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Summary

Quite often, accuracy is a negleted issue in scientific visualization. Indeed, in most

of the visualizations there are two wrong assumptions: first, that the data visualized is

accurate. Second, that the visualization process is exempt from errors. On these basis,

the objectives of this thesis are three-fold:

First, to understand the implications of accuracy in scientific visualization. It is im-

portant to analyse the sources of errors during visualization, and to establish mecha-

nisms that enable the characterization of the accuracy. This learning stage is crucial for

a sucessful scientific investigation.

Second, to focus on visualization features that, besides enabling the visualization of

the data, give users an idea of its accuracy. The challenging aspect in this case is the

use of appropriate visual paradigms. In this respect, the awareness of how human beings

create and process a mental image of the information visualized is important.

Thrid and most important, the development of more accurate versions of visualization

techniques. By understanding the issue of accuracy concerning a particular technique,

there is a high probability to reach to a proposal of new improvements.

There are three techniques under study in this thesis: contouring, isosurfacing and

particle tracing. All these are widely used in scientific visualization. That is why they

have been chosen. For all of them, the issue of showing accuracy to users is discussed.

In addition, two new accurate versions of contouring and isosurfacing techniques have

been presented. The new contouring method is for data defined over rectangular grids

and assumes that the data vary linearly along the edges of the cell. The new isosurfacing

method is an improvement of the Marching-Cubes method. Some aspects of this classic

approach are clarified, and even corrected.

Sections of this work were presented in the Visualization and Mathematics 97 Con-

ference, held in Berlin, Germany, in September 1997, and in the Eurographics UK 98

Conference, held in Leeds, United Kingdom, in April 1998.
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Chapter
ONE

Introduction

Visualization is nowadays accepted as a crucial part of scientific and engineering compu-

tation. Although not a new idea, it has gained new meaning and importance over recent

years. The more society becomes computer and multimedia oriented, the bigger the

role scientific visualization has. There are plenty of examples that confirm this expand-

ing trend. We can show medical information such as three-dimensional representation

of parts of the human body based on magnetic resonance imaging, allowing us to anal-

yse living organs non-invasively. We can analyse environmental data like tornadoes and

ocean currents, with application for example in the study of global warming and the ozone

layer. We can generate cartographic maps, and analyse geological data with application

in the recovery of oil from deep water. We can plot statistical data such as prices of secu-

rities listed in a stock market exchange, in this case to eventually help investors to predict

future movements, etc.

More than displaying data graphically, scientific visualization enables scientists to

observe and understand the data that characterise their problems. Its success is partic-

ularly due to the ability to convey large amounts of data as images that subsequently, as

compact pieces of information, are directly read by a powerful human sense: the vision.

The creation of a mental image of the solution of a problem is therefore fast. Indeed, to

1
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see means to actively capture prominent characteristics of objects.

This is also applied to situations where there is a need for scientists to transfer

their knowledge to others in general. To cite an example, let us consider the analysis

of distribution of public investments in a certain local county — hospitals, schools, trans-

port networks, etc. Methods of operational research are used to obtain solutions for the

problem, which means there are large amounts of data (relationships and constraints) in-

volved. Most certainly the solutions are better understood by decision makers if conveyed

pictorially. These people, not necessarily familiar with concepts of operational research,

simply would not be able to analyse crude tables of data.

Yet, the images produced cannot always be trusted. Accuracy is indeed an aspect

quite often ignored in visualization. A scientist inputs their data into a visualization sys-

tem. Then he or she analyses the visualizations created. This is a typical scenario in

scientific investigation. In this process, there are two aspects to note: first, the data that

represents the problem is assumed to be accurate; secondly, the scientist assumes that

the visualization produced is an accurate portrayal of the data. In reality both assump-

tions are false: the data is subject to error; the visualization process is subject to error.

Therefore, if uncertainties are not taken into consideration, then the visualization can be

misleading and so affect the credibility and validity of the scientific analysis.

The issue of accuracy in scientific visualization is the underlying subject of study in

this research. The objectives we set out are three-fold:

First, we aim to understand, in general, the implications of accuracy in scientific

visualization. We need to understand the requirements of visualizing error information

associated with the data. It implies the need to understand the sources of error through-

out the visualization process, how they interact with each other, and we need to establish

methods that enable us to obtain statements about the accuracy of data, most certainly

by means of quantitative metrics. We believe that this learning stage is crucial for the

success of the research undertaken.

Second, we aim to develop techniques that show the accuracy of the visualizations

produced. Both data and associated error data should be presented to the users, whether

combined in the same picture or not. Ultimately scientists should visualize not only the
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data but also a representation of the assumptions that have been made during the cre-

ation of that visualization. Here the challenging aspect is the use of appropriate visual

paradigms. It is important to be aware of the way the visual information is processed by

the human vision, and more generally the cognitive understanding.

Finally, and what is very important, we are interested in developing more accurate

versions of certain visualization techniques. It is our belief that a full understanding of the

issue of accuracy concerning a particular technique will eventually lead to the proposal of

improvements. By doing so we will contribute to the development of scientific visualization

as a discipline.

We should point out that we confine ourselves, in the visualization process, to the

mapping of the input data into geometries, that subsequently are rendered as images.

On that basis, our efforts are concentrated on three visualization techniques. They are:

1. Contouring, to draw contour lines in a two dimensional scalar data set.

2. Isosurfacing, to represent surfaces with points of equal scalar value, in a three

dimensional data set.

3. Particle tracing, to show the trace of particles within a three dimensional vector data

set.

This choice is related to the importance of these techniques in the context of scien-

tific visualization. All are widely used. The first two deal with scalar data whereas the last

one with vectorial data.

1.1 Thesis Organisation

Apart from this introductory Chapter, this thesis is organised in the following way:

Chapter Two — Scientific Visualization — offers an overview of scientific visual-

ization as a discipline. The aim is not only to provide the basic foundations that further

Chapters will rest on, but also give readers a general understanding of what scientific

visualization is all about.
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Chapter Three — Contouring — covers the technique of contouring scalar data in

two dimensional space. First, the method is discussed, in particular with methods that

work on rectangular grids, and such as the data is assumed to vary linearly between

adjacent data points. From the analysis there comes out a new proposal, relying upon

a basic method but more accurate. This new approach is compared with similar ones.

The Chapter ends by addressing the problem of showing accuracy in contouring, with

application to those methods under study. Part of this work on contouring was presented

in the Eurographics UK 98 Conference, held in Leeds, United Kingdom, in April 1998.66

Chapter Four — Isosurfacing — discusses the technique of drawing surfaces of

constant value over a three dimensional scalar data set. The major feature in this Chap-

ter is the presentation of a new accurate Marching-Cubes method. A full description is

presented. But to reach that stage, a deep analysis of Marching-Cubes is carried out first.

As a result, some aspects of this traditional and widely used method were clarified, and

indeed, corrected. The Chapter ends with some hints about showing the accuracy of the

visualizations produced with this new method.

Chapter Five — Particle Tracing — aims to show the accuracy of particle tracing, a

basic technique for vector data. After a general overview of the method, some strategies

to quantify the error committed by the integration technique are presented. An architec-

ture is established which is then followed by implementation. This work was presented in

the Visualization and Mathematics 97 Conference, held in Berlin, Germany, in September

1997.65

Chapter Six — Conclusions and Future Work — summarises the work undertaken

and identifies potential areas for further research.



Chapter
TWO

Scientific Visualization

The Russian campaign of Napoleon in 1812-1813, by Charles Minard. The army size is indicated by the
brownish (advance) and black (retreat) bands. Reproduced from Tufte,103 page 176.

From the early days of mankind the image has been used as a powerful tool of

communication. It comes as no surprise since it targets the vision, the human sense of

highest perception, with a large portion of brain devoted to it.

In this chapter we start with a historical view of visualization, finishing with current

scientific visualization concepts, such as the dataflow model. Next, we lay down some

aspects of an important task in visualization: the organization of data that is about to
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be processed. Then we draw attention to the issue of accuracy in visualization, since

we believe accurate visualization is crucial for scientists. Finally we present an overview

of common visualization techniques, covering their range of applicability from scalar, to

vector and tensorial data.

2.1 Historical View

Back in the pre-historic era, towards the final palaeolithic age (around 20,000 years ago),

primitives painted and engraved figures of animals in rocks a. It is generally believed that

they were associated with magical hunting rites as a means of impressing and strength-

ening authority of a few over the community.75

Many ancient civilizations have continued to use the image as a mechanism of

expression. Egyptians, Byzantines, all used it to edificate the faithful and engrain religious

lore. In the Renaissance period in Europe, there was a move from symbolic expression

of theological truths towards a mundane and scientific approach. An example of this

is the invention of perspective, supposedly by Brunelleschi in the beginning of the 15th

century. It still remains a powerful technique of representation, giving the possibility to

see different objects in a correct geometric context.

At the same time, fields such as astronomy, meteorology and cartography were

demanding new methods of representation. Mostly, sailors needed accurate aids to nav-

igate and discover the new worlds. A combination of cartographic and statistical skills

joined together, although it has been suggested that a few thousand years before the

Chinese already drew geographic maps on clay tablets b.

There are very good examples of visual representations made during the period

15th-19th century (see Tufte,103,105 and Collins20). For instance, the map of the cholera

epidemic in London, and a representation of the army of Napoleon during the Russian

campaign, both from the 19th century, are widely known examples of the usefulness and

transparency of scientific visualization.

a Examples are found in Altamira (Spain) and Lascaux (France) and recently in Foz-Côa (Portugal).
b For example, some 900 years ago a fully scaled map of part of China (map of Tracks of Yu the Great)

was engraved by Chinese carthographers.20,103
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The map of the cholera epidemic was drawn by Dr. John Snow who plotted the

location of deaths from cholera in central London in 1854. This scatter plot helped him

to conclude that the cholera epicentre was near the Broad Street water pump. Once that

pump of contaminated water was removed, the epidemic that had claimed more than 600

lives, ended.103,105 It is a scientific visualization where data was indeed represented in

an appropriate context to assess cause and effect.

The second example is depicted in the Figure at the beginning of this Chapter, on

page 5. Therein, the French engineer Charles Minard portrays clearly the fate of the army

of Napoleon during the Russian campaign in 1812-1813. He plotted the size of the army,

its location, the direction of movement, and the temperature at various locations during

the retreat. The width of the bands indicate the size of the army from place to place. The

black band shows the retreat, linked to the temperature. Also shown are the movements

of auxiliary troops to protect the rear and the flank of the advancing army. Napoleon

had started the campaign with 442,000 men and returned to Poland with merely 10,000

men.69,103

Hence, scientific visualization is not a recent field. However, the computer revolu-

tion has broadened its scope of application. In the 1940s and 1950s, maps started to be

produced by computer, as well as other data plots. More and more scientists were using

computers to simulate and study their problems. The amount of data collected and/or

generated was such that it demanded a greater effort to assimilate and understand it.

Once more, vision is the sense par excellence to gain insight into data. Computer Graph-

ics as a scientific field emerges. Libraries of graphics routines such as UNIRAS and NAG

Graphics were used alongside numerical routines,9 in this era of batch computing. This

was extended in the late 1970s to menu-driven packages such as gnuplot where there

was no longer a need for user programming, in accordance with the era of interactive

computing, with terminals linked to a host. At this time graphical representation included

just one or two variate data. The first steps towards graphics standardization were made

with the Graphical Kernel System (GKS).48 Then attention was gradually centred around

encoding multiple parameters in the same picture.122 Furthermore, people started to
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become aware of techniques for a better visual decoding of information, such as those

found in works of Gibson,38 Tukey,106 Bertin,4 Tufte103,104 and Cleveland.18

The move towards visualization was gaining momentum. In 1987, the ACM SIG-

GRAPH report Visualization in Scientific Computing, by McCormick et al. ,71 marks a

turning point in scientific visualization. It argues that individual disciplines such as com-

puter graphics, image processing, computer vision, computer-aided design, signal pro-

cessing and human computer interaction all contribute to the visualization process. After

all, scientists have been doing visualization all the time. While computer graphics creates

images, visualization should encompass exploring, transforming and viewing data, all to

promote a better understanding of the data. The report also emphasises the need for both

two and three dimensional spatial visualization. After that report, the research interest on

the field has spiralled to new heights. Conferences such as IEEE Visualization in United

States, and Eurographics Workshops on Visualization in Europe, become regular events

yearly. A major breakthrough was the development of a new type of visualization system,

the so-called Modular Visualization Environments (MVEs). Examples are AVS, Khoros,

IBM Data Explorer and IRIS Explorer. It was the era of visual programming systems, with

workstations and graphical user interfaces.

In the meantime in Computer Graphics, Programmer’s Hierarchical Interactive Graph-

ics System (PHIGS) emerged, while GKS was moving to three dimensions (GKS-3D).

Also, the OpenGL library and Open Inventor toolkit became a de facto industry standard

for graphical rendering on workstations.

The MVEs are mainly based on a model introduced by Upson et al. ,108 and then

enhanced by Haber and McNabb.43 The visualization process is divided into three major

sequential stages. They are:

Filtering.

In this first stage, the entered raw data is filtered in order to obtain the data of in-

terest c. For instance, extracting a cross-section of data, or interpolating scattered

data in order to obtain a regular grid.

c Sometimes the general concept of modelling is used instead.
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Mapping.

In this second stage, the aim is to convert the data of interest into geometric rep-

resentations. For example, computing the positions of a particle released in a flow

field, or finding out the geometric surface of points of equal value.

Rendering.

Finally the geometries are converted into images.

In general, a visualization system such as IRIS Explorer provides a library of mod-

ules, matching one of those three stages above. Scientists then have to choose a suitable

set of modules and link them as in a network (so-called map of modules). Data is fed into

the network, then flows through it until it reaches the rendering modules. In addition, it is

possible for users to construct their own modules thus increasing the functionality of the

environment.

This data-flow model is still in use today, despite being a data-centered approach,

ignoring the cyclic nature of scientific investigation.2 New paradigms are emerging so

that it is expected to see the visualization model being adjusted. While visualization used

to be limited to one person at a time, it now tends to become more collaborative.123,125

Scientists with diverse and complementary skills will team up to solve common problems.

Events such as the massive explosion of World Wide Web (WWW) are affecting the

way scientific visualization has been conceived in the dataflow model. Work by Wood

and colleagues123,124 suggests this direction. In one of their examples, air quality data

is collected hourly throughout the United Kingdom and then visualized on demand by

users. As a matter of a fact, current MVEs such as AVS and IRIS Explorer are now being

adjusted to this new reality.

Another technological edge affecting visualization concepts is the revolutionary in-

teraction paradigm of Virtual Reality (VR). There are a few examples of how to use VR

to allow scientists to interact with the visualized data in 3D space. That is the case of the

virtual wind tunnel for flow visualization.12 The more VR technology improves the more

likely it will be used in scientific visualization. Indeed, in years to come VR fulfills the
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potential of getting rid of the burden of interaction and allow users to concentrate more

on data. More and more we expect computers to adapt to users rather than the opposite.

We would like to stress as a final point that, regardless of how diverse users are or

how impressive new technologies can be, the image is and will be always universal.

2.2 Data Taxonomy

The raw data describing a problem, whether simulated or acquired, is usually defined at

a limited number of points within the domain. This collection of data values is usually

referred as a data grid. If one wants to obtain values in-between the given points, then

an interpolation method is required. This operation fits into the data preparation stage of

the dataflow model.

We consider the taxonomy for data grids as depicted in Figure 2.1. First, a grid

can be classed as structured or unstructured. In a structured grid, the constituents ele-

ments (cells) are topologically equivalent to a square (2D) or a cube (3D). The connec-

tivity among nodes is completely defined by the nodes indices. But if there is no logical

organization in the grid then it is called unstructured.

For a structured grid, if a square is deformed then we use the term quadrilateral

whereas in case of a deformed cube the term is hexahedron. A structured grid can be

rectilinear (also named rectangular) or curvilinear, a classification based upon the type

of domain: orthographic and non-orthographic respectively. Moreover, a rectlinear grid

is usually named as regular if the cells are evenly spaced and Cartesian (uniform) if that

spacing is always constant regardless of the coordinate direction.

Finally, we would like to draw attention to the fact that different taxonomy may be

found in the literature.

2.3 Accuracy of Visualizations

Most visualization techniques, no matter well outlined they be, take for granted that the

underlying data is accurate. Unfortunately, as mentioned earlier, that is not always the
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Rectilinear (also named rectangular).

Orthographic domain.
Cells non-evenly spaced.
Implicit coordinates.

Curvilinear.

Non-orthographic domain.
Cells non-evenly spaced.
Explicit coordinates.

Unstructured.

Explicit topology.
Adjacency of cells computed.
Explicit coordinates.
Usually in triangle sections.

Figure 2.1: Taxonomy of data grids: rectilinear (or rectangular), curvilinear and unstruc-
tured. We should point out that a rectlinear grid is usually named as regular if the cells
are evenly spaced, and Cartesian (or uniform) if that spacing is constant regardless of
the coordinate direction.
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Figure 2.2: Múndi-map in 1519 by Lopo Homem. The Earth was supposed to be com-
pletely discovered, so Europe and the Mediterranean Sea were largely magnified. Re-
produced from Gil.39

case. Many examples can be shown where truth is a mirage. Let us just indicate two

cases of erroneous visualizations made in the 16th century. The first one is a múndi-map

as depicted in Figure 2.2. It is a synoptical vision of the Earth, a place admired from top

where everything was already discovered.39 The Mediterranean Sea is falsely perceived

as bigger than it was, including the Black and Caspian Seas. It separates a large Europe

from a small Africa.

The second one is more bizarre. Albrecht Dürer in 1515 produced an engraving

that portrays a zoologically inaccurate rhinoceros.101,105 It was to remain as a standard

model for quite a long time (around 200 years), being repeatedly copied in subsequent

works on travel and natural history. It was even incorporated into a monument d.

Moving now to current days, the problem of accuracy in visualization is still important.

Researchers from the Geographical Information Systems (GIS) field have devoted some

attention to this issue, particularly in Cartography. In parallel to the examples above,

most of their concerns were related to the accuracy of the data itself, not the visualization

d King Emmanuel I of Portugal sent an embassy to Rome to impress the Pope Leo X by offering him an
elephant, a jaguar and a rhinoceros. Unfortunately the vessel carrying the rhinoceros, which was already
a gift from King Muzafar of Cambodia to King Emmanuel, sank. The animals became very famous at that
time in Europe, including a fable about battles between the rhinoceros and the elephant. Dürer drew the
rhinoceros based on a sketch sent to him from Portugal.
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Figure 2.3: Engraving by Albrecht Dürer (1515). It was taken as an accurate representa-
tion of a rhinoceros for many years. Reproduced from Strauss,101 page 509.

process. The big efforts have been concentrated on positional accuracy in maps. In ad-

dition, concepts like data quality and derived elements have been studied.40,107,110 For

instance, the concept of uncertainty as been understood as a multi-faceted characterisa-

tion of data. It can include confidence intervals, lineage, precision, standard deviation,

heuristics, etc. In the end, uncertainty is a measure of doubt and distrust in the results.

There are three terms which are important to define. First, the error: it is the

discrepancy between a given value and its true value. It is worth pointing out that in

some situations the true value is simply unknown. For instance, information collected

from the real world prior to any scientific modelling. At that level the maximum we usually

expect is to replace a value of higher accuracy than the one we are assessing. A related

term — accuracy — can be defined as indicating the closeness of results, or estimates

to true values. Finally the term precision, with the connotation of similar results. As an

illustration, note that the reading of temperatures can be precise (all the experiments

delivering similar results) but not accurate.

Other authors have taken an interest in this topic, but focusing mainly on the vi-

sualization process. Craig Wittenbrink, Alex Pang, Suresh Lodha and colleagues have

illustrated a number of ways to visualize errors made due to the visualization techniques

used.64,121 For instance, using vector glyphs to visualize uncertain winds and ocean
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currents.121

Assuming that the uncertainty associated with data has been quantified, an im-

portant task is to map those metrics to visual cues. It must be said that visualization

techniques used in different contexts, can be adjusted here, with the purpose of showing

the accuracy of data. For instance, glyphs depict data through visual proprieties such

as shape, dimension, size, orientation, etc. So accuracy can be conveyed by means

of one of these visual cues. There are many other perceptive mechanisms that can be

used: overlaying of primitives with the purpose of creating a balanced and unified pat-

tern, maybe using transparency in order to make the image more readable; or the use of

a side-by-side comparison of different solutions. Actually, similarity is a pre-requisite for

the difference to be noted. Use of sound, blurring of image, animation, etc. , are other

possibilities.

An important aspect is that errors at some stage of the visualization process may

influence other visualization procedures further down the pipeline. For instance, error

associated with raw data can imply discrepancy of results being magnified. In all, it

is quite difficult to characterise the uncertainty of data as it is transformed through the

visualization pipeline.

2.3.1 Variation of the Dataflow Model

As mentioned earlier, most of the MVEs are based on the dataflow model.43 We can

extend this reference model to accommodate the issue of accuracy.

Let us work with the variation of the Haber-McNabb model described by Brodlie.10

In that approach, the input raw data is the sample of the underlying physical phenomenon

to be visualized. There is a modelling stage where an estimate, or model of the underlying

field is created. Then in the mapping stage, it is transformed to an abstract geometric

representation. Finally the geometry is turned to image in a rendering stage.

Yet, the model itself may not be accurate; it is very likely that errors are introduced at

the modelling stage — some due to the input data itself, some due to the model creation

process (usually an interpolation). If instruments are used to collect the data then there
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is always a degree of variability.

Figure 2.4 depicts the variation we envisage. It is desirable to have at the end of

the modelling stage information about the accuracy of the model. We call it the accuracy

model. Hence, model and accuracy model represent the underlying phenomenon better

than the model alone. Moreover, we include accuracy raw data as input to the mod-

elling stage, for instance to include metadata about the way the raw data is simulated or

collected.

Next, the mapping stage where again errors are introduced. If we want to be able

to describe the geometric representation of the underlying physical model, we have to

provide the assumed geometry information plus a measure of its accuracy. For example,

if the computed geometry is a sphere defined by its centre (x
; y
; z
) and radius r, its

accuracy can be given as a variation in the centre (�x
; �y
; �z
) and in the radius �r.
Note that errors introduced in the previous stage will affect the accuracy of the mapping

process.

Finally, the rendering stage, where the final picture embodies both the normal im-

age and related accuracy. All the transformations that data have been subjected through

the pipeline are reflected in the final picture. The goal is to show as faithfully as possible

the underlying physical model we are trying to understand.

Figure 2.4: Variation of the dataflow model to accommodate accuracy information.

In the following Sections we will present some of the most common techniques

used in scientific visualization.
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Figure 2.5: Visualization of pressure field over a Northrop B2 aircraft (near the airframe
geometry). Adapted from an example found in IRIS Explorer.

2.4 Techniques for Scalar Data

These techniques aim to represent scalar data defined over a domain. The techniques

we mention here are: graphs, bar charts and histograms, colour bands, surface displace-

ment, contouring, surface rendering, and finally volume rendering.

There is one aspect of terminology that we would like to point out: in some litera-

ture such as reference 94, the term contouring is applied to techniques that depict scalar

data of equalness, indiscriminately in two or three dimensional data sets. Throughout

this work we make a distinction, keeping the traditional terminology: contouring is for two

dimensional data sets whereas the term isosurfacing is applied in case of three dimen-

sional data sets. We are aware that in the latter case some people use other terms such

as surface fitting, surface extraction or surface tiling.

2.4.1 Graphs, Bar Charts and Histograms

These three constitute the set of elementary techniques to represent scalar data. A

graph links data points over a continuous domain. Bar charts show data points defined

over an enumerated set. It does so by means of bars whose length is mapped from

the scalar data. The bars can be drawn horizontally or vertically. Finally, histograms
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Figure 2.6: Charting the Silicon Graphics, Inc. security in the New York Stock Exchange.
It shows the daily fluctuation of the share price (bars), accompanied by trading volume
(bars) and moving average (graph). The moving average smooths the erratic short term
variation (uncertainty) of the price line and effectively highlights when the price line has
diverged from its average.

that show data aggregated into bins. That is, a data point is added to a bin if it lies

within the corresponding range of values. Then bars of corresponding length are drawn.11

Figure 2.6 shows an application of these techniques.

2.4.2 Colour Bands

The data is represented as image points, and coloured accordingly. Hence there is a

transfer function between scalar values and colours. This function must be carefully

chosen, otherwise the results can be very poor. The use of colour is an issue by itself. If

one wants to enhance small variations, then for example the function can be algorithmic

rather than linear. A common application is to create a lookup table of colours (discrete

transfer function), where the scalar values are indices of the table. Figure 2.7 also shows

this technique.

2.4.3 Surface Displacement

This technique aims to show scalar data of a two dimensional structured data set. The

surface is displaced at each point based on the respective scalar value. Usually the
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warping is normal to the flat surface, and may be affected by a scaling factor as well. An

illustration can be found in Figure 2.7.

2.4.4 Contouring

This technique represents data of constant value defined over a two dimensional plane,

by lines joining those points of equal value. It is a rather old technique that remains

as useful as ever. Common examples are isobars in weather forecasting, and digital

elevation data in maps. In Figure 2.7 there is an example. We discuss this technique in

detail in Chapter Three.

2.4.5 Surface Rendering

Surface rendering aims to represent a surface drawn in the interior of a volume. The

surface depicts points whose data values are equal. Hence the name isosurface. Actually

this is the natural extension of contouring mentioned above.

There are many techniques for surface rendering. Here we will give an overview of

these techniques. We make a major distinction between those that attempt to recover a

surface from a set of two dimensional contours and those that work directly on volumetric

data. One of the techniques, the Marching-Cubes, will be discussed in detail in Chapter

Five.

2.4.5.1 Surface Rendering from Planar Contours

In this pioneering technique the aim is to reconstruct the isosurface from contours of

successive two dimensional slices of data. There are two major problems. They are:

Correspondence.

To determine the topological adjacency relationships between contours from con-

secutive slices. In other words, which contours from one slice correspond to which

ones from the other slice.
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Colour bands.

Surface displacement.

Contouring.

Figure 2.7: Three techniques to visualize scalar data defined over a plane: colourbands,
surface displacement and contouring. As a note, this data set will be presented later in
Section 3.4 on page 52.
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Tiling and Branching.

To link correctly vertices of different contours in order to construct the triangular

mesh, facing topologies such as those depicted in Figure 2.8.

(a) (b)

(c) (d)

Figure 2.8: Possible connections in the reconstruction of isosurfaces from contours. On
(a) there is no connection while on (b) there is a simple tiling between the two contours
(blue and yellow). Situations of branching are represented on both (c) and (d), with and
without holes respectively.

These problems are quite difficult to solve, particularly the definition of topology.

Indeed, most of the techniques do not solve satisfactorily all the possibilities. There

are two classes of algorithms: those so-called geometric algorithms that create directly

an external triangulated surface, and those based on implicit functions. The latter are

outnumbering the former.

A first technique to solve the tiling problem was proposed by Keppel.59 In order

to decide the orientation of a next tile (triangle), he use a directed graph representing



Scientific Visualization / Techniques for Scalar Data 21

each contour, and heuristics metrics to find out a minimal cost path between contours.

Fuchs et al. 37 adapted this idea but used a divide and conquer strategy instead of

heuristics. These techniques only worked if there was a one to one relationship between

contours, which frankly rules out the majority of real situations. Consecutive slices can

show huge differences of topologies.

One solution is to join the contours together using a tiled strip and then tile the

concatenation of the contours in one slice with the neighbouring slices.72 Also, a tetra-

hedral mesh can be constructed using Delaunay triangulation to fill the volume between

successive slices. Then the external parts are extracted. Another possible solution is

to define an intermediate contour as the concatenation of the two original slices, which

gives an easy correlation with data.32 Or maybe an arbitrary number of extra intermediate

cross-sectional contours.82 But notice that the way interpolation is done is crucial.

It is very complicated to ensure topological correctness, at least automatically. The

implicit based algorithms attempt to avoid topological considerations. The aim is to create

a smooth implicit function, in which the sample data points fit. For example, Jones and

Chen54 developed a potential field function on the basis of the distance to each contour.

The implicit function is then constructed by interpolating the field function of two consecu-

tive slices. The resultant continuous volume space can then be visualized, whether using

volume rendering or isosurface extraction, techniques outlined later.

2.4.5.2 Surface Rendering upon Volumetric Data Sets

Unlike the previous situation, these rendering techniques aim to extract the isosurface

from a volumetric data set. Here we will indicate some of those.

Cuberille Approach. This technique presented by Herman and Liu (1979),47 assumes

that each voxel of data is of a constant value. Thus, the volume data is split into 0-voxels

(outside the surface) and 1-voxels (inside). The surface is then represented by the faces

of those voxels on the boundary between the two sets. It is a very simple method but the

quality of the image is poor. Even with the help of shading to smoothen the image,16,41

they still show the underlying voxel pattern.
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Marching-Cubes. This is a widely used technique. The isosurface is found by exam-

ining the data values at the vertices of each data cell. A major feature of the method

is a lookup table that lists how the surface can intersect with a cell. There are however

some concerns regarding topological ambiguities. Since its introduction by Lorensen and

Cline (1987),67 this technique has been subject to a great deal of research. To name

but a few, the asymptotic decider criterion that solves the ambiguities in the faces,78 or

the new methods outlined below: Dividing-Cubes, Marching-Tetrahedra and Discretized

Marching-Cubes.

Dividing-Cubes. This method, suggested by Cline et al. ,19 is a variation of Marching-

Cubes. Each cube is divided into octants of the size of a pixel. This division is pro-

portional to both image and data resolution, leading to the generation of the so-called

internal pixel-sized voxels. These are then classified as inside, outside or on the surface,

and displayed accordingly as points. The idea came about as result of reported situa-

tions where the data points in the cube were so close to each other that the triangles

produced by Marching-Cubes were very small. By rendering points instead of triangles,

the computational cost reduces significantly. However, zooming facilities are difficult to

sustain since it would end up revealing the discrete representation of the surface — as

dense point clouds.

Marching Tetrahedra. This technique emerged mostly as result of trying to solve the

problem of ambiguity in the Marching-Cubes. The volumetric data is made of tetrahedra.

The process is similar to Marching-Cubes but with a significant inferior number of pos-

sibilities for the intersection of the surface with the cell. A linear function is fit into each

tetrahedron, yielding a representation of a triangle without any ambiguity. This method

is resumed later on, in Section 4.1.1, when we discuss in detail ambiguity in Marching-

Cubes.

Discretized Marching Cubes. In this technique, Montani et al. 73 suggested to merge

both ideas of cuberille approach and Marching-Cubes. On the one hand, the binary array
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of the cuberille method holds. On the other hand, the intersections with the cells in the

boundary are established as with Marching-Cubes. But this time those intersections are

defined as being halfway down each intersecting edge. The authors claim that the error

introduced with this simplification is affordable in many practical situations.

Particle Systems. In this approach the extraction of isosurfaces relies on the dynamic

behaviour of particle systems. First, particles are released between any adjacent sam-

ple points of the data set whose values are on opposite sides of the threshold value.

Then they are attracted towards the isosurface while simultaneously repelling adjacent

particles. A birth-death process is developed and once the equilibrium is reached the

positions of particles are used used as vertices of the surface to be rendered. As pre-

sented by Crossno and Angel,22 this method also allows control of the density of the

mesh vertices on the basis of isosurface features such as curvature.

Direct Surface Rendering. This method, as works by Jones and Chen55 and Parker et al.

84 show, uses the ray tracing technique to obtain the isosurface so avoiding the creation

of an explicit representation for the isosurface. The technique is as follows: from each

pixel on the screen, rays are cast through the volume data. Whenever the isosurface is

intersected by those rays the computed intersection point is rendered. Usually shading

techniques are included in the process. Notice that if one wants to render a mesh one can

always create a volume data using voxelisation and then use direct surface rendering.53

2.4.6 Volume Rendering

Volume rendering maps directly the volumetric data set into the display, enabling greater

data understanding by laying emphasis on the overall as opposed to the detail. There

is no intermediate geometric representation of the data. The underlying idea is to see

through the data set which is considered as a light-participating medium. Concepts of

lighting and shadow are crucial to depict the interior of the data set. The major drawback

though is that it is very costly. Furthermore, each time the image is rendered (for example
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if the user wants to see from a different viewpoint) the entire data set has to be traversed

again.

The volume rendering techniques are broadly classed as either object order or

image order, although hybrid methods can be set as well. The major difference is that in

image order algorithms, a ray is cast from each pixel of the image plane onto the data

set (backward projection), whereas in object order, the volume is traversed cell by cell

and each one is projected onto the image plane (forward projection). In the following we

present these strategies in general. The emphasis is on techniques for regular data sets.

In the end these basic techniques have been adjusted for irregular data.

Reviews on the subject can be found in references 33 and 89.

2.4.6.1 Object Order Approach

The first technique is based on concepts of rendering polygons in a scene. Indeed, the

projection of a cell into the image plane can be regarded as a set of regions of pixels,

where each region is a two dimensional polygon. Figure 2.9 shows the projections to

consider; in case of a parallelepiped cell there are up to seven polygons, which can be

triangles or quadrilaterals. With tetrahedra, there are up to four triangles.

Thus, the shading model uses the colour and opacity assigned to each vertex of

the polygon and interpolates them for the remaining polygonal area. It is basically a

Phong model. Those values of colour and opacity are then merged with information

already collected from previous cells. This rendering approach was used by Drebin et al.

(1988),26 who first transformed the volume in order to be perpendicular to the viewing

angle, and then used a scan line method. Upson and Keller (1988),109 on the other hand,

used a z-buffer technique.

In a different approach, Westover (1990)119 projected each cell onto a point of the

image plane but the pixels around that point were also affected by the colour and opacity

of the cell. The degree of influence is defined by a reconstruction filter. This filter, normally

a gaussian, is called the footprint. The influence on neighbour pixels decreases outwards

from the projected point, as in the image obtained as result of throwing a snowball on



Scientific Visualization / Techniques for Scalar Data 25

(a)

(b)

Figure 2.9: Projection of cells into the image plane in volume rendering, considering the
object order approach. A cell is perceived as a set of two dimensional polygons. On (a)
the cube is projected to seven polygons while on (b) the tetrahedron is projected to four
polygons.

a wall. Hence the name splatting for this popular technique. All the contributions are

composed together to create the final image .

2.4.6.2 Image Order Approach

This approach is based on the classic ray casting; rays are cast from the image plane into

the data set. The main difference is that in the classic ray casting only the first intersection

of the ray counts whereas here, opacity of all elements are taken into consideration (see

reference 34 for details on generic ray casting).

The general scheme, based on the model of Blinn (1982)5 to model clouds and

dusty surfaces, and then used by Levoy (1988),62 is as follows: as the ray passes through

the volume, data values are sampled at a convenient sampling rate (between entry and

exit points). The sampling is normally done using trilinear interpolation. Then a process,

the so-called compositing, takes the colours and opacities of the sample points — which
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are defined by the scalar value — and composes them into the final value for the pixel. In

front-to-back compositing, the opacity of points close to the image plane will determine

the degree of contribution from more remote points. If, for instance, one is opaque, then

contributions from further points are discarded. The transfer function that determines the

final colour C of the pixel is C = nXi=1 
i �i i�1Yj=1 (1� �j) ; (2.1)

where n is the number of sample points along the ray, and 
i and �i the colour and opacity

of the sample point i respectively.

The above transfer function models light passing through a number of adjacent,

semi-transparent gels. A gel is a transparent medium in which a large number of opaque

spherical particles of fixed radius, non-uniform distribution and varying reflectance are

suspended. As the number of particles in the gel increases, less light will pass through it;

the degree of opacity of the gel is related to the number of opaque particles it contains.

In (2.1) the opacity ranges from 0 (totally transparent) to 1 (opaque).

There is also a popular but more complex method elaborated by Sabella (1988).91

He considers the data set as a varying light emitter. It is similar to the system of particle

light sources of Reeves,87 but it models the density of particles in a region, not the par-

ticles themselves. Unlike the previous model, the intensity of light that reaches the eye

allows continuous variation of density.

2.5 Techniques for Vector Data

The aim of techniques for vector data is to represent in three dimensional space the

direction and magnitude of each data value. One important form of application is the

visualization of flows. In that respect it is worth mentioning two review papers, by Post

and van Walson86 and by Delmarcelle and Hesselink29 respectively. Here we outline local

icons, particle tracing, streamribbons, streamsurfaces and streamtubes, the topological

approach and finally techniques based on texture.
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Figure 2.10: Visualization of a velocity field using arrow plots as icons. The data is the
office data set available in reference 94.

2.5.1 Local Icons

This is a straightforward technique where geometric entities are drawn at each data point.

They are named icons or glyphs. The dimension, shape, orientation and colour are re-

lated to the vector data at that point. The dimension (length, area, volume) can be bal-

anced to control the clutter of the final image.

The simplest icon is an oriented line, sometimes referred to as hedgedog. The

oriented line can have an arrow at the end, hence the name arrow plots. Figure 2.10

shows an example of an application of arrow plots.

The geometry of glyphs can be extended to higher dimensions. For example trian-

gles, cones or cuboids. However we would like to stress the fact that scaling in this case

can be misleading. For instance, if two different values are mapped into squares, the

difference of areas between the squares is magnified by the square of the scale factor.

The problem is the visual perception is mostly directed towards the area of each square.

The major problem of glyphs is that position and orientation are in general difficult

to perceive in space.
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2.5.2 Particle Tracing

The concept of this technique derives mainly from experimental work. In order to provide

a framework we present the following definitions:

Pathline.

Line traversed by a particle, during some interval of time.

Timeline.

Line formed by linking a series of particles released at one instant. Due to the flow,

particles individually move after a time interval to a new location, through which the

form and location of the timeline alters.

Streakline.

Line composed of particles which have passed through a specific location during a

certain time interval.

In addition, another line representation can be derived mathematically: the stream-

line, a line that is at all points tangent to the instantaneous velocity field. In case of steady

flows (not dependent on time), pathline, streakline and streamline coincide.

Therefore, particle tracing aims to show the various positions of a particle moving

in the field. Since the velocity of the motion is by definition the derivative of the position

in relation to time, then the solution of the problem resides in integrating numerically

the vector field, step by step. A good review of particle tracing can be found in the

reference 86. We discuss this technique in detail in Chapter Six.

Kenwright and Mallinson58 suggested however a different approach: a streamline is

conceived as the line of intersection between two surfaces that are at all points tangent to

the flow field (called streamsurfaces outlined below). These surfaces are defined as im-

plicit surfaces. The feature of this technique is that it follows the law of mass conservation,

and does not require time stepping.
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Figure 2.11: Particle tracing. The data is the office data set available in reference 94.

2.5.3 Streamribbons, Streamsurfaces and Sreamtubes

This class of methods is a natural extension of streamlines. On the first level, two adjacent

streamlines can be bridged with a polygonal mesh to form a so-called ribbon. Take notice

that the streamlines should remain close enough since a ribbon should be tangent to

the field at all points. With this technique it is possible to show the rotation of the flow

(vorticity) and the spread of the flow (divergence). Indeed, the changing width of the

streamribbon is related to the cross-flow divergence of the flow whereas the amount of

twisting indicates the vorticity.

By definition, a streamsurface is a collection of a infinite number of streamlines

passing through a base curve, called a rake. Streamtubes are obtained if the rake is

closed. One method to generate streamsurfaces is to advect particles from the rake and

then create a polygonal mesh that connects adjacent streamlines (as for streamribbons).

In many cases the streamlines diverge so that the resulting surface is poorly defined. In

order to avoid this, Hultquist49 used an advanced front of a steady growing streamsur-

face. Particle traces and tiling is done concurrently. The number of particles and spacing

between them is adjusted at the front in order to keep the distance between particles

constant. Also, van Wijk115 represented a streamsurface as an implicit surface, showing

the sweep of an initial curve through the field. The shape of the initial curve is defined
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by the value of the implicit curve at the inflow boundaries. A streamsurface can also be

represented by means of surface-particles, a texture based technique to be mentioned

later.

Finally we would like to cite the concept of streamballs introduced by Brill et al. 7

This method is based upon implicit surface generation adopted from metaballs. They

have the ability to automatically split or merge with each other, depending on their dis-

tances. By advancing appropriate skeletons through the field, and displaying the resulting

streamballs, one can obtain various techniques, such as streamsurfaces.

2.5.4 Topological Approach

One important aspect in vector fields is the understanding of its inherent structure. This is

mainly achieved by studying the critical points, points at which the magnitude of the vector

field vanishes, thus leaving the direction undefined. Either the vector field converges or

diverges and/or circulates around a critical point. This behaviour is determined by the

eigenvalues of the Jacobian, the matrix of partial derivatives. The imaginary part indicates

rotation whereas the real part the relative attraction of repulsion. Critical point theory is

then applied here. Take notice that it is not so easy to perceive this type of analysis of

global features.

Helman and Hesselink46 proposed to form a 2D skeleton by connecting the crit-

ical points on the surface. The field is then divided into separate regions topologically

equivalent to uniform flows. Next, streamlines are generated starting from points on the

skeleton. These allow the construction of stream surfaces, with adaptative refinement in

areas of divergence.

2.5.5 Texture Synthesis Based

This class of techniques are based on the idea of having moving particles to create the

illusion of fluid movement. By overlapping particles, a stochastic texture is obtained. This

is a throwback to the particle systems introduced by Reeves to model fuzzy objects such

as fire or clouds. There, the particles have a lifetime cycle of birth, life and death. While
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alive, the various attributes such as position, speed, and direction of motion, vary in time

according to stochastic models.87,88 (actually Blinn5 used a similar model before, see

volume rendering on Section 2.4.6). One famous example of the application of particle

systems was the animation of the atmosphere of Jupiter in the film ”2010” .127

This class of methods are generally costly. But one has to acknowledge their ability

to provide pictures that really show how the flow field looks like, in some cases denoting

proper experimental work.

In the following we present the approaches: extension of volume rendering, surface-

particles, spot-noise, line integral convolution and motion maps.

Extension of Volume Rendering. Although volume rendering is traditionally a tech-

nique to visualise 3D scalar data, the concept can be extended to vector data by adding

texture that in some way depicts the vector field. For instance, texture can be added to a

contour surface of cloud density and advected according the wind field, as Max et al. 70

did. The point is to use a 3D volume texture function evaluated on a contour surface.

A different approach was taken by Ma and Smith,68 using what they referred to

as virtual smoke. After defining a seed point, the volume surrounding it grows voxel by

voxel, based on the vector field near the seed point. The image is thus updated in order

to animate the growth of the seed.

In another example, by Crawfis and Max,21 the basic splatting technique (see Sec-

tion 2.4.6.1) was used. The vector field was integrated into the scalar reconstruction func-

tion and so splats were textured to depict the vector field. The direction of the polygon

splat shows the direction of the flow, and its final colour can also convey the magnitude

of the vector field.

Surface-particles. By adding spatial information to the concept of particle systems,

van Wijk modelled a particle as a very small surface. Due to its size, the shape is irrele-

vant and so a particle is modelled as a point with a normal. Adding orientation information

is conducive to a more advanced shading model. If using a large collection of surface-

particles, one can represent a (stream) surface moving with and deformed by the vector
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field without having to compute it explicitly. Particles are released in space and time, and

then advected.100,113,114 With animated surface-particles, one obtains a very good view

of flow field.

Spot Noise. This technique, introduced by van Wijk,112 draw spots of random size and

intensity in a plane, giving a texture effect. The texture is defined as:f(x) =Xi ai h(x� xi ) ; (2.2)

where xi is the random position, ai the random scale, and h is the spot function — zero

everywhere except for an area that is small compared to the texture size.

Different spot shapes and size yield different textures so the global appearance

can be controlled. Moreover, the shape can be adapted to the data at that position,

by scaling the spot in the direction of the vector field proportionally to its magnitude,

for instance. However, when data varies rapidly, the results are not satisfactory. More

sophisticated spot shapes such as bending the spot in the direction of a stream surface

were introduced.25

Linear Integral Convolution. This method presented by Cabral and Leedom14 is a

powerful technique to visualize and animate vector data in a plane. It is based on a

common technique in image processing: image convolution. The texture is generated

by convolution of an input texture with a one-dimensional filter kernel. In its simple form,

the convolution filter is a straight line tangential to the local vector. A final pixel O(i; j) is

obtained by the weighted sum of a number of pixels along the line in the input texture:O(i ; j) = Xp2� I(p)h(p) ; (2.3)

where � is the set of pixels in the input texture, I(p) is the input texture pixel at grid cell,

and h(p) the convolution filter. In effect, the input texture is blurred as an image tangential

to the vector field, at pixel-resolution. This correlates the resulting pixel values along

streamlines, so that a sense of flow direction is obtained. Figure 2.12 gives an example.
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Figure 2.12: Line Integral Convolution. Visualization of a 2D horizontal slice of a flow
velocity data set. This data set is the double glazing data set that will be studied in
Chapter Five.

Later developments include: implementing on curvilinear grid surfaces36 and un-

steady flows;35,98 separating the streamline integration from convolution, making the al-

gorithm resolution independent;99 modifying the frequency of the input noise to gather

extra information such as the magnitude of velocity, in the image;60 encoding orientation

of the flow;118 and finally using in 3D flow volumes.50

Motion Maps. This technique is used in two dimensional steady flow fields. The basic

idea is to have a dense coverage of streamlines that encode flow information by means

of colour, and then using colour table animation techniques.52

The image is perceived as a grid of cells covering the flow field. Each pixel is as-

signed to an index (entry) in the colour table. By cycling the indices, the image gives

a sense of motion. If consecutive pixels are assigned to the same index then a differ-

ent speed is shown. Correlation between neighbour pixels is therefore important for the

animation.
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2.6 Techniques for Tensor Data

Tensor data consists of nine scalar functions of position, which should be visualized as

a group. They are partial derivatives of the vector field, aiming to show its distortion.

In general, there is a decomposition into a symmetrical part — stress-strain — and an

anti-symmetrical one which denotes rotation. The eigenvectors are called the principal

direction of the tensor, and along these vectors the deformation is pure stretching. Quite

understandably, tensor visualization is rather difficult to get a mental picture of. In the

following we introduce some techniques for tensor visualization, classed as tensor glyphs

and hyperstreamlines.

2.6.1 Tensor Glyphs

Tensor glyphs are icons designed to show the eigenvectors. The most primitive will be an

ellipsoid with principal axes as the three eigenvectors.

Haber and McNabb43 used a glyph consisting of a shaft and a disk to visualize a

symmetrical stress tensor. The shaft was oriented according to the direction of largest

stretching, whereas the elliptical disk was aligned with the other principal directions. Also,

de Leeuw and van Wijk24 developed a more advanced glyph to visualize the Jacobian

of a velocity field (spatial derivatives of each velocity component). First, the tensor is

decomposed into parallel and perpendicular components to the flow. Then the following

components are singled out: velocity, curvature and rotation, acceleration, shear, and

convergence and/or divergence.

Again, as in visualization of vector data, multiple instances of glyphs are released

in the field, which does not avoid a loss of continuity. Furthermore, cluttering of the image

is a serious problem. Even more so with tensor glyphs than with vector glyphs.

Another technique that can be included in this class is the stream polygon, intro-

duced by Schroeder et al. 93 Here, glyphs as regular n-sided polygons perpendicular to

the local vector field are placed along a streamline. The shape is distorted according to

the local deformation in the field. Effects like the twisting or scalar parameters of the field

are displayed by accordingly rotating and shearing the polygons or changing attributes
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like radius or color.

2.6.2 Hyperstreamlines

Hyperstreamlines are the extension of streamlines used in vector data, allowing to show

real, symmetrical tensor fields along a trajectory, continuously. Delmarcelle and Hes-

selink27,28 produced hyperstreamlines as follows: a primitive geometry, usually an el-

lipse, sweeps along one of the eigenvectors while stretched out in the traverse plane.

The stretching is affected by the other two orthogonal eigenvectors. Then all the gen-

erated primitives are linked along the trajectory. Colour can be used in respect to the

eigenvalues, usually representing the longitudinal eigenvalue. With an ellipse, a tubular

shape is obtained. Another possibility is a cross that generates a helical shape. The

selection of one or the other depends on the type of analysis of interest.



Chapter
THREE

Contouring

There is no doubt that contouring is still a major application in computer graphics.

Indeed, it is widely used in cartography, weather forecasting, fluid dynamics, and in many

other scientific fields.

The layout of the chapter is as follows: first, we provide an overview mentioning

the roots of contouring as well as the general methodologies. Then the focus is directed

36
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towards a very common class of contouring, when data is defined pointwise over a rectan-

gular grid and assumed to follow a bilinear interpolant on each cell of the grid. Contour-

ing methods construct a piecewise linear approximation to the contours of the bilinear

interpolant. The current state-of-art is presented, with two methods in particular being

described, and then our new approach is introduced. Two data tests are included to high-

light the virtues and pitfalls of each method. Finally we consider the representation of

accuracy in contouring, targeting the new method.

One key concept throughout this chapter is that of correct topology. We consider

a solution as topologically correct if it shows the same topology as that of the underlying

data interpolant.

3.1 Overview

The general concept behind contouring is that of isolines (lines of equalness): a set

of lines that show by their absolute and relative positions the locations and gradients

within a set of numbers.90 These numbers can be temperatures, elevations from the

ground, population densities, etc. The isolines can also be named according to the type

of data involved: isotherms (temperature), isobar (pressure), etc. In case of geographic

elevation data, cartographers call them contour lines, an expression which is sometimes

used interchangeably with isolines. Since our main interest in contouring is just from the

point of view of visualization technique, hereafter we follow the general approach of using

both terms isolines and contour lines.

There are several methods to generate contour lines, for different types of grids,

interpolations, and orders of curve generation. For detailed information on contouring

one can read the references Brodlie,8 Sabin92 and Watson.117

3.1.1 Roots of Contouring

To find the roots of computer contouring one has to go back to the sixteenth century. At

that time the manual preparation of maps to help sailors was a high-profile task. Ques-

tions such as ”how deep is the water” or ”which way is north” were better answered
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referring to pictures. So contour lines were drawn on topographic maps to represent el-

evations above sea level, and on nautical charts to represent depths. Many examples of

contour maps produced at that time can be found. Robinson90 mentions that the first con-

tour map is credited to the Dutch surveyor Pieter Bruinss who in 1584 showed the depth

of water of the River Spaarne (isobath map). But it was not until 1777 that a Frenchman,

Meusnier, first published contouring as a technique to show surface configuration from

elevation data.90 As far as computer contouring is concerned it appears that the sugges-

tion by John von Neumann in the 1940s to interpolate automatically meteorological data

triggered the events.83

3.1.2 Methodologies

Most of the contouring techniques apply to gridded data which means data is prepared

before the contouring itself takes place. In the previous Chapter in Section 2.2, we have

presented the main types of data grids. In 2D, the common grids are characterised by

rectangular cells, or else triangular cells.

There are two main strategies to extract contour lines from gridded data: by cell

sequence or by contour sequence.

Cell sequence. Each grid cell is scanned and examined, one by one. The basic as-

sumption is that the contour passes through the cell in a finite number of ways. If grid

values higher and lower than the contour value are found, then part of the contour is

within the cell. In that case, intersection points with the edges of the cell are computed

using some type of interpolation. Then these points are connected by line segments or a

smooth curve is fitted through them. In the latter case the smoothness of the curve can

be controlled using a variable step size and/or information such as the gradient.

Contour sequence. An initial pass is made through the data to identify the grid inter-

sections with a contour line. One of these points is chosen as start point, and the contour

is tracked through the grid, noting the intersection points which have been traversed. A

remaining intersection point is chosen as the next contour start point, and the process
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continues until all the intersection points have been used up. As a note, with this strategy

it is very easy to place labels at regular intervals along the contour, which is useful in

some cases.

Whether using cell sequence or contour sequence strategy, the order of the data

and the type of grid where it is defined will determine the appropriate choice of technique.

Linearity between adjacent data points. Linearity yields the simpler methods. If the

grid is triangular the interpolant function is assumed to be linear in the interior and so

the contours are straight lines. So it is just a matter of finding the intersection points

with the triangle edges and connect them. In case of rectangular cells, the interpolant is

bilinear so a conic curve should be drawn for a contour line. Figure 3.1 shows the cell

classification for both grids. Bilinear data over rectangular grids is going to be the main

emphasis of this chapter.

Non-linearity between adjacent data points. Unlike data varying linearly between ad-

jacent data points, intersections with the edges may not be unique, as shown in Fig-

ure 3.2. Many techniques can be used, though not simple. In general the stepping used

to compute successive line segments to approximate the contour is increased. Another

option is to refine the grid in such a way that techniques suitable for data varying lin-

early over cell edges can still be applied. This requires extra memory but it is particularly

beneficial if there are multiple contours to draw.

3.2 Bilinear Data on Rectangular Grids

Data varying linearly between adjacent data points is a very common assumption in con-

touring. As mentioned before, even if data varies non-linearly a higher data resolution

obtained in a pre-processing stage can enable the visualization techniques to work on

the assumption of linearity.
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(a)

(b)

Figure 3.1: Cell classification for (a) triangular and (b) quadrilateral data cells, when data
varies linearly over the edges of the cells.

Formally the problem is as follows: given the values of a bilinear function F (x; y) at

the vertices of a rectangular cell D, compute and display isolines of threshold value �C� = f (x; y) j F (x; y) = � ; (x; y) 2 D g : (3.1)

For convenience and without loss of generality we transform the cell domain D into

a unit square. Hereafter we shall assume the bilinear function to be defined within a unit

square [ 0; 1 ℄ � [ 0; 1 ℄. ThereforeF (x; y) = ax+ b y + 
 x y + d ; (3.2)
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Figure 3.2: Non-linearity between adjacent data points. Contours may intersect cell
edges at more than one location, regardless of the type of grid (triangular or rectangular).

with a = f10 � f00 ;b = f01 � f00 ;
 = f00 + f11 � f01 � f10 ;d = f00 ;
where f00, f01, f10 and f11 are values of F (x; y) at cell vertices.

The partial derivatives of (3.2) areFx = a+ 
 y ; Fy = b+ 
 x : (3.3)

The point S = (�b=
 ;�a=
) is a stationary point since it is the point where the two

derivatives Fx and Fy vanish. The value of F at the stationary point isF (xS ; yS) = f00 f11 � f01 f10(f00 + f11)� (f01 + f10) : (3.4)

The eigenvalues of the Hessian matrix are of opposite sign, � = �
, thus the

stationary point is a saddle point. This point S is defined as long as 
 6= 0. But if 
 = 0, F
is linear and so contours are just straight lines. Contouring in that case is trivial and more

importantly exact.

Assuming 
 6= 0 the contour curve within the cell is a hyperbola. The problem

is then reduced to drawing the hyperbola within the limits of the cell knowing F . The



Contouring / Bilinear Data on Rectangular Grids 42

possible configurations to depict the contour curve were shown before in Figure 3.1(b).

The hyperbola representation requires some kind of approximation. Since execution time

is usually a key factor, one can (roughly) approximate the hyperbola by straight lines

connecting the intersection points with the cell edges. That is the basic method.

For the sake of clarity let us introduce the following concepts about cell points and

degenerate contours. The configuration 9 of Figure 3.1(b) shows a degenerate contour

as we conceive it.

Definition 3.2.0.1 (Cell points). A cell point (x; y) is positive (negative) when its data

value is above (below) the threshold value �. We define intersection points as points in

the cell edges cut by the contour. In the particular case of cell vertices being intersection

points we refer to them as intersection vertices a.

Definition 3.2.0.2 (Degenerate contour). Given the bilinear function F of (3.2) the cor-

responding contour is said to be degenerate if it is described topologically as two straight

lines.

3.2.1 Ambiguity

The configurations 7 and 8 of Figure 3.1(b) show the hyperbola intersecting all the four

edges of the cell. That is the case when positive and negative vertices are diagonally

opposed. The pairwise connection of intersection points is ambiguous since it could be

in up-right or up-left direction, from the bottom point. Any solution to solve this ambiguity

should provide a consistent approach ensuring positional continuity between adjacent

cells. But the final aim is really to obtain a solution which is topologically correct in terms

of the bilinear interpolant and as accurate as possible.

a As a curiosity some authors in the past have suggested to add to each data value a small random
displacement in order to prevent these cases. They argued that computers have a finite representation
anyway so in the end the added distortion was not so significant. Definitely we do not accept this idea.
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Four triangles technique

According to Sutcliffe,102 this method has its roots in the work of Dayhoff (1963) and

Heap (1974). Heap used the idea of Dayhoff to approximate the value at the centre of

the rectangular cell by averaging the values at the four corner points, and then dividing

the cell into four triangles. Hence we name it as the four triangles technique. Having

done that one can obtain two extra points lying on a diagonal of the cell, using linear

interpolation. Figure 3.3(a) shows an example for a threshold value � = 0.

There are a few aspects that ought to be mentioned. First, the averaging process

corresponds to using a bilinear interpolation. This interpolation model is contradicted by

using a linear interpolant within each triangle. If one assumes that a linear interpolant

was correctly applicable within each triangle then the contours are straight lines, so the

solution is exact. But that premise is not valid in our case. Second, the method provides

consistency of solutions from cell to cell. Third, unfortunately it does not always provide

a correct topology as Figure 3.3(b) depicts. It is only correct when both the saddle point

and the centre of the cell lie in the same region of the hyperbola. In other words, when

the function values at saddle point and centre of the cell have both the same sign.

Asymptotic Decider

This method was introduced by Nielson and Hamman (1991)78 to solve ambiguity in the

Marching-Cubes method, an isosurfacing technique discussed next chapter. It is based

on the following criterion: the pairwise connection is established so as to cut off the

vertices of opposite sign to the saddle point value. Figure 3.4 depicts the method. This

method provides always a correct topology for the bilinear interpolant so consistency as

well. Recall that the saddle point is the intersection of the asymptotes of the hyperbola

(Fx = 0 and Fy = 0). Those asymptotes will indicate the correct topology — there is no

crossing between the hyperbola and the asymptotes.

From now on we shall assume that the basic method applies this decider criterion

to resolve the ambiguity.
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(a) (b)

Figure 3.3: The four triangles method, with a threshold value � = 0. It provides a topo-
logically correct solution on (a) — the function values at the centre of cell C and at the
saddle point S have the same sign — but not in the case of (b) where those values have
different sign. In the latter case the two extra points are assumed to lie on the wrong
diagonal.

3.3 Proposed Contouring Method

We now aim to improve the basic contouring method, following the cell sequence strategy.

As above, we shall assume linear data defined over a rectangular grid. Without loss of

generality the cells are units, i.e. defined over [ 0; 1 ℄� [ 0 ; 1 ℄ and the threshold value � is

zero. The goals are:

1. To ensure topological correctness as defined in the introductory section. In this

case positional continuity between adjacent cells is also ensured.

2. To generate contours more accurately than the basic method.

3. To have an acceptable computational cost.

For each cell the method works as follows: first we check whether there are vertices

intersected by the contour or not. If there are then the (particular) situation is dealt with

accordingly. Otherwise we compute the intersection points on the edges. If the interpolant

is linear or the contour is degenerate then the representation is trivial: straight line(s). If
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Figure 3.4: The basic method and the asymptotic decider criterion to solve ambiguity.
In the example above for a threshold value � = 0, the function value F in the region
between the two contour sections is positive, which includes the saddle point S. Notice
that S is the intersection of the two asymptotes Fx = 0 and Fy = 0.

not the next step is to solve any ambiguity; in case of four intersection points we use the

asymptotic decider as described in Section 3.2.1 to establish the correct topology. Once

the pairwise connections are set, we include an extra point for each pair of intersection

points. Each contour section is drawn as a polyline from one intersection point to the

extra point and then to the second intersection point. Next we will discuss how to obtain

this extra point. We call it a shoulder point.

3.3.1 Shoulder Point

Looking to the classical manual method of drawing a conic curve, the problem is: ”given

two end points and corresponding tangent lines, and an intermediate point, find a set of

intermediate points sufficient to plot a segment of a conic curve”. Based on that manual

construction one can demonstrate that (see Mortenson (1985)74 for details):

Definition 3.3.1.1. Given three points P , Q and T , there is a conic curve whose tangents

at P and Q lie along the vectors
��!P T and

��!QT respectively. The conic is also tangent to a

line parallel to P Q, and offset a distance �H perpendicularly to P Q, with � 2 [ 0; 1 ℄. H
is the perpendicular distance from P Q to T . The conic is
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Hyperbola, if � 2 ℄ 0:5; 1:0 ℄ :
Parabola, if � = 0:5 :

Ellipse, if � 2 [ 0; 0:5 [ :
We want to approximate each hyperbolic arc as two straight line segments. Let us

take as example the arc from P to Q of Figure 3.5(a). The point R is the shoulder point of

the conic arc. It is the cornerstone of the method. It intersects the line M T , where M is

the mid-point of P Q and T is the intersection of the tangents at P and Q, respectively tP
and tQ. Based on Definition 3.3.1.1, the tangent to the hyperbola at R is parallel to P Q.

Because the hyperbolic arc is convex, the shoulder point R is at maximum distance fromP Q as Figure 3.5(b) also shows. This maximizes the area of the triangle delimited by P ,R and Q, and therefore minimizes the area between the polyline P RQ and the contour

function. So R is an optimal point to use as extra point. As a result, the hyperbolic arc is

approximated by the polyline P RQ instead of P Q.

The shoulder point is rather easy to compute. In the following we show two methods

to compute it: as lying on M T as in Figure 3.5(a); or as lying on the line parallel to P Q
as shown in Figure 3.5(b).

But first let us show that the product of the two first derivatives along the hyperbola

is constant.

Proposition 3.3.1.2 (Constant product of first derivatives ). Given the hyperbola de-

scribed by F of (3.2), the following condition holds:Fx(x; y)Fy(x; y) = a b� 
 d ; 8(x; y) lying on the hyperbola. (3.5)
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(a) (b)

Figure 3.5: Shoulder point R as extra point on the hyperbolic arc. It can be seen from
two different perspectives. On (a) R is shown as lying on the line M T whereas on (b) as
lying on the line parallel to P Q.

Proof. Using the expressions of the first derivatives of F we obtainFx Fy = (a+ 
 y) (b+ 
 x)= a b+ a 
 x+ b 
 y + 
2 x y= a b+ 
 (ax + b y + 
 x y)= a b� 
 d by (3.2) .

3.3.1.1 Shoulder point on M T
Let us consider Figure 3.5(a). As shown in the following Proposition 3.3.1.3,M S containsM T . Unlike T , the saddle point S is rather easy to compute. So we are looking for the

intersection of M S with the hyperbola. Writing M S parametricallyx = xM + t � ; y = yM + t � ; (3.6)
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with � = xS � xM ; � = yS � yM ; t 2 [ 0; 1 ℄ :
and using (3.2) yieldsa (xM + t �) + b (yM + t �) + 
 (xM + t�)(yM + t�) + d =(axM + b yM + 
xMyM + d) + t (a� + b� + 
 (xM� + yM�)) + t2(
��) =F (xM ; yM ) + t(a�+ b� + 
(xM� + yM�)) + t2(
��) = 0 : (3.7)

Therefore the computation of R involves solving the quadratic (3.7). Recall that the so-

lution of interest is such that t 2 ℄0; 1[. Then we use the value of t in (3.6) to obtainR.

Proposition 3.3.1.3 (Points M , T and S are collinear). Let F (x; y) = ax+b y+
 x y+d
be the contour interpolant within the cell with all function values at cell vertices different

from the isovalue � = 0 (non-intersection vertices). Also, let

– P and Q be two points where F (x; y) = 0 cuts two cell edges, and lying on the

same hyperbolic arc.

– M be the midpoint of P Q.

– T be the intersection point of the two tangent lines to F (x; y) = 0 at P and Q,

respectively tP and tQ.

– S be the saddle point, where both first derivatives Fx and Fy vanish.

Then points M , T and S are collinear.

Proof. Since M T and M S have a common point (M ), we simply need to show they have

the same slope.
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The implicit equations of tangent lines tP and tQ areFPx (x� xP ) + FPy (y � yP ) = 0 ; (3.8)FQx (x� xQ) + FQy (y � yQ) = 0 : (3.9)

Rewriting (3.8) and (3.9) yields FPx x+ FPy y + � = 0 ; (3.10)FQx x+ FQy y + � = 0 ; (3.11)

with � = �FPx xP � FPy yP ; (3.12)� = �FQx xQ � FQy yQ : (3.13)

Hence, from (3.10) and (3.11), the coordinates of their intersection point T arexT = FPy � � FQy �FPx FQy � FPy FQx ; yT = FQx �� FPx �FPx FQy � FPy FQx : (3.14)

(FPx FQy = FPy FQx implies lines are parallel or possibly identical). Since the deriva-

tives Fx and Fy at P and Q areFPx = a+ 
 yP ; FPy = b+ 
 xP ; (3.15)

and FQx = a+ 
 yQ ; FQy = b+ 
 xQ ; (3.16)
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we can define the coordinates of M asxM = xP + xQ2= 12 
 (FPy + FQy � 2 b) ; yM = yP + yQ2= 12 
 (FPx + FQx � 2 a) : (3.17)

Now, using (3.14), and (3.17) we deduce the slope of M TyT � yMxT � xM = FQx �� FPx �FPx FQy � FPy FQx � 12 
�FPx + FQx � 2 a�FPy � � FQy �FPx FQy � FPy FQx � 12 
�FPy + FQy � 2 b�= 2 
 (FQx �� FPx �)� (FPx FQy � FPy FQx )(FPx + FQx � 2 a)2 
 (FPy � � FQy �)� (FPx FQy � FPy FQx )(FPy + FQy � 2 b) : (3.18)

Rewriting (3.12), (3.13) using (3.15), (3.16), and replacing in (3.18) above, yieldsyT � yMxT � xM = � 3FPx FPy FQx + 3FPx FQx FQy � FPx 2 FQy + FPy FQx 2�3FPy FQx FQy + 3FPx FPy FQy � FPx FQy 2 + FPy 2FQx : (3.19)

Next, the slope of M S. The saddle point S has coordinates (�b=
 ;�a=
). Using also

(3.17), the slope of M S isyS � yMxS � xM = � a
 � 12 
�FPx + FQx � 2 a��b
� 12 
�FPy + FQy � 2 b�= FPx + FQxFPy + FQy : (3.20)

Since we want both slopes to be equal then from (3.19) and (3.20) we deduce the follow-

ing equation that has to be satisfied:FPx FQx FQy FQy � FPx FPy FPy FQx + FPy FQx FQx FQy � FPx FPx FPy FQy = 0 : (3.21)
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Using Proposition 3.3.1.2, so FPx FPy = FQx FQy = a b � 
 d , one can verify that (3.21)

holds.

3.3.1.2 Shoulder point on the line parallel to P Q
Let us consider Figure 3.5(b). Based on Definition 3.3.1.1 the shoulder point has to lie

on a line parallel to P Q. At any point on the curve of F = 0, the gradient rF is always

perpendicular to the curve. Therefore the dot product rF � ��!P Q is zero. Using also

Proposition 3.3.1.2, computing R requires to find (xR ; yR) such that:Fx �+ Fy � = 0 ; with
��!P Q = h�; � i ; (3.22)FxFy = a b� 
 d ; by Proposition 3.3.1.2 : (3.23)

The solution is Fx =vuut�(a b� 
 d) �� ; Fy = a b� 
 dFx : (3.24)

Once Fx and Fy are obtained, R is immediately found from (3.3) as:xR = Fy � b
 ; yR = Fx � a
 : (3.25)

There are two solutions for Fx in (3.24), one positive and one negative. So we must

choose the proper one. One way to do so is to make sure that R will lie between the

midpoint of P Q and the saddle point S. Notice that the saddle point S is halfway between

the two solutions we would have obtained for R. Indeed, (3.25) can be rewritten asxR = Fy
 + xS ; yR = Fx
 + yS : (3.26)
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3.4 Tests

We now present some contouring tests. The goal is to compare the three contour ap-

proaches discussed before: the basic method, the four triangles technique and our own

approach based on shoulder points. The first and the last provide the same topology

since they both use the asymptotic decider criterion. The second might lead to different

topological solutions. In all the accuracy of the solutions will differ from method to method.

Assuming data linearity between adjacent cell points, we have formulated two tests

of topographic elevation data. They are:

Antarctica elevation data.

This rectangular 2D data set depicts the elevation data of Antarctica. It is a data ex-

ample included in IRIS Explorer, of resolution [ 30 � 36 ℄ . We will show five contour

levels: � = f 0:1; 17:6; 25:9; 31:9; 38:8 g. Also, we will compare the results from the

different methods.

Area of United States elevation data.

This rectangular 2D data set of resolution [ 512 � 512 ℄ corresponds to elevation

data of an area of the United States of America, in a scale 1 : 250; 000. The data

is available from the United States Geological Survey. We will show eight contour

levels, from � = 500:25 to � = 4000:25, and equally spaced.

Let us start with the Antarctica map.

Figure 3.6 shows the five contour levels � = f 0:1; 17:6; 25:9; 31:9; 38:8 g. Next,

Figure 3.7 illustrates the differences between our new method and the basic one. The

differences are represented by filled triangles delimiting both solutions. Notice that the

end-points of the new polyline solution are simultaneously the end-points of the related

straight line of the basic method. The topology is always the same. Next, Figure 3.8

superimposes both the new method and the four triangles technique. The cyan lines are

from the four triangle technique whereas the remaining ones are from our method. If we

look closely at the southeast region of the image, for contour level � = 17:6, we find
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0.1

25.9

38.8

31.9

17.6

Figure 3.6: Antarctica map. Contour plot of five levels, using the new method. Data is of
resolution [ 30� 36 ℄ .
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0.1

25.9

38.8

31.9

17.6

Figure 3.7: Antarctica map. Differences between the new method and the basic one are
denoted by filled triangles delimiting both solutions. Data is of resolution [ 30� 36 ℄ .
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different topologies in one cell. Figure 3.9 highlights the situation. We have identified the

problem cell as having the following function values at the vertices: f00 = 15:0, f10 = 21:0,f11 = 10:0 and f01 = 24:0. The bilinear interpolant isF (x y) = 6:0x+ 9:0 y � 20:0x y + 15:0 = 17:6 (3.27)

The function value at the centre of the cell is 17:5 � 17:6 = �0:1, whereas at the

saddle point the value is 17:7 � 17:6 = +0:1. These values have opposite sign so the

methods draw the topologies differently. In the case of the four triangles method there

are two points of the contour that are wrongly assumed to lie on the diagonal from (0; 1)
to (1; 0) .

3.5 Accuracy of Contouring

As underlined in Chapter Two, we are keen to give users some idea of the error committed

while using a visualization technique. Although we claim that our new contouring method

is more accurate than other methods — on the assumption that data is bilinear and free

of errors — there will be always uncertainty since the hyperbolic contour is approximated

by straight lines. To show the error committed we first establish an error metric and then

map it to a visual paradigm.

3.5.1 Error Metrics

The metric used should reflect the kind of error we commit. Contouring is basically a

2D problem. A measure of the error is the deviation of the drawn contour from the exact

contour line. This deviation is an area measurement. Figure 3.11(a) depicts the idea: the

error is measured by the area between the hyperbola and its straight line approximation.

Other metrics could have been used instead. For instance the difference of lengths of

the hyperbola and its approximation. We believe however that area is by far the most

appropriate metric for 2D contouring.
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0.1

25.9

38.8

31.9

17.6

Figure 3.8: Antarctica map. Differences between the new method and the four triangles
technique (grey lines). Data is of resolution [ 30� 36 ℄ .
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Figure 3.9: Topology from the new method (green) and the four triangles technique (grey).
The four triangles technique gives a wrong topology for the cell in the middle.
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Figure 3.10: Digital elevation data in an area of United States. There are represented
eight contour levels: from � = 500:25 to � = 4000:25, and equally spaced. Data is of
resolution [ 512� 512 ℄ .
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(a) (b)

Figure 3.11: Accuracy of the new method. On (a) one can see the error committed and
on (b) the visual paradigm to represent it as random points within a well defined region.

To compute this metric one can rewrite the interpolant F of (3.2) as (with threshold

value � = 0): y = � ax+ d
 x+ b ; (3.28)

and then use the integral of (3.28) to calculate the area ”under” the hyperbola. It yieldsZ y dx = 1
 h� ax+ �a b
 � d� ln �� b+ 
 x �� i : (3.29)

Hence the area between the hyperbola and the polyline can be easily calculated.

3.5.2 Visual paradigms

A visual paradigm should be relative to its purpose. So how should we convey the error

metric we have established?

Since a contour plot is drawn on a 2D space and so easily perceived we can overlay

geometric information on the plot itself. These extra geometries are random points in the

vicinity of the contour plot towards the exact solution, confined within regions as depicted
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Figure 3.12: Accuracy of the new method in the Antarctica map. Random points are
plotted in the vicinity of the contour plot, and towards the exact solution.

in Figure 3.11(b). It looks like there is a ”dust cloud” in the vicinity of the plot. Indeed the

metaphor associated with random points is a scope of alternatives. The bigger the error

the greater the area of random points. We provide a plot scale associating the maximum

metric value to a maximum number of random plots. This controls the density of points

and to some extent the cluttering of the final image. Figure 3.12 depicts the accuracy of

the new method for the Antarctica map.

Alternatively one can think of mapping the metric to a solid but transparent back-

ground. For example colouring the related background area according to the metric at

each cell. This is basically the colour bands technique, mentioned in Section 2.4.2 on

page 17. The grey scale is the most appropriate since shades of grey often show vary-
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ing quantities better than colour. But one has to make sure it does not conflict with the

colouring of the contour plot. In both paradigms presented above there are no changes

of the attributes of the contour plot such as the colour or the linetype.

3.6 Summary

We have presented a new method to draw contour lines on quadrangular grids, with a

bilinear function as reference for each cell. Each hyperbolic arc is approximated by two

straight line segments. The cornerstone of the method lies upon the common point joining

the two segments — the shoulder point. We proved mathematically that this optimal point

lies on the line joining the midpoint of the chord between the end points of the hyperbolic

arc, and the saddle point of the bilinear function.

In order to provide correct topology, we use the asymptotic decider criterion. Posi-

tional continuity is guaranteed as well. In the end, at no substantial computational cost we

obtain a more accurate solution in comparison to two classic methods: the basic method

and the four triangles method. None of them is a satisfactory contouring method. The

basic method just uses one line segment to approximate the hyperbolic arc; the four tri-

angles method uses two line segments to approximate the hyperbolic arc but neither all

the end points lie on the hyperbolic arc, nor it does always provide correct topology.

Another aspect under study was the representation of accuracy. There is always

some uncertainty, regardless the quality of the algorithms. We have defined an exact

error metric: the area whose boundary is defined by the contour solution and the rep-

resentation of its approximation. Then, for each grid cell we mapped this value using a

metaphor of ”dust cloud”: random points are plotted in the vicinity of the approximation

drawn, and towards the exact contour.



Chapter
FOUR

Isosurfacing

Isosurfacing, sometimes called surface fitting, extracts boundary surfaces from a

volumetric scalar data. This is a major facet in scientific visualization. The boundary

surface separates points with values greater or equal to a threshold from those with val-

ues less than. The result is the so-called isosurface, depicting where data values of a

constant threshold lie.

In this chapter we will discuss in depth the most classic isosurfacing method: the

62
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Marching-Cubes. First, we present a complete study of the method. Some aspects

are clarified and corrected, with emphasis on the concepts of topological polygon and

topological correctness. Then we propose a more accurate Marching-Cubes. This new

proposal relies mostly on three types of points that we define: face shoulder points, in-

flection points, and bi-shoulder points. Next, we suggest some ways to show accuracy in

isosurfacing. Finally we discuss the overall results and point out research directions.

4.1 Marching-Cubes

In order to show a particular isosurface from a regularly sampled data set over a domainD we construct a piecewise approximation to the isosurface. Formally the problem is to

represent F� = f (x; y; z) j F (x; y; z) = � ; (x; y; z ) 2 D g : (4.1)

The Marching-Cubes method (hereafter called the MC method) was introduced by

Lorensen and Cline67 in 1987. It uses the cube as computational cell (eight data values

corresponding to the eight vertices of the cube) and they are processed one by one. Then

all the individual contributions are assembled together to obtain the whole isosurface.

The data is assumed to vary linearly along the cell edges. If at one endpoint of an

edge the value is greater than the isovalue � (let us call it a positive vertex) and smaller at

the other endpoint (a negative vertex), then there is obviously a point on the edge such as

the value is �. It is a so-called intersection point. This point will then be used as vertex of

a polygonal approximation to the isosurface. A polygon delimited by a set of intersection

points is called a topological polygon. Note that these polygons are in general non-planar.

There are up to 28 = 256 possible patterns for the intersection between the isosur-

face and the cubic cell. But by taking into account complementarity and also rotational

and reflection symmetries in the cube, this number can be reduced to fourteen. Figure 4.1

shows these basic patterns, or configurations as we name them. These configurations

give rise to the topological polygons.



Isosurfacing / Marching-Cubes 64

Figure 4.1: Basic configurations in the Marching-Cubes method, and examples of topo-
logical polygons that would result.

In conclusion, the intersection of the isosurface and the cube cell will partition the

cell vertices in such a manner that positive vertices are separated from the negative ones.

Even more, it may partition the positive vertices themselves into several disjoint subsets.

The same holds for the negative vertices.

4.1.1 Ambiguities

Despite its simplicity and attractiveness a certain number of anomalies soon were to be

highlighted. The first problem, mentioned by Dürst,30 was a potential flaw as a con-

sequence of mismatched patterns between adjacent cells in the data set. Figure 4.2

illustrates such a problem: discontinuity between cells arises and so flaws in the surface

occur. The problem is that there are cases where it is unclear how to define the topology.

The polygonal approximation to the isosurface must be continuous (let us just consider

positional continuity, C0) and topologically correct. As van Gelder and Wilhelms pointed

out,111 it is C0 continuous between cells if and only if each edge is shared by exactly

two polygons, except for edges that lie on the boundary of the volume, which must occur
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exactly in one polygon. The topology is certainly incorrect if not continuous. Yet being C0
continuous does not necessarily mean it is topologically correct. It turned out that further

topological analysis was required. More topological polygons were needed in addition to

those indicated in Figure 4.1.

Figure 4.2: Flaws in the MC method. They might arise if ambiguities are not dealt with
properly. This example shows configuration 6 and the inverse of configuration 3 as adja-
cents.

One way to attempt to resolve ambiguity is to resample the data until the ambi-

guity disappears. This may work, in particular if the underlying function is known. On

the other hand, resampling may be impossible to carry out, for instance if data is from

physical measurements which cannot be repeated.111 Therefore different approaches

are welcome.

Ambiguities can arise both in the faces and in the interior of the cell. Let us start by

discussing ambiguity in the cell faces.

In the previous Chapter, Section 3.2.1 on page 42, we have discussed the issue

of ambiguity in 2D. To recall, disambiguation in 2D is a matter of choice of the pairwise

connection in faces with four intersection points, the so-called ambiguous faces. We men-

tioned two methods to resolve facial ambiguity: the four triangles technique (Section 3.2.1

on page 43), used in the context of isosurfacing by Wyvill et al. ,126 and the asymptotic

decider78 (Section 3.2.1 on page 43). Both methods ensure C0 continuity between cells.

But the four triangle method does not always guarantee facial topological correctness.

Fortunately this is achieved by the asymptotic decider.

The asymptotic decider extends the configurations of Figure 4.1 which have one or

more ambiguous faces: 3, 6, 7, 10, 12 and 13. The following Figures 4.3 and 4.4 show
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the results as presented by Nielson and Hamman.78 In general for each of those problem

configurations there are up to 2n possibilities to consider, n being the number of am-

biguous faces. But again this number can be reduced if complementarity and rotational

and reflection symmetries are considered. For example, in configuration 7 the number of

cases is 23 = 8 but these reduce to the four cases shown in Figure 4.3.

In respect to this work of Nielson and Hamman we would like to draw attention

to three aspects. Firstly, a new subcase not reported by them should be mentioned:

13.j (see Figure 4.4), which can not be included in any other class of configuration 13.

Figure 4.5 depicts an example of subcase 13.j. Secondly, we can rule out the practical

existence of subcases 13.f, 13.g and 13.h, which Nielson and Hamman suggest are

possible. Recall that the asymptotic decider uses the function value of the saddle point

in a face to establish the pairwise connection. If we assume that the subcase 13.f shown

in Figure 4.4 exists then we conclude that the saddle point value on both top and bottom

faces is positive whereas on both front and back faces the saddle point value is negative.

This is contradicted by the following Proposition 4.1.1.1. The same argument is applied

to subcases 13.g and 13.h.

Finally we note that if we follow the policy of equivalence under complementar-

ity and rotation (as it has been used to obtain the MC configurations so far) then the

grouping of subcases can go even further as far as configurations 10, 12 and 13 are con-

cerned. These are configurations with equal number of positive and negative vertices.

For instance, Nielson and Hamman distinguish 10.a and 10.c (see Figure 4.3) presum-

ably because they illustrate different choices of the asymptotic decider. But if we take

configuration 10.c and multiply the corner values by -1 (complementarity) and then rotate

around the vertical axis to the left by ninety degrees we will obtain configuration 10.a. So

we consider them as just one subcase. Moreover we shall emphasise later in this Chapter

that these merging subcases are equivalent in terms of polygons generated, as indeed

is obvious from Figures 4.3 and 4.4. In summary, the subcases that can be merged are:

10.a–10.c, 10.b–10.d, 12.a–12.c, 12.b–12.d, 13.b–13.c, and 13.d–13.e. We will refer to

these pairs as 10.ac, 10.bd and so on.
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Proposition 4.1.1.1. Given the eight corner data values of a cube cell with MC configu-

ration 13, and considering two pairs of opposite faces, it is impossible that for both faces

in one pair the function value at the respective face saddle point is greater than zero and

for both faces in the other pair that value is smaller than zero.

Proof. Let us consider two pairs of opposite faces: A = fFA1 ; FA2 g andB = fFB1 ; FB2 g.
In accordance with the MC configuration 13 represented below (positive vertices are 0,

3, 5 and 6 whereas the remaining 1, 2, 4 and 7 are negative), the corner data values fi
of each face are:

FA1 = f f0; f1; f4; f5 g ;FA2 = f f2; f3; f6; f7 g ;FB1 = f f0; f2; f4; f6 g ;FB2 = f f1; f3; f5; f7 g :
The function values at the face saddle points are (see previous Chapter, Section 3.2

on page 39, in particular (3.4) ):

FA1 = f0 f5 � f1 f4(f0 + f5)� (f1 + f4) ; (4.2)FA2 = f2 f7 � f3 f6(f2 + f7)� (f3 + f6) ; (4.3)FB1 = f0 f6 � f2 f4(f0 + f6)� (f2 + f4) ; (4.4)FB2 = f1 f7 � f3 f5(f1 + f7)� (f3 + f5) : (4.5)

Let us assume by hypothesis that FA1 and FA2 are negative whereas FB1 and FB2 are

positive. Also, taking into consideration the signs of the corner values fi we conclude that

the denominators on the right-sides of (4.2) and (4.4) are positive, whereas those of (4.3)
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and (4.5) are negative. Therefore the following conditions should hold:f0 f5 < f1 f4 ; (4.6)f2 f7 > f3 f6 ; (4.7)f0 f6 > f2 f4 ; (4.8)f1 f7 < f3 f5 : (4.9)

Using (4.8) and (4.9) and again taking into account the signs of fi we can write thatf0 f5 > f1 f4 f2 f7f3 f6 : (4.10)

By (4.7) and since both numerator and denominator are positive the term (f2 f7) = (f3 f6)
in (4.10) is greater than one. In that case the conditions of (4.10) and (4.6) are contradic-

tory. So the set of initial assumptions is incorrect.

Now let us extend the problem of ambiguity to the interior of the cell. The asymptotic

decider is only concerned with ambiguities in the cell faces. Furthermore, a cell can

be ambiguous without having ambiguous faces. For example, configuration 4 has no

ambiguous faces but may, or may not, lead to a tunnel as shown in Figure 4.6 (recall that

data varies trilinearly within the cell). Nevertheless this particular configuration does not

produce discontinuity between cells because there are no ambiguous faces.

In conclusion, ambiguous cells are from configurations which include ambiguous

faces, i.e. 3, 6, 7, 10, 12, 13; and from configuration 4.

To detect the existence of internal tunnels, Natarajan76 proposed a similar method

to the asymptotic decider but assuming trilinearity within the cell. Basically he extended

the concept of 2D saddle point to what he called a body saddle point: a point such

that all the three first derivatives vanish. He indicated that internal tunnels can appear

in configurations 4, 6, 7, 10, 12 and 13. We were not able to reproduce tunnels for

configuration 13. We discuss the problem of tunnels in more detail in Section 4.2.2.3.

Table 4.1 summarises our study of the MC algorithm, and the topological correct-
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Configuration 3 :

Configuration 6 :

Configuration 7 :

Configuration 10 :

Configuration 12 :

Figure 4.3: Asymptotic decider:78 extending the MC configurations 3, 6, 7, 10 and 12. No-
tice that using again complementarity and rotational and reflection symmetries, one can
consider some subcases as the same. For example, 10.c can be obtained by first com-
plementing 10.a and then rotating around the vertical axis to the right by ninety degrees.
Pairs to be grouped are 10.a-10.c, 10.b–10.d, 12.a–12.c and 12.b–12.d.
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Configuration 13 :

Figure 4.4: Asymptotic decider:78 extending the MC configuration 13. Notice that we have
just appended subcase 13.j and on the basis of Proposition 4.1.1.1 we rule out subcases
13.f, 13.g and 13.h. Also, taking into consideration complementarity and rotational and
reflection symmetries as before, the following pairs of subcases can be considered as
just one: 13.b-13.c and 13.d–13.e.
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xyz Fxyz
000 1.0
001 -3.0
010 -1.5
011 2.0
100 -3.0
101 2.0
110 2.0
111 -1.0

Figure 4.5: An example of subcase 13.j.

(a) (b)

Figure 4.6: Ambiguity in the interior of the cell. This is configuration 4 which has no am-
biguous faces. On (a) we have the representation matching the classic MC configuration
(see Figure 4.1). But on (b) the isosurface resembles a tunnel so this situation has to be
considered as well.
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ness of isosurfacing. It specifies the topological polygons which arise from application of

the asymptotic decider (with our own corrections applied as just described). To help fur-

ther discussions let us introduce at this point three concepts. They are: loop-back faces,

classification of topological polygons and equivalence of topological polygons.

Definition 4.1.1.2 (Loop-back face). An ambiguous face, i.e. with four intersection points,

that is intersected (twice) by just one topological polygon is called a loop-back face

(van Gelder and Wilhelms111 have used the word overworked for the same concept but

we believe our term is more expressive. See Figure 4.7).

Figure 4.7: Loop-back face. The topological polygon intersects the face four times: in-out
once and then again in-out.

Definition 4.1.1.3 (Topological polygons classification). A topological polygon P is a

polygon delimited by a set of intersection points. We denote them by the number of

intersection points involved i, and the number of loop-back faces involved, j. But two

loop-back faces that are opposite just count once. The notation for this classification isPi=j .
Definition 4.1.1.4 (Equivalent topological polygons). Topological polygons with the same

classification are said to be equivalent.

Example 4.1.1.1. Based on Figure 4.3,

– the front-face of configuration 3.b is a loop-back face;
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– the notation for the topological polygon of configuration 3.b is P6=1. For both 10.d

and 12.d there are eight intersection points and two loop-back faces. But in 10.d

the loop-back faces are opposed so the notation is P8=1. Whereas they are not in

12.d, so the notation is P8=2;
– all the topological polygons in configuration 3.a and 7.a are equivalent. They all

have notation P3=0.
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MC Ambiguity Partitioning

configuration faces cell internal tunnel to polygons

0

1 one P3=0
2 one P4=0
3 one yes two P3=0

or one P6=1
4 yes possible two P3=0
5 one P5=0
6 one yes possible fone P3=0, one P4=0g

or one P7=1
7 three yes possible three P3=0

or fone P3=0, one P6=1g
or one P9=3
or fone P3=0, one P6=0g

8 one P4=0
9 one P6=0
10 two yes possible two P4=0

or one P8=1
11 one P6=0
12 two yes possible fone P3=0, one P5=0g

or one P8=2
13 six yes four P3=0

or ftwo P3=0, one P6=1g
or fone P3=0, one P9=3g
or one P12=3
or ftwo P3=0, one P6=0g.

Table 4.1: Isosurfacing based on the MC method with application of the asymptotic de-
cider. For any configuration of Figure 4.1, it is indicated the number of ambiguous faces,
whether the cell is ambiguous or not and also if an internal tunnel is possible. On top of
that, it is shown all the partitions of intersection points leading to topological polygons. To
cite one example, there are two situations to consider on configuration 6 (see Figure 4.3):
one polygon P3=0 and one polygon P4=0 or else just one polygon P7=1. The notation used
is of above Definition 4.1.1.3.
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More techniques have been proposed to resolve ambiguity. Most of them require

information beyond the extent of the cell being processed. For example, one proposal

is to use a tricubic function within the cell that is C1 continuous, based on values from

the [ 4� 4� 4 ℄ region of surrounding cells.111 This is very expensive just to be used for

disambiguity. Moreover, it has to be applied to all cells not just the ambiguous ones since

discontinuities will arise if linear interpolation is applied in a non-ambiguous cell and cubic

interpolation in an adjacent and ambiguous cell. Others use gradient information at the

vertices of cells.111 Indeed, the gradient highlights the behaviour of a function across the

domain (for example, the gradient direction is normal to the surface and its magnitude

indicates how rapidly the function changes).

One famous method emerged in the wake of solving ambiguity in MC: the Marching-

Tetrahedra, which was mentioned in Section 2.4.5.2. Each cubic is decomposed into

tetrahedra. Therefore within each tetrahedron the isosurface is correctly drawn as a

plane, if a linear model is assumed. But we should point out that if the raw data set

is a rectangular grid and the data is assumed to vary trilinearly within the cubic cell,

as is the assumption in the MC, then its decomposition into tetrahedra may raise some

concerns. First, it is incorrect to assume linear variation of data along the edges of

the tetrahedra. Second, as a consequence no claim can be made that ambiguities of

MC are automatically solved as result of decomposing into tetrahedra and then applying

Marching-Tetrahedra.81,130

We find in the literature different proposals for the number and shape of the tetra-

hedrons.15,42,44,85 The common numbers are five, six, twelve or even twenty-four. The

orientation of the tetrahedra affects the final image as Figure 4.8 indicates. The aim is to

achieve a regular and symmetric tesselation.

Yet due to the finer mesh resolution and consequently an increased number of tri-

angles generated, the images from Marching-Tetrahedra are in general better than those

provided by MC.
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Figure 4.8: Decomposition into tetrahedra. Face of a cube, and threshold value of 2.5.
The choice of diagonal orientation affects the final image, maybe leading to ”bumps”. To
mantain consistency throughout the cells, while in 2D the choice can be arbitrary, in 3D it
is constrained by the neighbouring cell.94

4.1.2 Surface rendering

Once the topological polygons are defined the next step is to provide geometric informa-

tion to be mapped into standard graphics primitives. Normally triangulation is required.

No matter the methodology used, the final surface has to be at least C0 continuous and

not self intersecting.

Many solutions have been proposed. A straightforward one is to define chords

linking (non-adjacent) vertices in order to have adjacent non-intersected triangles that

form a patch. But, very important, these chords are not allowed to lie on faces. If that

was the case the face topology would be incorrect and so even C0 continuity between

cells is not achieved. Another method is to add an extra point internal to the cell —

this can be the centroid of the polygon — and then define chords from that point to the

vertices of the polygon.

Since no in-face chords are allowed, Nielson and Hamann78 pointed out that some

subcases depicted in Figures 4.3 and 4.4 were impossible to triangulate unless an extra

point in the interior of the cell was added. These are subcases 7.c, 10.bd, 13.i and the

polygon with nine vertices in 13.de. van Gelder and Wilhelms111 also noticed that poly-

gons in 13.f and 13.g require extra vertices to prevent self-intersection. But as we have

shown before, 13.f and 13.g are impossible. They argued that as long as a cell contains

two or more overworked (loop-back) faces then extra vertices are required. Centroids

were then a suitable choice to be considered. However this is contradicted by triangula-

tion of 12.bd delivered by Nielson and Hamann,78 where no extra vertex was used. So
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the correct condition for requiring an extra vertex is:

Proposition 4.1.2.1. In a cell, triangulation of a topological polygon as established by

the asymptotic decider requires an extra vertex if the following holds:

– it has edges from more than two overworked faces, as in 7.c, 13.de, 13.i;

– or it has edges from two but opposed overworked faces, as in 10.bd.

In respect to those situations where tunnels might appear, triangulation is a rather

difficult task and so it should be dealt with separately. As mentioned earlier, the method

introduced by Natarajan76 allows us to spot such situations. Yet no less important is how

triangulation is carried out. To show its importance let us look at his example of configu-

ration 6, depicted in Figure 4.9. There, the tunnel is supposed to be represented by one

triangle plus three quadrilaterals. The hatched areas attempt to indicate the interior of

the tunnel. But the triangulation of the quadrilateral that lies on the ambiguous face is

impossible unless an extra point in the interior of the cell is added. This is due to the fact

that no in-face triangles are allowed.

Figure 4.9: Tunnel in configuration 6 as referred by Natarajan.76 How to triangulate the
quadrilateral that lies on the ambiguous cell face, the right one? Since no in-face triangles
are allowed then an extra point in the interior of the cell is required.

Finally, at this stage of triangulation it is important to use information that can en-

hance the visual appearance of the surface. That is the case of normals to the triangles

used by shading algorithms. These normals are usually obtained by trilinear interpolation

of the normals at the cell vertices. Of course this has to be available from the data set.
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4.2 Accurate Marching-Cubes

From our work in Chapter Three on contouring, and from our understanding of the MC

method in the previous Section, we are now able to develop a variant of the MC method

which is a more accurate representation of the trilinear interpolant.

But first the formalisation of the problem. We aim to represent a piecewise trilinear

interpolant F that fits scalar data values Fx;y;z at the vertices of each cubic cell in a 3D

rectilinear grid, as defined by (4.11). For the sake of clarity the cell is parametrised over

the interval [0; 1℄ in x�; y� and z� directions and the threshold value for F is considered

as 0. F can be written as:F (x; y; z) = F000 (1� x) (1� y) (1� z) +F001 (1� x) (1� y) z +F010 (1� x) y (1� z) +F011 (1� x) y z +F100 x (1� y) (1� z) +F101 x (1� y) z +F110 x y (1� z) +F111 x y z :
(4.11)

An alternative representation of (4.11) isF (x; y; z) = �000 +�100 x+�010 y +�001 z+�110 x y +�101 x z +�011 y z +�111 x y z ; (4.12)

where �i;j;k is the forward difference operator for triple indices, i.e. �000 = F000, �100 =F100 � F000, �110 = F110 � F100 � F010 + F000 and �111 = F111 � F110 � F101 � F011 +F100 � F010 � F001 � F000 . To simplify the notation even more we will replace the forward

difference operators by letters (�000 = a, �001 = b, �010 = 
 and so on). ThereforeF (x; y; z) = a+ e x+ 
 y + b z + g x y + f x z + d y z + hx y z : (4.13)
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Having the trilinear interpolant F of (4.13) as reference, the main objectives of our

MC variant are:

1. To ensure positional continuity of the isosurface across adjacent cells and so correct

topology in the cell faces.

2. To represent the trilinear interpolant in the interior of the cell as accurately as pos-

sible. In particular, the algorithm should generate an approximation to the actual

isosurface which has the same number of pieces, and which has similar shape. As

a consequence, more accurate visualizations than the classic MC will be achieved.

3. To have an acceptable computational cost.

To achieve these goals we rely mostly on supplementary points either lying in the

faces, or placed in the interior of the cube. No information about neighbour cells is used;

neither is it necessary to decompose the cube. These supplementary points are points

which lie on the isosurface so satisfying (4.13). The crucial matter is to define and use

them wisely.

Before proceeding we would like to draw attention to situations such as the iso-

surface intersecting corners of the cube or an intersection of the isosurface with a cell

face being a degenerate contour (two crossing lines). As particular cases, they should

be dealt with accordingly though some of the conclusions we will reach hereafter can be

adjusted to those situations.

4.2.1 Supplementary points

In the previous Chapter we have used shoulder points in each 2D cell to achieve a more

accurate contour plot. This approach is applicable in the faces of the cubic cell. What

then remains to be done is to look at the interior of cell, and find similar points for that

purpose. They must be lying on the isosurface. A useful idea is to picture a cubic cell as

a range of many 2D slices. That is, an isosurface seen as a pile of consecutive parallel

2D contours. Having that in mind, we set out the role of the supplementary points as

follows: in the first place they help to define the correct topological solution. Secondly the
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solution obtained is more accurate in comparison to MC. Thirdly they make triangulation

more systematic. These points are classed as face shoulder points, inflection points or

bi-shoulder points. In the following we define those points, and then we provide a detailed

description.

Definition 4.2.1.1 (Face shoulder point). A face shoulder point is a point on the surface

that lies on the face of the cubic cell and is a shoulder point in relation to the contour on

that face. It corresponds to the shoulder point discussed in the previous Chapter.

Definition 4.2.1.2 (Inflection point). An inflection point is a point on the surface in the

interior of the cell such that two first derivatives of (4.13) vanish. If the two derivatives are

with respect to x and y , then we denote the inflection point by Iz. Similarly, Iy for x andz derivatives and Ix for y and z derivatives.

Definition 4.2.1.3 (Bi-shoulder point). A bi-shoulder point is a point on the surface in

the interior of the cell, such that it is simultaneously a shoulder point on the contour of

(4.13) on two orthogonal slices through the cube.

4.2.1.1 Face shoulder pointsF of (4.13) is a bilinear interpolant on any face of the cell. This means that all the results

in the previous Chapter about contouring are applicable. For each pair of intersection

points at the edges of a cell face, we obtain a shoulder point in that face as in contouring.

In case of ambiguity we use the asymptotic decider to establish the correct topology in

the face. The use of face shoulder points enables a more accurate representation of the

intersection of the isosurface with the face. They are described in detail in the previous

Chapter, Section 3.3.1 on page 45.

4.2.1.2 Inflection points

These points not only lie on the surface within the cube but also two of the first derivatives

vanish there. Therefore a point that satisfies any one of the Equations 4.14, 4.15 or 4.16
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is an inflection point.Iz : F (x; y; z) = 0 ; Fx(x; y; z) = 0 ; Fy(x; y; z) = 0 : (4.14)Iy : F (x; y; z) = 0 ; Fx(x; y; z) = 0 ; Fz(x; y; z) = 0 : (4.15)Ix : F (x; y; z) = 0 ; Fy(x; y; z) = 0 ; Fz(x; y; z) = 0 : (4.16)

The greatest feature of a inflection point is that it reflects topology in the interior of

the cell. Figure 4.10 attempts to clarify this characteristic. It implies the existence of a

degenerate contour on some orthogonal slice through the cube: a contour defined by two

straight-lines that intersect at the saddle point.

Figure 4.10: Inflection point Iz = (xt; yt; zt) such that F = Fx = Fy = 0. The figure also
shows a range of (red) 2D contours parallel to the face Fz = 0 and superimposed on the
(yellow but transparent) isosurface (MC configuration 3.b). Iz lies on the horizontal slice
 = zt that behaves as frontier between two different topologies, immediately above and
below. In relation to that contour, (xt; yt) is a saddle point but also part of the contour.
Notice that the bottom face z = 0 is ambiguous.

Now let us obtain the formulae to compute inflection points. The first derivatives of
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+ g x+ d z + hx z ; (4.18)Fz = b+ f x+ d y + hx y ; (4.19)

and so a+ 
 y + b z + d y z = 0 ; if F = 0 , Fx = 0 : (4.20)a+ e x+ b z + f x z = 0 ; if F = 0 , Fy = 0 : (4.21)a+ e x+ 
 y + g x y = 0 ; if F = 0 , Fz = 0 : (4.22)

There are up to two solutions to consider for (4.14). They are:x = � a+ b ze+ f z (by 4.21) ; y = �a+ b z
+ d z (by 4.20) ; z = 
 ; (4.23)

where 
 satisfies the second-order equation ( by (4.17) setting Fx = 0 and (4.20) or else

by (4.18) setting Fy = 0 and (4.21) )(d f � b h) 
2 + (d e+ 
 f � b g � ah) 
 + (
 e� a g) = 0 : (4.24)

Similarly, for (4.15)x = �a+ 
 ye+ g y (by 4.20) ; y = � ; z = �a+ 
 yb+ d y (by 4.22) ; (4.25)

with ( by (4.17) and (4.20) or else by (4.19) and (4.22) )(d g � 
 h) �2 + (d e+ b g � 
 f � ah) � + (b e� a f) = 0 : (4.26)
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And finally for (4.16)x = � ; y = �a+ e x
+ g x (by 4.22) ; z = �a+ e xb+ f x (by 4.21) ; (4.27)

with ( by (4.18) and (4.21) or else by (4.19) and (4.22) )(f g � e h) �2 + (
 f + b g � d e� ah) �+ (b 
� a d) = 0 : (4.28)

Next we draw some relationships among these inflection points, which will be useful

in later Sections.

Proposition 4.2.1.4 (Six inflection points). When six distinct inflection points as solu-

tions of Equations 4.14 (Iz), 4.15 (Iy) and 4.16 (Ix) exist simultaneously, then all are

located in the corners of a cuboid. On each face of that cuboid there are three points:

one Iz, one Iy and one Ix. A polyline can be drawn along the edges of the cuboid

linking the six points.

Proof. First let us establish relationships between the different types of inflection points.Iz and Iy. The formulae to compute Iz are given by (4.23); the y coordinate derives

from (4.20) and the z coordinate can be derived from both (4.17) and (4.20). The formulae

to compute Iy are given by (4.25); in this case the y coordinate can be derived from both

(4.17) and (4.20), and the z coordinate derives from (4.20). Therefore a (y; z) solution forIz is also a (y; z) solution for Iy and vice-versa. Notice that the formulae for Iz give thex coordinate depending on z and for Iy depending on y.Iz and Ix. From (4.23) we see that the x coordinate of Iz derives from (4.21) and thez coordinate can be derived from both (4.18) and (4.21). The formulae to compute Ix
are given by (4.27); in this case the x coordinate can be derived from both (4.18) and

(4.21), and the z coordinate derives from (4.21). And looking also at the formulae for

the y coordinate we conclude a (x; z) solution for Iz is also a (x; z) solution for Iy and

vice-versa.



Isosurfacing / Accurate Marching-Cubes 84Iy and Ix. From (4.25) we see that the x coordinate of Iy derives from (4.22) and they coordinate can be derived from both (4.19) and (4.22). From (4.27), the x coordinate ofIx can be derived from both (4.19) and (4.22), and the y coordinate derives from (4.22).

Also from the formulae, for Iy the z coordinate depends on y and for Ix depends on x.

Therefore a (x; y) solution for Iy is also a (x; y) solution for Ix and vice-versa.

Now we will use a constructive proof. We have six distinct points: two Iz, two Iy
and two Ix, defined by the Equations 4.23, 4.25, and 4.27 respectively. Suppose we

have computed the two Iz, i.e.Iz : ( bx1; by1; bz1 ) ; ( bx2; by2; bz2 ) :
Due to the relationships between Iz and Iy and between Iz and Ix, the other four points

will have to be such asIy : ( �x1; by1; bz1 ) ; ( �x2; by2; bz2 ) :Ix : ( bx1; y1; bz1 ) ; ( bx1; y2; bz2 ) :
But taking also into account the relationship between Iy and Ix, and knowing that there

are exactly six points, we conclude that they have to be asIz : ( bx1; by1; bz1 ) ; ( bx2; by2; bz2 ) :Iy : ( bx2; by1; bz1 ) ; ( bx1; by2; bz2 ) :Ix : ( bx1; by2; bz1 ) ; ( bx1; by1; bz2 ) :
There are just two values for each of x, y and z. The Iz are end-points of a diagonal

of the cuboid. The same is true for Iy and for Ix. In each face of the cuboid we have

one Iz, one Iy and one Ix. Consequently we can draw a polyline along edges of the

cuboid linking the six inflection points. Figure 4.11 shows a practical example from MC

configuration 4, with positive vertices as 000 and 111.
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000 5.0
001 -1.5
010 -2.0
011 -3.0
100 -3.0
101 -2.0
110 -1.0
111 15.0

Cuboid

x : 0.216 to 0.583
y : 0.193 to 0.648
z : 0.159 to 0.671

Figure 4.11: Six inflection points located on the corners of a cuboid. This is MC configu-
ration 4, with the positive vertices as 000 and 111 (data values are also of Figure 4.6(b)).
On each face there is one Iz, one Iy and one Ix. Inflections of the same type are di-
agonnally opposite. So we can link all these points by a polyline along the edges of the
cuboid.

Proposition 4.2.1.5 (Same discriminant to compute inflecti on points). The three sec-

ond order Equations 4.24, 4.26, and 4.28, to be solved in order to obtain the inflection

points, respectively Iz, Iy and Ix, have the same discriminant.

Proof. The discriminants for the three Equations are:4z = ( d e + 
 f � b g � ah )2 � 4 ( d f � b h ) ( 
 e� a g ) ; by (4.24) : (4.29)4y = ( d e + b g � 
 f � ah )2 � 4 ( d g � 
 h ) ( b e� a f ) ; by (4.26) : (4.30)4x = ( 
 f + b g � d e� ah )2 � 4 ( f g � e h ) ( b 
� a d ) ; by (4.28) : (4.31)

From (4.29) we obtain:4z = ( d e )2 + ( 
 f )2 + ( b g )2 + ( ah )2+ 2 ( d e 
 f � d e b g � d e a h� 
 f b g � 
 f a h+ b g a h )� 4 ( d f 
 e� d f a g � b h 
 e+ b h a g )= ( d e )2 + ( 
 f )2 + ( b g )2 + ( ah )2� 2 ( d e 
 f + d e b g + d e a h+ 
 f b g + 
 f a h )+ 4 ( d f a g + b h 
 e ) :
(4.32)
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And from (4.30):4y = ( d e )2 + ( b g )2 + ( 
 f )2 + ( ah )2+ 2 ( d e b g � d e 
 f � d e a h� b g 
 f � b g a h+ 
 f a h )� 4 ( d g b e� d g a f � 
 h b e+ 
 h a f )= ( d e )2 + ( b g )2 + ( 
 f )2 + ( ah )2� 2 ( d e b g + d e 
 f + d e a h+ b g 
 f + b g a h+ 
 f a h )+ 4 ( d g a f + 
 h b e ) :
(4.33)

Finally from (4.31):4z = ( 
 f )2 + ( b g )2 + ( d e )2 + ( ah )2+ 2 ( 
 f b g � 
 f d e� 
 f a h� b g d e� b g a h+ d e a h )� 4 ( f g b 
� f g a d� e h b 
+ e h a d )= ( 
 f )2 + ( b g )2 + ( d e )2 + ( ah )2� 2 ( 
 f b g + 
 f d e+ 
 f a h+ b g d e+ b g a h+ d e a h )+ 4 ( f g a d+ e h b 
 ) :
(4.34)

One can verify that Equations 4.32, 4.33 and 4.34 are the same: 4z = 4y = 4x .

4.2.1.3 Bi-shoulder points

The bi-shoulder points are the 3D extension of face shoulder points. We will rely on

Figures 4.12, 4.13 and 4.14 to illustrate the idea. First, let us consider an orthogonal

slice through the cube in Figure 4.12, say of y equal to a constant value. It is possible

to define a shoulder point in the contour on that slice. Now if we conceive sweeping

across the y� direction, defining a range of slices, we establish a curve as the locus of

those shoulder points. Proceeding exactly in the same way but now in another direction,

say z�, we obtain a different curve. An intersection of both matches the definition of a

bi-shoulder point.
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Figure 4.12: Bi-shoulder point in MC configuration 1. The three coloured curves on the
isosurface are the locus of many shoulder points on different slices: red if considering
slices of x constant, green for slices of y constant and blue for z constant. These curves
intersect to each other just once and at the same point.

Figure 4.13: Definition of a bi-shoulder point, R = (xt; yt; zt). It is simultaneously a
shoulder point for the contours drawn on each of the orthogonal slices, 	 = yt and
 = zt. P and Q are intersection points, S saddle points and M middle points betweenP and Q.
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Slice 	 = ytF =  0 x+  1 z +  2 x z +  3 0 = e+ g yt ;  1 = b+ d yt ; 2 = f + h yt ;  3 = a+ 
 yt :P = ( 0 ; yt ; � 3= 1 )Q = (� 3= 0 ; yt ; 0 )S = (� 1= 2 ; yt ; � 0= 2 )
Slice 
 = ztF = !0 x+ !1 y + !2 x y + !3!0 = e+ g zt ; !1 = 
+ d zt ;!2 = g + h zt ; !3 = a+ b zt :P � = ( 0 ; �!3=!1 ; zt )Q� = (�!3=!0 ; 0 ; zt )S� = (�!1=!2 ; �!0=!2 ; zt )

Figure 4.14: Contours on the orthogonal slices 	 and 
 depicted in Figure 4.13.
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In the example of Figure 4.12 — the simple MC configuration 1, with the positive

vertex at the origin of the coordinate system — the unique bi-shoulder can be computed

as the intersection of three surfaces: the isosurface, described by F of (4.13) and two

more surfaces. Figures 4.13 and 4.14 help to understand these two additional surfaces.

In the top diagram of Figure 4.14, notice that the shoulder point R, on the y� slice shown,

lies on the line joining the origin and the saddle point S (passing the middle point M ).

Imagine now sweeping through the cube from y = 0 to y = 1; this line — that changes

from slice to slice — will sweep out a surface. Similarly, in the lower diagram, sweeping

the line from the origin to the saddle point S� will sweep out another surface. The inter-

section of these two surfaces with the isosurface will give the bi-shoulder point. The two

surfaces are defined by (see Figure 4.14)z = x e+ g yb+ d y ; by sweeping across the y� direction (slices 	 = yt) . (4.35)y = x e+ f z
+ d z ; by sweeping across the z� direction (slices 
 = zt) . (4.36)

In this simple case (MC configuration 1), these formulae are easily established.

Recall that by definition a face shoulder point R lies on the line joining the middle point M
and the saddle point S. Fortunately in the case above, the origin, M and S are collinear

which yields the simple formulae. However, the system can not be solved analytically. An

attempt to solve it leads to the relation b z � 
 y + f x z � g x y = 0. That turns out to be

the equation we would have obtained if we had considered a sweeping across the x�
direction. So regardless of the two directions chosen the result is the same. The solution

is such that x Fx = y Fy = z Fz .
In general, the formulae are more complex. Once the formulae is established we

can always use numerical routines such as the ones available in the NAG library to solve

the non-linear equations. We should be aware however that, unlike the example above

(isosurface intersecting only three cell faces), there are many situations where more than

one bi-shoulder point can be obtained. We will show pictures depicting some cases.

In any case, we provide a general but simple procedure to compute a bi-shoulder
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point, which has worked well in practice. The method is as follows: first, we decide from

which faces the sweeping will take place. For a particular topological polygon, we use

two adjacent faces upon which the polygon lies. For the sake of clarity let us consider

the faces Fy and Fz, with coordinates y and z constants, respectively. At any step in

the algorithm there are two orthogonal slices defined, 	 and 
, parallel to Fy and Fz,
respectively. Suppose that at the step t we have the slice 	 = yt. The shoulder point on 	
is computed, say Rt = (xt; yt; zt). The coordinate value zt is then used to define the slice
 = zt. Again a shoulder point on the contour of that slice is computed, R�t = (x�t ; y�t ; z�t ).
If yt and y�t are close enough to be considered as the same (dependent on the precision

established for the numerical approximation) then both Rt and R�t are considered as the

same point; the bi-shoulder point is found. If not, there it follows a next iteration ti+1. The

guess for the next slice 	 is the average of yt and y�t .

The first slice 	 is defined by the y coordinate of the face shoulder point in the

counterpart face Fz. In the end we aim to move from the faces towards the interior of the

cell.

To summarise this Section, we have introduced in detail the three types of supple-

mentary points — face shoulder points, inflection points and bi-shoulder points — that

will be the foundation of our accurate MC. Next we will discuss how to accomplish the

triangulation.

4.2.2 Triangulation

Although it is crucial to have correct topologies in the faces, this by itself is far from reach-

ing the goals set. Triangulation as a final step must be carried out carefully otherwise it

jeopardizes previous efforts towards accurate solutions.

The methodology is as follows: In the first place, we establish the topological poly-

gons as the MC does, using the asymptotic decider. By doing so we achieve the correct

topology in the faces and so positional continuity C0 between cells. Then we extend the

topological polygons to include face shoulder points. To recall, for each pair of adjacent

intersection points we define a 2D shoulder point. The boundary of any extended topolog-
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ical polygon (see complete definition below) will again lie on cell faces. Then to proceed

with the triangulation we use point(s) in the interior of the cell: inflection point(s) or else a

bi-shoulder point.

Definition 4.2.2.1 (Extended topological polygon). An extended topological polygonPE is a topological polygon as described in Definition 4.1.1.3 on page 72 but including

the respective face shoulder point between each pair of intersection points. The nota-

tion for the classification is exactly the same but changing P for PE . The definition of

equivalence still holds, i.e. they are equivalent if the notation is the same.

As can be concluded from above, our triangulation approach is driven by the topo-

logical polygons rather than the MC configuration. This is quite the opposite to the tradi-

tional MC. Indeed, the extended polygons are always triangulated one by one, regardless

of the MC configuration from which they arose. Nevertheless, we would like to draw

attention to the special case of tunnels, that follows an approach on its own.

In the next three Sections, 4.2.2.1, 4.2.2.2, and 4.2.2.3, we will give detailed infor-

mation about triangulation. The first Section is concerned with polygons that lie upon at

least one loop-back face. In the second Section we consider the case with no loop-back

faces at all. Tunnels are discussed in the third Section.

For illustrative purposes we use coloured diagrams in these Sections. Consider

Figure 4.15. First, there is the closed boundary representing the extended polygon that

lies on the cell faces. We have there the intersection points, the face shoulder points and

edges linking those. As far as colouring is concerned, intersection points are coloured

black, whereas red, green and blue are used to colour the remaining entities in the bound-

ary. Each of these three colours is assigned to a pair of faces, one colour to faces x = 0,x = 1, another one to y = 0, y = 1 and the last one to z = 0, z = 1. If six colours were

adopted that would have cluttered the diagrams so much that information would have not

been conveyed properly. Besides, there is no real need to emphasise the difference of

faces within each of the pairs mentioned.

The interior of the surface is ultimately described by cyan edges. The vertices of

triangles are two neighbouring boundary points and a point in the interior. If there are
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no loop-back faces that point is a bi-shoulder point — coloured with magenta. Otherwise

the points in the interior are inflection points: between one to three when there is no

tunnel; six in the case of a tunnel. The colours used for inflection points are the same

as the related face shoulder points (red, green or blue). Figure 4.15 gives an example

for a polygon of six intersection points and one loop-back face, PE6=1. Figure 4.15(a)

shows the topological polygon within the cube; Figure 4.15(b) is a convenient way of

visualizing the triangulation: the 3D topological polygon is flattered into a regular planar

polygon whose points correspond in order to the points of the original 3D polygon. The

presence of a loop-back face is indicated by small triangles against the corresponding

face shoulder points.

(a) (b)

Figure 4.15: Diagram showing triangulation of PE6=1. This is an example of MC configu-
ration 3.b, already shown in Figure 4.10. On (a) we present the polygon upon the cube.
The diagram is on (b). The boundary comprises the faces: z = 0 (bottom), y = 0 (front),x = 1 (right) and so on. Each of x, y, z corresponds to one colour: (red, green and blue
respectively). The intersection points are black spheres and the face shoulder points are
in between. These are coloured as the faces upon which they lie. The inflection point
in the interior inherits the colour of the related face shoulder points. The triangulation
is completed by cyan lines between each point in the boundary and the point in the in-
terior. Finally there are two small triangles indicating the loop-back face, and coloured
accordingly.

Several representations of isosurfaces within the cubic cell are shown. Our bench-
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mark is the exact trilinear interpolant function F of (4.13), and so we show the underlying

isosurface of F to compare results. We use images obtained when F of (4.13) is super-

sampled and then the isosurface from the new data set is extracted. The sampling factor

used is twenty, leading to a data set of dimension [ 20 � 20 � 20 ℄, in the same interval[ 0; 1 ℄. We have deliberately not attempted to shade the surface in a photo-realistic way.

Indeed, each triangle has got constant colour, because we want to emphasise how the

triangulation is done.

4.2.2.1 Polygons on loop-back faces

All the topological polygons PE that lie upon loop-back face(s) are indicated in Table 4.2.

Polygons PE MC configurationsPE6=1 3.b, 7.b, 13.bcPE7=1 6.bPE8=1 10.bdPE8=2 12.bdPE9=3 7.c, 13.dePE12=3 13.i

Table 4.2: Topological polygons PE lying on loop-back faces and in which MC configura-
tions they may appear (see also Table 4.1). The notation is according to Definition 4.2.2.1.
The triangulations proposed are shown in Figures 4.16, 4.17 and 4.18.

Two major but complementary factors determine the way triangulation is done.

Firstly, to ensure correct topology and continuity, no in-face triangles are allowed. Particu-

lar care is needed to avoid this on loop-back faces where there are four intersection points

and a pair of face shoulder points. Secondly, a loop-back face implies the existence of

a inflection point. Looking back at the characterisation of inflection points, we conclude

they are suitable to be used here. They lie in the interior of the cube so we will able to

avoid in-face triangles. Moreover, if a polygon lies on a loop-back face, say Fz=0, then

the inflection point Iz (point on the surface such that both first derivatives with respect

to x and y vanish) will reference a slice parallel to Fz=0 such that the contour drawn on

it is degenerate. In the slices immediately below and above, the contours show opposite

shape (see earlier Figure 4.10). Thus an inflection point is a critical point.
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In the following Figures 4.16, 4.17 and 4.18, we propose the triangulation for each

of these polygons PE in Table 4.2. Then there follows some examples of isosurfaces

within a cubic cell: Figures 4.19 to 4.24.

(a) PE6=1 (b) PE7=1
Figure 4.16: Triangulation of polygons PE that lie on one loop-back face. On (a) there
are six intersection points and five faces. On (b) there are seven intersection points and
six faces.
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(a) PE8=1 (b) PE8=2
Figure 4.17: Triangulation of polygons PE with eight intersection points, lying on six faces
with two of them being loop-back faces. On (a) the two loop-back faces are opposite to
each other, whereas on (b) they are not.

(a) PE9=3 (b) PE12=3
Figure 4.18: Triangulation of polygons PE that lie on loop-back faces. On (a) there are
nine intersection points, lying on all the six faces of the cube but three of them are loop-
back faces. On (b) all the twelve edges of the cube are intersected so all the faces are
loop-back faces. We should point out that the interior area of the inflection points can be
triangulated in different order.
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Topological polygonPE6=1
MC configuration: 7.bxyz Fxyz
000 2.5
001 -2.0
010 -1.0
011 -1.0
100 -2.0
101 1.0
110 1.5
111 -1.5

Inflection pointIz (0.532, 0.611, 0.207)

Body saddle point F
(0.778, 0.364, 0.531) -0.293

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the middle.
The surfaces where the three
first derivatives Fx (red) Fy
(green) and Fz (blue) vanish
are represented at the bot-
tom, as well as the ”exact”
surface (yellow but transpar-
ent).

Figure 4.19: An example of PE6=1.
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Topological polygonPE7=1
MC configuration: 6.bxyz Fxyz
000 1.0
001 -1.5
010 -1.5
011 3.5
100 2.0
101 -1.0
110 -1.0
111 -1.0

Inflection pointsIz (0.568, 0.237, 0.563)Iy (0.568, 0.563, 0.237)Ix (0.568, 0.563, 0.563)

Body saddle point F
(0.137, 0.373, 0.373) 0.179

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the middle.
The surfaces where the three
first derivatives Fx (red) Fy
(green) and Fz (blue) vanish
are represented at the bot-
tom, as well as the ”exact”
surface (yellow but transpar-
ent).

Figure 4.20: An example of PE7=1. Although there is just one ambiguous face there is
more than one inflection point. In this configuration this number can vary from case to
case.
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Topological polygonPE8=1
MC configuration: 10.bdxyz Fxyz
000 2.0
001 1.0
010 -1.0
011 -1.0
100 -1.0
101 -1.5
110 1.0
111 1.0

Inflection pointIz (0.500, 0.571, 0.667)

Body saddle point

none

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the middle.
The surfaces where the three
first derivatives Fx (red) Fy
(green) and Fz (blue) vanish
are represented at the bot-
tom, as well as the ”exact”
surface (yellow but transpar-
ent).

Figure 4.21: An example of PE8=1. There is just one inflection point but two ambiguous
faces.
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Topological polygonPE8=2
MC configuration: 12.bdxyz Fxyz
000 1.0
001 -1.0
010 -1.5
011 -1.0
100 -2.0
101 5.0
110 1.0
111 1.5

Inflection pointsIz (0.556, 0.286, 0.222)Iy (0.200, 0.286, 0.222)

Body saddle point

none

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the middle.
The surfaces where the three
first derivatives Fx (red) Fy
(green) and Fz (blue) vanish
are represented at the bot-
tom, as well as the ”exact”
surface (yellow but transpar-
ent).

Figure 4.22: An example of PE8=2.
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Topological polygonPE9=3
MC configuration: 7.cxyz Fxyz
000 1.5
001 -2.5
010 -1.0
011 -1.0
100 -1.0
101 1.0
110 2.0
111 -1.0

Inflection pointsIz (0.463, 0.275, 0.280)Iy (0.823, 0.275, 0.280)Ix (0.823, 0.275, 0.595)

Body saddle point

none

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the middle.
The surfaces where the three
first derivatives Fx (red) Fy
(green) and Fz (blue) vanish
are represented at the bot-
tom, as well as the ”exact”
surface (yellow but transpar-
ent).

Figure 4.23: An example of PE9=3. Note that the three inflection points lie on the same
plane (with y = 0:275).
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Topological polygonPE12=3
MC configuration: 13.ixyz Fxyz
000 1.0
001 -1.0
010 -1.0
011 2.0
100 -2.5
101 1.0
110 1.0
111 -1.0

Inflection pointsIz (0.2183, 0.7817, 0.2952)
(0.7048, 0.2952, 0.7817)Iy (0.7048, 0.7817, 0.2952)
(0.2183, 0.2952, 0.7817)Ix (0.7048, 0.7817, 0.7817)
(0.2183, 0.2952, 0.2952)

Body saddle point

none

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the middle.
The surfaces where the three
first derivatives Fx (red) Fy
(green) and Fz (blue) vanish
are represented at the bot-
tom, as well as the ”exact”
surface (yellow but transpar-
ent).

Figure 4.24: An example of PE12=3. Note that though there are six inflection points there
is no body saddle point.
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4.2.2.2 Polygons with no loop-back faces

The topological polygons PEi=0 that do not lie on loop-back faces are indicated in Ta-

ble 4.2.2.2.

Polygons PE MC configurationsPE3=0 1 and 3.a, 6.a, 7.a, 7.b, 7.d, 12.ac, 13.a, 13.bc, 13.de, 13.jPE4=0 2, 8 and 6.a, 10.acPE5=0 5 and 12.acPE6=0 9, 11 and 7.d, 13.j

Table 4.3: Topological PE polygons that do not lie on loop-back faces and in which MC
configurations they might appear (see also Table 4.1). The notation is according to Defi-
nition 4.2.2.1 and Figure 4.25 shows the triangulation proposed.

The key point here is that there are no loop-back faces and so no inflection points.

In other words, there are no degenerate contours on any orthogonal slice through the

cube. Triangulation here is more a matter of accuracy rather than topology. But still it

requires at least one internal point. That point will be a bi-shoulder point.

One problem though is to choose from which faces the sweeping takes place to

compute the bi-shoulder point. In other words to choose which curves of shoulder points

are to be considered. The simple case of PE3=0 yields only one solution for the bi-

shoulder point, as shown earlier in Figure 4.12. But that is not the general case. As

we shall see in following pictures many different bi-shoulder points can be obtained. It

is possible to use all of these points and thereby obtain a highly accurate triangulation.

However the triangulation becomes complex. We have found the following compromise

works well in practice. We use only one bi-shoulder point, but choose it carefully accord-

ing to the following rule:

Consider the set of faces fF1;F2; � � � Fi g on which the polygon PEi=0 lies.

Choose Fa if possible such that its opposite face is also in the set. Then

choose Fb as one of the adjacent faces to Fa, giving priority in this choice to

any adjacent face whose opposite face is in the set. If there are no opposite

faces in the set, choose Fa, Fb as any pair of adjacent faces.
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This embraces the idea of giving priority to curves of shoulder points that cross over

the interior of the cube, from face to opposite face. The pictures shown further give some

insight about its suitability.

Examples of isosurfaces are shown in Figures 4.26 to 4.28. As a final note, one

can argue that polygon PE3=0 is easy to triangulate so no bi-shoulder point is needed at

all. Yet the example shown in Figure 4.12 shows how important a bi-shoulder point can

be to improve the accuracy of the solution.
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(a) PE3=0 (b) PE4=0

(c) PE5=0 (d) PE6=0
Figure 4.25: Triangulation of polygons PE that do not lie on loop-back faces. We use one
(magenta) bi-shoulder point for polygons that lie on (a) three, (b) four, (c) five and (d) six
faces.
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Topological polygonsPE3=0 and PE6=0
MC configuration: 12.acxyz Fxyz
000 -1.5
001 1.0
010 -1.0
011 2.0
100 1.0
101 -1.0
110 -2.0
111 0.5

Bi-shoulder points

(0.574, 0.281, 0.508)
(0.759, 0.241, 0.640)

Inflection point

none

Body saddle point F
(0.582, 0.042, 0.543) -0.110

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the middle.
The locus of shoulder points
are represented at the bottom
(red for slices of x constant,
green for y and blue for z).

Figure 4.26: An example of PE3=0 and PE6=0.
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Topological polygonPE4=0
MC configuration: 2xyz Fxyz
000 4.0
001 -2.0
010 5.0
011 -8.0
100 -2.0
101 -1.0
110 -8.0
111 -1.0

Bi-shoulder point

(0.317, 0.424, 0.077)

Inflection point

none

Body saddle point

none

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the middle.
The locus of shoulder points
are represented at the bottom
(red for slices of x constant,
green for y and blue for z).

Figure 4.27: An example of PE4=0.
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Topological polygonPE5=0
MC configuration: 5xyz Fxyz
000 2.0
001 5.0
010 3.0
011 -6.0
100 -2.0
101 -1.0
110 -10.0
111 -4.0

Bi-shoulder point

(0.366, 0.328, 0.589)

Inflection point

none

Body saddle point

none

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the middle.
The locus of shoulder points
are represented at the bottom
(red for slices of x constant,
green for y and blue for z).

Figure 4.28: An example of PE5=0.
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4.2.2.3 Tunnels

We now turn to the problem of internal tunnels. If one exists it is no more than a conse-

quence of the interpolant F itself. First of all, how do we detect them?

Back to contouring, the asymptotic decider sets the topology in a cell face. It does

so by comparing data values at cell vertices and the interpolant value at the point where

its two first derivatives vanish, the so-called saddle point. As mentioned earlier in Sec-

tion 4.1.1, Natarajan76 extended the idea to 3D in order to detect tunnels. He introduced

the concept of body saddle point: a point such that all three derivatives Fx, Fy and Fz
vanish. Its formulae is:x = � a+ b zg + h z ; y = �( 
 f � b g ) + ( d f � b h ) zd g � 
 h ; z = 
 ; (4.37)

where 
 satisfies the second-order equationh ( d f � b h ) 
2 + 2 g ( d f � b h ) 
 + ( d e g � e 
 h + 
 f g � b g2 ) = 0 :
There are up to two solutions but only within the cube is of interest. So the method

relies on the existence of the body saddle point and its corresponding F value. Let us

explain how it works.

Suppose an isosurface F = 0 is represented by two pieces as shown in Fig-

ure 4.29(a). Suppose also in the volume in between those pieces the value of the in-

terpolant F is greater than zero. The value in the remaining volume (excluding the iso-

surface itself) is negative. Yet if we change slightly the data at cell vertices, and so F , we

can form a tunnel as shown in Figure 4.29(b). If that happens the values are now positive

inside the tunnel whereas outside the values are negative. The body saddle point is in-

ternal to the tunnel and so its value is negative as well. This information about interpolant

values allows us to detect the tunnel.

Now, consider the precise turning point of the transition from one situation to the

other one. The body saddle point ought to be a point on the isosurface; the two pieces of

surface touch each other. Actually this has similarities in contouring. There, the contour
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Figure 4.29: Formation of a tunnel. Moving from (a) two pieces of surface to (b) one
surface with tunnel. The grey sphere is the body saddle point whereas the red spheres the
six inflection points. Notice the relative positioning of the inflection points in accordance
to Proposition 4.2.1.4 on page 83. This data example is the same as of Figure 4.6. The
difference from (a) to (b) in terms of data is f111 whose value in (a) is 5.0 and in (b) 15.0 .

is degenerate, as two lines crossing at the saddle point. Returning to 3D, since F = Fx =Fy = Fz = 0 , the body saddle point is also an inflection point. Moreover, an inflection

point of any type: Ix, Iy and Iz. Indeed we recall Proposition 4.2.1.5 on page 84

that states that all the second-order equations associated with the resolution of inflection

points have the same discriminant. So when it vanishes, it vanishes for every type of

inflection point. That is, if there is a solution it will be unique.

When the tunnel is formed the six inflection points exist. Now, there are two so-

lutions for each type of inflection point rather than one as previously. From Proposi-

tion 4.2.1.4 on page 83, we know that if six inflection points exist then their location de-

fines a cuboid and it is possible to draw a polyline linking them along the edges. Imagine

the six inflection points and the body saddle point as geometric intersections of surfaces

of type Fx = 0, Fy = 0 and Fz = 0 (second order equations). We conclude the body sad-

dle point is to be within that cuboid. Notice however that, the existence of six inflection

points does not necessarily imply the existence of the body saddle point. The counter

example is found in configuration 13.i shown in Figure 4.24, where the polygon intersects

all the edges of the cube.
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On that basis, we propose the following:

First, the detection of tunnels is based on the existence of two topological polygons

— primary condition to be satisfied — and six inflection points. The reason why we do

not use the method proposed by Natarajan is mainly due to implementation details. The

three second order equations to obtain inflection points (that have same discriminant) are

solved initially regardless of the detection of tunnels. Of course the number of topological

polygons is known. On the other hand, the method of Natarajan sets a sign for each of the

two topological polygons. This requires care when implemented; the spatial relationship

is crucial since for each topological polygon there is one side positive, the other one

negative.

Second, we use the polyline that was mentioned above, linking the inflection points,

as the ”border” between the two topological polygons. Triangulation of each topological

polygon is carried out independently. The important point is that they will join on that

polyline and therefore there will be just one piece of surface.

All the cases that can lead to tunnels are described on Table 4.4. It is interesting

to note that those polygons do not lie on loop-back faces. Figure 4.30 shows the trian-

gulation proposed for the polygons and then examples are provided, from Figure 4.31 to

Figure 4.34.

Pairs of Polygons PE MC configurationsPE3=0  ! PE3=0 4PE3=0  ! PE4=0 6.aPE3=0  ! PE5=0 12.acPE3=0  ! PE6=0 7.dPE4=0  ! PE4=0 10.ac

Table 4.4: Pairs of topological polygons that can merge to create tunnels, and the underly-
ing MC configurations (see also Table 4.1). The notation is according to Definition 4.2.2.1
on page 91 and Figure 4.30 shows the triangulation proposed.
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(a) PE3=0 (b) PE4=0

(c) PE5=0 (d) PE6=0
Figure 4.30: Triangulation of polygons if involved in the formation of tunnels. They lie
upon (a) three, (b) four, (c) five and (d) six faces.
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Topological polygonsPE3=0 and PE4=0 (tunnel)

MC configuration: 6xyz Fxyz
000 1.5
001 -1.5
010 -3.0
011 2.0
100 10.0
101 -1.0
110 -1.0
111 -1.0

Inflection pointsIz (0.106, 0.758, 0.624)
(0.534, 0.462, 0.831)Iy (0.534, 0.758, 0.624)
(0.106, 0.462, 0.831)Ix (0.536, 0.759, 0.831)
(0.106, 0.462, 0.624)

Body saddle point F
(0.313, 0.616, 0.731) 0.137

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the mid-
dle. The surfaces in where
the three first derivatives Fx
(red) Fy (green) and Fz (blue)
vanish are represented at
the bottom, as well as the
”exact” surface (yellow but
transparent), the body saddle
point (grey) and the inflection
points (red).

Figure 4.31: An example of one PE3=0 and one PE4=0 forming a tunnel.
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Topological polygonsPE3=0 and PE5=0 (tunnel)

MC configuration: 12xyz Fxyz
000 2.0
001 -1.0
010 -1.0
011 -1.0
100 -3.0
101 1.0
110 1.0
111 5.0

Inflection pointsIz (0.393, 0.614, 0.136)
(0.224, 0.136, 0.614)Iy (0.224, 0.614, 0.136)
(0.393, 0.136, 0.614)Ix (0.393, 0.136, 0.136)
(0.224, 0.614, 0.614)

Body saddle point F
(0.314, 0.389, 0.389) 0.117

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the mid-
dle. The surfaces in where
the three first derivatives Fx
(red) Fy (green) and Fz (blue)
vanish are represented at
the bottom, as well as the
”exact” surface (yellow but
transparent), the body saddle
point (grey) and the inflection
points (red).

Figure 4.32: An example one PE3=0 and one PE5=0 forming a tunnel.
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Topological polygonsPE3=0 and PE6=0 (tunnel)

MC configuration: 7xyz Fxyz
000 2.0
001 -2.0
010 -2.0
011 -2.0
100 -4.0
101 4.5
110 4.5
111 -2.0

Inflection pointsIz (0.336, 0.454, 0.085)
(0.563, 0.085, 0.454)Iy (0.563, 0.454, 0.085)
(0.337, 0.085, 0.454)Ix (0.563, 0.454, 0.454)
(0.337, 0.085, 0.085)

Body saddle point F
(0.421, 0.316, 0.316) -0.127

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the mid-
dle. The surfaces in where
the three first derivatives Fx
(red) Fy (green) and Fz (blue)
vanish are represented at
the bottom, as well as the
”exact” surface (yellow but
transparent), the body saddle
point (grey) and the inflection
points (red).

Figure 4.33: An example of one PE3=0 and one PE6=0 forming a tunnel.
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Topological polygonsPE4=0 and PE4=0 (tunnel)

MC configuration: 10xyz Fxyz
000 1.0
001 2.0
010 -1.0
011 -5.0
100 -2.0
101 -1.0
110 2.5
111 3.0

Inflection pointsIz (0.383, 0.418, 0.150)
(0.579, 0.305, 0.738)Iy (0.579, 0.418, 0.150)
(0.383, 0.305, 0.738)Ix (0.579, 0.418, 0.738)
(0.383, 0.305, 0.150)

Body saddle point F
(0.489, 0.357, 0.421) -0.046

Pictures.
Our representation is on top
whereas the ”exact” isosur-
face of F is in the mid-
dle. The surfaces in where
the three first derivatives Fx
(red) Fy (green) and Fz (blue)
vanish are represented at
the bottom, as well as the
”exact” surface (yellow but
transparent), the body saddle
point (grey) and the inflection
points (red).

Figure 4.34: An example of two PE4=0 forming a tunnel.
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4.3 Tests

We now present some images we have obtained using our method. Medical images are

depicted in Figures 4.35 to 4.37 and in the Figure at the beginning of this Chapter, on

page 62, whereas Figures 4.38 and 4.39 are based on Computational Fluid Dynamics

(CFD) data. Tables 4.5 to 4.7 provide some statistical information as the nature of the

datasets, the number of triangles generated and the frequency per type of the topological

polygons PE .

Dataset Cells Number of

Total Empty No empty triangles

Head 460,530 407,173 (88%) 53,357 (12%) 432,201
Brain 3,901,500 3,815,725 (98%) 85,775 ( 2%) 693,067
Spine 1,531,640 1,470,861 (96%) 60,779 ( 4%) 489,310
Pressure 2,601 1,583 (61%) 1,018 (39%) 8,144
Concentration SO2 2,601 2,251 (87%) 350 (13%) 2,896

Table 4.5: Characteristics of the datasets and isosurfaces. It is shown information about
the cells — the total number and how many are not (are) intersected by the isosurface —
and the number of triangles generated. Not surprisingly, the majority of the cells are not
intersected by isosurfaces.

Figure 4.35: Brain. Details are presented in Tables 4.5 to 4.7.
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Polygons FrequencyPE Head Brain Spine Pressure Concentration SO2PE3=0 11,208 24,585 14,664 152 123PE4=0 33,893 43,175 33,264 729 153PE5=0 7,976 16,723 11,374 122 74PE6=0 663 2,073 1,578 15 12PE6=1 249 225 91 0 3PE7=1 136 323 77 0 1PE8=1 28 10 10 0 0PE8=2 25 19 6 0 0PE9=3 7 1 0 0 0PE12=3 0 0 0 0 0PE3=0  ! PE3=0 2 6 2 0 0PE3=0  ! PE4=0 2 3 2 0 0PE3=0  ! PE5=0 1 3 0 0 0PE3=0  ! PE6=0 0 0 0 0 0PE4=0  ! PE4=0 1 0 0 0 0

Table 4.6: Number of topological polygons PE involved, for each test.
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Polygons Frequency (% of total)PE Head Brain Spine Pressure Concentration SO2PE3=0 20.682 28.211 24.013 14.931 33.607PE4=0 62.544 49.543 54.470 71.611 41.803PE5=0 14.718 19.190 18.625 11.984 20.219PE6=0 1.223 2.379 2.584 1.473 3.279PE6=1 0.459 0.258 0.149 0.820PE7=1 0.251 0.371 0.126 0.273PE8=1 0.052 0.011 0.016PE8=2 0.046 0.022 0.010PE9=3 0.013 0.001PE12=3PE3=0  ! PE3=0 0.004 0.007 0.003PE3=0  ! PE4=0 0.004 0.003 0.003PE3=0  ! PE5=0 0.002 0.003PE3=0  ! PE6=0PE4=0  ! PE4=0 0.002

Table 4.7: The same information as in Table 4.6 but in terms of percentage of the total
number of topological polygons PE for each test.
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Figure 4.36: Spine. Tables 4.5 to 4.7 include related statistics.



Isosurfacing / Tests 120

Figure 4.37: Zooming of part of the spine shown in Figure 4.36.
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Figure 4.38: Pressure. Isosurface showing a pressure threshold of the air between two
parallel sheets of glass — one cold, one warm — a simulation of the gap in double
glazing. Statistics are included in Tables 4.5 to 4.7.

Figure 4.39: Concentration SO2. Example of concentration of sulfur dioxide following an
environmental model. Statistical information is shown in Tables 4.5 to 4.7.
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4.4 Accuracy of Isosurfacing

In the previous Sections we have presented an isosurfacing method that we believe is

very accurate. Nevertheless it is not free of uncertainty. Following the same steps as in

contouring, we also would like to give an idea of the error committed. Unlike in contouring

it is almost impossible here to obtain an exact metric for the error. In the following we

present two approaches to depict accuracy.

In the first one, a error metric is approximated by using the area metric as defined

in contouring (see 3.5.1 on page 55), in the faces of the cubic cell. Then the metric can

be mapped by means of texture in the surface drawn. The metric may not be very reliable

in this tridimensional space.

In a second approach, the analysis is made at the level of triangle drawn. Fig-

ure 4.40 helps to describe the idea. A result of our method is that the vertices of any

triangle drawn lie on the ”exact” isosurface. So a closer approximation would be to use

an extra point G on the ”exact” isosurface and then represent three triangles instead of

just one (two vertices of the old triangle plus G). But at this stage we do not want to draw

more triangles but simply to show how it could have been done. The visual paradigm to

show uncertainty in this case can be three lines, from each vertex of the triangle con-

verging to G. In all, rather than three triangles we will have the usual triangle plus three

lines.

There is still the question of computing G. The goal is to have G such that the

curvature of the isosurface in that neighbourhood is maximum. Or where F changes

more rapidly. So we compute the gradient of the interpolant, rF , at the centroid of the

triangle. Then from that point and with the direction of the gradient we compute the

intersection with the ”exact” isosurface; G is obtained.

Finally we would like to mention that these ideas to depict accuracy are still under

analysis. No implementation has yet been completed.
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Figure 4.40: Use of an extra point G to depict a closer approximation to the isosurface.
The three vertices V1, V2 and V3 define the triangle drawn.

4.5 Conclusions and Future Work

We have carefully studied the Marching-Cubes method. Since its presentation, two major

improvements were introduced: the use of the asymptotic decider to solve ambiguities in

the faces of the cube, and the extension of this criterion into the interior of the cube.

Yet, we realised that more details were to be unfold. In respect to the configura-

tions, not only did we find a new subcase, but we also proved mathematically that some

of the subcases already presented were impossible to happen. We also concluded that,

although the problem of tunnels in the interior of the cube was discussed in a correct way,

assuming trilinearity within the cube, not enough attention was paid to the way triangu-

lation was carried out. In particular, it should be observed that, since a surface has to

be continuous and not self intersecting, no triangles are allowed to lie in the faces of the

cube.

As a consequence of the work on contouring, and our understanding of the MC

method, we developed a more accurate Marching-Cubes method. The aim was to repre-

sent as accurately as possible the trilinear interpolant within each cell. Positional continu-

ity of the isosurface across adjacent cells was guaranteed as in the MC; correct topology

in the faces of each cell was also verified, since the asymptotic decider is used.

This accurate Marching-Cubes method relies mainly on supplementary points on

the isosurface, either lying in the faces, or in the interior of the cell. In the faces of the
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cube we use face shoulder points as supplementary points, similarly to contouring. For

the interior of the cube, our strategy was based on the observation that the isosurface

can be seen as a pile of consecutive parallel contours. These supplementary points

in the interior are inflection points — points such that two first derivatives of the trilinear

interpolant vanish — or else bi-shoulder points — points that are simultaneously shoulder

points on the contour of the trilinear interpolant on two orthogonal slices through the cube.

An inflection point reflects the topology in the interior of the cell, whereas a bi-shoulder

point is more related to aspects of accuracy, with no influence in the way topology is

defined.

A major aspect we stressed out was the triangulation of the isosurface. In compar-

ison to the classic MC, our method takes a different view: rather than following configura-

tions, we are driven by topological polygons, no matter from which MC configuration they

arise. There are three situations to consider: polygons lying on loop-back faces, poly-

gons not lying on loop-back faces, and situations of tunnels in the interior of the cell. In

the first case, the triangulation uses inflection points. In the second case, one bi-shoulder

point and in the latter one, inflection points are used. We found interesting features in the

formation of tunnels. First, a tunnel is formed upon two topological polygons not lying on

loop-back faces. Second, there are six inflection points. In that respect, we noticed that

if there are six inflection points then all are located in the corners of a cuboid. This result

is the foundation for the triangulation of tunnels. A polyline is defined linking all the in-

flection points along the edges of the cuboid. On that basis, each polygon is triangulated

independently, being the polyline mentioned as the ”border” between the two polygons.

We are aware that an alternative way to represent the trilinear interpolant to greater

accuracy is to pursue a crude but simple approach — namely, to subdivide each cube

into many smaller cubes, and applying the MC algorithm within each minor cube (indeed

the pictures in the thesis depicting ”exact” isosurfaces were drawn that way). However

the aim of our approach has been to use a more ”intelligent” approach were we try to

represent the fundamental topology of the trilinear interpolant within the original cube,

with a minimum of additional points. This has the significant advantage of course in

practice of not generating an inordinate number of triangles.
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As far as further developments are concerned, we should point out the following:

First, triangulation of polygons that do not lie on loop-back faces, so involving bi-

shoulder points, deserves more study. The bi-shoulder points are computed numerically

which means more computational time. In addition, more than one bi-shoulder point can

be defined in the majority of these polygons, but so far we are just using one. Maybe we

should use more, and therefore the solution will be more accurate, or else we can define

extra guidelines to choose the most appropriate bi-shoulder point, apart from the rule of

thumb we have set out.

Second, close attention has to be paid to the number of triangles generated. That

is, to consider decimation of triangles, as long as users are willing to accept smaller

accuracy, and in which circumstances. For instance, to establish guidelines as follows:

in case of triangulation of topological polygons that do not lie on loop-back faces, two

adjacent triangles that have a face shoulder point as common vertex should merge if the

angle due to that shoulder point implies nearly flat triangles.

Third, to combine the new method with mechanisms that avoid the waste of time

on processing cells that do not contribute to the isosurface. Techniques to do so can be

found in the references 1, 17, 51, 63, 97, 120. They usually require information to be held

in memory throughout.

Fourth, the representation of interval volumes. That is, rather than showing an

isosurface F (x; y; z) = � as we do now, the objective is to show an interval volume such

as � � F (x; y; z) � �.

Fifth, to implement the ideas we have presented concerning the representation of

accuracy. Recall that two suggestions were made: in one of them, and similarly to what

we have done in contouring, an error metric is mapped using texture on the isosurface.

The other idea involves the computation of an extra point lying on the surface, close to

each triangle drawn. Then, to show accuracy, lines are drawn between this new point and

the vertices of the triangle.

It is noteworthy that the last suggestion may eventually lead to further improve-

ments: the replacement of the triangle by three new ones. The process can even be

recursive, of course as long as it is affordable to do so.



Chapter
FIVE

Particle Tracing

Particle tracing is a simple but effective technique used in flow visualization, of

which the figure above is an example. It is a fundamental technique which forms the

basis of a variety of techniques, such as streamribbons and streamsurfaces.

In this chapter we start by introducing the technique. Particular attention is devoted

to issues such as data spaces, integration schemes, velocity interpolation and the selec-

tion of the step size. Next we address the topic of visualizing the accuracy of particle

tracing. There are three techniques to mention: re-integration, global error estimators

126
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and velocity residuals. Each one of these is discussed and implemented. Alongside that

we introduce visual paradigms to convey the accuracy data before we present some trace

of particles. The data set used to illustrate the work is a representation of the air flow be-

tween two parallel sheets of glass. Finally we comment on the overall results and point

out further developments.

5.1 The Technique

In the context of computational fluid dynamics, the aim of particle tracing is to track the

motion of a particle released at some point through a flow field. The field is discrete, both

in space and time. Let us limit the discussion to massless particles, that is, to particles

following the local flow field.

Thus the problem is posed as follows: given the velocity field ~V (p; t) and the po-

sition pt of a massless particle at an initial time t = 0, within the flow field, calculate the

successive particle positions. The motion is ruled by the Ordinary Differential Equation

(ODE) with initial value: d pd t = ~V (p; t) ; given p0 : (5.1)

Most of the methods rely on numerical integration schemes. Hence the motion from

one position pi to the next one pi+1, after time �t, is determined by:pi+1 = pi + Z ti+1ti ~V (pt; t) d t : (5.2)

A generic particle tracing method comprises the following steps: first, the grid cell

where the particle lies at the initial time is identified. Second, the velocity at that location

is computed. In order to do this, some sort of interpolation is required since the veloc-

ity field is discrete. Next, the particle is repositioned using a numerical integration that

evaluates (5.2). The whole process is repeated until the particle leaves the domain or its

velocity vanishes. Furthermore the computation may stop after a given period of time.
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An important issue in particle tracing is the errors made at each step. They tend to

propagate as the computation proceeds. We can name at least three sources of errors.

They are:

– the numerical integration;

– the velocity interpolation;

– the velocity data itself.

Henceforward a local error is defined as the error made at a single time step while

a global error measures the cumulative effects of the local errors from every time step,

including those from startup procedures inherent to the integration scheme.

The suitability of any method is very much dependent on the nature of the velocity

field and on the accuracy desired. Particle tracing is much easier in steady (laminar)

flows — the time scale of the flow is so negligible that the velocity is considered time

independent — than in unsteady (turbulent) flows. The Jacobian matrix J = � ~V = � t is

crucial as far as accuracy is concerned. The way the grid domain is discretised is also an

important aspect. In the following we will discuss some of these issues.

5.1.1 Physical Versus Computational Space

The flow field is usually defined over a curvilinear grid — the so-called physical space.

However to facilitate computations, the curvilinear grid is sometimes mapped into a Carte-

sian grid — the computational space. One main reason to do so is that, during particle

tracing, there is a need to locate the grid cell in which the particle lies. This cell search

is not an easy task to perform in curvilinear grids. But it is rather simple in the case of a

Cartesian grid.

Unfortunately there are some problems with the conversion of spaces. First, there

is no global transformation but only a local transformation. This depends on the local

Jacobian, the matrix of partial derivatives. In the end the conversion between spaces is

very costly. Second, the accuracy of the physical space may be lost. For example it is
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Figure 5.1: Transformation between a physical (curvilinear) space and a computational
(Cartesian) space. It requires a local transformation for each cell based upon the partial
derivatives, i.e. the Jacobian J .

possible to obtain very large velocities when rather deformed grids are mapped into a

Cartesian grid.

Furthermore, we would like to remark that there is substantial improvement in the

cell search operation if the physical space is decomposed into tetrahedra.57

5.1.2 Integration Schemes

There are a range of methods for the solution of ODEs such as (5.1). The common ones

in particle tracing are the Euler method, and the multi-stage methods such as the explicit

Runge-Kutta (RK) methods of second and of fourth order. Other methods which can be

used are for example the multi-step schemes such as Adams-Bashforth, Adams-Moulton

and backwards differentiation.

The choice of one of these integration schemes is mainly driven by the error order.

The Euler method (first order) is widely assumed to be poor whereas the higher order RK

methods are acceptable. Nevertheless the errors due to other sources such as velocity

interpolation can be a decisive factor. For instance a flow data has been generated as

second order accurate in time, then the integration scheme should be at least of error

order three. Then the error due to integration is less then the error due to the simulation.23

Another point worth mentioning is the complexity to initialise higher-order methods.

It usually requires other methods to provide the first samples. In this way these startup

errors will contribute to define the accuracy of the overall technique.
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Methodology Formulae Local error

Euler pi+1 = pi +�t ~V (pi) O(�t2)
2nd-order Runge-Kutta pi+1 = pi + �t2 ~V (pi + p�i+1) O(�t3)
4th-order Runge-Kutta a = �t ~V (pi) O(�t5)b = �t ~V (pi + (a=2) )
 = �t ~V (pi + (b=2) )d = �t ~V (pi + (
=2) )pi+1 = pi + 16 ( a+ 2 b+ 2 
 + d )

Table 5.1: Multi-stage integration schemes for steady flows. We present the Euler and the
predictor-corrector RK of second (also known as midpoint or Heun method) and fourth or-
der. ~V (pi) is the instantaneous velocity at position pi, and �t = ti+1�ti is the incremental
time step. In case of 2nd-order RK the p�i+1 is computed using the Euler method.

5.1.3 Velocity Interpolation

One of the tasks to be carried out during particle tracing is to compute the velocity at

some point within a grid cell. A common choice is to use trilinear interpolation based

upon the known velocity values at the cell vertices. Bear in mind that the velocity field

is discrete. However this interpolant may not convey accurately the field. For example

it provides poor results when there are sharp gradients in the field. In that case the

errors due to interpolation may be higher than the ones of the integration.13 Therefore

higher-order interpolation schemes are a valid option as well. Unfortunately the additional

computational cost involved with higher-order interpolants can be so huge that it makes

its usage rather difficult.

Another situation to be considered is that of interpolation in time. This is the case

with unsteady flows, that vary not only in space but in time. So if a required time is not

available from the grid, then a temporal interpolation of velocity is performed before the

spatial interpolation occurs.
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5.1.4 Step Size

The step size is crucial in defining the next particle position. Theoretically it can be fixed

or adaptive. But in general the choice is to have an adaptive step size. If the step size

is too large, then the particle may miss important characteristics of the flow such as

points where the velocity changes dramatically. It may be inaccurate in this case. But

on the other hand, if the step size is too small the computation may be very costly and

without substantial compensation in terms of accuracy. The general aim is to maintain

the accuracy within the cell and avoid excessive steps when the velocity is reduced. One

guideline is to have an adaptive step size proportional to the size of the cell and to the

inverse of the magnitude of velocity.13 Another one is to use the curvature of the particle

trace, which in the end relates to the gradient of the field; the higher the curvature the

lower the step size should be.

5.2 Visualization of Accuracy

Our main goal in this Chapter is to show accuracy in particle tracing. We believe users

should understand the degree of error committed by a particular particle tracing tech-

nique, before engaging themselves to any judgment.

Before going further we would like to refer to some work by other authors. The

majority of examples concentrate on comparison of different methods and normally use

analytical models to assess the accuracy of these different methods. This is the case of

Darmofal and Haimes23 who present a valuable numerical analysis of accuracy and sta-

bility of various particle tracing algorithms, particularly for unsteady flows. Lodha et al. 64

focused on visualizing the differences in particle traces obtained from various integration

schemes and/or different step sizes. Walton116 shows results from two different integra-

tion methods. Knight and Mallison61 compare their own methodology based on stream

functions with common particle tracing methods.
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5.2.1 Strategies

The primary issue is to establish how to assess the accuracy of a given particle trace.

If the exact solution was known in advance then the difference between both would be

the answer. That can only happen if the data sets are analytical. But in that case, the

analysis is more academic rather than practical.

Let us concentrate on errors due to integration. Hence, the goal is to obtain a

quantitative measurement of the integration error. On the basis of common error control

strategies used in the solution of ODEs we present three approaches to derive accuracy

measurement for particle tracing. They are:

Re-integration.

A second but different integration is carried out. For example, with smaller tolerance.

The discrepancy between both integrations gives a measure of accuracy.

Global error estimators.

As integration proceeds the magnitude of the global error at each integration point

is estimated.

Velocity residuals.

As integration proceeds a residual of velocity is computed at sampling times. That

is, the difference between the first derivative inferred by the numerical solver and

the velocity obtained from the flow field. It is an indirect measurement. The bigger

the residual the lower the accuracy.

5.2.2 Framework

Given the strategies presented above, we can now establish the practical framework. It is

our wish to follow a method widely used, in particular a particle tracer from a commercial

visualization system. So, in this study the framework is as follows:

1. Use of a RK scheme with an adaptive time-stepping, as in the IRIS Explorer module

NAGAdvectSimple.



Particle Tracing / Visualization of Accuracy 133

Figure 5.2: Architecture to visualise errors due the numerical solver in particle tracing.
The core is the numerical solver. P is the main trace,Q is a second trace by re-integration,E the global error estimators and R the velocity residuals. Notice that this architecture
embraces the data flow model of scientific visualization, from modelling to rendering.

2. To exclusively concentrate at this stage on errors due to the RK scheme used.

3. Show particle positions according to a specific sampling frequency.

4. Use of a practical rather than a theoretical flow data set.

This is the framework within which we shall explore our ideas to visualize accuracy

in particle tracing.

5.2.3 Architecture

To deliver the analysis we are looking for we propose the architecture shown in Figure 5.2.

The main component is the numerical solver. It delivers the main trace P (the one against

which comparisons are made) and if required a second path Q to be obtained by re-

integration. It can also provide inferred velocities from integration in order to compute the

velocity residuals R. Finally the integrator within the numerical solver can provide the

global error estimators E . These strategies may or may not be followed simultaneously.
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(a) (b)

Figure 5.3: Implementation of (a) GenPathAccuracy as an extension of (b) IRIS Ex-
plorer NAGAdvectSimple. GenPathAccuracy is based upon the architecture shown in
Figure 5.2.

At the beginning of the pipeline there is the modelling interpolator. Its purpose is to

obtain velocities from the flow field given the positions in the grid. This is the modelling

stage. As mentioned before we do not take into consideration errors due to velocity

interpolation, nor those due to the (simulation of) data for the time being.

Next there is the computation of the main trace and associated accuracy measure-

ments. An important point at this stage is the necessary synchronisation of the data

that is computed. Further down the pipeline this data is converted into geometries and

then rendered. If for example there are two traces whose time steps do not coincide we

must ensure anyway that visual comparisons are done at exactly the same time. This

synchroniser unit behaves as a filter in time.

This architecture is implemented as two modules in a Open Inventor / IRIS Explorer

environment. We have increased the functionality of the IRIS Explorer NAGAdvectSimple

to accommodate accuracy measurements — GenPathAccuracy as shown in Figure 5.3

— and built a new module specifically to map this accuracy data into geometries.
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5.2.4 Data Generation

The generation of data is the primary issue in the whole process of visualizing accuracy.

We can only give a sensible view of the accuracy if we compute reliable error estimation.

Next, we discuss all the major issues as far as generation of data is concerned.

Numerical Solver. As with NAGAdvectSimple, we use the routine nag ode ivp rk onestep

for initial value problems in ODEs from the NAG C library. Two pairs of RK formulae can

be used: one pair with formulae of error orders 2 and 3, and the other of 4 and 5. For each

coordinate direction i, the result at each integration step is always from the higher-order

formula (local extrapolation) and it is the difference between results within the pair that

determines the local error estimator ELi .6 To control the step size this value is measured

relative to a weight Wi, defined as:Wi =MAX 0B� j pb j+ j pe j2 ; Ti 1CA ; (5.3)

with pb and pe the solution at the beginning and end of the step respectively. Ti is the

threshold value set as: Ti = t �MIN ( jLai j ; jLzi j ) ; (5.4)

where t is the relative error tolerance set, and Lai , Lbi the two data set boundaries in

relation to coordinate direction i. Taking into consideration all the coordinate directions,

the step size is controlled such thatMAX ������� ELiWi ������� < t : (5.5)
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Note that t and Wi are constrained. They must be such that:10:0 �mp � t � 0:01 ; (5.6)Wi � +psn ; (5.7)

wheremp and sn are respectively the machine precision and the smallest positive number

representable on the machine.

Results of particle positions are usually required at specific sampling times — cru-

cial in animation for example. So the numerical solver has interpolants associated with

the RK formulae, with the same order of accuracy, to sample in time the results from

integration. In the same way they can offer the first derivatives at those sampling times.

Re-integration. This technique looks at different solutions of the same problem. Inte-

gration is repeated but in a different framework. We set up three variants:

– Re-integration with smaller relative error tolerance, in this case reduced by a factor

of 10.

– Re-integration in backwards direction. The last point in the first integration is the

starting point for the second integration. The time direction is therefore reversed.

– Many re-integrations with different relative error tolerances, say reducing by 1/10,

1/100 and so on. These results can provide a valuable insight into the trade-off

between accuracy and computational cost.

All the solutions consist of particle positions and related time scale.

Global error estimators. Global error assessment aims to show the cumulative effects

of the local errors (that control the integration) at all the integration steps. In theory it

constitutes the best way to assess accuracy. When required, the NAG solver can deliver

the Root Mean Square (RMS) average of the error at any integration point of interest,

taken from the beginning of the integration.
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The method is as follows: for each integration a(more accurate) subsidiary integra-

tion is performed with two half steps over the same interval. The assessment is based on

the difference of results between both integrations.95

However the theory behind such an approach is no longer valid when there is dis-

continuity in the derivative function, or even when the tolerances used are at the extremes

of the range.96 As a consequence, if at some point the assessment is not credible (for

example if the estimated local error in the subsidiary integration is not sufficiently inferior

to that of the main integration) then any assessment onwards is discarded as well.

We should point out that reported solutions are different depending on whether

global error assessment is required or not. The reason is, with global error assessment,

the reported solution is from the subsidiary integration which is believed to be more ac-

curate.

Velocity residuals. Unlike the two previous approaches, this technique works over the

velocity space. So it is an indirect measure of particle tracing accuracy. The underlying

idea is that an approximated solution of a problem can be always regarded as the exact

solution of a different problem.

As mentioned before, the sampler embodied by the numerical solver provides not

only particle positions at the sampling times but also approximates in the same way the

first derivatives. So we define the velocity residual r at each sample point as the differ-

ence between this first derivative and the velocity obtained through the modelling inter-

polator at that position. Hence, the velocity residual is described asr = d pd t � ~V (p) : (5.8)

We regard this technique as a comparison between the interpolation carried out at

the sampling process and the one at the modelling stage. It is particularly valuable if one

can provide highly accurate interpolation at the modelling stage.
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Data synchroniser. The aim of this filter is to ensure that data down the pipeline will be

suitable for visualization. As mentioned before, there is no guarantee that reported data

will be defined at exactly the same times as in the main trace.

The main trace P is described by (x; y; z) positions in space at constant interval

times, say, the set of times T . But the last position may not be at a regular time. For

example a crucial position that must be always recorded is the one where the particle

leaves the domain. Hence the last position is always included. P is the benchmark to

compare against.

Results from re-integration and velocity residuals are required to be filtered in order

to include only those whose times are explicitly available in the main trace.

In the case of global error estimators, we do not attempt to synchronise with the

sample points, but rather leave them at the positions at which they were calculated. Oth-

erwise we would introduce errors.

So data is delivered as follows:P : x; y; z; (t) ; t 2 T [ ftn+1g ; tn+1 � tn � � ; (5.9)Q : x; y; z; (t) ; t 2 [ tqi : : : tqk ℄ � T ; �t = �� ; (5.10)E : x; y; z; j �x j ; j �y j ; j �z j ; (t) ; t 2 [ te0 : : : tek ℄ � T ; (5.11)R : �vx; �vy; �vz; (t) ; t 2 [ tr0 : : : trk ℄ � T ; �t = � ; (5.12)

where T = [ t0 : : : tn ℄, with �t = � as the sampling frequency. P, Q, E and R are

respectively the main particle trace, re-integration, global error estimators and velocity

residual solutions.

5.2.5 Visualization

Having generated the accuracy data, the next step is to convert it into geometries which

then are rendered. Let us substantiate the paradigms of visualization.

First, to convey accuracy we still use the same picture that shows the main trace.

Both data and accuracy data will be superimposed. Second, a range of options are
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offered to users, even allowing them to enhance the final image. Indeed visual perception

varies amongst people. These options are:

– scaling primitives, particularly useful when differences of scale between accuracy

data and main data are considerable;

– selection of accuracy data to display and which(s) visual paradigm(s) to be used;

– adjust visual attributes such as transparency;

– query data and then obtain textual feedback. It is helpful when the accuracy data is

very small relative to the scale of the particle tracing.

To show the particle tracing, as P of (5.9), we use the common paradigm: a sphere

is placed at each particle position and interconnected by straight-lines. If consecutive

spheres imply constant variation in time, then one can infer the speed of the motion of

the particle; the further apart the faster the particle moves.

In case of re-integration, as Q of (5.10), the aim is basically to show different posi-

tions of the particle, so distance and direction are the targets. In case of global error esti-

mators, E of (5.11), the goal is to show the magnitude of the error along each x�; y�; z�
direction. Finally for velocity residuals R of (5.12), the target is difference in velocities.

Notice that the data space here is different from the particle position of P.

The first visualization metaphor is based on a cuboid aligned in the x�; y�; z�
directions, with edges proportional to the accuracy data in the related direction. So vari-

ations per axis are revealed. In a second one, a line or a spike is drawn straight from the

reference point (000) of the cuboid to the opposite point (111). This is the classic exam-

ple of showing two different positions. Both of these two techniques convey a discrete

domain. In order to extend them into a continuous domain the two counterparts are: tube

and strip. Figure 5.4 shows all the five visual paradigms mentioned. The radius of the

tube is computed as indicated in Figure 5.5.

Finally, a note on the implementation. The visualization primitives are created as

Open Inventor nodes that then are passed on for rendering to the IRIS Explorer envi-
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ronment. So the render facilities of this environment can always be used, allowing for

instance the change of the drawing style (solid to wireframe, etc. ).

5.3 Tests

This section offers an insight into some tests we carried out. They are based on a realistic

representation of the air flow between two parallel sheets of glass — one cold, one warm

— a simulation of the gap in double glazing. The data set has been obtained from the

solution of the Navier-Stokes equation using multi-grid code. It is defined over a Cartesian

grid of dimension [ 18� 10� 10 ℄.
For all the tests the velocity interpolation has been done using a trilinear inter-

polant. The Figures 5.6 to 5.10 present some results. The particles tend to travel near

the boundaries showing a well defined trajectory for the circulation of the air. In the middle

the motion is much slower.
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(a)

(b)

(c)

(d)

(e)

Figure 5.4: Visual paradigms. The main trace is depicted on (a). The accuracy data is
convey such as (b) cuboides, (c) spikes, (d) tube or (e) strip.
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Figure 5.5: Definition of the tube. The cross-section of the tube at some point of the main
trace is as follows: the direction of the trace ~u in that chunk defines a projection plane �. P
is the particle position and Q is the ”assumed” accurate position. The mid-pointM is then
projected on the plane � and is going to be the centre of the cross-section. The radius
is therefore the distance between P and that centre. Once that is defined, a number
of points along the circle are computed (for example iteratively using polar coordinates).
These points and similar ones in a previous cross-section allow to construct one chunk
of the tube. As a final note one can consider defining the plane � on the basis of the
previous and the next particle positions. Tests we made however suggest that it does not
work smoothly when there are big changes in direction.
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(a)

(b)

Figure 5.6: Sensitivity to re-integration, within a specific time interval. The solver uses RK
2(3) to compute the particle trace. The relative error tolerance on (a) is 0.008 whereas on
(b) is 0.005. The geometry of the grey strip indicates differences in results between four
re-integrations. In each of the examples above, differences in results are worth to note
only from the first to the second integration (relative error tolerance reduced by 1/10).
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Figure 5.7: Trace of one particle (red sphere) within a specific time interval. The solver
uses RK 4(5) and relative error tolerance as 0.008. The transparent yellow tube depicts
a volume where the particle could lie, in the light of results of a second but likely to be a
more accurate integration (relative error tolerance reduced to 0.0008).

Figure 5.8: Trace of one particle (red sphere) within a given time interval. The solver
uses RK 4(5) and relative error tolerance as 0.008. A second integration is performed
backwards. The differences in both results are depicted through a transparent yellow
strip.
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(a)

(b)

Figure 5.9: Trace of one particle (red sphere) within a given time interval. The solver uses
RK 4(5) and relative error tolerance as 0.008. On (a) the velocity residuals are scaled by
a factor of 30 whereas on (b) by a factor of 50. The visualization is misleading; the use of
volume gives a false visual cue if these residuals are scaled and then compared against
to each other. We also recall that the accuracy data does not indicate differences in
particle positions but differences in velocities.
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(a)

(b)

Figure 5.10: Global error assessment in one particle trace within a given time interval.
The solver uses RK 4(5) and relative error tolerance as 0.008. On (a) the integrator stops
at some point. It can not provide global error estimators from then onwards. Besides,
when they are delivered, its magnitude matches the tolerance established, so in order
to visualise them one has to scale the estimators. On (b) it is shown the trace when no
global error assessment is asked.



Particle Tracing / Conclusions and Future Development 147

5.4 Conclusions and Future Development

In this Chapter we have studied methods to show the accuracy of particle traces. In the

light of the tests mentioned and others we carried out, we draw the following conclusions:

– By solving the same problem in a different way, one can obtain completely different

results. For example, in the case of re-integration it is not even necessary to change

the formulae; only a small change in the relative error tolerance is enough.

– The sensitivity to relative error tolerance with this solver is particularly noticeable

when reduced by 1/10. There are no substantial gains in accuracy if re-integration

is done with reductions by 1/100 or more.

– Global error estimators provided by this solver are difficult to obtain in practice. This

may be due to the way the technique was implemented. Indeed, its computation

is stopped if it is no longer credible for the relative tolerance established. This just

shows how important it is for the user the understanding of a particular technique

and the implementation issues involved.

– The velocity residuals technique allows comparison between interpolation from the

sampler, and the interpolation from the data field. But in order to draw any relevant

conclusions, we should have had a very accurate velocity interpolator in the field,

which was not the case. Indeed, the error order of the interpolant of the sample

points is even higher than the trilinear interpolant used.

As far as research directions are concerned we need to point out the error analysis

at the modeling stage. One way of proceeding is to solve the same problem but with two

different modelling interpolators. Then compare both results. We have indeed carried

out some tests using the trilinear interpolant and the nearest neighbour technique (the

value interpolated within a cell is of the nearest cell vertex). The differences quite expect-

edly were remarkable; the neighbour technique is simply poor. Instead tests should now

concentrate on using an higher order interpolant to compare with the trilinear interpolant.
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Nevertheless one should be aware of the major difficulty that derives from an higher-order

interpolant: high computational cost as referred to in Section 5.1.3 on page 130.

Another aspect worth studying is how different modelling interpolators affect the RK

integrator at any step. This will require the code of the numerical solver to be adjusted.

So far we have seen the numerical solver (from NAG C library) as a ”black-box”.

Finally, tests involving user perception are required. This task validates (positively

or negatively) the visual techniques. For example, as suggested in Figure 5.9, scaling

the accuracy data and then representing it as cuboids gives a false visual clue. Also,

querying data is a point to be focussed on. New techniques can be added if the user

feedback demands to do so.



Chapter
SIX

Conclusions and Future Work

The only certainty is that nothing is certain.

In this final Chapter we aim to summarise the major aspects of the research un-

dertaken, and to indicate some research directions. The order follows the outline of the

thesis: first contouring, then isosurfacing and finally particle tracing.

If a major lesson has to be learnt from the work undertaken, it is that looking at the

issue of accuracy in scientific visualization, not only leads to a better understanding of

the techniques involved, and may unfold surprises to users; it also has the potential to

point out further improvements.

6.1 Contouring

The work on contouring has shown us that techniques which are rather old are still worth

studying. Indeed, being old does not necessarily means useless, or out of date; there is

always space for innovation.

After a complete understanding of all the aspects involved, we started by looking

at ways to obtain metrics for the error committed in classic methods. In these methods,

149
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the contour was represented by straight lines instead of a hyperbolic curve, since at each

rectangular cell the aim was to represent a bilinear function. That was the case in the

basic method, using the asymptotic decider criterion to solve ambiguity inherent to the

bilinear function, and the four triangles method.

During this process we realised that we could approximate each hyperbolic arc as

two straight line segments. This conclusion is rather trivial; the four triangles technique

already use it, although in that technique not all the end points of the line segments lie

on the hyperbolic arc, nor it does always provide correct topology. In our method, the

common point joining the two segments — the shoulder point — presents an interesting

feature: it lies on the line joining the midpoint of the chord between the end points of the

hyperbolic arc, and the saddle point of the bilinear function. We mathematically proved

that was the case. As a result, we presented a new method that:

(a) provides correct topology in respect to the bilinear function, since we use the asymp-

totic decider criterion to solve eventual ambiguity, as the basic method does. Posi-

tional continuity between cells is therefore guaranteed;

(b) is more accurate in comparison to the other two methods. Comparing to the basic

method, just the fact we use two line segments instead of one, supports the claim.

In comparison to the four triangles, although both use the same number of line

segments we note that all the end-points in our method lie on the hyperbolic arc

and that does not happen in the four triangles method. Besides, the four triangles

technique does not always provide correct topology so it is inaccurate per definition.

Concluding, the new method draws contour lines on quadrangular grids, with a

bilinear function as reference for each cell. At no big expense of computational time, we

improved substantially the accuracy of basic contouring methods.

Yet, no matter how far we go to improve the accuracy of solutions, there will be

always uncertainty. We have established an exact error metric: the area whose boundary

is defined by the contour solution and the representation of its approximation. Then, for

each grid cell we mapped this value using a metaphor of ”dust cloud”: random points are

plotted in the vicinity of the contour drawn, towards the exact contour. Another suggestion
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made concerns the use of a solid but transparent background, in accordance to the metric

value at each grid cell.

6.2 Isosurfacing

Isosurfacing is the natural extension of contouring. We strictly focused our attention to

Marching-Cubes, which is by far the most well known method. This feature was the

natural reason for us to choose it as our reference. As far as the method goes, there are

two important research landmarks apart from its presentation in 1987, by Lorensen and

Cline:67 the use of the asymptotic decider to solve ambiguities in the faces of the cube,

by Nielson and Hamann in 1991;78 and the extension of this criterion into the interior of

the cube, in 1994, by Natarajan.76

As we have done in contouring we initially paid particular attention to the study of

the technique. The effort was rewarded. Indeed, the story was not completely understood

as far as MC configurations were concerned. First, we reported a new subcase. Second,

we proved mathematically that some of subcases already presented were impossible

to happen. It is noteworthy that a subsequent review of the method was discussing

subcases that we now rule out.111

Another conclusion we drew was that although the problem of tunnels in the interior

of the cube was correctly discussed by Natarajan, assuming trilinearity within the cube,

not enough attention was devoted to the way triangulation was carried out. The problem

is that a surface has to be continuous and not self intersecting, and therefore no triangles

are allowed to lie in the faces of the cube. As an additional remark, we were not able to

produce tunnels in one MC configuration (13), as suggested by Natarajan.

Considering the work on contouring and the understanding of the MC method, we

developed a more accurate Marching-Cubes method. The aim was to represent as ac-

curately as possible the trilinear interpolant within each cell. Similarly to the normal MC,

it was guaranteed positional continuity of the isosurface across adjacent cells, and there-

fore correct topology in the faces of each cell.

This accurate Marching-Cubes relies mostly on supplementary points on the iso-
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surface, either lying in the faces, or in the interior of the cell. In respect to the faces

of the cube, we used the findings on contouring: the supplementary point we called a

face shoulder point resembles the shoulder point in contouring; and the asymptotic de-

cider is used to solve eventual ambiguities in the faces. For the interior of the cube, our

strategy was based on the observation that a cubic cell can be pictured as a range of

many two dimensional slices. In other words, the isosurface can be seen as a pile of

consecutive parallel contours. These supplementary points in the interior are inflection

points — points such that two first derivatives of the trilinear interpolant vanish — or else

bi-shoulder points — points that are simultaneously shoulder points on the contour of the

trilinear interpolant on two orthogonal slices through the cube. An inflection point reflects

the topology in the interior of the cell while a bi-shoulder point is more linked to accuracy

issues, without affecting the way topology is defined.

A crucial task in isosurfacing is the accomplishment of triangulation. In comparison

to MC, our method takes a different view. Rather than following configurations as the MC

does, we are driven by topological polygons, no matter the MC configuration from which

they arise. The methodology is as follows: we first establish the topological polygons,

using the asymptotic decider to solve ambiguities, and including face shoulder points.

Then we consider that the triangulation of polygons falls into three situations: polygons

lying on loop-back faces, polygons not lying on loop-back faces, and situations of tunnels

in the interior of the cell. In the first case, the triangulation uses inflection points. In the

second case, one bi-shoulder point (there are no inflection points defined) and in the latter

one, again inflection points are used. This last case presents interesting features. First

a tunnel is formed upon two topological polygons not lying on loop-back faces. Second,

there are six inflection points, by definition the maximum number. In that respect, we

noticed that if there are six inflection points then all are located in the corners of a cuboid.

This result is the foundation for the triangulation of tunnels. A polyline is drawn linking

all the inflection points along the edges of the cuboid. Consequently each polygon is

triangulated independently, being the polyline mentioned as the ”border” between the two

polygons.

In conclusion, the use of supplementary points helped:
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– to define correct topologies;

– to deliver more accurate solutions in comparison to MC;

– to make triangulation more systematic.

We are also aware that an alternative way to represent the trilinear interpolant to

greater accuracy is to pursue a crude but simple approach — namely, to subdivide each

cube into many smaller cubes, and applying the MC algorithm within each minor cube.

However the aim of our approach has been to use a more ”intelligent” approach where

we try to represent the fundamental topology of the trilinear interpolant within the original

cube, with a minimum of additional points. This has the significant advantage of course

in practice of not generating an inordinate number of triangles.

Now let us turn to ideas for further developments. One aspect that deserves more

study involves the bi-shoulder points. First their computation is not easy to perform since

it requires numerical approximation. Besides, one can obtain more than one bi-shoulder

point within a topological polygon (that do not lie on loop-back faces). This may raise

some question marks since we use just one in the triangulation. It seems that triangula-

tion of polygons not lying on loop-back faces may merit further improvements.

We should also quantify the additional computational cost involved with this new

method. At the moment we believe it is affordable; the number of triangles produced is

automatically compared to the traditional MC. But the increasing number of triangles may

be of major concern. That is the price to pay for accurate solutions. However, we suggest

that if the number is not affordable then the question of decimation of triangles should be

considered. Actually, we can use the information generated at the time of the definition of

topological polygons to speed up the decimation. For instance, in case of triangulation of

topological polygons that do not lie on loop-back faces, two adjacent triangles that have

a face shoulder point as common vertex can be merged if the angle due to that shoulder

point implies the triangles are nearly flat.

Also, we should consider to use techniques that avoid the processing of cells that

do not contribute to the isosurface.

Similarly to contouring, we also presented some ideas to show accuracy but no
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implementation was carried out. Namely, to use an error metric as the one in contouring,

and then to map it by means of texture in the surface drawn. Another idea seems to be

more interesting, since it suggests that we can go further as far as accurate solutions are

concerned: for each triangle drawn we compute another point on the surface, close to the

triangle. Notice that the vertices of the triangle are points on the surface. Then accuracy

can be depicted by drawing lines from that extra point to the vertices of the triangle. If one

is not happy with the accuracy of our method then they can replace the triangle by three

new triangles, now involving the three old vertices plus the extra point. And the process

can even be recursive.

One aspect we will study in the very near future is the representation of interval

volumes. That is, rather than showing an isosurface F = �, the objective is to show

an interval volume such as � � F � �. We believe that something interesting can be

achieved in this topic, based on the accurate Marching-Cubes.

6.3 Particle Tracing

In respect to particle tracing, we have presented ways to show the accuracy of the traces

computed. Unlike the two previous techniques no effort was made to improve the tech-

nique. The emphasis was just on giving users an indication of the error committed, which

anyway has required a deep understanding of the technique. The particle tracing method

used as reference was based on the one found in the NAGAdvectSimple module from

IRIS Explorer. We have used a very reliable Runge-Kutta integrator from the NAG library,

with adaptive time-stepping, and a trilinear interpolator to obtain values from the velocity

data set.

In a first stage we presented three strategies to measure the accuracy involved in

the integration step: re-integration, global error estimators, and velocity residuals. All the

ideas were implemented following an architecture we established, denoting the dataflow

paradigm. The fate of these strategies was completely different. Velocity residuals is an

indirect measure of accuracy. Besides, in order to be properly used, we should consider

interpolators of higher accuracy order. Global error estimators was the technique most
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theoretically acceptable but the estimators were difficult to obtain in practice with this

solver. In the end, re-integration was the most successful technique. Indeed it has shown

how different the trace of particles for the same problem can be. This is something users

should be aware of. From the variants we set up, special reference goes to the one where

the relative error tolerance was reduced, by a factor of ten.

Another aspect worth to mention is related to the visual paradigms used. First of

all both the trace of particle and its accuracy were conveyed in the same picture. Among

the techniques shown, the more successful were the tube and the strip. In both cases

the underlying goal was to depict all the possible solutions for a particle trace. Anyway,

further research should involve more user perception analysis.

Proceeding with the issue of research directions, we emphasise the study of the er-

ror committed at the modelling stage. This involves the analysis of different interpolators,

and how they affect the integration. This poses a problem in the use of the numerical

solver, which must not be seen as a black-box as we so far have considered.
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