are known of crystals growing 

on the interfaces of droplets. However, Tomozawa 
(121) 

comments that after a 

long nucleation treatment the interfaces may migrate considerably away from 



Figure 6.8 Diagram of a crystal (ß) nucleating on 

an interface separating two liquids 

(a and y) 





the crystals they initiated and thus the relation between heterogeneously 

nucleated crystals and the interfaces may become difficult to detect. 

One way of solving the difficulty of determining the relation between 

crystal nucleation and phase separation morphology is to plot the nucleation 

rates as a function of a parameter that defines the scale of phase separa- 

tion, such as nv, Sv or Vf. In the present case (experiment 1) it was not 

possible to analyse the results in this way because we only have one nuclea- 

tion value at one time for a specific temperature, and any non-linear effects 

similar to the transient time lag phenomena in phase separation and crystal 

nucleation kinetics, may be present and complicate the analysis. However, in 

the later experiments to be described, where heat treatments were carried 

out at one temperature for a series of times, it was possible to examine the 

effects of interfacial areas on crystal nucleation. 

A factor that Uhlmann(9) neglected to mention was the variation of 

crystal-liquid surface energy with composition. Surface energy values are 

(available 
only for one composition in the BaO-SiO2 system, i. e. BaO2SiO218). 

However it is reasonable to suppose that the surface energy between the 

liquid and primary phase is at a minimum at the stoichiometric composition of 

this phase and increases as other components are added. This is suggested 

by some data in the Li20-Bao-S102 system(18) Thus it can be tentatively 

assumed that the surface energy between Ba02SiO2 and liquid is at a minimum 

(132 ergs CM-2) at the composition 331/3 mole% Sao and increases with silica 

content. The nucleation rate is partly governed by the surface energy and 

irrespective of driving force considerations the nucleation rate of BaO2Si02 

should decrease with addition of SiO2, Liquid immiscibility can stimulate 

crystal nucleation by producing a phase near the Ba02SiO2 composition with 

Mailer interfacial energy with the crystal. 

By considering surface energy and AG variations with Composition, it 

can be seen that the occurrence of liquid phase separation will probably 
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stimulate crystal nucleation by shifting the composition of the matrix phase 

nearer to Ba02SiO2. 

The shift of composition of the matrix phase due to phase separation 

may also affects thE'kinetic barrier to crystal nucleation AG 
ly which is 

related to the mobilities of the atomic species involved in nucleation 

(mechanism c), p. 43. According to ? Jhlmann(9) this is likely to be of para- 

mount importance in affecting crystal nucleation. 

In the BaO-SiO2 system phase separation results in a matrix phase 

richer in baria with a lower viscosity and probably of more rapid mobility 
(136) 

Hence this would also result in more rapid crystal nucleation. 

Mechanism d) mentioned above involves the diffusion of impurities to 

the interfaces. 

Scholes(137) has described how a sparingly soluble component in a 

complex glass may concentrate at the interface and eventually precipitate as 

heterogeneous nuclei for bulk crystallization. In practice this mechanism 

will not function if rapid diffusion of impurities away from the interface 

occurs before nucleation can occur. 

Also, impurities concentrating at the interface could modify locally 

AG and a for homogeneous nucleation. In many cases this would result in a 

decrease in nucleation in these regions and since the remainder of the matrix 

would exhibit higher nucleation kinetics, the overall effect would be small 

and difficult to detect. Also, if an increase in nucleation occurred in these 

regions, the effect would have to be very large for the overall effect to be 

detectable. 

In other cases the concentration of impurities at the interface could 

locally decrease viscosity and t; ms encourage crystal nucleation of the 
(122) 

major phase. Matusita and Tashiro for example, attributed their results 

to this effect. 

A1so, the existence of compositional gradients around the small liquid 
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droplets (of the major components, not impurities) may cause AG and a to be 

altered locally in the zone around the interface. Thus a local smaller 

proportion of silica around the growing silica-rich droplets undergoing 

diffusion controlled growth might give, in the case of the BaO-Si02 system, 

a locally higher AG (in the depleted zone)and a lower cr, thereby enhancing the 

crystal nucleation kinetics. 

There is also the possibility of heterogeneous nucleation occurring in 

the 'depleted zone' around the droplets, as suggested by Tomozawa(121) and 

discussed in Chapter 4. 

Thus we have three mechanisms associated with interfaces that could 

enhance or inhibit nucleation. 

i) The heterogeneous catalysing mechanism at the interface 

itself (mechanism b), p. 43. This ussuýcs the existence 

of a 'sharp' interface as distinct from iii) below. 

ii) Diffusion of impurities or surface active agents to the 

boundaries between liquid phases, causing local changes 

in AG and a for homogeneous crystal nucleation or preci- 

pitating as heterogeneous nuclei. 

iii) The existence of compositional gradients of the main 

components in the glass around small liquid droplets, 

again causing local changes in AG or a for homogeneous 

crystal nucleation, or promoting heterogeneous nucleation. 

In practice it would be difficult to distinguish between these mech- 

anisms since the dependence of crystal nucleation rate on the phase mor- 

phology would in all cases be similar. In particular, a large interfacial 

area Sv and number of droplets nv would be in all cases very important, as 

present, for example, in the early stages of phase separation when the scale 

of separation is very fine. Since both Sv and nv decrease progressively 

with time at a given temperature due to Ostwald ripening all these mechanisms 
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would become less potent as time increases. 

In addition, if the crystal nuclei formed preferentially near the 

interface they would need to form rapidly and grow rapidly to avoid being 

overtaken and absorbed by the growing liquid droplet. Thus in cases where 

crystal growth is not particularly rapid compared with droplet growth, the 

'interface' mechanisms are not expected to be effective. 

6.1.5 Further discussion of results for Experiment 1 

Schematic nucleation curves for two glasses of different BaO contents, 

both of which phase separate in the range of temperatures used for crystal 

nucleation, we illustrated in Figure (6.9). A) represents a situation where 

interfaces nucleate crystals. The values of Nv will partly reflect the 

values of Sv for each glass. The interfacial areas will depend on the Vf 

and the nucleation rate of the liquid immiscibility, so glasses containing 

the most silica would be expected to have the highest Sv and consequently 

the highest Nv. It is assumed in Figure (6.9A) that phase separation 

occurs more rapidly at higher temperature so that the curves would diverge 

as shown. 

In Figure (6.9B) the interfaces do not nucleate crystals significantly. 

After immiscibility the crystals nucleate in a phase of the same composition 

for both glasses and the curves are expected to converge at higher temper- 

ature. At the lower temperatures, particularly below the maximum in 

crystal nucleation rate, liquid phase separation would be slower or would 

not occur at all after one hour, and the nucleation curves for the different 

glasses would be expected to show more pronounced differences due to their 

different compositions. The same behaviour at lower temperatures would be 

also expected for Figure (6.9A) if phase separation does not occur 

appreciably. In this case 'cross-over' of the curves might occur as shown. 



Figure 6.9 Schematic representation of Nv (number of 

crystals) versus temperature curves of two 

glasses (Y and Z) containing different 

quantities of baria. Both Y and Z phase 

separate at high temperatures, however, 

Y contains more baria than Z. 
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Thus at the lower temperatures the glasses higher in silica have a 

smaller DG (driving force for crystal nucleation) and probably have a larger 

a and smaller diffusion rates, leading to smaller crystal nucleation rates. 

On this basis at lower temperatures the compositions studied can be tenta- 

tively arranged in order of decreasing nucleation rate (and increasing 

silica content) as follows: 32,33,30,31,28 and 26. From Figure (6.1) 

and (6.2) the observed order is 32 and 33 (close together), 31,30,26 and 

28, which is in fairly close agreement. The deviations from exact agreement 

are probably due to the small levels of alumina impurity affecting the 

nucleation rates. Methods of compensating for the impurity are described 

later. 

If it is assumed that interfaces heterogeneously nucleate crystals, 

then it is interesting to derive how the nucleation curves might diverge. 

It has already been indicated that the interfacial area and the number of 

droplets are greater for glasses whose compositions are deeper within the 

liquid immiscibility dome. In general, for the same heat treatment, glasses 

that are well within the immiscibility dome will tend to have a higher volume 

fraction, a more connected microstructure and probably a larger interfacial 

area per unit volume Sq as was in fact qualitatively observed on the electron 

microscope replicas (see also section (6.2.2) and (6.3.2). On this basis 

glass 26 would nucleate crystals the most readily, followed by 31,33 then 

32. Also, of the two glasses higher in alumina impurity, 28 might be expected 

to have the higher nucleation rate since the composition of this glass is 

further inside the immiscibility dome than glass 30 (but both glasses have 

similar alumina impurity levels). 

From Figures (6.1) and (6.2) at the high temperatures where phase sep- 

aration occurred the order, in decreasing number of nuclei, was 31 followed 

by 32 and then the other glasses (33, and 26), which were approximately 
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coincidental. For the two glasses higher in alumina impurity, 30 was 

followed by 28. Thus it can be concluded that interfacial areas do not 

effectively nucleate crystals. 

In the case of glasses that do not phase separate (32 and 35G), no 

marked convergence would be expected at higher temperatures and in fact 

this was observed. 

Thus, in general, good agreement was obtained between the present 

results and the predictions based on the theory represented schematically 

by B in Figure (6.9). Nevertheless, the curves for the glasses that phase 

separate do not coincide as closely as might be expected at higher tempera- 

tures. Reasons for this behaviour are now examined. 

One correction must be made to the nucleation densities for the fact 

that the values refer to a unit volume of the glass (whether phase separated 

or not), whereas the values should refer to a unit volume of the baria-rich 

phase in which nucleation is assumed to occur. Hence each value of Nv must 

be multiplied by the reciprocal of the volume fraction of the baria-rich 

(major) phase. The volume fractions of the phases were calculated at 745, 

773 and 807°C for each glass assuming that the immiscibility dome predicted 

from the equation given by Haller et al 
(28) 

was correct. The mole fractions 

obtained by the Lever Rule from the molar phase diagram were converted into 

weight fractions and then volume fractions using the density data of BaO-SiO2 

(l6) 
glasses supplied by MacDowell. The new results are shown in Table (6.6) 

for these three temperatures, where liquid phase separation was most likely 

to be complete in a very short time. However, this correction made only a 

relatively small difference to the values as plotted in Figure (6.2) and 

(6.1) and no significant relative changes in the curves. 
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TABLE 6.6 

NUCLEATION RESULTS CORRECTED FOR VOLUME FRACTION 

OF PHASE SEPARATION N cm -3 

Temperature °C 745 773 807 

Glass 33 6.93 x 107 4.97 x 106 2.31 x 105 

32 9.48 x 107 8.52 x 106 not available 

31 1.89 x 108 1.54 x 107 3.10 x 105 

30 6.86 x 106 4.49 x 105 4.35 x 104 

28 7.78 x 106 5.36 x 105 6.93 x 103 

26 6.09 x 107 8.84 Y. 106 1.34 x 105 

TABLE 6.7 

NUCLEATION RESULTS CORRECTED FOR EFFECT OF ALUMINA 

ON VOLUME FRACTION OF PHASE SEPARATION N Cm-3 
--V 

Temperature °C 745 773 807 

Glass 31 1.95 x 108 1.59 x 107 3.21 x 105 

28 7.87 x 106 5.46 x 105 7.06 x 103 
26 6.46 x 107 9.39 x 106 1.43 x 105 

Glass 32 shows no immiscibility, glasses 33 and 30 coincide with 

immiscibility boundary calculated using the equations derived by 

Haller et al(28), and thus the values are identical in these three 

glasses to values in Table (6.6). 



An important factor which could cause additional variation to occur 

in Nv between glasses is the A1203 impurity level. This is apart from any 

differences due to the phase separation itself. Alumina may have two 

possible effects: 1) it can depress crystal nucleation directly, for 

example, by lowering LG, 2) alumira can have an indirect effect by depressing 

the immiscibility temperature Tm, (i. e. lowering the tendency to phase 

separate and hence reducing the volume fraction of silica-rich phase). The 

composition of the baria-rich phase shifts away from Ba02SiO2, and thus the 

nucleation rate of this phase will probably fall slightly. Some attempt to 

calculate the latter effect was made for the present results. The volume 

fractions were calculated for the baria"rich phase by drawing curves that 

passed through the experimentally determined immiscibility temperatures and 

were parallel to the overall curve plotted in Figure (6.4). This procedure 

produced little change in the values of Nv, showing that the ccrrection was 

a small one (see Table (6.7)). 

To check the direct effect alumina can exert on the nucleation kine- 

tics, a Ba02SiO2 glass containing 1 mol% alumina (henceforth called ABS2) 

was prepared. Figure (6.10) and Table (6.8) show the extent that one mol% 

A1203 can depress nucleation in a BaO2SiO2 glass. This figure and the 

analysed A1203 contents of the glasses were used to estimate the depression 

of the nucleation due to the alumina impurity and thus to 'correct' the 

results. The following equation was employed for this purposes 

ln 11 = In 12 +B YA (6.1) 

*here B is a constant for a given temperature, YA is the mole fraction of 

A1203" 12 is the nucleation rate in a glass containing A1203 , it is the 

nucleation rate in a glass of the same Bap-SiO2 ratio but containing no 

A1203" The Nv values for a given time can be employed instead of 11 and 12 



Figure 6.10 Effect of one mol% A1203 on the nucleation 

behaviour of Ba02SiO2 
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TABLE 6.8 

NUCLEATION RESULTS CORRECTED FOR EFFECT OF ALUMINA ON 

NUCLEATION KINETICS (USING EQUATION (6.1)) 1og10 (cm 3) 

Glass 

Temperature °C 32 33 30 31 28 26 

807 na 5.41 5.30 5.49 4.76 5.36 

773 7.36 6.74 6.32 7.19 6.63 7.16 

745 8.41 . 7.86 7.50 8.27 7.78 7.98 

721 8.88 8.51 8.17 8.32 8.06 8.31 

709 8.93 8.46 8.05 8.19 8.21 7.93 

693 8.53 8.21 7.62 7.79 6.86 7.13 

673 7.21 5.96 5.92 5.97 4.18 4.96 

650 5.43 4.96 5.10 4.17 - 4.21 

na, not available 

TAßIF ö. 9 

NUCLEATION RESULTS CORRECTED FOR EFFECT OF ALUMINA AND 

VOLUME FRACTION OF PHASE SEPARATION, logj0 N (Cm" 3) 

Glass 
Temperature °C 33 30 31 28 26 

807 5.41 5.34 5.50 4.94 5.42 

773 6.74 6.37 7.20 6.83 7.23 
745 7.87 7.55 8.27 8.00 8.06 



in equation (6.1) provided non steady state effects can be neglected. The 

derivation of this equation and the assumptions used are given in Appendix 

(6.1). The equation was used empirically and the constant B was calibrated 

from nucleation data of ABS2 and the Ba02SiO2glasses. The value of B was 

calculated at each temperature and was used to calculate the number of 

crystals that glasses 26,28,30,31,32,33 would nucleate if they contained 

no alumina impurity. The new results are shown in Table (6.8) and plotted 

in Figures (6.11) and (6.12) as log10Nv versus temperature. Similarly the 

number of crystals that the baria-rich phase in glasses 26,28,30,31,33 

would nucleate if it contained no alumina, were also calculated at temperatures 

where liquid phase separation was most likely to be complete in a very short 

time (viz. 745,773,807°C, see Table (6.9)). The volume fraction of the 

separated phase after a one hour heat treatment at lower temperatures 

was unknown and the volume fraction correction could not be applied. 

gowever, at these lower temperatures the glasses nucleate at very different 

rates and since the volume fraction correction, when applied, does not 

greatly alter the results, (see Table (6.9) and (6.7)) it can be assumed that 

the interpretation of the results at the lower temperatures is not greatly 

affected by the neglect of the volume fraction factor. 

Consider first the glasses of lower impurity levels (Figure (6.11). 

At the higher temperatures (particularly 773 and 807°C) glasses, 32,31 and 

26 coincide more closely than before correction (Figure 6.1)). At lower 

temperatures below the maximum, a larger spread of values still exist. The 

order in decreasing nucleation was 32,33,31 and 26, almost the same as 

before correction and in good agreement with the expected order according to 

the silica contents as described before. 

In the case of the glass 28 and 30, containing higher levels of alumina 

impurity (Figure (6.12)), the Nv values are much closer to the other glasses 

than before correction, particularly at higher temperatures as can be seen 



Figure 6.:. 1" Plot of loglo Nv (cm-3) versus temperature 

(°C) for glasses 33,32,31 and 26, corrected 

for A1203 and liquid-liquid immiscibility 
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Figure 6.12 Plot of log10 Nv (cm-3) versus temperature 
for glasses 28 and 30 corrected for A1203 

and liquid-liquid immiscibility. 
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by comparing Figures (6.11) (6.12) and (6.2) (6.1). 

The results corrected for both alumina and volume fractions show 

closer convergence at the higher temperatures (viz. 745,773 and 807°C). 

The failure to obtain even closer coincidence of the values may be attributed 

to a) experimental errors in estimating the alumina content, b) uncertainty 

in using the correction formula, particularly for the higher impurity levels 

in 28 and 30. 

it may be concluded that correction of the nucleation curves explains 

some of the discrepancies present in the "uncorrected" curves. In general, 

the results are more consistent with the 'composition' mechanism (Figure 

6.9B) than the 'interface' mechanism (Figure 6.9A)). 

6.2 CRYSTAL NUCLEATION AND LIQUID-LIQUID IMMISCIBILITY IN GLASS 26 

EXPERIMENT 2 

6.2.1 Crystal nucleation in glass 26 - Results 

The problems associated with minor impurity levels when comparing 

glasses of different overall compositions, as in experiment 1, 'were avoided 

by investigating crystal nucleation trends and their dependence on liquid 

phase separation as a function of time at a constant temperature for a 

particular glass. 

Two glasses (30 and 26) were selected on the basis of their high 

degree of homogeneity. The results on glass 30 will be discussed later and 

attention is focussed in this section on glass 26. Small samples of glass 

26 having quite different thermal histories or initial heat treatments were 

subsequently given a crystal nucleation and growth treatment to study their 

crystal nucleation kinetics. It will be recalled that 26 has a measured T 
m 

of 1140°C and was already showing slight immiscibility on cooling from the 

melt. Efforts were made to produce a non-phase separated glass by heating 
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samples at 1250°C (above Tm) for one minute and immediately quenching into sili- 

cone oil. This is referred to as glass A. Also comparison between two different 

phase morphologies was effected by heating a sample at 800°C for one hour (glass 

C) and another at 900°C for ten minutes (glass D). Phase separation was developed 

fully in both samples and at these temperatures crystal nucleation was negligible 

(i. e. less than 0.1% of the total Nv subsequently nucleated during the heat 

treatment). The three specimens with different initial treatments were given a 

crystal nucleation treatment at 700°C alongside a typical 'as-cooled' sample 

(glass B) for several periods of time. This was the important crystal nucleation 

heat treatment that showed up any differences between the nucleation ability of 

the different samples. It will be remembered that 700°C was a convenient 

temperature for the study since the maximum nucleation rate occurred at about 

700°C. The growth treatment to 'develop' the crystals for quantitative 

measurements was carried out at 840°C and the nucleation characteristics (Nv) 

obtained are tabulated in Table (6.10). 

The nucleation results are shown in figures (6.13-6.15) where Nv is plotted 

against time. For clarity the early and later stages are plotted separately. The 

results are expressed to some extent more conveniently in the form of nucleation 

rates because these are characteristic of the glass at the particular time under 

consideration (see figure (6.16)) whilst the cumulative number of nuclei in 

figures (Z). 13-6.15) depend on the conditions previously existing in the glasses. 

Returning to figures (6.13-6.15) the relative differences between the four 

glasses are more pronounced in the earlier stage of nucleation. A pronounced 

curve is present in plots of three of the glasses, 26A, B and D, whilst the fourth 

glass 26C is much straighter particularly at longer times (i. e. nucleation rate 

is more constant). The nucleation curves of glasses 26A and B are very similar 

for all times with 26B always slightly above 26A. This testifies to the accuracy 

of the method for determining Nv because a slight difference is maintained con- 

sistently over a long period of time. The Nv curve for glass 26C was consistently 

much higher than the other curves. 



Figure 6.13 Plot of Nv (number of crystals cm 3) 

versus time (hrs) for glass 26 
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Figure 6.14 Plot of Nv (number of crystals cm-3) 

versus time (hrs) for glass 26 
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Figure 6.15 Plot of Nv (number of crystals cm-3) 

versus time (hrs) for glass 26 
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6N 

Figure 6.16 Plot of nucleation rate d versus 

time (hrs) for glass 26 
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TABLE 6.11 

NUCLEATION DATA FOR GLASS 32 AT 677°C 

Time (hrs) NV (cm 3) 

1 4.78 x 10 

2 4.96 x 10 

4 2.59 x 10 

8 2.35 x lO 

16 9.2 x 10 

Between four and eight hours the Nv curves for 26A and B cross the 

curve for glass 26D. Although at short times glass D has a small but 

significantly greater Nv than 26A or B, at longer times glass 26D has a 

smaller Nv than 26A or B. 

The relative differences in Nv for all glasses tend to become 

less pronounced at longer times. Figure (6.16) clearly depicts the ten- 

dencies in nucleation rates and how they vary with time. It shows for 

example that the nucleation rates are steadily approaching one another 

after 17 hours. 

Figure (6.17) is optical micrographs of glasses 26A, B, C and D, 

heat treated at 700°C for Is, 1 and 2 hours. They show the contrasting 

nucleation behaviour between the specimens given different initial heat 

treatments. 

No nucleation measurements were carried out beyond 17 hours due to 

the difficulties in measuring the high values of Nv accurately using the 

optical microscopy technique although the range of times studies was 

sufficient for the experiment. 

The initial strong curvature of the Nv plots for 26A and B may be 



Figure 6.17 Optical micrographs from experiment 2 

(three pages) comparing nucleation behaviour of glasses 

26A, B, C and D at 700°C 

This page: 

Top left glass 26A, nucleated at 700°C, / hour 

Mag x60 

Top right: glass 268, nucleated at 700°C, / hour 

Mag x120 

Bottom glass 26D, nucleated at 700°C, / hour 
left: 

Mag x240 

Bottom glass 2GC, nucleated at 700°C, / hour 
right: Mag x240 
Second page: 
Top left glass 26A, nucleated at 700°C, 1 hour 

Mag x240 

Top right: glass 26B, nucleated at 700°C, 1 hour 

Hag x 240 

Bottom glass 26D, nucleated at 700°C, 1 hour 
left: 

Ilag x600 

Bottom glass 26C, nucleated at 700°C, 1 hour 
right: Mag x600 
Third page: 
Top left: glass 26A, nucleated at 700°C, 2 hrs 

6 mins, Mag x600 

Top right: glass 26B, nucleated at 700°C, 2 hrs 

6 mins, Mag x600 

Bottom glass 26D, nucleated at 700°C, 2 hrs 
left: 

6 minx, Mag x600 

Bottom glass 26C, nucleated at 700°C, 2 hrs 

right: 6 mins, i; ag x600 
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attributed to liquid phase separation occurring in the glasses at the same 

time as crystal nucleation (Figures (6.13-6.15)). Thus 26A and, B are initially 

non-separated or only slightly phase separated quenched glasses. Phase 

separation then occurs over an extended period during which a silica-rich 

phase is precipitated and the composition of the baria -i. ch matrix phase 

changes gradually until the equilibrium compositions are eventually reached. 

Even after this stage the morphology of separation may continue to change 

due to coarsening, as explained previously. As the composition of the 

matrix changes and becomes closer to (but not equal to) the barium disili- 

cate composition, the nucleation rate of crystals increases, as in fact 

observed. The changes in nucleation rates for 26C and D may also be 

explained generally in the same way, although to ewplain the precise details 

the kinetics of phase separation must also be considered. This will be 

discussed shortly. The higher Nv values and higher nucleation rates in 

glass 26C are due to the more extensive degree of phase separation initially 

present in this glass. 

An alternative explanation of the curvatures of the Nv plots is that 

they are caused by transient (non steady state) nucleation, characteristic 

of nucleation at lower temperatures. It will be remembered from section 

(3.1) that initially the number of crystal embryos in the glass is zero but 

increases with time until the number of embryos attaining the critical size 

reaches a steady state. Consequently the rate of formation of nuclei must 

be zero at t-0 and will gradually rise to a steady state constant value. 

This explains the curvature of experimental Nv versus time plots in certain 

glasses. 

However, the transient process is unlikely to apply to glass 26 at 

700°C since the number of crystals counted in a glass of similar composition 

that does not phase separate (glass 32) showed no sign of any such trans- 

ient effects at 700°C (see Figure (6.18 and Table 6.12). However, if the 



Figure 6.18 Plot of number of nuclei (Nv cm-3) versus 

time (hrs) for glass 32 at 700°C 
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Time 

Ihr 

2 hrs 

TABLE 6.12 

NUCLEATION DATA FOR GLASS 32 AT 700 °C 

N cm 3 
v 

M 4.08 x 108 

N 3.83 

M 1.35 x 109 

N 1.28 x 1.09 

4 hrs 30 rains M 2.71 x 109 

N 2.48 x 109 

Time N cm-3 v 

7 hrs 45 rains m 3.96 x 109 

N 4.37 x 109 

16 hrs 15 mins M 8.02 x 109 

N 9.04 x 109 

Glass M= glass 32 heat treated at 1050°C for 3/4 min and quenched 

in silicone oil. 

Glass N= glass 32 as-cooled from the melt 

R': L"LX 6.13 

CALCULATED VOLUME FRACTION DATA FOR GLASS 26 

Temperature °C V£ (Haller) 

900 

E300 

700 

13.2% 

17.2% 

20.4% 

Vf (Present Work) 

18.6% 

22.1% 

25.0% 
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nucleation temperature is lowered to 677°C, a pronounced time delay does 

appear for 32 (see Figure (6.19)) and Table (6.11)). These induction times 

are due to the lower diffusion rates at lower temperatures. Thus at loo°C 

the time delay is small for glass 26 and 30 and the curvature is caused 

primarily by liquid immiscibility occurring within the glasses. 

To check the possibility that thermal history (i. e. quenching rate) 

might in some way influence the nucleaticn"behaviour, even in a glass 

incapable of liquid phase separation, the following subsidiary experiment 

was carried out. Glass 32 was rapidly quenched into silicone oil after 

heating at 1050° for 3j4 minute. However, no significant changes in 

nucleation behaviour compared with the normal air-cooled samples were 

observed (see Table (6.12), Figure (6.18)). 

6.2.2 The liquid--liquid immiscibility in glass 26 "- Results and discussion 

The composition of glass 26 is shown on the phase diagram (Figure 

(6.4)) and the heat treatments at 700,800 and 900°C are indicated by the 

dashed lines. The equilibrium volume fractions of the phases are calculated 

from the mole fractions using the Lever Rule and density data of MacDowell(16): 

The first column in Table (6.13) is the volume fraction of the silica rich 

phase computed by assuming that the curve obtained by Haller et al 
(28) 

is 

correct. This assumes a TT for 26 of 1080°C. If we assume that the experi- 

mentally determined TM of 1140°C is more accurate and drawing the immisci- 

bility curve through this point and parallel to the curve of Haller et al, 

another estimate of Vf is obtained (column two in Table (6.13)). 

The experimentally determined values of the volume fractions obtained 

from replica electron micrographs for glasses 26B, C and D held at 700°C 

for various times are given in Table (6.14). No values describing phase 

separation morphology for 26A are available because the replication technique 



Figure 6.19 Plot of number of nuclei (Nv cm 3) versus 

time (hrs) for glass 32 at 677°C 
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TABLE 6.14 

EXPERIMENTALLY DETERMINED VOLUME FRACTIONS OF SILICA 

RICH PHASE FOR GLASSES 26B, CZ WD D 

Glass 26D 26C 2633 

Times of heat 
treatment at 700°C 

0 32.0% 42.7% 33.8% 

1 hr 33.5% 41.4% 35.5% 

2 hrs 29.8% 38.3% 45.0% 
(2 hrs 05 mina) 

4 hrs 39.9% 

7 hrs 35 rains 32.6% 45.6% 
(8 hrs 42 mina) 

11 hrs 25 mins 33.1% 42.6% 
12 hrs 15 rains) 

16 hrs 37 mine 46.8% 

could not produce satisfactory replicas. 

The 95%-confidence limits of a typical Vf result have been estimated 

in Appendix. (5.3). The estimate of volume fractions was expected to be 

fairly accurate for phase separated glasses 26 (C and D) but in glass 26B 

(air quenched) the phase separation structure was fine and faint and cal- 

culations of Vf were subject to large errors. The figures.: are suitable for 

comparative purposes but on an absolute scale these values are much higher 

than expected (see Table (6.13)) and are an approximate guide only. This 

is probably because heavy etching was needed to reveal the structure 
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sufficiently clearly for measurement. This effect is well known and has 

($4) 
been studied systematically by Burnett and Douglas . They were able to 

improve the accuracy of the method by plotting measured Vf values against 

etching time and extrapolating back to zero time. This was also attempted 

with the present glasses but was impractical since accurate estimates of 

Vf could not be obtained for very light etches. 

Exactly the same etching treatment was employed for each glass at all 

times and so the results are still useful as a comparative guide. For 

example, the Vf values do provide some evidence of the extent to which phase 

separation has occurred for a given time series at constant temperature. 

If criterion b) or cl of Uhlmann's four points is applicable in 

affecting nucleation kinetics, it should be possible to detect differences in 

crystal nucleation characteristics that are dependent on the relative values 

of the interfacial areas of liquid phase separation. If the phase morphology 

resembles isolated droplets then the number of droplet particles also 

becomes of importance because two or more crystals nucleating around a 

droplet will eventually coalesce and be recorded as one crystal. Hence 

each droplet will not give rise to more than one crystal. This will occur 

whatever the size of the droplets. Thus the number of droplets will in this 

case be more important that Sv. The statistics on the number of droplets 

nv and the interfacial area Sv for glasses 26B, C and D heat treated at 

700°C for various times are recorded in Tables (6.15) and (6.16). 

Representative areas illustrating phase morphologies of glasses 26B, 

C and D heat treated at 700°C are shown in Figure (6.20). It can be seen 

that pronounced changes occurred in the phase separation morphology of 26B 

on heating at 700°C. This was also reflecte in changes in nV, Sv and Vf 

(see Tables : (6.14 - 6.16)). However, changes in 26C and D were slight. 

The phase morphologies of glass 26C and D are isolated droplets after all 



Figure 6.20 Electron micrographs of development of 

(three pages) phase separation morphology of glasses 

263, C and D at 700°C. 

This page; Glass 26B, air quenched 

From the top, Air quenched, no heat treatment 

Mag x47000 

1 hr 3 mins at 700°C, Mag x47000 

2 hr at 700°C, I-Sag x47000 

8 hr 42 rains at 700°C, Mag x47000 

16 hr 37 mina at 700°C, Mag x47000 

Second page: Glass 26C, 800°C, 1 hour 

Top left: No. further heat treatment. 

Mag x47000 

'Cop right: 1 hr at 700°C, Mag x47000 

Middle left: 2 hr 5 rains at 700°C, Mag x47000 

Middle right: 4 hr 10 rains at 700°C, Mag x47000 

Bottom left: 12 hr 15 mins at 700°C, Mag x47000 

Bottom right: 17 hr at 700°C, Mag x47000 

Third page: Glass 267,900°C, 10 mins 

From the top: No further heat treatment. 

Mag x47000 

1 hr at 700°C, Mag x47000 

2 hr at 700°C, Mag x47000 

7 hr 35 mins at 700°C, Mag x47000 

16 hr 11 mins at 700°C, Mag x47000 



rzii 

'C , r. - 

-ýý.. :. F ý': ý ý 

Ä, r .,: 
'. r rt ý.! ýý 

ý'ýý`ýýJ 
; ý. 
ý/ ; ýýP 
ýý{'ý 

ý ý'`> `"i: 

r*ý°ý" ý+ilg 
; 'rý' 





i- _t ý %^ It ? I- i"") . 
! ', Y 

ý 

... ý 
Oý 

° v�r 

, �I"%... ' 

® ýýý 
ýo 

i '» ý 
ý., 

ýF' 
ý 

, NNW - .. � \I,. .J-ý.. 

0 ýý :. ýº ý}.. ýo ý ý. ~ý 

Q ýý 
oýýýýý~cý(/ ýo ýý 

Y`ý t \/% . 
". ; ýý 

ou ci 
ko 



TABLE 6.15 

EXPERIMENTALLY DETER17INED INTERFACIAL ARENS OF GLASSES 26B 

C 1LND D HEAT TREATED AT 700°C (crn2/Cm3) 

Glass 26D 

Times of heat 
treatment at 700 °C 

26C 

O 2.04 x 105 3.0 x 105 

1 hr 2.03 x 1O5 3.64 x 105 

2 hrs 1.99 x 105 . 3.74 x 105 
(2 hrs 05 mins) 

4 hrs 3.69 x 1o5 
(4 hrs 10 mins) 

7 hrs 35 wins 1.94 x 105 

11 hrs 25 mins 1.97 x 105 4.17 x 105 
(12 hrs 15 mins) 

16 hrs 37 mina 

TABLE 6.16 

26B 

4.12 x 105 

4.46 x 105 
(1 hr 03 wins) 

5.26 x 105 

4.98 x 105 

4.96 x 105 
(8 hrs 42 rains) 

5.03 x 105 

EXPERIMENTALLY DETERMINED DROPLET NUMBERS (n) IN GLASSES 

26B, C AND D HEAT TREATED AT 700°C 

Glass Time of heat Number of droplets 
treatment at 700°C n cm -3 

v 

26D 2 hrs O1 mins 8.18 x 1014 

7 hrs 35 mins 8.16 x 1014 

26C 2 hra 05 mina 5.00 x 1015 

1 hr 4.85 x 1015 

26B 0 9.97 x 1015 
1 hr 03 mins 9.95 x 1015 

2 hrs 9.00 x 1015 
8 hrs 42 mins 1.36 x 1016 
16 hrs 37 mins 9.2 x 101§ 
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the heat treatments, However, after glass 26B had been heat treated at 

700°C for 8 hours or more, the structure became interconnected and the n v 

parameter was difficult to assess. Only two nv measurements were taken on 

glass 26C and D because the nearly constant values of Vf and Sv with time 

implied a nearly constant nv. 

It is a common occurrence for a glass given a two stage heat treatment 

in the phase separated zone to undergo secondary phase separation during 

the final heating procedure. This occurs because the composition of one of 

the phases itself can phase separate on cooling to the second beat treatment 

temperature. The matrix between the large particles separates into many 

fine droplets. The size of these droplets is limited by the slower kinetics 

at the lower heat treatment temperatures. Alternatively, secondary phase 

separation can involve simply growth of the large droplets of silica present 

after the first stage treatment without additional precipitation of finer 

scale droplets. It is feasible in other systems for the minor phase to 

separate but in BaO--SiO2 glasses for the temperatures used in the present 

study (800-900°C) the silica-rich phase is already nearly pure silica and 

is unlikely to phase separate further. Burnett 
(30) 

has found examples of 

secondary liquid immiscibility in one phase for a Na20-CaO-, SiO2 glass. 

Seward et a1(14) have observed secondary phase separation in both phases in 

a BaO-SiO2 glass near the critical composition and consolute temperature. 

The compositions of the baria rich phases "ere found by extending the 

horizontal line at the phase separation temperature to the liquid immiscib- 

ility boundaries. In the case of glass C at 800°C, the baria-rich phase 

contained 30 molt Sao if 'Hallers curve' was assumed to represent the 

immiscibility done. Alternatively, by drawing a curve through the experi- 

mentally determined immiscibility temperature Tm(1140°C) parallel to 

gailers curve', the baria rich phase were found to consist of 31.6 mol% BaO. 
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A glass of this composition would probably not undergo secondary phase 

separation easily at 700°C because the driving force eq for the nucleation 

of fine scale droplets would be small. This is probably why glass 32 

containing 30.4 mol% BaO and a Tm of 760°C was not observed to phase 

separate. Thus glass 26C heat treated at 800°C for one hour and then 

heated at 700°C will undergo a slow additional phase separation probably 

by the growth of the droplets already present in the glass. This was 

reflected indirectly in the nucleation kinetics as an almost straight line 

relationship between the number of crystals and time. 

6.2.3 Further discussion of results for glass 26 

In this section we compare and examine critically the differences 

in the number of crystals nucleated in glasses 26A, B, C and D and comment 

on the possible reasons for these differences. 

It will be shown that all the nucleation behaviour can be explained 

in terms of changes in the composition of the baria-rich matrix phase with 

time. Some of the behaviour has already been explained in this way above. 

Comparing the results for glasses 26A, B, C and D, it is noted that C has 

the highest nucleation rate and Nv value for all times at 700°C due to the 

matrix phase being closest to the barium disilicate composition throughout. 

This resulted from the initial phase separation treatment at 800°C. For 

short nucleation times at 700°C, 26D has a higher nucleation rate than 26A 

and B, also due to its initial separation treatment. 

The curvatures in the Nv plots are due to phase separation taking 

place at 700°C at the same time as crystal nucleation. The evidence from 

quantitative phase separation measurements and examination of the replica 

micrographs shows that phase separation at 700°C is taking place slowly 

and results in a gradual shift in composition of the two phases without 
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altering very significantly the morphological parameters (Vf, nv, Sv). 

Comparing 26C and D, 26D has a more pronounced initial curvature (Nv 

versus time) at 700°C. This can be related to the occurrence of additional 

liquid phase separation at 700°C after the primary separation at 900°C. 

The driving forces for phase separation in B, C and D are shown schematically 

in Figure (6.21). It is clear that the driving force for nucleation of 

phase droplets is greatest in B (this corresponds to primary phase separa- 

tion). The driving forces for secondary nucleation in C and D are much 

smaller. This probably accounts for the fact that no sign of secondary 

phase separation was observed for C or D at 700°C. The additional phase 

separation must therefore, take the form of growth of the existing droplets 

present after the pre-phase separation treatments. During this growth 

process the composition of the baria-rich phase will shift gradually, caus- 

ing the nucleation rate to rise and the Nv versus time plot to become 

curved. 

3oth glasses 26A and B were quenched from above Tm. The replicas 

showed that very fine scale phase separation occurred during the quenching 

process (thus glass 26B has approximately ten times as many droplets as 

glass 26D). This may be attributed to the greater driving force Ag for 

nucleation of phase separation in 26i, and B during rapid cooling (illustrated 

in Figure (6.21)), causing a higher nucleation rate for liquid droplets. 

However, the droplets are very fine and the amount of phase precipitated is 

probably smaller than for 26C and 26D. Also, the overall shift in the matrix 

composition is probably smaller than in the case of 26C and D. Hence, 

initially at 700°C, crystal nucleation rates are less in 26A and B than in 

C and D. Although liquid separation still occurs slowly at 700°C, there are 

many more potential growth sites in glass A and B than in C or D. Assuming 

diffusion controlled parabolic growth to occur, the precipitation rate will be 



Figure 6.21 Schematic diagrams illustrating thermo- 

dynamic driving force for liquid-liquid 

immiscibility (Ag) in glasses B, C and D. 
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more rapid in A and B. The greater driving force Og may also encourage more 

rapid precipitation. Consequently the matrix con osition will undergo a 

more rapid shift. Eventually the matrix composition in A or B becomes 

richer in baria than D so that the crystal nucleation rate becomes greater. 

Thus the crystal nucleation rates for B and D coincide after about one hour 

and thereafter are greater for B (figure (6.16)). Also, a cross-over in the 

Nv versus time plots occurs with 26A and B overtaking 26D between 4 and 

9 hours. In the course of the experiment the crystal nucleation in 26A 

and B is always less than in 26C due to the large initial shift in compo- 

sition of this glass. 

It should also be noted that the Nv for 26A is always slightly less 

than 26B probably due to the more rapid initial quench given to 26A produc- 

ing less phase separation in this glass. 

The above explanation depends on the phase separation occurring slowly 

at 700°C, causing gradual changes in matrix composition. Since the process 

is slow, the values of Vf, Sv and nv show very little change with time for 

26C or 26D. However there is some evidence that Vf and Sv show a small 

increase for 26B, notwithstanding the difficulties in accurate measurement 

of these quantities (Tables 6.14-6.16) and Figure (6.20)). 

The possible influence of crystal nucleation heterogeneously catalysed 

by interfaces will now be considered. It has been observed that at 700°C 

Sv is changing only slightly for 26B and C or not at all for 26D (Table 

(6.15)). Yet nucleation rates for D are changing considerably with time 

(by up to a factor of four times, Figure (6.16)). This suggests the inter- 

facial area is not affecting crystal nucleation directly. Also, although 

glass 26B has a larger Sv than 26C, B has the lower nucleation rate. This 

is the opposite to the results expected if interfaces nucleate crystals. 

wring 26D and Colt would be expected that D would have a lower nucleation 



rate due to its coarser morphology. Figure (6.16) shows that although 26D 

has a lower nucleation rate, the gap between the rates of nucleation is 

steadily closing and this is not expected if interfaces are important. 

Instead the rates would parallel one another, the remaining gap between them 

being due to the large sustained difference in the morphology. 

Considering the arguments from the perspective of the number of drop- 

lets, (nv) the conclusion reached above becomes even more obvious. For 

example, glass 26B has ten times more droplets than glass 26D and more than 

glass 26C, but initially 26B has a crystal nucleation rate similar to that 

of 26D and much less than 26C. 

It may be concluded that the crystal nucleation observations are not 

explainable in terms of the phase separation morphology alone. 

A final experiment on glass 26 involved heating the 'as-cooled' glass 

at a temperature where both crystal nucleation and growth and also the 

growth and coarsening of liquid phase separation took place concurrently. 

By relating Vf, Sv and nv with the crystal nucleation rate it was hoped to 

study further the effect (if any) of the morphology during the periods of 

growth and coarsening of phase separation (when Sv and nv fall off with 

time) . 

Five specimens were given a heat treatment to nucleate and grow the 

crystals at 785°C for times indicated in Table (6.17) and the number of 

crystals counted. The results are plotted in Figure (6.22). 

Although the points show some scatter, (precise nucleation measurements 

are more difficult at higher temperatures where the nucleation rates are 

much lower) the number of crystals show a general linear increase with time. 

on the other hand, the number of liquid droplets and the interfacial area 



Figure 6.22 Plot of number of nuclei (Nv cm-3) 

versus time (hrs) in glass 26 at 785°C. 
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decreased over the same period due to coarsening or Ostwald ripening (see 

Table (6.18)). The results suggest that the crystal nucleation rate is not 

related to coarsening of phase separation. 

TABLE 6.17 

NUMBER OF CRYSTALS NUCLEATED AT 785°C 

Time Number of crystals 
N CM-3 V 

1 hr 40 wins 1.26 x 106 

2 hrs 15 wins 1.30 x 106 

3 hrs 46 rains 1.58 x 106 

4 hrs 51 mina 2.36 x 106 

5 hrs 51 mina 3.06 x l06 

TABLE 6.18 

EXPERIMENTALLY DETERE4NED MORPHOLOGICAL PARAMETERS OF 

LIQUID-LIQUID IMMISCIBILITY IN GLASS 26 

BEAT TREATED AT 785°C 

Time of heat 
treatment 

1 hr 41 wins 
2 hrs 15 rains 
3 hrs 47 wins 
4 hrs 51 mins 

Vf % Sv cm2/cm3 Nýcan3 

44.5 3.7 x 105 4.1 x 1015 

45.5 3.4 x 105 3.4 x 1015 

39.8 2.5 x 105 1.9 x 1015 
39.5 2.8 x 105 2.2 x 1015 



6.3 CRYSTAL NUCLEATION AND LIQUID--LIQUID IMMISCIBILITY RESULTS 

IN GLASS 30 - EXPERIMENT 3 

6.3.1 Crystal nucleation in glass 30 - Results 

Further experiments on crystal nucleation kinetics were carried out 

on glass 30. This composition was chosen for detailed study because it had 

a lower immiscibility temperature (905°C) than glass 26 and also a higher 

baria content (28.5 mol%). As a result, glass 30 phase separated less 

easily than glass 26 and produced a more 'droplet-like' and less inter- 

connected phase microstructure than glass 26. The presence of a small 

amount of A1203 impurity had the effect of depressing the crystal nucleation 

kinetics to a significant degree, but this was unimportant since comparisons 

were made between a phase separated and non-phase separated glass of the 

same overall composition. The lower nucleation rates at 700°C compared with 

glass 26 was also an advantage since longer times (up to sixty hours) could 

be employed in the experiments without reaching the limit of the quantita- 

tive optical microscope techniques. 

The as-cooled glass 30 was free from liquid phase separation and the 

use of rapid quenching wasthercfor_e, unnecessary. A sample of glass was 

phase separated at 790°C for one hour to fully develop liquid immiscibility 

within the glass (glass F). This was nucleated alongside the as-cooled 

glass (glass F) for various periods at 700°C. 

The nucleation results are given in Table (6.19) and plotted as a 

function of time in Figures (6.23-6.25). The comparative numbers of crystals 

for specific times are expressed as a ratio and these are shown in Figure 

(6.26) whilst the rates are shown in Figure (6.27). 

Typical micrographs comparing the nucleation behaviour between glasses 

E and F heat treated at 700°C for 1,4,8 and 10 hours are shown in 

Figure (6.28). 



Figure 6.23 Plot of number of crystals (Nv cm-3) 

versus time (hours) for glass 30 at 

700°C. 
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Figure 6.24 Plot of number of crystals (Nv cd-3) 

versus time (hours) for glass 30 at 700°C 
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Figure 6.25 Plot of number of crystals (NV cm-3) 

versus time (hours) for glass 30 at 

700°C. 
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Figure 6.26 Plot of ratio of number of crystals 

in glasses 30E and F [Nv(E)/Nv(F)] 

versus time (hours) for glass 30 at 

700°c. 
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Figure 6.27 Plot of nucleation rates (dtv) cm-3 

hr-1 versus time (hours) for glasses 

30E and F at 700°C 
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Figure 6.28 Optical micrographs from experiment 3 

comparing nucleation behaviour of glasses 
\Gwu ray=a1 

30E and F at 700°C. 

This page: 

Top left: Glass 30E, nucleated 700°C, 

1 hour, Mag x240. 

Top right: Glass 30F, nucleated 700°C, 

1 hour, Mag x240 

Bottom Glass 30E, nucleated 700°C, 
left: 4 hours, Mag x600 

Bottom Glass 30F, nucleated 700°C, 

right: 4 hours, Mag x600 

Second page: 

Top left: Glass 30E, nucleated 700°C, 

8 hours, Mag x600 

Top right: Glass 30F, nucleated 700°C, 

8 hours, Mag x600 
Bottom Glass 30E, nucleated 700°C, 
left: 

10 hours 32 wins, Mag x600 

Bottom Glass 30F, nucleated 700°C, 
right: 10 hours 32 mins, Mag x600 
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TABLE 6.19 

NUMBER OF CRYSTALS N (cm'3) FORMED IN 

GLASS 30 AT 700°C 

Time 2 hrs 4 hrs 6 hrs 8 hra 10 hrs 32 eins 

glass E 1.24 x 108 3.89 x 109.5.98 x 108 8.85 x 108 1.38 x 109 

F 1.99 x 108 6.50 x 108 8.95 x 108 1.40 x 109 1.65 x 109 

Time 13 hrs 17 hrs 21 hrs 28 hrs 16 mins 60 hrs 

glass E 1.99 x 109 3.19 x log 4.11 x lOg 6.86 x 109 1.83 x 1010 

F 2.03 x 109 3.05 x 109 3.64 x 109 6.30 x 109 1.88 x 1010 

E is the as-cooled glass 30 

F is glass 30 phase separated at 780°C for one hour 

The general behaviour is similar to that observed in glass 26. For 

example, there is a curved portion in the Nv versus time plots for both E and 

F. Both curved portions are followed by a straight line portion. As we shall 

see the strong curvature can be related to phase separation occurring within 

the glass during heat treatment at 700°C. At short times the Nv values for 

glass 30F are significantly greater than for glass 30E. For example, the 

number of crystals nucleated at times of eight hours or less in E is consist- 

ently about 30-40% less than that in F. Since the 95% confidence limits are 

within ±15% of the mean, this difference between E and F is significant. 

Also, the nucleation rates given by the slopes of the Nv plots (Figure (6.27. )) 

are greater for glass 30F. 

ßowever, a reversal occurs after about 9 hre when the as-poured glass 30E 

shows a higher nucleation rate.. The Nv values also show a reversal after about 
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16 hrs. At much longer times the relative difference between 30E and 30F 

is only slight and within experimental error they have identical values of 

Nv. Although there is some experimental error associated with all the 

points, the general trends described are considered to be significant. 

6.3.2 Liquid-liquid immiscibility in glass 30 - Results and discussion 

The composition of glass 30 can be located on the phase diagram and 

the heat treatment temperatures at 780 and 700°C are indicated (see Figure 

(6.4)). The volume fraction of silica-rich liquid was calculated according 

to the method described in section (6.1.5). The morphological parameters 

for liquid immiscibility are displayed in Tables (6.20-6.22). 

Electron micrographs showing the development of liquid immiscibility 

are given in Figure {6.29). 

All estimates of volume fraction are significantly higher than expected 

and this is probably the result of heavy etching necessary to reveal the 

structure. Again, as mentioned previously, these values are mainly useful 

for comparative purposes and are intended only to serve as a rough guide. 

Nevertheless, if the etching conditions are kept constant trends, in the 

development of phase separation can be monitored. 

The values of nv, SV and Vf are plotted in Figure (6.30) for glass 3CE. 

The results show that glass 3CE commences phase separation within the first 

few hours of heat treatment. After six hours the liquid immiscibility is 

sufficiently developed to be measured with ease. The volume fraction for 

3DE is approaching an equilibrium (maximum) value after approximately 13 

hours. Both Sv and nv appear to peak at about 13 hours whilst Vf approaches 

a steady value at approximately the same time. This indicates that the early 

stage processes of nucleation and growth are followed by a coarsening process 

or Ostwald ripening which begins to predominate after about 13 hours. 



Figure 6.29 Electron micrographs of development of 

(two pages) phase separation morphology of glasses 

30E and F at 700°C. 

This page: Glass 30E, Air cooled. 

From the top: 

2-hours 700°C, Mag x51000 

6 hours 700°C, Mag x51000 

8 hours 700°C, Mag x51000 

17 hours 700°C, Mag x51000 

21 hours 700°C, i4ag x51000 

Second page: Glass 30F, 780°C, 1 hour 

2 hours 700°C, Mag x51000 

6 hours 700°C, Mag x51000 

8 hours 700°C, Mag x51000 

13 hours 700°C, Mag x51000 

21 hours 700°C, Mag x51000 
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Figure 6.30 Plot of ratios of Vf, Sv and nV for 

Glass 30E versus time (hours) at 700°C 
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During a similar study on Na2O-CaO-SiO2 glasses Burnett and Douglas 
(84) 

found that the onset of coarsening was, characterised by a peak in nv and 

SV and an asymptotic approach to constancy of Vf. In the present case the 

boundary delineating the coarsening stage approximately coincides with the 

establishment of a constant rate of crystal nucleation. 

It is clear from Tables (6.20 -" 6.22) and Figure (6.30) that the 

parameters nv, SV and Vf are changing more rapidly in the early stages for 

glass 30E than for glass 30F. This is because in the case of 3OE rapid 

primary separation is occurring but in 3OF secondary separation is taking 

place. At the same time the compositions of the dispersed and matrix phases 

shift gradually in composition. The results for nv suggest that some further 

nucleation of fine droplets is occurring at 700°C for glass 30F although 

further growth in size of the existing droplets (produced at 780°C) is also 

probably taking place. 

The results also suggest that the coarsening stage starts to pre- 

dominate for glass 30F at about 14 hours, as in the case of 30E, although 

there is less certainty in the results for 30F due to the smaller changes 

in the parameters involved. 

6.3.3 Further discussion of results for glass 30 

The explanation of the results for glass 30 follows closely the 

arguments used for glass 26. 

No liquid immiscibility was detected in the as-cooled glass 30 before 

heat treatment at 700°C. Thus the composition of the matrix in the pre- 

phase separated glass 30F was nearer the Ba02SiO2 composition than the 

homogeneous glass 30E. Hence 30F initially nucleated crystals more rapidly 

than 30H. However, glass 30E underwent a more rapid phase separation 

(see Table (6.21)) than 30F because the Og for phase separation was greater. 
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TABLE 6.20 

CALCULATED VOLUME FRACTIOUS FOR GLASS 30 

Temperature 700 °C 780°C 

V$9.5 6.2 
f 

TABLE 6.21 

EXPERIMENTALLY DETERMINED MORPHOLOGICAL PARAMETERS 

FOR LIQUID-LIQUID IMMISCIBILITY IN GLASS 30E 

Time (hrs) 68 13 17 21 28 

n (cm-3) 1.5 x 1016 2.4 x 1016 3.3 x 1416 1.9 x 1016 1.9 x 1016 2.1 x 1016 
v 

s cm2/cm31.8 x 105 3.7 x 105 8.2 x 105 7.7 x 105 7.3 x 105 7.4 x 105 
v 

Vf % 13 24 (51) (49) (67) (59) 

TABLE 6.22 

EXPERIMENTALLY DETERMINED MORPHOLOGICAL PARAMETERS 

FOR LIQUID-LIQUID IMMISCIBILITY IN GLASS 30F 

Time (hre) 268 13 21 

nv (cm-3) 7.2 x 1014 1.3 x 1015 9.3 x 1014 1.6 x 1015 1.6 x 1o15 

S crag/am3 9.1 x 104 1.3 x 105 1.1 x 105 1.8 x 105 1.5 x 105 
v 

Vf % 9.7 11.9 10.0 23.2 17.1 
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This was accompanied by a more rapid shift in the baria-rich matrix compo- 

sition for 30E. 

To understand the greater driving force Ag for separation in 30E, 

reference should be made to the schematic free energy diagrams in Figure 

(6.31). The upper diagram refers to 780°C. Assuming that phase separation 

proceeds to equilibrium at 780°C, the composition of the baria-rich phase in 

30F will contain more baria than 3CE. It can be seen that Ag at 700°C in 

30E is greater than 30F, assuming 30 lies to the right of the spinodal. 

This explains the much larger number of droplets nucleated in 30E at 700°C, 

and following the same arguments used above for glass 26B, also explains the 

more rapid precipitation, rate in 30E. 

Referring again to the nucleation results, after the initial stage 

when 30F has a higher crystal nucleation rate than 30E, the crystal nuclea- 

tion rate in 30E begins to overtake that of 30F due to the more rapid shift 

in matrix composition. Thus after about 9 hours the matrix composition for 

30E becomes richer in baria than 30F and the crystal nucleation rate in 3CE 

becomes greater than in 30F. At a later time (- 15 hours) the N values v 
'cross over'. Thereafter, as the matrix phases for both E and F approach 

the equilibrium values for 700°C the nucleation rates become nearly the 

same. 

The nucleation rates for glass 30F are almost constant up to about 

12 hours. This would suggest that the matrix composition (baria-rich phase) 

changes only slightly up to 12 hours but changes more rapidly from 12 to 

3o hours. This corresponds to the almost unchanged phase separation 

morphology in 30F up to 12 hours (see Table (6.22)). 

The number of crystals nucleated in 3CE and F at 700°C are similar 

within experimental error between nucleation times of 21 to 60 hours. 

However, the phase separation morphology is quite different. For, example, 



Figure 6.31 Schematic free energy diagram illustrating 

the thermodynamic driving force for liquid- 

liquid immiscibility in Glasses 30E and F. 
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the number of droplets nv and interfacial area Sv in 30E is about 13 and 

5 times greater respectively than in 30F. Thus it can be concluded that 

interfacial effects cannot greatly influence the nucleation kinetics. 

6.4 FURTHER DISCUSSION 

The results of experiments 1,2 and 3 suggest that liquid-liquid 

immiscibility can increase the crystal nucleation rate by causing a compo- 

sitional shift of one of the phases towards a greater BaO content. The 

results indicate that the creation of interface does not significantly affect 

the crystal nucleation rates. Thus the catalytic heterogeneous mechanisms 

discussed earlier, whereby interfaces or compositional zones surrounding 

interfaces stimulate nucleation, are not important in the crystallization of 

baria-silica glasses. 

Figure (6.4) shows that the matrix phase in glass 26 shifts in 

composition from 25.3 to 31.1 mol% during nucleation treatment at 700°C. 

At the same time the crystal nucleation rate increases approximately ten 

times (Figure (6.16)). Also, a shift in composition from 28.5 to 30.0 mol% 

(corresponding to the matrix composition of 26C and D) increases the 

nucleation rate three times. Similarly, when the BaO rich phase in glass 30 

shifts from 28.5 to 31.1 mol% during heat treatment at 700°C, the nucleation 

rate increases approximately three times (Figure (6.27)). 

There are three ways in which the shift in composition due to phase 

separation may influence crystal nucleation ratess-by changing the kinetic 

barrier to nucleation AGD, or the thermodynamic driving farce AG, or the 

interfacial (crystal-liquid) free energy a. 

Let us consider the variation of the kinetic term with composition. 

An indirect measure of the variation of the nucleation kinetic term 

(proportional to exp(- AGD/kT) - see Chapter 3- can be obtained by consider- 

ing crystal growth rates at large undercoolings, where growth rates are 
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controlled by the kinetic barrier to crystal growth, and assuming the kinetic 

processes of growth and nucleation are closely related. Detailed growth 

rate data for the glasses are presented in the next chapter. For present 

purposes we compare the growth rates of glass 32 (composition 30.4 mol% BaO) 

and 35G (nominally 33.3 mol% BaO) at 700°C. We also compare glass 32 and 

glass 26 at 900°C. Class 26 phase separates at this temperature and the 

matrix phase has a BaO content of 28.5 mol% (see Figure (6.4)). The results 

indicate that these differences in composition produce changes in the growth 

kinetic term (Av exp(- AGD/kT) - see Chapter 3) of approximately a factor of 

1.4 for the first pair and a factor of 1.7 for the second pair (see Figure 

(7.26)). Comparison of these values with actual changes in nucleation rate 

oberved. suggests that the nucleation kinetic term does contribute very 

significantly to the change in nucleation rate when the baria rich phase 

shifts in composition. However, the results also suggest that the changes 

in the kinetic term, although significant, are probably not the only cause 

of the changes in nucleation rate observed. 

These conclusions are supported qualitatively by the published vis- 

cosity data of Bockris et al(136), which show that the viscosity at high 

temperatures (1500-1700°C) increases with silica content for compositions 

near ba02SiO2. This increase becomes more rapid with composition as silica 

is approached. Unfortunately no low temperature viscosity data is avail- 

able, probably due to difficulties of measurement arising from the rapid 

crystallization of the glasses. Attempts by the author to fit a Fulcher 

equation to the high temperature data was not successful since the equation 

did not describe the viscosity accurately at lower temperatures. 

As discussed earlier, the DTA Tg results are not very helpful in 

assessing the variation of viscosity with composition, and we are left with 

the crystal growth results as providing the most useful information. 
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We shall now examine the effect of changing AG, the thermodynamic 

driving force on the nucleation kinetics. 

A calculation assuming that the system is ideal and using equation 

(6.1) shows that a3 mold addition of another component to pure Ba02SiO2 

should cause a decrease in nucleation rate by a factor of about eight times 

-a considerable effect. However, the system 5102-BaO2SiO2 is far from ideal 

and such a calculation can only be a very rough guide. In practice, the 

liquidus temperature of the Ba02SiO2 phase does not change rapidly with 

composition (Figure 1.1)) and it is likely that changes in AG will be less 

than those calculated assuming ideality. 

A more accurate estimate of AG would involve calculation of the free 

energy versus composition curve for the liquid phase at the nucleation 

temperature 700°C. A promising approach would be to use the 'regular' 

(26 
mixing equations of Haller at al; described in Chapter 2, to calculate 

the free energy of mixing between WOOS and Ba02SiO2 
01 

The third effect of a shift in composition (i. e. altering the inter- 

facial free energy a) could also influence nucleation rates since a is 

likely to decrease during the phase separation process as the matrix compo- 

sition approaches Ba02Si02. This could also produce an increase in crystal 

nucleation rate. However, we are unable to estimate the effect of a in the 

present case. 

In conclusion, for the present system it is probable that, of the 

three factors discussed above by which a shift in composition may influence 

the nucleation rates, changes in the kinetic term and in tG are both 

important. However the relative importance of the three factors may vary 

from system to system. 


