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Abstract 

Solving polynomial equations is a fundamental problem in several engineering and 

science fields. This problem has been handled by several researchers and excellent 

algorithms have been proposed for solving this problem. The computation of the 

roots of ill-conditioned polynomials is, however, still drawing the attention of several 

researchers. In particular, a small round off error due to floating point arithmetic is 

sufficient to break up a multiple root of a polynomial into a cluster of simple closely 

spaced roots. The problem becomes more complicated if the neighbouring roots are 

closely spaced. This thesis develops a root finder to compute multiple roots of an 

inexact polynomial whose coefficients are corrupted by noise. The theoretical devel- 

opment of the developed root solver involves the use of structured matrix methods, 

optimising parameters using linear programming, and solving least squares equality 

and nonlinear least squares problems. 

The developed root solver differs from the classical methods, because it first computes 

the multiplicities of the roots, after which the roots are computed. The experimen- 

tal results show that the developed root solver gives very good results without the 

need for prior knowledge about the noise level imposed on the coefficients of the 

polynomial. 
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Chapter 1 

Introduction 

Polynomials enjoy widespread use in several engineering and science fields, includ- 

ing control, coding theory, game theory, signal processing, computer graphics and 

many other applications. In triangle geometry, for example, polynomials are used 

to represent the relation between lengths and angles. Polynomials are also used in 

computer aided geometric design and geometric modeling for curve and surface repre- 

sentations. In more complicated applications such as robotics, polynomials are used 

to relate forces, trajectories and moments in order to control the robotic movements. 

In these applications, it is usually of interest to find the values at which a polynomial 

or a system of polynomials vanishes to indicate the occurrence of certain events such 

as the intersection of curves and surfaces. Such values are referred to as the zeros 

of the polynomials and the task of computing these zeros is called the root finding 

task. Many problems are reduced to the problem of root finding, such as the problem 

of shape interrogation in computer aided geometric design [55], spectral factorisation 

for the design of finite impulse response filters [3,67], and phase unwrapping [70] in 

signal processing. 
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CHAPTER 1. INTRODUCTION 2 

Computing the roots of a polynomial is a classical problem, and although a lot of 

excellent root finding algorithms are available, the computation of the roots of ill- 

conditioned polynomials is still drawing the attention of several researchers. Among 

these ill-conditioned polynomials is the polynomial whose zero set contains one or 

more multiple roots (those roots of multiplicity k> 1). Several methods have been 

introduced to solve this class of polynomials. However, most of the root finding 

algorithms experience difficulties in computing the roots of degree more than four 

[44]. This is mainly due to the numerical instability of the roots with high multiplic- 

ities [19,76]. Moreover, the polynomial, in practice, is known in a perturbed form, 

f (y) =j (y) + e, where e is the noise attached to the exact polynomial 
f (y). This 

noise may occur due to roundoff or measurement errors, which in turn, deteriorates 

the robustness of not only the algorithms for computing multiple roots, but also of 

those algorithms designed for computing simple roots. 

Well known numerical root finding methods include Newton's method [25,58,66], 

Müller's method [25,58,66], Bairstow's method [25], Graeffe's root squaring method 

[25,66], Laguerre's method [25,58], and the companion matrix eigenvalue method 

[9,58]. These methods are adequate for normal well-conditioned polynomials that are 

of moderate degree with simple well-separated roots. As the degree of the polynomial 

increases, or the multiplicity of one or more of its roots increases, or the separation 

between its roots decreases, the quality of the results obtained from classical meth- 

ods deteriorates. The reason lies in the fact that the multiple roots are extremely 
ill-conditioned i. e. they are very sensitive to small perturbations. As a result, in 

a floating point environment, roundoff errors will be sufficient to change the roots' 
distribution such that clusters of simple roots are formed around the multiple root. 
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It is therefore natural to expect that the case would be worse if the roots were closely 

spaced (nearly multiple roots). These roots pose the most difficult problems for the 

numerical algorithms [58]. 

This discussion leads to the aim of this thesis: 

The aim of this thesis is to develop a polynomial root finder that computes multiple 
roots of a univariate polynomial whose coefficients are corrupted by noise. 

The theoretical development of this root finder involves the computation of a struc- 

tured low rank approximation of the Sylvester resultant matrix, optimising parame- 

ters using linear programming, and solving least squares equality and non-linear least 

squares problems. 

The rest of this chapter provides summaries of some commonly used root finding 

methods in Section 1.1, and presents some of the computational challenges that are 

associated with the computation of multiple roots in Section 1.2, using illustrative ex- 

amples. These examples show that the computation of multiple roots is a non-trivial 

task and hence provide the motivation for the work presented in this thesis. 

1.1 Standard root finding methods 

This section gives a brief review of some of the classical methods for computing the 

roots of a polynomial. These methods include Newton's method [25,58,66], Müller's 

method [25,58,66], Bairstow's method [25], Graeffe's root squaring method [25,66], 

Laguerre's method [25,58], and the companion matrix eigenvalue method [9,58]. 
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Newton's method 

Newton's method, also referred to as the Newton-Raphson method, is a well known 

iterative method. This method computes the roots by approximating the function, 

f (y), linearly, using the tangent of the function at an arbitrary point. Thus, it requires 

the evaluation of both the function and its derivative at that point. Given a good 

initial root estimate, yo, that is not very far from the desired root, Newton's method 

can give iteratively better estimates yl, Y 27**-, such that 

, 
f(yn) 

n=ý1 ýe e"' TJn+1 = Yn - f'(1)(yn) 

These iterations should stop either when the successive estimates are very close to 

each other or the function value is very small. To prevent this method from converg- 

ing to the same root in successive iterations, each computed root is deflated from the 

polynomial, and the deflated polynomial is then used in the next run of the iterative 

scheme. The convergence of this method is very fast if the initial estimates are suffi- 

ciently close to the exact root. 

Müller's method 

Müller's method computes the zeros of the function f (y) using quadratic approxima- 

tion. It requires three initial roots estimates, Yk-2, yk-1 and yk, to compute the next 

approximation, 

yk+i = yk - (yk - yk-i) 
2C [max 

(B f B2 - 4AC) 
2C 

(1.1) 
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where 

A= gf(yk) - q(1 + q)f(yk-1) + g2f(yk-2) 

B= (2q + 1)f(yk) - (1 + q)2f(yk-1) + g2f(yk-2) 

C= (1 + q)f(yk) 

q= 
yk - yk-1 

yk-1 - Yk-2 

5 

To prevent the next estimated root from going too far from the current estimate, 

the sign in the denominator of (1.1) is chosen such that its absolute value is as large 

as possible. Starting with initial real estimates, Müller's method may converge to a 

complex estimate. It convergence rate is almost the same as Newton's method [66]. 

Bairstow's method 

Bairstow's method only works with polynomials whose coefficients are real. It is well 

known that the complex roots of such polynomials occur in complex conjugate pairs. 

To avoid complex arithmetic, this method extracts the quadratic factors that may 

generate these complex conjugate roots. Consider the polynomial 

f (y) = any' + an_lyn-1 +... + aiy + ao, (1.2) 

where ai, i=0, """, n, are the real coefficients of f (y), and let a quadratic factor be 

y2 + py + q. The polynomial f (y) can then be written as 

i(y) = (y2 + Py + g)(bn-2zn-2 + bn-3zn-3-}-... + bp) + ry + s, ý1.3) 



CHAPTER 1. INTRODUCTION 6 

where b� = b�_1 =0 and ry +s is the remainder of dividing f (y) over the quadratic 

function. If the quadratic function is an exact divisor, then the remainder is equal to 

zero i. e. r=s=0, and the roots of the quadratic function are also roots of f (y). This 

however, requires good initial guesses for the values of p and q, after which Newton's 

method is used to change the values of p and q, such that the roots of the quadratic 

function are roots of f (y), which certainly makes the values of r and s equal to zero. 

Equating the coefficients of (1.2) and (1.3) gives 

bk = ak+2 - pbk+1 - gbk+2, k=n-2,..., p, 

r= al - pbo - qbl, and s= ao - qbo. 

The solution of al - pbo - qbl =0 and ao - qbo =0 yields the values of p and q for 

which the roots of the quadratic function are roots of f (y) as well. The polynomial 

f (y) is then deflated and the process is repeated for the deflated polynomials to re- 

duce the effort of computing the roots in each step. 

Given good initial estimates, this method converges quadratically, but it converges 

linearly if the multiplicity of the quadratic factor is greater than one. 

Graeffe's root squaring method 

This method transforms the original polynomial to another polynomial of the same 

degree with new coefficients from which the roots of the original polynomial can be 

computed directly. This transformation requires successive squaring of the original 

roots by which the new roots spread widely apart if the original ones are real and 

distinct with absolute values greater than one. To illustrate this process, consider 

Example 1.1. 
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Example 1.1. Let 

f(y) _ (y + ai)(y + a2)(y - a3), 

where a,, i=1,2,3, are the absolute values of the distinct real roots. Then 

f (-y) = (-y + ai)(-y + a2) (-y - a3), 

= (-1)3(y - ai)(y - a2)(y + a3)" 

Using the binomial identity (y2 - a2) = (y - a)(y + a), 

f(y)f(-y) = (_1)3(y2 - ai)(y2 - a2)(y2 + a3), 

and if z= y2, then 

Q(x) _ (-1)3(z - ai)(z - az)(z + a3). 

The process is then repeated until the new roots are well-separated. Suppose that for 

a polynomial of degree n, the process described above is repeated k times, then the 

roots can be estimated from the following formula 

a; = 
a, 

ai_1 

1 
ý 

) i=1,2, """, n, 

where the as's are the coefficients of the kth polynomial. Q 

Example 1.1 considers the polynomial in factored form, but the results are the 

same for non-factored form. Clearly, this method has a problem if two or more of 
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its roots are of the same magnitude. Several amendments have been proposed to 

overcome this problem, but they make the method numerically expensive [29]. 

Laguerre's method 

Laguerre's method is motivated by the relations between the roots of the polynomial, 

and its first and second derivatives. Consider the polynomial 

f(n) _ (y - al)(y - az)... (y - an), 

whose natural logrithm is 

lnjf(y)I = inl(y-ai)l+int(y-a2)f+... +Inj(y-an)l. 

The first and second derivatives of (1.4) respectively, yield 

111f ýlý 
A=+++ 

ýy -an)= f, ýy - ai) (y - a2) 

and 

111 f(2) f(1) 2 
-B=- ---)=f-(f/ ýy - C41)2 (y - 02)2 ýy - an 2 

(1.4) 

Laguerre's method then assumes that the required root ai is located at a distance a 

from the current estimate, that is a= yo - a=, and all other roots are distinct and 

clustered at distance b. In terms of a and b, the derivatives A and B can be expressed 
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respectively as 

1 
A=a+nb and B=ä2+-b2 

Hence, 

a= 
n 

Af (n - 1) (nB - A2) 

9 

The sign in the denominator should be taken such that the magnitude of the denomi- 

nator is as large as possible. Starting with an estimate, yo, the value of a is computed 

and used in computing the next estimate yo - a. In each iteration it is required 

to calculate the values of the polynomial and its first and second derivatives at the 

current estimate, which is a disadvantage. An important property of this method is 

that, for any initial choice (i. e. not necessarily close enough from the true root), it 

always converges to a root if the roots of the polynomial are real. Laguerre's method 

converges cubically for the simple roots but linearly for the multiple roots. Moreover, 

starting with real initial estimates, Laguerrs's method may converge to a complex 

root. 

Companion matrix eigenvalue method 

Using the companion matrix, the root finding problem reduces to the eigenvalue 

problem. Consider the monic polynomial 

f(y)=y"+a�_lyi-1+.... }. aiy+ao, 
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and let C be an nxn square matrix, whose subdiagonal is filled with ones and whose 

last column contains the negative of the coefficients of the monic form of f (y), 

c= 

00 """ 0 -ao 

10"""0 -al 

01"""0 -a3 

`001 -an_i % 

This matrix is referred to as the companion matrix. Its characteristic polynomial is 

given by [5], page 11, 

det (yl - C) = y' + an_ly"-i +... + aly + ao =f (y). (1.5) 

It follows from the identity (1.5) that the roots of f (y) are exactly equal to the eigen- 

values of C. In other words, instead of finding the roots of f (y), it is sufficient to 

compute the eigenvalues of the corresponding companion matrix. Recently, fast effi- 

cient algorithms have been introduced for the eigenvalue computation using the QR 

algorithm [4,7,9]. This is how the MATLAB function roots() computes the roots 

of f (y) [30]. The stability and the accuracy of this method have been reported by 

Edelman and Murakami [22]. However, Cleve Moler [45] has pointed out that this 

method is computationally more expensive than the methods that are specifically 

designed for root finding algorithms. 

The methods discussed above may yield satisfactory results if the polynomial is of 

moderate degree and its roots are well-separated, but an exception of this is the 
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Wilkinson polynomial [76] 

20 

f (y) = 11(y - z), 

i=i 

whose roots are equally spaced. 

On the other hand, the performance of these methods deteriorates as the degree of 

the polynomial or the multiplicities of its roots increase. Moreover, these methods fail 

if the coefficients of the polynomials are known imperfectly or the computations of 

the roots are performed in a floating point environment. Therefore, better methods 

should be developed to over come the ill-conditioned nature of polynomials that have 

multiple roots. This task has been handled by the work presented in this thesis, and 

a root solver has been developed. Some of the results of computing multiple roots 

using the developed root solver are presented in Examples 1.2 and 1.3. 

Example 1.2. The first and second columns of Table 1.1 define the roots and as- 

sociated multiplicities of the exact polynomial pl(y). The coefficients of pi (y) were 

perturbed by noise with componentwise noise-to-signal ratio of ec = 10-8. The roots 

and associated multiplicities of the perturbed polynomial were calculated using the 

developed root solver, and the results of this computation are shown in the third, 

fourth and fifth columns of the table. Q 

Example 1.3. The same procedure used for Example 1.2 was applied to the polyno- 

mial p2(y) whose roots and associated multiplicities are given in the first and second 

columns of Table 1.2. The results of computing the roots and multiplicities Of P2(Y) 

after perturbing its coefficients are shown in the third, forth and fifth columns in the 

table. Q 
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Table 1.1: The roots and multiplicities of Pl(y). 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

2.62220000e+000 10 2.62220000e+000 10 2.12462358e-011 

-3.80360000e+000 10 -3.80360002e+000 10 4.50940637e-009 

-1.26210000e+000 9 -1.26210000e+000 9 3.11056307e-009 

-6.74950000e+000 6 -6.74949998e+000 6 2.54458742e-009 

Table 1.2: The roots and multiplicities of pa(y). 

12 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

-2.65620000e+000 5 -2.65619930e+000 5 2.64976497e-007 

-5.21420000e+000 3 -5.21421303e+000 3 2.49930364e-006 
6.52500000e-001 3 6.52500010e-001 3 1.48046396e-008 

1.07770000e+000 3 1.07769985e+000 3 1.40982369e-007 
1.57850000e+000 3 1.57850048e+000 3 3.06745235e-007 
3.60130000e+000 3 3.60129667e+000 3 9.25308150e-007 
7.33770000e+000 3 7.33770947e+000 3 1.29126972e-006 

-7.74770000e+000 2 -7.74766883e+000 2 4.02330826e-006 

-1.86450000e+000 2 -1.86450022e+000 2 1.19410112e-007 

Examples 1.2 and 1.3 show that the developed method preserves the multiplici- 

ties of the roots in the presence of noise. It is noted that the relative error of each 

computed root in Example 1.2 is less than e,, even though two of the roots have 

multiplicity 10. The relative errors of the computed roots in Example 1.3 are greater 

than e,, but there are some closely separated roots. These results should be com- 

pared with Zeng [85] who has developed a root solver that is explicitly designed for 

the computation of multiple roots of a polynomial. It achieves excellent results if the 

data is exact. However, in contrast to the method developed in this thesis, it is shown 

in Chapter 9, where more examples are given, that it gives incorrect result if inexact 
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data is considered and the noise level is not specified, or the incorrect noise level is 

specified. 

The subsequent chapters illustrate the theoretical and computational implementation 

of the developed methods, and show how the results in Examples 1.2 and 1.3 were 

achieved. In order to motivate the difficulty of the problem of computing multiple 

roots in the presence of noise, the next section provides some examples that illus- 

trate some of the challenges that arise with the computation of multiple roots of a 

polynomial. 

1.2 Computational challenges of root finding algo- 

rithms 

There are several classes of ill-conditioned polynomials, such as the polynomials whose 

roots are multiple, closely spaced or a combination of these classes. Furthermore, the 

computation of the roots of such polynomial classes becomes more challenging if their 

coefficients are imperfectly known. This section gives two examples to show some of 

the difficulties that are associated with the computation of roots of ill-conditioned 

polynomials. Example 1.4 illustrates the effect of roundoff errors associated with the 

computation of the multiple roots. Example 1.5 shows the effect of both roundoff and 

measurement errors on the computation of multiple roots of a polynomial. 
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f(y) = (y - 3)5a 

Figure 1.1: The plot of the computed roots of f (y) = (y - 3)50 

Example 1.4. Consider the polynomial 

ys - 15y4 + 90y3 -270 Y2 + 405y - 243 = (y - 3)5, 

14 

which clearly has only one root of multiplicity 5 at y=3. However, using the MATLAB 

function roots�, the following roots are returned, 

3.0033.3.0010 ± 0.0031i. 2.9974 f 0.0019i. 

This shows that the rounding errors which are about 10-16, are sufficient to cause a 

relative error of about 10-3 in the computed roots. 

Figure 1.1 shows the roots of the above polynomial after increasing the multiplicity 

'roots() uses the QR algorithm to compute the eigenvalues of the companion matrix. 
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of its root to 50. The multiple roots are now split into 50 distinct roots. These 

results suggest that as the multiplicities of the roots increase, the effect of roundoff 

errors becomes more significant, which causes a deterioration of the root finding 

algorithms. Q 

The occurrence of high root multiplicities is not the only source of problems for the 

root finding algorithms, because the problem is compounded if the roots are closely 

spaced. Unfortunately, measurement errors are much larger than roundoff errors, 

which makes the task of computing the roots of inexact polynomials more challenging. 

The following example illustrates the problem of computing the roots of an inexact 

polynomial, where roundoff errors and measurement errors are unavoidable. 

Example 1.5. The MATLAB function roots 0 was used to compute the roots of the 

polynomial f (y), 

f (y) _ (y - 0.5)3(y - 1.5)5, 

which were evaluated 1000 times, after perturbing their coefficients by noise with 

signal-to-noise level of e--1 = 108 in a componentwise sense. 

Figure 1.2(a) shows the plot of the computed roots. Clearly, it can be seen that the 

polynomial f (y) contains two distinct roots, and approximations of these two roots 

can be calculated by evaluating the arithmetic means of the corresponding clusters. 

The clusters of roots have been studied by several researchers [33,46,64,65] us- 

ing computational methods such as symbolic-numeric methods [65], and algebraic 

methods [64], for computing the roots as well as their corresponding multiplicities. 

Although, clustering seems to be simple, it is restricted to well-separated clusters, 
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f(ai)=(v -{) s),, 6i-1.5)5 E, =io" 1(y)=(y-0.5)°(y-1.0)ý(y -1 -ý =10 " 

(a) 

0.3 

(b) 

Figure 1.2: The plot of the computed roots of (a) f (y) = (y - 0.5)'(y - 1.5)5, and (b) 

f(y) = (y - 0.5)3(y - 1)3(y - 1.5)5, whose coefficients have been perturbed by noise 
with signal-to-noise level of ec-1 = 108 in a componentwise sense. 

where each cluster originates from one multiple root. If for example, a zero at y=1 

of degree 3 occurs between the two roots y=0.5 and y=1.5, in the polynomial given 

above, the clustering approach will fail to compute the correct values of the roots, as 

shown in Figure 1.2(b). 0 

Example 1.4 and 1.5 show that roundoff errors due to floating point arithmetic, 

and inexact data, can cause significant deterioration in the computed roots. Unfor- 

tunately, the presence of these two sources of errors are not avoidable. In particular, 

roundoff errors are always present in numerical computations and the uncertainties in 

the data due to measurement errors, for example, can not be avoided. It is therefore 

important to study the behavior of the roots of a polynomial in the presence of noise 

to obtain a better understanding of the problem, and to develop a numerical method 

that deals carefully with a corrupted polynomial, and this forms the main task of this 

thesis. 
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This thesis develops a method which is designed for the computation of multiple roots 

of a polynomial, whose coefficients are corrupted by noise. This method differs from 

the commonly used root solvers. It first computes the multiplicities of the roots of 

the given polynomial whose exact form is assumed to have multiple roots, then uses 

these multiplicities as constraints for the computation of the roots. By contrast, the 

classical methods described in Section 1.1 compute the roots directly without any 

restrictions that relate the roots to their multiplicities, and therefore, multiple roots 

are broken up into several simple roots. 

The developed method follows the method by Uspensky [74], which involves: 

1. The computation of the greatest common divisor (GCD) of several pairs of 

polynomials. 

2. The computation of the division of several pairs of polynomials. 

3. The solution of several polynomial equations, all of whose roots are simple and 

distinct. 

The subsequent chapters illustrate the theoretical and numerical computations of the 

developed method. A brief description of the rest of this thesis is now given, whereas 

a detailed thesis layout is given after describing the developed method in Chapter 2 

(see Section 2.4). 

Chapter 2 studies the ill-conditioned nature of a multiple root and describes the 

method in [74], whose computational implementation is considered in this thesis, for 

the computation of multiple roots of a polynomial. It is shown that the implementa- 

tion of this method in a floating point environment is a very challenging task because 

it involves ill-posed operations. Chapter 2 also describes the required modifications 
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to the method, in order for it to be implemented in a floating point environment with 

inexact data. A geometrical interpretation of the developed method is also included 

in Chapter 2. 

The crucial part of the method is the determination of the multiplicities of the roots 

of a polynomial. They are computed by successive GCD computations. It is shown 

in Chapter 3 that the Sylvester subresultant matrix can be used for the computation 

of the GCD of two exact polynomials. This work is, however, designed for inexact 

data, and therefore it is necessary to modify the theory in Chapter 3. In particular, 

the coefficients of the given inexact polynomial must be preprocessed before being 

involved in the GCD computations, and it is shown in Chapter 4 that three prepro- 

cessing operations are required. 

An overview of the previous work in GCD computations is given in Chapter 5, after 

which the modifications to the theory in Chapter 3, using non-linear structure pre- 

serving matrix methods, are considered in Chapters 6 and 7. 

As noted above, the algorithm used for computing multiple roots of a polynomial 

requires the computation of the division of several pairs of polynomials. A robust 

method for this computation is described in Chapter 8. 

The last stage in the method requires solving several polynomial equations, all of 

whose roots are simple. The computation of these roots and their refinement are 

considered in Chapter 9. This section also contains examples to demonstrate the ap- 

plication of the developed method to the computation of the roots of the theoretically 

exact form of an inexact polynomial. The conclusion and future work are then given 

in Chapter 10. 
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1.3 Summary 

This chapter has illustrated the importance of developing a root solver that computes 

multiple roots of the exact form of an inexact polynomial. Some commonly used nu- 

merical methods for the computation of the roots of a polynomial have been reviewed, 

and their advantages and disadvantages have been stated. In order to motivate the 

difficulty of the problem, some of the challenges that are associated with the compu- 

tation of multiple roots have been presented. It is concluded that a careful study for 

the behavior of a multiple root in the presence of noise is needed, in order to develop 

a better understanding and solution of the problem. This task is considered in the 

next chapter. 



Chapter 2 

Ill-conditioned polynomials 

It was shown in Chapter 1 that the computation of a multiple root of a polyno- 

mial is an ill-conditioned problem because small errors, including roundoff errors, are 

sufficient to cause incorrect results with large errors. This chapter consists of two 

parts. The first part studies the sensitivity of a multiple root to perturbations in 

the coefficients of the polynomial. The forward error, backward error and condition 

number of a root are defined to quantify the result of computing a multiple root. It 

is shown that, with respect to random perturbations, the sensitivity of a multiple 

root increases as its multiplicity increases. On the other hand, a multiple root is 

insensitive to the structured perturbations that keep its multiplicity. It is concluded 

that a robust root finder requires that the multiplicities of the roots of the given 

polynomial be first determined, after which the values of these roots are computed. 

These computed roots are then refined, under the condition that their computed mul- 

tiplicities are retained. The second part of this chapter describes the developed root 

finder that satisfies these requirements, and provides a geometrical interpretation of 

its implementation in a floating point environment. A detailed outline of the contents 

20 
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of this thesis is given at the end of this chapter. 

2.1 Forward and back word errors, and condition 

number 

A polynomial is considered to be ill-conditioned if a small perturbation in its coeffi- 

cients results in a big change in the solution. In order to quantify this solution, the 

numerical analysis concepts of forward error, backward error and condition number 

should be considered. 

Let x be the approximate value of x=f (y). The question that then arises is: How 

good is this approximation? The simplest error measures are the absolute and relative 

errors, 

Absolute error = Ix - 11 

xt Relative error =1 
xlxI 

Though the computation of these error measures is straight forward, it is not always 

possible, since the exact value may not be known. The backward error on the other 

hand, does not suffer from this problem, as it examines the input data y+ by, for 

which the problem was actually evaluated. Thus, the obvious difference between the 

forward and the backward errors, which is illustrated in Figure 1.1, is that the forward 

error measures the distance, in the output space, between the exact and computed 

solutions, whereas the backward error measures the distance, in the input space, 

between the data y for which the solution is sought and the data y+ öy for which the 
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solution has been actually computed. 

Input space Output space 

Figure 2.1: The backward and forward errors computed for x=f (y), such that x is 
the approximate value of x. The solid lines represent the exact computation and the 
dashed line represents the approximated computation. This figure was reproduced 
from [30]. 

However, both the forward and the backward errors are interrelated to express the 

sensitivity of the problem, which is referred to as the condition number. In particular, 

if for a certain numerical problem, a small backward error results in a large forward 

error, the problem is considered to be ill-conditioned. 

In terms of a system of linear equations, Ay = b, where A is a non-singular square 

matrix and b is a non-zero vector, the solution of this system is y= A-' b. For a small 

perturbation in b, the system Ay =b+ 5b, has the solution y= A-' (b + bb), where 
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y=y+ Sy. This implies that Sy = A-16b, thus 

23 

11byll s IIA-1 1) 11bb11. (2.1) 

Similarly, 

IIbII < IIAIIIIyII. (2.2) 

Multiplying (2.1) and (2.2), then yields 

IIayIIIIblI < IIA-IIIIIAIIIIyiIIIcblI, 

or equivalently 

Ilayll 
_< , ý(A) 

llabll 
Ilyll llbll 

where ic(A) = IIA-1I1 IJAII, which is referred to as the condition number of the matrix 

A. This result can be interpreted as follows: A relatively small backward error may 

yield a large forward error, where the ratio between the forward error and backward 

error is bounded by the condition number. Thus the relationship between the for- 

ward and the backward errors and the condition number is governed by the following 

formula to lowest order 

forward error < condition number x backward error, (2.3) 

which has been proved in [47,73,75]. 
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The condition number of a multiple root has been studied by several researchers 

[20,34,77], and it is shown that the condition number of a multiple root approaches 

infinity, with respect to random perturbations, as the signal-to-noise ratio increases. 

For example, consider the polynomial f (y) = y', which has r>1 roots at y=0. 

Perturbing f (y) by e>0, yields the perturbed polynomial I (y) = y' - e, which has r 

complex roots of magnitude elf'. The backward and forward errors in this case are: 

Backward error = e, 

Forward error = elf'' 

Clearly it can be seen that for a small value of e, the forward error is very high, and 

for these values of the forward error and backward error, the condition number that 

satisfies the formula in (2.3) is 

r 
Condition number >E -, 

which approaches infinity as a reduces to zero. 

Based on the error model assigned to the coefficients of a polynomial, there exist two 

types of backward error and condition number. Both of them can be measured in the 

componentwise and normwise senses. In particular, let 

m 
f(y) =E aiOi(y)ý 

i=0 

(2.4) 

where Oi (y), i=0, ""-, m, is a set of linearly independent basis functions, and ai 

is the coefficient of (pi(y). Using the componentwise error model, it is assumed that 
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each coefficient a, is perturbed to ai + Jai such that 

ai + Jai < ai(1 + ret), i=0, """, m, 

where r is a uniformly distributed random variable, whose value fall in the range 

[-1, +1], and eý 1 is the componentwise signal-to-noise ratio. It therefore follows that 

the componentwise error model is defined by 

16a: l< e, Iasl, 2=O, ..., m. 

The normwise error model is defined by 

IIbafI : EnIlall, 

where En 'is the normwise signal-to-noise ratio. The definition of the componentwise 

and normwise error models are given in Definitions 2.1 and 2.2, respectively, and the 

corresponding condition numbers are also stated. These expressions are taken from 

[77]. 

Definition 2.1. The componentwise backward error of the root approximation yo, of 

the root yo of f (y) is defined as 

%. (yo)=min{E,: EmodA(y0)=0 and (Sail <EcIail; ä=a+8a}. 

An expression for the componentwise condition number of a multiple root yo of 

multiplicity r, has been derived in [771, for random perturbations. This derivation 

considers a multiple root yo of the polynomial f (y) defined in (2.4). 
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Let the multiplicity of yo be r. It is proved in [771 that the componentwise condi- 

tion number of yo is 

K(yo) il1r! 
ý ia=O1(yo)ý 

EI-! lyol If(T) (yo)1 i_o 

where eý 1 is the componentwise signal-to-noise ratio. 

Definition 2.2. The normwise backward error of the root approximation yo, of the 

root yo of f (y) is defined as 

77n(yo) = min {en : Em oäiOa(yo) =0 and Ilball < enllall; ä=a+ Ja}. 

An expression for the condition number associated with the normwise backward 

error model of a multiple root yo of multiplicity r, has also been derived in [77], for 

random perturbations. This derivation considers a multiple root yo of the polynomial 

f (y) defined in (2.4). Let the multiplicity of yo be r. It is proved in [77] that the 

normwise condition number of yo is 

(i 
Nri(yo) _r 11all llo(yo)llýl 

r Fyoý I f(T) (yo) I 
) 

I- 

where -n -I is the normwise signal-to-noise ratio. For high multiplicities r»1, 'cc(yo) 

and ! c�(yo) can be approximated by the following formulae, 

K, (yo) ;. ' e, Iyol ' and K,, (yo) ;: zý 
En. 1yol, 

(2.5) 

respectively, and it can be seen that for random perturbation the componentwise 
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and normwise condition numbers are proportional to the signal-to-noise ratio. More 

specifically, the higher the signal-to-noise ratio, the more unstable the problem. These 

results should be compared with the result obtained when a structured perturbation 

that preserves the multiplicity of the root is considered. This comparison is made 

in Section 2.2, where it is shown that a multiple root is stable with respect to a 

perturbation that preserves the multiplicities of the multiple roots. 

2.2 Geometric interpretation of an ill-conditioned 

polynomial 

It has been shown in Section 1.2 that the computation of multiple roots of a poly- 

nomial is an ill-conditioned problem and small perturbations due to roundoff errors 

may break up the multiple roots into clusters of simple roots. However, Kahan [35] 

has pointed out that a polynomial is well-conditioned if the perturbations preserve 

the multiplicities of its roots. In particular, consider the polynomial 

f(y) = (y - 5)5(y - 2)7(y + 9)10 

The polynomial f (y) lies on a pejorative manifold which is defined by its multiplicity 

structure m= 15,7,10}- Kahan has defined the pejorative manifold for a polynomial 

with a given multiplicity structure and stated that the roots of a polynomial are 

sensitive to random perturbations that move the polynomial off this manifold (i. e. 

the perturbed polynomial does not lie on the manifold on which its unperturbed form 

lies), but they are insensitive to the structured perturbations that keep the polynomial 
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on the manifold of its unperturbed form. 

The work in this thesis uses Kahan's observations on pejorative manifolds to test the 

feasibility of the structure preserved matrix methods for robust computations of the 

multiple roots of high degree, inexact univariate polynomials expressed in the power 

basis. 

The fundamental task in the root solver that is developed in this thesis is the identifi- 
cation of the pejorative manifold on which the theoretically exact polynomial lies. This 
corresponds to the determination of the multiplicities of the roots of the polynomial. An 
iterative procedure can then be used to locate the roots on the manifold, such that each 
iteration stays on the manifold and thus the multiplicities of the roots are preserved in 
this iterative scheme. 

In order to understand Kahan's observations on the pejorative manifold and how 

they can be applied to the developed root solver, this section explains the theory 

of pejorative manifolds, and studies the sensitivity of a multiple root to structured 

perturbations compared to its sensitivity under random perturbations. 

2.2.1 The pejorative manifold 

A polynomial with one or more multiple roots forms a pejorative manifold that is 

a subset of the space of all polynomials [34]. The multiplicities of the roots of the 

polynomial are preserved if a perturbation keeps the polynomial on the manifold, but 

they are destroyed if the polynomial leaves the manifold. This pejorative manifold 

can be defined via Vieta's system [81]. 

Consider the monic polynomial f (y) whose 1 distinct roots are yj, j=1, """ , 1, with 

the multiplicity structure m= {mj}, j=1, """ , 1, such that if the degree of f (y) is 
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equal to n, then ml + m2 +"""+ MI = n. The polynomial f (y) can be written as 

f(y) _ (y-yl)m3(y-y2)m'... (y-y1)"`i7 

= yn+Th(1J1iy2i""" , 
y1)yn-1+P2(y17y2i""" 

, yt)yn-2"""+Pn(y17y2)""" 7yl) 

= yn + alyn-1 + a2yn-2 +... .+ an, 

where the functions pi, i=1, """, n, define the relation between the roots and the 

coefficients of f (y). Let the n roots of f (y) be denoted by (yi, yz, """, yn), which are 

not necessarily distinct. Using Vieta's formulae, pi can be generalised as follows, 

(2.6) 

pl 

P2 = F'1<jl<j2-<n y. iiy, ia - a2 

Pm(Y) = 
pk = L. 1<jl<j2<... <7k<n y91yj2 . .. y. 9k = l-1)kak 

(2.7) 

pn = 111,,,,, 5n y7i = (-1)nan" 

The system in (2.7) is called the coefficient operator and it defines the pejorative 

manifold of f (y) whose multiplicity structure is m= {ml, """, ml}. Clearly, it can 

be seen that the equations in this system constrain the coefficients of f (y), a;, i= 

1, """, n, in order for f (y) to have the multiplicity structure m. The pejorative 

manifold is defined in [85] as follows: 

Definition 2.3. Fora given multiplicity m={M1, '** , MI 1, the collection of vec- 

tors Hrn - {P(z)Iz E C} C C' is called the pejorative manifold of multiplicity 

structure m. 
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Example 2.1. Consider the polynomial f (y), which has one simple root and one 

triple root, 

f(y) _ (y - yi)(y - y2)3 

= y4 - (yi + 3y2)y3 + 3(yiy2 + yä)y2 - (3yiy2 + yä )y + yiy2" 

This polynomial lies on the pejorative manifold M which is defined by the multiplicity 

structure m= {1,3}. In particular, M lies in 1R4 on which all real monic polynomials 

of degree four with one simple root and one triple root lie. The exact location of f (y) 

on M is defined by the values of its roots. It follows that M is a surface defined by 

(-(yi + 3yz) 3(yiy2+ y2) - (3y1y2 + y2) yly2 ), 

where y= [yl y21 TE R2. 

If yl = y2, f (y) has a quadruple root and f (y) can be written as follows 

f (y) = y4 - 4yiy3 + 6yi y2 - 4y, 3y + y4 l* 

The polynomial f (y) in this case lies on the pejorative manifold M, which lies in 

1R4, and is defined by the multiplicity structure m= {4}. In particular, M is the 

manifold on which all real monic polynomials of degree four with one quadruple root 

lie. The exact location of f (y) on M is defined by the values of its roots. It follows 

that M is a curve defined by 

(-4yi 6yi - 4yi yi ), 
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where y= yl E R. 0 

2.2.2 The sensitivity of a multiple root to a structured per- 

turbation 

Once the multiplicities of the roots of a polynomial have been determined, the pejo- 

rative manifold on which this polynomial lies is defined uniquely. The task now is to 

study the behavior of this polynomial on its manifold with respect to both random 

and structured perturbations. It has been noted in Section 2.1 that several researchers 

have shown that a multiple root is very sensitive to a random perturbation in the 

coefficients of the polynomial. The sensitivity of a multiple root to a structured per- 

turbation that preserves its multiplicity is now considered. 

Considering a structured perturbation, an expression for a componentwise condition 

number of a root has been derived in [77], and it is shown that a multiple root is 

insensitive to the perturbation that keeps its multiplicity. 

Theorem 2.1. [77] The condition number of the real root yo of multiplicity r of the 

polynomial f (y) = (y - yo)'', such that the perturbed polynomial also has a root of 

multiplicity r is 

i 
Dyo 1 II(y - yo)rII 

-1 
ýs=o (r)2(yo)2i 2 

P(yo) - 0f rlyol II (y - yo)r-iiI rlyol Et o (i)2(y0)2i 
(2.8) 

where 

Iy6yo 
Af __ 

ýýýý11 ) 
and Ayo =1 

oll 
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Proof : Let f (y, yo) :=f (y). It follows that 

f (y, yo) _ (y - yo)r 
r 

_E2 
r) 

yr-t(_y0)i 
: -n 

= yr + 

.ýlZ) 

(-i)b(yO)ayT-i. 

i=0 

A neighboring polynomial that also has a root of multiplicity r is 

(y, yo + Syo) = (y - (yo + Syo))r, 

and hence 

f (y, yo + byo) -f (y, yo) = 

Since 

(y - yo)r-1 = 

it follows that, 

i=1 

ý (') 

i-1)b ((yo + byo)' - yö) yr-i i=1 

/r 
Öyo ýjZ (-1ý'ay'o lyr 

: -, 
\ i=1 

+0(15Y2). 

r-1 1"ý 1 

(\(r 
-1 

yr-1-i (-yo)i 

i=0 
r(l 

-r 
(-1)`Z(yo)'-lyr-'' 

i=1 

32 

Jf :=f (y, yo + Jyo) -f (y, yo) = -rbyo(y - yo)r-1+ 
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to first order. Therefore, the condition number of yo, under a structured perturbation 

that preserves its multiplicity is 

Dyo 1 II(y - yo)TII 
Of rlyo111 (y - yo)''-l 11 ' 

and since 

r (r) 
(y - yo)r =EZ yr-t(-y 

i=O 

the result (2.8) follows. 

(2.9) 

Example 2.2. Using (2.8), the condition number p(5) of the root yo =5 of the 

polynomial f (y) = (y - 5)' was calculated for the multiplicities r=2,10,20, and the 

results are shown in Table 2.1. 

Table 2.1: The condition numbers of the root yo = 5. 

r The condition number p(5) 
2 0.5284 
10 0.1168 
20 0.0592 

Table 2.1 shows that p(5) decreases as the multiplicity increases. This result is 

related to the fact that the curve f (y) = (y - a)' becomes flatter at y=a as r goes 

to infinity, and therefore it is less sensitive to the changes in the root. This result 

should be compared with the situation when a random perturbation is considered. 

For r= 20, for example, the componentwise condition number of the root yo =5 is 

K(yo) SE, which is proportional to the signal-to-noise ratio, where K(yo) is defined 

in (2.5). Q 
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Theorem 2.1 shows that the condition number of a multiple root is independent 

of the noise level if it preserves its multiplicity, and it decreases as the multiplicity 

increases. Another expression for the condition number of a multiple root, when a 

structured perturbation is considered, has been derived in [35]. This derivation con- 

siders the effect of the distance between neighboring roots on the condition number 

of a multiple root. It shows that the main factors that affect the sensitivity of a root 

are its relative distance from the other roots of the polynomial and its multiplicity. 

The proofs in [35] and [77] agree that the condition number of a multiple root is 

independent of the noise level, as long as it does not change the multiplicity of this 

root. 

The discussion above supports Kahan's observations and suggests that the crucial 

stage in the computation of multiple roots of a polynomial is the determination of 

the multiplicities of its roots (i. e. defining the pejorative manifold on which the poly- 

nomial lies). The values of the computed roots can then be improved by a refinement 

process that preserves the multiplicities of the roots. 

The method developed in this thesis for computing multiple roots of a polynomial 

handles this task efficiently, in addition to the computation of the initial root esti- 

mates. These root estimates are then refined under the constraints of the computed 

multiplicity structure, that is, the pejorative manifold has been identified and all com- 

putations are performed on this manifold, thereby guaranteeing numerical stability. 

An overview of the method developed for the computation of multiple roots of a 

polynomial is considered next. 

I 
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2.3 Polynomial root solver overview 

This section is devoted to describe the method whose computational implementation 

is considered in this thesis. The theoretical development of this method for exact data 

is given in Section 2.3.1 along with an algorithm that describes its implementation. 

Section 2.3.2 then discusses its computational implementation when inexact data is 

considered. A geometric interpretation of the developed method is given in Section 

2.3.3. 

2.3.1 Theoretical development 

It is well known that simple roots are better conditioned than multiple roots with 

respect to unstructured perturbations. It is therefore instructive to use the divide and 

conquer strategy to compute multiple roots of a polynomial, by which the polynomial 

that has multiple roots is broken up into several polynomials, each of which only has 

simple roots. Moreover, it has been stated in Section 2.2, that the computation 

of multiple roots of a polynomial f (y) is more reliable if it is performed under the 

constraint that the multiplicity structure of f (y) is known. It is therefore instructive 

to first compute the multiplicity structure of f (y), after which the values of its roots 

can be computed. 

A method that satisfies the above requirements has been developed in this work. 

This method follows the method described by Uspensky [74], pages 65 - 68, whose 

computational implementation is considered in this work. It differs from the classical 

methods described in Section 1.1 because it first computes the multiplicities of the 

roots, then it computes the values of these roots. A description of this method is now 

given. 
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Let the polynomial f (y) have the following factorised form 

f(y) = wi(y)wä(y)wä(y)... wi(y)ý 

36 

where wi is the product of all the factors of degree i, i=1,2, " .., l and 1 is the highest 

root multiplicity. If no factor of degree k occurs, then the value of wk(y) is set equal 

to one. It follows that 

9i(y) = GCD (f(y), f(1)(y)) = w2(y)W3(y) .. . wl-1(y) 

42(y) = GCD (ql(y), 9i1)(y)) = ws(y)+vä(y) ... wý-2(y) 

43(y) = GCD (q2(y)+4i1)(y)) = wa(y)ws(y) ... wý-3(y) 

qt(y) = GCD (qi-1(y), qj )j(y)) 
= constant, 

and 

hi(y) _ 

h2 (y) _ 

h3(y) _ 

fv 
al wl (y) wz (y) w3 (y) ... w` (y) 

wa(y)ws(y)... wi(y) 

w3(y)w4(y) ... WI(Y) 

91 y 
92(y) 

42 y 
93 (y) 

hi (y) = 
9t-1 (y) 

91(y) w, (y)" 

The factors wti(y), i=1,2, """11, can then be determined from the following equations 

wl(y) = 
hl(y), 

W2 (Y) = 
h2(y)' 

... ý wl-l(y) = 
hl-l(y), 

wl = hlly)+ 
h2(y) hs(y) hl(y) 
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whose roots are simple. Recall that wi(y) includes all the roots of multiplicity i, and 

therefore the root multiplicities are maintained. Algorithm 2.3.1 illustrates the use 

of this method in computing the roots of a polynomial that has at least one multiple 

root. 

Algorithm 2.3.1: Root solver 

Input A polynomials f (y). 

Output The roots of f (y). 

Begin 

1. Set j=0 and qj =f (y). 

2. while deg (qj) >0 do 

(a) Increment j. 

(b) Compute qj = GCD (qj, qj 

(c) Compute h; = q, 

(d) if j>l then 
h, -i 1. Compute wj_1 = h, 

ii. Compute the roots of w, _1. 

end 

else Compute the roots of w.,. 

end 
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3. Set w3 = h; and find the roots of wj. 

Clearly it can be seen that Algorithm 2.3.1 ends with the factors wj(y), j=1, """ , 1. 

These factors might be constants or polynomials whose roots y3 are simple, and if a is 

a root of wj (y) then a3 is a root of f (y). Thus Algorithm 2.3.1 reveals the multiplicity 

structure of the given polynomial in addition to computing its roots. 

Geometrically, the theoretically exact polynomial lies on a pejorative manifold, since 

it is assumed that it has at least one multiple root. If deg GCD >0 in Step 2 of 

Algorithm 2.3.1, the pejorative manifold on which the exact polynomial lies is not 

defined uniquely, and more GCD computations are required to be performed. When 

deg GCD = 0, the pejorative manifold on which the theoretically exact polynomial 

lies, is defined uniquely. The roots of wj, j=1, """ ,1 computed in Step 3 of Algorithm 

2.3.1, define the unique point on this pejorative manifold, that represents the exact 

polynomial. 

Example 2.3. Consider the polynomial 

f(y) = (y - 1)3(y + 3)2(y - 2) = qo(y), 

and its derivative 

f(1)(y) = (y - 1)2(y + 3)(6y2 -y- 17) = 4(1)(y)" 
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Algorithm 2.3.1 yields 

Qi(y) =GCD (go(y), 9ö1)(y)) = (y - 1)2(y + 3), Qil) _ (y - 1)(3y + 5) 

q2(y) =G CD (91(y), 4i1)(y)) = (y - 1), 4(i1) =1 

43(y) =GC D(42(y), 421) (y)) = 1, g31ý = 0, 

hi(y) - el(8) - 
(y - 1)(y + 3)(y - 2) 

h2(y) - gz('v) - (y - 1)(y + 3) 

h3(y) - 92 y- (y - 1), 
0 (U) 

wi (y) 

wz(y) 

W3 (Y) 

= hz(v) 
- (y - 2) 

- ha (v) _ (y + 3) 

= h3(y) = (y - 1). 

It follows that f (y) has one root at y=2, a double root at y= -3 and a triple root 

at y=1. Moreover, the polynomial f (y) lies on the pejorative manifold ME R5 

which is defined by the multiplicity structure m= {1,2,3}. Q 

Although the flow of the operations in Algorithm 2.3.1 seems to be easy, its im- 

plementation in a floating point environment and/or with inexact data raises some 

numerical challenges. In particular, the implementation of Algorithm 2.3.1 involves: 

1. The computation of the GCD of several pairs of polynomials. 

2. The computation of the division of two polynomials. 

3. The solution of several polynomial equations, each of which only has simple 

roots. 
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The first two operations are ill-posed if the computations are performed in a floating 

point environment. Therefore, it is required to perform these operations with high 

care. More details on the computational implementation of Algorithm 2.3.1 are given 

next. 

2.3.2 Computational implementation 

The first two stages of Algorithm 2.3.1, the computation of the GCD of two polyno- 

mials, and the division of two polynomials, are well-defined problems if the data is 

exact and the computations are performed symbolically. By contrast, the ill-posed 

nature of these computations makes them non-trivial when inexact data is consid- 

ered. More precisely, the GCD of two polynomials is not a continuous function of the 

changes in the coefficients of these polynomials and a small error, including round- 

off error, is able to turn the two given non co-prime polynomials into two co-prime 

polynomials. A numerical solution for such problem requires that the two given inex- 

act polynomials f (y) and g(y) be perturbed slightly such that their perturbed forms 

I (y) =f (y) +Sf(y) and g(y) = g(y) +Sg(y) have a non-constant GCD. The resulting 

GCD is referred to as an approximate greatest common divisor (AGCD), because it 

is an approximate GCD with respect to f (y) and g(y). However, this AGCD is an 

exact GCD of the corrected polynomials 1(y) and §(y). 

Similarly, the computation of the division of two polynomials p(y) and q(y) is an 

ill-posed problem because even if the polynomial division p(y)/q(y) is a polynomial, 

the polynomial division 
q(Y)+äa(b) 

is, with high probability, a rational function, for 

arbitrary small errors Jf (y) and 6g(y). Since it is required that nv +6n is a poly- 
q(y)+6q(y) 

nomial and not a rational function, a procedure similar to that described above is 
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adapted. In particular, perturbations are added to p(y) + 6p(y) and q(y) + bq(y) such 

that the polynomial division of the perturbed forms of p(y) + 6p(y) and q(y) + bq(y) 

yields a polynomial. The work presented in this thesis uses structure preserving 

matrix methods [60,61] to produce the proper perturbations that satisfy the above 

requirements. 

2.3.3 The geometric interpretation of Algorithm 2.3.1 (inex- 

act case) 

It is assumed that the theoretically exact form of the given inexact polynomial has 

at least one multiple root, and therefore it lies on a pejorative manifold, which is 

defined by its multiplicity structure. Furthermore, it has been noted in Section 2.3.1 

that this multiplicity structure is determined from the successive GCD computations 

in Algorithm 2.3.1. The case is different when the inexact polynomial is considered. 

In particular, it is assumed that its roots are simple due to its ill-conditioned na- 

ture. Therefore, the inexact polynomial is an isolated point in space and it does not 

lie on a pejorative manifold. Therefore, the GCD computations in Algorithm 2.3.1 

must be replaced by AGCD computations. Considering the modification procedure 

discussed in Section 2.3.2 for these computations leads to the following geometric 

interpretation: Each AGCD computation represents an orthogonal projection on to 

a pejorative manifold, since the nearest AGCD is required as stated in Definition 5.2. 

If deg AGCD > 0, the pejorative manifold on which the exact polynomial lies is 

not defined uniquely, and more AGCD computations are required to be performed. 

When deg AGCD = 0, the pejorative manifold on which the exact polynomial lies, 

is defined uniquely. This pejorative manifold is defined by the multiplicity structure 

UNIVERSITY 
OF SHEFFIELD 

LIBRARY 
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whose contents have been computed by the successive AGCD computations. 

The roots of wj, j=1, ""-, l in Algorithm 2.3.1 are regarded as initial estimates 

whose values are refined using the method of non-linear least squares, such that the 

polynomial of the refined roots in each iteration remains on the pejorative manifold, 

that is, the multiplicity structure of the polynomial is retained. 

Figure 2.2: Graphical illustration of the refinement of the roots on the pejorative 
manifold M. 

Consider the inexact polynomial f (y) whose theoretically exact form j (y) has l 

distinct roots of multiplicities mi, i=1,2, """ , 
1, and whose l distinct root initial 

estimates are yo = [yo, i, 110,2, ""-, yo, i]. Figure 2.2 illustrates the refinement process 

of the computed roots yo graphically. In particular, the multiplicity structure m= 

{mi, m2, """, m, } defines the pejorative manifold M on which f (y) lies. The points 

Q, Q and P lie on this pejorative manifold, where: 

(1) Q denotes the point which is defined by the coefficients ä of j (y). 
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(2) Q denotes the point that arises from the orthogonal projection of a point a, 

defined by the coefficients of f (y), onto M, and 

(3) P denotes a point that arises from the series of the orthogonal projections per- 

formed by the successive AGCD computations, and its exact location on M is 

defined by the initial root estimates yo. 

The point P may be distant from the point Q, whose location is assumed to be very 

close to the exact point Q, and the desire is to move the point P to a point very close 

to Q. However, this movement should be done such that the new location of P is still 

on M, and this can only be achieved if the multiplicity structure m is maintained. 

The movement of P to Q is achieved by the method of non-linear least squares. 

2.4 Thesis outline 

This thesis considers the computational implementation of the method described by 

Uspensky [74], pages 65-68, for the computation of multiple roots of the theoreti- 

cally exact form of an inexact polynomial. The description of this method for the 

computation of the roots of an exact polynomial has been discussed in Section 2.3.1 

and it has been shown that it consists of successive GCD computations, successive 

polynomial divisions and solving several polynomial equations. 

The computation of the GCD of two exact polynomials requires that the degree of 

this GCD be first determined after which its coefficients are computed. It is shown in 

Chapter 3 that the Sylvester resultant matrix can be used for the computation of the 

GCD of two exact polynomials. However, it is assumed in this work that the given 

polynomial has multiple roots and their coefficients are not known perfectly, and thus 
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some modifications to the theory in Chapter 3 are required. 

These modifications are considered in this work, where robust methods are used for 

the computation of the degree of an AGCD of two in exact polynomials, and struc- 

ture preserving matrix methods are used for the computations of an AGCD of two 

inexact polynomials and the polynomial division of two inexact polynomials. Finally, 

the method of non-linear least squares is used for the refinement of the roots. 

It is shown in Chapter 4 that the coefficients of the given inexact polynomial must 

be processed before being involved in the computation of the AGCD, and three pre- 

processing operations are discussed in this chapter. These preprocessing operations 

allow efficient computations of the AGCD. 

An overview of AGCD computations is given in Chapter 5. The problem of comput- 

ing the degree of an AGCD of two inexact polynomials is addressed in Chapter 6 by 

considering three methods for this computation. Chapter 7 presents two methods for 

the computation of the coefficients of the AGCD using non-linear structured matrix 

methods. 

A robust method for the computation of the successive polynomial divisions is dis- 

cussed in Chapter 8. The two sets of polynomial divisions in Algorithm 2.3.1 yield 

several polynomials, all of whose roots are simple. The computation of these roots 

and their refinement are considered in Chapter 9. This chapter also contains some 

examples that demonstrate the application of Algorithm 2.3.1 for the computation 

of multiple roots of inexact polynomials, using the developed methods given in this 

thesis. 

The feasibility of using structure preserving matrix methods in computing the mul- 

tiple roots is then discussed in Chapter 10. Future work that may extend the work 
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presented in this thesis is also discussed in this chapter. 

2.5 Summary 

45 

This chapter has introduced the concept of ill-conditioned polynomials and provided 

a study of the sensitivity of a multiple root of a polynomial. The theory of pejo- 

rative manifolds enables the behavior of a multiple root in the presence of noise to 

be understood. It has been shown that a multiple root is ill-conditioned with re- 

spect to random perturbations that change its multiplicity. On the other hand, it is 

well-conditioned with respect to the structured perturbations that preserve its mul- 

tiplicity. A root solver that utilises these observations has been presented along with 

its geometrical interpretation. The stages required by the developed root solver have 

been described. 



Chapter 3 

Sylvester resultant matrix 

The polynomial root finder described in Algorithm 2.3.1 forms the high level descrip- 

tion of the root finder proposed in this thesis. The implementation of this algorithm 

requires successive GCDs to be computed. This chapter describes the application of 

the Sylvester resultant matrix and its subresultant matrices for the computation of 

the GCD of two univariate polynomials expressed in the power basis. 

The existence of a non-constant GCD of two polynomials can be verified by testing 

the singularity of their Sylvester resultant matrix. In particular, two polynomials 

have a non-constant GCD if and only if their Sylvester resultant matrix is singular. 

Moreover, if this resultant matrix is singular, then it is rank deficient and the defi- 

ciency in its rank equals the degree of the GCD, and the coefficients of the GCD lie in 

last non-zero row of this resultant matrix, after reducing it into an upper triangular 

form [5]. Thus, the Sylvester resultant matrix is closely related to the GCD compu- 

tation. 

Several resultant matrices can be used in the GCD computations, including the 

Sylvester, Bezout and companion matrices, as they have the same GCD information, 

46 
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that is, the rank deficiency is equal to the degree of the GCD and the coefficients of 

the GCD can be found from the resultant matrix. The Sylvester resultant matrix has 

been chosen in this work due to its linear structure which simplifies the implemen- 

tation of the structured computation methods that are required for the polynomial 

root solver developed proposed in this thesis. 

This chapter first defines the Sylvester matrix and reviews some of its properties for 

the GCD computation in Section 3.1. Then, Section 3.2 introduces the Sylvester 

subresultant matrices and their importance for the computation of the degree of the 

GCD. 

3.1 Sylvester resultant matrix 

To define the Sylvester resultant matrix, let us first decide when a pair of polynomials, 

f=j (y) and g= g(y), has a non-constant common divisor. Let 

mn 

f(y) _ý aiy2 and 9(y) biyt, äm, bn : ý4 0" (3.1) 

i=o i=o 

If j (y) and g(y) have a non-constant common divisor, then there must exist a value of 

y for which f (y) =0 and g(y) = 0, simultaneously. Using these equations, construct a 

system of N=m+n homogeneous equations in N unknowns. The coefficient matrix 

of this system is called the Sylvester resultant matrix. In particular, multiplying 
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f (y) =0 by yn-I, n-2,... , y, 1, respectively, yields the n equations 

ämym+n-1 + äm-lym+n-2 

ämym+n-2 

+ """ + äoyn-1 

+... } ä1y"-1 + äoy"'2 

=0 

=0 

ämym .+ äm-iy'r`-i +... + äo =0 

(3.2) 

Similarly, multiplying g(y) =0 by ym_l, ym-2, """, y, 1, respectively, yields the m 

equations 

bnym+n-1 + bn-lym+n-2 ++ boym-1 

bnym+n-2 ++ blym-1 + boym-2 

bnyn + bn-lyn-1 + 

-o 
-o 

+ bo =0 
(3.3) 
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The transpose of the (m + n) equations in (3.2) and (3.3) can be written as a system 

of linear homogeneous equations 

am 

äm_1 am 

am_1 

äl äm 

äo äi " ä�ti-i 

äo 

a1 

äo 

bn_1 

bn_1 

bl 
." 

bn 

bo bi bn-1 

bo 

bi 

bo 

ym+n-1 

ym-Fn-2 

= 0. (3.4) 

y 

1 

Thus the Sylvester resultant matrix (which will henceforth be called the Sylvester 

matrix, for simplicity) of j (y) and g(y) defined above is the (m + n) x (m + n) 
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coefficient matrix, 

S(f, s) = 

äm 

äm_1 äm 

äm_1 

äl 

äo äl 

do 

äm 

äm_1 

äl 

äo 

bn 

bn-1 bn 

bi 

bo 

bn_1 

bi 

bo 

bn 

bn-1 

bi 

bo 

n columns m columns 

where the first n columns contain the coefficients ä; of f (y) and the last m columns 

contain the coefficients b; of g(y). This is how the Sylvester matrix is defined in [5]. 

The Sylvester matrix can also be viewed as two Cauchy matrices. These Cauchy 

matrices are formed by the first n columns and the last m columns, respectively, of 

S(f, y). Thus the Sylvester matrix can be represented as follows 

S(f, 9) 
[c(f) 

D(9) 
], 

where C(f) E R (m+n)x"D(9) E 

(3.5) 

, n+n)x'" The representation of the Sylvester 

matrix in terms of two Cauchy matrices will be used in the following chapters where 

it is shown that the vector of coefficients of the product of two polynomials can be 
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written as a matrix-vector product. 

If j (y) and g(y) have a non-constant GCD then the homogeneous system in (3.4) must 

have a non-trivial solution. In general, a system Sy =0 has a non-trivial solution if 

and only if S is singular. Therefore, a necessary condition for f (y) and g(y) to have 

a non-constant GCD is that their Sylvester matrix be singular. 

Theorem 3.1 establishes the relation between the Sylvester matrix and the GCD 

computation. 

Theorem 3.1. Let the polynomials f (y) and g(y) in (3.1) have a non-constant GCD. 

If the degree of the GCD is d>0, then the following properties of their Sylvester 

matrix, S(f, g), hold true: 

1. S(f , g) is rank deficient and therefore, 

det(S(f , g)) = 0. 

2. The degree of the GCD of i (y) and g(y) equals the rank loss of S(f, g), 

deg(GCD (j, §)) =m+n- rank (S(f, g)). 

3. The coefficients of the GCD of f (y) and g(y) lie in the last non-vanishing row 

of S(f, g)', after reducing it into an upper triangular form. 

These results are established in [5], pages 35-39, and [18]. The relation between the 

GCD of two polynomials and their Sylvester matrix can be clarified by the following 

example. 
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Example 3.1. Let the polynomials j (y) and g(y), respectively be 

f(y) =y3+8y2+5y-50= (y+5)2(y-2) 

and 

9(y) = y5 + 7y4 -2 y3 -46 Y2 + 65y - 25 = (y - 1)3(y + 5)2, 

whose GCD is 

d(y) = y3 + 10y2 + 25y = (y + 5)2. 

Since deg (f) =3 and deg (g) = 5, their Sylvester matrix which is 8x8 is 

Fl0000100 

S(. f, g) _ 

81000710 

58100 -2 71 

-50 5810 -46 -2 7 

0 -50 581 65 -46 -2 

00 -50 58 -25 65 -46 

000 -50 50 -25 65 

0000 -50 00 -25 

52 

It can be verified that det(S(f, g)) =0 and, using the Sylvester matrix properties 

discussed above, this correctly suggests that the polynomials 1(y) and g(y) have a 
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non-constant GCD. Furthermore, reducing S(f 
, 
g)T into an upper triangular form, 

yields the matrix 

-0.5 -4 -2.5 25 0000 

0 -0.5 -4 -2.5 25 000 

00 -0.5 -4 -2.5 25 00 

000 -0.5 -4 -2.5 25 0 

0000 -1 -10 -25 0 

000001 10 25 

00000000 

00000000 

whose rank is 6. Applying the second property yields, 

deg (d(y)) = (m + n) - rank (S(f, g)) = 2, 

which is equal to the deg (d(y)). Finally, the last non-vanishing row provides the 

coefficients 1,10, and 25, which define the coefficients of rl(y), as required. Q 

In this section it is shown how the Sylvester matrix allows the computation of 

the degree and the coefficients of the GCD of two polynomials. In addition to the 

Sylvester matrix properties mentioned here, its subresultant matrices provide a means 

to compute the degree of the GCD of two polynomials. The next section considers 

these subresultant matrices and explains their relation to the degree of the GCD. 
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3.2 Sylvester subresultant matrices 
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The kth Sylvester subresultant matrix of the polynomials j (y) and g(y), Sk(f , 
g) E 

R(m+n-k+1)x(m+n-2k+2) for 1ýkG min(m, n), is formed by deleting some rows and 

columns of S(f, g). It is recalled that S(f , j) can be represented in terms of two 

Cauchy matrices as shown in (3.5), and the kth subresultant matrix is formed by 

deleting the last k-1 columns of C(f ), the last k-1 columns of D(g), and the last 

k-1 rows of S(f, g). For k=1, the Sylvester subresultant matrix reduces to the 

Sylvester matrix. 

Example 3.2. Let 

f (y) = 5y5 + 3y4 - 4y3 + y2 -y+6, 

9(y) = 7y3 - 3y2 - 2y - 9. 

Then 

Si = SU, §) = 

50070000 

350 -3 7000 

-4 35 -2 -3 700 

1 -4 39 -2 -3 70 

-1 1 -4 09 -2 -3 7 

6 -1 1009 -2 -3 

06 -1 0009 -2 

00600009 
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s2 (j i 9) _ 

507000 

35 -3 700 

-4 3 -2 -3 70 

1 -4 9 -2 -3 7 

-1 109 -2 -3 

6 -1 009 -2 

060009 

ý 
S3 (L 

e 9) _ 

5700 

3 -3 70 

-4 -2 -3 7 

19 -2 -3 

-1 09 -2 

6009 

0 
Consider the two polynomials, f (y) and g(y) defined in (3.1), and let these two 

polynomials be non-coprime polynomials with a GCD of degree d. Factorising these 

two polynomials fork=1, ... , d, yields 

f(y) = ük(y)dk(y)7 

and 

9(y) = vk(y)dk(y), 

where 

(3.6) 

(3.7) 

m-k n-k 

uk(y) _E uk, iym-k-i and vk(y) 
- 

Evk, 
iyn-k-i, 

i=0 i=0 
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are two quotient polynomials of degree m-k and n-k respectively, and 

k 
dk (y) _ý dk, iyk-i, 

i=o 

is a common divisor polynomial of degree k. Note that for k=1, """, d-1, the 

polynomials Ük(y) and vk(y) are not co-prime, but for k they are co-prime 

polynomials. It follows that 

vk(y)f(y) _fik(y)9(v) b dk(y) = 
f(y) 9(y) 
uk(y) vk(y) 

(3.8) 

The polynomial products in (3.8) can be written in a matrix-vector product as follows 

Ck Dk 
] vk 

= Sk vk 
= 0, k= (3.9) 

-ük "uk 

where Ck = Ck(f ), Dk = Dk(g), are Cauchy matrices of the polynomials j(y) and 

y(y) respectively, Sk = Sk(f, g) E R(m+n-k+i)x(m+n-2k+2) is the kth subresultant 

matrix, and 

llk 

Yk 

T 
ük U 14 17... wk 

m-k IE Rm-k+l, 
T 1 

n-k-Fl vk U vk 1i ... vk 
n-k 1 

ER 

Since the degree of the GCD of f (y) and g(y) is d, it follows that dk, o # 0, and thus 

Uk, o, Vk, O 0. Also, it is clear that f (y) and y(y) possess common divisors of degrees 
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1, """, d, but they do not possess a common divisor of degrees d+ 1 or more, and thus 

rank Sk(f, g) <m+n- 2k + 2, k=1,..., d 

rank Sk (f , g) =m+n- 2k + 2, k=d+1, ... , min (m, n). (3.10) 

This implies that the degree d of the GCD of j (y) and g(y) equals the largest value 

of k for which Sk (f, g) is rank deficient. This clearly shows how the computation of 

the GCD degree reduces to a rank determination problem. Furthermore, the result 

above implies that, for the homogeneous equation in (3.9), if 

Sk(fem = [Ck Ak)r 
where Ck is the first column of Sk(f, g) and Ak is the matrix formed from the remaining 

columns of Sk the following linear algebraic equation possesses solutions only 

fork=1, """, d, 

Akxk = Cki 

where 

2k- I vki 'Uk, n-k -ük, p ... -ük, m-k I` E ým+n-2k+1 

(3.11) 

(3.12) 

These results are also established in [17,28]. Chapter 6 shows how these results can 

be used to introduce new methods for the computation of the degree of the GCD, 

which is one of the main building blocks of the proposed root solver. 
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Example 3.3. Let the polynomials j (y) and g(y), respectively be 

f (y) = (y + 1)4(y - 2)2 = yo -6 y4 - 4y3 + 9y2 + 12y + 4, 

and 

9(y) = (y - 2)4 = y4 -8 Y3 +24 Y2 - 32y + 16, 
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whose GCD is of degree 2, and their orders, respectively, are m=6 and n=4. Then 

the row echelon form of the subresultant matrices, for k=1, "", min(m, n) are 

Sre o 1 

100000001 -4 

01000000 -4 17 

001000004 -20 

0001000004 

00001000 -1 4 

00000100 -4 15 

00000010 -6 20 

00000001 -4 10 

0000000000 

0000000000 
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Sre = 2 

and 

10000001 

0100000 -4 

00100004 

0001000 -1 

0000100 -4 

0000010 -6 

0000001 -4 

00000000 

00000000 

Sle = 4 

Sre 
3 

1000 

0100 

0010 

0001 

0000 

0000 

0000 

100000 

010000 

001000 

000100 

000010 

000001 

000000 

000000 

The results of computing the rank of the subresultant matrices for k=1, """, 4 are 

shown in Table 3.1. These results imply that Sk (f 
, 
g) is rank deficient only for k<2, 

and thus it follows from (3.10) that deg GCD (f, = 2. Q 

An important issue that should be addressed is the nature of the solution xk in 

(3.12), for k=1, """, min(m, n), from which the estimates dk(y) are calculated. In 
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Table 3.1: The ranks and dimensions of Sk, k=1, """, 4 for Example 3.3. 

Sk Rank m+n-2k+2 
Sl 8 10 
S2 7 8 
S3 6 6 
S4 4 4 
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particular, estimates for the vectors ük and Yk can be calculated from (3.11), and 

estimates for dk can be obtained from ük and '4- In particular, (3.6) and (3.7) can 

be combined into one matrix-vector equation, 

Qk, l äý _f LQk, 
2j 

k=1, """, min(m, n), 

where Qk, l and Qk, 2 are Cauchy matrices whose entries are the coefficients of ük and 

Yk respectively, that are calculated from (3.12), and f and g are the vectors of the 

coefficients of j (y) and g(y), respectively. Thus, dk can be obtained from, 

t 

dk 
Qk, i =k=1, """, min(m, n). 
Qk, 2 

Equation (3.11) possesses solutions for k_1, """, cl, but it does not possess a solution 

for k>d. More specifically, it follows from (3.10) that the solutions of (3.11) satisfy 

the following conditions: 

1. For k=1, ". ", 
1-1, rankAk <m+n- 2k + 1, and thus for each of these 

values of k there is an infinite number of solutions. Only a finite number yields 

the coefficients of a polynomial dk(y). All the other solutions yield rational 
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functions, which are not of interest. 

2. For k=d, rankAk = m+n-2k+1, and thus there is one unique solution dk(y). 

This solution must be the coefficients of a polynomial not a rational function, 

and thus dd(y) is also a polynomial. 

3. For k=d+1, 
... , min(m, n), rank Ak =m+n- 2k + 1, and thus there is no 

solution. 

Example 3.4. Consider the exact polynomials 

f(y) _ (y - 2)2(y - 4)(y - 6), 

9(y) = (y - 2)(y - 4)2, 

whose GCD is of degree 2. The first Sylvester subresultant matrix Sl (f, g) of these 

polynomials is 

Sl(f, 9) = 

1001000 

-14 10 -10 100 

68 -14 1 32 -10 10 

-136 68 -14 -32 32 -10 1 

96 -136 68 0 -32 32 -10 

0 96 -136 00 -32 32 

00 96 000 -32 
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whose null space has the following family of vectors 

v1, o 

V 

-u 

It follows from (3.8) that 

vl, 
l 

v1,2 

-fil, o 

-ül, l 

-'f 2 

-ü3 

vi, o 

vl, l 

-4(4vi, o + v1, o) 

-vl, o 

(5vl, o + 2v1,1) 

4(5vl, o + 2v1,1) 

12(4vl, o + vl, l) 

di(y) = 
f(y) 

_ 
(y) 

_ 
(y - 2)(y - 4) 

wl (y) vl (y) vi, oy + vl, l - 4(4vl, o + vl, l)' 
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(3.13) 

where vi, o and v1,1 are arbitrary constants that are not simultaneously zero. Clearly, 

it can be seen that dl (y) is in general a rational function that has an infinite number 

of forms. However, only those forms for which di(y) is a polynomial are of interest, 

and for this example, there are three forms of this type. In particular, (3.13) is 

proportional to the common divisors (y - 2) and (y - 4), for vi, l = -4I1, () and vi, i = 

-svi, o, respectively, and it is equal to the GCD of j (y) and g(y) for 01, o = 0, vi, l 0 0. 

All other values of ö are not of interest as they yield rational forms of dl(y). 

Equation (3.11) restricts the solutions to be from a subspace of the null space of the 

Sylvester matrix S1(f, g) of j (y) and g(y), by forcing il, o to be equal to -1. It can 

be verified that this restriction allows the common divisors (y - 2) and (y - 4) to be 

recovered from vl, l = (-1) x (-4) =4 and vl l= (-1) x (-L4-) =3, respectively, 

but it can not recover the GCD of j (y) and g(y), because the condition vl, o = -1 
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contradicts the condition v1,0 =0 required for the GCD to be recovered. However, 

the GCD can be easily obtained from A2x2 = c2i whose solution is unique in this 

example, as is now shown. 

Considering k=2, (3.11) becomes 

0100 
1 -10 10 

-14 32 -10 1 

68 -32 32 -10 

-136 0 -32 32 

96 00 -32 

v1 

-ü0 

-Ui 

-ü2 

1 

-14 

68 

-136 

96 

0 

which has the unique solution 

vl = 4, üo = -1, ül = 8, ü2 = -12, 

and since vo = -1, it follows that ü(y) and D(y) are 

ü(y) = -(y - 2)(y - 6) = -y2 + 8y - 12 and 

which are co-prime. Therefore, 

d2(y) = -(y - 2)(y - 4), 

v(y) = -(y - 4), 

is the common divisor and it is the unique solution. Finally, when k=3, (3.11) 
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becomes 

10 

-10 1 

32 -10 

-32 32 

0 -32 

vl 

-üo 

1 

-14 

68 

-136 

96 

which does not possess a solution. Thus the polynomials j (y) and g(y) do not have 

a common divisor of degree k=3, and thus the degree of the GCD of f (y) and g(y) 

is equal to two. Cl 

It is shown in Example 3.4, that for k=1, """, 
d-1, (3.8) is satisfied by an infinite 

number of solutions ük and Vk of (3.11). However, since the common divisors are 

polynomials, interest is restricted to a finite number of solutions for which dk(y) are 

polynomials, not rational functions. For k=d, (3.8) is satisfied by the unique solu- 

tion of (3.11), and finally, (3.11) does not possess solutions for k>d because there 

does not exist a common divisor of degree greater than d. 

It has been shown in this chapter that the Sylvester resultant matrix and its sub- 

resultant matrices allow the computations of both the degree of the GCD and its 

coefficients. Although this result is valid theoretically, it is more involved computa- 

tionally if inexact polynomials are considered. More precisely, these computations 

fail in practice as data is usually corrupted by noise, through which the exact non 

co-prime polynomials are contaminated and become, with high probability, co-prime. 

This also implies that the corresponding Sylvester matrix is non-singular and all the 

properties in Theorem 3.1 will not be applicable. 
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A numerical solution for this problem is to slightly perturb the given polynomials 

by structured perturbations so that they have a non-trivial GCD. In terms of the 

Sylvester matrix of the given inexact polynomials, this full rank matrix is perturbed 

such that it becomes rank deficient. This is referred to as the structured low rank 

approximation of the Sylvester matrix, which yields an AGCD because the polyno- 

mials have been moved slightly to have a non-constant GCD. 

The problem of computing an AGCD of two inexact polynomials is addressed in detail 

in Chapters 6 and 7, where the two main stages of the AGCD computation, the com- 

putation of its degree and its coefficients, are considered, respectively. A crucial step 

that has to be applied before considering the numerical computation of an AGCD 

of imperfectly known polynomials is to preprocess them. This preprocessing will be 

considered in the next chapter and it will be shown that their inclusion is vital to 

obtain good result. 

3.3 Summary 

This chapter has described the properties of the Sylvester matrix and its use in com- 

puting the GCD of two non co-prime polynomials. It was shown how the singularity 

of the Sylvester matrix provides a means not only for detecting the existence of the 

GCD, but also for computing its degree and coefficients. Important results for the 

GCD computation were established. For example, the degree of the GCD is equal 

to the rank loss of the Sylvester matrix and the coefficients of the GCD are defined 

by the last non-zero row of the transpose of the Sylvester matrix after reducing it 

to an upper triangular form. Moreover, it was shown that the order of the Sylvester 

subresultant matrices is also important when it is required to compute the degree of 
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the GCD. 



Chapter 4 

Preprocessing operations 

This chapter considers the preprocessing operations that must be performed on the 

given polynomial before being involved in the computation of its roots. In particular, 

it was noted in the previous chapter that the implementation of Algorithm 2.3.1, 

whose computational implementation is considered in this thesis, requires successive 

GCD computations. It was also shown that the Sylvester matrix can be used for 

the theoretical computation of the GCD of two exact polynomials. However the case 

differs when two inexact polynomials are considered, as they need to be preprocessed 

before computations are performed on their Sylvester matrix. This is to reduce the 

possible occurrence of catastrophic problems such as those associated with compu- 

tations performed on polynomials whose coefficients suffer from a wide variation in 

magnitude, which occurs frequently in GCD-based polynomial root finders [26]. 

This chapter considers three preprocessing operations, the first of which normalises 

the coefficients of the polynomials to have unit magnitude. The other two operations 

minimise the ratio of the maximum coefficient in magnitude to the minimum coeffi- 

cient in magnitude, using two parameters a and 0. In particular, let the polynomials 

67 
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1(y) and g(y) that are defined in (3.1) denote, respectively, the exact forms of the 

inexact polynomials f (y) and g(y), 

mn 

(4.1) f (y) =E a=y' and 9(y) _ 
1: bay1, a, n, bn =ý4 0. 

i=0 i=0 

The parameter a, that arises from the partitioned structure of the Sylvester matrix, 

and the parameter B that is used to scale the independent variable y, are introduced in 

order to transform the normalised forms of the given polynomials f (y) and g(y) into 

another set of polynomials, whose coefficient variations are smaller. Computational 

experiments showed that failure to implement this transformation led to a significant 

degradation in the results. All computations on the developed root solver are therefore 

performed on this transformed set of polynomials. 

4.1 Normalisation 

It was shown in Chapter 3 that the structure of the kth Sylvester matrix Sk(f, g) 

dedicates the first n-k+1 columns for the coefficients of f (y), and the last m-k+1 

columns for the coefficients of g(y). This partitioned structure may be unbalanced, 

especially if the coefficients of f (y) are significantly larger or smaller than the co- 

efficients of g(y). This problem can be overcome by normalising both polynomials. 

Normalising the polynomials by the 2-norm of their coefficients is frequently used in 

the literature such as [2,17), but to provide better averaging, the geometric mean 

(GM) is preferred, especially if the coefficients vary widely in magnitude. Consider 
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for example, the polynomial p(y), 

p(y) = 10y2 + 108y + 104, 

for which 

69 

P=[10108104]" 

It follows that the geometric mean GM(), and the 1-, 2- and oo-norms are 

GM(p) = 2.15 x 104,1IpII1 .:! IIpII2 = 108, and 11p11OO = 108, 

which shows that in contrast to the geometric mean, the 1-, 2- and oo-norms 

neglect the small coefficients, that is, they are insensitive to the changes in the small 

coefficients. For example, if the coefficient of y2 in the polynomial p(y) given above, 

is changed to 10-3, 

whose coefficient vector q, 

then 

9(y) = 10-3y2 + 108y + 104, 

icient vector g, 

q=[ 10-3 108 104 

GM(q) =103, II4111 ý Ilgllz =108, and Ilgllý =108. 
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Clearly, it can be seen that a change of 99.99% in the coefficient of y2 causes a 

change of 95.4% in the geometric mean of the coefficients, whereas the 1-, 2- and 

oo-norms change by a negligible amount. Therefore the geometric mean has been 

used to redefine the polynomials in (4.1) as follows, 

m 

n. - 
a; (4.2) f (y) = L, °'ty2, 

i=0 

and 

wa -1) 
m+l (n0 

lau) 

ni bi 
g(y) _E biy 

ý 
bi = ie 

i-0 (ýý 
o lbj 1)n+l 

(4.3) 

where only the non-zero coefficients are considered by the normalisations in (4.2) 

and (4.3). This normalisation by the geometric mean defines the first preprocessing 

operation. 

4.2 Relative scaling of polynomials 

If a is a non-zero scalar, then the GCD of j (y) and g(y), satisfies 

GCD(f, g) ti GCD(f, ag), 

where N denotes equivalence. This equivalence fails numerically when inexact data is 

considered, because different values of a yield different AGCDs, even if they retain the 

same degree. The variable a can be used as a parameter to be computed according to 

a specific criterion such that good results are obtained. Considering the normalised 
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forms of f (y) and g(y) in (4.2) and (4.3), respectively, a can be interpreted as the 

weight of g(y) relative to the unit weight of f (y). 

Consider the rank of the Sylvester matrix S(f (y), ag(y)), where f (y) and g(y) are as 

defined in (4.2) and (4.3), respectively, 

rank S(f, ag) = deg g if a is very small, 

rank S(f, ag) = deg f if a is very large. 

Thus a bad choice of a causes missleading results and an optimal value of a must be 

computed. 

The inclusion of a was first introduced in [78], where it is shown that the rank of 

S(f, ag) is a function of a and not all the values of a are associated with a well 

defined rank of this Sylvester matrix. However, computing an optimal value of a, 

to obtain a good approximation for an AGCD is not considered in this reference. 

The preprocessing operations considered in this thesis require the computation of 

an optimal value of a, and the criterion and method for this computation will be 

considered after introducing the third preprocessing operation. 

4.3 Scaling the independent variable 

The parameter a introduced in Section 4.2 performs relative scaling of g(y) with 

respect to the unit weight of f (y). The preprocessing operation discussed in this 

section introduces the parameter 0 that scales the independent variable y, using the 
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substitution 

y= Ow, (4.4) 

where w is the new independent variable and 8 is a parameter that is chosen to min- 

imise the ratio of the maximum coefficient in magnitude to the minimum coefficient 

in magnitude. This substitution does not change the degree of the GCD of j(y) and 

g(y), that is, 

GCD(f (y), g(y)) = GCD(f (Ow), §(8w)). 

Considering the effect of the scaling in (4.4), it is proved in [80], that the compo- 

nentwise condition number of a real root yo of f (y) is equal to the componentwise 

condition number of the real root wo = yo/O of f (0w), and this also applies to the 

polynomial g(y). 

The method used to calculate optimal values ao and Bo of a and 0, respectively, is 

considered in the next section. Scaling a polynomial by this factor has also been 

considered in [21] and [26] for one polynomial, and it is extended in this thesis to two 

polynomials. 

4.4 Calculating optimal values of the scaling pa- 

rameters 

Polynomials whose coefficients suffer from wide variations in their magnitude create 

numerical problems in several applications. One of those applications where such 
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problems occur frequently is the GCD-based polynomial root finder [26]. Thus a 

suitable criterion for computing optimal values of a and 0 is: Minimise the variation 

in the magnitude of the coefficients of the polynomials whose GCD is to be computed. 

Consider the normalised polynomials f (y) and g(y) that are defined in (4.2) and (4.3), 

respectively. Using the substitution in (4.4) they are redefined as, 

m 

. 
fe(w) = E(d, g'�-t), wm-`, 

z=o 

n 

go (W) - L(bj 
en-7)wn-9 

j=0 

(4.5) 

(4.6) 

The combination of the discussion in Section 4.2, and (4.5) and (4.6), shows that 

the Sylvester matrix S(fei age) must be considered for the AGCD computations. 

The entries of this Sylvester matrix are {C 9m-i}m0 and {ab36 i}ý 
o and thus the 

optimal values of 0 and a are chosen such that the ratio of the maximum coefficient 

(in magnitude), to the minimum coefficient (in magnitude), of the polynomials 

and age(w) is minmised, that is 

ao, Bo = arg min 
max {maxi=o,..., 

m IätB"`-'1 
, maxj_o,..., n 

I abj B"-jI} 
a, 6 min {mini=o,..., 

m 
I 
abj9"-i 

I} . 

This minmisation can be rewritten as: 

fe(w) 

(4.7) 

Minimise ä 
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Subject to 

t> 1a, =19m-', i=0,..., m 

t>aIbj Ion-i' j=O,..., n 

d< Iä=19m-', i=0,..., m 

d<aIbjIB"`-j, j =0,..., n 

d>0 

0 >0 

ý>0, 

where ä; 40, i=0,..., m, andbj 0, j=0,..., rc. 

Using the transformations 

T= log t, D= log d, ¢= log B, Ec = log a, ä; =1og Iä; l, Q; =1og I bjI, 

the minimisation problem can be restated as: 

Minimise T-D 

Subject to 

T- (m - i)o > äi, i=0,..., m 

T- (n- j)o-µ ? Q� j =0,..., n 

-D + (m - i)o > -di, i=0, ..., m 

-D + (n - j)o +µ >- -, ßj, j=0,..., n, 

74 
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which is a standard linear programming (LP) problem whose objective function is 

T 

T-D= 
11 

-1 00J 
D 

0 

A 

There are 2(m +n+ 2) constraints in this LP problem, and as noted above, if a 

coefficient a; or bj is equal to zero, then the corresponding constraints are deleted. 

To recover the optimal values ao and 0o of a and B, respectively, recall that 0= log 9 

and p= log a. The solutions ao and Bo of (4.7) are the optimal values of a and B, 

respectively, and thus the polynomials (4.5) and (4.6) become 

m 

. 
feo(w) = E(äaBo -i)w"`-i (4.8) 

i=O 

n 

9e0(w) = E(bjBo-j)wn-3 

j=o 
(4.9) 

Since the Sylvester matrix and its subresultant matrices are used for the computation 

of an AGCD of two inexact polynomials, all the computations are performed on 

Sk(fo 
, ao go. ), where k denotes the subresultant matrix order, and fo (w) and goo (w) 

are defined in (4.8) and (4.9), respectively. 
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Example 4.1. Let two exact polynomials be 

1(y) = (y - 10-3)4(y - 10-1)2(y - 104) 

9(y) _ (y - 10-3)3(y - 10-2)3(y - 104), 
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whose coefficients have been scaled by ao = 1.1545 and Bo = 0.0362, after normal- 

ising each polynomial by the geometric mean of its coefficients, and it can be seen 

that deg GCD(f, g) = 4. Figures 4.1 (a) and (b) show how scaling by these two pa- 

rameters reduces the variation in the magnitude of the coefficients of f (y) and g(y), 

respectively. Figure 4.1(a) shows that the ratios 

maXi_o,..., 7 äi j 
and log I aieö lo -t 

g 
mini=o,..., 7 äi an ö 

mini=o,..., 7 I diep -' 
I1 

of the coefficients of j (y) and fo0(w), respectively, have reduced from 32.2362 to 

14.6347, and for g(y), Figure 4.1(b) shows that the reduction in the ratios 

log 
maxj=o,..., 7 bi 

minj=o,..., 7 
bi 

maxo,..., 7 I b; 90 -i 
and log 

min m-j 

of g(y) and goo (w) is from 34.5388 to 14.6347. This shows that the preprocessing 

operations have reduced the variations in the magnitude of the coefficients of the 

polynomial by several orders of magnitude. 

Figure 4.2 shows the normalised singular values of S(f, g) and S(foo, ao goo), where 

clearly it can be seen that the rank of S(f , g) is not defined, whereas the rank of 

S(feo, aogo,, ) is equal to 10 and thus deg GCD(feo, geo) = 4, which is correct. Thus, 

in this example, the preprocessing operations that have been presented in this chapter 
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Figure 4.1: (a) The coefficient ranges of the normalised exact polynomial f (, y). " 
and the scaled version of it. f, (b) The coefficient ranges of the normalised exact 
polynomial g(y), " and the scaled version of it, f. 

Figure 4.2: The normalised singular values of S(f, g) o and S(fo, ao ge0) x, for Ex- 

ample 4.1. 
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do not only minimise the coefficient variations, but also help to obtain a well-defined 

rank deficient matrix. Q 

4.5 Summary 

This chapter has discussed the preprocessing operations that are required to be per- 

formed on the given inexact polynomials f (y) and g(y), before the computation of 

their Sylvester matrix S(f, ag), in order to provide more reliable computations. In 

particular, three polynomial preprocessing operations were described. The first pre- 

processing operation normalises each polynomial by the geometric mean of its coeffi- 

cients. The second uses the relative scaling of the given polynomials by the parameter 

a. The third preprocessing operation scales the independent variable with the pa- 

rameter 9. 

The first preprocessing operation is motivated by the fact that if the coefficients of 

the polynomial f (y) are much smaller or larger than those of the polynomial g(y), 

the Sylvester matrix S(f, g) is not balanced and therefore the coefficients of the poly- 

nomials f (y) and g(y) must be normalised. In this work, the geometric mean is used 

as it provides a better average. The second preprocessing operation is motivated by 

the partitioned structure of the Sylvester matrix. To balance this partitioned struc- 

ture, the parameter a is used as the weight of g(y) relative to the unit weight of 

f (y). Finally, the concern of the third preprocessing operation is to provide more 

reliable computations on polynomials, whose coefficients vary widely in magnitude, 

through scaling the independent variable. The criterion used for the computation of 

the parameters a and 9 is based on minimising the ratio of the maximum coefficient, 

in magnitude, to the minimum coefficient, in magnitude, and a technique from linear 
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programming has been used to compute these two parameters, simultaneously. 

It has also been shown, in this chapter, that the use of these preprocessing techniques 

yields significant improvements in computations performed on the Sylvester matrix. 



Chapter 5 

Overview of AGCD computation 

It has been shown in Chapter 1 that the roots of a polynomial f (y) can be computed 

using a GCD-based algorithm. In particular, if d(y) = GCD(f (y), f (1) (y)), then the 

values of the distinct roots of f (y)/d(y) are identical to the distinct roots of f (y)" 

Furthermore, the roots of f (y)/d(y) are simple, and they are therefore numerically 

better conditioned than the multiple roots of f (y). 

In addition to its application in the root finding problem, the computation of the GCD 

of two polynomials has widespread applications in different fields, such as control the- 

ory [5], signal processing, system identification [56,59,71], satellite communications 

and image processing [42,62]. In communications, for example, the output data 

is represented as a convolution of the input data and the impulse response of the 

channel. Let xi(n) represent the ith input of a multichannel system whose impulse 

response is given by h(n). The ith output yi(n) of this system can be represented by 

y, (n) = xi(n) * h(n), and the z-transform Y(z) of y; (n) is 

Y(z) = Xi(z)H(z), 

80 



CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 81 

where X; (z) and H(z) are the z-transforms of xz(n) and h(n), respectively. The 

property H(z) is a common factor in all receiving blocks is used for the blind channel 

identification problem [56,72]. In [56], for example, two receiving blocks were used 

such that the output of these blocks are given by, 

Yl(z) = Xl(z)H(z), and Y2(z)=X2(z)H(z) 

respectively. The z-domain channel impulse response H(z) is then regarded as the 

GCD of Yi(z) and Y2(z), provided that the inputs Xi(z) and X2(z) are co-prime. 

In a similar manner, in image processing the final image is represented by a convo- 

lution of the desired image and the blurring function (e. g. camera movement). The 

desired image in the z-domain can be considered as the GCD of two or more bivariate 

polynomials representing images of the same scene. 

Practically, exact GCDs are not defined as data are corrupted by random noise, in 

addition to roundoff error associated with the computation in a floating point envi- 

ronment. Therefore, the computation of the exact GCD in the presence of noise is 

meaningless and an approximate solution, that is, an AGCD, should be considered. 

The problem of computing an AGCD for a pair of polynomials has been presented 

intensively in the literature. This chapter is devoted to provide an overview of the 

previous work proposed for the computation of an AGCD of two inexact univariate 

polynomials. The problem of computing an AGCD is first addressed, in Section 5.1. 

Section 5.2 discusses some of the literature on AGCD definitions. Some known ap- 

proaches are summarised in 5.3, and these include Euclid's algorithm, the resultant 

approach, and the optimisation approach. The root solver developed in this the- 

sis involves the development of robust methods for the computation of an AGCD 
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of two polynomials, and its contributions towards the research done in the AGCD 

computation is listed in Section 5.4. 

5.1 Problem statement 

The problem of computing the GCD of two polynomials is usually stated as follows: 

Given two polynomials f (y) and g(y), compute their greatest common divisor, d(y), 

that is, 

f(y) = u(y)d(y), 9(y) = v(y)d(y), 

where, u(y) and v(y) are co-prime. The most widely known algorithm for calculating 

the GCD of a pair of polynomials is Euclid's algorithm [1] which is the oldest non- 

trivial algorithm still in use [40]. This algorithm is efficient if the given data and the 

arithmetic operations are error-free. This ideal situation is not achieved in practice 

because a small perturbation in the coefficients of the given polynomials may yield, 

with high probability, a constant GCD. Thus in the presence of noise, the GCD is not 

defined and only an AGCD can be considered. An important difference between these 

two types of GCDs is that the exact GCD is unique, up to an arbitrary non-zero scalar 

multiplier, whereas the AGCD is not unique. In particular, an AGCD can be defined 

in several ways, and the definition used must be appropriate for the problem to be 

solved. Moreover, for a certain AGCD definition, there may exist several polynomials 

that satisfy the requirements of this definition. Some of the AGCD definitions found 

in the literature are considered in the next section. 
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5.2 Definitions of the AGCD 

Several definitions of an AGCD of a pair of inexact polynomials are proposed in the 

literature, including the f-GCD [8,16,24,51,63], the b-GCD [51,53], the appGCD 

[63] and the quasi-GCD [68]. 

The E-GCD or so-called the nearest GCD is the most widely considered AGCD. The 

common underlying principle in computing this type of AGCD is to find a nearby 

pair of polynomials I (y) and g(y) that are within a distance e from the given poly- 

nomials f (y) and g(y), and have a non-trivial GCD. An E-GCD of two given inexact 

polynomials can be defined as follows: 

Definition 5.1. A polynomial d(y) is said to be an e-GCD of the given inexact 

polynomials f (y) and g(y), whose degrees are m and n, respectively, if there exist 

small perturbations bf (y) and bg(y), such that for I (y) =f (y) + 5f (y) and g(y) _ 

g(y) + Sg(y), the following statements hold true: 

1. deg f (y) =m and deg g(y) = n. 

2. IIf(y) - f(y)II <_ EIIf(y)II and IIg(y) -g(y)II <_ EII9(y)II. 

3. d(y) is an exact GCD of f (y) and g(y). 

It follows from Definition 5.1 that an e-GCD is not unique because there may exist 

several polynomials 1(y) and g(y) that satisfy the properties in the definition. 

In [53], Pan argues that the e-GCD is unstable since its degree is sensitive to small 

perturbations of its coefficients. He introduces the ö-GCD. This AGCD is defined 

by the roots rather than the coefficients of the polynomial. It implies that the roots 

of the polynomials have to be computed first, and Pan has suggested some available 
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root finder algorithms such as [50,52,54]. An obvious disadvantage of this approach 

is that it requires the roots to be calculated accurately. 

The definitions of the c-GCD and ö-GCD consider the inexact polynomials whose 

coefficients are known imperfectly or are perturbed with roundoff error. This is in 

contrast to the quasi-GCD definition proposed by Schönhage. In particular, given 

two univariate polynomials f (y) and g(y) with error bound e>0, a polynomial h(y) 

is called a quasi-GCD if h(y) is an c-approximate divisor of f and g, and any exact 

common divisor off and g is an approximate divisor of h(y). The computation of h(y) 

requires the computation of the cofactors u(y) and v(u) such that luf +vg-hl < efhj. 

While the input data, in reality, can only be found for limited digits of accuracy, the 

quasi-GCD definition assumes that more digits can be obtained on demand. This 

assumption limits the use of the quasi-GCD polynomials to symbolical computations. 

Zeng [84] states that an AGCD must possess the following properties: 

1. Nearness: The AGCD is the exact solution of a nearby pair of polynomials. 

2. Max-degree: The AGCD has the maximum degree among all polynomials that 

satisfy the nearness property. 

3. Min-distance: The AGCD of a given pair of polynomials minimises the distance 

between the polynomials for which it is exact, and the given polynomials. 

The definition of an AGCD for the work presented in this thesis is based on the 

assumption that the degree of the AGCD is known using the methods described in 

Chapter 6, and it can be formalised as follows: 

Definition 5.2. Given a pair of polynomials f=f (y) and g= g(y), whose AGCD 

d(y) is of degree d, with deg f=m and deg g=n, compute 1= 1(y) and g= g(y), 
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such that 

1. deg i=m, and deg g=n. 

2. The error 

II f (y) -f (y) II2 + 11 g(y) - NO II2+ 

is minimised. 

3. d(y) is an exact GCD of f (y) and g(y), and deg d(y) = d. 

5.3 The AGCD computations: Some known ap- 

proaches 

Once a definition for the AGCD has been chosen, the computation of an AGCD 

for a given pair of inexact polynomials can be performed via several approaches. 

This section summarises some known approaches for the computation of an AGCD, 

which includes Euclid's algorithm [33,48], the resultant approach [16,24], and the 

optimisation approach [14,37,38]. 

5.3.1 Euclid's algorithm 

Euclid's algorithm for the computation of the GCD of two exact polynomials is con- 

sidered by Brown [13], and Collins and George [15]. Its numerical case has been 

handled by several researchers, using variants of Euclid's algorithm. In order to il- 

lustrate the use of the modified versions of Euclid's algorithm in the computation 
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of an AGCD of two inexact polynomials, it is important to first review the classical 

Euclidian algorithm for the computation of the GCD of two exact polynomials. 

Classical Euclid's algorithm 

The computation of the GCD of two polynomials using Euclid's algorithm can be 

described as follows: Given a pair of exact polynomials, j (y) and g(y), with deg f >_ 

deg g, compute the GCD of j (y) and g(y) through repeated polynomial divisions 

f; (y)/I (y), such that 

fi(y) = 4t(y)9i(y) + ri(y), 

where di(y) are the quotient polynomials, ri(y) are the remainder polynomials, and 

My) 
= f(y), 9i (y) = (y), i=0 

fi(y) = 9i-1(y), MY) = pi-1(y) i>0. 

The process is repeated until ri =0 in which case GCD(j, g) = gi. Algorithm 5.3.1 

describes the application of Euclid's algorithm for the computation of the GCD of 

two polynomials. 

Algorithm 4.1: Euclid's Algorithm 

Input The exact polynomials j(y) and §(y). 

Output The GCD d(y) of j (y) and g(y). 
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Begin 

1. Set i=0, fi(y) = f(y), 9i(y) =§(y)- 

2. While f (y) 54 0. 

(a) Compute the polynomials 4i(y) and Ti(y), such that 

fi(y) = 4i(y)9i(y) + ri(y)" 

(b) i-+i+1. 

(c) Set i(y) = 9i-, (y), 9i(y) = ra-1(y)" 

End While 

3. Set d(y) = gi(y). 

End 

87 

The set of polynomials rl, r"2i """, Tk 5L 0 is called the polynomial remainder sequence, 

PRS. Note that Euclid's algorithm must terminate as the degree of rt(y) is decreasing 

with i. 

Example 5.1. Consider the polynomials 

f(y) = y3 + 3y2 -4= (y + 2)2(y - 1), 

g(y) = y2 + 2y -3= (y - 1)(y + 3). 
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The polynomial division f (y)/g(y) yields 

y3+3y2-4= (y + 1)(y2 + 2y - 3) + (y - 1), 

for which Ta(y) =y-10, and therefor the process should continue, that is 

fl(y) = g(y) and gl(y) = r"o(y). The second polynomial division yields, 

y2+ 2y -3= (y + 3)(y - 1). 

Since r"1 = 0, the divisions stop and G CD (j, g) =y-1, which is correct. 0 
As noted above Euclid's algorithm requires recursive polynomial long divisions, 

which is computationally unstable [85]. This instability of Euclid's algorithm was 

pointed out by several researchers, and stabilised versions of Euclid's algorithm have 

been proposed. The stabilised versions are mainly based on either a careful choice of 

the termination criterion [32,33,48] of the algorithm or look ahead strategies that 

jump over the ill-conditioned subproblems [6]. 

5.3.2 Resultant approach 

It is recalled from Chapter 3 that the GCD of two exact polynomials can be computed 

using resultant matrices. More precisely, the GCD computation involves two stages: 

1. The identification of the degree of the GCD 

2. The determination of the coefficients of the GCD. 

It was shown in Chapter 3 that the problem of computing the degree of the GCD is 

reduced to a rank determination problem. Once the degree of the GCD is known, 
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its coefficients can be found by applying a triangular decomposition of the resultant 

matrix, such as LU or QR [28], (see Example 3.1). These computations are usually 

applied to the Sylvester resultant matrix and the other resultant matrices. 

Considering the inexact polynomials, several algorithms have been proposed to cal- 

culate approximate solutions for the two stages of the GCD computation. 

The computation of the rank of a matrix is usually performed using the singular 

value decomposition, SVD [28], and the theoretical basis of this use of the SVD for 

the calculation of the degree of an AGCD is considered in detail in Chapter 6. Corless 

et al. [16], for example, compute the degree of the AGCD by using the SVD of the 

Sylvester matrix of the given polynomials. In particular, they look for the largest 

gap in the singular values of the Sylvester matrix. To compute the coefficients of 

the AGCD, they propose several strategies, including solving a minimisation problem 

using an optimisation technique. Emiris et al. [23], apply the SVD to the subre- 

sultant matrices of the Sylvester matrix of the given polynomials to compute upper 

bounds of the degree of the AGCD. Generally, the use of the SVD-based approach 

for the computation of an AGCD is considered to be stable. However, the SVD based 

methods are computationally intensive, especially as the degree of the polynomial 

increases. Moreover, Emiris et al. [24], show that using the singular values of the 

Sylvester matrix is not enough to solve the problem completely, and established a gap 

theorem on the singular values of the subresultant matrices that provides conditions 

under which the degree of the AGCD can be certified. 

Methods based on the QR decomposition have also been used [17,83], for the com- 

putation of an AGCD of two inexact polynomials. These methods exploit the fact 

that the QR decomposition of the resultant matrix of two polynomials reveals the 
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coefficients of the GCD in the last non-zero row of the upper triangular factor R. 

However, if the coefficients of the polynomial are perturbed randomly with noise, it 

is impossible to identify the last non-zero row. Zarowski et al. [83] show that the 

rank of R is equal to the index of last non-zero row, and instead of using the SVD 

to compute the rank of R, they use the estimated smallest singular values of leading 

principal submatrices, using an estimator provided by Bischof [10]. The estimated 

smallest singular values are then further processed to estimate the last non-zero sin- 

gular value using the algorithm presented by Zarowski [82]. The methods based on 

the QR decomposition are generally stable, but suffer from instability if the given 

polynomials have large common roots. Corless et. al. [17] have pointed out this 

instability and suggested a method to improve it. Zarowski et. al. [83] attempt to 

solve this problem by making the polynomial monic, but it is observed in [87] that 

this strategy does not guarantee stability. However, the results in [2] show that the 

QR-based method proposed by Corless et. al. in [17] fails to achieve the correct 

GCD degree if the leading coefficient is less than 10-5. Bini and Boito [2] suggest an 

alternative solution to overcome the instability of the QR decomposition. They use 

the QR decomposition with pivoting to determine the upper bound on the degree of 

the AGCD. Due to the pivoting, the coefficients of the AGCD are no longer available 

in R, and in order to compute the coefficients of the AGCD, Bini and Boito compute 

the co-prime factors of the given polynomials from the null space of the Sylvester 

matrix after which they apply polynomial division to obtain the coefficients of the 

AGCD. The computed AGCD is then refined iteratively. 
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5.3.3 Optimisation approach 

In this approach, the problem of computing an AGCD is posed as an optimisation 

problem, with the aim of minimising the distance between the given polynomials 

and the computed perturbed pair. The problem formulation for this approach can 

be stated as follow: For a given pair of polynomials f and g with deg(f) =m and 

deg(g) = n, compute f and g with deg(f) =m and deg(g) = n, such that the error 

f_1 11 2+ 11 II9-9II2, 

is minimised [14,37,38]. Karmarkar and Lakshman [38] developed algorithms to 

compute the nearest AGCDs of maximum degree of a given inexact pair of polyno- 

mials by minimising the perturbations to be added to the given polynomials. They 

point out that the efficiency of [31] decreases as the multiplicities of the roots increase, 

and they claim that their optimisation approach can be extended to compute roots 

of higher multiplicities. 

Chin and Corless [14] have formulated and solved a non-linear optimization problem 

that minimises the perturbation that can be added to a polynomial pair to have a 

non-trivial GCD. They assumed that the degree of the AGCD as well as its initial 

estimate are known, using the methods in [16]. 

Other AGCD computation approaches involve the Pade approximation [6,51] and 

statistical approaches [71]. Stoica and Söderström [71] introduced a non-iterative 

maximum likelihood-based method through which the coefficients of the polynomials 

are assumed to have a Gaussian random distribution, which is in reality not true and 
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the polynomials may be much more complicated. 

Currently, the most computationally efficient methods are the structured matrix 

based methods [39,41,78,87]. Despite the extensive work conducted using this 

approach, there are still some open issues such as those related to the nature of the 

minimum perturbation to be added to the inexact polynomials in order to have a 

non-constant GCD, the technical complexities encountered with hard classes of poly- 

nomials, such as those with several multiple roots, roots with high multiplicities and 

close roots, and more importantly, the development of data driven methods that do 

not require prior knowledge about the noise level. 

5.4 Contributions to the literature 

Generally, the study of the methods considered in the literature shows that the vast 

majority of these methods require a threshold to determine the index of the largest 

non-zero singular value in order to determine the degree of the AGCD of the given 

polynomials from the rank of their resultant matrix. This requires prior knowledge 

about the noise level, which may not be known or only known approximately. Thus, 

methods that do not require any prior knowledge about the noise level need to be 

developed. In addition, the preprocessing operations that scale the given polynomials 

before the AGCD computations are performed, provide more reliable computations, 

but these operations are neglected from the majority of the studies. 

The work in this research differs from the previous work in the following aspects: 

1. It develops of a set of preprocessing operations that improve the quality of the 

computed AGCD. In particular, they involve 
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(a) The normalisation of the given polynomials by the geometric means of their 

coefficients, instead of the 2-norms of their coefficients. 

(b) Technique from linear programming for the computation of the optimal 

values of two parameters that make the AGCD computations more reliable. 

These parameters are necessary if the coefficients of the polynomials vary 

widely in magnitude. 

2. It introduces methods for the determination of the rank of the AGCD of two 

inexact polynomials that do not require the noise level to be known. 

3. It introduces the use of the non-linear structure preserving matrix methods for 

the computation of an AGCD. 

5.5 Summary 

This chapter has provided an overview of the AGCD computation which forms one of 

the main stages in the developed root solver. The concept of the AGCD has been il- 

lustrated and its non-uniqueness has been discussed, based on the different definitions 

available in the literature. The main approaches for the AGCD computation have 

been presented and some of the deficiencies in these approaches have been discussed. 

Finally, the contributions of the work in this research towards the research done in 

the area of AGCD computations have been listed. 



Chapter 6 

The computation of the degree of 

an AGCD 

The root solver considered in Section 2.3 is a GCD-based root solver and it can be seen 

from Algorithm 2.3.1 that the computation of the GCD of two polynomials forms the 

first step in this root solver. However, practically, problems exist when computations 

are performed on polynomials whose coefficients are contaminated with error. Thus 

the GCD of two polynomials is not defined and it is only possible to compute an 

AGCD. Usually, the computation of an AGCD of two inexact polynomials involves 

two stages. In particular, in the first stage the degree of the AGCD is determined, 

after which the coefficients of the AGCD are calculated. This chapter and the next 

chapter consider, respectively, the computation of the first and second stages in the 

AGCD computation. 

The computation of an estimate for a degree of an AGCD of two inexact polynomials 

is a non-trivial task. It has been shown in Section 3.1 that this problem is reduced 

to a rank determination problem because the degree of the GCD of two polynomials 

94 
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is equal to the rank loss of their Sylvester matrix. The most frequently used method 

for solving this rank determination problem is the SVD [16]. In particular, let R be 

an mxn matrix and UE R"' and VE Rnxn be orthogonal matrices. The matrix 

R can be factorised as [28] 

R= UEVT, 

where 

E E= diag(Ql, a2,. .., up) IR p= min(m, n), mxn 

and the a1i=1,2, """, p, are the singular values of R. Let the number of the non- 

zero values of u, be r, which is then referred to as the rank of the matrix R. This 

implies that 

Q1>Q2>... >Ur >Qr+1-... -Qp=O. 

The question that now arises is: Is this condition always satisfied by exact matrices 

whose entries are specified exactly, when computations are performed on them? The 

answer to this question will be clear from the following two examples. 

Example 6.1. Consider the following two exact polynomials 

f(y) _ (y - 3)(y - 1)2(y - 2)3, 

9(y) _ (y - 1)2. 
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Clearly it can be seen that deg GCD(f, g) = 2. Thus, by Theorem 3.1, the theoretical 

rank of S(f, g) is (6 + 2) -2=6. This result agrees with the result obtained using 

the MATLAB function svd() to compute the singular values of R. The normalised 

values of these singular values are plotted in Figure 6.1, in a logarithmic scale. It is 

obvious that the rank of S(f, g) is r=6, and therefore deg GCD (f 
, 
g) = 2, which is 

correct. Q 

I 

Figure 6.1: The normalised singular values of S(f, g), on a logarithmic scale, for 
Example 6.1. 

Example 6.2. Consider the following two exact polynomials 

j (y) = (y-3.5)(y-3.7)2(y - 3.9)3, 

9(y) = (y-3.7)5. 
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Clearly it can be seen that deg GCD(f, g) = 2. Thus, by Theorem 3.1, the theoretical 

rank of S(f, g) is (6 + 5) -2=9. This result is not obtained by the function svd() 

in MATLAB. In particular, the normalised values of R are shown in Figure 6.2, in a 

logarithmic scale, and it is obvious that the rank of S(f, g) is r=6, and therefore 

the degree of the GCD of f (y) and g(y) is equal to 11 -6=5, which is incorrect. Q 
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Figure 6.2: The normalised singular values of S(f, g), on a logarithmic scale, for 
Example 6.2. 

Example 6.2 shows how easily the SVD-based method fails in the presence of small 

errors such as roundoff errors. In practice, the SVD-based methods usually require 

a threshold on the small singular values of S(f, g), and they fail to compute the 

correct rank loss of S(f, .) if inexact data is considered. These limitations provide 

the motivation for the computational methods for the determination of the rank of 

the Sylvester matrix that are proposed in this chapter. Three methods are developed 
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for computing the degree of a GCD/AGCD of two univariate polynomials. All of 

them use the Sylvester matrix, but they differ in the criteria used. These methods 

perform all the computations on the coefficients of the polynomials and do not require 

any prior knowledge about the noise level. 

The first two methods are applicable to an arbitrary pair (f (y), g(y)) of polynomials. 

The third method, on the other hand, is only applicable to a polynomial and its 

derivative because it uses a constraint between a polynomial and its derivative. 

The theories of the first two methods are given in Section 6.1, where exact polynomials 

are considered. Section 6.2 extends the methods explained in Section 6.1 to make them 

suitable for the computation of the degree of an AGCD, that is, when the polynomials 

are inexact and the computations are performed in a floating point environment. 

Examples that demonstrate the theory in Section 6.2 are given in Section 6.3. These 

examples show the computation of the degree of an AGCD of two inexact polynomials 

whose exact forms have roots of high multiplicities, using the methods in Section 6.2. 

The third method is described in Section 6.4. Similar to the first two methods, the 

third method is first illustrated for the computation of the degree of the GCD of 

an exact polynomial and its derivative, in Section 6.4.1. Modifications of the theory 

discussed in Section 6.4.1 are given in Section 6.4.2 to illustrate the computation of 

the degree of an AGCD of an inexact polynomial and its derivative. Examples that 

demonstrate the theory in Section 6.4.2 are given in Section 6.5. 
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6.1 Computing the degree of the GCD of two ex- 

act polynomials 

Consider the two exact polynomials j (y) and g(y) defined in (3.1), and let these two 

polynomials be non-coprime whose GCD is of degree d. It is recalled from Section 

3.2 that the linear algebraic equation 

Ak2k = Ck7 (s. l) 

possesses solutions for k=1, """, 
d. Thus ck lies in the column space of Ak only for 

these values of k, from which it follows that 

Gk C Rk for k=1, """, d, 

Gk Z Rk for k =d+ 1, """, min(m, n), (6.2) 

where Gk and xk are the spaces spanned by ck and the columns of Ak respectively. 

This forms the bases of two new approaches for the compution of the degree of the 

GCD of j (y) and g(y). These two methods determine whether Ck lies in the column 

space of Ak or not, using two different criteria, namely the angle between the sub- 

spaces 4 and lIk, and the residual of (6.1). In each of these approaches the degree 

d is equal to the largest value of k for which Ck lies in the column space of Ak. 
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Method 1: First principal angle. Let F and G be subspaces in R", and assume 

that 

p=dimF>dimG=q>1. 

Definition 6.1.1121 The principal angles Bi E [0, -7r/2], for i=1, """, q, between F 

and G are defined by 

cosO =maxmaxuHV=u1v, IIuIl2=1,1IvII2=1, 
uEF vEG 

such that ufu = 0, vHv = 0, j=1,... , k- 1. 

The vectors (ul, """, ui, ) and (vi, """, v9) are called principal vectors of F and G. 

The determination of the degree d of the GCD of j (y) and g(y), in this method, is done 

through computing the angle ck between the subspaces Gk and Rk that are spanned 

by the column cl, and the columns of Ak respectively, for k=1, ."", min (m, n). If 

this angle is equal to zero, then Gk lies in ilk, which implies that the vector ck lies in 

the column space of the matrix Ak. Therefore, due to (6.2), Ok satisfies, 

Ik =0 for k=1,.. " , 
d, (6.3) 

Ok >0 for k= d+1, 
--- , min(m, n). 

The degree, d, can then be chosen to be the largest value of k for which c5k = 0. 

Method 2: Residual. In this method, the residual of equation (6.1) is used as 

an error indicator, from which the GCD degree can be deduced. Particulary, in light 
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of (6.2) it can be seen that the residual rk, 

rk - IlCk - Akxkll) 

satisfies 

rk =0 for k=1,.. 
, 
d, (6.4) 

rk >0 for k=d+1, """, min(m, n). 

Clearly, this shows that the change in rk occurs after k=d, and therefore the GCD 

degree is equal to largest value of k for which rk = 0. 

Though these two methods have been developed independently, they are related ge- 

ometrically as shown in Figure 6.3. Consider the linear algebraic equation Ax = b, 

Figure 6.3: Geometry of the least squares problem. 
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A ERAx9A. The least squares solution of this equation is 

xo = Alb, At = (ATA)-IAT, 

and the residual associated with this approximate solution is, 

r=b-Axo=(I-AAt)b. 

This residual is related to the angle 0 between Axo and b by the relation sin 0= jjbjj 

Let b9 and Jr represent the small changes in the angle and the residual, respectively, 

then 

sin(B+bB)= 
llr+brll 

Ilb+sbll' 

where 

lir + Sril _ 
r(rt 

+ br; )2, rA 

and 

C 
br 1 (1+2) br 

(r; + bri)2 = r? 1+ J2r; r; 

Thus 

T 

IIr+BrII "' IIrII2+2rT8r= IIrII2I 1+2II 
IF /= 

IIrII l1+ IIrII2/' 
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to the first order. Similarly, 

T 

IIb+SbiI -' IIbII \1 IIbbb 

Therefore, 

sin(O + bB) 
_ 

bTbb rTbr 

sing IIb112 IIr112, 1+ 

to the first order. Since 0«1, 

Se rTSr bTSb 
_1 

rS(IlrI12) S(11b112) 
0 IITIIZ IIb112 2L llrl12 11 býý2 J 

where 

ö(Ilr112) 
= 

b(rTr) 
_ 

2rTör 
and a(Ilb112) = 

8(bTr) 
_ 

2bTöb 
Ilrll2 Ilrl2 Ilrll2 Ilbl12 Ilbll2 Ilbl12 

Thus, 

I bel 1 (-I IIabII l 
101 <2 Ilril + IIbII I 

6.2 Computing the degree of an AGCD of two in- 

exact polynomials 

The previous section considers the computation of the degree of the GCD of two exact 

polynomials. The methods discussed in that section assume that the data is error free 

and the computations are done in a perfect computational environment. Practically, 
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the subresultant matrices of the Sylvester matrix of inexact polynomials have full 

rank and only an AGCD for these polynomials is defined and can be computed. This 

section extends the theory discussed in the previous section to make it suitable for 

the computation of the degree of an AGCD of two inexact polynomials. 

It is recalled that the preprocessing operations discussed in Chapter 4 are needed 

when inexact polynomials are specified. These preprocessing operations transform 

the given polynomials f (y) and g(y) into f o,, (w) and ao go,, (w), which are defined 

in (4.8) and (4.9) respectively, where ao and Bo are the optimal values of a and 0 

respectively, and their values are obtained by solving the LP problem in (4.7). Thus 

all the computations are performed on these polynomials. 

6.2.1 Best column selection 

It was shown in Section 3.2 that if the exact polynomials j (y) and g(y) are considered, 

and they have a common divisor of degree k, then the first column Ck of Sk (f, g) can 

be moved to the right hand side because it necessarily lies in the column space of 

Sk(f The situation is more complicated when the inexact polynomials feo (w) and 

ao goo (w) are considered because Sk(feo, ao goo) has full rank and none of columns of 

Sk(foo, ao goo) lie in the space spanned by the remaining columns of Sk(f, ao goo), for 

all values of k=1, """, min(m, n). Equation (3.11) must therefore be modified to 

reflect the non-singular property of Sk (foo, ao goo) 

Let ck, i denote the ith column of Sk (feo, ao goo), i=1, """, m+n- 2k + 2. If the ith 

column is moved to the right hand side, (3.11) is replaced by the approximation, 

Ak, ixk, t ;,, Ck,;, (6.5) 
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where Ak, i is the matrix formed by the remaining columns of Sk (f00, ao goj, that is, 

Aki = 
[Ck 

1 Ck, 2 ' '' Ck, i-1 Ck, i+1 ''' Ck, m+n-2k+2]" 

The best values of k and i are calculated such that the error in (6.5) is minimum. Note 

that, depending on the value of i, the ck, j entries may contain either the coefficients 

of feo (w) or the coefficients of ao goo (w). This problem is ignored in the literature, 

where the default value i=1 is always used, but it is addressed in detail in this thesis. 

Moreover, the careful selection of the indices k and i allows robust methods for the 

computation of the degree of an AGCD of two inexact polynomials to be developed. 

Kaltofen et. al. [36] use one example to argue that the first column of the Sylvester 

matrix of the exact polynomials j (y) and g(y) should be chosen to form the overde- 

termined system (6.5), that is i=1. The following two examples demonstrate the 

weakness of this argument. The first example considers the same example given in 

[36] and the second example considers another pair of polynomials. 

Example 6.3. Consider the two exact polynomials, 

f(y) = y2 +y= y(y + 1), 

g(y) = y2 +4y+3= (y + 3)(y + 1), 



CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 106 

whose Sylvester matrix is given by 

s= s(f, 9) = 

1010 

1141 

0134 

0003 

To examine whether the first column is the best column to be taken to the right hand 

side or not, S(f, g) has been partitioned into [ci Ai], where ci is the ith column of 

S(f , g) and Ai is the matrix formed by the remaining columns of S(f, g). The systems 

of the equations Aix = ci derived from S(f 
, g) were formed for i=1,2,3 and 4, and 

the results of computing the error made in solving these systems are shown in Table 

6.1. 

Table 6.1: The solutions and the associated residuals of the systems of equations for 
Example 6.3. 

Column index x Residual 
1 [-3 1 0] 2.9966 x10-11 
2 [-0.3333 0.3333 0] 1.4199 x 10-15 
3 [1 3 0] 1.1102 x 10-15 
4 [-1273 0.8182 0.7273] 3.4641 

These results show that the first, second and third columns of S(f, g) are all perfectly 

adequate and any one of them can be moved to the right hand side, but the fourth 

column gives the wrong answer and thus it should not be moved to the right hand 

side. Q 
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Table 6.2: Comparing the residuals for Example 6.4. 

Column index Residual 
- - - - - 1 

8 
8.6 38 2 > <152 

1.1894 

Example 6.4. Consider the two exact polynomials, 

1(y) 
= (y + 4.6)6(y - 8.5)10(y - 1.8)4 

9(y) = (y - 8.5)'°(y - 1.8)7, 

whose GCD degree is 14. The residuals of the overdetermined systems of S14(f, 9) 

have been computed for i=1,2, """ , 
11, where i denotes the column index of 

S14(f 
, 
g). The minimum residual, which was found to be associated with i=8, 

was then compared with the residual computed at i=1. Table 6.2 shows this com- 

parison, where it is shown that the first column is not the best column to be taken 

to the right hand side to form the system (6.5). This result contradicts the theory in 

Section 3.2 where it is assumed that, considering exact data, the first column of the 

kth subresultant matrix can always be taken to the right hand side to form (3.11). 

This discrepancy between the theoretical and computational results is due to roundoff 

error. Also the wide variation in the magnitude of the coefficients of the polynomials 

of this example, which does not exist in Example 6.3, may also explain the differences 

between the theoretical and the computational results. Q 

Examples 6.3 and 6.4 show that even if exact polynomials are considered, the first 

column of their Sylvester matrix is not always the best column to form Akxk = ck, 

especially if the coefficients of the polynomials have wide variation in magnitude and 
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the computations are performed in a floating point environment. It is therefore clear 

that, the situation is more complicated when the inexact polynomials f (y) and g(y), 

are considered. 

Considering inexact polynomials, it follows from (6.5) that for the values of k= 

1, """, min(m, n), the values of cbk and rk defined in (6.3) and (6.4), respectively, are 

non-zero. Thus, Methods 1 and 2 described in the previous section need to be modi- 

fied to accommodate the inexact nature of the polynomials. 

The rest of this section extends the computation of the degree of the GCD dis- 

cussed in the previous section to make them suitable for inexact polynomials fo (w) 

and ao goo (w). It is shown that the computation of the optimal column index i of 

Sk(fea, ao goo) follows directly from the computation of the degree k=d of the AGCD 

of feo (w) and ao goo (w). 

6.2.2 Method 1: First principal angle 

The smallest angle between the space Gk, i spanned by Ck, j and the space fk, i spanned 

by the columns of Ak, i is called the first principal angle, Ok, i [75]. Thus, 

Wk, i = min L(Gk, i, Hk, i), k=1, """, min(m, n); i=1, -" ", m+n- 2k + 2, (6.6) 

where 

dim Ck, i =1 and dim 7-(k, i =m+n- 2k + 1. 
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For each value of k, the minimum value cbk of Ok, i is computed such that 

Ok = min{I wk, i 1: i=1, "", m+n- 2k + 2}, (6.7) 
i 

and the column index i= qo, k at which the minima Ok occurs is recorded to yield the 

optimal column vector qý, 

-+o - 
[Qo, 

1, q, 0,27 ... i 
QO, min(m, tt)) i (6.8) 

where the subscript 0 denotes that a criterion based on the first principal angle is 

used to compute these column indices. 

Let do denote the computed degree of an AGCD. Although the values of cbk for 

k=1, """, do can not be zero because of the presence of inexact data, the values of 

Ok for these values of k are small compared to those values of qk for k> do. Thus 

the degree do of an AGCD equals the index k for which the change in Ok between 

two successive values of k is maximum, 

do = {k : (Ok+l - lpk) -) max; k=1, ""-, min(m, n)}, (6.9) 

and the index i= gm, d4 of the optimal column Ck, i in (6.5) is the doth element in (6.8). 

Example 6.5. Let min(m, n) =7 and the vector 01,02, ""., 07 ] of the 

angles be 

0=[ 10-8 10-9 10-8 10-3 10-3 10-2 10-3 ]. 

The values of the angles 01,02 and 03 are relatively small and therefore the associated 
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approximate solutions of (6.5) are acceptable. By contrast, the values of the angles 

041 """ 07 are large, which suggests that the associated approximate solutions of (6.5) 

are associated with large errors. This discussion therefore leads to the conclusion that 

there are common divisors of degrees 1,2 and 3, but there is no common divisor of 

degree greater than 3. Thus the degree do of the AGCD is equal to three. 0 

To be able to use the expression in (6.9) that defines the criterion for computing 

do, it is first required to evaluate the angle 'Yk, i defined in (6.6), between the space 

Gk, i spanned by ck, i and the space %lk, i spanned by the columns of the matrix Ak, i. 

The following theory discusses the computation of 'Yk, i. According to [49], this com- 

putation goes back to Jordan 1875, and it has been considered in [28,75]. 

In order to obtain an expression for &k, i, it is required to calculate an orthonormal 

basis for lk, i, and this can be obtained by applying the QR decomposition to the 

matrix Ak, i, 

Ak, i = Nk, iRk, i, 
Ný 

iNk, i = Im+n-2k+1i (6.10) 

where the columns of Nk, { E JR(m+n-k+1)x(m+n-2k+1) define an orthonormal basis for 

71k, i, and Rk, i E R("`+n-2k+1)x(m+n-2k+1) is an upper triangular matrix. Thus each 

vector Vk, i E lk, i can be written as 

vk, i = Nk, 
iwk, c, wk,, m+n-2k+1 

The first principal angle 0k, i between Gk, i and Nk, i is equal to the smallest angle 
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ck" between the unit vectors Uk, i = I1ck,, 11 E Gk, i and Vk, i E iik, i, 

COS'1k, i = max 1Lk ivk, i = max (u, 
iNk, i) wk, i. (6.11) 

Ilvk, ill =1 Ilwk, ill =1 

If the SVD of UT tNk, i is 

T /ýT uk, iNk, i = £k, iýwk, i) 

Where Ek, i = [Ok, i, l 0 ... 0] E Rm+n-2k+1 and Qk, i E R(m+n-2k+1)x(m+n-2k+1) is 

an orthogonal matrix, then (6.11) yields 

COS y k, i = max UT ivk, s = max (ý. 'Q 
il k, wk, i = 

II2Gk, 
iNk , 

11 
- Uk i1. 

11vII =1 llwII =1 

This implies that the cosine of the first principal angle is equal to the 2-norm of 

uk, iNk, i, or equivalently, the largest singular value of uk iNk, i, 

T COS Ok, i =I uk, iNk, i = Qk, i, l 

This maximum is attained when Wk, i is equal to the first column gk, i, l of Qk, i, 

Vk, i = Nk, igk, i, l" 

Thus, the first principal angle between Gk,; and rlk, i is given by 

lPk,; = cos-1 Qk, ti, l. (6.12) 
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However, this equation implies that to first order, 

S'Ok, 
i, I =- 

bak,;, 
l (6.13) 

sin )k, i' 

and clearly it can be seen that in the presence of inexact data, the formula in (6.12) 

does not yield correct results for small angles, 'Pk, i s: 0, because IS k, il » IöQk, %, ll if 

Ok, i ^ 0. An alternative approach for computing ? Vk, i is given in [75] by considering 

the orthonormal complements Gk i and 7-Li, i, where 

Gk, 
i U Gk i= Ii8' and 'Hk, { U xk 

i= 
Rrv 

dimGks=r-1 and dimý-l, -i=r- 

and r=m+n-k+1 and q=m+n- 2k + 1. The consideration of the orthogonal 

complements Gk i and H' i leads to a stable expression for small Y1k, i. 
Let the columns of the matrices Uk, i, 2 E Rrx(r-1) and Nk, i, 2 E Rr"(r-9) define the 

orthonormal bases for Gk i and 7-lk i respectively, and redefine the vector uk, i and the 

matrix Nk, i to be uk, i, 1 and Nk, i, 1 respectively, 

uk, i, 1 :=u ERr and Nk, i, 1 :=NER rx4. 

Thus uk, i, l defines a unit vector that spans Ck, i, and the columns of Nk, i, i define an 

orthonormal basis for xk, i. It follows that the columns of Uk, i and Nk, i, which are 

redefined as 

Uk, i =[ uk j1 Uk, a, 2 ] ERrxr' lJkTilJk, i = Uk, iUki - Irl (6.14) 
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and 

Nk, i =I Nk, s, l Nk,, 2]E 
j[$rxr NI 

zNk, i = Nk, iNk i= I*ý (6.15) 

respectively, define orthonormal bases for W. 

Theorem 6.1. Let Gk, i and %lk, i be subspaces of jar, and let Bi be the ith princi- 

pal angle between them. The unit vector uk, i, l E R' spans the line Gk, i, and the 

columns of Nk, i, l E R'xq define an orthonormal basis for fk, i. Also, let the columns 

of Uk, i, 2 E R"`«'-') and Nk, i, 2 E Rr, (r-e) define orthonormal bases for Gki and 

Wj 
, respectively, where (6.14) and (6.15) are satisfied. Then the singular values 

of Uk i 2Nk, i, 1 E R('-') "9 and uk i 1Nk i, 2 E j[$'-4 are 

sin e1 < sin 82 <"""< sin Oq. 

Proof Since Uk, i is an orthogonal matrix and Nk, ti, l has orthonormal columns, 

the columns of Wl E IR xq 

T 
ukTi, lNk, i, 1 

Wl = Uk, iNk, Z, I UkT 
, i, 2Nk, i, 1 

T 
uk, i, iNk, *, 1 E Rq, UT 

k, i, 2Nk, i, 1 E jýýr-lýxq' 

are also orthonormal. Also, the singular values of u i, 1Nk, i, i are ryi = cos Bi, i= 

1, ... , q, and it follows from Theorem 6.16 that the singular values of Uk i, 2Nk,,, 1 are 

o-i= 1--y? =sin Bi, i=1,..., q. 
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Consider now the vector W2 E R'', 

T 
NkTq 

luk, i, l W2 =N uk, i, l = 
T Nk, 2uk, q, l 

Nk, T 
t, luk, i, l E ýQ NT -q 

k, Zuk,,, l 
E Ifg 

114 

The singular values of Nk ;, luk, i, l are cos Bi, i=1,. .., q, and thus it follows from 

Theorem 6.16 that the singular values of Nk i, 2uk, i, 1 and uk i, 1Nki, 2 are sin 6i, i= 

l,, q. Q 

Since the singular values of uT ki 1Nk, i, 2 and Zki, 2Nk, i, 1 are Qi = sin Bi, i 

it follows that the principal angles are 

Bt = Slri-i QiI 2= 

and thus to first order, 

bQi 

be; 1,..., 4, cos Bs (6.16) 

from which it follows that if Bi :. 0, then IS0, l r, I6o-il. The principal angle Bi is 

therefore stable with respect to changes in vi when Bi 0, which must be compared 

with the situation defined in (6.13). By contrast, if 0i 2, then (6.13) shows that 

Bi can be calculated in a stable manner from Gk, i and Wk, i, but it follows from (6.16) 

that its calculation from Gk i and 7-k' i is unstable. 

The only issue that must still be addressed is the calculation of the matrices Uk, i, 2 

and Nk, i, z, whose columns define orthonormal bases for Gk i and ý-lk i respectively. It 

is recalled that Nk, i, l is calculated from the QR decomposition of Ak, i, as shown in 

(6.10), with u and N replaced by uk, i, l and Nk, i, l respectively, as noted above. 
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The unit vector uk, i, l lies in Ck, i, and thus all vectors xE Rr that satisfy 

uk,, lX =0, 

are orthogonal to uk, i, l, from which it follows that they lie in Gk i. It is necessary 

to choose an orthonormal set of vectors x because an orthonormal basis for Lk ', i is 

required. 

If the SVD of uk, i, l is 

uk, i, l =P, 
0 

where PEP X1' is orthogonal, vER is the singular value of uk, i, l, and the zero vector 

is of order r-1, then 

uk, i, lTýk =1U ýT I PTpki 

where Pk, k=1, ... , r, is the kth column of P. It is necessary to consider two 

situations, which are defined by k=1 and 2<k<r. 

Ifk= 1, then 

uk, i, 1P1 =U oT J e1 = U, 

where el is the first unit basis vector. 
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If 2<k<r, then 

T( ul Pk =lo OT ek = ýý 

where ek is the kth unit basis vector, and thus the last r-1 columns of the left 

singular matrix P of uk, i, 1 provide an orthonormal basis for Gk i, that is, 

Ük, +, 2 =L P2 P3 ... pr-1 Pr 

I, 

where 

TTT Uk, 
i, 2Uk, i, 2 = Ir-1ý uk, i, lUk, i, 2 = 0, Uk 

i, 2Uk, i, 1 = 0. 

(6.17) 

The calculation of an orthonormal basis for ß-l4 i, that is, the columns of Nk, {, z, follows 

similarly. Specifically, if the SVD of Nk, =, 1 is 

Nk, i, i =PE QT, 
0 

where PE 118r"r, QE 1189"9, EE 1[89"9 is a diagonal matrix of the singular values Qs 

of N1, arranged in non-increasing order, and the zero matrix is of order (r - q) x q, 

then 

Nk, 
i, lpk =QI ET oT 1 

PTpk) 

where pk, k=1, 
... , r, is the kth column of P. It is necessary to consider two 
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situations, which are defined by 1<k<q and q+1<k<r. 

If 1<k<q, then 

T oT 

J 
ek = QkQkv Nk, 

i, lpk =Q Ir 

where qk is the kth column of Q. 

Ifq+l < k<r, then 

T Nk, 
i, lpk =Q ST ýT ek = ýý 

and thus the last r-q columns of the left singular matrix P of Nk,;, l provide an 

orthonormal basis for lk ;, that is, 

Nk, i 2-[Pg+1 Pq+2 ... pr-i Pr If 
where 

NT 
k,,, 2Nk, i, z - 

I,. 
-q, 

T Nk,:, 1Nk,,, 2 = O, Nk,, zNk, %, i = 0. 

(6.18) 

It follows from (6.17) that Uk, i, 2 is defined by the last r -1 columns of the left singular 

matrix of uk, i, l, and similarly, it follows from (6.18) that Nk, i, 2 is defined by the last 

r-q columns of the left singular matrix of Nk, i, i 
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6.2.3 Method 2: Residual 

Let x* be an approximate solution for (6.5), and thus the residual of this approxima- 

tion is 

rk, i - Ck, i - 
Ak, 

ixk, it xk, i = AkCk, 
i, Ak -(Ak iAk, i)-'A k, ii (6.19) 

for k=1, """, min(m, n), and i=1, """, m+n- 2k+2. For each value of k, the 

minimum value of II rk, iI I is computed using (6.19), such that 

rk = min{ llrk, i ll :i=1, ", m+n- 2k + 2}, k=1, """, min(m, n), (6.20) 

and the column index i= qr, k at which each minimum rk occurs is recorded to yield 

the optimal column vector q,., 

qr = [Qr, i r Qr, 2 7'''r Qr, min(m, n)] 7 
(6.21) 

where the subscript r denotes that these column indices are computed using a criterion 

based on the residual. Let d, denote the computed degree of an AGCD. Although 

the values of rk for k=1, """, d, can not be zero because of the presence of inexact 

data, the values of rk, for these values of k are small compared to those values of rk 

for k>d,. Thus the degree dr of an AGCD equals the index k for which the change 

in rk between two successive values of k is maximum, 

d,. = {k : (rk+l - rk) -+ max; k=1, ..., min(m, n)}, (6.22) 
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and the index i=q,, d,, of the optimal column ck,; in (6.5) is the d, th element in 

(6.21). Since the polynomials have been normalised before being involved in the 

AGCD computations, the non-normalised residual has been considered in (6.19). 

6.3 Examples 

This section discusses two examples that illustrate the methods explained in Section 

6.2 for the computation of estimates for the degree of an AGCD. 

Uniformly distributed random noise was first added, in a componentwise sense, to 

the coefficients of the theoretically exact polynomials. The resulting polynomials 

were then called the given polynomials. In particular, consider the exact polynomials 

f (y) and g(y) that are defined in (3.1). Adding componentwise uniformly distributed 

noise to the coefficients of f (y) and g(y) yields, 

m 

f(ý) _E (d; + 8ä, )y', 
; =o n 

g(y) = 
E(b; + bb; )y', 

j=o 

where bä, =ä rjE ,j=0, """, m, and bbd = bjrj8,, j=0, """, n, rj is a uniformly 

distributed random number in the interval [-1,1] and eC is the upper bound on the 

componentwise signal-to-noise ratio. 

The polynomials f (y) and g(y) were then preprocessed according to the preprocessing 

operations given in Chapter 4 to have the scaled polynomial forms given in (4.8) and 

(4.9), respectively. 

Example 6.6. Componentwise noise with signal-to-noise ratio cc -1 = 104 was added 
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to the coefficients of the polynomials whose roots and multiplicities are defined in Ta- 

ble 6.3. It can be seen that f (y) and g(y) have a GCD of degree d=7. The perturbed 

polynomials were then normalised by the geometric means of their coefficients and 

preprocessed by the optimal scaling factors ao = 0.920253 and Bo = 2.905596. Using 

Methods 1 and 2, the values of /k and rk defined in (6.7) and (6.20) respectively, were 

computed for k=1, """, 28, and the results of the variations of log cbk and log rk with 

k are shown in Figure 6.4. It can be seen that the maximum gradients (6.9) and (6.22) 

occur at k= do = d,. = 7, which suggests that the degree of the AGCD of feo (w) and 

goo (w) is d=7, which is correct as d=7. 

Furthermore, the results of computing the optimal columns of Sk(feo, ao geo) for 

which the minimisations in (6.7) and (6.20) are achieved using Methods 1 and 2, 

for k=1, """, 28, are shown in Figure 6.5. It can be seen that Methods 1 and 2 do 

not necessarily have the same optimal column for each value of k. However, despite 

this difference, both methods meet the same value of k= do = d,. =7 at which their 

criteria are achieved as shown in Figure 6.4. Figure 6.5 shows that at k=7 the 

optimal columns qo, 7 = 26 and q,., 7 = 26. Q 

Table 6.3: The roots and multiplicities of 1(y) and g(y) for Example 6.6. 

Root of f (y) Multiplicity 
0.6290 5 
2.6760 8 

-9.7181 4 
-0.5926 11 

Root of g(y) Multiplicity 

-9.7181 8 

-0.5926 3 
7.7265 7 

-7.7194 10 

Example 6.7. Consider the theoretically exact polynomials f (y) and g(y), that are 

specified by the roots and multiplicities given in Table 6.4. It can be seen that f (y) 
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Figure 6.4: (a) The variations with k, of 109 Ok and log rk for Example 6.6, where 
denotes the exact GCD degree d. 

and g(y) have a GCD of degree d=7. The polynomials were first perturbed by 

noise in a componentwise sense such that the signal-to-noise ratio was e. 1= 104. 

The resulting polynomials were then normalised by the geometric means of their 

coefficients and scaled by the optimal preprocessing parameters ao = 2.387441 x 102 

and 00 = 7.644097 x 10-3. Using Methods 1 and 2, the values of Ok and rk defined in 

(6.7) and (6.20) respectively, were computed for k=1, """, 19, and the results of the 

variations of log tk and log rk with k are shown in Figure 6.6. It can be seen that 

the maximum gradients (6.9) and (6.22) occur at k=d, = d,. = 7, which suggests 

that the degree of the GCD of fay, (w) and geo (w) is d=7, which is correct as d=7. 

Furthermore, the results of computing the optimal columns of Sk (fa", a0 go) for which 

the minimisations in (6.7) and (6.20) are achieved using Methods 1 and 2, for k= 

1, """, 19, are shown in Figure 6.7. 

It can be seen that Methods 1 and 2 do not necessarily have the same optimal 
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(6.7) and (6.20) are achieved, using Method 1 x, and Method 2 o, for Example 6.6. 

column for each value of k. Both methods yield the same value of k= do = d,. =7 

at which their criteria are achieved, as shown in Figure 6.6. Figure 6.7 shows that at 

k=d,. = d,, =7 the optimal columns qß, 7 = 14 and q,, 7 = 14.1 

Experimental results show that Methods 1 and 2 described in Sections 6.2.2 and 

6.2.3, respectively, do not necessarily yield the same optimal columns of the Sylvester 

matrix of feo (w) and aogoo (w). However, the effect of this is negligible because it 

will be shown in the next chapter that the computed structured low rank approxi- 

mations of S(feo, ao g©0) differ slightly and always have a well defined rank drop at 

k= deg GCD(feo, ao g©o). Thus the structured low rank approximations from both 

methods can be used for subsequent computations. 
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Table 6.4: The roots and multiplicities of f (y) and g(y) for Example 6.7. 

Root of f (y) Multiplicity 
5.312896426e-005 5 
6.532513514e-005 5 
9.373846382e-005 4 
7.098856547e-005 2 
5.825141918e-005 3 

Root of g(y) Multiplicity 
5.312896426300e-005 5 
6.532513514100e-005 2 

-8.990899936627e+00 4 

-6.311317686013e+00 3 

-9.086833530452e+00 2 
7.700830040825e+00 4 

6.4 AGCD degree of a polynomial and its deriva- 

tive 

The methods considered so far for the computation of the degree of an AGCD are 

applicable to any pair of polynomials, and thus they can be applied to a polynomial 

and its derivative. However, the computation of an AGCD of a polynomial and its 

derivative provides a derivative constraint between them, from which another method 

for the computation of the degree of an AGCD is proposed. 

This section introduces this constraint first and then a method that uses this con- 

straint for the computation of the degree of an AGCD of a polynomial and its deriva- 

tive, is explained. For simplicity, the exact polynomials are first considered and then 

the necessary modifications to accommodate the uncertainty of the inexact polyno- 

mials are discussed. 

6.4.1 GCD degree of an exact polynomial and its derivative 

Consider the exact polynomial f=f (y) and its derivative g(y) = f(') (y) defined in 

(3.1). It is recalled from Section 3.2 that if the degree of the GCD of f (y) and f (l) (y) 
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denotes the exact GCD degree d. 

is equal to d, then there exist quotient polynomials uk(y) and vk(y), and a common 

divisor polynomial dk(y), such that for k=1, """, d, 

and thus, 

dk(y) =f 
(y) 

=f 
ýl(y) 

flk(y) vk(Y) 

where deg 11k < deg f= in, deg 1k< deg f (1) =n=m-1, and 

flk(Y) = Em, -k'fbym-k-i 
i-p k, i 

vk(y) _ En-kv yn-k-ý i-o k, i ý 

f(y) = uk(y)dk(y), and J(l)(y) 
= Vk(Y)dk(Y), 

dk(y) _ 1-zk=0 dk iyk-i 

(6.23) 

(6.24) 

(6.25) 
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Differentiating f (y) yields 

d ük(y)dk(y) 
ýýý (ý) =ýd= üý1 ) (y)dk(y) + ýk(y)d(') (y), k =1, ..., d, (6.26) 

y 
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which, in terms of a matrix-vector product, can be written as, 

dk, o 

äk, 1 

_(1) 

dk, 0 

äk, 1 
dk, k 

(m - k)ük, o 

(m -k- 1)wk, i 

2Uk, 
m, _k_2 

ük, 
m_k_1 

dk, k I 
kdk, o 

(k -1)dk, l 
kdk, p 

(k - 1)dk, l 

dk, k 

+ 

Uk, O 

ük, l 

fLk, 
m-k-2 

L uk, m-k-1 J 
äk, 

k 

= Fk(dk)u(kl) + Cry'k( dk) uki (6.27) 

where Fk(dk) and Gk(dk) are Cauchy matrices whose entries are the coefficients of 

dk(y), which is defined in (6.25), and its derivative, respectively, and ük and ü(l) are 

the coefficient vectors of ük(y), and its derivative, respectively, where ük(y) is defined 

in (6.25), 

T 
ük 

[k, 

o 2Lk, 1 jlk, 
m_k 

IE 
Rým-k+1, (6.28) 
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uý1) = 

[(m 

- %C)2Lk, p (m 
-k- 1)71k, 1 ... 2uk, 

m-k-2 uk, m-k-1 

Let 

m-k 0 

m-k-1 0 

R= 

20 

10 

and thus the vector ük') can be expressed in terms of ük as follows, 

Üklý = Rük. 

Therefore, using (6.27) and (6.30), it can be verified that 

ýT 
E R'-k 

(6.29) 

(6.30) 

li) 
= 

(Fk(dk)R + Gk(dk)) ük, k=1, ... , 
d, (6.31) 

but it follows from (6.23) that 

e1 
= Fk(dk)-4, k=1, .. d, (6.32) 

where Vk is the vector of the coefficients of bk(y) defined in (6.25), 

T 
n-k+l ý'k = vk p vk 1 vk 

n_k 
ER (6.33) 
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Thus it follows from (6.31) and (6.32) that 

Fk(dk)Vk - 
(Fk(dk)R+Gk(dk))ük 

=0, k-1, "" , 
d, (6.34) 

where vk and ük are defined in (6.33) and (6.28), respectively. It follows that if 

ek = Fk(dk)vk - 
(Fk(dk)R+ck(k))nk, 

then fork= 1, -.. m-1 

Ilekll = 0, k=1,..., d, 
Ilekll > 0, k=1, , m-1. 

(6.35) 

(6.36) 

Since (6.34) is satisfied for k=1, """, d only, the value of d can be considered to be 

the largest value of k for which (6.34) is satisfied. 

An important difference between criterion (6.36), and the angle (6.3) and residual 

(6.4) criteria used by Methods 1 and 2 respectively, is that the entries of criterion 

(6.36), which is defined by (6.35), include the coefficients of dk(y), and thus it requires 

initial estimates of the common divisors cdk(y). The computation of these initial 

estimates is now considered. 

It follows from (6.24) that, for k=1, """, d 

vk (y)f (y) = ük (y)f (1) (y)j (6.37) 
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where ük(y), vk(y) and dk(y) are as defined in (6.25). The polynomial products in 

(6.37) can be written in matrix-vector form, 

[Ck DkJ Ivk =Sk Ivk 1 =0, k=1,... m-1, (6.38) 
Uk -Uk 

where 

vk = 0, 

ük = 0, 

where Ck = Ck(f) E R(2m-k)(m-k) and Dk = Dk(f (1)) E R(2m-k)(m-k+1) are Cauchy 

matrices whose entries are the coefficients of j (y) and j(1) (y) respectively, vk and ük 

are defined in (6.33) and (6.28) respectively, and Sk = Sk(f, f(1)) E R(2m-k)x(2m-2k+1) 

is the kth Sylvester subresultant matrix of f (y) and f(') (y), which can be partitioned 

, into a matrix Ak E R(2m-k)X(2m-2k) and the vector ck E R(2m-k) 

Sk= 
[Ck 

Akl , 

where ck is the first column of Sk and Ak is the matrix formed from the remaining 

columns of Sk. Since the degree of the GCD of j (y) and j(') (y) is equal to d, vk, o 36 0 

for k=1, """, d and since exact data is being considered, vk, o can be moved to 

the right hand side without loss of generality, that is, vk, o = -1. Thus using the 

partitioned form of Sk and the condition 7Jk, O _ -1, allows (6.38) to be written as, 

IC = 1, ... ý Cý, Akxk = Cki 
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where 

Akxk 0 Ck, k= 1, 

and fork=1, """, m-1, 

rT 
t1 2m-2k Xk = AkCk Zk, l Ük 

m_k_1 -1lk p -ük, +n_k JER 
(6.39) 

Estimates for the vectors ük and vk can be calculated from (6.39), and estimates for 

dk can be obtained from ük and 'rk. In particular, the equations in (6.23) can be 

combined in one matrix-vector form, 

Qk, 
l 

Qk, 
2 

where Qk, 1 and Qk, 2 are Cauchy matrices whose entries are the coefficients of ük and 

Vk respectively, that are calculated from (6.39), and i and f 
1) 

are the vectors of the 

coefficients of j (y) and fill (y), respectively. Thus, dk can be obtained from, 

äk 
Qk, 1 

Qk, 2 Qk, 2 I' [ 
f 

;, (1) 1 k=1, """ , m-1. 

6.4.2 AGCD degree of an inexact polynomial and its deriva- 

tive 

This section extends Section 6.4.1 to the situation that occurs when the inexact 

polynomials f (y) and its derivative f (fl (y), whose exact forms have a GCD of degree 
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d, are considered. It follows that, for k=1, , d, (6.23) must be replaced by the 

approximations 

f(u) uk(y)dk(y), and f(1)(y) '` Vk(y)dk(y)+ 

and the derivative constraint (6.26) must be replaced by 

f(1)(y) uk1)(y)dk(y)+uk(y)dkl)(y). (6.40) 

where 

uk(y) Em-k'tik, 
iym-k-je i=0 

vk(y) _ Ein=-0k vk, iyn-k-iý 

dk / y) _ Ek yk p 
dk, i -a 

It has been shown in Chapter 4 that it is necessary to process f (y) and f (1) (y) before 

an AGCD is computed. In particular, it is required to normalise f (y) and f (')(y) by 

the geometric means of their coefficients, and thus 

m 
%(y) =E aiym-je 

i=0 

aq 

( n, '`oI aiI) 
I 

m+1 

m 

and 

I Il 
i=o 

M-1 

g(y) biy , m-i-i 
(m - i)ai 

`-0 (n; `0-' I(m-7)aiI)m 

M-1 

-1ý 11 Jbtl 
i=O 
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are considered, where g(y) is proportional to, and not equal to, f(l)(y). Specifically, 

it can be verified that 

mm 
I 

.1 
\1 ,, i=0, """ , m-1. (6.41) 

Cý. 

ý=o 1 a. %! Im 
mtl 

Thus, 

g(y) = , \fl"(y)" 

Scaling f (y) and g(y) by the scaling factors ao and Oo as described in Chapter 4 yields 

the polynomials 

m m-1 

feo(w) = Ea"w, "`-' and ao9eo(w) = aoEbi'w"`-i-1, (6.42) 
i=O i=O 

whose coefficients are 

ai = äO1 and bi = bi0o -'-1, 

where ao and Co are the optimal values of a and 0, respectively, whose values are 

obtained by solving the LP problem (4.7). It also follows from (6.41) and (6.42) that 

goo (w) = veolýw), (6.43) 

which establishes the relation between go, (w) and fBä(w). 

It is assumed that f (y) is inexact, and thus for k=1, ."", d, an approximate common 
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divisor dk(w) of f(Bow) and go,, (w), of degree k, satisfies 

f90(w) ~ uk, eo (w)dk, 9o (w), aogeo (w) ^ vk, eo (w)dk, 90 (w), k=1, ... , d, (6.44) 

where, 

Uk, Oo (w) 

Vk, eo (w) 

dk, eo (w) = 

Also, scaling (6.40) by 0o yields, 

m-k 
m-k-i k-i 

uk, iw , uk, i = Ck, iBO - 

i=0 
n-k 

n-k-i n-k-i ZJk, iZU , 7Jk, i - ek, ie0 

i=0 
k 

k-{ k-i dk 
iZll , Cýk Tk iB0 

i=0 

(6.45) 

(6.46) 

(6.47) 

1k 

, 
fäo)ý'lU) E (4'k, 

iB0-s) wk-t 2lk1Bp(2U) -}- 
i=0 
k-1 

k-i-1 ((k - 2)rk, iBUk-i-1) w uk, go(w) 

i=0 i=0 
k 

(\ r k, iBO_tl wk-' uk10Q (w) + 

t=0 i=0 
k-1 
E 

i=0 

\ 
k-i-1 k-i-1 (Sk, 

iBO 
)W uk, eo (w)+ 

i=0 i=0 

using (6.45), (6.46) and (6.47), where the coefficients of dklea (w) are 

8k, i=(k-2)Tki, 2=0,..., k-1. 
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In terms of a matrix-vector product, the coefficients of fB' (w) can be written as, 

rk, oeo 
rk, 

leö-1 
Tk pBý 

ý{1) _ B" 0 

rk, k 

rk, k 

Sk pek0-1 

k-2 
Sk, 180 

Sk, k-1 

L sk, k-1 J 

= Lk BoCkläo + Mk, Bo6k, Bo7 

where ck, 90 is the vector of coefficients of Uk, eo (w) defined in (6.45), 

Tk 1 Bk0-1 

Sk pep-1 

Sk 180-2 

(m - k)c gm-k-1 k, 0 0 

(m 
-k- 1)ck, 180 -k-2 

2Ck, 
m-k-2B0 

Ck, m-k-1 

Ck, pBÖ -k 

m-k-1 Ck 180 

Ck, m, _k_lep 

Ck, m-k ý 

+ 

(6.48) 

T f 
m-k m-k-1 m-k}1 Ck 90 -L Ck OBO Ck 1B0 ... Ck m_k_1e0 

Zk 
m_k 

Eý ý 
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and ck ep is the vector of coefficients of the derivative with respect to w, 

f; k, 00ok 

Lk, Bo = 

k-1 
rk 1 B0 

1'k, 0B0 

k-1 
rk, 1BO E 1I8'n" (m-k) 

, 

7'k, k 

rk, k 

and 

k-1 
Sk pe0 

Sk 1Bp-2 

A1k, eo = 

sk oeo-i 
k-2 Sk 1B0 E ýmx(m-k+1) 

Sk, k-1 

Sk, k-1 

It is readily verified that ckleo and ck, ep are related by the diagonal matrix RE 

(m-k)x(m-k+1) which is defined in (6.29), 

Bocklep = Rck, ep. (6.49) 
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It follows from (6.48) and (6.49) that 

ýBo) ,1 
o 

(Lk, 
BoR + BoMk, eo) ck, eo 

136 

(6.50) 

and, from (6.43) and (6.44) that 

(aoA) feo)('w) = vk, eo(w)dk, eo(w)i 
m! Co-/m 

rýJ 

0 
(Q'7Iý m m}1 

ý 

and thus the vector of coefficients (aoA) f(Bo) of (ao)) f (1 (w) can also be approximated 00 

by 

(ao. 1) eBö) s'ti Lk, epek, ep, (6.51) 

where ek, 90 is the vector of coefficients of Vk, Oo(w) defined in (6.46), 

ek, eo =I ek ,, )Om-k-1 ek leÖ -k-2 

T 

E 1[8"`_k ek, ýn-k-2B0 ek, m-k-1 

The combination of (6.50) and (6.51) yields 

( 
Co Lk, goek, go - 

(Lk, 
OOR + B°Mk, ep) ck, Bo ý 0. (6.52) 

a°, \ 
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It follows from (6.52) that 

1 [Vk, 
eý Lk, epR + Uk, eo 

Vk, eo 

Je0, (6.53) 
-tik, Bo 

where Vk, oo = 
(JOJI) Lk, eo and Uk, 9o = OoMk, o,. This approximation allows the error 

measure, 

ek = 

IIVk, 
eo Vk, go -(Lk, Bo R+ Uk, go 

) 
uk1eo 

11 

k=1, "". m-1, (6.54) 
IIVk, 

eoVk, 9oII +I 
I 

\LkBoR+Uk, eo 1Uk, go11' 

to be calculated for each value of k. The normalisation in (6.54) guarantees that ek 

is always finite and independent of any arbitrary scaling. The value of k, for which 

the error measure (6.54) achieves its minimum value is equal to the degree d of the 

AGCD. The reason for this follows from the following observations (see Section 3.2 

for the case when an exact polynomial is considered): 

Observation 1: For k=1, """, d-1, the solutions ('k, 90, ük, eo) of (6.53) are, 

with high probability, coefficients of polynomial approximation to rational functions. 

Therefore, ek in (6.54) is large. 

Observation 2: For k=d, (6.53) is satisfied with a minimum error, since there is 

a unique approximate solution (Vd, eoi üd, ea), corresponding to an AGCD. Therefore, 

ek in (6.54) is small. 

Observation 3: For k= d+ 1, """, m- 1, the coefficient matrix in (6.53) is far from 

singularity because there does not exist an A GCD of degree greater than d. Therefore, 

ek in (6.54) is large. 

It therefore follows that the index k for which the error in (6.53) is a minimum is 
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equal to the degree d of an AGCD of f (y) and g(y). Let de =d denote the computed 

degree of an AGCD, using the error measure (6.54), then 

de={IC: ek-->min; k=1, """, m-1}. 

The computation of the error measure (6.54) requires estimates of the common di- 

visors dk, ea (w), k=1, """, m-1. These estimates require that the approximation 

(6.5) 

Ak, 
ixk, i t: ck, i, k=1, """, m- 1; i=1, , 2m - 2k + 1, (6.55) 

be considered, where ck, i is the it' column of Sk(fk, eo, aogk, eo), Ak, i is the matrix 

formed by the remaining columns of Sk(fk, eo, aogk, eo), and the vector Xk, i contains the 

coefficients of the quotient polynomials uk, eo (w) and vk, eo (w) defined in (6.45) and 

(6.46), respectively. It follows from (6.44) that the estimates of the common divisors 

dk, ea (w), k=1, """, m-1 can be obtained from the least squares solutions of 

Qk, l dk 90 -f 
Bo k-1, ..., m-1, 

Qk, 2 aogeo 

where Qk, 1 and Qk, 2 are Cauchy matrices whose entries are the coefficients of uk, eo (w) 

and vk, ep(w) respectively, that are calculated from xk, 1, and foa and goo are the vec- 

tors of the coefficients of foo (w) and goo (w), respectively. The indices (k, i) must be 

calculated such that the error in (6.55) is small. It has been shown in Section 6.2 

that the index i of the optimal column of Sk(fk, eo, aogk, eo), for the computation of 

the degree of the AGCD of fk, oo(w) and ao9k, eo, for each value of k=1, """, m-1, 
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can be computed based on the angle between the subspace spanned by ck, t and the 

subspace spanned by Ak, E, or based on the residual of the approximation in (6.55), 

as shown in Sections 6.2.2 and 6.2.3, respectively. Therefore, the error measure ek in 

(6.54) can be computed using: 

1. The criterion that is based on the first principal angle, to yield ek, t. 

2. The criterion that is based on the residual, to yield ek,,.. 

Thus based on the use of the above two criteria, the error measure (6.54) provides 

two estimates de, t and de,,. of d, respectively, and since it is assumed that the error is 

small, the desire is that both estimates are equal. 

6.5 Examples 

This section provides two examples that demonstrate the use of the three methods 

described in this chapter for the computation of the degree of an AGCD of an inexact 

polynomial and its derivative. In particular, 

1. The first method uses first principal angle and it is described in Sections 6.2.2. 

2. The second method uses the residual of an algebraic form derived from the 

Sylvester matrix of two inexact polynomials and it is described in Section 6.2.3. 

3. The third method is discussed in the previous section. It uses a constraint 

between a polynomial and its derivative. 

The first two methods are applicable to any pair of polynomials, whereas the third 

method is only applicable for a polynomial for a polynomial and its derivative. More- 

over, it is noted above that the this method uses the error measure ek in (6.54), 
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Figure 6.8: The variations with k. of log Qk. log rk, log ek, t and log ek. r 
for Example 

6.8, where * denotes the exact GCD degree d. 

which have two forms ek, t and ek, r., and the computation of both of these forms are 

considered in these examples. 

Example G. S. Consider the exact polynomial 

1(9) 
= (y - 9.2393)10(y + 7.8313)8(y + 9.2777)7(y - 2.3618)6(y - 1.3429)3, 

for which the GCD of f (y) and f (1) (y) is equal to 

4(y) = (y - 9.2393)9(y + 7.8313)7(y + 9.2777)6(9 - 2.3618)5(y - 1.3429)2, 

and the degree d of the GCD of f (y) and f (1) (y) is equal to 29. Componentwise 

ýý 

ýý ý 
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noise with e, = 10-8 was added to the coefficients of i (y). The perturbed polynomial 

f (y) and its derivative f (1) (y) were then normalised by the geometric means of their 

coefficients and preprocessed by the optimal scaling parameters ao = 1.9056 and 8o = 

5.8975. The values of c5k, rk, and ek, defined in (6.7), (6.20) and (6.53) respectively, 

were computed for k=1, """, 33, and the results of the variations of log Ok, log rk 

and log ek with k, are shown in Figure 6.8 It can be seen that the maximum changes 

in 109 c5k and log rk occur at k=d, = d,. = 29, and the minimum values of log ek, t 

and log ek,, occur at k= de, t = de,,. = 29. These results suggest that the degree of 

the AGCD of fea (w) and its derivative is d= 29, which is correct because d= 29. 

Thus all of the three methods were successful in computing the degree of the AGCD 

of f (y) and f (l) (y), for this example. 0 

Example 6.9. Consider the theoretically exact polynomial j (y) that is specified by 

the roots and multiplicities given in Table 6.5, along with the roots and multiplicities 

of the theoretical exact GCD of f (y) and its derivative, q(y) = GCD(f, f (l)). It can 

be seen that f (y) and g(y) have a GCD of degree d= 21. Componentwise noise with 

s, = 10-$ was added to the coefficients of f (y). The perturbed polynomial f (y) and 

its derivative f (') (y) were then normalised by the geometric means of their coefficients 

and preprocessed by the optimal scaling parameters ao = 1.3862 and Bo = 2.3838. 

The values of Cpk, rk, and ek, defined in (6.7), (6.20) and (6.53) respectively, were 

computed for k=1, """, 28, and the results of the variations of log Ok, log rk and 

log ek with k, are shown in Figure 6.9. 

It can be seen that the maximum changes in log Ok and log rk occur at k= do = d,. 

21, and the minimum values of log ek, t and log ek, r occur at k= dc, t = de,,. = 21. These 

results suggest that the degree of the AGCD of fop(w) and its derivative is d= 21, 
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Table 6.5: The roots and multiplicities of f(y) and q(y) = GCD(f, f(1)) for Example 
6.9. 

Root of f (y) Multiplicity 

-7.5947 6 
1.4923 5 

0.63371 5 
5.4862 4 

-3.3076 3 

-3.067 2 
2.5090 2 
0.4224 2 

Root of q(y) Multiplicity 

-7.5947 5 
1.4923 4 

0.63371 4 
5.4862 3 

-3.3076 2 

-3.067 1 
2.5090 1 
0.4224 1 

which is correct because d= 21. Thus all of the three methods were successful in 

computing the degree of the AGCD of f (y) and f (l)(y), for this example. 

6.6 Summary 

0 

This chapter has discussed three rank evaluation methods for the computation of the 

degree of an AGCD of two inexact polynomials f (y) and g(y). All three methods use 

the Sylvester matrix S(f, g) of f (y) and g(y) and its subresultant matrices, but they 

differ in the criteria derived from the Sylvester resultant matrix. 

The first method uses the first principal angle between the space spanned by one col- 

umn of Sk (f, g) and the space spanned by the remaining columns of Sk (f, g), where k 

denotes the order of the subresultant matrix. The second method uses the residual of 

an approximate linear algebraic equation derived from Sk(f, g). These two methods 

differ in the criteria used for the computation of the degree d of an AGCD of two 

polynomials, and they are applicable to any pair of polynomials. The third method, 

on the other hand, uses the constraint between a polynomial and its derivative and 
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it is only applicable for a polynomial f (y) and its derivative f (l) (y). In this method 

an error measure that is derived from this constraint is used for the computation of 

d. It has been shown that this error measure provides two estimates of d based on 

the criterion used to form Sk(f, f(')). 



Chapter 7 

The computation of an AGCD 

The computation of the GCD of two polynomials has several applications, including 

the computation of multiple roots of a polynomial. However, it was noted in Chapter 

5 that the GCD is not defined if the coefficients of the polynomial are only known 

within a limited accuracy or the computations are performed in a floating point 

environment, in which case only an AGCD can be defined. This chapter describes 

two methods for the computation of an AGCD of two inexact polynomials f=f (y) 

and g= g(y). These methods apply the method of structured non-linear total least 

norm (SNTLN) to the computation of a structured low rank approximation S(f, g) 

of the Sylvester matrix S(f, g) of the inexact polynomials f (y) and g(y), from which 

an AGCD of f (y) and g(y) can be computed. The first method applies the method 

of SNTLN to the Sylvester matrix S(f, g), whereas the second method applies the 

method of SNTLN to the approximate polynomial factorisation (APF) of f (y) and 

g(y). Both methods require that the degree of an AGCD be first determined, after 

which the coefficients of the AGCD are computed. The computation of the degree d 

of an AGCD was discussed in Chapter 6, and it is therefore assumed that d is known. 

145 
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It is required to compute the coefficients of the AGCD, given d, and this topic is 

addressed in this chapter. 

The first section in this chapter demonstrates the relation between the structured low 

rank approximation and the computation of an AGCD of two inexact polynomials. 

Section 7.2 describes the application of the method of SNTLN to the Sylvester matrix, 

for the computation of a structured low rank approximation of the Sylvester matrix 

of f (y) and g(y). Examples that demonstrate the theory in Section 7.2 are given in 

Section 7.3. Section 7.4 describes the application of the method of SNTLN to the 

APF of two polynomials for the computation of structured low rank approximations 

of the Sylvester matrix of f (y) and g(y). Examples that demonstrate the theory in 

Section 7.4 are given in Section 7.5. 

7.1 Structured low rank approximation of 

the Sylvester matrix 

It is recalled from Theorem 3.1 that the degree of the GCD of the exact polynomials 

f=f (y) and (y), defined in (3.1), equals the rank deficiency of their Sylvester 

matrix S(f, g), and that the coefficients of the GCD lie in the last non-zero row of 

S(f, g)T, after reducing it to an upper triangular form. 

The case is different when inexact polynomials f (y) and g(y) are considered, since 

their Sylvester matrix S(f, g) has, with high probability, full rank. The coefficients of 

f (y) and g(y) can be perturbed such that their perturbed forms 1(y) =f (y) + if (y) 
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and g(y) = g(y) + ög(y) have a non-constant GCD, that is 

rank S(f, g) = rank (S(f, g) + S(ö f, ög)) < (m + n), (7.1) 

where, the perturbations bf and Sg can be obtained using the method of SNTLN. 

The GCD of I (y) and g(y) is an AGCD with respect to the inexact polynomials f (y) 

and g(y). The underlying principle of using the structured low rank approximation 

methods for computing an AGCD of two inexact polynomials can therefore be sum- 

marised as follows: 

Given the Sylvester matrix of inexact polynomials f (y) and g(y), compute the struc- 

tured perturbation Sylvester matrix S(S f, Sg) such that (7.1) is satisfied. 

Once S(f, g) is calculated, an AGCD of f (y) and g(y) can be obtained from the 

corrected polynomials f (y) and g(y) using the properties of the Sylvester matrix in 

Theorem 3.1. Specifically, an AGCD of f (y) and g(y) is, up to a non-zero multiplier, 

defined to be equal to the GCD of j (y) and g(y). Thus the discussion above suggests 

that there is a close relation between the computation of an AGCD of f (y) and g(y) 

and the computation of a structured low rank approximation S(f, g) of S(f, g). The 

computation of an AGCD using the structured low rank approximation methods, 

however, requires that the degree of an AGCD be defined, and it is therefore assumed 

that the methods in Chapter 6 have been used. 

The use of the method of SNTLN in constructing low rank approximations of S(f, g) 

using both the Sylvester matrix and APF of two given inexact polynomials, is con- 

sidered in this chapter. 
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7.2 Calculating an AGCD using the Sylvester ma- 

trix 

This section considers the use of the method of SNTLN in constructing a low rank 

approximation of the Sylvester matrix S(f, g) of the inexact polynomials f (y) and 

g(y), whose theoretical exact forms have a non-constant GCD. 

It is assumed that the given polynomials have been preprocessed using the methods 

in Chapter 4, and thus the polynomials fe(w) and go(w) defined in (4.5) and (4.6), 

respectively, are considered. However, the method of the SNTLN requires that the 

values of the parameters a and 0 be calculated iteratively with initial values of ao 

and 00, respectively, whose values are obtained from solving the LP problem (4.7). 

The following forms are therefore used, 

m\ 
fe ( w) =E( 

at 
J em-awm-t 

Bm-i 
i=0 0 

n* 

and 9e(w) = 
EC 

on 
lB"`-'w"-` 

'/ , 
i=0 0 

where 

aý = äO' and b; = bi9o-i, 

where ä1 and bi are defined in (4.2) and (4.3), respectively, and the value 0 of 0 is 

retained in the denominators of ai and bi to simplify the update process between 

the successive iterations in the method of SNTLN. The method of STLN can also be 

used in constructing a low rank approximation of S(f, g), in which the parameters a 

and 0 are hold constant. However, it shown in [79] that the method SNTLN provides 

better approximation of an AGCD of two inexact polynomials. 
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It is assumed that deg AGCD(fe, age) =d where d is calculated using the methods 

in Chapter 6. Since fe(w) and age (w) are co-prime, and the perturbations are small, 

the dth Sylvester subresultant matrix of fe(w) and age(w) is nearly singular. It is 

recalled from Section 6.2.1 that this property of Sd(fo, age) leads to the approximation 

(6.5), and for k=d and i=q this approximation yields, 

Ad, 
ex N Cd, g, X= Xd, q E Rm+n-2d+1 (7.2) 

where the column cd, q E Rm+n-d+1, the qth column of Sd(fo, ago), is the optimal col- 

umn for the computation of the degree of an AGCD of fe(w) and a go (w), as discussed 

in Section 6.2.1, and it has been shown in Sections 6.2.2 and 6.2.3 that the value of q 

follows directly from the computations of d. The matrix Ad, 
q E R(m+n-d+1)x(m+n-2d+1) 

is formed from the remaining columns of Sd(fo, ago). 

Structured perturbations must be applied to the approximation (7.2) to make it an 

equation that has an exact solution. In particular, let 

T r 
m+1 \ zig =L zoom, ... ý zm_lg, Z. E II$ , 

(7.3 

and 

azyB = I Ckzm+len, -� I 

JT 
cxzm+ne, zm+n+l ER (7.4) 

be the vectors of the structured perturbations to be added to the coefficients of ff(w) 

and ag9(w), respectively. The dth Sylvester subresultant structured perturbation 
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matrix Bd = Bd(a, 0, z) E R(m+n-d+1)x(m+n-2d+2) 
of Sd(fe, age) is therefore, 

zoom azm+1on 

zl Om-1 Q Z. +20'-' 

Ba = , Zm 
_ 19 

zm 

zoom azm+iOn 

ziem-1 azm+nO azm+2en-1 

azm+n+1 

azm+ne 

where 

r 

zm aZm+n+l 

T 
m+n+2 Z= ZO, I Zm, zm+l ,ý zm+n+l ER (7.5) 

Then the application of the method of SNTLN to the computation of an AGCD of 

fe(w) and age(w) requires consideration of the equation 

(Ad, 
e(a, 0)+ Ed, e(a, B, z)) x= cd, v(a, 9) + hd, a(a, B, z), (7.6) 

which is the perturbed form of (7.2), where hd, q is the qth column of Bd(a, 8, z), Ed, q 
is the matrix formed by the remaining columns of Bd(a, 0, z), and they have same 

structure as Ad, q and Cd, q, respectively, and as noted before, it is assumed that the 

values of d and q are known. The quantities a, 0 and z are to be computed using 

the method of SNTLN. Since the first n-d+1 and the last m-d+1 columns 

of Sd(fe, ago) contain the coefficients of fe(w) and age (w), respectively, the vectors 

Cd, q and hd, q may or may not be dependent on a, depending on the value of q. In 
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particular, 

cd, q = cd, g(B), hd, q = hd, g(B, z) if 1 <q: 5 n- d+ 1 

Cd, q = cd, g(a, 0), hd, q = hd, 

q(a, 0, z) if n-d+2 <q< m+n- 2d + 2. 

The theory for the computation of a, B and z is developed, considering the case for 

which, n-d+2<q<m+n- 2d + 2, and the necessary modifications to derive the 

theory for 1<q<n-d+1 are obtained by setting a=1 and thus the derivative 

with respect to a is equal to zero. 

It is recalled from Section 7.1 that constructing a low rank approximation S(fo, ago) 

of S(f, g) for the computation of an AGCD of f (y) and g(y) requires that fo(w) = 

fe(w) +Szfe(w) and go (w) = go(w) +a6z9B(w) have a non-constant GCD, where the 

polynomials öz fe (w) and abz9e (w) are defined by the vectors of coefficients z f, and 

az9B defined in (7.3) and (7.4), respectively. However, it follows from Theorem 3.1 

that the polynomials je(w) and ago(w) have a non-constant GCD if and only if the 

non-linear equation (7.6) possesses a solution. This equation can be solved iteratively 

for the values of a, 9, x and z. The associated residual of computing an approximate 

solution of (7.6) is, 

r(a, 0, x, z) - cd, 9(a, 0) + hd, 
9(a, e, z) -(Ad, 9(a, 0) + Ed, k(a, e) , z) 

) 
x, (7.7) 

and thus the residual that is associated with the successive iterations can be defined 

as r" = r(a + Ja, 0+ 60, x+ öx, z+ 6z). Using the Newton-Raphson method [69], the 



CHAPTER 7. THE COMPUTATION OF AN AGCD 152 

first order approximation yields, 

r" = cd, g (a + öca, B+ öB) + hd, q (a + öa, 8+ öB, z+ öz) 

IV 
N 

-(Ad, g(a+bca, 9+bB)+Ed, q(a+Sa, B+bB, z+(5z))(x+bx) 

aCd (ýCd ahd, ahd, ahd, 9 
Cd, q + äa4 

Ja + a9g 
59 + hd, q + äa4 

ba + ä9 
g bB +E 

m+n+1 

özi 
bzti 

i=O 

-Ad, qx - Ad, gbx - 
(aaa'Qx) 

ba - 
(a eQx ) 

68 

-Ed, qx - Ed, gbx -( 
aaä'g x) ba - 

(aE0dq 

ax 
I 60 

m+n+1 

-ý 
äEg, a özi X. 

ý=o 
öz; 

It follows from (7.7) that 

r(a, B, x, z) - 
((aa8'4 

+ aaeg) x- 

(aae4 
+ aaee SB 

aAd, 4 
aEd9 aCd 

4 atýd, 4 - (Ad, q + Ed, 
4)bx -(( 49a 

+ 
49a 

)x-( 

aa 
+ aa ja 

m+n+1 ajL m+n+1 
d, 4 4 +ý bxi - I: (aEdbzi 

x, 
i=O 

azi 
i=0 

azi 
(7.8) 

where the last two terms can be simplified using the expressions of hd, q and Ed, gx, in 

terms of z. In particular, the vector hd, q can be written as, 

f 
Og-n+d-2, 

m+1 

hd, q = aPdz =a 

Oq-n+d-2, 
n+1 

G z, 

L Om+n-2d-q+2, 
m+1 

Om+n-2d-q+2, 
n+1 

On+1, 
m+1 
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where Pd = Pd(O) E R(m+n-d+l)x(m+n+2), 

G= G(B) = diag I on on-1 ... 91JE 

and z is defined in (7.5). Thus, 

m+n+1 Öhd, bad, 
4 =ý9 öz; = aPdJz. 

8zi 
: =o 

R n+l) x (n+l) 
r 

153 

The vector Ed, 
qX can be expressed in terms of z as follows, 

Ed, qX = Ydz, 

where Yd = Yd(a, 0, x) E R(m+n-d+1)x(m+n+2). Differentiating both sides of this equa- 

tion with respect to z yields, 

i=0 

Replacing the last two terms of (7.8) with aPd8z and YdSz, respectively, simplifies 

(7.8) to 

r r(a, B, x, z) -(( 
000 q+ aöB q)x- 

(I9 
009 + 

ýB'9I 
I 60 

m+ntl \ ý( BaEdaözi 
Ix= (JEd, 

9 x= YdSz. 
: -n 

V'zf /// 

-(Ad, a + Ed, e)bx -CC aAd, 9 + aEd91 x-ý ea ,9+ aahds g Ja ýý 

-(Yd - aPd)bz. 
(9a Oa 

) 

(7.9) 
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For simplicity, let, 

Hz = Yd - aPd E ]Ig(m+n-d+l)x(m+n+2) 

Hx = 

Ha = 

He = 

Ad, 
q + Ed 

qE 
R(m-}. n-d+1) x (m+n-2d+1) 

C 
aAd, e + 

aEda 

/ 
x- 

( äcd, a + 
ähd, a 

1E 
l[ýmtn-d+l 

Da Da j äa ea l' 
aAd, 4 + 

C)Ed, 
9 x- (aCd9 + ahd, 9 ERmFn-d+l ý 

00 00 
) 

00 00 
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It follows from Definition 5.2 that the perturbations defined by the elements of the vec- 

tor z in (7.5), have to be minimised, that is, the given inexact polynomials are moved 

by the minimum amount such that the refined polynomials have a non-constant GCD. 

In terms of HZ, HH, H,, and H9, the jth iteration in the Newton-Raphson method for 

calculating z, x, a and 0 is 

IHZ 
Hy Ha HB 

lJ 

bz 

bx 

ba 

50 

(j) 

= T(. i), (7.10) 

where rU) = rU)(a, B, x, z), and the values of z, x, a and 0 at the (j + 1)th iteration 

are, 

z 

2 

a 

(i+1) 
z 

x 

a 

(i) 

+ 

Sz 

bx 

Ja 

(1) 

eý Leý L11 
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such that at j=0, z(°) =0 because the given data is inexact, and a(°) and 0(0) are 

the solutions a° and 0° of the LP problem (4.7). 

Clearly, it can be seen that (7.10) is of the form 

Cy=b, 

where CE R('n+n-d+1)x(2m+2n-2d+5), yER 2m+2n-2d+5, bE Rm+n-d+l, 

bz 

r 1(ý) 
C=LHz H. Ha HBJ , y= 

60 

Since the nearest polynomial that has a multiple root is sought, it is required to 

Öx 

ba 

U) 

b= r(j). (7.11) 

minimise, 

zu+i) - z(°) 

xu+i) - x(0) 

a(. i+i) - ao 

g(i+1) - Bo 

zW + 6z(j) 1 
x(j) + 8x(j) - xo 

a(j) + 8a(i) - ao 

B(>) + aeU) - eo 

where 

:= IIEy - PII, 

rT 
E= I2m+2n-2d+5, P=-I z(i) xU) - xo a(i) - ao Bi - Bo 

1, 
(7.12) 
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and y is defined in (7.11). The initial value xo of x is obtained by setting a= ao, 

0 =8o andz=0 in (7.7), 

xo = arg min IIAd, 9 
(ao, 0o)w - Cd, e(ao, eo) II (7.13) 

w 

It follows from the discussion above that the method of SNTLN yields the following 

least squares equality (LSE) problem, 

min IIEy - piI subject to Cy = b. (7.14) 
v 

The QR decomposition [28] can be used to solve this problem. 

The following algorithm shows the application of the method of SNTLN to the 

Sylvester matrix of two inexact polynomials f (y) and g(y), for computing a struc- 

tured low rank approximation of S(f, g), where the QR decomposition is used to solve 

the LSE problem (7.14). 

Algorithm 7.2: A structured low rank approximation of the Sylvester 

matrix using the method of SNTLN 

Input 

(1) f=f (y) and g= g(y), the inexact polynomials whose degrees are m and n, 

respectively. 

(2) ao and 0o, the initial values of a and 0, respectively. 
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(3) d< min (m, n), the degree of the AGCD of f (y) and g(y). 

(4) q, the index of the optimal column for the computation of the degree of an AGCD. 

Output A structured low rank approximation of S(f, g) with rank m+n-d. Begin 

% Initialisation 

1. Set z=0, and thus Ed q= 
88 = 

eä 
=0 and hd, q = 88 

= 8äB 
= 0. 

2. Calculate Ad, 
q, Yd, q, Pd, Cd, q, 

8ä 
, 

8äB 88 
and 

8äe for a= a0,0 = 0o and 

x= x0, which is defined in (7.13). These initial values will also set p in (7.12) 

to be equal to 0. Calculate the initial value of b, that is, the residual 

r(a0, B0, x0, z= 0) = Cd, q - 
Ad, 

gXO- 

3. Calculate the matrices C and E defined in (7.11) and (7.12), respectively. 

4. % Solve the LSE problem (7.14), using the QR decomposition 

% Set iterations = 0. 

Repeat 

(a) Compute the QR decomposition of CT, 

(iT =QR=n 
R1 

0 

I 

(b) Set wl = Ri T b. 

(c) Partition EQ, 

EQ =1 El E2 
1, 
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such that El E R(2m+2n-2d+5)x(m+n-d+1) 
and E2 E R(2m+2n-2d+5)x(m+n-d+4) 

(d) Compute 

'w2 =E2(p -Eiwi)" 

(e) Compute the solution 

y=Q 
wl 

w2 

(f) Set z: =z+Sz, x: =x+bx, a: =a+Saand 0: =B+SB. 
aY aA0s Ea dq aEd. v ecd, 9 ah (g) Update Ad, qe as 80 d, 9j Oct ' ae ' Ydo pd) ed, 9i as ae hd, q, 

eä 8äB from a, 0, x and z. Using the updated values, update C and p. 

(h) Calculate the updated value 
/of 

b, that is the residual 

r(a, 0, x, z) ý (ßd, 
4 + hd, 

q) - (Ad, 
q 

+ Ed, q)X. 

(i) Increment the iterations. 

Until 1< 10-12 or iterations < 50 11 Cd, 4+hdr4 
11 - 

End 

7.3 Examples 

This section contains two examples that show the use of the method of SNTLN for the 

construction of a structured low rank approximation S(f0., a* ge*), of S(f, g) of two 
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inexact polynomials f=f (y) and g= g(y), by applying the method of SNTLN to 

the Sylvester matrix S(f, g), where a" and 9* are the values of a and 0, respectively, 

at the termination of the method of SNTLN, and fe. = fe" (w) and ge. = go" (w). The 

following notation is used in these examples: 

1. j (y) and g(y) are the theoretically exact polynomials. 

2. f (y) and g(y) are the inexact polynomials whose coefficients are calculated 

from f (y) and g(y), respectively, after adding componentwise noise to their 

coefficients and normalising them by their geometric means. 

3. fa,, (w) and aogeo (w) are the preprocessed inexact polynomials that are used 

in the computation of the structured low rank approximation of the inexact 

polynomials f (y) and g(y). 

4. fe. (w) and §o. (w) are the corrected polynomials whose coefficients are computed 

by the method of SNTLN. 

5. The entries of the Sylvester matrices S(f, g), S(f, g) and S(fe", a' go-), are cal- 

culated from the theoretically exact, inexact and corrected pairs of polynomials, 

respectively, after normalising them by the geometric means of their coefficients. 

Example 7.1. Consider the polynomials 

f(y) _ (y - 0.3396)3(y + 0.5790)3(y - 10.7712)5 x 

(y - 5.8708)4(y - 20.7633)5, 

g(y) _ (y - 0.3396)3(y + 0.5790)5(y + 5.2495)3 x 

(y - 5.8708)2(y - 1.0777)3, 
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whose Sylvester matrix is of order 36, and since the degree of their GCD is equal to 8, 

C 

Figure 7.1: The normalised singular values of the Sylvvester matrices 
S(f, g) o, S(f 

, 
g) + and S(ff., a* go. ) x, for Example 7.1. 

the theoretically exact rank of S(f, g) is equal to 36 -8= 28. Noise with componen- 

twise signal-to-noise ratio of 106 was added to the coefficients of these polynomials, 

which were then normalised, thereby yielding the polynomials f (y) and q(y). 

The method of the first principal angle, which is discussed in Section 6.2.2, was used 

to calculate the degree d=8 of the AGCD of f (y) and q(y), which is correct, and 

the index of the best column, q=3, to form the approximation in (7.2). These 

results were then used in the implementation of Algorithm 7.2. It was found that two 

iterations were required for the solution of the LSE problem (7.14), and the following 
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values were obtained at the termination of Algorithm 7.2: 

II Ey - pII = 10-7.7 and II Cy - bII = 10-15.4 

Very similar results were obtained when the method that uses the residual, which is 

discussed in Section 6.2.3, was used to find the values of d and q. 

Figure 7.1 shows the normalised singular values of the Sylvester matrices S(f, g), 

S(f, g) and S(fe., a' ga. ). It can be seen that the rank of S(fe., a" ga. ) is equal to 28, 

which is the correct value, whereas S(f 
, g) and S(f, g) have full rank which suggests 

that j (y) and g(y) are co-prime, which is incorrect. 

Example 7.2. Consider the polynomials 

f(y) = (y - 3.671684 x 10-5)5(y - 3.062163 x 10-5)2(y - 5.724097 x 10-5)4 x 

(y - 3.981184 x 10-5)2(y - 6.896876 x 10-5)3(y - 1.151630 x 10-4)5, 

g(y) = (y - 3.671684 x 10-5)5(y - 3.062163 x 10-5)2(y - 3.330558)4 x 

(y + 6.437351)4(y + 7.439712)3(y - 9.981608)4, 

whose Sylvester matrix is of order 43, and since the degree of their GCD is equal to 7, 

the theoretically exact rank of S(f, g) is equal to 43 -7= 36. Noise with componen- 

twise signal-to-noise ratio of 108 was added to the coefficients of these polynomials, 

which were then normalised, thereby yielding the polynomials f (y) and g(y). 

The method of the first principal angle was used to calculate the degree d=7 of the 

AGCD of f (y) and g(y), which is correct, and the index of the best column, q, to 

form (7.2). These results were then used in the implementation of Algorithm 7.2. It 

was found that one iteration was required for the solution of the LSE problem (7.14), 



CHAPTER 7. THE COMPUTATION OF AN AGCD 162 

C 

-10 

-20 

-30 

'ý2-40 

dF50 
0 

-60 

-70 

-80 

-90L 0 5 10 15 

i=36 

w11wJ 

x 
c 

20 25 30 35 40 45 

Figure 7.2: The normalised singular values of the Sylvvester matrices 
S(f, g) o, S(f, g) + and S(fe. 

, a` ge. ) x, for Example 7.2. 

and the following values were obtained at the termination of Algorithm 7.2: 

IIEy - pll = 10-11.4 and II Cy - bll = 10-15.1. 

Similar results were obtained when the method that uses the residual was used to 

find the values of d and q. 

Figure 7.2 shows the normalised singular values of the Sylvester matrices S(f, g), 

S(f, g) and S(fe-, a* go-). It can be seen that the rank of S(fe-, a* 9e-) is equal to 

36, which is the correct value, whereas rank S(f, g) = rank S(f, g) = 22, which is 

incorrect. 0 
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7.4 Calculating an AGCD using APF 

The method considered in this section computes a low rank approximation S(f9., a* go. ), 

see Section 7.1 for more details, of S(f, g) of the inexact polynomials f=f (y) and 

g= g(y), by applying the method of SNTLN to the approximate polynomial fac- 

torisation of f (y) and g(y), where a* and 0* are the values of a and 0 respectively, 

at the termination of the method of SNTLN. This method differs from the method 

discussed in Section 7.2 because it explicitly computes the GCD of fB. (w) and ge" (w). 

On the other hand, the Sylvester matrix requires that S(fe", a* ge") be reduced to a 

triangular form, which can be unstable [2]. 

The application of the method of SNTLN to APF of two inexact polynomials f (y) and 

g(y) for computing AGCD(f, g) requires that their scaling forms fe(w) and age(w), 

which are defined in (4.5) and (4.6), respectively, be considered. Specifically, 

r" 
r/m\ 
JBýw) _E 

(Bmt 
i IB'"-`w"`-' and ge(w) 

(ebi 
i)emýtwn-t, 

i=0 0/ i=0 0 

where 

ai = äi00 -' and bi = b; 0o-', 

where di and b; are defined in (4.2) and (4.3), respectively. It is assumed that the 

degree d of the AGCD of f (y) and g(y), is known using the methods described 

in Chapter 6. The coefficients a; and bi form the entries of Sd(fei age), and the 

parameters a and 0 need to be iteratively refined starting from ao and Bo, which are 

obtained from solving the LP problem (4.7). 

The approximate factorisation of the inexact polynomials fe(w) and ge(w) can be 
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written as 

164 

fe(w) ^ý ue(w)do(w) and ago (w) ve(w)de(w), (7.15) 

where 

dd 

d do w 
(io 

e, Bd-s, wd-i r. od-. wd i e=() 9a-'-; 
(,, 

%=o t=o 

is an AGCD of degree d of the inexact polynomials fe(w) and go (w), and the quotient 

polynomials 

ue = ug(w) 

ve=ve(W) = 

are co-prime, where 

m-d m-d (Ui) 
Bm-d-im-d-i Bm-d-i m-di 

L (ý ) 
: -n 0 : -n i=0 

76-u nr-a (o: 
i_. i) 

r end_iwn_d-i 
- \es 

en-d t) 

i=0 

de, i u9, i ve, i ri = Bd_i , Cj = Bm_d_i I and ei = Bn_d_i 000 

(7.16) 

The value Bo of 0 is retained in the denominators of the coefficients of de(w), ue(w) 

and ve(w) to simplify the update process between the successive iterations of the 

method of SNTLN. It follows that the full form of (7.15) is 

m (m-d d 
ýaiem-i1 w+n-i NE (C', em-d-i\ wm-d-i 

E (sied " wd-t 
a=0 

\J 
i=o 

J 
i=o 

` 
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and 

n (n-d d 

(xp 
Z (bien-i) 

wn-$ :: Z (eien-d-i) 

wn-d-i Z (rd 
ied-i) wd-i 

i=0 i=0 i=0 

These approximations can be combined in matrix form as 

Cl (c, B) 
r(O) %v 

f(B) 

C2(e, 0) aag(B) 

where 

i=0 \ i=0 

c, (c, 9) = 

CID Bm-d 

Clem-d-1 Cpem-d 

C2 em-d-2 Clem-d-1 

C2 em-d-2 

Cm-d-le 

Cm-d Cm-d-1B 

Cm-d 

CO Bm-d 

Cl Bm-d-1 

C2Bm-d-2 

Gm-d-1e 

i=0 

(7.17) 

E ý(m+1)x(d+1) 
, 

Cm-d 
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and 

C2 (e, B) = 

eoen-d 

ei on-d-1 epen-d 

e2 on-d-2 ei on-d-1 

en-a-le 

en-d 

e28n-d-2 

en-d-le . 

en_d 

epBn-d 

ei on-d-1 

e2 on-d-2 

. en-d-10 

en_d 

and 

f(B) = 

g(B) = 

r(B) = 

E I[8(n+1)x(d+1) 

T [äo9m 
&i97n-1 ... a+n-lo am E 1[8'll, 

IT 
boon blon-1 bn_le bn E ][gn+I, 

T ý 
rood rled-i .. rd-10 rd 1E IIgd+i 

The application of the method of SNTLN requires that the coefficient matrix and the 

right hand side vector of (7.17) be perturbed such that the approximation is replaced 

by 

I Ci (e, e) + Ei (z, 6) 
r(6) = 

f(6) + s(p, e) (7.18) 
C2(e, 0) + E2(z, B) (ao + ßo) (g(B) + t(q, B)) 
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which has an exact solution, where 

r 
zoom-d 

Ei (zd, 6) = 

zm-d+lBn-d 

. Zpem-d 

zl Bm-d-1 

z2Bm-d-2 

. z, m_d_1B 

z, n_d 

ý(mtl)x(d-t1) 
ý 

zm-d+2Bn-d-1 

zm-d+3 on-d-2 
, Zm _d+l 

en-d 

n-d-1 xm-d+2 B 

E2(zd) e) _ 

zm+n-2de 

zm+n-2d+1 

zm-d+3en-d-2 

zm+n-2de 

zm+n-2d+1 J 

are the Cauchy matrices of the perturbations 

x- r z0 ''' zm-d zm-d+1 '" * Zm+n-2d+1 

. Z1 Bm-d-1 

z2Bm-d-2 

. Zm_d_le 

I 

E R(rz+l)x(d+l) 
, 

E Rm+n-2d+2 
e 

167 
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that are added to the coefficients ci and es. The vectors s= s(p, 0) E ]Rm+l and 

t= t(9,0) E l[8"+i, 

s=ý poem plem-1 ... pm-le pm 
IT ERm+l 

T n+l t goen glen-1 ... gn-16 gn IT R ý 

where 

p=[ po pi "-" pm-1 pm IT E ]I8"`+1, 

4= [ qo 41 """ 4n-1 4n IT E lI8n+1, 

are the vectors of the perturbations that are added to the coefficients of fe(w) and 

go(w), respectively, and ßo is the perturbation that is added to ao. The computations 

of the perturbation vectors z, p, and q, an estimate for r(O), and the scalars ßo and 0, 

require that (7.18) be solved. This equation is non-linear and it is solved iteratively 

using the method of Newton-Raphson. 

An approximate solution for (7.18) yields the following residual 

f(B) + s(p, 6) 

(ao +, 30) (g(0) + t(4,8)) 

Cl (c, 0) + El (z, 0) 

C2(e, 0) + E2(z, 0) 
r(8). (7.19) 
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Thus, a first order Taylor expansion yields 

r(Qo+ö, Qo, B+öB, z+öz, r+ör, p+öp, g+ög) 

I f(B+öB) +s(p+öp, B+öB) 
I 

(ao+, ßo+Ößo)(g(9+a6)+t(g+Jq, 6+b6)) 

Cl(c, B+BB) +El(z+Jz, B+öB) 

C2(e, 0 + 8B) + E2(z + Sz, B + ö9) 

To simplify the analysis of this expression, let us first consider (7.20): 

To first order, the approximation of the first expression in (7.20) is 

f(e+be) +s(p+bp, a+be) ýf+s+ afbe+ aSbe+E 
8p, 

b 
as 

ae 070- e ý_a 
p;, 

and the approximation of the second expression in (7.20) is 

(ao + ßo + 90o) (g(o + öo) + t(g + äq, e+ 50)) 
%e (ao + , 

Co) (g + t) + (ao + Qo) (00 60 + aa 
do + ýt 

o 
äq 45q=) 

+(g+t)bßo. 

r(B + (5B). (7.21) 

(7.20) 

The vectors s and t can be written as s= Sp and t= Tq, respectively, where 

S= S(9) = diag I em 

T= T(9) = diag I on 

0-_1 911E R(m+1)x(m+1) 
e 

on-1 011 ER (n+l)x(n+l) 
(7.22) 
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It follows that 

Thus 

and 

as at Jpi = Sap and bqi = Tbq. 
s=o 

Ti 
i_o q; 

Using (7.23) and (7.24), the expression in (7.20) can be written as 

f+s 

(ao + )3o) (g + t) 
+ 

f(e + Se) + s(p + Sp, e+ Se) :.. f+ s+B SB +B SB + SSp, (7.23) 

(ao + Po + S, Qo) (g(B + SB) +t (q + Sg, B+ SB)) 

~ (ao + Qo) (g + t) + (ao + Qo) ( 
ý8 

SB +9 SB + TSg) 

+(g+t)SQo. 

f+s f 

170 

(7.24) 

19, Jo + ä0b8 +Söp 
L (ao+, Cjo) (? BSB+äaSB+Tbg) +(g+t)S, Qo 

Consider now the expression in (7.21). The following substitutions 

B= B(c, e, 8) = 
cl (c, e) 

and E= E(z, B) = [C2(e, 
O)j 

El (z, 0) 

E2 (z, B) 

(7.25) 
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allow (7.21) to be rewritten as 

- 
(B(c, 

e, 0+ JO) + E(z + 8z, 0+ JO)) r(O+ö9), 

whose first order approximation is 

where 

171 

m-}-n-2d+1 

_-(B++E+' äz-; 
(r(9) 

+d 
(d9e)) 

be) Ö 

-(B+E)r- 
(5O 

+ aebe+bE)r-(B+E)debe, (7.26) 

m+n-2d+1 aE, 
8E = bzi. 

äzi i=0 

Also, let Y1 E I[8(m+1) x (m+n-2d+2), Y2 E R(n+1) x (m+n-2d+2) and 

where 

I Yi (r, 9) 
Y= Y(r, 9) _j, (7.27) 

Y2 (r, 9) 

CE IIý(^'+l)x(m-d+l) ý'i(r, e) = C3(r)®1 Om+1, 
n-d+1 , 3(r) 

Y2 (r, 9) = I On+l, 
m-d+l C4(r)02 1, C4(r) E ][$(n+1)x(n-d+1)ý 
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where the matrices C3(r) and C4(r) are the Cauchy matrices of r, with different 

dimensions, and 

©1 = diag 
( 

gm-d Bm-d-1 

©2 = diag r en-d on-d-1 

g 11 E -d+1) x (m-d+1) 
v 

01]E R(n-d+l)x(n-d+l) 

The expression in (7.26) can be simplified by differentiating, with respect to z, both 

sides of the equation 

Y(r, 9)z = E(z, 9)r, 

to give, 

SE(z, 8)r = Y(r, 8)bz. 

Therefore, (7.21) can be written as 

- (B + E) r- (B + E) 
de 

öB - Ybz -I 
ýe 

r -}- 
ýe 

r) 6e. (7.28) 



CHAPTER 7. THE COMPUTATION OF AN AGCD 

Substituting for (7.25) and (7.28) into (7.20) and (7.21), respectively, yields 

r(/jo+(5ßo, 0+50, z+Sz, r+5r, p+bp, q+5q) 

ýe r(Qo, B, z, r, p, q) 

-sp 1 

.ý 
Of 8e S Om+l, 

n+l 
Om+l, 

l 80 
+ 

8B 

1 

bq 

On+l, 
m+l 

(a0+ý0)T g+t (a0+Q0)( 
\B+ B/ 

J, 30 

bB 

-(B+E)dýbB-YBz- I 
ýBr+ ýer 

I dB. 

173 

The jth iteration in the Newton-Raphson method for calculating z, p, q,, 30 and 0 is 

ý,. -S 
On+1, 

m+1 

Om+1, 
n+1 

0m+1,1 

-(ao+Qo)T -(g+t) 

F bz 

-(äe+ää)ý'(äe + äe) r+(CI+El)äe 

-(ao +, Qo) (äe + aä) + (ee +e)r+ (CZ + E2) ää 

ý) 

(j) 

Sp 

8q 

aao 
se 

= r(i)(Qo, B, z, r, p, 9)" (7.29) 
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The values of z, p, q, Qo and 0 at the (j + 1)th iteration are 

z 

p 

4 

QO 

0 

Jz 

bp 

ý bq 

b, ßo 

ý 60 

U) (i+i) 
z 

p 

4 

Qo 
0 

ý(i) 

and the initial values in these iterations are 

x(°) = 0, p«» = 0, q«» = 0, ß(00) = 0, e(0) = 00. 

Clearly it can be seen that (7.29) is of the form 

Cy=9, 

where CE R(m+n+2) x (2m+2n-2d+6) 
,yE 

R2m+2n-2d+6 
,9 =E Em+n+2, 

C=y -S 
On+1, 

m+1 

VJ 

-(ä+äe)+(8 +ä )r+(C1+Ei)de 

-(ao+ßo)(8e+äe)+(äe + äe)r+(C2+E2)dB 
-ýäý'äel+(äe + äe) rý"(Cl-ý El) de 

Om+1, 
n+1 

0m+1,1 

- (ao + /jo) T -(g + t) 

(j) 

174 

(7.30) 
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y= 

J, z(J) 

jp(. i) 

bqU) and g= r(i) (, Qo, e, z, r, p, g) " 

600) 
10 

beu) 

Since it is required to move the given inexact polynomials the minimum amount, the 

function 

z(J+l) - z(o) 

p(i+l) - p(o) 

q(i+l) - q(o) 

q0(i+l) 
- 

0O0) 

B(i+l) - 60 

zu) + bz(j) 

pCi) + bp(i) 

q(j) + bg(i) 

ßo) +aQo) 
6U) + JeW - eo 

: =IIEy-fll, 

must be minimised, where 

[z(J) T 
E= I2m+2n-2d+s, and f=- p(i) q(i) ßoi) 6(i) - go (7.31) 

It follows that the SNTLN method yields the following LSE problem 

min IlEy - f11 subject to Cy = g. (7.32) 
Y 

An important issue that need to be addressed is the computation of the initial value 

of r(O). An estimate of this value can be obtained from the least squares solution of 
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(7.17), 

r(°) (eo) A: ý 
Ci(c, Bo) f(eo) 

t) 

C2 (e, eo) aog(eo 

176 

(7.33) 

This initial value r(°)(0°) of r(0), however, requires initial estimates of the coefficients 

of ue(w) and vo(w), in order to compute c and e whose coefficients are defined in 

(7.16). This issue is now considered. 

It follows from (7.15) that 

veo (w) 
. 
fBo (w) = veo (w) 990 (w), 

and these polynomial products can be written in matrix-vector form as, 

LCDJ 

V9o 

- 
Sd 

Vgo 

-ügo -ueo 

VBo 

_ ueo 
ý o, (7.34) 

where CE JR(m+n-d+1)x(n-d+1) and DE ]R(m+n-d+i)x(m-d+1) are the Cauchy matrices 

whose entries are the coefficients of feo (w) and geo (w), respectively, veo and ueo, are 

the vectors of the coefficients of veo and uepi respectively, and Sd = Sd(feo, aogoo) E 

R(m+n-d+i)x(m+n-2d+2) is the dth Sylvester subresultant matrix. The approximation 

in (7.34) can be written as 

= Sd 

Ax , z: i b, (7.35) 
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where AER (m+n-d+i)x(m+n-zd+1), bE Rm+n-d+1 is the column of Sd(feo, ao goo) that 

yields the minimum error in (7.35) 1. Initial estimates for the vectors uea and veo can 

be obtained from the least squares solution of (7.35) 

x= Atb. (7.36) 

Algorithm 7.4 shows the application of the method of SNTLN to the APF of two 

inexact polynomials f (y) and g(y) for the computation of a structured low rank 

approximation of their Sylveste matrix S(f, g). 

Algorithm 7.4: A structured low rank approximation of the Sylvester 

matrix using APF 

Input 

(1) f=f (y) and g= g(y), the inexact polynomials whose degrees are m and n, 

respectively. 

(2) ao and Bo, the initial values of 0 and a, respectively. 

(3) d< min (m, n), the degree of the AGCD of f (y) and g(y). 

(4) q, the index of the optimal column for the computation of the degree of an AGCD. 

Output A structured low rank approximation of S(f, g) whose rank is equal to 

m+n-d, and an AGCD of f (y) and g(y). 

'Sections 6.2.2 and 6.2.3 describe two methods for the selection of this column. 
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Begin 

1. % Initialisation 

(a. 1) Initialise the following variables with zeros, 

Qö°) 
, z> p(°) , 4(°) , s, t, 

as at 
ý E, 

aE f, 
ae ae äe 

178 

and set 0= 0° and a= a°. 

(a. 2) Form the vectors f(O) and g(6). 

(a. 3) Calculate the coefficients of uo(w) and vo(w), from in (7.36). 

(a. 4) Form the matrices Cl (c, 0) and C2 (e, 0), and their derivatives. 

(a. 5) Calculate the initial values of the AGCD, r(°)(0) from (7.33) and its 

derivative de, and the residual b= r(°) (0,0 
i 0, r(°) (Oo), 0,0), 

r(O, eo, O, r(°)(eo), O, O) 
f(Bo) Ci (c, Bo) 

r(°) (80) 

aog(Bo) 

[c2e, 

oo) 

(a. 6) Calculate Y(r(°), 0)), defined in (7.27). 

(a. 7) Evaluate äe and a at 0= 0°. 

(a. 8) Form the diagonal matrices S and T, defined in (7.22). 

(a. 9) Form C and E, defined in (7.30) and (7.31), respectively. 

(a. 10) % Solve the LSE problem (7.32) using QR. 

Initialise the iteration counter, iterations=0. 
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Repeat 

(b. 1) Compute the QR decomposition of CT, 

CT =QR=Q 

(b. 2) Set wl = Ri T b. 

(b. 3) Partition EQ as 

EQ =1 Ei 

such that 

R1 

0 

E21, 

E1 ER (2m+2n-2d+6) x (m+n+2), and E2 ER (2m+2n-2d+6) x (m+n-2d+4) 

(b. 4) Compute 

w2=Ez(f-Elwl)" 

(b. 5) Compute the solution 

y=Q 
wl 

W2 

(b. 6) Set z :=z+ 6z, p :=p+ 5p, q: = q+ öq, and 

Qo: =Qo+S, Qo, B: =B+JO. 

(b. 7) Update C from the updated values of 
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f(B), g(B), B(c, e, B), ää, e and e from 0. 
aä 

S and T defined in (7.22) and thus s(p, 0) and 

t (q, 0) and ä from q and 0. 

E(z, 0) and aää'8 from z and 0. 

r(0) and its derivative ddä from 0. 

äe from p and 0, and 

Y(r, 9) from r and 9. 

(b. 8) Calculate the residual r(, ßo, 0, z, r, p, q), defined in (7.19), and thus 

update g. 

(b. 9) Update f, which is defined in (7.31), from z, p, q, 0 and /30. 

(b. 10) Calculate 

f(B) + s(p, B) 
e,. = 

(ao + Qo)(g(e) + t(4, B)) 

Until II*(äo, O, z, r, n, c)II < 10-12 or Iteration > 50. II er II 

End 

7.5 Examples 

This section contains two examples that show the use of the method of SNTLN for 

the construction of a structured low rank approximation S(fe", a`9e. ), of SU, g) of 

two inexact polynomials f=f (y) and g= g(y), using the APF of f (y) and g(y), 

where a" and 0* are the values of a and 0 at the termination of Algorithm 7.4. The 
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same notation that was used in Section 7.3 is used in these examples. 

Example 7.3. Consider the polynomials 

j (y) = (y + 9.2934)8(y - 4.8386)3(y - 2.8515)8(y - 3.0467)5, 

g(y) = (y + 9.2934)8(, y - 4.8386)3(y + 8.9904)5(y + 7.5947)5, 

_20L 05 10 15 20 25 10 15 
i 

30 35 40 45 

Figure 7.3: The normalised singular values of the Sylvvester matrices 
S(f, g)o, S(f, g)+ and S(fe., a*go-)x, for Example 7.3. 

whose Sylvester matrix is of order 45, and since the degree of their GCD is equal 

to 11, the theoretically exact rank of S(], ) is equal to 45 - 11 = 34. Noise with 

componentwise signal-to-noise ratio of 108 was added to the coefficients of these poly- 

nomials, which were then normalised, thereby yielding the polynomials .f 
(y) and g(y). 
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The method of the first principal angle, which is discussed in Section 6.2.2, was used 

to calculate the degree of an AGCD of f (y) and g(y), and it was found that d= 11, 

which is correct, and the index of the best column that formed (7.35), was 16. These 

results were then used in the implementation of Algorithm 7.2. It was found that 

two iterations were required for the solution of the LSE problem (7.32) to compute 

S(f9., a' ge. ), where the following values were obtained at the termination of Algo- 

rithm 7.2: 

Il Ey -f 11 =10-2.1 and II Cy - 9ll = 10-is. i 

Very similar results were obtained when the method that uses the residual, which is 

discussed in Section 6.2.3, was used to find the values of d and q. 

Figure 7.3 shows the normalised singular values of the Sylvester matrices S(f, g), 

S(f, g) and S(fe", a*ge. ). It can be seen that the rank of S(fe., a*ge*) is equal to 34, 

which is the correct value, whereas S(, f, g) and S(f, g) have full rank, which is not 

correct. undefined. Q 

Example 7.4. Consider the polynomials 

f(y) = (y + 6.5914)7(y + 4.8442)5(y + 2.0640)10(y + 8.5201)5, 

g(y) = (y + 6.5914)2(y + 4.8442)4(y - 5.1622)2, 

whose Sylvester matrix is of order 35, and since the degree of their GCD is equal to 6, 

the theoretically exact rank of S(f, g) is equal to 35 -6= 29. Noise with componen- 

twise signal-to-noise ratio of 101 was added to the coefficients of these polynomials, 

which were then normalised, thereby yielding the polynomials f (y) and g(y). 
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The method of the first principal angle was used to calculate the degree d of an 

Figure 7.4: The normalised singular values of the Sylvvester matrices 
S(f, g) o, S(f, g) + and S(fe., a*go. ) x, for Example 7.4. 

AGCD of f (y) and g(y), and it was found that d=6, which is correct, and the 

index of the best column, q= 14, to form (7.35). These results were then used in the 

implementation of Algorithm 7.2. It was found that four iterations were required for 

the solution of the LSE problem (7.32), to compute S(fe", ca'ge" ), where the following 

values were obtained at the termination of Algorithm 7.2: 

IlEy-fl =10-0" and IICy-9ll=10-15.8. 

Very similar results were obtained when the method that uses the residual was used 

to find the values of d and q. 
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Figure 7.4 shows the normalised singular values of the Sylvester matrices S(f ,g 
S(f, g) and S(fe., a*ge. ). Clearly, it can be seen that the rank of S(fe., a*ga. ) is 

equal to 29, which is the correct value, whereas rank S(f, g) = rank S(f, g) = 27, 

which is incorrect. Q 

7.6 Summary 

This chapter has considered the computation of a structured low rank approximation 

S(fe., a*ge. ) of S(f, g) of the inexact polynomials f (y) and g(y), whose theoretical 

exact forms have a non-constant GCD. It was shown that the method of SNTLN can 

be used to calculate the smallest perturbations to be added to f (y) and g(y), which are 

with high probability co-prime, such that they have a non-constant GCD of degree 

d. The perturbed polynomials were called the corrected polynomials fe. (w) and 

ge. (w), and they can be used to calculate an AGCD of f (y) and g(y). Two SNTLN- 

based methods for the computation of S(fe., a*ge. ), were given. The first applies 

the method of SNTLN to the Sylvester matrix of f (y) and g(y), after preprocessing 

them by the methods discussed in Chapter 4 to obtain feo (w) and ao go. (w). The 

second method also considers the preprocessed polynomials but it applies the method 

of SNTLN to the approximate factorisation of these polynomials, instead of to their 

Sylvester matrix. The second method explicitly computes a GCD of the corrected 

polynomials, whereas the Sylvester matrix requires further computations to compute 

a GCD of the corrected polynomials. Both methods yield excellent results. However, 

if the GCD is required explicitly then it is better to use the second method. Moreover, 

more experiments must be performed in order to compare them for the computation 

of an AGCD. 



Chapter 8 

Polynomial deconvolutions 

An important operation that is used extensively in Algorithm 2.3.1, which describes 

the root solver considered in this thesis, is polynomial division (deconvolution). It 

was noted in Section 2.3 that this operation is ill-posed because even if f (y)/g(y) is a 

polynomial, the ratio (f (y)+ö f (y))/(g(y)+ög(y)) is, with high probability, a rational 

function, for arbitrary öf(y) and ög(y). Algorithm 2.3.1 requires, however, that this 

ratio reduce to a polynomial and not a rational function. This problem can be solved 

by perturbing the coefficients of the polynomials f (y) and g(y) the minimum amount 

such that the polynomial in the denominator is an exact divisor of the polynomial in 

the numerator. This chapter discusses the numerical computation of the two sets of 

polynomial divisions, 

hi (y) 
= 

9i-1(y), i 
4i(y) 

wi(y) - hh+((y)' Z=1,..., 1 - 1, (8.1) 

185 
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which are associated with the implementation of Algorithm 2.3.1, where l is the high- 

est root multiplicity. The method of structured total least norm (STLN) is used to 

calculate the smallest perturbations that must be added to the coefficients of the 

polynomials in the numerator and denominator such that the polynomial divisions 

yield a polynomial. Section 8.1 addresses the problem of computing several poly- 

nomial deconvolutions simultaneously, and Section 8.2 applies the method of STLN 

for the computation of the smallest perturbations to be added to the coefficients of 

the polynomials gi_1(y) and qi(y) such that the polynomial division yields a poly- 

nomial rather than a rational function. Since hi(y)/hi+l(y) is of the same form as 

gi_1(y)/qi(y), the same procedure is also applicable for hi(y)/hi+1(y)" 

8.1 Problem statement 

Consider the first set of polynomial deconvolutions in (8.1), 

hz(y) = 
42-l (y) 

q1 (y) (8.2) 

If the ratio gi_1(y)/gi(y) is a polynomial, a small level of noise in the coefficients of 

either polynomial is able to transform this ratio into a rational function. A good 

solution for this problem can be obtained by slightly perturbing qi-1(y) and qi(y) 

such that the perturbed form of qi(y) is an exact divisor of of the perturbed form of 

gi_1(y). Moreover, it is noted that qi(y) occurs in the ith and (i + 1) deconvolutions, 

in Algorithm 2.3.1, and computing the polynomial deconvolutions in (8.2) simulta- 

neously allows this coupled form to be preserved. These simultaneous computations 
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require that the following variables be defined, 

mi = deg 4i(y), i=0, ... ' 
1, 

ni = deg hi(y), 

such that 

L-1 L 

M= E(mi 
+ 1), M1 = 

E(mi + 1), M1 =M+ (ml + 1), 
i=o i=o 

and 

I 
N= E(n, + 1). 

i=l 

The set of polynomial deconvolutions in (8.2) can be written in matrix form as 

C(q)h = q, 

C'1(qi ) 

C2(q2) 

h1 

h2 

9o 

Cj-1(q_1) hi-i 

Ci(qi) hi 

where C= C(q) E II$"'x^', hERN, qE RM, and 

C'i(gi) E R(''--1+1)x(n, +1), i=1, ... , 
1, 

qi E Rm'-1+1 i=0, ..., 1, 

hi E R'1, +1 
,i=1, ... , 

1. 

qi 

(8.3) 

ql-2 

q1-1 
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The simplest solution for (8.3) is the least squares (LS) solution, 

h= Ctq. 

However, it is assumed the data is inexact and the residual that is associated with 

this LS solution is 

T= (I 
- C(q)C(q)t)h) 11 > 0, 

from which it follows that the contents of the vector h are coefficients of polyno- 

mial approximations of rational functions because qi_1(y)/qa(y), i=1, """ ,l are not 

polynomials. A better solution is obtained when the coefficient matrix and the right 

hand side of (8.3) are slightly perturbed such that it has an exact solution. These 

perturbations can be calculated using the method of STLN, which is considered in 

the next section. 

8.2 STLN for polynomial deconvolutions 

The application of the method of STLN for solving (8.3) requires that a structured 

matrix be added to the coefficient matrix, and a structured vector be added to the 

right hand side of this equation. 

Let z; E R', +' be the vector of perturbations added to the vector qi that contains 



CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 189 

the coefficients of the polynomial qi(y), i=0, """ , 
1, that is, 

ZO =[ z0 e... e zmp ]T E R'no+l 
, 

T 
Z1 =[ zmo+1' ... , zmo+mi+1 

jT R"+', 

zi =[ zM, . , zMl-1 
]T E R"+1 

Each Cauchy matrix Ci(gi), i=1, """ , 
1, in (8.3) is added to a Cauchy matrix E, (zi) E 

ý8i"`'-l+i)X(n. +1) of structured perturbations. Thus Ci(gi) + Ei(zi), for i=0, """ , 
1, 

form the entries of the matrix of the perturbed coefficients. Therefore, the perturbed 

form B(zl, """, Zd) E RMXN of the coefficient matrix in (8.3) is 

C(gi,. .., qi) + E(zi, ..., zi) 

f Cl(ql) 
C2(q2) 

+ 

Cl-1(ql-1) 

Cj(q1) j 
E1(zl ) 

E2(z2) 

E1_1(z_) 

(8.4) 

J Ei (z1) 
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The perturbations added to the coefficients of the polynomial qt(y) in the matrix 

CC(gi) are also added to the vector of coefficients q2 of qi(y) on the right hand side. 

Therefore, the perturbed form of the right hand side of (8.3) is 

go + zo 

qi +z1 

qt-2 + Zi-2 

ch-i + ZI-i J 

where 

qo 

4i 

+I IM 0J 

ql-2 

qd-1 I 

ZO 

21 

ZI_1 

Zl 

qo 

qi 

ql-2 

C11-1 ý 

+ Pz, (8.5) 

11 
P= IM 0J and z= (zo, zi, ... ý zl ]T E lI8M 

It therefore follows from (8.4) and (8.5) that the perturbed form of (8.3) is, 

(c(qi, 
... , qi) + E(zi, ... , zt)) h=q+ Pz, 

where 

h= 

hl 

h2 

E RN and q= 

qo 

E IIBM. 

h1_1 

h1 

qi 

ql-2 

Lq1-1J 

(8.6) 
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Equation (8.6) is non-linear and can be solved by the Newton-Raphson method [69] 

for the vector h and the vector of the structured perturbations z. The residual that 

is associated with an approximate solution of (8.6) is 

r(z) = (q + Pz) - 
(C(qi, 

..., qt) + E(zi, ..., zi)) h. 

A first order Taylor expansion of r(z) yields 

r(z + Jz) = 
(g 

+ P(z + öz)) 

- 
(C(gl, 

..., qt) + E(zi + bzi, ."", zi + 8zi)) (h + öh) (8.7) 

= r(z) + Pbz - 
(C(ql, 

..., qt) + E(zi, ..., zi))Jh - bE(zi, ".., zl)h, 

where 

öEi (zl ) 

JE2(z2) 

öE(zl, ..., z, ) - 

SEI-i(zi-i) 

8Ei(zi) ý 

There exist matrices Y(h, ) E ][ýý"`i-1+1)x(rn, +1)ý i=1, """ , 
1, such that 

Ei(zi)hi = Y(hi)zi and thus SEi(zi)hi = Y(hi)özi. 

It follows that 

öE(zl, ..., zi)h = Yöz, (8.8) 



CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 

where 

0 Yl(hl) 

0 Y2(h2) 

y= y(hl, ... �h1)= 

0 Y_1(hj_1) 

0 Y(hi) 

and 

izp 

Szl 

öz = 

8zi_1 

Jzj 

Using (8.8), the expression for r(z + 5z) in (8.7) can be simplified to 

r(z + 8z) = r(z) - (C + E)5h - (Y - P)bz, 

and therefore it is required to solve 

( bh 
I (C + E) (Y - P) 

1 

6z 

l= 

r, 
L 

192 
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which is an under-determine equation, with 

+ E) (Y - P) JE 
RMxMI) 

[(C 

, 

and r= r(z). The jth iteration in the Newton-Raphson method for the calculation 

of h and z is, 

(i) 
r ý (8.9) I (C + E) (Y - P) 

öh 

L Jz 

Let z(°) =0 be the initial value of z and h(°) be the initial value of h. Since the 

nearest solution is sought, it is required to minimise 

hC'+1) - h(°) 

ZU+1) 

h(j) + öh(j) - h(°) 

ZU) + öz(. i) 

r 

_I 
bh(j) II _(hv) - h(°') 

F 1-i JZ(j) I I- Z(j) 111 
subject to (8.9), where F= IN+, y,. This is an LSE problem of the form 

min II Fy - sll subject to Gy = t, (8.10) 
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where 

bh(') 
G=[ (C+E) (Y-P) J y= 

bzU> 

S= 
-(hU) - h(o)) 

_ZU) 
et- TC7), 

and h(°) is obtained from the least squares solution of (8.3), 

Cl(ql) 

h(°) = 

Cl-1(qt-i) 

Cl (ý) ý 

t 
qo 

9i 

q1-2 

qa-i 

194 

(8.1 1) 

The application of the QR decomposition to solve the LSE problem (8.10) is shown 

in Algorithm 8.2. 

Algorithm 8.2: QR decomposition for polynomial deconvolution 

Input The polynomials q1(y), i=0, """, 1. 

Output The polynomials hi(y), i=1, , 
1. 

Begin 

C2 (q2) 

1. Set z=0 and compute h(°) from (8.11). 
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2. repeat 

(a) Compute the QR decomposition of GT, 

GT =QR=Q 
R1 

0 

(b) Set wl = Rj-Tr. 

(c) Partition FQ, into Fl E R(N+MI)xM and F2 E R(N+M1)x(N+MI-M) 

FQ=I Fi F2J" 

(d) Compute 

w2=F2(s-Flwl). 

(e) Compute the solution 

y=Q 
4U1 

W2 

(f) Seth :=h+ 8h and z :=z+ 8z. 

(g) Update G, s and t, then evaluate the residual 

res = (q + Pz) - 
(C(ql, 

... , qt) + E(z1, ... , zi)) h. 

11rea 12 
ilntll 

IIq+Pzll - lO 
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End 

196 

An important issue that should be addressed is that the polynomials q1+i (y), 

i=0, """ , 1, are the AGCDs of the successive polynomials q; (y) and q; l)(y), and each 

AGCD is computed with different value of 0. For example, if the given polynomial is 

in the variable y, and 0 and 02 are obtained from the LP problem (4.7), then 

Y= Biwi wl = e2w2" (8.12) 

and 

9i = AGCD(4o, 9ö1)), qi = qi("ýiýý 

42 = AGCD(q,, Qil)), Q2 = 42 (W2)" 

It is therefore important to transform the polynomials gl(wl) and q2(W2) to the same 

independent variable. For example, it follows from (8.12) that 

Y= 0102w2,4i = Qi 
() 

and q2 = 42 
(BZ 

B2 
)- 

ol 

The same process is repeated for all gi(wi). 

8.3 Summary 

This chapter has discussed the computational implementation of polynomial decon- 

volution, which is used extensively in the proposed root solver. It has been shown 
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that this problem is ill-posed because even if this division yields a polynomial, a small 

random perturbation added to the coefficients of the polynomials in the numerator 

and denominator, yields, with high probability, a rational function. It has been shown 

that the method of STLN can be used to impose the requirement that polynomial 

division yields a polynomial. 



Chapter 9 

Polynomial root solver 

This chapter considers the application of the developed root solver, which follows 

the method described in Algorithm 2.3.1, for the computation of the roots of inexact 

polynomials, whose exact forms contain multiple roots. This root solver involves the 

following problems 

1. The computation of successive AGCDs. 

2. The computation of successive polynomial divisions. 

3. The computation of several polynomials, all of whose roots are simple. 

The first problem involves two stages: 

(a) The computation of the degree of an AGCD. 

(b) The computation of the coefficients of this AGCD. 

These two stages have been considered in Chapters 6 and 7, respectively. The second 

problem has been considered in Chapter 8. 

198 
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The last stage of Algorithm 2.3.1 requires the solution of several polynomial equations, 

all of whose roots are simple. These roots can be refined by the method of non-linear 

least squares. The task of computing the simple roots and refining them is considered 

in the Section 9.1, and Section 9.2 presents some examples. 

9.1 The computation of the roots and their refine- 

ment 

The developed root solver that is described in Algorithm 2.3.1 follows the Divide and 

Conquer Strategy, by which a polynomial that has multiple roots is broken down into 

several polynomials, each of which only has simple roots. Thus, the last stage of this 

algorithm requires solving several polynomial equations, all of whose roots are simple 

and can be computed using classical root solving methods (e. g those described in 

Chapter 1). The multiplicities of these roots are determined by the successive AGCD 

computations in Algorithm 2.3.1, and it has been shown in Section 2.3 that the values 

of these multiplicities follow directly from the index of the second set of polynomial 

deconvolutions w,, j=1,2, """, r�wz, where is the highest root multiplicity. 

Thus, in addition to the computation of the roots of a polynomial, Algorithm 2.3.1 

computes the multiplicity structure of this polynomial. 

Once the roots and their associated multiplicities are known, the values of the roots 

can be refined under the constraints of the multiplicity structure. In particular, con- 

sider the polynomial f (y), which is defined in (2.7), and let the initial estimates of the 

l distinct roots of f (y) be yo = [yo, i, yo, 2, """, yo, i] and the associated multiplicities 

be defined by the vector m= [m11 m2, """, mt]. It follows from Kahan's observations, 
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which are illustrated in Section 2.2, that this multiplicity structure defines the pejora- 

tive manifold on which the polynomial f (y) lies. Furthermore, a small displacement 

of f (y) on this manifold yields a small change in the roots of f (y) under the constraint 

that the multiplicities of the roots are preserved. A geometrical interpretation of this 

process is given in Section 2.3.3. 

It was shown in Section 2.2 that the pejorative manifold of the polynomial f (y), which 

is defined in (2.7), is given by Vieta's system (2.7) Pm(y) = a, 

pm(Y) = 

pi(Y) = al 

P2(y) = a2 

n p(y) =a 

(9.1) 

and it is required to find the vector y=[ yl, ... , yi ], with minimum error. Thus, 

the problem of computing the roots y� j=1,2, """ , 1, is reduced to the minimisation 

problem, 

n 

miýný IIPm(Y) - a11z = min E(pj(Y) 
- Qi)2, 

i-1 

which is a non-linear least squares problem, and can be solve iteratively, using the 

Gauss-Newton method [11]. 

Let J= J(y) be the Jacobian matrix of Pm(y), and the entries of J(y) are Jaj = ävl 
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i=1, """, n, andj=1, """, l, that is, 

J= 

aP1 Y aP1 Y aP1(y) 
aY1 aY2 aY1 

aP2 (Y) aP2 (Y) 
... 

aP2 
aY1 aY2 aNl 

. 9Yn Y "/'n y... OP. y 

L 81n ava 8bt 

The (k + 1)th iteration in the Gauss-Newton method is given by, 

Yk+1 - Yk - 
! jk Jk`-1 JTr(Yk) 

ý 

201 

(9.2) 

where r(yk) = Pn, (yk) - a. The matrix inverse in the iteration (9.2) exists only if 

Jk = J(Yk) is non-singular, (i. e. Jk has full rank for all k). It is shown in [85) that 

Jk is non-singular, since the roots yi, y2i """, yj in P. (y) are all distinct. 

The initial estimates of the distinct roots yj, j=1,2, """, l of f (y) are calculated by 

solving the polynomial equations w= (y) = 0, i=1,2, "", r, nax, in Algorithm 2.3.1, 

all of whose roots are simple, where rmax is the highest root multiplicity. Given these 

initial estimates of the roots of an inexact polynomial f (y), and the associated multi- 

plicity structure, Algorithm 9.1 refines these estimates using the method of non-linear 

least squares. 
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Algorithm 9.1: The refinement of the roots 

Input 

1. The vector aE Rn+1 of the normalised coefficients of f (y). 

2. The initial estimates of the distinct roots yo = [yo, l, yo, 2, ."., yo, t] of f (y), and 

the multiplicity mj of each distinct root yoj, j=1, """ , 1. 

Output The refined roots y= [yl) y2i """, yi] of f (y). 

Begin 

1. Set k=0 and yk = Yo- 

2. Repeat 

(a) Calculate the vector Pm(yk) defined in (9.1), and the residual vector, 

rk =P(Yk)--a. 

(b) Calculate the Jacobian matrix Jk = J(yk). 

(c) Calculate yk+i defined in (9.2). 

(d) Calculate rk+j, 

rk+1 = 1'm(Yk+1) - a. 
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(e) Calculate the error, 

IIrk+1 - rk II 
ek+1 - Ilrk II 

(f) Increment k. 

Until ek+1 < 10-14 

3. Set y= yk+1. 

9.2 Results 

This section contains some examples that show the results of computing the roots of 

inexact polynomials using the root solver described in this work. The computation 

of AGCDs of several pairs of polynomials forms the most crucial stage in this root 

solver. The degrees of the AGCDs were determined by applying the majority voting 

principle to the set of the results produced by the methods discussed in Chapter 6. 

It was shown that an AGCD of two inexact polynomials can be be computed using 

either the Sylvester matrix or APF of these two inexact polynomials. Although both 

methods can be used to compute a structured low rank approximation of the Sylvester 

matrix, the method of APF is superior for the calculation of an AGCD because it 

yields the AGCD explicitly, and no extra calculation is required. By contrast, the 

Sylvester matrix must be reduced to an upper triangular form using either the LU or 

QR decomposition, but this may cause numerical problems. 
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It was found experimentally that the first AGCD computation must be performed 

using APF, and that subsequent AGCD computations can be performed using the 

Sylvester matrix. It is believed that this is because the AGCD computed from the 

APF in the first AGCD computation is of sufficiently high quality, such that the 

Sylvester matrix can be used for all subsequent AGCD computations. 

Two root solvers were used to test the results produced by the developer root solver; 

the function roots() in MATLAB and the suite of MATLAB programmes MULTROOT 

which is developed by Zeng [85], and it is called with the function multroot=(poly, 

threshold). The first argument poly is the vector of the coefficients of the polynomial, 

and the second argument threshold is the error tolerance. If the second argument is 

omitted, then the default value threshold = 10-10 is used. 

The examples included in this section contains three sets of polynomials: 

1. The first set considers some of the test polynomials from the test collection in 

[86], after adding componentwise noise to the coefficients of the polynomials. 

The developed root solver and MULTROOT work well with this set. MULTROOT 

requires, however, the noise level in order to produce good results, whereas the 

developed root solver does not require this information. 

2. The second set considers test polynomials including some hard classes of poly- 

nomials suggested by the author of this thesis, and the results of each example 

in this set are compared with the results from MULTROOT, and the function 

roots(). The developed root solver performs well with the examples given in 

this set. In contrast to Set 1, it is shown in this set that MULTROOT does not 

always work well even if the noise level is specified. The function roots() fails 

also to compute the correct answers of the examples in this set. 
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3. The last set considers the case when the signal-to-noise ratio of each coefficient 

of a given polynomial is a random variable between a and b, where b/a = 103,104 

or 105. The results of each example in this set are also compared with the results 

from MULTROOT, and the function roots(). It is shown that MULTROOT fails 

to compute the roots of the polynomials in this set for all threshold values in 

the range a< threshold < b. Similar results were obtained when the function 

roots() was used. On the other hand, the developed root solver works perfectly 

as it does not require any knowledge about the noise level. 

Polynomial Set 1: This set contains three examples from [86]. The roots of the 

polynomials in this set were computed using both the developed root solver and 

MULTROOT. Both root finders yield satisfactory results. However the noise level 

was required to be given for MuLTROOT as an input argument threshold, in order to 

provide good results, whereas it was not required by the developed root solver. 

Example 9.1. Consider the exact polynomial fl(y) whose roots and multiplicities 

are given in the first and second columns of Table 9.1, respectively. 

Table 9.1: The roots and multiplicities of fl(y) for Example 9.1. 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

1 8 1.000000000e+000 8 7.129630220e-012 
2 16 -2.000000000000463e+000 16 2.315925229e-013 
3 24 2.999999999991630e+000 24 2.790064476e-012 

Componentwise noise with -, = 10-10 was added to the coefficients of this polynomial 

to create the inexact form f, (y) of ji (y). The results of computing the roots of f, (y), 

and their corresponding multiplicities, using the root solver described in this work 
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are given in the third and fourth columns of Table 9.1, respectively. The fifth column 

of Table 9.1 shows that the relative error in computing each distinct root is between 

two and three order of magnitude smaller than eý = 10'10. Similar results were also 

found by MULTROOT with the argument threshold = 10'10. However, it is shown in 

Set 2 that in contrast to the developed root solver, if fl (y) is perturbed by e, = 10-8, 

MULTROOT fails to compute the roots of fl(y) even if threshold is set equal to 10-8. 

0 

Example 9.2. Consider the exact polynomial /2(y) whose roots and multiplicities 

are given in the first and second columns of Table 9.2, respectively. 

Table 9.2: The roots and multiplicities of f2(y) for Example 9.2. 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

2.727272727e+000 2 2.727271785e+000 2 3.455067788e-007 
1.818181818e+000 3 1.818182510e+000 3 3.806444900e-007 
9.090909090e-001 5 9.090908204e-001 5 9.751830201e-008 

Componentwise noise with e, = 10-8 was added to the coefficients of this polynomial 

to create the inexact form f2(y) of f2(y). The results of computing the roots of f2(y), 

and their corresponding multiplicities, using the root solver described in this work 

are given in the third and fourth columns of Table 9.2. The fifth column of Table 

9.2 shows that the relative error in computing each distinct root is between one and 

two order of magnitude larger than e, = 10-8. Similar results were also found by 

MuLTROOT with the argument threshold = 10-8. O 

Example 9.3. Consider the exact polynomial 13(y) whose roots and multiplicities 

are given in the first and second columns of Table 9.3, respectively. 
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Table 9.3: The roots and multiplicities of f3(y) for Example 9.3. 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

2.35 3 2.559999568e+00 3 1.6855607569e-07 
2.56 1 2.350000137e+00 1 5.774327796e-08 

Componentwise noise with s. = 10-8 was added to the coefficients of this polynomial 

to create the inexact form f3(y) of f3(y). The results of computing the roots of f3(y), 

and their corresponding multiplicities, using the root solver described in this work are 

given in the third and fourth columns of Table 9.3, respectively. The fifth column of 

Table 9.3 shows that the relative error in computing each distinct root is acceptable 

with respect to s, = 10-8. Similar results were also found by MULTROOT with the 

argument threshold = 10-8. Q 

It is noticed that for the classes of the polynomials considered in Set 1, both 

the root solver described in this work and MULTROOT work well, provided that the 

argument threshold> e, is satisfied for MULTROOT. 

Polynomial Set 2: This set of examples consider harder polynomial classes that 

may include close roots, roots with high multiplicities, and/or several multiple roots, 

in which case clustering analysis fails to give the correct number of distinct roots. 

This set contains four examples. The first three examples are suggested by this work 

and the fourth example considers the polynomial fl (y) in Example 9.1, but with a 

lower signal-to-noise ratio. Unlike the results in the first set of examples, this set of 

examples demonstrates that MULTROOT does not always work well if the noise level 

is specified. On the other, the root solver developed in this thesis performs very well 

without prior knowledge of the noise level. 
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Example 9.4. Let the exact polynomial f4(y) be defined by the roots and multiplic- 

ities given in the first and second columns of Table 9.4, respectively. 

Table 9.4: The roots and multiplicities of f4(y) for Example 9.4. 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

-7.5947e+00 6 -7.59343498e+00 6 1.66566613e-004 
6.3371 e-01 5 6.33767034e-01 5 9.00006631 e-005 

1.4923e+00 5 1.49217406e+00 5 8.43930316e-005 
5.4862e+00 4 5.48668014e+00 4 8.75174996e-005 

-3.3076e+00 3 -3.10954147e+00 3 5.98798325e-002 

-3.0670e+00 2 -3.36592459e+00 2 9.74648171e-002 
4.2244e-01 2 4.22380231 e-01 2 1.41486013e-004 

2.5090e+00 2 2.50915603e+00 2 6.21875010e-005 
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Figure 9.1: The computed roots of f4(y) in Example 9.4, using (a) MULTROOT, and 
(b) the MATLAB function roots(). 

Noise with signal-to-noise ratio 106 was added to the coefficients of this polynomial 

to create the inexact form f4(y) of f4(y). The results of computing the roots of f4(y), 

and their corresponding multiplicities, using the root solver described in this work 
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are given in the third and fourth columns of Table 9.4, respectively. The fifth column 

of Table 9.4 shows the relative error in computing each distinct root. The results of 

computing the roots of f4(y), using MULTROOT with threshold = 10-s, and roots() 

are plotted in Figures 9.1 (a) and (b), respectively. 

The results in Table 9.4 show that the developed root solver computes the roots 

of f4(y), despite the low signal-to-noise ratio, the high multiplicities and the low 

separation between some of them such as -3.3076 and -3.0670. On the other hand, 

Figures 9.1 (a) and (b) show that MULTROOT, with threshold = 10-s, and MATLAB 

return simple roots, and thus the multiplicities of the roots are lost. Considering 

lower signal to noise ratios such as cc-' < 105, however, causes the developed root 

solver to fail as well. Q 

Example 9.5. This example considers the polynomial f5(y) whose whose roots and 

multiplicities are given in the first and second columns of Table 9.5, respectively. Noise 

with componentwise signal-to-noise ratio eý 1= 107 was added to the coefficients of 

f5(y). The results in Table 9.5 show that the roots of f5(y) were computed with 

Table 9.5: The roots and multiplicities of f5(y) for Example 9.5. 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

5.36868065e+000 10 5.36868078e+000 10 2.32121468e-008 
6.66252854e-001 9 6.66252846e-001 9 1.26828432e-008 

-8.00831536e+000 5 -8.00831726e+000 5 2.37076153e-007 

-8.99239567e+000 3 -8.99239169e+000 3 4.43280353e-007 

good accuracy, despite the high multiplicities and the low signal-to-noise ratio. The 

results of computing the roots and associated multiplicities of f5(y) using MULTROOT 

with threshold = 10-7, and MATLAB are shown in Figures 9.2 (a) and (b). As in the 
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Figure 9.2: The computed roots of f5(y) in Example 9.5, using (a) MULTROOT, and 
(b) the MATLAB function roots(). 

previous example, it is noted that both MULTROOT and MATLAB fail to compute 

the correct roots because they return simple roots. Considering lower signal to noise 

ratio such as ec 1= 106, however, causes the developed root solver to fail as well. Q 

Example 9.6. Example 9.1 has consider the exact polynomial f, (y) from Zeng's set 

in [86]. The same polynomial is considered in this example with threshold = 10-8 

instead of 10-1(). 

Table 9.6: The roots and multiplicities of fl(y) for Example 9.6. 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

1 8 1.00000000e+000 8 1.826900853e-009 
2 16 2.00000000e+000 16 5.466993524e-010 
3 24 1 1 2.999999999e+000 24 2.317150916e-010 

Componentwise noise with E, = 10-8 was added to the coefficients of this polynomial 

to create the inexact form f, (y) of fl(y). The results of computing the roots of f, (y), 
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and their corresponding multiplicities, using the root solver described in this work 

are given in the third and fourth columns of Table 9.6, respectively. The fifth column 

of Table 9.6 shows that the relative error in computing each distinct root is between 

one and two order of magnitude smaller than cc = 10-8. On the other hand, both 

the root solver MULTROOT with threshold = 10-8, and the function roots() returned 

simple complex conjugate pairs of roots. Q 

Despite the difficulty of the polynomial classes and the low signal-to-noise ratios, 

used in Set 2, it was shown that the developed root solver performs very well. On the 

other hand both MULTROOT, with threshold= e,, and root() return simple complex 

conjugate pairs of roots. This shows that the structured polynomial root solver 

described in this work provides more reliable computations, in the presence of noise, 

than MULTROOT, and this is due to its robust structured methods that allow lower 

levels of signal-to-noise ratios to be handled. 

Polynomial Set 3: The examples in Sets 1 and 2 added noise to the coefficients of the 

given polynomial such that the componentwise signal-to-noise ratio cc 1 is constant. 

The examples in this set allow the ec 1 to vary between the coefficients, that is, the 

signal-to-noise ratio of each coefficient varies between a and b, where b/a = 103,104 

or 105. 

Example 9.7. Let the exact polynomial f6(y) be defined by the roots and multiplic- 

ities given in the first and second columns of Table 9.7, respectively. The different 

coefficients of f6(y) were perturbed independently with variable a whose value ranges 

between 10-10 and 10-5. 

The results of computing the roots of f6(y), and their corresponding multiplicities, 

using the root solver described in this work are given in the third and fourth columns 
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Table 9.7: The roots and multiplicities of 16(y) for Example 9.7. 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

2 5 2.00002785e+000 5 1.39246339e-005 
3 3 2.99970072e+000 3 9.97587653e-005 

-6 2 5.99968552e+000 2 5.24133777e-005 
4 F-- 11 1 4.00133963e+000 1 3.34906515e-004 

of Table 9.7, respectively. The fifth column of Table 9.7 shows that the relative 

error in computing each distinct root is adequate with respect to 10'10 < e, < 10-5. 

MULTROOT yields unsatisfactory answers for threshold = 10-10,10-9,10-8,10-7,10-6 

and 10'5, because it returned simple complex conjugate pairs of roots and similar 

results were obtained using roots(). Q 

Example 9.8. Consider the exact polynomial f7(y) which is defined by the roots 

and multiplicities given in the first and second columns of Table 9.8, respectively. 

The different coefficients of f7(y) were perturbed by variable e, whose value ranges 

between 10-9 and 10-1. 

Table 9.8: The roots and multiplicities of 17(y) for Example 9.8. 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

-7.5947e+00 6 -7.59470511e+00 6 6.73425542e-07 
6.3371e-01 5 6.3371.3762e-01 5 5.93626159e-06 

1.4923e+00 5 1.49228952e+00 5 7.02533502e-06 
5.4862e+00 4 5.48617804e+00 4 4.00225089e-06 

-3.3076e+00 3 -3.30759693e+00 3 9.29136428e-07 

-3.0670e+00 2 -3.06700249e+00 2 8.12519187e-07 
4.2244e-01 2 4.22435986e-01 2 9.50092906e-06 

2.5090e+00 21 1 2.50904664e+00 2 1.85908575e-05 
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The results of computing the roots of f7(y), and their corresponding multiplicities, 

using the root solver described in this work are given in the third and fourth columns 

of Table 9.8, respectively. The fifth column of Table 9.8 shows the relative error 

in computing each distinct root. MULTROOT() yielded unsatisfactory answers for 

threshold = 10-9,10-8,10-7,10-6, because it returned simple complex conjugate pairs 

of roots and similar results were obtained using roots(). Q 

Example 9.9. The procedure described in the previous two examples was repeated 

for the polynomial whose roots and multiplicities are given in the first and second 

columns of Table 9.9. Consider the exact polynomial f8(y) which is defined by the 

roots and multiplicities given in the first and second columns of Table 9.9, respectively. 

The different coefficients of f8(y) have been perturbed independently with variable 

randomly by e, whose value ranges between 10-10 and 10-8. 

Table 9.9: The roots and multiplicities of f8(y) for Example 9.9. 

exact root exact 
mult. 

computed root computed 
mult. 

relative error 

-8.79070000e+00 9 -8.79070047e+00 6 5.39267513e-08 

-1.99840000e+00 4 -1.99839999e+00 5 2.51676037e-09 
6.63740000e+00 4 6.63740102e+00 5 1.53471615e-07 

4.44700000e+00 3 4.44699986e+00 4 3.04789679e-08 
9.01830000e+00 2 9.01829716e+00 3 3.14759166e-07 

-7.31320000e+00 1 -7.31319737e+00 2 3.59548548e-07 

The results of computing the roots of f8(y), and their corresponding multiplicities, 

using the root solver described in this work are given in the third and fourth columns 

of Table 9.9, respectively. The fifth column of Table 9.9 shows the relative error in 

computing each distinct root. The root solver MULTROOT yielded unsatisfactory an- 

swers for threshold = 10-10,10-9,10-8, because it returned simple complex conjugate 
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pairs of roots and similar results were obtained using roots(). Q 

It is shown in this section that the developed root solver and MULTROOT work well 

in the presence of noise. However, MULTROOT requires that the argument threshold> 

e, be satisfied. On the other hand, the developed root solver does not require that 

the noise level be known. This is due to the fact that the developed root solver uses 

data-driven methods. In particular, the determination of the degree of an AGCD of 

two inexact polynomials is done using (6.9) and (6.22), which depend on the given 

data rather than a fixed threshold value. This property in the developed root solver 

allows it to handle harder classes of polynomials with a lower signal-to-noise ratio. 

In such cases, MTLTROOT does not always provide satisfactory results even if the 

exact e, is known and the argument threshold is set equal to e,. Furthermore, in 

practice, different coefficients of a polynomial may have different values of signal-to- 

noise ratio. When such situations were tested, it was shown that the developed root 

solver provided better results than MULTROOT, and it is suggested that, with this 

class of polynomials, it is hard to define a threshold value for MULTROOT. 

9.3 Summary 

In this chapter the final stage of Algorithm 2.3.1 has been discussed. It has been 

shown that it requires the computation of the solution of several polynomial equa- 

tions, all of whose roots are simple, distinct and can be computed using classical root 

solving methods. The method of non-linear least squares has been used to refine the 

values of these roots under the constraint that their multiplicities are preserved. 

Experimental results of applying the developed root solver on different polynomial 
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classes have been presented, in the presence of noise. These results have been com- 

pared with the results obtained from MULTROOT which is developed by Zeng [85] 

and the MATLAB function roots(). 

While the developed root solver provides excellent results, both MULTROOT and the 

function roots() perform badly, in the presence of noise. In particular, MULTROOT 

does not provide good results if the noise level is greater than the default setting of 

the threshold, and even if the threshold is set at the known signal-to-noise ratio, it 

does not necessarily preserve the multiplicities of the theoretically exact roots. 



Chapter 10 

Conclusions and future work 

10.1 Conclusion 

The work presented in this thesis has described a polynomial root solver that com- 

putes multiple roots of inexact polynomials. Due to the ill-posed nature of this 

problem, a small perturbation is sufficient to break up the multiple roots into simple 

roots, and many of the root solving methods in the literature fail to compute the 

correct values of the multiple roots. The algorithm used in the root solver developed 

in this work first computes the multiplicity structure of the given polynomial through 

successive AGCD computations. It then uses two sets of polynomial divisions to 

break up the given polynomial into several polynomials whose roots are simple and 

distinct. Finally, a refinement stage is used to improve the accuracy of the results. 

thereby yielding superior results. Following this procedure in computing the roots 

has shown significant improvements in the results with respect to the previous work. 

The computational implementation of this algorithm involves three main operations: 

216 
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1. The computation of successive AGCDs. 

2. The computation of successive polynomial divisions. 

3. The computation of several polynomials whose roots are simple and distinct. 

The first operation AGCD computation involves two stages 

(a) The computation of the degree of the AGCD. 

(b) The computation of the coefficients of the AGCD. 

Three methods are used to compute the degree of the AGCD. The first and second 

methods are applicable to any pair of polynomials, whereas the third method is only 

applicable to a polynomial and its derivative. All three methods use the Sylvester 

matrix S(f, g) of f (y) and g(y) and its subresultant matrices, but they differ in the 

criteria used to evaluate the error in a linear algebraic equation. 

The first method uses the first principal angle between the space spanned by one col- 

umn of Sk(f, g) and the space spanned by the remaining columns of Sk(f, g), where 

k denotes the order of the subresultant matrix. The second method uses the resid- 

ual of an approximate linear algebraic equation. The third method uses the relation 

between a polynomial and its derivative and therefore it is only applicable for a poly- 

nomial and its derivative. The majority voting principle is then used to determine 

the degree of the AGCD. 

Once the degree of the AGCD is known, its coefficients are computed in the second 

stage, using the method of non-linear structured total least norm. Two different al- 

gorithms are developed for the computation of the coefficients of an AGCD. Both 

algorithms use the method of SNTLN. In particular, the first method applies the 



CHAPTER 10. CONCLUSIONS AND FUTURE WORK 218 

method of SNTLN to the Sylvester matrix of the inexact polynomials, and the co- 

efficients of the AGCD can either be taken from the last non-zero of the Sylvester 

matrix after reducing its transpose to upper triangular form, or they can be taken 

from the null space of the Sylvester matrix. On the other hand, the second method 

computes the AGCD explicitly without the need for extra computation as it applies 

the method of SNTLN to the approximate factorisation of two inexact polynomials. 

The examples in Chapter 7 show that both methods give excellent results for hard 

classes of polynomials. 

The second operation polynomial division is an ill-posed computation and thus it 

is treated with care to provide more accurate results. In particular, the coefficients of 

the polynomials that are involved in the divisions qi(y)/q(i+l)(y), are perturbed with 

structured perturbations, using the method of STLN, such that the perturbed form 

of q(i+i)(y) is an exact divisor of the perturbed form of qi(y). A similar procedure is 

applied to the second set of division hi(y)/hi+1(y)" 

In Chapter 9, the first and second operations are combined and applied successively, 

and this yields several polynomials, each of which only has simple distinct roots. The 

MATLAB function roots() has been used to solve these polynomial equations. Im- 

proved results are obtained when the method of non-linear least squares is used to 

refine the values of these roots. This refinement process is done under the constraint 

of the multiplicity structure of the given polynomial, such that the polynomial defined 

by the refined roots is kept on the same manifold as that of the polynomial formed 

by the initial roots estimates. 
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The developed method has been used to compute the multiple roots of hard classes 

of polynomials and it is shown in Chapter 9 that it gives very good results. 

To summarise, in addition to developing a root finding method that computes the 

multiple roots of inexact polynomials, the work in this thesis shows that: 

1. The computation of the multiplicity structure of the given inexact polynomial 

is the most crucial stage in the computation of its multiple roots. 

2. Based on the geometric interpretation described in this thesis, the computation 

of the multiple roots of inexact polynomial is well conditioned if the multiplicity 

structure of the polynomial is preserved. 

3. Preprocessing the given polynomial, using the preprocessing operations de- 

scribed in this work, has a significant effect in providing more reliable com- 

putations. 

4. The computation of the optimal values of the scaling parameters a and B can 

be performed by solving a linear programming problem. 

5. The numerical rank of the Sylvester matrix can be computed directly from the 

given data without the need for prior knowledge about the level of the noise. 

6. The method of SNTLN can be used to compute an AGCD of inexact polyno- 

mials. 

7. The method of STLN can be used to impose a constraint on the polynomial 

division in order to induce a polynomial rather than a rational function as the 

solution. 
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8. The method of non-linear least squares is efficient in refining the values of the 

roots. 

10.2 Future work and improvements 

The work in this research only considers the feasibility of using structured methods 

for computing multiple roots of an inexact polynomial and it is shown that it provides 

encouraging results. However, further work is needed to improve its computational 

efficiency by developing fast algorithms that exploit the structure nature of the de- 

veloped methods. In particular, the proposed methods used for the computation of 

the rank of the Sylvester matrix of inexact polynomial require the computation of 

the SVD for each subresultant matrix, which is expensive computationally. Since 

two successive subresultant matrices differ only in one column, an update procedure 

should be used for computational efficiency, and thus the QR decomposition [27,57] 

can be used. Moreover, the method that uses the APF for the computation of an 

AGCD of two polynomials uses two Cauchy matrices. A fast algorithm can be devel- 

oped to exploit the structure of a matrix that contains two Cauchy matrices. 

Curves and surfaces in geometric modelling are represented as polynomials in the 

Bernstein basis, and thus intersection problems reduce to the solution of one or more 

polynomial equations. This application requires extending the work presented in this 

thesis to the Bernstein basis. Another application is blind image deconvolution, in 

which two noisy images of the same scene are used to obtain an improved image 

(high signal-to-noise ratio) of the scene. Although this is a bivariate problem, Fourier 

transforms enable this problem to be reduced to a univariate GCD problem [43,62], 

and thus the methods discussed in this thesis are appropriate. 
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