
STRUCTURED MATRIX METHODS FOR A POLYNOMIAL

ROOT SOLVER USING APPROXIMATE GREATEST COMMON

DIVISOR COMPUTATIONS AND APPROXIMATE

POLYNOMIAL FACTORISATIONS

hy

XINYUAN LAO

A thesis submitted to the

Computer Science

in conformity with the requirements for

the degree of PhD

Sheffield University

England

June 2011

Copyright © XinYllan Lao, 2011

Abstract

LAO, XINYUAN. STRUCTURED MATRIX ylETHODS FOR A POLY='JOMIAL

ROOT SOLVER USING APPROXIMATE GREATEST CO;-"11IO='J DIVISOR COM­

PUTATIONS AND APPROXIMATE POLY~OMIAL FACTORISATIO~S

This thesis discusses the use of structure preserving matrix methods for the nu-

merical approximation of all the zeros of a univariate polynomial in the presence of

noise. In particular, a robust polynomial root solver is developed for the calculation

of the multiple roots and their multiplicities, such that the knowledge of the noise

level is not required. This designed root solver involves repeated approximate greatest

common divisor computations and polynomial divisions, both of which are ill-posed

computations. A detailed description of the implementation of this root solver is

presented as the main work of this thesis. Moreover, the root solver, implemented

in MATLAB using 32-bit floating point arithmetic, can be used to solve non-trivial

polynomials with a great degree of accuracy in numerical examples.

Jr'~IIjERSITY
")F SHEFFIEU'

I IP,RARY

Acknow ledgments

I am sincerely and heartily grateful to my supervisor, Joab \Vinkler, whose encour­

agement, supervision and support from the initial to the final level enabled me to

complete the project. I am sure that it would have not been possible without his

patience, guidance and help.

I would like to thank my parents who have been a source of strength during this

period. Special thanks to Tangyun for his personal support and great patience at all

times.

Lastly, I offer my regards and blessings to all of those who supported me in any

respect during the completion of the project.

11

Abbreviations and notation

GCD

LP

LSE

ML

NLLS

STLN

SNTLN

S(j,g)

Sk(j, g)

B(j, g)

f(1)(x)

f

j(X)

f(y)

greatest common divisor

linear programming

least squares with equality

maximum likelihood

non-linear least squares

structured total least norm

structured non-linear total least norm

Sylvester resultant matrix for the polynomials f(x) and g(x)

Sylvester subresultant matrix of order k for the polynomials

f(x) and g(x)

Bezout resultant matrix for the polynomials f(x) and g(x)

first derivative of the polynomial f(.T)

vector of coefficients of the polynomial f (x)

exact form of the polynomial f (x)

preprocessed form of the polynomial f (x)

a scale factor

the optimal value of a

III

(j a scale factor

the optimal value of (j

componentwise signal-to-noise ratio

componentwise backward error of the approximate root in

componentwise condition llllIuber of the root TO

condition number of the root Xo that preserves its multiplicity

logx

11·11

IV

Contents

Abstract

Acknowledgments

Abbreviations and notation

Contents

List of Tables

List of Figures

1 Introduction
l.1 Historical review
l.2 Examples of errors
l.3 Thesis contribution
1.4 Thesis layout ...

2 Ill-conditioned problems
2.1 Forward and backward error and condition number
2.2 Ill-conditioned polynomial
2.3 The geometry of ill-conditioned polynomial.
2.4 Summary

3 A simple polynomial root solver
3.1 \VeIl-posed and ill-posed problems.
3.2 Factorisation via GCD computations .
3.3 Previous work on GCD computations.
3.4 Summary

v

11

iii

v

viii

x

1
1
3
8

16

18
18
20
27
34

36
37
38
44
48

4 The resultant matrix
4.1 The Sylvester resultant matrix.

4.1.1 Subresultant matrices. .
4.2 The Bezout resultant matrix . .
4.3 The rank of a resultant matrix.
4.4 Preprocessing operations
4.5 Summary "

49
50
53
59
60
63

74

5 The degree of an approximate GCD, Part I 76
5.1 ~iIethod 1: The principle of maximum likelihood 78
5.2 ~Iethod 2: The angle between subspaces 84

5.2.1 Calculating the first principal angles .. 87
5.2.2 Calculating the small first principal angle 89

5.3 Method 3: The error between two estimates of an approximate common
divisor . . 95

5.4 Examples 100
5.5 Summary 106

6 The degree of an approximate GCD, Part II 108
6.1 The degree of an approximate GCD of f(x) and g(x) 109

6.1.1 Method 4: The method of the first principal angle 112
6.1.2 Method 5: The method of residual 115

6.2 The degree of an approximate GCD of f(x) and f(1)(x) 118
6.3 Examples 133
6.4 Computational efficiency 145
6.5 Summary 146

7 The coefficients of an approximate GCD 147
7.1 The method of SNTLN 149
7.2 Examples 169
7.3 Summary 175

8 Calculating the roots of a polynomial 177
8.1 The deconvolution of two polynomials. 178
8.2 Non-linear least squares for multiple roots 187

8.2.1 Calculating the values of the roots 190
8.3 Overview of implementation of a polynomial root solver. 196
8.4 Summary .. 201

9 Results
9.1 Summary

VI

202
218

10 Conclusions and future work

Bibliography

Vll

220

222

List of Tables

1.1 The computed roots of an inexact polynomial for Example 1.3 using
the designed root solver, with Cc = 10-8 " 9

1.2 The computed roots of an inexact polynomial for Example 1.4 using
the designed root solver, with Cc = 10-8 11

1.3 The computed roots of an inexact polynomial for Example 1.5 using
the designed root solver, with Cc = 10-8 12

1.4 The computed roots of an inexact polynomial for Example 1.6 using
the designed root solver, with Cc = 10-8 13

1.5 The computed roots of an inexact polynomial for Example 1.7 using
the designed root solver, with Cc = 10-8 14

1.6 The computed roots of an inexact polynomial for Example 1.8 using
the designed root solver, with Cc = 10-8 15

6.1 The roots and multiplicities of j(x) and g(x) for Example 6.1. 133
6.2 The roots and multiplicities of j(x) and g(x) for Example 6.2. 136
6.3 The roots and multiplicities of j(x) and g(x) for Example 6.3. 138
6.4 The roots and multiplicities of j(x) and g(x) for Example 6.4. 139
6.5 The roots and multiplicities of j(x) for Example 6.5. 141
6.6 The roots and multiplicities of j(x) for Example 6.6. 143

7.1 The roots and multiplicities of j(x) and g(x) for Example 7.2. 170
7.2 The roots and multiplicities of j(x) and g(x) for Example 7.3. 172

8.1 The roots and multiplicities of do(x) for Example 8.1. 199
8.2 Solving an inexact polynomial equation for Example 8.1. 199
8.3 The roots and multiplicities of do(x) for Example 8.2. 200
8.4 Solving an inexact polynomial equation for Example 8.2. 200

9.1 The computed roots of an inexact polynomial for Example 9.1 using
the designed root solver. .. 205

9.2 The computed roots of an inexact polynomial for Example 9.2 using
the designed root solver. .. 207

Vlll

9.3 The computed roots of an inexact polynomial for Example 9.3 using
the designed root solver. .. 209

9.4 The roots and multiplicities of j(.r) for Example 9.4. 211
9.5 The computed roots of an inexact polynomial for Example 9.4 using

the designed root solver. .. 211
9.6 The roots and multiplicities of j(x) for Example 9.5. 214
9.7 The computed roots of an inexact polynomial for Example 9.5 using

the designed root solver. .. 214
9.8 The roots and multiplicities of j(x) for Example 9.6. 216
9.9 The computed roots of an inexact polynomial for Example 9.6 using

the designed root solver. .. 216

IX

List of Figures

l.1 The computed roots of (x - 1)12. 5
l.2 Perturbation region, in the complex plane, of the roots of (x - 1)12

when the constant term is perturbed by 2-12 7
l.3 The roots of the polynomial in Example l.3, computed by MATLAB.. 10
l.4 The roots of the polynomial in Example l.4, computed by MATLAB.. 11
l.5 The roots of the polynomial in Example l.5, computed by MATLAB.. 12
l.6 The roots of the polynomial in Example l.6, computed by MATLAB.. 13
l.7 The roots of the polynomial in Example l.7, computed by MATLAB.. 14
l.8 The roots of the polynomial in Example l.8, computed by MATLAB.. 15

2.1

2.2

2.3

2.4
2.5
2.6

4.1

4.2

4.3

4.4

The forward error f.'j.y and the backward error f.'j.x, and !heir relation
to the exact solution map f and the computed solution j.
The root distribution of f(x) after the coefficients have been perturbed
and roots calculated 500 times by the roots function in MATLAB.

The root distribution of four polynomials after the coefficients have
been perturbed and roots calculated 500 times by the roots function
in MATLAB.

Analysis of the computed roots of (2.8).
The pejorative manifold of a cubic polynomial that has a douhle root.
The pejorative manifold of a cubic polynomial that has a triple root.

The normalised singular values of (i) the Bezout resultant matrix B(}, g),
and (ii) the Sylvester resultant matrix S(}, g), in the absence of noise.
The normalised singular values of (i)S(J, g), (ii) S(J, g), with Cc =
10-8

The effect of a on the normalised singular values of S(J, ag), with
- 10-9 Cc -

The coefficients of (i) f(x) and j(y), and (ii) g(x) and g(y), with
Cc = 10-7

x

19

24

25
27
30
31

61

66

68

71

4.5 The normalised singular values of (i) the matrix SU. g). (ii) the ma­
trix sU, Cin.g) with 0 0 = 14.971, (iii) the matrix S(j,o,,,(j) with a o =
14.9713, eo = 5.721 and (iv) the matrix sU, lto.g) with no = 14.9713. e =
10. with Cc = lO-7. .. 72

4.6 The normalised singular value~ of (i) the matrix sU.o,/j) with lto =
0.80789, and (ii) the matrix SU. oJ;) with lto = 0.80789. ()o = 0.53886.
with c" = 10-7

. 74

5.1 Hist.ugrams of four singular values of a perturbed I3ezout matrix. . 82
5.2 (i) The covariance matrix, (ii) the first 10 x 10 submatrix of the co-

variance matrix. with Cc = lO-7. .. 83
5.3 Tlw variation of (i) the likelihood function L(r) with the rank r, (ii)

the first principal allgh~ logt9k,l and (iii) the error measure log ek. with
the degree k of an approximate common divisor. with c(' = 10-8 . 101

5.4 The degree of an approximate GCD calculated by (i) the residuals
(5.25) and (5.28) , and (ii) the error measure ek. with c(' = 10-8 . 102

5.5 Histograms of the results for 1000 pairs of the polynomials using (a)
:\Iodel 1, graphs (i), (ii) and (iii). and (b)),Iodel 2. graphs (iv). (v)
and (vi). 104

5.6 The number of successful computations of the calculation of d, the

degree of an approximate GCD of {.f(y),g(y)}, against el, the degree

of the exact GCD. 106

6.1 Geometry of the least square problem. 116
6.2 The variation of logJ)k and log Tk with k for Example 6.l. 134
6.3 The column of Sdf, oo.g) for which the error in (6.2) is a minimum,

llsing Methods 4 and 5, against k, for Example 6.l. 135
6.4 The variation of log cPA: and log TA: with k, for Example 6.2. 1:Hl
6.5 The column of SkU, o,,f)) for which the error in (6.2) is a minimum.

using ?\Iethods 4 and 5. against k with c, = 10-.1. for Example 6.2. 1:37
6.6 The variation of log cPA: and log Tk with k. for Example 6.3. 138
6.7 The column of sdj, o()U) for which ttw error in (6.2) is a minimum,

using Methods 4 and 5, against k with Cr' = 10-\ for Example 6.3. 139
6.8 The variation of log (Pk and log Tk with k, for Examph~ 6.4. 140
6.9 The column of SkU, (l:,Jj) for which the error in (6.2) is a minimum,

using i\lethods 4 and 5, against k with Cc = 10-8 , for Example 6.4. 140
6.10 The variation of logcPk,logTk,logTJk and log~k with k and c(' = 10-8

for Example 6.5. 142
6.11 The column of sdj, (l:oPl)) for which the error in (6.2) is a minimum,

using Methods 4 and 5, against k with Cc = 10-8 , for Example 6.5. 143

Xl

6.12 The variation of log9k.logTk,log7]k and log~k with k and Cc = 10-8

for Example 6.6. 144
6.13 The column of Sk(j, Cioj(1)) for which the error in (6.2) is a minimum,

using ~lethods 4 and 5, against k with Cc = 10-8 , for Example 6.6. 145

7.1 (i) The variation of log 9k and log 1'k with k, and the normalised singular
values of (ii) Sd(]. 0:9). (iii)Sd(f, g), (iv) Sd(j, Ci,)j) , with Cc = 10-8 for
Example 7.2. 171

7.2 (i) The variation of log 9k and log Tk with k, (ii) the normalised singular
values of 8d (], oJ)) and Sd(j, ooT)). with Cc = 10-8 for Example 7.3. . 173

7.3 The method of SNTLN used to calculate (i) TCSk, (ii) IIEw - fll, based
on ~lethod 4. (iii) TPSk, (iv) IIEw - fll, based on Method 5, with k, for
Example 7.3 174

7.4 (i) The variation of log 9k and log T'k with k, (ii) the normalised singular
values of Sd(], 09) and Srl(j, Ciog) , with Cc = 1O- il for Example 7.3. . 175

7.5 The method of SNTLN is used to calculate (i) Tesk, (ii) IIEw - fll,
based on ~Iethod 5, with k, for Example 7.3. 176

9.1 The solution of a neighbouring polynomial. . 203
9.2 The computed roots of an inexact polynomial for Example 9.1 using

(i) Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and
(iv) the roots function. 206

9.3 The computed roots of an inexact polynomial for Example 9.2 using
(i) Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and
(iv) the roots function. 208

9.4 The computed roots of an inexact polynomial for Example 9.3 using
(i) Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and
(iv) the roots function. 210

9.5 The computed roots of an inexact polynomial for Example 9.4 using
(i) Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and
(iv) the roots function. 213

9.6 The computed roots of an inexact polynomial for Example 9.5 using
(i) Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and
(iv) the roots function. 215

9.7 The computed roots of an inexact polynomial for Example 9.6 using
(i) Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and
(iv) the roots function. 217

Xli

Chapter 1

Introduction

1.1 Historical review

Finding the solutions of a polynomial equation is among the oldest problems ill math­

ematics. This problem was known to the Sumerians (third millennium I3.C.), and it

has deeply influenced the development of mathematics throughout the centuries and

is of great practical importance in science and engineering presently [19, 49, 59]. In

particular, solving a polynomial equation continues to be a major role in the highly

important area of computing called computer algebra, especially for polynomials of

high degree, in which case lJlany computational tools from linear algebra, linear pro­

gramming and fast Fourier transform (FFT) may require a solution of a polynomial

equation [52]. Furthermore, many applications in computer algebra, robotics, com­

puter graphics, computer vision, geometric and solid modeling and molecular mod­

eling require a solution to a set of polynomial equations due to geometric operations

[46]. However, the current viewpoint is that there are no good, general solvers

for solving systems of more than one polynomial equation, as highlighted in [55].

1

CHAPTER 1. INTRODUCTION 2

Starting with the Sumerians and Babylonians, the study of univariate polynomial

zero finding focused on small degree equations for specific coefficients. The solution

formula for quadratic (second degree) polynomials has been known to the Babylo­

nians (about 2000 B.C.) and the Egyptians (found in the Rhind or Ahmes papyrus

of second millennium B.C.), and those for cubic (third degree) and quartic (fourth

degree) polynomials were found successfully in the 16th century by Scipione del Ferro,

Nicolo Tartaglia, Ludovico Ferrari and Geronimo Cardano. In 1824, the mathemati­

cian Niels Henrik Abel proved the striking result that there does not exist a formula

for polynomials of degree 5 or those of higher degree. The absence of a solution for­

mula requires the development of effective numerical methods for iteratively factoring

polynomials of degree greater than 4. More details in historical review for solving a

polynomial equation have been discussed by Pan [52].

There are some outstanding algorithms that have been proposed and used in

the 20th century. Bairstow's method [21] is only valid for polynomials with real

coefficients, and impractically slow in finding a double zero, as is Muller's method [21]

which is based on approximating the polynomial in the neighborhood of the root by

a quadratic polynomial when the order of multiplicity is three [19]. Newton's method

[45] requires that the initial estimate is sufficiently near the exact root for convergence,

and runs into trouble with multiple roots or closely spaced roots [59]. Laguerre's

method [17, 26] is almost always guaranteed to converge to a root of the polynomial

for all initial estimates and performs better for multiple roots. The computation is

however very expensive as a general purpose polynomial root finder. The Jenkins -

Traub algorithm [32, 33] involves three stages and is only valid for polynomials with

real coefficients, but it is fast and globally convergent for all distributions of zeros.

CHA.PTER 1. INTRODUCTION 3

These methods yield satisfactory results on a polynomial that has moderate degree

and simple and well-distributed roots, with an assumption that a good starting point

is llsed in the iterative scheme. Moreover, the quality of the results calculated by

standard numerical methods deteriorates as the degree of the polynomial increases,

the multiplicity of one or more of its roots increases, or the proximity of the roots

decreases. According to the view of Dunaway and Turlington [15], these methods can

fail when they encounter clustered or multiple roots and other types of ill-conditioned

polynomials. Also, several principles can be used in testing polynomial zero finding

programs, namely, program robustness, convergence difficulties, specific weakness of

algorithms and program performance by statistical testing [34].

In recent years, some new methods were therefore developed for the numerical

solution of polynomial equations, that is, determining all the zeros of a polynomial

can be solved by factorization [11], matrix pencils [35] and structure matrix-based

methods [20, 72].

1.2 Examples of errors

This section contains two examples that illustrate the problems of finding all the zeros

of a polynomial that has multiple roots. Example 1.1 shows that roundoff errors can

cause a significant deterioration in the computed roots, and Example 1.2 shows the

effect of a perturbation in a coefficient of a polynomial of high degree.

Since the roots function in MATLAB is used in Examples 1.1 and 1.2 to compute

the roots of a polynomial, it is important to explain this function in detail. The

roots function uses the QR algorithm, which is a numerically stable method [28] to

compute the eigenvalues of the companion matrix.

CHAPTER 1. INTRODUCTION

The companion matrix of the polynomial

f(>..) = >..m + al>..m-l + ... + am-I>" + am

is defined as

0 1

0 0

C=

0 0

-am -am-J

0

1

0

-am-2

o

o

1

-al

4

in which the first superdiagonal consists entirely of ones and all other elements above

the last row are zeros. The characteristic equation of A is equal to f(>..) [30], pages

146 - 147,

f(>..) = det(C - >..1),

that is, the eigenvalues of C are the roots of the polynomial f(>..).

In numerical linear algebra, the QR algorithm is a procedure to calculate the

eigenvalues and eigenvectors of a matrix. The basic idea is to perform a QR de­

composition, writing the matrix as a product of an orthogonal matrix and an upper

triangular matrix, multiply the factors in reverse order, and iterate.

Generally, suppose that A is the given matrix whose eigenvalues should be com­

puted, and let Ao = A. At the kth step (starting with k = 0), compute the QR

decomposition of A k, that is, Ak = QkRk where Qk is a orthogonal matrix and Rk is

an upper triangular matrix. Then form the matrix Ak+1 = RkQk such that

Ak+1 = RkQk = QrQkRkQk = Qr AkQk = Qk
l
AkQk.

CHAPTER 1. INTRODUCTION 5

All the matrices Ak are similar and thus they have the same eigenvalues. The algo­

rithm is numerically stable because it proceeds by orthogonal similarity transforma-

tions [28]. More detail about the QR algorithm can be found in [24], pages 352 - 361.

It can be concluded, therefore, that the QR algorithm can be used to compute the

eigenvalues of the companion matrix of the polynomial f(>..) in order to obtain the

roots of f(>..). Hence the QR algorithm is used by the roots function in MATLAB to

compute the roots of a polynomial.

Example 1.1. Consider the polynomial (x-l)12 whose root is x = 1 with multiplicity

12. The roots function in MATLAB returns the roots

1.0947 1.0804 + 0.0488i 1.0804 - 0.0488i 1.0433 + 0.0818i

1.0433 - 0.0818i 0.9963 + 0.0905i 0.9963 - 0.0905i 0.9530 + 0.0753i

0.9530 - 0.0753i 0.9233 + 0.0423i 0.9233 - 0.0423i 0.9128

which are shown in Figure 1.1.

0.1

* 0.08 * *
0.06

* 0.04 *
0.02

0>
11l 0 * * .§

-0.02

-0.04 * *
-0.06

-0.08 * * * -0.1
0.9 0.95 1 1.05 1.1

Real

Figure 1.1: The computed roots of (x - 1) 12 .

CHAPTER 1. INTRODUCTION 6

It is clear that the multiple root has split up into 12 distinct roots because of

roundoff errors. Roundoff errors due to floating point arithmetic of 0(10- 16
) are

sufficient to cause a relative error in the solution of about 9 x 10-2
, and thus it is

unsatisfactory for the computation of multiple root. o

Example 1.2. Consider the effect of perturbing the constant coefficient of the poly­

nomial (x - 1)12 by -I: where kl « 1. The roots of the perturbed polynomial are the

solutions of (x - 1)12 - f = 0, that is,

1

X = 1 + f12.

Euler's formula states that, for any real number (),

eie = cos () + i sin (),

If () = 27rk, k E Z, it follows that

ei27rk
= cos 27rk + i sin 27rk = 1.

If f = 2- 12
, then from (1.1) and (1.2) the solution is

1 .21rk

1 + -e12
2 '

1 + ~ (cos 7r6k + i sin 7r6k) ,

k = 0, .. ,,11,

k=O, ... ,l1.

(1.1)

(1.2)

The roots are shown in Figure 1.2, and it is seen that they lie on a circle in

the complex plane, with centre at (1,0) and radius 1/2, that is, a perturbation as

small as 2- 12 to the constant coefficient can result in a relative error of 50% in the

solution. Hence, an error in one coefficient is small enough to cause a huge error in

the computation of a multiple root. o

CHAPTER 1. INTRODUCTION

0.5 r--------===------~=-----_____,

0.4

0.3

-0.3

-0.4

-0.5L---------=="'--_ -=---- -----.J
0.5 1

Real
1.5

7

Figure 1.2: Perturbation region, in the complex plane, of the roots of (x - 1)12 when
the constant term is perturbed by 2- 12 .

These two simple examples show that roundoff errors due to floating point arith-

metic and errors in polynomial coefficients, that are present in most practical exam-

pIes, are sufficient to cause an incorrect and unacceptable solution.

According to the remarks of Goedecker [23] , this kind of polynomial xm - 1 in

these examples is particularly difficult for the QR algorithm, as it is applied to the

roots function in MATLAB , although the QR algorithm has considerable advantages

over other standard algorithms such as the Jenkins-Traub algorithm and a modified

version of Laguerre's algorithm to find the zeros of a polynomial in numerical tests.

Goedecker notes on page 1062 that:

"None of the methods gives acceptable results for polynomials of degree

higher than 50,"

and he notes on page 1063 that:

CHAPTER 1. INTRODUCTION

"If roots of high multiplicity exist , any . . . method has to be used with

caution."

8

Moreover, Karcanias and Mitrouli [38] point out that the uncertainty about the true

values of the input data and roundoff errors makes the zero-finding of a polynomial

a very difficult task, especially for polynomials of high degree.

1.3 Thesis contribution

Examples 1.1 and 1.2 show that problems arise when it is desired to compute multiple

roots of a polynomial, and this leads to the aim of this thesis:

To establish the feasibility of structured matrix methods for a polynomial root

solver that can compute multiple roots of a polynomial, particularly for 'difficult

polynomials' in presence of noise. It is desirable that this root solver not require

an estimate of the noise level, and that all parameters and thresholds be calculated

from the data, that is, the coefficients of the given polynomial.

A polynomial root solver, based on a method developed by Gauss and described in

Uspensky [62], has been therefore implemented computationally. It is noted that this

root solver has not only been implemented for robustness in the presence of noise, but

also been developed, with a MATLAB package implementation, in order to overcome

the problems in Examples 1.1 and 1.2, and hence solve non-trivial polynomials (high

degree, many multiple roots) with a great degree of accuracy in practical application.

This polynomial root solver developed in this thesis has the following property:

The multiplicities of the theoretically exact roots are preserved, even though an

inexact (noisy) form of the polynomial is given.

CHAPTER 1. INTRODUCTION 9

The following mathematical methods are used in the development of the root solver

that is described in this thesis:

• linear programming,

• linear and non-linear structure preserving matrix methods,

• non-linear least squares.

Since the aim of this thesis is to establish the feasibility of structured matrix

methods for solving a polynomial with multiple roots, little attention has been given to

computational test and complexity. Section 6.4, however, considers how the algorithm

can be made more efficiently.

The success of this designed root solver is shown in the following examples through

several inexact polynomials whose coefficients are perturbed by noise, such that the

componentwise signal-to-noise ratio c;l is lOB. Also the results are compared with

the solutions returned by the roots function in MATLAB , and more details are shown

in Chapter 9.

Exact Exact Computed Computed Root
Multiplicity Root Multiplicity Root Error

1 7.0453 1 7.0453e+000 9.0672e-008
2 0.1127 2 1.1270e-001 1. 521Oe-009
3 2.7132 3 2.7132e+000 2.1410e-009
4 9.0179 4 9.017ge+000 3.6123e-008
5 -1.1207 5 -1. 1207e+000 3.5537e-009
6 -8.7996 6 -8.7996e+000 1.0287e-008

Table 1.1: The computed roots of an inexact polynomial for Example 1.3 using the
designed root solver, with Cc = lO-B

.

CHAPTER 1. INTRODUCTION 10

Example 1.3. The pt and 2nd columns of Table 1.1 define the exact polynomial that

is perturbed by noise, such that the componentwise signal-to-noise ratio c~l is 108 .

The 3rd and 4th columns show the results from the root solver described in this thesis,

and the 5th column shows the relative errors in the computed roots.

It is seen that this designed root solver can retain the multiplicities of the roots

and the relative errors in the computed roots are approximately equal to the noise

level. The roots function in MATLAB returns the roots shown in Figure 1.3. It is

clear that the multiple roots split up into a cluster of simple roots because of roundoff

errors due to floating point arithmetic and errors in polynomial coefficients. 0

0.25

0.2 *
0.15

* 0.1
*

0.05 *
Cl t
'" 0 * * • * • ..§ f

-0.05
*

* -0.1

* -0.15

-0.2
*

-0.25
-10 -5 0 5 10

Real

Figure 1.3: The roots of the polynomial in Example 1.3, computed by MATLAB.

The experiment is repeated in Examples 1.4-1.8, with different given polynomials,

and these results obtained from Examples 1.4 -1.8 are similar to Example 1.3. Since

the explanation for Tables 1.2 - 1.6 and the analysis for Figures 1.4 - 1.8 are similar

to Table 1.1 and Figure 1.3, respectively, for simplicity, Examples 1.4 -1.8 show only

the results that are obtained by the designed root solver and the roots function.

CHAPTER 1. INTRODUCTION 11

Example 1.4. The designed root solver is used to compute the roots of a perturbed

polynomial as shown in Table 1.2.

Exact Exact Computed Computed Root
Multiplicity Root Multiplicity Root Error

4 -0.67547 4 -6.7547e-001 1.8925e-009
6 5.7335 6 5.7335e+000 8.2971e-009
7 2.1747 7 2. 1747e+000 6.6402e-010
10 -9.5568 10 -9.5568e+000 3.6919e-008
11 -6.5553 11 -6.5553e+000 3.0001e-008

Table 1.2: The computed roots of an inexact polynomial for Example 1.4 using the
designed root solver, with Cc = 10- 8 .

The roots function in MATLAB returns the roots shown in Figure 1.4. 0

5

• • 4 •
3 • •

• 2
•
• Cl

'" 0 • .. • • • .§

-1 • • • -2 ..
-3 • •
-4 • • •
-5
-15 -10 -5 0 5 10

Real

Figure 1.4: The roots of the polynomial in Example 1.4, computed by MATLAB.

CHAPTER 1. INTRODUCTION 12

Example 1.5. The designed root solver is used to compute the roots of a perturbed

polynomial as shown in Table 1.3.

Exact Exact Computed Computed Root
Multiplicity Root Multiplicity Root Error

2 -3.4624 2 -3.4624e+OOO 5.1724e-006
2 2.6891 2 2.6891e+OOO 8.2232e-008
2 8.4689 2 8.468ge+OOO 3.0297e-006
8 -2.5214 8 -2.5214e+OOO 1. 5185e-006
9 -1.6262 9 -1.6262e+OOO 3.4812e-007
11 6.1616 11 6.1616e+OOO 4.4626e-007

Table 1.3: The computed roots of an inexact polynomial for Example 1.5 using the
designed root solver, with Cc = 10- 8 .

The roots function in MATLAB returns the roots shown in Figure 1.5. 0

1.5
* • •

•• • • • •
0.5 * • • •

li • •• .E 0 • • • •
• • • • -0.5

• • • •• •
-1

• •
-1 .5 *

-4 -2 0 2 4 6 8 10
Real

Figure 1.5: The roots of the polynomial in Example 1.5, computed by MATLAB .

CHAPTER 1. INTRODUCTION 13

Example 1.6. The designed root solver is used to compute the roots of a perturbed

polynomial, even though some roots are closely spaced, as shown in Table 1.4.

Exact Exact Computed Computed Root
Multiplicity Root Multiplicity Root Error

2 -3.0670 2 -3.0670e+000 2.8952e-007
2 0.42244 2 4.2244e-001 1.3346e-007
2 2.5090 2 2.5090e+000 7.383ge-007
3 -3.3076 3 -3.3076e+000 2.5817e-007
4 5.4862 4 5.4862e+000 2.1900e-007
5 0.63371 5 6.3371e-001 1. 1110e-007
5 1.4923 5 1.4923e+000 2.1946e-007
6 -7.5947 6 -7.5947e+000 6.5487e-008

Table 1.4: The computed roots of an inexact polynomial for Example 1.6 using the
designed root solver, with Cc = 10-8 .

The roots function in MATLAB returns the roots shown in Figure 1.6. 0

0.3

0.2 if' •

• • • • • • .. ,. • • • •

0.1

'" I 0

•
-0.1 • • •
-0.2 •

-0.3

-0.4'-"·'----'----"-~-~-~~-~
-8 -6 -4 -2 0 2 4 6

Real

Figure 1.6: The roots of the polynomial in Example 1.6, computed by MATLAB.

CHAPTER 1. INTRODUCTION 14

Example 1. 7. The designed root solver is used to compute the roots of a perturbed

polynomial as shown in Table 1.5.

Exact Exact Computed Computed Root
Multiplicity Root Multiplicity Root Error

2 8.3467 2 8.3467e+000 6.6322e-007
3 1.5548 3 1.5548e+000 2.0004e-008
3 2.7865 3 2.7865e+000 2.3510e-007
5 -6.7685 5 -6.7685e+000 6.7958e-008
5 4.3127 5 4.3127e+000 3.4052e-007
6 -1.3340 6 -1.3340e+000 2.7139e-008
6 -0.77536 6 -7.7536e-001 1. 7967e-008

Table 1.5: The computed roots of an inexact polynomial for Example 1.7 using the
designed root solver, with Cc = 10-8 .

The roots function in MATLAB returns the roots shown in Figure 1.7. 0

0.15

• • •
0.1

• .,
• •

0.05

• • 0 • • • • • OJ • (1)

.E •
-0.05

• • ... •
-0.1

• • •
-0.15 •

-0.2
-8 -6 -4 -2 0 2 4 6 8 10

Real

Figure 1.7: The roots of the polynomial in Example 1.7, computed by MATLAB.

CHAPTER 1. INTRODUCTION 15

Example 1.8. The designed root solver is used to compute the roots of a perturbed

polynomial, even though some roots are closely spaced, as shown in Table 1.6.

Exact Exact Computed Computed Root
Multiplicity Root Multiplicity Root Error

2 1.0708 2 1.0708e+000 1.9686e-008
2 1.4168 2 1.4168e+000 1.9956e-008
5 -1.4000 5 -1.4000e+000 2.9568e-009
5 0.30917 5 3.0917e-00I 1. 3845e-009
7 -0.16387 7 -1.6387e-00I 1. 3390e-009
8 -3.3864 8 -3.3864e+000 3.6839e-009
9 9.9370 9 9.9370e+000 2.0310e-009

Table 1.6: The computed roots of an inexact polynomial for Example 1.8 using the
designed root solver, with Cc = 10- 8 .

The roots function in MATLAB returns the roots shown in Figure 1.8. 0

1.5
;.

* *

0.5

** ;.

0) * * .,
0 • •• •• • ~
* *
** ;.

-0.5

-1 ;. ;.

;.

-1.5
-4 -2 0 2 4 6 8 10 12

Real

Figure 1.8: The roots of the polynomial in Example 1.8, computed by MATLAB.

CHAPTER 1. INTRODUCTION 16

Examples 1.3 - 1.8 have therefore demonstrated the success of the designed root

solver because the multiplicities of the roots are preserved in the presence of noise,

and the output relative errors in the computed roots are approximately equal to the

input relative errors.

The layout of the thesis is now detailed.

1.4 Thesis layout

The problem arises when multiple roots of a polynomial are determined in the presence

of errors, including roundoff errors, due to the ill-conditioned nature of the problem.

The concept of ill-conditioning is therefore introduced in Chapter 2, along with a

geometric interpretation of ill-conditioning. The results in Examples 1.3 - 1.8 are

obtained by implementing a polynomial root solver that requires several greatest

common divisor (GCD) computations and polynomial division operations [62]. The

rest of the thesis describes the computational implementation of this root solver, such

that it is able to compute multiple roots in the presence of noise.

An overview of previous work about solving the approximate GCD problem is

presented in Chapter 3. The resultant matrix of two polynomials, which is required

for this root solver, is considered in Chapter 4, and it is shown that some preprocessing

operations should be implemented when computations are performed on the resultant

matrix.

Chapter 5 describes three methods for the calculation of the degree of an approx­

imate GCD of an inexact polynomial pair without prior knowledge of the noise level

in the data. It is extended in Chapter 6 by three other methods, in which case the

last method is appropriate for the calculation of the degree of an approximate GCD

CHAPTER 1. INTRODUCTIOX 17

of an irwxact polynomial and its derivative.

Chapter 7 presents the method of structmed lIoll-lillear total least lIorlll (SNTLN)

for the calculation of the codfici(mts of an approxilllaU' Geo. A. lillear structme prp­

serving matrix method for solving the pol,vllolllial <Ii \'isioll problelll is t hell discussed

in Chapter 8 along with the calculation of the multiple roots of it pol~'n()mial hy the

method of non-linear least square's,

The Sllccess of the designed root solver to find all zeros of all illexact pol~'Il()lllial

is shown in Chapter g, and a sl1111I1wry of t hp results awl met hods are dd aikd in

Chapter 10 followed by possible future extellsions to the work.

Chapter 2

Ill-conditioned problems

In order to appreciate why a polynomial in the presence of errors, including roundoff

errors, can fail to find a multiple root, it is necessary to explain the concepts of f01'­

wa1'd e rro 1', backwa1'd erro1' and condition number with respect to a measure of how

much the errors can affect a change of a computed solution. This chapter contains

explanations of these concepts, along with conditioning of the roots of a polyno­

mial, especially for multiple roots, and a geometric interpretation of conditioning of

a polynomial.

2.1 Forward and backward error and condition num­

ber

Consider a function y = f(x) to be evaluated by a numerical algorithm. An approxi­

mation y is the result of the algorithm and different from the exact solution y in most

cases. So how can the quality of y to be determined? The simplest error measure

18

CHAPTER 2. ILL-CONDITIONED PROBLEAIS 19

is the forward error, which is defined a,'i the difference betv:ecn the result and the

solution; in this case, 6.y = Y - y. However, this is not always possible because the

exact answer may not be known. The backward er-ror is therefore used and equal

to 6.x such that f(x + 6.::r) = :y; in other words. the backward error explains that

the computed solution in error is the theoretically exact solution of a neighboring

problem. In general, it is more natural to consider the relativE' errors 16yl/lVI and

l6.xl/lxl instead of the absolute errors 6.y and 6x respectively. The relationship

between these two errors is shown in Figure 2.1, which is reproduced from [28].

Input space Output space

x -&;:-----~~--____ • y

~x
~y

x
-y

Figure 2.1: The forward error 6.y and the backward ~rror 6.x. and t heir relation to
the exact solution map f and the computed solution f.

It is seen that the forward error is measured in the output space (solution space),

and the backward error is measured in the input space (data space).

CHAPTER 2. ILL-CONDITIONED PROBLEMS 20

The forward and backward errors of a function are directly related by the condition

number, which is defined as a mea."mre of the sensitivity of a function to evaluation

with respect to a class of perturbations applied to the data (input parameters). If

tiny perturbations in the input space, corresponding to a small backward error. will

lead to a comparatively large change in the output space, i.e. a large forward error,

then the problem is said to be ill-conditioned. Also, it can be said in another way that

a problem with a high condition number is said to be ill-conditioned and hence highly

sensitive to perturbations, while a problem with a low condition number is said to be

well-conditioned and robust with respect to the specified class of perturbations.

Since the concepts of forward error, backward error and condition number have

been explained, the conditioning of a root of a polynomial is considered in the next

section.

2.2 Ill-conditioned polynomial

It is natural to expect that the problem of finding the roots of a polynomial is well-

conditioned, that is, a small chaIlge in the coefficients of the polynomial will result in

a small change in the roots. Unfortunately, that is not the case here. Typically, the

problem is highly ill-conditioned when the polynomial has high degree and multiple

roots. It has been shown in Example 1.2 that the multiple root is ill-conditioned and

splits into a cluster when a random perturbation is applied to the constant coefficient

of the polynomial.

If a theoretically exact polynomial is given by
m

j(x) = L aiXm -
i

, aO =1= 0, (2.1)
i=O

CHAPTER 2. ILL-CONDITIONED PROBLEl ... lS 21

it is easy to extend the fundamental theorem of algebra to prove t 11(' ('xist('llCC of the

factorization
n

] (x) = ao IT (.r - .r j) Tn J ,

J=I

n

LTrL) = m.
J=I

(2.2)

for allY polynomial](x), so that Xl, X2, ... ,Xn are the distinct roots of f(.r) with

multiplicities Tn], Tn2, ... ,mn respectively. A simple error model is assiglled to the

coefficients of the polynomial] (x), that is, a componentwise error model is applied.

Each coefficient ai is perturbed to ai + 6..ai such that

i = 0 m. (2.3)

where ri is a uniformly distributed random variable in the rallge [-1. 1] and E; 1 is

the upper bound of componentwise signal-to-noise ratio. It follows that the COlllPO-

nentwise error model is define by

i = 0 m, (2.4)

that is, 6..ai is a uniformly distributed random variable in the range [-[clall, [,Iail].

This componentwise error model is used exclusively in this thesis. Also. the compo-

nentwise condition number of a root of a polynomial is cOllsidered in the following

theorem [66].

Theorem 2.2.1. Let the coefficients ai of](x) m (2.1) be per·turbed to ai + 6..ai

where I 6.. a, I :::; cclail, i = 0, ... , m. Let the real root Xo of](x) have multiplicity T,

and let one of these r TOots be perturbed to Xo + 6..1'0 due to the pertur'bations in the

coefficients. Then the componentwise conddion number of Xo is

() 6..xo 1 1 1 r. I A Tn -11
(

I Tn)+ ""c Xo = max --- = --1 - A a,xo
1L\lliISE,lail Ixol Cc c;-~ Ixol l.tr(:ro)I ~ (2.5)

The proof is described in [66], pages 18 - 20, by \Vinkler. He also pointed out on

CHAPTER 2. ILL-CONDITIONED PROBLEl'v1S 22

page 22 that the COmI)()nentwise backward error and condition numher of a root Xo

of multiplicity 7' of /(x) are related in a simple formula to the forward error of In as
1

l,6.xol _ '.() (7]c(:£o)) ~ r=-

1 I
-he Xo '-e,

Xo Er
(2.6)

where 7]<: (io), the componentwise backward error of the approximate root io of the

root Xo of /(x), is given by

_ 1/(io)1
71 (x) - -.:.::....:..~­

r 0 - ",m I'. -rn-zi L..i=O a,xo

It follows that if r = 1, that is, Xo is a simple root, its forward error is equal to the

product of its condition number and the backward error of its approximation i o. If r

is sufficiently large, then (2.6) reduces to

1 ,6. X 0 1 -1-1 ~ K:c(Xo)Ec)
Xo

(2.7)

which is the condition for which (2.5) attains equality, that IS, K:e(Xo) attains its

maximum value as r increases.

Example 2.1. Consider the polynomial f (x) = x2 , whose coefficients are perturbed

such that

(b) 12(x) = x2 +EX, (c) h(x) = X2 + E.

If a polynomial is given by f(x) = aox2 + a1x + a2, then it yields ao = 1, al = 0

and a2 = 0 when f(x) = x2. Suppose a componentwise error model is applied to the

coefficients of the polynomial f (x). Each coefficient £Ii is perturbed to £Ii + ,6.£I, such

that

according to (2.3), where ri, i = 0, ... ,2 are uniformly distributed random variables in

the range [-1,1] and C 1 is the upper bound of componentwise signal-to-noise ratio.

CHAPTER 2. ILL-C(XVDITIONED PROBLE.\1S 23

(a) The p(~rturbed polynomial that is f,(.r) = (1 + /'oE:).r2. J'() = l. has a double root

at :r = O. This root is extn~mdy stable because a change ill t he coefficient do(~s

not cause any change in the root.

(b) 12(.1') = x 2 + [:1: has roots at Xl = 0 and .r2 = -E:. but (2.:)) can not })(' used

to calculate their com pOlwntwis(' cOlld itioll Illlllll)('rs becH lIS(, .6. a , = E ::I 0,

however, (2.5) requires that .6. a , = o.

(c) flr) = X2 + [has roots at X = ±(-E)},E: < D, but (2.:)) nm not he lIsed to

calculate their compOllPntwise condition numbers because .6.a2 = E: ::I O. This

is exactly the sanl(' as (b) above.

o

It is well known that any multiple root will gCllprally. 011 th(' introduction of

random perturbations applied to the coefficients of a P()l~·llolllial. split into a clllSU~r.

as demonstrated in Examples 2.2 and 2.3.

Example 2.2. Consider four polynomials (J' - 1):1. (.r - l)ti. (.r - 1)12 and (.(- 1)20,

whose c(wfficients have been randomly perturbed by noise and roots computed GOO

times, using the value Ec = lO-H. The root distributions of the pert urbcd polynomials

are shown in Figure 2.2.

It is well known that a multiple root can split into a dense cluster of closely spaced

roots due to finite precision arithmetic and inexact input data. It is however possible

to determine the location and multiplicity of a dense cluster by s~'mbolic computations

with floating-point arithmetic [31].

If the radius of the clustpr is smalL and Hw polynomial cOlltains an isolated

multiple root, then Figures 2.2(i) and (ii) seem to suggest that the original root is the

CHAPTER 2. ILL-CONDITIONED PROBLEMS 24

approximation of the cluster of roots by a multiple root at the arithmetic mean of

the cluster. Although this approach is a simple solution with an obvious justification,

it becomes difficult to determine the location and multiplicity of the cluster as the

multiplicity of the root increases, which is shown in Figures 2.2(iii) and (iv) . 0

4 X 10-3
f(x) = (x-1)3 £ =10-8 f(x) = (x-1)6 £ =10-8

c c
0.1

2 \L 0.05 "'~ I 0
g>

/\
§ 0 -_
"~ • -1 /iff" -2 -0.05

- 3

-4 -0.1
0.995 1 1.005 0.9 0.95 1 1.05 1.1

Real Real

(i) (ii)
f(x) = (x_1)12 £ =10-8 f(x) = (x-1)20 £ =10-8

c c
0.5

I 0

-0.5 L..--~0.~8 -~--~1.2:----1~.4----::'1.6 2.5
Real

(iii) (iv)

Figure 2.2: The root distribution of f(x) after the coefficients have been perturbed
and roots calculated 500 times by the roots function in MATLAB.

CHAPTER 2. ILL-CONDITIONED PROBLEMS

Example 2.3. Consider four polynomials

f1(X) = (x - 0.3)3(X - 1)6 ,

h(x) = (x - 0.7)3(X - 1)6 ,

h (x) = (x - 0.5)3(X - 1)6,

f4(X) = (x - 0.9)3(X - 1)6,

25

whose coefficients have been randomly perturbed by noise and roots computed 500

times, using the value Cc = 10- 8 . The root distributions of the perturbed polynomials

are shown in Figure 2.3.

h(x) = (x - O.3)3(x _1)6 Cc = 10- 8 h (x) = (x - O.5)3(X - 1)6 Cc = 10-8

0.15 0.2

0.1 0.15

~ 0.1
0.05

0.05

'" • '" .. co co
0

~
.§ .§

-0.05
- 0.05

-0.1
- 0.1

-0.15 - 0.15

-0'6 .2 0.4 0.6 0.8 1.2 - 0·b.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2
Real Real

h(x) = (x - O.7)3(x _1)6 Cc = 10- 8 /4 (X) = (x - O.9)3(x - 1)6 Cc = 10-8

0.2 0.25

0.15 0.2

0.15
0.1

0.1

0.05

'" '" co tV
0 .§ .§

-0.05 - 0.05

- 0.1
-0.1

- 0.15

-0.15 -0.2

0.7 0.8 0.9 1.1
- 0.25

1.2 0.7 0.8 0.9 1 1.1 1.2 1.3
Real Real

Figure 2.3: The root distribution of four polynomials after the coefficients have been
perturbed and roots calculated 500 times by the roots function in MATLAB.

The experiment is repeated in Figure 2.3, with two multiple roots whose separation

is reduced. It is seen that the values can be estimated by simple clustering when the

CHAPTER 2. ILL-CONDITIONED PROBLEMS 26

roots are well separated. The clusters begin to merge, however, as two roots merge

until they cannot be distinguished. More examples in which clustering fails to provide

the correct multiple roots can be found in [47]. o

It therefore seems that ill-conditioning also occurs when a polynomial has multiple

roots and/or closely spaced roots. However, James Wilkinson pointed out the fact

that the problem may also be extremely ill-conditioned for a polynomial with simple

and well-spaced roots regardless of its multiplicity or proximity [65]. In 1984, he

described this discovery:

"Speaking for myself I regard it as the most traumatic experience in my

career as a numerical analyst."

Example 2.4. Consider a specific example, called the Wilkinson polynomial
20

f(x) = II(X - i) = (x - l)(x - 2)··· (x - 20),
i=l

(2.8)

which illustrates a difficulty with finding the roots of a polynomial: The location of

the roots can be very sensitive to perturbations in the coefficients of the polynomial

[65]. A Newton-Raphson solver [62], pages 174 - 179, can be used to calculate the

roots, along with their forward and backward errors that are shown in Figure 2.4.

It can be clearly seen from the Figure 2.4 that a relatively small backward error

in the input space owing to the finite precision arithmetic can cause a significantly

larger forward error in the solution space. The detail about the ill-conditioning of

this polynomial has been discussed in [64, 65]. o

The perturbations considered in Examples 2.2 and 2.3 are random (unstructured),

and as noted above, they are associated with the break up of a multiple root. However,

structured perturbations can be applied to preserve the multiplicity of the root, such

CHAPTER 2. ILL-CONDITIONED PROBLEMS

0

-2

-4

-6
.... e -8

UJ
0

or -1 0
.Q

-1 2

- 14

-16

-18
0

- • - Relative Forward Error I
- • - Relative Backward Error l

I ..
• I

/

....

•

...... - -.... ,.
5 10 15 20

Root Number

Figure 2.4: Analysis of the computed roots of (2.8).

27

that the multiple root does not break up, that is, the multiple root is well-conditioned

with respect to these perturbations. The details about these structured perturbations

are explained in the next section.

2.3 The geometry of ill-conditioned polynomial

Generally, a polynomial of degree m has its own multiplicity structure, that is, a

polynomial of degree 5, for instance,

• the polynomial (x - a)5 has a multiplicity structure {5},

• the polynomial (x - a)(x - b)4, a =I b, has a multiplicity structure {1,4} or

{4, I},

CHAPTER 2. ILL-CONDITIONED PROBLEMS 28

• the polynomial (x - a)2(:r; - h)3. a -=1= b. has a multiplicity structure {2.3} or

{3,2},

• the polynomial (x - a)(x - b)(x - C)3, (J -=1= h -=1= r, has a multiplicity structure

{1,1,3} or {1,3,1} or {3,1,1},

• the polynomial (x - a)(x - b)2(X - C)2, a -=1= b -=1= c, has a multiplicity structure

{I, 2, 2} or {2, 1, 2} or {2, 2,1}.

• the polynomial (x - a)(x - b)(x - c)(x - d)2, a -=1= b -=1= c -=1= d, has a multiplicity

structure {I, 1, 1, 2} or {I, 1,2, I} or {I, 2,1, I} or {2, 1, 1, I},

• the polynomial (x - a)(x - b)(x - c)(x - d)(x - e), a -=1= b -=1= c -=1= d -=1= e, has a

multiplicity structure {I, 1, 1, 1, I}.

Kahan [37] states that a polynomial of degree Tn with a certain multiplicity struc­

ture lies on a pejorative manifold. It is also stated that the pejorative manifold of a

polynomial plays an important role in determining if it is ill-conditioned when it has

one or more multiple roots.

In general, a multiple root is well-conditioned when the multiplicity of the root

is preserved due to the structured perturbations such that the polynomial stays on

its pejorative manifold. It is, however, ill-conditioned with respect to perturbations

that move the polynomial off the pejorative manifold, in which case the multiple root

splits into a cluster of simple roots.

CHAPTER 2. ILL-CONDITIONED PROBLEMS 30

• If J(x) has a double root and a simple root , then Xl = X 2 =1= X3 , and thus the

system G(x) = a is given by

-2X2 - X3 0,1

G(x) = X~ + 2X2X3 - a2

-X~X3 a3 ,

The pejorative manifold of a cubic polynomial that has a double root is, there­

fore, a surface in]R3 , which is shown in Figure 2.5. Different points on the

surface correspond to different values of the double root X2 and simple root X3.

8

6

4

2

0

-2

-4

-6

-8
-10

0

10 -5 0 5 10 15

Figure 2.5: The pejorative manifold of a cubic polynomial that has a double root .

• If J(x) has a triple root, then Xl = X2 = X3 , and thus the system G(x) = a is

CHAPTER 2. ILL-CONDITIONED PROBLEMS 31

given by

G(x) =

The pejorative manifold of a cubic polynomial that has a triple root is, therefore,

a curve in lR3
, which is shown in Figure 2.6. Different points along the curve

correspond to different values of the triple root Xl'

8

6

4

2

o

-2

-4

-6

-8
-10

10 0 2 4 6
12

8 10

Figure 2.6: The pejorative manifold of a cubic polynomial that has a triple root.

o

Given a multiplicity structure m = {ml' m2 , ' .. , m n }, the pejorative manifold M

of a monic polynomial j(x) of degree m with n distinct roots for m is

M - {j(x) = IT7=1 (x - Xj)mj I x E lRn, Xi i= Xj , i i= j }

{G(x)=a I aElRm , xElRn
, Xi i=Xj, ii=j}. (2.9)

CHAPTER 2. ILL-CONDITIONED PROBLEMS 32

For all polynomials whose roots have the same multiplicity structure m, the system

G(x) = a defines the pejorative manifold M as a surface of dimension n in the space

lR.rrt .

It was stated above that a multiple root is well-conditioned when the multiplicity

of the root is preserved, in which case the polynomial stays on its pejorative manifold.

This result is established in the next theorem [66].

Theorem 2.3.1. The condition number of the Toeal root Xo of multiplicity r of the

polynomial f(x) = (x - xoy, such that the perturbed polynomial also has a root of

multiplicity r, is
1

X .= I~xol/lxol = _1_ II(x - xoYlI = _1_ (L~=o (:)2(XO)2i) '2 2 10
p(0). II~fll/11 fll rixolll(x - xo)T~lll rlxol L~~~ (T~1)2(xo)2i ' (.)

Proof. If f(x, xo) := f(x), then

f(x, xo) (x - xor
t, (:) X'-i(-xo)'

x' + t G} -l)'(xa)ix'-i

A neighboring polynomial that also has a root of multiplicity r is

f(x, Xo + ~xo)

and hence

f(x, Xo + ~xo) - f(x, xo)

(x - (xo + ~xo)}r

x' + t G}-I)'(XO + Ilxa)'x'-',

t G) H)i ((xa + Ilxa)' - (xa)') xC-<

Ilxa t G) (-1)'i (xo)i-l X'-i + O(Ilxi)·

CHAPTER. 2. ILL-CONDITIONED PROBLE.'\IS

Since

()
1'-1 :r - TO

1'-1 () 7' 1
L - 1'--1-,()'

. T -.ro
I

1=0

1 I' (r) 1 . I 1 ,. - 1

- -" '. (-1) I (xo) .r .
7' ~ 1

l=l

it follows that to first order,

tlf := f(x, Xo + tl.TO) - f(x, .1'0) = -rtl.l'(j('r - .for- l
.

and thus the condition number of Xo that preserves its multiplicity is

Itlxol/ixol
Iltlfll/ll fll

33

o

Example 2.6. The condition number p(1) of the root .1'0 1 of t lw polynomial

(T - IY is, from (2.10),
I

p(l) = ! (I::~() C)',) '2
T ,\"r-l (r-I)-

L ... n=(J I

Since in combinatorics, Vandermode's iclentit~, for binomial codficients [3], pages

59 - 60, states that

and thus if m = n = T, then

CHAPTER 2. ILL-CONDITIONED PROBLEMS

and it follows that

1
p(l) = -

r
C;) = ~J2(2'f' - 1)

(
2(r-l)) r r
r-l

2
~ -,

r

34

if T is large. The condition number must be compared with the componentwise

condition number, from (2.7)

which is proportional to the signal-to-noise ratio. By contrast, p(l) is independent of

the perturbation of the polynomial and it decreases as the lllultiplicity r of the root

Xo = 1 increases. o

It is therefore stated that a multiple root is well-conditioned when the llluitiplicity

of the root is preserved, in which case the polynomial stays on its pejorative manifold.

In other words, if a polynomial with multiple roots lies on a pejorative manifold, then

small perturbations on the manifold result in small changes in the values of the roots,

that is, the multiplicity structure of the polynomial is preserved.

2.4 Summary

In this chapter the concepts of forward error and backward error have been intro-

duced, including their relationship with the condition number. Moreover, it has been

demonstrated that a multiple root is ill-conditioned, with evidence of increasing in-

stability as its multiplicity increases and the break up as a cluster of simple roots,

when random perturbations are assigned to the coefficients of the polynomial. In

addition, the Wilkinson polynomial has been presented to prove that the occurrence

of ill-conditioning does not only depend on the multiplicity and proximity of a root.

CHA.PTER 2. ILL-CONDITIONED PROBLEMS

Also, a lllultiple root is well-conditioned wllPn l1 strnctured perturbation that

preserves the multiplicities of the roots is applied to tlIP coefficients of the polynomial.

that is, the perturbed polynomial ha." a root of t he same m\lltiplicit~· as t lw original

polynomial. The pejorative manifold of a polynomial has been defined in order to

motivate a geometric interpretatioIl of ill-conditioning.

Chapter 3

A simple polynomial root solver

The conditioning of the roots of a polynomial has been discussed in Chapter 2 with

particular emphasis on the effect ofthe root's multiplicity. A simple root is, in general,

better conditioned than a multiple root and it is therefore instructive to develop a

polynomial root solver that reduces the computation of the roots themselves to the

solution of a sequence of polynomial equations with simple roots only. This method,

which was known as early as 1863 by Gauss, is described in [62], pages 65 - 68, by

Uspensky.

This method differs from the methods that are mentioned in Chapter 1 because

the multiplicities of the roots are computed initially through a sequence of the greatest

common divisor (GCD) computations, after which the values of the roots are cal­

culated though polynomial division operations. Once the multiplicities of the roots

are obtained, the calculation of the values of the roots is a well-conditioned problem

because the multiple roots are kept on their pejorative manifold. The computation

of multiple roots of a polynomial can also be applied to the computation of multiple

eigenvalues [36]. Hence, a robust GCD-finder is crucial to the study of root-finding

36

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 37

when the polynomials involve multiple roots [14.51,70].

A simple polynomial root solver is therefore described in this chapter. The op­

erations that are required for the root solver are considered and it is shown that

their implementation in a floating point environment is not trivial because they are

ill-posed. Moreover, the data in many practical examples is inexact. and th1!s a prac­

tical root solver must be robust with respect to minor perturbations in the coefficients

of the polynomial. The concept of ill-posed pT'Oblem is explained ill the next section.

3.1 Well-posed and ill-posed problems

The mathematical term well-posed problem stems from a definition given by Hadamard.

In [25], he claims that a mathematical model of a physical problem has to be well­

posed in the sense that it has the following three properties:

1. There exists a solution of the problem (existence).

2. There is at most one solution of the problem (uniqueness).

3. The solution depends continuously on the data (stability).

Mathematically, according to the remarks of Kirsch [40]. the existence of a solution

can be enforced by enlarging the solution space. If a problem has more than one

solution, then information about the model is missing, and thus additional properties

can be built into the model. The requirement of stability is the most important one.

He notes on page 10 that:

"If a problem lacks the property of stability, then its solution is practically

impossible to compute because any measurement or numerical computa­

tion is polluted by unavoidable errors: thus the data of a problem are

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER

always perturbed by noise! If the solution of a problem does not de­

pend continuously on the data, then in general the computed solution has

nothing to do with the true solution."

38

Problems that are not well-posed are termed ill-posed in the sense of Hadamard.

Hence a problem is ill-posed if no solution exists. the problem may have more than

one solution or the solution depends discontinuously upon the initial data. The GCD

computation and polynomial division are oft('n ill-posed, which would be explained

in detail in Section 3.3 and Chapter 8, respectively.

An ill-conditioned problem differs from an ill-posed problem because properties 1

and 2 mentioned above are satisfied by an ill-conditioned problem. The third property

is not satisfied because an ill-conditioned problem is very unstable for which a small

error in the initial data can result in much larger errors in the solutions. Even if a

problem is well-posed, it may still be ill-conditioned, that is, the solution may still

be sensitive to the input data. The Wilkinson polynomial, which has been shown in

Example 2.4, is an example because the roots are very sensitive to changes in the

coefficients of the polynomial, but they are continuous functions of the coefficients.

3.2 Factorisation via GCD computations

The polynomial root solver is considered in this section and it will be apparent that

it differs significantly from the root solvers mentioned in Chapter 1.

Consider the polynomial

do(x) = (x - xdmJ (x - X2Y'1
2 ••• (x - xn)mnQo(x),

where mi ~ 2, i = 1, ... ,n, and Qo(x) contains only simple roots. Since a root XI of

CHAPTER 3. A SLT\IPLE POLYSO.\IIAL ROOT SOL\"ER 39

multiplicity Tni of do(x) is a root .1", of nlllltiplicit~" Tn, - 1 of th(' d('ri\"atin' polYllomial

where 00 (:r), 01 (:1:) are coprime polynomials and t he roots of QI (.{) art' Silll ph'. There­

fore the CCO of do (.1") and di)l)(.r) is

III general, let Xl (x) he the product of all linear factors corresponding to simple

roots of do (x), X2 (:1;) be the product of all quadratic factors corresponding to double

roots of do (x), ... , Xm. (X) be the product of all factors of degn'(~ In. corn~spondillg

to the roots of multiplicity Tn* of do (x) 1 where Tn* is the maximum multiplicity of

the roots of do(x). If do(x) helli no root of multiplicity i, \/(x) call be set equal to a

constant. Then,

differs only by a constant factor from do(x), and thus

Similarly,

d2 (x) = GCD (d1(x), di1)(x))

d:~ (x) = G C 0 (d2 (x), d~ 1) (X)) () 2() m.-3() X.I X Xs X ... Xm • X,

and the sequence terminates at dm • (:£) which is a constant. A seq\]('nce of polynomials

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER 40

Tl (X), i = 1, ... , rn*, can be defined such that

Tl (x) do(;r)
Xl (X)X2(X) ... Xm. (x), rh(x)

T2(X) rldx) X2(X)X:l(X) ... Xm. (x), d2(X)

T3(X) d2(X) X3(X)x4(X)'" Xm.(x), d3(x)

Tm.(X) = d m • (xl = Xm.(x),

from which all functions XdX),X2(X), ... ,Xm.(x) are

()
T",._I (x)

, X Tn. -I X = () , Tm. X

until

Xm. (x) = Tm. (x).

This leads to the polynomial equations

,Xm.(x) = 0,

all of which contain only simple roots. They yield the simple, double, triple roots,

etc., of do (x), If Xo is a root of Xi (x), then it is a root of multiplicity i of do(x). If some

Xi(X) are constants, then there is no root of multiplicity i. Algorithm 3.1 contains

pseudo-code for the implementation of this method described by Uspensky for the

calculation of the roots of a polynomial.

Algorithm 3.1: The calculation of the roots of a polynomial

Input A polynomial do(x).

Output The roots of do(x).

Begin

CHAPTER 3. A SIMPLE POLYNOI\IIAL ROOT SOLVER

1. Set j = O.

2. While degree elj > 0 do

(a) Set. j = j + 1.

(b) Calculate the GCD of dj - 1 and its derinltiu' rly) l'

elj = GCD (rlj_l.d;~l)'

End While

C 1 1 d,-l' 1 . 3. a eu ate Ti = T ,l = , ... 1 J.

4. Calculate Xl =li.-, i = 1, ... ,j - 1.
T1 +1

6. Calculate the roots of Xl' i = 1, ... ,j. 7c They arc of llllllt ipliC'ity i.

End

Example 3.1. Consider the polynomial

whose first derivative is

1(h;9 - 63x8 + 72:r7 + 203x6
- 318x;;

UNIVERSITY
JF SHEFFIELD

LIBRARY

-285x4 + 364x:3 + 21:3:r2
- 96:r - :36.

41

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER

It follows that

d1 (x) GCD (do(x), db1) (X))

X5
- 2X4 - 6x3 + 4x2 + 13x + 6

and then

d2(x) GCD (d1(x), di1)(x)) = X2 + 2x + 1

d~l)(X) _ 2x+2

and hence

d3(x) GCD (d2(X),d~1)(X)) = x + 1

d4(x) GCD (d3(X),d~I)(X)) = 1.

The polynomials Tl (x), T2(X), T3(X) and T4 (x) are

x+1

x + 1,

and thus the polynomials Xl, X2, X3 and X4 are

Tl (x)
Xl = T2(X)

T2(X)
X2 = -- -

T3(X)
T3(X)

X3=-­
T4(X)

X4 = T4(X)

x 2
- 5x + 6

1

x+1.

42

CHAPTER 3. A SIl\lPLE POLYXO~\lIAL ROOT SODER 43

This leads to the polynomial equations

Xl = 0 =} .1'1 = O . .f2 = 1.

\2 = 0 =} .f:l = .) _ .. fl = :3.

K~ = 0 =} ·7:5 = -1.

and thus the polynomial has two simple roots at II = () and 1'2 = 1. two double roots

at :£3 = 2 and X.j = 3, no triple roots, and Oll(' root of lllultiplicityl at .I'~) = -1.

o

Example 3.1 introduces the process for the computation of thl' roots of a polyno-

mial. Although this process is ea."y to follow. S011l(' esselltial steps an' illlplclllPnted

in a floating point environment, which raises sOllie difficult issues:

• The computation of the ceo of a polynomial pair is an ill-posed problem

because a tiny perturbation can transform tlw polynomial pair to he coprime.

Even for a polynomial pair of exact forms. a lIoll-trivial ceo nUl he reduced

to be a constant because of roundoff errors due to floating point arit hmetic.

• The determination of the degree of the ceo reduces to the determinatioll of the

rank of a resultant matrix, but the rank of a matrix is not ddilWd in a floating

point environment. Since the degree of the ceo is equal to the rank loss of

its resultant matrix, a tiny perturbation in the coefficients of thl' polynomials

is sufficient to convert a rank deficient matrix to a matrix of full rank. which

suggests that the ceo is a constant.

• Polynomial division reduces to the deconvolution of t lwir coefficil'nts, but it is

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER. 44

not simple to obtain a computationally stable solution because this computation

is an ill-posed problem.

The given data in many applications is affected by noise that may only be known

approximately and not exactly, and thus the polynomials are only specified with a

tolerance. It is therefore desirable that a robust polynomial root solver is developed to

overcome the difficulties mentioned above, such that the root solver does not require

an estimate of the noise level and other data. A substantial part of this thesis is

therefore devoted to the solution of the problems discussed above.

It is known that a very important part of this root solver is the determination of

the GCD of two polynomials. The computational difficulties associated with this are

highlighted in the next section.

3.3 Previous work on GCD computations

~any problems in science and engineering, such as computing theory [1], blind image

deconvolution [44, 54]. signal processing [69], system identification [60] and control

theory [5], require an estimate of the GCD of a polynomial pair in the presence of

noise, that is, the computation of the GCD of two polynomials is an essential problem

in algebraic and numerical computing. For example, in image processing, the desired

image can be regarded as the polynomial GCD between two of its distorted versions

of the same scene in the z domain [54].

The usual approach to finding the GCD is to use Euclid's algorithm [10], but

this algorithm does not perform well when noise is imposed on the coefficients of

one or both polynomials. The calculation of the GCD is an ill-posed problem and

therefore not suitable for applications that include inexact data because a tiny random

CHAPTER 3. A SIAIPLE POL YXO.\IIAL ROOT SOL \ 'FN 45

perturbation in the coefficients of a polvnolllial pair is :-'lIlall t'llo11gh t() n'<lu('(' a llOll­

trivial GCD to a constant. in which case t hI' illt'x(\!'t p()I\'l\(JIllial pair art' rdativPly

prime (coprime).

Example 3.2. C()nsid(~r the pOI~'llolllials.

f (.r) (J' - (J)(.r - 'j)(.1' - (')

.9 (.r) (.1' - (J) (.r - b)(.1' - r/).

where a =I- b =I- c =I- d, whose GCD is.

GCD(}(.T)"rj(.r)) = (.r - (J)(.!, - fI).

If j(x) is perturbed such that,

j(.T) ---+ f(x) = (x - (a + 6a))(.r - (b + rlh))(.1' - (').

where a+6a =I- b =I- d,h+r5b =I- a =I- d and 6a.6b =I- O. thell deg(GCD(f(.I') .. (j(.I'))) = 1,

that is, f(T) and g(x) are coprime. 0

This is a major problem in practical applicatiolls where it is (,OIlIIllOIl for the

coefficients (input parameters) to be disturbed by Iloise) G], This lIlay be as a result

of floating point arithmetic or the involvemcnt of laborat or\' lllf'aSllJ'('IIH'llt s, which

allow only a limited number of significant figures to be obt ailled.

If data errors are present, the given inexact pol.Yllomial pair an' wit h high proba­

bility coprime, and must be perturbed slightly ill order to inducc a llOIl-t riyial GCD.

This computed GCD is therefore called all approximate GCD with respect to the

given inexact and coprime polynomial pair and IllOf(~O\·er. it is !lot lllliqllc because

different perturbations on the coefficients of the pOI~'llolllial pair yield diffnent ap­

proximate GCDs.

CHAPTER 3. A SIMPLE POLYNOMIAL ROOT SOLVER

Example 3.3. Consider the polynomials,

j(.T) (x - a)(x - b)(x - c)

g(x) (x - a)(x - b)(x - d),

where a # bole # d. If j(x) and g(x) are perturbed such that

j(x) ----t f(x) = (x - (a + Ed)(x - (b + (2))(X - c)

g(x) ----t g(x) = (x - (a + Wl))(.T - (b + W2))(X - d),

46

where 11'11,11'21, IWll, IW21 ::; tolerance, then an approximate GCD of f(x) and g(x) is

equal to

• x- (a+El)' if 1'1 =W1,E2 #W2 .

• (x - (a + Ed)(x - (b + 1'2))' if 1'1 = W1, 1'2 = W2.

Different approximate GCDs of f(x) and g(x) are therefore obtained for different

noise samples, all of which are less than a threshold. 0

Since the first paper about analyzing the approximate GCD problem [58] ap­

peared in 1985, several algorithms for computing an approximate GCD have been

developed, and different techniques have been used. A non-iterative maximum likeli­

hood based method is proposed by Stoica and Soderstrom [60], with an assumption

that the noise on the coefficients of the polynomials have a Gaussian random distri­

bution. An optimisation method is introduced by Karrnarkar and Lakshman [39] in

order to calculate the smallest perturbations that should be applied to the coefficients

of a polynomial pair and therefore transform a constant GCD to be a non-trivial

GCD. Modifications of the Euclidean algorithm are considered in [7, 31, 51], with

CHAPTER 3. A SIlvIPLE POLYNOMIAL ROOT SOUTR 47

a pnor accuracy level f, in which case the crucial points arl' thl' (lyoidance of the

ill-conditioned remainders and the cllOiCl~ of the t(~rmill(ltioll criterioll. Pall [53] uses

root groupillg and the Pade approximation to compute an approximate ceo and

argues that perturbing the zeros of a polYllomial pair is mow eHicil'nt than p(~rturbing

the coefficil'nts.

In recent years, researchers have investigated matrix-ba,('d lllethods. and in par­

ticular, tlw relationship between an approximate CCO and a H'sultant matrix. The

singular value decomposition (SVD) of the Sylvester resultant matrix Slf'. g) of two

polynomials f = f(;r) and 9 = g(.T). which will be called the S~'lyest('r matrix for

simplicity, is used ill [12, 16] ill order to calculate an approximate CCO. Similarly,

the QR decomposition of the Sylvester matrix is d!'scTibed in):3. 69]. but both these

compositions do not preserve the structure of its matrix. Since the sl1lall('st non-zero

singular value of the Sylvester matrix is a measure of its distallce to singularity, this

is the distance to an arbitrary rank deficipnt matrix)4]. and not the distance to the

nearest rank deficient Sylvester matrix. Furtherlllore. Bini and Boito :8] use the QR

decomposition of the Bczont resultant matrix BU. g) to compute an approximate

CCD and suggest that the QR decomposition of the Sylvester matrix by Corless ct

al. [13] fails to detect the correct ceo degree if a pol~'nolllial ha • ..., multipk roots or

a small leading coefficient.

The method of structured total least norm (STL~) [56] is llsed to construct a

structured low rank approximation of the Sylwster matrix SU. g). It is shown in

[2, 67, 7~3] that this approach yields an improvement in the approximate ceo com­

putation because the rank deficiency of the low rank approximatioll of S(j, g) is

clearly defined.

CHAPTER 3. A SIA1PLE POLYNOlvIIAL ROOT SOLVER. 48

3.4 Summary

In this chapter it has been shown that the factorisation of a polynomial via GCD

computations can be used to reduce the problem of computing its multiple roots to

that of solving a sequence of polynomial equations that contain only simple roots.

Hence a simple polynomial root solver has been introduced to calculate the mul­

tiplicity of the roots initially, after which the values of the roots are determined.

There exist, however, difficult computational issues that mm,t be addressed because

the GCD computations and polynomial divisions are ill-posed operations, and thus

their implementation with inexact data in a floating point euvironment requires care.

These issues are addressed in subsequent chapters.

Chapter 4

The resultant matrix

It is stated in Section 3.3 that it is COllllllOll to use a l'f'sult allt lIlat rix f()r t 11(' calculation

of an approximate GCD of two P()I~'llOlllials f(.r) alld .'I (.r). This ;ds() appli('s to the

polynomial root solver that is introduced ill SeC't iOll :1.2. ('SIH'('iil!1\' for t he S~'lvpster

resultant matrix S(J,g) and Bbout resultallt lllatrix /3(j'.y). alld this chapter in­

troduces some of their properties. illcludillg t 11('01'('\ iud alld ('olltpUI al jOlla 1 aspects of

resultant matrices.

A polynomial pair are relativpj~, pnnH' (('oprillll') if alld ollh' if I heir n'sllltant

matrix is full rank, and if they are llot coprillle. 111(' d('gl'f'(' and ('()ei!icj('llts of their

GCD can be calculated from their resultallt Illalrix. III parI i(,lIlar. accordillg to Bar­

nett [5], the degree of the GCD of the POIYllolllial pair is eqllal to Ihl' nlllk loss of

their resultant matrix, which is determined illitially. after which tIl!' ('ol'ilici('llts ofthe

GCD can be obtained by reducillg the matrix 10 upp('r t riallglliar form t hrollgh a

QR or LU decomposition [24]. This situatioll 1)('('ollH's 1ll1wh IllO['(' ('olllpli('ated when

computations are performed in a floating poillt ('!l\'irollllH'llt wit It I)('rt urlH'd coeffi_

cients of these polynomials. that is. ilwxact rIat a alld roulld()ff ('rror can t ransfortn

~~)

CHAPTER 4. THE RESULTANT l\IATHIX 50

a theoretically singular matrix to a non-singular matrix. It is also known that the

determination of the rank of a lloisy matrix is a challenging problem that arises in

many computational fields of science such as Illuuerical analysis, signal processing,

control theory, polynomial algebra.

In this chapter, a discussion of subresultant matrices SkU, g) is carried out, and it

is shown how they can be used to determine the degree of the GCD of f(x) and g(x)

in the absence of noise. Since data errors are sufficient to reduce a rank deficient ma-

trix to a full rank matrix, sorne preprocessing operations should be implemented when

computations are performed on the matrices Sk U, g) in a floating point environment.

These operations are therefore discussed in this chapter, and computational experi-

mcnts show that the omission of these operations leads to a significant degradation

in the computed results, particularly in the presence of noise.

4.1 The Sylvester resultant matrix

Let j = j(x) and 9 = g(x) be theoretically exact polynomials of degrees of m and n

respectively,
m n

and g(x) = L bixn
-

i
, (4.1)

i=O ;=0

where ao, bo =I- O.

The Sylvester resultant matrix S(j,g) E IR(m+n)x(m+n) of j(x) and g(x) is given

by

CHAPTER 4. THE RESULTAST MATRIX 51

(10 hI)

a[a() b1 li()

(II /)1

S(j, .9)
am ao bn - I iJo

am (lm-l al hit hit b1

a", bTl

am -1 iJ,,_ I

am h"

~------~v~------~
~~----____ v ________ ~J

n columns rn columns (4.2)

where the coefficients ii, of j (x) occupy the first II columns. t he coefficients D, of .ij(x)

occupy the la.st Tn columns, and each of the two submatrices is a To{'plitz matrix. It

is clear that the matrix 5(j, g) is strictly linear and partitioned because

5(0'1 + AP, rig + ILq) = 5(rxj. 11g) + 5(Ap·llq).

where rx,/3,A,IL are constants, and 1 = 1(x),g = g(x).p = p(.1').q = '1(.1') are polyno­

mials. The derivation of 5(j, .9) relates to its suhresultant matrices that arise when

the product of two polynomials is written as a mHtrix-V!'ctor product.

In particular, if j(:r) and g(x) haw a common divisor polynomial ('/ . ..(.1') of degree

k, there exist quotient polynomials Uk(T) and vk(:r), such that

j(T) = ck(x)udT),

g(x) = ck(:r;)vk(x),

deg Ilk < deg 1 = Tn.

deg 11k < deg .9 = 11.

for k = 1, ... , d, where cl is the dpgree of th~ CCO of j(x) and q(.1'),

(4.3)

CHAPTER 4. THE RESULTANT MATRIX

k m-k

C (x) - "" (' X
k

-
i

k - ~ ~k,? , 11 (x) = "" U X
m

-
k

-
i

k ~ k,? ,

?=O t=O

It follows from (4.3) that

n-k

Vk(X) = L Vk,i Xn -
k

-?

1=0

k = 1, ... ,d.

52

(4.4)

Since the product of two polynomials is equal to the convolution of their coef-

ficients, these polynomial products on the left and right .sides can be written as

the product of a Toeplitz matrix, Sn-k+l (j) E jR(m+n-k+l)x(n-k+l) and Sm-k+l ([}) E

jR(m+n-Hl)x(rn-k+l) respectively, and a vector [72],

where

bo

Sm-HI (9) =

and

Uk = [Uk,O

Vk = [Vk,Q

1
T E jRm-k+1

Uk,l Uk,m-k-l Uk,m-k ,

1
T E 1ll)7t-k+ I

Vk,l ... Vk,n-k-l Vk,n-k m.. .

The expression (4.5) can be written as

(4.5)

k=l, ... ,d. (4.6)

CHAPTER 4. THE RESULTANT i''vlATRIX 53

The matrix Sk = sdj,g) E ffi,(m+n-k+l)x(rn+n-2k-;-2) is thc kth sllbresllltant matrix,

which is formed by deleting the last (Ii: - 1) rows of S el, .q). \\' h('[(' S el, .&) is defined

in (4.2), the last Ii: - 1 columns of the coefficients of J(:I'). and the last ~. - 1 columns

of the coefficients of g(x). It is clear that the index k rangcs from 1 to lllin(trI, 11.), and

sdj"c}) = sel, g), that is, the condition Ii: = 1 yields the Sylvester]'('sllltnnt matrix.

The next section considers the uses of the subresultant matriccs Sk (f, .9) for the

determination of the degree of the GCD of j(:I') and ,q(:I').

4.1.1 Subresultant matrices

The following theorem shows that the subresultant matrices SdJ .. &) can be used to

determine the degree of the GCD of ./(x) and .9(.'E).

Theorem 4.1.1. A necessary and sufficient conditiorl JOT the polynomials j(,r) and

g(:I') to have a common divisor oj degree Ii: 2 1 is that the rank oj the matri.T S\:(}, g)

is less than or equal to m + n - 2k + 1.

Proof. Since the degree of the GCD of ./(x) and g(x) is (1, this polynomial pair

possess common factors of degree 1,2, ... ,d, but not a factor of degree d + 1. The

matrix Sk(}' g) is therefore rank deficient and the vectors Uk. vk in (4.6) are lloll-zero

for k ::; d. For k > d, however, Sk(./,g) is full rank and the only solution in (4.6) is

Uk = 0 and Vk = O.

rank Sk(j, g) < m + n - 2k + 1, k = 1. ... ,d.

Tn + n - 21i: + 2, k = d + 1, ... , min (Tn, TI).

o

Furthermore, the assumption that j (x) and g(x) possess a common divisor of

CHAPTER 4. THE RESULTANT lvIATRJX 54

degree k <::: d implies dk,o =I- 0, and thus Uk,O, Vk,O =I- O. It therefore follows that if

Sk = [hk Hk 1 '
where hk = hk(}) E ~(m+n-k+l) is the first column of sdj"ij) and Hk = Hk(},g) E

jR(m+n-k+l)x(m+n-2k+l) is the matrix formed from its other columns, then (4.6) can

be written as

where
T

[1 E TTllm+n-2k+l,
Xk = Vk,l ... Vk,n-k -Uk,O ... -Uk,rn-k .IN.

and Vk,O can be set equal to -1, that is, a linear algebraic equation can be obtained

by moving hk to the right hand side,

for k = 1, ... ,d,

for k = d + 1, ... , min(m, n). (4.7)

For each value of k < d, (4.7) possesses an infinite number of solutions, because

Hk is rank deficient, but only a finite number of this infinite number of solutions Xk

yield polynomials Uk and Vk such that

Ck(X) = j(x) = g(x)
Uk(X) vdx)'

(4.8)

is a polynomial and not a rational function. When k = d, there is a different situation

because (4.7) has unique solution. In this case, since the GCD is unique and condition

Vk,O = -1 has been imposed, the polynomial Ck(X) is equal to the GCD of j(x) and

g(x).

The polynomials j (x) and g(x) have a finite number of comIIlon divisors, defined

CHAPTER. 4. THE RESULTAST MATRIX 55

up to a scalar multiplier, and tlwrf'forf' a finite Illlllll)('r of coprime polnlolllials. An

infinite number of vectors. however, defined to withill all mbitrar.\" scalar llIultiplier,

lie in the null space of 5' (/, .9) 1. and it is therefore illst met i ve t () cOllsider the dmrac-

terisation of the vectors that lie ill the lIull space of S(f .. &). but do !lot defiue coprime

polYllomials. Example 4.1 shows the solution to this problelll and it is shown there

is a ('lear difference in the C(l,SCS k: < d and k: = ri.

Example 4.1. Consider the polynomials

f'(·r) - (1' - l)('r - '))(J' - 3) - l·:l - 01,:2 + 111' - 6 . -./ ,/ -' -., , . .

and

/J(X) = (:r - 1)2(x - 2) =:£3 - 4:[:2 + 5:r - 2.

whose GCD is of degree 2.

The Sylvester matrix S(/J}) = SI(/,g) of j(.r) and g(.r).

1 0 0 1 0 ()

-6 1 0 -4 1 0

11 -0 1 5 -4 1
(4.9)

-0 11 -0 -2 5 --1

0 -6 11 0 -2 5

0 0 -6 0 0 -2

has rank 4 because the rank loss of S(}, g) is equal to the degre(' of the GCD of }(.T)

and g(x) [5]. The family of vectors that lie in the null space of S(j, .?]) is

1 The dimension of the Ilull space of a matrix A is called the Ilullit.\! of A. The rank and nullity
of a matrix A with n colulllns are related by the pquation: rallk(A)~nullit.\·(A)= n.

CHAPTER 4. THE RESULTANT MATRIX 56

li1,O ?lI,O

Vl,l V1,1

[:~,] V1,2 -Vl.O - Vl,l

-U1,O -Vl,O

-Ul,l 2VI,() - Vl,l

-U1,2 3VI,O + 3VI,I

where VI,O and VI,I are non-zero arbitrary parameters, such that

and thus the common divisors of j(x) and g(x) are

c(x) := j(x) = g(x) = (x - l)(x - 2)
UI(X) VI(X) V1,0·T + VI,O + Vl.l

(4.10)

The GCD of j(x) and g(x) is obtained for VI,O = 0, Vl,l -=I- 0, and c(x), which is in

general a rational function, is proportional to the linear common divisors (x - 1) and

(x - 2) of j(x) and g(x) for

VI,1 = - 2VI,0 and VI,I = - 3V I,0, (4.11)

respecti vely. Other values of VI,O and Vl,l yield rational functions c(x), and they are

therefore not of interest. It follows that the null space of 5(j, g) includes a vector,

defined up to an arbitrary scalar multiplier, that defines:

• the GeD of j(x) and g(x),

• a finite number of vectors, each of which is defined up to an arbitrary scalar

multiplier, that represent the coefficients of the common linear divisors of j (x)

and g(x),

CHAPTER 4. THE RESULTANT MATRIX 57

• an infinite number of vectors VI and UI that defille polnlOlllials. which lead to

rational functions c(:r:).

The situation is slightly ciiffl'rent whell (-1.7) is cOllsidered becallse tIl(' COllst mint

VI,O = -1 implies only a subspace of tlw null space of the Syh'('ster J"('S\!lt aut matrix

(4.9) is considered. In partic\llar. it follows illlmpciiat d~' from (-1.1 ()) t ha t this ('011-

stnlint cannot recover the CCD of }(.r) and .rj(.r). b\lt it follows frolll (1.11) that it

can recover their common linear divisors. It is shO\vlI. ho\\"('\'('r. that tlH' CeD of

}(:r:) and g(.T) can be recovered from the subresultant lllatrix S"].(f. y) if /'2() = -1.

If k = 1 and, then S(},tj) = SI(}Jj) and it follows that (-l.7) })('COlII(,S

0 0 1 0 0 1
1'1.1

1 0 -4 1 0 -6
('1.2

-6 1 5 -4 1 11
-HI.O (-U2)

11 -6 -2 5 -4 -6
-Ul.l

6 11 0 -2 5 ()

-111.2

0 -6 0 0 -2 0

where the coefficient matrix HI also has rank -1. This ('quation therefore has an

infinite number of solutions,

H1,O = -1, HI,1 = vl,1 + 2, 111.2 = 3 - 31'1,1. 1'1.2 = 1 - 1'1,1,

where Vl,l is arbitrary, and

_x2 + (2 + vI,dx + 3 - 3ul,l = (-.T + l'U - 1)(.r - :3)

VI (:r:) _x2 + Vl,lX + 1 - Vl,l = (-x + 1'1.1 - l)(r - 1).

It follows from (4.8) that the common divisor Cl (.1') is

C1 (x) = } (x) = g (x) = (:r - 1)(.T - 2) .
1[1 (.r) VI (:r) -.1' + 1'1.1 - 1

CHAPTER 4. THE RESULTANT MATRIX 58

It is seen that Cl (x) is, in general, a rational function, and only two values of the

arbitrary parameter VI,} yield a polynomial. In particular, the value Vl,1 = 2 yields

the common divisor Cl(X) = -(x - 2), and the value Vl,1 = 3 yields the common

linear divisor Cl (x) = -(x - 1). These values of Vl,1 arc, as required, the same values

specified in (4.11).

Consider now the situation k = 2, in which case (4.7) becomes

0 1 0 1

1 -4 1 V2,l -6

-6 5 -4 -U2.0 11 (4.13)

11 -2 5 -U2,1 -6

6 0 -2 0

which has the unique solution

V21 = 1. , . U2.0 = -1, U2,1 = 3.

Since V2,O = -1, it follows that

U2(X) = -(x - 3) and V2 (x) = - (x - 1)

which are coprime, and (4.8) shows that the common divisor is

C2 (x) = - (x - 1) (x - 2).

Consider now the situation k = 3, in which case (4.7) becomes

1 1

-4 -6
(-U3,O) =

5 11

-2 -6

Since this equation does not pm;sess a solution, the polynomials j(x) and g(x) do not

CHAPTER 4. THE RESULTAST MATRIX 59

have a comIllon divisor of (iP,e;ree k = :~. awl thus the degree of the Gel) of f(.[') and

.f](x) is two. o

The next section considers the definition of the B{'ZOllt result allt Illatrix.

4.2 The BezQut resultant matrix

The Sylvester resultant matrix was introduced in Scction -1.1. and SOllW of its prop-

erties were descrihed. This section considers the Bi'zout resultant lllatrix, which is

another resultant matrix that will be used by til(' principle of lll<lxillllllll likelihood for

the calculation of the degree of an approximate GCD of two pol~'n()lllials in Section

5.1.

It is shown in [5], pages 44 - 45. that the elell1Pllt .3,) of the B("zout resultant

matrix BU,.f]) E lRexc
,(' = rnax(Tn,n) is

lan-i-j+k+l, hn-kl
min(i-l,)-l)

L la n -'-J+k+l,bn - k l.
k=()

i.j=l ('. (4.14)

where lail hJ I = a1hj -a)6i . In particular, every element of BU. g) is a bilinear function

of the coefficients a1 of .i(x) and hI of g(x). The matrix B(j. .f]) is of order (' x c. and

if Tn > n then fj(x) is padded with Tn - n zeros. and similarh' if 11 > Tn.

Compared with the matrix sU,.f]) that is strict I,\' linear and partitiOlwci, the

matrix BU,9) is bilinear, and thus it arises

B(nj.!-J,ij) = n(3B(j,fj). n.:3 E lR \ O. (4.15)

Moreover, BU, .f]) plays an important role in marw fields of symbolic and llulIH'rical

CHAPTER. 4. THE R.ESULTANT MATR.IX 60

computing, including signal processing and control theory [4, 18, 27J.

The Sylvester and Bezout resultant matrices are introduced above, and SOllle of

their properties are therefore considered in the next section.

4.3 The rank of a resultant matrix

The following property makes B(j, g) and S(j, .9) attractive for performing compu­

tations on rank estimation :5J:

• The rank loss of B(j, g) and S(j, g) is equal to the degree of the GCD of j(x)

and g(x).

This property for the exact polynomial pair j (x) and g (x) is extended to the inexact

polynomial pair f (x) and g(x) by assuming either that the numerical rank of B (j, g)

and S(j, g) is defined, or that the noise level is known, such that a threshold can be

placed on the small singular values of these noisy matrices.

The determination of the rank of a noisy matrix is a challenging problem that

arises in many computational fields of science. Although the SVD of a resultant

matrix is frequently used to determine the numerical rank of a matrix [12] [16] [42J

[72J, it suffers from disadvantages. In particular, the presence of roundoff error due

to finite precision arithmetic may suggest that a matrix is non-singular even if this

matrix is theoretically singular. The following example shows that the numerical rank

of B(j, g) and S(j, g) may not be defined, even if only roundoff errors are present

and the exact polynomial pair j(x) and g(x) are used.

CHAPTER 4. THE RESULTANT MATRIX 61

Example 4.2. Consider the exact polynomial pair

j(x) (x - 1)2(x - 2)3(X - 5)

g(x) (x - l)(x - 2)2(x - 6)9

whose GCD is of degree 3.

0 0

-5 -5

'O~
-10

'O~
-10 -- --~- ti-

C) -15 C)
-15 .Q .Q

-20 -20

-25 -25
0 2 4 6 8 10 12 0 5 10 15 20

i i

(i) (ii)

Figure 4.1: The normalised singular values of (i) the Bezou t resultant matrix B (j, g),
and (ii) the Sylvester resultant matrix sU, g), in the absence of noise.

Figure 4.1 shows the normalised singular values Cf,/Cfl of B(j, g) , and the nor­

malised singular values of 8(j, g), in the absence of noise. Figure 4.1(i) shows that

the rank of B(j, g) is not defined, and Figure 4.1(ii) suggests that the degree of the

GCD of j(x) and g(x), computed from 8U, g), is 4 rather than the correct answer

of 3 because

{
Cfi } Cf14 max -- =-.

i=l,oo.,17 CfHl Cf15

These computations are performed in the absence of data errors, that is, only

roundoff errors are considered, and thus the results for inexact polynomial pair must

CHAPTER 4. THE RESULTANT 1\IATRIX 62

necessarily be inferior. o

This example and the preceding discussion show that the SVD of B(j, g) and

sU, g) cannot be used to estimate the degree of the GCD of j(x) and g(x), and this

disadvantage of the SVD is more apparent when data errors are present because the

data errors are usually much larger than roundoff errors. Furthermore, Triantafyllou

and Mitrouli [61] point out that

"the roundoff errors during the numerical implementation of the algo­

rithms ... may lead to serious problem for the computation of the rank of

the Sylvester matrix."

Alternative methods have been proposed, such as the rank revealing QR decomposi­

tion [9], the rank revealing LU decomposition [48] and a new rank n~vealing algorithm

[41,43].

One problem with the vast majority of methods is that a threshold, as a function

of the noise level, is required to be manually set in order to determine the index of the

smallest singular value that defines the numerical rank. This is a problem because the

noise level may not be known, or it may only be known approximately. The following

example shows that the numerical rank of S(j, g) of the inexact polynomial pair f(x)

and g(x) can be defined with a priori knowledge of the noise level that is imposed.

Example 4.3. Consider the polynomial pair j(x) and y(x), from Example 4.2, and

introduce a componentwise error model, which is defined in (2.3) and (2.4), to the

coefficients of j(x) and g(x) with a signal to noise ratio E;:-l = 109, that is, the exact

polynomial pair change to the noisy form of f = f(x) and 9 = g(x).

The Sylvester resultant matrix, S(j, g) E lR.l~X18, is now constructed from the

perturbed polynomial pair, and the rank function in MATLAB is called. If the default

CHAPTER 4, THE RESULTAST ;UATRIX 63

toi<'UlllCC is used. tlwn l\lATLAu retmIls a rallk of J-t. If t Iw t ol('raw'(' is 1l\<\Il11ally

set to 10- 10, then the calculated rank is 1 G, Th(' corr('ct rallk of l;j C<I1l hI' obt ailH'd

when the tolerance is set eqnal to Cr as 10 !J, It is d('ar that sdting this threshold

may be problematic if the signal- to-noise rat io is not kllO\\'ll ('X(lct h', 0

4.4 Preprocessing operations

It ha,s been shown that the subresllltant matrices Sd f. (j) C<Ill })(' appli!'ci 10 <let ermine

the degree of the GCD of f(:r) aIHi ,&(:1:), This is, hO\\'('\'('r. nol Ill<' caSt' whell COlll­

putations are performed in a floating point ellvironllH'nt, ('speciall,\' for I h(' inexact

polynomials f (,T) and g(x), The matrix S'd f. ,r;) is r('d Ilced t () a III a t rix of filII rank

because f (x) and g(x) are coprime, Thre(' prepro('essing opera I iOlls ar(' I h('refore

considered in this section for the illlprovemPllt of COlli pllt at iowl! J'('S\ dIs on rallk ('st i­

mation, and two of them originate from t lw parti t iOlled llat m(' of t 11<' Sy I \'('st n matrix,

and one of them originates from the difficulty of pnforming reliabl(' ('OlllPlltatiollS 011

polynomials whose coefficients vary widely in magllit \[(1(',

In [22] Ghaderpanah and Klasa remark that:

"A wide variation in the magnitude of ('odfici('nts of polvnomials mav 1)(' a

source of computational problem in root-findinl!: algorithm, as the Hoatillp;

point arithmetic operations on such coeffi('ients mCl\' relld('r float inl!: point

overflow or underflow,"

with particular emphasis in the application of root -finding met hods:

"particularly those involving calculat ion of the p;r('(1 I ('st cOllllllon divisors

of two polynomials,"

CHAPTER 4. THE RESULTANT AJATRIX 64

It is therefore important that the inexact polynomial pair need to be processed bc-

fore an approximate GCD is computed, and it is necessary to distinguish between

exact and inexact polynomials. Thus, f(x) and g(x) denote the inexact forms of the

theoretically exact polynomials j(x) and g(x), respectively, which are defined as

m 'II

and g(x) = L b1 x
n

-
i

, (4.16)
i=O i=O

where ao, bo i- O.

The matrix S k (f, g) has a partitioned structure because the coefficients of f (x)

occupy its first n - k + 1 columns, and the coefficients of g(x) occupy its last Tn - k + 1

columns. It lllay therefore yield an unbalanced matrix Sk(f, g) if the coefficients

of f(x) are much smaller or larger than the coefficients of g(x). For examplc, if

la1 1 » Ibj I ,i = 0, ... ,Tn, j = 0, ... ,n, then the rank of S(f, g) is approximately equal

to n even if f(x) and g(x) are coprime, and similarly, if lail « Ibjl, then the rank of

S(f, g) is approximate equal to Tn. These are the two cxtreme conditions, but they

illustrate the problems that can occur if precautions are not taken. It is therefore

necessary to preprocess the polynomials instead of the matrix in order to preserve

the structure of the matrix.

The first preprocessing operation therefore involves normalising the coefficients

of f(x) and g(x) by the geometric mean of their coefficients, such that Sk(f, g) is

better balanced. The 2-norm of the coefficients of a polynomial is frequently applied

for normalisation because it yields a matrix that is better conditioned [8] [13]. It

has been established computationally, however, that it is advantageous to normalise

the coefficients of a polynomial by the geometric mean of its coefficients because

it provides a 'better average' when the coefficients of a polynomial vary widely in

CHAPTER 4. THE RE5ULTAXT .\IATRIX 65

magnitude. Thus](:1') and .(J(:r) are scalpel frolll ./lr) ilwl q(.f) !l\' til(' g('Ollletric

means of their coefficiPlltS. and are therefore gi \'('1I by

'TTl

.f(x) = 2: rJ /.1'1II1

1=0

(JI
II I = -------,--

(0"1 ,-'
1 ell I (J ,i) '" . J

and
n

,('j'-(T) = ~ 6,:rH ' I hi = ___ h_,_--,---
~ Oil 1_1_
/.=() (I elJ 11;,)" -:

(.1.18)

where 0,1 and b, are the nOll-normalised codficiPllts of I(,r) awl y(.r) J'('spectiH'lv. and

it is assnrIwd they are non-zero. If. however. on£' or lllOl'(' of t Il('s(' ('o<'ifi('i('nt.s are

zero. then the geometric mean is computed wit h resp(,ct to the 1l01l-ZPro coefficients

only, and not all the coefficients,

Example 4.4. Consider the exact polynomial pair

I(x) (:r + 0.51(1)';(.1' + 7.1052)\r -+- (),ll:tnl

/;(x) (1; + 0.5161r'(x + 7.1052f\r + K.KGll)7(,[, - LO,l/G)'

whose CeD is of degree 10. A COlllpOllPntwise eITor is applied to th(' ('()£'Hici(,llts of

./(1.') and g(x) with signal-to-noise ratio .:-; 1 = l(jI'. that is. t]}(' exact pol.\'wllllial pair

change to the noisy forms I (x) and 9 (:r:).

The importance of normalisation by the g(~olll('tric 11lt'a1l is showll ill Figure 4.2,

and it is seen that the matrix 8(.1.[)) call giw a better estimat(' of th(' degre(' of an

approximate GCD of f(x) and g(x). compared to the matrix S(f.g). b('cansc

rank 5(J,g) = 13

rank S(.fJj) = 27

dcg GCO(J. g) = 2-1 => illCOITPCt.

deg G C D (f. ,r]) = 10 => corrcct,

Consider now the second preprocessing operatioll.

o

CHAPTER 4. THE RESULTANT MATRIX 66

o O~~~----~--~----I

-5

~~ -10

t:i-

~ - 15

-20

-5

-15

-25L.---~----~--~-------'
o 10 20 30 40

-20~--~----~--~------'

o 10 20 30 40
i i

(i) (ii)

Figure 4.2: The normalised singular values of (i)S(f, g), (ii) S(j, g) , with Cc = 10- 8 .

Since

deg GCD (f , g) = deg GCD (f ,O'.g) ,

where 0'. is an arbitrary non-zero constant, it follows that

rank loss S(f, g) = rank loss S(f,O'.g),

and thus the polynomial g(x) can be generalised to O'.g(x) , where 0'. can be used to

achieve optimal results using a specified criterion. This criterion and the method used

to calculate the optimal value will be addressed after the third preprocessing operation

has been discussed. It is therefore better to use the Sylvester matrix S(f, O'.g) rather

than S(f, g). It would seem intuitive that this scale factor 0'. has no obvious effect

on the determination of the rank of Sk(f, O'.g). The following example demonstrates ,

however, that this is not the case.

CHAPTER I THE RESULTANT 1\IATRJX 67

Example 4.5. Considl'r the exact polynomial pair

f(:r) (:r + l.8(46)(:r - 4.17(4)2(:1; - 6.9955)6(:[- 8.2475)6

(J(.r) (:1' + l.8(46)1(X - 4.17(4)2

whose CeD is of degree 3. COlllponcntwise errors are added on the coefficients of

.I(.r) and /;(.J.') with signal-to-noise ratio c(-:-l = lO9 in order to construct the noisy

forms f (:r) awl g(.r).

Figmc 4.3 shows the normalised singular values of SU. ag) for six values of a.

Sinc(' (kg f(:r) = 15 and deg g(.1:) = 6, the coefficients of f(:r) occupy the first 6

columns of S U, ng), and the coefficients of ag(x) occupy the last 15 columns. It is

showll that nmk SU. og) ~ 6 = deg g(x) when 0: = l. and that rank SU, o:g) ~ 15 =

degf(:I:) when (t = lO](i. Also, it can be seen clearly that the matrix SU, 0:.9) appears

more and mow rank deficient as n: ---.. lOlO, in particular, rank loss SU. ng) ---.. 3 =

deg CCDU, g). It is however reasonable because

max Jcoefficients of f(x)J ~ 1010

max Jcoefficients of g(x)J

and thus 0: ~ lOlO 'balances' the Sylvester resultant matrix.

Consider now the third preprocessing operation.

o

It is known that computatiolls performed Oll polynomials whose coefficients have

a wide variation in magnitude are unreliable [14] [22], and it is therefore necessary to

minimise this variation. This is achieved by the substitution

x = By, (4.19)

in (4.17) and (4.18), where B is a parameter whose optimal value is to be determined

and .Ii is the new independent variable. The polynomials j(x) and g(x) are therefore

CHAPTER 4. THE RESULTANT MATRIX 68

a= 1 a= 105
0 0

-5
-5

O~ -10 O~
-10 --,,- -15 ,,-

OJ OJ -15 ..Q -20 ..Q

- 25 -20

-30
0 5 10 15 20 25

-25
0 5 10 15 20 25

i i

a= 108 a= 1010

0 0

-5 -5
O~ O~

,,- -10 ,,- -10
OJ OJ

..Q ..Q

-15 -15

-20
0 5 10 15 20 25

-20
0 5 10 15 20 25

i i

a= 1012
a= 1016

0 0

-5 -5

O~ O~

,,- -10 ,,- -10
OJ OJ
.Q .Q

-15 -15

- 20
0 5 10 15 20 25

-20
0 5 10 15 20 25

Figure 4.3: The effect of a on the normalised singular values of S(j, ag) , with Cc =

10- 9 .

CHAPTER 4. THE RESULTANT MATRIX 69

transformed to the polynomials ./(y) and ,ij(y) respeC'tiwl\-.
TTl

j(y) = L(n;fJm-,)y"'-'. (4.20)
1=0

and
n

.q(y) = L(iJ/fJ"-1)yn-/. (4.21)
,=()

where a, and h, are defined from (4.17) and (4.18). respectiwl~·.
- -

The arguments of S(f, oJ)) are the coefficicllts (l,fJ TII -' alld ofJ/f)" / of f(,Ij) and

ng(y), and thus nand fJ, which origillat(~ from the 2nd awl 3rd preproc('ssinp; oper-

at ion respectively, can be calculated simultaneousl~'. such that the ratio of the rnax-

irnurn coefficient in map;nitude to the minimum coefficient in magnitude of 8(1, o:g)

is minimised.

. {max{max1=o 'TI/ la)}m-'I.maxJ =o .. lIlnbJ f)Il-.i
I
}}

(i'o,8o =argmlll . { . -. I} .
. n.B mIn lllln1=O, .. ,m !a,fJ m -,!. rnIn)=() ... 11 Inb)fJ lI

-)

(4.22)

where no and 00 are the optimal values of nand 0 respectin'ly. The minimisation

problem can be written as:

0iIinimise t /.'3

Subject to

i = 0 in

j = 0, II

i = 0 Tn

j = O, n

.s > 0

8>0

0>0

CHAPTER 4. THE RESULTANT MATRIX 70

The transformations

T=logt, S = logs, ¢ = 10gB, Ii = log a

and

enable this constrained minimisation problem to be written as:

Minimise T - S

Subject to

T (m - i)¢ > ai, i = 0, ... ,rn

T (n - j)¢ - Ii > /3j' j = 0, ... ,n
(4.23)

-S + (m - i)¢ > -ai, i = 0, ... ,m

-S + (n - j)¢ + Ii > -/3j, j = 0, ... ,no

If the solution of this linear programming (LP) problem is ao and Bo, the polyno­

mials (4.20) and (4.21) become, respectively,
m n

and g(y) = L biyn-i , (4.24)
i=O i=O

whose coefficients

and (4.25)

form the entries of Sk(j, aog), k = 1, ... , min(m, n). All GCD computations are

performed on the polynomials J(y) and g(y). It is noted that

deg GCD(f, g) = deg GCD(j, g),

and thus

rank S(f, g) = rank S(j, g).

CHAPTER 4. THE RESULTANT MATRIX 71

The importance of polynomial scaling by a o and 80 is shown in Example 4.6, and

it is also shown that failure to implement this substitution (4.19) may cause incorrect

results to be obtained.

Example 4.6. Consider the exact polynomial pair

j(x) (x - 9.3722)8(X + 9.9450)6

g(x) (x - 9.3722)(x + 9.9450)7(X + 0.6239)3

whose GCD is of degree 7. The coefficients of j(x) and g(x) are perturbed by

componentwise errors with signal-to-noise ratio c;;-l = 107 in order to construct the

noisy forms f(x) and g(x).

14 rr====;;=:=;=;:;=;:;---~--=-:::t
- . - original ! (x) , r

12 -+- scaling j(y) , r ...r

10

8

Cl 6
.Q

4

2

o II

,,-_1'
I

~ ..

,

-2'-----~---~----'

o 5 10

(i)

Figure 4.4: The coefficients of (i) f(x) and j(y), and (ii) g(x) and g(y), with Cc = 10-7
,

First, f (x) and g(x) are normalised by their geometric means using (4.17) and

(4.18), respectively, in order to obtain J(x) and g(x). Then the optimal values ao

and 80 of a and 8, respectively, are calculated from the LP problem, such that the

CHAPTER 4. THE RESULTANT MATRIX 72

reduction in the magnitude of the coefficients of f(x) and g(x) arises from the substi­

tution (4.19). Hence j(y) and g(y) are computed from (4.24) , and their coefficients

are shown in Figure 4.4, compared with the coefficients of the original polynomial

pair f(x) and g(x).

CI.=1 , 9=1

- 5

t;)~ -10 -
~ -15

-20

-25L--~-~-~-~---l
o 5 10 15

-2

-4

_ -6

Cl -8
.Q

-10

-12

20 25

(i)
Cl.

o
= 14.9713, 9

0
= 5.721

-14L--~-~-~-~_---.J
o 5 10 15 20 25

(iii)

-

-20L--~-~-~-~-~
25 o

-2

-4

- -6

Cl -8
.Q

-10

-12

5 10 15 20

(ii)
Cl.

o
= 14.9713, 9= 10

(iv)

Fig~re 4.5: The normalised singular values of (0 the matrix S(f, g), (ii) the matrix
S(f,aog) with a o = 14:,.971 , (iii) the matrix S(f,aog) with ao = 14.9713,80 = 5.721
and (iv) the matrix S(f, aog) with a o = 14.9713,8 = 10, with Cc = 10- 7

.

CHAPTER 4. THE RESULTANT MATRIX 73

It call l)(~ s('(m from Figure 4.4 that the variation in the magnitude of the coeffi­

cients of .f (.T) and q(x) becomes small after scaling of this polynomial pair. Figure

1.5 shows the normalised singular values of the different mat rices producpd as e is
varied. It is clear that Figure 4.5(iii) returns the best and correct answer rather than

til(' other three figures, and it seems that polynomial scaling wit h optimal values of

(Y" and e" would be Inore effectiv(; on the rauk estimation of a Sylwster resultant

matrix. o

Example 4.7. Consider the exact polynomial pair

](.1') (J: + 1.9424)(x - 1.8499)\r - 4.996)I(X - 0.10(4)9

/}(:1') (x + 1.9424) 7 (x - 1.8499/'(.1' - 0.38(2)1

whose GCD is of degret~ 5. Componentwise errors are added on the coefficients of

](.r) and .(j(J:) with signal-to-noise ratio c;l = 107 ill order to construct the noisy

forms .f (:r:) and q(:1').

Figuf(~ 4.6(i) shows that the rank of S(j, (log) is equal to 27 and the rank loss

is equal to 7, which is incorrect and poorly defined. Figure 4.6(ii) suggests that the

rank of S(j, aog) is equal to 29, that is, the degree of an approximate GCD of f(x)

and 9(X), computed from S(j, (loT}) with 0:0 = 0.80789, Bo = 0.53886. is equal to 5,

which is correct and clearly defined. It can be seen that the scaling polynomial pair

with the substitution (4.19) is very important to determine the rank of a Sylvester

resultant matrix. o

CHAPTER 4. THE RESULTANT MATRIX 74

-..

Cl
.2

(Xo = 0.80789. 9=1 (Xo = 0.80789. 9
0
=0.53886

o o~~~~~~~----~~

-5 -5

-..
1:>- -10

-15 -15

-20'--~--~~--~--~~----'
o 5 10 15 20 25 30 35

-20'--~--~~--~--~~----'
o 5 10 15 20 25 30 35

(i) (ii)

Figure 4.6: The normalised singular values of (i) the matrix 5(f, Cl!oy) with Cl!o =
0.80789, and (ii) the matrix 5(1, Cl!o9) with Cl!o = 0.80789, ()o = 0.53886 , with Cc =
10- 7 .

4.5 Summary

This chapter has reviewed some properties of the Bezout resultant matrix and Sylvester

resultant matrix, in which the rank loss of a resultant matrix is equal to the degree

of the GCD of the polynomial. The subresultant matrices of a Sylvester matrix that

are obtained by deleting some rows and columns of the Sylvester resultant matrix

are important when it is required to calculate an approximate GCD of an inexact

polynomial pair.

Three preprocessing operations have been considered to perform on the Sylvester

resultant matrix and its subresultant matrices in order to improve the rank estimation

problem. If f(x) and g(x) are the given inexact polynomials, then

1. normalising f(x) and g(x) by the geometric means in order to obtain f(x) and

y(x) ,

CHAPTER 4. THE nESULTAST .\lATRIX 75

2. scaling g(x) by (\I,,,

3. scaling J(x) and .1j(x) by Bo.

where 0:0 and eo are the optimal values calculated fI(JlIl it LP pruLI('lll. Also. COlll­

putational experiments have shown that the \1 t ilisa t i()ll I)f t ht's(' ()plTa til lllS CCI liS('s a

significant improvement in the computed results.

Chapter 5

The degree of an approximate

GCD, Part I

It has been shown in Chapter 3 that the crucial part of the polynomial root solver

is the calculation of an approximate GCD of a noisy polynomial pair. The most

difficult part of the calculation of an approximate GCD is the calculation of its

degree because this is a non-trivial problem that reduces to the estimation of the

rank loss of a resultant matrix, the entries of which are functions of the coefficients of

this polynomial pair. It has been stated in Chapter 4 that the determination of the

rank of a resultant matrix in the presence of noise is a challenging problem, in which

the computation is usually performed by placing a threshold on the small singular

value of the matrix. It suffers, however, from disadvantages because the numerical

rank of the matrix may not be defined, or the noisy level may not be known, or it may

only be known approximately. Moreover, Examples 4.2 and 4.3 show the limitations

of a standard rank estimate method, and they provide the motivation for this chapter

and the next chapter.

76

CHAPTER 5. THE DEGHEE OF AS A.J>J>IU).\/.\UTL" eel). f>.\/rr / 77

It is therdore lle(,l'ssary to den'lop SOIll(' IW\\" !l]('1 lll)(b 111;!1 till Illlt rt'<jIIlJ'(' t.he

knowledge of the nois(~ levd. and are p('rf()l'IIwd dll!Tl h 1!l1 1 Ill' (1lt'!li('lt'1l1 S ()f a noisy

polynomial pair. This means that tl)('s(' 1ll('llllJd:-- iln' I·lltlrt·h (ht;1 tln\·('ll. slI('h that

thresholds. paranwters and constraillts an' Ilot r(·(jllirt·d, Tllll'(' !lll'th()tis for the

calculation of the degrl'c of an approxilllat(· eCI) dll' til':--crillt'ti tlll'llrl'ti('all~' and

compared computationally ill this chapt('r.

• Method 1: The principle of maximum likelihood (\IL). Pr()L'Ii>ilit.y dis­

tributions are assigned to the nOll-zero alld Z(TII :--ill~11Llr \';\l1l1's ()f th(' lk'zout

resultant matrix I3(f .. q). whi('h (,!laLI('s a likt·lihlJuc! n:prl'ssilill r(l) of th(' sin­

gular values. as a fllIlCtiOll of tIl!' assllll!('d lilllk I, til lit' dl'\'('I()p('ci, \\'h('l'(' the

first l' singular values are assigll('d a distrillli1i(1l1 tll<ll is iIPP10Pliilt(' for the

nOD-zero singular vallll's, alld tIl(' otli('r sillglllar \',II1I1'S drt' <lssiglll'd a distri­

bution that is appropriatl' for the Z('1'0 si llg lILlr \'<11111':-- TIll' \';\ II II' of 1'. that

maximises L(1') ('nables thl' degre(' of illl apprm:illlill(' eCI) (If I(,r) aile! y(.r)

to be calculated,

• Method 2: The angle between subspaces, TIll' S\'l\'I':--t 1'1' !'I'SIIIt illlt matrix

SU,9) has a partitioned stmctml'. and this ('Ildhll's t\\'(1 sI1i>spa('('s to he d('­

fined. The angle betw(,pn these subspa('('s clwllg('S slglldi('i111th frlllll tilt' kth

sllbresllltant matrix SkU.g) to th(' (I., + l)tl1 slllm'sllltallt Illatrix .""ktl(f.9),

where the integer k is the degn'(' of all approxillldt(' eC'1) IIf I(,f) illld y(.1').

The compelling advalltage of this lll<'1hod is that additi()llal asslllllptiollS are

not required,

• Method 3: The residual of approximate lilH'ar algebraic equation.

The error between two estilllates of all approxilllat(' ('Olllllllll! divisor of f(.r)

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 78

and g(x), as a function of its degree k, h&'} a minimum at the degree of an

approximate GCD of f(x) and g(x). This method also does not require any

additional assumptions.

5.1 Method 1: The principle of maximum likeli-

hood

The principle of maximum likelihood (ML) can be used to estimate the rank of the

B6zout resultant matrix BU, g), where the clements of BU, g) are defined in (4.14),

and f(x) and g(x) are defined in (4.16). The ML estimate of the rank of the matrix

BU, g) is the value of the rank that maximises the likelihood expression, which can

be derived from Zarowski [68].

Consider a matrix BU, g) E lR.cxc of rank r ~ c whose theoretically exact singular

values are

In many practical problems, the singular values are known approximately and not

exactly, in which case only estimates (J"i of the exact singular values CJi are available,

{

CJi + ei
(J"i =

ei i = r + 1, ... , c.

i = 1, ... ,r
(5.1)

It is assumed that the errors ei are statistically independent random variables

with Gaussian and exponential probability distributions,

{
. b exp (- --1...2e

2

2) i = 1, ... , r
p(ei) = y2ns s

;3exp(-;3ei) i = r + 1, ... ,c,
(5.2)

CHAPTER 5. THE DBGREE OF AN APPROXBIATE GCD, PART I 79

where ii, /3 > O. The model is used because it enables considerable anal~·ti('al progress

to be made, and in particular, it provides a trade-off betweell a physicall~' accurate

model and a mathematically simple model.

It follows from (5.2) that assuming all the random variables arc independeut. the

joint probability density function of the random variables c, is

{3{'- r (1 r ') .. c)
p((J) = (':': exp -~ "'" e; - .3 "'" (;, . 27r82) 2 2,';- L L

1=1 l=r~1

and the substitution of e" from (5.1), into this (Jxpression yif'lds t he probability

density function for the estimates (Ji of the exact singular values (J,.

(3c-r (1 r c)
p(CJ) = ():': exp --2 ""'. ((J, - d,)2 - j "'" CJ, . 27rs2 2 28 L L

1=1 ;=r~1

(5.3)

The ML estimate (3 of (3 is obtained by setting the partial derivative of log p((J) with

respect to (3 equal to zero, which yields

A (;-T'

(J = L C •

l=r+1 CJ i

It follows from (5.3) that the ML estimate .§2 of 82 satisfies
r

i=1

From (5.3) an expression for the logarithm of the likelihood function. which allows

the rank r of B (j, g) to be obtained, is

A T' (1~ 'J'~) L(r) = (c - r) In{3 - 21n (27r.§2) - 2,;2 ~(a, - 5,)- + 3 '~1 (J, . (5.4)

The substitution of the ML estimates /3 and .52 into (5.4) yields

(
c-r) r (27r~ A .J) (1') L(r) = (c - r) In C (Ji - 21n --:;: L(CJ, - (J,)- - c - 2 .

Ll=r+l 1=1

(5.5)

In [68], it is assumed that the theoretically exact non-zero singular values 5, can be

CHAPTER {). THE DEGREE OF AN APPROXI1\JATE GeD, PART I 80

modeled with a finite series of Gram polynomials [29] of degree l. It therefore yields

L(r) = ((' - r) In (~. - r .) _ '!:.In (27r (P1' _ O'(1')TV(r.l)o-(1')))
Lz=1'+1O'Z 2 r

- (c - ~) . (5.6)

where PI' = L;'=l a;, 0'(1') E lR,1' is the vector of the r largest inexact singular values,

aIHi v(r.l) E lR,l'x1' is a matrix whose entries are functions of the Gram polynomials,

and more details are shown in [2]. The smoothing of noisy data requires that l « T,

and numerous computational experiments, which were also observed by Allan [2],

showed that the second term on the right hand side of (5.6) can be simplified because

for all values of l. The likelihood expression (5.6) therefore simplifies to

L(1') = (c - r) In (~ - T .) - '!:.In (27r P1') - (c - '!:.) ,
Li=1'+1o-Z 2 T 2

(5.7)

and this expression is evaluated for all values of r = 1, ... ,c. The value of T * that

maximises L(1') is equal to the rank of BU, g).

The derivation of the ML formulation makes some assumptions that are not dis-

cussed by Zarowski [68]:

• A Gaussian distribution for the errors of the non-zero singular values and the

independence for these errors are assumed, but their justification is not stated .

• The exponential distribution is one-sided and therefore suitable for the repre-

sentation of the errors of the zero singular values. Another possible distribution

is the one-side Gaussian distribution,

p(ei) = ~s exp (- ;;2) i = r + 1, ... ,c

where Cz > 0, but a discussion of these and other probability distributions is

CHAPTER 5. THE DEGREE OF AN APPROXDIATE ceo. PART I 81

not given .

• Gram polynomials are suitable for performing a least sq1lares approximat.e over

a discrete point set in L;= I ((), - 0-,) 2, but it is not guarant eed t ha t the inter­

polated singular values are Ilon-negative .

• Low degree polynomial models are computationally cOll\·('nieIlt. Th('~' are not,

however. optimal for representing the decay of the singular valucs of a matrix,

which is typically exponential.

It is noted that the matrix B(f. g) can he used for the principle of '\IL du(' to its

property of (4.15), and the matrix S(f, q) is not suitable because

S(f,og) =J nS(f, g). er =J 1.

and the singular values (}j(S(f, erg)) of S(f. og) satisf~'

(}j(S(j, og)) =J CWj(S(j, g)), j = 1. TIl + n. n =J 1.

Example 5.1. Consider the polynomials

j(x) (x - 6.1917)6(x - 3.9534)5(X + 1.8-t35)1'\r + 0.8783fl

g(x) (x - 6.1917)6(x + 7.8799)6(X + 2.5278)7

whose GCD is of degree 6, and thus the rank of B(j . . ()) is equal to 44.

Noise with componentwise signal-to-noise value .::;:-1 = 107 was applied to the poly­

nomials j(.T) and g(x), and the singular values of the perturhl'd B{:zout matrix were

computed. The results were repeated 1000 times, and the histograms of four singular

values are shown in Figure 5.1. It seems that all has an exponential distrihution,

rather than a Gaussian distribution that is assumed by the principle of '\IL. It is clear

that (}49 and (}50 have an exponential distribution. but they have differellt values of ;3

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 82

a
1i
E
::l
c:

2.2823 2.2823 2.2823 2.2823 2.2823 2.2823
cr, x10u

(J) 1

fl
c: 1
~

~
a
~
.c
E
:J
c:

Figure 5.1: Histograms of four singular values of a perturbed Bezout matrix.

in (5.2) because f3 ~ 220 when (/49 = 0 and f3 ~ 390 when (/50 = o.

Figure 5.2 shows the covariance matrix of the singular values that are calculated

from 1000 sets of the singular values of B(j, g). It can be seen that:

(a) The covariance matrix is ill-posed because the singular values are not indepen­

dent variables.

(b) The non-increasing order and rapid decay of the singular values implies that the

covariance matrix has a small bandwidth.

(c) Only the elements in a small leading submatrix of the covariance matrix are

significant.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 83

x 10' x 10'

6

4 j\
2

0
10

50 10

o 0 o 0

(i) (ii)

Figure 5.2: (i) The covariance matrix, (ii) the first 10 x 10 submatrix of the covariance
matrix, with Cc = 10-7 .

These results show that the assumptions in the principle of ML are not realised

in practice. o

Several improvements for the principle of maximum likelihood are considered as

follows:

• A cubic polynomial spline [6] , pages 159-162, can be used to represent the decay

of the non-zero singular values instead of one polynomial, but computational

experiments show that the results are very sensitive to the location of knots and

their number.

• Since the computed singular values cannot be negative, constraints are necessary

for the least squares problem
r

i= l

and this leads to the bound least square (BLS) problem. Theoretically, the

active-set method [50], pages 500 - 507, can be used to solve the constrained

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 84

optimization problem. It is, however, difficult to implement in this case because

the constraint aT > 0 is always inactive, which causes negative singular values

to occur.

• Using log a, instead of a, is better because it is not necessary to force the

non-negativity constraint on the singular values, and log ai have a log-normal

distribution. The calculation of the ~IL estimate of the singular values using

log a, instead of ai is, howeVf~r. much more difficult because it is necessary to

solve a set of non-linear questions in the ~IL formulation.

• Example 5.1 and other examples showed that the covariance matrix of a struc­

tured matrix that is subject to structured perturbations is not diagonal, which

means the errors of the singular values are not independent random variables.

• Example 5.1 and other examples showed that the probability distribution of the

small singular values ai, i ::; T, mayor may not be Gaussian, depending on the

form of matrix. Similarly, experiments showed that the probability distribution

of the zero singular values ai, r < i ::; c, mayor may not be exponential.

5.2 Method 2: The angle between subspaces

This section uses (4.7) and the partitioned structure of the subresultant matrices

Sk(j, g) to calculate the degree d of the GCD of j(x) and g(x). In particular,

an expression is derived for the smallest angle between the spaces spanned by the

columns of Sn-k+l(j) and Sm-k+l(g), which are defined in (4.6). The smallest angle

is therefore defined by certain principal vectors in each of these spaces [24, 63].

CHAPTER 5. THE DEGREE OF AN APPROXL\IATE GCD. PART I 85

Let F"k and 9k be the subspaces spanned by the the columns of Sn-k+l (1) and

S'"" k +- I UJ) respectively, whose dimensions satisfy

dilllF"~.=n-k+1:=p, dim9k=m-k+1:=q, m+n-k+1:=l. (5.8)

If II~ E F"k and Vk E 9k are non-zero vectors, then the unique angle iJ k between Uk

awl I'k is

wher(' II· Ii = II . 112.

Oh\'iollsl~' the angle iJ k changes as different vectors Uk and Uk are chosen. The

first prillcipal angle between F"k and 9k is defined to be the smallest angle that can be

fOrIlH'd between Uk E F"k and Vk E 9k' Since this angle is minimized when the cosine

is llI(txiIllispd, the first principal angle satisfies

(5.9)

Theorem 5.2.1. The first principle angle'l3k ,l between F"k and 9k is zero if and only

if tht, (':rad polynomials j(x) and g(x) have a common divisor of degree k 2: 1.

Proof. Assume j(x) and g(x) have a common divisor of degree k ~ 1, in which

cast' it foll()\vs from (4.5) that there exist a non-zero vector t k , such that

(5.10)

A A A

SiIlCi' tk =1= () for k = 1, ... , d, where d is the degree of the GCD of f(x) and fl(x),

it follows that tk is a linear combination of the columns of Sn-k+l (j) and a linear

cOlllbillation of the columns of Sm-k+l (g), and thus tk lies in F"k and 9k' According

to tli(' ddillitioll of the first principal angle, the smallest angle 'I3 k ,l between Fk and

9k t hat can he formed between a vector tk E Fk and a vector tk E 9k is equal to zero

for k = l. ... ,d.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE ceD. PART 1 86

Conversely. if '1J1,k = 0 for k = 1, d" then there exists a vector Sk #- 0 that lies

in :Fk and 9k, and thus there exist vectors Uk and Vk such that

from which (4.5) follows. o

If j(x) and g(x) are coprime, then the only solution of (4.6) is Uk = 0 and Vk = 0,

that is, there does not exist a non-zero vector tk that satisfies (5.10). Hence the first

principal angle 19k ,1 between :Fk and 9k is greater than zero.

Also equation (5.10) does not possess a nOll-zero vector tk for all values of k when

inexact polynomials f(x) and g(x) are specified because they are coprime. It follows

that, in addition to the preprocessing operations that aw discussed in Section 4.4,

Theorem 5.2.1 must be modified slightly so that it is suitable for inexact polynomials.

If j(y) and g(y) are the processed polynomials from f(x) and g(x), then the

application of Theorem 5.2.1 to j(y) and g(y) requires that 19k ,1 is monitored as a

function of k, and the value of k at which 19 k ,1 changes from a small value to a large

value is equal to the degree d of an approximate CCD of this polynomial pair. The

value of d is therefore determined by k for which the change between 19k,1 and 19 k+ l ,l

. .
IS a maxImum, as

d = {k : max(19k+l,l -19 k ,d: k = 1, ... , min(m, n) - 1}. (5.11)

Since the first principle angle 19 k,l is used to determine d in (5.11), the next section

shows how 19 k , I can be calculated.

CHAPTER 5. THE DEGREE OF AN APPROXIJl.fATE GCD, PART I 87

5.2.1 Calculating the first principal angles

Tlw calculation of the first principle angle between Fk and ~h is considered in this

The QR ciecomposition of Sn-k+1 (J) and Sm-k+1 un yields matrices Pk E jRlxp

and Qk E jRlxq whose columns define orthonormal bases for Fk and C;h respectively,

Sn-k+l (J) = PkRk,p

Sm-k+l un = QkRk,q

and the columns of Pk and Qk are orthogonal,

and

R Tl1Jqxq
k,q Em..,

There therefore exist vectors Yk E jRP and Zk E jRq such that

and

and the conditions (5.13) and

or

iIllPli(~s

or

It therefore follows from (5.9) that

subject to

(5.12)

(5.13)

(5.14)

If the singular value decomposition of P[Qk is YkEkZ{, where Yk E jRpxp and

Zk E jRqx'l are orthogonal matrices, Ek E jRPx q , and the singular values ~k,i, i =

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 88

1, ... , min(p, q), are arranged ill non-increasing order, then (5.14) yields

which implies that the cosine of the first principal angle is equal to the largest singular

value of P'{Qk, based on (5.9),

cos {) k 1 = (,k 1 . , ,

This maximum is attained when Yk and Zk are equal to the first column of Yk and Zk,

respectively.

Algorithm 5.1 summarises the use of the SVD to calculate the first principal angle

between the subspaces F"k and C;h.

Algorithm 5.1: The calculation of the first principal angle

Input: Two inexact polynomials f(x) and g(x), and an integer k.

Output: The first principal angle {)k,l.

Begin

1. Preprocess f(x) and g(x) to yield the polynomials j(y) and g(y), as shown in

Section 4.4, and form the matrices Sn-k+l (j) and Sm-k+l (g).

2. Apply the QR decomposition (5.12) to Sn-k+l (j) and Sm-k+l (g) in order to

calculate the matrices Pk and Q k.

'j' 3. Compute Pk Qk.

4. Calculate the SVD of P'{Qk, which is equal to YkL.kZr Let <;k,l denote the

largest singular value of P'{Qk.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 89

S. Calculate the first principal angle {h,l = cos- l
<'k,l·

End

The first principal angle between the subspaces :h and Yk is given by

00 -1
Uk,I=COS <;k,l, (5.15)

and computational problems arise when {)k,l ~ 0 because it follows from this equation

that to first order,

6'13 _ _ 6<;k,1
k,1 - . oQ '

smUk,1
(5.16)

and thus 16{)k,11 » 16<'k,ll if 19k,l ~ O. Since the computation (5.1S) cannot yield an

accurate value for an angle near zero, a modification to this method of calculating the

first principal angle is therefore required in this circumstance, and this is considered

in the next section.

5.2.2 Calculating the small first principal angle

It was shown in Section 5.2.1 that the first principal angle cannot be determined

accurately when it is small, and thus a stable method for its computation is required.

This case is considered in this section, and the following theorem is established in

[63].

Theorem 5.2.2. Let the columns of W E jRlxp be orthonormal, and let W be parti-

iioned as

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 90

Let "1 be the largest s'ingular value of l111 , and let a1 be the smallest non-zero singular

value of lV2 , then

2 2
(,1 + a1 = 1. (5.17)

Proof. Since the columns of H' are orthonormal, it follows that

(5.18)

If (A, t) and (IL, t) are eigenpairs of lVTvtT

1 and lV]'W2 respectively, then

and thus

It therefore follows from (5.18) that

that is,

A + It = 1. (5.19)

The first eigenvalue of W{W1 is ,,}, and thus it follows from (5.19) that the first

eigenvalue of W!W2 is 1 - <;? Since the first eigenvalue of W!W2 is equal to (Jr, it

follows that the sum of the first eigenvalue of W{W1 and \,V]'W2 is equal to one and

thus (5.17) is established. o

Consider now the orthogonal complements F;;- and gt which will be required in

Theorem 5.2.3, where

dimFt = l- p,

CHAPTER 5. THE DEGREE OF AN APPROXDIATE GCD. PART I 91

and

dim9t = I - q.

It will he necessary to calculate orthonormal bases for Fe and 9t. and these bases

will ddinc the columns of the matrices Pk E jRlx(l-p) and Qk E jRlx(l-q) respectively.

The col1lllllls of Pk and Qkl which are introduced in Section 5.2.1. definE' orthonormal

bases for Fk and 9k respectively. It follows that the columns of Fk and GA: are given

by

and

n~spectivdy. which define orthonormal ba"ies for JRI. The following theorem is estab-

lished in [(j~3l.

Theorem 5.2.3. Let Fk and 9k be subspaces of jRm where (5.8) is satisfied, and

let/h.1 be the fir-st principal angle between them. Let the columns of Pk E IFtlxp

and (h E jRlxq define orthonormal bases for Fk and 9k r-espectively. Also, let the

columns of P k E jRlx(l-p) and Qk E IFt1x(l-q) define orthonormal bases for Ft and

9t respectiudy. Then the smallest non-zero singular values of P~'Qk E jR(l-p)xq and

PZ'Qk E jRP>«I-q) an:

(Jk,l = sin {h,l'

Proof. Since Fk is an orthogonal matrix and Qk has orthonormal columns, the

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 92

columns of Wj,k E lRlxq,

p'1'Q E TITlpxq
k k IN.. •

must be orthonormal. Also the largest singular value of ptQk is <'k,1 = cos 'I9 k,1, so by
-'1'

Theorem 5.2.2. the smallest non-zero singular value of PkQk is equal to

(5.20)

Consider now the matrix vV k E lR
1xp

g, ,

W" ~ C[p, ~ [~~;:]
Since the largest singular value of QfPk is COS'l9k,l, it follows from Theorem 5.2.3 that

the smallest non-zero singular value Q~ Pk is sin'l9k,I' o

The computation 'I9 k ,l = arcsin ak,l in (5.20) will give an accurate value when

'19 k 1 ~ O. I3y contrast, the computation (5.15) will give an accurate value when

The only issue that must be considered is the calculation of the matrices P k and

Qk' whose columns define orthonormal bases for spaces :F/ and gt. It is recalled that

Pk and Qk are calculated from the QR decomposition of Sn-k+l (1) and Srn-k-+1 ([]),

respectively, as shown in (5.12). It is adequate to consider the calculation of Pk

because the calculation of Qk follows identically.

The columns of Pk provide an orthonormal basis for Fk , and thus all vectors

x E lRm that satisfy Pt x = 0, are orthogonal to the columns of Pk, which means these

vectors x lie in Ft. Since an orthonormal basis for Ft is required, it is necessary to

choose an orthonormal set of vectors x, and this is now considered.

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 93

If the SVD of n is

where [h E]Rlxl. Vk E]Rpx p , Ek E]Rpxp is a diagonal matrix of thc singular values

') I' i = 1 jJ, of Pk . arranged in non-increasing order, and the zero matrix is of

orelt'r (1 - p) x p. then

prrj = Vk [E{ 0] U[Xj,

where .r).) = 1. ... ,l. is the)th column of Uk. It IS necessary to consider two

situations. which an' defined hy 1 :::; j :::; p and p + 1 :::; j :::; l.

If 1 :::;) :::; p, then

wh(~rc ('J is thc)th unit ha.'.;is vector and c] is the jth column of Vk .

If p + 1 :::;) :::; l. thcn

prEj = Vk [E{ 0] ej = 0,
and thus tlw last l - p columns of the left singular matrix Uk of Pk provide an

orthonormal hasis for Ft. It follows that if

Pk = [:r:P+1 :rp+2 ... Xl-l Xl]' (5.21)

thCll

Similarly, the matrix Q k is defined by the last I - q columns of the left singular

matrix of Qk.

Algorithm 5.2 summarises the use of the SVD to calculate accurately the small

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 94

first principal angle between the subs paces Fk and gk.

Algorithm 5.2: The calculation of the small first principal angle

Input: Two inexact polynomials f(x) and g(x), and an integer k.

Output: The first principal angle 19 k ,l.

Begin

1. Preprocess f(x) and g(x) to yield the polynomials J(y) and g(y), as shown in

Section 4.4, and form the matrices Sn-k+l (1) and Srn-k+1 (g).

2. Apply the QR decomposition (5.12) to Sn-k+l (1) and Sm-k+1 (g) in order to

calculate the matrices Pk and Qk'

3. Calculate the matrices P k , where P k is defined in (5.21).

-T
4. Compute P k Qk.

-T
5. Calculate the SVD of P k Q k. Let a k, 1 denote the smallest non-zero singular

-T
value of PkQk.

6. Calculate the first principal angle l)k.l = arcsin ak,l'

End

('HAPTEN 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 95

5.3 Method 3: The error between two estimates of

an approximate common divisor

This s(,ction considers the change. with k = 1, ... , mill(m, n), of the error between two

estilllat('s of aJl approximate common divisor of degree k of f(x) and g(x) in order to

cakulat(' th(' d(~gree rl of an approximate GCD of f(x) and g(:1;). These estimates are

calculat('d frolll the' SylVl'ster subresultant matrices Sk(/,cxoY) and SdfJ.]/cxo) where

.l = /(u) and .r} = .ij(U) are th(' scaled polynomials of f(x) and o9(x), respectively. the

paralllet('r no is equal to the weight of ,ij(y) relative to the weight of](y), as shown

ill S('ct ion ·1.t

It is shown in (.1.7) that the constraint Vk,O = -1 is imposed when exact data is

sp{'cifi('d, and t his allows the homogeneous equation (4,6) to be transformed to the

linear algebraic equation (4,7), This constraint for exact data can be replaced by the

('onst rai III /I k,(l = 1 b('caus(~ t lw leading coefficient of the qnotient polynomials 11.d,r)

and l'd.J') carlllot be equal to Z{'ro in (4.3) due to the existence of a common divisor

of d('gree k.

Equation (4.7) does not possess a solution when inexact polynomial pair](y) and

.ij(y) an' sp('cifi('d. and it is therdore solved in the least squares sense, in which case

the polynolllials Ild x) ancilh (L) are replaced by the polynomials Uk (y) and 11k (y).

rpsp(~cti\'('ly. It is not clear. however, which constraint, Uk,O = 1 or Dk,o = -1, should

l)(~ imposed in this circuIllstance, that is, it is not known a pTioTi which constraint

yif'lds an approximate solution that is nearer a solution of (4.7) when inexact data is

specified l){'c(luse the two constraints may yields different approximate GCDs.

CHAPTEH 5. THE DEGHEE OF AN APPHOXIMATE GCD, PAHT I 96

Consider the constraint Vk.O = -1 first, and thus (4.7) is replaced by the approxi-

mate equation

O:obo 0,0

0:0b 1 O:obo
VI

0,1

0:0b1

ao 0:0bn - 1

Vn-k
a111 -1

al O:obn 0:0bn - 1

-Un '" '"
am

-'Ul

O:obn 0

am-l
-Um-k

am 0

that is,

k = 1, ... ,min(m,n), (5.22)

where

k = 1, ... ,min(m, n), (5.23)

and ih = i-IU,O:o1)) and ilk = hkU) are obtained by imposing a constraint on Vk,n.

The least squares solution of (5.22) is

and thus its normalised residual is

reSk,1 =
IIi-IkXk - hkll

Ilhkll

k = 1, ... , min(m, n), (5.24)

k = 1, ... ,min(m, n). (5.25)

Now consider the constraint Uk,O = 1, which is most easily imposed by devel­

oping the Sylvester subresultant matrices Sk(1),j/O:o),k = 1, ... ,min(m,n), due to

Sk(j,O:o1)) = O:oSkU/o:o, 1)), that is, the coefficients of g(y) occupy the first m - k + 1

CHAvrEH 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 97

colulllns. alld the coefficients of](y) occupy the last n-k+1 columns, of SkUl,]/ao).

Equation (5.22) is tlwrd"ow wplac:ed by the approximate equation

bTl

that is.

. . . .
Hk:rk ~ hk' k = 1, ... ,min(m, n), (5.26)

where

k = 1, ... ,min(m, n),

where fh = Hd.rJ,]/ao) is formed from SkU),]/0.0) by deleting the first column of

the coefficients of ?J(Y)· and ';.k = i~k (?}). The quotient polynomials Uk (y) and ih (y)

can be (,olllpllu~d from the approximation (5.26), whose least squares solution is

··t "T" -1"1'
Hk = (Hk Hd Hk ,

and its residual is, following (5.25),

IIHk:fk - i;1.:11

Ilhkll

k = 1, ... ,min(m, n), (5.27)

k = 1, ... ,min(m, n). (5.28)

Tlw criterion for d(~('iding which of the approximate solutions (5.24) and (5.27) to

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 98

use requires the residuals (5.25) and (5.28):

JJ-

Hk = ih = ih(j, 0:0.C;)

hk = hk = hk(})

JJ-

Hk = ih = ihCc;, j /0: 0)

hk = i;'k = hk(g)
(5.29)

for k = 1, ... , min(rn, n). The solution that has the smaller residual is therefore

chosen for the calculation of the approximations Uk (y) and Uk (y) to the theoretically

exact quotient polynomials because this solution is nearer an exact solution of (4.3),

the existence of which is a sufficient condition for the theoretically exact forms of

j(x) and g(x) to have a non-constant common divisor.

Suppose that resk.1 ::; resk.2 for some values of k E [1, min(rn, n)], and reSk,l >

reSk,2 for the remaining values of k, and thus the forms of Uk and Vk in (5.29) are

functions of k. The following theory is developed for a given but arbitrary value of

k, and it follows from (4.4) that
m-k n-k

Uk(Y) = I: Uk,iym-k-, and Vk (y) = I: Vk,iyn-k-i.
i=O i=O

Estimates Ck(Y) and Ck(y) of the common divisors of the theoretically exact forms

of j(y) and g(y) are obtained from udy) and Vk(Y),

. () ~ j(y)
Ck Y ~ ~()

Uk Y
and .. () g(y)

Ck Y ~ -=--()'
Vk Y

(5.30)

where ~ is used because Uk (y) and Vk (y) are derived from the least squares solution

CHAPTER. 5. THE DECR.EE OF AN APPROXIMATE GCD, PART I 99

(G.24) or (G.27). and
k k

. () ,",' k-i
('I;:IJ = 6 Ck,iY and Ck(Y) = 2: Ck,iy

k
-

i
.

i=O i=O

It is noted that c'dy) =1= ;:dy) because j(y) and .q(y) are inexact polynomials and

t h ('1'(' fo 1'(' assullled to be coprime.

Sillce illterest is restricted to solutions for which cdy) and Ck (y) are polynomials,

the two approximate equations in (5.30) are written in matrix-vector form, respec-

tivcly,

i1k,O

Ilk,! 'Uk,O

Ck,O ao
'l1k,1

Ck,1 a1

'lL1;,rn-I;-} 1Lk,0
(5.31) "-'

"-'

Uk,TTl-k 'l1k,m-k-l 11k,1

Ck,k-l am -l

Uk,m-k

Ck,k am

11k,m-k-l

'l1k,m-k

and

Uk,O

'Ok,} 'Ok,O

Ck,O bo
Vk,1

Ck,1 b1

'Uk,n-k-l Vk,O
(5.32) "-'

"-'

'01;,n-k Vk,n-k-l Vk,1

Ck,k-l bn - 1

Vk,n-k

Ck,k bn

Vk,n-k-l

Vk,n-k

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 100

that is,

and (5.33)

The approximate equations in (5.33) are solved in the least squares sense,

and

Example 4.1 shows that (4.7) possesses an infinite number of solutions for k =

1, ... ,d - 1, and a unique solution for k = d, but it does not possess a solution for

k = d + 1, ... , min(m, n). It therefore implies that the degree d of an approximate

GCD of j(y) and g(y) is the value of k, for which the error measure

liCk - Ck II
ek = Ilckll + Ilckll'

achieves its minimum value.

5.4 Examples

k = 1, ... ,min(rn, n), (5.34)

This section contains examples that compare Methods 1,2 and 3 for the estimation

of the degree of an approximate GCD of an inexact polynomial pair.

Example 5.2. Consider the exact polynomial pair

j(x) (x - 6.7974)(x - 0.5903)4(X - 3.3634)3(X + 1.1265)6

g(x) (x - 6.7974)8(X - 0.5903)9(X + 4.8572)5(X + 6.8740)5

whose GCD is of degree 5.

Each polynomial is perturbed by noise, such that the componentwise signal-to­

noise ratio c~l is 108
, and the inexact polynomial pair is then preprocessed by the

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 101

operations described in Section 4.4. Figure 5.3 shows that Method 1 using the likeli­

hood function (5.7) returns the incorrect value, but Method 2 and 3 using (5.11) and

(5.34) , respectively, return the correct value of the degree of an approximate GCD

of j(y) and g(y).

2501,------------,

200

'50
-;:-
~

(i)

- 5

.>i
<P -'0

~

-'5

-20
0

k

(ii)

o

-2

~ -4 .,
~ - 6

- 6

'0 15
-'0 0 '0 '5

k

(iii)

Figure 5.3: The variation of (i) the likelihood function L(r) with the rank r, (ii) the
first principal angle log'l9k,l and (iii) the error measure log ek, with the degree k of an
approximate common divisor, with Cc = lO- B•

Example 5.3. Consider the exact polynomial pair

j(x) - (x - 7.0613)6(x + 1.1520)B(x + 3.3486)(x - 1.8319)10

g(x) - (x - 7.0613)3(x + 1.1520)4

whose GCD is of degree 7.

Noise with componentwise signal-to-noise ratio c;l lOB was applied to j (x)

and g(x), and this inexact polynomial pair is then preprocessed by the operations

described in Section 4.4, thereby yielding j(y) and g(y).

The normalised residuals resk,l and resk,2, which are defined in (5.25) and (5.28)

respectively, are calculated as functions of k = 1, ... ,min(m, n), in order to determine

the importance of the criterion (5.29), using Sk(j,o:og) and Sk(g, jlo:o). Similarly,

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 102

the error measure ek, which is defined in (5.34) , is calculated using Sk(j, o.og) and

Sk(g , j /0.0) , and the results for both experiments are shown in Figure 5.4. Figure

5.4(i) shows that an incorrect result may occur if a criterion to calculate the degree

of an approximate GCD of j(y) and g(y) is based on resk,l and resk,2, and Figure

5.4(ii) shows that a criterion based on the error measure ek yields the correct result ,

independent of whether calculations are performed on Sk (j , o.og) or Sk (g , j /0.0), Also,

it is clear that the minimum in Figure 5.4(ii) is very well defined, and in particular,

it is defined more clearly than the minimum in Figure 5.4(i) for Sk(j, o.og) .

-3

-4

-5
-5

><
-6 '" !!!

Ol
..Q -7

. -- --.... - - .. ---.,
- .. - S (j,009)

-9 -+- S(g,j/oo) correct answer

-100L-.~-~2 -~3-~4----'5~~6 -----:'7 -15L-~-~~-~~-~--

o 234567

k k

(i) (ii)

Figure 5.4: The degree of an approximate GCD calculated by (i) the residuals (5.25)
and (5.28) , and (ii) the error measure ek, with Cc = 10-8 .

The criterion (5.29) for the calculation of the degree of an approximate GCD

of j(y) and g(y) is based on resk,l and resk,2' A large number of computational

experiments showed, however, that if the degree of an approximate GCD of j(y) and

g(y) is computed based on ek , then the error measures obtained from Sk(j, o.og) are

very similar to the error measures obtained from S k ('9, j /0.0) • o

CHAPTER 5. THE DEGREE OF AN APPROXL\IATE GCD. PART I 103

Example 5.4. Consider one thousand pairs of tlw polynomials defined from ~odel

1 and '\lodel 2, respectively.

Modell: One thousand random pairs of polynomials {II (.r) . .i11 (.r) } were gener­

ated,
rl 81

II (x) = IT (:r - O'IJrrl l
" and .9dJ') = IT (:r - .)l,yt l

'.

1=1 ,~I

wlwre 7'1.81 are randomly generated integers on the interval ~2. -4]. the roots n 1.1, ... ,O::l.rl

arc arbitrary, /JI.1 = 0'1,1, /)1,2 = (1'1,2, /JJ,:l, 31..'1 are arbitrary. and

-10 ::; O'I,i, /JI,I ::; 10, 1 ::; Tnl". Till. ::; 6.
rl ,'1

.) ::; 2:= Tnl,i. ::; 20, 5::; 2:= TlI,1 ::; 20 .
1=1 1=1

The polynomials f~ (J;) and .ill (x) have therefore exactly two distinct ('ommon linear

divisors, hut the degree of their GCD is d 2: 2.

Model 2: One thousand random pairs of polynomials {12('£)' 92('£)} were gener­

ated, but with roots of higher maximulll multiplicities.
r2

lAx) = IT (.x - O:2,i)
TTl

2" and f12(x) = IT(:r - ;J2"r 2
,.

1=1 1=1

where 7'2, 82 are randomly generated integers on the interval [2.4]. the roots Cl:::u 0:2,r2

are arbitrary, {)2,] = 0:2,1./)2,2 = (\'2,2, lh:l,'" ,/)2,82 are arbitrary. and

1 :::; 7712,;. T12,1 :::; 1l.
r2

.) :::; 2:= 7712,; :::; 35, 5 :::; 2:= n2.1 ::; 35.
1=1 1=1

The polynomials 12 Cr) and .92 (x) have therefore exactly two distinct common linear

divisors, but the degree of their GCD is d 2: 2.

~oise is added to each of these 4000 polynomials, corresponding to a compOlwnt-

wise signal-to-noise ratio of lO8, and these inexact polynomials are then preprocessed

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 104

by the operations described in Section 4.4. The error between the degree d of the

GCD of theoretically exact polynomials, and the degree d of an approximate QCD

of their inexact forms, is computed from the 2000 random pairs of polynomials, and

the results are shown in Figure 5.5.

Method 1
~~----==~~---,

8 700 ',"0-'
~600

8500

0.00
'0
~ 300

~ zoo

~ 100 ./

-~o -5 0 5 10
actual degree - computed degree

(i)
350~ __ .:::M.:..:et~ho-=-d ~1 __ ------,

'" 8 300

~ 250 Ec _10-
8

§ zoo

'0150

Z 100
E
~ 50

-~o -5 0 5 10
actual degree - computed degree

(iv)

Method 2
~~--~~~--~

-~o -5 0 5 10
actual degree - computed degree

(ii)
Method 2

600.---~~~--~

-~o -5 0 5 10
actual degree - computed degree

(v)

Method 3
600.----~~~--,

<J) BOO

~700
'" ~600
8500
o
'0 .. 00

~ 300

E200
~

"100

o .-' L
-10 -5 0 5 10

actual degree - computed degree

(iii)
eoo.---__ ..:.::M:.:..:et::;.:ho:.::.d -=-3 __ -----,

actual degree - computed degree

(vi)

Figure 5.5: Histograms of the results for 1000 pairs of the polynomials using (a)
Modell , graphs (i), (ii) and (iii), and (b) Model 2, graphs (iv), (v) and (vi).

Figure 5.5(i), (ii), (iii) show the results for the polynomials in Modell, and Figure

5.5(iv), (v), (vi) show the results for the polynomials in Model 2, using Methods

1,2 and 3, in which Methods 1,2 and 3 use (5.7), (5.11) and (5.34), respectively,

to calculate the degree d of an approximate GCD of these polynomials. For the

polynomials in Modell, Method 1 correctly calculates the degree d on 70% of the

1000 experiments, and Method 3 correctly calculates the degree d on 85% the 1000

CHAPTER. 5. THE DEGREE OF AN APPROXn ... lATE GCD, PART I 105

experiments.

The polynomials in Model 2 provide a more stringent test than do the polynomials

in .:vlodel 1 because the multiplicities of the roots, and the total degree of the poly-

nominIs are largcr. The results in Figure 5.5(iv), (v), (vi) follow the same pattern as

those ill Figure 5.5(i), (ii), (iii), because Method 1 yields the worst results (a success

rate of 30%) and :Method 3 yields the best result (a success rate of 50%). It is seen

that the tails of the histograms of the results in Figure 5.5(iv), (v), (vi) are much

longer than the tails ill Figure 5.5(i), (ii), (iii) respectively. o

Example 5.5. One hundred random pairs of polynomials {j(x),.q(x)}, where each

polynomial is of degree 20, were chosen such that the degree d of their GCD is

equal to onc. The roots of each polynomial were distributed randomly in the interval

[-10, ... , 10], and the number of distinct roots of each polynomial was a random

integer in the interval [2, ... ,6]. The multiplicity of each distinct root was chosen

randomly, such that the degree of the GCD of j(.r) and g(x) is one, as stated above.

These exact polynomials were perturbed, corresponding to a componentwise signal-

to-noise ratio of 1O~, and these inexact polynomials were then preprocessed in order to

transform them to the scaling forms as {J (y), g(y) }. The degree d of an approximate

GCD of each pair of these inexact polynomials was computed by Methods 2 and 3.

The experiment is repeated for d = 2,3, ... ,19, and the results are shown in

Figure 5.6. It is seen that both methods yield similar results and the probability of

correctly computing d increases as d increases. This figure provides more detail than

the histograms in Figure 5.5 because it shows that the success of Methods 2 and 3 is

dependent upon the degree d of the theoretically exact GCD. o

CHAPTER 5. THE DEGREE OF AN APPROXIMATE GCD, PART I 106

100

90

en 80 Q)
Co)
c:: 70 Q)
L..
L..

:::J 60
Co)
Co)
0 50 -0
L.. 40
Q)
.0

30 E
:::J
c:: 20

10

0
0 5 10 15 20

degree of GCD

Figure 5.6: The number of successful computations of the calculation of d, the degree

of an approximate GCD of {J(y) ,g(y)} , against d, the degree of the exact GCD.

5.5 Summary

This chapter has introduced three methods for the estimation of the degree of an

approximate GCD of an inexact polynomial pair, and compared these methods in

several examples. The results suggest that Method 1, which uses the principle of

maximum likelihood, yields the worst results, and Method 3, which is based on the

error measure ek, yields the best results. A possible explanation for this difference

is that the principle of maximum likelihood is a general method, that is, it does not

explicitly exploit the properties of a resultant matrix. By contrast, Method 2 exploits

the partitioned structure of SkU, g) , and Method 3 exploits the polynomial nature of

the computations such that the non-rational form of an approximate GCD is imposed

as a constraint.

CHAPTER 5. THE DEGREE OF AN APPROXLUATE GeD. PAUl' I 107

Several improvements for the principle of maximum likelihood han' tWPll consid­

ered, but it is difficult to implement them. ::\loreover. computational ('xfH'riments

show that the assumptions for the singular values in ::\!et hod 1 are not true. Since

Method 3 yields the best results, improvements 011 these result s should t lwrdore be

based on this criterion.

Chapter 6

The degree of an approximate

GCD, Part II

Chapter 5 has compared three methods for the estimation of the degree of an approx­

imate GCD of an inexact polynomial pair, and Method 3, which is based on the error

measure ek, yields the best results. Also, it is seen from Example 5.3 that the degree

of an approximate GCD computed from SkU, g) may not be equal to the degree of

an approximate GCD computed from Sk(g, 1), depending on the criterion used. It

is necessary that a method for the estimation of the degree of an approximate GCD

of an inexact polynomial pair is independent of the order of the polynomials (U, g)

or (g, 1)), and thus Method 3 must be extended in order that this requirement be

satisfied. Moreover, Example 5.4 shows that the polynomials in Model 2 are com­

putationally more difficult than the polynomials in Modell, and the results for the

polynomials in Model 2 are inferior with respect to the results for the polynomials in

Modell for Methods 2 and 3. Hence, Methods 2 and 3 must be developed so that

they yield better results for the polynomials in Model 2.

108

CHAPTER 6. THE DEGREE OF AS APPROXDIATE ceo. PART II 109

This chapter ext.ends the \vork in :"lcthocis 2 alld 3. alld dcsnibcs another two

methods for the calculation of t.he degree of an approximate CCD of an inexact

polynomial pair](:r) and .9(.7:), such that knowh'dg(' ()f the noise 1('\"(-1 is not required,

and assumptions of t.he singular values of t.he Sylvester resultant matrix and it.s subre­

snlt.ant. mat.rices are not made. All parameters in the llletbods are t lwrcforc calculated

direct.ly from the coefficient.s of](.7:) awl g(x). which is an (lch'(lntage. One method

uses the first principal angle between a line and a h~'I)('rplane. the ('quat ions of which

are calculated from Sd], g), and t.he other method uses the residual of a linear alge­

braic equation whose coefficient. mat.rix and right hand side vcctor are derived from

Sd], g). Furthermore. one more method that expands th('se two IWW lllet hods is

develop(~d to calculat.e t.he degree of an approximate ceo of an inexact polynomial

](.7:) and its derivative](1)(1:).

6.1 The degree of an approximate GCD of f(x) and

g(x)

The preprocessing operations discussed ill Section ~.~ transform the giVPll inexact

polynomials f(x) and g(x) t.o j(y) and .q(.1I). which arc defined in (~1.21), and all

computat.ions are performed on these polynomials.

As ment.ioned in Section 4.1.1, when exact polynomials are specified, (4.7) pos­

sesses at least one solution if k ::; d, where (1 is the degree of the theoretically exact

CCD, ot.herwise, there do not. exist a solution for (4.7), and thus d is equal t.o the

largest value of k for which (4.7) possesses a solution. This situation is, however,

significantly more complicated when inexact. data is specified.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 110

It is known from Section 5.3 that the matrices Sk(j,O'og) have full rank for

k = 1, ... , min(m, n) due to the coprime polynomial pair j(y) and g(y), and thus

(4.7) does not possess one or more exact solutions, and it therefore reduces to the

approximation,

k = 1, ... ,min(rn, n). (6.1)

Equation (6.1) requires that the first column of Sk(j,oog),k = 1, ... ,min(rn,n),

be defined as the right hand vector hk . This approach is adequate when exact poly­

nomials are used, but a modification to this approach is required when the inexact

polynomials are specified. In particular, it is assumed that Sk(f, Dog) has full rank,

and thus its columns are linearly independent, that is, there docs not exist a column

of Sk(f, 0'09) that lies in the column space of the remaining Tn + n - 2k + 1 columns,

and it is therefore necessary to perturb the matrix Hk and vector hk such that (6.1)

is an equation and not an approximation. These perturbations are calculated by

the method of structured nonlinear total least norm (SNTLN) [57], which will be

described in the following chapter.

Figure 5.4(i) in Example 5.3 shows that choosing different columns to move to

the right hand side of (6.1) leads to different results, which is incorrect because

the result of a GCD computation, or an approximate GCD computation must be

independent of the order in which the polynomials are specified. This problem is

therefore overcome by selecting the best column of sdj, Dog) to move to the right

hand side, rather than insisting that the first column be moved. This requirement

for the best column implies that the same result is obtained for the polynomial pairs

(f,g) and (g,j).

The smallest error in the approximation (6.1) for each value of k = 1, ... ,min(rn, n),

CHAPTER 6. THE DEGREE OF AN APPROXUvlATE ceD. PART II 111

is achieved by choosing lik as the column of sdI 0:(9) such that the angle between

this colllllln and the space spanned by the remaining m + 11 - 2k + 1 columns is a

minimlllll, which means the smaller the angle, the smaller the error in the approxi-

matioll (G.I). An alternative method requires the residual of the approximation be

considered. It is therefore necessary to extend (6.1) from the selection of the first

column of sd.l, ('<0.1;) to an arbitrary column, where the optimal column for each

k = 1, ... , lllin(m, n) yidds the smallest error. Equation (6.1) is therefore written as

k = 1, ... ,min(m. n), i = 1, ... ,m + TI - 2k + 2, (6.2)

where hk " is the 'ith colullln of Sk(I (lIo,?;), Hk,i is the matrix from tht' n~Illaining

m + n - 2k + 1 columns of Sdf, 0 o ,?;),

HI.:,i. = [111.:,1 '.. hk,J-l hk.I +1 '" hk.Tn+n-2k+2]'

It is lloted that hk,i = hl.:,,(f) or hk" = hk,I(009). depending on the value of i. and

that Hk,i = Ih',i(J, (liD.?;).

Suppose that, for a given value of k, the i*th column of sdj, (lIo,g) is the optimal

colullln that is moved to the right hand side of (6.2). Since i' = i*(k) is a fUllction

of k. that is. different values of k yield different optimal coillmlls, the substitution of

i = i* into (6.2) becomes

k = 1, ... ,min(m. n), (6.3)

such that the angle between the space spanned by hk,;' and the space spanned by the

columIls of Hk".' is minimised for each value k.

Let d be the degree of an approximate CeD of .l(y) and g(y). Computational

experiments showed that the angle between the space spanned by ILk,i" and the space

spanned by the columns of Hk,i" for k = 1, ... , el, is much smaller than the angle

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 112

for k = d + 1, ... ,min(m, n), because (6.3) yields an unacceptable large angle when

k > d. The degree d is therefore given by the index k for which the change in the

angle of (6.3), between two successive values of k, is a maximum.

Similarly, for a given value of k, the index of optimal column is equal to i* for

which the residual of (6.3) is minimised. Also, the residual of (6.3) is relatively small

for k = 1, ... ,d, but it is relatively large for k = d + I, ... ,min(m, n).

Since the calculation of the optimal values of the indices i and k motivates the

calculation of the degree d, there are two issues that must be addressed:

(a) The calculation of the index i = i* of the column of Sk(]' O!og) that defines the

column hk ,l* ill (6.3) for each value of k.

(b) The calculation of the degree k = d of an approximate GCD of j(y) and g(y).

Two methods, based on the first principal angle and the residual of (6.2),

• Method 4: The method of the first principal angle,

• Method 5: The method of residual,

can be used to solve this problem, and this is considered in Section 6.1.1 and 6.1.2

respectively.

6.1.1 Method 4: The method of the first principal angle

Consider initially a method based on the first principal angle ¢k,i, which has been

introduced in Section 5.2, that is, the smallest angle, between the space £k,i spanned

by hk,i, and the space Hk,i spanned by the columns of Hk,i,

k = 1, ... , min(m, n), i = 1, ... , m + n - 2k + 2, (6.4)

CHAPTER 6. THE DEGREE OF AN APPROXII\lATE GCD. PART II 113

where

Lk,i span { hk,i },

It is stated in Section 6.1 that the indices i and k are computed by this method in

two stages. Firstly, the minimum value ¢k of ¢k,i for each value of k is computed,

<Pk=min{<Pk,i:·i=1, ... ,rn+n-2k+2}, k=l, min(m.n). (6.5)
1.

and the column index 'i* for each ofthe min(m, n) minima occurs is recorded as Pk = i*

for each k = 1, ... , min(m, n) respectively. Since it is knO\vn from Sectioll 6.1 that

the angle <Pk for k = 1, ... , d, is much smaller than Ok for k = d + 1. ... ,min(m, n),

the degree d = d¢ of an approximate GCD is equal to the index k for which the

change in <Pk between two successive values of k is a maximum.

d¢ = {k : max(<Pk+l - <Pk); k = 1, ... , min(m, n) - I}. (6.6)

Equation (6.6) defines the criterion for the calculation of dcp, but an expression

for <Pk,t, which is defined in (6.4), must be obtained. ::\Ioreover, the procedure for

the calculation of the first principal angle between a line and a subspace is similar

to the calculation of the first principal angle between two subspaces, which is shown

in Section 5.2.1 and 5.2.2. The following analysis therefore reproduces these sections

for the special case of the angle between a line and hyperplane.

An orthonormal basis for Hk,i is required, and this is obtained by applying the

QR decomposition to Hk,i,

where 0 . E lR.(m+n-k+l)x(m+n-2k+l) R . E lR.(m+n-2k+l)x(m+n-2k+l) is an upper trian-
~ k,2 , k"

gular matrix, and columns of Ok,i define an orthonormal basis for 'Hk,i' Every vector

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 114

t k ,! E H k . , can b(~ therefore written as

Wk i E lR,m+n-2k+1.

The first principal angle qh,i between £k,i and Hk,z is equal to the smallest angle

between the unit vector 8k,i,

dim £k,i = 1,

aud tk,i, and thus

cos rPk,i = max SL t k,1 = max (SLOk,i)Wk,i'
Iltl<,.II=l Il w k"II=l

(6.7)

If the SVD of SLOk,! is equal to ~k,ilVti' where Wk,i is an orthogonal matrix of order

m + n - 2k + 1, and

~ - [0 0] E lR,m+n-2k+1 k,1. - <;k,i,1 . . • ,

then (6.7) yields

cos cPk.l = max SLtk,i = max (~k,! W[JWk,i,
Il t k.il ,=l Il wk"II=l

which implies that cos cPk,i is equal to the non-zero singular value of SLOk,i,

cos cPk,i = <;k,i,l . (6.8)

This maximulll is attained when Wk,l is equal to the first column of Wk,i.

It was shown in Section 5.2.1 and 5.2.2 that computational problems arise when

cPk,i ~ 0 due to (5.16), and thus (6.8) cannot be used to calculate the first principal

angle when it is small. As shown in Section 5.2.2, this problem is solved by considering

the orthonormal complements £ti and Hti' where , ,

£ U £1. - lR,m+n-k+1
1.:,1 k,i - and

CHAPTER 6. THE DEGREE OF AN APPROXI.\IATE GCD. P/I.RT II 115

and

dim £t i = m + n - k and dim Ht, = " ..

It will be necessary to calculate orthonormal bases for £t and HI: . and these bases will

1 fi tl 1 f t · - E IDl(m+,,--k+l)x(rn~n-k) >lllci a"" E TT1l(rII+,,-k+l)Xk, C e ne ,lC co lllllllS 0 ma nces 8k.l ll".. " ll"..

n>spectiveiy.

R(rn+n-k+l) x(fII+n-2k+l), V
k

1 E IR(rn+n-2k+l)x (m+n-2k-t 1). then the la:-;t k columns of

t.he left singular matrix Uk,i of Ok,! provide an orthonormal bases for Ok., according

to (5.21). Similarly, the matrix Yh,l is defined by the last Tn + n - ", colullllls of the

left singular matrix of 8k.i'

It follows from Theorellls 5.2.2 and 5.2.3 that the non-zero singular value of

sLOk,1 E IRk is equal to the smallest non-zero singular value of:;;L Ok.l E lR,(I1I+n-k)x(m+n-2k-;­

ak71 = 11 -<;k:l'1 =. /1-cos2¢k, =sinOk,' " V ., V , '

and thus cPk,i is obtained from

J. . -I
'f'ki=SlIl akil. , "

6.1.2 Method 5: The method of residual

Another method for the calculation of indices k and i can be performed by considering

the residual Ik.l = Ik.i(Hk,i, hk,d of (6.2). Let Zk,i be the least squares approximate

solution of (6.2),

for k = 1, ... ,min(m, n), i = 1, ... ,m + n - 2k + 2, where

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 116

which is shown in Figure 6.1.

Figure 6.1: Geometry of the least square problem.

It follows that IITk,i II is equal to the perpendicular distance of the point with

position vector hk'l to the point with position vector Hk,iZk,i on the plane t = Hk,7Xk,7'

which defines the column space of Hk,i'

The procedure for the method based on residual is similar to the method based

on the first principal angle, which is defined in Section 6.1.1, and thus the minimum

value of IITk,; II for each value of k = 1, ... , min(m, n), is calculated,

Tk = min {IITk,ill : i = 1, ... , m + n - 2k + 2}, k = 1, ... , min(m, n), (6.9)
1

and the column index i* for each of the min(m, n) minima occurs is recorded as qk = i*

for each k = 1, ... ,min(m, n) respectively. As above, the degree dr of an approximate

GCD is equal to the index k for which the change in Tk between two successive values

of k is a maximum,

dr = {k : max(Tk+l - Tk); k = 1, ... , min(m, n) - I}. (6.10)

CHAPTER 6. THE DEGREE OF AS APPROXDIA.TE ceD. PA.RT II 11 7

It is important to note that).Iethods 4 and .'j llla~' not \'ield the sallle optimal

column for some values of k, and the degree ri. This issue lllllst be investigated

computationally, and this is shown in Section 6.:3. Algorithm G.I shows the imple­

mentation of ~1ethods 4 and 5 for tIl(' calculation of (PI,. rio) and (ilk. d,.).

Algorithm 6.1: The calculation of the degree of an approximate GCD of

two polynomials

Input Two inexact polynomials f(x) and g(.r).

Output Two estimates, drp and dr, of the ciegrep of all approximate GCD of

f(x) and g(x), and the column indices PI. and (jk associated with the smallest angle

and residual respectively, for each value of k.

Begin

1. Preprocess f(x) and g(x) to yield the polynomials](.1/) and .&(.11), as shown in

Section 4.4.

2. For k = 1, ... ,min(m, n) % Loop for all the sllbresultant matrices

For i = 1, ... ,m + n - 2k + 2 o/c. Loop for the columlls

(i) Define the column hk,i from Sd.!. Qog).

(ii) Define the matrix Hk,l from SkU. Qo.g)·

(iii) Calculate the angle cPl..! and residual "1..1'

End i

2.1 Calculate cPk and PI. from (6.5), and Tk and qk from (6.9).

End k

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 118

3. Calculate two estimates dq, and dr of the degree of an approximate GCD from

(6.6) and (6.10).

End

6.2 The degree of an approximate GCD of f(x) and

It was shown in Chapter 3 that the polynomial root solver requires that an approx-

imate GCD of a polynomial and its derivative be calculated, where the calculation

of the degree of an approximate GCD is essential to the calculation of an approx-

imate GCD. Although the calculation of the degree of an approximate GCD of

f(x) and g(x) was discussed in Methods 1,2,3,4 and 5, which can also be applied

to the calculation of the degree d of an approximate GCD of f(x) and its derivative

g(x) = f(l)(X), these methods did not include the constraint that an approximate

GCD of a polynomial and its derivative is being calculated. This section therefore

extends the analysis in Methods 4 and 5 to the situation when g(x) = f(1)(x) and

considers an extra condition that arises from this constraint.

Let f(x) be an inexact polynomial, and g(x) be equal to its derivative f(1)(x),

which is given by

m m-l

and g(x) = I)m - i)a~xm-i-l,
i=O i=O

It has been shown in Section 4.4 that it is necessary to process f(x) and g(x)

before an approximate GCD is computed. In particular, it is required to normalise

Cll.·\/)TEU (i. TlIE DEGHEE OF AN APPROXIMATE GCD, PART II 119

f (.r) alld y (.r) hv the geollletric means of their coefficients, and J (:r) is therefore

n'ddilll'd as
,,,

f(·r) = L (J,./'''''

, --0

awl y(.r) is ['(,ddilll'd as
TTl I

y(.r) = L h,.r'" , I

, ()

a,
Il,=------

(rT;~() Iflj I) n'~l '

(m - i)a,

m

h, = ----.-:...--~---:-

(n",--II(.) I)~' j=() Tn - J aJ

m-I

II Ib,l = l.
l=O

'I'll(' pol\'Il()lllial .1;(:1') is proportional to, and not equal to, J(1)(x) hecause
m--I

alld ill partic1llar. it follows frolll (6.12) and (6.13) that

!

,.\ = h,
(III - i)1i,

(m - i)a, (rr7~o lajl) m+!

(.) (rrm
-

l (.) rrm
-

l I I) ± m - Z 0" j=O Tn - J j=O aj

(rr7~o lajl) ~
(m' rr 7ll I I) ~ la,,:1 j=O flj

1

(la""I) ~ m'
1

(rr rTt I '1) m(m+!)
j=O o'J

alld II('IIC'e ,.\ is ('qual to a constant, such that

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

If t he approximate quotient polynomials Uk (x) and 'Uk (x), and an approximate

COIlllllon divisor polynomial cd:r) of degree k, of the inexact polynomials J(x) and

CHAPTER 6. THE DEGREE OF AN APPROXIl\lATE GCD, PART II 120

g(x) are given by
rn-k m-k-\ k

() "'"'" m-k-i Uk X = ~ Uk,iX , vdx) = m-k-i-l 'lh,i X , cdx) = L Ck,iXk 1, (6.17)
i=O ;=0 I=()

then

and k: = 1, ... ,m -1. (6.18)

A constraint between the inexact polynomials J (x) and J(1) (x) yields

J(1)(X) = d](x) ~ d(ck(x)uk(x))
dx dx

~ Ck(X)U~l)(X)+C~1)(x)udx), k=l, ... ,m-l, (6.19)

where
k-l
L(k - i)Ck,iXk-1-i,
i=O

m-k-l

U~l)(X) = L (m-k-i)uk,iXm-k-1-i,
i=O

and it follows from (6.16), (6.18) and (6.19) that

Ck(X)Vk(X) ~). (Ck(X)U~1)(x) + C~l)(X)Uk(X)) , (6.20)

which establishes the approximate constraint between udx), Vk(X) and Ck(X) when an

approximate GCD of a polynomial and its derivative is considered.

It is also demonstrated in Section 4.4 that scaling polynomials can improve the

computational results, and thus the substitution

x = ey, (6.21)

where y is the new independent variable and f) is a real constant, is then made into

(6.11) and (6.12). It is therefore necessary to express (6.20) in the independent vari­

able y, that is, the substitution (6.21) has been made. This also requires consideration

of the scale factor 0:. Specifically, the optimal values 0:0 and eo, of 0: and e respectively,

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 121

arc the solutiolls of the minimisation problem,

. {max {maxi=O, ... ,m !a/im
-
1! ,maxj=O, .,111-1 Inb/.I TT1

-.i-
I I} }

no' eo = arg mm { I I}'
0,0 min min!=o, ... ,m !a/:I'''-I!, minj=o,. ,rn-l obijm - j - 1

which can be transformed to a standard linear programming problem, as shown in

(4.2:3), and thus all computations are performed on the polynomials
TIl

j '() ~ - 11/-1 Y = 6(liY and (6,22)
I=(J 1=0

whos(' coefficients arc

and b-. = b-·em - 1 - 1
1 1 0 '

Since it follows from (6,13) and (6,21) that
m-l

,=0

the relationship between O'o,ij(:/j) and 1(1)(y) is established, based on (6,14), as

(6.23)

It is assumed that f(x) is inexact, and thus an approximate common divisor cdy)

of 1(.I/) and .ij(y) , of degree k, satisfies

and k = 1, , .. ,Tn - 1, (6,24)

where
m-k
~ - m-k-i
6 Uk ,iY , (6,25)
'1=0

rn-k-I
~ - m-k-i-l
6 Vk,iY , (6,26)
i=O

k

cdY) = l: ck,zyk
-!,

- f)k-i
Ck i = Ck z 0 ' , , (6,27)

i=()

are tlw transformed polynomials from (6,17) using (6,21).

CHAPTEH G. THE DEGREE OF AN APPROXIAIATE GCD, PART II 122

A COllstraint between j(y) and j(1)(y) is completed by the substitution of (6.21)

into the expression (6.19), which yields

where

-(1) ()
Ck Y

k-1
L ((k - i)Ck,ie~-i-1) yk-i-1,
i=O

m-k-1
'Uk1)(y) = L ((m - k - i)'Uk,ie~l-k-l-l) ym-k-l-l,

1=0

and it therdore follows from (6.23), (6.24) and (6.28) that

CdY)'Uk(Y) ~ (ao >') (cdy)uk1)(y) + ck
1
\Y)Uk(y)) ,

(6.28)

(6.29)

which establishes the connection between Uk(Y), Vk(y) and Ck(y), that is, the COIl-

nection between the approximate quotient polynomials and an approximate common

divisor of degree k = 1, ... ,m - 1.

Since the product of two polynomials, which is equal to the cOIlvolution of their

coefficients, can be written as the product of a Toeplitz matrix and a vector, the

CHAPTER (i. THE DEGREE OF AN APPROXiMATE GCD, PART II 123

\'eelm of coefficients tJ(()()) of ./(1)(,1)) in (6.28) can be approximated by

('. f)k- 1
A.I ()

1.(. f)k~ 1
" k,O ()

. f)k-I
(k, 1 ()

(J..: - 1)('. ek - 2
k,1 ()

(m - k)'U em - k - 1
k,O 0

(k 1)' em-k-2 Tn - ,- Uk,l 0

k·(· ek-l
-k,O 0

'Uk,m-k-l

em - k
'Uk,O o·

em - k - 1
'Uk, 1 0

(k - 1)Ck,le~-2

+

(6.30)

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 124

where

[
k k 1 1 T E jRm-k+l Uk,Oe~- Uk,le~- - ... Uk,m-k-leo Uk,rn-k

[(rn - k)Uk,Oe~-k-l (rn - k - 1)Uk,le~'-k-2
T

. .. 2Uk m-k-2e o Uk,m-k-l 1 E jRm-k,

Ck,Oe~

c ek - 1
k,l 0

Ck,Oe~

ek-1 ElRmx(m-k),
Ck,l 0

k ek-l
Ck,O 0

k gk-l
Ck,O 0

Ck.k-l

Ck,k-l

It is readily verified that u~l)(eo) and Uk(eo) are related by a diagonal matrix

R E lR(m-k)x(m-k+l),

CHAPTER 6. THE DEGREE OF AN APPROXBJATE ceD, PART II 125

(m - k)u f)m-k k,O 0

(m - k - 1)11 f)m-k-l k,l 0

m-k

m- k-1

It follows from (6.30) and (6.31) that

2

o

o

o

o

1 0

11 f)m-k
k,O 0

(6.31)

(6.32)

Similarly, tlw vector of coefficients O:og(f)o) of O:o.q(y) can be approximated by

()k-l
Ck,l 0

f) k-l
Ck,l 0

Ck,k

f) m-k-2
Vk,l 0

Vk,m-k-l

(6.33)

CHAPTEH 6. THE DEGHEE OF AN APPHOXIMATE GCD, PART II 126

where
']'

vk(8,,) ~ [Vk.08~'-k-1 "k,18~'-k-2 ... "k,",-k-28" "',",-k-I 1 E 1R",-k.

The combination of (6.2:3). (6.32) and (6.33) yields

C~oOA) Ak((1o)Vk((1o) - (Ak((1o)R + BoBk(Bo)) iidBo) ~ O. (6.34)

If Uk(B()) E lRmx(m-k+l) and Vk((1o) E lRmx(m-k) are defined as

and

Ll2 2Ck,k-2Uo (k-1)c (1k-l k,l 0

Ilk Ck,lUo

~o, k = 1, ... ,~ - 1. (6.35)

The constraint (6.35) is therefore used for the calculation of the degree d of an

CILlJ>TEU (i. TilE J)EGUEE OF AN APPROXIAIATE GCD, PART II 127

approxilll(lt(' eel) ()f I(.r) alld PI)(.I"). This uses the error measure

II \ i,(O,,)vdO,,) - (AdO,,)R + Ud8o)) tid(},,) II
11\ A(O,,)vdO,,)11 + II (AdO,,)R + lfd8,,)) ud8o)II'

k=l, ... ,m.-l, (6.36)

which is d('riYl'd fr()111 (G.:Fi), a!Hl the valut' of k for which this function achieves its

1I1illillllll1l \',tiue is ('qual t.o d.

('()Ilsidn tl\(' ("akulatioll of tIl(' terms in (6.36). snch as the vectors tideo) and

reqllin' t hI' lllatri("es S'kiI, (\,Jj) for their calculation, where the kth Sylvester resultant

Illiltrix Sd/. O",(j) is of order ('2111 - k) x (2m - 2),; + 1), and equals to

([(Jill I
1 "

il 811l - l
1 ()

Urn

am

it follows fWlll (G.'2·1) that

,- Ilm-l
noJ()u()

n b (}m-2
() I ()

0: b (}1II-1 () 0 0

b- em-2 no 1 0

~o, (6.37)

alld llIore details ill sllbn'sultallt lllatrices aw in Sectioll 4.l. It is dear that sdj, O:og)

("illl he llsed to calcuJatt' tid(},,) and vd(}o), as well as the degree d of an approximate

CC'O of f(.r) awl 9(.r) = f(ll(:r), using ~Icthods 4 and 5, as discussed in Section 6.l.

Also it is known t hat the col ullin indices i* = i* (k) associated with the smallest angle

CHAPTER 6. THE DEGREE OF AN APPROXIMATE ceD, PART II 128

and residual for each value of k = 1, ... ,Tn - 1, are computed by Methods 4 and 5

respectively.

Assume that hk,i" the i'th column of Sk (J, cxog) , is removed from the matrix,

where i* is from either Method 4 or Method 5, and Hk,i* E jR(2rn-k)x(2m-2k) is the

matrix from the other columns of Sk(J, CX0 9) ,

8k,2m-2k+l] ,

where 8k,i E jR2m-k is the ith column of Sk(j, cxog). The removal of the i*th column

of Sk(J, cxog) to be the right hand side therefore yields the equation

Hk,i*X:::::: hk,i*' k = 1, ... ,Tn -1, (6.38)

where

[]

T
2m-2k

X = Xl ... Xi-l Xt+l ... x2m-2k+l E jR ,

and

-1 E jR2m-2k+l. (6.39)

X2m-2k+l

The elements of Uk(Oo) and Vk(Oo) are calculated from (6.39) with the index i*

for which the minima occurs in (6.38) for each value of k, using Methods 4 or 5.

The coefficients Ck,i of Ck(Y) for the construction of Ak(Oo), Uk (00) and Vk(Oo) can be

calculated from the approximate polynomial decomposition (6.24), which is written

('HAPTER (j, THE DEGREE OF AN APPROXIMATE ceD, PART II 129

as

k = 1, ... ,~ - 1, (6.40)

when' PI,:(lIk. fJ,,) awl CJdl'k. eo) are Tocplitz matrices whose elements are formed from

t 11(' polYllolllials lld,lj) awl h,(,Ij) ill (6.26) and (6.27) respectively,

CJd I}. 0,,)

awl

Ilm "k
lik,OrJo

, (1'11-1.:-2
I k,l ()

I'k.1II"k -1

'u em - k - 1 E lR(rn+l)x(k+l)
k,l 0 '

11 em - k - 1
k,O ()

'I). ern - k - 2 ElRrrtx(k+l),
k,1 0

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 130

[Ck.08~ Ck.l8~-1 ... ck.k- 18o Ck,k 1
T

[a08~ a18~!-1

[ao a 1 am-I

[b 8m - 1
o 0

7'

bI8~1-2 ... bm - 2(}u bm - I 1

[bo b1 1i",-2 bm~' r E JR".

The least squares solution of (6.40) is computed,

k=1, ... ,rn-1,

which enables the coefficients of the approximate common divisor polynomial Ck(Y)

to be calculated in order to construct the matrices Ak((}o), Uk ((}u) and Vk (8o). This

allows (6.36) to be computed for all values of k.

Although Methods 1, 2 and 3 can be used to compute the degree of an approximate

GCD of f(x) and f(1)(x), Method 1 fails to return the correct answer in most cases,

and Methods 2 and 3 suffer disadvantages, which are improved by Methods 4 and 5.

The following three methods, rather than Methods 1,2 and 3, are therefore used to

determine the degree d of an approximate GCD of a polynomial and its derivative:

Method 4 The first principal angle between the space Hk,j spanned by the columns

of Hk,j and the space .ck,j spanned by hk,j'

Method 5 The residual of (6.38).

Method 6 The satisfaction of the constraint (6.35).

CHAPTER 6. THE DEGREE OF A.IV APPROXLUATE GCD. PAHT II 131

Methods 4 and 5 use Algorithm 6.1 to calculate d and the ('olullln index i* for

which the minima occurs in (6.38) for each k = 1. m - 1. alld ~Iethod 6 uses the

error measure in (6.36) for the calculation of the degrce ri. In particular. the error

measures in (6.36) are equal to TJk and ~k, k = l. m - 1. when ~Ieth()d 6 uses the

optimal columns computed from .Methods 4 and 5 respectively. It is important to note

that Methods 4 and 5 may not yield the same optimal column for SOllle values of k,

and ~1ethods 4,5 and 6 may not yield the same value of d. This is however illteresting

because these different values of d are clearly certified. in which case t he decision is

made by the method called Majority Voting. Algorithm 6.2 shows the implementation

of Methods 4,5 and 6 for the calculation of the degree of an approximate GCD of

f (x) and f(1) (x) in the presence of noise.

Algorithm 6.2: The calculation of the degree of an approximate GCD of a

polynomials and its derivative

Input An inexact polynomial f (x).

Output Four estimates, d¢l dr, dT] and d~, of the degree of an approximate GCD

of f(x) and f(l)(x).

Begin

1. Calculate the first derivative of f(x) as g(x) = f(1)(x), and the constant A from

(6.15) .

2. Preprocess f(x) and g(x) to yield the polynomials j(y) and g(y), as shown in

Section 4.4.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 132

3. For k = 1, ... , m - 1 % Loop for all the subresultant matrices

(a) For i = 1, ... ,2m - 2k + 1 % Loop for the columns

(i) Define the column hk,i and matrix Hk,i from sdj, 0: 0 9).

(ii) Calculate the angle ¢k,l and the residual Tk,l'

End i

(b) Calculate

¢k min {¢k,l : i = 1, ... ,2m - 2k + I}
1

Tk min {Tk,l : i = 1, ... ,2m - 2k + I}
1

and the indices Pk and qk for which the minima occur for each value of k,

respectively.

(c) Form H k,l and hk,i when i = Pk, and solve, in the least squares sense,

(6.38).

(e) Construct the matrices R, Ak(Oo), UdOo) and Vk(Oo), and calculate the er­

ror measure 1]k in (6.36).

(f) Repeat steps (c), (d) and (e) when i = qk, and calculate the error measure

~k in (6.36).

End k

4. Calculate four estimates of the degree of an approximate GCD of f(x) and

CHAPTER. 6. THE DEGR.EE OF AN APPROXUvIATE GeD, PART II 133

g(:1"). n<lnwly.

dry

End

6.3 Examples

{k: max(¢k+l - ¢d; k = 1. ... ,Tn - 2}

{k : max(rk+l - rd: k = 1. Tn - 2}

lllin{71k; k = 1, ... ,Tn - I}
k

min {~k: l.: = 1, ... , Tn - I}
k

This section contains sevpral examples ill which the degree of an approximate GeD of

.f (:r) and y(:r) is calculated using Methods 4 and 5, and the degree of an approximate

CCD of f(:r) ami f(I)(x) is calculated using Methods 4,5 and 6.

Example 6.1. Consider the exact polynomials](.7:) and g(x), whose roots and mul-

tiplicities are specified in Table 6.1. It is seen that Tn = 16, n = 21 and the degree of

th('ir CCD is rl = 7.

Root of !(:1:)
4.8181c+000

-2.9457 f'+()()()
-8.5379('+000
-1.3787c-002

~Iultiplicity

3
2
2
9

Root of g(:r) Multiplicity
4.8181e+000 8

-2.9457e+000 5
-8.537ge+000 8

Table 6.1: The roots and multiplicities of](x) and g(x) for Example 6.1.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 134

Each polynomial was perturbed by noise, such that the componentwise signal-to­

noise ratio c~ l is 108
, and the resulting polynomials were normalised by the geomet­

ric means of their coefficients. They were then preprocessed, thereby yielding the

Sylvester matrix sU, aog) , where ao = 0.065453, (Jo = 0.89125. This procedure was

repeated, thereby obtaining another set of perturbed polynomials, using c~ l = 104 ,

in which case ao = 0.065449, (Jo = 0.89126.

0 0

E =10- 8 E =10-4
c

-5 c -5

""" """ -e- .e-
O) -10 0) -10
.Q .Q

-15 -15
............

-20
0 5 10 15

-20
0 5 10 15

k k

5 5 - . -e- . •
I T

I: =10-8 I: =10-4

c c

0 0

..... """ """
0) 0)

.Q .Q

-5 .-... -. -5 \ , I , I
, I
,I ~

,I

-10
0 5 10 15

-10
0 5 10 15

k k

Figure 6.2: The variation of log ¢k and log rk with k for Example 6.1.

Figure 6.2 shows the variation of log ¢k and log rk , which are defined in (6.5) and

(6.9) respectively, with k. It is seen that for Cc = 10-8 and Cc = 10- 4, the maximum

changes in log ¢k and log rk occur when k = 7 , which is correct because d = 7.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 135

Although the values of d¢ and dr are clearly defined, the changes in log ¢k and log Tk

at k = 7 are much bigger when Cc = 10- 8 compared to those changes when Cc = 10-4

because the former perturbations to the coefficients of j(x) and g(x) are smaller.

35,---~--~-_;:::::==:::;_

I • angle I
- • - residual I 30 " "

25

E 20
::J

8 15 •

10

5

"
' , . -. , .. , . ..' ..

l-t ' "
~,

£ =10-8 . , •
c

5 10

k
15

30r---~--~---;:::::==~

I
• angle l

- • - residual I
25 • I ,

" 's .. I '
20 ' . . , . c , •

E . , .. . I",
::J 15 ___ : ' '-..
8 .. ,

10 E =10-4
c

5

5 10
k

" . , ,
\ ..
~.

15

Figure 6.3: The column of Sk(j, C¥o9) for which the error in (6.2) is a minimum, using
Methods 4 and 5, against k, for Example 6.l.

Figure 6.3 shows, for each value of k = 1, .. . , 16, the column of Sk(j, c¥o9) for

which the error in (6.2) is a minimum, using Methods 4 and 5. It is clear that the two

methods do not yield the same columns for all values of k, and the greatest differences

occur for small and large values of k. Moreover, it is seen that Methods 4 and 5 yield

different columns for which this optimal value k = 7 is achieved for Cc = 10-8 and

Cc = 10-4 . Also, it is noted that the difference in the optimal columns makes no

change on the determination of the degree of an approximate GCD of f(x) and g(x)

by Methods 4 and 5. o

Example 6.2. Consider the exact polynomials j(x) and g(x), whose roots and mul­

tiplicities are specified in Table 6.2. It is seen that m = 16, n = 27 and the degree of

their GCD is d = 6.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 136

Root of g(x) Multiplicity
-7.4420e-005 1

Root of j(x) Multiplicity -9.9656e-005 1
-7.4420e-005 2 -6.3668e-005 4
-9.9656e-005 5 -7.4936e-001 5
-6.3668e-005 5 3.0465e-001 5
-4.5823e-005 4 -4.5435e-001 5

9. 1342e-001 2
-1. 6942e-001 4

Table 6.2: The roots and multiplicities of j(x) and g(x) for Example 6.2.

Uniformly distributed random noise was added to each polynomial, such that

the componentwise signal-to-noise ratio c:;1 = 104
. The noisy polynomials were then

preprocessed by the operations described in Section 4.4, thereby yielding the Sylvester

matrix 8(j, a o9), where ao = 1.8931e + 012 and ()o = 9.5861e - 003.

10 0

0 E =10-4
c

E =10-4 -5
c

-e-.>c -10>c

Cl Cl -10
.Q .Q

-20

-15
-30

5 10 15
-20

0 5 10 15
k k

Figure 6.4: The variation of log <Pk and log Tk with k, for Example 6.2.

Figure 6.4 shows the variation oflog <Pk and log Tk with k using Methods 4 and 5,

respectively. It is seen that the maximum gradient in each graph occurs when k = 6,

and thus d¢ = dr = d = 6. Also, the degree of an approximate GCD is clearly defined

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 137

30r-------~------~~====~~

I
.• angle I

- • - residual

c 20
E
::J
(5
() 15

10

.....
•

5 10
k

\

\
\

15

\
\

Figure 6.5: The column of Sk(j, Cio9) for which the error in (6.2) is a minimum, using
Methods 4 and 5, against k with Cc = 10- 4 , for Example 6.2.

for both methods, even though c~ l = 104 is relatively small. Figure 6.5 shows, for

Methods 4 and 5, the column of Sk(j, Cio9) , k = 1, ... , 16, for which the error in (6.2)

is a minimum. It is also seen that the optimal column using Method 4 is the same as

the optimal column using Method 5, and the greatest differences occur only for small

values of k for both methods. o

Example 6.3. Consider the exact polynomials j(x) and g(x), whose roots and mul­

tiplicities are specified in Table 6.3. It is seen that m = 22, n = 14 and the degree of

their GCD is d = 5.

Uniformly distributed random noise was added to each polynomial, such that

the componentwise signal-to-noise ratio c~l = 104 . The noisy polynomials were

then normalised by the geometric means of their coefficients initially, after which

they were preprocessed, thereby yielding the Sylvester matrix S(j, Cio9) , where o!o =

4.6574e - 009 and ()o = 1.6913e - 003.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GeD, PART II 138

Root of j(x) Multiplicity Root of g(x) Multiplicity
7.9617e-005 4 7.9617e-005 3

-8.8440e-005 5 -8.8440e-005 1
-8.0504e-005 5 -8.0504e-005 1
-2.0403e-005 4 -4.424ge+OOO 5
7.8861e-005 4 -6.1417e+OOO 4

Table 6.3: The roots and multiplicities of j(x) and g(x) for Example 6.3.

5 -16

0 -18 I

-5 -20 E =10- 4
c

-'C -10 -'C -22
-&-
01 -15 01 -24
.Q .Q

-20 -26

-25 -28

-30 -30

-35 -32
0 5 10 15 0 5 10 15

k k

Figure 6.6: The variation of log <Pk and log Tk with k, for Example 6.3.

Figure 6.6 shows the variation of log <Pk and log Tk with k, and it is seen that

d¢ = dr = d = 5, such that these values are clearly defined by Methods 4 and

5. Figure 6.7 shows that the column of Sk(j, ao9) for which the error in (6.2) is a

minimum is similar to Figure 6.3 because the largest differences occur for small and

large values of k for Methods 4 and 5. Also they yield identical results for other values

of k, including k = 5. o

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 139

18~~----~--------~======~

'. I • angle I
16

14

c 12
E
:::J 10

15
u 8

6

4

•
'. - • - residual I·

\

\

•
\
.~ ... -- ' ..

\

\
\

I
I

20~------~--------~~~~~
5 10 15

k

Figure 6.7: The column of Sk(j, (0 9) for which the error in (6.2) is a minimum, using
Methods 4 and 5, against k with Cc = 10-4 , for Example 6.3.

Example 6.4. Consider the exact polynomials j(x) and g(x) , whose roots and mul­

tiplicities are specified in Table 6.4. It is seen that m = 44, n = 27 and the degree of

their GCD is d = 24.

Root of j(x)
-9.6104e+000
-7.2187e-00I
9.1180e+000
1.4302e+000

-8.4822e+000
-2.7506e+000

Multiplicity
11
9
7

11
2
4

Root of g(x)
-9.6104e+000
-7.2187e-00I
9.1180e+000

Multiplicity
9
8
10

Table 6.4: The roots and multiplicities of j(x) and g(x) for Example 6.4.

Noise was added in the componentwise sense to each polynomial, such that the

componentwise signal-to-noise ratio c~l = 108 . The noisy polynomials were then

normalised by the geometric means of their coefficients initially, after which they were

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 140

preprocessed, thereby yielding the Sylvester matrix 8(j, a o9) , where Q o = 2.2631 e +

004 and eo = 3.0935.

0 14

12
-5

£ =10- 8 £ =10- 8
c c

"" "" 10 .e-
el -10 el

.Q .Q
8

-15

-20 4
0 5 10 15 20 25 30 0 5 10 15 20 25

k k

Figure 6.8: The variation of log <Pk and log Tk with k, for Example 6.4.

40

c 30 +
E
:::J
o
() 20

+
10

'.

• • ••• .+ ••
5 10 15

k

.. • ... \
••••

20 25 30

30

Figure 6.9: The column of 8k (j, Q o9) for which the error in (6.2) is a minimum, using
Methods 4 and 5, against k with Cc = 10-8

, for Example 6.4.

Figure 6.8 shows the variation of log <Pk and log Tk with k = 1, ... , 27, using

Methods 4 and 5, and Figure 6.9 shows the column of 8k (j, Q o9) for which the error

in (6.2) is a minimum. It is clearly seen from Figure 6.8 that the maximum gradient

CHAPTER 6. THE DEGREE OF AN APPROXII\;lATE GCD, PART II 141

ill each graph occurs when k = 24, which means the degree of an approximate GCD

is clearly defined for both methods, such that d¢ = dr = d = 24. Furthermore, Figure

6.9 is different from Figures 6.3, 6.5 and 6.7, because the differences in the results

occur for all the values of k, including the optimal column when k = 24. o

Example 6.5. Consider an exact polynomial](.7:), whose roots and multiplicities

are specified in Table 6.5, and its derivative j(1)(x). It is seen that m = 36 and the

degree of GCD of j(x) and](1) (x) is d = 28.

Root of](x) Multiplicity
-1.3708e+000 1
-3.2431e+000 2
4.4145e+000 3

-9.726ge+000 4
-2.5188e+000 5
8.4537e+000 6
9.2960e-001 7

-5. 2230e-00 1 8

Table 6.5: The roots and multiplicities of j(x) for Example 6.5.

This polynomial was perturbed by noise initially, such that the componentwise

signal- to-noise ratio E; 1 = 108
, after which the derivative f(1) (x) was calculated

from the noisy polynomial f(x). They were then preprocessed, thereby yielding the

Sylvester matrix S(], aoj(l)), where aD = 1.3964 and eo = 2.1731.

Figure 6.10 shows the variation of log <Pk, log Tk, log 17k and log ~k, which are cal­

culated from Algorithm 6.2, with k. It is seen that the maximum changes in log <Pk

and log Tk occur when k = 28, and the global minima in log 17k and log ~k are also

achieved when k = 28, which is correct because d = 28. The degree of an approximate

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 142

0 0

-2
-5

.>(..... .>(
~

Cl -10 Cl

.2 .2

10 20 30 40
-10

0 10 20 30 40
k k

0

-2

.>(.>(-4
~ u.J'

Cl Cl

.2 .2 -6

-8 -8

-10
0 10 20 30 40

-10
0 10 20 30 40

k k

Figure 6.10: The variation of log <Pk , log rk , log TJk and log ~k with k and Cc = 10- 8 for
Example 6.5.

GCD of f(x) and f (l)(X) is therefore clearly defined for all three methods, such that
A

dq, = dr = d"1 = d€ = d = 28.

Figure 6.11 shows the column of SkU, CXOj(l)) , k = 1, .. . , 35, for which the error

in (6.2) is a minimum, using Methods 4 and 5. It is noted that the two methods do

not yield the same column for all values of k, and the greatest differences occur when

k < 28. Because Method 6 uses these different columns that are moved to the right

hand side of (6.2) , there are slight differences between logTJk and log~k especially for

small values of k, which can be seen from the lower graphs of Figure 6.10 0

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 143

60~----~----~---,~====~

I
• angle I

- • - residual I • T • 50 I 'I , • •

1'\ J 1 -. ...
I I, It I ,I

40 I II I I , • I

C , '~ ' I •• , ' . E I" ,' 1,1 . 1 I', ' I, I ,I
.2 30 I' I' .1 , t ,I.; ,
~ I' I' I I II 'I .~
'o..J i I I : . I I ~ I, , 1

20 •• . ~ : I ,I, I, I i.-
•- > .1.. II lI' ,I

• -. ' I, 1, I 1\ I'
• • I f •• I , I, I ~ ..

10 , . ~ '.~
• • I

10 20
k

30 40

Figure 6.11: The column of 5k(j, a o]<l)) for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k with Cc = 10- 8 , for Example 6.5.

Example 6.6. Consider an exact polynomial j(x) , whose roots and multiplicities

are specified in Table 6.6, and its derivative. It is seen that m = 34 and the degree

of GCD of j(x) and j<l)(x) is d = 28.

Root of j(x)
-3.4624e+OOO
2.6891e+OOO
8.468ge+OOO

-2.5214e+OOO
-1.6262e+OOO
6.1616e+OOO

Multiplicity
2
2
2
8
9
11

Table 6.6: The roots and multiplicities of j(x) for Example 6.6.

This polynomial was perturbed by noisy initially, such that the componentwise

signal-to-noise ratio c;l = 108, after which the derivative f(1) (x) was calculated

from the noisy polynomial f(x) . They were then preprocessed, thereby yielding the

Sylvester matrix 5(j, aoj(1)) , where ao = 1.6483 and eo = 3.2921.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 144

-8

-10L--~--~--~------'
o 10 20 30 40

k

J
Cl

-100L--~10---2~0 --~30-----l40

k

..Q -6

-8

-100L--~10---2~0 --3~0---l40

k

Figure 6.12: The variation of log <Pk, log rk, log 7]k and log ~k with k and Cc = 10- 8 for
Example 6.6.

Figure 6.12 shows the variation oflog <Pk, log rk, log7]k and log ~k' with k, and it is

seen that the four graphs return the same answer because the maximum gradients in

log <Pk and log rk and the global minima in log 7]k and log ~k occur when k = 28. Also,

the degree of an approximate GCD of f(x) and f(l)(X) is clearly defined, and thus

d¢ = dr = dry = df. = d = 28. Figure 6.13, which shows the column of Sk(j, aoj(l)),

for which the error in (6.2) is a minimum, is similar to Figure 6.11 because the largest

differences occur for most values of k except the large values of k and the optimal

columns when k = d, using Methods 4 and 5, are the same. D

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD, PART II 145

50~-.~~------~----r=~====~
; + + I + angle I
I . .. - • - residual I

40 '+. ' I
I . ' . 1 ~+~
I

1

c: 30 1 E +1
:::J I

o 1

U 20

, : I ': ' 1+

: " ' I
, : I

, : I , ~ ~.
, . I : ,. ',I
' . 1It , . " • I
, . ,~ , I

. .. \ f. " I ,..
I' +\ . I , I, I , •

• , it +: I " I' I • ,, + I' 10 \ ' "~ r , I . I .
• I' .. +, ~ I .

e ~ + • • ++

10 20
k

.....
30 40

Figure 6.13: The column of Sk(j, Ql.o j(1)) for which the error in (6.2) is a minimum,
using Methods 4 and 5, against k with Cc = 10- 8 , for Example 6.6.

6.4 Computational efficiency

Since this chapter has only considered the feasibility of the three methods, algorithm

issues associated with the solution of (6.2) have not been addressed, however, it is

possible to consider the issues of computational efficiency as the future work.

The major cost of the designed root solver is the estimation of the degree of the

approximate GCD because these methods require that (6.2) be solved repeatedly,

where the coefficient matrices of successive equations differ by one column only. Hence

the algorithms must be implemented efficiently.

Method 5 can therefore be done by computing the QR decomposition of SU, g)

once, and then using update procedures to calculate the QR decomposition of SkU, g),

k = 2, ... ,min(m, n), such as (6.2) solved by the function qrdelete in MATLAB 1.

The computation in Method 4 would be more expensive because the SVD does not

IThis function deletes a column or row from the QR factorization.

CHAPTER 6. THE DEGREE OF AN APPROXIMATE GCD. PART II 146

have an update. It may therefore be desirable to use the QR decomposition, rather

than the SVD, meaning that perhaps only Method 5 should be included, although

both Methods 4 and 5 yield good answers.

Since major improvements are obtained by using :Vlethod 5 and the QR decompo­

sition to allow update, the computation in l\1ethod 6 would be cheaper if the method

chooses the column of Sdf, g) to be the right hand side of (6.38) by using Method 5,

rather than Method 4. This should be investigated further.

6.5 Summary

This chapter has presented two methods (Methods 4 and 5) for the estimation of

the degree of an approximate GCD of two inexact polynomials, and one method

(Method 6) for the estimation of the degree of an approximate GCD of one inexact

polynomial and its derivative. All methods use subresultant matrices of the Sylvester

resultant matrix, but Methods 4 and 5 differ in the criterion used to define the error in

an approximate linear algebraic equation of (6.2), and Method 6 uses the constraint

(6.35) between f(x) and f(l)(x) and requires the optimal columns calculated from

Methods 4 or 5.

Six examples were presented and it was shown that these methods yield good

results for both situations. The examples suggest that they return the same degree

d := d¢ = dr of an approximate GeD of f(x) and g(x), or d := d¢ = dr = dry = dE, of

an approximate GCD of f(x) and f(1)(x), even though the column of the subresultant

matrix associated with d may differ between Methods 4 and 5.

Chapter 7

The coefficients of an approximate

GCD

The designed polynomial root solver presented in Chapter 3 has involved a sequence

of the approximate GCD computations, where an approximate GCD obtained from

the ith iteration is used for the i + 1 th iteration, and thus a very important part of this

root solver is the determination of an approximate GCD of two inexact polynomials.

In particular, the degree of an approximate GCD should be determined initially,

after which the coefficients of an approximate GCD are calculated. The calculation

of the degree of an approximate GCD has been covered in Chapters 5 and 6, which

is a non-trivial computation because it reduces to the estimatioll of the rank loss of

a Iloisy resultant matrix. The calculation of the coefficients of an approximate GCD

is described in this chapter.

The use of approximate polynomial factorisatioll is considered for the calculation

of the coefficients of an approximate GCD. Suppose that the degree of an approx­

imate GCD d(x) of two polynomials f(x) and g(x) is known, and thus there exist

147

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 148

quotient polynomials 11(X) and v(x). such that

f(x) ~ d(x)u(x) and g(x) ~ d(x)v(;r).

and it can be written in matrix form.

(7.1)

where U, V are the Toeplitz matrices, and d, f, g are the coefficients vectors of d(x),

f(x). g(x) respectively. The coefficients of d(x) are therefore calculated from the ap-

proximation (7.1), which must be perturbed in order to induce an exact solution. In

this case, structured perturbations are required such that the structure of the coeffi-

cient matrix ill (7.1) is preserved in order to guarantee that the matrix-vector product

represents a polynomial multiplication. This kind of perturbation is calculated by the

method of structured nonlinear total least norm (SNTLN) [57], which is an extension

of the method of structure total least norm (STLN) [56].

In [57] Rosen et a1. remark that:

"STLN is a problem formulation for obtaining an approximate solution

to the overdetermined linear system Ax ~ b preserving the given affine

structure in A or [Alb], where error can occur in both the vector band

the matrix A. The approximate solution can be obtained to minimize the

error in the Lp norm, where p = 1,2, or 00. In the extension of STLN

to nonlinear problems, the elements of A may be differentiable nonlinear

functions of a parameter vector, whose value needs to be approximated.

We call this extension structured nonlinear total least norm (SNTLN). "

The method of SNTLN, which yields a non-linear equation that is solved by the

Newton-Raphson method, is therefore used to obtain the approximate solution. The

CHAPTEH 7. THE COEFFICIENTS OF AN APPROXHIATE GCD 149

computational results dcmonstrate that the method of SNTLl\ re('(m~rs good approx-

imatiolls to the values of the coefficients of an approximate GCD of two polYllomials,

in the presellce of noise in the data.

7.1 The method of SNTLN

Since t he calculation of the degree of an approximat(~ G C D of two polynomials f (x)

and .'1(:r) has been considered in Chapters 5 and 6, this section assumes that the

degree rl of an approximate GCD is knmvll, and it dcscribes the method of SNTLN

for the calculation of its coefficients. For simplicity. this section only considers the

calculation of the coefficients of an approximate GCD of j(y) and y(y) that are

preprocessed from f (x) and .'1(:r), respectively. by the operations dcscrib(~d in Section

4.4.

It is recalled that the given inexact polynomials are defined in (4.24), which are

repmtcd here for convenience,
TTl

and (}:,Jj(y) = (\0 L b,yn-l. (7.2)
i=() ,=0

whose coefficients are

a = iiOm - 1
1 1 0 and (7.3)

where fli and bi are defined in (4.17) and (4.18). and (Yo, 00 an~ solution of the min­

imisation problem (4.22).

It. is assumed that. j(V) and ,rj(y) are inexact, and t.hus an approximate GCD Cd(y)

of j(V) and g(y), of degree d, satisfies

and (7.4)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 150

where
rn-d

"'"' - rn-d-i L Ud,iY ,

i=O

n-d

L vd,iyn-d-~, - Bn - d - 1
Vd,~ = Vd,i a ,

d

(7.5)

are the transformed polynomials from Ud(X), Vd(X) and Cd(X) that arc given by
m-d d

() "'"' m-d-i
Uri 1; = L Ud,i X , C (x) = "'"' c xd

- i -ri L d,l ,

i=O 1=0

respectively, using the substitution x = Bay. Equation (7.4) is therefore required

for the use of the method of SNTLN to compute the coefficients of all approximate

GCD.

It is stated that the method of SNTLN requires initial estimates of the quotient

polynomials Ud(Y) and Vd(Y), and the calculation of these estimates is similar to that

for j(y) and j(1)(y), which is described in Section 6.2.

The subresultant matrix Sd(j, 0'.09) is formed, where the coefficients of j(y) and

{}(y) are defined in (7.2). Likewise, as shown in Section 6.2, assume that hd .j *, the

j*th column of Sd(], 0'.09), is the optimal column that is removed from the matrix,

and Hd,j* E lR,(m+n-d+1)x(m+n-2d+1) is the matrix from the other columns of Sd(j, nug)

defined as

Hd,j* = [8d,1 ... 8d,j*-1 8d,j*+1 ... 8d,m+n-2d+2] '

where Sd,i E lR,m+n-2d+2 is the ith column of Sd(], C(0 9). The removal of the j*th

column of Sd(], 0'.09) to the right hand side therefore yields the equation

(7.6)

CHAPTnH 7. THE COEFFICIEXTS OF Al\' APPRDXL\IATE ceo 151

where

. r: = [:r 1T j' - 1 .T j' + 1 ...

7'

1 E lR. rrl -t-n-2d+l .
X' m +n -2d-t-2

and

Vd,O

1I",n-d
(7.7) E jRTT/+n-2ri+2. -1

X m -t-n-2d-t-2

HeIlce, the vectors of coefficients Urt(t9o) and Vrt(t9o) ofUrt(Y) and u,llJ) , are computed

from (7.7) with the index j* for which the minima occurs in (7.6), respect.iwly. ~Iore-

over. the coefficients of Ud(X) and Vrt(x) can be obtained from (7.5) and (7.7)

11.di
'u = ' d.. (jm-d-i

()

and
I'll t

U = '
d,t ()n-d-t

()

(7.8)

The method of SNTLN requires that J(y) and g(y), and the initial estimates of

the quotient polynomials, be rewritten. Specifically, it follows from (7.2) and (7.3)

that
HI. n

(7.9)
;=0 i=O

and thus it is expected to include 19 as a parameter to be optimized by SNTLN. The

substitution of 19 = 190 into (7.9) therefore yields
m. n

(7.10)
;=0 1=0

where thp arbitrary value 19 will be refined by the method of SNTLN, using 190 as

the initial estimate. Similarly, the initial estimates of the quotient polynomials are

CHAPTER. 7. THE COEFFICIENTS OF AN APPROXIMATE ceD 152

rewritten a."i
rn-rt n-d

'Ud(Y. e) = L (U,i,iern-rt-i)yrn-d-i andvrt(Y, e) = L(Vd.Jr-rt - 2)yn-rt-,.
i=()

where Uti" and Vd., are computed from (7.8), and y is the inoependcnt variable ill these

polynomials.

The approximate decompositions (7.4) are therefore replaced by

(7.11)

where
d

Cd(y,e) = L(Cd,ied-i)yd-i,
i=()

and thus (7.11) can be written in matrix form,

(7.12)

where

Ud [Ud,O Ud,1 Ud,m-d-l r E IRm
-

d+1
Ud,m-d '

Vd [Vd,O Vd,l ... Vd,n-d-l r ElR
n

-
dl1

Vd,n-d .

f(e) [a()em al em - l arn-l e -r E IR
m

" aTn '

[boen

T

g(e) b en - l bn- l e b 1 E]R.n+l 1 , n '

Cd(O) = [Cd,08d Cd"O" 1 ••• Cd,k-,8 Cd,k r E 1Rd+1 (7.13)

The coefficient matrix in (7.12) is of order (m + n + 2) x (d + 1), where Urt(Ud, e) and

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 153

V,l(iJrI, e) are given by, respectively,

'lL em - rI
d,D

u em - d - I
d,l

The approximation equation (7.12) is not satisfied exactly because the polynomials

j(y) and g(y) are inexact. It is therefore necessary to add a structured matrix to the

coefficient matrix on the left hand side, and a vector to the right hand side, of this

approximate equation, which is therefore replaced by

(7.14)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 154

where

Z (}m-d
d.O

(}m-d-l
Zd,1

Zd,m-d-l ()

Zd,m-d

(}n-d
Zd.m-d+l

(}n-d-l
Zd,m-d+2

Zd,m+n-2d+l

'Y (}m-d
"'d,O

(} lI-d
Zd,m-d+l

'Y (}n-d-l E lR,(n+l)x(d+l)"
"'d,m-d+2

Zd,m+1I-2d+ 1

are the matrices that contain the perturbations Zd,i,

[]
T E lR,1TI+n-2d+2,

Zd = Zd,O '" Zd,m-d Zd,m-d+l '" Zd,m+n-2d+l

which is the vector of structured perturbations that are added to the coefficients Ud i

and Vd,i, the vectors Pd = Pd(Sd, (}) and qd = qd(td , (}) ,

T

Pd ~ [s",oO~ Sd,,0~-1 ", Sd,m_ 18 "d,m] E 1R~+1

'Id ~ [td,08" Id,I8"-1 ", t",n- 18 td,n r E IRn+1

are the vectors of coefficients that are added to the coefficients of j(y, (}) and y(y, (})

CHAPTER 7. THE COEFFICIENTS OF AS APPROXI.UATE GCD 155

with

8d,m]
1' E]RTrI-rl,

andd" is added to a",

Eq.(7.14) is a non-linear equation for the vectors Zd. Stl. ttl and cd(8), and the

scalars 130 and 8. This non-linear equation is solved by the)i(~wtoll-Haphs()n method,

(7.15)

and thus

is equal to

[

f(8 + 158) + PdC';d + !5sd, 8 + !5e) 1
(C\'o + (Jo + 5/30) (g(8 + !5f)) + qd(td + !5td, 8 + 158))

(7.16)

[

Ud ('Ud , 8 + !5f)) + Pd(Zd + !5zd, f) + 5f)) 1
- cd(8 + 6e).

V,1(Vd, 8 + 58) + Ch(Zd + !5zd, f) +!5B)
(7.17)

The Newtoll-Raphson method requires that the lowest order term of the Taylor

pxpansion of this expression he considered, and it is simplest if the terms in (7.16)

and (7.17) are considered separately.

CHAPTER. 7. THE COEFFICIENTS OF AN APPR.OXIMATE GCD 156

Since

- - or OPd ~ aPd
f(61 + <5(1) + P(l"d + b8d, e + be) ;::::; f + Pd + oe be + oe be + ~ U"'d 1 68<1", (7.18)

1=0 '

and

(no + /30 + b(1o) (g(61 + be) + qd(td + 6td, e + be))

- ; (Og uqd ~ oqd) ;::::; (no + (1o)(g + qd) + (CYo + (10) ae 6() + l)e be + ~ ot
d
.,6td"

+(g + qrL)6/30, (7.19)

to fin,t order. where

and

or
061

og
oe

o

o

OQ,J
ae

m s em-l
• d,D

8d,m-l

o

nt en - 1
d,O

o
it follows that (7.18) and (7.19) are the first order approximation of (7.16). It is

verified that there exist square diagonal matrices S = S(e) and T = T(e) such that

and

CHAPTER 7. THE COEFFICIENTS OF A.V APPRDXI.\IATE GCD 157

where

5 = 5(8)

T = T(e)

and thus

ding [em (pn-l

ding [WI ert - 1

... e 1 1 E lR.(rn+l)x(m+l),

ell E lR.(rt-t-l)x(rt+I),

(7.20)

(7.21)

11/ [J rt D
L a~d 68d.i = 568d and L a~d Md.l = TMd. (7.22)
;=() • d,l 1=() "d,l

COllsider nmv the first order approximation of (7.17). The coefficimt matrix of

this term is

A,t(Ud, V<1, e + be) + Bd(::d + 6::11.8 + 6e)

[

Ud (Ud, 8 + 68) + ~l(Zd + ~Zd' e + ~e)] ,
~~lv,j, e + 68) + Qd(::d + (Y::,j. e + (y8)

which is of order (m + n + 2) x (d + 1), where

It follows that

(7.23)

CHAPTER 7, THE COEFFICIENTS OF AN APPROXIMATE GCD 158

to first order, where

[~], ~ o(} [
S!f:]
OQd
o(}

d ed-l
Cd,O

Cd,d-l

o
Tl t ' iJ!l...J. ~ ~, d OQd 'l b). t' 1 Ie lIla .nee!:') (}(), o(} , o(} an o(} are gIVen y, respec lye y,

(m - d)u gm-d-l
d,D

Ud,rn-d-l

o

(d) ()n-d-l n - Vd,D

(n - d - 1)Vd,l gn-d-2

Vd,n-d-l

o

(TT' - d)u em - d - 1
" d,n

'Ud,m-d-l

o

(d 1) (jn-d-2 n - - Vd,l

o

CHAPTER 7. THE COEFFICIESTS OF AS .\PPHOX!.\L\TE GCD 159

(m - d)z,u/JIII-d-1

Zd,m-d-l

o

(1) 'Y LJn- Ii I n - (, -ri,m-d+lU

(1 1) fJrt-d-2 n - (, - Zd.rll-d-,-2[7

Zd,nl+n-2d

o

(III-d)" f)'11 d-I -d.()

(f1/ - d - l)'::d 10'11 I 'J
(-

o

(f) ~ IlIl-d-1
/I - (-r1JII-rit 117

(I 1) On--d-'2
1/ - (- :::",111 d t :!

o
Also, there exists a matrix Zrt(Cd. 0) E lR.(mTn-t-2)" (m~Il-'2d<!J.

(7.24)

where Zd,l (Cd, 0) E lR.(m+l)x (m+n-2d+2) and Zd.2(Cd. 0) E R(Il+ I J" (m+Il-'2d+'2), such that

(7.25)

for all Cd, Zd and O. It therefore follows that on differentiating both sides of this

equation with respect to Zd and keeping 0 constant.

(

TTt+n-2d+l ')B)
Zd(Cd, 8)8zd = L ~~ Ii rSzd .1 Cd'

1=0 -d"

(7.26)

The matrices Zd,l (Cd, 0) and Zd.2 (Cd, 0) can be expressed as fUllctiolls of the Toeplitz

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 160

matrices Cd,l (Cd) and Cd ,2 (Cd) respectively,

Zd,1 (Cd, 0) [Cd,1 (od)8d,1 Om+ l,n-d+1] ,

Zd,2(Cd,0) [On+l,m-d+1 Cd,2(Cd)8d,2]'

CHAPTER 7. THE COEFFICIENTS OF AS APPROXDIATE GCD 161

Example 7.1. Let m = 5, n = 3 and d = 2. Thus

C2,0 ()5 0 0 22,0

C2, 1 ()4 C2,0()4 0 0 22,1

C2,2()3 3 3 0 0
Z2,1(C2, ())Z2 =

C2,1 () C2,0() 22,2

C2,2()2 (;2,1 ()2 C2,0()2 0 () Z2,:l

C2,2() C2,1 () () () Z2,.1

C2,2 0 0 Z2,5

and

Z2,O

0 0 0 0 C2,O()3 Z2,1

0 0 0 0 C2 1 ()2 (;20 e2 Z2,2
Z2,2(C2, ())Z2 =

0 0 0 0 C2.2() C2 Ie Z2,:l

0 0 0 0 C2,2 Z2,4

Z2,5

It is readily checked that (7.25) is satisfied. 0

The substitution of the first order approximations (7.18), (7.19) and (7.23), and

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 162

the simplifications (7.22) and (7.26), into (7.16) and (7.17) yield

(7.27)

The jth iteration, j = 0, 1,2, ... , in the Newton-Raphson method for the solution

of (7.14) therefore yields

[Z,/ I On::,+1
Om+l,n+l Om+l,l

U)
6Zd

(j)

(8C + ~) + (?2Y.st. + f:!.EIL) - + (U + P.) ~] - 80 80 80 80 Cd d el dO

- (no + f3o) (~ + ~) + (~ + 8~i) Cd + (Vd + Q d) ~

6sel

Mel

6f3o

M)

(7.28)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 163

The improved estimates of Zd, Sd, td, {30 and () are calculated from
(j+ 1) (j) Ul

Zd Zd 6Zel

Sel Sd 6Sd

tel td + Md

/30 (30 630

() () 6()

where the initial values in the iteration are

S(O) = 0
d ,

p(O) = 0 --Jo . (7.29)

The initial value of the residual is therefore

(7.31)

Cw=g, (7.32)

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 164

where C E IR(m+n+2) x (2rn+2n-2d+(j) , W E jR2rn+2n-2dHi and 9 E Rm+n+2 are given by

C =

w

9

Orn+l.n+1

(-) 1 U) 8r ~ (0l.JJ. Q&) - (U P) <E..a.
- 80 + 80 + 80 + 80 Cd + d + d dO

((3) (£S. ~) (~ ~) - (V Q)<E..a. - a o + 0 80 + 80 + GO + {)O Cd + d + d dO

[
5 ~(j) 5s(j) M(j) M3(j) M)(j) 1 T

4-d d <1 ' 0

(7.33)

(7.34)

(7.35)

It is clear that (7.32) is under-determined and it therefore has an infinite number of

solutions. It is desired to compute the solution of (7.32) that is closest to the given

inexact data, and it is therefore required to minimise

.,,(j+ I) ~(O)
""<1 ""d

.,(j+I)
'd

.,(0)
' d

t(j+I)
'<1

t~O)

(J~j+l) j3~0)

()(j+ I) ()o

z(j)
d +

s(j)
d +

t(j)
d +

!3~j) +
()(j) +

J~(j)
""d

Js(j)
d

Jt(j)
d

Jf3~j)

J()(j) - ()
0

Js(j)
d

M(j)
d

J!3~j)

-)j)
""d

J()(j) -(()(j) - eo)

subject to (7.32), using (7.29). If E and f are defined as

E 12m+2n-2d+6

f - [z!;ll SY) t~) (J!,j) 00) - 0
0
r E 1R2m+2n-2d+6,

(7.36)

(7.37)

CHAPTER 7. THE COEFFICIKVTS OF AX APPROXI.HATE GCD 165

then it is required to solve, at each iteration. the least sq1lares <'quality (LSE) Con-

strained problem,

min IIEw - III subject to Gil' = g.
111

where C, I and 9 are updated between successive it('rat iC)lls. and th(' iuitial value of

I and 9 are I = ° and 9 = r(O, 0, 0, Cd, 0, eo). which is defined in (7.:31).

The QR decomposition can be used to solve the LSE problelll at (~ach iteration

[24]. Specifically, let

T [RJ] C = QR = Q 0 . (7.38)

where Q E jR(2m+2n-2d+6)x(2m+2n-2d+6) is an orthogonal matrix, R E jR(2T1l+2n-2d+6)x ('Tn+n+2

and Rl E jR(m+n+2)x(m+n+2) is a non-singular upper triangular matrix, be the QR de-

composition of CT. If

T [V] Q w = ,
lJ

where v E jRT1I+n+2 and lJ E jRm+n-2d+4, the constraint C ILl = g becomes

due to

and thus v = RIT g.

Cw (QRfw

T T R Q w

[Rf 0 1 [:]

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 166

Similarly, if

where E1 E]R(2m+2n-2d+6)x(m+n+2) and E2 E lR,(2m+2n-2d+6)x(m+n-2d+4) , the objpctive

function IIEw = 111 beconws

IIEw-lll

and thus it is minimised when

IIEQQ1'w - 111

[E' E2 J[~] -J

IIE1v + E2lJ - 111

IIE2 lJ - (J - E1v)ll,

from which it follows that the solution of the LSE problem is

(7.39)

(7.40)

Algorithm 7.1 shows the implementation of this algorithm for the calculation of

an approximate GCD of two inexact polynomials using the method SNTLN.

Algorithm 7.1: The calculation of an approximate GCD of two inexact

polynomials

Input Inexact polynomials l(x) and g(x) and d, the degree of their approximate

GCD.

Output An approximate GCD of l(x) and g(x), and the modified polynomials

1(y) and g(y) in the independent variable y, after the substitution x = Oy.

CHAPTER 7. THE COEFFICIKYTS OF AS APPROXI.\!:\TE Gel) 167

Begin

1. Calculate 0'0 and ()o using methods of linf'ar progralllllling. and preprocess f (x)

and g(x) to yield the polynomials f (.I;) and .& (/I). as showlI ill Section -1.4.

2. Vc. Calculation only for the dth subresllltallt lIlatrix S,jU .. &).

% Initialise the data for the solution of t IH' LSE problell!.

(a.I) Calculate the coefficients Uri I and l'd.I of /1(./') alld I{l') using 8 11 (j, g),

respectively.

d ~·t()-() an ()(! <1 - o'

(a.3) Form the vectors f(()o) and g(()()). and ('vnhlate ;;t awl ;;t at a = Bo.

(a.4) Calculat(~ t,lw initial estimate c;:J)(f1()) of C<1(O) froll! (7.:30), and the

initial residual r(O, 0, O. Cd, O. ao) frOll! (7.:31).

(a.5) Calculate the initial values of thp derivative '%f for () = 0".

(a.6) Initialise some variables in (7.29). and set

PrI = O.

and their derivative

aQd = 0
ae '

DprI = o.
DO

(a.8) Set 9 = r(O, 0, O. Cd, O. e,,). f = () and initialise 5 and T, which are

defined in (7.20) and (7.21) respectivdy. Initialis(' C from (7.33), and

define E, which is defined in (7.36).

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 168

3. Iteration = O. % The counter for the number of iterations

Repeat % Use the QR decomposition to solve the LSE problem at each

iteration

(b.l) Iteration = Iteration + 1.

(b.2) Compute the QR decomposition of CT from (7.38) in order to obtain Q

-7' (b.3) Set v = R} g.

(b.4) Compute u using (7.39).

(b.5) Compute the solution w from (7.40)

(b.6) Set

and

fJ := fJ + bfJ.

(b.7) Update Cd(fJ) from (7.13) and calculate the derivative ~.

(b.8) Update f(fJ) and g(fJ), and evaluate g! and g! from fJ.

Update Pd(Zd, fJo), Qd(Zd, fJo), o/it and afti from Zd and fJ.

Update Pd and ~ from Sd and fJ.

Update qd and ~ from td and fJ. Update Zd(Cd, fJ) from Cd and fJ.

(b.9) Update 5, T and C, which are defined in (7.20), (7.21) and (7.33), re-

spectively.

(b.IO) Compute the residual r(zd, Sd, td, Cd, /30' fJ), which is defined in (7.15),

and thus update g. Update f from Zd, Sd, td, /30 and fJ.

CHAPTER 7. THE COEFFICIENTS OF AN APPRDXL\JATE CCD 169

(b.ll) Calculate

4 S ,t ,- Ilr(z,j,8d,td,Cd,!3o,8lll - + iJ vf - -f(()) + (' B) v - - (()) + (t B)
. E, reSd - lied II ' a - a o IJO , - p" Sd, . g - g qd d,

and d = cd(B).

End

7.2 Examples

This section contains several examples that show the use of the method of SNTLN for

the calculation of an approximate CCD of two inexact polynomials. It is necessary

to explain some notation that is used in the following examples, If d is the degree of

an approximate CCD, then

• Sd(J, g), the dth subresultant matrix, is formed from the given inexact polyno-

mials f(x) and g(x),

• Sd(}, a o?;) is formed from the processed polynomials](./)) and ao.i}(y) , which are

defined in (7.2).

• Sr/(], ag) is formed from the polynomials j(y) and ag(y), which are calculated

from the method of SNTLN, that is, j(y) and g(y) have a non-constant CCD.

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 170

Example 7.2. Consider the exact polYllomials j(x) and ?J(x), whose roots and mul-

tiplicities are specified in Table 7.1. It is seen that rn = 26, n = 18 and the degree of

their GCD is d = 11.

Root of j(x) Multiplicity
-3.5540e-001 3

-9.7181e+000 1 Root of g(x) Multiplicity
2.4576e+000 3 -3.5540e-001 5

-5.3781c+000 5 -9.7181e+000 1
5.4870e-001 1 2.4576e+000 2

4.4998c+000 1 -5.3781e+000 3
2.1483e+000 5 5.4870e-001 3
1.7673e+000 2 4.4998e+000 4

-1.3313e+OOO 1
-5.1165e+000 4

Table 7.1: The roots and multiplicities of j(x) and g(x) for Example 7.2.

Uniformly distributed random noise was added to each polynomial, such that

the component wise signal-to-noise ratio [;:-1 = 108 . The noisy polynomials were then

preprocessed by the operations described in Section 4.4, thereby yielding the Sylvester

matrix S(], noy), where 0 0 = 10.2108 and ()o = 2.1097.

Figure 7.1(i) shows the variation of log4>d and logrd with k, and it is seen that

d<l> = dT = d = 11 1, such that these values are clearly defined by Methods 4 and 5,

which arc described in Section 6.1. Figure 7.1(ii), (iii) and (iv) show the normalised

singular values of Sd(], ng), Sd(f, g) and Sd(], ooy), where J = J(y) and og = ag(y),

are calculated from the method of SNTLN using Algorithm 7.1. It is seen that the

method of SNTLN significantly improves the result because

lThe degree of an approximate CeD is computed by the method of the first principal angle and
the method of residual.

l

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 171

• the rank of Sd(j, ag) is correct, and it is clearly defined,

• the rank of Sd(f, g) is incorrect , but it is defined,

• the rank of Sd(j, a 0 9) is correct, but it is poorly defined.

... ..\c

Cl
.Q

0.----------,

-8

-5

'O~

-- -10 b-
e

r:il -15
.Q

I
I

~
• . " .

-10
0
L--

1
+-
0
--'20 -250L--~1 0-~20:-----:3~0 -~40----::'50

-5
'O~

tj- -10
c
~

Cl
.Q

(i)

(iii)

30

k

\

~
40 50

'O~

-- -10
tj-
c

r:il -15
.Q

(ii)

\

~ ..
~.

·tt • • \ •
-250L--~10-~20----:3~O -----,-':40----::'50

(iv)

o

Figure 7.1: (i) The variation of log ¢k and logrk with k, and the normalised singular
values of (ii) Sd(],o:g), (iii)Sd(f, g), (iv) Sd(j, 0:0 9), with Cc = 10- 8 for Example 7.2.

CHAPTER 7. THE COEFFICIENTS OF A1~' APPROXIMATE GCD 172

Example 7.3. Consider the exact polynomials j(x) and g(x), whose roots and mul-

tiplicities are specified in Table 7.2. It is seen that Tn = 16, n = 23 and the degree of

their GCD is d = 13.

Root of j(x) Multiplicity
Root of g(x) Multiplicity
6.5743e+00O 3

6.5743e+OOO 3 3.718ge+00O 5
3.718ge+OOO 2

-4.6535e+000 2
-4.6535e+000 2 9.3897e+000 1
9.3897e+000 4 -6.3245e+000 [)

-6.3245e+000 2 -4.0012e+000 4
-4.0012e+000 3 4.4140e-001 3

Table 7.2: The roots and multiplicities of j(x) and ,q(x) for Example 7.3.

Noise was added in the componentwise sense to each polynomial, such that the

componentwise signal-to-noise ratio [;-1 is 108 . The noisy polynomials were then

normalised by the geometric means of their coefficients, after which they were pre­

processed, thereby yielding the Sylvester matrix S(j, O:og) , where no = 9.9244e - 003

and ()o = 3.6608.

It is shown in Figure 7.2(i) that the degree of an approximate GCD is clearly

defined using Methods 4 and 5, such that d", = dr = d = 13. Also it is seen from

Figure 7.2(ii) that the rank loss of Sd(], oJ]) is more clearly defined at d = 13 than the

rank loss of Sd(j, O:og) , that is, it is important that the method of SNTLN should

be used to calculate the modified polynomials J = J(y) and 0:9 = 0:9(y), and an

approximate GCD.

Since Tn = 16 and n = 23, the integer k ranges from 1 to min(m, n), and thus

k = 1, ... , min(m, n). The experiment is repeated for each value of k, and thus TeSk

and the value of IIEw - 111 are calculated using Algorithm 7.1, assuming Method 4

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 173

0 -1

-2

-5 -3

... -4 .e-
'O~

"
O -10

0
~

~ -5
C) C)

.2 .2 -6

0- -10

~ ,-------,

~ - . - S.(i.ob)

14 I·,
I ...

I ..
I ..
I lI.

-15 _ .. _ S.(] .oog) I ~
1.,,- __ 'T

'"l d

-20'----~-----'
o 10 20 20

-20L:::::=====-:=-~-~---1
o 10 20 30 40

k i

(i) (ii)

Figure 7.2: (i) The variation of log <Pk and log rk with k, (ii) the normalised singular
values of Sd(!, ag) and Sd(j, aog), with Cc = 10- for Example 7.3.

is used to determined which columns of Sk(j, aog) are removed to right hand side of

(7.6). Figure 7.3(i) shows that the variation of reSd with k enable the degree d of an

approximate GCD of j(y) and g(y) to be calculated b cau e

k = 1, ... d,

resk » 0, k = d + 1, ... ,16,

such that d = 13, and Figure 7.3(ii) shows that the degree d i also equal to 13, the

value of k for which IIEw - 111 achieves its minimum value. imilar result are shown

in Figure 7.3(iii) and (iv) when the columns of Sk(j, aog) are determined by Method

5.

It would appear from Figure 7.3 that the method of SNTLN can be used to

calculate the degree d of an approximate GCD of j(y) and g(y) because:

• reSk ~ 0 when k < d and reSk has maximum gradient at k = d,

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 174

• IIEw - fll achieves its minimum value at k = d.

It is however now demonstrated that this is not necessarily true.

-4 4
• r- ..

-6 .- ' t

- 2
-8

.......

"" I + <r.>
;3 0 I

~ -10
~ I

0 A I
..... , , / bO-12 o -2 ,It- • • .9 - t. .' " -14 bO , -+ - . /

.9 • ,
I -4 , I

-16 to -. - t _..- t. ' to -t- + -+- .. - to ~
, I

II
+

-18
0 5 10 15

-6
0 5 10 15

k k

(i) (ii)

0 4
I, I •
1\ /

1\ /

\ 2
-5 \ /

\ • I

""
, ,

<r.> ¥' I 0 (I)

\-. i3 ,.-.
0-10 ~

, , ,
..... , ~ bO =-2

.9 I

I ~ , .-- ,
bO , --15 I • •

...... _ e -.- . - - - . - -e .9 -4 , I , /
, I
,/

-20 -6 •
0 5 10 15 0 5 10 15

k k

(iii) (iv)

Figure 7.3: The method of SNTLN used to calculate (i) reSk, (ii) IIEw - fll, based
on Method 4, (iii) reSk , (iv) IIEw - fll, based on Method 5, with k, for Example 7.3.

If another perturbation is added to j(x) and g(x) with the same componentwise

signal-to-noise ratio €;;-l = 108 , and the new inexact polynomials f(x) and g(x) are

preprocessed by the operations described in Section 4.4, then new polynomials J(y)

and g(y) are obtained. It is seen that Figure 7.4 is similar to Figure 7.2, which means

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 175

the determination of d by Methods 4 and 5 and the rank estimate of Sd(j, c.:g) are

stable with respect to perturbations in the coefficients of the polynomials.

-1

-2

-3

"" "" -4 .e-
o ~ -5 ~

Cl Cl
.Q .Q -6

(i)

20

-5

0- -10
o

Cl
.Q - • - Sd(/,09)

-15 - ... - Sd(j,0
0
9)

* d

-20L---~---:---~::------'
o 10 20 30 40

i

(ii)

Figure 7.4: (i) The variation of log <Pk and log rk with k, (ii) the normalised singular
values of Sd(j, c.:g) and Sd(j, c.:og) , with Cc = 10-8 for Example 7.3.

Figure 7.5 shows that the variations of resk and IIEw - 111 with k fail to return

the correct value of d, when the column of Sk(j, c.:og) is chosen by Method 5. Similar

results were obtained when Method 4 was used to choose the column of Sk(j, c.:og) to

move to right-hand side of (7.6). The method of SNTLN cannot therefore determine

the degree of an approximate GCD with respect to this kind of perturbation in the

coefficients of the polynomials. o

7.3 Summary

This chapter has considered the use of the method of SNTLN applied to the ap-

proximate polynomial factorisation of two inexact polynomials for the calculation of

an approximate GCD. If the degree of an approximate GCD is given, it has been

CHAPTER 7. THE COEFFICIENTS OF AN APPROXIMATE GCD 176

o.-----~ •• --~----~~

-"" en
~

-5

~ -10
OJ
.Q

-15 ... _ ... _ . ~

\
'\
'\
\\ , \ , \

I \
I \

\

\

•
1\

I \
I I \ ,
\ I \ , ._. . -e.- .

• I

I' I
I ..

I
I

I
I ,

-200'--------~5 -----1~0----~15,..--'

k

(i)

4.-----~----~----~_, ,....
= 2
........

I
;:., 0
~

,.... .. -.. I ..,
\ ~ I \

• I • _e \
, I \

.. \ I

\ I

~ -*

k

(ii)

I

• ,
I

I ,
I
I

Figure 7.5: The method of SNTLN is used to calculate (i) reSk, (ii) IIEw - fll , based
on Method 5, with k, for Example 7.3.

shown that the method of SNTLN recovers good approximations to its coefficients,

and polynomials j (y) and g(y), which have a non-constant GCD. It is demonstrated

that the rank loss of Sd(j, ag) is clearly certified, even if the numerical ranks of

SdU, g) and Sd(j, aog) are not defined.

Apart from the feasibility of the method of SNTLN to the approximate polyno-

mial factorisation, there is a scope to increase computational efficiency. It is known

that this method requires that an approximate GCD be calculated from (7.12), and

thus it is useful to investigate an algorithm that exploits the Toeplitz structure in the

left hand side of (7.12).

Chapter 8

Calculating the roots of a

polynomial

A simple polynomial root solver has been introduced ill Chapter 3 to calculate the

multiplicities of the roots through a sequence of approximate GCD computations ,

after which the values of the roots are calculated through polynomial division opera-

tions. Since the calculation of an approximation GCD of an inexact polynomial pair

has been considered in Chapter 7, it is now appropriate to consider the polynomial

division p(x)/q(x), which reduces to the deconvolution of p(x) and q(x).

Assume that the ratio of p(x)/q(x) is a polynomiaL and random perturbations

c5p(:r) awl c5q(x) applied to p(:r) and q(x) respectively, cause

p(x) + c5p(:r)
q(x) + c5q(x)

to be a rational function. This means that deconvolution of two polynomials is an ill-

posed prohlem, and thus it is difficult to obtain a computationally stable solution. A

structure preserving matrix method is therefore used to guarantee that deconvolution

177

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOl\lIAL 178

of two polynomials is a polynomial and not a rational function. In this case, struc-

tured perturbations zp(x) and Zq(x) are added to the numerator and denominator

respectively, such that

p(.T) + c5p(:r) + zp(x)
q(x) + c5q(x) + Zq(x)

is a polynomial, that is, the denominator is an exact divisor of the numerator. It is

shown in Section 8.1 that the method of STLN [56] can be used to construct the

perturbations zp(x) and Zq(x).

With reference to the designed root solver, it is then necessary to solve a sequence

of polynomial equations, all of whose roots are simple. The solutions of these eqlla-

tions are then refined by the method of non-linear least squares (NLLS). This work

using the method of NLLS follows closely the work of Zeng [72], and it is shown in

Section 8.2 that the equation that is solved by the method NLLS is based on the

pejorative manifold of a polynomial that has multiple roots. This manifold has been

introduced in Section 2.3 in the consideration of the numerical stability of the roots

of a polynomial.

8.1 The deconvolution of two polynomials

This section describes the method of STLN for the solution of the deconvolution

problem. It is stated in Section 3.2 that a sequence of deconvolutions are required

for the polynomial root solver, such that a polynomial is involved for the kth and

(k + 1)th deconvolutions. It is therefore necessary to consider the application of a

linear structure preserving matrix method for several deconvolutions together,

i = 1, ... , m*, (8.1)

CHAPTER 8. CALCULATING THE ROOTS OF A POLYVO;\IIA.L 179

wl)('l'(~m. is an arbitrary number, and the polynomial dl...(.r) appears in the kth and

(A: + 1)th deconvollltiollS. The degrees of these polynomials are

i = 0 m •.

deg T;(X) = n), i = 1. ... _ 1//, •.

where
111.-1

L (ml + 1) = AI, L(m, + 1) = All.
/=() 1=0

and
m.

n, = Tn, I - Tn1 , i = 1. ... _ Tn •.

;=1

If d, E]Rm,+I, i = 0, ... , m., and r i E]Rn,+l, i = l. m •. are the vectors of the

coefficients of d, (x) and Ti (x), respectively, then (8.1) can be written in matrix form

as

do

d l

,.....,
(8.2) ,.....,

Dm. ~ 1 (dm • ~ 1) rTTl.~l dm.~2

dm.~l

where

i = 1, ... ,In._

and the coefficient matrix in (8.2) is of order A,1 x N.

It is assumed that the coefficients of the polynomials are inexact, and thus (8.2)

docs not possess an exact solution. It is therefore necessary to add a structured

matrix to the coefficient matrix, and a structured vector to the right hand side, of

this equation. In particular, let Zi E]Rm,+l be the vector of perturhations added to

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 180

the vector d i of coefficients of the polynomial di(x), i = 0, ... ,rn*, anti let

]

T
Atl ... Z ElR, m.

where

Zo

[Zmo+l Zrno+2 ... zmo+TTq+l

T

Zi [zn",+ .. +m,., +. ... zmo+ .. +m, +,] E lIl.",,+1

A matrix of structured perturbations is added to each of the Toeplitz matrices

Di(di), i = 1, ... ,rn*, and thus the coefficient matrix in (8.2) is replaced by

B(Zll'" ,zm.) = D(d11 ... ,dm .) + E(Zll'" ,zm.)

Dl (d1)

+

CHAPTER. 8. CALCULATING THE ROOTS OF A POLYNOIHIAL 181

11 'r' B(z z) E Tf])MxN and E,(z,) E 1TD(m,-l +1)x(n,+l), 'I' \v eel,"" m. m. "m. . 1, ... , m*, are

Tocpli tz matrices.

Consider now the vector on the right hand side of (8.2), the perturbed from of

which is

zo
do +zo do do

Zl

d] d]

+ [1M o] +Oz,
Zm.-l

d m .-2 d m .-2

d m .- 1 + Zm.-l d m.-1 d m .-1

Zrn ..

where

o = [1M : 0] E ~MXM1.

It follows that the corrected form of (8.2) is

(8.3)

where
T

r [rl r2 ... r m.-l r m.] E ~N
and

T

d = [d] E]R.M do 1· .. d m .-2 d m .- 1 .

The residual due to an approximate solution of (8.3) is

r = r(z) = d + Oz - (D(d1 , .•. ,dm.) + E(Zl,'" ,Zm.)) r, (8.4)

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 182

and thus a first order Taylor expansion of r(z) yields

r(z + bz) = (d + O(z + bz))

where

- (D(d1 , ... ,dmJ + E(ZI + bz1 , ... ,Zm. + bZmJ) (f + bf)

r(z) + Obz - (D(d1 , ... , dmJ + E(Zl,"" ZmJ) bf

There exist matrices Zi(fi) E IR(m,-l +l)x(m,+l), i = 1, ... ,m*, such that

i = 1, ... , m*,

and thus

i = 1, ... ,m*,

(8.5)

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 183

from which it follows that

=

o

o
z(r}, ... , r mJbz,

where Z = Z(r}, ... ,rmJ E lRAfxMj is equal to

o
o

The substitution of (8.6) into (8.5) yields

Zm.~l (r m.~d

r(z + oz) = r(z) - (D + E)br - (Z - O)oz,

and thus the Newton-Raphson method requires the iterative solution of

oz

(8.6)

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 184

which is an under-determined equation, where r = r(z) and

[(D + E) (Z - 0) 1 E ~A1 x(N+A1j).

If f U)) and z(O) = 0 are the initial values of f and z, respectively, in the Newton-

Raphson method, then the U + 1)th iteration requires the minimisation of

r(j+ 1) - fUl)

Z(j+l) z(j) + bz(j)

subject to

[1
(j) [bf(j)]

(D + E) (Z - 0) .
bz(J)

where the initial value of f is calculated from (8.2),

do

(8.7)

and X t = (XT xt1 X T. The initial value of the residual is therefore

(8.8)

This is an LSE problem

min IISy - sll subject to Ty = t,
y

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 185

where

T = [(D + E)
(j)

(Z - 0) 1 E jRfI1x (N+fI1JJ ,

[

-(r(j) - r(O)) 1
E]RN+fI11 ,

-Z(j)

y = [sr(J) 1
SZ(j)

and t = r(j) E]RfI1.

It is known from Section 7.1 that the LSE problem can be solved by the QR

decomposition, which is shown ill Algorithm 8.1.

Algorithm 8.1: Deconvolution using the QR decomposition

Input The m* + 1 polynomials di (x), i = 0, ... , m*.

Output The m* polynomials Ti(X),i = 1, ... ,m*.

Begin

1. Set Z(rl) = 0 and calculate r(O) and ,(0) from (8.7) and (8.8).

2. Set s = 0 and t = ,to) 1 and initialise the matrices Sand T.

3. Iteration = O. % The counter for the number of iterations

Repeat % Use QR to solve the LSE problem at each iteration

(a) Iteration = Iteration + 1.

(b) Compute the QR decomposition of TT from (7.38) in order to obtain Q

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 186

(d) Partition SQ as

(e) Compute v = SJ(s - 511)).

(f) Compute the solution

(g) Set r := r + bT and Zk := Zk + 6Zk.

(h) Compute the retiidual T, which is defined in (8.4), and update T, sand

t = T.

(b.ll) Calculate c = d + Oz.

Until fu::Jl < 10-16 OR Iteration> 50. Ilf'll -

End

Since the deconvolution problem has been solved by a titructure preserving matrix

method, the computation of m* deconvolutions can yield a tiequence of polynomial

equationti with simple roots only, and more details are shown in Section 3.2. More-

over, the roots function in MATLAB is used to calculate the simple roots of these

polynomials initially, after which the method of non-linear least squares is uticd to

improve their etitimates, and this is considered in the next section.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYS(X\IIAL 187

8.2 Non-linear least squares for multiple roots

This section describes the method of non-linear least squares (~LLS) and its applica-

tion to the refinement of the roots of a polynomial. The ~('wton and Gauss-Newton

methods are considered and compared for the theory of the method of ~LLS, where

it is assumed that the multiplicity of each root is known and initial estimates of the

roots are given.

Consider the prohlem

(8.9)

where r = r(x) E ~m,x = {Xl} E ~n,n ::; m and each residual 1'; = 1'i(X) IS non-

lilH~ar. It follows that

and thus at a stationary point

!2!:..l. !2!:..l. .5!!l
a:q UX2 ax"

[1'1 1
fu fu ~

[0 o 1 rTJ = aXI UX2 ax"
0 (8.10) 1'2 ... Tm . ..

arm arm fZI:..w.
aXI aX2 ax"

where J = J(x) = V' h E ~mxn is the Jacobian matrix.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 188

The second derivative of h(x) is

iYh
8xI8:r:J

8 {.nt ori} - "'1'­OXI L t ox .
t=1 J

If the Hessian matrices Gi(x), i = 1, ... ,Tn, are defined as

82ri
G,(x) = V 2r;(x) E jRnxn, Gi(X)jl = a a '

Xj Xl

then
m

V 2h(x) = J(xfJ(x) + Q(x), Q(x) = L Ti(X)Gi(x),
;=1

(8.11)

where Gt(x) = G;(xf. The formulae for the Jacobian matrix J(x) and the Hessian

matrices Gi(x), i = 1, ... , Tn, enable Newton's method for the minimisation of h(x)

to be developed. Specifically, consider a quadratic Taylor expression of h(x) about

(8.12)

which achieves its minimum values when

(8.13)

that satisfies this equation is called the Newton direction, and it leads to the Newton

CHAPTER. 8. CALCULATING THE ROOTS OF A POLY1VOMIAL 189

iteration.

(8.14)

If Jrh + CJA, is positive definite, the initial estimate .1:0 is near the solution, and the

quadratic model (8.12) is accurate, then the iteration (8.14) converges quadratically

[9]. page 384.

It canllot. however, be guaranteed that J[Jk+Qk is positive definite, and thus the

quadratic model (8.12) Illay not have a minimum, and it may not have a stationary

point. If J[.h + Qk is singular, a stationary point exists only if J[Tk lies in the

column space of f;;'h + Q k.

The Ga1lss-:-Jewton iteration is derived from th(~ ~cwton iteration (8.14) by ne-

glecting the matrix Qk, that is, the second derivatives of Tk. and thus this iteration

IS

(8.15)

The iteration (8.15) is better behaved than the iteration (8.14) beca1lse J[.h is, at

least. positive semi-definite, but Qk mayor may not be positive definite. It will be

assumed that the rank of .h is equal to n, that is, .h has full column rank, such that

tlw matrix illV(~rse in (8.15) exists. It has been demonstrated in [72] that if the roots

:rj, j = 1, n, are distinct, this assumption is satisfied.

It follows from (8.l1) that the approximation Jrh + Qk ;::::: J[.h assumes that
Tn Tn

i=l i=l

is smalL that is, the residuals are small and/or they are only weakly non-linear. In

this circumstance, the iterations (8.14) and (8.15) behave similarly, and convergence

of the Gauss-0Jewton method is almost quadratic. If, however, the residuals are large,

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 190

then the convergPIH'(' of thp Gauss-:'-J'ewton iteration may be substantially inferior with

respect to the conH'rgPll(,(' of the :'-Jewtoll iteration. The application of the method of

NLLS to t,lw calculation of the values of the roots of a polynomial is now considered.

8.2.1 Calculating the values of the roots

In [72], it. is showll that the method of NLLS is used for the calculation of the values

of the roots of a p()I~·nOlllial. ana the equation that is solved by the method NLLS is

based on the pejorative manifold of the polynomial. The pejorative manifold of a poly-

nomial is ddilled by the multiplicity structure of its roots, which has been described

in Section 2.3. It also pn'scnts that. t.he import.ance of the pejorat.ive manifold arises

because lllult.iple roots ar(' usually assumed t.o be ill-conditioned, but they are insen-

sitive to perturbations that maintain the polynomial on its pejorative manifold. In

particular. the root.s of a polynomial are ill-conditioned when random (unstructured)

perturbations are applied to its coefficient.s, in which case the perturbed polynomial

does not lie on tlH' pPjorative manifold of it.s unperturbed form, but structured pertur-

bat ions are required to keep a polynomial on it.s pejorat.ive manifold. This property

of pejorative manifolds forms the t.heoretical basis of the algorithm in [72] for the

computa.tion of the roots of a polynomial, and thus the work using the method of

NLLS follows closely the work of Zeng [72].

Consider the polynomial f(~') of degree Tn with coefficients fi E JR., i = 0, ... ,Tn,

TIl

f(:r) = L 1,:rTll
-

i = lo:rrrt + flX m- 1 + ... + 1m-IX + 1m,
,=0

where

f() a []T [iJ. h. x rv = a I rL'2 ••• am - I am = fo fo

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 191

and rv denotes the correspondence between the polynomial f = f(x) and a, the vector

of its normalised coefficients. If the distinct roots of f(x) are Xj E JR, j = 1, ... , n,

and the root Xj has multiplicity mj, then

where

f(x) _ ITn

(_ .)mj _ m + ~ .() m-i t - x Xl -x ~gt X1"",Xn X ,

o j=l i=l

11

2:Tnj = Tn,
j=l

Equation (8.17) leads to the equation G(x) = a, where G(x) E JR"',

x=

(8.16)

(8.17)

(8.18)

It is shown in Section 2.3 that given a multiplicity structure m = [mJ, m2, ... , m n],

the pejorative manifold M of a monic polynomial f(x) of degree m with n distinct

roots for m is defined from (2.9) and given by

It follows from the theory above that the distinct roots Xj,j = 1, ... ,n, of f(x) are

the solution of the non-linear equation (8.18). This is a set of m equations in n

unknowns, where m > n if f(x) contains a multiple root, and m = n if and only if all

the roots of f(x) are simple. These equations are solved by the method of NLLS, and

thus it is necessary to determine the vector x that solves the minimisation problem

1 {1 m } min -;- IIG(x) - all; = min - ""(gi(X) - ai)2 .
xElRn 2 xElRn 2 ~

i=l

Comparison of this function with h(x) in (8.9) shows that

i=l, ... ,m, XEJRn
,

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 192

and the elements of the Jacobian matrix J = {Jij } ~~:l of the functions Tl (x) are

aT; a9i(X)
J1J = -a = a .

Xj Xj
(8.19)

This stationarity condition (S.lO) becomes

TT J = [G(x) - a]T J = 0, (8.20)

which shows that the vector G(x) - a is orthogonal to the tangent plane of the

manifold M. = {w = G(x)Jx E]R,n} at w. = G(x.) where x = x. is a solution of

(S.20).

The coefficients of the normalised polynomial (S.16) can be obtained by repeated

convolution, and this enables the expressions for 9i(X), i = 1, ... , m, to be derived.

Algorithm S.2 shows pseudo-code for the calculation of the entries 9i(X), i = 1, ... ,m,

of G(x).

Algorithm S.2: The calculation of G(x)

Input The integers m and n, the roots x j, j = 1, ... ,n, and the multiplicity mj

Output The entries 9i(X), i = 1, ... ,m, of the vector G(x).

Begin

s = [1]

for j = 1,2, ... ,n

for l = 1,2, ... ,mj

s = conv(s, (1, -Xj)) % s is of length m + 1.

CHAPTER 8. CALCULATISG THE ROOTS OF ..\ POL LYO.\ [[A L 193

end

end j

for i = 1, 2, ... , m

g(i) = s(i + 1) o/c g(l) = g,(x)

end z

End

Since the elements of the Jacobian matrix J ,ue defilled ill (8.1~)). the jth column

of J is given by the vector

J = [OgJ(X) Og2(X)
] aT] OT)

r
iJq", - 1 (X) rJYm (X) 1

iJI J d.l')

and consider the polynomials (jj (x). j = 1. n. of t he degree rn - 1. sllch that the

coefficients of qj(x) are formed from the entries of .f).

()
D9I(X) m-I ag2(x) TII-" agTl/(x)

qj x = x + c 2' - + ... + - .. --
ax] aXj a.T)

D -a [xTn + 9I(X)Xm- I + ... + 9m(X)]
Xj

a -a ~(x - xd Tn1 (x - X2) Tn
2 ••• (r - x,,)TII,,] frolll(8.16)

Xj

-mj(x - Xj)m)-1 [rr(X - x!lm l
]

Ii]

-Tnj [IT (x - Xlt
ll

-
I

] II (.r - J'I).
1=1 Ii)

(8.21)

The expression (8.21) is therefore used in the pseudo-code ill Algorithm 8.3 for the

calculation of the elements of 1.

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 194

Algorithm 8.3: The calculation of J(x)

Input The integers m and n, the roots Xj, j = 1, ... ,n, and the multiplicity mj

of Xj'

Output The Jacobian matrix J = J(x).

Begin

u = [1]

for j = 1,2, ... , n

for l = 1,2, ... ,mj - 1

u = conv(u, (1, -xJ))

end

end j

for j = 1,2, ... ,n

for l = 1,2, ... , n, l =I=- j

v = conv(v, (1, -Xj))

end

J(:,j)=v % v is equal to the jth column of J

end j

CI/:\J>TFH 8. C:\/~Cl·L:\T/.\'C; TIlE nOOTS OF A POLYNOMIAL laG

End

:\Igurit Itlll X. I 1:-; (\ ("()Illi>illllt iOIl of Algorithm K.2 and 8.3 for the I(~a.st sqllar(':-;

:-;Ollltioll x. of (X.IX).

Algorithm x.I: The calculation of the roots x*

Illput Th(' \,(·(·t or XII of t IJ(' illit inl estilllates of the I('a. .. ,-;t sqllares solution X* of

(x.IX). tl](' ll11iltipli("itv III) of ('(\cit distillct root .To".i = 1. ... ,71, tli(' vector a of

Il()],]]lali:-;('d c()dli('i(·llt:-;. t IJ(' illt('g(']'s III and 1/, and the error tolerance E: r .

Output 'I'll(' 1('lIsl :-;(jlW]'(' :-;o!lIt.iOIl x* of (K.18).

Begin

I. S('t I. = () .

.) C'aklllat(· tl](' \'('('fo]' C:(xo) lIsing Algorithm 8.2, and the residuals

1', (XI)) = q, (xo) - (1" i = 1. m.

:1. Repeat

(a) Calculate the .JiI('()i>ian Illatrix .h = J(xd llsing Algorithm 8.3.

(d) Calculate tile v(~('tor C:(Xkt d llSlllg Algorithm 8.2, and the elements of

l'('sidual r(xh I)

i = 1. ... , m.

-

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 196

% Xk+l is the (k + l)th iteration of the vector x.

(e) Calculate the error

(f) Set k : = k + 1

Until be :::; Cr % local minimum attained

End

The implementation of the designed polynomial root solver is now detailed in next

section.

8.3 Overview of implementation of a polynomial

root solver

The polynomial root solver was introduced in Section 3.2, and the stages in the

algorithm were discussed in

(a) Chapter 4: preprocessing operations,

(b) Chapters 5 and 6: the calculation of the degree of an approximate GCD,

(c) Chapter 7: the calculation of the coefficients of an approximate GCD,

(d) Chapter 8: the calculation of the roots and their multiplicities.

('I/:\V[}JI 8, (',\U 'I 'L,.\'/'IS(; TIlL' HOOTS OF A POLYNOAIIAL 197

If illl(f) IS a gi\'t'll poI\'lltllllial ill tl\(, pn'S('IH'(' of Boise, th(,ll a seqlwllce of approx­

illlal t' (;(' I) ('()lllplilal i()lIS

iI,(r) -= (;C'I) (rI, 1(.r),d;I\(.r)), i = 1. ... ,711.,

<lrt' ('lllllplt'lt'd IISlllg ,\Igorithlll I,l. It was stated ill Sectioll J.2 that a sequellce

(d' POh'!llllllials ',(f). I = I. 111. an' ('qllal to tlw d(~convollltion of d, 1(1') and

iI,(I'), Sillli);lrh'. a St'qllt'lj('t' of poI\'n()lllials \Jr), i = L",. m. - 1. aw equal to tIl('

d{'(,llll\'{I!tltiIJlI of 1,(.1') a!ld 1,,1('1'), alld \TII.(.r) = Til,. (.r). ill which case \,(.1') contains

t'itllt'l' IJlIl\' silllplt' ro()ls. ()r \,(.1') ha:-; llO roots and it is (~qllal to a constant. It is

t IJ('rt'/t lrt' ('1mI' t hilt I, (f) a!ld \, (.1') ('all jH' calclllat('d by Algorit hIll 8,1. The roots

fllllt'lioll ill \J.\TI.,\Jl is tlH'lI IIS('<I to calclllate th(' silllpl(~ roots of x,(:1'), whos(' roots

<lrt' rdilH'd 1)\' :\lgorithlll 8.1. Thes(' illlprov(~d (~stilllates of th(' roots of \,(.r) are

{'qllal Itl lIlt' ro()ls ()f tl ll (,I') with Illllltipliciti('s i,

:\lgorit hlll K,;) cOlltains ps('udo-code for th(' illlplelllentation of this root soln'L

<llId is a COlllllinat iOIl of ,-\lgorit hillS :~,l. G,2. 7.1. 8.1 and 8.-1 for the calculatioll of thl'

Algorithm 8.S: A robust polynomial root solver

Input All ilH'Xil('t polnl()lllial do(.r).

Output TIJ(' roots of do(.r),

Begiu

I. SI'1 .J = () .

.) While dq!,re(' d, > () do

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 198

(a) Set j = j + 1.

(b) Calculate the degree of an approximate ceo of dj - 1 and its derivative

d;~l using Algorithm 6.2.

(c) Calculate an approximate ceo of dj - 1 and d;~l using Algorithm 7.1,

dj = ceo (dj-l,d;~l)'

End While

3. Calculate Ti = d~~l, i = 1, ... ,j, using Algorithm 8.1.

4. Calculate Xi = TiT~l' i = 1, ... ,j - 1, using Algorithm 8.1.

5. Set Xj = Tj.

6. Calculate the roots Xi of Xi, i = 1, ... ,j, using the roots function in MATLAB.

% They are of multiplicity i.

7. Calculate improved estimates of the roots of the polynomial do(x) using Algo­

rithm 8.4, with initial estimates of the roots Xi and their multiplicity i.

End

Example 8.1. Consider an exact polynomial do(x) of degree m = 31, whose roots

and multiplicities are specified in Table 8.1. Noise with componentwise signal-to-noise

ratio 1:;:-1 = 108 was applied to do(x), thereby yielding do(x).

Algorithm 8.5 can be used to calculate the roots of the inexact polynomial do(x),

and the result is shown in Table 8.2. The pt column of Table 8.2 shows the computed

multiplicities through a sequence of the approximate ceo computations, the 2nd and

Cl/.lPTEl? 8. ('.·\LCl'LlTISC; THE HOOTS OF A POLYSO.\IIAL

Hoot of r/o(;r)
-1.7:22:k+OOO
: L OO:2k+O()()
9.·1 !)(j 7 e + O()O

-K.IK()7('+O()()

1.71Ok+OOO

),1111 t.i plici ty

Tabl(· K.l: Th(' roots and mllltipliciti(~s of rio(:r) for Example ~.1.

199

;r" C()!tIlIIIlS sh()\\' illitial ('st illlates of th(' roots computed from Algorithm 8.1 and their

r('lilli\'(' err()rs n'sp('cti\·('I.\'. and 111<'1111 and GIll columns show improved estimates of

t hI' root s ('()JIlPllt ('d frolll Algorit hill ~.-1 awl tlwir relative errors respectively.

~'o lllJ)\ 1 ted Illit inl Root IIllproved Root
),1 11 It iplicit\' Hoot Error Root Error

: ~ -1. n:2:2c+()()() :~.·1620c-0()5 -1.7223e+OOO 1.8178e-009

·1 J.002:3e+()()() 4.1 ()~(je-()()5 3.0024e+000 1.3843e-009
1 ~).·1 ~)(j.')(·+O()O 2.0G7:3e-005 9. 1967e+000 4.2115e-009

!) -K·1K()(jc+O()O 9.-113ge-006 -8.4807 e+OOO 7.8752e-01O

11 1.7·1O·je+OOO :3. 795:3e-006 1.7404e+000 7.3028e-012

Tabl(' K.:2: Soh-illg an ill('xact polynomial equation for Example 8.1.

I t is d('ar that t IH' COlllPuted lllllltiplicities of the roots are equal to the multiplic-

it iI'S of til(' ('X(lct roots. Algorithm ~.1 ret1Jrns excellent initial estimates of the roots.

such 1 hat :\lgorit hm X.-l rd urllS a perfect answ('r because the relative errors of the

ro()ts are slllililer t haIl the Ilois(' level E:,. = 10-H
. o

Example 8.2. COllsi<i('r an (~xact polynomial rlo(x) of degree Tn = 36, whose roots

allel lllult iplicilics are sp('cifi('d ill Tabh~ 8.3. :.Joise with the componentwise signal-to-

nois(' ratio ::-;1 = lO~ was applipd to rlO(l:) , tlwn~by yielding do(x).

CHAPTER 8. CALCULATING THE ROOTS OF A POLYNOMIAL 200

Root of do(x) Multiplicity
-1.3708e+OOO 1
-3.2431e+OOO 2
4.4145e+OOO 3

-9.726ge+OOO 4
-2.5188e+OOO 5
8.4537e+OOO 6
9.2960e-001 7

-5.2230e-OOl 8

Table 8.3: The roots and multiplicities of do(x) for Example 8.2.

Algorithm 8.5 can be used to calculate the roots of the inexact polynomial do(x),

and the result is shown in Table 8.4. The pt column of Table 8.4 shows the computed

multiplicities through a sequence of the approximate GCD computations, the 2nd and

3rd columns show initial estimates of the roots computed from Algorithm 8.1 and their

relative errors respectively, and the 4th and 5th columns show improved estimates of

the roots computed from Algorithm 8.4 and their relative errors respectively.

Computed Initial Root Improved Root
Multiplicity Root Error Root Error

1 -1. 368ge+OOO 1.351ge-003 -1.3708e+OOO 5.4588e-00S
2 -3.2486e+OOO 1.7021 e-003 -3.2431e+000 1.3764e-007
3 4.4020e+000 2.S211e-003 4.4145e+000 1.2455e-007
4 -9.776ge+000 5.138ge-003 -9.726ge+000 1.4975e-007
5 -2.5176e+OOO 4.S811e-004 -2.5188e+OOO 8.7257e-009
6 8.5351e+OOO 9.6302e-003 8.4537e+OOO 1. 156ge-007
7 9.2960e-001 4.554ge-006 9.2960e-OOl 7.8113e-010
8 -5.2212e-00l 3.3691e-004 -5.2230e-00l 7. 5864e-0 10

Table 8.4: Solving an inexact polynomial equation for Example 8.2.

CHAPTEH H. C'A.LC'l·'L1TIS(; THE HOOTS OF A POLYX02\IlAL 201

It is seell that the cOlllputed Illultiplicities of tlw roots are equal t.o the Illult.iplici­

ties of exact)'Oot s. Alt hough Algorit hill 8.1 retlll'IlS SOllW accC'ptable initial estimates

of tl\(, roots. Algoritlllll x.1 still pC'rforllls wry w('ll bccaus(~ it. improves the results

sigllifi('allt k o

8.4 Summary

This chapter has consid('l'('d til<' uS(~ of the method of STLN applied to a structured

ilia t rix for t h(' solution of the de('ollvolu tion prohlmll, which is olle important part of

implelll('llt atioll of the polynolllial root solwl'. Sillce the relative errors of the roots

t hat are calculated from polynolllials \, (.1') arc sIllall hut not sufficient compared with

IlOis(' 1<,\"(,1, all illlpr()\'('Ill('lIt for til(' estilllates of the roots of an inexact polynomial

is dewloped using the lllethod of :.JLLS, in which case the method of NLLS solves

the equation that is solwd 011 tIl(' p(~.iorative manifold of t.his polynomial. It has been

showll in Exalllpl('s 8.1 and 8.2 that. the Ill(~t.hod of NLLS can improve the accuracy

of tIl<' COII1I)\lte<l roots sHch that t.he relative errors bet.ween the exact. and computed

roots ('all attain len'is that are Il('ar tlw noise level.

Chapter 9

Results

The implementation of a robust polynomial root solver has been considered in Chapter

8, and the success of this root solver has been shown in Examples 1.3-1.8 and 8.1-8.2

because it finds the exact roots of a noisy polynomial and their multiplicities. This

is not, however, the only situation. Computational experiments showed that in some

cases this root solver may find a computed solution that is the theoretically exact

solution of a neighbouring polynomial equation, that is,

distance (computed polynomial to given inexact polynomial) <

distance (theoretically exact polynomial to given inexact polynomial),

and hence a schematic graph is shown in Figure 9.1. It has been shown in Section

2.1 that the backward error is based on the observation that the computed solution,

which is in error, is the theoretically exact solution of a neighbouring problem, that

is, a problem is 'near' the problem whose solution is desired. Thus the backward error

is a measure of the distance between the problem whose solution is sought and the

problem whose solution has been computed. It is therefore concluded from Figure 9.1

202

CHAPTER 9. RESULTS

- - - --

perturbed \
polynomial \

,/

/

,/

I

/

/

/

,/

,/

,
\

\

\

"

exact
polynomial

" I
computed - - .!. __ -
polynomial I

" ,/ " ,/ ----

" ,

,/

,/

\

\

,
I

Figure 9.1: The solution of a neighbouring polynomial.

203

that the backward error of the computed solution is less than the error in the data,

and thus the computed solution is acceptable.

This chapter considers more examples for both situations, in which case the root

solver can obtain the roots of the original exact polynomial and their multiplicities, or

the exact roots of a neighbouring polynomial and their multiplicities. All the results

are therefore compared with some other methods, such as, Newton's method [45],

Muller 's method [21], Zeng's algorithm [71, 72] and the roots function in MATLAB.

Newton's method is one of the most widely used methods of solving polynomial

equations, as is Muller's method, and Zeng's algorithm is explicitly designed for the

computation of multiple roots. Newton's method and Muller's method can calculate

only the simple roots due to their inability to find the multiplicities of multiple roots

unless special precautions are taken, while Zeng's algorithm and the roots function

CHAPTER 9. RESULTS 204

m MATLAB can compute not only the values of all multiple roots but also their

multiplicities.

Zeng's algorithm uses a MATLAB package, MULTRoOT,

z=multroot(p, threshold),

to compute the roots and their multiplicities. If threshold is omitted such as z=mul troot (p) ,

threshold = 10-10 as default. The work in this thesis does not require the knowledge

of the noise level, and thus comparison of the results that are computed by different

methods requires that the noise level be omitted in MULTRoOT, that is, thresh-

old argument should not be included in MULTRoOT. Different situations, however,

occur:

• in the absence of noise (only roundoff error), z=multroot (p) returns perfect

answers .

• in the presence of noise, z=mul troot (p, threshold) returns good answers if

threshold 2: (signal-to-noise ratio)-1, that is, threshold 2: cc. But if threshold

< Ce, the multiplicities of the roots are destroyed, and only complex conjugate

simple roots are returned. It therefore follows that z=mul troot (p) returns

incorrect answers when Cc > 10-10 , that is, the multiple roots split up into a

cluster of simple roots.

Example 9.1. Consider an exact polynomial j(x) of degree m = 27, whose roots

and multiplicities are specified in Table 9.1. Noise with componentwise signal-to-noise

ratio c;;1 = 107 was applied to j(x), thereby yielding f(x). The designed root solver is

used to compute the roots of the perturbed polynomial f(x) and their multiplicities,

and these results are also shown in Table 9.1.

CHAPTER 9. RESULTS 205

Exact Exact Computed Computed Root
I\Illltiplicity Root Multiplicity Root Error

2 8.1031 2 8.1031e+000 2.7481e-007
8 -0.6306 8 -6. 3060e-00 1 1.2101e-008
8 3.5078 8 3.5078e+000 3.8261e-008
9 -5.8211 9 -5.8211e+000 2. 1803c-008

Table 9.1: The computed roots of an inexact polynomial for Example 9.1 using the
designed root solver.

It is clear that the roots of f(x) and their multiplicities are certified correctly

because the relative errors of the roots fluctuate at the noise level Cc = 10-7 and the

cOIllputed multiplicities are the same as the exact values.

Also, finding all zeros of f(x) is considered by other methods, which are Newton's

method. :VIiiller's method, Zeng's algorithm and the roots function in MATLAB. In

particular, Newton's method and).1iiller's method can be used to calculate the value

of a multiple root, but are not sufficient to find its multiplicity. Since f(.7:) is of degree

27, for simplicity, the roots of f(x) are computed by using these methods 27 times,

with different initial estimates that are uniformly distributed random variables in the

range [-10,10]' and the computed roots are then sorted in ascending order.

Figure 9.2 shows the solution of the inexact polynomial equation calculated by

:"Jewton's method, Miiller's method, Zeng's algorithm and the roots function in MAT-

LAB, separately. It is shown that Newton's method performs better than Muller's

method because of smaller errors between the computed roots and exact roots in

Figure 9.2(i), but both methods can not be used to compute the multiplicities of the

roots. The result shown in Figure 9.2(iii) is similar to the result shown in Figure

CHAPTER 9. RESULTS 206

9.2(iv) because the computed multiple roots are ill-conditioned with evidence of in­

creasing instability as their multiplicities increase and the break up as a cluster of

simple roots, that is, roundoff errors due to floating point arithmetic and errors in

polynomial coefficients are sufficient to cause an incorrect and unacceptable solution.

Ol
."

.E

15rr===~==~~~--~--~---'

I . Computed Root I
Exact Root I

10

5 •• ••••••••
o •••••• ••

-5 :::::::::

-10L-----~--~--~--~--~------'
o 5 10 15 20 25 30

**

0.5 •
•

o •

*
-0.5 •

*.

i

(i)

i
• .*
• *

••
•

•

-1~----~----~----~----~
-10 -5 0 5 10

Real

(iii)

8 a:::

15 11 • Computed Root I
II Exact Root

1 oL "--------'----'

5
••• ••• •• ••

o ~
-5 •••••••• , •• , ••••

••• •••••
-10'--'---~--~--~--~--~--~

o 5 10 15
i

(ii)

.*
0.5

•

o

-0.5

'.

20

. •

· .
· . •

25 30

-1 L-------~----~----~--------'
-10 -5 0 5 10

Real

(iv)

o

Figure 9.2: The computed roots of an inexact polynomial for Example 9.1 using (i)
Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and (iv) the roots
function.

CIL\PTEH 9. HESlJLTS 207

Example 9.2. Consider an exact polynomial j(x) of degree rn :n, whose roots

alld ll111itiplicities are specified in Table 9.2.

Exact Exact Computed Computed Root
:\Iultiplicity Root Multiplicity Root Error

:~ -1.7223 ~~ -1.7223e+OOO 1.8178e-008
4 3.0024 4 3.0024e+000 1.3843e-008
,4 9.4967 4 9.4967c+000 4.2115e-008
9 -8.4807 9 -8.4807e+OOO 7.8752e-009

11 1.7404 11 1.7404e+000 7.302ge-011

Table 9.2: The ('omputed roots of an inexact polynomial for Example 9.2 using the
desiglled root sol vcr.

\foise with componcntwise signal-to-noise ratio E;:-l = l(f was applied to j(x),

thereby yidding f(:J.} It is seen from Table 9.2 that the roots of f(x) and their

Illultiplicities are (,OIllpllted correctly by the designed root solver, such that the relative

errors of the roots are much smaller than the noise level Cc = 10-7 and the computed

Illultipli('iti('s are tlw same as the exact values.

Figuw 9.3 shows the solution of the inexact polynomial equation calculated by

~ewt()Il's llwthod, :\hiller's method, Zeng's algorithm and the roots function in MAT-

LAB. separately. In particular, Newton's method and lVIiiller's method are used to

calculate t Iw roots 31 times, each with a different initial estimate of the roots, which

an' ulliformly distributed random variables in the range [-10, 10], and the results are

t hell sort!'d ill ascending order. It is seen that Newton's method performs better than

:\liill(~r 's lllPthod because the errors between the computed roots and exact roots in

Figm(' 9.:3(i) are smaller than the errors in Figure 9.3(ii). It is clear, however, that

hot h methods can IlOt. calculate t.he Illultiplicities of these roots. Zeng's algorithm

alld the roots fUllction rdurll an incorrect and unacceptable result, but yield very

CHAPTER 9. RESULTS 208

similar answers that are shown in Figure 9.3(iii) and Figure 9.3(iv), respectively. It is

clear that the multiple roots split up into a cluster of simple roots because of roundoff

errors due to floating point arithmetic and errors in polynomial coefficients. 0

15 15 . Computed Root I • Computed Root I
Exact Root Exact Root

10 •••• 10 • •••

5 5
"0 ••••• •••• '8 •••• •••• 0 a: "111111111 " a: ::::

0 0 •••• ••••••••
-5 -5

......... .. ::::: ..
-10

0 5 10 15 20 25 30
-10

0 5 10 15 20 25 30

(i) (ii)

1.5 1.5

* • ...
* •• *

.
• 0.5 . * 0.5 .

* Ol Ol co 0 • * * **
co 0 • ...

.E .. .E
* •

-0.5 1>- * -0.5 •

• *. • * •

-1 -1
* * ..

-1 .5
-10 -5 0 5 10

-1 .5
-10 -5 0 5 10

Real Real

(iii) (iv)

Figure 9.3: The computed roots of an inexact polynomial for Example 9.2 using (i)
Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and (iv) the roots
function.

Example 9.3. Consider an exact polynomial j(x) of degree m = 37, whose roots

and multiplicities are specified in Table 9.3.

('!-!:\PTER 9. RESULTS 209

Exact Exact Computed Computed Root
~Iult ipli('it:v Hoot Multiplicity Root Error

1 -1.2102 1 -l.2102e+OOO l.2186e-008
1 0.13:371 1 l. 3371e-001 l. 6 739e-007
:3 -O.09906G :3 -9. 9065e-002 1.9463e-007
J ~J.0702 :3 9.0702e+OOO 2.8422e-008
[) -.J.9848 5 -4.9848e+OOO 1.1242e-009
8 -0.349:31 8 -3.4931e-001 1.5244e-008
8 2.0611 8 2.0611e+000 1. 1477e-009
8 7.3065 8 7.3065e+00O 1.0272e-008

Table ~).3: The COlllputed roots of all inexact polynomial for Example 9.3 using the
desiglled root sol V(~r.

\'oise with compOIH'ntwise signal-to-noise ratio c;l = 108 was applied to j(x),

tlH'reiJy ~'ieldillg f(:r). It is seen from Table 9.3 that the roots of f(x) and their

llluitiplicities are COlllp\lt(~d correctly by the designed root solver, such that the rel­

ative errors of the roots fiuc:tuate at the noise level Cc = 10-8 and the computed

Jllultipli('ities are the same as tlw exact values.

Figure 9 . .J shows tlH~ solution of the inexact polynomial equation calculated by

~('wt()Il's method, '\Iiiller's method, Zeng's algorithm and the roots function in MAT-

LAB. sq>aratcly, In particular, Newton's method and :l\,;liiller's method are used to

('alculaU~ the roots 37 times, each with a different initial estimate of the roots, which

are 1ll1iforlllly distributed random variables in the range [-10, 10], and the computed

roots are thell sorted in ascending oreier, as shown in Figure 9.4(i) and (ii), respec-

ti\'('l~" III spite of the Illultipliciti(~s of the roots, it seems that ;.Jewton's method works

better thall ~Iiill(~r's method because Newton's method can find the exact small roots

wlu'u i = 1.",,33, alld),;Iiiller's method yields inexact roots that vary with the

illitial ('stilllates of the roots, Zeng's algorithm and the roots function return an

CHAPTER 9. RESULTS 210

incorrect and unacceptable result , but yield very similar answers that are shown in

Figure 9.4(iii) and (iv) , respectively. It is clear that all multiple roots , especially for

the roots with big absolute values, split up into a cluster of simple roots because of

roundoff errors due to floating point arithmetic and errors in polynomial coefficients.

o

15 15 . Computed Root I • Computed Root I
Exact Root Exact Root

10
10

••• •••• 5 ••• '8 5 •••• g • ••
a:: a:: •••••••• • •• 0•.. :

0 •••••••••••• •••••••••••••• •.............
-5 •••••••••••••••••

•••
-5 ••••• ••

0 10 20 30 40
-10

0 10 20 30 40
i i

(i) (ii)

2 * 2 •
*

•
*

Cl
~

Cl . 10 0 • 10 0 •-.§ " .§ ~

* • -1 • -1

•
-2 • -2 • *

-5 0 5 10 -5 0 5 10
Real Real

(iii) (iv)

Figure 9.4: The computed roots of an inexact polynomial for Example 9.3 using (i)
Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and (iv) the roots
function.

CHAPTER 9. RESULTS 211

Example 9.4. Consider an exact polynomial j(x) of degree m = 32, whose roots

and multiplicities are specified in Table 9.4. Noise with componentwise signal-to-noise

ratio c~ l = 108 was applied to j(x), thereby yielding f(x).

No. Root of j(x) Multiplicity
Xl 4.9429 2
X2 -1.9729 3
X3 4.8336 3
X4 -5.8318 8
X5 1.9381 8
X6 2.1683 8

Table 9.4: The roots and multiplicities of }(x) for Example 9.4.

No. Computed Root of f (x)
-1. 972ge+000
2.2340e+000
4.8748e+000

-S.831ge+000
1.9718e+000

Computed Multiplicity
3
5
5
8
11

Table 9.5: The computed roots of an inexact polynomial for Example 9.4 using the
designed root solver.

The designed root solver is used to compute the roots of the perturbed polynomial

f(x) and their multiplicities, and the results are shown in Table 9.5. It is seen that

the computed roots of f(x) and their multiplicities are different from the exact roots

of j(x) and their multiplicities. This is, however, a correct solution for the inexact

polynomial equation because the residual of f(x) calculated from the computed roots

is smaller than the residual from the exact roots 1, in which case the residuals are equal

to 6.4806e + 001 and 6.4877e + 001, respectively. It also means that the computed

I Assume that the roots Xi , i = 1, ... ,n, with the multiplicities m i are the computed roots of the
polynomial f(x), and thus the residual of f(x) is equal to II flx)1I L~= l md(xi).

CHAPTER 9. RESULTS 212

solution is the theoretically exact solution of a neighbouring polynomial equation

that is 'nearer ' the noisy polynomial equation than the exact polynomial equation

whose roots are desired, with reference to Figure 9.1. Furthermore, it seems that the

proximity of the roots may lead to the occurrence of this situation because the pair of

roots Xl = 4.9429 with multiplicity 2 and X3 = 4.8336 with multiplicity 3 transform

to the root A3 = 4.8748 with multiplicity 5, and the pair of roots X5 = 1.93 1 with

multiplicity and X6 = 2.1683 with multiplicity transform to A2 = 2.2340 with

multiplicity 5 and A5 = 1.971 with multiplicity 11 .

Figure 9.5 shows the solution of the inexact polynomial equation calculated by

Newton's method, Muller's method, Zeng's algorithm and the roots function in MAT­

LAB, separately. In particular, Newton 's method and Muller 's method are used to

calculate the roots 32 times with different initial estimates that are uniformly dis­

tributed random variables in the range [-10, 10]. The results are then sorted in

ascending order, and they are shown in Figures 9.5{i) and (ii) , respectively. It seems

that Newton's method performs better than Muller's method because of smaller er­

rors between the computed roots and exact roots in Figure 9.5{i). The result shown

in Figure 9.5{iii) is similar to the result shown in Figure 9.5{iv) because the multiple

roots split up into a cluster of simple roots, which means that Zeng's algorithm and

the roots function fail to return the exact roots and their multiplicities. 0

CHAPTER 9. RESULTS

10ir=~==~==~--~--~--~-'

8
11 • Computed Root I

6

4

II • Exact Root I

...... :::::
15 2

& o
-2
-4

-6 11111111 •• •••

-8L-~--~--~--~--~--~~

o 5 10 15 20 25 30 35

(i)
1 . 5 .-~--~--~--~--~--~--,

0.5

o
* **

* *
* * *

*

**
*

* *
* *
*
*
* *

*
*

*
*

-0.5 * * *
* -1 **

-1.5L-~--~--~--~--~--~--.-J
-8 -6 -4 -2 0 2 4 6

Real

(iii)

10r;:::=======<:;~~--~--.,.--,

8
11 • Computed Root I

6

4

II Exact Root I

..... ••••••• ••
•••••••• ••••••••

•••
15 2

& o
-2

-4

••••••• : ..
-6 • • • • ••••

5 10 15 20 25 30 35

(ii)
1 . 5.-~--~--~--~--~--.,.---,

0.5

o

. · . · . · . .

••

• . .
-0.5

-1 ..
-1.5L-~--~--~--~--~--~--.-J

-8 -6 -4 -2 0 2 4 6
Real

(iv)

213

Figure 9.5: The computed roots of an inexact polynomial for Example 9.4 using (i)
Newton's method, (ii) Miiller's method, (iii) Zeng's algorithm and (iv) the roots
function.

Example 9.5. Consider an exact polynomial j(x) of degree m = 24, whose roots

and multiplicities are specified in Table 9.6.

Noise with componentwise signal-to-noise ratio c;l - 107 was applied to j(x),

thereby yielding f(x). The designed root solver is used to compute the roots of the

perturbed polynomial f(x) and their multiplicities, and the results are shown in Table

CHAPTER 9. RESULTS

No. Root of f(x) Multiplicity
Xl 7.6:)16 2
X2 -4.0665 3
X3 4.2243 5
X4 -5.5651 6
Xs -3.6244

Table 9.6: The roots and multiplicities of f(x) for Example 9.5.

No. Computed Root of f (x)
-7.4650(' 000
4.2244e+000

-5.6731e+000
-3.7176e+000

Computed Multiplicity
2
5
6
11

214

Table 9.7: The computed roots of an inexact polynomial for Example 9.5 using the
designed root solver.

9.7. Although the computed roots of f (x) and their multiplicities are different from

the exact roots of f(x) and their multiplicities, this is a correct solution for the inexact

polynomial equation because the residual of f(x) calculated from the computed roots

is smaller than the residual from the exact roots , in which case the residuals are

equal to 3.8687e - 002 and 2.1457e - 001 , respectively. It seems that the occurrence

of finding all zeros of a neighbouring polynomial depends not only on the proximity

of roots because the roots Xl = -7.6516 and X4 = -5.5651 have a small change of

value with the evidence of Al = -7.4650 and A3 = -5.6731 in the computed roots ,

respectively.

Figure 9.6 shows the solution of the inexact polynomial equation calculated by

Newton's method, Muller's method, Zeng' algorithm and the roots function in MAT-

LAB, separately. In particular, Newton's method and Muller 's method are used to

calculate the roots 24 times with uniformly distributed initial estimates of the roots

CHAPTER 9. RESULTS 215

in the range [-10,10]' and the computed roots are then sorted in ascending order, as

shown in Figures 9.6(i) and (ii), respectively. It is seen that both methods can obtain

only the biggest root at 4.2243. Figures 9.6(iii) and (iv) show that Zeng's algorithm

and the roots function fail to return the exact roots and their multiplicities because

the multiple roots split up into a cluster of simple roots . o

8 8

6 ~ I • Computed Root I 6 ~1 • Computed Root I . Exact Root . Exact Root

4 4 • :
2 2 ••

(5 (5 • 0 0 0 0 • 0::: 0:::
••••••• -2 -2 •

-4 -4
•••

.
.

-6 -6
. • •

-8 • • -8 . .
0 5 10 15 20 25 0 5 10 15 20 25

(i) (ii)

4 4

3 * 3
* *

2 • 2
• • •

C» * C»
til

0 * * * • til 0 • .E .. .E
-1 • .. -1

•
-2 * -2

* -3 * -3

-4
-10 -5 0 5

-4
-10 -5 0 5

Real Real

(iii) (iv)

Figure 9.6: The computed roots of an inexact polynomial for Example 9.5 using (i)
Newton's method, (ii) Muller's method, (iii) Zeng's algorithm and (iv) the roots
function.

CHAPTER 9. RE ULT 216

Example 9.6. Con id r an xa t pol nomi I /(x) of d gr e m = 33 who e root

and multipliciti ar p ifi din T bl 9.. oi with componentwi e ignal-to-noi e

ratio €~l = 107 w applied to /(x) th r by i lding f(x).

o. Root of /(x) Multiplicity
Xl -0.066495 1
X2 -6.39 r.: 2
X3 - ,4957 3
X4 2.4215 4
X5 6 2 <) A

I

X6 -2.3415 5
X7 -6.2319 6
x 6.5445

Table 9. : Th root and multiplicitie of / (x) for Example 9.6.

No. Computed Root of f (x) Computed Multiplicity
>'1 -5.9791ctOOO 1
>'2 -6.6495e-002 1
>'3 6.2191c· 000 1
>'4 2.4215e+000 4
>'5 -2.3415e+000 5
>'6 -6.3696e+000 10
).''7 6.6774 +000 11

Table 9.9: The computed roots of an inexact polynomial for Example 9.6 using the
designed root solver.

The designed root solver is used to compute the roots of the perturbed polynomial

f(x) and their multiplicities, and the results are shown in Table 9.9. It is seen

that the solution of a neighbouring polynomial equation is obtained instead of the

solution of the exact polynomial equation /(x) = 0, such that the residuals of f(x)

calculated from the computed roots and exact roots are equal to 1.9766e + 002 and

2.0476e + 002, respectively. Similarly, this neighbouring polynomial occurs when

CHAPTER 9. RESULTS 217

j(x) has a pair of close roots X5 = 6.8289 with multiplicity 4 and Xs = 6.5445 with

multiplicity 8, and three close roots X2 = -6.39 5 with multiplicity 2, X3 = -6.4957

with multiplicity 3 and X7 = -6.2319 with multiplicity 6, in which case these close

roots change to >'3 = 6.2191 with multiplicity 1 and >'7 = 6.6774 with multiplicity

11 , and >'1 = -5.9791 with multiplicity 1 and >'6 = -6.3696 with multiplicity 10,

respectively.

10 fl • Computed Root I 10 fl • Computed Root I
Exact Root . Exact Root

•••••••••••• ,
5 5

'0 '0 •••• •
a a
0::: 0::: 0 ••••••• 0 •.....•..• ••

• ••••••••••• '
-5 • •••••••

-5••.....•.• • •• ~. •
0 5 10 15 20 25 30 35

-10
25 30 35 0 5 10 15 20

(i) (ii)
2 2

• • 1.5
* * * 1.5 ..

*
* *

0.5
,.

0.5 * Ol
).

Ol
(1l

0 * ** * t (1l
0 \ & E "j E "

-0.5 • -0.5
* *

-1 * -1
* * * ..

-1 .5 * -1 .5 ,.
•

-2
-10 -5 0 5 10

-2
-10 -5 0 5 10

Real Real

(iii) (iv)

Figure 9.7: The computed roots of an inexact polynomial for Example 9.6 using (i)
Newton's method, (ii) Miiller's method, (iii) Zeng's algorithm and (iv) the roots
function.

CHAPTER 9. RESULTS 218

Figure 9.7 shows the solution of the inexact polynomial equation calculated by

Newton's method, Muller's method, Zeng's algorithm and the roots function in MAT­

LAB, separately. In particular, Newton's method and Miiller's method are used to

calculate the roots 33 times with uniformly distributed initial estimates in the range

[-10, 10], and the results are then sorted in ascending order, as shown in Figures

9.7(i) and (ii), respectively. It is seen that both methods yield the roots that equal

-0.066495 and 2.4215, but are difficult to find the close distinct roots. Figures 9.7(iii)

and (iv) show that Zeng's algorithm and the roots function fail to return the exact

roots and their multiplicities because the multiple roots split up into a cluster of

simple roots. D

9.1 Summary

This chapter has demonstrated the success of the designed root solver for determining

all zeros of an inexact polynomial compared with four algorithms, Newton's method,

~1iiller's method, Zeng's algorithm and the roots function in MATLAB. It has been

shown that the designed root solver may find not only the solution of the exact

polynomial equation whose roots are desired, but also the theoretically exact solution

of a neighbouring polynomial equation. It seems that the occurrence of the solution

of a neighbouring polynomial equation depends on the proximity of the exact roots.

The results of Examples 9.1 - 9.6 show that Newton's method performs better than

Muller's method, but both methods fail to certify the values of all multiple roots

correctly because these values vary with initial estimates of the roots. Also, these

methods fail to compute the multiplicities of multiple roots, and all computed roots

have unit multiplicity. It is also shown that Zeng's algorithm and the roots function

CHAPTER 9. RESULTS 219

are very sensitive to noise and roundoff errors due to floating point arithmetic with

evidence of the break up of a multiple root as a cluster of simple roots, and thus they

fail to return the exact roots and their multiplicities.

Chapter 10

Conclusions and future work

The main work presented in the thesis is the development of a polynomial root solver

using structure preserving matrix methods. This root solver, based on a method

developed by Gauss and described in Uspensky [62], involves approximate GCD

computations and polynomial divisions, both of which are ill-posed computations.

The designed root solver is implemented computationally in order to calculate

the multiple roots of a polynomial and their multiplicities in the presence of noise.

The experiments detailed in Chapters 1 and 9 show that this root solver performs

significantly better, particularly for non-trivial polynomials (high degree and many

multiple roots), than the standard methods, such as Newton's method and Milller's

method, as well as Zeng's algorithm and the roots function in MATLAB because the

designed root solver retains the mUltiplicity structure of a polynomial and the relative

errors between the exact and computed roots are approximate equal to the relative

input errors.

A novel situation may occur when the designed root solver determines the multiple

roots of a noisy polynomial. This is the occurrence of a neighbouring polynomial,

220

CHAPTt;H 10. CONCLUSIONS AND FUTUR.E WORK 221

which is nearer the given inexact polynomial than the theoretically exact polynomial

whose roots arc specified. This scenario is shown in Figure 9.1, and it is expected to

ohtain a computed solution that is the theoretically exact solution of a neighbouring

polynomiaJ equation.

It has been demonstrated III Chapter ~3 that the calculation of an approximate

GCD of two polynomials forms an important part of the designed root solver, and it

is clear that the df~terrnination of the degree of an approximate GCD is crucial to the

calculation of an approximate GCD because this is a non-trivial problem that reduces

to the estimation of the rank loss of a resultant matrix of the two polynomials. The

('xperinwllts detailed in Chapter 6 describe three good, and in many cases superior,

methods for tlu: determination of an approximate GCD of a noisy polynomial f(x)

and its derivative f(1)(x). It was, however, demonstrated that these three methods

lIlay return different results, and hence an attempt was made to determine the degree

of an approximate GCD based on these results automatically using the method called

MajoTity Voting. Also, it was found that this attempt failed for some complicated

polynomials, and manllal decisions were required. This therefore requires that the

methods for solving the rank loss estimate problem be improved in the future.

Since the structured matrix methods can be used to solve a polynomial equation

with multiple roots, future work includes the development of efficient algorithms that

optimise the structure of the polynomial root solver, as mentioned in Sections 1.3

and 6.4. ~loreovcr, future work and improvements to the designed root solver have

been suggested at the end of Chapter 7. It is believed that if these changes were

completed, results should be computed efficiently and improved significantly.

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis oj

Computer' Algorithms. Addison-Wesley, Reading, MA, USA, 1974.

[2] John. D. Allan. Statistical and structured optimisation method8 Jor the approx­

imate GCD problem. PhD thesis, Department of Computer Science, University

of Sheffield, UK, 2008.

[3] R. Askey. Orthogonal Polynomials and Special Functions. SIAM, Philadelphia,

USA, 1972.

[4] S. Barnett. A note on the Bezoutian matrix. SIAM J. Appl. Math., 22:84 86,

1972.

[5] S. Barnett. Polynomials and Linear Control Systems. Marcel Dekker, New York,

USA, 1983.

[6] R. C. Beach. An Introduction to the Curves and Surfaces of Computer-Aided

Design. Van Nostrand Reinhold, New York USA, 1991.

[7] B. Beckermann and C. Labahn. A fast and numerically stable Euclidean-like

algorithm for detecting relatively prime numerical polynomials. Journal of Sym­

bolic Computation, 26(6):691-714, 1998.

222

I3IBLIOGHAPHY 223

[~] D. Bini and P. Boito. Structured matrix-based methods for polynomial E-ged:

anal.\,sis and comparisons. In ISSA C '07 : Proc. Int. Symp. Symbolic and Alge­

braic Computation, pages 9 16. ACl\I Press, :.Jew York, 2007.

[9] A. I3ji>rck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,

USA. 1996.

[10] \Y. S. Brown. On Euclid's algorithm and the computation of polynomial greatest

common divisors. Journal of the ACM, 18(4):478504, 1971.

[11] F. C. Chang. Factoring a polynomial with multiple-roots. International lournal

of Cornputatumal and Matfwmatical Sciences, 2:173--176,2008.

[12] R. :-"1. Corless. P. :-"1. Gianni, B. ::VI. Trager, and S. ~1. Watt. The singular value

decomposition for polynomial systems. In ISSA C '95 : Proc. Int. Symp. Symbolic

and Algebraic Computation, pages 195207. ACyl Press, New York, 1995.

[1:3] R.:\1. Corless, S. M. Watt, and L. Zhi. qR factoring to compute the GCD of uni­

variaU' approximate polynomials. IEEE Trans. Signal Processing, 52(12) :3394-

:3-102, 2004.

: 1.1] D. K. Dunaway. Calculation of zeros of a real polynomial though factorization

using Euclid's Algorithm. SIAM J. Namer. Anal., 11(6):1087-1104, 1974.

: 15] D. K Dunaway and B. L. Turlington. Some major modifications to a Ilew method

for solving ill-conditioned polynomial equations. In Proceedings of the A CM

am/Ita/ confen:7/n;. pages 636-643. ACM Press, ~ew York, 1972.

[16] 1. Emiris, A. Galligo, and H. Lombardi. Certified approximate univariate GCDs .

.J. Pur'l' and Applied Algdmz, 117,118:229-251, 1997.

BIBLIOGRAPHY 224

[17] L. Foster. Generalizations of Laguerre's method. SIAM J. Numer. Anal.,

18: 1004---1018, 1981.

[18] P. A. Fuhrmann. A Polynomial Appmach to Linear Algebm. Universitext,

Springer Verlag, New York, USA, 1996.

[19] G. R. Garside, P. Jarratt, and C. Mack. A new method for solving polynomial

equations. The Computer Journal, 11:87-90, 1968.

[20] L. Gemignani. Structured matrix methods for polynomial root-finding. In IS­

SA C'07 : Proc. Int. Symp. Symbolic and Algebraic Computation, pages 175-180.

ACM Press, New York, 2007.

[21] C. F. Gerald and P. O. Wheatley. Applied Numerical Analysis. Addison-Wesley,

USA, 1994.

[22] S. Ghaderpanah and S. Klasa. Polynomial scaling. SIAM J. Numer. Anal.,

27(1):117-135,1990.

[23] S. Goedecker. Remark on algorithms to find roots of polynomials. SIAM 1. Sci.

Comput., 15(5):1059-1063, 1994.

[24] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University

Press, Baltimore, USA, 1996.

[25] J. Hadamard. Lectures on the Cauchy Pmblem in Linear Partial Differ'ential

Equations. Yale University Press, New Haven, USA, 1923.

[26] E. Hansen, M. Patrick, and J. Rusnack. Some modificiations of Laguerre's

method. BIT, 17:409-417, 1977.

BIBLIOGRAPHY 225

[27] U. Helmke and P. A. Fuhrmann. Bezoutians. Linear Algebra and Its Applications,

124:1039 1097, 1989.

[28] X J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadel­

phia, USA, 2002.

[29] F. B. Hildebrand. Introduction to Numerical Analysis. Tata McGraw-Hill, New

Delhi, India, 1974.

[30] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,

Cambridge , UK, 1985.

[31] V. Hribernig and H. J. Stetter. Detection and validation of clusters of polynomial

zeros. Journal of Symbolic Computation, 24:667--681, 1997.

[32] M. A. Jenkins and .1. F. Traub. A three-stage variable-shift iteration for polyno­

mial zeros and its relation to generalized Raleigh iteration. Numerische Mathe­

matik, 14(3):252-263, 1970.

[33] M. A. Jenkins and .1. F. Traub. Algorithm 419: Zeros of a complex polynomial.

Cmnm. ACM, 15:97 99, 1972.

[34] ~1. A. Jenkins and J. F. Traub. Principles for testing polynomial zerofinding

programs. ACM Trans. Mathematical Software, 1(1):26-34, 1975.

[35] G. F. Jonsson and S. Vavasis. Solving polynomials with small leading coefficients.

SIAM J. Matrix Anal. Appl., 26(2):400-414, 2005.

BIBLIOGRAPHY 226

[36] B. Kagstrom anel A. Ruhe. An algorithm for numerical computation of the

jordan normal form of a complex matrix. ACM Truns. Mathematical Software,

6(3):398 -419, 1980.

[37] W. Kahan. Conserving confluence curbs ill-condition. Technical report, Depart­

ment of Computer Science, University of California, Berkeley, USA, 1972.

[38] N. Karcanias and M. Mitrouli. Normal factorisation of polynomials anel compu­

tational issues. Comput. Math. Appl., 45:229-245, 2003.

[39] N. K. Karmarkar and Y. N. Lakshman. On approximate GCDs of univariate

polynomials. Journal of Symbolic Computation, 26(6):653--666, 1998.

[40] A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems.

Springer, New York, USA, 1996.

[41] T. 1. Lee, T. Y. Li, and Z. Zeng. A rank-revealing method with updating,

downdating, and applications. part II. SIAM 1. Matrix Anal. Appl., 31:503-525,

2009.

[42] B. Li, Z. Liu, and L. Zhi. A structrued rank-revealing method for Sylvester

matrix. Journal of Computational and Applied Mathematics, 213:212-223, 2008.

[43] T. Y. Li and Z. Zeng. A rank-revealing method with updating, downdating, and

applications. SIAM J. Matrix Anal. Appl., 26:918-946, 2005.

[44] B. Liang and S. U. Pillai. Blind image deconvolution using a robust 2-D GCD

approach. IEEE Int. Symp. Circuits and Systems, pages 1185-1188, June 9-12,

1999.

BIBLIOGRAPHY 227

[45] K. Madsen. A root-finding algorithm based on)J"ewton's method. BIT, 13:71-75,

1973.

[46] D. Manocha. Numerical methods for solving polynomial equations. In D. Cox

and B. Sturmfels, editors, Proceedings of Symposia in Applied Mathematics, vol­

ume 53, Applications of Computational Algebraic Geometry, pages 41~66. AMS,

Rhode Island, USA, 1998.

[47] D. Manocha and J. Demmel. Algorithms for intersecting parametric and alge­

braic curves II: Multiple intersections. Graphical Modds and Image Processing,

57(2):81-100, 1995.

[48] L. Miranian and M. Gu. Strong rank revealing LU factorization. Linear Algebra

Appl., 367:1-16, 2003.

[49] M.Lang and B. C. FrenZel. Polynomial root finding. IEEE Signal Processing

Letters, 1(10):141-143, 1994.

[50] S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill,

1996.

[51] M. T. Noda and T. Sasaki. Approximate GCD and its application to ill­

conditioned algebraic equations. Journal of Computational and Applied Mathe­

matics, 38:335-351, 1991.

[52] V. Y. Pan. Solving a polynomial equation: Some history and recent progress.

SIAM Review, 39(2):187-220, 1997.

[53] V. Y. Pan. Computation of approximate polynomial GCDs and an extension.

Information and Computation, 167:71--85, 2001.

BIBLIOGRAPHY 228

[54] S. U. Pillai and B. Liang. Blind image deconvolution using a robust GCD ap­

proach. IEEE Trans. Image Pmcessing, 8(2):295-301, 1999.

[55] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. NumeTical Recipes: The

ATt of Scientific Computing. Cambridge U. Press, Cambridge, UK, 1990.

[56] J. Ben Rosen, H. Park, and J. Glick. Total least norm formulation and solution

for structured problems. SIAM J. Matrix Anal. Appl., 17(1):110--128, 1996.

[57] J. Ben Rosen, H. Park, and J. Glick. Structured total least norm for nOll linear

problems. SIAM J. Matrix Anal. Appl., 20(1):14 30, 1998.

[58] A. Schonhage. Quasi-gcd computations. J. Complexity, 1(1): 118-137, 1985.

[59] G. A. Sitton, C. S. Burrus, J. W. Fox, and S. Treitel. Factoring very high degree

polynomials. IEEE Signal PTocessing Magazine., 20(6):27-42, 2003.

[60] P. Stoica and T. Soderstrom. Common factor detection and estimation. Auto­

matica, 33(5):985-989, 1997.

[61] D. Triantafyllou and M. Mitrouli. On rank and null space computation of the

generalized Sylvester matrix. Numerical Algorithms, 54(3):297-324, 20lO.

[62] J. V. Uspensky. Theory of Equations. McGraw-Hill, New York, USA, 1948.

[63] D. S. Watkins. Fundamentals of Matrix Computations. John Wiley and Sons,

New York, USA, 1991.

[64] J. Wilkinson. The evaluation of zeros of ill-conditioned polynomials. Numerische

Mathematik, 1:150-166, 1959.

BIBLIOGRAPHY 229

[65] .1. H. Wilkinson. Rounding Er'TOrs in Algebraic Processes. Prentice Hall, Engle­

wood Cliffs, ;-.Jew Jersey. 1963.

[66] .1. R. \\;'inkler. Polynomial roots and approximate greatest common divisors.

Technical report, DepartnH'llt of Computer Science. The University of Sheffield,

United Kingdom, 2007.

[67] .1. R. Winkler and J. D. Allan. Structured total least norm and approximate

GCDs of inexact polynomials. Joumal of Computational and Applied Mathe­

matics, 215: 113, 2008.

[68] C . .1. Zarowski. The MDL criterion for rank determination via effective singular

values. IEEE Trans. Signal Processing, 46(8):1741 1744. 1998.

[69] C . .1. Zarowski, X. ~1a, and F. W. Fairman. QR-factorization method for comput­

ing the greatest common divisor of polynomials with inexact coefficients. IEEE

Trans. Signal PT'Ocessing, 48(11):3042 3051, 2000.

[70] Z. Zeng. A method for computing multiple roots of inexact polynomials. In

ISSAC'OS : Proc. Int. Syrnp. Symbolic and Algebraic Computation. pages 266-

272. ACM Press, New York, 2003.

[71] Z. Zeng. ~·1ultroot - a ~1atlab package computing polynomial roots and multi­

plicities. ACM Trans. Mathematical Software, 30(2):218236, 2004.

[72] Z. Zeng. Computing multiple roots of inexact polynomials. Mathematics of

Computation, 74(250):869 -903, 2005.

BIBLIOGRAPHY 230

[73] L. Zhi and Z. Yang. Computing approximate GCD of univariate polynomials

by structured total least norm. Technical Report 24, MMRC, AMSS, Academia

Sinica, MM Research Preprints, 2004.

	543782_001
	543782_002
	543782_003
	543782_004
	543782_005
	543782_006
	543782_007
	543782_008
	543782_009
	543782_010
	543782_011
	543782_012
	543782_013
	543782_014
	543782_015
	543782_016
	543782_017
	543782_018
	543782_019
	543782_020
	543782_021
	543782_022
	543782_023
	543782_024
	543782_025
	543782_026
	543782_027
	543782_028
	543782_029
	543782_030
	543782_031
	543782_032
	543782_033
	543782_034
	543782_035
	543782_036
	543782_037
	543782_038
	543782_039
	543782_040
	543782_041
	543782_042
	543782_043
	543782_044
	543782_045
	543782_046
	543782_047
	543782_048
	543782_049
	543782_050
	543782_051
	543782_052
	543782_053
	543782_054
	543782_055
	543782_056
	543782_057
	543782_058
	543782_059
	543782_060
	543782_061
	543782_062
	543782_063
	543782_064
	543782_065
	543782_066
	543782_067
	543782_068
	543782_069
	543782_070
	543782_071
	543782_072
	543782_073
	543782_074
	543782_075
	543782_076
	543782_077
	543782_078
	543782_079
	543782_080
	543782_081
	543782_082
	543782_083
	543782_084
	543782_085
	543782_086
	543782_087
	543782_088
	543782_089
	543782_090
	543782_091
	543782_092
	543782_093
	543782_094
	543782_095
	543782_096
	543782_097
	543782_098
	543782_099
	543782_100
	543782_101
	543782_102
	543782_103
	543782_104
	543782_105
	543782_106
	543782_107
	543782_108
	543782_109
	543782_110
	543782_111
	543782_112
	543782_113
	543782_114
	543782_115
	543782_116
	543782_117
	543782_118
	543782_119
	543782_120
	543782_121
	543782_122
	543782_123
	543782_124
	543782_125
	543782_126
	543782_127
	543782_128
	543782_129
	543782_130
	543782_131
	543782_132
	543782_133
	543782_134
	543782_135
	543782_136
	543782_137
	543782_138
	543782_139
	543782_140
	543782_141
	543782_142
	543782_143
	543782_144
	543782_145
	543782_146
	543782_147
	543782_148
	543782_149
	543782_150
	543782_151
	543782_152
	543782_153
	543782_154
	543782_155
	543782_156
	543782_157
	543782_158
	543782_159
	543782_160
	543782_161
	543782_162
	543782_163
	543782_164
	543782_165
	543782_166
	543782_167
	543782_168
	543782_169
	543782_170
	543782_171
	543782_172
	543782_173
	543782_174
	543782_175
	543782_176
	543782_177
	543782_178
	543782_179
	543782_180
	543782_181
	543782_182
	543782_183
	543782_184
	543782_185
	543782_186
	543782_187
	543782_188
	543782_189
	543782_190
	543782_191
	543782_192
	543782_193
	543782_194
	543782_195
	543782_196
	543782_197
	543782_198
	543782_199
	543782_200
	543782_201
	543782_202
	543782_203
	543782_204
	543782_205
	543782_206
	543782_207
	543782_208
	543782_209
	543782_210
	543782_211
	543782_212
	543782_213
	543782_214
	543782_215
	543782_216
	543782_217
	543782_218
	543782_219
	543782_220
	543782_221
	543782_222
	543782_223
	543782_224
	543782_225
	543782_226
	543782_227
	543782_228
	543782_229
	543782_230
	543782_231
	543782_232
	543782_233
	543782_234
	543782_235
	543782_236
	543782_237
	543782_238
	543782_239
	543782_240
	543782_241
	543782_242

