STRUCTURED MATRIX METHODS FOR A POLYNOMIAL
ROOT SOLVER USING APPROXIMATE GREATEST COMMON
DIVISOR COMPUTATIONS AND APPROXIMATE
POLYNOMIAL FACTORISATIONS

hy

XINYUAN LAO

A thesis submitted to the
Computer Science
in conformity with the requirements for

the degree of PhD

Sheffield University
England
June 2011

Copyright © Xinyuan Lao, 2011

Abstract

LAO, XINYUAN. STRUCTURED MATRIX METHODS FOR A POLYNOMIAL
ROOT SOLVER USING APPROXIMATE GREATEST COMMON DIVISOR COM-
PUTATIONS AND APPROXIMATE POLYNOMIAL FACTORISATIONS

This thesis discusses the use of structure preserving matrix methods for the nu-
merical approximation of all the zeros of a univariate polynomial in the presence of
noise. In particular, a robust polynomial root solver is developed for the calculation
of the multiple roots and their multiplicities, such that the knowledge of the noise
level is not required. This designed root solver involves repeated approximate greatest
common divisor computations and polynomial divisions, both of which are ill-posed
computations. A detailed description of the implementation of this root solver is
presented as the main work of this thesis. Moreover, the root solver, implemented
in MATLAB using 32-bit floating point arithmetic, can be used to solve non-trivial

polynomials with a great degree of accuracy in numerical examples.

SNIVERSITY
OF SHEFFIELT
UIRRARY

Acknowledgments

I am sincerely and heartily grateful to my supervisor, Joab Winkler, whose encour-
agement, supervision and support from the initial to the final level enabled me to
complete the project. I am sure that it would have not been possible without his
patience, guidance and help.

I would like to thank my parents who have been a source of strength during this
period. Special thanks to Tangyun for his personal support and great patience at all
times.

Lastly, I offer my regards and blessings to all of those who supported me in any

respect during the completion of the project.

1

Abbreviations and notation

GCD
LP
LSE

greatest common divisor

linear programming

least squares with equality

maximum likelihood

non-linear least squares

structured total least norm

structured non-linear total least norm

Sylvester resultant matrix for the polynomials f(z) and g(x)
Sylvester subresultant matrix of order k for the polynomials
f(z) and g(z)

Bézout resultant matrix for the polynomials f(x) and g(z)
first derivative of the polynomial f(x)

vector of coeflicients of the polynomial f(x)

exact form of the polynomial f(x)

preprocessed form of the polynomial f(z)

a scale factor

the optimal value of o

111

a scale factor

the optimal value of 6

componentwise signal-to-noise ratio

componentwise backward error of the approximate root z
componentwise condition number of the root z

condition number of the root xy that preserves its multiplicity

logio

11,

iv

Contents

Abstract

Acknowledgments
Abbreviations and notation
Contents

List of Tables

List of Figures

1 Introduction
1.1 Historical review L
1.2 Examplesof errors
1.3 Thesis contribution
1.4 Thesis layout

2 Ill-conditioned problems
2.1 Forward and backward error and condition number
2.2 INl-conditioned polynomial
2.3 The geometry of ill-conditioned polynomial
24 Summary ... e e

3 A simple polynomial root solver
3.1 Well-posed and ill-posed problems
3.2 Factorisation via GCD computations
3.3 Previous work on GCD computations
3.4 Summary

ii

il

viii

00 O = =

16

18
18
20
27
34

The resultant matrix 49

4.1 The Sylvester resultant matrix 50
4.1.1 Subresultant matrices L. 53
4.2 The Bézout resultant matrix 59
4.3 The rank of a resultant matrix 60
4.4 Preprocessing operations 63
4.5 Summary e 74
The degree of an approximate GCD, Part I 76
9.1 Method 1: The principle of maximum likelihood 78
5.2 Method 2: The angle between subspaces 84
5.2.1 Calculating the first principal angles 87
5.2.2 Calculating the small first principal angle 89
9.3 Method 3: The error between two estimates of an approximate common
divisor 95
54 Examples 100
55 Summary 106
The degree of an approximate GCD, Part 11 108
6.1 The degree of an approximate GCD of f(z) and g(z) 109
6.1.1 Method 4: The method of the first principal angle 112
6.1.2 Method 5: The method of residual 115
6.2 The degree of an approximate GCD of f(z) and fM(z) 118
6.3 Examples 133
6.4 Computational efficiency 145
6.5 Summary 146
The coefficients of an approximate GCD 147
7.1 The method of SNTLN 149
7.2 Examples 169
7.3 Summary ... 175
Calculating the roots of a polynomial 177
8.1 The deconvolution of two polynomials 178
8.2 Non-linear least squares for multiple roots 187
8.2.1 Calculating the values of theroots 190
8.3 Overview of implementation of a polynomial root solver 196
84 Summary e 201
Results 202
9.1 Summary 218

10 Conclusions and future work 220

Bibliography 222

vil

List of Tables

1.1

1.2

1.3

1.4

1.5

1.6

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2

8.1
8.2
8.3
8.4

9.1

9.2

The computed roots of an inexact polynomial for Example 1.3 using

the designed root solver, with e, =107%. 9
The computed roots of an inexact polynomial for Example 1.4 using

the designed root solver, with e, =107%. 11
The computed roots of an inexact polynomial for Example 1.5 using

the designed root solver, with e, =107%. 12
The computed roots of an inexact polynomial for Example 1.6 using

the designed root solver, with e, =107%. 13
The computed roots of an inexact polynomial for Example 1.7 using

the designed root solver, with e, = 1078, 14
The computed roots of an inexact polynomial for Example 1.8 using

the designed root solver, with e, =107%. 15
The roots and multiplicities of f: (z) and g(x) for Example 6.1. . . . 133
The roots and multiplicities of f(z) and §(z) for Example 6.2. . . . 136
The roots and multiplicities of f () and g(x) for Example 6.3. . . . 138
The roots and multiplicities of f(z) and §(z) for Example 6.4. . . . 139
The roots and multiplicities of f (z) for Example 6.5. 141
The roots and multiplicities of f(z) for Example 6.6. 143
The roots and multiplicities of [(r) and g(z) for Example 7.2. . . . 170
The roots and multiplicities of f(x) and §(z) for Example 7.3. . . . 172
The roots and multiplicities of do(z) for Example 8.1. 199
Solving an inexact polynomial equation for Example 8.1. 199
The roots and multiplicities of do(z) for Example 8.2. 200
Solving an inexact polynomial equation for Example 8.2. 200
The computed roots of an inexact polynomial for Example 9.1 using

the designed root solver. 0. 205
The computed roots of an inexact polynomial for Example 9.2 using

the designed root solver. 207

viii

9.3

9.6
9.7

9.8
9.9

The computed roots of an inexact polynomial for Example 9.3 using
the designed root solver.o
The roots and multiplicities of f(T) for Example 9.4.
The computed roots of an inexact polynomial for Example 9.4 using
the designed root solver. oL
The roots and multiplicities of f (z) for Example 9.5.
The computed roots of an inexact polynomial for Example 9.5 using
the designed root solver. oo oL
The roots and multiplicitics of f(z) for Example 9.6.
The computed roots of an inexact polynomial for Example 9.6 using
the designed root solver.00

X

209
211

211
214

214
216

List of Figures

1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8

2.1

2.2

2.3

24

25
2.6

4.1

4.2

4.3

4.4

The computed roots of (z — 1),
Perturbation region, in the complex plane, of the roots of (z — 1)
when the constant term is perturbed by 2712,
The roots of the polynomial in Example 1.3, computed by MATLAB. .
The roots of the polynomial in Example 1.4, computed by MATLAB. .
The roots of the polynomial in Example 1.5, computed by MATLAB. .
The roots of the polynomial in Example 1.6, computed by MATLAB. .
The roots of the polynomial in Example 1.7, computed by MATLAB. .
The roots of the polynomial in Example 1.8, computed by MATLAB. .

The forward error Ay and the backward error Az, and their relation
to the exact solution map f and the computed solution f.
The root distribution of f(z) after the coefficients have been perturbed
and roots calculated 500 times by the roots function in MATLAB.
The root distribution of four polynomials after the coeflicients have
been perturbed and roots calculated 500 times by the roots function
in MATLAB.
Analysis of the computed roots of (2.8).
The pejorative manifold of a cubic polynomial that has a double root.
The pejorative manifold of a cubic polynomial that has a triple root.

The normalised singular values of (i) the Bézout resultant matrix B (f . 9),
and (ii) the Sylvester resultant matrix S(f, §), in the absence of noise.
The normalised singular values of (i)S(f,g), (ii) S(f,g), with ¢, =
1078,
The effect of a on the normalised singular values of S(f,ag), with
.= 1075 .
The coefficients of (i) f(z) and f(y), and (i) g(z) and §(y), with
.= 107",

10
11
12
13
14
15

19

25
27
30
31

4.6

v
O —

]
(V)

&1
2]

(@2}
(@]

6.1
6.2
6.5

6.6
6.7

6.8
6.9

6.10

6.11

The normalised singular values of (i) the matrix S(f. g). (ii) the ma-
trix S(f_, a,g) with «, = 14.971, (iii) the matrix S(f, a,g) with o, =
14.9713, 6, = 5.721 and (iv) the matrix S(,f, (vog) with o, = 14.9713,0 =
10, with e, = 1077, . . . L 72
The normalised singular values of (i) the matrix S(f.xg) with oy =
0.80789, and (ii) the matrix S(f. «,,g) with a, = 0.80789. 6, = 0.53836,

with s, = 1077, . . . 74
Histograms of four singular values of a perturbed Bézout matrix. . . . 82
(i) The covariance matrix, (ii) the first 10 x 10 submatrix of the co-

variance matrix, with e, = 1077 83

The variation of (i) the likelihood function L(r) with the rank r, (ii)
the first principal angle log vy and (iii) the error measure loge,. with

the degree k of an approximate common divisor, with e, = 1078, . . 101
The degree of an approximate GCD calculated by (i) the residuals
(5.25) and (5.28) , and (ii) the error measure e, with £, = 1078, . . 102

Histograms of the results for 1000 pairs of the polynomials using (a)
Model 1, graphs (i), (it) and (iii). and (b) Model 2, graphs (iv). (v)
and (Vi). .. 104
The number of successful computations of the calculation of d, the

degree of an approximate GCD of {f(y), g(y)}, against d, the degrec

of the exact GCD. 106
Geometry of the least square problem. 116
The variation of log ¢, and log ry with £ for Example 6.1. 134
The column of Si(f, ,g) for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k, for Example 6.1. 135
The variation of l()gﬂbk and log r, with &, for Example 6.2. 136
The column of Si(f,®.g) for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k with . = 1074, for Example 6.2. . 137
The variation of log ¢, and logr, with k. for Example 6.3. 138
The column of Sk(f, «,g) for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k with €, = 107, for Example 6.3. . 139
The variation of log ¢ and logry, with k, for Example 6.4. 140
The column of Si(f,®,g) for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k with e, = 1078, for Example 6.4. . 140
The variation of log ¢y, log s, logne and log &, with k and e, = 1078
for Example 6.5. 000 142
The column of Sy(f, a,fV) for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k with e, = 1078, for Example 6.5. . 143

X1

6.12

6.13

7.1

7.2

7.3

7.4

9.1
9.2

9.3

94

9.6

9.7

The variation of log ¢x. log r, log ne and log & with & and g, = 107®
for Example 6.6.
The column of Si(f, a,f") for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k with e, = 107%, for Example 6.6.

(i) The variation of log ¢, and log r, with &, and the normalised singular
values of (i) Sy(f. ag). (ii)S4(f, ¢), (iv) Sa(f,xg), with e, = 1078 for
Example 7.2.
(i) The variation of log ¢, and log ry with k, (ii) the normalised singular
values of Sy(f,aj) and S,(f, a.g). with . = 10°® for Example 7.3.

The method of SNTLN used to calculate (i) resy, (i) ||[Ew— f||, based
on Method 4, (iii) resg, (iv) || Ew — f]|, based on Method 5, with k, for
Example 7.3.

(i) The variation of log ¢, and log ry with k, (ii) the normalised singular
values of Sy(f,ag) and Sy(f, @eg), with e, = 107® for Example 7.3.
The method of SNTLN is used to calculate (i) resg, (ii) ||Fw — f||,

based on Method 5, with k, for Example 7.3.

The solution of a neighbouring polynomial.
The computed roots of an inexact polynomial for Example 9.1 using
(i) Newton's method, (ii) Miiller’s method, (iii) Zeng's algorithm and
(iv) the roots function. L.
The computed roots of an inexact polynomial for Example 9.2 using
(1) Newton's method, (ii) Miiller’'s method, (iii) Zeng’s algorithm and
(iv) the roots function. oL
The computed roots of an inexact polynomial for Example 9.3 using
(i) Newton’s method, (i) Miiller’s method, (iii) Zeng’s algorithm and
(iv) the roots function.
The computed roots of an inexact polynomial for Example 9.4 using
(i) Newton’s method, (ii) Miiller’s method, (iii) Zeng’s algorithm and
(iv) the roots function.o
The computed roots of an inexact polynomial for Example 9.5 using
(i) Newton's method, (i) Miiller’s method, (iii) Zeng’s algorithm and
(iv) the roots function.
The computed roots of an inexact polynomial for Example 9.6 using
(1) Newton's method, (ii) Miiller’s method, (iii) Zeng’s algorithm and
(iv) the roots function.o

xi1

144

145

171

173

206

208

210

213

215

Chapter 1

Introduction

1.1 Historical review

Finding the solutions of a polynomial equation is among the oldest problems in math-
ematics. This problem was known to the Sumerians (third millennium B.C.), and it
has deeply influenced the development of mathematics throughout the centuries and
is of great practical importance in science and engineering presently [19, 49, 59]. In
particular, solving a polynomial equation continues to be a major role in the highly
important area of computing called computer algebra, especially for polynomials of
high degree, in which case many computational tools from linear algebra, linear pro-
gramming and fast Fourier transform (FFT) may require a solution of a polynomial
equation [52]. Furthermore, many applications in computer algebra, robotics, com-
puter graphics, computer vision, geometric and solid modeling and molecular mod-
eling require a solution to a set of polynomial equations due to geometric operations
[46]. However, the current viewpoint is that there are no good, general solvers
for solving systems of more than one polynomial equation, as highlighted in [55].

1

CHAPTER 1. INTRODUCTION 2

Starting with the Sumerians and Babylonians, the study of univariate polynomial
zero finding focused on small degree equations for specific coeflicients. The solution
formula for quadratic (second degree) polynomials has been known to the Babylo-
nians (about 2000 B.C.) and the Egyptians (found in the Rhind or Ahmes papyrus
of second millennium B.C.), and those for cubic (third degree) and quartic (fourth
degree) polynomials were found successfully in the 16th century by Scipione del Ferro,
Nicolo Tartaglia, Ludovico Ferrari and Geronimo Cardano. In 1824, the mathemati-
cian Niels Henrik Abel proved the striking result that there does not exist a formula
for polynomials of degree 5 or those of higher degree. The absence of a solution for-
mula requires the development of effective numerical methods for iteratively factoring
polynomials of degree greater than 4. More details in historical review for solving a
polynomial equation have been discussed by Pan [52].

There are some outstanding algorithms that have been proposed and used in
the 20th century. Bairstow's method [21] is only valid for polynomials with real
coefficients, and impractically slow in finding a double zero, as is Miiller’s method [21]
which is based on approximating the polynomial in the neighborhood of the root by
a quadratic polynomial when the order of multiplicity is three [19]. Newton’s method
[45] requires that the initial estimate is sufficiently near the exact root for convergence,
and runs into trouble with multiple roots or closely spaced roots [59]. Laguerre’s
method (17, 26] is almost always guaranteed to converge to a root of the polynomial
for all initial estimates and performs better for multiple roots. The computation is
however very expensive as a general purpose polynomial root finder. The Jenkins -
Traub algorithm [32, 33] involves three stages and is only valid for polynomials with

real coefficients, but it is fast and globally convergent for all distributions of zeros.

CHAPTER 1. INTRODUCTION 3

These methods yield satisfactory results on a polynomial that has moderate degree
and simple and well-distributed roots, with an assumption that a good starting point
is used in the iterative scheme. Moreover, the quality of the results calculated by
standard numerical methods deteriorates as the degree of the polynomial increases,
the multiplicity of one or more of its roots increases, or the proximity of the roots
decreases. According to the view of Dunaway and Turlington [15], these methods can
fail when they encounter clustered or multiple roots and other types of ill-conditioned
polynomials. Also, several principles can be used in testing polynomial zero finding
programs, namely, program robustness, convergence difficulties, specific weakness of
algorithms and program performance by statistical testing [34].

In recent years, some new methods were therefore developed for the numerical
solution of polynomial equations, that is, determining all the zeros of a polynomial
can be solved by factorization [11], matrix pencils [35] and structure matrix-based

methods [20, 72].

1.2 Examples of errors

This section contains two examples that illustrate the problems of finding all the zeros
of a polynomial that has multiple roots. Example 1.1 shows that roundoff errors can
cause a significant deterioration in the computed roots, and Example 1.2 shows the
effect of a perturbation in a coefficient of a polynomial of high degree.

Since the roots function in MATLAB is used in Examples 1.1 and 1.2 to compute
the roots of a polynomial, it is important to explain this function in detail. The
roots function uses the QR algorithm, which is a numerically stable method [28] to

compute the eigenvalues of the companion matrix.

CHAPTER 1. INTRODUCTION 4

The companion matrix of the polynomial

FO) ="+ a X" 4 ba A+ an,

is defined as

0 1 0 0 |
0 0 1 0
C =
0 0 0 1
L —m —Om-1 —Qp-2 - a1 |

in which the first superdiagonal consists entirely of ones and all other elements above

the last row are zeros. The characteristic equation of A is equal to f()) [30], pages

146 — 147,
f(A) =det{C — Al),
that is, the eigenvalues of C are the roots of the polynomial f(A).

In numerical linear algebra, the QR algorithm is a procedure to calculate the
eigenvalues and eigenvectors of a matrix. The basic idea is to perform a QR de-
composition, writing the matrix as a product of an orthogonal matrix and an upper
triangular matrix, multiply the factors in reverse order, and iterate.

Generally, suppose that A is the given matrix whose eigenvalues should be com-
puted, and let 4y = A. At the kth step (starting with k¥ = 0), compute the QR
decomposition of Ay, that is, Ay = QxR where @y is a orthogonal matrix and Ry is

an upper triangular matrix. Then form the matrix Ax;1 = RxQ such that

Agt1 = RiQr = QT Qe Rk Qi = QF AvQr = Q¢ ' ArQx.

CHAPTER 1. INTRODUCTION

All the matrices A, are similar and thus they have the same eigenvalues. The algo-
rithm is numerically stable because it proceeds by orthogonal similarity transforma-
tions [28]. More detail about the QR algorithm can be found in [24], pages 352 — 361.

It can be concluded, therefore, that the QR algorithm can be used to compute the
eigenvalues of the companion matrix of the polynomial f(A) in order to obtain the

roots of f(A). Hence the QR algorithm is used by the roots function in MATLAB to

compute the roots of a polynomial.

Example 1.1. Consider the polynomial (z—1)'? whose root is z = 1 with multiplicity

12. The roots function in MATLAB returns the roots

1.0947

1.0433 — 0.0818:
0.9530 — 0.0753¢

which are shown in Figure 1.1.

1.0804 + 0.0488: 1.0804 — 0.0488: 1.0433 + 0.0818:

0.9963 + 0.0905: 0.9963 — 0.0905¢ 0.9530 + 0.0753:
0.9233 + 0.0423: 0.9233 — 0.0423: 0.9128

*

B Y)

Figure 1.1:

0.95 1 1.05 1.1
Real

The computed roots of (z — 1)'2.

CHAPTER 1. INTRODUCTION 6

It is clear that the multiple root has split up into 12 distinct roots because of
roundoff errors. Roundoff errors due to floating point arithmetic of O(10 '°) are
sufficient to cause a relative error in the solution of about 9 x 1072, and thus it is

unsatisfactory for the computation of multiple root. O

Example 1.2. Consider the effect of perturbing the constant coeflicient of the poly-
nomial (z — 1)!? by —e where |¢] < 1. The roots of the perturbed polynomial are the
solutions of (z — 1)1? — € = 0, that is,

1

r=1+¢m, (1.1)

Euler’s formula states that, for any real number 6,

e’ = cosf +isiné, 0 € R.

It 0 =27k, k € Z, it follows that

e?™ = cos 2k + isin 2rk = 1. (1.2)

If e = 2712, then from (1.1) and (1.2) the solution is

1

T = 1+(2—12612wk)12

1121rk
= 1+§€ 12, k:O,.ll,
= 1+1 cosﬁ+" Tk k=0 11
= 5 g Tisino), =0,...,1L

The roots are shown in Figure 1.2, and it is seen that they lie on a circle in
the complex plane, with centre at (1,0) and radius 1/2, that is, a perturbation as
small as 27! to the constant cocfficient can result in a relative error of 50% in the
solution. Hence, an error in one coefficient is small enough to cause a huge error in

the computation of a multiple root. O

CHAPTER 1. INTRODUCTION

Imag
¥

|

s

\‘\

1

Real

1.5

Figure 1.2: Perturbation region, in the complex plane, of the roots of (z — 1)'? when
the constant term is perturbed by 2712,

These two simple examples show that roundoff errors due to floating point arith-

metic and errors in polynomial coefficients, that are present in most practical exam-

ples, are sufficient to cause an incorrect and unacceptable solution.

According to the remarks of Goedecker [23], this kind of polynomial z™ — 1 in

these examples is particularly difficult for the QR algorithm, as it is applied to the

roots function in MATLAB, although the QR algorithm has considerable advantages

over other standard algorithms such as the Jenkins-Traub algorithm and a modified

version of Laguerre’s algorithm to find the zeros of a polynomial in numerical tests.

Goedecker notes on page 1062 that:

“None of the methods gives acceptable results for polynomials of degree

higher than 50,”

and he notes on page 1063 that:

CHAPTER 1. INTRODUCTION 8

“If roots of high multiplicity exist, any ...method has to be used with

caution.”

Moreover, Karcanias and Mitrouli [38] point out that the uncertainty about the true
values of the input data and roundoff errors makes the zero-finding of a polynomial

a very difficult task, especially for polynomials of high degree.

1.3 Thesis contribution

Examples 1.1 and 1.2 show that problems arise when it is desired to compute multiple

roots of a polynomial, and this leads to the aim of this thesis:

To establish the feasibility of structured matrix methods for a polynomial root
solver that can compute multiple roots of a polynomial, particularly for ‘difficult
polynomials’ in presence of noise. It is desirable that this root solver not require
an estimate of the noise level, and that all parameters and thresholds be calculated

from the data, that is, the coefficients of the given polynomial.

A polynomial root solver, based on a method developed by Gauss and described in
Uspensky [62], has been therefore implemented computationally. It is noted that this
root solver has not only been implemented for robustness in the presence of noise, but
also been developed, with a MATLAB package implementation, in order to overcome
the problems in Examples 1.1 and 1.2, and hence solve non-trivial polynomials (high
degree, many multiple roots) with a great degree of accuracy in practical application.

This polynomial root solver developed in this thesis has the following property:

The multiplicities of the theoretically exact roots are preserved, even though an

inexact (noisy) form of the polynomial is given.

CHAPTER 1. INTRODUCTION 9

The following mathematical methods are used in the development of the root solver

that is described in this thesis:
e linear programming,
e linear and non-linear structure preserving matrix methods,

e non-linear least squares.

Since the aim of this thesis is to establish the feasibility of structured matrix
methods for solving a polynomial with multiple roots, little attention has been given to
computational test and complexity. Section 6.4, however, considers how the algorithm
can be made more efficiently.

The success of this designed root solver is shown in the following examples through
several inexact polynomials whose coefficients are perturbed by noise, such that the
componentwise signal-to-noise ratio £, is 10°. Also the results are compared with
the solutions returned by the roots function in MATLAB, and more details are shown

in Chapter 9.

Exact Exact || Computed Computed Root
Multiplicity | Root || Multiplicity Root Error

1 7.0453 1 7.0453e+000 || 9.0672e-008

2 0.1127 2 1.1270e-001 || 1.5210e-009

3 2.7132 3 2.7132e+000 || 2.1410e-009

4 9.0179 4 9.0179e+000 || 3.6123e-008

5 -1.1207 5 -1.1207e+000 || 3.5537e-009

6 -8.7996 6 -8.7996e+000 || 1.0287e-008

Table 1.1: The computed roots of an inexact polynomial for Example 1.3 using the
designed root solver, with e, = 1078.

CHAPTER 1. INTRODUCTION 10

Example 1.3. The 1** and 2°¢ columns of Table 1.1 define the exact polynomial that
is perturbed by noise, such that the componentwise signal-to-noise ratio ;' is 10°.
The 3*¢ and 4* columns show the results from the root solver described in this thesis,
and the 5*® column shows the relative errors in the computed roots.

It is seen that this designed root solver can retain the multiplicities of the roots
and the relative errors in the computed roots are approximately equal to the noise
level. The roots function in MATLAB returns the roots shown in Figure 1.3. It is
clear that the multiple roots split up into a cluster of simple roots because of roundoff

errors due to floating point arithmetic and errors in polynomial coefficients. O

0.25
02 *
0.15}
0.1+
0.05r *

=-0.05F &

-0.25
Real

Figure 1.3: The roots of the polynomial in Example 1.3, computed by MATLAB.

The experiment is repeated in Examples 1.4—1.8, with different given polynomials,
and these results obtained from Examples 1.4 — 1.8 are similar to Example 1.3. Since
the explanation for Tables 1.2 — 1.6 and the analysis for Figures 1.4 — 1.8 are similar
to Table 1.1 and Figure 1.3, respectively, for simplicity, Examples 1.4 — 1.8 show only

the results that are obtained by the designed root solver and the roots function.

CHAPTER 1. INTRODUCTION 11

Example 1.4. The designed root solver is used to compute the roots of a perturbed

polynomial as shown in Table 1.2.

Exact Exact Computed Computed Root
Multiplicity | Root Multiplicity Root Error
4 -0.67547 4 -6.7547e-001 || 1.8925e-009
6 5.7335 6 5.7335e+000 || 8.2971e-009
(2.1747 7 2.1747e+4000 || 6.6402e-010
10 -9.5568 10 -9.5568e+000 || 3.6919e-008
11 -6.5553 11 -6.5553e+-000 || 3.0001e-008

Table 1.2: The computed roots of an inexact polynomial for Example 1.4 using the
designed root solver, with ¢, = 1075.

The roots function in MATLAB returns the roots shown in Figure 1.4. O
5 T
* *

41 *

o ix #
*

2.
*

1§ .

g of e ST b RS SeE

-1t « -
*

_2p-
-

_3. - .

-4. *

* *
_5 i i
-15 -10 -5 0 5 10
Real

Figure 1.4: The roots of the polynomial in Example 1.4, computed by MATLAB.

CHAPTER 1. INTRODUCTION

Example 1.5. The designed root solver is used to compute the roots of a perturbed

polynomial as shown in Table 1.3.

Exact Exact Computed Computed Root
Multiplicity | Root | Multiplicity Root Error

2 -3.4624 2 -3.4624e+-000 || 5.1724e-006

2 2.6891 2 2.6891e+-000 || 8.2232e-008

2 8.4689 2 8.4689e+000 || 3.0297e-006

8 -2.5214 8 -2.5214e+-000 || 1.5185e-006

9 -1.6262 9 -1.6262e+000 || 3.4812e-007

11 6.1616 11 6.1616e+-000 || 4.4626e-007

Table 1.3: The computed roots of an inexact polynomial for Example 1.5 using the
designed root solver, with g, = 1078,

The roots function in MATLAB returns the roots shown in Figure 1.5. a
1.5 T =
* *
1 -
9 * '* * 3
08F . 4
* *
g oo, . .
» *
-ost * ¢
-
* ot P *
_1 +
s *
-1, . X
- g R R T b B B
Real

Figure 1.5: The roots of the polynomial in Example 1.5, computed by MATLAB.

CHAPTER 1.

Example 1.6. The designed root solver is used to compute the roots of a perturbed

INTRODUCTION

polynomial, even though some roots are closely spaced, as shown in Table 1.4.

Exact Exact Computed Computed Root
Multiplicity | Root || Multiplicity Root Error

2 -3.0670 o -3.0670e+000 || 2.8952e-007

2 0.42244 2 4.2244e-001 || 1.3346e-007

2 2.5090 2 2.5090e+-000 || 7.3839e-007

3 -3.3076 3 -3.3076e+000 || 2.5817e-007

4 5.4862 4 5.4862e+000 || 2.1900e-007

5 0.63371 5 6.3371e-001 || 1.1110e-007

5 1.4923 5 1.4923e+-000 || 2.1946e-007

6 -7.5947 6 -7.5947e+000 || 6.5487e-008

Table 1.4: The computed roots of an inexact polynomial for Example 1.6 using the

designed root solver, with &, = 1078,

The roots function in MATLAB returns the roots shown in Figure 1.6.

Figure 1.6: The roots of the polynomial in Example 1.6, computed by MATLAB.

045
0.3
02k »

01p

Q"
ar T o,

CHAPTER 1. INTRODUCTION 14

Example 1.7. The designed root solver is used to compute the roots of a perturbed

polynomial as shown in Table 1.5.

Exact Exact Computed Computed Root
Multiplicity | Root Multiplicity Root Error

/] 8.3467 2 8.3467e+-000 || 6.6322e-007

3 1.5548 3 1.5548e+000 || 2.0004e-008

3 2.7865 3 2.7865e+4-000 || 2.3510e-007

5 -6.7685 5 -6.7685e+000 || 6.7958e-008

5 4.3127 5 4.3127e+-000 || 3.4052e-007

6 -1.3340 6 -1.3340e+-000 || 2.7139e-008

6 -0.77536 6 -7.7536e-001 || 1.7967e-008

Table 1.5: The computed roots of an inexact polynomial for Example 1.7 using the
designed root solver, with e, = 1078,

The roots function in MATLAB returns the roots shown in Figure 1.7. a
0.15 g - T v
* - *
0.1t
- & - »
0.05
*
o = L : * %
g w '§
-0.05}
* s - .
=0.1
* \ -
_0'15> *
-0.2

= g e e Gle TR N R

Figure 1.7: The roots of the polynomial in Example 1.7, computed by MATLAB.

CHAPTER 1. INTRODUCTION

Example 1.8. The designed root solver is used to compute the roots of a perturbed

polynomial, even though some roots are closely spaced, as shown in Table 1.6.

Exact Exact Computed Computed Root
Multiplicity | Root Multiplicity Root Error

2 1.0708 2 1.0708e+000 || 1.9686e-008

2 1.4168 2 1.4168e+000 || 1.9956e-008

5 -1.4000 5 -1.4000e+4-000 |{| 2.9568e-009

5 0.30917 5 3.0917e-001 || 1.3845e-009

7 -0.16387 7 -1.6387e-001 || 1.3390e-009

8 -3.3864 8 -3.3864e+-000 || 3.6839e-009

9 9.9370 9 9.9370e+-000 || 2.0310e-009

Table 1.6: The computed roots of an inexact polynomial for Example 1.8 using the

designed root solver, with e, = 1075,

The roots function in MATLAB returns the roots shown in Figure 1.8.

1.5

Figure 1.8: The roots of the polynomial in Example 1.8, computed by MATLAB.

CHAPTER 1. INTRODUCTION 16

Examples 1.3 — 1.8 have therefore demonstrated the success of the designed root
solver because the multiplicities of the roots are preserved in the presence of noise,
and the output relative errors in the computed roots are approximately equal to the
input relative errors.

The layout of the thesis is now detailed.

1.4 Thesis layout

The problem arises when multiple roots of a polynomial are determined in the presence
of errors, including roundoff errors, due to the ill-conditioned nature of the problem.
The concept of ill-conditioning is therefore introduced in Chapter 2, along with a
geometric interpretation of ill-conditioning. The results in Examples 1.3 — 1.8 are
obtained by implementing a polynomial root solver that requires several greatest
common divisor (GCD) computations and polynomial division operations [62]. The
rest of the thesis describes the computational implementation of this root solver, such
that it is able to compute multiple roots in the presence of noise.

An overview of previous work about solving the approximate GCD problem is
presented in Chapter 3. The resultant matrix of two polynomials, which is required
for this root solver, is considered in Chapter 4, and it is shown that some preprocessing
operations should be implemented when computations are performed on the resultant
matrix.

Chapter 5 describes three methods for the calculation of the degree of an approx-
imate GCD of an inexact polynomial pair without prior knowledge of the noise level
in the data. It is extended in Chapter 6 by three other methods, in which case the

last method is appropriate for the calculation of the degree of an approximate GCD

CHAPTER 1. INTRODUCTION 17

of an inexact polynomial and its derivative.

Chapter 7 presents the method of structured non-linear total least norm (SNTLN)
for the calculation of the coefficients of an approximate GCD. A linear structure pre-
serving matrix method for solving the polynomial division problem is then discussed
in Chapter 8 along with the calculation of the multiple roots of a polynomial by the
method of non-linear least squares.

The success of the designed root solver to find all zeros of an inexact polvnomial
is shown in Chapter 9. and a summary of the results and methods are detailed in

Chapter 10 followed by possible future extensions to the work.

Chapter 2

Ill-conditioned problems

In order to appreciate why a polynomial in the presence of errors, including roundoff
errors, can fail to find a multiple root, it is necessary to explain the concepts of for-
ward error, backward error and condition number with respect to a measure of how
much the errors can affect a change of a computed solution. This chapter contains
explanations of these concepts, along with conditioning of the roots of a polyno-
mial, especially for multiple roots, and a geometric interpretation of conditioning of

a polynomial.

2.1 Forward and backward error and condition num-
ber

Consider a function y = f(x) to be evaluated by a numerical algorithm. An approxi-
mation ¥ is the result of the algorithm and different from the exact solution y in most

cases. So how can the quality of § to be determined? The simplest error measure

18

CHAPTER 2. ILL-CONDITIONED PROBLEMS 19

is the forward error, which is defined as the difference between the result and the
solution; in this case, Ay = 7 — y. However, this is not always possible because the
exact answer may not be known. The backward error is therefore used and equal
to Az such that f(x + Az) = §; in other words. the backward error explains that
the computed solution in error is the theoretically exact solution of a neighboring
problem. In general, it is more natural to consider the relative errors |Ayl/|y| and
|Az|/|z| instead of the absolute errors Ay and Az respectively. The relationship

between these two errors is shown in Figure 2.1, which is reproduced from [28].

Input space Output space

Figure 2.1: The forward error Ay and the backward error Az, and their relation to
the exact solution map f and the computed solution f.

It is seen that the forward error is measured in the output space (solution space),

and the backward error is measured in the input space (data space).

CHAPTER 2. ILL-CONDITIONED PROBLEMS 20

The forward and backward errors of a function are directly related by the condition
number, which is defined as a measure of the sensitivity of a function to evaluation
with respect to a class of perturbations applied to the data (input parameters). If
tiny perturbations in the input space, corresponding to a small backward error, will
lead to a comparatively large change in the output space, i.e. a large forward error,
then the problem is said to be ill-conditioned. Also, it can be said in another way that
a problem with a high condition number is said to be ill-conditioned and hence highly
sensitive to perturbations, while a problem with a low condition number is said to be
well-conditioned and robust with respect to the specified class of perturbations.

Since the concepts of forward error, backward error and condition number have
been explained, the conditioning of a root of a polynomial is considered in the next

section.

2.2 Ill-conditioned polynomial

It is natural to expect that the problem of finding the roots of a polynomial is well-
conditioned, that is, a small change in the coefficients of the polynomial will result in
a small change in the roots. Unfortunately, that is not the case here. Typically, the
problem is highly ill-conditioned when the polynomial has high degree and multiple
roots. It has been shown in Example 1.2 that the multiple root is ill-conditioned and
splits into a cluster when a random perturbation is applied to the constant coeflicient
of the polynomial.

If a theoretically exact polynomial is given by

m

f(z) = az™ ap # 0, (2.1)

1=0

CHAPTER 2. ILL-CONDITIONED PROBLEMS 21

it is easy to extend the fundamental theorem of algebra to prove the existence of the

factorization
n n
Pl — 4 m _ ;
flz) =ao H(T —)™, g m; = m. (2.2)
7=1 J=1
for any polynomial f(z), so that x,,z,, ..., 2, are the distinct roots of f(r) with
multiplicities my,ma, ..., m, respectively. A simple error model is assigned to the

coefficients of the polynomial f (x), that is, a componentwise error model is applied.
Each coeflicient a, is perturbed to a; + Aa; such that

di+Aai :&1(1+T1€C), i:(),...,ﬂl, (23)

where r; is a uniformly distributed random variable in the range [~1.1] and 7' is
the upper bound of componentwise signal-to-noise ratio. It follows that the compo-

nentwise error model is define by
|Aa;| < el i=0.....m. (2.4)

.

This componentwise error model is used exclusively in this thesis. Also. the compo-

(e

that is, Aq, is a uniformly distributed random variable in the range [—e.|a,l, <.

nentwise condition number of a root of a polynomial is considered in the following

theorem [66].

Theorem 2.2.1. Let the coefficients a; of f(x) in (2.1) be perturbed to a; + Aa,
where |Aa,| < €la;|,i = 0,...,m. Let the real root xo of f(x) have multiplicity r,
and let one of these r roots be perturbed to ro + Axy due to the perturbations in the

coefficients. Then the componentwise condition number of Ty 18

Azg 1 1 1 r! L _ ’
Ke(xo) = a = 1 _ la, zy! ’}) : (2.5)
s (|fr(-”fo)| ;

= max ———
|Aail<scla] |To| €6 c Tol

The proof is described in [66], pages 18 — 20, by Winkler. He also pointed out on

CHAPTER 2. ILL-CONDITIONED PROBLEMS 22

page 22 that the componentwise backward error and condition number of a root xg

of multiplicity r of f(x) are related in a simple formula to the forward error of ry as

laa| _ <m(;z~o)>%€m (26)

|l‘0\ ¢

where 7.(Zg), the componentwise backward error of the approximate root zy of the
root z, of f(z). is given by

|f @)
~ ~7n~1‘ '

S lai

Lo

ne(Zo) =

It follows that if r = 1, that is, ¢ is a simple root, its forward error is equal to the
product of its condition number and the backward error of its approximation Ty If r
is sufficiently large, then (2.6) reduces to

lA.'Eol
£

~ Ke(To)Ees (2.7)

which is the condition for which (2.5) attains equality, that is, k.(zy) attains its

maximum value as r increases.

Example 2.1. Consider the polynomial f(z) = 2%, whose coefficients are perturbed
such that
(a) filz) = (1 +¢e)a?, (b) fo(z) = 2? + ez, () falz) = 2% +e¢.

If a polynomial is given by f(r) = agz? + a1 + ay, then it yields ap = 1,a; = 0
and a; = 0 when f(z) = z2. Suppose a componentwise error model is applied to the

coefficients of the polynomial f(z). Each coeflicient a; is perturbed to a; + Aa, such

that
Aag = 1o€ag = ToE, Aa, = rea; =0, Aay = ryeas =0,

according to (2.3), where r;,7 = 0, ..., 2 are uniformly distributed random variables in

the range [—1,1] and £7! is the upper bound of componentwise signal-to-noise ratio.

CHAPTER 2. ILL-CONDITIONED PROBLEMS 23

(a) The perturbed polynomial that is f, () = (1 +r42).r ry = 1. has a double root
at x = (). This root is extremely stable because a change in the coeflicient does

not cause any change in the root.

(b) fa(r) = 2% + = has roots at 1 = 0 and ry = —=, but (2.5) can not be used
to calculate their componentwise condition numbers because Aa, = ¢ # 0,

however, (2.5) requires that Aa; = 0.

D) 1 P
(¢) fi(r) = 2° + ¢ has roots at z = £(—=z)z.2 < 0. but (2.5) can not be used to
calculate their componentwise condition nambers because Aa, = 2 # (0. This

is exactly the same as (b) above.
O

[t is well known that any multiple root will generally. on the introduction of
random perturbations applied to the coeflicients of a polynomial. split into a cluster,

as demonstrated in Examples 2.2 and 2.3.

Example 2.2. Consider four polynomials («# — 1), (z — 1)% (r — 1)'? and (z — 1)*",
whose coefficients have been randomly perturbed by noise and roots computed 500
times, using the value . = 107%. The root distributions of the perturbed polynomials
are shown in Figure 2.2.

It is well known that a multiple root can split into a dense cluster of closely spaced
roots due to finite precision arithmetic and inexact input data. It is however possible
to determine the location and multiplicity of a dense cluster by symbolic computations
with floating-point arithmetic [31].

If the radius of the cluster is small, and the polynomial contains an isolated

multiple root, then Figures 2.2(i) and (ii) seem to suggest that the original root is the

CHAPTER 2. ILL-CONDITIONED PROBLEMS 24

approximation of the cluster of roots by a multiple root at the arithmetic mean of
the cluster. Although this approach is a simple solution with an obvious justification,

it becomes difficult to determine the location and multiplicity of the cluster as the

multiplicity of the root increases, which is shown in Figures 2.2(iii) and (iv). O
W =) e=107 fx) = (x-1)° e =10"

7 — 0.1
3
2 0.051
1 \3':. r

g 9 g 0 —:—- T e S e 4
% /‘.:’. e
=2r -0.05+ J
-3t
loss 1 1.005 T 095 1 1.05 %)

Real Real

(i)
f(x) = (x-1)'? ¢ =10"°
0.5 -

05

0.8 1 12 14 16

25

(iii) (iv)
Figure 2.2: The root distribution of f(z) after the coefficients have been perturbed
and roots calculated 500 times by the roots function in MATLAB.

CHAPTER 2. ILL-CONDITIONED PROBLEMS 25

Example 2.3. Consider four polynomials

fi(z) = (z — 0.3)*(z — 1)°, f2(z) = (z = 0.5)*(z — 1)°,

fi(z) = (z = 0.7)°(z - 1)°, fa(z) = (z - 0.9)*(z - 1)°,
whose coefficients have been randomly perturbed by noise and roots computed 500
times, using the value €, = 108, The root distributions of the perturbed polynomials

are shown in Figure 2.3.

filz)=(x-03)3%z—-1)¢ e =10"% fa(z)=(z-05°%=z—-1)° e =10"%
0.15 0.2/
0.1 0.15¢
| 0.1
0.05+ ()
of @ = i
b i I
E E 0 e
-0.05
-0.05} * o
-0
01
=0.45p -0.15}
032 0.4 06 0.8 1 12 034 05 o6 o7 08 08 1 11 12
Real Real
fa(z)=(2-0.73(@=z-1)% e, =10"8 fa@)=(z-097°@x -1 e =10"%
02 - :
0.15}
0.1
0,05+
g of
-0.05
-0.1
-0.15
e 0.7 0.8 09 1 11 12) . 13
Real Real

Figure 2.3: The root distribution of four polynomials after the coefficients have been
perturbed and roots calculated 500 times by the roots function in MATLAB.

The experiment is repeated in Figure 2.3, with two multiple roots whose separation

is reduced. It is seen that the values can be estimated by simple clustering when the

CHAPTER 2. ILL-CONDITIONED PROBLEMS 26

roots are well separated. The clusters begin to merge, however, as two roots merge
until they cannot be distinguished. More examples in which clustering fails to provide

the correct multiple roots can be found in [47]. O

It therefore seems that ill-conditioning also occurs when a polynomial has multiple
roots and/or closely spaced roots. However, James Wilkinson pointed out the fact
that the problem may also be extremely ill-conditioned for a polynomial with simple
and well-spaced roots regardless of its multiplicity or proximity [65]. In 1984, he

described this discovery:

“Speaking for myself I regard it as the most traumatic experience in my

career as a numerical analyst.”

Example 2.4. Consider a specific example, called the Wilkinson polynomial
20

f@)=1[@-9)=(@-1)z-2)(a-20), (2.8)
i=1

which illustrates a difficulty with finding the roots of a polynomial: The location of
the roots can be very sensitive to perturbations in the coefficients of the polynomial
[65]. A Newton-Raphson solver [62], pages 174 — 179, can be used to calculate the

roots, along with their forward and backward errors that are shown in Figure 2.4.
It can be clearly seen from the Figure 2.4 that a relatively small backward error
in the input space owing to the finite precision arithmetic can cause a significantly

larger forward error in the solution space. The detail about the ill-conditioning of

this polynomial has been discussed in [64, 65]. 0

The perturbations considered in Examples 2.2 and 2.3 are random (unstructured),
and as noted above, they are associated with the break up of a multiple root. However,

structured perturbations can be applied to preserve the multiplicity of the root, such

CHAPTER 2. ILL-CONDITIONED PROBLEMS 27

0
— & - Relative Forward Error
-2 — # — Relative Backward Error
e
*r [8 /.‘—Ri’ ‘\! |
- -
-6 g
e [¢
o
=]
- _1 . /7
B o g
=12F ¢
o
_14-
4 -9-
16.' "*0{*‘ Y .*,0-04
) ok MR
-18 k 8 ¥ s
0 S 10 15 20

Root Number

Figure 2.4: Analysis of the computed roots of (2.8).

that the multiple root does not break up, that is, the multiple root is well-conditioned

with respect to these perturbations. The details about these structured perturbations

are explained in the next section.

2.3 The geometry of ill-conditioned polynomial

Generally, a polynomial of degree m has its own multiplicity structure, that is, a

polynomial of degree 5, for instance,
e the polynomial (z — a)® has a multiplicity structure {5},

e the polynomial (z — a)(xz — b)* a # b, has a multiplicity structure {1,4} or

{41},

CHAPTER 2. ILL-CONDITIONED PROBLEMS 28

e the polynomial (z — a)?(z — b)3.a # b, has a multiplicity structure {2.3} or

{3,2},

e the polynomial (x — a)(z — b)(z — ¢)®,a # b # ¢, has a multiplicity structure
{1,1,3} or {1,3,1} or {3,1,1},

e the polynomial (z — a)(z — b)*(z — ¢),a # b # ¢, has a multiplicity structure

{1,2,2} or {2,1,2} or {2,2,1},

e the polynomial (x — a)(x — b)(z — ¢)(x — d)?, a # b # ¢ # d, has a multiplicity
structure {1,1,1,2} or {1,1,2,1} or {1,2,1,1} or {2,1,1,1},

e the polynomial (z —a)(z —b)(z —c)(x —d)(z —e),a#bF#c#dF#e hasa

multiplicity structure {1,1,1,1,1}.

Kahan [37] states that a polynomial of degree m with a certain multiplicity struc-
ture lies on a pejorative manifold. It is also stated that the pejorative manifold of a
polynomial plays an important role in determining if it is ill-conditioned when it has
one or more multiple roots.

In general, a multiple root is well-conditioned when the multiplicity of the root
is preserved due to the structured perturbations such that the polynomial stays on
its pejorative manifold. It is, however, ill-conditioned with respect to perturbations

that move the polynomial off the pejorative manifold, in which case the multiple root

splits into a cluster of simple roots.

CHAPTER 2. ILL-CONDITIONED PROBLEMS 30

and z; = 25 = 3.

e If f(z) has a double root and a simple root, then z; = z, # 3, and thus the

system G(x) = a is given by

—“2$2 — X3 = dl
G(x) = T2+ 27923 = G Ty # T3, Ty, 23 ER.
2 Lo ~
—T5T3 = (g,

The pejorative manifold of a cubic polynomial that has a double root is, there-
fore, a surface in R®, which is shown in Figure 2.5. Different points on the

surface correspond to different values of the double root z, and simple root z3.

15

Figure 2.5: The pejorative manifold of a cubic polynomial that has a double root.

e If f(z) has a triple root, then z; = z, = x5, and thus the system G(x) = a is

CHAPTER 2. ILL-CONDITIONED PROBLEMS 31

given by
—3r; = Iy
G(x) = 322 = a, z; € R.
—gf = g

The pejorative manifold of a cubic polynomial that has a triple root is, therefore,
a curve in R® which is shown in Figure 2.6. Different points along the curve

correspond to different values of the triple root z;. O

Figure 2.6: The pejorative manifold of a cubic polynomial that has a triple root.

Given a multiplicity structure m = {m,, my, ..., m,}, the pejorative manifold M

of a monic polynomial f (z) of degree m with n distinct roots for m is

M = { f@)=[Tj(@—2)™ | x€R", m#z; i#]}

i=1

= {G(x)=a | 4aeR™, xeR" z;#7zj, i#j} (2.9)

CHAPTER 2. ILL-CONDITIONED PROBLEMS 32

For all polynomials whose roots have the same multiplicity structure m, the system
G(x) = a defines the pejorative manifold M as a surface of dimension n in the space
R™.

[t was stated above that a multiple root is well-conditioned when the multiplicity
of the root is preserved, in which case the polynomial stays on its pejorative manifold.

This result is established in the next theorem [66).

Theorem 2.3.1. The condition number of the real root xq of multiplicity v of the

polynomial f(x) = (x — xo)", such that the perturbed polynomial also has a root of

multiplicity r, is

SR VS S (2 NS W A DY W C :
plzo) := IAFI/IN A rlaol I(@ = zo) | 7l (ZLS (721)2(%)21‘) , (2.10)

Proof. If f(z,xy) := f(z), then

flz,m0) = (z—0)"

1=0

- 4 ; <:>(—1)"(x0)ixr—i

A neighboring polynomial that also has a root of multiplicity r is
flz o+ Azg) = (x— (x0+ Axp))"

= .I‘T + Z (:) (—l)i(ﬂio + AIQ)ZICET%,
i=1 '

and hence

f(CL‘, o + A.’L'()) — f(l', IQ) — A (

CHAPTER 2. ILL-CONDITIONED PROBLEMS 33

Since

r—1
(_’17—,”[,‘())’"7] — <) r-1-- z _‘r“)l
0

it follows that to first order,
Af = f(x,z0+ Axy) — flx,19) = —rAr(e —2y)" L.

and thus the condition number of y that preserves its multiplicity is
[Azo|/lzo] 1 (= —z0)"]]
IAfI/IF A rlzo| [(x — o "”H
! HZQ 0 () (=za) 2"
7|l ”Zz o\)(ylar i
1

()
7~|;130) Zr](r') (20)

Example 2.6. The condition number p(1) of the root rg = 1 of the polynomial

(T)
) =7 <—_17 -
! Zi:()(i)

Since in combinatorics, Vandermode’s identity for binomial coefficients [3]. pages

2(0)-(7)

and thus if m = n = r, then

)

(x —1)" is, from (2.10),

59 — 60, states that

CHAPTER 2. ILL-CONDITIONED PROBLEMS 34

and it follows that

QT)
r ——
cony VT T

if » is large. The condition number must be compared with the componentwise

condition number, from (2.7)

‘A.’Eo.
’{(:(1) ~ 6—

which is proportional to the signal-to-noise ratio. By contrast, p(1) is independent of
the perturbation of the polynomial and it decreases as the multiplicity r of the root

o = 1 increases. O

It is therefore stated that a multiple root is well-conditioned when the multiplicity
of the root is preserved, in which case the polynomial stays on its pejorative manifold.
In other words, if a polynomial with multiple roots lies on a pejorative manifold, then
small perturbations on the manifold result in small changes in the values of the roots,

that is, the multiplicity structure of the polynomial is preserved.

2.4 Summary

In this chapter the concepts of forward error and backward error have been intro-
duced, including their relationship with the condition number. Moreover, it has been
demonstrated that a multiple root is ill-conditioned, with evidence of increasing in-
stability as its multiplicity increases and the break up as a cluster of simple roots,
when random perturbations are assigned to the coefficients of the polynomial. In
addition, the Wilkinson polynomial has been presented to prove that the occurrence

of ill-conditioning does not only depend on the multiplicity and proximity of a root.

CHAPTER 2. ILL-CONDITIONED PROBLEMS 35

Also, a multiple root is well-conditioned when a structured perturbation that
preserves the multiplicities of the roots is applied to the coefficients of the polvnomial.
that is, the perturbed polynomial has a root of the same multiplicity as the original
polynomial. The pejorative manifold of a polynomial has been defined in order to

motivate a geometric interpretation of ill-conditioning.

Chapter 3

A simple polynomial root solver

The conditioning of the roots of a polynomial has been discussed in Chapter 2 with
particular emphasis on the effect of the root’s multiplicity. A simple root is, in general,
better conditioned than a multiple root and it is therefore instructive to develop a
polynomial root solver that reduces the computation of the roots themselves to the
solution of a sequence of polynomial equations with simple roots only. This method,
which was known as early as 1863 by Gauss, is described in [62], pages 65 — 68, by
Uspensky.

This method differs from the methods that are mentioned in Chapter 1 because
the multiplicities of the roots are computed initially through a sequence of the greatest
common divisor (GCD) computations, after which the values of the roots are cal-
culated though polynomial division operations. Once the multiplicities of the roots
are obtained, the calculation of the values of the roots is a well-conditioned problem
because the multiple roots are kept on their pejorative manifold. The computation
of multiple roots of a polynomial can also be applied to the computation of multiple
eigenvalues [36]. Hence, a robust GCD-finder is crucial to the study of root-finding

36

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 37

when the polynomials involve multiple roots {14, 51, 70].

A simple polynomial root solver is therefore described in this chapter. The op-
erations that are required for the root solver are considered and it is shown that
their implementation in a floating point environment is not trivial because they are
ill-posed. Moreover, the data in many practical examples is inexact, and thus a prac-
tical root solver must be robust with respect to minor perturbations in the coefficients

of the polynomial. The concept of #ll-posed problem is explained in the next section.

3.1 Well-posed and ill-posed problems

The mathematical term well-posed problem stems from a definition given by Hadamard.
In [25], he claims that a mathematical model of a physical problem has to be well-

posed in the sense that it has the following three properties:

1. There exists a solution of the problem (existence).
2. There is at most one solution of the problem (uniqueness).

3. The solution depends continuously on the data (stability).

Mathematically, according to the remarks of Kirsch [40], the existence of a solution
can be enforced by enlarging the solution space. If a problem has more than one
solution, then information about the model is missing, and thus additional properties
can be built into the model. The requirement of stability is the most important one.
He notes on page 10 that:
“If a problem lacks the property of stability, then its solution is practically
impossible to compute because any measurement or numerical computa-

tion is polluted by unavoidable errors: thus the data of a problem are

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 38

always perturbed by noise! If the solution of a problem does not de-
pend continuously on the data, then in general the computed solution has

nothing to do with the true solution.”

Problems that are not well-posed are termed ill-posed in the sense of Hadamard.
Hence a problem is ill-posed if no solution exists, the problem may have more than
one solution or the solution depends discontinuously upon the initial data. The GCD
computation and polynomial division are often ill-posed, which would be explained
in detail in Section 3.3 and Chapter 8, respectively.

An ill-conditioned problem differs from an ill-posed problem because properties 1
and 2 mentioned above are satisfied by an ill-conditioned problem. The third property
is not satisfied because an ill-conditioned problem is very unstable for which a small
error in the initial data can result in much larger errors in the solutions. Even if a
problem is well-posed, it may still be ill-conditioned, that is, the solution may still
be sensitive to the input data. The Wilkinson polynomial, which has been shown in
Example 2.4, is an example because the roots are very sensitive to changes in the

coefficients of the polynomial, but they are continuous functions of the coefficients.

3.2 Factorisation via GCD computations

The polynomial root solver is considered in this section and it will be apparent that
it differs significantly from the root solvers mentioned in Chapter 1.

Consider the polynomial
do(x) = (2 — 21)™ (z — 22)™ - (z — 24) ™" 00 (),

where m; > 2,7 =1,...,n, and go(x) contains only simple roots. Since a root z, of

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 39

multiplicity m; of dy(z) is a root x, of multiplicity n, — 1 of the derivative polvnomial
d\" (x). it follows that
(l[(]l)(:x) =(z—2))" o —ux)"™ (=) o ().
where pg(ir), 01 (x) are coprime polynomials and the roots of 0y (.r) are simple. There-
fore the GCD of dy(x) and d(()l)(.r) is
GCD (dy(e), i/ (2)) = (2 = 2)™ (= o)™ (o =)

In general, let x;(z) be the product of all linear factors corresponding to simple
roots of dy(z), x2(x) be the product of all quadratic factors corresponding to double
roots of dy(z), ..., xm.(x) be the product of all factors of degree m, corresponding
to the roots of multiplicity m. of do(x). where m, is the maximum multiplicity of
the roots of dy(z). If do(x) has no root of multiplicity i, y,(x) can be set equal to a

constant. Then,

xi(z)x3(z) - (@)
differs only by a constant factor from dy(z), and thus
di(x) = GCD (do(w),di” (2)) = xalr)\3(w) - (o)
Similarly,
dy(w) = GOD (di(2). (@) = xalr3e)-),

dyfr) = GCD (da(w) (1)) = xalahndle)- - x:(a),

and the sequence terminates at d,,, () which is a constant. A sequence of polynomials

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 40

7(x),i =1,...,m,, can be defined such that
n(e) = = @)@ X (@).
dy (x
n@) = B @)x(e) (),
7—3(1.) = Ld[jg; = XS(‘/L‘)X4(1‘) e X,,,‘(Z),
dm,—1(x
Tmo(z) = Sl =y, (2),
from which all functions y, (), xo(z),. .., Xm.(x) are
71 (z) 73(T) Ton.—1(2)
x)= 1 bl M — =
1() TQ(.’E)’ X2() 7_4(:1:), X 1() Tm,(l')
until
Xm. (Z) = T (2).
This leads to the polynomial equations
Xl(I) = 07 XQ(x) = O, e aXrn,»,(I) = 0’

all of which contain only simple roots. They yield the simple, double, triple roots,
etc., of do(z), If z¢ is a root of x;(x), then it is a root of multiplicity ¢ of dy(z). If some
xi(x) are constants, then there is no root of multiplicity i. Algorithm 3.1 contains
pseudo-code for the implementation of this method described by Uspensky for the

calculation of the roots of a polynomial.

Algorithm 3.1: The calculation of the roots of a polynomial

Input A polynomial dy(z).
Output The roots of do(x).

Begin

CHAPTER 3.

1.

2.

o

End

Set 7 = 0.
While degree d; > 0 do

(a) Set j = j+1.

A SIMPLE POLYNOMIAL ROOT SOLVER

(b) Calculate the GCD of d;_; and its derivative (1;1),.

End While

dl*] .
Calculate 7, = =+, =1,...
Calculate x; = TTL yi=1,...

S(?t Xj = 7']‘.

Calculate the roots of x,;,1 =

d; = GCD ((lj_l.d_(}lf,> .

J— L

1,....J.

% They are of multiplicity 1.

41

Example 3.1. Consider the polynomial

do(z) = 2" —72° +92% 4 2927 — 53.°

—572% + 91zt + T12° — 4827 — 362,

whose first derivative is

d\(z) = 102° — 632 + 7227 + 2032 — 3182°

—985x% + 36423 + 21327 — 96 — 36.

UNIVERSITY
F SHEFFIELD
LIBRARY

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER

It follows that
di(z) = GOD (dofx),dy ()
= 2~ 22" —62° +42* + 13z + 6
dV(z) = 5z — 8z — 182 + 8z + 13
and then

dy(z) = GCD (dl(x), dg”(z)) =420 +1

2
AN
=
=
o
8
N’
Il

2r + 2

and hence

dy(z) = GCD (dg(a:),d(gl)(x)) —r+1

I
N
~~
8
~——

I

GCD (dg(x),dg”(x)) ~1.

The polynomials 71 (z), 72(z), 73(x) and 74(x) are

n = do(z) = z° — 5z +52° + 522 — 6z
di(z)
di(z) 3 2
= = —4 6
To () z "+ x+
dg(.’l?)
== = 1
73 dg(l‘) T+
d3(l‘)
= = 1
T4 d4(,7)) x -+ y
and thus the polynomials x1, x2, x3 and x4 are
Xl_"’l(x) - 22_
T2(2)
7o(Z) _ .2
X2_7'3(.'I,') = T 5 + 6
13(z)
X3 = @) 1

42

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 13

This leads to the polynomial equations

Y1i=0 = rn=0ur =1

and thus the polynomial has two simple roots at iy = 0 and o, = 1. two double roots

at 3 = 2 and z4 = 3, no triple roots, and one root of multiplicity -{ at r; = —1,
do(z) = x(x — 1) (x — 2)*(r = 3)*(r + D).

O

Example 3.1 introduces the process for the computation of the roots of a polyno-
mial. Although this process is casy to follow. some essential steps are implemented

in a floating point environment, which raises some difficult issues:

e The computation of the GCD of a polynomial pair is an ill-posed problem
because a tiny perturbation can transform the polvnomial pair to be coprime.
Even for a polynomial pair of exact forms. a non-trivial GCD can be reduced

to be a constant because of roundoff errors due to floating point arithmetic.

e The determination of the degree of the GCD reduces to the determination of the
rank of a resultant matrix, but the rank of a matrix is not defined in a floating
point environment. Since the degree of the GCD is equal to the rank loss of
its resultant matrix, a tiny perturbation in the coefficients of the polynomials
is sufficient to convert a rank deficient matrix to a matrix of full rank. which

suggests that the GCD is a constant.

e Polynomial division reduces to the deconvolution of their coeflicients, but it is

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 44

not simple to obtain a computationally stable solution because this computation

is an ill-posed problem.

The given data in many applications is affected by noise that may only be known
approximately and not exactly, and thus the polynomials are only specified with a
tolerance. It is therefore desirable that a robust polynomial root solver is developed to
overcome the difficulties mentioned above, such that the root solver does not require
an estimate of the noise level and other data. A substantial part of this thesis is
therefore devoted to the solution of the problems discussed above.

It is known that a very important part of this root solver is the determination of

the GCD of two polynomials. The computational difficulties associated with this are

highlighted in the next section.

3.3 Previous work on GCD computations

Many problems in science and engineering, such as computing theory (1], blind image
deconvolution [44, 54], signal processing [69], system identification [60] and control
theory [5], require an estimate of the GCD of a polynomial pair in the presence of
noise, that is, the computation of the GCD of two polynomials is an essential problem
in algebraic and numerical computing. For example, in image processing, the desired
image can be regarded as the polynomial GCD between two of its distorted versions
of the same scene in the z domain [54].

The usual approach to finding the GCD is to use Euclid’s algorithm [10], but
this algorithm does not perform well when noise is imposed on the coefficients of
one or both polynomials. The calculation of the GCD is an ill-posed problem and

therefore not suitable for applications that include inexact data because a tiny random

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 45

perturbation in the coeficients of a polynomial pair is small enough to reduce a non-
trivial GCD to a constant. in which case the inexact polvnomial pair are relatively

prime (coprime).

Example 3.2. Consider the polynomials.
flor) = (o= a)le—br—c)
glr) = (r—a)lr=b)lr—d).
where a # b # ¢ # d, whose GCD 1is.
GCD(f(x). g(x)) = (x — a){r — b),

If f(x) is perturbed such that,

flx) = fx) = (x — (a+da))(r — (b+ b)) (or —).

where a+6a # b # d, b+ 0b # a # d and da. 0b # 0. then deg(GCOD(f(r). g(0)) = 1,

that is, f(z) and g(x) are coprime. 0

This is a major problem in practical applications where it is common for the
coefficients (input parameters) to be disturbed by noise 16]. This may be as a result
of floating point arithmetic or the involvement of laboratory measurements, which
allow only a limited number of significant figures to be obtained.

If data errors are present, the given inexact polynomial pair are with high proba-
bility coprime, and must be perturbed slightly in order to induce a non-trivial GCD.,
This computed GCD is therefore called an approximate GCD with respect to the
given inexact and coprime polynomial pair and morcover. it is not unique because
different perturbations on the coeflicients of the polynomial pair vield different ap-

proximate GCDs.

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 46

Example 3.3. Consider the polynomials,

f2) = (z-a)(z=b)(z—0)
i(x) = (z—a)(x—-b)(x—d),
where a # b # ¢ # d. If f(x) and §(x) are perturbed such that
fl) = flo)=(z—(a+ea))(r—(b+e))(r—c)

9(x) — g(z) = (z — (a+w))(z = (b+w2))(x — d),

where €|, |€a]. |w1], jwa| < tolerance, then an approximate GCD of f(z) and g(x) is

equal to
o r—(a+e), if 64 =wy, e # ws.
o r— (b+e),if € # wy, €2 = wo.
o (z—(a+e))(r—(b+e)). if e =w, e =ws.

Different approximate GCDs of f(z) and g(x) are therefore obtained for different

noise samples, all of which are less than a threshold. U

Since the first paper about analyzing the approximate GCD problem [58] ap-
peared in 1985, several algorithms for computing an approximate GCD have been
developed, and different techniques have been used. A non-iterative maximum likeli-
hood based method is proposed by Stoica and Séderstrom [60], with an assumption
that the noise on the coefficients of the polynomials have a Gaussian random distri-
bution. An optimisation method is introduced by Karmarkar and Lakshman [39] in
order to calculate the smallest perturbations that should be applied to the coefficients
of a polynomial pair and therefore transform a constant GCD to be a non-trivial

GCD. Modifications of the Euclidean algorithm are considered in [7, 31, 51}, with

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 47

a prior accuracy level €, in which case the crucial points are the avoidance of the
ill-conditioned remainders and the choice of the termination criterion. Pan [53] uses
root grouping and the Padé approximation to compute an approximate GCD and
argues that perturbing the zeros of a polynomial pair is more efficient than perturbing
the coefficients.

In recent years, researchers have investigated matrix-based methods. and in par-
ticular, the relationship between an approximate GCD and a resultant matrix. The
singular value decomposition (SVD) of the Sylvester resultant matrix S(f. ¢) of two
polynomials f = f(z) and g = g(x). which will be called the Svlvester matrix for
simplicity, is used in [12, 16] in order to calculate an approximate GCD. Similarly,
the QR decomposition of the Sylvester matrix is described in 13, 69]. but both these
compositions do not preserve the structure of its matrix. Since the smallest non-zero
singular value of the Sylvester matrix is a measure of its distance to singularity, this
is the distance to an arbitrary rank deficient matrix 24]. and not the distance to the
nearest rank deficient Sylvester matrix. Furthermore, Bini and Boito 8] use the QR
decomposition of the Bézout resultant matrix B(f.¢) to compute an approximate
GCD and suggest that the QR decomposition of the Sylvester matrix by Corless et
al. [13] fails to detect the correct GCD degree if a polynomial has multiple roots or
a small leading coefficient.

The method of structured total least norm (STLN) [56] is used to construct a
structured low rank approximation of the Sylvester matrix S(f.¢). It is shown in
(2, 67, 73] that this approach yields an improvement in the approximate GCD com-

putation because the rank deficiency of the low rank approximation of S(f,g) is

clearly defined.

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 438

3.4 Summary

In this chapter it has been shown that the factorisation of a polynomial via GCD
computations can be used to reduce the problem of computing its multiple roots to
that of solving a sequence of polynomial equations that contain only simple roots.
Hence a simple polynomial root solver has been introduced to calculate the mul-
tiplicity of the roots initially, after which the values of the roots are determined.
There exist, however, difficult computational issues that must be addressed because
the GCD computations and polynomial divisions are ill-posed operations, and thus
their implementation with inexact data in a floating point environment requires care.

These issues are addressed in subscquent chapters.

Chapter 4

The resultant matrix

It is stated in Section 3.3 that it is common to use a resultant matrix for the calculation
of an approximate GCD of two polynomials f(r) and g{.r). This also applies to the
polynomial root solver that is introduced in Section 3.2, especially for the Sylvester
resultant matrix S(f, ¢) and Bézout resultant matrix B(f. ¢). and this chapter in-
troduces some of their properties. including theoretical and computational aspects of
resultant matrices.

A polynomial pair arce relatively prime (coprime) if and onlyv if their resultant
matrix is full rank, and if they are not coprime. the degree and coeflicients of theip
GCD can be calculated from their resultant matrix. In particular. according to Bar-
nett (5], the degree of the GCD of the polynomial pair is equal to the rank loss of
their resultant matrix, which is determined initially. after which the coefhcients of the
GCD can be obtained by reducing the matrix to upper triangular form through g
QR or LU decomposition [24]. This situation becomes much more complicated when
computations are performed in a floating point environment with perturbed coeffi-
cients of these polynomials, that is, inexact data and roundoff error can transform

19

CHAPTER 4. THE RESULTANT MATRIX 90

a theoretically singular matrix to a non-singular matrix. It is also known that the
determination of the rank of a noisy matrix is a challenging problem that arises in
many computational fields of science such as numerical analysis, signal processing,
control theory, polynomial algebra.

In this chapter, a discussion of subresultant matrices Si(f, g) is carried out, and it
is shown how they can be used to determine the degree of the GCD of f(x) and g(z)
in the absence of noise. Since data errors are sufficient to reduce a rank deficient ma-
trix to a full rank matrix, some preprocessing operations should be implemented when
computations are performed on the matrices Si(f, g) in a floating point environment.
These operations are therefore discussed in this chapter, and computational experi-
ments show that the omission of these operations leads to a significant degradation

in the computed results, particularly in the presence of noise.

4.1 The Sylvester resultant matrix

Let f = f(x) and § = §(z) be theoretically exact polynomials of degrees of m and n

respectively,

m

fz)=) aa™" and jla) = ba""", (4.1)
1=0

=0

where ag, l;o # 0.

The Sylvester resultant matrix S(f,§) € Rm+mx(m+n) of f(z) and §(z) is given
by

CHAPTER 4. THE RESULTANT MATRIX 51

(&0 b()
a o by by
a . f b
[m- 1 : i) !),171 : iR b(l
S(f.9) = o :
p, (-1 s a bn bn -1 t bl
A " : b,
-1 i })”,,1
am bn
L. -
N ~ o N S
n columns m columns (4.2)

where the coefficients a, of f(z) occupy the first n columns. the coefficients b, of §(x)
occupy the last m columns, and each of the two submatrices is a Toeplitz matrix. It

is clear that the matrix S(f, g) is strictly linear and partitioned because
Slaf + Ap, B9 + ng) = Saf. 39) + S(Ap. nq).

where «, 3, A, i are constants, and f = f(zr), g = g(x).p = p(r).q = q{x) are polyno-
mials. The derivation of S(f, g) relates to its subresultant matrices that arise when
the product of two polynomials is written as a matrix-vector product.

In particular, if f(x) and g(x) have a common divisor polynomial ¢, (r) of degree

k, there exist quotient polynomials ug(z) and v (), such that
f(z) = ep(z)up(x), deg up < deg f = m.
g(x) = ¢ () (), deg v, < deg g = n. (4.3)

for k =1,...,d, where d is the degree of the GCD of f(I) and g(r),

CHAPTER 4. THE RESULTANT MATRIX 52

k m—k n—k
ck(z) = Z ka7 ug(z) = Z W, 2R () = ka‘ixn_k". (4.4)
1=0 1=0 1=0

It follows from (4.3) that

fl@)ve(x) = glx)ug(x), k=1,....d

Since the product of two polynomials is equal to the convolution of their coef-
ficients, these polynomial products on the left and right sides can be written as
the product of a Toeplitz matrix, S, 1(f) € Rimtn—k+Dx(n—k+1) 4y Sm_k+1(9) €

RmFn=kt1)x(m—k+1) respectively, and a vector (72],

Sn—k+l(f)vk = S1n—k+l(g)uka (4-5)
where
do bO
ay by
&0 bO
Sn—k+1(f) = dm—l - &1) Sm—k+l(g) = bn—l . b1)
am b,
dm—l bn—l
I am bn J
and
T
_ m—k+1
Ui = [Uko Uk -~ Ukm—k—1 Ukm—k } eR 3
T
—_ n—k+1
Vi =1 Vko Ukl Vkn—k-1 Uknk } eR :

The expression (4.5) can be written as

=Sk :0, k':l,...,d. (46)
—Ug — U

X Vi Vi 7
Sn_k+1(f) Smﬂk+1(g)]

-

CHAPTER 4. THE RESULTANT MATRIX 93

The matrix S, = Si(f, §) € R tn-ksDx(min-2k+2) ¢ the Lth subresultant matrix,
which is formed by deleting the last (K — 1) rows of S(f g). where S(f g) is defined
in (4.2), the last k¥ — 1 columns of the coefficients of f(.r). and the last A — 1 columns
of the coefficients of g(z). It is clear that the index k ranges from 1 to min(in. n), and
Si(f,q) = S(f,§), that is, the condition k = 1 yields the Sylvester resultant matrix,

The next section considers the uses of the subresultant matrices Si(i g) for the

determination of the degree of the GCD of f(z) and §(z).

4.1.1 Subresultant matrices

The following theorem shows that the subresultant matrices Sy(f.¢) can be used to

determine the degree of the GCD of f(z) and g(z).

Theorem 4.1.1. A necessary and sufficient condition for the polynomials f(x) and
g{x) to have a common divisor of degree k > 1 is that the rank of the matriz Sk(f, 9)

is less than or equal to m +n — 2k + 1.

Proof. Since the degree of the GCD of f(:r) and g(x) is d. this polynomial pair
possess common factors of degree 1,2,... ,cf, but not a factor of degree d+ 1. The
matrix Si(f, §) is therefore rank deficient and the vectors uy. vy in (4.6) are non-zero
for k < d. For k > cf, however, Sk(f,g) is full rank and the only solution in (4.6) is
u;, = 0 and v, = 0.

rankS’k(f,g) < m+n-2k+1, k=1,....d.
rank Si(f,§) = m+4n—2k+2, k=d+1,.... min (m, n).
U

Furthermore, the assumption that f(z) and ¢(z) possess a common divisor of

CHAPTER 4. THE RESULTANT MATRIX 54

degree k < d implies dio # 0, and thus uy g, vk # 0. It therefore follows that if

Sk:[hk Hk:|7

where hy = hy(f) € RU=%+1 ig the first column of Si(f,§) and Hy = Hi(f,§) €
RmFn—ktlpx(min=2k+1) jg the matrix formed from its other columns, then (4.6) can

be written as

Vi —1
hi Hy = | he Hg =0
—Ug Tk
where
T
_ m-+n—2k+1
Tk = [Vgl 0 Vkm—k —Uko cr —Ukm—k] €eR ;

and v, o can be set equal to —1, that is, a linear algebraic equation can be obtained

by moving hj to the right hand side,

Hyxz, = hy, for k=1,....d,

Hyxg # by, for k=d+1,... min(m,n). (4.7)

For each value of k < d, (4.7) possesses an infinite number of solutions, because
H,. is rank deficient, but only a finite number of this infinite number of solutions xy

yield polynomials u; and vy, such that
f@) _ §)
ue(z) vk(z)’

is a polynomial and not a rational function. When k = d, there is a different situation

cx(T) = (4.8)
because (4.7) has unique solution. In this case, since the GCD is unique and condition
Uk,0 = —1 has been imposed, the polynomial ¢;(z) is equal to the GCD of f(z) and
g(z).

The polynomials f(z) and §(z) have a finite number of common divisors, defined

CHAPTER 4. THE RESULTANT MATRIX

(@1
(@]

up to a scalar multiplier, and therefore a finite number of coprime polynomials. An
infinite number of vectors. however, defined to within an arbitrary scalar multiplier,
lie in the null space of S(fA, g) 1. and it is therefore instructive to consider the charac-
terisation of the vectors that lie in the null space of S(f ¢). but do not define coprime

polynomials. Example 4.1 shows the solution to this problem and it is shown there

is a clear difference in the cases k < d and k = d.

Example 4.1. Consider the polynomials

fl)=(z=1)(z=2)(r =3)=a* =65 + 11r — G.
and
g(x) = (x — 1)*(x —2) = 2% — 4% 4+ 50 — 2.

whose GCD is of degree 2.

The Sylvester matrix S(f, §) = S1(f. §) of f(x) and §(r).

1 0 0 1 0 0
-6 1 0 -4 1 0

11 -6 1 5 —4 1
(4.9)
-6 11 —6 -2 5 —4

0o -6 11 0 -2 5

6 0 -6 0 0 —2J

has rank 4 because the rank loss of S(f,§) is equal to the degree of the GCD of f(z)

and g(x) [5]. The family of vectors that lie in the null space of S(f.g) is

IThe dimension of the null space of a matrix A is called the nullity of A. The rank and nullity
of a matrix A with n columns are related by the equation: rank{A)~nullity(A4)= n.

CHAPTER 4. THE RESULTANT MATRIX 56

U1,0 1,0
U1, U1
Vi V12 —V10 — U1
== = s
—u —U1,0 —V10
—Un 2010 — V1
|_ —-ulvg L 31)1‘0 + 3’01,1

where v and v;; are non-zero arbitrary parameters, such that

Ul(l') = Uly(].’E2 — (21)1,0 - U]’1)$ — 3’01,0 - 31)1‘1 = (?)110.’1? + V1,0 + ”Ul,])(l' - 3)
vi(z) = vier’ +vnT — V10 — V1,1 = (V1o + V19 +v11) (T — 1),

and thus the common divisors of f(x) and §(z) are

_f@) @) (e-DE@-2)
o(z) = ui(z) vi(z) vier +vie+vig (4.10)

The GCD of f(ac) and g(z) is obtained for v, = 0,v;; # 0, and ¢(z), which is in

general a rational function, is proportional to the linear common divisors (z — 1) and
(z —2) of f(z) and §(z) for
V1,1 = —21)1‘0 and V11 = —3'01,0, (411)

respectively. Other values of vy o and vy yield rational functions ¢(z), and they are
therefore not of interest. It follows that the null space of S(f,§) includes a vector,

defined up to an arbitrary scalar multiplier, that defines:

e the GCD of f(x) and §(z),

e a finite number of vectors, each of which is defined up to an arbitrary scalar

multiplier, that represent the coefficients of the common linear divisors of f (x)

and g(x),

CHAPTER 4. THE RESULTANT MATRIX o7

e an infinite number of vectors vy and u, that define polynomials. which lead to

rational functions ¢(x).

The situation is slightly different when (4.7) is considered because the constraing
v1p = —1 implies only a subspace of the null space of the Sylvester resultant matrix
(4.9) is considered. In particular, it follows immediately from (4.10) that this con-
straint cannot recover the GCD of f(l) and g(x). but it follows from (1.11) that it
can recover their common linear divisors. It is shown. however. that the GCD of

f(x) and §(x) can be recovered from the subresultant matrix So(f. g) if v,y = —1.

If £ =1 and, then S(f,f/) = S,(f.¢) and it follows that (1.7) becomes

0 0 1 0 0 - q 1
Ui
1 0 —4 1 0 —6
U2
—6 1 5 —4 1 11
—Ul = . (112)
11 -6 -2 5 —4 —6
—Uyq
6 11 0 -2) 0
—Uyn
0 —6 0 0 -2 B . 0

where the coefficient matrix H, also has rank 4. This equation therefore has an

infinite number of solutions,
upo=-1, wmp=wv)1+2, wa=3-3v,. vi2=1-0,.
where vy, is arbitrary, and
u(z) = =2+ 2+v)e+3-301 = (—r+uvy =)o —3)
v(z) = -2 +tv e+l v, =(—x+uv,, - Dr-1).
It follows from (4.8) that the common divisor ¢ (z) is

f@) glx) (-1 —2)

alz) = = = ‘
S T @) S -1

CHAPTER 4. THE RESULTANT MATRIX 58

It is seen that ¢ (z) is, in general, a rational function, and only two values of the
arbitrary parameter vy ; yield a polynomial. In particular, the value vy; = 2 yields
the common divisor ¢;(z) = —(x — 2), and the value v;; = 3 yields the common
linear divisor ¢;(x) = —(z — 1). These values of v, ; are, as required, the same values
specified in (4.11).

Consider now the situation & = 2, in which case (4.7) becomes

0 1 0] [1]
1 -4 1 [V21] —6
6 5 —4 —upg | = 11 |, (4.13)
11 -2 5) —Usg 1 —6
6 0 -2 0

which has the unique solution
vo1 =1, wuo=-1, wug; =3.
Since v2 o = —1, it follows that
us(z) = —(— 3) and ve(z) = —(x — 1)
which are coprime, and (4.8) shows that the common divisor is
c2(z) = —(x — 1)(z = 2).

Consider now the situation k& = 3, in which case (4.7) becomes

] 1
—4 —6
(—U3,o) =)
5 11
| 2] | —6]

Since this equation does not possess a solution, the polynomials f(x) and §(r) do not

CHAPTER 4. THE RESULTANT MATRIX 59

have a common divisor of degree & = 3. and thus the degree of the GCD of f(r) and

g(x) is two. O

The next section considers the definition of the Bézout resultant matrix.

4.2 The Bézout resultant matrix

The Sylvester resultant matrix was introduced in Section 4.1, and some of its prop-
erties were described. This section considers the Bézout resultant matrix, which is
another resultant matrix that will be used by the principle of maximum likelihood for
the calculation of the degree of an approximate GCD of two polynomials in Section
5.1

It is shown in [5], pages 44 — 45. that the element 3, ; of the Bézout resultant

matrix B(f,§) € R ¢ = max(m,n) is

,3 ;= &n*z*j+2-bn~l’+"'+

1,}

&n—zvj+13 i)n| +
[N

min(i—1,j—1)

D i erer bkl ij=1 0 (4.14)

k=0

where |a;, b]| = &21;]- —&]131-. In particular, every element of B(f.) is a bilinear function
of the coefficients @, of f(z) and b, of §(x). The matrix B(f.§) is of order ¢ x ¢. and
if m > n then g(z) is padded with m — n zeros. and similarly if n > m.

Compared with the matrix S(fA,‘(}) that is strictly linear and partitioned, the

matrix B(f,§) is bilinear, and thus it arises
Blaf.8§) = a8B(f.§). a.3€R\0. (4.15)

Moreover, B(f, g) plays an important role in many ficlds of symbolic and numerical

CHAPTER 4. THE RESULTANT MATRIX 60

computing, including signal processing and control theory [4, 18, 27].
The Sylvester and Bézout resultant matrices are introduced above, and some of

their properties are therefore considered in the next section.

4.3 The rank of a resultant matrix

The following property makes B(7 g) and S(1, g) attractive for performing compu-

tations on rank estimation '5]:

e The rank loss of B(f,§) and S(f,) is equal to the degree of the GCD of f(x)
and g(x).

~

This property for the exact polynomial pair f(z) and §(x) is extended to the inexact
polynomial pair f(z) and g(x) by assuming either that the numerical rank of B(f, g)
and S(f, g) is defined, or that the noise level is known, such that a threshold can be
placed on the small singular values of these noisy matrices.

The determination of the rank of a noisy matrix is a challenging problem that
arises in many computational fields of science. Although the SVD of a resultant
matrix is frequently used to determine the numerical rank of a matrix [12] [16] [42]
[72], it suffers from disadvantages. In particular, the presence of roundoff error due
to finite precision arithmetic may suggest that a matrix is non-singular even if this
matrix is theoretically singular. The following example shows that the numerical rank
of B(f, g) and S(f , §) may not be defined, even if only roundoff errors are present

and the exact polynomial pair f(z) and g(x) are used.

CHAPTER 4. THE RESULTANT MATRIX 61

Example 4.2. Consider the exact polynomial pair
f) = (-1 -2P=-5)
§(z) = (z-1)(z-2)*(z-6)°

whose GCD is of degree 3.

o—e 0
-5 =5
o8 o .
L -0 L -0
o o
S -15 g -15
-20 =20
»
PG ae W R B SNe 2% 5 10 15 20
i i
(i) (ii)

Figure 4.1: The normalised singular values of (i) the Bézout resultant matrix B(£,9),
and (ii) the Sylvester resultant matrix S(f, §), in the absence of noise.

Figure 4.1 shows the normalised singular values o;/a; of B(f,§), and the nor-
malised singular values of S(£, §g), in the absence of noise. Figure 4.1(i) shows that
the rank of B({. g) is not defined, and Figure 4.1(ii) suggests that the degree of the
GCD of f (z) and §(z), computed from S(f,§), is 4 rather than the correct answer

of 3 because

Oi 014
max { — 3 = —,
=1,...,17 0'1+1 0'15

These computations are performed in the absence of data errors, that is, only

roundoff errors are considered, and thus the results for inexact polynomial pair must

CHAPTER 4. THE RESULTANT MATRIX 62

necessarily be inferior. O

This example and the preceding discussion show that the SVD of B(f ,g) and
S(f, §) cannot be used to estimate the degree of the GCD of f(x) and §(x), and this
disadvantage of the SVD is more apparent when data errors are present because the

data errors are usually much larger than roundoff errors. Furthermore, Triantafyllou

and Mitrouli [61] point out that

“the roundoft errors during the numerical implementation of the algo-

rithms . .. may lead to serious problem for the computation of the rank of

the Sylvester matrix.”

Alternative methods have been proposed, such as the rank revealing QR decomposi-
tion [9], the rank revealing LU decomposition [48] and a new rank revealing algorithm
141, 43].

One problem with the vast majority of methods is that a threshold, as a function
of the noise level, is required to be manually set in order to determine the index of the
smallest singular value that defines the numerical rank. This is a problem because the
noise level may not be known, or it may only be known approximately. The following
example shows that the numerical rank of S(f, g) of the inexact polynomial pair f(z)

and g(x) can be defined with a priori knowledge of the noise level that is imposed.

Example 4.3. Consider the polynomial pair f (z) and g(z), from Example 4.2, and
introduce a componentwise error model, which is defined in (2.3) and (2.4), to the
coefficients of f(z) and g(x) with a signal to noise ratio ;' = 10° that is, the exact
polynomial pair change to the noisy form of f = f(z) and g = g(z).

The Sylvester resultant matrix, S(f,g) € R*¥*!® is now constructed from the

perturbed polynomial pair, and the rank function in MATLAB is called. If the default

CHAPTER 4. THE RESULTANT MATRIX 63

tolerance is used, then MATLAB returns a rank of 1.1 If the tolerance is manually
set to 107!, then the calculated rank is 16. The correct rank of 15 can be obtained
when the tolerance is set equal to 2. as 10 Y. It is clear that setting this threshold

may be problematic if the signal-to-noise ratio is not known exactly. O

4.4 Preprocessing operations

It has been shown that the subresultant matrices Si(f. ¢) can be applied to determine
the degree of the GCD of f(r) and g(x). This is. however. not the case when com-
putations are performed in a floating point environment. especially for the inexact
polynomials f(z) and g(zx). The matrix Si(f. g) is reduced to a matrix of full rank
because f(x) and g(x) are coprime. Three preprocessing operations are therefore
considered in this section for the improvement of computational results on rank esti-
mation, and two of them originate froni the partitioned nature of the Sylvester matrix,
and one of them originates from the difficulty of performning reliable computations on
polynomials whose coefficients vary widely in magnitude.

In [22] Ghaderpanah and Klasa remark that:

“A wide variation in the magnitude of coefficients of polvnomials may be a
source of computational problem in root-finding algorithm, as the tloating
point arithmetic operations on such coefficients may render floating point

overflow or underflow,”
with particular emphasis in the application of root-finding methods:

“particularly those involving calculation of the greatest common divisors

of two polynomials.”

CHAPTER 4. THE RESULTANT MATRIX 64

It is therefore important that the inexact polynomial pair need to be processed be-
fore an approximate GCD is computed, and it is necessary to distinguish between
exact and inexact polynomials. Thus, f(z) and g(z) denote the inexact forms of the

theoretically exact polynomials f(z) and §(z), respectively, which are defined as

f(z) = Zalm’"’_i and g(x) = Z b, (4.16)
: =0
where ag, by # 0.

The matrix Si(f, g) has a partitioned structure because the coefficients of f(z)
occupy its first n — &k +1 columns, and the coefficients of g(x) occupy its last m —k +1
columns. It may therefore yield an unbalanced matrix Si(f.g) if the coefficients
of f(z) are much smaller or larger than the coefficients of g(z). For example, if
la,| > |bj],i =0,...,m,j =0,...,n, then the rank of S(f, g) is approximately equal
to n even if f(z) and g(z) are coprime, and similarly, if |a;| < |b;|, then the rank of
S(f,g) is approximate equal to m. These are the two extreme conditions, but they
illustrate the problems that can occur if precautions are not taken. It is therefore
necessary to preprocess the polynomials instead of the matrix in order to preserve
the structure of the matrix.

The first preprocessing operation therefore involves normalising the coefficients
of f(z) and g(x) by the geometric mean of their coefficients, such that Sk(f,g) is
better balanced. The 2-norm of the coefficients of a polynomial is frequently applied
for normalisation because it yields a matrix that is better conditioned [8] [13]. It
has been established computationally, however, that it is advantageous to normalise
the coefficients of a polynomial by the geometric mean of its coeflicients because

it provides a ‘better average’ when the coefficients of a polynomial vary widely in

CHAPTER 4. THE RESULTANT MATRIX 65

magnitude. Thus f(x) and g(r) are scaled from f(r) and ¢g(r) by the geometrie
means of their coefficients, and are therefore given by

_ a
f(I) = E ax™ a, = _—'—"1———‘ (117)
i==0 (T2 sty

and

13 - ;)
g(x) = bir™ . b = ——————— (4.18)
'zz; (H,”:() Ibz.‘)ﬁ

where a; and b, are the non-normalised coefficients of f(r) and g(.r) respectively, and
it is assumed they are non-zero. If. however. one or more of these coefficients are

zero, then the geometric mean is computed with respect to the non-zero coefficients

only, and not all the coefficients.

Example 4.4. Consider the exact polynomial pair

flx) = (x4 0.5161)"(x + 7.1052) (s + 0.1132)*

'

glz) = (z+0.5161)"(x + 7.1052)° (r + 8.861.1)7 (1 — 2.0476)

whose GCD is of degree 10. A componentwise error is applied to the coefficients of
f(x) and g(x) with signal-to-noise ratio =, ! = 10", that is. the exact polynomial pair
change to the noisy forms f(z) and g(r).
The importance of normalisation by the geometric mean is shown in Figure 4.2,
and it is seen that the matrix S(f,g) can give a better estimate of the degree of an
('L>'

approximate GCD of f(x) and g(x). compared to the matrix S(f. ¢). because

rank S(f,g) =13 = deg GCD(f.g) =21 = incorrect.

rank S(f,g) =27 = deg GCD(f.g) =10 = correct.

Consider now the second preprocessing operation.

CHAPTER 4. THE RESULTANT MATRIX 66

0 0
-5
-5
g o
-~ ~
o 6™ -10
g -1 g
-15
=20 w
e 10 20 30 40 %y 10 20 30 40
i i
(i) (ii)

Figure 4.2: The normalised singular values of (i)S(f, g), (ii) S(f,3), with e, = 1075.

Since

deg GCD (f, g) = deg GCD (f,ag),

|

where « is an arbitrary non-zero constant, it follows that |
|

J

rank loss S(f, g) = rank loss S(f, ag),

and thus the polynomial g(z) can be generalised to ag(z), where a can be used to
achieve optimal results using a specified criterion. This criterion and the method used
to calculate the optimal value will be addressed after the third preprocessing operation
has been discussed. It is therefore better to use the Sylvester matrix S(f, ag) rather
than S(f,g). It would seem intuitive that this scale factor a has no obvious effect

on the determination of the rank of Si(f,ag). The following example demonstrates,

however, that this is not the case.

CHAPTER 4. THE RESULTANT MATRIX 67

Example 4.5. Consider the exact polynomial pair
fla) = (v + 1.8646)(x — 4.1764)*(x — 6.9955)°(x — 8.2475)°

g(r) = (r+1.8646)"(x — 4.1764)"
whose GCD is of degree 3. Componentwise errors are added on the coefficients of
f(I) and g(x) with signal-to-noise ratio ¢! = 10” in order to construct the noisy
forms f(r) and g(x).

Figure 4.3 shows the normalised singular values of S(f.ag) for six values of a.
Since deg f(x) = 15 and degg(x) = 6, the coeflicients of f(z) occupy the first 6
columns of S(f, ag), and the coefficients of ag(z) occupy the last 15 columns. It is
shown that rank S(f, ag) = 6 = deg g(x) when o = 1, and that rank S(f,ag) ~ 15 =
deg f(z) when v = 101°. Also, it can be seen clearly that the matrix S(f, ag) appears

' in particular, rank loss S(f, ag) — 3 =

more and more rank deficient as a — 1(
deg GCD(f, ¢). It is however rcasonable because

max |coeflicients of f(r)|

~ 10
max |coefficients of g(z)| ’

and thus a ~ 10" ‘balances’ the Sylvester resultant matrix. O

Consider now the third preprocessing operation.

It is known that computations performed on polynomials whose coefficients have
a wide variation in magnitude are unreliable [14] [22], and it is therefore necessary to
minimise this variation. This is achieved by the substitution

x =0y, (4.19)

in (4.17) and (4.18), where 6 is a parameter whose optimal value is to be determined

and y is the new independent variable. The polynomials f(z) and g(z) are therefore

CHAPTER 4. THE RESULTANT MATRIX

log ci/o1

log oilo1

Figure 4.3: The effect of o on the normalised singular values of S(f,ag), with &,

107°.

o=1

25

=15

=20

=10

=15

10

15

a=10"

25

25

log o, /o,

logo./o

log o, / o,

68

o= 10°

i
o= 10"

0000

-10+

CHAPTER 4. THE RESULTANT MATRIX 69

transformed to the polynomials f(l/) and ¢(y) respectively.

Ketd

fl) = (@™ "y (4.20)

1==0)

and

n

ly) = (08" g (4.21)

1=0

where @, and b, are defined from (4.17) and (4.18). respectively.

The arguments of S(f,ag) are the coefficients @, and ab#" * of f(y) and
ag(y), and thus « and #, which originate from the 2nd and 3rd preprocessing oper-
ation respectively, can be calculated simultaneously. such that the ratio of the max-
imum coefficient in magnitude to the minimum coeflicient in magnitude of S(f, ag)

is minimised,

(o, B, = arg min . — — e - . 4.22
a6 | min {mln,zo‘“_'m la,0m="| ‘minj;_,_, lab#" 1} ()

where «, and 6, are the optimal values of a and 0 respectively. The minimisation
problem can be written as:
Minimise t/s

Subject to

t>la;| 0™, i=0..... m
t>alb|6m7, j=0.....n
s <la,| 6™, i=0..... m
s <« }ljj‘ o™, j=0,....n
5> 0
6>0

a >0

CHAPTER 4. THE RESULTANT MATRIX 70

The transformations
T =logt, S =logs, ¢ =logh, u=1loga
and
&; = log|a,|, 3; = log|b;],
enable this constrained minimisation problem to be written as:

Minimise T — S

Subject to
— (m—1i)p >, 1=0, ™m
— (n—7j - > 3;, =0,...,n
(7)é woz B; J (4.23)
=S + (m—1i)¢ > —q; 1=0,...,m

If the solution of this linear programming (LP) problem is ¢, and 6,, the polyno-

mials (4.20) and (4.21) become, respectively,

f)=>Y ay™ and Gy)=> by, (4.24)
i=0 i=0
whose coeflicients
Eli = (_liegnhi and lN)i = Z)ﬂg—i, (425)

form the entries of Sk(f, 0a.9),k = 1,...,min(m,n). All GCD computations are

performed on the polynomials f(y) and g(y). It is noted that
deg GCD(f,9) = deg GCD(f,9),

and thus

rank S(f,g) = rank S(f,§).

CHAPTER 4. THE RESULTANT MATRIX 71

The importance of polynomial scaling by a, and 6, is shown in Example 4.6, and
it is also shown that failure to implement this substitution (4.19) may cause incorrect

results to be obtained.

Example 4.6. Consider the exact polynomial pair

f(z)
g(z) = (z—9.3722)(z + 9.9450)"(z + 0.6239)*

(z — 9.3722)%(z + 9.9450)°

whose GCD is of degree 7. The coefficients of f(z) and §(z) are perturbed by

componentwise errors with signal-to-noise ratio ;! = 107 in order to construct the

noisy forms f(z) and g(z).

14 - 10
) - ot
12| —#—scaling f(y) o g 8 —e— scaling g(y) e o -
10 p=2 »” b
/ 6 D’
ol ’)~ - i ;7
« o* o
o y o ~
g 6 ; g ¢ &
4 » /'
o 2 b 4 d
2 o 4
) ’
o ‘r o+ €
) 5 g 15 b R R i i ek RS
1 I
(i) (ii)

Figure 4.4: The coefficients of (i) f(z) and f(y), and (ii) g(z) and §(y), with e, = 1077,

First, f(z) and g(z) are normalised by their geometric means using (4.17) and
(4.18), respectively, in order to obtain f(z) and g(z). Then the optimal values a,
and 6, of o and 0, respectively, are calculated from the LP problem, such that the

CHAPTER 4. THE RESULTANT MATRIX 72

reduction in the magnitude of the coefficients of f(z) and g(z) arises from the substi-
tution (4.19). Hence f (y) and g(y) are computed from (4.24), and their coefficients
are shown in Figure 4.4, compared with the coefficients of the original polynomial

pair f(z) and g(z).

a=1, 6=1 o =14.9713, 6=1
Opeeooe - e
P
=5
-5
© .10 o
. ~
© o -10
o
g - g
i -15
s 5 10 . 15 20 25 s 5 10 15 20 25
i i
(i) (ii)
a = 149713, § =5.721 @ = 14.9713, 6=10
ore oo
-2} -2
o o4
[)
~ -6 o
o o
8) -8 S} -8
-10 -10
-12 -12 b
m 5 10 15 20 25 it 5 10 15 20 25

(i) (v
Figure 4.5: The normalised singular values of (i) the matrix S(f, g), (ii) the matrix

S(f, a0g) with ap = 14.971, (iii) the matrix S(f, ag) with o, = 14.9713,6, = 5.721
and (iv) the matrix S(f, ®g) with o, = 14.9713,6 = 10, with e, = 107",

CHAPTER 4. THE RESULTANT MATRIX 73

[t can be seen from Figure 4.4 that the variation in the magnitude of the coeffi-
cients of f(x) and g(x) becomes small after scaling of this polynomial pair. Figure
1.5 shows the normalised singular values of the different matrices produced as 6 ig
varied. Tt is clear that Figure 4.5(iii) returns the best and correct answer rather than
the other three figures, and it seems that polynomial scaling with optimal values of
«, and 6, would be more effective on the rank estimation of a Sylvester resultant

matrix.]

Example 4.7. Consider the exact polynomial pair
flr) = (x4 1.9424)(z — 1.8499)*(z — 4.996)" (z — 0.1004)°
glx) = (r+1.9424)"(x — 1.8499)°(x — 0.3862)*

whose GCD 1is of degree 5. Componentwise errors are added on the coefficients of
f(r) and g(x) with signal-to-noise ratio ;! = 107 in order to construct the noisy
forms f(x) and g(r).

Figure 4.6(i) shows that the rank of S(f, a,j) is equal to 27 and the rank loss
is equal to 7, which is incorrect and poorly defined. Figure 1.6(i1) suggests that the
rank of S(f, a.g) is equal to 29, that is, the degree of an approximate GCD of f(x)
and g(x), computed from S(f, a,g) with a, = 0.80789, 6, = 0.53886, is equal to 5,
which is correct and clearly defined. It can be seen that the scaling polynomial pair

with the substitution (4.19) is very important to determine the rank of a Sylvester

resultant matrix. m

CHAPTER 4. THE RESULTANT MATRIX 74

o= 0.80789, 6=1 o= 0.80789, 9°= 0.53886
0 0
-5 -5
o o
— -~
5~ =0 6~ -10
o o
o i}
-15 -15
W e W0 W B % 5 2% 5 10 15 20 28 %0

(1) (i)
Figure 4.6: The normalised singular values of (i) the matrix S(f,a,g) with a, =

0.80789, and (i) the matrix S(f,aog) with a, = 0.80789,68, = 0.53886, with &,
107

4.5 Summary

This chapter has reviewed some properties of the Bézout resultant matrix and Sylvester
resultant matrix, in which the rank loss of a resultant matrix is equal to the degree
of the GCD of the polynomial. The subresultant matrices of a Sylvester matrix that
are obtained by deleting some rows and columns of the Sylvester resultant matrix
are important when it is required to calculate an approximate GCD of an inexact
polynomial pair.

Three preprocessing operations have been considered to perform on the Sylvester
resultant matrix and its subresultant matrices in order to improve the rank estimation

problem. If f(z) and g(z) are the given inexact polynomials, then

1. normalising f(z) and g(z) by the geometric means in order to obtain f(z) and

g(x),

CHAPTER 4. THE RESULTANT MATRIX 75

2. scaling g(x) by a,
3. scaling f(z) and g(z) by 6,,.

where «, and 6, are the optimal values calculated from a LP problem. Also. com-
putational experiments have shown that the utilisation of these operations causes a

significant improvement in the computed results.

Chapter 5

The degree of an approximate

GCD, Part 1

It has been shown in Chapter 3 that the crucial part of the polynomial root solver
is the calculation of an approximate GCD of a noisy polynomial pair. The most
difficult part of the calculation of an approximate GCD is the calculation of its
degree because this is a non-trivial problem that reduces to the estimation of the
rank loss of a resultant matrix, the entries of which are functions of the coefficients of
this polynomial pair. It has been stated in Chapter 4 that the determination of the
rank of a resultant matrix in the presence of noise is a challenging problem, in which
the computation is usually performed by placing a threshold on the small singular
value of the matrix. It suffers, however, from disadvantages because the numerical
rank of the matrix may not be defined, or the noisy level may not be known, or it may
only be known approximately. Moreover, Examples 4.2 and 4.3 show the limitations
of a standard rank estimate method, and they provide the motivation for this chapter
and the next chapter.

76

CHAPTER 5. THE DEGREE OF AN APPROXINATE GCD. PART 1 77

[t is therefore necessary to develop some new methods that do not require the
knowledge of the noise level, and are performed diveetly on the coetlicients of a noisy
polynomial pair. This means that these methods are entivelv data driven. such that
thresholds, parameters and constraints are not required. Three methods for the
calculation of the degree of an approximate GCD are described theoretically and

compared computationally in this chapter.

e Method 1: The principle of maximum likelihood (ML), Probability dis-
tributions are assigned to the non-zero and zero singular values of the Bézout
resultant matrix B(f. ¢). which enables a likelihood expression L(r) of the sin-
gular values, as a function of the assumed rank . to be developed. where the
first 7 singular values are assigned a distribution that is appropriate for the
non-zero singular values, and the other singular values are assigned a distri-
bution that is appropriate for the zero singular valnes. The value of r, that
maximises L(r) enables the degree of an approximate GCD of fir) and g(r)

to be calculated.

e Method 2: The angle between subspaces. The Svlivester resultant matrix
S(f,¢) has a partitioned structure. and this enables two subspaces to be de-
fined. The angle between these subspaces changes significantly from the Ath
subresultant matrix Si(f.g) to the (A + 1jth subresultant matrix Sy (f. g),
where the integer £ is the degree of an approximate GCD of f(r) and g(r).
The compelling advantage of this method is that additional assumptions are

not required.

e Method 3: The residual of approximate linear algebraic equation.

The error between two estimates of an approximate common divisor of f(r)

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 78

and g(x), as a function of its degree k, has a minimum at the degree of an

approximate GCD of f(z) and g(z). This method also does not require any

additional assumptions.

5.1 Method 1: The principle of maximum likeli-
hood

The principle of maximum likelihood (ML) can be used to estimate the rank of the
Bézout resultant matrix B(f, g), where the elements of B(f, g) are defined in (4.14),
and f(z) and g(x) are defined in (4.16). The ML estimate of the rank of the matrix
B(f,g) is the value of the rank that maximises the likelihood expression, which can

be derived from Zarowski [68].

Consider a matrix B(f, g) € R®*¢ of rank r < ¢ whose theoretically exact singular

values are

01209226, >

e}

g, —
0r+l:0r+2:"'zac:0'

In many practical problems, the singular values are known approximately and not

exactly, in which case only estimates o; of the exact singular values &; are available,

(}i+€' izl,...,T
0, = ' (5.1)
€; 7;27'—*-1,...,(1.
It is assumed that the errors e; are statistically independent random variables

with Gaussian and exponential probability distributions,

L ex iz =1
2rs P 242 t=1...,7

Bexp(—03e;) i=r+1,...,c

ple) = (5.2)

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 79

where s, 3 > 0. The model is used because it enables considerable analvtical progress
to be made, and in particular, it provides a trade-off between a physically accurate
model and a mathematically simple model.

It follows from (5.2) that assuming all the random variables are independent. the

joint probability density function of the random variables ¢, is

r «

2 -
E er— 3 2 e | .
1=1

1=r—+1

/(‘,—7' 1
)= ——=exp | —
p(o) 2re)t P | "0
and the substitution of e,, from (5.1), into this expression vields the probability

density function for the estimates o; of the exact singular values 4.

c—7 1 r , c
plo) = E‘i’;g)'; exp <—§ Z(O’, —0,) =3 Z Jl> . (5.3)

1=1 1=r-1

The ML estimate 3 of 3 is obtained by setting the partial derivative of log p(o) with

respect to [equal to zero, which yields
c—r
2 '
1=r+1 07‘

It follows from (5.3) that the ML estimate $% of s? satisfies

T

S (o=)P =i

=1

8=

From (5.3) an expression for the logarithm of the likelihood function. which allows

the rank r of B(f, g) to be obtained, is

r

L(r) = (c—7)lng— gln (275?) — (2—; Yoi—a)+3) m) . (54)

=1 1=r+1

The substitution of the ML estimates 3 and $? into (5.4) yields

L(r)=(c—r)ln <—Z—:—C€:—r—> — gln (277r zr:(o, - (f,)2> - ((7 — %) :

i=r+1 0; i=1

(5.5)

In [68], it is assumed that the theoretically exact non-zero singular values 4, can be

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 80

modeled with a finite series of Gram polynomials [29] of degree [. It therefore yields

L(ry = (¢c—r)ln <Z—§:i%> — %ln (2% (pr - a(r)TV(,.ylb(r)))
.
- ((, — 5) .

where p, = >°7_ 02, 0" € R" is the vector of the r largest inexact singular values,

(5.6)

and V™) € R™" is a matrix whose entries are functions of the Gram polynomials,
and more details are shown in [2]. The smoothing of noisy data requires that [< r,
and numerous computational experiments, which were also observed by Allan [2],
showed that the second term on the right hand side of (5.6) can be simplified because
)T

Pr > 0-(7' ‘/(7'»1)0-(7‘)1

for all values of I. The likelihood expression (5.6) therefore simplifies to

: — 2
L(r) = (¢ — r)In (ﬁ) . gln (T”pr> — ((: — g) , (5.7)
and this expression is evaluated for all values of r = 1,...,¢. The value of r, that
maximises L(r) is equal to the rank of B(f, g).

The derivation of the ML formulation makes some assumptions that are not dis-

cussed by Zarowski [68):

e A Gaussian distribution for the errors of the non-zero singular values and the

independence for these errors are assumed, but their justification is not stated.

e The exponential distribution is one-sided and therefore suitable for the repre-

sentation of the errors of the zero singular values. Another possible distribution

is the one-side Gaussian distribution,

2 e? _
p(ei):ﬁsexp ~ 542 i=r+1,...,c

where ¢, > 0, but a discussion of these and other probability distributions is

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD. PART I 81

not given.

e Gram polynomials are suitable for performing a least squares approximate over
a discrete point set in Y|, (0, — d,)7, but it is not guaranteed that the inter-

polated singular values are non-negative.

e Low degree polynomial models are computationally convenient. They are not,
however, optimal for representing the decay of the singular values of a matrix,

which is typically exponential.

It is noted that the matrix B(f.g) can be used for the principle of ML due to its

property of (4.15), and the matrix S(f, ¢) is not suitable because
S(f,ag) # aS(f.9). a#1.
and the singular values o;(S(f, ag)) of S(f,ag) satisfy

o;(S(f,ag)) # ac;(S(f,9)), j=1l....m+na#l

Example 5.1. Consider the polynomials

flz) = (z—6.1917)%x — 3.9534)°(r + 1.81435)" (2 + 0.8783)2!

-
i

glx) = (x—6.1917)%(x + 7.8799)%(r + 2.5278)

whose GCD is of degree 6, and thus the rank of B(f.g) is equal to 44.

Noise with componentwise signal-to-noise value 7! = 107 was applied to the poly-
nomials f(z) and §(z), and the singular values of the perturbed Bézout matrix were
computed. The results were repeated 1000 times, and the histograms of four singular
values are shown in Figure 5.1. It scems that oy has an exponential distribution,

rather than a Gaussian distribution that is assumed by the principle of ML. It is clear

that 049 and o5 have an exponential distribution. but they have different values of g

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I

~
o

& 8 8

8

»n

number of occurrences
o

e =107
L3

number of occurrences

Figure 5.1: Histograms of four singular values of a perturbed Bézout matrix.

w
8
5
E
g
-
5]
]
2
£
2
&

number of occurrences

5

8

100

400

350
300
250
200
150

100

e =107
)

in (5.2) because [~ 220 when 049 = 0 and 3 ~ 390 when o059 = 0.

x 10

-41

82

Figure 5.2 shows the covariance matrix of the singular values that are calculated

from 1000 sets of the singular values of B(f,g). It can be seen that:

(a) The covariance matrix is ill-posed because the singular values are not indepen-

dent variables.

(b) The non-increasing order and rapid decay of the singular values implies that the

covariance matrix has a small bandwidth.

(c) Only the elements in a small leading submatrix of the covariance matrix are

significant.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 83

Figure 5.2: (i) The covariance matrix, (ii) the first 10 x 10 submatrix of the covariance
matrix, with e, = 1077,

These results show that the assumptions in the principle of ML are not realised
in practice. O
Several improvements for the principle of maximum likelihood are considered as

follows:

e A cubic polynomial spline [6], pages 159—162, can be used to represent the decay
of the non-zero singular values instead of one polynomial, but computational
experiments show that the results are very sensitive to the location of knots and

their number.

e Since the computed singular values cannot be negative, constraints are necessary

for the least squares problem

r

mp (-
3=

and this leads to the bound least square (BLS) problem. Theoretically, the

active-set method [50], pages 500 — 507, can be used to solve the constrained

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 84

optimization problem. It is, however, difficult to implement in this case because
the constraint ¢, > 0 is always inactive, which causes negative singular values

to occur.

e Using logd, instead of 6, is better because it is not necessary to force the
non-negativity constraint on the singular values, and log é; have a log-normal
distribution. The calculation of the ML estimate of the singular values using
log g, instead of &, is, however, much more difficult because it is necessary to

solve a set of non-linear questions in the ML formulation.

e Example 5.1 and other examples showed that the covariance matrix of a struc-
tured matrix that is subject to structured perturbations is not diagonal, which

means the errors of the singular values are not independent random variables.

e Example 5.1 and other examples showed that the probability distribution of the
small singular values o;,7 < r, may or may not be Gaussian, depending on the
form of matrix. Similarly, experiments showed that the probability distribution

of the zero singular values 0;,7 < i < ¢, may or may not be exponential.

5.2 Method 2: The angle between subspaces

This section uses (4.7) and the partitioned structure of the subresultant matrices
Si(f,§) to calculate the degree d of the GCD of f(x) and g(x). In particular,
an expression is derived for the smallest angle between the spaces spanned by the

columns of S,_x+1(f) and Sp,_x4+1(g), which are defined in (4.6). The smallest angle

is therefore defined by certain principal vectors in each of these spaces {24, 63].

('HAPTER 5. THE DEGREE OF AN APPROXIMATE GCD. PART I 85

Let Fi and G, be the subspaces spanned by the the columns of S,hkﬂ(f) and

Sh - r+1(g) respectively, whose dimensions satisfy
dmF,=n—-k+1:=p, dmG,=m—-k+1:=q, m+n—k+1:=1 (5.8)
If uy € Fp and vx € Gy are non-zero vectors, then the unique angle 9, between 1, &

and op 1
U{U}C

cos Yy = ———|
[v |

=1l

l .

Obviously the angle ¥, changes as different vectors u, and v, are chosen. The

where

first principal angle between F; and Gy is defined to be the smallest angle that can be
formed between ug € Fi and v, € Gi. Since this angle is minimized when the cosine
is maximised, the first principal angle satisfies

cos Uy = max{uj vilux € Fi, ||uell = 1, vk € G, lue] = 1}. (5.9)

Theorem 5.2.1. The first principle angle ¥y, between Fy. and Gy 1s zero if and only

if the exact polynomials f(z) and §(z) have a common divisor of degree k > 1.
Proof. Assume f(z) and §(z) have a common divisor of degree k > 1, in which
case it follows from (4.5) that there exist a non-zero vector ty, such that

th = Snotrt (F)Vi = Smois1 (§)uy # 0, (5.10)

~

Since tp # 0 for k =1,...,d, where d is the degree of the GCD of f(:c) and §(z),
it follows that t, is a linear combination of the columns of S,_;;(f) and a linear
combination of the columns of S;,_x+1(g), and thus t; lies in Fy and Gy. According
to the definition of the first principal angle, the smallest angle J;, between F; and

G, that can be formed between a vector t, € F; and a vector t; € Gy is equal to zero

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 86

Conversely, it 9y, =0fork=1,..., d.. then there exists a vector s # 0 that lies

in F, and Gy, and thus there exist vectors ug and v, such that

sk = Sn k1 (f)vi = Snkr1(g)uk # 0,
from which (4.5) follows. O

If f(x) and g(z) are coprime, then the only solution of (4.6) is uy = 0 and v, =0,
that is, there does not exist a non-zero vector ty that satisfies (5.10). Hence the first
principal angle ¥, between Fy and G, is greater than zero.

Also equation (5.10) does not possess a non-zero vector t,. for all values of k when
inexact polynomials f(x) and g(x) are specified because they are coprime. It follows
that, in addition to the preprocessing operations that are discussed in Section 4.4,
Theorem 5.2.1 must be modified slightly so that it is suitable for inexact polynomials.

If f(y) and §(y) are the processed polynomials from f(z) and g(x), then the
application of Theorem 5.2.1 to f (y) and g(y) requires that 9 ; is monitored as a
function of k, and the value of k at which ¥, ; changes from a small value to a large
value is equal to the degree d of an approximate GCD of this polynomial pair. The

value of d is therefore determined by & for which the change between 9, ; and Y41,

is a maximum, as
d={k:max(Fxs11 — Vk1): k=1,...,min(m,n)—1}. (5.11)

Since the first principle angle 9, is used to determine d in (5.11), the next section

shows how ¥y, can be calculated.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART 1 87

5.2.1 Calculating the first principal angles

The calculation of the first principle angle between F, and G, is considered in this

section.
The QR decomposition of Sn_kH(f) and S,,_x41(g) yields matrices P, € RI*?

and @y € R™ whose columns define orthonormal bases for F; and G, respectively,

Sn-k+1(f) = PeRip P, € RP Ry, € RPP,
Sm-k+1(9) = QxR Qi € R4 Ry, € R (5.12)
and the columns of P, and @), are orthogonal,
PlP. =1, and QfQi=I, (5.13)
There therefore exist vectors yx € RP and z;, € R? such that
up = Peyr and v = Qrge
and the conditions (5.13) and
luell=lloxll =1 or wpup = v =1,
implies
lyell = llzell =1 or ylye=zlze = 1.

It therefore follows from (5.9) that

T — T(pT
nax max uj vy = max max y, (I Q)2 (5.14)
subject to
urll = lvell =yl = [[26]] = 1.

If the singular value decomposition of PIQy is Y, X1 Z!, where Y, € RP? and

Z, € R9Y are orthogonal matrices, ¥y € RP*Y and the singular values ¢ ;,i =

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 88

1,...,min(p, q), are arranged in non-increasing order, then (5.14) yields

") T "
max max u, vy = max max ¥, (YeXeZ;)2 = 1,
U EFr VkE€EGE k Yy ERP z €R9 k(k> ’

which implies that the cosine of the first principal angle is equal to the largest singular

value of Pl Qy, based on (5.9),
cos Vg1 = Gk.1-

This maximum is attained when y, and z; are equal to the first column of Yy and Z,
respectively.
Algorithm 5.1 summarises the use of the SVD to calculate the first principal angle

between the subspaces F, and Gy.

Algorithm 5.1: The calculation of the first principal angle

Input: Two inexact polynomials f(z) and g(x), and an integer k.
Output: The first principal angle 9y ;.
Begin

1. Preprocess f(x) and g(z) to yield the polynomials f(y) and §(y), as shown in

Section 4.4, and form the matrices S, _¢41(f) and Sp_x+1(9).

2. Apply the QR decomposition (5.12) to S,_i1(f) and Sp_is1(§) in order to

calculate the matrices P, and Q.
3. Compute P! Qy.

4. Calculate the SVD of PTQy, which is equal to VX, ZF. Let g1 denote the

largest singular value of PIQy.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 89

5. Calculate the first principal angle 91 = cos™! ¢ ;.

End

The first principal angle between the subspaces F, and G is given by
Up1 = cos™ Gy, (5.15)

and computational problems arise when ¥y ; ~ 0 because it follows from this equation

that to first order,

OSk,1
0y = ———=— ,
ol ST (5.16)

and thus [69 1| > |d¢e1| if Dk = 0. Since the computation (5.15) cannot yield an
accurate value for an angle near zero, a modification to this method of calculating the
first principal angle is therefore required in this circumstance, and this is considered

in the next section.

5.2.2 Calculating the small first principal angle

It was shown in Section 5.2.1 that the first principal angle cannot be determined
accurately when it is small, and thus a stable method for its computation is required.
This case is considered in this section, and the following theorem is established in

63).

Theorem 5.2.2. Let the columns of W € RYP be orthonormal, and let W be parti-

tioned as

W l I
W = , W, € R*P, Wy € R2*P, L+1l=L

W,

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART 1 90

Let ¢; be the largest singular value of Wy, and let oy be the smallest non-zero singular

value of Wy, then
G +o; =1 (5.17)
Proof. Since the columns of W are orthonormal, it follows that
WI'W = WIwW, + Wy W, = I, (5.18)
If (A, t) and (p,t) are eigenpairs of W['W; and W] W, respectively, then
(WIW)t =X, and (W) W)yt = ut,
and thus
(WIW, + WIWo)t = (A + p)t.
It therefore follows from (5.18) that
Lt = (A + p)t,
that is,
At p =1 (5.19)

The first eigenvalue of W Wy is ¢, and thus it follows from (5.19) that the first
eigenvalue of WS W, is 1 —¢2. Since the first eigenvalue of W) W, is equal to o3, it
follows that the sum of the first eigenvalue of W' W, and WJ W, is equal to one and
thus (5.17) is established. O

Consider now the orthogonal complements Fi- and Gi which will be required in

Theorcem 5.2.3, where

FrUFE: =R, dim Ff =1 — p,

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 91

and
G: UG =R, dimG =1 —q.

It will be necessary to calculate orthonormal bases for " and G- and these basesg
will define the columns of the matrices P, € R*(=7) and Q, € Rixt-a) respectively.
The columns of P, and @, which are introduced in Section 5.2.1. define orthonormal
bases for Fy. and Gy respectively. It follows that the columns of Fy, and Gy, are given

by

FEe=[p P.JeR™, F'F,=FRF'=1,
and

Ge=10Q. Q,]eR™, GIGy = GG =1,

respectively, which define orthonormal bases for R!. The following theorem is estab-

lished in [63].

Theorem 5.2.3. Let Fi and G, be subspaces of R™ where (5.8) is satisfied, and
let Uy be the first principal angle between them. Let the columns of P, € RY>P
and Qi € R™4 define orthonormal bases for Fy and G, respectively. Also, let the
columns of Pr € R*UP) and Q, € R*U9 define orthonormal bases for Fi and
G- respectively. Then the smallest non-zero singular values of FZQ;C € RU-Pxq gpqg

PrQ, e R0 are

Ok1 = Sin vy ;.

Proof. Since Fj is an orthogonal matrix and (J; has orthonormal columns, the

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 92

columns of Wy, € Rixa,

, PlLQy - _
Wie=FlQu=1_"""1. PlQ.eR™. PRI
Py Qx
must be orthonormal. Also the largest singular value of PI'Qy is 1 = cos 1, so by

Theorem 5.2.2, the smallest non-zero singular value of _ISZQ,C is equal to

Okt = /1 — 21 = /1 —cos? ¥ =sinvh,. (5.20)

Consider now the matrix W, , € R>?,

Q% Pe : _
Woye=GiP=|""|. QiPeR™ Q.peR
Q. Pr
Since the largest singular value of Qf Py is cos ¥y 1, it follows from Theorem 5.2.3 that
the smallest non-zero singular value @:Pk is sin Vg ;. O

The computation ¥y = arcsinog, in (5.20) will give an accurate value when

Yx1 ~ 0. DBy contrast, the computation (5.15) will give an accurate value when

19k,1 ~

[T

The only issue that must be considered is the calculation of the matrices P, and
Qy, whose columns define orthonormal bases for spaces F;- and G¢. It is recalled that
Py and Q) are calculated from the QR decomposition of Sn_k+1(f) and S, _x41(9),
respectively, as shown in (5.12). It is adequate to consider the calculation of Py
because the calculation of Q,, follows identically.

The columns of P, provide an orthonormal basis for Fi, and thus all vectors
x € R™ that satisfy Pl z = 0, are orthogonal to the columns of Py, which means these
vectors z lie in Fi-. Since an orthonormal basis for Fi is required, it is necessary to

choose an orthonormal set of vectors x, and this is now considered.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 93

If the SVD of Py is
2

PI\T = Uk ‘/kTa
0

where Uy € R¥LV, € RP*P 3, € RP*P is a diagonal matrix of the singular values
Vool = 1o.... p, of Py, arranged in non-increasing order, and the zero matrix is of
order (I — p) x p. then
T S
I)k Ty = V]C [LI{ ()] U{ij,
where o,) = 1...., [. is the jth column of U,. It is necessary to consider two
situations. which are defined by 1 <j<pandp+1<j <L
If 1 <j<p,then
T . g
PI\T ‘I’j - Vk IZE]{ OJ 6J' = ’}’j()]‘,
where ¢ is the jth unit basis vector and ¢; is the jth column of Vj.
If p+1<j <l then
- B
Pk-'L'j:Vk[Z,i ()} e;j =0,
and thus the last | — p columns of the left singular matrix U, of P, provide an
orthonormal basis for Fi-. It follows that if

75k = [Tpr1 Tpy2 - Ty Iy :|) (521)

then
—=T—= T =T
P.P.=1_,, P, P, =0, P, P, =0.
Similarly, the matrix Q, is defined by the last [— ¢ columns of the left singular

matrix of Q.

Algorithm 5.2 summarises the use of the SVD to calculate accurately the small

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 94

first principal angle between the subspaces F, and Gy.

Algorithm 5.2: The calculation of the small first principal angle

Input: Two inexact polynomials f(z) and g(z), and an integer k.
Output: The first principal angle 9, ;.

Begin

1. Preprocess f(r) and g(z) to yield the polynomials f(y) and g(y), as shown in

Section 4.4, and form the matrices S, _r11(f) and S, _x1(9).

2. Apply the QR decomposition (5.12) to S,HHl(f) and S,, x4+1(g) in order to

calculate the matrices Py and Q.
3. Calculate the matrices Py, where Py, is defined in (5.21).
=T
4. Compute Py Q.

. Calculate the SVD of ﬁf@k. Let ok, denote the smallest non-zero singular

(W31

value of —IS:Q;C.
6. Calculate the first principal angle ¥4, = arcsin oy ;.

End

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 95

5.3 Method 3: The error between two estimates of
an approximate common divisor

This section considers the change. with A = 1,..., min(m, n), of the error between two
estimates of an approximate common divisor of degree k£ of f(x) and g(x) in order to
calculate the degree d of an approximate GCD of f(z) and g(z). These estimates are
calculated from the Sylvester subresultant matrices Si(f, og) and S (g, f/ao) where
f = fly) and § = §(y) are the scaled polynomials of f(z) and g(x), respectively, the
parameter «, is equal to the weight of g(y) relative to the weight of f(y), as shown
in Section 4.4.

It is shown in (4.7) that the constraint vyq = —1 is imposed when exact data is
specified. and this allows the homogeneous equation (4.6) to be transformed to the
linear algebraic equation (4.7). This constraint for exact data can be replaced by the
constraint ug o = 1 because the leading coefficient of the quotient polynomials wu(r)
and () cannot be equal to zero in (4.3) due to the existence of a common divisor
of degree k.

Equation (4.7) does not possess a solution when inexact polynomial pair f (y) and
g(y) are specified, and it is therefore solved in the least squares sense, in which case
the polynomials w () and vi(x) are replaced by the polynomials @ (y) and o, (y),
respectively. It is not clear, however, which constraint, 4,0 = 1 or ¥x 9 = —1, should
be imposed in this circumstance, that is, it is not known a priori which constraint
yields an approximate solution that is nearer a solution of (4.7) when inexact data is

specified because the two constraints may yields different approximate GCDs.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD. PART I 96

Consider the constraint @0 = —1 first, and thus (4.7) is replaced by the approxi-

mate equation

r - A r -
(lob() r 7 &,0
N - U1
ag aobl O[Obo fl]
ng . Oéobl
~ 7 . . e /l)Tl«ik o~
Qy aobn—l : T aob() . My —1
- - - —Ug ~
A1 c ay aobn aobnfl i aobl Ay
- . . ~ .) —U
Qm - : Qoby, " ; 0
dm—l iR O4obnv] B
B -~ —Um—k]
L Ay aobn] L 0 i
that is,
Hyzp =~ hy, k=1,...,min(m,n), (5.22)
where
\~fk @k,O —1
= = : k=1,... min(m,n), (5.23)
—ﬁk Ty Tk

and Hy = H(f,,§) and hy, = he(f) are obtained by imposing a constraint on @y .

The least squares solution of (5.22) is
ix = H} hy, H,I = (HFH,)'HT, k=1,...,min(m,n), (5.24)

and thus its normalised residual is
_ HHkCI'?{c — Iy _ I(HeH{ — Dhy|
1l [’

Now consider the constraint @, = 1, which is most easily imposed by devel-

=1,...,min(m,n). (5.25)

oping the Sylvester subresultant matrices Sk(g,f/ao), k =1,...,min(m,n), due to

Se(f, g) = o Sk(f /e, g), that is, the coefficients of §(y) occupy the first m —k + 1

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 97

columns, and the coefficients of f(y) occupy the last n—k+1 columns, of S, (9, f/ao).

Equation (5.22) is therefore replaced by the approximate cquation

&()/(Y() [N T bO
. —Up 1 -
bo a) /(Yo (l()/ao] by
by . : ay/
- N . . 5 _uk,mfk' ~
b() Uy -1 /“n : . (l()/ao 5 bnfl
- N Uk,0 ~ -)
bnf—l i bl (lm/(yo am~1/(10 K (ll/ao - bn
~) . 5 U1
bn e : (l,,,l/()zU 0
bn- 1 " am—]/ao
~ 5 Ven—k J
] by am/oe | - 0
that is.
Hyxy = hy, k=1,...,min(m,n), (5.26)
where
—Uy — U, -1
= = , k=1,...,min(m,n),
Vi Ty Ty

where Hy, = Hi(g, f/c) is formed from Si(g, f/ao) by deleting the first column of
the coefficients of §(y). and hy = hk((}) The quotient polynomials @ (y) and 0x(y)

can be computed from the approximation (5.26), whose least squares solution is

Ty = H,:rh;\ H,T = (H,;FH;L)JH,Z, k=1,...,min(m,n), (5.27)
and its residual is, following (5.25),
_ A — Il _ |[(HeH) — D)
7] 1|
The criterion for deciding which of the approximate solutions (5.24) and (5.27) to

, k=1,...,min{m,n). (5.28)

rCSE o

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART 1 98

use requires the residuals (5.25) and (5.28):

resgy < resgo T€SK) > TeSo
4 ¢
Hy=Hy = Hi(f,009) Hi= He= H(g. f /o)
hi = by, = hi(f) hi = hy, = hi(9)
(5.29)
4 4
Ty = T Ty = Ty
Vi -1 —Uy -1
—Uyg - Tk ’ Vi B T, |
for k = 1,...,min(m,n). The solution that has the smaller residual is therefore

chosen for the calculation of the approximations @ (y) and o, (y) to the theoretically
exact quotient polynomials because this solution is nearer an exact solution of (4.3),
the existence of which is a sufficient condition for the theoretically exact forms of
f(a:) and g(x) to have a non-constant common divisor.

Suppose that resg) < resge for some values of k& € [1,min(m, n)], and resg; >
resk o for the remaining values of k, and thus the forms of G, and v in (5.29) are
functions of k. The following theory is developed for a given but arbitrary value of

k, and it follows from (4.4) that
m—k n—k

y) = Z ﬂk,iy’"_k" and Tk (Z Tl
i=0

Estimates ¢, (y) and ¢ (y) of the common divisors of the theoretically exact forms

of f(y) and §(y) are obtained from i (y) and ¥ (y),

and ék(y) = (5.30)

where ~ is used because ux(y) and x(y) are derived from the least squares solution

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 99

(5.24) or (5.27), and
k

k
("k(i'}) = Z (':k',iyk‘i and Ck(U) = Zék‘iykﬂi-
i=0

=0

It is noted that ¢ (y) # é(y) because f(y) and ¢(y) are inexact polynomials and
therefore assumed to be coprime.
Since interest is restricted to solutions for which é(y) and & (y) are polynomials,

the two approximate equations in (5.30) are written in matrix-vector form, respec-

tively,
Uy,
Uk U - " - .
~ Ck,0 ap
Uk 1
. . . B Ck 1 a
Uk —k—1 : T Uk,0 .)
: ~ ; : (5.31)
Uk om—k Uk, m—k-1 e Uk
. Ck,k—1 Am-1
Uk m—k
_ [Ckk | Om
Uk, m—k-1
L Uk m—k
and
U0
(9 Vg0 ~ - -
- . Ck,0 bo
Vg1 T ~
- .) N Ck1 by
/Uk,n—lc—l . t. vk,O ‘ .
: ~ : ; (5.32)
Vkn—k Vkin—k-1 " Uk ' -
~ . . Ck,k—l bn_l
Vkn—k c :) B
~ | Ckk i b, |
Ven—k—1
Vkn—k

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 100

that is,

Uty ~ f and Viby ~ g, (5.33)
where U), € Rt Dxktl) e RitDx(k+D) o ¢ e Re+1 f e Rt and g € R
The approximate equations in (5.33) are solved in the least squares sense,

Cx = [;',Zi' and Ck = f/,jg.

Example 4.1 shows that (4.7) possesses an infinite number of solutions for k =

1,... .d—1,and a unique solution for & = d. but it does not possess a solution for
k=d+1,... ,min(m, n). It thercfore implies that the degree d of an approximate

GCD of f(y) and §(y) is the value of k, for which the error measure

¢, = lex — &kl

= k=1,...,min(m,n), (5.34)
[kl + flEx]

achieves its minimum value.

5.4 Examples

This section contains examples that compare Methods 1,2 and 3 for the estimation

of the degree of an approximate GCD of an inexact polynomial pair.

Example 5.2. Consider the exact polynomial pair
f(z) = (z—6.7974)(z — 0.5903)*(z — 3.3634)*(z + 1.1265)°
g(r) = (z—6.7974)%x — 0.5903)°(x + 4.8572)°(x + 6.8740)°
whose GCD is of degree 5.

Each polynomial is perturbed by noise, such that the componentwise signal-to-

1

noise ratio £,! is 108, and the inexact polynomial pair is then preprocessed by the

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 101

operations described in Section 4.4. Figure 5.3 shows that Method 1 using the likeli-
hood function (5.7) returns the incorrect value, but Method 2 and 3 using (5.11) and

(5.34), respectively, return the correct value of the degree of an approximate GCD

of f(y) and §(y)- O
200 & -2
=150 o; o
:"100 correct answer 2 E30 g e
15| AT S correct answer
50 -8
0 -] 10 15 20 25 30 0 5 10 15 0 5 10 15
r k k
(i) (ii) (iii)

Figure 5.3: The variation of (i) the likelihood function L(r) with the rank r, (ii) the
first principal angle log ¥, and (iii) the error measure log), with the degree & of an
approximate common divisor, with &, = 1078,

Example 5.3. Consider the exact polynomial pair
fl@) = (z—7.0613)%z + 1.1520)3(z + 3.3486)(z — 1.8319)™°
§(r) = (z—7.0613)%*(z + 1.1520)*

whose GCD is of degree 7.

Noise with componentwise signal-to-noise ratio £, = 10°® was applied to f(z)
and g(z), and this inexact polynomial pair is then preprocessed by the operations
described in Section 4.4, thereby yielding f(y) and §(y).

The normalised residuals resy; and res2, which are defined in (5.25) and (5.28)
respectively, are calculated as functions of k = 1,...,min(m, n), in order to determine

the importance of the criterion (5.29), using Sk(f, a.§) and Sk(§, f/o). Similarly,

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 102

the error measure ey, which is defined in (5.34), is calculated using Si(f, a,§) and
Sk(7, f/a), and the results for both experiments are shown in Figure 5.4. Figure
5.4(i) shows that an incorrect result may occur if a criterion to calculate the degree
of an approximate GCD of f (y) and g(y) is based on res; and resis, and Figure
5.4(ii) shows that a criterion based on the error measure e; yields the correct result,
independent of whether calculations are performed on Si(f, @) or Sk(d, f/a,). Also,
it is clear that the minimum in Figure 5.4(ii) is very well defined, and in particular,

it is defined more clearly than the minimum in Figure 5.4(i) for Si(f, ag).

-3 0
-4
-5 - -5
e ™
i 5
g = -
- E -10} ¢
-81|- @~ S(f,a0d) . - @8- 5(f, 009)
—gl|—4— 5@, f/aw) correct answer _\\,“ ——5(3, f/ o) correct answer
- =1
100 1 2 3 4 5 6 7 50 1 2 3 4 5 6 7
k k
(i) (i)

Figure 5.4: The degree of an approximate GCD calculated by (i) the residuals (5.25)
and (5.28) , and (ii) the error measure e, with e, = 107,

The criterion (5.29) for the calculation of the degree of an approximate GCD
of f (y) and g(y) is based on resy; and resys. A large number of computational
experiments showed, however, that if the degree of an approximate GCD of f(y) and
G(y) is computed based on ey, then the error measures obtained from S (f,00g) are

very similar to the error measures obtained from S(g, f/a). O

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD. PART I 103

Example 5.4. Consider one thousand pairs of the polynomials defined from Model
1 and Model 2, respectively.
Model 1: One thousand random pairs of polynomials {fl (r). g (1)} were gener-

ated,

T S

filz) = H(r —)™ and g (r) = H<‘T — 3

=1 1==1

where 7y sy are randomly generated integers on the interval 2. 4]. the roots ay g, ..., ay -

arc arbitrary, 31 = ay1, F12 = @12, Bis,. ... 81, are arbitrary. and
—10 < a4, 31, <10, 1<my,.ny, <6.
r Sy
B< Y my, <20, 5< Y my, < 20.
1=1 =1

The polynomials fi(x) and ¢;(z) have therefore exactly two distinct common linear

divisors, but the degree of their GCD is d > 2.

Model 2: One thousand random pairs of polynomials { 5 (). QQ(I)} were gener-

ated, but with roots of higher maximum multiplicities.

ro o

f2(11‘> = H(T _ ag‘i)’”?ﬂ and QQ(LI‘) = H(.’E — {32‘1)”""‘.
1=1 =1
where 72, sp are randomly generated integers on the interval [2. 4]. the roots aay, .. ., ro

arc arbitrary, 521 = a1, 2 = (a9, a3, ..., 32, are arbitrary, and

—10 < @y, Fay <10, 1 <mg;ng,; <11
re 52
5 My <35, 5<) my, <3
=1 1=1

The polynomials f2(1) and g¢o(z) have therefore exactly two distinct common linear
divisors, but the degree of their GCD is d>2.
Noise is added to each of these 4000 polynomials, corresponding to a component-

wise sighal-to-noise ratio of 108, and these inexact polynomials are then preprocessed

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 104

by the operations described in Section 4.4. The error between the degree d of the
GCD of theoretically exact polynomials, and the degree d of an approximate GCD

of their inexact forms, is computed from the 2000 random pairs of polynomials, and

the results are shown in Figure 5.5.

Method 1 Method 2 Method 3
700 e =107 § 800 2c-10-° 800 ¢ =10"
00 ® E 700 700 .
600! 600
§ o g
500 500
400/ -] o
5 % 400 5 40
3 i 300 %00
E E 200 £ 200
- | 3 3
€ 100 < 100 € 100]
-10 -5 0 5 10 -10 -5] B 10 -10 -5 [5 10
actual degree - computed degree actual degree -~ computed degree actual degree - computed degree
() (i) (i)
J Method 1 - Method 2 5 Method 3
§ 300 § 500, § 500 -
=107 =10"® $ e =10
§ 280 € =10 $is e =10 o A
§oo 5 5
— 300 300
'S 150 ° k)
2 100 2% 8 200
£ £ £
2 % 2 100 3 100
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 [5 10
actual degree - computed degree actual degree - computed degree actual degree - computed degree

(iv) (v) (vi)

Figure 5.5: Histograms of the results for 1000 pairs of the polynomials using (a)
Model 1, graphs (i), (ii) and (iii), and (b) Model 2, graphs (iv), (v) and (vi).

Figure 5.5(1), (ii), (iii) show the results for the polynomials in Model 1, and Figure
5.5(iv), (v), (vi) show the results for the polynomials in Model 2, using Methods
1,2 and 3, in which Methods 1,2 and 3 use (5.7), (5.11) and (5.34), respectively,
to calculate the degree d of an approximate GCD of these polynomials. For the
polynomials in Model 1, Method 1 correctly calculates the degree d on 70% of the
1000 experiments, and Method 3 correctly calculates the degree d on 85% the 1000

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 105

experiments.

The polynomials in Model 2 provide a morc stringent test than do the polynomials
in Model 1 because the multiplicities of the roots, and the total degree of the poly-
nomials are larger. The results in Figure 5.5(iv), (v), (vi) follow the same pattern as
those in Figure 5.5(1), (ii), (iii), because Method 1 yields the worst results (a success
rate of 30%) and Method 3 yields the best result (a success rate of 50%). It is seen

.

that the tails of the histograms of the results in Figure 5.5(iv), (v), (vi) are much

longer than the tails in Figure 5.5(i), (ii), (iii) respectively. O

Example 5.5. One hundred random pairs of polynomials {f(g;), q(:c)} where each
polynomial is of degree 20, were chosen such that the degree d of their GCD is
equal to one. The roots of each polynomial were distributed randomly in the interval
[—10,...,10], and the number of distinct roots of each polynomial was a random
integer in the interval [2,...,6]. The multiplicity of each distinct root was chosen
randomly, such that the degree of the GCD of f(r) and g(x) is one, as stated above.
These exact polynomials were perturbed, corresponding to a componentwise signal-
to-noise ratio of 10%, and these inexact polynomials were then preprocessed in order to
transform them to the scaling forms as {f(y), g(y)} The degree d of an approximate
GCD of each pair of these inexact polynomials was computed by Methods 2 and 3.

The experiment is repeated for d = 2,3,...,19, and the results are shown in
Figure 5.6. It is seen that both methods yield similar results and the probability of
correctly computing d increases as d increases. This figure provides more detail than
the histograms in Figure 5.5 because it shows that the success of Methods 2 and 3 is

dependent upon the degree d of the theoretically exact GCD. 0

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 106

100

90+ |= = =angle
w— QITOT

801
701
60
50
401
30
20

number of occurrences

10¢

0 5 10 15 20
degree of GCD

Figure 5.6: The number of successful computations of the calculation of d, the degree
of an approximate GCD of { f(y), g(y)}, against d, the degree of the exact GCD.

5.5 Summary

This chapter has introduced three methods for the estimation of the degree of an
approximate GCD of an inexact polynomial pair, and compared these methods in
several examples. The results suggest that Method 1, which uses the principle of
maximum likelihood, yields the worst results, and Method 3, which is based on the
error measure e, yields the best results. A possible explanation for this difference
is that the principle of maximum likelihood is a general method, that is, it does not
explicitly exploit the properties of a resultant matrix. By contrast, Method 2 exploits
the partitioned structure of Si(f, g), and Method 3 exploits the polynomial nature of
the computations such that the non-rational form of an approximate GCD is imposed

as a constraint.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD. PART I 107

Several improvements for the principle of maximum likelihood have been consid-
cred, but it is difficult to implement them. MNoreover. computational experiments
show that the assumptions for the singular values in Method 1 are not true. Since

Method 3 yields the best results, improvements on these results should therefore be

based on this criterion.

Chapter 6

The degree of an approximate

GCD, Part 11

Chapter 5 has compared three methods for the estimation of the degree of an approx-
imate GCD of an inexact polynomial pair, and Method 3, which is based on the error
measure ey, yields the best results. Also, it is seen from Example 5.3 that the degree
of an approximate GCD computed from Si(f, g) may not be equal to the degree of
an approximate GCD computed from Sk(g, f), depending on the criterion used. It
is necessary that a method for the estimation of the degree of an approximate GCD
of an inexact polynomial pair is independent of the order of the polynomials ((f,g)
or (g, f)), and thus Method 3 must be extended in order that this requirement be
satisfied. Moreover, Example 5.4 shows that the polynomials in Model 2 are com-
putationally more difficult than the polynomials in Model 1, and the results for the
polynomials in Model 2 are inferior with respect to the results for the polynomials in
Model 1 for Methods 2 and 3. Hence, Methods 2 and 3 must be developed so that
they yield better results for the polynomials in Model 2.
108

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD. PART 11 109

This chapter extends the work in Methods 2 and 3. and describes another two
methods for the calculation of the degree of an approximate GCD of an inexact
polynomial pair f(x) and g(x), such that knowledge of the noise level is not required,
and assumptions of the singular values of the Sylvester resultant matrix and its subre-
sultant matrices are not made. All parameters in the methods are therefore calculated
directly from the coefficients of f(z) and g(x). which is an advantage. One method
uses the first principal angle between a line and a hyperplane. the equations of which
are calculated from Si(f, g), and the other method uses the residual of a linear alge-
braic equation whose coefficient matrix and right hand side vector are derived from
Se(f,g). Furthermore, one more method that expands these two new methods is
developed to calculate the degree of an approximate GCD of an inexact polynomial

f(x) and its derivative fU)(z).

6.1 The degree of an approximate GCD of f(r) and

g(z)

The preprocessing operations discussed in Section 1.4 transform the given inexact
polynomials f(x) and g(z) to f(y) and §(y). which are defined in (4.21). and all
computations are performed on these polynomials.

As mentioned in Section 4.1.1, when exact polynomials are specified, (4.7) pos-
sesses at least one solution if & < (2, where d is the degree of the theoretically exact
GCD, otherwise, there do not exist a solution for (4.7), and thus d is equal to the
largest value of k for which (4.7) possesses a solution. This situation is, however,

significantly more complicated when inexact data is specified.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 110

It is known from Section 5.3 that the matrices Si(f,og) have full rank for
k = 1,...,min(m,n) due to the coprime polynomial pair f(y) and §(y), and thus
(4.7) does not possess one or more exact solutions, and it therefore reduces to the

approximation,
Hyxy =~ hy, k=1,...,min(m,n). (6.1)

Equation (6.1) requires that the first column of Sk(f,), k = 1,...,min(m,n),
be defined as the right hand vector hy. This approach is adequate when exact poly-
nomials are used, but a modification to this approach is required when the inexact
polynomials are specified. In particular, it is assumed that Sy(f ,0,g) has full rank,
and thus its columns are linearly independent, that is, there does not exist a column
of Sk(f,) that lies in the column space of the remaining m +n — 2k + 1 columns,
and it is therefore nccessary to perturb the matrix Hy and vector hy such that (6.1)
is an equation and not an approximation. These perturbations are calculated by
the method of structured nonlinear total least norm (SNTLN) [57], which will be
described in the following chapter.

Figure 5.4(i) in Example 5.3 shows that choosing different columns to move to
the right hand side of (6.1) leads to different results, which is incorrect because
the result of a GCD computation, or an approximate GCD computation must be
independent of the order in which the polynomials are specified. This problem is
therefore overcome by selecting the best column of Sy (f, ,§G) to move to the right
hand side, rather than insisting that the first column be moved. This requirement
for the best column implies that the same result is obtained for the polynomial pairs
(f.) and (g, f).

The smallest error in the approximation (6.1) for each value of k = 1, ..., min(m, n),

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART 11 111

is achieved by choosing k. as the column of Sk(f. «,g) such that the angle between
this column and the space spanned by the remaining m + n — 2k + 1 columns is a
minimum, which means the smaller the angle, the smaller the error in the approxi-
mation (6.1). An alternative method requires the residual of the approximation be
considered. It is therefore necessary to extend (6.1) from the selection of the first
column of SA.,(]E, (g) to an arbitrary column, where the optimal column for each

k=1,....min(m,n) yields the smallest error. Equation (6.1) is therefore written as

Hy v, =~ hy. k=1,...,min(m,n).i=1.....m+n—2k + 2. (6.2)

where hy; is the ith column of Sp(f,a.g), Hy. is the matrix from the remaining

m —+n — 2k + 1 columns of Sk,(f, @og),

Hyo =] hey oo Rrior hegsr o Remsnoks2
[t is noted that hy, = h,k,,(f') or hg, = hi.(a,g), depending on the value of i, and
that Hy; = Hii(f, 20d).
Suppose that, for a given value of &, the i*th column of Si(f, ang) is the optimal
column that is moved to the right hand side of (6.2). Since * = i*(k) is a function
of k., that is. different values of k yield different optimal columns, the substitution of

i = 1" into (6.2) becomes
HyoTpar = hyie, k=1,...,min(m.n), (6.3)

such that the angle between the space spanned by hy ;» and the space spanned by the
columns of Hy - is minimised for each value k.

Let d be the degree of an approximate GCD of f(y) and §(y). Computational
experiments showed that the angle between the space spanned by ;- and the space

spanned by the columns of Hy - for £ = 1,...,d, is much smaller than the angle

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 112

for k =d+1,...,min(m,n), because (6.3) yields an unacceptable large angle when
k > d. The degree d is therefore given by the index k for which the change in the
angle of (6.3), between two successive values of k, is a maximum.

Similarly, for a given value of k, the index of optimal column is equal to * for
which the residual of (6.3) is minimised. Also, the residual of (6.3) is relatively small
for k = 1,...,d, but it is relatively large for k = d + 1,..., min(m, n).

Since the calculation of the optimal values of the indices ¢ and k motivates the

calculation of the degree d, there are two issues that must be addressed:

(a) The calculation of the index i = i* of the column of Si(f, g) that defines the

column Ay ;« in (6.3) for each value of k.
(b) The calculation of the degree k = d of an approximate GCD of f(y) and §(y).
Two methods, based on the first principal angle and the residual of (6.2),
e Method 4: The method of the first principal angle,
e Method 5: The method of residual,

can be used to solve this problem, and this is considered in Section 6.1.1 and 6.1.2

respectively.

6.1.1 Method 4: The method of the first principal angle

Consider initially a method based on the first principal angle ¢, which has been
introduced in Section 5.2, that is, the smallest angle, between the space Ly ; spanned

by hi., and the space Hy; spanned by the columns of Hy ;,

bri = L{(Lri, Hii), k=1,...,min(m,n),i=1,... m+n—-2k+2, (6.4)

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD. PART II 113

where
[:k,i = Span{ hk,i }a
Hkﬂ" = Span{ hlc,l e hk,iwl hk,1+l tT hk.m+nf2k~r‘2 }

It is stated in Section 6.1 that the indices i and & are computed by this method in

two stages. Firstly, the minimum value ¢, of ¢, ; for each value of A is computed,
G =min{d,;:i=1,... m+n—-2k+2}, k=1,....min(m,n). (6.5)
K3

and the column index ¢* for each of the min(m, n) minima occurs is recorded as p;, = i*
for each &k = 1,...,min(m,n) respectively. Since it is known from Section 6.1 that
the angle ¢ for £ = 1,...,d, is much smaller than ¢, for £ = d + 1.... . min(m,n),

the degrec d = dy of an approximate GCD is equal to the index k& for which the
change in ¢, between two successive values of k is a maximum.
dy = {k : max(¢x+1 — ¢x); k= 1,...,min(m,n) — 1}. (6.6)
Equation (6.6) defines the criterion for the calculation of d,, but an expression
for ¢x., which is defined in (6.4), must be obtained. Moreover, the procedure for
the calculation of the first principal angle between a line and a subspace is similar
to the calculation of the first principal angle between two subspaces, which is shown
in Section 5.2.1 and 5.2.2. The following analysis therefore reproduces these sections
for the special case of the angle between a line and hyperplane.
An orthonormal basis for Hy; is required, and this is obtained by applying the

QR decomposition to Hy ;,
T
Hk,i - Ok,iRk,i7 Ok’iok‘i = [m+n72k+1-,
where Olc,z' c R(m-%—n~k+1)><(m+n~2k+1)7 Rk,i c R(m+n-2k+l)x(m+n—2k+l) is an upper trian-

gular matrix, and columns of Oy, define an orthonormal basis for Hy ;. Every vector

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 114

tr: € Hi, can be therefore written as
tii = OkiWiy, Wi € R+ 2R

The first principal angle ¢, ; between Li; and Hy, is equal to the smallest angle

between the unit vector sg;,

hii .
Ska — - € Ek,i’ dim ‘Ck,i = 1,
[kl
and tg;, and thus
COS Pp; = max sfﬂm = max (s;,0k:)Wks. (6.7)
Hx.2lI=1 flwe =1 7

If the SVD of s}, Ok, is equal to X ;W) where Wj; is an orthogonal matrix of order

m+n—2k+1, and

o m+n—2k+1
Zk,i - [Ck,i,l 0o --- O:l eR)
then (6.7) yields
oS ¢, = max si .t = max (Zp, W) w,,
Itksli=1 " [lwg . lI=1 '

which implies that cos ¢, ; is equal to the non-zero singular value of sfﬂ-Ok,i,

COS Qi = Skl (6.8)

This maximum is attained when wy, is equal to the first column of Wy ;.

It was shown in Section 5.2.1 and 5.2.2 that computational problems arise when
¢ri =~ 0 due to (5.16), and thus (6.8) cannot be used to calculate the first principal
angle when it is small. As shown in Section 5.2.2, this problem is solved by considering

the orthonormal complements L5, and Hi ., where

ﬁk,z U £tl — Rm+n—k+1 and Hk,i U th — Rm+n—k+l,

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD. PART II 115

and

dimLy, =m+n—k and dim My, = k.
[t will be necessary to calculate orthonormal bases for £;- and H; . and these bases will
define the columns of matrices 55, € RUmrnhtliximen=k) 0 O € Rimrn-kt)xk
respectively.

If the SVD of Oy, is U,C,,Sk,ﬂ/,\;{;, where U, € RUmrn-kehstmin=kel) Si: €
ROmn=btlpx(msn=2kt1l) {7 g RimAn=2krl)<(men=2k+1) thoy the last A columns of
the left singular matrix Uy; of Oy, provide an orthonormal bases for Oy, according
to (5.21). Similarly, the matrix 3;, is defined by the last m + n — & columns of the

left singular matrix of sg ;.
It follows from Theorems 5.2.2 and 5.2.3 that the non-zero singular value of

sl O, € R* is equal to the smallest non-zero singular value of 50 O, € RUtn-h)x(min—2k,
_ ./ 2 _ : o
Okil = 1 - Skal = 1 — cos? ¢k‘,1 = SN Oy ;.
and thus ¢y; is obtained from

o1
Ok =sSIn" 0p ;1.

6.1.2 Method 5: The method of residual

Another method for the calculation of indices k and i can be performed by considering
the residual r,; = ri,(Hii, hii) of (6.2). Let z;; be the least squares approximate
solution of (6.2),

. . qgt i T —1q4T
Pha = hea — Hea2ear 2k = Hg hway Hy, = (Hi Hyy) H,,

fork=1,...,min(m,n),i=1,....,m+n — 2k + 2, where

lreall® + T Heazeall® = el 7 (Hiaza) = 0,

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART 11 116

which is shown in Figure 6.1.

\J

Figure 6.1: Geometry of the least square problem.

It follows that |7x.|| is equal to the perpendicular distance of the point with
position vector hy, to the point with position vector Hy ;2 ,; on the plane t = Hy .z .,
which defines the column space of Hy;.

The procedure for the method based on residual is similar to the method based
on the first principal angle, which is defined in Section 6.1.1, and thus the minimum

value of ||| for each value of kK = 1,...,min(m, n), is calculated,
re=min{||reille=1,...,m+n—-2k+2}, k=1,..., min(m,n), (6.9)

and the column index #* for each of the min(m, n) minima occurs is recorded as ¢, = i*
for each k = 1,..., min(m, n) respectively. As above, the degree d, of an approximate
GCD is equal to the index k for which the change in r;, between two successive values

of k is a maximum,

d. = {k :max(ris1 — me); k= 1,... min(m,n) — 1}. (6.10)

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD. PART 11 117

It is important to note that Methods 4 and 5 may not vield the same optima]

column for some values of k, and the degree d. This issue must be investigated

computationally, and this is shown in Section 6.3. Algorithm 6.1 shows the imple-

mentation of Methods 4 and 5 for the calculation of (py.d,) and (. d,).

Algorithm 6.1: The calculation of the degree of an approximate GCD of

two polynomials

Input Two inexact polynomials f(r) and g(r).

Output Two estimates, d, and d,, of the degree of an approximate GCD of
f(z) and g{(x), and the column indices py and ¢, associated with the smallest angle
and residual respectively, for each value of k.

Begin

1. Preprocess f(z) and g(z) to yield the polynomials f(y) and ¢(y), as shown in

Section 4.4.

2. For k=1,... min(m,n) % Loop for all the subresultant matrices

For i=1,...,m+n—2k+2 % Loop for the columus
(i) Define the column Ay, from Si(f. aog).
(ii) Define the matrix Hy, from Si(f.apg).
(iii) Calculate the angle ¢, and residual ry ;.

End 1

2.1 Calculate ¢, and p; from (6.5), and 7 and ¢, from (6.9).

End &

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART 11 118

3. Calculate two estimates dy and d, of the degree of an approximate GCD from

(6.6) and (6.10).

End

6.2 The degree of an approximate GCD of f(x) and
f(x)

It was shown in Chapter 3 that the polynomial root solver requires that an approx-
imate GCD of a polynomial and its derivative be calculated, where the calculation
of the degree of an approximate GCD is essential to the calculation of an approx-
imate GCD. Although the calculation of the degree of an approximate GCD of
f(z) and g(x) was discussed in Methods 1,2,3,4 and 5, which can also be applied
to the calculation of the degree d of an approximate GCD of f(x) and its derivative
g(z) = fW(z), these methods did not include the constraint that an approximate
GCD of a polynomial and its derivative is being calculated. This section therefore
extends the analysis in Methods 4 and 5 to the situation when g(z) = f()(z) and
considers an extra condition that arises from this constraint.

Let f(z) be an inexact polynomial, and g(z) be equal to its derivative fO(x),

which is given by

m m—1
f(CC) = Zaﬂm—i and g(a:) = Z(m _ Z')alxm—z‘—l’
=0 i=0

It has been shown in Section 4.4 that it is necessary to process f(z) and g(z)

before an approximate GCD is computed. In particular, it is required to normalise

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART I1 119

) and g(r) by the egcometric means of their coefficients, and f(z) is therefore
. } N S [

redefined as

m m

a;

. r — "."l”l. ,~I — ’ —i — 1. 6.
SLr) Z)u 1 a - . l—ya‘ : (6.11)
! (H]:n |”j|> =

and g(r) is redefined as

mo | m—1

(/(1) _ Z 1),.1'”' - l. 1’)] _ (771/ — 1)(11 -, H |Bl| = 1. (612)
K (I m = j)ay)™ =0

The polvnomial g(r) is proportional to, and not equal to, f()(x) because

m--1

fU) = = dagam ! (6.13)
=0
and in particular, it follows from (6.12) and (6.13) that
by = Am — i)a,, (6.14)
where
AT
_ . m m+
b m iya, (T} s
(tn — i)a, (H;:()](m —J) H;";Ol ’a]-|>
1
m m+1
(Hj:() ’“j’) !
1

' m
(2 Tl 1)

1
(M) m
m!
— 1 (61r)
<HJV',L:0 ’aj‘) oy

and hence A s equal to a constant, such that

g(x) = A (z). (6.16)
If the approximate quotient polynomials u(z) and vg(x), and an approximate

common divisor polynomial ¢ (z) of degree k, of the inexact polynomials f(z) and

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART I 120

g(x) are given by

m—k m—k-1 k
u(z) = Z we ™ u(a) = Z vkt () = Z Cra™ T (6.17)
=0 =0 i=0

then
f(x) =~ cp(z)up(z) and g{x) = cp(z)vi(x), k=1,....,m—1 (6.18)
A constraint between the inexact polynomials f(z) and f((z) yields

df(z) d (e (z)ur(z))
dr dx

Ck(:c)ufcl)(m) + cfcl)(a:)uk(:c), k=1,...,m—1, (6.19)

&

()

Q

where
k—1
cfcl)(x) = Z(k —)T
i=0
m—k—1
uil)(m) _ Z (m k- i)uk‘izm—k—lﬂ"
i=0

and it follows from (6.16), (6.18) and (6.19) that

cr(2)ve(x) ~ A (ck(m)u;”(x) + c;”(x)uk(z)) , (6.20)
which establishes the approximate constraint between uy(x), vi(x) and cx(z) when an
approximate GCD of a polynomial and its derivative is considered.

It is also demonstrated in Section 4.4 that scaling polynomials can improve the

computational results, and thus the substitution
x = by, (6.21)

where y is the new independent variable and 6 is a real constant, is then made into
(6.11) and (6.12). It is therefore necessary to express (6.20) in the independent vari-
able y, that is, the substitution (6.21) has been made. This also requires consideration

of the scale factor a. Specifically, the optimal values o, and 6,, of « and 6 respectively,

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 121

arc the solutions of the minimisation problem,

. #, = arg min
a,b

{ max {maxz-:omm |a; 0| , MAX;=(,. . m—1 ’(ybﬂ’”']"]} }

which can be transformed to a standard linear programming problenm. as shown in

(4.23). and thus all computations are performed on the polynomials

m m-—1

f'(y) = Z a;y" ! and & G(y) = a, Z by (6.22)
1=0

t=={)

whose coeflicients are

G, =af"" and b= bl

Since it follows from (6.13) and (6.21) that

m—1

) = T = by) = 3 ((m= a0y)y

1=

0
the relationship between «,g(y) and FM(y) is established, based on (6.14), as

ao(y) = () f(y). (6.23)

It is assumed that f(z) is inexact, and thus an approximate common divisor ¢ (y)

of f(y) and g(y), of degree k, satisfies

fly) = a(y)unly) and aog(y) = c(y)oe(y), k=1...,m—1, (624)

where

m—Kk

ur(y) = Ay K g, = w0 (6.25)
i=0
m—k—1

(y) = Z By Ty = v 00 F (6.26)
=0
k

Gly) = D Gt k=i (6.27)
i=0

are the transformed polynomials from (6.17) using (6.21).

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART I 122

A constraint between f(y) and fO)(y) is completed by the substitution of (6.21)

into the expression (6.19), which yields

FO) e iV @) + eV Waly), k=1,....m—1, (6.28)
where
k—1 ,
él(cl)(y) _ Z —4) c,HHk i l)yk~z—l’
=0
n—k—
llg)(y) — Z m k—3 uk lem—k—1~1) ym—k—z—l’
=0

and it therefore follows from (6.23), (6.24) and (6.28) that

W) = (o)) (& W)Ef W) + & W) (6.29)
which establishes the connection between 4y (y), Ux(y) and ¢ (y), that is, the con-
nection between the approximate quotient polynomials and an approximate common
divisor of degree k = 1,...,m — 1.

Since the product of two polynomials, which is equal to the convolution of their

coefficients, can be written as the product of a Toeplitz matrix and a vector, the

(CHAPTER 6.

THE DEGREE OF AN APPROXIMATE GCD, PART 11

vector of coefficients f’m((}(,) of fU(y) in (6.28) can be approximated by

£(0,)

~

('k,()()ﬁ
r]
cratlh ! (m — k)ug oty *!
b (m —k ~)uy 0752
Chek- 1(’)() (’kylf)!fil
Chok Uk n—k—26,
Chk—100 L Uk,m—k—1]
Chk |
A'(-,\.y[,()(’f' !]
(k= D)ep 087 | up o0 F W
k’(ik’()ef#l Uk,lgz)n k=1
205 12, (k — 1)cy 082
Cik—1 Wk m—k—100
QCk’kAggo | Uk m—k J
i Ci k-1 |

Ap(6,)al”

(90) + Bk(()O)ﬁk(eo)

123

(6.30)

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 124

where
T
U (0) = [Uk,ogg%lC Uk,lef,”'k_l o Ukm—k—100 Ugm—k € R’”_k’”,
ﬁ’(cl)(go) - [(m = K)ug o0 1 (m — k — 1)uy 672
T
2Up m_k—206 Ukm_k € R"*,
| Cho0F]
Cp0F1
C.00F
Ap(6,) = Chk10 - Ck,19'§“‘ e Rmx(mfk)’
Ck.k
Cr k100
Ckk |
kg o051]
(k — 1)cy, 1 0%2
keg o5
Bi(bo) = 20k, k260 (k= 1)ep, 0872 | € RMX(moREL),
Ci,k—1
2¢k k200
L Ci,k—1 i

It is readily verified that ﬁ,(cl)(Ho) and ug(6,) are related by a diagonal matrix

R € R(nl—k)x(m—k+l),

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 125

(m — k)ugofTF

(m —k — D)y, 0m !

, 2
20 m—k—205

L U —k—100 _
[m—k 0 W [ug ok]
m—k—1 0 | | w0t
= 0
2 0 Uk.m—k—100
i 10| woms |
= R (0,). (6.31)
It follows from (6.30) and (6.31) that
F(0,) ~ 91 (AL(0)R + 0,B,(6,)) c(6,). (6.32)
Similarly, the vector of coefficients a,g(6,) of a,g(y) can be approximated by
I Cr o0]
Y L e
crob” Vg O K2
aB0) = | crpoibo - k0!
Ck k R : Uk,m~k—290
Cr k100 | Vkm—k-1
| .

= Ap(bo)Vi(bo), (6.33)

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 126

where

1
V = , m—k—1 m—k—2 s m—k
Vi(6o) { V.00 V1O o Upm—k—200 Vkm—k-1 } c Rm*.

The combination of (6.23), (6.32) and (6.33) yields

0, . N
((y)\) Ap(65)Vi(8,) — (Ak(HO)R + 90Bk(90)) u,(6,) =~ 0. (6.34)
If Up(6,) € R™ k1) and Vi(0,) € R™*0"F) are defined as
ka-’()eﬁ
(k — 1)Ckyl0§Al
kck‘oe(’f
Uk(eo) = HoBk(eo) - 2Ck,k—293 (k) —].)Ck’]H(ISAl y
Ck,k—lgo
2¢k 202
i Cr k160]
and
B T
Ck,oegﬂ
Ck,lgg
CrofE
R 1 _
Vk(go) = a\ Ak(eo) =) Ck‘k_leg g ckyl()(’j)
Coilo '
Cr k107
Ck:,kgo
respectively, then it follows from (6.34) that
‘N'k(go)
Vi(6o) Ak(6o)R + Uk(6,) ~0, k=1,...,m—1. (6.35)
—ﬁk(go)

The constraint (6.35) is therefore used for the calculation of the degree d of an

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART 11 127

approximate GCD of f() and fU(r). This uses the error measure
H ()u VA ()U (‘4A‘((}(1)R _+_ L/A(()())) ﬁk(ell)
IV OV O+ || (A (O R+ Ui(6,)) 0 (Bs)

which is derived from (6.35). and the value of & for which this function achieves its

k=1,....m—1, (6.36)

)

minimum value is equal to d.

Consider the calculation of the terms in (6.36). such as the vectors 0,(6,) and
Vi (0,). and the matrices Ag(6,,), Up(6,) and Vi (6,). Since (6.36) contains terms that
require the matrices Se(f. a,g) for their calculation, where the kth Sylvester resultant

matrix Si(f.a,g) is of order (2m — k) x (2m — 2k + 1), and equals to

[ay by !]
aom o by 072
anh™ : T bt
Silfoaud) = L 0y e @0 aghaefy by
U L : Aoby 1
TR L oby_ab,
i Uy b1]
= { Fi.(6,) ‘ Grla,. b,)] ;
it follows from (6.2.1) that
s valbl) Vi (6s)
Sklf.oa0g)) = [Fi(0,) Gilae,8,) J) ~ 0, (6.37)
—u(6,) —u(0s)

and more details in subresultant matrices are in Section 4.1. It is clear that Sk(f, 6 4)
can be used to calculate 4g(6,) and vi(6,), as well as the degree d of an approximate
GCD of f(r) and g(r) = fV(r), using Methods 4 and 5, as discussed in Section 6.1.

Also it is known that the column indices i* = i*(k) associated with the smallest angle

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART 11 128

and residual for each value of k = 1,...,m — 1, are computed by Methods 4 and 5
respectively.

Assume that hy ;~, the i*th column of Sk(f, a,g), is removed from the matrix,
where i* is from either Method 4 or Method 5, and Hy,;. € R(Zm=k)x(@m=2k) ig the

matrix from the other columns of Sg(1, 6G),

Hy o = Sk1 v Ski-1 Ski+1 0 Sk2m-2k+1 |

where s; € R¥"¥ is the ith column of Sy(f, @.g). The removal of the i*th column

of Sk(f, a,g) to be the right hand side therefore yields the cquation

Hk,i*mzhk,i*a kzl,...,m—l, (638)
where
T
2m—2k
T=1 21 -+ Tis1 Tipr 0 Tam—2k+1 €R 1
and
[1
I
Ti
Vi (0o)
— 1 c R?m—Qk-}-l. (639)
“ﬁk(go)
Tit1
| Toam—2k+1]

The elements of ux(6,) and V,(6,) are calculated from (6.39) with the index ¢*
for which the minima occurs in (6.38) for each value of k, using Methods 4 or 5.
The coefficients ¢ ; of & (y) for the construction of Ax(6,), Ux(6,) and Vi(6,) can be

calculated from the approximate polynomial decomposition (6.24), which is written

(‘HAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART 11 129

as
1)- u ..9‘, }‘9()
kit) &) ~ N Ty (6.40)
(2/\'(('1.: B ()u) (yng(()o)

where P (ug.0,) and Qx(vy.. 0,,) are Toeplitz matrices whose elements are formed from

the polynomials a,(y) and o(y) in (6.26) and (6.27) respectively,

g gk]
U 1 ()(I)H ~hk—1

p m—Kk
uk 00y

Dy Hu) = ’ll,k’,,,;k,lf)() . Uk-,leglikﬁl € R(m+1)><(k+l)>
U —k
uk,mfk—l(go
Uem—k |

Ul bl
Ukl ()‘I)H*AT*Q
?)k‘,()e(’r)nikil
Qn(ew.t,) = Den hobs - 'Uk,l()(’)""k‘z € Rmx(kﬂ),
Ui~k -1
Vkm—k-2 90

Vkm—k—1

andd

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 130

1
Cil(o) = | ckofF a0 - cr1be Ck,k:\
T
= | Cko Cka r Crga Ek,k] e R
~ : 7‘
f0o) = | ab™ @™ ' - @n_ib, a]
- 1
= @ @ - Gna ail € R™*,
- 7
g(6.) = | b ! b2 o b_of, Em_l]
- T
= Bo (}1 57”_2 qu} c R™.
L

The least squares solution of (6.40) is computed,

;
Py (ug, 0,) £(6,)

¢ (6,) = , k=1,...,.m—1,
Qr(vk, 0,) o&(0,)
which enables the coefficients of the approximate common divisor polynomial ¢ (y)
to be calculated in order to construct the matrices A(6,), Ur(6,) and Vi(6,). This
allows (6.36) to be computed for all values of k.

Although Methods 1, 2 and 3 can be used to compute the degree of an approximate
GCD of f(x) and fV(x), Method 1 fails to return the correct answer in most cases,
and Methods 2 and 3 suffer disadvantages, which are improved by Methods 4 and 5.
The following three methods, rather than Methods 1,2 and 3, are therefore used to

determine the degree d of an approximate GCD of a polynomial and its derivative:

Method 4 The first principal angle between the space Hy ; spanned by the columns

of Hy; and the space Ly ; spanned by hy ;.
Method 5 The residual of (6.38).

Method 6 The satisfaction of the constraint (6.35).

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD. PART 11 131

Methods 4 and 5 use Algorithm 6.1 to calculate d and the column index * for
which the minima occurs in (6.38) for each k =1..... m — 1. and Method 6 uses the
error measure in (6.36) for the calculation of the degree d. In particular. the error
measures in (6.36) are equal to n, and &, k=1..... m — 1. when Method 6 uses the
optimal columns computed from Methods 4 and 5 respectively. It is important to note
that Methods 4 and 5 may not yield the same optimal column for some values of &,
and Methods 4, 5 and 6 may not yield the same value of d. This is however interesting
because these different values of d are clearly certified. in which case the decision is
made by the method called Majority Voting. Algorithm 6.2 shows the implementation
of Methods 4,5 and 6 for the calculation of the degree of an approximate GCD of

f(z) and fM(z) in the presence of noise.

Algorithm 6.2: The calculation of the degree of an approximate GCD of a

polynomials and its derivative

Input An inexact polynomial f(z).

Output Four estimates, dy, d,, d,, and d¢, of the degree of an approximate GCD
of f(z) and fM(z).

Begin

1. Calculate the first derivative of f(x) as g(z) = f!(x), and the constant A from

(6.15) .

9. Preprocess f(z) and g(z) to yield the polynomials f(y) and §(y), as shown in

Section 4.4.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II

3. For k=1,....m—1 % Loop for all the subresultant matrices

(a) Fori=1,...,2m —2k+1 % Loop for the columns
(i) Define the column hg,; and matrix Hy,; from Si(f, a3).
(i) Calculate the angle ¢, and the residual 7y ;.
End ¢
(b) Calculate

¢r = min{gx,:i=1,...,2m— 2k + 1}

re. = min{rg,:i=1,...,2m—2k+ 1}

132

and the indices p, and g, for which the minima occur for each value of k,

respectively.

(c) Form Hj, and hy; when i = pi, and solve, in the least squares sense,

(6.38).

(d) Compute Gx(6,) and v(6,) from (6.39) and ¢x(6,) from (6.40).

(e) Counstruct the matrices R, Ax(6,), Ux(0,) and Vi(6,), and calculate the er-

ror measure 7 in (6.36).

(f) Repeat steps (c), (d) and (e) when 7 = g, and calculate the error measure

& in (6.36).

End &

4. Calculate four estimates of the degree of an approximate GCD of f(z) and

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 133

g(x). namely,
dy = {k:max(¢ps1 —) kh=1....,m—2
d, = {k:max(rip —7ri): k=1.....m—2}
d, = mkin{v}k; k=1,...,m—1}

de = mkin{ék; k=1,...,m—1}

End

6.3 Examples

This section contains several examples in which the degree of an approximate GCD of
f(z) and g(r) is calculated using Methods 4 and 5, and the degrec of an approximate

GCD of f(x) and fO(z) is calculated using Methods 4, 5 and 6.

Example 6.1. Consider the exact polynomials f(z) and §(z), whose roots and mul-
tiplicities are specified in Table 6.1. It is seen that m = 16,n = 21 and the degree of

their GCD is d = 7.

R()<)§ of f(x) l\Illltl{pll(,lt} Root of §(z) | Multiplicity
4.8181e+000 3 :
. . 4.8181e+000 8
-2.9457e+000 2 2000 °
. . -2.9457¢4-000)
-8.5379¢+000 2

) -8.5379¢+000 8
-1.3787¢-002 9

Table 6.1: The roots and multiplicities of f(z) and §(x) for Example 6.1.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 134

Each polynomial was perturbed by noise, such that the componentwise signal-to-
noise ratio ¢, is 10%, and the resulting polynomials were normalised by the geomet-
ric means of their coefficients. They were then preprocessed, thereby yielding the
Sylvester matrix S(f ,@0J), where o, = 0.065453, 6, = 0.89125. This procedure was

repeated, thereby obtaining another set of perturbed polynomials, using e, = 10%

in which case a, = 0.065449, 6, = 0.89126.

log 6,

™ 5 10 15
k

-0 9-0 - ® 40

log r,

-5t o-0 -

10 15

Figure 6.2: The variation of log ¢, and log r; with k for Example 6.1.

Figure 6.2 shows the variation of log ¢x and log 7y, which are defined in (6.5) and
10~® and . = 10~4, the maximum

(6.9) respectively, with k. It is seen that for e,
changes in log ¢ and logr, occur when £ = 7 , which is correct because d=7

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 135

Although the values of d, and d, are clearly defined, the changes in log ¢ and log ry
at k = 7 are much bigger when ¢, = 108 compared to those changes when &, = 10~4

because the former perturbations to the coefficients of f (z) and g(z) are smaller.

35 30
¢ angle . ¢ angle
- e Rl
30 ‘e ® -residual 25! e ® -residual | |
. 7
o i 20} 4o }‘ ’
= . . c o ‘\
£ 20 e £ . \‘ .
o .\ .2 A S
= . S 15 - e
QG 15 | ST S * e
8 ¢ 3 - 8 3
-8 .\. 10 _10—4 b *
10 e =10 ¢ e \
c \ \
\
5 O sle 5 S
; 0
00 5 10 15 0 5 10 15
k k

Figure 6.3: The column of S (f, a.g) for which the error in (6.2) is a minimum, using
Methods 4 and 5, against k, for Example 6.1.

Figure 6.3 shows, for each value of k = 1,...,16, the column of Si(f,g) for
which the error in (6.2) is a minimum, using Methods 4 and 5. It is clear that the two
methods do not yield the same columns for all values of k, and the greatest differences
occur for small and large values of k. Moreover, it is seen that Methods 4 and 5 yield
different columns for which this optimal value k = 7 is achieved for e, = 10~ and
g. = 107%. Also, it is noted that the difference in the optimal columns makes no

change on the determination of the degree of an approximate GCD of f(z) and g(z)
by Methods 4 and 5. O

Example 6.2. Consider the exact polynomials f(z) and §(x), whose roots and mul-

tiplicities are specified in Table 6.2. It is seen that m = 16,n = 27 and the degree of

their GCD is d = 6.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II

Root of g(z)

Multiplicity

Root of f(z) | Multiplicity
-7.4420e-005 2
-9.9656e-005 5
-6.3668e-005 5
-4.5823e-005 4

Table 6.2: The roots and multiplicities of f(z) and g(z) for Example 6.2.

-7.4420e-005
-9.9656e-005
-6.3668e-005
-7.4936e-001

3.0465e-001
-4.5435e-001

9.1342e-001
-1.6942e-001

1

=N Ot Ot O s =

136

Uniformly distributed random noise was added to each polynomial, such that

the componentwise signal-to-noise ratio ;! = 10*. The noisy polynomials were then

preprocessed by the operations described in Section 4.4, thereby yielding the Sylvester

matrix S(f, a.g), where a, = 1.8931e + 012 and 6, = 9.5861¢ — 003.

Figure 6.4: The variation of log ¢, and log ry with k, for Example 6.2.

Figure 6.4 shows the variation of log ¢ and log 7, with k using Methods 4 and 5,

respectively. It is seen that the maximum gradient in each graph occurs when k = 6,

and thus dy = d, = d=6. Also, the degree of an approximate GCD is clearly defined

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 137

30 T y
. ¢ angle
. - -residual
25 K ,&‘\ LN
Sy N 2%
¢ % . .
£ 20} s
£ 20 \‘\
=
) hat™
O 15 ‘*
\
\
10+ \
\
\
5 . R
0 5 10 15
k

Figure 6.5: The column of Si(f, a.3) for which the error in (6.2) is a minimum, using
Methods 4 and 5, against k& with e, = 1074, for Example 6.2.

for both methods, even though ;' = 10* is relatively small. Figure 6.5 shows, for
Methods 4 and 5, the column of Si(f, a0g),k =1,...,16, for which the error in (6.2)
is a minimum. It is also seen that the optimal column using Method 4 is the same as
the optimal column using Method 5, and the greatest differences occur only for small

values of k for both methods. O

Example 6.3. Consider the exact polynomials f(z) and §(z), whose roots and mul-
tiplicities are specified in Table 6.3. It is seen that m = 22, n = 14 and the degree of
their GCD is d = 5.

Uniformly distributed random noise was added to each polynomial, such that
the componentwise signal-to-noise ratio ;! = 10*. The noisy polynomials were
then normalised by the geometric means of their coefficients initially, after which

they were preprocessed, thereby yielding the Sylvester matrix S(f , @od), where a, =

4.6574e — 009 and 6, = 1.6913e — 003.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II

Root of f(z) | Multiplicity
7.9617e-005 4
-8.8440e-005 5
-8.0504e-005 5
-2.0403e-005 4
7.8861e-005 4

Root of g(x) | Multiplicity
7.9617e-005 3
-8.8440e-005 1
-8.0504e-005 1
-4.4249e+-000 5
-6.1417e+000 4

Table 6.3: The roots and multiplicities of f(z) and g(z) for Example 6.3.

Figure 6.6: The variation of log ¢ and log ry with k, for Example 6.3.

log h

e =10""*
[+

15

138

Figure 6.6 shows the variation of log ¢, and logr, with k, and it is seen that

~

dy = d, = d = 5, such that these values are clearly defined by Methods 4 and

5. Figure 6.7 shows that the column of Sk(f,a,g) for which the error in (6.2) is a

minimum is similar to Figure 6.3 because the largest differences occur for small and

large values of k for Methods 4 and 5. Also they yield identical results for other values

of k, including k = 5.

O

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II

139

1859 :
) ¢ angle
16+ - - @ -residual |
¢ \
145" 5 \
- \
c 12 . -
E . \
= 10 L 2
o @
| \
\ .
6t \ e
LN /
4 Yo e 2
2 = ~¢—
0 5 10 15
k

Figure 6.7: The column of Si(f, a.g) for which the error in (6.2) is a minimum, using
Methods 4 and 5, against k with e, = 1074, for Example 6.3.

Example 6.4. Consider the exact polynomials f(z) and j(z), whose roots and mul-

tiplicities are specified in Table 6.4. It is seen that m = 44, n = 27 and the degree of

their GCD is d = 24.

Root of f(z)

-9.6104e+000
-7.2187e-001
9.1180e+000
1.4302e+000

-8.4822e+000

-2.7506e+000

Multiplicity
191 Root of §(z) | Multiplicity
- -9.6104e+000 9
1 -7.2187e-001 8
9 9.1180e-+000 10
4

Table 6.4: The roots and multiplicities of f(z) and §(z) for Example 6.4.

Noise was added in the componentwise sense to each polynomial, such that the

componentwise signal-to-noise ratio €;' = 10%. The noisy polynomials were then

normalised by the geometric means of their coefficients initially, after which they were

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 140

preprocessed, thereby yielding the Sylvester matrix S(1, 0,J), where o, = 2.2631e +
004 and 6, = 3.0935.

50 T — or .
."‘8-0\ ¢ angle
gt - -residual
40+ »-e
\l
¢ .\._.\
- L
E e s
= : N o
g o S
20 : LN
4 e *
¥ : ' \‘.
10 i ¢ e * .
% -
Yoo,
0 . ; : . e
0 -] 10 15 20 25 30
k

Figure 6.9: The column of Sk(f, @) for which the error in (6.2) is a minimum, using
Methods 4 and 5, against k with e, = 107%, for Example 6.4.

Figure 6.8 shows the variation of log ¢y and logry with k& = 1,...,27, using
Methods 4 and 5, and Figure 6.9 shows the column of S(f , @) for which the error

in (6.2) is a minimum. It is clearly seen from Figure 6.8 that the maximum gradient

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 141

in each graph occurs when k£ = 24, which means the degree of an approximate GCD
is clearly defined for both methods, such that d, = d, = d = 24. Furthermore, Figure
6.9 is different from Figures 6.3, 6.5 and 6.7, because the differences in the results

occur for all the values of &, including the optimal column when k& = 24. O

Example 6.5. Consider an exact polynomial f (z), whose roots and multiplicities
are specified in Table 6.5, and its derivative f()(z). It is seen that m = 36 and the

degree of GCD of f(z) and fV(2) is d = 28.

Root of f(:c) Multiplicity
-1.3708e+4-000 1
-3.2431e4-000
4.4145e+000
-9.7269¢+000
-2.5188e+000
8.4537e+-000
9.2960e-001
-5.2230e-001

0 3 O Ok Wi

Table 6.5: The roots and multiplicities of f(z) for Example 6.5.

This polynomial was perturbed by noise initially, such that the componentwise
signal-to-noise ratio ;! = 108, after which the derivative f)(z) was calculated
from the noisy polynomial f(z). They were then preprocessed, thereby yielding the
Sylvester matrix S(f, aof(l)), where a, = 1.3964 and 6, = 2.1731.

Figure 6.10 shows the variation of log ¢, log i, log m and log &, which are cal-
culated from Algorithm 6.2, with k. It is seen that the maximum changes in log ¢,
and log r, occur when k = 28, and the global minima in logn, and logé&, are also

achieved when k& = 28, which is correct because d = 28. The degree of an approximate

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 142

0 0
-2
-5
. oF 78
o -10 =)
o
o e
-15
-8 1
< -10
20, 10 20 30 40 0 10 20 30 40
k k
0 0
-2 =2
= 4 w4
2 g
= 6 = -8
-8 -8
e 10 20 30 40 -0 10 20 30 40
k k

Figure 6.10: The variation of log ¢, log 7x,log nx and log & with k and e, = 10~® for
Example 6.5.
GCD of f(x) and f"(z) is therefore clearly defined for all three methods, such that
dy=d, = dp=d¢ =d =28

Figure 6.11 shows the column of Sk(f, aof(l)), k=1,...,35, for which the error
in (6.2) is a minimum, using Methods 4 and 5. It is noted that the two methods do
not yield the same column for all values of k, and the greatest differences occur when
k < 28. Because Method 6 uses these different columns that are moved to the right
hand side of (6.2), there are slight differences between log 7, and log & especially for

small values of k, which can be seen from the lower graphs of Figure 6.10 O

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 143

60 .
L4 angle
50-’1 E T - ® -residual | |
K N
A ot
=4o-u:|:“” 4
1 *
0,0', \ *
g 30 HREl A ."
F i g
(&) v l =2 l' P
: ; .
atdd g, L
]
¢ ¢ “.O‘\H!‘”‘.
10 “ LA v
!. \‘“
o "
0 10 Zi(() 30 40

Figure 6.11: The column of Si(f,af®) for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k& with e, = 1078, for Example 6.5.

Example 6.6. Consider an exact polynomial f(z), whose roots and multiplicities
are specified in Table 6.6, and its derivative. It is seen that m = 34 and the degree

of GCD of f(z) and fW(z) is d = 28.

Root of f (z) | Multiplicity
-3.4624e+000 2
2.6891e+000 2
8.4689e+000 2
-2.5214e+000 8
-1.6262e+000 9
6.1616e+000 11

Table 6.6: The roots and multiplicities of f(z) for Example 6.6.

This polynomial was perturbed by noisy initially, such that the componentwise
signal-to-noise ratio ;' = 10%, after which the derivative f(!)(z) was calculated
from the noisy polynomial f(z). They were then preprocessed, thereby yielding the
Sylvester matrix S(f, o, f1)), where a, = 1.6483 and 6, = 3.2921.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 144

0 0
-2
-5
& Y
=10 g)
g g
-156
-8
- -10
200 10 20 30 40 10 20 30 40
k k
0 0
-2 =2
R W 4
-8 -8
- 1
100 10 2'(() 30 40 00 10 20 30 40
k

Figure 6.12: The variation of log ¢x,log rx,lognx and log & with k and e, = 10® for
Example 6.6.

Figure 6.12 shows the variation of log ¢x, log rx, log . and log &, with k, and it is
seen that the four graphs return the same answer because the maximum gradients in
log ¢y and logry and the global minima in log 7 and log & occur when k = 28. Also,
the degree of an approximate GCD of f(z) and f (M)(z) is clearly defined, and thus
dy = d, = d, = d¢ = d = 28. Figure 6.13, which shows the column of Si(f, a.f™V),
for which the error in (6.2) is a minimum, is similar to Figure 6.11 because the largest
differences occur for most values of k except the large values of £ and the optimal

columns when k = d, using Methods 4 and 5, are the same. O

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 145

80— - -

’l ¢ ¢ angle
e - & -residual
401 ¢4 11 ae
1 -1\
[} 12 ,l.‘
P : ‘|.
gso-.; n S
R £t o
% T ,' .\ ’ll /"
O 20t | | ’. iy ¥ .
T 00‘\} bt R
R \‘ ‘ I A t. Y
L v I gDk A
10F ‘v ,.;‘ ALy
@ i
(%% *bee
0 L N .,".
0 10 20 30 40
k

Figure 6.13: The column of Si(f, oo f®) for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k with ¢, = 1078, for Example 6.6.

6.4 Computational efficiency

Since this chapter has only considered the feasibility of the three methods, algorithm
issues associated with the solution of (6.2) have not been addressed, however, it is
possible to consider the issues of computational efficiency as the future work.

The major cost of the designed root solver is the estimation of the degree of the
approximate GCD because these methods require that (6.2) be solved repeatedly,
where the coefficient matrices of successive equations differ by one column only. Hence
the algorithms must be implemented efficiently.

Method 5 can therefore be done by computing the QR decomposition of S(f, g)
once, and then using update procedures to calculate the QR decomposition of Sk(f, g),
k = 2,...,min(m,n), such as (6.2) solved by the function qrdelete in MATLAB .

The computation in Method 4 would be more expensive because the SVD does not

1This function deletes a column or row from the QR factorization.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 146

have an update. It may therefore be desirable to use the QR decomposition, rather
than the SVD, meaning that perhaps only Method 5 should be included, although
both Methods 4 and 5 yield good answers.

Since major improvements are obtained by using Mcthod 5 and the QR decompo-
sition to allow update, the computation in Method 6 would be cheaper if the method
chooses the column of Si(f, g) to be the right hand side of (6.38) by using Method 5,

rather than Method 4. This should be investigated further.

6.5 Summary

This chapter has presented two methods (Methods 4 and 5) for the estimation of
the degree of an approximate GCD of two inexact polynomials, and one method
(Method 6) for the estimation of the degree of an approximate GCD of one inexact
polynomial and its derivative. All methods use subresultant matrices of the Sylvester
resultant matrix, but Methods 4 and 5 differ in the criterion used to define the error in
an approximate linear algebraic equation of (6.2), and Method 6 uses the constraint
(6.35) between f(z) and f1)(z) and requires the optimal columns calculated from
Methods 4 or 5.

Six examples were presented and it was shown that these methods yield good
results for both situations. The examples suggest that they return the same degree
d = dy = d, of an approximate GCD of f(z) and g(z), or d := dy = d, = d;, = d¢ of
an approximate GCD of f(z) and f(V)(z), even though the column of the subresultant

matrix associated with d may differ between Methods 4 and 5.

Chapter 7

The coefficients of an approximate

GCD

The designed polynomial root solver presented in Chapter 3 has involved a sequence
of the approximate GCD computations, where an approximate GCD obtained from
the ith iteration is used for the i+ 1th iteration, and thus a very important part of this
root solver is the determination of an approximate GCD of two inexact polynomials.
In particular, the degree of an approximate GCD should be determined initially,
after which the coefficients of an approximate GCD are calculated. The calculation
of the degree of an approximate GCD has been covered in Chapters 5 and 6, which
is a non-trivial computation because it reduces to the estimation of the rank loss of
a noisy resultant matrix. The calculation of the coefficients of an approximate GCD
is described in this chapter.

The use of approximate polynomial factorisation is considered for the calculation
of the coefficients of an approximate GCD. Suppose that the degree of an approx-

imate GCD d(z) of two polynomials f(z) and g(z) is known, and thus there exist
147

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 148

quotient polynomials u(z) and v(x), such that

flz) = d(z)u(x) and 9(x) =~ d(z)v(r).

d= : (7.1)

where U,V are the Toeplitz matrices, and d, f, g are the coefhicients vectors of d(x),
f(z). g(x) respectively. The coeflicients of d(z) are therefore calculated from the ap-
proximation (7.1), which must be perturbed in order to induce an exact solution. In
this case, structured perturbations are required such that the structure of the coefhi-
cient matrix in (7.1) is preserved in order to guarantee that the matrix-vector product
represents a polynomial multiplication. This kind of perturbation is calculated by the
method of structured nonlinear total least norm (SNTLN) [57], which is an extension
of the method of structure total least norm (STLN) [56].

In [57] Rosen et al. remark that:

“STLN is a problem formulation for obtaining an approximate solution
to the overdetermined linear system Az = b preserving the given afline
structure in A or [A|b], where error can occur in both the vector b and
the matrix A. The approximate solution can be obtained to minimize the
error in the L, norm, where p = 1,2, or co. In the extension of STLN
to nonlinear problems, the elements of A may be differentiable nonlinear
functions of a parameter vector, whose value needs to be approximated.

We call this extension structured nonlinear total least norm (SNTLN). 7

The method of SNTLN, which yields a non-linear equation that is solved by the

Newton-Raphson method, is therefore used to obtain the approximate solution. The

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 149

computational results demonstrate that the method of SN'TLN recovers good approx-
imations to the values of the coefficients of an approximate GCD of two polynomials,

in the presence of noise in the data.

7.1 The method of SNTLN

Since the calculation of the degree of an approximate GCD of two polynomials f(z)
and g(z) has been considered in Chapters 5 and 6, this section assumes that the
degree d of an approximate GCD is known, and it describes the method of SNTLN
for the calculation of its coefficients. For simplicity. this section only considers the
calculation of the coefficients of an approximate GCD of f(y) and g(y) that are
preprocessed from f(x) and g(z), respectively, by the operations described in Section
4.4.

It is recalled that the given inexact polynomials are defined in (4.24), which are

repeated here for convenience,

m n

f(y) = Z&iy’”_i and a,g(y) = a, Z Bly”"?. (7.2)

1=0 =0

whose coeflicients are
a, = a0 and by = b6, (7.3)

where @; and b; are defined in (4.17) and (4.18). and .6, are solution of the min-
immisation problem (4.22).
It is assumed that f(y) and g(y) are inexact, and thus an approximate GCD ¢&(y)

of f(y) and §(y), of degree d, satisfies

fly) = cly)ia(y) and aog(y) = ca(y)taly), (7.4)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 150

where
m—d
~ _ ~ m—d—1i ~ . m—d—1
ua(y) = E Ud .Y , Ui = Uqgi0] ;
1=0

n—d
~ _ ~ n—d—i ~ ., n—d—1
valy) = E Vd Y s Vg = g6)
=0

d
caly) = Z&d,iyd_ia Caq = Cqi0y ", (7.5)
=0

are the transformed polynomials from uy(x), v4(x) and c4(x) that are given by

m—d n—d d
uq(r) = Z Ug ™ vg(x) = Z Ve 2" () = ch,zl‘dm Y
1=0 =0 =0

respectively, using the substitution z = 6,y. Equation (7.4) is therefore required
for the use of the method of SNTLN to compute the coefficients of an approximate
GCD.

It is stated that the method of SN'TLN requires initial estimates of the quotient
polynomials @4(y) and 94(y), and the calculation of these estimates is similar to that
for f(y) and fM(y), which is described in Section 6.2.

The subresultant matrix Sd(f, o,g) 1s formed, where the cocflicients of f(y) and
g(y) are defined in (7.2). Likewise, as shown in Section 6.2, assume that hy -, the
j*th column of Sy(f ,0§), is the optimal column that is removed from the matrix,
and Hy . € Rm#n-dt)x(m+n-2d+1) jg the matrix from the other columns of Sy(f, @,g)

defined as

Hyj = 8d1 v Sdj*—1 Sdj*+1 " Sdmin-—2d+2
where sq; € R™1"72472 jg the ith column of Sy(f,a,§). The removal of the j*th

column of Sy(f, a,§) to the right hand side therefore yields the equation

Hd’]wx ~ hd‘j', (76)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 151

where
T
o i M+ n—2d+1
£ = ry - Ty Tirg1 0 Tmdn—2d+2 eR '
and
- .
r 7 I
V0
_— 5 Tyx
v Vn—
d(0) _ dn—d _ 1 = Rmntand—H? (7 7)
—0,4(6,) —Uqg
Lj=+1
—Ud.m—d J
- Tog4n—2d+2)

Hence, the vectors of coefficients @4(6,) and v4(8,) of a4(y) and 04(y), are computed
from (7.7) with the index j* for which the minima occurs in (7.6), respectively. More-

over, the coeflicients of uq(x) and vy(z) can be obtained from (7.5) and (7.7)

Ug
m—d—i
00

The method of SNTLN requires that f(y) and ¢(y), and the initial estimates of

{)d,i
and Vgs = (7.8)

—d—i
9(7)1 d—1

Ugs =

the quotient polynomials, be rewritten. Specifically, it follows from (7.2) and (7.3)

that

m n

f) = @by)y™™ and gly) = > (b6 " (7.9)
i=0 i=0
and thus it is expected to include 8 as a parameter to be optimized by SNTLN. The

substitution of § = 6, into (7.9) therefore yields

m n

fy,0) = (@8 " and §(y.0) =Y (66")y, (7.10)

=0 =0
where the arbitrary value 6 will be refined by the method of SNTLN, using 6, as

the initial estimate. Similarly, the initial estimates of the quotient polynomials are

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 152

rewritten as

m—d n—d
,&d(y’ 9) — Z(ud‘iem—d—i)ym—d—i and ’l}d(y, 9) - Z(,Ud‘i()nﬂl—z>ynfd~z’

where u,4; and vy, are computed from (7.8), and y is the independent variable in these
polynomials.

The approximate decompositions (7.4) are therefore replaced by

f(u»H) ~ &(1(y'0)ﬂd(y79> and (l/og(y,g) ~ 511(3/79)7:%(1/»9), (711)
where
d
éa(y,0) = D (caid)y,
i=0

and thus (7.11) can be written in matrix form,

Ug(ug, 6 f(o
ol ?) cq(f) = @) , (7.12)
Via(vq, 0) a,g(0)
where
T
Ug — Udo Udi *°° Udm—d—1 ud,md} ERde+I,
T
Va = [Ud,o Vgl Udn-d-1 Ud,n—d} e R4,
~ - T
f(@) = aogm 610m~1 (_lm—19 amj| ERm_H,
- -
80) = | Bon b, - By,6 b] e R,
- T
Ca(0) = | cg08? canb® ' oo cap b cd)k] € R (7.13)

The coefficient matrix in (7.12) is of order (m +n +2) x (d + 1), where Uy(ug, 8) and

"HAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 153

Vi(vq, 0) are given by, respectively,

[g o]
ud‘l()mfdfl
Uagf"
Url(“'da 9) = ud,mvd—le . ud,lemvdvl c R(m+l)><({l+l)’
Ud m—d
ud‘m~d~l(}
’ZI{L,,, d
- -
Ud’()gnfd
,U(Llen~(lvl
vg00™ 4
Vi) = | vanand o nga0ri | € ROFURED,
Vin—d
Vdn—d—-1)
L Vdn—d]

The approximation equation (7.12) is not satisfied exactly because the polynomials

f(y) and §(y) are inexact. It is therefore necessary to add a structured matrix to the
coefficient matrix on the left hand side, and a vector to the right hand side, of this

approximate equation, which is therefore replaced by

Ud(ud, 9) + _P{l(:,’d, 9) . (9) _ f(g) + pd(Sd, 0) (7 14)

Vi(va, 0) + Qulz4,0) (o + 30)E(6) + Qu(ta, 0)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 154

where
Z(Logmud 1
zg 0!
Zd109m_d
Pu(za.0) = Zam-a0 . zg,0m 4 e ROm+1x(d+1)
2d,m—d
Zd,m—d—19
L Zdm—d
[) -
Zd,nl—d+19n_d
Zd,m—d+29n_d4]
Zd,m—d+19"_d
Qa(za,0) = Zdm+n—2d9 T Zgm_apef 4 ER("+1)X(d+1)’
Zd,m4n—2d+1
zd,m,-+-n—2(10
L Zd,m+n—2d+1 |

are the matrices that contain the perturbations z,;,

T
_ m+n—2d+2
24 = [240 "0 Zdm—-d Zdm-d+1l """ ZdmAn—2d+1] €R ,
which is the vector of structured perturbations that are added to the coefficients Ud s

and vgq;, the vectors p; = py(sq,0) and q; = qu(tq,0) ,

T
— — +1
Ps = |: deoem delgm b Sd,m—le Sdm] € R™

T
Q = [td,om taa0" e tgnaf td‘n] € R,

are the vectors of coefficients that are added to the coefficients of f(y,8) and §(y, 6)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 155

with

T
. _)) m+1
Sd = [S0 Sd1 t Sdm—1 Sdm :| € R *

T
td = { td,() td.l td,nvl td,n :I € Rn+l'

and 3, is added to «.
Eq.(7.14) is a non-linear equation for the vectors zy, sy, ty and ¢4(6), and the
scalars 3, and #. This non-linear equation is solved by the Newton-Raphson method.

The residual that is associated with an approximate solution of (7.14) is

f(8) + py(s4.0)

(o +) (&) + qu(te. 0))

7'(2115 Sds tda éda /Bm 9) =

| Ualua.0) + Fa(za.9) &a(0), (7.15)

Va(va, 0) + Qa(24.6)

and thus

7(2q 4 024, Sq + 084, ta + 6tg, €4 + 8Cq, 3, + 03,.6 + 00),

is equal to

£(0 + 660) + py(sq + 654.0 + 06)

(7.16)
(v + Bo + 68,)(8(0 + 60) + q(ty + 6ta, 0 + 60))
Ug(ug, 0+ 00) + Py(zqg + 024,60 + 60
| Ualua)+ Pa(z4 + 624 N —

Vd(vd, o + (59) + Qd(zd + (5zd. 0 + (50)
The Newton-Raphson method requires that the lowest order term of the Taylor
expansion of this expression be considered, and it is simplest if the terms in (7.16)

and (7.17) are considered separately.

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 156

Since

. . of
£(6 +36) + Dulsa+ 0540+ 30) ~ T+ py + 560 + "“59 n Z ‘)pd s (7.18)

and

(o + B0 + 68,)(&(0 + 660) + qu(ty + 8ty, 6 + 56))

-) og dJq 0q
~ ((y0+ﬁo)(g+qd)+(ao+ﬁo) (89(59+ d(59+z d5t(1,>

(& +a4)005,, (7.19)

to first order, where

771&00’”"1 msd,()ﬂ’”‘ !
. (m — 1)(_110"1_2 (m - 1)8{1‘107”‘2
g = . % — :
ol ' ’ 00 ' ’
am_l Sdm-1
L 0 J L 0 i
and
r _ 7 o 7
nboﬂn_l Tltd'()envl
(TL — 1)51071*2 (Tl - 1)td‘191l_2
g _ I _
0 ’ a0 ’
l_)n—l td‘n—l
i 0 J i 0 |

it follows that (7.18) and (7.19) are the first order approximation of (7.16). It is

verified that there exist square diagonal matrices S = S(#) and T = T(6) such that

p; = Ssq and a, = Tty,

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD

where

S — S(()) — (h'(lg { 9771 9":—1 L. 9 1 :| c R(711+1)X(r71+1)

T:T(@) = di‘dg[ﬁ" g1 ... @ 1:|€R(n+l)x(n+l)1

and thus

" op, ST
084, = Sbs, and —= 0ty = T6ty,.
Z 054, - : Z Oty b :

=0 1=0)

3

157

(7.20)

(7.21)

(7.22)

Consider now the first order approximation of (7.17). The coefficient matrix of

this term is
A,I(ud, Vg, 0+ (59) + Bd(zd -+ (52(1. 6+ (59)
Ug(tig, 0 + 86) + Py(zy + 624,80 + 06)
@(vg, 0 4 00) + Qq(2q + 024.0 + 06)
which is of order (m +n + 2) x (d + 1), where
l],/(’lL,], 9) R (Z . 9
A,[(Ud, Uy, H) = and Bd(zd- 9) = ti~d)
‘/(1(7)(17 9) Q(I(Zd’ 0)

It follows that

(%wmmﬁ+5m+BA%+6%ﬁ+wm)qw+5w

(‘)Ad 8B(1 m+n—2d+1 83(1
Ag+ —080 + By + —0d0 Zd C,
((+ g 00 + Bu+ =500 + Z:; 8%6 il (ed+

(()Ad 0Bd m+n—2d+1 (,)Bd) i
oo a0

~ (Ag+ Boeg + | 240+ 50 8zas | &
([+ 1)Cd < —+ + 12_0: (93(1‘1' 1, Cy
de
“d 5

+(Ay + Bd)%)

ra

Icy .
(Cd()(g

)

(7.23)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 158

to first order, where

r .
dCd‘()edAl
, (d — 1)y 042
, au P, . *
dAq _ 56 0By _ % @1_ _
00 av, | 06 o, |7 df
a6 6
Cd,d—1
0
The matrices %%‘1 %‘g‘i, %’:_)4 and %Of are given by, respectively,
((m — d)u(w@m_d_l
(m —d—- 1)Udyl9m_d_2
(TIL — d)udx()gmid_l
oUy _
0 U m—d1 w(mo—d = Dug, 0774
0
Ud m—d—1
0
L J
(n — d)vg e 41
(n—d— 1)vg, 0" 42
(n _ d)vd‘oen—dwl
oVy :
90 Vdn—d—1 o —d =g 0niE
0
Udn-d—1
! 0]

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 159

(1 —d)zg 00")
("L —d - 1)3(1‘]9"'"{1"3

(”l — ({):,['“H’“ d-1

aPy | N
o Sd,m—d-1 (= d = D)z, 0m -
0
Sdon - d o1
0
.
<n - d)zri‘m—r1+19”" d 1
(n —d— 1)zg g6 12
(1 —d)zgma 0"
(;:29(1 - Zdm+n—2d e (” —d - 1>:(l,m 1/{‘20””‘172

0

-
~d.mi+n-2d

0

Also, there exists a matrix Zy(€y4.) € ROmmnrr2)i«imen=2d=2)

5 Zyy(Cq. 0)
Zo&nty=| " . (7.24)
Zq2(Cq.0)

where Zy 1 (€4,0) € ROmFUX(man=2d42) g0 7,5(¢4.0) € R+ D (msn=2d52) “yeh that
Z,[(éd, 9)3(1 = Bd(:d- ())érl- (725)

for all ¢4, 2z and 6. It therefore follows that on differentiating both sides of this

equation with respect to z; and keeping 6 constant.

m+n—2d+1 OB
Zd(éd, 9)(52(1 = (Z 0~Id (52(1',> 6,1. (726)
=0 ~d,1

The matrices Zy1(€4,0) and Z2(€4,0) can be expressed as functions of the Toeplitz

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD

matrices Cy1(€q) and Cy2(€,) respectively,
Zap(€a,0) = { Can(€4)Our Omstn-git } ;

Zy2(€4,0) = [0n+1,m—d+1 Cy2(€4)O4y],

where
Cd’ogd -}
Cd’led—l
Cd,09d
CaalCa) = Caa-10 . g 0970 € Rim+x(m=d+1)
Cdd
Cd,dﬂg
Cd.d]
Cd’()ed]
Cilgd_l
Cdyogd
Can(Ca) = Cagl . cgp04! | € ROFDx(nmdi)
Cdd
Cd,d—19
L Cdd]

69d1 = djag gm—-d gm-d-1 | 0 1 } c Eghn-d+l)x@n—d+1%

()¢2 = diag [gn—d gn—d-1 .. 0 1 } EEHR(n_d+J)X(n'd+1X

160

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 161

Example 7.1. Let m =5,n =3 and d = 2. Thus

T T
227 | Zyg 221 %22 %23 224 225] . Cy = [2007 210 a0 ,
29 093
02 200" .]
2.1 <20 <24
0 20107 2067 5 il
222 <21 22,0 <250 224
Py(zg) = ; Qa(22) = ,
23 2900 22,192 205 Zo40
22,3 22,29 225
22,3
. r . 1
C?,OHJ 00 220
C2‘194 ng004 0 0 221
- (52’293 CQJQS C2‘093 0 0 222
22,1((32,9)22 = .
02’262 ()27102 (52‘092 0 0 223
02729 02,19 0 0 2.4
02'2 0 0 32'5
L J L i
and
<2,0
0 000 Co 093 <21
_ 0 000 C2y192 (52‘()92 222
ZQ,Q(C2; 9)2’2 =
0 000 CQ‘QQ 62,19 223
0 0 00 Co22 224
225
It is readily checked that (7.25) is satisfied. O

The substitution of the first order approximations (7.18), (7.19) and (7.23), and

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD

the simplifications (7.22) and (7.26), into (7.16) and (7.17) yield
7‘(Zd + 52,1, Sq + (SSd, td + (5td, éd + (Séd, ,80 + (S,BO, 0 -+ (59)

=~ r(z(i,sd,td,éd’ﬁove)

X509 + %46 + Sds,

+ N
(0o +) (2860 + 2306 + Tota) + (& + 4,)60,
DA, Ba .\ . .

_ (30169 4 %59) Cqg— Zybzqg— (Ag + Bd)i;i(s@

~ 1(2a, 84, td, €4, Bo, 0)

n S 0m+1,n+1 Om+l,l g—g + %‘i
071+1,m+1 (ao + /30) T g + qq ((XO + /60) (%% daqo)
0Aq . 0By . dcy

= —Z — — (Aq + By)—466.

(50 Cq + 50 Cd> 60 — Z4624 (d+ d) 70 00

162
(Ssd
oty
00,
o6
(7.27)

The jth iteration, j = 0,1,2,..., in the Newton-Raphson method for the solution

of (7.14) therefore yields

-5 0m+l,n+l Om+l,1
Zd N
O71+1,m+1 _(ao + /BO)T _(g + qd)
[U dP, dé Y
P = C
— (G + %) + (B +) €at (Ua+ PO
Og 0 aV, i) ~ C
(oo + o) (% + %) + (B + 24) & + (Vi + Qu)

— T'(j)(zd’ Sd, td’ éd’ ﬁo" 0)

(7.28)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 163

The improved estimates of zy, 54, tq, 3, and 6 are calculated from

- 4 (G+1) - - () -)
Zd 24 024
Sq Sy 08y
ty = ty + oty ;
R [oR 03,

| 0] 0 L

where the initial values in the iteration are

=0 P =0 P=0 = 89=0 = =09, (7.29)
and ég))(()o), the initial value of €4(#), is given by the least squares solution of (7.12),
T
- Ua(ua, 0,) £(6,)
i (00) = , (7.30)
‘/d(Udv 90) aog(eo)

where XT = (XTX)'X7T.

The initial value of the residual is therefore

T(Oa Oa 0, éda O, 00)

£(6,) Ua(ua, 85)
et . _— ((10)<00)
aog(eo) Vd(“d, 00)
_ t i
Ud(Ud, 90> Ud('LLd, 60) f(e())
=]m+n+2 - 5 : (731)
Vilvg, 6,) Via(va, 65) 28(0o)

Equation (7.28) is of the form

Cw = g, (7.32)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 164

where C € R(77l+’rL+2)X(?VTL+27L—2(1+6)’ w e R2m+2n—2d+6 and g € RN+ are giVC‘Il by

co_ Z, -5 Om+1n41 Oms1a
Ontimer —(o + 6o)T —(g+ q,)
_ (gg + B) 4 (B + L) &y 4 (U, + Py)es N _—
—(a + 5o) (%§+%}) + (G +) @+ (Vi + Qu) e |
w = { 829 659 st9) 80 s }T, (7.34)
9 = (zq, S, t, €4, B, 0). (7.35)

It is clear that (7.32) is under-determined and it therefore has an infinite number of
solutions. It is desired to compute the solution of (7.32) that is closest to the given

inexact data, and it is therefore required to minimise

; 7 e : .
Z((1]+1) B Z((iO) Z((ij) + (57%(1])
SO NERN RO
TALEU [P
CEAREE S 8 + 685
pu+h g) 4+ 58U _ g |
L ° L ©
.01 T 0]
(9) ()
dsj -8
= I2m+2n~2d+6 6tt(1]) - _tflj)
(Sﬁc()j) _ (()J')
i 5619] i —(6W —0,) |
subject to (7.32), using (7.29). If E and f are defined as
E = 12m-+—2n—2d+6 (736)

T
f = - Zc(ij) Sfij) tfij) (()j) 9(]')_90} € R2m+2n-2d+6 (7.37)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 165

then it is required to solve, at each iteration. the least squares equality (LSE) con-
strained problem,
rrti)n |Ew — f]| subject to Cu = g.
where C, f and g are updated between successive iterations. and the initial value of
fand g are f =0 and g =1(0,0,0,¢,.0,6,). which is defined in (7.31).
The QR decomposition can be used to solve the LSE problem at cach iteration
[24]. Specifically, let
, R,
CT=QR=0Q . (7.38)
0
where @ € REm+2n=2d+6)x(2m+2n-2d+6) {5 ap orthogonal matrix, R € R2m+2n-2d+6)x (m+p 4
and R, € RmTn2)x(m+nt2) ig 5 non-singular upper triangular matrix, be the QR de-

composition of CT. If

where v € R™™*2 and v € R~ 2474 the constraint Cw = ¢ becomes

R']I‘v:g,
due to
Cw = (QR)'w
= R'Q™w
v
- [o]
v
= R'{U,

and thus v = Ry Tg.

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 166

Similarly, if

EQ = [El E2])
where El c R(2m+’2n—2d+6)><(m+n+2) and E2 € R(2m+2nA2d+6)x(m+nf2rl+4). the obj(‘,(ttivo

function ||Fw = f|| becomes

1Ew—fll = EQQ"w - f]|

()
= [El Eg] ~ f
1%

= ||[Eywv+ Ew— f|
= [[Ew = (f = Ew)|,
and thus it is minimised when
v =E}(f - Ew), (7.39)

from which it follows that the solution of the LSE problem is

v
w=0Q : (7.40)

v
Algorithm 7.1 shows the implementation of this algorithm for the calculation of

an approximate GCD of two inexact polynomials using the method SNTLN.

Algorithm 7.1: The calculation of an approximate GCD of two inexact

polynomials

Input Inexact polynomials f(x) and g(z) and d, the degree of their approximate

GCD.

Output An approximate GCD of f(z) and g(z), and the modified polynomials

f(y) and g(y) in the independent variable y, after the substitution =z = fy.

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 167

Begin

1. Calculate o, and 6, using methods of linear programming. and preprocess f(;c)

and g(z) to yield the polynomials f(y) and g(y). as shown in Section 4.4.

2. % Calculation only for the dth subresultant matrix S,(f. g).
% Initialise the data for the solution of the LSE problem.

(a.1) Calculate the coefficients u,g; and vy, of «() and ¢(r) using Sd(f, 9),

respectively.

(a.2) Form the matrices Uy(uy.6,) and Vy(vy. 6,). and their derivative %“

and 2% at 6 = 4,
27}

(a.3) Form the vectors f'(Ho) and g(#,). and evaluate :))—(f and (‘)i:; at 0 = 0,.

(a.4) Calculate the initial estimate éf;”(()(,) of ¢,(f) from (7.30), and the

initial residual r(0,0,0. ¢, 0.6,) from (7.31).

(a.5) Calculate the initial values of the derivative ’f—f(ji for 6 =4,.

(a.6) Initialise some variables in (7.29). and set

Pd(Zd,HO) = 07 6211(3(1-,90) = 0, P, = 0. q = ()*

and their derivative
@ . () an
o0

(a.7) Calculate Zd(éfio),@o), where Zy(¢,.0) is defined in (7.24).

_ 0P, _ dd,
o0 0 oy - o

= ().

(a.8) Set g = r(0,0,0,¢4,0.6,). f = 0 and initialise S and T, which are
defined in (7.20) and (7.21) respectively. Initialise C' from (7.33), anqd
define E, which is defined in (7.36).

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 168

3.

Iteration = 0. % The counter for the number of iterations

Repeat 9% Use the QR decomposition to solve the LSE problem at each

iteration
(b.1) Iteration = Iteration + 1.

(b.2) Compute the QR decomposition of CT from (7.38) in order to obtain @
and Ry,

(b.3) Set v=R;"g.
(b.4) Compute v using (7.39).
(b.5) Compute the solution w from (7.40)
(b.6) Sect
24 = 2q + 024, Sq 1= Sq + 084, ty = tq + Oty
and
Bo =0 +68, 0:=0+40.

(b.7) Update ¢4(0) from (7.13) and calculate the derivative %‘1.
(b.8) Update f(#) and g(6), and evaluate g—g and g—g from 6.

Update Py(zq4,6,), Qa(24,8,), %%i and %)—4 from z4 and 6.
Update p,; and %‘1 from s4 and 6.

Update q, and %‘1 from t; and 6. Update Z;(cq4,8) from ¢4 and 6.
(b.9) Update S,T and C, which are defined in (7.20), (7.21) and (7.33), re-

spectively.

(b.10) Compute the residual r(z4, S4,t4, €4, B, 6), which is defined in (7.15),

and thus update g. Update f from zg4, sq4,tq, 3, and 6.

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 169

(b.11) Calculate

f(6) + pa(sa. 0)

(o + 5.)(8(6) + qu(ta.)

€4 ‘=

Until rGasataafodll < 1016 QR [teration > 50.

Hed[l

4. Set resy = Irasetalalodll o — o 4 5, f = £(6) + py(s4,0). & = &(0) + qu(tq, 0)

lleall

and d = &,(6).

End

7.2 Examples

This section contains several examples that show the use of the method of SNTLN for
the calculation of an approximate GCD of two inexact polynomials. It is necessary
to explain some notation that is used in the following examples. If d is the degree of

an approximate GCD, then

e Sy(f,g), the dth subresultant matrix, is formed from the given inexact polyno-

mials f(z) and g(z),

o Su(f, o) is formed from the processed polynomials f(y) and a,j(y), which are

defined in (7.2).

e Sy(f, ag) is formed from the polynomials f(y) and ag(y), which are calculated

from the method of SNTLN, that is, f(y) and §(y) have a non-constant GCD.

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 170

Example 7.2. Consider the exact polynomials f(x) and §(z), whose roots and mul-
tiplicities are specified in Table 7.1. It is seen that m = 26, n = 18 and the degree of
their GCD is d = 11.

Root of f(ac) Multiplicity
-3.5540e-001 3
-9.7181¢+000
2.4576e+000
-5.3781¢+000
5.4870e-001
4.4998¢+000
2.1483e4-000
1.7673e+4-000
-1.3313e+4-000
-5.1165¢+000

Root of g(x) | Multiplicity
-3.5540e-001)
-9.7181e+000
2.4576e+000
-5.3781e+000
5.4870e-001
4.4998e+000

= W b

W b= DD O = = O O

Table 7.1: The roots and multiplicities of f (z) and g(z) for Example 7.2.

Uniformly distributed random noise was added to each polynomial, such that
the componentwise signal-to-noise ratio ;! = 108. The noisy polynomials were then
preprocessed by the operations described in Section 4.4, thereby yielding the Sylvester
matrix S(f,a.§), where a, = 10.2108 and 6, = 2.1097.

Figure 7.1(i) shows the variation of log ¢4 and logrq with k, and it is seen that
dy =d, = d = 11", such that these values are clearly defined by Methods 4 and 5,
which are described in Section 6.1. Figure 7.1(ii), (iii) and (iv) show the normalised
singular values of Sd(f, «g), S4(f, g) and Sd(f, 0,§), where f= f(y) and ag = ag(y),
are calculated from the method of SNTLN using Algorithm 7.1. It is seen that the

method of SNTLN significantly improves the result because

'The degree of an approximate GCD is computed by the method of the first principal angle and
the method of residual.

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD

e the rank of Sy(f,ag) is correct, and it is clearly defined,
e the rank of S;(f, g) is incorrect, but it is defined,

e the rank of Sy(£ 0,g) is correct, but it is poorly defined.

0 0 0
“ouy d
_2 _5 h/
-5
o '
- LIS = ;_ =10 H
-10 1
8 i e :
g b,
-15 ..
-8 -20t |- ® - Su(f, ag) "
* d X
2% 10 20 % 10 20 ey 10 20 30 40
k k i
(i) (ii)
0 0
-\ M d
H -5 * /
-5 . "
~_ .. d ~ =10 *.Q
(=g ! o
o 10 (A %
-15 »
8 S g "
-15 & .
- - S4(f.9) \ -20} | - # - Salf, a0d) %
* d .\ * d
~25 10 20 30 40 50 e, 10 20 3 40
i
(iii) (iv)

171

Figure 7.1: (i) The variation of log ¢, and logr with k, and the normalised singular
values of (ii) Sy(f, ag), (iii)Ss(f, g), (iv) Sa(f, @3), with e, = 1078 for Example 7.2.

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 172

Example 7.3. Consider the exact polynomials f(z) and §(x), whose roots and mul-
tiplicities are specified in Table 7.2. It is seen that m = 16, n = 23 and the degree of
their GCD is d = 13.

. Root of g{z) | MV iplici
Root of f(x) | Multiplicity g(x) | Multiplicity
- - 6.5743e+000 3
6.5743e+-000 3 -
3.7189¢+-000 15)
3.7189¢e4-000 2 i
’ -4.6535e+000 2
-4.6535e+-000 2
9.3897¢+000 1
9.3897e+000 4 .
o091 -6.3245¢+000 5
-6.3245e+4-000 2 .
4.0012e+000 3 ~4.0012e+-000 4
-4, e
4.4140e-001 3

Table 7.2: The roots and multiplicities of f(z) and g(z) for Example 7.3.

Noise was added in the componentwise sense to each polynomial, such that the
componentwise signal-to-noise ratio e;! is 108. The noisy polynomials were then
normalised by the geometric means of their coefficients, after which they were pre-
processed, thereby yielding the Sylvester matrix S(f, a,g), where a, = 9.9244¢ — 003
and 6, = 3.6608.

It is shown in Figure 7.2(i) that the degree of an approximate GCD is clearly
defined using Methods 4 and 5, such that dy = d, = d = 13. Also it is seen from
Figure 7.2(ii) that the rank loss of Sg(f, ag) is more clearly defined at d = 13 than the
rank loss of Sd(f, a,§), that is, it is important that the method of SNTLN should
be used to calculate the modified polynomials f = f(y) and ag = ag(y), and an
approximate GCD.

Since m = 16 and n = 23, the integer k ranges from 1 to min(m,n), and thus
k=1,...,min(m,n). The experiment is repeated for each value of k, and thus res;

and the value of |Ew — f|| are calculated using Algorithm 7.1, assuming Method 4

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD

173

§ .‘“!:'-.
-2 “\:::::!‘ d
. \
.e_x k& -4 2 ’ :I
o _ = O .] P
o 10 R o 10 e %
o Ke) - o | & | A
o [[== S4f,af) : ‘x
-15 7 ~A8HL %= . Lo b | PN
- Su(f,209) L...'.“ Ay
-8 NS 2
[
- -9 -
* 10 20 o 10 2 200 10 20 30 40
k k i

Figure 7.2: (i) The variation of log ¢x and logr; with k, (ii) the normalised singular
values of S;(f,ag) and Sy(f, @g), with &, = 10~ for Example 7.3.

is used to determined which columns of S (f,a.j) are removed to right hand side of
(7.6). Figure 7.3(i) shows that the variation of res; with k enables the degree d of an

approximate GCD of f(y) and §(y) to be calculated because

E=1y. .4,

resy ~ 0,

resg > 0, k=d+1,...,16,

such that d = 13, and Figure 7.3(ii) shows that the degree d is also equal to 13, the
value of k for which || Ew — f|| achieves its minimum value. Similar results are shown
in Figure 7.3(iii) and (iv) when the columns of Si(f, @§) are determined by Method
9.

It would appear from Figure 7.3 that the method of SNTLN can be used to

calculate the degree d of an approximate GCD of f(y) and §(y) because:

e res;y ~ 0 when k < d and res; has maximum gradient at k = d,

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD

e ||[Ew — f|| achieves its minimum value at k = d.

It is however now demonstrated that this is not necessarily true.

IS

174

-4 -
/.\
) *
-6 h 3l
! o AL
I Y~ !
< i | ' | f
wn I
£ -10f : 3% .'
o I]
o= | — \ [
%o 12 h & =2 JA=p . h
- I b'l-)(- » \]
/ ~ '}
Al : = ¥ votee N il
| =)0 %
-16 """‘V‘.‘“*4‘.*""‘ \\:
*
-18 -6 - v .
0 5 10 15 0 S 10 15
k
(i) (i)
0 + 4 .
t fes
1 I
/
: ‘\ = (2% '
-5 s Wy !
2 el o = ‘
@«) y | [1]3 I
LY
| I S p-n !
o-10 ! x ‘. > \
- 1 # “ 1
)] =3t * 4 [
2 ! = \ - ik
-15} | o g PO e
* o000 e-" 0o o9 = -4t L H
!
\"
- " * A
0 5 10 15 -60 5 10 15
k k
(iv)

(i)

Figure 7.3: The method of SNTLN used to calculate (i) resy, (ii) |Ew — f||, based
on Method 4, (iii) res, (iv) ||[Ew — f||, based on Method 5, with k, for Example 7.3.

If another perturbation is added to f(z) and §(z) with the same componentwise

signal-to-noise ratio £, = 10%, and the new inexact polynomials f(z) and g(z) are

preprocessed by the operations described in Section 4.4, then new polynomials f(y)

and §(y) are obtained. It is seen that Figure 7.4 is similar to Figure 7.2, which means

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 1786

the determination of d by Methods 4 and 5 and the rank estimate of Sy(f, ag) are

stable with respect to perturbations in the coefficients of the polynomials.

d = o““‘%"l‘-l
-2 -2 “l‘“:::::‘% d
ags |
o -6 w4 i h
Q = L= - £ :‘A
& 8 > 5 ° 10 '\‘
S 4 Lo f o] 3 A
o - #-84(f,ag) ', N
T & 157 |- a- 54(f.00d) b %
l.--‘.
-14 -8 * d "-§¢
-1 - -
& 10 20 % 10 20 2 10 20 30 40
k k i
(i) (ii)

Figure 7.4: (i) The variation of log ¢4 and logr, with k, (i) the normalised singular
values of S;(f,ag) and Sy(f, a.g), with e, = 10~® for Example 7.3.

Figure 7.5 shows that the variations of res; and ||[Ew — f|| with & fail to return
the correct value of d, when the column of Si(f, o) is chosen by Method 5. Similar
results were obtained when Method 4 was used to choose the column of Si(f , 460) to
move to right-hand side of (7.6). The method of SNTLN cannot therefore determine
the degree of an approximate GCD with respect to this kind of perturbation in the

coefficients of the polynomials. O

7.3 Summary

This chapter has considered the use of the method of SNTLN applied to the ap-
proximate polynomial factorisation of two inexact polynomials for the calculation of

an approximate GCD. If the degree of an approximate GCD is given, it has been

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 176

0 0 B -
i P
1]
1 . 5 !
I —
-5 1 “ O\ / — ,/
1y U S~ /
w—“ el ! | L]
@ ([! ot !
[=4 R ! ;3 '
2 -10f 68 : . ‘
| . — A .- !
8> : } \ ,’ o2 * 9 ® ot "
5 | : L 1 = K .. i \ ;
-15} ! \ 1/ \\ t S », e ; 4
| ! g N of v |
e o-0 9-¢ o - ** g -4+ » \ ;
\
!
\
o
=20 - "
0 5 10 15 60 5 10 15
k k

Figure 7.5: The method of SNTLN is used to calculate (i) resy, (ii) ||Ew — f||, based
on Method 5, with k, for Example 7.3.
shown that the method of SNTLN recovers good approximations to its coefficients,
and polynomials f(y) and §(y), which have a non-constant GCD. It is demonstrated
that the rank loss of Sy(f ag) is clearly certified, even if the numerical ranks of
Sa(f,9) and Su(f, @.g) are not defined.
Apart from the feasibility of the method of SNTLN to the approximate polyno-
mial factorisation, there is a scope to increase computational efficiency. It is known
that this method requires that an approximate GCD be calculated from (7.12), and

thus it is useful to investigate an algorithm that exploits the Toeplitz structure in the

left hand side of (7.12).

Chapter 8

Calculating the roots of a

polynomial

A simple polynomial root solver has been introduced in Chapter 3 to calculate the
multiplicities of the roots through a sequence of approximate GCD computations,
after which the values of the roots are calculated through polynomial division opera-
tions. Since the calculation of an approximation GCD of an inexact polynomial pair
has been considered in Chapter 7, it is now appropriate to consider the polynomia)
division p(x)/q(x), which reduces to the deconvolution of p(z) and ¢(z).

Assume that the ratio of p(x)/q(x) is a polynomial. and random perturbations
dp(x) and dq(x) applied to p(x) and g(z) respectively, cause

p(z) + dp(z)
q(x) + dq(x)

to be a rational function. This means that deconvolution of two polynomials is an ill-
posed problem, and thus it is difficult to obtain a computationally stable solution. A

structure preserving matrix method is therefore used to guarantee that deconvolution

177

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 178

of two polynomials is a polynomial and not a rational function. In this case, struc-
tured perturbations z,(x) and z,(z) are added to the numerator and denominator

respectively, such that

p(z) +0p(x) + z,(x)
q(z) + 0g(z) + z4(z)

is a polynomial, that is, the denominator is an exact divisor of the numerator. It is

shown in Section 8.1 that the method of STLN [56] can be used to construct the
perturbations z,(x) and z4(x).

With reference to the designed root solver, it is then necessary to solve a sequence
of polynomial equations, all of whose roots are simple. The solutions of these equa-
tions are then refined by the method of non-linear least squares (NLLS). This work
using the method of NLLS follows closely the work of Zeng [72], and it is shown in
Section 8.2 that the equation that is solved by the method NLLS is based on the
pejorative manifold of a polynomial that has multiple roots. This manifold has been

introduced in Section 2.3 in the consideration of the numerical stability of the roots

of a polynomial.

8.1 The deconvolution of two polynomials

This section describes the method of STLN for the solution of the deconvolution
problem. It is stated in Section 3.2 that a sequence of deconvolutions are required
for the polynomial root solver, such that a polynomial is involved for the kth and
(k + 1)th deconvolutions. It is therefore necessary to consider the application of a
linear structure preserving matrix method for several deconvolutions together,

nio) =

i=1,...,m,, (8.1)

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 179

where m, is an arbitrary number, and the polynomial d(r) appears in the kth and

(k + 1)th deconvolutions. The degrees of these polynomials are

deg d,(x) = m,, i =0..... m,.
deg 7,(z) = n,, P=1.....m,.
where
me—1 Ma
Z (m, +1) = M, Z(m, +1) = M, My =M+ (my,, + 1),
=0 i=0
and
Z(ni+l):N, ng =m, 1 —Mm,, i=1,....m,.
i=1
Ifd, e Rt i =0,....m,, and I, € R="' j =1,.. .. m.,. are the vectors of the

coefficients of d;(z) and 7,(x), respectively, then (8.1) can be written in matrix form

as
—Dl(dl) 17 Iy] [dy]
Ds(dy) Iy d,
~ (8.2)
Dy 1(dim.—1) R dp., -2
_ Dudn) | | T | | dms |
where
Di(d;) € Rm—tUx(mtll =1 . n,.

and the coefficient matrix in (8.2) is of order M x N.

[t is assumed that the coefficients of the polynomials are inexact, and thus (8.2)
does not possess an exact solution. It is therefore necessary to add a structured
matrix to the coefficient matrix, and a structured vector to the right hand side, of

this equation. In particular, let z; € R™*! be the vector of perturbations added to

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 180

the vector d, of coefficients of the polynomial d,(x),7 = 0,...,m., and let
T
M
Z:{ZO Zl Z?n*} ER 1’
where
T
— mo+1
Zy = [5 21 - Zmg } € R ,
1
_ mi+1
21 = |: mp+1l Rmg+2 " Zmo+mi+1] € R ’
T
_ m;+1
Z = [SmodAmi g+ Zmo+-+m,+i :l €R ’
T
— mm.Jrl
Zm, = [IMOEM41 T 2Mp -1 } eR -

A matrix of structured perturbations is added to each of the Toeplitz matrices

D;(d;),i=1,...,m,. and thus the coefficient matrix in (8.2) is replaced by

B(z1,...,2m.) = D(dy,....dw.)+ E(z1, ... 7.
- D) -
Ds(d»)
= +
Dy —1(dim. 1)
L D’"l:(d"lo) i
_ . -
Ex(z,)
Em.-1(Zm.-1)
i En. (Zm.)

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 181

where B(zy,...,2,.) € RM*N and Ej(z;) € Rm-itUxtl gy — 1 m,, are

Toeplitz matrices.

Consider now the vector on the right hand side of (8.2), the perturbed from of

which 1s

B n
- 5 Zg - -
[dy + 2 (dy dy
Z
dl + Z d]) d]
= |+ [Iy i 0 } =] ¢ | +0g
Zm.~1
d,,,*,,g + 2, -2 dm*72 dm*~2
L d,,“,] + Zy, -1 i L dm,-l i L dm.—l i
ZT”:
where
O:[[[” O:I GRIWXAﬁ.
It follows that the corrected form of (8.2) is
(D(dl,)+ E(zl,...,zm*)) I =d+ Oz, (8.3)
where
T
I = {11 Iy ... Thoor o } eRY
and

T
d = [do dy . dpo dps } eRY.
The residual due to an approximate solution of (8.3) is

r—r(z) =d+ Oz — (D(dl,..,dm,) + E(a, ...,zm*)> r, (8.4)

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 182

and thus a first order Taylor expansion of 7(z) yields
r(z+6z) = (d +0(z + 5z>)
. (D(dl, covd) + E(zy + 024, ... 2, +5zm,)) (T + 4T
= r(z)+ Odz — (D(dl, coydp,) + E(zq, . .. ,zm,)) or
—0E(z1,...,2,,)T, (8.5)
where
[6E(21)

5E2(Z2)
(SE(Zl, e)Zm,.) =

5Em,.—l (Zmr-l)

5E771* (zm.)

There exist matrices Z;(I';) € Rims—+Dx(matD) 4y — 1y, such that

L =

Ei(zi)ri = Zi(f‘i)zi, 1= 1,...,m*,
and thus

(SEi(Zi)Fi = Zz‘(rz‘)(szz', t=1,...,m,,

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL

from which it follows that

(SEJ(Zl7 .. .,Zm*>F =

0

L

= Z(F],...,Fm*)dz,

Zm..—1<rm*~1)
Zm,,(Fm*)

Zm*~l (Fm.—l)
Zpn.(Tim.)

where Z = Z(T'y, ..., [y.) € RM*M1 g equal to

0 Z(Iy)
0

0
0

.

The substitution of (8.6) into (8.5)

Z(T2)

yields

r(z +dz) =r(z) — (D + E)ol — (Z — O)dz,

and thus the Newton-Raphson method requires the iterative solution of

(D+ FE)

(Z-0)

or

:T,

0z

0z

183

(8.6)

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL

which is an under-determined equation, where r = r(z) and

(D+E) (Z-0) | € RM X (N+My)

184

If T© and z(9 = 0 are the initial values of T' and z, respectively, in the Newton-

Raphson method, then the (j + 1)th iteration requires the minimisation of

subject to

e+ _

20D

(D+E) (Z

'Y 4§10 — 1

sTW) —(TW —TO)
8z —z()
0 | 6T '
_ O) = 7»(])7
§5z(9)

where the initial value of I is calculated from (8.2),

D1 (d])

Dy (d,)

Dm.—l(dm.—l)

Dy, (din,) |

do
d,

dm.—?

L dm.—l B

and X' = (XTX)7'X7. The initial value of the residual is therefore

T'(O) = T(U)(z) =d-— D(d17 s 7dm*)r(0)'

This is an LSE problem

min || Sy — s||
Y

subject to Ty =t,

(8.7)

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 185

where
)
S=Ivun, T=|(D+E) (Z-0)| €RMV,

(4) (T — 1)
y = o e RV s = =1 e RN+M
‘ 5z0) g
and t =) ¢ RM,
It is known from Section 7.1 that the LSE problem can be solved by the QR

decomposition, which is shown in Algorithm 8.1.

Algorithm 8.1: Deconvolution using the QR decomposition

Input The m, + 1 polynomials d;(z),i = 0,...,m,.
Output The m, polynomials 7;(z),i = 1,...,m,.

Begin
1. Set z(¥ = 0 and calculate T® and r® from (8.7) and (8.8).
2. Set s = 0 and t = (¥ and initialise the matrices S and T

3. Iteration = 0. % The counter for the number of iterations
Repeat % Use QR to solve the LSE problem at each iteration
(a) Iteration = Iteration + 1.

(b) Compute the QR decomposition of T7 from (7.38) in order to obtain Q

and Ry,

(c) Setv=R;"t.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 186

(d) Partition S@Q as
s0-| 5 s |
where §; € RIVFMDXM 5nq 6 ¢ RUWHMD)X(N+M=M)
(e) Compute v = S}(s — Syv).
(f) Compute the solution
v

y=0Q

v

(g) Set I' :=T + 6T and zx := zx + 02.

(h) Compute the residual r, which is defined in (8.4), and update T, s and
t=r.

(b.11) Calculate ¢ = d + Oz.

Until H < 107 OR Iteration > 50.

End

Since the deconvolution problem has been solved by a structure preserving matrix
method, the computation of m, deconvolutions can yield a sequence of polynomial
equations with simple roots only, and more details are shown in Section 3.2. More-
over, the roots function in MATLAB is used to calculate the simple roots of these
polynomials initially, after which the method of non-linear least squares is used to

improve their estimates, and this is considered in the next section.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 187

8.2 Non-linear least squares for multiple roots

This section describes the method of non-linear least squares (NLLS) and its applica-
tion to the refinement of the roots of a polynomial. The Newton and Gauss-Newton
methods are considered and compared for the theory of the method of NLLS, where
it is assumed that the multiplicity of each root is known and initial estimates of the
roots are given.

Consider the problem

m

: 1 r 2
min h(z) = 5rlr = E;n(ac) (8.9)
where 7 = r(z) € R™, z = {z;} € R*,n < m and each residual r; = r;(x) is non-
linear. It follows that

oh "L Oy

and thus at a stationary point

dx; Oxa Orp
T 7 ary dxo 0T n
U ']— {Tl ro - rm:l = |:O o --- 0] (810)
Irm Grym ., Orm
| 61’1 3:1‘2 aIn _

where J = J(x) = Vh € R"™*" is the Jacobian matrix.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 188

The second derivative of h(zx) is

92h 0 [or
(91‘[8.’[]‘ B O_Jrl{;rl_(?;}

_ 'Z" or, @ o°r,
— \ Oz, Oz; "0z ;01
m . m 62’,"
=]1 !]u i ?
12_1:(11 1J)+§T 8%8201
[827‘]]

82rm
| Ox,0x |
If the Hessian matrices G;(z),i = 1,...,m, are defined as
0*r,
Y — T2, (. nxn) - !
Gi(x) = Vr,(z) € RV, Gi(z) 32,05
then
Vh(z) = J()"J(x) + Qz), Qz) =) ri(z)Gi(a), (8.11)
=1

where G,(z) = G,(z)". The formulae for the Jacobian matrix J(z) and the Hessian
matrices G;(x),i = 1,...,m, enable Newton’s method for the minimisation of h(x)
to be developed. Specifically, consider a quadratic Taylor expression of h(x) about
T = Tk,
h(ze + Axy) = h(xp) + Azl J(xe) r(zk)
3 AL () I(m) + Qay)) A, (8.12)

which achieves its minimum values when
(]l;IJk + Qk) Al‘k - —J,Z’f‘k, (813)

where Ji = J(xk), Qr = Q(zx), 1 = r(zk) and JI Jx + Qx € R™". The vector Azy

that satisfies this equation is called the Newton direction, and it leads to the Newton

CHAPTER 8 CALCULATING THE ROOTS OF A POLYNOMIAL 189

iteration,
~1
Tpor = o+ Az =ap — (JL I+ Qi) Tl (8.14)

If JEJ, + Qg is positive definite, the initial estimate xq is near the solution, and the
quadratic model (8.12) is accurate, then the iteration (8.14) converges quadratically
[9], page 384.

It cannot, however, be guaranteed that J! Jy, + Q4 is positive definite, and thus the
quadratic model (8.12) may not have a minimum, and it may not have a stationary
point. If Jl'Ji + @y is singular, a stationary point exists only if J/7y lies in the
column space of JIJy, + Qy.

The Gauss-Newton iteration is derived from the Newton iteration (8.14) by ne-
glecting the matrix @y, that is, the second derivatives of ry. and thus this iteration
1s

Thir = @ + Azy = 2 — (JTI) T I (8.15)

The iteration (8.15) is better behaved than the iteration (8.14) because JI'J, is, at
least, positive semi-definite, but (), may or may not be positive definite. It will be
assumed that the rank of .J; is equal to n, that is, J, has full column rank, such that
the matrix inverse in (8.15) exists. It has been demonstrated in [72] that if the roots
x;,j=1,...,n, are distinct, this assumption is satisfied.

It follows from (8.11) that the approximation J!' J, + Qx =~ J Ji assumes that

m

Z () Gi(k)

=1

is small, that is, the residuals are small and/or they are only weakly non-linear. In

Qi)l =

< S Ine G,

this circumstance, the iterations (8.14) and (8.15) bchave similarly, and convergence

of the Gauss-Newton method is almost quadratic. If, however, the residuals are large,

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 190

then the convergence of the Gauss-Newton iteration may be substantially inferior with
respect to the convergence of the Newton iteration. The application of the method of

NLLS to the calculation of the values of the roots of a polynomial is now considered.

8.2.1 Calculating the values of the roots

In [72], it is shown that the method of NLLS is used for the calculation of the values
of the roots of a polynomial. and the equation that is solved by the method NLLS is
based on the pejorative manifold of the polynomial. The pejorative manifold of a poly-
nomial is defined by the multiplicity structure of its roots, which has been described
in Section 2.3. It also presents that the importance of the pejorative manifold arises
because multiple roots are usually assumed to be ill-conditioned, but they are insen-
sitive to perturbations that maintain the polynomial on its pejorative manifold. In
particular, the roots of a polynomial are ill-conditioned when random (unstructured)
perturbations are applied to its coefficients, in which case the perturbed polynomial
does not lie on the pejorative manifold of its unperturbed form, but structured pertur-
bations are required to keep a polynomial on its pejorative manifold. This property
of pejorative manifolds forms the theoretical basis of the algorithm in [72} for the
computation of the roots of a polynomial, and thus the work using the method of
NLLS follows closely the work of Zeng [72].

Consider the polynomial f(x) of degree m with coefficients f; € R,i =0,...,m,

m

f('/lj) - Zfl:rm-i = f()iL‘m + flil‘m_1 ++ fm—lx + fma

1=
where

T T
f@y~a=lay ay -+ apy ap ' =L L ... 22 [T €R™

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 191

and ~ denotes the correspondence between the polynomial f = f(z) and a, the vector
of its normalised coeflicients. If the distinct roots of f(z) are z; € R,j = 1,...,n,

and the root x; has multiplicity m;, then

n m

x . .
f](t) = H(m — ;)" =2"+ Z gi(xy, ... x)2™ (8.16)
0 . -
7=1 =1
where
n f
ijzm, glzy,...,xn) =" =a;, i=1...,m. (8.17)
7 2
]v
Equation (8.17) leads to the equation G(x) = a, where G(x) € R™,
r 1T T
91 (T1, - Tn) a |
= X = € R™ (8.18)
gm(‘rla---aajn) am Ty
It is shown in Section 2.3 that given a multiplicity structure m = [m;, ma, ..., m,],

the pejorative manifold M of a monic polynomial f(z) of degree m with n distinct

roots for m is defined from (2.9) and given by

M={G(x)=a | aeR™, xeR" T, T, LF] }
It follows from the theory above that the distinct roots z;,7 = 1,...,n, of f(z) are
the solution of the non-linear equation (8.18). This is a set of m equations in n
unknowns, where m > n if f(z) contains a multiple root, and m = n if and only if all
the roots of f(z) are simple. These equations are solved by the method of NLLS, and
thus it is necessary to determine the vector x that solves the minimisation problem

1 I
min = |G(x) - al); = min {5 Z(gi(x) - ai)2} :

1=1

Comparison of this function with A(z) in (8.9) shows that

ri(x) = g,(x) — a;, i=1,...,m, xeR"

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 192

m,n

and the elements of the Jacobian matrix J = {J;;},2, of the functions r,(x) are

or; 0g;(x)

= = = 7 C
Ji, 52~ or (8.19)

This stationarity condition (8.10) becomes
7] =[G(x)—a]"J =0, (8.20)

which shows that the vector G(x) — a is orthogonal to the tangent plane of the
manifold M, = {w = G(x)|x € R*} at w, = G(x.) where x = x, is a solution of
(8.20).

The coefficients of the normalised polynomial (8.16) can be obtained by repeated

convolution, and this enables the expressions for g;(x),7 = 1,...,m, to be derived.
Algorithm 8.2 shows pseudo-code for the calculation of the entries ¢g;(x),i = 1,...,m,
of G(x).

Algorithm 8.2: The calculation of G(x)

Input The integers m and n, the roots z;,7 = 1,...,n, and the multiplicity m;
of x;.
Output The entries g;(x),7 = 1,...,m, of the vector G(x).

Begin
s = [1]
for j=1,2,...,n

for [=1,2,....,m;

s = conv(s, (1, —z;)) % s is of length m + 1.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 193

end [
end
for :1=1,2,....m
gli) = s(i+1) % g(i) = g.(x)
end ¢

End

Since the elements of the Jacobian matrix J are defined in (8.19). the jth colump

of J is given by the vector

J. — agl (X) 092(") . (‘)g”l*l(x) ().'lm(x)
J Ox; Or; or, ar,
and consider the polynomials ¢;(z).j = 1..... n. of the degree m — 1, such that the

coefficients of g;(z) are formed from the entries of J;.

g;(2) = %x—)r’”“ + 8—?)%1-"‘2 ot Q%I%X—)
= —a—% [27 + gi(x)2™ 4+ g (x)]
= % (x—)™ (x —x2)™* - (x —2,)™] from(8.16)
= —myfz -z [Hu - m""J
I#7
= -my [H(z - Iz)’"’”] | BTN (8.21)
=1 1)

The expression (8.21) is therefore used in the pseudo-code in Algorithm 8.3 for the

calculation of the elements of J.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 194

Algorithm 8.3: The calculation of J(x)

Input The integers m and n, the roots x;,5 = 1,...,n, and the multiplicity m;
of z;.
Output The Jacobian matrix J = J(x).
Begin
u = [1]
for 7=1,2,....n
for [=1,2,...,m; —1
u = conv(u, (1, —z;))
end |
end)
for j=1,2,...,n
vV =—m;u
for [=1,2,... n,l#)
v = conv(v, (1, —z;))

end !/

J(,j)=v % v is equal to the jth column of J

end j

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 195

End

Algorithm 8.1 is a combination of Algorithm 8.2 and 8.3 for the least squares

solution x, of (3.18).

Algorithm ¥.1: The calculation of the roots x,

Input The vector x, of the initial estimates of the least squares solution x, of

(N.18)0 the multiplicity s, of cach distinet root xy,.1 = 1....,n, the vector a of

normalised coefficients. the integers m and n, and the error tolerance =,.
Output The least square solution x, of (3.18).

Begin
1. Set A =0,
2. Calculate the vector (/(xg) using Algorithm 8.2, and the residuals
r(xy) = g,(x0) — q,, i=1,..., m.
3. Repeat
(a) Caleulate the Jacobian matrix Jy = J(x) using Algorithm 8.3.
(b) Calculate Axy = — () " r(xe).
(¢) Calculate xz .y = Xp + AXy.
(d) Calculate the vector G(Xgy1) using Algorithm 8.2, and the elements of
residual r(xg.,)

rdXe1) = 9(X) — @, i=1,...,m.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 196

% Xg41 is the (k 4 1)th iteration of the vector x. .

(e) Calculate the error

o) el
I (i)l

(f) Set k:=k+1

Until de < ¢, % local minimum attained

4. X, = Xg.

End

The implementation of the designed polynomial root solver is now detailed in next

section.

8.3 Overview of implementation of a polynomial
root solver

The polynomial root solver was introduced in Section 3.2, and the stages in the

algorithm were discussed in
(a) Chapter 4: preprocessing operations,
(b) Chapters 5 and 6: the calculation of the degree of an approximate GCD,
(c) Chapter 7: the calculation of the coeflicients of an approximate GCD,

(d) Chapter 8: the calculation of the roots and their multiplicities.

CHAPTER 80 CALCULATING THE ROOTS OF A POLYNOMIAL 197

If oy () 1s o given polvniomial in the presence of noise, then a sequence of approx-

nnate GCD computations
d(r) :(:('1)<(/, ,(.r).(zﬁ”,(.,-)), i=1.. ...

are completed using Algorithm 7.1 It was stated in Section 3.2 that a sequence
of polvnomials 7,(r). 70 = 1..... m. are equal to the deconvolution of d, (r) and
o, (). Simitlarly. a sequence of polviomials ()7 = 1., m, — L. are equal to the
deconvolution of 7, () and 7, (). and v, () = 7, (r). in which case x,(r) contains
cither onlyv simple roots. or \, () has no roots and it is equal to a constant. It is
therefore clear that () and \, () can be calculated by Algorithm 8.1. The roots
function in NIATLAR is then used to caleulate the simple roots of x,(2), whose roots
arc refined by Algorithm 8.1 These improved estimates of the roots of \,(x) are
equal to the roots of () with multiplicities 7.

Algorithm 8.5 contains pseudo-code for the nmplementation of this root solver.
and s a combination of Algorithms 3.1, 6.2, 7.1. 8.1 and 8.4 for the calculation of the

roots of a polynomial.

Algorithm 8.5: A robust polynomial root solver

Input An inexact polvnomial ().
Output The roots of dy(r).

Begin
1. Set j = 0.

2. While degree d, > () do

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 198

(a) Set =7+ 1.

(b) Calculate the degree of an approximate GCD of d;_; and its derivative
dgl_)l using Algorithm 6.2.
(c) Calculate an approximate GCD of d;_; and dg-l_)l using Algorithm 7.1,
d, = GCD (dH, a?,).
End While

fol§=1,...,7, using Algorithm 8.1.

3. Calculate 7; =
4. Calculate y; = ;ﬁ—l,z =1,...,7 — 1, using Algorithm 8.1.
5. Set XJ = Tj.

6. Calculate the roots x; of x;,7 = 1,...,J, using the roots function in MATLAB.

% They are of multiplicity 1.

7. Calculate improved estimates of the roots of the polynomial do(z) using Algo-

rithm 8.4, with initial estimates of the roots x; and their multiplicity i.

End

Example 8.1. Consider an exact polynomial cfo(ac) of degree m = 31, whose roots
and multiplicities are specified in Table 8.1. Noise with componentwise signal-to-noise
ratio €7 = 108 was applied to do(z), thereby yielding do(z).

Algorithm 8.5 can be used to calculate the roots of the inexact polynomial dy(x),
and the result is shown in Table 8.2. The 1** column of Table 8.2 shows the computed

multiplicities through a sequence of the approximate GCD computations, the 2°¢ and

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 199

Root of dy(2) | Multiplicity

1.7223¢+000 3
3.002 404000 1
9.4967¢4+000 1

-8 180704000 9
1.7104e+000 11

Table 8.1: The roots and multiplicities of (f(,(:zr) for Example 8.1.

3 columns show initial estimates of the roots computed from Algorithm 8.1 and their

relative errors respectively. and the 4™ and 5% columns show improved estimates of

the roots computed from Algorithm 8.4 and their relative errors respectively.

Computed Initial Root Improved Root
Multiplicity Root Error Root Error
3 -1.7222¢4000 | 3.4620e-005 || -1.7223¢+000 | 1.8178e-009
4 3.0023e+000 | 4.1086e-005 || 3.0024e4-000 | 1.3843e-009
! 9.4965e+000 | 2.0573e-005 || 9.1967e+000 | 4.2115e-009
9 -8.:4806e+000 | 9.4139¢-006 || -8.4807¢+000 | 7.8752¢-010
11 174044000 | 3.7953¢-006 || 1.7404e4+000 | 7.3028e-012

Table 8.2: Solving an inexact polynomial equation for Example 8.1.

It is clear that the computed multiplicities of the roots are equal to the multiplic-
ities of the exact roots. Algorithm 8.1 returns excellent initial estimates of the roots.
such that Algorithm 8.4 returns a perfect answer because the relative errors of the

roots are smaller than the noise level =, = 1079, O

Example 8.2. Consider an exact polynomial dy(x) of degree m = 36, whose roots
and multiplicities are specified in Table 8.3. Noise with the componentwise signal-to-

noise ratio =7 ' = 10% was applied to dy(x), thereby yielding do(z).

CHAPTER 8.

Root of do(z)

Multiplicity

-1.3708e+-000
-3.2431e+000
4.4145e+000
-9.7269e+-000
-2.5188e+000
8.4537e+000
9.2960e-001
-5.2230e-001

1

o0~ O U s WD

CALCULATING THE ROOTS OF A POLYNOMIAL

Table 8.3: The roots and multiplicities of do(z) for Example 8.2.

200

Algorithm 8.5 can be used to calculate the roots of the inexact polynomial dy(z),

and the result is shown in Table 8.4. The 1** column of Table 8.4 shows the computed

multiplicities through a sequence of the approximate GCD computations, the 2°¢ and

34 columns show initial estimates of the roots computed from Algorithm 8.1 and their

relative errors respectively, and the 4*" and 5*" columns show improved estimates of

the roots computed from Algorithm 8.4 and their relative errors respectively.

Computed Initial Root Improved Root
Multiplicity Root Error Root Error

1 -1.3689e+000 | 1.3519e-003 || -1.3708e+000 | 5.4588e-008

2 -3.2486e+000 | 1.7021e-003 || -3.2431e+000 | 1.3764e-007

3 4.4020e+000 | 2.8211e-003 || 4.4145e+000 | 1.2455¢-007

4 -9.7769e+000 | 5.1389e-003 || -9.7269e+000 | 1.4975e-007

5 -2.5176e+000 | 4.8811e-004 || -2.5188e+000 | 8.7257e-009

6 8.5351e4-000 | 9.6302e-003 || 8.4537e+000 | 1.1569e-007

7 9.2960e-001 | 4.5549e-006 9.2960e-001 | 7.8113e-010

8 -5.2212e-001 | 3.3691e-004 || -5.2230e-001 | 7.5864e-010

Table 8.4: Solving an inexact polynomial equation for Example 8.2.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 201

It 15 seen that the computed multiplicities of the roots are equal to the multiplici-
ties of exact roots. Although Algorithm 8.1 returns some acceptable initial estimates
of the roots. Algorithm 8.4 still performs very well because it improves the results

significantly. O

8.4 Summary

This chapter has considered the use of the method of STLN applied to a structured
matrix for the solution of the deconvolution problem, which is one important part of
implementation of the polvnomial root solver. Since the relative errors of the roots
that are calculated from polynomials x, () are small but not sufficient compared with
noise level, an improvement for the estimates of the roots of an inexact polynomial
is developed using the method of NLLS, in which case the method of NLLS solves
the equation that is solved on the pejorative manifold of this polynomial. It has been
shown in Examples 8.1 and 8.2 that the method of NLLS can improve the accuracy
of the computed roots such that the relative errors between the exact and computed

roots can attain levels that are near the noise level.

Chapter 9

Results

The implementation of a robust polynomial root solver has been considered in Chapter
8, and the success of this root solver has been shown in Examples 1.3—1.8 and 8.1-8.2
because it finds the exact roots of a noisy polynomial and their multiplicities. This
is not, however, the only situation. Computational experiments showed that in some
cases this root solver may find a computed solution that is the theoretically exact

solution of a neighbouring polynomial equation, that is,

distance (computed polynomial to given inexact polynomial) <

distance (theoretically exact polynomial to given inexact polynomial),
and hence a schematic graph is shown in Figure 9.1. It has been shown in Section
2.1 that the backward error is based on the observation that the computed solution,
which is in error, is the theoretically exact solution of a neighbouring problem, that
is, a problem is ‘near’ the problem whose solution is desired. Thus the backward error

is a measure of the distance between the problem whose solution is sought and the

problem whose solution has been computed. It is therefore concluded from Figure 9.1

202

CHAPTER 9. RESULTS 203

I exact \

|' polynomial
perturbed
polynomial

Q
e}
=
©
c
—
@
Q
/
/
/
)
I
|
\
\

Figure 9.1: The solution of a neighbouring polynomial.

that the backward error of the computed solution is less than the error in the data,
and thus the computed solution is acceptable.

This chapter considers more examples for both situations, in which case the root
solver can obtain the roots of the original exact polynomial and their multiplicities, or
the exact roots of a neighbouring polynomial and their multiplicities. All the results
are therefore compared with some other methods, such as, Newton’s method [45],
Miiller’s method [21], Zeng’s algorithm (71, 72| and the roots function in MATLAB.
Newton’s method is one of the most widely used methods of solving polynomial
equations, as is Miiller’s method, and Zeng’s algorithm is explicitly designed for the
computation of multiple roots. Newton’s method and Muller’s method can calculate
only the simple roots due to their inability to find the multiplicities of multiple roots

unless special precautions are taken, while Zeng’s algorithm and the roots function

CHAPTER 9. RESULTS 204

in MATLAB can compute not only the values of all multiple roots but also their

multiplicities .

Zeng’s algorithm uses a MATLAB package, MULTROOT,
z=multroot (p, threshold),

to compute the roots and their multiplicities. If threshold is omitted such as z=multroot (p),
threshold = 107'° as default. The work in this thesis does not require the knowledge
of the noise level, and thus comparison of the results that are computed by different
methods requires that the noise level be omitted in MULTROOT, that is, thresh-
old argument should not be included in MULTROOT. Different situations, however,

occur:

e in the absence of noise (only roundoff error), z=multroot(p) returns perfect

answers.

e in the presence of noise, z=multroot(p, threshold) returns good answers if
threshold > (signal-to-noise ratio)™!, that is, threshold > e.. But if threshold
< €., the multiplicities of the roots are destroyed, and only complex conjugate
simple roots are returned. It therefore follows that z=multroot(p) returns
incorrect answers when e, > 107!%, that is, the multiple roots split up into a

cluster of simple roots.

Example 9.1. Consider an exact polynomial f () of degree m = 27, whose roots
and multiplicities are specified in Table 9.1. Noise with componentwise signal-to-noise
ratio £;1 = 107 was applied to f(z), thereby yielding f(2). The designed root solver is
used to compute the roots of the perturbed polynomial f(z) and their multiplicities,

and these results are also shown in Table 9.1.

CHAPTER 9. RESULTS 205

Exact Exact Computed Computed Root
Multiplicity | Root || Multiplicity Root Error
2 8.1031 2 8.1031e+000 || 2.7481e-007
8 -0.6306 8 -6.3060e-001 || 1.2101e-008
8 3.5078 8 3.5078e+000 || 3.8261e-008
9 -5.8211 9 -5.8211e+000 || 2.1803¢-008

Table 9.1: The computed roots of an inexact polynomial for Example 9.1 using the
designed root solver.

It is clear that the roots of f(z) and their multiplicities are certified correctly
hecause the relative errors of the roots fluctuate at the noise level . = 1077 and the
computed multiplicities are the same as the exact values.

Also, finding all zeros of f(x) is considered by other methods, which are Newton’s
method. Miiller’'s method, Zeng’s algorithm and the roots function in MATLAB. In
particular, Newton’s method and Miller’s method can be used to calculate the value
of a multiple root, but are not sufficient to find its multiplicity. Since f(r) is of degree
27, for simplicity, the roots of f(z) are computed by using these methods 27 times,
with different initial estimates that are uniformly distributed random variables in the
range [—10,10], and the computed roots are then sorted in ascending order.

Figure 9.2 shows the solution of the inexact polynomial equation calculated by
Newton’s method, Miiller’s method, Zeng'’s algorithm and the roots function in MAT-
LAB, separately. It is shown that Newton’s method performs better than Miiller’s
method because of smaller errors between the computed roots and exact roots in
Figure 9.2(i), but both methods can not be used to compute the multiplicities of the

roots. The result shown in Figure 9.2(iii) is similar to the result shown in Figure

CHAPTER 9. RESULTS

206

9.2(iv) because the computed multiple roots are ill-conditioned with evidence of in-

creasing instability as their multiplicities increase and the break up as a cluster of

simple roots, that is, roundoff errors due to floating point arithmetic and errors in

polynomial coefficients are sufficient to cause an incorrect and unacceptable solution.

= Computed Root
* Exact Root
10
LE R R}
5 ° It
8 "] e
®
o sSaaveNes
-5-..-.....-
IR R RN R NN]
o8 w0 8. 2003 %
1
(i)
%
"
05 *
* *
*"
o
E 0 * 3 * * *
*
* *
*
-05 3
*
210 -5 5 10

0
Real

(i)

15

O

¢ Computed Root
* Exact Root
10
LR]
5.
§ -00'.0..‘.
o
0 essescett®
_5 0....0..’...'.‘.
*e?
o0t
-10-* .
0 5 10 15 20 25 30
1
(ii)
1
0.5 =
. -
o
g 0 . § . -
-0.5 .
s
10 -5 0 5 10
Real

(iv)

Figure 9.2: The computed roots of an inexact polynomial for Example 9.1 using (i)
Newton’s method, (ii) Miiller’s method, (iii) Zeng’s algorithm and (iv) the roots
function.

CHAPTER 9. RESULTS 207

Example 9.2. Consider an exact polynomial f () of degree m = 31, whose roots

and multiplicities are specified in Table 9.2.

Exact Exact Computed Computed Root
Multiplicity | Root Multiplicity Root Error
3 -1.7223 3 -1.7223e+000 1} 1.8178¢-008
4 3.0024 4 3.0024e+4-000 || 1.3843e-008
4 9.4967 4 9.4967¢+000 || 4.2115e-008
9 -8.4807 9 -8.4807e+000 || 7.8752e-009
11 1.7404 11 1.7404e+000 || 7.3029¢-011

Table 9.2 The computed roots of an inexact polynomial for Example 9.2 using the
designed root solver.

Noise with componentwise signal-to-noise ratio ;! = 107 was applied to f(:z:),
thereby vielding f(x). It is seen from Table 9.2 that the roots of f(z) and their
multiplicities are computed correctly by the designed root solver, such that the relative
errors of the roots are much smaller than the noise level =, = 1077 and the computed
multiplicities are the same as the exact values.

Figure 9.3 shows the solution of the inexact polynomial equation calculated by
Newton's method, Miiller’s method, Zeng's algorithm and the roots function in MAT-
LAB. separately. In particular, Newton’s method and Miiller’'s method are used to
calculate the roots 31 times, each with a different initial estimate of the roots, which
arc uniformly distributed random variables in the range [—10, 10}, and the results are
then sorted in ascending order. It is seen that Newton’s method performs better than
\Miiller’s method because the errors between the computed roots and exact roots in
Figure 9.3(i) are smaller than the errors in Figure 9.3(ii). It is clear, however, that
both methods can not calculate the multiplicities of these roots. Zeng’s algorithm

and the roots function return an incorrect and unacceptable result, but yield very

CHAPTER 9. RESULTS 208

similar answers that are shown in Figure 9.3(iii) and Figure 9.3(iv), respectively. It is

clear that the multiple roots split up into a cluster of simple roots because of roundoff

errors due to floating point arithmetic and errors in polynomial coefficients. O
15 x : 15
= Computed Root ¢+ Computed Root
* Exact Root * Exact Root
10 seee 101 ssee
WXL 1 T 4%
8 . whifffannn 8 So0 04500
o 2 (RRERE Rt 14 g ""”:::::nu
(TR TR NN 000.00“’.’
-5t 1 -5
(LR sttt
LR R E R L) .‘.......
-10 v - -10
0] 10 15 20 25 30 - 10 15 20 25 30

15 18
" S T
* x* s » S g
0.5k * 0.5h »
* * - »
o o .
E 0 * * * kK :. E 0 . * » e
* + * »
o8 s L T 0%
* *
-1t Lt |
1 "y iy
. -1.8 A
1-510 -5 0 5 10 =10 -5 0 5 10
Real Real

(i) (iv)
Figure 9.3: The computed roots of an inexact polynomial for Example 9.2 using (i)

Newton’s method, (ii) Miiller’s method, (iii) Zeng’s algorithm and (iv) the roots
function.

Example 9.3. Consider an exact polynomial f(z) of degree m = 37, whose roots

and multiplicities are specified in Table 9.3.

CHAPTER 9.

RESULTS

Exact Exact Computed Computed Root
Multiplicity Root Multiplicity Root Error

1 -1.2102 1 -1.2102e+-000 || 1.2186e-008

! 0.13371 1 1.3371e-001 || 1.6739e-007

3 -0.099065 3 -9.9065e-002 || 1.9463e-007

3 9.0702 3 9.0702e+000 || 2.8422¢-008

5 -1.9848 5 -4.9848e+000 || 1.1242¢-009

8 -0.34931 8 -3.4931e-001 || 1.5244e-008

8 2.0611 8 2.0611e4000 || 1.1477e-009

3 7.3065 8 7.3065e4-000 || 1.0272e-008

209

Table 9.3: The computed roots of an inexact polynomial for Example 9.3 using the
designed root solver.

Noise with componentwise signal-to-noise ratio ;! = 10 was applied to f(a:)
thereby vielding f(xr). It is scen from Table 9.3 that the roots of f(x) and their
multiplicities are computed correctly by the designed root solver, such that the rel-
ative errors of the roots fluctuate at the noise level e, = 107% and the computed
multiplicities are the same as the exact values.

Figure 9.4 shows the solution of the inexact polynomial equation calculated by
Newton's method. Miiller's method, Zeng’s algorithm and the roots function in MAT-
LAB. separately. In particular, Newton’s method and Miller’s method are used to
calculate the roots 37 times, each with a different initial estimate of the roots, which
arce uniformly distributed random variables in the range [—10, 10], and the computed
roots are then sorted in ascending order, as shown in Figure 9.4(i) and (ii), respec-
tively. In spite of the multiplicities of the roots, it seems that Newton’s method works
better than Miiller's method because Newton’s method can find the exact small roots

when ¢ = 1,..., 33, and Miller's method yields inexact roots that vary with the

initial estimates of the roots. Zeng’s algorithm and the roots function return an

CHAPTER 9. RESULTS 210
incorrect and unacceptable result, but yield very similar answers that are shown in
Figure 9.4(iii) and (iv), respectively. It is clear that all multiple roots, especially for
the roots with big absolute values, split up into a cluster of simple roots because of

roundoff errors due to floating point arithmetic and errors in polynomial coefficients.

a
15 e ;
= Computed Root ¢ Computed Root
* Exact Root * Exact Root
10 =
19 see B
svoscess
sssscses P
- [TTT] - 5 (304
8 s S o
4 4 as00sees
sscessse 0 ssesssastan® "
. ete
0 wsossnne®®s® sumsanuRUNAREE
AEEEENEREAEREN _57......"“0..0000
.00
~5ieanen o
0 10 20 30 40 e " 10 20 30 40
i i
(1) (i)
2 2 ELCy 2 .
1 * * 1T s » T
o A 4 3
g of % ol I . g of e I
= - -
* .
-1 * -1 -
* -
-2 %: 3 -2 3
=5 5 10 =5 10
Real Real

(i) (iv)

Figure 9.4: The computed roots of an inexact polynomial for Example 9.3 using (i)
Newton’s method, (ii) Miiller’s method, (iii) Zeng’s algorithm and (iv) the roots
function.

CHAPTER 9. RESULTS 211

Example 9.4. Consider an exact polynomial f () of degree m = 32, whose roots
and multiplicities are specified in Table 9.4. Noise with componentwise signal-to-noise

ratio ;! = 108 was applied to f(z), thereby yielding f(z).

No. | Root of f(z) | Multiplicity
7 1.9429 2
Zo -1.9729 3
T3 4.8336 3
Z4 -5.8318 8
Ts5 1.9381 8
T 2.1683 8

Table 9.4: The roots and multiplicities of f(z) for Example 9.4.

No. | Computed Root of f(z) | Computed Multiplicity
A1 -1.9729e+000 3
A2 2.2340e+-000)
A3 4.8748e+000 5
A -5.8319e+000 8
As 1.9718e+000 1

Table 9.5: The computed roots of an inexact polynomial for Example 9.4 using the
designed root solver.

The designed root solver is used to compute the roots of the perturbed polynomial
f(z) and their multiplicities, and the results are shown in Table 9.5. It is seen that
the computed roots of f(z) and their multiplicities are different from the exact roots
of f(z) and their multiplicities. This is, however, a correct solution for the inexact
polynomial equation because the residual of f(z) calculated from the computed roots
is smaller than the residual from the exact roots !, in which case the residuals are equal

to 6.4806e + 001 and 6.4877e + 001, respectively. It also means that the computed

! Assume that the roots z;,i = 1,...,n, with the multiplicities m; are the computed roots of the
polynomial f(z), and thus the residual of f(z) is equal to]IWIEW Y ey PRI (2)

CHAPTER 9. RESULTS 212

solution is the theoretically exact solution of a neighbouring polynomial equation
that is ‘nearer’ the noisy polynomial equation than the exact polynomial equation
whose roots are desired, with reference to Figure 9.1. Furthermore, it seems that the
proximity of the roots may lead to the occurrence of this situation because the pair of
roots z; = 4.9429 with multiplicity 2 and z3; = 4.8336 with multiplicity 3 transform
to the root A3 = 4.8748 with multiplicity 5, and the pair of roots z5 = 1.9381 with
multiplicity 8 and zg = 2.1683 with multiplicity 8 transform to A\, = 2.2340 with
multiplicity 5 and A5 = 1.9718 with multiplicity 11.

Figure 9.5 shows the solution of the inexact polynomial equation calculated by
Newton’s method, Miiller’s method, Zeng’s algorithm and the roots function in MAT-
LAB, separately. In particular, Newton’s method and Miiller’'s method are used to
calculate the roots 32 times with different initial estimates that are uniformly dis-
tributed random variables in the range [—10,10]. The results are then sorted in
ascending order, and they are shown in Figures 9.5(i) and (ii), respectively. It seems
that Newton’s method performs better than Miiller’s method because of smaller er-
rors between the computed roots and exact roots in Figure 9.5(i). The result shown
in Figure 9.5(iii) is similar to the result shown in Figure 9.5(iv) because the multiple
roots split up into a cluster of simple roots, which means that Zeng'’s algorithm and

the roots function fail to return the exact roots and their multiplicities. O

CHAPTER 9. RESULTS 213

10 > 10
= Computed Root + Computed Root
8[| « ExactRoot 8[| » ExactRoot
6 6
4 lllII::::: 1 4 00:3:::
"""
§ 2 sesssseetttesNee 1 § 2 sssssseeidttoces
14 14
0 0 Labe ¥
-2F tee smsmmmumnm -2} eetelo, 4
-4 -4
-6 llllllll-l..- T T
- . -8
0 5 10 15 : 20 25 30 35 0 5 10 15 20 25 30 35
i i
(i) (i)
15 1.5
1 L 1
-
* B
05 _ 0.5
* * % .
o % s o N
g 0 * : . E 0 >
* . *
* x ¥
-05 * -0.5
* *
*
-1 * * -1 -
-15 - -1, -
-8 -6 -4 -2 0 2 4 [} 1§8 -6 -4 -2 0 2 - 6
Real Real
(iii) (iv)

Figure 9.5: The computed roots of an inexact polynomial for Example 9.4 using (i)
Newton’s method, (ii) Miiller’s method, (iii) Zeng’s algorithm and (iv) the roots

function.

Example 9.5. Consider an exact polynomial f(z) of degree m = 24, whose roots
and multiplicities are specified in Table 9.6.

Noise with componentwise signal-to-noise ratio €;' = 107 was applied to i (2),
thereby yielding f(z). The designed root solver is used to compute the roots of the
perturbed polynomial f(z) and their multiplicities, and the results are shown in Table

CHAPTER 9. RESULTS 214

No. | Root of f(z) | Multiplicity
7 ~7.6516 2
T -4.0665 3
23 4.2243 5
T4 -5.5651 6
s -3.6244 8

Table 9.6: The roots and multiplicities of f (z) for Example 9.5.

No. | Computed Root of f(z) | Computed Multiplicity
A1 -7.4650e+-000 2
A2 4.2244e+000)
A3 -5.6731e+000 6
A4 -3.7176e+000 11

Table 9.7: The computed roots of an inexact polynomial for Example 9.5 using the
designed root solver.

9.7. Although the computed roots of f(z) and their multiplicities are different from
the exact roots of f (x) and their multiplicities, this is a correct solution for the inexact
polynomial equation because the residual of f(z) calculated from the computed roots
is smaller than the residual from the exact roots, in which case the residuals are
equal to 3.8687¢ — 002 and 2.1457e — 001, respectively. It seems that the occurrence
of finding all zeros of a neighbouring polynomial depends not only on the proximity
of roots because the roots r; = —7.6516 and x4 = —5.5651 have a small change of
value with the evidence of \; = —7.4650 and A3 = —5.6731 in the computed roots,
respectively.

Figure 9.6 shows the solution of the inexact polynomial equation calculated by
Newton’s method, Miiller's method, zeng’s algorithm and the roots function in MAT-
LAB, separately. In particular, Newton’s method and Miiller’s method are used to

calculate the roots 24 times with uniformly distributed initial estimates of the roots

CHAPTER 9. RESULTS 215

in the range [—10, 10], and the computed roots are then sorted in ascending order, as
shown in Figures 9.6(i) and (ii), respectively. It is seen that both methods can obtain
only the biggest root at 4.2243. Figures 9.6(iii) and (iv) show that Zeng’s algorithm

and the roots function fail to return the exact roots and their multiplicities because

the multiple roots split up into a cluster of simple roots. a
8 8
= Computed Root ¢ Computed Root

67| * ExactRoot 6 * Exact Root
4 SsssmssaRS 4 .:0000
2 2 .

-— - .

n8: o nS: : oo°.
-2r TEEER] -2 AR
-4+ R EEEe L, - -4 .. .o e
—6 L L B O] -6 ... L R

.

-8 L) A % -2
0 5 0 | 15 20 25 0 5 10 16 20 25

4 4
3 L 3 .
*
2 * 2
1 3 X * 1 .
o * o .
g 0 * * * - g 0 . 4 . .
- * = -
-1 5 * -1 i .
*
-2 % -2 .
-3 BT -3 g
o = 0 5 o pr 0 5
Real Real

(i) (iv)

Figure 9.6: The computed roots of an inexact polynomial for Example 9.5 using (i)
Newton’s method, (ii) Miiller’s method, (iii) Zeng’s algorithm and (iv) the roots
function.

CHAPTER 9. RESULTS 216

Example 9.6. Consider an exact polynomial f(z) of degree m = 33, whose roots
and multiplicities are specified in Table 9.8. Noise with componentwise signal-to-noise

ratio €71 = 107 was applied to f(z), thereby yielding f(z).

No. | Root of f(z) | Multiplicity
T, -0.066495 1
Ty -6.3985 2
T3 -6.4957 3
T4 2.4215 4
Ts 6.8289 4
Tg -2.3415 5
7 -6.2319 6
2 6.5445 8

Table 9.8: The roots and multiplicities of f(z) for Example 9.6.

No. | Computed Root of f(z) | Computed Multiplicity
A -5.9791e+000 1
A2 -6.6495e-002 1
A3 6.2191e+000 1
A 2.4215e+000 4
As -2.3415e+000 5
A6 -6.3696e+000 10
A7 6.6774e+000 11

Table 9.9: The computed roots of an inexact polynomial for Example 9.6 using the
designed root solver.

The designed root solver is used to compute the roots of the perturbed polynomial
f(z) and their multiplicities, and the results are shown in Table 9.9. It is seen
that the solution of a neighbouring polynomial equation is obtained instead of the
solution of the exact polynomial equation f(z) = 0, such that the residuals of f(z)
calculated from the computed roots and exact roots are equal to 1.9766e + 002 and

2.0476e + 002, respectively. Similarly, this neighbouring polynomial occurs when

CHAPTER 9. RESULTS 217

f(x) has a pair of close roots x5 = 6.8289 with multiplicity 4 and z5 = 6.5445 with
multiplicity 8, and three close roots r, = —6.3985 with multiplicity 2, z3 = —6.4957
with multiplicity 3 and z; = —6.2319 with multiplicity 6, in which case these close
roots change to A3 = 6.2191 with multiplicity 1 and A; = 6.6774 with multiplicity
11, and Ay = —5.9791 with multiplicity 1 and A\¢ = —6.3696 with multiplicity 10,

respectively.
= Computed Root 10 . Compubd Root
0[]+ ExactRoot « Exact Root
S ad sesssssetrer
5+ 5
§ e " ‘g seee *
o £ 9 . sateee
0or . LR LR LT ¢0.
Q...........
eecifunnnnn
Bt casttee?
-5t Ll 4 - L Y
ppseA AR e
sEnuun -10 e
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
L i
(1) (ii)
2 2 .
* 5 .
15 i * 15
*
1 . 1 "
™ .
05 Y * 05 i .
= o
E 0 * >k t; * : 4 E 0 .. o: . 4
-05 - A -05 K
= L
-1 w -4
*
* .
-15 ey -15 .
* .
Zo -5 0 5 10 Zo -5 0 5 10
Real Real
(iii) (iv)

Figure 9.7: The computed roots of an inexact polynomial for Example 9.6 using (i)
Newton’s method, (ii) Miiller’s method, (iii) Zeng’s algorithm and (iv) the roots
function.

CHAPTER 9. RESULTS 218

Figure 9.7 shows the solution of the inexact polynomial equation calculated by
Newton’s method, Miller’s method, Zeng’s algorithm and the roots function in MAT-
LAB, separately. In particular, Newton’s method and Miiller’s method are used to
calculate the roots 33 times with uniformly distributed initial estimates in the range
[—10,10], and the results are then sorted in ascending order, as shown in Figures
9.7(i) and (ii), respectively. It is seen that both methods yield the roots that equal
—0.066495 and 2.4215, but are difficult to find the close distinct roots. Figures 9.7(iii)
and (iv) show that Zeng’s algorithm and the roots function fail to return the exact
roots and their multiplicities because the multiple roots split up into a cluster of

simple roots. O

9.1 Summary

This chapter has demonstrated the success of the designed root solver for determining
all zeros of an inexact polynomial compared with four algorithms, Newton’s method,
Miiller’s method, Zeng’s algorithm and the roots function in MATLAB. It has been
shown that the designed root solver may find not only the solution of the exact
polynomial equation whose roots are desired, but also the theoretically exact solution
of a neighbouring polynomial equation. It seems that the occurrence of the solution
of a neighbouring polynomial equation depends on the proximity of the exact roots.
The results of Examples 9.1 — 9.6 show that Newton’s method performs better than
Miiller’s method, but both methods fail to certify the values of all multiple roots
correctly because these values vary with initial estimates of the roots. Also, these
methods fail to compute the multiplicities of multiple roots, and all computed roots

have unit multiplicity. It is also shown that Zeng’s algorithm and the roots function

CHAPTER 9. RESULTS 219

are very sensitive to noise and roundoff errors due to Hoating point arithmetic with
evidence of the break up of a multiple root as a cluster of simple roots, and thus they

fail to return the exact roots and their multiplicities.

Chapter 10

Conclusions and future work

The main work presented in the thesis is the development of a polynomial root solver
using structure preserving matrix methods. This root solver, based on a method
developed by Gauss and described in Uspensky [62], involves approximate GCD
computations and polynomial divisions, both of which are ill-posed computations.

The designed root solver is implemented computationally in order to calculate
the multiple roots of a polynomial and their multiplicities in the presence of noise.
The experiments detailed in Chapters 1 and 9 show that this root solver performs
significantly better, particularly for non-trivial polynomials (high degree and many
multiple roots), than the standard methods, such as Newton’s method and Miiller’s
method, as well as Zeng’s algorithm and the roots function in MATLAB because the
designed root solver retains the multiplicity structure of a polynomial and the relative
errors between the exact and computed roots are approximate equal to the relative
input errors.

A novel situation may occur when the designed root solver determines the multiple
roots of a noisy polynomial. This is the occurrence of a neighbouring polynomial,

220

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 221

which is nearer the given inexact polynomial than the theoretically exact polynomial
whose roots are specified. This scenario is shown in Figure 9.1, and it is expected to
obtain a computed solution that is the theoretically exact solution of a neighbouring
polynomial equation.

[t has been demonstrated in Chapter 3 that the calculation of an approximate
GCD of two polynomials forms an important part of the designed root solver, and it
is clear that the determination of the degree of an approximate GCD is crucial to the
calculation of an approximate GCD because this is a non-trivial problem that reduces
to the estimation of the rank loss of a resultant matrix of the two polynomials. The
experiments detailed in Chapter 6 describe three good, and in many cases superior,
methods for the determination of an approximate GCD of a noisy polynomial f(x)
and its derivative f((z). It was, however, demonstrated that these three methods
may return different results, and hence an attempt was made to determine the degree
of an approximate GCD based on these results automatically using the method called
Majority Voting. Also, it was found that this attempt failed for some complicated
polynomials, and manual decisions were required. This therefore requires that the
methods for solving the rank loss estimate problem be improved in the future.

Since the structured matrix methods can be used to solve a polynomial equation
with multiple roots, future work includes the development of efficient algorithms that
optimise the structure of the polynomial root solver, as mentioned in Sections 1.3
and 6.4. Morcover, future work and improvements to the designed root solver have
heen suggested at the end of Chapter 7. It is believed that if these changes were

completed, results should be computed efficiently and improved significantly.

Bibliography

[1]

[5]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. 7The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, MA, USA,| 1974,

John. D. Allan. Statistical and structured optimisation methods for the approz-
imate GCD problem. PhD thesis, Department of Computer Science, University
of Shefhield, UK, 2008.

R. Askey. Orthogonal Polynomials and Special Functions. SIAM, Philadelphia,
USA, 1972.

S. Barnett. A note on the Bezoutian matrix. SIAM J. Appl. Math., 22:84 86,
1972.

S. Barnett. Polynomials and Linear Control Systems. Marcel Dekker, New York,
USA, 1983.

R. C. Beach. An Introduction to the Curves and Surfaces of Computer-Aided

Design. Van Nostrand Reinhold, New York, USA, 1991.

B. Beckermann and G. Labahn. A fast and numerically stable Euclidean-like

algorithm for detecting relatively prime numerical polynomials. Journal of Sym-

bolic Computation, 26(6):691-714, 1998.
222

BIBLIOGRAPHY 223

3]

]

10]

1]

[13]

16]

D. Bini and P. Boito. Structured matrix-based methods for polynomial e-ged:
analysis and comparisons. In ISSAC’07 : Proc. Int. Symp. Symbolic and Alge-

braic Computation, pages 9 16. ACM Press, New York, 2007.

A. Bjorck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,
USA, 1996.

W. S. Brown. On Euclid’s algorithm and the computation of polynomial greatest

common divisors. Journal of the ACM, 18(4):478-504, 1971.

F. C. Chang. Factoring a polynomial with multiple-roots. International Journal

of Computational and Mathematical Sciences, 2:173-176, 2008.

R. M. Corless. P. M. Gianni, B. M. Trager, and S. M. Watt. The singular value
decomposition for polynomial systems. In ISSAC’95 : Proc. Int. Symp. Symbolic

and Algebraic Computation, pages 195-207. ACM Press, New York, 1995.

R. M. Corless, S. M. Watt, and L. Zhi. QR factoring to compute the GCD of uni-
variate approximate polynomials. IEEE Trans. Signal Processing, 52(12):3394~

3402, 2004.

D. K. Dunaway. Calculation of zeros of a real polynomial though factorization

using Euclid’s Algorithm. SIAM J. Numer. Anal., 11(6):1087-1104, 1974.

D. K. Dunaway and B. L. Turlington. Some major modifications to a new method
for solving ill-conditioned polynomial equations. In Proceedings of the ACM

annual conference, pages 636-643. ACM Press, New York, 1972.

[. Emiris, A. Galligo, and H. Lombardi. Certified approximate univariate GCDs.
J. Pure and Applied Algebra, 117,118:229-251, 1997.

BIBLIOGRAPHY 294

[17] L. Foster. Generalizations of Laguerre’s method. SIAM J. Numer. Anal.,
18:1004-1018, 1981.

(18] P. A. Fuhrmann. A Polynomial Approach to Linear Algebra. Universitext,
Springer Verlag, New York, USA, 1996.

[19] G. R. Garside, P. Jarratt, and C. Mack. A new method for solving polynomial

equations. The Computer Journal, 11:87-90, 1968.

[20] L. Gemignani. Structured matrix methods for polynomial root-finding. In IS-
SAC’07 : Proc. Int. Symp. Symbolic and Algebraic Computation, pages 175-180.
ACM Press, New York, 2007.

[21] C. F. Gerald and P. O. Wheatley. Applied Numerical Analysis. Addison-Wesley,
USA, 1994.

[22] S. Ghaderpanah and S. Klasa. Polynomial scaling. SIAM J. Numer. Anal.,
27(1):117-135, 1990.

[23] S. Goedecker. Remark on algorithms to find roots of polynomials. SIAM J. Sci.
Comput., 15(5):1059-1063, 1994.

[24] G. H. Golub and C. F. Van Loan. Matriz Computations. John Hopkins University
Press, Baltimore, USA, 1996.

[25] J. Hadamard. Lectures on the Cauchy Problem in Linear Partial Differential

Equations. Yale University Press, New Haven, USA, 1923.

[26] E. Hansen, M. Patrick, and J. Rusnack. Some modificiations of Laguerre’s

method. BIT, 17:409-417, 1977.

BIBLIOGRAPHY 225

27]

28]

[29]

[30]

[31]

32]

U. Helmke and P. A. Fuhrmann. Bezoutians. Linear Algebra and Its Applications,

124:1039 1097, 1989.

N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadel-
phia, USA, 2002.

F. B. Hildebrand. Introduction to Numerical Analysis. Tata McGraw-Hill, New

Delhi, India, 1974.

R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University Press,
Cambridge , UK, 1985.

V. Hribernig and H. J. Stetter. Detection and validation of clusters of polynomial

zeros. Journal of Symbolic Computation, 24:667-681, 1997.

M. A. Jenkins and J. F. Traub. A three-stage variable-shift iteration for polyno-
mial zeros and its relation to generalized Raleigh iteration. Numerische Mathe-

matik, 14(3):252-263, 1970.

M. A. Jenkins and J. F. Traub. Algorithm 419: Zeros of a complex polynomial.
Comm. ACM, 15:97 99, 1972.

M. A. Jenkins and J. F. Traub. Principles for testing polynomial zerofinding
programs. ACM Trans. Mathematical Software, 1(1):26-34, 1975.

G. F. Jénsson and S. Vavasis. Solving polynomials with small leading coeflicients.

SIAM J. Matriz Anal. Appl., 26(2):400-414, 2005

BIBLIOGRAPHY 226

[36]

B. Kagstrom and A. Ruhe. An algorithin for numerical computation of the
jordan normal form of a complex matrix. ACM Trans. Mathematical Software,

6(3):398-419, 1980.

W. Kahan. Conserving confluence curbs ill-condition. Technical report, Depart-

ment of Computer Science, University of California, Berkeley, USA, 1972.

N. Karcanias and M. Mitrouli. Normal factorisation of polynomials and compu-

tational issues. Comput. Math. Appl., 45:229-245, 2003.

N. K. Karmarkar and Y. N. Lakshman. On approximate GCDs of univariate

polynomials. Journal of Symbolic Computation, 26(6):653-666, 1998.

A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems.

Springer, New York, USA, 1996.

T. L. Lee, T. Y. Li, and Z. Zeng. A rank-revealing method with updating,
downdating, and applications. part 1I. SIAM J. Matriz Anal. Appl., 31:503-525,

2009.

B. Li, Z. Liu, and L. Zhi. A structrued rank-revealing method for Sylvester

matrix. Journal of Computational and Applied Mathematics, 213:212-223, 2008.

T.Y. Li and Z. Zeng. A rank-revealing method with updating, downdating, and

applications. SIAM J. Matriz Anal. Appl., 26:918-946, 2005.
B. Liang and S. U. Pillai. Blind image deconvolution using a robust 2-D GCD

approach. IEEE Int. Symp. Circuits and Systems, pages 1185-1188, June 9-12,
1999.

BIBLIOGRAPHY 227

[45]

46]

48]

[49]

K. Madsen. A root-finding algorithm based on Newton’s method. BIT, 13:71-75,

1973.

D. Manocha. Numerical methods for solving polynomial equations. In D. Cox
and B. Sturmfels, editors, Proceedings of Symposia in Applied Mathematics, vol-
ume 53, Applications of Computational Algebraic Geometry, pages 41-66. AMS,
Rhode Island, USA, 1998.

D. Manocha and J. Demmel. Algorithms for intersecting parametric and alge-
braic curves II: Multiple intersections. Graphical Models and Image Processing,

57(2):81-100, 1995.

L. Miranian and M. Gu. Strong rank revealing LU factorization. Linear Algebra

Appl., 367:1-16, 2003.

M.Lang and B. C. FrenZel. Polynomial root finding. [FEE Signal Processing
Letters, 1(10):141-143, 1994.

S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill,

1996.

M. T. Noda and T. Sasaki. Approximate GCD and its application to ill-
conditioned algebraic equations. Journal of Computational and Applied Mathe-

matics, 38:335-351, 1991.

V. Y. Pan. Solving a polynomial equation: Some history and recent progress.

SIAM Review, 39(2):187-220, 1997.

V. Y. Pan. Computation of approximate polynomial GCDs and an extension.

Information and Computation, 167:71-85, 2001.

BIBLIOGRAPHY 998

[54]

[59]

[56]

[62]

63]

[64]

S. U. Pillal and B. Liang. Blind image deconvolution using a robust GCD ap-

proach. IEEE Trans. Image Processing, 8(2):295-301, 1999.

W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes: The

Art of Scientific Computing. Cambridge U. Press, Cambridge, UK, 1990.

J. Ben Rosen, H. Park, and J. Glick. Total least norm formulation and solution

for structured problems. SIAM J. Matriz Anal. Appl., 17(1):110-128, 1996.

J. Ben Rosen, H. Park, and J. Glick. Structured total least norm for nonlinear

problems. SIAM J. Matriz Anal. Appl., 20(1):14- 30, 1998.
A. Schonhage. Quasi-ged computations. J. Complexity, 1(1):118-137, 1985.

G. A. Sitton, C. S. Burrus, J. W. Fox, and S. Treitel. Factoring very high degree

polynomials. IEFE Signal Processing Magazine., 20(6):27-42, 2003.

P. Stoica and T. Soderstrom. Common factor detection and estimation. Auto-

matica, 33(5):985-989, 1997.

D. Triantafyllou and M. Mitrouli. On rank and null space computation of the

generalized Sylvester matrix. Numerical Algorithms, 54(3):297-324, 2010.
J. V. Uspensky. Theory of Equations. McGraw-Hill, New York, USA, 1948.

D. S. Watkins. Fundamentals of Matriz Computations. John Wiley and Sons,
New York, USA, 1991.

J. Wilkinson. The evaluation of zeros of ill-conditioned polynomials. Numerische

Mathematik, 1:150-166, 1959.

BIBLIOGRAPHY 229

[65]

[66]

J. H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice Hall, Engle-

wood Cliffs, New Jersey, 1963.

J. R. Winkler. Polynomial roots and approximate greatest common divisors.
Technical report, Department of Computer Science. The University of Sheffield,

United Kingdom, 2007.

J. R. Winkler and J. D. Allan. Structured total least norm and approximate
GCDs of inexact polynomials. Journal of Computational and Applied Mathe-

matics, 215:1-13, 2008.

C. J. Zarowski. The MDL criterion for rank determination via effective singular

values. IEEE Trans. Signal Processing, 46(8):1741 1744, 1998.

C. J. Zarowski, X. Ma, and F. W. Fairman. Q R-factorization method for comput-
ing the greatest common divisor of polynomials with inexact coeflicients. IEEFE

Trans. Signal Processing, 48(11):3042 3051, 2000.

Z. Zeng. A method for computing multiple roots of inexact polynomials. In
ISSAC’03 : Proc. Int. Symp. Symbolic and Algebraic Computation. pages 266~
272. ACM Press, New York, 2003.

Z. Zeng. Multroot - a Matlab package computing polynomial roots and multi-

plicities. ACM Trans. Mathematical Software, 30(2):218-236, 2004.

Z. Zeng. Computing multiple roots of inexact polynomials. Mathematics of

Computation, T4(250):869-903, 2005.

BIBLIOGRAPHY 230

(73] L. Zhi and Z. Yang. Computing approximate GCD of univariate polynomials
by structured total least norm. Technical Report 24, MMRC, AMSS, Academia
Sinica, MM Research Preprints, 2004.

	543782_001
	543782_002
	543782_003
	543782_004
	543782_005
	543782_006
	543782_007
	543782_008
	543782_009
	543782_010
	543782_011
	543782_012
	543782_013
	543782_014
	543782_015
	543782_016
	543782_017
	543782_018
	543782_019
	543782_020
	543782_021
	543782_022
	543782_023
	543782_024
	543782_025
	543782_026
	543782_027
	543782_028
	543782_029
	543782_030
	543782_031
	543782_032
	543782_033
	543782_034
	543782_035
	543782_036
	543782_037
	543782_038
	543782_039
	543782_040
	543782_041
	543782_042
	543782_043
	543782_044
	543782_045
	543782_046
	543782_047
	543782_048
	543782_049
	543782_050
	543782_051
	543782_052
	543782_053
	543782_054
	543782_055
	543782_056
	543782_057
	543782_058
	543782_059
	543782_060
	543782_061
	543782_062
	543782_063
	543782_064
	543782_065
	543782_066
	543782_067
	543782_068
	543782_069
	543782_070
	543782_071
	543782_072
	543782_073
	543782_074
	543782_075
	543782_076
	543782_077
	543782_078
	543782_079
	543782_080
	543782_081
	543782_082
	543782_083
	543782_084
	543782_085
	543782_086
	543782_087
	543782_088
	543782_089
	543782_090
	543782_091
	543782_092
	543782_093
	543782_094
	543782_095
	543782_096
	543782_097
	543782_098
	543782_099
	543782_100
	543782_101
	543782_102
	543782_103
	543782_104
	543782_105
	543782_106
	543782_107
	543782_108
	543782_109
	543782_110
	543782_111
	543782_112
	543782_113
	543782_114
	543782_115
	543782_116
	543782_117
	543782_118
	543782_119
	543782_120
	543782_121
	543782_122
	543782_123
	543782_124
	543782_125
	543782_126
	543782_127
	543782_128
	543782_129
	543782_130
	543782_131
	543782_132
	543782_133
	543782_134
	543782_135
	543782_136
	543782_137
	543782_138
	543782_139
	543782_140
	543782_141
	543782_142
	543782_143
	543782_144
	543782_145
	543782_146
	543782_147
	543782_148
	543782_149
	543782_150
	543782_151
	543782_152
	543782_153
	543782_154
	543782_155
	543782_156
	543782_157
	543782_158
	543782_159
	543782_160
	543782_161
	543782_162
	543782_163
	543782_164
	543782_165
	543782_166
	543782_167
	543782_168
	543782_169
	543782_170
	543782_171
	543782_172
	543782_173
	543782_174
	543782_175
	543782_176
	543782_177
	543782_178
	543782_179
	543782_180
	543782_181
	543782_182
	543782_183
	543782_184
	543782_185
	543782_186
	543782_187
	543782_188
	543782_189
	543782_190
	543782_191
	543782_192
	543782_193
	543782_194
	543782_195
	543782_196
	543782_197
	543782_198
	543782_199
	543782_200
	543782_201
	543782_202
	543782_203
	543782_204
	543782_205
	543782_206
	543782_207
	543782_208
	543782_209
	543782_210
	543782_211
	543782_212
	543782_213
	543782_214
	543782_215
	543782_216
	543782_217
	543782_218
	543782_219
	543782_220
	543782_221
	543782_222
	543782_223
	543782_224
	543782_225
	543782_226
	543782_227
	543782_228
	543782_229
	543782_230
	543782_231
	543782_232
	543782_233
	543782_234
	543782_235
	543782_236
	543782_237
	543782_238
	543782_239
	543782_240
	543782_241
	543782_242

