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Summary 

Fluorcanasite Glass-Ceramics for Dental Applications 

Sabah Gulam Attar 

Fluorcanasite, a chain silicate glass ceramic, displaying a combination of high flexural 

strength and high fracture toughness in comparison with currently available resin-bonded 

ceramics, is being developed as a material that should be easy to fabricate into a dental 

restoration. Previous work has focussed on producing a chemically durable formulation of 

fluorcanasite. Unfortunately, in an attempt to achieve low solubility, the mechanical 

properties of this material have been compromised. The aim of this study was to assess the 

influence of compositional changes on the crystallisation and fracture toughness of the 

fluorcanasite crystalline phases. 

This study has focused on compositional variations to the tluorcanasite composition of 

6OSi~-8Na20-7K20-15CaO-l OCaF2. Fluorite additions were attempted to ascertain the 

extent to which the 'known' nucleating agent influences the crystalline phase development. 

Zirconia and silica additions were made to the formulation to improve the mechanical 

properties while maintaining the chemical solubility of the material. It was found that 

fluorcanasite glasses of these formulations crystallize to give a combination of canasite and 

frankamenite phases and at higher zirconia additions, a potassium zirconium silicate phase 

called wadeite. 

The attempted reformulations resulted in a composition (6.11Na20-S.35K20-11.46CaO-
11.46CaF2-64.82Si02-0.80Zr<h) which upon a standard two-stage heat treatment schedule 
crystallised to give a glass ceramic with substantially improved mechanical properties. A 
greater than three-fold increase was achieved in the fracture toughness in comparison to the 
base composition and is comparable to current commercial dental materials indicated for 

use as posterior restorations. This formulation has resulted in a solubility which is within 
the solubility limits for use as a core material (class 2, ISO 6872:1995 (E» and the glass 

ceramic has been shown to have adequate machinability for development using the CAD 
CAM process. 
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Chapter 1: Introduction 1 

Chapter 1: Introduction 

Ceramic materials have been considered for dental restorations for over two hundred years. 

Despite their hard and brittle nature, they are seen as the future of dental restorations 

because of their unsurpassed aesthetic qualities and their biocompatibility. Unfortunately 

their use has been handicapped due to fracture toughness and strength limitations and thus 

all-ceramic materials have mostly been restricted to the anterior of the mouth. Therefore 

strong, tough, aesthetic ceramic restorations that are cheap to manufacture should be 

attractive to the market. 
Dental porcelains have historically evolved in such a way that the material was essentially a 

feldspathic glass by the mid 20th century. Improvements in strength accompanied the 

development of alumina-reinforced feldspathic porcelain (McLean and Hughes, 1965). 

Enhanced fracture toughness was also achieved by the addition of approximately 50 per 

cent by weight of alumina crystals (Morena et ai, 1986). However, the presence of a second 

phase in the glassy matrix substantially reduced the translucency of the porcelain and the 

material was still highly susceptible to brittle fracture (McLean and Hughes, 1965), limiting 

its usefulness to providing a refractory framework capable of supporting weaker, more 

translucent dentine and enamel porcelains. Recent developments have seen the increase in 

the use of glass-ceramic systems as they allow forming by casting or pressing or 

machining. which are time and cost-effective techniques compared to the sintering of built 

up slurry previously employed. 

Despite the advantages of using glass-ceramics, problems remain when compared to 

metallic restorations. Ceramic restorations often fail catastrophically whereas metal 

restorations often only deform. The development of ceramics bonded onto the 'tooth­

SUbstructure' accompanied the discovery that many dental porcelains and glass ceramics 

can be etched with hydrofluoric acid or other acids to create retentive channels similar to 

those in acid etched enamel. Termed resin-bonded, acid-etched ceramic restorations or 

RBC's, these ceramics present a more conservative approach than the use offull crowns. It 

has been shown that by resin-bonding a weaker, but etchable crown to the underlying 

dentine, the crown will exhibit superior fracture resistance to that of conventional alumina 
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or metal reinforced luted crown. 

Fracture toughness is an important criterion in ceramics that are intended for use as dental 

restorations, and is intrinsically linked to the microstructure of the material. Canasite 

(Ca5N84K2Sh2~(OH,F)4, a quadruple chain silicate, for which high flexural strengths of 

>200 MPa and high fracture toughnesses of> 5 MNm-312 have been reported (Beall, 1991), 

is being considered as a castable glass-ceramic, that should be easy to fabricate into a dental 

restoration. Previous researchers have reformulated fluorcanasite (synthetic form of the 

mineral canasite) to optimise its properties for dental restorations, but have not managed to 

produce an acceptable material (Anusavice and Zhang, 1998 and Stokes, 2003). CaF2, 

which acts as a heterogeneously nucleating agent in this system (Beall, 1983) is also 

associated with loss in chemical durability of the glass ceramic. Anusavice and Zhang 

made some modifications to the formuJation, but did not sufficiently increase the durability 

of fluorcanasite without compromising other properties. Similarly Stokes (2003) showed 

that the composition of 6OSi~-8Na20-7K20-15CaO-lOCaF2 had an increased chemical 

durability over the original formulations of fluorcanasite, but this increase in durability 

came at the expense of fracture toughness. The aim of the current work was therefore to try 

and identify canasite compositions for which both high fracture toughness and chemical 

durability could be obtained. Thus through the course of these studies reformulations of 

Stokes' more durable 60Si~-8Na20-7K20-15CaO-l OCaF2 composition have been 

attempted in order to increase the fracture toughness of the material. 
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Chapter 2: Literature Review 

2.1 Introduction 

In the year of the battle of Waterloo, the basis of artificial restoration was that the 

restorative dental material should replace its predecessor exactly. The obvious replacement 

of one tooth would, therefore be another of the same size and colour. The crowns of teeth 

removed from the victims of battle were subsequently fixed on to ivory bases by pinning, to 

make dentures for those wealthy enough to afford them. Although the dentures were 

superior in appearance to those, carved entirely from ivory or tusk, the teeth were far from 

permanent. They darkened and stained and frequently succumbed to dental decay. 

Alternative materials were sought to counteract this problem of putrefaction of ivory, bone, 

tusk or shell and it was Duchateau, a French chemist, who in 1776, first had the idea of 

using porcelain to replace both tooth and denture base. He made one denture successfully 

for himself. In 1788, Dubois de Chemant, a Parisian dentist, pursued and perfected the 

manufacture of mineraI teeth (MacCulloch, 1968). 

By the middle of the 20th century dental porcelains had evolved in such a way that the 

material was essentially a feldspathic glass, i.e. a potassium and sodium alumino-silicate 

glass, as distinct from porcelain which is a mixture of kaolin, feldspar and silica. In 1968, 

MacCulloch suggested that glass-ceramics, offering a combination of superior strength and 

translucency, might provide an alternative to dental porcelains. Industrial development of 

glass-ceramics was aimed at producing refractory crystalline or panially crystalline bodies 

at relatively low temperatures. The ceramic material, initially cast as a glass, is 

subsequently converted to a mechanically stronger, crystalline body. 

This chapter initially reviews the literature on glass ceramics; specifically the quadruple 

chain silicate canasite and then covers the properties required by a dental glass ceramic, re­

evaluates the current commercial glass ceramics and finally concentrates on how canasite 

can be developed as a dental restorative material. 
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2.2 Glass 

A glass is considered amorphous like a liquid, with no long-range order (no regularity in 

the arrangement of its molecules beyond a few linked molecular units). However, the glass 

structure is ofa more solid nature consisting of three-dimensional networks of covalent and 

ionic bonds giving rise to a reduced freedom of movement. For a melt to form a glass or for 
'vitrification' to take place the melt should be very viscous at temperatures close to its 

freezing point, generally in the region of 104 
- 106 Pa.s. For a melt that has been 

undercooled very quickly to a highly viscous state, it becomes energetically more 

favourable to form the solid bonds that result in the reduction of free energy to form a 

glass. The high viscosity of the molten glass limits the molecular mobility to the extent that 

perfect crystals do not form upon solidification. 
Common commercial glasses are non-crystalline silicates containing other oxides, 

notably CaO, Na20, K20 and Ab03. A typical soda-lime-silica glass composition is 
approximately 70 wtOlo Si~, which the remainder being made up ofNa20 (soda) and CaO 

(lime). Pure silica (Si<h) in crystalline form is a quartz mineral. the crystal structure of 

which is illustrated in Figure 2.1(a). Glass formed from molten silica has a network 

structure that is similar but highly imperfect as in (b), which is adapted from 'The Atomic 

Arrangement in Glass' (Zachariasen, 1932). The random network theory that was proposed 

by Zachariasen in 1932 suggested that the bonds remained in place but the angles and 
lengths may vary due to the random network. The basic idea was derived from the 

observation that mechanical properties of glasses are similar to those of crystals of the same 

composition. Hence Zachariasen concluded that the atoms in a glass are linked together by 

the same forces as in crystals. This led Zachariasen to propose a structure consisting of an 

extended three-dimensional network made up of well defined small structural units which 

are linked together in a random way. Zachariasen suggested a set of four rules for glass 
formation in an oxide AmOn, in order to obtain a random network: 

• Oxygen atoms are linked to no more than two atoms A 
• The oxygen co-ordination number is small (i.e., 2 or 3) 

• Oxygen polyhedra do share comers but not edges or faces 

• At least three comers are shared. 

Based on which, Zachariasen developed the following criteria for oxide glass formers 
(where A represents the cation and 0, the anion): 
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• A20 and AO do not meet the rules 

• A20 3, if oxygen atoms fonn triangles around each A atom 

• A02, A20 s if oxygen atoms form tetrahedra around each A atom 

• A03, A20 7 if oxygen atoms fonn octahedra around each A atom 

• A04 if oxygen atoms form cubes around each A atom 

Si02, Ge02, P20S, As20S and B203 are examples of such glass forming oxides. The 

temperature for glass forming can be lowered by adding Na20 , K20 or CaO. These oxides 

are called ' network modifiers ' because the metal ions involved tend to fonn non-directional 

ionic bonds with oxygen atoms, resulting in the creation of non-bridging oxygens (NBO ' s) 

in the structure as illustrated by Figure 2. 1 (c). 

Si 

(a ~ (b) (e) 

Figure 2.1: Simplified two-dimensional diagram of the structure of silica in the form of 

(a) quartz crystal, (b) glass and (c) glass with a network modifier. 

Every alkali ion creates one NBO. However, modifiers are not always oxides; they may 

be cations that are oxidised by fluorine. The resulting network gets loose and by decreasing 

the connectivity a larger flexibility of the structure is obtained and hence the thermal 

expansion coefficient, the fluidity (inverse of viscosity), diffusion, electrical conduction 

and chemical corrosion all increase with increasing modifier content. ' Intermediate oxides' 

are a third type of oxide that can take part in the glass-network. Their behaviour is in­

between that of a network-fonner and a network modifier, which do not form glasses 

themselves but act like glass fonners when combined with others. An example is Ah03, 

which directly substitutes for silica in the network as long as the extra negative charge can 

be balanced by a cation. 
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2.3 Glass-ceramics 

Glass ceramics are polycrystalline materials formed through the controlled 

crystallisation of glass. The first practical glass ceramics, materials prepared by the 

controlled crystallisation of special glasses, were developed nearly forty years ago. Since 
that time, a wide variety of applications of these versatile materials have developed as a 

result of their many outstanding properties and the distinct advantages of the glass ceramic 

method, in certain circumstances, over conventional ceramic processing routes. 

Of particular importance in many applications is the high uniformity of the 

microstructures of glass ceramics, the absence of porosity and the minor changes in volume 

during the conversion of glass into glass ceramic (usually only a few percent) ( James et ai, 

1997). Hot-glass-forming techniques such as pressing, blowing, spinning, rolling, and 

casting are used to rapidly produce a variety of articles, that are heat treated to give a glass 
ceramic. 

Crystallisation is the process by which the regular lattice of the crystal is generated from 

the less well-ordered glass structure. The two parts of the crystallisation process are 

nucleation and crystal growth. Nucleation may be homogeneous or heterogeneous. In 

homogeneous nucleation the first nuclei are of the same constitution as the crystals which 
grow on them, but in heterogeneous nucleation, the nuclei can be quite different from the 

crystals which are deposited. 
Inducing volume nucleation in melt-derived bulk silicate glasses, usually by the addition 

of nucleating agents, produced the original glass ceramics. A nucleating agent can be 

defined as a constituent added, typically in amounts of a few percent, which promotes 

volume nucleation and the production of a glass ceramic. Metallic oxides such as Ti02. 

zr02 and P20, are commonly used in silicate systems (James et ai, 1997). 

More recently, glass ceramic processing has been greatly extended to include non­
silicates and even non-oxide compositions, and to include the preparation of the precursor 
glasses by sol-gel techniques. Also the powder-processing route has developed in 
importance. In this method, fine glass powders (melt- or sol-gel-derived) are formed into 

bodies of desired shapes, densified and crystallised. Densitication may be achieved by 
cold-pressing and sintering or by hot-pressing and must be largely complete prior to 

crystallisation if low porosity is required. In this case nucleation probably takes place at the 

surfaces of the glass particles during sintering but the major part of the crystal growth 

occurs at a later stage to produce a 'bulk' crystallised product. 
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Glass ceramic microstructures are characterised by fine-grained, randomly oriented 
crystals with some residual glass but no voids, micro-cracks, or other porosity. Eight main 
g1ass-ceramic microstructures have been identified by Beall (1992): 

• Dendritic - Dendrites form when growth is accelerated in certain lattice 
directions or planes within a glassy medium. The dendrites form a three 
dimensional continuous path through the residual glassy matrix. 

• Ultra fine-grained - Tiny crystals of <looA are precipitated, usually achieved 
through the addition of nucleating agents. Crystal growth is slow, resulting in 
small grains and a translucent material. 

• Cellular membrane - When the developing crystal phase is slightly lower in 
silica than the bulk composition, a stable film of silaceous glass envelopes the 
impinging grains during crystallisation. 

• Relic - Heat-treating some phase-separated glasses above the annealing 
temperature causes droplets to become more fluid than the matrix. These droplets 
immediately crystallise but reflect the original droplet form. Hence the tenn 

relic, as the microstructure inherits and mirrors the original morphology of the 
parent glass. 

• Coast and Island - This microstructure is produced when an equilibrium crystal 
phase forms at the expense of a metastable assemblage of phases. 

• House of cards - A microstructure with randomly orientated flakes result in high 
fracture toughness and machinability, as fractures are either stopped or deflected 
by the flakes. 

• Acicular interlocking - A microstructure with interlocking rod or blade-like 
crystals generally results in high strength and toughness. Energy absorption 
occurs through crack branching and deflection due to the high aspect ratio and 
cleavage splintering. 

• Lamellar twinned - Lamellar or polysynthetic twinning is developed during 
growth or on cooling of certain silicate crystals. 

As a result of these unique microstructures, properties such as translucency, high 
strength, and very low and uniform thermal expansion can be routinely produced. Since the 
advent of these higher strength glass-ceramic materials, the use of glass-ceramics as a 
dental restorative material has become widespread. Although they are bio-compatible and 

offer excellent aesthetics, ceramics are mostly characterised by their refractory nature, 
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hardness, susceptibility to brittle fracture and chemical inertness. Thus the development of 

glass-ceramics for dental applications has been geared towards exploring stronger and 

tougher materials with hardness similar to that of enamel, to minimise the wear of resulting 
restorations and also wear of the opposing dentition. 

2.4 Canasite 

Canasite and its close relatives, frankamenite and f-canasite (see below) are chain silicates. 

Chain silicates are polymeric crystals in which single or higher order multiple chains of 

silica tetrahedra form the structural backbone. Natural jade provides an example of such a 

tough material, the interlocking and often acicular microstructure of which can be 
simulated in glass-ceramics. 

Three chain silicates, displaying a combination of high flexural strength (>200 MPa) and 
high fracture toughness (>3 MNm-3I2), have been identified as forming the basis of 

potentially useful and novel glass-ceramic systems. The first, enstatite (MgSi~), is a single 

chain silicate and a representative of the pyroxene mineral group. The second, potassium 

fluorrichterite (KNaCaMg,Si8~2F2), is a double chain silicate and a member of the 
amphibole mineral group (Beall, 1991). The third is canasite (K3Na3Ca,Sh203o(OH)2.!IFl.,), 

a quadruple chain silicate (Rozhdestvenskaya et ai, 1996). 

Being potentially very strong, tough, and potentially inexpensive, canasite is being 

investigated for potential applications such as memory disc substrates, architectural 

cladding and thin translucent panels. Studies have shown that heating rates and times for 

the casting and ceramming process can be undertaken in existing dental laboratory furnaces 

within a working day (Shareef et ai, 1998). The material is the subject of a number of 

studies as a promising all-ceramic restoration (Shareef et ai, 1998; Zhang and Anusavice, 
1999 and Stokes, 2003) 

Canasite is a rare mineral found in the Khibini mountains of the Kola Peninsula, Russia 
(Beall, 1991). It is described as monoclinic and translucent with two perfect cleavage 
directions at a 1180 angle, a splintery fracture, and a density of 2.71 g/cm3. The crystal 

structure has been determined in detail by Rozbdestvenskaya and Nikishova, (1996) and 

consists of four silicate chains running parallel to the b-axis cross-linked to form a tubular 

unit. These quadruple chains give the basic structural unit Sit2~o, a high SilO ratio for a 
chain silicate, and suggest glass-forming behaviour (Beall, 1991). 
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Thermal processing of glass-ceramic materials is based on a conventional two-stage heat 
treatment involving an isothermal nucleation stage followed by an isothermal growth stage. 
The magnitude of the crystal population density, for a given material and processing time, 
is dependent upon the efficiency of the heat treatment schedule. Beall (1991) claims that 
the canasite stoichiometry forms a stable glass requiring only a few per cent of excess 
fluoride to achieve efficient nucleation and that it is easy to produce an essentially 
monophase glass-ceramic. Internal nucleation is achieved through precipitation of CaF2 
crystallites and spherulitic growth of canasite upon these nuclei to give a fine-grained glass­
ceramic (Beall et ai, 1986). A highly acicular crystalline microstructure of interpenetrating 
blades produces strong and tough material. This material can be diamond-machined or 
ground and polished to extremely fine tolerances despite crystal lengths of several microns 
(Beall, 1991). Thus is currently being investigated as both a replacement for aluminium as 
a substrate for hard disk drives (poon & Bhushan, 1995) and also with some phosphate 
based additions as a bioactive bone replacement material (Miller et aI, 2000) and a dental 
glass-ceramic. 

2.4.1 Nucleation and crystallisation of canasite glass-ceramic 

As noted above it is believed that nucleation of canasite occurs through the precipitation of 
CaF2 crystallites, with the subsequent growth of canasite on these nuclei. Omar (1994) has 
suggested that an alkali silicate phase, devitrite (Na2Ca3S~016) forms at the same time as 
the CaF2, and these two phases then react together and with the residual glass lead to the 
formation of fluorcanasite. The growth of the canasite crystals is spherulitic. In a glass 
ceramic, these crystals do not precipitate in the entire glass mass simultaneously; at certain 
points nuclei first appear which then grow into the ambient melt (Hlavac, 1983). 

As noted above the nucleation of the CaF2 also determines the final microstructure of 
the glass-ceramic. Likitvanichkul and Lacourse (1995) showed that the F content of the 
parent glass is critical for the formation of canasite glass-ceramics. Fluorine is required for 
both nucleation by CaF2 and, since it is a constituent of canasite, it must also be available 
during the growth stage. 

2.4.2 Other phases 

Recently Miller et al (2004) have reported that, in most cases a mixture of canasite 
(JCPDS 13.0553) and canasite-A (JCPDS 45-1398) is present in canasite compositions 
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derived from the stoichiometric glass formulation . It has been found that canasite-A is in 

fact a different mineral to canasite, which although closely related, has been given its own 

mineral designation, frankamenite (Rozhdestvenskaya et ai, 1996), although the 

aforementioned JCPDS card still refers to the mineral as canasite-A. This high F-content 

canasite-like mineral was first reported from the pegmatites in South Yakutia, Russia 

(Lazebnik and Lazebnik, 1981). In a later paper (1996), Rhozdestvenskaya and Nikishova 

have compared the mineralogical and structural characteristics of frankemenite with 

canasite. The Yakutian mineral frankamenite (K3Na3Ca5Sh203o(OH)F3H20) occurs as 

semi-transparent, prismatic crystals of gray, lilac, blue or green colour. The mineral 

frankamenite differs from canasite by having a higher fluorine content. Rozhdestvenskaya 

and Nikishova (1996) believed that the high fluorine content is responsible for the orderly 

filling of the octahedra in the walls, which results in the lowering of the symmetry to 

triclinic. The 3D structures of both frankamenite and canasite can be seen in Figures 2.2 

and 2.23 . 

Figure 2.2: Structure offrankamenite with the tetrahedron representing Si and the 

spheres representing 0 (red), Ca (blue), F (yellow) and mixed Na and K sites (green). 
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Figure 2.3: Structure of canasite with the tetrahedron representing Si and the spheres 

representing 0 (red), Ca (blue) and mixed Na and K sites (green). 
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The crystal structure of frankamenite is composed of zigzag walls of Ca-Na octahedra 

joined together by infinite octogonal cross-section tubes of Si-O tetrahedra with the 

composition (SI2DJO) and are topologically similar to the canasite structure. The 

distribution ofNa and Ca atoms in the canasite and frankamenite structures has been given 

in Table 2.1 and Figure 2.4, which is a projection of the canasite structure along the 

elongated axis (Rozhdestvenskaya et ai, 1996). 

In the monoclinic structure of canasite the Na and Ca cations are ordered over the 

various octahedral sites. Two octahedral sites, M(l) and M(6) are occupied by Na+, M(4) 

and M(7) by Na + and Ca2+ cations and the rest by Ca2+ cations. Whereas in the triclinic 

structure offrankamenite, of the eight octahedral positions, M(l) is completely occupied by 

Na+ and M(2) completely by Ca2+ cations. M(3) and M(4) octahedral are isomorphically 

occupied by almost equal Na+ and Ca2+. The rest (M(5) to M(8)) can be occupied by Ca 

and Na cations approximately in the ratio 1 :2. The overall octahedral atomic composition 

was calculated to be Na3.14C14.86, which although slightly different from the average 

chemical compostion, was found to fall within the range of compositions found by 

microprobe analysis. 
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Table 2.1: The distribution ofNa and Ca atoms in the canasite and frankamenite structures 

Octahedral positions Frankamenite 

M(1) Na 

M(2) Ca 

M(3) Na, Ca 

M(4) Na, Ca 

M(5) Na, Ca 

M(6) Na, Ca 

M(7) Na, Ca 

M(8) Na, Ca 

Canasite 

Na 

Ca 

Ca 

Na Ca 

Ca 

Na 

Nth Ca 

Ca 

5r Sind 

o - Si. 
v -K 
@ - ~O : KI 
I!J . Ca., No, 

Figure 2.4: Projection of the canasite structure along the elongated ruds. Triclinic cell is 
shown by the thick line. I, n, ill, IV mark the four chains forming the Si 120 30 tube. M(l) 

and M(2) are alternately Na and Ca octahedral, while M(3) to M(8) are mixed Ca, Na 
positions. 

X-ray powder patterns of the two minerals are similar, except that there are twelve weak 

reflections in the high 29 region for frankamenite (Rozhdestvenskaya and Nikishova, 

1996). Previous work on the differentiation of these two phases (Miller, 2004; Stokes, 
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2003) has referenced these cards and found specific peaks for canasite to exist at 25 .3, 32.2, 

33.3, 37.8 and 43.4 °28 and for frankamenite to exist at 10.1, 21.1 and 29.5 °28. However 

the calculated XRD traces derived from the Inorganic Crystal Diffraction Database for both 

canasite and frankamenite (Figs. 2.5 and 2.6) indicate the opposite, for example, the greater 

intensity peak at 10.1 °28 is for canasite not frankamenite. 

Having noted this discrepancy, it is necessary to establish at the outset that the notation 

followed by this study will be that already established in the literature. The presence of 

peaks at 10.1, 21.1 and 29.5°28 shall be taken as evidence for the presence of the phase 

frankamenite. 

o 
.. 8 
j " 
3 .s 

o L 
o 

·Canulte- C.IINa4K2(SII2030)(OH)4- [CI2/ III)- ChlraaoY 

2 theta In d ...... 

Figure 2.5: Calculated XRD trace of canasite. 
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Figure 2.6: Calculated XRD trace offrankamenite. 

Unfortunately, the majority of the work prior to Miller et of (2004) published on 

canasite does not distinguish between the two types. Beall (1983) concluded that the 

predominant crystal phase developed in the stoichiometric compositions, through 

heterogeneous nucleation, was canasite as the X-ray powder diffraction patterns obtained 

were comparable to those from the naturally occurring minerals. Miller suggested that two 

individual sequences of nucleation and growth govern the formation of the two phases, 

with canasite heterogeneously nucleating in the presence of CaF2 nuclei and frankamenite 

homogeneously nucleating in its absence. 

Rastsvetaeva et af (2003) have further identified a high fluorine anaJogue of canasite 

which retains the monoclinic structure. The mineral called F-canasite, found to have the 

empirical formula of (CC4.sMno.4sFe2+o.os)K3Na3Sh203o(OH)1.2F2,8.nH20 by microprobe 

analysis, can also be claimed to be a monoclinic analogue of frankamenite. Jambor and 

Roberts (2004) have identified the F-dominant analogue of canasite as a new mineral 

awaiting approval by the Commission on New Minerals and Mineral Names, International 

Mineralogical Association. 
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2.5 Desired Properties in Dental Ceramics 

2.5.1 Mechanical requirements 

Some aspects of the intra-oral environment are listed in Table 2.2 (Kelly, 1997). The wide 
temperature range and pH shifts are of only secondary concern with respect to clinical 
survival of ceramic restorations. Any material replacing teeth should be able to withstand 
the maximum biting forces sustained during activities like clenching and grinding as well 
as chewing cycles. 

Table 22' Intra-oral conditions .. 
Forces measured during mastication 6-130N 

Maximum average bitin~ forces sustained 200-S00N 

Chewing cycles/day 1000-1400 

Temperature range 5-65°C 

pH range 0.5-8.0 

The International Standard IS06872:1995(E) for dental ceramics defines minimum 
values of flexural strength and maximum values of chemical solubility that potential dental 
ceramics must obtain. The values are dependent on the intended use of the dental ceramic 
within the mouth. Table 2.3 summarises these requirements where class 1 is a core ceramic 
which would be used for the fabrication of supporting structure for crowns, veneers, inlays 

and onlays, referring to materials which are intended to be layered and class 2 are those 
materials which are used for the fabrication of veneers, inlays and onlays without layering. 

Table 2.3: Physical and chemical property requirements (lS06872:1995) 

Property 
Requirement 

Class 1 Class 2 

Flexural Strength, MPa (minimum) 100 30 

Chemical solubility, 1l8cm-2 (maximum) 2000 100 
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The use of porcelain and glass-ceramics in restorative dentistry is increasing due to 

improved and new formulations and processing techniques, improvements in mechanical 

performance, and because of their abilities to mimic the appearance of natural teeth and 

maintain favourable aesthetics. However, their main shortcoming remains the low fracture 

toughness values associated with these materials. An exacerbating factor is the tendency to 

absorb only low quantities of strain energy, prior to brittle fracture, at a critical strain of 

about 0.1 % (Anusavice, 1996). This is brought about by the growth of subcritical size 

flaws to critical dimensions by the interaction of the oral fluids with residual or biting 

stresses. As a result they are relatively easily broken. Incisal and gingival (body) porcelains 

and glass-ceramics transmit biting forces directly from the contacting areas, while the 

opaque and aluminous core porcelains, being part of the substructure, transmit them 

indirectly. The development of the canasite is geared towards the production of a stronger 

dental ceramic, which will maintain the aesthetic standards of ceramics used anteriorly, as 

well as combine the strength required for posterior use. 

The strength of a material is the stress that is required to break that material. Brittle 

materials have low tensile & flexural strength because of their inability to plastically 

deform and reduce the tensile stress at flaw tips. This is true of all brittle dental materials, 

such as composites, cements, and ceramics. Fracture begins from a single location called 

the fracture origin, which is a discontinuity such as a flaw or a defect that has developed 

from mechanical, chemical or thermal processes that will act as a localised stress 

concentrator. Under a specific critical applied stress, the crack will initiate from these 

defect-sites and propagate catastrophically, leaving characteristic markings on the fracture 

surfaces. Crack growth may also occur subcritically. In brittle materials this usually occurs 

via chemical interactions. The time taken for subcritical crack extension governs the 

'fatigue' behaviour of the material. 

2.5.2 Aesthetic requirements 

The two main requirements for ceramic restorations are appropriate aesthetics and 

mechanical properties. The structure and how closely a restoration can match the 

translucent properties of a human tooth influence the aesthetics of a restoration. Dentin is 

more opaque than enamel and reflects light. Enamel is a composite layer over the dentin 

and is composed of tiny interlocking crystalline prisms or rods of hydroxyapatite cemented 

together by an organic matrix. 
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Figure 2.7: Reflection and transmission of incident light through the dentine and enamel 

(McLean, 1979). 
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The indices of refraction of the rods and the cementing substance are different. As a 

result, a light ray is scattered by reflection and refraction to produce a translucent effect and 

a sensation of depth as the scattered light ray reaches the eye. As the light ray strikes the 

tooth surface, part of it is reflected, and the remainder penetrates the enamel and is 

scattered. Any light reaching the dentin is either absorbed or reflected, to be again scattered 

within the enamel (Figure 2.7). Gingival colour would also be influenced by the gum and 

root dentine. 

In ceramic restorations bonded onto a ceramic-substructure, there is a reduced reflection 

from the alumina core, especially in the gingival areas thus giving a duller appearance in 

comparison to the natural tooth (Figure 2.8). 
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Figure 2.8: Reflection and transmission in aluminous porcelain crown (McLean, 1979) 
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High spots are produced on ceramics bonded to metal-substructure, due to high 

reflection from the porcelain-metal boundary (Figure 2.9). High reflection is undesirable 

since natural teeth seldom produce areas of high reflectivity. Translucent enamel reduces 

reflection but increases light transmission. 
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Figure 2.9: Light reflection and transmjssion in metal-ceramic crown (McLean, 1979). 
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Resin bonded ceramics (RBCs) consist of a thin shell of feldspathic porcelain or glass­

ceramic, bonded to tooth enamel using an acid etch technique. The approach focuses on 

conserving the tooth substructure, and hence, the reflection and transmission of incident 

light through the dentine and in some cases, the enamel, is unaffected giving a better 

aesthetic appearance than either the PICs or the PFMs (Figure 2.10). 
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Figure 2.10: Light reflection and transmission in a resin-bonded crown (McLean, 1979). 

2.6 Current commercial dental ceramics 

Conventional dental ceramics can be classified by type (feldspathic porcelain, leucite­

reinforced porcelain, aluminous porcelain, glass-infiltrated alumina, glass-infiltrated spinel 

and glass-ceramic), by use (denture teeth, veneers, inlays, crowns and anterior bridges), by 

processing method (sintering, casting, or machining and CAD-CAM), or by the 

substructure material. A broad categorisation can be achieved by considering the last of 

these, the substructure used to support the ceramic; (1) a ceramic substructure as in the case 

of the core-reinforced ceramics, (2) a metal substructure or (3) the ' tooth substructure', as 

in the case of the resin-bonded systems. Within this classification, various types of ceramic 

materials can be identified. 
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2.6.1 Ceramics bonded to ceramic-substructure 

Since the Porcelain Jacket Crown (pJC) introduced by Land in 1903, essentially a coloured 

feldspathic glass, various systems have been developed with higher percentage inclusions 

of alumina in the porcelain in an attempt to increase the strength. The alumina crystal size 

in the PIC (25 - 37 J,lm or 400 mesh) was selected for its economical and commercial 

reasons. However, PICs are only suited for anterior teeth because their strength is 
insufficient for posterior use (McLean, 1979). Typical fracture toughness values associated 

with these dental ceramics are up to 2MPam-312 (Bieniek and Marx, 1994). Development to 

improve conventional all-ceramic restorations has concentrated mainly on improving the 

crown's fracture resistance by producing a stronger core material. The Inceram Porcelain 

Core (lnceram, Vita Zahnfabrik, Bad Sackingen, Germany~ Vident Balden Park, CA, USA) 
permits the inclusion of a high proportion (85%) of crystalline material with reported 
strengths as high as 446 MPa (Seghi and Sorensen, 1995) and the Ceramic Jacket Crown 
(CJC) commercially called Techceram System, produced by (Techceram Ltd, Shipley, 

UK), in which a thin layer, O.lmm to 1.0mm, of alumina core is produced using a thermal 

gun-spray technique that results in a density of 80-90 % (Qualtrough, 1996). Alison (1999) 

indicates CICs for the construction of single crowns and a three-unit bridge, but no data has 

been reported on their longevity. 

In addition to alumina, other reinforcement phases developed include magnesia. O'brien in 

1985 suggested that materials which contain 40-60% magnesia would react with silica on 

heating to form fosterite (M82Si04). Zirconia has been added to feldspathic material in the 

past as a reinforcing phase in Mirage n (Myron Int. Inc., Kansas City) as short tetragonal 

whiskers in the same way that alumina had, resulting in flexural strengths of 70 MPa (Seghi 
et ai, 1990). InCeram Zirconia (Vita Zahnfabrik), a material with two crystal phases (6?oAI 

alumina and 33% zirconia), has been developed with reported flexural strength values of 
603 MPa (Seghi et ai, 1995). 

2.6.2 Ceramics bonded to metal-substructure 

Porcelain-fused-to-metal substructure (PPM) restorations were developed to overcome the 

problems of brittle fracture associated with all-ceramic crowns. In 1956, Brecker described 

the manufacture of crowns and bridges by fusing dental porcelains to gold alloys. Later, 

Weinstein et al (1962) tried to address the problem of thermal expansion coefficient 
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mismatch between porcelain and metal substrate, which continues to be a matter of 
concern; precious metals and nickel alloys have a higher coefficient of thermal expansion 
(14-15.7 x IO-6rC) (McLean and Hughes, 1965) than porcelain. This was overcome to a 

certain extent by mixing tetragonal leucite into the feldspar. It was shown that the 

expansion coefficient of dental porcelains is altered by mUltiple firings (Fairhurst et ai, 

1980), which can raise the crystalline leucite content of the ceramic, which in turn produces 
an increase in the thermal expansion of the porcelain. However, the leucite phase itself 
undergoes a displacive transformation reaction on heating above 400°C from a tetragonal to 
a cubic form with a resultant 1.~1O volumetric expansion and a change in expansion 
coefficient (Mackert et ai, 1986). 

To prevent debonding of the ceramic layer, a strong bond should exist between porcelain 
and metal (Piddock and Qualtrough, 1990). This bond must be capable of withstanding the 
interfacial shear forces generated during fabrication due to the differences in expansion 
coefficient and to the sintering shrinkage of the porcelain. A range of test methods has been 
utilised to determine the magnitude of the bond between porcelain and metal. Jones (1988) 
has correlated results from a number of studies and has highlighted the wide variation in 

bond strength data that exists, depending on the test procedures adopted. In fact there still 
remains the need for an appropriate standard test method for assessing porcelain-alloy 
compatibility. 

A further disadvantage of metal-based restorations is that, they are increasingly being 
shown to be a health risk, or are being perceived as unsafe (Dobson, 1999). A number of 
studies have looked at the factors affecting biocompatibility of the alloys used. Nickel­

containing alloys such as nickel-chromium, used for porcelain bonded to metal restorations, 
are seen as dangerous due to allergic reactions and gold alloys because of their copper 
content. 

2.6.3 Resin-bonded ceramics 

The development of ceramics directly bonded onto the 'tooth-substructure' accompanied 
the discovery that many dental porcelains and glass ceramics can be etched with 
hydrofluoric acid or other acids to create retentive chaMels similar to those in acid etched 
enamel. Termed resin-bonded, acid-etched ceramic restorations or RBCs, these ceramics 
present a more conservative approach than the use of full crowns. It has been shown that by 
resin-bonding a weaker, but etchable crown to the underlying dentine, the crown will 

exhibit superior fracture resistance to that of conventional alumina or metal reinforced luted 
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crown (potiket et aI, 2004). These RBC's, as stated before, provide considerably better 
aesthetics than the PICs or PFMs. 

Leucite-reinforced porcelains are feldspathic porcelains reinforced with leucite crystals, 

which have been developed for use as resin bonded restorations. Optec HSP 
(Jeneric/Pentron, Wallingford, CT USA) is an all ceramic restoration based on this system. 
The tetragonal leucite (KAlSh06) in the glass matrix is as high as 45% leading to a high 
coefficient of thermal expansion of 18xl0-6/°C (McLean and Hughes, 1965). The opacity 

present in the body and incisal eliminates the need for the core layer. Due to shrinkage, the 
fit is not as good as that of the PPM croWDS. The material has a moderate flexural strength, 
but has the potential to break when used in the posterior region (Denry et aI, 1998). 

IPS Empress (lvoclar / Vivadent, Amherst, NY, USA or Schaan, Liechtenstein), a pre­

cerammed glass-ceramic, is similar to the Optec HSP system, but with a much higher 
content of leucite crystals (Denry et aI, 1998), that increases the resistance to crack 
propagation or fracture. This is a hot pressed or injection moulded glass-ceramic. The 
leucite undergoes a crystallographic transformation from tetragonal to cubic, with a high 
coefficient of thermal expansion (1itI2SxlO-6rC from room temperature to 625°C). However, 

the high-temperature cubic form exhibits a low coefficient of thermal expansion (-3xl0· 
6rc from 625°C to 900°C). The final crown is then stained and glazed. These hot-pressed 
ceramics have a good fit and adequate aesthetics, but also have the potential to fracture in 

the posterior region (H6land et aI, 2000). 

Lithium dinlicate and apatite have been used as reinforcement in a new composition, 
IPS Empress n (lvoclar Vivadent, Schaan, Liechtenstein). H6land et al (2000) suggest the 
application of Empress II for areas where high stresses are induced (e.g. for posterior 

croWDS and for three unit bridges) but have conducted no fatigue tests to prove their claim. 

More recently the Procera AU-Ceram system (Nobel Biocare, Gotenborg, Sweden) 
(Alison, 1999) has been introduced which consists of 99.9010 high-alumina. Clinical 
evaluation of this material shows a very favourable outcome of 4.5% cumulative failure 
rate, suggesting all-ceramic restorations can compete with ceramometal restorations, even 
in posterior tooth replacement (Naert et ai, 2005). The most recent core materials for all 
ceramic restorations are the yittrium tetragonal zirconia polycrystals (Y -TZP) based 
materials like Cercon (Denstply Ceramco, Burlington, NJ), DCS-Precident DC-Zirlwn 
(Dentsply Austenal, York) and Lava (3M ESP£, S1. Paul, Minn) with flexural strength 

values of 900-1200 MPa and associated fracture toughness of 9-10 MNm -312 (Raigrodski, 

2004; Tinschert et ai, 2001 and Christel et aI, 1989). The resin bond to silica is well 

documented, however, the few available studies on resin-bonding to zirconium oxide 
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ceramics suggest the use of resin cements that contain special adhesive monomers (Blatz et 

aI, 2003). Compared with silica based ceramics, the number of in-vitro studies on the resin 

bond to high strength ceramics is small. 

Although resin-bonded ceramics have performed better than many materials scientists 

had predicted, their use in the posterior region has been limited due to fracture toughness 

and strength constraints. RBCs that have been indicated for posterior use, like the IPC 

Empress IT, require specialist techniques and equipment, leading to higher costs, whereas 

the methods of fabrication of high strength Y -TZP ceramics still need to be optimised 

(Luthardt et aI, 2003). Bearing in mind the excellent aesthetics, and the lack of a cost 

effective, metal-free restoration, experimental glass-ceramics that are easy to fabricate, 

specifically the chain-silicates considered here, have great potential in restorative dentistry. 

2.6.4 Mechanical properties 
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Figure 2.11 : Fracture toughness values (Klc) of some dental materials taken from Seghi et 

aI, 1995; Thompson et aI, 1996; Rosenstiel et ai, 1989; Mueller, 1991 ; H61and et ai, 2000; 

Gorman et ai, 2000; Beall et ai, 1986, Xu et ai, 1998 and Attar, 2001 . 
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The development of dental ceramics over the past two decades has been geared towards 

manipulative tailoring of the microstructure. All new dental ceramics that have 

microstructures that include a crystalline phase in a glassy matrix inhibit crack propagation 

by: (1) pinning the crack between the particle and glassy matrix, as in the alumina 

reinforced porcelains (Kelly, 1997), (2) residual stress fields caused by the difference in 

thermal expansion of glass and crystalline phase (Morena et ai, 1986), (3) residual stress 

fields caused by phase transformations, as in the case of leu cite (Seghi et ai, 1995) and (4) 

the refinement of the crystal sizes in the glassy matrix, as seen with lithium disilicate in 

Empress n (HOland et ai, 2000). Mechanical properties of dental ceramics tested 

conventionally are flexural strength, fracture toughness and fatigue strength. 

Figure 2.11 compares the values of the fracture toughness, Klc obtained for current 

ceramic systems as well as the experimental material, canasite. The figures, although 

dependent on the test method, show higher fracture toughness values for Empress II, the 

lithium disilicate heat pressed ceramic (> 3 MNm-312
) and very promising results for 

canasite (> 4 MNm-312
). A value for enamel has been included for comparison, however a 

single fracture toughness value for enamel is difficult to determine due to the anisotropic 

nature of the rods. 

Table 2.4: Reported flexural strength values of some dental materials. 

Dental Reinforcing 
Material Component 

iJPS Empress Leucite 

IPS Empress 2 Lithium 
disilicate 

'llJcor Fluormica 
Vita InCeram Alumina 
opc Leucite 

Vita Marie II Sanidine& 
n~heline 

Canasite Canasite 

-Johnson et oJ, 1998b 
d Gonnan et ai, 2000 
• Thompson et ai, 1996 

Flexural strength (MPa) 
3-point flexure 

test 
126 ± ISD 

112 ± 1<1 
400±4~ 

b Dong et ai, 1992 
• Giordano et ai, 1995 

4-point bend Biaxialflexural 
test strength 

120.1 ± 20.Sc 
134.4 ± I LSd 

107.8:i: 8.se 

236.2 ± 21. ge 

139.1 :i: 14.3c 

IS3.6:i: 17.8d 

84±61 

261.4 ± 21.1· 

o Cattell et ai, 1999 
r HOland et ai, 2000 
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Table 2.4 compares results of tlexural strength quoted in studies carried out in some 
commercial systems over the past 10 years. The spread in the results obtained from 
different studies, on the leucite reinforced materials, IPS Empress I and OPe, demonstrates 
the effect of test operator variance. 

2.7 Development of canasite as a dental ceramic 

The stoichiometric canasite glass composition as stated by Beall, 1983 (ie. 6OSi~-
10Na20-5K20-15CaO-IOCaF2) was said to result in a Klc of 5 MNm"312 (see Figure 2.10). 

However in the patent of 1983, Beall lists various compositional variations to the above 
stated and it is unclear as to which one is associated with the high Klc value. Fluorcanasites 

have been synthesised from glasses with general formula Ca5Na...xK2+xSh2<noF .. where I ~ 
x ~ o. Van Noort et al (1997) have shown that these glass-ceramics have potential as a 
restorative material for crowns and inlays. Anusavice and Zhang (1998) used a base glass 

composition of 58.36Si02-8.26Na20-9.19K20-16.83CaD-7 . 36CaF2 which gave them a Klc 
value of 2.7 ± 0.1 MNm"312. They investigated the addition of alumina to the batch in an 

effort to increase chemical durability but found additions of ~ 2 wtOlo reduced the 
mechanical properties. Stokes et al (200 I) have suggested that the ISO test for solubility 
gave large variances in the result. Stokes (200 1) suggests that the residual glass within the 
glass-ceramic may be the cause of the high chemical solubility oftluorcanasite and thus the 
ways of reducing solubility in conventional glass systems could be considered. These 
include raising the Si or Ca content of the glass to inhibit alkali diffusion. Systematic 

additions of Si02 and AlPO .. have been noted as reducing the solubility of tluorcanasite 

from 2359 to 624 ~gcm"2 (Bubb et ai, 2004). Beall (1983) reports that the addition of 
zirconia decreases solubility but increases opacity, which may be acceptable if tluorcanasite 
is to be used as a high strength core material. Alternative nucleating agents to CaF2 may 
also exist, although the formation of canasite seems to be dependent on tluorite being 
present within the glass. A low solubility glass composition, suitable for dental 
applications, has been identified by Stokes et al (2001).They examined a series of glasses, 
6OSi~-(y-15)Na20-y~0-15CaO-l OCaF2 where 0 ~ y ~ 15, and found that the solubility 
varied with the alkali content. exhibiting a minimum value at a [K]/[K+Na] molar ratio of 
7115. The mechanism for the dissolution of the tluorcanasite was thought to be based upon 
a Na + and W /lhO+ exchange on the surface, followed by the formation of a silica gel layer 
that then sloughs away. 
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Unfortunately, this increase in chemical durability was associated with inferior 

mechanical properties than those previously reported for canasite based glass-ceramics. 

Any future development of this glass-ceramic would have to start with the low solubility 
composition with the aim of improving the mechanical strength. 

1.8 Dental Material Testing 

2.8.1 Crystallisation studies 

The properties of glass ceramics depend on the types and amounts of crystal phase formed 

and on the composition of the residual glass. Thus the determination of the degree of 

crystallisation and the investigation of the transformation of the parent glass in glass­
ceramics is very important. 

A number of techniques have been employed for the determination of the crystal content 

of the glass-ceramics. The most common and well established technique is X-ray 

diffraction. XRD has been combined with electron microscopy in several studies to 

determine the phases present in crystalline material (Kim et ai, 1989; Strnad, 1986; lames 

et ai, 1997). However, these techniques are accompanied by experimental difficulties and 

can be time consuming when C&rI)'ing out quantitative studies. In addition to this, 

Karamanov and Pelino, 1998, have suggested that the associated experimental error is up to 
1 ()oA,. In some cases, the result of the crystallisation process may result in modification of 

properties, which lends itself to indicate the transformation or degree of crystallisation 

affects these. The properties that have been measured to assess the extent of crystallisation 

include changes in viscosity and electrical resistivity, thermal expansion coefficient and 
density (Karamanov and Pelino, 1999). 

2.8.2 Mechanical strength testing 

Flexural strength, transverse strength, or modulus of rupture, as this property is variously 

called, is essentially a strength test of a bar supported at each end, or a thin disk supported 

along a lower support circle, under a static load. The strength testing of brittle materials is 

complicated by the flaw sensitivity of the materials leading to a statistical distribution of 

strengths. In addition the tests that can be conducted relatively simply usually have a more 
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complicated stress distribution. Thus for example, the flexural test is a collective 
measurement of tensile, compressive, and shear stresses simultaneously; however, for 
sufficiently thin specimens, failure is usually dominated by the tensile stress that develops 
along the lower surface. For brittle materials such as ceramics, flexure tests are preferred to 

the diametral compressive test because they more closely simulate the stress distributions in 
dental prostheses such as cantilevered bridges and multiple-unit bridges (Anusavice, 1996) 
and there is widespread use of flexure tests for current commercial and experimental 
systems. 

Fracture toughness is a mechanical property that describes the resistance of materials to 

the catastrophic propagation of the flaws under an applied stress. Strength is related to 
toughness via the flaw size and the higher the ductility (total plastic strain), the greater the 

toughness. For brittle materials such as dental ceramics, strength values are of limited value 
in the design of ceramic prostheses. Small defects (porosity and micro-cracks) are 
randomly distributed in location and in size throughout a ceramic, causing large strength 
variations in otherwise identical ceramic specimens. Furthermore, surface flaws caused by 
grinding, such as from coarse-grit, medium-grit, or fine-grit diamond particles, can greatly 

weaken a ceramic, especially in the presence of tensile stress in the area of these flaws. The 
strength is inversely proportional to the square root of the depth of the flaw into the surface. 

A better design criteria is the fracture toughness which is a material constant and thus 
independent of crack size (Mecholsky, 1995). 

A number of techniques have been developed which all aim at determining the fracture 
toughness of ceramics. One group of techniques is based on conventional fracture 
mechanics using notches and secondarily induced pre-cracks (compact tension, CT; double 

cantilever beam, DCB; singie-edge-notched-beam, SENB; single-edge pre-cracked-beam, 
SEPB and chevron notch, CN) (Scherrer et ai, 1998). A second group of techniques is 
based on the sharp-indenter approach, introducing diagnostic micro-cracks by Vickers or 
Knoop indentation [indentation fracture (IF), (Evans and Charles, 1976) indentation 
strength (IS) (Chantikul et aI, 1981) surface crack in flexure (SCF) (Quinn et al. 1996)]. 

Conventional fracture mechanics procedures are afflicted with a number of inherent 
difficulties such as (1) minimising the notch tip width (SEND). (2) detecting stable (i.e. self 
limiting) crack-growth (CN, CT), (3) keeping control and measuring the length of the pre­
crack (SEPB), (4) mastering specimen preparation (CT), and (5) controlling the 

environment (temperature; humidity). As an alternative to conventional fracture toughness 
tests, the indentation fracture technique has been established as a procedure suitable for 

approximate detenninations of Kill for brittle materials. An accuracy of 1 ()oAI can be 
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obtained when Young's modulus (E) is known, or 30% when E is unknown (Evans and 

Charles, 1976). The indentation strength technique (IS) as described by Chantikul et al 

(1981) is a two step technique that requires (1) the introduction of a flaw by micro-hardness 

indentation and (2) controlled fracture in either a bend test (bars) or a biaxial flexure test 

(disks). There is no need to determine the initial size of the flaw. The crack will extend in a 

stable manner during the subsequent fracture test until it reaches a critical size at which 

point catastrophic failure will occur (Chantikul et ai, 198]). The addition of a specific 

residual stress intensity factor term into the strength! toughness formulation overcomes the 

systematic error inherent to all indentation techniques which do not adequately account for 

residual stress fields. Reportedly, the IS method is insensitive to post-indentation radial 

crack extension (Chantikul et aI., 1981). In most studies on dental ceramics reported in the 

literature, Klc was determined using the IF technique. This method requires only small 

specimens and is fairly simple to apply (Morena et aI. , 1986; Rosenstiel and Porter, 1989, 

Anusavice and Lee, 1989; Seghi et aI. , ] 995; Denry and Rosenstiel, 1993). A comparison 

between the indentation fracture (IF), indentation strength (IS) and the single-edge V­

notched beam test (SEVNB) was conducted by Scherrer et ai, ] 998, in which was 

concluded that all three methods agreed within 10%. In a paper evaluating the effect of test 

method on the fracture toughness of canasite glass-ceramic, Beall (1986) found that IF 

method gave significantly lower Klc values of approximately 1.5 MPaml12 compared with 

4.48 ± 0.31 MPam~ from SENB method. 
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Figure 2.12: Geometry ofPalmqvist and Radial/median cracks around Vickers indentation. 
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In an evaluation of various indentation toughness equations for glass ceramics, Ponton & 

Rawlings (1989) suggest Klc = 0.0824 P/C312 gives results that are most in line with other 
materials, assuming the cracks are of the radiaVmedian type. Although they found that this 

equation has given values of KIc lower than 25% compared with other equations, it was 
found to be most reliable when correlating and ranking results obtained on different 
materials 

2.8.3 Chemical Durability 

The reactions which occur during glass-ceramic dissolution have been likened to those 

which occur in glasses (Stokes, 2003). When a glass is immersed in an aqueous solution, 
reactions which occur commonly are known to be uniform dissolution, ion exchange and 
hydration (Koenderink et ai, 2000). Glass composition, temperature and solution pH 
determine the relative rates of these reactions (EI-Shamy et ai, 1972). At a high pH (>9), 
uniform dissolution of the glass is favoured, whilst ion exchange is suppressed. At low pH 

«9), ion exchange prevails over uniform dissolution. El-Shamy et a/ found that the 
reaction rate of ion exchange was proportional to the square root of time, which they 
suggested implied that the reaction was controlled by diffusion of the exchanging cations. 

Leaching is usually described in terms of the exchange ofW or 1iJ0+ and alkali cations. 

Sinton and Lacourse (2001) have described the two stages generally thought to occur 
during the dissolution of glass. The rust stage is an exchange at the glass surface of an 
alkali (or possibly alkaline earth) atom in the glass with a hydrogen atom in the water 

through the reaction: 

The surface of the glass becomes depleted in alkali, and a silica-rich layer may form. The 
changes in the solution depend on: (1) whether or not the aqueous system is closed or open; 
and (2) the surface area of glass exposed to the solution. In a closed system, the solution pH 
increases with the addition of Off, which can then attack the Si~Si bonds to dissolve 

the silica in the glass through a second reaction: 

(Si-O-R)sJua + Off ~ (Si-OH) ..... + (Si-O")aolutiOll 
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The rate of the dissolution increases with increasing pH, so dissolution accelerates with 
time in a closed system. In an open system, the solution pH does not increase and 
dissolution of silica dissolution may not occur. Lanford et al proposed the idea that the 
H30+ ions are the exchanging species. 

As previously stated ISO states that ceramics for use in the mouth that have exposed 
surfaces (i.e. class 1, Table 1.3) should have a chemical solubility ofless than 100 Jig Icm2 

, 

and materials which are not in direct contact with oral tissue (class 2, Table 1.3) should 
have a solubility of less than 2000 Jig Icm1

. These figures are obtained by means of an 
accelerated solubility test, which immerses samples of specific geometry in 4% HAc 
solution at 80DC for 16 hours. 

Various research to date has focussed on improving the solubility of tluorcanasite. As 
previously mentioned, Anusavice and Zhang (1998) tested the effect of adding alumina to 
the flit before casting and results of 2170f.'g/cm2 (2% alumina) and 790J,1g/cm2 (5% 
alumina) after 16 hours in 4% acetic acid were reported. The addition of more alumina (up 
to loo",;,) significantly reduced the chemical durability of the material. Anusavice and Zhang 

attributed this to phase separation during heat treatment of the glass. Stokes (2003) varied 
the alkali content and found a minimum solubility of 650)1g/cm2 with variability between 
the discs of ±198 ~g/cml (using the ISO 6872 test) for canasite glass-ceramic. This was 

achieved with a glass composition of 6OSi02-8Na20-7K20-15CaO-l OCaF2. Although there 
was a decrease of 73% over the original formulation (Stokes 2003), it was still not 
acceptable as a dentine replacement material. It was suggested during this research that the 
existing ISO standard chemical solubility test for dental ceramics, did not produce very 

reproducible results and a new bead test was proposed which offered reduced variability. 

2.8.4 Dental Material Processing 

Glass ceramic restorations can be processed by casting as in the case of Dicor 
(K~SS401OF2)' by hot pressing like the Empress systems (leucite or lithium disilicate) 
or by machining of porcelains or pre-crystallised glasses. Johnson et 01 (1998b) have shown 
canasite glasses to have good castability at 1200°C. However the composition has been 

varied considerably and Stokes, 200 1 found that casting might not remain a viable 
processing route for compositions examined more recently. 

With the advent of computers and increased understanding of ceramics in dentistry, 

computer aided design and manufacture (CAD-CAM) has found its way into dental 
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processing. Calamia (1994) claims that the chair-side Cerec system is the most successful 
of the CAD-CAM systems. Most CAD-CAM systems in the dental field use diamond 
tipped tooling and dental porcelains based on leucite (K2AhSi4012) as the ceramic material. 
The leucite phase is hard and has been associated with wear of the tool as well as of the 
opposing teeth during clinical use (Henry and Hill, 2003). Dental porcelains and Dicor 
MGC intended for CAD-CAM are prone to edge chipping during machining (Sindel et ai, 

1998). In addition to this, the dental porcelains and Dicor MGC lack sufficient fracture 
toughness for many applications, with values in the range of 1.0 - 1.4 MNm-3

1'2 (Graf et ai, 

1996). Luthardt et al (2002) have found that the grinding associated with CAD-CAM 
significantly reduces the strength and fracture toughness (a 50010 reduction) of yittria­
stabilized tetragonal zirconia polycrystals (Y-TZP). Therefore, there is a need for a material 

that can be CAD-CAM machined and have high fracture toughness, which canasite could 
fill. It would also be beneficial if the material could be resin-bonded to the underlying tooth 
structure. 

Various parameters have been suggested to 'measure' machinability, such as tool wear, 

surface roughness, cutting force, cutting energy, drilling rates etc (Baile et ai, 1995). These 
parameters depend on the microstructure and properties of the glass ceramic. Boccaccini 
(1997) has suggested that there is a relationship between the machinability and the 
brittleness of glass ceramic materials. He showed that machinability parameters such as the 
slope of the log-log plot of the specific cutting energy versus the cutting rate, or the specific 
cutting energy at low cutting rates, are in good agreement with the brittleness indices for 
seven different glass ceramics. It was found that in order to be machinable, the brittleness 
index of a material (given by the ratio of the hardness to the fracture toughness) should be 
lower than 4.3 J.1m-'>\. 

2.9 Main Findings 

Canasite glass-ceramics have significant potential to be developed as a dental restorative 
material. Canasite has considerably higher reported values of fracture toughness and 
flexural strength compared with other resin-bonded ceramics. Thus if developed as a dental 

restoration using accepted dental laboratory practice, would fulfil the demand for a tougher, 
tooth-coloured, inexpensive dental material, which is biocompatible. 

A low solubility fluorcanasite composition has been identified, but his has resulted in a 

compromise in the mechanical properties. There is a need to modify fluorcanasite to 
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increase its strength whilst retaining its durability, by refinement of the microstructure. This 
may be undertaken by assessing the mechanisms involved during crystallisation, the effect 
of varying compositions, melt durations and heat-treatment schedules on the phases 
present. Fracture toughness has been shown to be a good initial parameter to test the 

mechanical properties of glass ceramics intended for use as a restorative material. 
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Chapter 3: Materials Processing and Methods 

3.1 Introduction 

In previous studies at the University of Sheffield on fluorocanasite fonning glasses derived 

from the stoichiometric composition 1 ONa20-5K20-15CaO-l OCaF2-60Si~ work has 

concentrated on producing a more chemically durable fluorocanasite composition (Stokes 

et al, 2000). It was initially decided to base the glasses studied in this work on these low 

solubility compositions identified by Stokes et al. In these compositions 0.45 ~ [K]/[Na+K] 

~48. 

It was important to establish, at this initial stage, the experimental protocol- melting 

procedure, the phase analysis and the mechanical tests that could be used for these starting 
compositions and repeated for any future studies. Reproducibility was most important when 

it came to the melting schedule. Fluorine loss as NaF and SiF4 is a known problem during 

melting of these glasses (Likitvanichkul and LaCourse, 1995) thus a suitable schedule, 

which minimised fluorine loss while producing a homogenised clear glass had to be 
identified. 

In dealing with these preliminary issues, this chapter first tries to establish the glass melting 

procedure and then will discuss initial compositional variations. 

3.2 Experimental Procedure 

3.2.1 Glass melting 

The glass melt procedural studies were carried out using the low solubility composition of 

7Na20-8K20-1SCaO-lOCaF2-60Si~ referred to as K8. Batch composition was calculated 

to produce approximately 200g of glass, assuming complete decomposition and no losses. 

The source ingredients, Loch Aline Sand (high purity silica) and Fisher Scientific Reagent 

Grades of sodium carbonate; potassium carbonate; fluorite and calcium carbonate (all 

99010+ pure), were hand mixed to break up agglomerated clumps and to produce a 

homogenised powder. 
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The batch was melted in a zirconia grain-stabilised platinum crucible at 1350°C in a SiC 

element electric furnace. The batch was filled up to 4 em from the crucible lip to prevent 

overspill into the furnace. Any remaining batch was added to the crucible after 10min, but 

in most cases one charge was sufficient. The first 10 minutes of the melt were monitored to 

check for excessive bubbling which could lead to any spills. Previous studies had proved 

that the temperature of 1350°C had produced clear glasses that were suitable for pouring. 

To assess the effect of melt duration on the crystallisation of canasite, the melt duration 

was varied from 1 ~ hrs to 6hrs (Table 3.1). The first hour of the melt was static to allow 

initial batch reactions to occur. After this the melts were stirred for the subsequent duration 

at approximately 60 r.p.m. using a platinum paddle attached to a mullite rod which in tum 

was attached to a motor. Occasionally, either during the stirring process, or when removing 

the rod, the edge of the paddle would catch the side of the crucible and the assembly would 

fail. This led to the paddle dropping into the crucible and the glass being contaminated by 
the cement that was used to attach the paddle to the mullite rod. These melts were 
abandoned. 

e . : etmg c u es. Tabl 31M I . S hed I 

Glass 
Melt Duration (mil!l 

Static Stirred Re-melt Total 
K81 60 30 - 90 

K82 60 105 - 165 
K83 60 180 - 240 

K84 60 240 - 300 

K85 60 300 - 360 

K86 60 30 60 150 

The final melt was poured onto a pre-heated steel plate to produce a glass plate, 

approximately 150 mm by 70 mm and 8 mm thick (Figure 3.1). The glass was then 

annealed 550°C for 1 hour with a cooling rate of 1°C per minute in a muffle furnace. Tg 

(glass transition temperature) was determined using differential thermal analysis (see 
below). 
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Figure 3.1: Molten glass being poured onto plate. 

A separate run of the batch was poured into water (temperature 21°C) to form frit after 

Ihr static and Y2 hr stirred (Figure 3.2). The glass was captured in a nickel-chromium wire 

basket and the frit was re--melted in the zirconia grain-stabilised platinum crucible at 

1350°C for an hour and recast onto a steel plate to judge whether this affected the 

homogeneity of the glass. This glass was called K86. Through previous attempts it was 

found that the glass required an hour long re-melt to rid it of any trapped air bubbles. 

Figure 3.2: Fritting 

3.2.2 Differential Thermal Analysis 

Differential thermal analysis (DT A) was used to detennine the glass transition temperature, 

Tg and crystallisation temperature, Tc (Figure 3.3). If a glass melt is cooled so fast that the 

solidification reaction was not to occur, the melt would contract at the same rate but 
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continue under the freezing point. At a degree of undercooling, the rate of volume changes 

to a rate very similar to that of a crystalline solid. This point is said to be the glass transition 

temperature 'Tg' . This is a second order reaction indicated on the DTA by a change in 

differential, probably brought about by a rate of change of energy related to temperature 

change as opposed to the large volume change of crystallisation indicates a state of much 

greater order being realised, thus leading to an exothermic peak in the trace. 

Tg 

400 500 600 700 800 

Temperature (DC) 

Figure 3.3: DTA trace with calculation ofTg and Tc 

The samples were crushed using a percussion mortar, ground and then passed through a 

45J..lm sieve. The process was repeated until all the powder passed through the sieve.DTA 

measurements were carried out on a PerkinElmer PYRIS Diamond analyser. Fired Ah03 

powder was used as a reference phase. O.lg of sample and of the reference powder was 

used. The samples were heated in covered platinum crucibles at 5°C/min to 820°C in air. 

3.2.3 Crystalline Phase and Microstructural Analysis 

Scanning electron microscopy (SEM) was carried out on both the glasses and glass 

ceramics, using either CamScan or Jeol 6400 scanning electron microscopes to analyse the 

microstructure. The samples (10 x 1Omm) were resin mounted and prepared by sequentially 

grinding with 120, 400, 800 and 1200 grit SiC grinding papers, and then sequentially 

polishing with 6, 3 and 1 J..lm diamond paste, giving an optical finish . The samples were 

etched using 5% HF in water for 25 seconds. AJI the specimens were either carbon-coated 

using an Edward's evaporation unit or gold-coated to prevent charging. Energy dispersive 

X-ray analysis was carried out on some of the samples using the Cam Scan, in order to 
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obtain an elemental analysis of the different phases. Optical microscopy was undertaken on 
the ground and polished samples, etched using 5% HF in water for 25 seconds. 

Crystalline phase analysis was undertaken using powder X-ray diffiaction. 
Diffractometers used were Philips PWI050 and Siemens D500 with CuKa radiation ().. = 
1.5406A) and an accelerating voltage of 50 kV between 29 values of 10-60°, using a step­
scanning technique with a fixed step size of 0.02° and a rate of2°/min. 

X-ray diffraction takes advantages of the coherent scattering of xrays by polycrystalline 
materials to obtain a wide range of structural information. The X-rays are scattered by each 
set of lattice planes at a characteristic angle, and the scattered intensity is a function of the 
atoms which occupy those planes. Only a small range of x-rays are widely used for 

diffi"action. In this case CuKa radiation (/.. = l.S406A) was used. Inside the X-ray tube, 
there was a 50,000 volt difference between a tungsten filament and a copper target. 
Electrons from the filament were accelerated by this voltage difference and hit the copper 
target with enough energy to produce the characteristic x-rays of copper. The radiation is 
monochromatised by a graphite crystal mounted just ahead of the scintillation counter. The 

9 compensating slit collimates the x-rays before they reach the sample. The sample 

chamber is where the sample is held. 
The ceramics were crushed and ground using a percussion mortar, then ground to 

powder using a silica pestle and mortar and passed through a l00J..l.l1l sieve. These were then 
mounted on sample holders and placed in the sample chamber. The collimated x-rays enter 
the chamber and hit and scatter from the sample. When certain geometric requirements are 
met, x-rays scattered from a crystalline solid can constructively interfere producing a 
diffracted beam. In 1912, W.L. Bragg recognised a predictable relationship among several 
factors: 

nA=2dsine. 

where).. is the wavelength of the x-rays, d is the d-spacing or the distance between similar 
atomic planes in a mineral and 9 is the angle of diffraction. This is known as Bragg's Law 
and forms the basis of X-ray diffraction. 

The diffi"acted beams were detected by the scintillation counter which was mounted on 

the goniometer. The goniometer is motorised and moves through a range of 29 angles. For 
practical reasons the diffi'actometers measure the angle twice that of the 9 angle. Hence the 
measured angle is called 2e. Characteristic X-rays were acquired using a pentafet detector 

and a beryllium window to give results. 
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A diffiaction pattern records the x-ray intensity as a function of 29 angle. All the 

diffraction patterns produced in this research were prepared as step scans. To run a step­

scan, once the tube voltage and current are specified, the parameters entered include a 

starting 29 angle, a step size, a count time per step and an ending 29 angle (as stated 

above). The resulting diffraction patterns were analysed using JCPDS cards and the STOE 

WinXPOW programme (version 2.0 C STOE & CieGmbH, Hilpertstr.lO, D 64295, 

Darmstadt). 

3.2.4 Fracture Toughness 

In light of the spread of data and the variety of tests used to assess the fracture toughness of 

dental ceramics; the accuracy, scatter and inter-examiner reproducibility of results depend 

strongly on the procedural approach, the test parameters used and the conditioning of the 
specimen. 

Fracture toughness was measured using Vickers indentation because (i) Previous work 

using the same method has been carried out on some commercial systems and could be 

used for comparative purposes (Attar, 2001); (ii) it can be used on small samples of 

material, (iii) specimen preparation is relatively simple requiring only the provision of a 

polished, reflective plane surface, (iv) the Vickers diamond indenter used to produce the 

hardness indentations is a standard item used on a dedicated hardness tester or on a 

universal-testing machine, (v) it is both quick and cost effective. 

After annealing, all samples (40mm diameter or 30x30mm squares) were sequentially 

ground with 120, 400, 800 and 1200 grit SiC grinding papers, and then sequentially 

polished with 6, 3 and 1 J.1m diamond paste to remove any prior surface damage. Vernier 

callipers were used to ensure samples were parallel to within O.Olmm. Using the Vickers 

diamond indenter, the samples were indented at varying loads ranging between 24 to 200N, 
until 3 acceptable crack patterns were obtained at each load (with the total number of 

acceptable patterns per sample ~ 15). Assuming that radial crack systems are fonned during 
a Vickers indentation test, the criteria for acceptability were: (i) all cracks originated at the 

comers of the indent, (ii) presence of only 4 radial cracks, (iii) no chipping from the cracks 

and (iv) no crack branching. 

The radial cracks were optically examined and measured. The fracture toughness was 

calculated using the formula: 

(3.1) 
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where X = 0.0824, P the load in Newtons and c the radial crack length in metres, as 
suggested by Ponton and Rawlings, 1989b for use when correlating or ranking different 

materials in order of toughness. 
The Vickers hardness was calculated by measuring the indent diagonal (2a) and using 

the formula (Lawn, 1993): 

(3.2) 

where 2a is the length of the indent diagonal in metres. 

The brittleness index, ratio of the hardness to the fracture toughness was suggested by 

Lawn and Marshall in 1979 (Boccaccini, 1997): 

B=Hv/KIc (3.3) 

3.3 Establishing the glass melting protocol 

3.3.1 Glass making 

All glass batches formulated, formed glasses upon cooling from the melt. X-ray dim-action 

showed no signs of residual batch within any of the glass. 

3.3.2 Glass phase analysis 

DTA of the glasses made during the melt duration study (Figure 3.4) showed a decrease in 
the temperature needed to crystallise the glass as the melt duration increased. This decrease 
was approximately 300e in going from a 1 ~ hr melt to a 6 hr melt. 
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Figure 3.4: DTA results ofK81-K86 
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Optical nucroscopy of the glass undergoing the melting schedule K81 revealed the 

presence of banding due to differences in the refractive indices of the different layers, thus 

indicating inhomogeneity in the poured glass (Figure 3.Sa). These layers were present 

despite extended stirring times of the melt. This seemed to be resolved by re-melting the 

frit as in the case ofK86 (Figure 3.Sb). 

Figure 3.5: Optical micrographs ofK81 and K86 
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3.3.3 Heat Treatment 

To assess the effect of melt duration on crystallisation a simple one-stage heat treatment 
schedule was used thereby avoiding complications with varying temperatures of maximum 

nucleation and crystallisation. Samples were heated at a rate of 5°C/min to the peak 
crystallisation temperature Tc, determined from the DTA (Figure 3.3) results, held for an 

hour and air quenched (AQ). 

Table 3.2: Heat treatment schedules used, where AQ is air quenched. 

Glass Heating rate Hold temp Cooling rate 

(/minl eC) 
K81 5 720 AQ 

K82 5 710 AQ 
K83 5 700 AQ 

K84 5 700 AQ 

K85 5 695 AQ 

K86 5 700 AQ 

For all heat-treatments. the furnaces used were Lenton Thermal Design chamber 
furnaces, heated on two sides by canthal resistance wire in a castable alumina block. The 
furnaces were calibrated using an independent PtIRh thermocouple and data-logger and 
found to be calibrated to ± 1°C (Figure 3.6). Samples of glass cut to approximately 10mm2 

from the cast slabs were heated in an alumina boat lined with powdered alumina to the 
appropriate temperatures, and then air quenched. The samples were dried, ground and 
polished for optical and electron microscopy or crushed (using a percussion mortar) and 
ground for X-ray diffraction phase analysis. 
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Figure 3.6: Example of calibration data. The red line is the set programme and the blue 

dots are the recorded points from the data logger, both showing agreement within 1°C. 

3.3.4 Crystalline phase analysis 
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Figure 3.7: Example XRD traces from Phillips and iemens (ofFZ158 composition heat 

treated to 840°C and held for 2hrs, see Chapter 6) 
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Ideally the XRD equipment should have been kept constant, but this was not possible due 

to equipment failure and time restrictions. Figure 3.7, however, shows that the traces 

obtained from both the Phillips and the Siemens do not differ in intensity of peaks or 29° 

values. The same was true of numerous repeats. 

The XRD traces of the series (Figure 3.8) showed that only K81 , K82 and K86 crystallised 

to form canasite glass-ceramic (JCPDS ) 3-0553). These traces can also be indexed to 

frankamenite (JCPDS 45-1398). The K83 - K85 traces have a very large amorphous hump 
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and very little, almost negligible crystalline content, despite the DT A traces showing 

crystallisation peaks. This was attributed to possible surface nucleation occurring in the 

bulk samples that were later crushed and sieved for XRD as opposed to the powder used for 

DTA. 
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Figure 3.8: XRD results ofK8] to K86. 

Figure 3.9: SEM afK8] 
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Evidence of this surface nucleation was noticed in the heat treated K8] under EM 

(Figure 3.9), where crystal growth is perpendicular to the edge of the sample. The samples 

also had very large crystals, in the order of 100j..lm. Figure 3.10, K81 at a lower 

magnification, showed the presence of different layers. EDS from these layers confirms 

elemental inhomogeniety. These results indicate that the stirring process alone does not 

result in homogeneous glass. A possible reason could be that the platinum paddle stirs in 

the horizontal plane, whereas the uncovered lid allows fluorine loss from the top and thus 

the glass when poured may have fluorine depleted layers. 

Si 
Si 

Ca Ca 

Au 

Figure 3.10: SEMIBEI image ofK83 with D of the layer 
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However, Figure 3.10 (a cross section of the top mm of the glass) indicates a crystallised 

region above a glassy region. Thus a very basic simulation was carried out to assess molten 

glass being poured as a plate (Figure 3.11). The liquid used was honey on account of its 

viscosity being similar to the molten glass. If the fluorine depleted top layer can be 

envisaged as the red coloured honey, it can be noted that once poured the top layer does not 

remain as the top layer in the plate. It merely results in inhomogeneous layering in the 

plate which if crystallised could result in a similarly crystallised glass ceramic as K83 . 

Unfortunately EDS in the Camscan does not detect fluorine, and this initial assumption 

needs to be further verified. If fluorine loss from the melt is the cause, these findings would 

be consistent with the results of Beall (1983), in that the nucleating phase for canasite is 

CaF2 . The extra fritting process, as in the case of K86, produced a homogeneous glass 

(Figure 3.5). The hour long re-melt was necessary to produce a bubble free glass plate 

when poured. Based on these findings it was decided to use this melting schedule for any 

further glasses that were studied. 

Figure 3.11: Simulation of inhomogeneous molten glass being poured as a plate 

3.3.5 Fracture toughness tests 

Figure 3.12 shows the method used to calculate the toughness values from the Vickers 

indentation tests carried out on the samples. The equations of the trendlines, with an 

intercept of 0, were used for the calculations. 
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Figure 3.12: Calculation of the fracture toughness in MNm-3/2 
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The slope is P/(C312 x 106
) , which if multiplied by the constant 0.0824, gives the K lc in 

MNm-3/2
. Plotting the load, which is the variable on the y-axis and the measured value of 

crack length on the x-axis, although opposite to conventional practice, relates the increasing 

gradient with increasing toughness. Figure 3.13, cross section of the indents observed under 

SEM, verifies that the crack system formed during Vickers indentation is of the 

radial/median type. 

Figure 3.13 RadiaVmedian crack formed during Vickers indentation 



Chapter 3: Materials Processing and Methods 47 

Due to the poor crystallisation and inhomogeneities useful indentation fracture 

toughness data were not obtainable for K81 - K85 glass ceramics. KIc: of K86 was 1.13 ::!:: 

0.20 MNm-312• 

3.4 Discussion 

The melt study was carried out to assure the homogeneity of the glasses. After the initial 

hour of static melting, all the glasses were stirred for the remaining duration of the melt 

(usually 30 minutes). However the rotational stirring movement seems to be inadequate to 

produce homogeneous glass, as the glasses demonstrate a distinct layering effect, despite 

the longer melt durations. The problem seems to have been substantially reduced by re­

melting the mt. This agrees with other studies (see for example Tian et 0/, 2002) where a 

fritting process was added to the melting schedule to increase homogeneity. 

Increasing the melt duration resulted in a glass that produced a less cerammed product. 

The poor ceramming might be due to the loss of fluorine from the melt. Likitvanichkul and 

Lacourse (1995) found the longer melt durations increased the volatilisation of F as either 

SiF .. or NaF during melting. They have suggested that this loss substantially inhibits the 

formation of canasite crystals as F is required for the formation of CaFl nuclei and is a 

constituent of canasite. 

Further to the glass analysis mentioned previously in section 3.2, XRF analysis was 

undertaken by Glass Technology Services Ltd. on some of the glasses in subsequent 

chapters, to ascertain loss of any components during the glass melting procedure. Discs of 

40mm diameter were core-drilled from the glass plate, and prepared by sequentially 

grinding with 120, 400, 800 and 1200 grit SiC grinding papers, and then sequentially 

polishing with 6, 3 and 1 JIm diamond paste, giving an optical finish. This was then 

analysed using a semi-quantitative XRF programme. The compositions did not record any 

significant loss in fluorine (see Appendix). 

Klc: ofK86 was 1.13 ± 0.20 MNm-312 which on first inspection seems very low compared 

to the values reported by Beall, of 5 MNm-312
• However, these are just initial tests without 

optimisation of either the composition or of the heat treatment schedule. Moreover, IF test 

method is known to give significantly lower Klc: values for canasite glass ceramics (Beall, 

1986) 
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3.5 Conclusions 

CJ A glass manufacturing procedure has been developed that will ensure a 

homogeneous glass where the first hour of the melt is static after which the melt is 

stirred at approximately 60 r.p.m. for half an hour using a platinum paddle. The 

glass is then fritted and the glass flit re-melted under static conditions for 1 hr at 

1350°C. The final melts are cast onto a hot steel plate to produce plates, 

approximately 15cm by 7cm and 8mm thick and annealed at approximately SOODC 

for 1 hour with a cooling rate of 1 DC per minute. 

CJ The glass composition used has been shown to readily nucleate canasite and/or 

frankamenite. 

CJ The Klc value ofK86 was 1.13 ± 0.20 MNm-3fl
, which needs to be improved upon if 

the material is to be developed as a 'high toughness' dental ceramic. 
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Chapter 4: Compositional Effects on the Fracture Toughness 

4.1 Introduction 

Noting the lower fracture toughness values of this composition as compared to the 

previously reported high values for canasite, it was deemed necessary to determine which 

compositional variations would result in a more suitable fracture toughness for dental 

applications, without compromising the chemical durability. From the literature review, it 

was noted that the canasite composition (58.36Si<h-8.26Na20-9.19K10-16.83CaO-

7.36CaF1) reported by Anusavice and Zhang (1998) to have fracture toughness values of 

2.7 ± 0.1 MNm-312 differed from the base composition by essentially CaO and CaFl content. 

Thus the glasses in this chapter include two compositions with increased CaO content in 

the composition. This was compensated by a decrease in the CaFl. It was also important to 

assess the addition of metal oxides as nucleating agents as this is known to produce a finer 

dispersion of crystals in the glass-ceramic and thus a tougher microstructure (McMillan, 

1979). Specifically Zr<h has been suggested to produce a finer canasite glass ceramic 

(Beall, 1983). 

4.2 Experimental procedure 

4.2.1 Glass formulation and melting 

Table 4.1: Batched glass compositions in molar percent 

KlO CaO NalO SiOl CaFl TiOl ZrOl 
DB 7.0 11.8 9.3 54.2 17.9 - -
1{7 7.0 15.0 8.0 60.0 10.0 - -
Cl 6.8 17.1 7.8 58.5 9.8 0 0 

Cl 6.8 19.4 7.8 58.3 7.8 0 0 

Tl 6.9 14.7 7.8 58.8 9.8 1.9 0 

Z2 6.9 14.7 7.8 58.8 9.8 0 1.4 
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As before (see section 3.1) glasses were based on a known low solubility composition. This 

time the composition with [K]/[Na+K] = 0.47 (Stokes et al, 2000) called K7 (8Na20-7K20-

15CaO-IOCaF2-60Si02) was used. Variations to this composition used were the two higher 

CaO content glasses, C 1 & C2 (based on the work by Anusavice and Zhang, 1998); a glass 

with titania addition, T2; and with zirconia addition. Z2 (Table 4.1). B8, the composition 

reported by Beall (1988) to have the highest strength was used as a control. 

Glass melting was carried out according to the procedure previously developed (see 

chapter 3) to result in the production of a homogeneous glass. The first hour of the melt 

was static after which the melt was stirred at approximately 60 r.p.m. using a platinum 

paddle for 30 minutes. The glass was then flitted and the glass flit was re-melted under 

static conditions for Ihr at 1350°C. The final melts were cast onto a hot steel plate to 

produce plates, approximately 15cm by 7cm and 8mm thick. The glass was then annealed 

at approximately 500°C for 1 hour with a cooling rate of 1°C per minute. 

4.2.2 Heat treatments 

To cany out phase analysis the glasses were heated at 5°C/min up to a range of 

temperatures between 560°C and 720°C, held for 2hrs at each temperature and air 

quenched, to retain the crystalline content at these temperatures. 

hoess testing Table 4.2: Heat treatment schedules for fracture toug 

Nucleation Crystallisation 1 Crystallisation 2 

Glass Temp. (0C) Time Temp·eC) Time Temp. eC) Time 

(min) (min) (min) 

K7 550 120 700 120 - -
Cl 550 120 705 120 - -
C2 550 120 710 120 - -
T2 550 120 720 120 - -
Zl 550 120 710 120 - -
B8 700 120 800 240 900 240 

Glass-ceramics that were to undergo fracture toughness tests underwent a two-stage heat 

treatment. In the case of B8, a three stage heat treatment was chosen according to the one 

defined in the patent for this particular composition (Beall, 1983). For the rest of the 
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glasses, in light of the DTA results not indicating a CaF2 crystallisation peak, the 

temperature dependent phase evolution results from the XRD were used to design 2-stage 

heat treatment schedules for each of the glasses, incorporating the optimum nucleation and 

crystallisation temperatures (Table 4.2). The samples were furnace cooled at lOoC/min to 

room temperature. 

4.2.3 Glass and crystalline phase analysis 

X-Ray diffraction was carried out using both the Phillips and the Siemens diffiactometers. 

Fracture surfaces and etched surfaces were examined under the Jeol and the Camscam 

electron microscopes. Detailed description of the methodology used was given above 

(section 3.2.3). 

4.2.4 Mechanical Testing 

Fracture toughness was measured using Vickers indentation as described in section 3.3.3. 

The radial cracks were optically examined and measured. The fracture toughness (Klc) 

Vickers hardness (Hv) and brittleness (8) were calculated using equations 3.1,3.2 and 3.3. 

4.3 Results 

4.3.1 Glass Analysis 

All glass batches formulated formed glasses upon cooling from the melt. X-ray diffraction 

showed no signs of residual batch within the glass. There was no clear CaF2 crystallisation 
peak in the DTA results of any of the glasses. 
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Figure 4.1: DTA traces for K7, CI & C2 

DTA traces of Cl and C2 compared to K7 show an increase in the onset of crystallisation 

as CaO increases in the glass. Ca2+ occupies the interstitial positions in the glass network 

while the 0 ions link to network forming ions (Si), thus making the glass structure more 

stable and increasing the crystallisation temperature. 

o 100 200 300 400 500 600 700 800 
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Figure 4.2: DTA traces ofK7, Z2 & T2 

Inclusion of Ti and Zr ions in the glass results in an increase In the crystallisation 

temperature, indicating that the intermediate ions help to stabilise the glass structure. Ti4 ~ 

being the larger ion, has a greater field strength than Zr4+. This explains the later onset of 

crystallisation. 
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Figure 4.3: DTA traces ofK7 & B8 

All the crystallisation traces have been similar so far, in that there has been a single peak of 

roughly of the same shape. The crystallisation event in B8 however has been characterised 

in DT A by a sharper, taller peak. B8 has 17.9 mol% CaF2 compared to 10mol% in the 

composition of K7. Fluorine is known to be a powerful network disrupter, replacing 

bridging oxygens by non bridging fluorine, and aids crystallisation. Thus the temperature 

required for crystallisation has decreased as has the Tg from 530°C in K7 to 500°C in B8. 

Appendix 3 lists all the calculated Tg' s from the DTA traces. 
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4.3.2 Phase and Microstructural Analysis 
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Figure 4.4: XRD traces of glass ceramics subjected to single stage heat treatments to the 

given temperatures, where A: K7, B: Cl, C: C2, D: T2, E: Z2, F: B8. 

Figure 4.4 summarises the XRD results. All glasses crystallised to give canasite glass 

ceramic. The peaks in the XRD traces also closely correspond with frankamenite, which 

can be distinguished by the presence of peaks at ]0.], 21.1 and 29.5 °29. Associated with 

these peaks was a significantly smaller peak at 28.6°29 compared to that of canasite. Z2 

and B8 appeared to contain a greater amount of canasite and were the only two glass 

ceramics in which the 2 hour holds at 620°C nucleated CaF2. The relative intensity scales 
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of all 6 graphs have been kept equal in Figure 4.4. Similar results were found in the glass 

ceramics subjected to a two stage schedule (Figure 4.5). In the case of B8 and Z2, the 

nucleation hold resulted in crystallisation ofCaF2 nuclei . 
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Figure 4.5: XRD traces of glass ceramics subjected to double stage heat treatments, 

Scanning electron micrographs of the glasses subjected to two stage heat treatment and in 

the case of B8 three stage heat treatments are shown in Figure 4.6. As the shift from a 

predominantly frankamenite structure to a predominantly canasite structure occurred (K7 

compared with Z2 and B8), it was accompanied by a refinement in the microstructures. The 

microstructures of K7, C 1 and C2 demonstrated uncontrolled spherulitic growth with 

spherulites of lath sizes in the order of lOOJ..Lm. But the titania and zirconia additions 

resulted in a finer glass ceramic with laths of the order of30J..Lm and <5J..Lm respectively and 

a move away from the spherulitic to a more desirable interlocked structure. The crystal 

morphology of B8 seems less like the ' house of cards' morphology of T2, where there 

appear to be randomly orientated flakes, and more like a needle shaped droplet structure. 
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Figure 4.6: Scanning electron micrographs of samples etched with] .5% HF for 1 minute. 

4.3.3 Fracture Indentation 

The toughness values with their standard deviations, calculated using 'descriptive statistics' 

in Microsoft Excel spreadsheets, are given in Figure 3.14. It was not possible to get fracture 

toughness values for the higher CaO glass-ceramics or the titania addition, by the 

indentation fracture method, as there was too much chipping and none of the cracks met the 

criteria for acceptability. This can be seen in the examples of the corresponding indents that 

were obtained during the toughness tests (Figure 4.7). 
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Figure 4.7: K,c values of the glass-ceramics with optical micrographs of their corresponding 

indents, where the scale bar represents 1 00~m. 

B8 had the highest fracture toughness value, of 2.01 ± 0.21 MNm-3/2
, more than twice the 

values obtained for addition of 2 mol% zirconia and the base composition K7. 

Unfortunately the corresponding fracture toughness values for this particular composition 

have not been cited by Beall. 

4.4 Discussion 

All the glass ceramics crystallised to both canasite and frankamenite phases. The results of 

the compositional variations study indicate agreement with the results of Beall (1983), in 

that the nucleating phase for canasite is CaF2. This is substantiated by the increased 

presence of canasite in the B8, which had 17.9 mol% CaF2 in its batch composition. XRD 

results indicate that K7, Cl, C2 and T2 contain frankamenite (Figure 4.4 and 4.5 show 

peaks at 10.1 °28) whereas in B8 and Z2, this peak is either much smaller or not present at 
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all. An associated trend is the significantly greater intensity peak at 28.6°29 and lower 

intensity peak at 30.6°29. Although both phases share this peak, these preliminary results 

indicate that the greater 28.6° to 30.6° 29 peak ratio might be associated with canasite 

phase dominance. Although not proven, the working hypothesis throughout the rest of this 

thesis is that a significant XRD peak at 10.1 °29 indicates frankamenite and an increased 

28.6 to 30.6°29 peak height ratio indicates canasite. 

It has also not been possible to identify f-canasite, and all the traces have been indexed 

bearing in mind that the fluorine dominant analogue of canasite could be present in the 

glass ceramics. Hence, it is difficult to assess if the toughness can be attributed to the 

canasite phase or to a product that is a result of all phases 'competing' with each other. 

Although detailed differentiation of these phases is beyond the scope of this study, in order 

to produce a glass ceramic with the desired fracture toughness values, it is important to 

evaluate the effect of fluorine on the crystallisation mechanisms. 

The Ca content was varied based on the formulation of Anusavice and Zhang which 

produced canasite glass ceramics with fracture toughness values of 2.7 :t: 0.1 MNm-312
• 

However, C 1 and C2 produced very brittle and porous glass ceramics. The poor 

crystallisation characterised by uncontrolled spherulitic growth of the crystals is indicative 

of too few nucleation sites in the glass. Bearing in mind that frankamenite is thought to be 

the dominant phase in these glass ceramics, the absence of sufficient CaF2 in the 

compositions could be contributing to the lack of canasite phase presence. Miller (2004) 

suggests that frankamenite may have a crystallising mechanism distinct to that of canasite, 

and that its nucleation does not require a precursor. The current results apparently agree 

with this observation. 

The addition of2 mol% titania resulted in a finer glass ceramic (Figure 4.6), but under 

optical microscopy of Klc specimens there was a lot of cracking and chipping evident 

around the indents. Thus the crystalline phases present in T2 themselves appear to be 'less 

tough' XRD indicates a frankamenite phase dominance in T2 similar to K7, CI and C2. 

Zirconia was successful as an additive, in that it produced a glass ceramic with canasite as a 

dominant phase, for which the Klc was measurable, without the need for excess fluorite. 

The very fine microstructure achieved by the 1.5 mol% addition of Z~ is very promising 

(Figure 4.6). Zirconia has been known to 'aid' CaF2 in the crystallisation of canasite (Beall, 

1983), although the exact method by which it assists in the production of canasite has not 

been discussed. The Klc increase associated with a > 1 Ox reduction in crystallite size from 

the base composition, K7, to Z2, was only - 0.2 MNm-312 which could be due to the crystal 

morphology, which (very different to that ofB8) might not be interlocked enough to deflect 
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the crack path. Further work is required to assess the role of zirconia in the crystallisation 

process and refinement of the microstructure. 

It was not clear from the Dr A trace as to why the specific three stage heat treatment 

schedule was used by Beall for B8, however for the sake of reproducibility, as many 

variables as possible were kept constant in relation to this particular formulation in an effort 

to reproduce the 'high' toughness values. As mentioned previously, in the absence of an 

exact composition associated with a fracture toughness of 5MNm-312
, the composition used 

was the 'high strength' composition quoted in the patent (Beall, 1983). As the indentation 

method has been known to give lower Klc values for glass ceramics, the lower Klc values of 

B8 than what has been quoted from previous canasite formulations can be explained. It has 

to be borne in mind that as this was an assessment of the result of varying compositions on 

the fracture toughness these glass ceramics, the heat treatment schedules have not been 

optimised. The KIc of K7 was 0.60 ± 0.17 MNm-312 which although a reduction from the 

value of K86 (1.13 MNm-312
) found in the previous chapter, was not a significant 

difference. This difference was attributed to the variation of alkali contents in these glass­

ceramics, as there was no discemable variation in the microstructures of the two. A KIc of 

0.6 MNm-312 would preclude the material for restorative dental use. Formulations tested in 

this chapter indicate that this fracture toughness can be improved upon. Hence these 

findings would be used as a basis for future studies in the subsequent chapters. 

4.5 Conclusions 

IJ All compositions crystallised to give a mixture of canasite and frankamenite 

crystalline phases. 

IJ Canasite seemed to nucleate and crystallise more readily in B8, resulting in higher 

fracture toughness values for this glass ceramics. 

IJ Zr<h addition was successful in producing a canasite glass-ceramic, which shows 

promise for development for use as a dental glass-ceramic, and further work is 

required to assess its role in the crystallisation process and its microstructure 
refinement. 
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Chapter 5: Effect of Fluorite Content 

S.l Introduction 

The study on compositional variations indicated that the amount of fluorite content in the 

composition affected the crystallisation of canasite and/or ftankamenite. This in tum 

affected the microstructure and fracture toughness of the glass ceramics. It was decided to 

investigate the effect of fluorite on crystallisation of these phases and thus the resulting 

effect on the fracture toughness. 

5.2 Experimental Procedures 

5.2.1 Glass Fonnulation 

The glasses, were based on the known low solubility composition where [K]/[Na+K] = 0.47 
(Stokes, 2003). Only the CaF2 content was varied in the base glass composition and the 

ratios were re-nonnalised to 100: 

The glass compositions used in this study are given in table 5.1, where FlO is the base glass 
composition. 

Table 5.1: Glass compositions (as-batched) in molar Qercent. 

Composition K20 CaO NazO SiOz CaF2 
F8 7.14 15.31 8.16 61.22 8.16 

FlO 7.00 15.00 8.00 60.00 10.0 

F13 6.80 14.56 7.77 58.25 12.62 

F15 6.67 14.29 7.62 57.14 14.29 
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5.2.2 Glass Melting 

Glass melting followed the protocol outlined in section 3.5. As the fluorine content was 

increased in the composition, the CaF2 nucleation temperature coincided with the annealing 

temperature, thus to produce clear glasses, the annealing schedule needed to be varied 

according to the fluorine content in the composition (Table S.2). 

e . mg sc Tabl 5 2 Anneal' hed I u esus ed 

Temperature Hold duration Cooling Rate 
Glass 

(0C) (min) _eC/mil!l 

F8 500 60 1 

FlO 500 60 1 

Fl3 490 120 1 

F15 480 240 1 

5.2.3 Differential Thermal Analysis 

Differential thermal analysis (DT A) was used to determine crystallisation temperatures. 

The samples were crushed using a percussion mortar, and then passed through a 4Sf.'m 

sieve. DTA measurements were carried out on a PerkinElmer PYRIS Diamond analyser as 

described in section 3.2.1 

5.2.4 Heat Treatment 

All series of glasses were subjected to single stage heat treatments at 5°C/min up to 

temperatures increased in 20°C intervals between 600 and 740°C, for phase analysis. The 

samples were held for two hours at the temperatures and air quenched to retain the phases 

present at those temperatures. Both XRD and DTA results were used to determine the 

nucleation and crystallisation temperatures. Two stage heat treatments were used for 

fracture toughness tests. These included longer nucleation holds that were used to see if this 

had any effect on the crystalline structure and hence the fracture toughness of the glass­

ceramic. The samples were heated at a rate of SOC upto the nucleation and growth 

temperatures and furnace cooled at an approximate rate of IOoC/min. Table S.3 shows the 

two stage heat treatment schedules that the glasses were subjected to. 
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The furnaces used were Lenton Thermal Design chamber furnaces (calibrated using an 
independent thermocouple and data-logger), heated on two sides by canthal resistance wire 
in a castable alumina block. Samples of glass were heated in an alumina boat to the 
appropriate temperatures, and then air or furnace cooled. The samples could then be ground 

and polished for fracture toughness tests or dried, crushed (using a percussion mortar) and 
ground for X-ray diflTaction phase analysis. 

Tabl 53 T h e . wo-stage eat treatment sc hed I sed II uesu ~a samJ!l es were fum I d ace coo e . 

Heating Hold Heating 
Crystallisation 

Hold 

Glass rate cae Nucleation 
duration rate cae duration 

Imin) 
temp. ee) 

(min) Imin) 
temp. ee) 

imiJ!l 

5 540 1440 5 720 1440 
F8 5 620 1440 5 720 1440 

5 620 120 5 720 120 

5 540 1440 5 720 1440 

FlO 5 620 1440 5 720 1440 

5 620 120 5 720 120 

5 540 1440 5 720 1440 

Fl3 5 620 1440 5 720 1440 

5 620 120 5 720 120 

5 540 1440 5 720 1440 
FIS 5 620 1440 5 720 1440 

5 620 120 5 720 120 

5.2.5 Phase and Microstructural Analysis 

X-Ray diftraction was carried out using both the Phillips and the Siemens diffractometers. 
Fracture surfaces and etched surfaces were examined under the Jeol and the Cam scam 
electron microscopes. Detailed description of these techniques was given in section 3.2.3. 
In addition transmission electron microscopy (TEM) was carried out. Samples were 

prepared by sequentially grinding a small piece of the glass ceramic on either side, 
mounted onto the metal stub of a Gatan disc grinder with a heat sensitive thermoplastic 
resin, using 400, 800 and 1200 grit SiC grinding papers down to a thickness <30JJ,m. A 
3mm outer-diameter copper ring was glued onto the sample using epoxy resin prior to the 
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sample being removed from the stub (by melting the thermoplastic resin). Precaution was 

taken to remove excess material around the ring with a razor; and any excess resin with 

acetone, so as not to contaminate the microscope. 
Ion beam milling as carried out at a ISO angle of incidence on a Gatan dual mill under 

operating conditions of 6kV with a beam current of O.6).lA. Samples were carbon coated 
using an Edward's evaporation unit. A Phillips EM 420 transmission electron microscope 

was used to analyse the samples. 

5.2.6 Mechanical Testing 

Fracture toughness was measured using Vickers indentation as described in section 3.3.3. 
The radial cracks were optically examined and measured. As before the fracture toughness 
(KIc) Vickers hardness (Hv) and brittleness (B) were calculated using equations 3.1, 3.2 and 
3.3. 

5.3. Results 

5.3.1 Glass Formulation & Glass Melting 

All glass batches formulated formed glasses upon cooling from the melt. X-ray diflTaction 
showed no signs of phase separation or residual batch within the glass. 

5.3.2 Differential Thermal Analysis 

There was no evidence of CaF2 crystallisation peak in the DTA results of any of the 
glasses, although the crystallisation peak becomes sharper with increasing CaF2 (Figure. 
5.1). There was an associated decrease in the Tg from 538°C in F8 to 5lI oC in FI5 as the 
CaF2 content in the composition was increased (Figure 5.1 and refer to Appendix 3). This is 
consistent with the previously found results in Chapter 4. 
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F~ 
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Temperature (C) 

Figure 5.1: DTA traces ofF8-F15 

5.3.3 Phase and Microstructural Analysis 

All glasses subjected to single stage heat treatments crystallised to give canasite and/or 

frankamenite glass ceramic. 

Figure 5.2 shows the temperature dependent phase evolution of these glass ceramics. For 

the sake of clarity, indexing of the phases has been carried out in Figure 5.3. 
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Figure 5.2: XRD traces showing the temperature dependent phase evolution ofF8 to F1 5 

heat treated at different isotherm ranging from 6000 t0740° 
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The canasite and/or frankamenite phases began to crystallise at temperatures ~ 680°C for 

F8 and FlO and at temperatures ~ 660°C for F13 and F15. There was evidence of the 

presence of CaF2 in F13 and F15 at temperatures ~ 600°C during the XRD studies of 

temperature dependent phase evolution. This correlated with an increase in the canasite 

phase presence for these higher fluorite content glass ceramic compositions (Figure 5.2). 

Frankamenite can be distinguished by the presence of a peak at 10.1 ° 29 and there is a 

lower intensity peak: ratio of 28.6° 29 to 30.6° 29 associated with the presence of the 

aforementioned 10.1° peak: when compared to the 28.6° 29 to 30.6° 29 peak: ratio of 

canasite (see Chapter 4). This is more clearly visible in Figure 5.3, where the traces 

corresponding to samples heat treated to 720°C, held for two hours and air-quenched, have 

been indexed as canasite (ICDD 13-0553) and/or frankamenite (lCDD 45-1398) . 

• • 
• • • • F15 

• • ~ 
' Vi • • • • FI3 
~ ..... s:: ...... 
Q) 

> 
.~ 

d) 
~ • FlO • • • 

• • • • • • • •• F8 
-r- ~ ---r- -, 

10 20 30 40 50 60 

• canasitelfrankamenite 
28 + frankamenite 

Figure 5.3: XRD traces ofF8-F15 heat treated to 720° and air quenched . 

The phase evolution of this system was better understood by crystalline analysis of the 

samples which underwent the two stage heat treatment. horter nucleation hold of 2hrs at 

620°C showed evidence ofCaF2 nuclei in F13 and F15 gla s ceramic , whereas F8 and FlO 

were amorphous. Figure 5.4 shows the XRD traces of the F8 to F15 after the 2 hour 
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nucleation hold and the traces after the subsequent 2 hour crystallisation hold . In addition 

to canasitel frankamenite peaks, fluorite peaks are indexed (ICDD 04-0864). The traces of 

F 13 and F 15 are most akin to canasite and the predominant phase in FlO seems to be 

frankamenite. F8 remained largely amorphous after the two stage heat treatment, as in the 

case of the single stage. 

.0 . -en 
~ 
Q) 

~ + -Q) 
;> .-
~ -Q) 

~ 
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A 
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20 30 
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40 
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• 

Fl5 
• • • • 
• • • • F13 

• • • FlO 

F8 

A 
..- F15 

...... F13 
FlO 

50 60 
+ frankamenite 

Figure 5.4: XRD traces ofF8 to Fl5 after 2hr hold of 620°C and a two hour hold at 720°C. 

SEM of these samples revealed that a decrease in lath sizes accompanied the shift from a 

predominantly frankamenite phase presence to a predominantly canasite phase presence 

(Figure 5.5) 

Figure 5.5: SEM images ofFlO-F15, subjected to a two hour nucleation hold at 620° and 

two hour crystallisation hold at 720° . 
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Longer nucleation holds of 24 hours at 520°C showed similar results, with F13 and F15 

nucleating fluorite crystallites after the nucleation hold, but the 24 hour hold at 620°C 

resulted in canasite andlor frankamenite crystallisation in all glass ceramics (Figure 5.6) . 

• • • F8 

10 20 30 40 50 60 

• canasitelfi'ankamenite 
29 + frankamenite 

Figure 5.6: XRD traces ofF8 to F15 after 24hr hold of 620°C. 

In the absence of a nucleation hold, there was uncontrolled spherulitic growth, with lath 

sizes approximately in the order of 50~m (Figure 5.7). Closer inspection of the XRD traces 

indicated that in the case of FlO which crystallises to give a predominant frankamenite 

phase presence a nucleation hold increases the canasite phase presence in the glass ceramic. 

Although XRD did not record any fluorite after nucleation, there was evidence of CaF2 

crystals under TEM (Figure 5.8) The two traces in Figure 5.9 are different in that the two 

stage heat treatment trace has a smaller peak at 10.1 ° 28 and the intensity peak ratio of 

28.6° 28 to 30.6° 28 is larger than that of the single stage heat treated glass ceramic. Both 

are indicative of greater canasite phase presence. 
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Figure 5.7: SEM images ofF10 (left) and F15, subjected to a 24 hour hold at 620°C. 

Figure 5.8: TEM image of FCC CaF2 crystal and corresponding diffraction pattern for 

FlO. 

two stage 

single stage 

10 20 30 40 50 60 
28 

Figure 5.9: XRD traces of single stage heat treatment and two tage heat treatment. 

69 
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5.3.4 Fracture Toughness 

The higher fluorine content glass, FI5 gave significantly higher fracture toughness values 

than the glass with stoichiometric fluorine content (Figure 5.10). It was not possible to 

calculate Klc for F8 as after heat treatment the glass ceramics produced were very poorly 

cerammed and fractured catastrophically upon indentation. This was also true in the case of 

FlO that had been subjected to the 24 hour nucleation hold at 620°C, prior to the 

crystallisation hold . 
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Fluorite content 

Figure 5.10: K1c as a function of fluorite content where a, band c signify the different heat 

treatment schedules the glasses were subjected to. a = 540°C(24 hr hold) and 720°C (2 hr 

hold), b = 620°C (24 hr hold) 720°C (2 hr hold) and c = 620° (2 hr hold) 720° (2 hr 

hold), lines drawn as a guide to the eye. 

5.4. Discussion 

There was a higher canasite phase presence in the F13 and F15 glass-ceramic which had 

13 and 15 mol% CaF2 inclusion in the composition (Figs. 5.2, 5.3 & 5.5). Thi agrees with 

the findings of Beall (1983), in that the nucleating phase for cana ite is CaF2. The 
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composition ofB8 in Chapter 3, which had 18 mol% CaF2, also seemed to contain a greater 

canasite content than the other compositions. The requirement of the system is highlighted 

by the need to balance the F content in the parent glass to give an adequate canasite to 

frankamenite phase ratio to ensure the mechanical strength of the cerammed product. From 

fracture toughness results so far, frankamenite phase dominance seems to result in a less 

tough glass-ceramic. Due to the crystallographic similarities between these phases, it has 

not been possible to achieve or rather, distinguish, a monophase canasite glass-ceramic. 

Hence, it is difficult to assess if the toughness can be attributed to the canasite phase or to a 

product that is a result ofa both phases 'competing' with each other. 

The greater canasite phase presence in FlO after the introduction of a nucleation hold to 

the heat treatment schedule (Figures 5.8 & 5.9) suggests a heterogeneous nucleation 

mechanism for canasite, although further crystallographic work needs to be carried out to 

elucidate this. XRD evidence (Fig 5.2, 5.3 & 5.8) suggests that in the absence of the 

required amount of CaF2, the crystallising phase which nucleates is ftankamenite. Miller et 

al (2004) have suggested that frankamenite crystallises through a different mechanism to 

that of canasite. The lack of crystallisation in the case of F8 indicates that a minimum 

amount of fluorine is required for the nucleation of frankamenite which must be lower than 
the minimum as dictated by the composition. There is no evidence to suggest the 

crystallisation mechanism ofF-canasite. It has not been possible to differentiate between F­

canasite and canasite from the XRD traces or the crystal morphology (from the SEM). 

Considering the similarities in the crystal structures of both, it may necessitate detailed 

crystallographic work which is outside the remit of this study. 

Single stage heat treatments resulted in uncontrolled spherulitic growth with laths of the 

order of 50J.l.m or more, even in the case of compositions with excess fluorite (Figure 5.6). 

This could be attributed to fewer nucleation sites being present. The longer, 24 hour, 

nucleation holds were tried in the hope of a greater dispersion of CaF2 nuclei in the glass 

and hence a finer microstructure being produced. However there was little difference in 

either the microstructure or the KIc of the glass ceramics with nucleation holds of 2 hours at 

620°C and the glass ceramics with nucleation holds of 24 hours at 540°C. 24 hour holds at 

620°C resulted in canasite crystallisation after the nucleation hold rather than CaF2. The 

subsequent crystallisation hold at a higher temperature of 720°C produced a glass-ceramic 

with inferior mechanical properties (Figure 5.8), most probably due to the larger lath sizes. 

It has been suggested (Kelly, 1997) that finer crystal sizes of the reinforcing component 

result in imprOVed mechanical properties by providing a more tortuous route for crack 

propagation, because KIc = (2Ey)112, where E is the Young's modulus and y is the surface 
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energy per unit area. Thus as the crystal sizes decrease and interlocking increases, the crack 

path travelled increases, hence the surface energy per unit area increases and subsequently 

the fracture toughness increases. Beall (1986) has identified the two primary mechanisms 

affecting the fracture toughness of canasite: (1) crack-deflection, which arises from the 

combined effects of the acicular microstructure and the preferred cleavage fracture, and (2) 

stress-induced micro-crack toughening, due to the internal stresses caused by the anisotropy 

in thermal expansion of the individual crystals. Nucleation of CaF2, and the subsequent 

growth of canasite on these nuclei produces a glass ceramic with a finer microstructure, 

hence higher fracture toughness. As the crystallisation of either of these phases could not be 

quantified it is only possible to draw a basic qualitative conclusion that the glass ceramic 

with the greater canasite phase presence results in the finer microstructure. Finer 

microstructure also implies smaller defect sizes as grain size limits defect size. 

The observed results suggest the crystal structures of canasite and frankamenite 

influence the indentation fracture toughness of the resulting glass ceramics. 

Rozhdestvenskaya and Nikishova (1996) report that the structure of canasite is based on 

tubular [Sit2030] fragments which are linked via closely packed zigzag 'walls'. The 

octahedral positions associated with the walls are occupied by the Ca and Na cations in an 

orderly fashion, one of the positions being occupied by either type of cations. Doubled 

fluorine content in frankamenite results in a different distribution of Ca and Na cations 

from canasite, increasing the number of isomorphically occupied positions. This leads to a 

reduction of monoclinic symmetry to Pl. The triclinic unit cell of frankamenite represents 

the minimal fragment of the structure, containing one silicate tube as opposed to the four 

silicate tubes contained in canasite. Water, which is localised in the tube [Sh2~] together 

with K atoms, neutralises some valency effects of the anions and alkaline cations, and 

thereby weakens the strength of the frankarnenite structure. The high number of (OHf 
groups in canasite results in structure stabilisation due to hydrogen bonding between the 

octahedral walls and the tubular radical. However this is in the case of the minerals. (OHf 
groups in the canasite structure would be substituted with F in fluorcanasite thus the 

reported crystal structures cannot fully explain the fracture toughness results obtained here. 

The K1c of Fl5 (1.63 ± 0.38 MNm-3fl) is closer to the fracture toughness values of B8 

from chapter 3 (2.01 ± 0.21 MNm-312). which is a high strength composition and was 

subjected to the heat treatment schedule as specified by Beall (1983). In addition to this. a 

value of 1.63 ± 0.38 MPa.m-312 is a suitable fracture toughness value for a dental restorative 

material. Seghi et al (1995) recorded a fracture toughness value of 1.29 ± 0.12 MNm-312, for 

Empress I (a leucite based commercial dental ceramic) by the indentation technique. 
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Similarly Gorman et a1 (2000) measured a toughness of 1.33 ± 0.08 MNm,312, using the 

same technique. The fracture toughness of another commercial ceramic, which is prepared 

via the CAD CAM route is Vita Mark n (crystalline phases of sanidine and nepheline), 
measured by indentation method was 1.07 ± 0.08 MNm,312 (Seghi et ai, 1995) and 1.26 ± 
0.08 MNm,312 (Thompson et ai, 1996). However the K1c values of these glass ceramics are 

low in comparison to the 'high strength' ceramics which are indicated for use as a posterior 

restoration. Chapter 4 indicated further compositional variations which could be made to 

the present formulation, in an effort to improve the mechanical properties and chemical 

durability of this material. In addition to this it is necessary to note that the heat treatment 

of this formulation has not been optimised and this in itself would lead to a higher KIc. 

5.5 Conclusions 

IJ CaF2 is the nucleating phase for canasite, hence canasite seemed to nucleate and 

crystallise more readily in F13 and FIS, resulting in higher fracture toughness 

values for these glass ceramics. 

IJ Maximum fracture toughness of 1.63 ± 0.38 MNm,312 was achieved in the case of 

F15. 
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Chapter 6: Effect of Zirconia Additions 

6.1 Introduction 

In agreement with the results of Miller et al (2004) the previous chapter identified that CaF2 
is essential for the crystallisation of canasite. If the glass composition does not have a 
certain minimum fluorite content, the predominant phase that crystallises is frankamenite, 
which apparently crystallises homogeneously and which has inferior mechanical properties. 
An increase in the fluorite content in the parent glass improved the fracture toughness of 
the material to an acceptable level for a dental restoration. However, increasing fluorite 

content in the glass composition has been found to decrease the chemical durability of 
canasite glass ceramic (Stokes, 2003). As canasite crystallisation requires a nucleating 
agent, it was decided to study zirconia inclusion as an alternative nucleating agent based on 
the findings of initial compositional variations. 

6.2 Experimental Procedures 

6.2.1 Glass Formulation 

Zirconia additions were made to the base glass composition with varying fluorite content 
and the ratios were fe-normalised to 100: 

100 100 . 
--{--(60S.02-8Na20-7K20-lsCaO-xCaF2)-yzr02}, 
lOO+y 90+x 

where 8 5 x 515 and 0 5 y 5 8. 

The glass compositions used in this study are given in Table 6.1, where FIOZO is the base 
glass composition. Glass melting was carried out as described in Chapter 3. 
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Table 6.1: Glass compositions (as-batched) in mol %. 

Composition K 20 CaO Na20 Si02 CaF2 Zr02 

F8Z0 7.14 15.31 8.16 61.23 8.16 -
F8Z1 7.07 15.15 8.08 60.61 8.08 0.99 

F8Z2 7.00 15.00 8.00 60.02 8.00 l.96 

F8Z4 6.86 14.72 7.85 58.87 7.85 3.85 

F8Z8 6.61 14.17 7.56 56.69 7.56 7.41 

FIOZO 7.00 15.00 8.00 60.00 10.00 -
FIOZI 6.93 14.85 7.92 59.41 9.90 0.99 

FIOZ2 6.86 14.70 7.84 58.82 9.80 l.96 

FIOZ4 6.73 14.42 7.69 57.69 9.62 3.85 

FIOZ8 6.48 13 .89 7.41 55 .56 9.26 7.41 

F15Z0 6.67 14.28 7.62 57.14 14.29 -

F15Z1 6.60 14.14 7.54 56.58 14.14 0.99 

F15Z2 6.54 14.01 7.47 56.02 14.01 1.96 

F15Z4 6.41 13 .74 7.33 54.95 13.74 3.85 

F15Z8 6.17 13.23 7.06 52.91 13 .23 7.41 

6.2.2 Differential Thermal Analysis 

Differential thermal analysis was used to determine crystallisation temperatures. The 

samples were crushed using a percussion mortar, and then passed through a 45~m sieve. 

DTA measurements were carried out on a PerkinElmer PYRJS Diamond analyser as 

described in section 3.2.1 

6.2.3 Heat Treatment 

All three series of glasses were subjected to single stage heat treatments at 5°C/min up to 

temperatures varying in 20°C between 600 and 740°C, for phase analysis in Lenton 

furnaces. These samples were held for two hours at the temperatures and air quenched to 

retain the phases present at those temperatures. Both XRD and DT A results were used to 

determine the nucleation and crystallisation temperature . Two stage heat treatments were 

used to produce samples for fracture toughness tests. The ampJes were heated at a rate of 
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5°C up to the nucleation and growth temperatures and furnace cooled at an approximate 

rate of lOoC/min. Table 6.2 shows the two stage heat treatment schedules that the glasses 

were subjected to. 

glass 

F8Z0 

F8Z1 

F8Z2 

F8Z4 

F8Z8 

FIOZO 

F IOZI 

FIOZ2 

F IOZ4 

FIOZ8 

F15Z0 

F15Z1 

F15Z2 

F15Z4 

F15Z8 

Table 6.2: Two-stage heat treatment schedules used to produce samples for Krc 
measurements 

Heating Hold Heating Hold 
Nucleation Crystallisation 

rate (OC duration rate eC duration 

/min) 
temp. ee) 

(min) /min) 
temp. eC) 

(min) 

5 550 120 5 720 120 

5 550 120 5 720 120 

5 550 120 5 740 120 

5 550 120 5 760 120 

5 550 120 5 780 120 

5 550 120 5 720 120 

5 550 120 5 750 120 

5 550 120 5 750 120 

5 550 120 5 750 120 

5 550 120 5 800 ]20 

5 550 120 5 700 120 

5 550 120 5 720 120 

5 550 120 5 800 120 

5 550 120 5 800 120 

5 550 120 5 800 120 

6.2.4 Phase and Microstructural Analysis 

X-Ray diffiaction was carried out using both the Phillips and the Siemens diffractometers. 

Fracture surfaces and etched surfaces were examined using the Jeol and the Camscan 

electron microscopes as detailed in section 3.2.3 . TEM was carried out as detailed in 

section 5.2.5. 
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6.2.5 Mechanical Testing 

Fracture toughness was measured using Vickers indentation as described in section 3.3.3. 

The fracture toughness (Krc) Vickers hardness (Rv) and brittleness (B) were calculated 

using equations 3.1 , 3.2 and 3.3 . 

6.3 Results 

6.3.1 Crystalline Phase Analysis 

All compositions melted to form clear homogeneous glass, indicating relatively high 

zirconia solubility in these glasses. 

(i) Glasses with 8 mol% fluorite content 

() .§ 
F8Z4 

Q) 

.;; 
0 
~ F8Z2 Q) 

f-< 
<l 

F8Z1 

F8Z0 

400 500 600 700 00 00 
Temperature (0 ) 

Figure 6.1: DT A traces ofF8Z0 to F8Z8 

The DTA traces of the F8 glasses including zr02 are given in Figure 6.1. Tg was observed 

at temperatures ranging from 530°C to 570°C (Appendix 3), a would be expected with the 
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addition of an intermediate oxide. Exothermic peaks, corresponding to the crystallisation of 

canasitelfrankamenite from the glass were observed in the composition without any zr02 

and the composition containing I mol% Zr02. The onset temperature of this exothermic 

peak increased with the addition of the zr02. No exothermic crystallisation peaks were 

observed for the glasses with 2 to 8 mol% Zr02 addition. 

XRD of the glasses after annealing confirmed an amorphous structure. Single stage heat 

treatments recorded the phase evolution of canasite (lCDD 13-0553) and/or frankamenite 

(rCDD 45-1398) in the glasses with up to 2 mol% Zr02 addition, with no initial CaF2 

crystallisation as a precursor. There is a shift from a predominantly frankamenite (F8Z0 & 

F8ZI) to a predominantly canasite glass ceramic (F8Z2). This is noticeable in Figure 6.2 

where the traces of the single stage heat treatments which produced maximum crystallinity 

for the different compositions have been stacked. Longer holds of 2 hours at the 

temperatures enabled crystal growth despite DT A recording no exothermic peaks for F8Z2, 

F8Z4 and F8Z8. However due to the poor crystallinity of these glass ceramics it was very 

difficult to identify and index the phases that crystallised in the case ofF8Z4 and F8Z8. 

0 
'Ii! 

! ..s 
!t 

'~ as 

~ 

10 

• 

20 

• 

• 

• 

• • 
30 

F8Z8 

F8ZA 

F8Z2 

•• F8Z 1 

•• r8ZO 

--, 

40 50 60 

29 

Figure 6.2: Differences in XRD traces at X, fluorite content = 8, ubjected to single tage 

heat treatment to peak DT A temperature. The peaks are indexed +canasitelfrankamenite, 

+ frankamenite and • unknown. 
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T bl 63 C II" h 1 . ft a e ;rysta me PJ ase analysIs a er two-stage h eat treatment 

Crystalline phases 

F8Z0 canasite/frankamenite 

F8Z1 canasite/frankamenite 

F8Z2 canasite/frankamenite 

F8Z4 unknown 

F8Z8 unknown 

Figure 6.3: Scanning electron micrographs ofF8Z1 to F8Z8 ubjected to two tage heat 

treatments, etched samples (1.5%HF for 25 econd). 
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When subjected to a two-stage heat treatment, the phases which crystallised were canasite 

and/or frankamenite for F8Z0, F8Z1 and F8Z2, with the F8Z2 trace being more akin to 

canasite, as noted for the glasses subjected to single stage heat treatment (Table 6.3). There 

was no evidence of any crystalline content after the nucleation hold for any of the glass 

ceramics. The traces for F8Z4 and F8Z8, after the crystallisation hold, remained 

unidentifiable. XRD recorded the same phase, albeit unknown, in both. Figure 6.3 

illustrates the microstructures ofF8Z1 to F8Z8. The tructure ofF8Z0 was very similar to 
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that of F8Z1 in that it was essentially amorphous with no discemable crystalline content 

visible after etching. The crystal morphology of the unknown phase in F8Z4 and F8Z8 can 

be seen more clearly in the micrograph of F8Z8 of Figure 6.3, which shows needle like 

crystallites of the order of IOJ..lm by If..lffi in a largely amorphous matrix. 

(ii) Glasses with 10 mol% fluorite content 

DTA recorded a shift in the exothermic peak corresponding to canasite and/or frankamenite 

crystallisation for glasses with 0 to 2 mol% Zr02 inclusion in the composition from 700°C 

to 800°C (Figure 6.4). 

__ --------------------~FIOZ8 

FIOZ4 ------

400 500 600 700 800 900 
Temperature (0C) 

Figure 6.4: DTA traces ofFlOZO to FIOZ8 

The trace corresponding to FlOZ2 indicates 3 phases crystaJIising out at 710°C, 800°C and 

830°C. XRD evidence demonstrated distinct differences between 720°C and 800°C in these 

glass ceramics (Figure 6.5). However there was insufficient information to identify distinct 

phases and they were all indexed as canasite/frankamenite phase . 
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lO 20 30 40 50 60 

28 

Figure 6.5: XRD traces ofFlOZ2 subjected to single stage heat treatments and holds at 

mentioned temperatures (DC). 
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XRD undertaken on FI0Z4 sUbjected to single stage heat treatment indicated a phase 

distinct from canasite and frankamenite although canasitelfrankamenite phases did 

crystallise. At Zr02 additions greater than 4 mol% the peaks were indexed to wadeite 

K2ZrSh09 (lCDD 43-0231) thus the DTA exothermic peak for FIOZ4 (Figure 6.4) 

corresponds to wadeite (Figure 6.6). FlOZ8 when subjected to a single stage heat-treatment, 

resulted in the crystallisation ofwadeite and the same unknown phase seen in the F8 series. 

The results indicate that the presence of CaF2 in the composition encourages the 

crystallisation of canasitel frankamenite at zirconia contents up to 4mol% as well as 

encouraging the evolution of the wadeite phase. However Zr02 is not acting a the hoped 

for nucleating agent. 

Figure 6.6: Structure ofwadeite with Si04 tetrahedras, Zr06 octahedra large circles 

depicting K+ or a+ and small circles depicting oxygen. 
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Wadeite, a potassium zirconium silicate is found as a mineral in West Kimberly area in 

Western Australia (Ferreira et ai, 2001). The hexagonal structure ofwadeite is based on a 

framework of silica tetrahedral, with potassium and zirconium atoms fitting in the 

interstices. The fundamental unit of these frameworks is the condensed cyclic trisilicate 

group (Figure 6.6). 

o 

0 
FIOl8 

FIOZ4 
0 

FIOl2 

FIOZ I 

FIOZO • 
JO 20 30 40 50 60 

29 

Figure 6.7: Differences in XRD traces at fluorite content = 10, subjected to single stage 

heat treatment to peak DTA temperature. The peaks are indexed +canasitelfrankamenjte, 

+ frankamenite, • fluorite, 0 wadeite and • unknown 

Whereas the nucleation holds of the F8 series of glass ceramics resulted in amorphous 

humps, XRD recorded evidence ofCaF2 for FIOZ2 glass ceramic after the nucleation hold 

(Figure 6.8). This corresponded to DTA evidence which only records a 6000 peak for 

FlOZ2 (Figure 6.4). Further to this there was also a shift from a frankamenite dominant 

crystalline structure in FI0Z0 to canasite dominant one, visible in both single tage and 

double stage analysis (10.10 and 28.60 29 to 30.60 29 peak ratio in Figure 6.7) 
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Figure 6.8: Differences in XRD traces at fluorite content = 10, subjected to a nucleation 

hold at 550°C for 2 hours. Fluorite peaks is inde ed as A . 
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Table 6.4 summarises the crystalline phase analysis of the samples after the nucleation and 

crystallisation hold on which K 1c tests were carried out. Microstructural analysis of the 

samples subjected to two stage heat treatments showed refinement in crystal structure. The 

spherulitic structure was retained in the glass ceramics with 1 mol% zirconia, but lath sizes 

decreased from 20 ~m (Figure 5.5, chapter 5) to approximately 10 ~m (Figure 6.9). The 

structure ofFlOZ2 was refined further with the crystal morphology moving away from the 

uncontrolled spherulitic structure to more interpenetrating laths of the order of 5 ~m 

(Figure 6.9). 

T bi a e 6.4: Crysta I " ft II " h me p ase analysts a er two-stage h eat treatment 

Crystalline phases 

FIOZO canasite/frankamenite 

FIOZI canasite/frankamenite 

FIOZ2 canasitelfrankamenite wadeite and unknown 

FIOZ4 canasitelfrankamenite wadeite and unknown 

FIOZ8 wadeite and unknown 
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Figure 6.9: Scanning electron micrographs of etched surfaces ofFIOZ4 to FIOZ8 subjected 

to two stage heat treatments, etched samples (1.5%HF for I minute). 

Canasite crystal morphology was further altered in FIOZ4, which showed mainly crystals 

of < I Ilm size, in amorphous regions. It was not possible to distinguish canasite crystals 

from wadeite, presumably due to the similar morphology as can be seen in FIOZ8 (Figure 

6.7). No elemental differences could be found under EDS, due to the very fine particle sizes 

(- lllm) Although XRD evidence indicated the presence of the unknown phase in both 

FIOZ4 and FIOZ8, assuming the crystal structure would be similar to that noticeable in 

F8Z8 (Figure 6.3) it was not possible to distinguish this under microscopy either. 

(iii) Glasses with 15 mol% fluorite content 

DT A again recorded a shift in the exothermic peak temperature corresponding to canasitel 

frankamenite as the Zr02 content was increased (Figure 6.10). A similar peak separation 

was noticed in the case of F15Z1 as noted previously for FIOZ2, and again there was 

insufficient information from XRD to identify distinct phases and they were all indexed as 

canasitelfrankamenite phases. 
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F15Z8 
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Temperature CC) 

Figure 6.10: DTA traces ofF15Z0 to F15Z8 

Figure 6.11 shows the XRD patterns obtained from the glass-ceramics subjected to the 

single stage heat treatments. In addition to canasite/ frankamenite peaks, fluorite peaks 

were identified in the F15 glass ceramics (ICDD 04-0864). 

o 

o F I5Z8 

•• o F I5Z4 

• F I5Z2 

• 
10 20 30 40 50 60 

29 

Figure 6.11 : Differences in XRD traces at fluorite content = 15, subjected to single tage 

heat treatment to peak DTA temperature. The peaks are indexed • cana itelfrankamenite, 

+ frankamenite, '& fluorite, 0 wadeite and • unknown 
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At Zr02 additions greater than 4 mol% the peaks were indexed to wadeite and the unknown 

phase. DTA recorded three crystallisation peaks associated with F15Z8 at 740° , 820° 

and 840°C. From XRD evidence, the phase crystallising out at 740° i the unknown pha e 

with the latter peak being associated with wadeite crystallisation. 

o 

10 20 30 40 50 o 

Figure 6.12: XRD traces ofF15Z8 subjected to 2 hour hold at tated temperature . he 

peaks are indexed . fluorite,O wadeite and • unkn wn 

The results for the phase analysis on the glass ceramics subjected to two tage heat 

treatments are summarised in table 6.5 and the corresponding micro tructures are hown in 

Figure 6.13 . 

T bl 65 C a e ;rysta I . ft 11" h me pi ase analYSIS a er two-stage h t t ea rea ment 

Crystalline phases 

F15Z0 canasitelfrankamenite 

F15Z1 canasite/frankamenite 

F15Z2 canasitelfrankamenite 

F15Z4 canasitelfrankamenite, wadeite and unknown 

Ft5Z8 wadeite and unknown 

An interpenetrating 'house of cards' structure idem n trat d for the 1 m 1% in lu i n f 

zirconia at a fluorite content of 15, distinctly different to the droplet' typ tructure f 
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F15Z0 (Figure 5.5, Chapter 5). The structure becomes more platy with a 2 mol% zirconia 

inclusion and tends back to the spherulitic structure with larger lath sizes at a 4 mol% 

zirconia inclusion. 

Figure 6.13 : Scanning electron micrographs ofF15Z4 to F15Z8 subjected to two stage heat 

treatments, etched samples (5%HF for 25 seconds). 

Hexagonal 
crystaUites 

Figure 6.14: Transmjssion electron micrograph ofF15Z8 
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The needles present in F 1SZ8 appeared to correspond to only one type of phase from SEM 

(Figure 6.13). This could be a refinement of the structure of the unknown phase 

demonstrated in F8Z8 (Figure 6.3). However two distinct phases could be identified under 

TEM (Figure 6.14), a phase with spherulitic somewhat hexagonal crystallites and distinct 

regions with very fine needles. 

6.3.2 Fracture Toughness 

The results for the KIc of the glass-ceramics and their associated standard deviations are 

shown in figure 6.1S. The circle denotes those values which are not statistically significant 

(where significance is at p < O.OS, as calculated by ANOV A, in Microsoft Excel, Windows 

XP). 
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Figure 6.1S : Klc as a function of x, fluorite content (red is x = 8, blue i x = 10 and green is 

x = IS) and y (zirconia content). 

The K1c values increase with fluorine content, agreeing with the findings in hapter 4. 

Minimum zirconia addition in the case ofF1SZ1 glass ceramics results in an increase in the 

fracture toughness from].4 ± 0.3 MNm-312 to 3.2 ± 0.2 MNm-312 ubsequent additions of 

zirconia decreases the Krc. In the case of FlO glass ceramics, the maximum K(c seems to 

have shifted to a 2 molafllo inclusion of zirconia, with a decrease for subsequent inclusions. 

In the case of F8 glass ceramics, canasite and/or frankamentie crystallisation was poor for 
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lower zirconia additions, hence K1c values were unobtainable. The phases which 

crystallised at higher zirconia additions were wadiete and an unknown phase, which 

resulted in lower fracture toughness values. 

The hardness values were used to calculate the brittleness index, B of the glass-ceramics. 

Figure 6.16 is a plot of the calculated brittleness as a function of the fluorite and zirconia 

content. The dotted line at B = 4.3 J..lm-l12 is the maximum value for the material to be 

machinable according to Boccaccini (1997). 
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Figure 6.16: B as a function of x, fluorite content (red is x = 8, blue is x = 10 and green is x 

= 15) and y (zirconia content). 

6.4 Discussion 

The addition of Zr02 significantly changed the fluorcanasite crystallite SIze, which 

decreased when the Zr0 2 concentration increased from 0 wt% to 2 wtOlo (Figures 6.3, 6.9 

and 6.13). The crystals in the FI0Zl , FIOZ2, Fl5Z1 and F15Z2 glass-ceramics have an 

acicu lar and randomly oriented, interlocked lath like morphology indicative of a greater 

number of nucleation sites than in the system without zirconia additions where uncontrolled 

spherulitic growth was observed. It has been suggested that the addition of Zr02 

supplements the nucleation role of CaF2 thereby allowing the development of fine-grained 

bodies (Beall, 1983). The findings of this study seem to correlate with this however further 

work is required to elucidate the exact mechanisms. The increase in the crystallisation onset 
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temperature of canasite and/or frankamenite phase presence with the addition of Zr<h for 
all fluorite compositions, indicates that Z~ does not act as an effective nucleating agent. 
Previous studies on Z~ additives in yittria-alumina-silica glasses have found that cubic 
zirconia crystallises from the parent glass and evidence of yittrium disilicate crystals 
embedded on zirconia (Vomacka et ai, 1996). But there has been no evidence of Zr02 
crystallisation in these glass ceramics. In the case of FIOZ2 however, the presence of 2 

mol% Z~ (Figure 6.8), increases the CaF2 crystalline content. CaF2 is the known 
nucleating agent for canasite, and under these conditions, it can be stated that Z~ acts as a 

growth modifier during the crystal growth process. 
There is a very definite correlation between the Klc results obtained and the crystalline 

phase and phase morphology of these glass-ceramics. The link between canasite phase 
dominance and Klc has been established in Chapter 5. This study substantiates these 
findings, as the fracture toughness values related to ftankamenite dominant structures 
(F8Z0, F8Z1 and FIOZO) are lower than the values related to canasite dominant structures 
(FlOZ2, F1SZ0, FlSZI and FISZ2). Further to this the microstructures of these glass 

ceramics, in particular the crystallite size and the type of interlocking, affected the fracture 
toughness. The F 1 OZO fluorcanasite crystals are spherulites with lath sizes of 
approximately 20J.l.m (Figure 5.5). The crystals that were formed in the FIOZI and FIOZ2 
(Figures 6.9) were finer being lOJ.l.m and SJ.l.m respectively and this correlated with an 
increase in KIc, although these toughness values are not statistically different. A better 
example is the structure ofFlSZl which exhibited a much finer and a randomly oriented 
interlocked lathlike morphology (Figure 6.13) and hence a high Klc of 3.2 ± 0.2 MNm"312. 

Although FISZ2 has a similar scale of crystallite size, the crystal morphology is less 
interlocked, and more 'platy' resulting in a decrease in the KIc to 2.5 ± 0.3 MNm"312. FZ84, 

FZ82, FZI08 and FZIS8 that contained wadeite and the unknown phase, had 
microstructures consisting of few very fine needles, approximately 5fJm in size and large 
amorphous regions (Figures 6.3, 6.9 and 6.13). FlOZ4 and FISZ4 demonstrated higher 
fracture toughness values than the base composition of FIOZO, although with lower 
canasite phase content. This was attributed to the fine crystallite size probably obtained due 
to the competition between different crystal phases. 

No fracture toughness data were obtained for the FZ81, FZ82, FZIOI and FZI08 glass 
ceramics through the indentation method, because of the high porosity found in these 
samples. As the Zr02 content was increased from 2 to 8 mol% the crystalline phase 
changed from predominantly canasitelftankamenite to wadeite and an as yet unknown 

phase. The mineral wadeite has the ideal formula K2ZrSh~, the structure of which is 
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based on a framework of silica tetrahedra the fundamental unit of which being the 
condensed cyclic trisilicate group with the potassium and zirconium atoms fitting into the 
interstices (Ferreira et 0/, 2001). Wadeite has been predominantly synthesised by the 
hydrothermal synthesis route, where the reactants have been heated in water/steam at high 
pressures and temperatures. No prior nucleation and crystallisation mechanism of wadeite 
as a glass-ceramic has been identified in previous studies. However increasing CaF2 seems 
to encourage wadeite crystallisation as well as canasite crystallisation. Has and Stelian 
(1960) have described the use of metallic fluorides to assist crystallisation of glasses. 
Fluoride crystals are first precipitated and these serve as nucleation sites for the growth of 
silicate crystals so that the glass is converted to a polycrystalline glass ceramic. The ease 

with which fluorides can be induced to crystallise out of a glass can be attributed to their 
weakening effect on the glass network. This means that even if the melt can be cooled to 
give a clear glass, as in the case of these fluorocanasite compositions, reheating the glass to 
a temperature within or just above the annealing range permits atomic rearrangement to 
occur so that crystalline fluoride nuclei may be formed (McMillan, 1979). The results of 

this study indicate that wadeite may have a similar crystallisation mechanism to that of 
canasite. The evolution of these phases as the predominant phases in the glass ceramics is 
associated with a sharp decrease in the KIc. Further work on the crystallisation mechanisms 
of wadeite and to identify the unknown phase at higher zirconia inclusions is necessary, 
however bearing in mind the lower toughness values associated with these crystalline 

phases in comparison to canasite, this is not within the scope of the current study. 
The maximum KIc value achieved with these compositional variations was 3.2 ± 0.2 

MNm-31l which is comparable to the KIc values of 'high strength' commercial systems 
indicated for use as a posterior restorative material (3.3 ± 0.3 MPa.mlll for Empress II, 

reported by HOland et 0/, 2000). There was little variation in the hardness values of these 
glass ceramics ( - 5 OPa) and thus the higher KIc values also resulted in brittleness indices 
of lower than 4.3 J.1m-l12 (the maximum value for the material to be machinable according 
to Boccaccini, 1997). A true test of machinability of course, would be a trial of the glass­
ceramic material in the CAD-CAM process, which subsequently follows in Chapter 8. 

6.5 Conclusions 

c Increasing CaF2 content increased the tendency of the glass ceramics towards 
canasite formation and thereby increased the fracture toughness. 
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o Zr02 contents up to 2mol% resulted in a shift from frankamenite to canasite as the 
dominant phase, for all fluorite content glass-ceramics. 

o The maximum fracture toughness was obtained for Fl5Z1 was 3.2 ± 0.2 MNm-312
, 

which is comparable to commercial systems. 

o Zr02 contents of 4mol% and greater resulted in wadeite and an unknown phase. 

o The fracture toughness results indicate wadeite would be not suitable for 

development as a monophase dental restorative material. 
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Chapter 7: Effect of silica content 

7.1 Introduction 

The composition of F15Z1 namely 56.58Si02-7.54Na20-6.60K20-14.14CaO-14.14CaF2-

0.99Zr02 has been shown to have a high fracture toughness value comparable to 

commercial systems for posterior restorations. However, this improvement in the 

mechanical properties of the glass ceramic occurred when an inclusion of 15 mol% CaF2 

has been made to the composition. Stokes (2003) has reported a 75% increase in solubility 

results associated with a 15 mol% CaF2 inclusion in the composition. Dissolution in these 

glass ceramics is known to occur preferentially in the glassy phase. Hence it was decided to 

increase the silica content in the base glass, in an effort to achieve a high strength, high 

chemical durability formulation. This chapter deals with the fracture toughness evaluations 

of silica variation. 

7.2 Experimental Procedures 

7.2.1 Glass Formulation 

Table 7.1: Glass compositions (as-batched) in mol% 

Composition K10 CaO NalO SiOl CaF2 zr02 
S55 6.71 14.37 7.67 55.88 14.37 1.01 

S57(=F15Z1) 6.60 14.14 7.54 56.58 14.14 0.99 

S65 6.09 13.05 6.96 59.95 13.05 0.91 
S70 5.82 12.47 6.65 61.72 12.47 0.87 
S80 5.35 11.46 6.11 64.82 11.46 0.80 

S90 4.95 10.60 5.65 67.46 10.60 0.74 

S110 4.30 9.22 4.92 71.70 9.22 0.65 

The glasses, were based on the composition ofF15Z1. The Si02 content was varied and the 

ratios were re-normalised to 100: 
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where 55 :S z :S 11 O. 

The glass compositions used in this study are given in table 7.1, where SS7 is the same 
composition as F1SZ1 from chapter 6. 

7.2.2 Glass Melting 

The glass was melted to produce a plate, approximately 1 Scm by 7cm and 8mm thick as 

described in Chapter 3. To produce clear glasses, the annealing schedule needed to be 

varied according to the silica content in the composition (table 7.2), as with the increase in 

silica content it was found that CaF2 nucleation occurred during annealing at temperatures 
of 500°C. 

e . m~sc Tabl 7 2 Anneal' hed 1 u esus ed 

Glass 
Temperature Hold duration Cooling Rate 
(0C) (miD) JOC/miD) 

S55 500 60 1 

S57 500 60 1 

S65 500 120 1 

S70 490 120 1 

S80 480 180 I 

S90 460 240 I 

SllO 460 240 1 

7.2.3 Differential Thermal Analysis 

Differential thermal analysis was used to detennine crystallisation temperatures. Sample 
preparation and DTA measurements were carried as described in section 3.2.1 

7.2.4 Heat Treatment 

All series of glasses were subjected to single stage heat treatments at 5°C/min up to 

temperatures varying in 20°C between 600°C and 740°C, for phase analysis. These samples 
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were held for two hours at the temperatures and air quenched to retain the phases present at 

those temperatures. Both XRD and DT A results were used to determine the nucleation and 

crystallisation temperatures and two stage heat treatments were designed for fracture 

toughness tests. Table 7.3 shows the two stage heat treatment schedules that the glasses 
were subjected to. 

hi Ta e 7.3 T wo-stage eat treatment sc uesu h hed I sed 

Glass 
Beating Nucleation Bold Beating Crystallisation Bold 

rate temp. duration rate tem~ duration 

S55 5 550 120 5 720 120 

S57 5 550 120 5 730 120 

S65 5 550 120 5 750 120 

S70 5 550 120 5 780 120 

S80 5 550 120 5 800 120 

S90 5 550 120 5 820 120 

S110 5 550 120 5 830 120 

7.2.5 Phase and Microstructural Analysis 

X-Ray diffraction was carried out using both the Phillips and the Siemens diffractometers. 

Fracture surfaces and etched surfaces were examined under the leo} and the Camscam 
electron microscopes as detailed in section 3.2.3. 

7.2.6 Mechanical Testing 

Fracture toughness was measured using Vickers indentation as described in section 3.3.3. 
The radial cracks were optically examined and measured and the fracture toughness (K,c) 

Vickers hardness (Hv) and brittleness (B) were calculated using equations 3.1,3.2 and 3.3. 
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7.3 Results 

7.3.1 Crystalline phase analysis 
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80 

o 200 400 600 

Temperature (0C) 

Figure 7.1: DTA traces of Silica series glasses 
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DTA results indicated an increase in crystallisation onset temperature as the silica content 

increased. Si02 is of course a major network former in these glasses, hence with the 

increase in Si02, the stability of the glass increases. However the peak associated with the 

crystallisation of CaF2 was constant at a temperature of 600°C, although not clearly seen in 

Figure 7.1. DTA records a major crystallisation event in the higher silica glasses, but S55, 

S57 and S65 DTA traces show minor peaks either side of the major phase. XRD did not 

demonstrate distinguishable differences between crystalline phases at temperatures of 

680°C, 700°C and 720°C. As previously mentioned (see section 6.3.1(ii) and (iii)), these 

were attributed to either one of the similar phases of frankamenite or f-canasite . The major 

peak was attributed to canasite for all glass ceramics as the dominant phase discernable 

from XRD is canasite (see Figures 7.2, 7.3 and 7.4 below). The canasite a sociated peak 

becomes broader and flatter as the silica content is increased. 
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Figure 7.2: XRD traces of silica series heat treated to 720°C held for 2hrs and air quenched . 

The peaks are indexed + canasite/frankamenite, A fluorite, 0 wadeite 

CaF2 crystallisation occurred in all glass compositions at temperatures ranging between 

600°C for S55 and 620°C for S 11 O. Canasite and/or frankamenite cry tallisation was 

evidenced at temperatures ranging between 660°C for S55 and 800°C for 110 (Figures 

7.2, 7.3 and 7.4). 
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Figure 7.3: XRD traces of silica series heat treated to 760° held for 2hr and air quenched. 

The peaks are indexed . canasiteifrankamenite,A fluorite, 0 wadeite 
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Figure 7.4: XRD traces of silica series heat treated to 800° held for 2hr and air quenched. 

The peaks are indexed • canasite/frankamenite, & fluorite, 0 wadeite 

Figure 7.5 shows the crystallisation of canasite in S90 and SIlO. The aF2, canasite and 

frankamenite peaks are indexed according to cards (ICOD 04-0864), (1 DD 13-0553) and 

(ICDD 45-1398). There was a single peak in all traces which could not be inde d by the e 

cards and it corresponded to 23°29 peak of wadeite (1CDD 43-0231). Beall (1983) 

suggested that the predomjnant phases in the fluorcanasite compo ition te ted were 

canasite and/or aggrelite and/or fedorite. Further to these phase , xonotlite and mi erite 

have been known to crystallise in fluorcanasite compositions (Miller, 2004). However, 

there was no evidence of these phases in the compositions studied in either thi or 

preceding chapters. 
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Figure 7.5: XRD traces of S90 and S 11 0 heat treated to 840°C held for 2hr and air 

quenched. The peaks are indexed + canasite/frankamenite, Afluorite, 0 wadeite 
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AJI samples subjected to two stage heat treatments crystalli ed to give gla -ceramic with 

canasite as the dominant phase. Evidence of CaF2 was present after the nucleation phase for 

all glass ceramics under SEM as the crystallites were probably too small for XRD. 

Subsequent crystallisation holds produced a very fine microstructure (Figures 7.6, 7.7 7.8, 

7.9 and 7.10) 

Figure 7.6: Scanning electron micrographs of ample ubjected to tw tag h at 

treatments, etched at 5% HF for 25 . 

Microstructures of S55-S80 were similar in terms of cry talline Ize - 2 j..I.m) and ry tal 

morphology (globular crystals) . The stoichiometric silica content in cana ite i 60m 1%. 

The glass compositions of S70, S80, S90 and 110 are in e ce f thi amount. h 

reasoning behind choosing to increase silica content in the gla c rami w that th 

increased silica in the residual glass would improve the chemical durability. h 

microstructures of S90 and S] 10 indicate an influence of incr a ing iIi a ntent n th 

resulting microstructure. S90 produced a ' platier' structure with longer lath (- 1 J.lm). or 

S 11 ° the bulk of the glass ceramic crystallised to give cry tallite of the rd r f 2J.lm. 
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Interestingly, the scanning electron microscopy revealed sphericular regions of the order of 

150llm which showed no elemental variation in EDS, to the remainder of the glass ceramic. 

Figure 7.7: S70 subjected to two stage heat treatment, etched at 5% HF for 25s. 

Figure 7.8: S80 subjected to two stage heat treatment, etched at 5% HF for 25s. 

Figure 7.9: S90 subjected to two stage heat treatment, etched at 5% HF for 25s. 
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Figure 7.10: S 110 subjected to two stage heat treatment, etched at 5% HF for 25s. 

7.3 .2 Fracture toughness 

KIc values of the glass-ceramics and their associated standard deviations are shown in 

figure 7.11. All values are statistically significant. Figure 7.12 is a plot of the brittleness 

calculated using the Vicker' s hardness values. 
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Figure 7.11 : Klc as a function of silica content 
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Figure 7.12: B as a function of silica where the dotted line at B = 4.3 Ilm-I/2 is the 

maximum value for the material to be machinable according to Boccaccini (1997). 

7.4 Discussion 

102 

A high fracture toughness formulation has been identified which crystallises to give 

canasite and/or frankamenite glass ceramics. S57 (previously F15Z1 in Chapter 6) resulted 

in K1c values of3 .2 ± 0.2 MNm-J12
. Increase in silica content by about 5 mol% resulted in a 

reduction of fracture toughness and then subsequent increases resulted in a maximum value 

for the Klc at - 65 mol% silica inclusion (S80) of3.4 ± 0.2 MNm-J12 (Figure 7.11) Results 

of this study indicate a strong relationship between the fracture toughness and the 

crystalline structure of these glass ceramics. Microscopy reveals that any move from the 

'house of cards' type structure is associated with a decrease in the fracture toughness 

(Figure 7.6). 

Fracture toughness values initially decrease with increased silica ( 65 and 70) and then 

an increase at S80. It was found during Vicker' s toughness tests that for 70 and 80 glass 

ceramics there was no associated catastrophic failure until much greater load (- 600 - 700 

N in comparison with a maximum of 200 N for previous formulations) . The ability of the 

material to deform (in this case, to produce an indent), under higher loads is u ually 

associated with plastic flow (viscous) flow due to shear. It has been reported that 

mechanisms that absorb indentation energy in an amorphous material are (a) plastic 

(viscous) flow due to shear, (b) densification resulting from compression and shear which 
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in some cases may invoke breaking of bonds, and (c) fracture (Kavouras et ai, 2003). 

Although the major phase in this glass-ceramic is crystalline, if plastic deformation is 

taking place in this material, it may indicate a higher resistance to impact damage. 

As the silica content is increased to values greater than 65 mol% (S9O and S 110) there is 

decline in the fracture toughness values, which is accompanied with the formation of a high 

volume fraction of under-developed crystals. Similar results were found in a study 

investigating silica and alumina additions on the crystallinity of trisilicic mica and 

potassium fluorpblogopite (Henry and Hill, 2003). They attributed a move away from the 

'house of cards' microstructure to the higher silica content in the residual glass phase 

preventing the coarsening of the fluorphologopite crystals. Despite a decrease in crystalline 

sizes in S90 and S 110, the hardness values remain constant. This may be explained by a 

relatively higher SilO ratio in the residual glass which represents a more cross-linked 

vitreous network (a network with relatively greater Si-O-Si bonds or less non-bridging 

oxygens). Plastic flow and densification produced from shear stress during the indentation 

process is less likely to occur in a more cross-linked network, since plastic deformation 

requires the rupture of a larger number of atomic bonds (Kavouras et al2003). 

The composition of S80 (-65 mol% silica) results in a Klc value of 3.4 ± 0.2 MNm-312
, 

which is similar to the highest values associated with commercial glass ceramics indicated 

for use as a restoration in the posterior region of the mouth (3.3 ± 0.3 MPa.mJ12 for Empress 

IT). Further to this the indentation method is known to result in substantially lower fracture 

toughness results than other methods, in some cases greater than 3-fold (Beall, 1986) which 

would suggest that this material may be comparable to the high strength Y -TZP ceramics. 

7.S Conclusions 

o All silica additions resulted in the crystallisation of canasite and frankamenite 

phases. The addition of silica resulted in significant variations of the microstructure, 

which affected the fracture toughness of these glass ceramics. 

o The maximum fracture toughness obtained for 880 was 3.4 ± 0.2 MNm-312
, which is 

comparable to commercial systems that are indicated for use as a posterior tooth 

restoration. 
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Chapter 8: Development of 8uorcanasite as a dental material 

8.1 Introduction 

The composition of60Si(h-8Na20-7K20-15CaO-IOCaF2 was shown to offer an increased 

chemical durability over the original formulations of fluorcanasite (Stokes 2003). This 

increase in durability came at the expense of fracture toughness. Thus through the course of 

these studies reformulations have been attempted in order to increase the fracture toughness 

of the material. Two compositions. S57 and S80 have been identified with fracture 

toughness values of> 3 MNm"312, and hence are comparable to commercial systems. It was 

therefore necessary to assess the chemical durability of the material to ensure that the 

reformulation had not adversely affected it. It was decided to conduct a chemical solubility 

test in accordance with ISO 6872:1995. 

Although optimisation of the glass-ceramics in terms of heat treatment is yet to be carried 

out, it was also decided to assess the biaxial flexural strength of these high Klc glass 

ceramics. Further to this, the practical application of this material is as a dental restoration. 

Hence it is necessary at this stage to check if there is a viable process route by which this 

material can be converted into a restoration. 

8.2 Chemical Solubility 

The dental ceramics international standard provides a chemical durability recommendation 

(ISO 6872: 1995 (E». This test subjects the material to 16 hours in 4% acetic acid solution 

at SO°C stipulating that the losses should be <lOOJ.lg/cm2 for a dental veneer or dentine 

replacement ceramic and <2000J.lg/cm2 for a core ceramic. It was necessary, therefore, to 

test the solubility of the new fluorcanasite formulations according to the ISO 

recommendations so that it could be quantitatively compared to existing dental ceramics. 

8.2.1 Experimental Method 

For chemical solubility analysis, the method used was as described in the ISO 6872:1995 
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(E) Dental Ceramic Standard. 10 discs 12mm diameter and 1.6mm thick of S57, S80 and 
BS were produced by core-drilling from annealed glass plates (melted as described in 

Chapter 3). These were cerammed using the cycles as described in Table 8.1, where the 
heating rate used was 5°C/min and the samples were furnace cooled. A separate run of S57 
glass discs was carried out to compare the difference between the glassy phase and the 
cerammed phase. 

Table S.I: Heat treatment schedules glass ceramics were subjected to. 

Nucleation Crystallisation 1 Crystallisation 2 

Temp. Time Temp. Time Temp. Time 
(0e) (min) eC) (min} .1~ lmiJ!l 

S57 550 120 720 120 - -
SSO 550 120 800 120 - -
BS 700 120 800 240 900 240 

The specimens were ground to the required geometry using diamond and SiC abrasives to a 
P 1200 grade finish and then washed in distilled water. They were subsequently placed into 
a clean, dry glass beaker and dried at 160 ±5°C for 4 hours. The discs were weighed to the 
nearest O.Olmg on a balance (Mettler AJlOO), with all handling of the specimens by nylon 
tweezers to avoid introducing any contamination or moisture. 
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Figure 8.1: S57 glass discs within the extraction apparatus. 

The samples were placed into the extraction apparatus and were extracted with 4% acetic 

acid (HAc) solution by refluxing for 16 hours with a reflux rate of approximately 3 cycles 

per hour (Figure 8.1). The temperature within the vessel was not allowed to exceed 80°C. 

Following the extraction procedure, the specimens were washed in distilled water and dried 

at 160 ±5°C for 4 hours as before and re-weighed to O.Olmg and the results recorded. 

Chemical solubility was calculated using: chemical solubility (J,lglcm2
) = weight loss (J,lg) I 

surface area (cm2
) 

SEM (SEM, CamScan) was used to analyse the discs after the solubility test. The discs 

were mounted onto stubs and gold coated (Evaporation unit, Edwards, UK) prior to 

examination. 

8.2.2 Results 

The results of the solubility test are given in Figures 8.2 to 8.5. There was a high standard 

deviation associated with the results. Although each disc was assessed individually, it was 

not possible to keep track of which was which once inside the apparatus. This, along with 

inadequate wetting could be a major factor of the errors. 
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Figure 8.2: Chemical solubility ofS57 glass and cerammed samples. The red bar indicates 

standard deviation. 

Figure 8.3: Scanning electron micrograph of the surface of the 57 gla di c after 16 hour 

in 4 % acetic acid at - 80°C howing crazing on the surface. 
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Figure 8.4: Scanning electron micrograph of the surface of the S57 cerrammed disc after 16 

hours in 4% acetic acid at - 80°C showing a crazing on the surface. 

Crazing patterns were visible to the naked eye for the glass specimens and were evident on 

the surface of glass ceramic under scanning electron microscopy after solubility testing. 
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Figure 8.5: Chemical solubility ofS57, S80 and B8 cerammed ample . The r d bar 

indicates standard deviation. 
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8.3 Mechanical Properties 

8.3.1 Experimental method 

Fracture toughness was measured using Vickers indentation as described in section 3.3.3. 
The radial cracks were optically examined and measmed. 

Biaxial flexural strength was conducted using a Lloyds LRX tensometer with a 2S00N load 
cell. Ten discs of 12mm diameter and 2mm thickness of S57, S80 and B8 were core-drilled 

and subsequently cerammed with a two stage heat treatment as specified in Table 8.I.The 
discs were polished to a IJ.1.I1l finish using SiC and diamond pastes. Paper shins were placed 

between the under-side of the disc (compression surface) and the ring to ensure fracture 
was not initiated due to the sharp edges of the ring. The discs were then fractured using the 
ball on ring arrangement (Figure 8.6). After fracture the discs were accurately measured to 
allow computation of the biaxial flexural strength using the formula: 

Omax = PI h2 {O.60610ge(a I h) + 1.13} 

where P is the load in Newtons, a is the radius of the support ring in mm, and h is the 
sample thickness in mm. This value represents the maximum stress seen by any portion of 
the sample. In all cases fracture was observed to have originated at the centre of the disc 
(Figure 8.7). 
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Figure 8.6: Ball on ring arrangement in a L10yds LRX tensometer used for biaxjal flexural 

strength test. 

Figure 8.7: Eight S80 glass-ceramic samples exhibiting a failure originating from the 

centre. 
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8.3.2 Results of Mechanical Testing 

The results of the mechanical tests are summarized in Table 8.2. 

e .. Tabl 82 S umm8J)'o fth emec hamal c testmg resu ts. 
Klc (MNmo3t.2) VH(Nmo2

) B (~oll2) BFS (MPa) 

S57 3.2±0.2 5.6 ± 0.1 1.8 ± 0.2 468 ± 80 

S80 3.4 ± 0.2 5.4 ± 0.3 1.6 ±0.3 374± 50 

B8 2.0±0.2 3.3 ± 0.1 1.7 ± 1.2 139 ± 32 

8.4 Dental Restoration Production 

Historically, the primary method for forming dental ceramics has been sintering, but this 

method is time consuming and consequently costly, not to mention difficult due to the large 

shrinkages on firing. Recent developments have resulted in the hot-pressing of ingots of 

ceramic materials that allows the lost-wax technique to be used; lost-wax casting being a 

well established technique for dental aHoy casting. Furthermore, the advent of CAD-CAM 

in dentistry has seen a selection of prefabricated blocks being available that allow milling 

of digitally designed restorations in a matter of minutes. 

8.4.1 Experimental procedure 

CAD-CAM was carried out on SS7, S80 and a VITA Mark n (Vita Zahnfabrik, Bad 
Sackingen, Germany), a fine-particle feldspathic porcelain with 80 vol% glass matrix as a 

control. To produce a fluorcanasite restoration using CAD-CAM, blocks were made that 

were compatible with the milling hardware. The block size required was ISmm x 10mm x 

12mm. To produce this, the remainder of the glass plate (after core drilling) was crushed 

and was re-melted in a platinum crucible for a total of 10 minutes (the time was kept to a 

minimum so as to minimise any losses due to volatilisation). The molten glass was then 

poured into a heated steel mould (Figure 8.8). 
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Figure 8.8: Re-melting of the glass pieces and the mould it was cast in. 

This was annealed for 1 hour at 500°C and cooled at 1°C per minute. A block of 15mm x 

10mm x 12mm was cut using a diamond coated wheel and these blocks were subjected to 

heat treatments used in Table 8.1. The completed block is shown in Figure 8.9 with a VITA 

block for comparison. 

a 

Figure 8.9: (a) VITA Mark IT blocks. (b) The completed fluorcana ite block prior to milling. 

The CAD-CAM unit used was the CEREC-Scan (Sirona, Germany) and is hown in Figure 

8.10. A laser scanner scans a model of the preparation. From this impression the C RE 

software (version 3.01) was used to generate a milling pattern for a crown u ing the ' dental 

database ' mode (which uses a collection of information of tooth shape to develop the 

biting surface of the crown automatically) . A copy of the model used for the ca t 

restoration was trimmed and mounted on a scanning platform. Thjs model was then coated 

in a titanium dioxide based surface agent to make the surface opaque (ERE Powder). 
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The model was then scanned using the CEREC-Scan unit to make a digital impression. 

Figure 8.10: The CEREC-Scan hardware with an S80 block inserted. 

The blocks were cut to the specific size required on an automatic grinding machine using a 

carborundum disc and the comers bevelled to match the original VITA Mark II block with 

SiC paper. A template to mount the aluminium stub that retains the block in the machine 

was made from hard polyvinylsiloxane (Aquasil Soft Putty, Dentsply, UK). The aluminium 

mounting stub was then located onto the block using the template and fixed using a two­

part epoxy resin adhesive (Araldite Clear) (Figure 8.9b). 

8.4.2 Results 

S57 blocks produced for milling fractured during the milling process (despite three 

attempts). S80 block was accepted by the CEREC-Scan milling unit as a valid block and 

milling took a total of 10 minutes to complete. The milling process was carried out twice on 

the S80 to ascertain reproducibility. The milling process is shown in Figure 8. ] ] . 
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Figure 8.11 : The fluorcanasite block ( 80) being milled. 

The completed S80 crown, shown in Figure 8.12, showed good marginal integrity and it 

was not possible to identify any areas morphologically different to the VITA milled crown 

optically. 

Figure 8.12: A direct comparison of the milled crown on the mould, th 

and VITA Mark II crown on the right. 

o nth left 

Scanning electron micrographs of the gold coated crown comparing the cc1u al and th 

interproximal surfaces of both S80 and the Vita block how that the depth of the defect in 
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the crown caused by machining did not differ from those of the porcelain (Figures 8.13 and 

8.14). 

Figure 8.13 : Scanning electron micrographs of the occlusal (top of crown) surfaces of the 

S80 (above) and VITA Mark II (below) 
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Figure 8.14: Scanning electron micrographs of the interproximal (sides of crown) surfaces 

of the S80 (above) and VITA Mark IT (below) 

However the defects associated with the feldspathic porcelain were larger laterally and 

indicated large chipping defects responsible for material removal (Figure 8.13). In contrast 

S80 showed small brittle fractures with crack propagation observed to occur by the 

continual redirection due to the random orientation of the canasite and/or franakamenite 

crystals (Figure 8.15). 
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Figure 8.15 : Scanning electron micrograph of the ridge on the occlusal surface of the S80, 

showing fine crystal morphology responsible for the machining crack propagation. 

8.S Discussion 

This study has identified the S80 composition as having adequate mechanical and chemical 

properties to be used as a core material in a dental restoration. This formulation produces a 

glass ceramic which can repeatedly be milled using existing dental laboratory equipment. 

The mechanical property tests showed that S57 and S80 formulations produced glass 

ceramics with K1c values of 3.2 ± 0.2 MNm-312 and 3.4 ± 0.2 MNm-J/2 and biaxial flexural 

strength values of 468 ± 80 MPa and 374 ± 50 MPa respectively which offer a significant 

improvement in comparison with the base formulation which had a K1c of was 0.60 ± 0.17 

MNm-
3/2

. The BFS of the base composition was not tested in this study but previous results 

at Sheffield gave a value of 139 ± 32 MPa for this particular base composition (Stokes, 

2003). The KJc increased with the increase in silica content, whereas the BFS values 

decreased. The strength of a brittle material is the stress that is required to 'break' that 

material. Fracture begins from a single location called the fracture origin, which is a 

discontinuity such as a flaw or a defect that has developed from mechanical, chemical or 
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thermal processes that will act as a localised stress concentrator. Under a specific critical 

applied stress, the crack will initiate from these defect-sites and propagate catastrophically, 

leaving characteristic markings on the fracture surfaces. Similar apparently contradictory 

results were recorded by Gorman and Hill (2003) in a study on alumino-silicate glass 

ceramic. The prevention of crack propagation was attributed to microcracking and the 

reduction of strength was found to be a result of an increase in flaw size. The results found 

in this study could be due to differing mechanisms, although further evaluation is 

necessary. 

The biaxial flexural strength tests gave results with a high degree of scatter but the 

differences in values were statistically significant. Morrell et al (I999) have assessed some 

of the issues concerning biaxial flexural strength testing, and identified sources of potential 

error as the friction at the loading and support positions and the thickness effects. In 

addition, to this if erroneous results are recorded if the crack originates at the contact edge 

of the ring and the disc. The use of the paper shin however, ensured the rupture of the 

samples tested initiated centrally. 

The solubility of S57 glass was 7900 Jlglcm2 and ceramic was 4400 Jlglcm2
, indicating 

the glassy phase may be responsible for the solubility of this glass-ceramic. Although it has 

to be bourne in mind that the crystallisation would alter the glass composition to a certain 

extent. SEM examination of the surface of both the cerammed and glass specimens after 
solubility testing showed the presence of crazing on the surface. Sinton and LaCourse 

(200 1) identified the first stage of the reactions of glass with water or other aqueous 

solution as being the exchange of alkali ions in the glass with hydrogen atoms from the 

water, i.e.: 

The surface of the glass becomes depleted in alkali, and a silica-rich layer may form. This 

effect would be exaggerated in an acidic environment as was the case of the solubility test 

where 4% ascetic acid was used. The process leads to a dealkalisation of the surface and 

under static conditions can lead to elevated pH values near the glass. Meanwhile, 

dissolution of the silica network is greatly encouraged in high pH environments. 

(Si-O-R)gIua + OR' ~ (Si-OH)gIau + (Si-Qlso1utiOll 
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Wolters and Verweij (1981) suggested that the water that is inherent within the glass is 
hydrogen bonded to non-bridging oxygens (Si-O and Si-OH). When the two non-bridging 

oxygens are close to each other, they propose that a single water molecule can be bonded to 
both (like a divalent cation) creating an effective cross-link in the glass structure and 
blocking a potential channel for alkali diffusion. Such a cross-link could cause the silicate 
network to contract and thereby contribute to the tensile stresses created by the ion 
exchange at the surface. These combined tensile stresses are thought to cause the crazing of 
the surface layer. The presence of the crazing in the cerammed fluorcanasite material may 
be evidence of high levels of a residual glass, which on leaching forms a hydrosilicate 
layer. Bunker et al (1983) propose that two distinct hydrosilicate phases can form on the 

glass surface depending on the leaching conditions and glass composition. Under low 
(room) temperature leaching conditions that are relatively mild, the hydrated surface is 
brittle. Bunker et al (1983) state that this crazed surface is due to tensile stresses generated 
within this material and not as a result of drying of the surface layer as it is optically 

observed on the glass surface while the glass is in the leaching solution. However, this 

cannot be fully substantiated in this study as the surface was not observed in the solution, 
but under SEM, after the samples had dried. 

Solubility of the S57 ceramic at 4400 p.g/cm2 is significantly higher than solubility 
results quoted for the base compositional glass-ceramic of 650p.g/cm2 (Stokes, 2003). This 

can be attributed to the 5mol% increase in CaF2 content (to a total value to 15 mol%), 
which was added to the glass to optimise canasite crystallisation. Fluorine is known to 
disrupt the glass network, resulting in increased mobility of ionic species; thus aiding 

dissolution, by the above mentioned mechanisms. This explains the chemical solubility of 
B8 (5900 J.lg/cm2

), which had an 18mol% inclusion oftluorite in its composition. 

When the silica content was increased (in S80) the chemical solubility of the new 
formulation decreased by 33%. Bubb et al (2004) found that systematic additions of Si02 
and A1P04 to a fluorcanasite composition resulted in a reduction of the solubility from 
2400 to 600 J.lg/cm2 and an increase in associated strength values, consequently larger 
additions resulted in a reduction in strength. This is in good agreement with the results of 
this study as, it was noted in Chapter 7 additions of greater than 65 mol% silica resulted in 
a decrease in the mechanical properties of canasitel ftankamenite glass ceramic. Anusavice 

and Zhang tested the effect of adding alumina to the &it before casting and results of 
2170J,lg/cm2 (2% alumina) and 790J,lg/cm2 (5% alumina) after 16 hours in 4% acetic acid 
were reported (although the addition of up to lOOA, alumina significantly reduced the 
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chemical durability of the material due to phase separation during heat treatment of the 

glass). Aluminium ions are thought to act similarly in the glass structure as silicon ions, 

and Al04 groups can replace Si04 tetrahedra in silicate lattices (with the addition of a unit 

positive charge to ensure electroneutrality). Stability and chemical durability of S80 is due 

to the increasing connectivity of these silica tetrahedral units. The chemical solubiHty of the 

S80 is within the maximum value of 2000J.1g/cm2 as stated by the ISO standard for a core 

ceramic and it would seem that the fluorcanasite glass-ceramic could be used as a high 

strength core material. 

Stokes (2003) varied the alkali content and found a minimum solubility of 6S0f.lglcm2 

with variability between the discs of ±I 98 flglcm2 (using the ISO 6872 test) for canasite 

glass-ceramic. This was achieved with a glass composition of 60Si~-8Na20-7K20-

15CaO-10CaF2. Although there was a decrease of 73% over the original formulation 

(Stokes 2003), it was still not acceptable as a dentine replacement material. A factor of 

concern is the high standard deviation associated with the ISO 6872 standard chemical 

solubility test for dental ceramics. Future work may involve solubility testing by the revised 

bead test proposed by Stokes (2003), which offered reduced variability in the results. 

Results from the CAD-CAM trial showed that this is a viable processing route for the 

canasite and/or frankamenite glass ceramics. Indentation fracture toughness testing 

indicated that the impact resistance of S80 was much greater than S57 (see Section 7.5, 

Chapter 7). This ability to deform rather than fracture catastrophically at higher loads is 

associated with lower hardness values (ref). Hardness value of S80 at 5.40 ± 0.31 Nm-2 

was slightly lower than that of S57 at 5.57 ± 0.20 Nm-2, resulting in a slightly lower 

brittleness index for S80 (Table 8.2). Boccaccini (1997) suggested that brittleness index 

should be lower than 4.3 J..I.m-l12 for a glass ceramic to be easily machinable. The brittleness 

indices of both S57 and S80 were substantially lower than this value. Verification of this 

proposed relationship was based on quantitative data gathered from literature specifically 

on fluorophlogopite mica g1ass-ceramics of differing compositions. The results of this 

study indicate that this relationship is not valid for the canasitel frankamenite glass-ceramic 

system. 

Surface analysis of the CAD-CAM crowns revealed that the depth of the defects in S80 

did not differ significantly from the VIr A feldspathic porcelain. However the surface 

morphology of the two crowns indicated differing mechanisms of material removal during 

machining. Previous studies have attributed material removal in Vita feldspathic porcelains 

to microcracking and microchipping (Kelly et ai, 1992 and Sindel et ai, 1998). Sindel et al. 
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found similar results in a study comparing the machined surfaces of Vita Mark II and Dicor 

MGC, a tetrasilic fluormica glass ceramic. When observing scanning electron micrographs 

of machined Vita blocks they found, as in this study, that the removal of material mainly 

occurred in chipping areas parallel to the surface; compared to the lateral size, the depth of 

the defects is minor. Interestingly the surface damage due to machining of the Dicor MGC, 

a glass ceramic with mica crystals of the order 10 ..... m was found to be very similar to that 

of canasitelfrankamenite glass ceramics. Sindel et al. (1998) attributed this to a 

combination of both plastically deformed areas and small brittle fractures. Further analysis 

of machined surfaces of the S80 needs to be carried out to definitively assess if plastic 

deformation has taken place, but the indents caused during fracture toughness tests are 

indicative of the material's ability to plastically deform. Henry and Hill (2003) suggest that 

the machinability of mica materials is a direct result of the of the layered mica crystal 

structure, where crack propagation takes place preferentially along the cleavage plane of 

the mica crystal. It is hypothesised that the machinability of canasite and/or frankamenite 

glass ceramics results from a similarly randomly oriented crystal structure. 

8.6 Conclusions 

c S80 with a Klc of3.4 ± 0.2 MNm-312 and a BFS of 374 ± 50 MPa, was found to offer 

improved mechanical properties in comparison with most current commercial 

systems and equals the mechanical properties of dental restorative materials 

indicated for posterior use (3.3 ± 0.3 MPa.ml12 for Empress II, reported by H61and 

et ai, 2000). 

c If this material is to be used as a dental restoration with surfaces exposed to the 

aqueous environment in the mouth, it requires a further development to reduce its 

solubility, though results indicate the material is within the solubility limits for use 

as a core material (class 2, ISO 6872: 1995 (E». 

c Machining of S80 blocks were successfully carried out on the CEREC-Scan 

(Sirona, Germany) and showed good correlation with the machining of the 

commercial VITA Mark IT blocks. Thus CAD-CAM offers a viable route for the 

processing of fluorcanasite into dental restorations. 
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Chapter 9: Conclusions 

o The base glass composition for the study was the formulation developed to crystallize 

to a low solubility glass-ceramic of 8Na20-7K20-15CaO-l OCaF2-60Si~. All 

compositions studied here were produced by varying one or more components in this 

formulation. The glass manufacturing procedure for all the glasses in this study was 

found to ensure a homogeneous glass, with the incorporation of a fritting and re-melting 

stage into the schedule. 

o The glass compositions used have been shown to nucleate both canasite and/or 

frankamenite phases. Evidence of heterogeneous nucleation with CaF2 as a precursor 

has been found. Further studies are required to evaluate the nucleation mechanism of 

frankamenite, although it has been established that it is distinct from that of canasite. 

o It has not been possible to crystallize a mono-phase canasite or frankamenite glass 

ceramic, neither has it been possible to quantify the crystallization of these phases in 

this study. It has been recognized that detailed crystallographic studies are indicated in 

this respect and as such this was out of the remit of this study. 

o It was found that higher Klc values were associated with a higher canasite phase 

dominance. Thus the extent to which differentiation from X-ray diffiaction data of the 

two phases (however limited) was achieved, enabled development of a tougher glass­

ceramic material with a bi-phase crystal structure of canasite and ftankamenite. 

o Z~ additions have been investigated for compositions with differing fluorite contents. 

It was found that Zr02 inclusions up to 2mol% resulted in a shift from frankamenite to 

canasite as the dominant phase, for all fluorite content glass-ceramics. A maximum 

fracture toughness of3.2 ± 0.2 MNm-312 achieved for F15Z1 (Chapter 6) is comparable 

to commercial systems. 

o Z~ contents of ~ 4 1001% resulted in the crystallization of wadeite and an unknown 

phase. Although values of KIc > 2 MNm-312 were found for glass ceramics with the 

crystalline phases of canasite, frankamenite and wadeite; this was attributed to the 
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canasite phase or restriction of crystallite size due to phase competition and it was 

concluded that wadeite would be not suitable for development as a monophase dental 

restorative material. 

o All silica additions resulted in the crystallization of canasite and frankamenite phases. 

The change in silica content resulted in significant variations of the microstructure, 

thereby affecting the fracture toughness of these glass ceramics. Maximum fracture 

toughness was obtained for S80 was 3.4 ± 0.2 MNm-312
, which exhibited a 'house of 

cards' crystal structure consisting of interlocked crystalline laths ~ SJ..I.m. 

o S80, with a specific composition of 6.11Na20-S.35K20-11.46CaO-l1.46CaF:z-

64.82SiO:z-0.80Z~, was found to have a biaxial strength of 374 :± 50 MPa. This in 

combination with a K1c of3.4 ± 0.2 MNm-312 offers improved mechanical properties in 

comparison with most current commercial systems. 

c This formulation has resulted in a solubility of 1400 ± 700 J..I.gm -2 is within the solubility 

limits for use as a core material (class 2, ISO 6872:1995 (E». 

o Machining of S80 blocks was successfully carried out on the CEREC-Scan (Sirona, 

Germany) and showed good correlation with the machining of the commercial VITA 

Mark n blocks. Thus CAD-CAM offers a viable route for the processing of 

fluorcanasite into dental restorations. 

o It was found that the machinability of this glass-ceramic was related to its interlocked 

structure of very fine randomly orientated laths as machining cracks were deflected by 

these laths. 
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Chapter 10: Further Work 

This study has concluded with a fluorcanasite formulation that exhibits a combination of 
improved mechanical properties and chemical durability. The material has been shown to 
have adequate machinability in basic runs on the CAD-CAM equipment. However, if the 
material is to proceed for further development as a dental restorative material, further work 
is required. 

An important aspect is to distinguish and quantify all the crystallising phases, specifically 
canasite and frankamenite, as this study has indicated how this substantially affects the 

fracture toughness of the glass-ceramic. TEM work needs to be carried out to elucidate the 
crystallisation mechanisms associated with the two glass ceramics, to aid specific tailoring 
of both future compositional variations as well as heat treatment schedules. 
It is necessary to emphasize that this study has concentrated on the effect of compositional 

variation on the fracture toughness of canasite glass-ceramics, and optimisation studies are 

required to refine the heat treatment schedule and thus the microstructure of the subsequent 
glass-ceramics. If the material is to be developed as a dentine replacing porcelain, 
reformulations with zirconia and silica additions with stoichiometric or lower fluorite 
contents could be attempted in order to achieve a material with higher chemical durability. 
As it stands, the S80 (6.11Na20-5.35K20-11.46CaO-l1.46CaF2-64.82Si~-0.80Zr02) 

formulation has acceptable mechanical properties and chemical durability for use as a core 
porcelain. Further development would require a laminating porcelain that has a thermal 

expansion matched to the fluorcanasite. Studies would need to evaluate the microstructure, 
mechanical and chemical properties of the material after the coping has been built up and 
the material has been subjected to repeated firing at temperatures required for the glazing 
material. 

Although the composition has exhibited adequate fracture toughness, wear tests have not 
been carried out. Wear tests that simulate oral environments would be beneficial to 
understand the ability of the material to withstand stress-, solute- and temperature­
corrosion. 

An aspect of the work that has not been looked at is the aesthetic properties. Stokes (2003) 
found that the base formulation resulted in a material with adequate translucency and with 
the possibility of colouration. Translucency tests need to be repeated for S80 and it would 
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be necessary to assess the ability of this composition to support shade variations according 
to the accepted dental standards. 
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Compositions K10 CaO Na20 Si02 CaF2 zr01 TiOl 

FIOZ2 6.86 14.70 7.84 58.82 9.80 l.96 

FIOZ4 6.73 14.42 7.69 57.69 9.62 3.85 

FIOZ8 6.48 13.89 7.41 55.56 9.26 7.41 

F15Z0 (=F15) 6.67 14.28 7.62 57.14 14.29 -

F15Z1 6.60 14.14 7.54 56.58 14.14 0.99 

F15Z2 6.54 14.01 7.47 56.02 14.01 1.96 

F15Z4 6.41 13.74 7.33 54.95 13.74 3.85 

F15Z8 6.17 13.23 7.06 52.91 13.23 7.41 

S55 6.71 14.37 7.67 55.88 14.37 1.01 

S57(=F15Z1) 6.60 14.14 7.54 56.58 14.14 0.99 

S65 6.09 13.05 6.96 59.95 13.05 0.91 

S70 5.82 12.47 6.65 61.72 12.47 0.87 

S80 5.35 11.46 6.11 64.82 I) .46 0.80 

S90 4.95 10.60 5.65 67.46 10.60 0.74 

SllO 4.30 9.22 4.92 71.70 9.22 0.65 



Appendix 1 

Glass Compositons in molO/o. 

Compositions K20 CaO Na20 Si02 CaF2 zr02 Ti02 

D8 7.0 11.8 9.3 54.2 17.9 -

K7 7.0 15.0 8.0 60.0 10.0 -

Cl 6.8 17.1 7.8 58.5 9.8 0 

C2 6.8 19.4 7.8 58.3 7.8 0 

T2 6.9 14.7 7.8 58.8 9.8 0 1.9 

Z2 6.9 14.7 7.8 58.8 9.8 1.4 

FI3 6.80 14.56 7.77 58.25 ]2.62 

FSZO(=FS) 7.14 15.31 8.16 61.23 8.16 -

FSZl 7.07 15.15 8.08 60.61 8.08 0.99 

F8U 7.00 15.00 8.00 60.02 8.00 1.96 

F8Z4 6.86 14.72 7.85 58.87 7.85 3.85 

F8Z8 6.61 14.17 7.56 56.69 7.56 7.41 

FI0Z0 (=FI0) 7.00 15.00 8.00 60.00 10.00 -

FIOZI 6.93 14.85 7.92 59.41 9.90 0.99 



Appendix 2: XRF Analysis 

With normalisation Corrected 

K7F8 No. of no. of 

MW Analysis Norma1ised moles moles mol% wt% 

F 19.00 5.20 5.09 0.27 -

NalO 61.98 7.58 7.42 0.12 0.12 7.79 482.82 7.58 

MgO 40.30 0.03 0.03 0.00 0.00 0.05 2.02 0.03 

Al203 101.96 0.05 0.05 0.00 0.00 0.03 3.06 0.05 

Si02 60.08 58.20 56.97 0.95 0.95 61.69 3706.58 58.19 

P205 141.94 0.02 0.02 0.00 0.00 0.01 1.42 0.02 

803 80.06 0.02 0.02 0.00 0.00 0.01 0.80 0.01 

CI 35.45 0.01 0.01 0.00 0.00 0.02 0.71 om 
K20 94.20 10.54 10.32 0.11 0.11 7.13 671.61 10.54 

CaO 56.08 20.46 20.03 0.36 0.22 14.53 814.80 12.79 

Ti02 79.88 0.01 0.01 0.00 0.00 0.01 0.80 0.01 

Cr203 151.99 0.01 0.01 0.00 0.00 0.01 1.52 0.02 

Fe203 159.69 0.02 0.02 0.00 0.00 om 1.60 0.03 

8.-0 103.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zr02 123.22 0.01 0.01 0.00 0.00 om 1.23 0.02 

CaF2 78.07 - 0.13 8.72 680.81 10.69 

Sum 102.16 100.01 1.80 1.54 100.02 6369.76 99.99 

With norma1lsation Corrected 

K7F15Zrl No. of no. of 

MW Analysis Normalised moles moles mol% wt% 

F 19.00 8.95 8.76 0.46 -

NalO 61.98 6.42 6.28 0.10 0.10 6.59 408.44 6.41 

MgO 40.30 0.03 0.03 0.00 0.00 0.05 2.02 0.03 

Al203 101.96 0.05 0.05 0.00 0.00 0.03 3.06 0.05 

Si02 60.08 53.46 52.33 0.87 0.87 56.66 3404.36 53.45 

P205 141.94 0.02 0.02 0.00 0.00 om 1.42 0.02 

S03 80.06 0.01 0.01 0.00 0.00 0.01 0.80 0.01 

CI 35.45 0.01 0.01 0.00 0.00 0.02 0.71 0.01 

K20 94.20 9.43 9.23 0.\0 0.10 6.38 600.96 9.43 

CoO 56.08 23.60 23.10 0.41 0.18 11.80 661.71 10.39 

Ti02 79.88 0.01 0.01 0.00 0.00 0.01 0.80 0.0 1 

Cr203 151.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe203 159.69 0.03 0.03 0.00 0.00 0.01 1.60 0.03 

CUO 0.01 0.01 
Zno 0.01 am 
As203 
SeQ2 

srO 103.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Z .-o2 123.22 1.70 1.66 0.01 0.01 0.88 J 08.44 1.70 

Uf02 0.03 
Au 

PbO 

CaF2 78.07 - 0.23 15.00 1171.11 18.39 

Sum 103.74 101.54 1.96 1.50 97.45 6365.42 99.93 



With normalisation Corrected 

K7FIO No. of no. of 

MW Analysis Normalised moles moles mol% wt% 

F 19.00 6.71 6.53 0.34 -

NalO 61.98 7.52 7.31 0.12 0.12 7.78 482.20 7.52 

MgO 40.30 0.04 0.04 0.00 0.00 0.07 2.82 0.04 

A1203 101.96 0.08 0.08 0.00 0.00 0.05 5.10 0.08 

Si02 60.08 56.21 54.66 0.91 0.91 60.00 3605.04 56.19 

nos 141.94 0.03 0.03 0.00 0.00 0.01 1.42 0.02 

S03 80.06 0.01 0.01 0.00 0.00 0.01 0.80 0.01 

CI 35.45 0.01 0.01 0.00 0.00 0.02 0.71 0.01 

laO 94.20 10.29 10.01 0.11 0.11 7.01 660.31 10.29 

CaO 56.08 21.88 21.28 0.38 0.21 13.70 768.25 11 .97 

Ti02 79.88 0.01 om 0.00 0.00 0.01 0.80 0.01 

Cr203 151.99 0.01 0.01 0.00 0.00 0.01 1.52 0.02 

Fe203 159.69 0.02 0.02 0.00 0.00 0.01 1.60 0.02 

srO 103.62 0.01 0.01 0.00 0.00 0.01 1.04 0.02 

ZJQ2 123.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CnF2 78.07 - 0.17 11 .33 884.58 13 .79 

Sum 102.83 100.01 1.86 1.52 100.02 6416.18 99.99 

With normnlisation Corrected 

K7FlSZr2 No. of no. of 

MW Analysis NOl"JlIalised moles moles mol% wt% 

F 19.00 8.60 8.36 0.44 -

NalO 61.98 6.40 6.22 0.10 0.10 6.62 410.30 6.39 

MgO 40.30 0.03 0.03 0.00 0.00 0.05 2.02 0.03 

A1203 101.96 0.69 0.67 0.01 0.01 0.44 44.86 0.70 

Si02 60.08 51.88 50.45 0.84 0.84 55.38 3327.45 51.86 

P20S 141.94 0.05 0.05 0.00 0.00 0.03 4.26 0.07 

S03 80.06 0.01 0.01 0.00 0.00 0.01 0.80 0.01 

CJ 35.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

KlO 94.20 9.23 8.98 0.10 0.10 6.29 592.49 9.23 

CaO 56.08 23.11 22.47 0.40 0.18 11.92 668.44 10.42 

Ti02 79.88 0.02 0.02 0.00 0.00 0.02 1.60 0.02 

Cr203 151.99 0.02 0.02 0.00 0.00 0.01 1.52 0.02 

Fe203 159.69 0.03 0.03 0.00 0.00 0.01 1.60 0.02 

CuO 0.01 0.01 
ZnO 0.00 0.00 
As203 0.00 0.00 
Se02 0.00 0.00 
srO 103.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zr02 123.22 3.44 3.35 0.03 0.03 1.79 220.57 3.44 

m02 0.07 0.07 
Au 

PbO 

CaF2 78.07 - 0.22 14.51 1132.85 17.66 

Sum 103.52 100.67 1.91 1.47 97.08 6408.75 99.87 



With normalisation Corrected 

K7F13 No. of no. of 

MW Arullysis Normalised moles moles molo/. "to/. 

F 19.00 8.59 8.29 0.44· 

Na20 61.98 7.03 6.78 0.11 0.11 7.33 454.31 7.02 

MgO 40.30 0.05 0.05 0.00 0.00 0.08 3.22 0.05 

Al203 101.96 0.05 0.05 0.00 0.00 0.03 3.06 0.05 

8i02 60.08 54.67 52.76 0.88 0.88 58.85 3535.94 54.67 

P205 141.94 0.03 0.03 0.00 0.00 0.01 1.42 0.02 

803 80.06 0.D2 0.02 0.00 0.00 0.01 0.80 0.01 

Cl 35.45 0.01 0.01 0.00 0.00 0.02 0.71 om 
K20 94.20 9.82 9.48 0.10 0.10 6.74 634.87 9.82 

CaO 56.08 23.30 22.49 0.40 0.18 12.26 687.50 10.63 

Ti02 79.88 0.01 0.01 0.00 0.00 om 0.80 0.01 

Cr203 151.99 0.01 0.01 0.00 0.00 0.01 1.52 0.02 

Fe203 159.69 0.02 0.02 0.00 0.00 0.01 1.60 0.02 

8rO 103.62 0.01 0.01 0.00 0.00 0.01 1.04 0.02 

Zr02 123.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CaF2 78.07· 0.22 14.62 \141.44 17.65 

Sum 103.62 100.01 1.93 1.49 99.99 6468.23 100.00 

With normalisation Corrected 

K7F15Zr4 No. of no. of 

MW Analysis Normalised moles moles 0101% wto/. 

F 19.00 9.14 8.82 0.46 -

Na20 61.98 6.14 5.93 0.10 0.10 6.41 397.29 6.14 

MgO 40.30 0.03 0.03 0.00 0.00 0.05 2.02 0.03 

Al203 101.96 0.21 0.20 0.00 0.00 0.13 13.25 0.20 

8102 60.08 48.84 47.13 0.78 0.78 52.57 3158.62 48.83 

P205 141.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

803 80.06 O.OJ 0.01 0.00 0.00 0.01 0.80 O.OJ 

a 35.45 0.02 0.02 0.00 0.00 0.04 1.42 0.02 

1(20 94.20 8.94 8.63 0.09 0.09 6.14 578.36 8.94 

CaO 56.08 23.42 22.60 0.40 0.17 11.45 642.08 9.93 

1'102 79.88 0.02 0.02 0.00 0.00 0.02 1.60 0.02 

Cr203 151.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe203 159.69 0.03 0.03 0.00 0.00 om 1.60 0.02 

CUO 0.01 0.01 
ZnO 0.17 0.16 

As203 0.00 0.00 
8eOZ 0.01 0.01 
8rO 103.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zr02 123.22 6.66 6.43 0.05 0.05 3.50 431.28 6.67 

Dmz 0.13 0.13 
Au 0.00 0.00 
PbO 0.00 0.00 

CaF2 78.07 - 0.23 15.56 1214.83 18.78 

Sum 103.65 100.03 1.90 1.43 95.89 6443.13 99.59 



Corrected 

K7F15 No. of no. of 

MW Analysis NonnaJised moles moles mol% wt% 

F 19.00 9.67 9.29 0.49 -

NalO 61.98 6.75 6.49 0.10 0.10 7.08 438.81 6.76 

MgO 40.30 0.05 0.05 0.00 0.00 0.08 3.22 0.05 

AU03 101.96 0.05 0.05 0.00 0.00 0.03 3.06 0.05 

Si02 60.08 53.01 50.94 0.85 0.85 57.30 3442.81 53.01 

P20S 141.94 0.03 0.03 0.00 0.00 0.01 1.42 0.02 

S03 80.06 0.01 0.01 0.00 0.00 0.01 0.80 om 

CI 35.45 0.01 0.01 0.00 0.00 0.02 0.7) 0.0) 

K20 94.20 9.46 9.09 0.10 0.10 6.52 614.15 9.46 

CaO 56.08 24.97 24.00 0.43 0.18 12.40 695.35 10.71 

Ti02 79.88 0.01 0.01 0.00 0.00 0.01 0.80 om 

Cr203 151.99 0.Ql om 0.00 0.00 0.01 1.52 0.02 

Fe20J 159.69 0.02 0.02 0.00 0.00 0.01 1.60 0.02 

srO 103.62 0.01 0.01 0.00 0.00 0.01 1.04 0.Q2 

Zr02 123.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

CRF2 78.07 - 0.24 16.52 1289.78 19.86 

Sum 104.06 100.01 1.97 1.48 100.01 6495.08 100.01 

Corrected 

K7F15ZrS No. of no. of 

MW Analysis Normalised moles moles mol% wt% 

F 19.00 8.89 8.54 0.45 -

NalO 61.98 5.48 5.27 0.09 0.09 5.74 355.76 5.48 

MgO 40.30 0.02 0.02 0.00 0.00 0.03 1.21 0.02 

AU03 101.96 0.03 0.03 0.00 0.00 0.02 2.04 0.03 

Si02 60.08 44.63 42.89 0.71 0.71 48.24 2898.45 44.63 

P205 141.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

S03 80.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cl 35.45 0.02 0.02 0.00 0.00 0.04 1.42 0.02 

K20 94.20 8.18 7.86 0.08 0.08 5.64 531.26 8.18 

CRO 56.08 22.09 21.23 0.38 0.15 10.40 583.20 8.98 

Ti02 79.88 0.03 0.03 0.00 0.00 0.03 2.40 0.04 

Cr203 151.99 0.01 0.01 0.00 0.00 0.01 1.52 0.02 

Fe203 159.69 0.04 0.04 0.00 0.00 0.02 3.19 0.05 

CUO 0.02 0.02 
Zno 001 0.01 

As203 0.08 0.08 
Se02 0.01 0.01 
srO 103.62 0.01 0.01 0.00 0.00 0.01 1.04 0.02 

Zr02 123.22 11.93 11.46 0.09 0.09 6.29 775.07 11.93 

Hf02 0.22 0.21 
Au 0.01 0.01 
PbO O.Ot 0.01 
CRF2 78.07 - 0.22 15.19 1185.94 18.26 

Sum 101.48 97.53 1.81 1.36 91.66 6342.50 97.66 



With nonnalisation Corrected 

K7F15ZrlSi70 No. of no. of 

MW Analysis Nonnalised moles moles mol% wt% 

F 19.00 8.02 7.85 0.41 -

Na20 61.98 5.75 5.63 0.09 0.09 5.91 366.30 5.75 

MgO 40.30 0.03 0.03 0 .00 0 .00 0.05 2.02 0.03 

AU03 101.96 0.07 0.07 0.00 0.00 0.05 5. 10 0.08 

Sj02 60.08 58.41 57.18 0.95 0.95 61.92 3720.40 58.41 

P205 \41.94 0.03 0.03 0.00 0 .00 0.01 1.42 0.02 

S03 80.06 0.01 0.01 0.00 0.00 0.01 0.80 0.01 

CJ 35.45 0.02 0.02 0.00 0.00 0.04 1.42 0.02 

KlO 94.20 7.79 7 .63 0.08 0 .08 5.27 496.41 7.79 

CaO 56.08 21.60 21.14 0.38 0.17 11.09 621.89 9.76 

Ti02 79.88 0.01 0.01 0.00 0.00 0.01 0.80 0.01 

Cr203 151.99 0.00 0.00 0.00 0.00 0.00 0 .00 0 .00 

Fe203 159.69 0.03 0.03 0.00 0.00 0.01 1.60 0.03 

CUO 0.01 0.01 

ZOO 0.01 0.01 

As203 0.02 0.02 

Zr02 123.22 1.55 1.52 0.01 0.01 0.80 98.58 1.55 

nro2 0.02 
CaF2 78.07· 0.21 13.44 1049.3 1 16.47 

Sum 103.36 101.19 1.93 1.52 98.61 6366.04 99.93 



With nonnaIisation Corrected 
K7F15ZrlSi90 No. of no. of 

MW Analysis NonnaJised moles moles mol°l. wt°lo 
F 19.00 6.67 6.44 0.34 -
NalO 61.98 5.16 4.98 0.08 0.08 5.38 333.45 5.16 
MgO 40.30 0.Q2 0.02 0.00 0.00 0.03 1.21 0.02 
AJ203 101.96 0.05 0.05 0.00 0.00 0.03 3.06 0.05 
Si02 60.08 63.50 61.28 1.02 1.02 68.36 4107.34 63.50 
n05 141.94 0.02 0.02 0.00 0.00 0.0\ 1.42 0.02 
S03 80.06 0.0\ 0.01 0.00 0.00 0.01 0.80 0.01 
Cl 35.45 0.01 0.01 0.00 0.00 0.02 0.71 0.0\ 
1(20 94.20 7.38 7.12 0.08 0.08 5.07 477.57 7.38 
CaO 56.08 18.84 18.18 0.32 0.15 10.37 581.52 8.99 
Ti02 79.88 0.01 0.01 0.00 0.00 0.01 0.80 0.01 
Cr203 151.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Fe20J 159.69 0.03 0.03 0.00 0.00 0.01 1.60 0.02 
CoO 0.01 0.01 
Zno 0.00 0.00 
As203 0.00 0.00 
Zr02 123.22 1.37 1.32 0.01 0.01 0.72 88.72 1.37 
Hf02 0.03 0.03 
CaF2 78.07 - 0. 17 11.36 886.92 13.71 

Sum 103.08 99.48 1.85 1.51 101.38 6485.11 100.25 



Corrected 

K7F15Zrl SU 1 0 No. of no. of 

MW Analysis Nonnalised moles moles mol% wt% 

F 19.00 5.80 5.57 0.29 -

Na20 61.98 4.55 4.37 0.07 0.07 4.76 295.02 4.54 

MgO 40.30 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 

Al203 101.96 0.05 0.05 0.00 0.00 0.03 3.06 0.05 

Si02 60.08 68.38 65.71 1.09 1.09 73.91 4440.81 68.37 

P20S 141.94 0.Q2 0.02 0.00 0 .00 0 .01 1.42 0.02 

S03 80.06 0.01 0.01 0.00 0.00 0.01 0.80 0.01 

CI 35.45 0.02 0.02 0.00 0.00 0.04 1.42 0.02 

K20 94.20 6.34 6.09 0.06 0.06 4.37 411 .63 6.34 

CaO 56.08 16.03 15.40 0.27 0.13 8.65 485.07 7.47 

Ti02 79.88 0.02 0.02 0.00 0.00 0.02 1.60 0.02 

Cr20J 151.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe203 159.69 0.03 0.03 0.00 0.00 0.01 1.60 0.02 

COO 0.00 0.00 

b10 0.00 0.00 

As203 0.00 0.00 

Zr02 123.22 1.17 1.12 0.01 0.01 0.6\ 75.17 1.16 

Rf02 0.02 0.02 

CaF2 78.07 - 0.15 9.91 773.71 11.91 

Sum 102.42 98.41 1.81 1.51 102.33 6491.30 99.93 



Appendix 2: Batch Calculation 

K7Na8F8 

Batch for 300 grn of glass 

MF MW WfOAl CF l00g Wgt 200g Wgl 300g Wgl 
K,O 0.0714 94.20 6.73 10.59 K,CO, 1.47 15.540 31.079 46.619 
CaO 0.1531 56.08 8.58 13.51 CaCO, I. 78 24.115 48.230 72.345 
Na,O 0.0816 61.98 5.06 7.96 Na,CO] 1.71 13.620 27.239 40.859 
SiO, 0.6123 60.08 36.79 57.90 SiO, 1.00 57.900 115.800 173.701 
CaF, 0.0816 78.08 6.37 10.03 CaF, 1.00 10.033 20.066 30.099 

1.0001 63.54 100.00 121.21 242.415 363.622 

K7Na8FI0 

Batch for 300 gin of glass 

MF MW Wt% CF 100g Wgt 200g Wgt 300g Wgl 
K,O 0.0700 94.20 6.59 10.33 K,CO, 1.47 15.159 30.319 45.478 
CaO 0.1500 56.08 8.41 13.18 CaCO, 1.78 23.525 47.050 70.575 
Nap 0.0800 61.98 4.96 7.77 Na,CO, 1.71 13.286 26.573 39.859 

SiO, 0.6000 60.08 36.05 56.48 SiO, 1.00 56.484 11 2.967 169.451 

CaF, 0.1000 78.08 7.81 12.23 CaF, 1.00 12.234 24.469 36.703 

1.0000 63.82 100.00 120.69 241.377 362.065 

K7N.8F13 

Balch for 300 grn of glass 

MF MW Wt% CF lOOg Wgl 200g Wgl 300g Wgl 
K,O 0.0680 94.20 6.41 9.97 K,CO, 1.47 14.631 29.261 43.892 

CaO 0.1456 56.08 8.17 12.71 CaCO] 1.78 22.687 45.374 68.060 

N ... O 0.0777 61.98 4.82 7.50 Na,CO, 1.71 12.821 25.641 38.462 
SiO, 0.5825 60.08 35.00 54.48 SiO, 1.00 54.480 108.961 163.441 

CaF, 0.1262 78.08 9.85 15.34 CaF, 1.00 15.340 30.679 46.019 

1.0000 64.24 100.00 119.96 239.916 359.874 

K7Na8FI5 

Batch for 300 grn of glass 

MF MW WtQf, CF l00g Wgt 200g Wgl 300g Wgl 
K,O 0.0667 94.20 6.28 9 .74 K,COJ 1.47 14.291 28.582 42.873 
CaO 0.1429 56.08 8.01 12.42 C.CO, 1.78 22. 173 44 .• 146 <>6.5 19 
N ... O 0.0762 61.98 4.72 7.32 N.,('O, 1.71 12.520 25.04 1 37.561 
SiO, 0.5714 60.08 34.33 53.22 SiO, 1.00 53.218 106.437 159.655 
(,aF, 0.1429 78.08 11.16 17.30 Cal', 1.00 17.297 )·1.593 51.890 

1.0001 64.5 1 100.00 \19.50 238.999 358.498 



K7NaSF15Zrl 
Balch for 300 gm of glass 

MF MW Wt"o CF l00g Wgt 200g Wgi 300g Wgi 

K,O 0.0660 94.20 6.22 9.55 K.CO, 1.47 14.018 28.035 42.053 

Cao 0.1414 56.08 7.93 12.19 CaCo, 1.78 21.749 43.498 65.247 

Na.O 0.0754 61.98 4.67 7.18 Na.CO, 1.71 12.281 24.562 36.843 

SiO, 0.5658 60.08 33.99 52.24 SiO, 1.00 52.238 104.476 156.714 

CaP, 0.1414 78.08 11.04 16.97 CaF, 1.00 16.966 33.932 50.898 

Zr02 0.0099 123.22 1.22 1.87 Zr02 1.00 1.875 3.749 5.624 

0.9999 65.07 100.00 119.127 238.253 357.380 

K7 aSF15Zr2 
Balch for 300 gm of glass 

MF MW WI% CF l00g Wgi 200g Wgi 3()()g Wgi 

K.O 0.0654 94.20 6.16 9.38 K,CO, 1.47 13.767 27.533 41.300 

caO 0.1401 56.08 7.86 11.97 CaCO, 1.78 21.357 42.715 64.072 

Na.O 0.0747 61.98 4.63 7.05 Na.CO, 1.71 12.059 24.118 36.176 

SiO, 0.5602 60.08 33.66 51.26 SiO, 1.00 51.261 102.521 153.782 

CaP, 0.1401 78.08 10.94 16.66 CaF, 1.00 ]6.660 33.321 49.981 

Zr02 0.0196 123.22 2.42 3.68 Zr02 1.00 3.678 7.357 11.035 

1.0001 65.66 100.00 I\S.7S2 237.564 356.3-16 

K7 aSFI5Zr4 
Batch for 300 gill of glass 

MF MW Wt"o CF 100g Wgi 2()()g Wgi 3()()g Wgt 

K.O 0.0641 94.20 6.04 9.04 K,CO, 1.47 13.268 26.536 39.803 

Cao 0.1374 56.08 7.71 11.54 C.CO, 1.78 20.596 41.192 61.788 

Na.O 0.0733 61.98 4.54 6.80 Na.CO, 1.71 11.635 23.271 34.906 

SiO, 0.5495 60.08 33.01 49.44 SiO, 1.00 49.442 98.884 148.326 

CaP, 0.1374 78.08 10.73 16.07 CaF, 1.00 16.067 32.133 48.200 

Zr02 0.0385 123.22 4.74 7.10 ZI02 1.00 7.105 14.209 21.314 

1.0002 66.77 100.00 118. 113 236.225 35038 

K7Na8F15Zr8 
Balch for 300 gill of glass 

MF MW Wt" .. CF 1()()g Wgi 2()()g Wgi 300g Wgi 

K,O 0.0617 94.20 5.81 8.44 K,CO, 1.47 12.385 24.769 17.154 

CaO 0.1323 56.08 7.42 10.78 CaCO, 1.78 19.2.12 38.463 57.695 

Na.O 0.0706 61.98 4.38 6.35 Na,CO, 1.71 10.868 21.735 32.603 

SiO, 0.5291 60.08 31.79 46.17 SiO, 1.00 46.166 92o.H2 1.18.498 

CaF, 0.1323 78.08 10.33 15.00 Cal', 100 15.()()2 J()()().I 45.()O7 

Zr02 0.0741 123.22 9. 13 13.26 Zr02 1.00 13.261 26.521 39.782 

1.0001 68.86 100.00 116.9 13 233.825 3S0.738 



K7Na8F15ZrlSi70 

Batch for 300 gm of glass 

MF MW Wt% CF lOOg Wgi 200g Wgi 300g Wgi 
K,O 0.06 94.20 5.48 8.51 K,CO, 1.47 12.492 24.983 37.475 
CaO 0.12 56.08 6.99 10.86 CoCO, 1.18 19.383 38.766 58.148 
Na,O 0.07 61.98 4.03 6.26 Na,CO, 1.71 10.699 21.398 32.097 
SiO, 0.62 60.08 37.08 57.58 SiO, 1.00 57.585 115.170 172.755 
CaF, 0.12 78.08 9.74 15.12 C.1F, 1.00 15.120 30.240 45.361 

Zr02 0.01 123.22 1.07 1.66 Zr02 1.00 1.665 3.330 4.994 

0.9985 64.39 100.00 116.943 233.886 350.829 

K7NaSF15Zr1Si90 

Balch for 300 gm of glass 

MF MW WI% CF 100g Wgt 200gWgl 300g Wgl 
K,O 0.05 94.20 4.66 7.31 K,CO, 1.47 10.719 21.437 32.156 
Cao O.ll 56.08 5.94 9.31 CaCO, 1.78 16.622 33.245 49.867 

Na,O 0.06 61.98 3.50 5.49 Na,CO, 1.71 9.382 18.765 28.147 

SiD, 0.67 60.08 40.53 63.50 SiD, 1.00 63.499 126.998 190.498 

CaF, 0.11 78.08 8.28 12.97 CaF, 1.00 12.967 25.934 38.901 

Zr02 0.01 123.22 0.91 1.43 Zr02 1.00 1.429 2.857 4.286 

1.0000 63.S3 100.00 114.618 229.236 343.854 

K7NaSFI5Zr1SillO 

Balch for 300 gm of glass 

MF MW W~O CF 100g Wgt 200g Wgl 300g Wgi 
K,O 0.04 94.20 4 .05 6.39 K,CO, 1.47 9.3&2 18.763 28.145 
Cao 0.09 56.08 5.17 8.16 CacoJ 1. 78 14.568 29.136 43.704 
Na,O 0.05 61.98 3.05 4.81 Na,CO, 1.71 8.232 16.464 24.696 

SiO, 0.72 60.08 43.08 68.00 SiO, 1.00 68.001 136.003 204.004 

CaF, 0.09 78.08 7.20 11.36 car, 1.00 11.364 22.728 34.093 

Zr02 0.01 123.22 0.80 1.26 Zr02 1.00 1.264 2.529 3.793 

1.0001 63.35 100.00 112.811 225.623 338.434 



Appendix 2: Wt% lost = wt% in batch - wt% in glass (from XRF) 

CaF2 in batel F in batch F in glass F lost CaO in batch CaO in glass CaO lost Si02 in batd Si02 in glass Si02 lost 
F8 10.03 4.88 5.20 -0.32 13.51 12.79 0.72 57.90 58.20 -0.30 
FlO 12.23 5.95 6.71 -0.76 13.18 11.97 1.21 56.48 56.21 0.27 
Fl3 15.34 7.47 8.59 -1.12 12.71 10.63 2.08 54.48 54.67 -0.19 
FlS 17.30 8.42 9.67 -1.25 12.42 10.71 1.71 53.22 53.01 0.21 
Zl 16.97 8.26 8.95 -0.69 12.19 10.39 1.80 52.24 53.46 -1.22 
ZJ. 16.66 8.11 8.60 -0.49 11.97 10.42 1.55 51.26 51.88 -0.62 
lA 16.07 7.82 9.13 -1.31 11.54 9.93 1.61 41.44 48.84 -7.40 
1.8 15.00 7.30 9.06 -1.76 10.78 9.98 0.80 46.17 44.63 1.54 
S70 15.12 7.36 8.01 -0.65 10.86 9.76 1.10 57.58 58.41 -0.83 
S90 12.97 6.31 6.65 -0.34 9.31 8.99 0.32 63.50 63.50 0.00 
S110 11.36 5.53 5.80 -0.27 8.16 7.47 0.69 68.00 68.38 -0.38 

Na20 in bate Na20 in glas! NalO lost K20 in batch K20 in glass K20 lost Zr02 in batel Zr02 in glass Zr02 lost 
F8 7.96 7 .58 0.38 10.59 10.54 0.05 0.00 0.00 0.00 
FlO 7.77 7.52 0.25 10.33 10.29 0.04 0.00 0.00 0.00 
Fl3 7.50 7.03 0.47 9.97 9.82 0.15 0.00 0.00 0.00 
F15 7.32 6.75 0.57 9.74 9.46 0.28 0.00 0.00 0.00 
Zl 7.18 6.42 0.76 9.55 9.43 0.12 1.87 1.70 0.17 
ZJ. 7.05 6.40 0.65 9.38 9.23 0.15 3.68 3.44 0.24 
lA 6.80 6.14 0.66 9.04 8.94 0.10 7.10 6.66 0.44 
1.8 6.35 5.48 0.87 8.44 8.18 0.26 13.26 11.93 1.33 
S70 6.26 5.75 0.51 8.51 7.79 0.72 1.66 1.55 0.11 
S90 5.49 5.16 0.33 7.31 7.38 -0.07 1.43 1.37 0.06 
S110 4.81 4.55 0.26 6.39 6.34 0.05 1.26 1.17 0.09 



Appendix 3 

Tg's and Tc's calculated from DTA traces 

Compositions 
Tg Tc 

(DC) (0C) 

D8 500 680 

K81 528 722 

K82 528 711 

K83 532 700 

K84 532 700 

K85 530 695 

K86 530 700 

K7 530 700 

Cl 540 705 

C2 545 710 

T2 545 720 

Z2 540 710 

F13 515 703 



FSZO(=FS) 535 698 

FSZl 535 720 

FSZ2 545 -

F8Z4 555 -

FSZS 571 -

FIOZO (=FlO) 525 695 

FIOZI 532 750 

FIOZ2 535 718; 795;831 

FlOZ4 560 718 

FIOZ8 565 754 

FlSZO (=FlS) 505 696 

F15Z1 510 691; 727; 767 

F15Z2 517 715; 818 

F15Z4 540 725;865 

F15Z8 560 742;823;850 

S55 507 695; 721; 753 

S57(=F15Z1) 510 691; 727; 767 



S6S 517 716; 757 

S70 525 781 

S80 530 803 

S90 539 828 

S110 544 840 
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