
THE COMPUTATION OF MULTIPLE ROOTS OF A

POLYNOMIAL USING STRUCTURE PRESERVING MATRIX

METHODS

by

MADINA HASAN

A thesis submitted to the

Computer Science

in conformity with the requirements for

the degree of PhD

Sheffield University

England

July 2011

Copyright © Madina Hasan, 2011

Abstract

Solving polynomial equations is a fundamental problem in several engineering and

science fields. This problem has been handled by several researchers and excellent

algorithms have been proposed for solving this problem. The computation of the

roots of ill-conditioned polynomials is, however, still drawing the attention of several

researchers. In particular, a small round off error due to floating point arithmetic is

sufficient to break up a multiple root of a polynomial into a cluster of simple closely

spaced roots. The problem becomes more complicated if the neighbouring roots are

closely spaced. This thesis develops a root finder to compute multiple roots of an

inexact polynomial whose coefficients are corrupted by noise. The theoretical devel-

opment of the developed root solver involves the use of structured matrix methods,

optimising parameters using linear programming, and solving least squares equality

and nonlinear least squares problems.

The developed root solver differs from the classical methods, because it first computes

the multiplicities of the roots, after which the roots are computed. The experimen-

tal results show that the developed root solver gives very good results without the

need for prior knowledge about the noise level imposed on the coefficients of the

polynomial.

i

Acknowledgment

First, thanks to God for endowing me with health and knowledge to complete this

work.

I acknowledge, with deep gratitude and appreciation, the endless help, inspiration,

time and guidance given to me by my supervisor, Dr. Joab Winkler.

A special word of gratitude to my husband, Hasan, and to my children Zahraa and

Ali. Without them, this work couldn't have been achieved.
I am heartily thankful to my parents, sisters, brothers and friends for their continuous

encouragement.

11

Thesis contributions

1. Winkler, J. R. and Hasan M., A non-linear structure preserving matrix method

for the low rank approximation of the Sylvester resultant matrix, Journal of

Computational and Applied Mathematics 234 (2010) 3226-3242.

2. Winkler, J. R., and Hasan, M., An improved non-linear method for the compu-

tation of a structured low rank of the Sylvester resultant matrix, submitted to

Journal of Computational and Applied Mathematics.

3. Winkler, J. R., Lao, X., and Hasan, M., The computation of a structured low

rank of the Sylvester resultant matrix of two inexact polynomials by approxi-

mate polynomial factorisation, submitted to Numerische Mathematik.

4. Winkler, J. R., Hasan, M., and Lao, X., Two methods for the calculation of the

degree of an approximate greatest common divisor of two inexact polynomials,

submitted to SIAM J. Matrix Analysis.

5. Winkler, J. R., Lao, X., and Hasan, M., The computation of multiple roots of

a polynomial, submitted to Linear Algebra and Its Applications.

111

Abbreviations

APF

AGCD

GCD

deg f(y)

GM

LS

LSE

SNTLN

STLN

S(f, g)

Skif, 9)

11 -11

approximate polynomial factorisation

approximate greatest common divisor

greatest common divisor

degree of the polynomial f (y)

geometric mean

least squares

least squares with equality

structured non-linear total least norm

structured total least norm

Sylvester resultant matrix for the power basis polynomials

f(y) and 9(y)

Sylvester subresultant matrix of order k for the power basis

polynomials f (y) and g(y)

11.112

iv

Contents

Abstract

Acknowledgment

Thesis contributions

Abbreviations

Contents

List of Tables

List of Figures

1

ii

ill

iv

V

viii

ix

1 Introduction 1
1.1 Standard root finding methods

3
1.2 Computational challenges of root finding algorithms

13
1.3 Summary

.................................
19

2 Ill-conditioned polynomials 20
2.1 Forward and back word errors, and condition number

21
2.2 Geometric interpretation of an ill-conditioned polynomial

27
2.2.1 The pejorative manifold

28
2.2.2 The sensitivity of a multiple root to a structured perturbation 31

2.3 Polynomial root solver overview
35

2.3.1 Theoretical development
.....................

35
2.3.2 Computational implementation

.................
40

2.3.3 The geometric interpretation of Algorithm 2.3.1 (inexact case) 41
2.4 Thesis outline 43
2.5 Summary 45

V

3 Sylvester resultant matrix 46
3.1 Sylvester resultant matrix 47
3.2 Sylvester subresultant matrices

54
3.3 Summary

65

4 Preprocessing operations 67
4.1 Normalisation

68
4.2 Relative scaling of polynomials

70
4.3 Scaling the independent variable

71
4.4 Calculating optimal values of the scaling parameters

72
4.5 Summary

78

5 Overview of AGCD computation 80
5.1 Problem statement

82
5.2 Definitions of the AGCD

......
83

5.3 The AGCD computations: Some known approaches
85

5.3.1 Euclid's algorithm
85

5.3.2 Resultant approach
88

5.3.3 Optimisation approach
91

5.4 Contributions to the literature
92

5.5 Summary
93

6 The computation of the degree of an AGCD 94
6.1 Computing the degree of the GCD of two exact polynomials

99
6.2 Computing the degree of an AGCD of two inexact polynomials

103
6.2.1 Best column selection

104
6.2.2 Method 1: First principal angle

108
6.2.3 Method 2: Residual

.......
118

6.3 Examples 119
6.4 AGCD degree of a polynomial and its derivative

123
6.4.1 GCD degree of an exact polynomial and its derivative

123
6.4.2 AGCD degree of an inexact polynomial and its derivative ... 130

6.5 Examples
139

6.6 Summary
143

7 The computation of an AGCD 145
7.1 Structured low rank approximation of

the Sylvester matrix
146

7.2 Calculating an AGCD using the Sylvester matrix 148
7.3 Examples 158
7.4 Calculating an AGCD using APF

163

vi

7.5 Examples 180
7.6 Summary 184

8 Polynomial deconvolutions 185
8.1 Problem statement

186
8.2 STLN for polynomial deconvolutions

..................
188

8.3 Summary
.................................

196

9 Polynomial root solver 198
9.1 The computation of the roots and their refinement 199
9.2 Results 203
9.3 Summary 214

10 Conclusions and future work 216
10.1 Conclusion

.................................
216

10.2 Future work and improvements
.....................

220

Bibliography 221

vii

List of Tables

1.1 The roots and multiplicities of pl (y)
...................

12
1.2 The roots and multiplicities of p2(y)

12

2.1 The condition numbers of the root yo =5................ 33

3.1 The ranks and dimensions of Sk, k=1, """, 4 for Example 3.3.
60

6.1 The solutions and the associated residuals of the systems of equations
for Example 6.3

106
6.2 Comparing the residuals for Example 6.4

107
6.3 The roots and multiplicities of f (y) and g(y) for Example 6.6. 120
6.4 The roots and multiplicities of f (y) and g(y) for Example 6.7. 123
6.5 The roots and multiplicities of f(y) and q(y) = GCD(f, f(l)) for Ex-

ample 6.9 143

9.1 The roots and multiplicities of fl(y) for Example 9.1. 205
9.2 The roots and multiplicities of f2(y) for Example 9.2. 206
9.3 The roots and multiplicities of f3(y) for Example 9.3. 207
9.4 The roots and multiplicities of f4(y) for Example 9.4. 208
9.5 The roots and multiplicities of f5(y) for Example 9.5. 209
9.6 The roots and multiplicities of fl(y) for Example 9.6. 210
9.7 The roots and multiplicities of f6(y) for Example 9.7. 212
9.8 The roots and multiplicities of f7(y) for Example 9.8. 212
9.9 The roots and multiplicities of f8(y) for Example 9.9. 213

viii

List of Figures

1.1 The plot of the computed roots of f (y) = (y - 3)50. 14
1.2 The plot of the computed roots of (a) f(y) = (y - 0.5)3(y - 1.5)5,

and (b) f (y) = (y - 0.5)3(y - 1)3(y - 1.5)5, whose coefficients have
been perturbed by noise with signal-to-noise level of eC 1= 108 in a
componentwise sense 16

2.1 The backward and forward errors computed for x=f (y), such that x is
the approximate value of x. The solid lines represent the exact compu-
tation and the dashed line represents the approximated computation.
This figure was reproduced from [30]

...................
22

2.2 Graphical illustration of the refinement of the roots on the pejorative
manifold Jul

42

4.1 (a) The coefficient ranges of the normalised exact polynomial f (y), "
and the scaled version of it, f, (b) The coefficient ranges of the nor-
malised exact polynomial g(y), " and the scaled version of it, f. ... 77

4.2 The normalised singular values of S(f , g) o and S(f eo , ao goo) x, for
Example 4.1 77

6.1 The normalised singular values of S(f , g), on a logarithmic scale, for
Example 6.1 96

6.2 The normalised singular values of S(f
, g), on a logarithmic scale, for

Example 6.2 97
6.3 Geometry of the least squares problem 101
6.4 (a) The variations with k, of log q5k and log rk for Example 6.6, where

* denotes the exact GCD degree d.................... 121
6.5 The optimal columns of Sk(feo, ao goo) for which the minimisations in

(6.7) and (6.20) are achieved, using Method 1 x, and Method 2 o, for
Example 6.6 122

6.6 The variations with k, of log qk and log rk for Example 6.7, where *
denotes the exact GCD degree d..................... 124

ix

6.7 The optimal columns of Sk(fgo, ao goo) for which the minimisations in
(6.7) and (6.20) are achieved, using Method 1 x, and Method 2 o, for
Example 6.7.

.
125

6.8 The variations with k, of log ok, log rk, log ek, t and log ek, r for Example
6.8, where * denotes the exact GCD degree d.............. 140

6.9 The variations with k, of log Ok, log rk, log ek, t and log ek, r for Example
6.9, where * denotes the exact GCD degree d.....

141

7.1 The normalised singular values of the Sylvvester matrices S(f, g) o, S(f, g) +
and S(fe., a* go.) x, for Example 7.1.

160
7.2 The normalised singular values of the Sylvvester matrices S(f, g) o, S(f, g) +

and S(fe., a* ga.) x, for Example 7.2
162

7.3 The normalised singular values of the Sylvvester matrices S(f, g) o, S(f, g) +

and S(f9*, a*ge*) x, for Example 7.3
181

7.4 The normalised singular values of the Sylvvester matrices S(f, g) o, S(. f, 0+

and S(fe., a*ge*) x, for Example 7.4
183

9.1 The computed roots of f4(y) in Example 9.4, using (a) MULTROOT,

and (b) the MATLAB function roots()
208

9.2 The computed roots of f5(y) in Example 9.5, using (a) MULTROOT,

and (b) the MATLAB function roots()
210

X

Chapter 1

Introduction

Polynomials enjoy widespread use in several engineering and science fields, includ-

ing control, coding theory, game theory, signal processing, computer graphics and

many other applications. In triangle geometry, for example, polynomials are used

to represent the relation between lengths and angles. Polynomials are also used in

computer aided geometric design and geometric modeling for curve and surface repre-

sentations. In more complicated applications such as robotics, polynomials are used

to relate forces, trajectories and moments in order to control the robotic movements.

In these applications, it is usually of interest to find the values at which a polynomial

or a system of polynomials vanishes to indicate the occurrence of certain events such

as the intersection of curves and surfaces. Such values are referred to as the zeros

of the polynomials and the task of computing these zeros is called the root finding

task. Many problems are reduced to the problem of root finding, such as the problem

of shape interrogation in computer aided geometric design [55], spectral factorisation

for the design of finite impulse response filters [3,67], and phase unwrapping [70] in

signal processing.

1

CHAPTER 1. INTRODUCTION 2

Computing the roots of a polynomial is a classical problem, and although a lot of

excellent root finding algorithms are available, the computation of the roots of ill-

conditioned polynomials is still drawing the attention of several researchers. Among

these ill-conditioned polynomials is the polynomial whose zero set contains one or

more multiple roots (those roots of multiplicity k> 1). Several methods have been

introduced to solve this class of polynomials. However, most of the root finding

algorithms experience difficulties in computing the roots of degree more than four

[44]. This is mainly due to the numerical instability of the roots with high multiplic-

ities [19,76]. Moreover, the polynomial, in practice, is known in a perturbed form,

f (y) =j (y) + e, where e is the noise attached to the exact polynomial
f (y). This

noise may occur due to roundoff or measurement errors, which in turn, deteriorates

the robustness of not only the algorithms for computing multiple roots, but also of

those algorithms designed for computing simple roots.

Well known numerical root finding methods include Newton's method [25,58,66],

Müller's method [25,58,66], Bairstow's method [25], Graeffe's root squaring method

[25,66], Laguerre's method [25,58], and the companion matrix eigenvalue method

[9,58]. These methods are adequate for normal well-conditioned polynomials that are

of moderate degree with simple well-separated roots. As the degree of the polynomial

increases, or the multiplicity of one or more of its roots increases, or the separation

between its roots decreases, the quality of the results obtained from classical meth-

ods deteriorates. The reason lies in the fact that the multiple roots are extremely
ill-conditioned i. e. they are very sensitive to small perturbations. As a result, in

a floating point environment, roundoff errors will be sufficient to change the roots'
distribution such that clusters of simple roots are formed around the multiple root.

CHAPTER 1. INTRODUCTION 3

It is therefore natural to expect that the case would be worse if the roots were closely

spaced (nearly multiple roots). These roots pose the most difficult problems for the

numerical algorithms [58].

This discussion leads to the aim of this thesis:

The aim of this thesis is to develop a polynomial root finder that computes multiple
roots of a univariate polynomial whose coefficients are corrupted by noise.

The theoretical development of this root finder involves the computation of a struc-

tured low rank approximation of the Sylvester resultant matrix, optimising parame-

ters using linear programming, and solving least squares equality and non-linear least

squares problems.

The rest of this chapter provides summaries of some commonly used root finding

methods in Section 1.1, and presents some of the computational challenges that are

associated with the computation of multiple roots in Section 1.2, using illustrative ex-

amples. These examples show that the computation of multiple roots is a non-trivial

task and hence provide the motivation for the work presented in this thesis.

1.1 Standard root finding methods

This section gives a brief review of some of the classical methods for computing the

roots of a polynomial. These methods include Newton's method [25,58,66], Müller's

method [25,58,66], Bairstow's method [25], Graeffe's root squaring method [25,66],

Laguerre's method [25,58], and the companion matrix eigenvalue method [9,58].

CHAPTER 1. INTRODUCTION 4

Newton's method

Newton's method, also referred to as the Newton-Raphson method, is a well known

iterative method. This method computes the roots by approximating the function,

f (y), linearly, using the tangent of the function at an arbitrary point. Thus, it requires

the evaluation of both the function and its derivative at that point. Given a good

initial root estimate, yo, that is not very far from the desired root, Newton's method

can give iteratively better estimates yl, Y 27**-, such that

,
f(yn)

n=ý1 ýe e"' TJn+1 = Yn - f'(1)(yn)

These iterations should stop either when the successive estimates are very close to

each other or the function value is very small. To prevent this method from converg-

ing to the same root in successive iterations, each computed root is deflated from the

polynomial, and the deflated polynomial is then used in the next run of the iterative

scheme. The convergence of this method is very fast if the initial estimates are suffi-

ciently close to the exact root.

Müller's method

Müller's method computes the zeros of the function f (y) using quadratic approxima-

tion. It requires three initial roots estimates, Yk-2, yk-1 and yk, to compute the next

approximation,

yk+i = yk - (yk - yk-i)
2C [max

(B f B2 - 4AC)
2C

(1.1)

CHAPTER 1. INTRODUCTION

where

A= gf(yk) - q(1 + q)f(yk-1) + g2f(yk-2)

B= (2q + 1)f(yk) - (1 + q)2f(yk-1) + g2f(yk-2)

C= (1 + q)f(yk)

q=
yk - yk-1

yk-1 - Yk-2

5

To prevent the next estimated root from going too far from the current estimate,

the sign in the denominator of (1.1) is chosen such that its absolute value is as large

as possible. Starting with initial real estimates, Müller's method may converge to a

complex estimate. It convergence rate is almost the same as Newton's method [66].

Bairstow's method

Bairstow's method only works with polynomials whose coefficients are real. It is well

known that the complex roots of such polynomials occur in complex conjugate pairs.

To avoid complex arithmetic, this method extracts the quadratic factors that may

generate these complex conjugate roots. Consider the polynomial

f (y) = any' + an_lyn-1 +... + aiy + ao, (1.2)

where ai, i=0, """, n, are the real coefficients of f (y), and let a quadratic factor be

y2 + py + q. The polynomial f (y) can then be written as

i(y) = (y2 + Py + g)(bn-2zn-2 + bn-3zn-3-}-... + bp) + ry + s, ý1.3)

CHAPTER 1. INTRODUCTION 6

where b� = b�_1 =0 and ry +s is the remainder of dividing f (y) over the quadratic

function. If the quadratic function is an exact divisor, then the remainder is equal to

zero i. e. r=s=0, and the roots of the quadratic function are also roots of f (y). This

however, requires good initial guesses for the values of p and q, after which Newton's

method is used to change the values of p and q, such that the roots of the quadratic

function are roots of f (y), which certainly makes the values of r and s equal to zero.

Equating the coefficients of (1.2) and (1.3) gives

bk = ak+2 - pbk+1 - gbk+2, k=n-2,..., p,

r= al - pbo - qbl, and s= ao - qbo.

The solution of al - pbo - qbl =0 and ao - qbo =0 yields the values of p and q for

which the roots of the quadratic function are roots of f (y) as well. The polynomial

f (y) is then deflated and the process is repeated for the deflated polynomials to re-

duce the effort of computing the roots in each step.

Given good initial estimates, this method converges quadratically, but it converges

linearly if the multiplicity of the quadratic factor is greater than one.

Graeffe's root squaring method

This method transforms the original polynomial to another polynomial of the same

degree with new coefficients from which the roots of the original polynomial can be

computed directly. This transformation requires successive squaring of the original

roots by which the new roots spread widely apart if the original ones are real and

distinct with absolute values greater than one. To illustrate this process, consider

Example 1.1.

CHAPTER 1. INTRODUCTION 7

Example 1.1. Let

f(y) _ (y + ai)(y + a2)(y - a3),

where a,, i=1,2,3, are the absolute values of the distinct real roots. Then

f (-y) = (-y + ai)(-y + a2) (-y - a3),

= (-1)3(y - ai)(y - a2)(y + a3)"

Using the binomial identity (y2 - a2) = (y - a)(y + a),

f(y)f(-y) = (_1)3(y2 - ai)(y2 - a2)(y2 + a3),

and if z= y2, then

Q(x) _ (-1)3(z - ai)(z - az)(z + a3).

The process is then repeated until the new roots are well-separated. Suppose that for

a polynomial of degree n, the process described above is repeated k times, then the

roots can be estimated from the following formula

a; =
a,

ai_1

1
ý

) i=1,2, """, n,

where the as's are the coefficients of the kth polynomial. Q

Example 1.1 considers the polynomial in factored form, but the results are the

same for non-factored form. Clearly, this method has a problem if two or more of

CHAPTER 1. INTRODUCTION 8

its roots are of the same magnitude. Several amendments have been proposed to

overcome this problem, but they make the method numerically expensive [29].

Laguerre's method

Laguerre's method is motivated by the relations between the roots of the polynomial,

and its first and second derivatives. Consider the polynomial

f(n) _ (y - al)(y - az)... (y - an),

whose natural logrithm is

lnjf(y)I = inl(y-ai)l+int(y-a2)f+... +Inj(y-an)l.

The first and second derivatives of (1.4) respectively, yield

111f ýlý
A=+++

ýy -an)= f, ýy - ai) (y - a2)

and

111 f(2) f(1) 2
-B=- ---)=f-(f/ ýy - C41)2 (y - 02)2 ýy - an 2

(1.4)

Laguerre's method then assumes that the required root ai is located at a distance a

from the current estimate, that is a= yo - a=, and all other roots are distinct and

clustered at distance b. In terms of a and b, the derivatives A and B can be expressed

CHAPTER 1. INTRODUCTION

respectively as

1
A=a+nb and B=ä2+-b2

Hence,

a=
n

Af (n - 1) (nB - A2)

9

The sign in the denominator should be taken such that the magnitude of the denomi-

nator is as large as possible. Starting with an estimate, yo, the value of a is computed

and used in computing the next estimate yo - a. In each iteration it is required

to calculate the values of the polynomial and its first and second derivatives at the

current estimate, which is a disadvantage. An important property of this method is

that, for any initial choice (i. e. not necessarily close enough from the true root), it

always converges to a root if the roots of the polynomial are real. Laguerre's method

converges cubically for the simple roots but linearly for the multiple roots. Moreover,

starting with real initial estimates, Laguerrs's method may converge to a complex

root.

Companion matrix eigenvalue method

Using the companion matrix, the root finding problem reduces to the eigenvalue

problem. Consider the monic polynomial

f(y)=y"+a�_lyi-1+.... }. aiy+ao,

CHAPTER 1. INTRODUCTION 10

and let C be an nxn square matrix, whose subdiagonal is filled with ones and whose

last column contains the negative of the coefficients of the monic form of f (y),

c=

00 """ 0 -ao

10"""0 -al

01"""0 -a3

`001 -an_i %

This matrix is referred to as the companion matrix. Its characteristic polynomial is

given by [5], page 11,

det (yl - C) = y' + an_ly"-i +... + aly + ao =f (y). (1.5)

It follows from the identity (1.5) that the roots of f (y) are exactly equal to the eigen-

values of C. In other words, instead of finding the roots of f (y), it is sufficient to

compute the eigenvalues of the corresponding companion matrix. Recently, fast effi-

cient algorithms have been introduced for the eigenvalue computation using the QR

algorithm [4,7,9]. This is how the MATLAB function roots() computes the roots

of f (y) [30]. The stability and the accuracy of this method have been reported by

Edelman and Murakami [22]. However, Cleve Moler [45] has pointed out that this

method is computationally more expensive than the methods that are specifically

designed for root finding algorithms.

The methods discussed above may yield satisfactory results if the polynomial is of

moderate degree and its roots are well-separated, but an exception of this is the

CHAPTER 1. INTRODUCTION 11

Wilkinson polynomial [76]

20

f (y) = 11(y - z),

i=i

whose roots are equally spaced.

On the other hand, the performance of these methods deteriorates as the degree of

the polynomial or the multiplicities of its roots increase. Moreover, these methods fail

if the coefficients of the polynomials are known imperfectly or the computations of

the roots are performed in a floating point environment. Therefore, better methods

should be developed to over come the ill-conditioned nature of polynomials that have

multiple roots. This task has been handled by the work presented in this thesis, and

a root solver has been developed. Some of the results of computing multiple roots

using the developed root solver are presented in Examples 1.2 and 1.3.

Example 1.2. The first and second columns of Table 1.1 define the roots and as-

sociated multiplicities of the exact polynomial pl(y). The coefficients of pi (y) were

perturbed by noise with componentwise noise-to-signal ratio of ec = 10-8. The roots

and associated multiplicities of the perturbed polynomial were calculated using the

developed root solver, and the results of this computation are shown in the third,

fourth and fifth columns of the table. Q

Example 1.3. The same procedure used for Example 1.2 was applied to the polyno-

mial p2(y) whose roots and associated multiplicities are given in the first and second

columns of Table 1.2. The results of computing the roots and multiplicities Of P2(Y)

after perturbing its coefficients are shown in the third, forth and fifth columns in the

table. Q

CHAPTER 1. INTRODUCTION

Table 1.1: The roots and multiplicities of Pl(y).

exact root exact
mult.

computed root computed
mult.

relative error

2.62220000e+000 10 2.62220000e+000 10 2.12462358e-011

-3.80360000e+000 10 -3.80360002e+000 10 4.50940637e-009

-1.26210000e+000 9 -1.26210000e+000 9 3.11056307e-009

-6.74950000e+000 6 -6.74949998e+000 6 2.54458742e-009

Table 1.2: The roots and multiplicities of pa(y).

12

exact root exact
mult.

computed root computed
mult.

relative error

-2.65620000e+000 5 -2.65619930e+000 5 2.64976497e-007

-5.21420000e+000 3 -5.21421303e+000 3 2.49930364e-006
6.52500000e-001 3 6.52500010e-001 3 1.48046396e-008

1.07770000e+000 3 1.07769985e+000 3 1.40982369e-007
1.57850000e+000 3 1.57850048e+000 3 3.06745235e-007
3.60130000e+000 3 3.60129667e+000 3 9.25308150e-007
7.33770000e+000 3 7.33770947e+000 3 1.29126972e-006

-7.74770000e+000 2 -7.74766883e+000 2 4.02330826e-006

-1.86450000e+000 2 -1.86450022e+000 2 1.19410112e-007

Examples 1.2 and 1.3 show that the developed method preserves the multiplici-

ties of the roots in the presence of noise. It is noted that the relative error of each

computed root in Example 1.2 is less than e,, even though two of the roots have

multiplicity 10. The relative errors of the computed roots in Example 1.3 are greater

than e,, but there are some closely separated roots. These results should be com-

pared with Zeng [85] who has developed a root solver that is explicitly designed for

the computation of multiple roots of a polynomial. It achieves excellent results if the

data is exact. However, in contrast to the method developed in this thesis, it is shown

in Chapter 9, where more examples are given, that it gives incorrect result if inexact

CHAPTER 1. INTRODUCTION 13

data is considered and the noise level is not specified, or the incorrect noise level is

specified.

The subsequent chapters illustrate the theoretical and computational implementation

of the developed methods, and show how the results in Examples 1.2 and 1.3 were

achieved. In order to motivate the difficulty of the problem of computing multiple

roots in the presence of noise, the next section provides some examples that illus-

trate some of the challenges that arise with the computation of multiple roots of a

polynomial.

1.2 Computational challenges of root finding algo-

rithms

There are several classes of ill-conditioned polynomials, such as the polynomials whose

roots are multiple, closely spaced or a combination of these classes. Furthermore, the

computation of the roots of such polynomial classes becomes more challenging if their

coefficients are imperfectly known. This section gives two examples to show some of

the difficulties that are associated with the computation of roots of ill-conditioned

polynomials. Example 1.4 illustrates the effect of roundoff errors associated with the

computation of the multiple roots. Example 1.5 shows the effect of both roundoff and

measurement errors on the computation of multiple roots of a polynomial.

CHAPTER I. INTRODUCTION

f(y) = (y - 3)5a

Figure 1.1: The plot of the computed roots of f (y) = (y - 3)50

Example 1.4. Consider the polynomial

ys - 15y4 + 90y3 -270 Y2 + 405y - 243 = (y - 3)5,

14

which clearly has only one root of multiplicity 5 at y=3. However, using the MATLAB

function roots�, the following roots are returned,

3.0033.3.0010 ± 0.0031i. 2.9974 f 0.0019i.

This shows that the rounding errors which are about 10-16, are sufficient to cause a

relative error of about 10-3 in the computed roots.

Figure 1.1 shows the roots of the above polynomial after increasing the multiplicity

'roots() uses the QR algorithm to compute the eigenvalues of the companion matrix.

CHAPTER 1. INTRODUCTION 15

of its root to 50. The multiple roots are now split into 50 distinct roots. These

results suggest that as the multiplicities of the roots increase, the effect of roundoff

errors becomes more significant, which causes a deterioration of the root finding

algorithms. Q

The occurrence of high root multiplicities is not the only source of problems for the

root finding algorithms, because the problem is compounded if the roots are closely

spaced. Unfortunately, measurement errors are much larger than roundoff errors,

which makes the task of computing the roots of inexact polynomials more challenging.

The following example illustrates the problem of computing the roots of an inexact

polynomial, where roundoff errors and measurement errors are unavoidable.

Example 1.5. The MATLAB function roots 0 was used to compute the roots of the

polynomial f (y),

f (y) _ (y - 0.5)3(y - 1.5)5,

which were evaluated 1000 times, after perturbing their coefficients by noise with

signal-to-noise level of e--1 = 108 in a componentwise sense.

Figure 1.2(a) shows the plot of the computed roots. Clearly, it can be seen that the

polynomial f (y) contains two distinct roots, and approximations of these two roots

can be calculated by evaluating the arithmetic means of the corresponding clusters.

The clusters of roots have been studied by several researchers [33,46,64,65] us-

ing computational methods such as symbolic-numeric methods [65], and algebraic

methods [64], for computing the roots as well as their corresponding multiplicities.

Although, clustering seems to be simple, it is restricted to well-separated clusters,

CHAPTER 1. INTRODUCTION 16

f(ai)=(v -{) s),, 6i-1.5)5 E, =io" 1(y)=(y-0.5)°(y-1.0)ý(y -1 -ý =10 "

(a)

0.3

(b)

Figure 1.2: The plot of the computed roots of (a) f (y) = (y - 0.5)'(y - 1.5)5, and (b)

f(y) = (y - 0.5)3(y - 1)3(y - 1.5)5, whose coefficients have been perturbed by noise
with signal-to-noise level of ec-1 = 108 in a componentwise sense.

where each cluster originates from one multiple root. If for example, a zero at y=1

of degree 3 occurs between the two roots y=0.5 and y=1.5, in the polynomial given

above, the clustering approach will fail to compute the correct values of the roots, as

shown in Figure 1.2(b). 0

Example 1.4 and 1.5 show that roundoff errors due to floating point arithmetic,

and inexact data, can cause significant deterioration in the computed roots. Unfor-

tunately, the presence of these two sources of errors are not avoidable. In particular,

roundoff errors are always present in numerical computations and the uncertainties in

the data due to measurement errors, for example, can not be avoided. It is therefore

important to study the behavior of the roots of a polynomial in the presence of noise

to obtain a better understanding of the problem, and to develop a numerical method

that deals carefully with a corrupted polynomial, and this forms the main task of this

thesis.

CHAPTER 1. INTRODUCTION 17

This thesis develops a method which is designed for the computation of multiple roots

of a polynomial, whose coefficients are corrupted by noise. This method differs from

the commonly used root solvers. It first computes the multiplicities of the roots of

the given polynomial whose exact form is assumed to have multiple roots, then uses

these multiplicities as constraints for the computation of the roots. By contrast, the

classical methods described in Section 1.1 compute the roots directly without any

restrictions that relate the roots to their multiplicities, and therefore, multiple roots

are broken up into several simple roots.

The developed method follows the method by Uspensky [74], which involves:

1. The computation of the greatest common divisor (GCD) of several pairs of

polynomials.

2. The computation of the division of several pairs of polynomials.

3. The solution of several polynomial equations, all of whose roots are simple and

distinct.

The subsequent chapters illustrate the theoretical and numerical computations of the

developed method. A brief description of the rest of this thesis is now given, whereas

a detailed thesis layout is given after describing the developed method in Chapter 2

(see Section 2.4).

Chapter 2 studies the ill-conditioned nature of a multiple root and describes the

method in [74], whose computational implementation is considered in this thesis, for

the computation of multiple roots of a polynomial. It is shown that the implementa-

tion of this method in a floating point environment is a very challenging task because

it involves ill-posed operations. Chapter 2 also describes the required modifications

CHAPTER 1. INTRODUCTION 18

to the method, in order for it to be implemented in a floating point environment with

inexact data. A geometrical interpretation of the developed method is also included

in Chapter 2.

The crucial part of the method is the determination of the multiplicities of the roots

of a polynomial. They are computed by successive GCD computations. It is shown

in Chapter 3 that the Sylvester subresultant matrix can be used for the computation

of the GCD of two exact polynomials. This work is, however, designed for inexact

data, and therefore it is necessary to modify the theory in Chapter 3. In particular,

the coefficients of the given inexact polynomial must be preprocessed before being

involved in the GCD computations, and it is shown in Chapter 4 that three prepro-

cessing operations are required.

An overview of the previous work in GCD computations is given in Chapter 5, after

which the modifications to the theory in Chapter 3, using non-linear structure pre-

serving matrix methods, are considered in Chapters 6 and 7.

As noted above, the algorithm used for computing multiple roots of a polynomial

requires the computation of the division of several pairs of polynomials. A robust

method for this computation is described in Chapter 8.

The last stage in the method requires solving several polynomial equations, all of

whose roots are simple. The computation of these roots and their refinement are

considered in Chapter 9. This section also contains examples to demonstrate the ap-

plication of the developed method to the computation of the roots of the theoretically

exact form of an inexact polynomial. The conclusion and future work are then given

in Chapter 10.

CHAPTER 1. INTRODUCTION 19

1.3 Summary

This chapter has illustrated the importance of developing a root solver that computes

multiple roots of the exact form of an inexact polynomial. Some commonly used nu-

merical methods for the computation of the roots of a polynomial have been reviewed,

and their advantages and disadvantages have been stated. In order to motivate the

difficulty of the problem, some of the challenges that are associated with the compu-

tation of multiple roots have been presented. It is concluded that a careful study for

the behavior of a multiple root in the presence of noise is needed, in order to develop

a better understanding and solution of the problem. This task is considered in the

next chapter.

Chapter 2

Ill-conditioned polynomials

It was shown in Chapter 1 that the computation of a multiple root of a polyno-

mial is an ill-conditioned problem because small errors, including roundoff errors, are

sufficient to cause incorrect results with large errors. This chapter consists of two

parts. The first part studies the sensitivity of a multiple root to perturbations in

the coefficients of the polynomial. The forward error, backward error and condition

number of a root are defined to quantify the result of computing a multiple root. It

is shown that, with respect to random perturbations, the sensitivity of a multiple

root increases as its multiplicity increases. On the other hand, a multiple root is

insensitive to the structured perturbations that keep its multiplicity. It is concluded

that a robust root finder requires that the multiplicities of the roots of the given

polynomial be first determined, after which the values of these roots are computed.

These computed roots are then refined, under the condition that their computed mul-

tiplicities are retained. The second part of this chapter describes the developed root

finder that satisfies these requirements, and provides a geometrical interpretation of

its implementation in a floating point environment. A detailed outline of the contents

20

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 21

of this thesis is given at the end of this chapter.

2.1 Forward and back word errors, and condition

number

A polynomial is considered to be ill-conditioned if a small perturbation in its coeffi-

cients results in a big change in the solution. In order to quantify this solution, the

numerical analysis concepts of forward error, backward error and condition number

should be considered.

Let x be the approximate value of x=f (y). The question that then arises is: How

good is this approximation? The simplest error measures are the absolute and relative

errors,

Absolute error = Ix - 11

xt Relative error =1
xlxI

Though the computation of these error measures is straight forward, it is not always

possible, since the exact value may not be known. The backward error on the other

hand, does not suffer from this problem, as it examines the input data y+ by, for

which the problem was actually evaluated. Thus, the obvious difference between the

forward and the backward errors, which is illustrated in Figure 1.1, is that the forward

error measures the distance, in the output space, between the exact and computed

solutions, whereas the backward error measures the distance, in the input space,

between the data y for which the solution is sought and the data y+ öy for which the

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 22

solution has been actually computed.

Input space Output space

Figure 2.1: The backward and forward errors computed for x=f (y), such that x is
the approximate value of x. The solid lines represent the exact computation and the
dashed line represents the approximated computation. This figure was reproduced
from [30].

However, both the forward and the backward errors are interrelated to express the

sensitivity of the problem, which is referred to as the condition number. In particular,

if for a certain numerical problem, a small backward error results in a large forward

error, the problem is considered to be ill-conditioned.

In terms of a system of linear equations, Ay = b, where A is a non-singular square

matrix and b is a non-zero vector, the solution of this system is y= A-' b. For a small

perturbation in b, the system Ay =b+ 5b, has the solution y= A-' (b + bb), where

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS

y=y+ Sy. This implies that Sy = A-16b, thus

23

11byll s IIA-1 1) 11bb11. (2.1)

Similarly,

IIbII < IIAIIIIyII. (2.2)

Multiplying (2.1) and (2.2), then yields

IIayIIIIblI < IIA-IIIIIAIIIIyiIIIcblI,

or equivalently

Ilayll
_< , ý(A)

llabll
Ilyll llbll

where ic(A) = IIA-1I1 IJAII, which is referred to as the condition number of the matrix

A. This result can be interpreted as follows: A relatively small backward error may

yield a large forward error, where the ratio between the forward error and backward

error is bounded by the condition number. Thus the relationship between the for-

ward and the backward errors and the condition number is governed by the following

formula to lowest order

forward error < condition number x backward error, (2.3)

which has been proved in [47,73,75].

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 24

The condition number of a multiple root has been studied by several researchers

[20,34,77], and it is shown that the condition number of a multiple root approaches

infinity, with respect to random perturbations, as the signal-to-noise ratio increases.

For example, consider the polynomial f (y) = y', which has r>1 roots at y=0.

Perturbing f (y) by e>0, yields the perturbed polynomial I (y) = y' - e, which has r

complex roots of magnitude elf'. The backward and forward errors in this case are:

Backward error = e,

Forward error = elf''

Clearly it can be seen that for a small value of e, the forward error is very high, and

for these values of the forward error and backward error, the condition number that

satisfies the formula in (2.3) is

r
Condition number >E -,

which approaches infinity as a reduces to zero.

Based on the error model assigned to the coefficients of a polynomial, there exist two

types of backward error and condition number. Both of them can be measured in the

componentwise and normwise senses. In particular, let

m
f(y) =E aiOi(y)ý

i=0

(2.4)

where Oi (y), i=0, ""-, m, is a set of linearly independent basis functions, and ai

is the coefficient of (pi(y). Using the componentwise error model, it is assumed that

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 25

each coefficient a, is perturbed to ai + Jai such that

ai + Jai < ai(1 + ret), i=0, """, m,

where r is a uniformly distributed random variable, whose value fall in the range

[-1, +1], and eý 1 is the componentwise signal-to-noise ratio. It therefore follows that

the componentwise error model is defined by

16a: l< e, Iasl, 2=O, ..., m.

The normwise error model is defined by

IIbafI : EnIlall,

where En 'is the normwise signal-to-noise ratio. The definition of the componentwise

and normwise error models are given in Definitions 2.1 and 2.2, respectively, and the

corresponding condition numbers are also stated. These expressions are taken from

[77].

Definition 2.1. The componentwise backward error of the root approximation yo, of

the root yo of f (y) is defined as

%. (yo)=min{E,: EmodA(y0)=0 and (Sail <EcIail; ä=a+8a}.

An expression for the componentwise condition number of a multiple root yo of

multiplicity r, has been derived in [771, for random perturbations. This derivation

considers a multiple root yo of the polynomial f (y) defined in (2.4).

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 26

Let the multiplicity of yo be r. It is proved in [771 that the componentwise condi-

tion number of yo is

K(yo) il1r!
ý ia=O1(yo)ý

EI-! lyol If(T) (yo)1 i_o

where eý 1 is the componentwise signal-to-noise ratio.

Definition 2.2. The normwise backward error of the root approximation yo, of the

root yo of f (y) is defined as

77n(yo) = min {en : Em oäiOa(yo) =0 and Ilball < enllall; ä=a+ Ja}.

An expression for the condition number associated with the normwise backward

error model of a multiple root yo of multiplicity r, has also been derived in [77], for

random perturbations. This derivation considers a multiple root yo of the polynomial

f (y) defined in (2.4). Let the multiplicity of yo be r. It is proved in [77] that the

normwise condition number of yo is

(i
Nri(yo) _r 11all llo(yo)llýl

r Fyoý I f(T) (yo) I
)

I-

where -n -I is the normwise signal-to-noise ratio. For high multiplicities r»1, 'cc(yo)

and ! c�(yo) can be approximated by the following formulae,

K, (yo) ;. ' e, Iyol ' and K,, (yo) ;: zý
En. 1yol,

(2.5)

respectively, and it can be seen that for random perturbation the componentwise

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 27

and normwise condition numbers are proportional to the signal-to-noise ratio. More

specifically, the higher the signal-to-noise ratio, the more unstable the problem. These

results should be compared with the result obtained when a structured perturbation

that preserves the multiplicity of the root is considered. This comparison is made

in Section 2.2, where it is shown that a multiple root is stable with respect to a

perturbation that preserves the multiplicities of the multiple roots.

2.2 Geometric interpretation of an ill-conditioned

polynomial

It has been shown in Section 1.2 that the computation of multiple roots of a poly-

nomial is an ill-conditioned problem and small perturbations due to roundoff errors

may break up the multiple roots into clusters of simple roots. However, Kahan [35]

has pointed out that a polynomial is well-conditioned if the perturbations preserve

the multiplicities of its roots. In particular, consider the polynomial

f(y) = (y - 5)5(y - 2)7(y + 9)10

The polynomial f (y) lies on a pejorative manifold which is defined by its multiplicity

structure m= 15,7,10}- Kahan has defined the pejorative manifold for a polynomial

with a given multiplicity structure and stated that the roots of a polynomial are

sensitive to random perturbations that move the polynomial off this manifold (i. e.

the perturbed polynomial does not lie on the manifold on which its unperturbed form

lies), but they are insensitive to the structured perturbations that keep the polynomial

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 28

on the manifold of its unperturbed form.

The work in this thesis uses Kahan's observations on pejorative manifolds to test the

feasibility of the structure preserved matrix methods for robust computations of the

multiple roots of high degree, inexact univariate polynomials expressed in the power

basis.

The fundamental task in the root solver that is developed in this thesis is the identifi-
cation of the pejorative manifold on which the theoretically exact polynomial lies. This
corresponds to the determination of the multiplicities of the roots of the polynomial. An
iterative procedure can then be used to locate the roots on the manifold, such that each
iteration stays on the manifold and thus the multiplicities of the roots are preserved in
this iterative scheme.

In order to understand Kahan's observations on the pejorative manifold and how

they can be applied to the developed root solver, this section explains the theory

of pejorative manifolds, and studies the sensitivity of a multiple root to structured

perturbations compared to its sensitivity under random perturbations.

2.2.1 The pejorative manifold

A polynomial with one or more multiple roots forms a pejorative manifold that is

a subset of the space of all polynomials [34]. The multiplicities of the roots of the

polynomial are preserved if a perturbation keeps the polynomial on the manifold, but

they are destroyed if the polynomial leaves the manifold. This pejorative manifold

can be defined via Vieta's system [81].

Consider the monic polynomial f (y) whose 1 distinct roots are yj, j=1, """ , 1, with

the multiplicity structure m= {mj}, j=1, """ , 1, such that if the degree of f (y) is

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 29

equal to n, then ml + m2 +"""+ MI = n. The polynomial f (y) can be written as

f(y) _ (y-yl)m3(y-y2)m'... (y-y1)"`i7

= yn+Th(1J1iy2i""" ,
y1)yn-1+P2(y17y2i"""

, yt)yn-2"""+Pn(y17y2)""" 7yl)

= yn + alyn-1 + a2yn-2 +... .+ an,

where the functions pi, i=1, """, n, define the relation between the roots and the

coefficients of f (y). Let the n roots of f (y) be denoted by (yi, yz, """, yn), which are

not necessarily distinct. Using Vieta's formulae, pi can be generalised as follows,

(2.6)

pl

P2 = F'1<jl<j2-<n y. iiy, ia - a2

Pm(Y) =
pk = L. 1<jl<j2<... <7k<n y91yj2 . .. y. 9k = l-1)kak

(2.7)

pn = 111,,,,, 5n y7i = (-1)nan"

The system in (2.7) is called the coefficient operator and it defines the pejorative

manifold of f (y) whose multiplicity structure is m= {ml, """, ml}. Clearly, it can

be seen that the equations in this system constrain the coefficients of f (y), a;, i=

1, """, n, in order for f (y) to have the multiplicity structure m. The pejorative

manifold is defined in [85] as follows:

Definition 2.3. Fora given multiplicity m={M1, '** , MI 1, the collection of vec-

tors Hrn - {P(z)Iz E C} C C' is called the pejorative manifold of multiplicity

structure m.

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 30

Example 2.1. Consider the polynomial f (y), which has one simple root and one

triple root,

f(y) _ (y - yi)(y - y2)3

= y4 - (yi + 3y2)y3 + 3(yiy2 + yä)y2 - (3yiy2 + yä)y + yiy2"

This polynomial lies on the pejorative manifold M which is defined by the multiplicity

structure m= {1,3}. In particular, M lies in 1R4 on which all real monic polynomials

of degree four with one simple root and one triple root lie. The exact location of f (y)

on M is defined by the values of its roots. It follows that M is a surface defined by

(-(yi + 3yz) 3(yiy2+ y2) - (3y1y2 + y2) yly2),

where y= [yl y21 TE R2.

If yl = y2, f (y) has a quadruple root and f (y) can be written as follows

f (y) = y4 - 4yiy3 + 6yi y2 - 4y, 3y + y4 l*

The polynomial f (y) in this case lies on the pejorative manifold M, which lies in

1R4, and is defined by the multiplicity structure m= {4}. In particular, M is the

manifold on which all real monic polynomials of degree four with one quadruple root

lie. The exact location of f (y) on M is defined by the values of its roots. It follows

that M is a curve defined by

(-4yi 6yi - 4yi yi),

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 31

where y= yl E R. 0

2.2.2 The sensitivity of a multiple root to a structured per-

turbation

Once the multiplicities of the roots of a polynomial have been determined, the pejo-

rative manifold on which this polynomial lies is defined uniquely. The task now is to

study the behavior of this polynomial on its manifold with respect to both random

and structured perturbations. It has been noted in Section 2.1 that several researchers

have shown that a multiple root is very sensitive to a random perturbation in the

coefficients of the polynomial. The sensitivity of a multiple root to a structured per-

turbation that preserves its multiplicity is now considered.

Considering a structured perturbation, an expression for a componentwise condition

number of a root has been derived in [77], and it is shown that a multiple root is

insensitive to the perturbation that keeps its multiplicity.

Theorem 2.1. [77] The condition number of the real root yo of multiplicity r of the

polynomial f (y) = (y - yo)'', such that the perturbed polynomial also has a root of

multiplicity r is

i
Dyo 1 II(y - yo)rII

-1
ýs=o (r)2(yo)2i 2

P(yo) - 0f rlyol II (y - yo)r-iiI rlyol Et o (i)2(y0)2i
(2.8)

where

Iy6yo
Af __

ýýýý11)
and Ayo =1

oll

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS

Proof : Let f (y, yo) :=f (y). It follows that

f (y, yo) _ (y - yo)r
r

_E2
r)

yr-t(_y0)i
: -n

= yr +

.ýlZ)

(-i)b(yO)ayT-i.

i=0

A neighboring polynomial that also has a root of multiplicity r is

(y, yo + Syo) = (y - (yo + Syo))r,

and hence

f (y, yo + byo) -f (y, yo) =

Since

(y - yo)r-1 =

it follows that,

i=1

ý (')

i-1)b ((yo + byo)' - yö) yr-i i=1

/r
Öyo ýjZ (-1ý'ay'o lyr

: -,
\ i=1

+0(15Y2).

r-1 1"ý 1

(\(r
-1

yr-1-i (-yo)i

i=0
r(l

-r
(-1)`Z(yo)'-lyr-''

i=1

32

Jf :=f (y, yo + Jyo) -f (y, yo) = -rbyo(y - yo)r-1+

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 33

to first order. Therefore, the condition number of yo, under a structured perturbation

that preserves its multiplicity is

Dyo 1 II(y - yo)TII
Of rlyo111 (y - yo)''-l 11 '

and since

r (r)
(y - yo)r =EZ yr-t(-y

i=O

the result (2.8) follows.

(2.9)

Example 2.2. Using (2.8), the condition number p(5) of the root yo =5 of the

polynomial f (y) = (y - 5)' was calculated for the multiplicities r=2,10,20, and the

results are shown in Table 2.1.

Table 2.1: The condition numbers of the root yo = 5.

r The condition number p(5)
2 0.5284
10 0.1168
20 0.0592

Table 2.1 shows that p(5) decreases as the multiplicity increases. This result is

related to the fact that the curve f (y) = (y - a)' becomes flatter at y=a as r goes

to infinity, and therefore it is less sensitive to the changes in the root. This result

should be compared with the situation when a random perturbation is considered.

For r= 20, for example, the componentwise condition number of the root yo =5 is

K(yo) SE, which is proportional to the signal-to-noise ratio, where K(yo) is defined

in (2.5). Q

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 34

Theorem 2.1 shows that the condition number of a multiple root is independent

of the noise level if it preserves its multiplicity, and it decreases as the multiplicity

increases. Another expression for the condition number of a multiple root, when a

structured perturbation is considered, has been derived in [35]. This derivation con-

siders the effect of the distance between neighboring roots on the condition number

of a multiple root. It shows that the main factors that affect the sensitivity of a root

are its relative distance from the other roots of the polynomial and its multiplicity.

The proofs in [35] and [77] agree that the condition number of a multiple root is

independent of the noise level, as long as it does not change the multiplicity of this

root.

The discussion above supports Kahan's observations and suggests that the crucial

stage in the computation of multiple roots of a polynomial is the determination of

the multiplicities of its roots (i. e. defining the pejorative manifold on which the poly-

nomial lies). The values of the computed roots can then be improved by a refinement

process that preserves the multiplicities of the roots.

The method developed in this thesis for computing multiple roots of a polynomial

handles this task efficiently, in addition to the computation of the initial root esti-

mates. These root estimates are then refined under the constraints of the computed

multiplicity structure, that is, the pejorative manifold has been identified and all com-

putations are performed on this manifold, thereby guaranteeing numerical stability.

An overview of the method developed for the computation of multiple roots of a

polynomial is considered next.

I

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 35

2.3 Polynomial root solver overview

This section is devoted to describe the method whose computational implementation

is considered in this thesis. The theoretical development of this method for exact data

is given in Section 2.3.1 along with an algorithm that describes its implementation.

Section 2.3.2 then discusses its computational implementation when inexact data is

considered. A geometric interpretation of the developed method is given in Section

2.3.3.

2.3.1 Theoretical development

It is well known that simple roots are better conditioned than multiple roots with

respect to unstructured perturbations. It is therefore instructive to use the divide and

conquer strategy to compute multiple roots of a polynomial, by which the polynomial

that has multiple roots is broken up into several polynomials, each of which only has

simple roots. Moreover, it has been stated in Section 2.2, that the computation

of multiple roots of a polynomial f (y) is more reliable if it is performed under the

constraint that the multiplicity structure of f (y) is known. It is therefore instructive

to first compute the multiplicity structure of f (y), after which the values of its roots

can be computed.

A method that satisfies the above requirements has been developed in this work.

This method follows the method described by Uspensky [74], pages 65 - 68, whose

computational implementation is considered in this work. It differs from the classical

methods described in Section 1.1 because it first computes the multiplicities of the

roots, then it computes the values of these roots. A description of this method is now

given.

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS

Let the polynomial f (y) have the following factorised form

f(y) = wi(y)wä(y)wä(y)... wi(y)ý

36

where wi is the product of all the factors of degree i, i=1,2, " .., l and 1 is the highest

root multiplicity. If no factor of degree k occurs, then the value of wk(y) is set equal

to one. It follows that

9i(y) = GCD (f(y), f(1)(y)) = w2(y)W3(y) .. . wl-1(y)

42(y) = GCD (ql(y), 9i1)(y)) = ws(y)+vä(y) ... wý-2(y)

43(y) = GCD (q2(y)+4i1)(y)) = wa(y)ws(y) ... wý-3(y)

qt(y) = GCD (qi-1(y), qj)j(y))
= constant,

and

hi(y) _

h2 (y) _

h3(y) _

fv
al wl (y) wz (y) w3 (y) ... w` (y)

wa(y)ws(y)... wi(y)

w3(y)w4(y) ... WI(Y)

91 y
92(y)

42 y
93 (y)

hi (y) =
9t-1 (y)

91(y) w, (y)"

The factors wti(y), i=1,2, """11, can then be determined from the following equations

wl(y) =
hl(y),

W2 (Y) =
h2(y)'

... ý wl-l(y) =
hl-l(y),

wl = hlly)+
h2(y) hs(y) hl(y)

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 37

whose roots are simple. Recall that wi(y) includes all the roots of multiplicity i, and

therefore the root multiplicities are maintained. Algorithm 2.3.1 illustrates the use

of this method in computing the roots of a polynomial that has at least one multiple

root.

Algorithm 2.3.1: Root solver

Input A polynomials f (y).

Output The roots of f (y).

Begin

1. Set j=0 and qj =f (y).

2. while deg (qj) >0 do

(a) Increment j.

(b) Compute qj = GCD (qj, qj

(c) Compute h; = q,

(d) if j>l then
h, -i 1. Compute wj_1 = h,

ii. Compute the roots of w, _1.

end

else Compute the roots of w.,.

end

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 38

3. Set w3 = h; and find the roots of wj.

Clearly it can be seen that Algorithm 2.3.1 ends with the factors wj(y), j=1, """ , 1.

These factors might be constants or polynomials whose roots y3 are simple, and if a is

a root of wj (y) then a3 is a root of f (y). Thus Algorithm 2.3.1 reveals the multiplicity

structure of the given polynomial in addition to computing its roots.

Geometrically, the theoretically exact polynomial lies on a pejorative manifold, since

it is assumed that it has at least one multiple root. If deg GCD >0 in Step 2 of

Algorithm 2.3.1, the pejorative manifold on which the exact polynomial lies is not

defined uniquely, and more GCD computations are required to be performed. When

deg GCD = 0, the pejorative manifold on which the theoretically exact polynomial

lies, is defined uniquely. The roots of wj, j=1, """ ,1 computed in Step 3 of Algorithm

2.3.1, define the unique point on this pejorative manifold, that represents the exact

polynomial.

Example 2.3. Consider the polynomial

f(y) = (y - 1)3(y + 3)2(y - 2) = qo(y),

and its derivative

f(1)(y) = (y - 1)2(y + 3)(6y2 -y- 17) = 4(1)(y)"

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 39

Algorithm 2.3.1 yields

Qi(y) =GCD (go(y), 9ö1)(y)) = (y - 1)2(y + 3), Qil) _ (y - 1)(3y + 5)

q2(y) =G CD (91(y), 4i1)(y)) = (y - 1), 4(i1) =1

43(y) =GC D(42(y), 421) (y)) = 1, g31ý = 0,

hi(y) - el(8) -
(y - 1)(y + 3)(y - 2)

h2(y) - gz('v) - (y - 1)(y + 3)

h3(y) - 92 y- (y - 1),
0 (U)

wi (y)

wz(y)

W3 (Y)

= hz(v)
- (y - 2)

- ha (v) _ (y + 3)

= h3(y) = (y - 1).

It follows that f (y) has one root at y=2, a double root at y= -3 and a triple root

at y=1. Moreover, the polynomial f (y) lies on the pejorative manifold ME R5

which is defined by the multiplicity structure m= {1,2,3}. Q

Although the flow of the operations in Algorithm 2.3.1 seems to be easy, its im-

plementation in a floating point environment and/or with inexact data raises some

numerical challenges. In particular, the implementation of Algorithm 2.3.1 involves:

1. The computation of the GCD of several pairs of polynomials.

2. The computation of the division of two polynomials.

3. The solution of several polynomial equations, each of which only has simple

roots.

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 40

The first two operations are ill-posed if the computations are performed in a floating

point environment. Therefore, it is required to perform these operations with high

care. More details on the computational implementation of Algorithm 2.3.1 are given

next.

2.3.2 Computational implementation

The first two stages of Algorithm 2.3.1, the computation of the GCD of two polyno-

mials, and the division of two polynomials, are well-defined problems if the data is

exact and the computations are performed symbolically. By contrast, the ill-posed

nature of these computations makes them non-trivial when inexact data is consid-

ered. More precisely, the GCD of two polynomials is not a continuous function of the

changes in the coefficients of these polynomials and a small error, including round-

off error, is able to turn the two given non co-prime polynomials into two co-prime

polynomials. A numerical solution for such problem requires that the two given inex-

act polynomials f (y) and g(y) be perturbed slightly such that their perturbed forms

I (y) =f (y) +Sf(y) and g(y) = g(y) +Sg(y) have a non-constant GCD. The resulting

GCD is referred to as an approximate greatest common divisor (AGCD), because it

is an approximate GCD with respect to f (y) and g(y). However, this AGCD is an

exact GCD of the corrected polynomials 1(y) and §(y).

Similarly, the computation of the division of two polynomials p(y) and q(y) is an

ill-posed problem because even if the polynomial division p(y)/q(y) is a polynomial,

the polynomial division
q(Y)+äa(b)

is, with high probability, a rational function, for

arbitrary small errors Jf (y) and 6g(y). Since it is required that nv +6n is a poly-
q(y)+6q(y)

nomial and not a rational function, a procedure similar to that described above is

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 41

adapted. In particular, perturbations are added to p(y) + 6p(y) and q(y) + bq(y) such

that the polynomial division of the perturbed forms of p(y) + 6p(y) and q(y) + bq(y)

yields a polynomial. The work presented in this thesis uses structure preserving

matrix methods [60,61] to produce the proper perturbations that satisfy the above

requirements.

2.3.3 The geometric interpretation of Algorithm 2.3.1 (inex-

act case)

It is assumed that the theoretically exact form of the given inexact polynomial has

at least one multiple root, and therefore it lies on a pejorative manifold, which is

defined by its multiplicity structure. Furthermore, it has been noted in Section 2.3.1

that this multiplicity structure is determined from the successive GCD computations

in Algorithm 2.3.1. The case is different when the inexact polynomial is considered.

In particular, it is assumed that its roots are simple due to its ill-conditioned na-

ture. Therefore, the inexact polynomial is an isolated point in space and it does not

lie on a pejorative manifold. Therefore, the GCD computations in Algorithm 2.3.1

must be replaced by AGCD computations. Considering the modification procedure

discussed in Section 2.3.2 for these computations leads to the following geometric

interpretation: Each AGCD computation represents an orthogonal projection on to

a pejorative manifold, since the nearest AGCD is required as stated in Definition 5.2.

If deg AGCD > 0, the pejorative manifold on which the exact polynomial lies is

not defined uniquely, and more AGCD computations are required to be performed.

When deg AGCD = 0, the pejorative manifold on which the exact polynomial lies,

is defined uniquely. This pejorative manifold is defined by the multiplicity structure

UNIVERSITY
OF SHEFFIELD

LIBRARY

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 42

whose contents have been computed by the successive AGCD computations.

The roots of wj, j=1, ""-, l in Algorithm 2.3.1 are regarded as initial estimates

whose values are refined using the method of non-linear least squares, such that the

polynomial of the refined roots in each iteration remains on the pejorative manifold,

that is, the multiplicity structure of the polynomial is retained.

Figure 2.2: Graphical illustration of the refinement of the roots on the pejorative
manifold M.

Consider the inexact polynomial f (y) whose theoretically exact form j (y) has l

distinct roots of multiplicities mi, i=1,2, """ ,
1, and whose l distinct root initial

estimates are yo = [yo, i, 110,2, ""-, yo, i]. Figure 2.2 illustrates the refinement process

of the computed roots yo graphically. In particular, the multiplicity structure m=

{mi, m2, """, m, } defines the pejorative manifold M on which f (y) lies. The points

Q, Q and P lie on this pejorative manifold, where:

(1) Q denotes the point which is defined by the coefficients ä of j (y).

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 43

(2) Q denotes the point that arises from the orthogonal projection of a point a,

defined by the coefficients of f (y), onto M, and

(3) P denotes a point that arises from the series of the orthogonal projections per-

formed by the successive AGCD computations, and its exact location on M is

defined by the initial root estimates yo.

The point P may be distant from the point Q, whose location is assumed to be very

close to the exact point Q, and the desire is to move the point P to a point very close

to Q. However, this movement should be done such that the new location of P is still

on M, and this can only be achieved if the multiplicity structure m is maintained.

The movement of P to Q is achieved by the method of non-linear least squares.

2.4 Thesis outline

This thesis considers the computational implementation of the method described by

Uspensky [74], pages 65-68, for the computation of multiple roots of the theoreti-

cally exact form of an inexact polynomial. The description of this method for the

computation of the roots of an exact polynomial has been discussed in Section 2.3.1

and it has been shown that it consists of successive GCD computations, successive

polynomial divisions and solving several polynomial equations.

The computation of the GCD of two exact polynomials requires that the degree of

this GCD be first determined after which its coefficients are computed. It is shown in

Chapter 3 that the Sylvester resultant matrix can be used for the computation of the

GCD of two exact polynomials. However, it is assumed in this work that the given

polynomial has multiple roots and their coefficients are not known perfectly, and thus

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS 44

some modifications to the theory in Chapter 3 are required.

These modifications are considered in this work, where robust methods are used for

the computation of the degree of an AGCD of two in exact polynomials, and struc-

ture preserving matrix methods are used for the computations of an AGCD of two

inexact polynomials and the polynomial division of two inexact polynomials. Finally,

the method of non-linear least squares is used for the refinement of the roots.

It is shown in Chapter 4 that the coefficients of the given inexact polynomial must

be processed before being involved in the computation of the AGCD, and three pre-

processing operations are discussed in this chapter. These preprocessing operations

allow efficient computations of the AGCD.

An overview of AGCD computations is given in Chapter 5. The problem of comput-

ing the degree of an AGCD of two inexact polynomials is addressed in Chapter 6 by

considering three methods for this computation. Chapter 7 presents two methods for

the computation of the coefficients of the AGCD using non-linear structured matrix

methods.

A robust method for the computation of the successive polynomial divisions is dis-

cussed in Chapter 8. The two sets of polynomial divisions in Algorithm 2.3.1 yield

several polynomials, all of whose roots are simple. The computation of these roots

and their refinement are considered in Chapter 9. This chapter also contains some

examples that demonstrate the application of Algorithm 2.3.1 for the computation

of multiple roots of inexact polynomials, using the developed methods given in this

thesis.

The feasibility of using structure preserving matrix methods in computing the mul-

tiple roots is then discussed in Chapter 10. Future work that may extend the work

CHAPTER 2. ILL-CONDITIONED POLYNOMIALS

presented in this thesis is also discussed in this chapter.

2.5 Summary

45

This chapter has introduced the concept of ill-conditioned polynomials and provided

a study of the sensitivity of a multiple root of a polynomial. The theory of pejo-

rative manifolds enables the behavior of a multiple root in the presence of noise to

be understood. It has been shown that a multiple root is ill-conditioned with re-

spect to random perturbations that change its multiplicity. On the other hand, it is

well-conditioned with respect to the structured perturbations that preserve its mul-

tiplicity. A root solver that utilises these observations has been presented along with

its geometrical interpretation. The stages required by the developed root solver have

been described.

Chapter 3

Sylvester resultant matrix

The polynomial root finder described in Algorithm 2.3.1 forms the high level descrip-

tion of the root finder proposed in this thesis. The implementation of this algorithm

requires successive GCDs to be computed. This chapter describes the application of

the Sylvester resultant matrix and its subresultant matrices for the computation of

the GCD of two univariate polynomials expressed in the power basis.

The existence of a non-constant GCD of two polynomials can be verified by testing

the singularity of their Sylvester resultant matrix. In particular, two polynomials

have a non-constant GCD if and only if their Sylvester resultant matrix is singular.

Moreover, if this resultant matrix is singular, then it is rank deficient and the defi-

ciency in its rank equals the degree of the GCD, and the coefficients of the GCD lie in

last non-zero row of this resultant matrix, after reducing it into an upper triangular

form [5]. Thus, the Sylvester resultant matrix is closely related to the GCD compu-

tation.

Several resultant matrices can be used in the GCD computations, including the

Sylvester, Bezout and companion matrices, as they have the same GCD information,

46

CHAPTER 3. SYLVESTER RESULTANT MATRIX 47

that is, the rank deficiency is equal to the degree of the GCD and the coefficients of

the GCD can be found from the resultant matrix. The Sylvester resultant matrix has

been chosen in this work due to its linear structure which simplifies the implemen-

tation of the structured computation methods that are required for the polynomial

root solver developed proposed in this thesis.

This chapter first defines the Sylvester matrix and reviews some of its properties for

the GCD computation in Section 3.1. Then, Section 3.2 introduces the Sylvester

subresultant matrices and their importance for the computation of the degree of the

GCD.

3.1 Sylvester resultant matrix

To define the Sylvester resultant matrix, let us first decide when a pair of polynomials,

f=j (y) and g= g(y), has a non-constant common divisor. Let

mn

f(y) _ý aiy2 and 9(y) biyt, äm, bn : ý4 0" (3.1)

i=o i=o

If j (y) and g(y) have a non-constant common divisor, then there must exist a value of

y for which f (y) =0 and g(y) = 0, simultaneously. Using these equations, construct a

system of N=m+n homogeneous equations in N unknowns. The coefficient matrix

of this system is called the Sylvester resultant matrix. In particular, multiplying

CHAPTER 3. SYLVESTER RESULTANT MATRIX 48

f (y) =0 by yn-I, n-2,... , y, 1, respectively, yields the n equations

ämym+n-1 + äm-lym+n-2

ämym+n-2

+ """ + äoyn-1

+... } ä1y"-1 + äoy"'2

=0

=0

ämym .+ äm-iy'r`-i +... + äo =0

(3.2)

Similarly, multiplying g(y) =0 by ym_l, ym-2, """, y, 1, respectively, yields the m

equations

bnym+n-1 + bn-lym+n-2 ++ boym-1

bnym+n-2 ++ blym-1 + boym-2

bnyn + bn-lyn-1 +

-o
-o

+ bo =0
(3.3)

CHAPTER 3. SYLVESTER RESULTANT MATRIX 49

The transpose of the (m + n) equations in (3.2) and (3.3) can be written as a system

of linear homogeneous equations

am

äm_1 am

am_1

äl äm

äo äi " ä�ti-i

äo

a1

äo

bn_1

bn_1

bl
."

bn

bo bi bn-1

bo

bi

bo

ym+n-1

ym-Fn-2

= 0. (3.4)

y

1

Thus the Sylvester resultant matrix (which will henceforth be called the Sylvester

matrix, for simplicity) of j (y) and g(y) defined above is the (m + n) x (m + n)

CHAPTER 3. SYLVESTER RESULTANT MATRIX 50

coefficient matrix,

S(f, s) =

äm

äm_1 äm

äm_1

äl

äo äl

do

äm

äm_1

äl

äo

bn

bn-1 bn

bi

bo

bn_1

bi

bo

bn

bn-1

bi

bo

n columns m columns

where the first n columns contain the coefficients ä; of f (y) and the last m columns

contain the coefficients b; of g(y). This is how the Sylvester matrix is defined in [5].

The Sylvester matrix can also be viewed as two Cauchy matrices. These Cauchy

matrices are formed by the first n columns and the last m columns, respectively, of

S(f, y). Thus the Sylvester matrix can be represented as follows

S(f, 9)
[c(f)

D(9)
],

where C(f) E R (m+n)x"D(9) E

(3.5)

, n+n)x'" The representation of the Sylvester

matrix in terms of two Cauchy matrices will be used in the following chapters where

it is shown that the vector of coefficients of the product of two polynomials can be

CHAPTER 3. SYLVESTER RESULTANT MATRIX 51

written as a matrix-vector product.

If j (y) and g(y) have a non-constant GCD then the homogeneous system in (3.4) must

have a non-trivial solution. In general, a system Sy =0 has a non-trivial solution if

and only if S is singular. Therefore, a necessary condition for f (y) and g(y) to have

a non-constant GCD is that their Sylvester matrix be singular.

Theorem 3.1 establishes the relation between the Sylvester matrix and the GCD

computation.

Theorem 3.1. Let the polynomials f (y) and g(y) in (3.1) have a non-constant GCD.

If the degree of the GCD is d>0, then the following properties of their Sylvester

matrix, S(f, g), hold true:

1. S(f , g) is rank deficient and therefore,

det(S(f , g)) = 0.

2. The degree of the GCD of i (y) and g(y) equals the rank loss of S(f, g),

deg(GCD (j, §)) =m+n- rank (S(f, g)).

3. The coefficients of the GCD of f (y) and g(y) lie in the last non-vanishing row

of S(f, g)', after reducing it into an upper triangular form.

These results are established in [5], pages 35-39, and [18]. The relation between the

GCD of two polynomials and their Sylvester matrix can be clarified by the following

example.

CHAPTER 3. SYLVESTER RESULTANT MATRIX

Example 3.1. Let the polynomials j (y) and g(y), respectively be

f(y) =y3+8y2+5y-50= (y+5)2(y-2)

and

9(y) = y5 + 7y4 -2 y3 -46 Y2 + 65y - 25 = (y - 1)3(y + 5)2,

whose GCD is

d(y) = y3 + 10y2 + 25y = (y + 5)2.

Since deg (f) =3 and deg (g) = 5, their Sylvester matrix which is 8x8 is

Fl0000100

S(. f, g) _

81000710

58100 -2 71

-50 5810 -46 -2 7

0 -50 581 65 -46 -2

00 -50 58 -25 65 -46

000 -50 50 -25 65

0000 -50 00 -25

52

It can be verified that det(S(f, g)) =0 and, using the Sylvester matrix properties

discussed above, this correctly suggests that the polynomials 1(y) and g(y) have a

CHAPTER 3. SYLVESTER RESULTANT MATRIX 53

non-constant GCD. Furthermore, reducing S(f
,
g)T into an upper triangular form,

yields the matrix

-0.5 -4 -2.5 25 0000

0 -0.5 -4 -2.5 25 000

00 -0.5 -4 -2.5 25 00

000 -0.5 -4 -2.5 25 0

0000 -1 -10 -25 0

000001 10 25

00000000

00000000

whose rank is 6. Applying the second property yields,

deg (d(y)) = (m + n) - rank (S(f, g)) = 2,

which is equal to the deg (d(y)). Finally, the last non-vanishing row provides the

coefficients 1,10, and 25, which define the coefficients of rl(y), as required. Q

In this section it is shown how the Sylvester matrix allows the computation of

the degree and the coefficients of the GCD of two polynomials. In addition to the

Sylvester matrix properties mentioned here, its subresultant matrices provide a means

to compute the degree of the GCD of two polynomials. The next section considers

these subresultant matrices and explains their relation to the degree of the GCD.

CHAPTER 3. SYLVESTER RESULTANT MATRIX

3.2 Sylvester subresultant matrices

54

The kth Sylvester subresultant matrix of the polynomials j (y) and g(y), Sk(f ,
g) E

R(m+n-k+1)x(m+n-2k+2) for 1ýkG min(m, n), is formed by deleting some rows and

columns of S(f, g). It is recalled that S(f , j) can be represented in terms of two

Cauchy matrices as shown in (3.5), and the kth subresultant matrix is formed by

deleting the last k-1 columns of C(f), the last k-1 columns of D(g), and the last

k-1 rows of S(f, g). For k=1, the Sylvester subresultant matrix reduces to the

Sylvester matrix.

Example 3.2. Let

f (y) = 5y5 + 3y4 - 4y3 + y2 -y+6,

9(y) = 7y3 - 3y2 - 2y - 9.

Then

Si = SU, §) =

50070000

350 -3 7000

-4 35 -2 -3 700

1 -4 39 -2 -3 70

-1 1 -4 09 -2 -3 7

6 -1 1009 -2 -3

06 -1 0009 -2

00600009

CHAPTER 3. SYLVESTER RESULTANT MATRIX 55

s2 (j i 9) _

507000

35 -3 700

-4 3 -2 -3 70

1 -4 9 -2 -3 7

-1 109 -2 -3

6 -1 009 -2

060009

ý
S3 (L

e 9) _

5700

3 -3 70

-4 -2 -3 7

19 -2 -3

-1 09 -2

6009

0
Consider the two polynomials, f (y) and g(y) defined in (3.1), and let these two

polynomials be non-coprime polynomials with a GCD of degree d. Factorising these

two polynomials fork=1, ... , d, yields

f(y) = ük(y)dk(y)7

and

9(y) = vk(y)dk(y),

where

(3.6)

(3.7)

m-k n-k

uk(y) _E uk, iym-k-i and vk(y)
-

Evk,
iyn-k-i,

i=0 i=0

CHAPTER 3. SYLVESTER RESULTANT MATRIX 56

are two quotient polynomials of degree m-k and n-k respectively, and

k
dk (y) _ý dk, iyk-i,

i=o

is a common divisor polynomial of degree k. Note that for k=1, """, d-1, the

polynomials Ük(y) and vk(y) are not co-prime, but for k they are co-prime

polynomials. It follows that

vk(y)f(y) _fik(y)9(v) b dk(y) =
f(y) 9(y)
uk(y) vk(y)

(3.8)

The polynomial products in (3.8) can be written in a matrix-vector product as follows

Ck Dk
] vk

= Sk vk
= 0, k= (3.9)

-ük "uk

where Ck = Ck(f), Dk = Dk(g), are Cauchy matrices of the polynomials j(y) and

y(y) respectively, Sk = Sk(f, g) E R(m+n-k+i)x(m+n-2k+2) is the kth subresultant

matrix, and

llk

Yk

T
ük U 14 17... wk

m-k IE Rm-k+l,
T 1

n-k-Fl vk U vk 1i ... vk
n-k 1

ER

Since the degree of the GCD of f (y) and g(y) is d, it follows that dk, o # 0, and thus

Uk, o, Vk, O 0. Also, it is clear that f (y) and y(y) possess common divisors of degrees

CHAPTER 3. SYLVESTER RESULTANT MATRIX 57

1, """, d, but they do not possess a common divisor of degrees d+ 1 or more, and thus

rank Sk(f, g) <m+n- 2k + 2, k=1,..., d

rank Sk (f , g) =m+n- 2k + 2, k=d+1, ... , min (m, n). (3.10)

This implies that the degree d of the GCD of j (y) and g(y) equals the largest value

of k for which Sk (f, g) is rank deficient. This clearly shows how the computation of

the GCD degree reduces to a rank determination problem. Furthermore, the result

above implies that, for the homogeneous equation in (3.9), if

Sk(fem = [Ck Ak)r
where Ck is the first column of Sk(f, g) and Ak is the matrix formed from the remaining

columns of Sk the following linear algebraic equation possesses solutions only

fork=1, """, d,

Akxk = Cki

where

2k- I vki 'Uk, n-k -ük, p ... -ük, m-k I` E ým+n-2k+1

(3.11)

(3.12)

These results are also established in [17,28]. Chapter 6 shows how these results can

be used to introduce new methods for the computation of the degree of the GCD,

which is one of the main building blocks of the proposed root solver.

CHAPTER 3. SYLVESTER RESULTANT MATRIX

Example 3.3. Let the polynomials j (y) and g(y), respectively be

f (y) = (y + 1)4(y - 2)2 = yo -6 y4 - 4y3 + 9y2 + 12y + 4,

and

9(y) = (y - 2)4 = y4 -8 Y3 +24 Y2 - 32y + 16,

58

whose GCD is of degree 2, and their orders, respectively, are m=6 and n=4. Then

the row echelon form of the subresultant matrices, for k=1, "", min(m, n) are

Sre o 1

100000001 -4

01000000 -4 17

001000004 -20

0001000004

00001000 -1 4

00000100 -4 15

00000010 -6 20

00000001 -4 10

0000000000

0000000000

CHAPTER 3. SYLVESTER RESULTANT MATRIX 59

Sre = 2

and

10000001

0100000 -4

00100004

0001000 -1

0000100 -4

0000010 -6

0000001 -4

00000000

00000000

Sle = 4

Sre
3

1000

0100

0010

0001

0000

0000

0000

100000

010000

001000

000100

000010

000001

000000

000000

The results of computing the rank of the subresultant matrices for k=1, """, 4 are

shown in Table 3.1. These results imply that Sk (f
,
g) is rank deficient only for k<2,

and thus it follows from (3.10) that deg GCD (f, = 2. Q

An important issue that should be addressed is the nature of the solution xk in

(3.12), for k=1, """, min(m, n), from which the estimates dk(y) are calculated. In

CHAPTER 3. SYLVESTER RESULTANT MATRIX

Table 3.1: The ranks and dimensions of Sk, k=1, """, 4 for Example 3.3.

Sk Rank m+n-2k+2
Sl 8 10
S2 7 8
S3 6 6
S4 4 4

60

particular, estimates for the vectors ük and Yk can be calculated from (3.11), and

estimates for dk can be obtained from ük and '4- In particular, (3.6) and (3.7) can

be combined into one matrix-vector equation,

Qk, l äý _f LQk,
2j

k=1, """, min(m, n),

where Qk, l and Qk, 2 are Cauchy matrices whose entries are the coefficients of ük and

Yk respectively, that are calculated from (3.12), and f and g are the vectors of the

coefficients of j (y) and g(y), respectively. Thus, dk can be obtained from,

t

dk
Qk, i =k=1, """, min(m, n).
Qk, 2

Equation (3.11) possesses solutions for k_1, """, cl, but it does not possess a solution

for k>d. More specifically, it follows from (3.10) that the solutions of (3.11) satisfy

the following conditions:

1. For k=1, ". ",
1-1, rankAk <m+n- 2k + 1, and thus for each of these

values of k there is an infinite number of solutions. Only a finite number yields

the coefficients of a polynomial dk(y). All the other solutions yield rational

CHAPTER 3. SYLVESTER RESULTANT MATRIX 61

functions, which are not of interest.

2. For k=d, rankAk = m+n-2k+1, and thus there is one unique solution dk(y).

This solution must be the coefficients of a polynomial not a rational function,

and thus dd(y) is also a polynomial.

3. For k=d+1,
... , min(m, n), rank Ak =m+n- 2k + 1, and thus there is no

solution.

Example 3.4. Consider the exact polynomials

f(y) _ (y - 2)2(y - 4)(y - 6),

9(y) = (y - 2)(y - 4)2,

whose GCD is of degree 2. The first Sylvester subresultant matrix Sl (f, g) of these

polynomials is

Sl(f, 9) =

1001000

-14 10 -10 100

68 -14 1 32 -10 10

-136 68 -14 -32 32 -10 1

96 -136 68 0 -32 32 -10

0 96 -136 00 -32 32

00 96 000 -32

CHAPTER 3. SYLVESTER RESULTANT MATRIX

whose null space has the following family of vectors

v1, o

V

-u

It follows from (3.8) that

vl,
l

v1,2

-fil, o

-ül, l

-'f 2

-ü3

vi, o

vl, l

-4(4vi, o + v1, o)

-vl, o

(5vl, o + 2v1,1)

4(5vl, o + 2v1,1)

12(4vl, o + vl, l)

di(y) =
f(y)

_
(y)

_
(y - 2)(y - 4)

wl (y) vl (y) vi, oy + vl, l - 4(4vl, o + vl, l)'

62

(3.13)

where vi, o and v1,1 are arbitrary constants that are not simultaneously zero. Clearly,

it can be seen that dl (y) is in general a rational function that has an infinite number

of forms. However, only those forms for which di(y) is a polynomial are of interest,

and for this example, there are three forms of this type. In particular, (3.13) is

proportional to the common divisors (y - 2) and (y - 4), for vi, l = -4I1, () and vi, i =

-svi, o, respectively, and it is equal to the GCD of j (y) and g(y) for 01, o = 0, vi, l 0 0.

All other values of ö are not of interest as they yield rational forms of dl(y).

Equation (3.11) restricts the solutions to be from a subspace of the null space of the

Sylvester matrix S1(f, g) of j (y) and g(y), by forcing il, o to be equal to -1. It can

be verified that this restriction allows the common divisors (y - 2) and (y - 4) to be

recovered from vl, l = (-1) x (-4) =4 and vl l= (-1) x (-L4-) =3, respectively,

but it can not recover the GCD of j (y) and g(y), because the condition vl, o = -1

CHAPTER 3. SYLVESTER RESULTANT MATRIX 63

contradicts the condition v1,0 =0 required for the GCD to be recovered. However,

the GCD can be easily obtained from A2x2 = c2i whose solution is unique in this

example, as is now shown.

Considering k=2, (3.11) becomes

0100
1 -10 10

-14 32 -10 1

68 -32 32 -10

-136 0 -32 32

96 00 -32

v1

-ü0

-Ui

-ü2

1

-14

68

-136

96

0

which has the unique solution

vl = 4, üo = -1, ül = 8, ü2 = -12,

and since vo = -1, it follows that ü(y) and D(y) are

ü(y) = -(y - 2)(y - 6) = -y2 + 8y - 12 and

which are co-prime. Therefore,

d2(y) = -(y - 2)(y - 4),

v(y) = -(y - 4),

is the common divisor and it is the unique solution. Finally, when k=3, (3.11)

CHAPTER 3. SYLVESTER RESULTANT MATRIX 64

becomes

10

-10 1

32 -10

-32 32

0 -32

vl

-üo

1

-14

68

-136

96

which does not possess a solution. Thus the polynomials j (y) and g(y) do not have

a common divisor of degree k=3, and thus the degree of the GCD of f (y) and g(y)

is equal to two. Cl

It is shown in Example 3.4, that for k=1, """,
d-1, (3.8) is satisfied by an infinite

number of solutions ük and Vk of (3.11). However, since the common divisors are

polynomials, interest is restricted to a finite number of solutions for which dk(y) are

polynomials, not rational functions. For k=d, (3.8) is satisfied by the unique solu-

tion of (3.11), and finally, (3.11) does not possess solutions for k>d because there

does not exist a common divisor of degree greater than d.

It has been shown in this chapter that the Sylvester resultant matrix and its sub-

resultant matrices allow the computations of both the degree of the GCD and its

coefficients. Although this result is valid theoretically, it is more involved computa-

tionally if inexact polynomials are considered. More precisely, these computations

fail in practice as data is usually corrupted by noise, through which the exact non

co-prime polynomials are contaminated and become, with high probability, co-prime.

This also implies that the corresponding Sylvester matrix is non-singular and all the

properties in Theorem 3.1 will not be applicable.

CHAPTER 3. SYLVESTER RESULTANT MATRIX 65

A numerical solution for this problem is to slightly perturb the given polynomials

by structured perturbations so that they have a non-trivial GCD. In terms of the

Sylvester matrix of the given inexact polynomials, this full rank matrix is perturbed

such that it becomes rank deficient. This is referred to as the structured low rank

approximation of the Sylvester matrix, which yields an AGCD because the polyno-

mials have been moved slightly to have a non-constant GCD.

The problem of computing an AGCD of two inexact polynomials is addressed in detail

in Chapters 6 and 7, where the two main stages of the AGCD computation, the com-

putation of its degree and its coefficients, are considered, respectively. A crucial step

that has to be applied before considering the numerical computation of an AGCD

of imperfectly known polynomials is to preprocess them. This preprocessing will be

considered in the next chapter and it will be shown that their inclusion is vital to

obtain good result.

3.3 Summary

This chapter has described the properties of the Sylvester matrix and its use in com-

puting the GCD of two non co-prime polynomials. It was shown how the singularity

of the Sylvester matrix provides a means not only for detecting the existence of the

GCD, but also for computing its degree and coefficients. Important results for the

GCD computation were established. For example, the degree of the GCD is equal

to the rank loss of the Sylvester matrix and the coefficients of the GCD are defined

by the last non-zero row of the transpose of the Sylvester matrix after reducing it

to an upper triangular form. Moreover, it was shown that the order of the Sylvester

subresultant matrices is also important when it is required to compute the degree of

CHAPTER 3. SYLVESTER RESULTANT MATRIX 66

the GCD.

Chapter 4

Preprocessing operations

This chapter considers the preprocessing operations that must be performed on the

given polynomial before being involved in the computation of its roots. In particular,

it was noted in the previous chapter that the implementation of Algorithm 2.3.1,

whose computational implementation is considered in this thesis, requires successive

GCD computations. It was also shown that the Sylvester matrix can be used for

the theoretical computation of the GCD of two exact polynomials. However the case

differs when two inexact polynomials are considered, as they need to be preprocessed

before computations are performed on their Sylvester matrix. This is to reduce the

possible occurrence of catastrophic problems such as those associated with compu-

tations performed on polynomials whose coefficients suffer from a wide variation in

magnitude, which occurs frequently in GCD-based polynomial root finders [26].

This chapter considers three preprocessing operations, the first of which normalises

the coefficients of the polynomials to have unit magnitude. The other two operations

minimise the ratio of the maximum coefficient in magnitude to the minimum coeffi-

cient in magnitude, using two parameters a and 0. In particular, let the polynomials

67

CHAPTER 4. PREPROCESSING OPERATIONS 68

1(y) and g(y) that are defined in (3.1) denote, respectively, the exact forms of the

inexact polynomials f (y) and g(y),

mn

(4.1) f (y) =E a=y' and 9(y) _
1: bay1, a, n, bn =ý4 0.

i=0 i=0

The parameter a, that arises from the partitioned structure of the Sylvester matrix,

and the parameter B that is used to scale the independent variable y, are introduced in

order to transform the normalised forms of the given polynomials f (y) and g(y) into

another set of polynomials, whose coefficient variations are smaller. Computational

experiments showed that failure to implement this transformation led to a significant

degradation in the results. All computations on the developed root solver are therefore

performed on this transformed set of polynomials.

4.1 Normalisation

It was shown in Chapter 3 that the structure of the kth Sylvester matrix Sk(f, g)

dedicates the first n-k+1 columns for the coefficients of f (y), and the last m-k+1

columns for the coefficients of g(y). This partitioned structure may be unbalanced,

especially if the coefficients of f (y) are significantly larger or smaller than the co-

efficients of g(y). This problem can be overcome by normalising both polynomials.

Normalising the polynomials by the 2-norm of their coefficients is frequently used in

the literature such as [2,17), but to provide better averaging, the geometric mean

(GM) is preferred, especially if the coefficients vary widely in magnitude. Consider

CHAPTER 4. PREPROCESSING OPERATIONS

for example, the polynomial p(y),

p(y) = 10y2 + 108y + 104,

for which

69

P=[10108104]"

It follows that the geometric mean GM(), and the 1-, 2- and oo-norms are

GM(p) = 2.15 x 104,1IpII1 .:! IIpII2 = 108, and 11p11OO = 108,

which shows that in contrast to the geometric mean, the 1-, 2- and oo-norms

neglect the small coefficients, that is, they are insensitive to the changes in the small

coefficients. For example, if the coefficient of y2 in the polynomial p(y) given above,

is changed to 10-3,

whose coefficient vector q,

then

9(y) = 10-3y2 + 108y + 104,

icient vector g,

q=[10-3 108 104

GM(q) =103, II4111 ý Ilgllz =108, and Ilgllý =108.

CHAPTER 4. PREPROCESSING OPERATIONS 70

Clearly, it can be seen that a change of 99.99% in the coefficient of y2 causes a

change of 95.4% in the geometric mean of the coefficients, whereas the 1-, 2- and

oo-norms change by a negligible amount. Therefore the geometric mean has been

used to redefine the polynomials in (4.1) as follows,

m

n. -
a; (4.2) f (y) = L, °'ty2,

i=0

and

wa -1)
m+l (n0

lau)

ni bi
g(y) _E biy

ý
bi = ie

i-0 (ýý
o lbj 1)n+l

(4.3)

where only the non-zero coefficients are considered by the normalisations in (4.2)

and (4.3). This normalisation by the geometric mean defines the first preprocessing

operation.

4.2 Relative scaling of polynomials

If a is a non-zero scalar, then the GCD of j (y) and g(y), satisfies

GCD(f, g) ti GCD(f, ag),

where N denotes equivalence. This equivalence fails numerically when inexact data is

considered, because different values of a yield different AGCDs, even if they retain the

same degree. The variable a can be used as a parameter to be computed according to

a specific criterion such that good results are obtained. Considering the normalised

CHAPTER 4. PREPROCESSING OPERATIONS 71

forms of f (y) and g(y) in (4.2) and (4.3), respectively, a can be interpreted as the

weight of g(y) relative to the unit weight of f (y).

Consider the rank of the Sylvester matrix S(f (y), ag(y)), where f (y) and g(y) are as

defined in (4.2) and (4.3), respectively,

rank S(f, ag) = deg g if a is very small,

rank S(f, ag) = deg f if a is very large.

Thus a bad choice of a causes missleading results and an optimal value of a must be

computed.

The inclusion of a was first introduced in [78], where it is shown that the rank of

S(f, ag) is a function of a and not all the values of a are associated with a well

defined rank of this Sylvester matrix. However, computing an optimal value of a,

to obtain a good approximation for an AGCD is not considered in this reference.

The preprocessing operations considered in this thesis require the computation of

an optimal value of a, and the criterion and method for this computation will be

considered after introducing the third preprocessing operation.

4.3 Scaling the independent variable

The parameter a introduced in Section 4.2 performs relative scaling of g(y) with

respect to the unit weight of f (y). The preprocessing operation discussed in this

section introduces the parameter 0 that scales the independent variable y, using the

CHAPTER 4. PREPROCESSING OPERATIONS 72

substitution

y= Ow, (4.4)

where w is the new independent variable and 8 is a parameter that is chosen to min-

imise the ratio of the maximum coefficient in magnitude to the minimum coefficient

in magnitude. This substitution does not change the degree of the GCD of j(y) and

g(y), that is,

GCD(f (y), g(y)) = GCD(f (Ow), §(8w)).

Considering the effect of the scaling in (4.4), it is proved in [80], that the compo-

nentwise condition number of a real root yo of f (y) is equal to the componentwise

condition number of the real root wo = yo/O of f (0w), and this also applies to the

polynomial g(y).

The method used to calculate optimal values ao and Bo of a and 0, respectively, is

considered in the next section. Scaling a polynomial by this factor has also been

considered in [21] and [26] for one polynomial, and it is extended in this thesis to two

polynomials.

4.4 Calculating optimal values of the scaling pa-

rameters

Polynomials whose coefficients suffer from wide variations in their magnitude create

numerical problems in several applications. One of those applications where such

CHAPTER 4. PREPROCESSING OPERATIONS 73

problems occur frequently is the GCD-based polynomial root finder [26]. Thus a

suitable criterion for computing optimal values of a and 0 is: Minimise the variation

in the magnitude of the coefficients of the polynomials whose GCD is to be computed.

Consider the normalised polynomials f (y) and g(y) that are defined in (4.2) and (4.3),

respectively. Using the substitution in (4.4) they are redefined as,

m

.
fe(w) = E(d, g'�-t), wm-`,

z=o

n

go (W) - L(bj
en-7)wn-9

j=0

(4.5)

(4.6)

The combination of the discussion in Section 4.2, and (4.5) and (4.6), shows that

the Sylvester matrix S(fei age) must be considered for the AGCD computations.

The entries of this Sylvester matrix are {C 9m-i}m0 and {ab36 i}ý
o and thus the

optimal values of 0 and a are chosen such that the ratio of the maximum coefficient

(in magnitude), to the minimum coefficient (in magnitude), of the polynomials

and age(w) is minmised, that is

ao, Bo = arg min
max {maxi=o,...,

m IätB"`-'1
, maxj_o,..., n

I abj B"-jI}
a, 6 min {mini=o,...,

m
I
abj9"-i

I} .

This minmisation can be rewritten as:

fe(w)

(4.7)

Minimise ä

CHAPTER 4. PREPROCESSING OPERATIONS

Subject to

t> 1a, =19m-', i=0,..., m

t>aIbj Ion-i' j=O,..., n

d< Iä=19m-', i=0,..., m

d<aIbjIB"`-j, j =0,..., n

d>0

0 >0

ý>0,

where ä; 40, i=0,..., m, andbj 0, j=0,..., rc.

Using the transformations

T= log t, D= log d, ¢= log B, Ec = log a, ä; =1og Iä; l, Q; =1og I bjI,

the minimisation problem can be restated as:

Minimise T-D

Subject to

T- (m - i)o > äi, i=0,..., m

T- (n- j)o-µ ? Q� j =0,..., n

-D + (m - i)o > -di, i=0, ..., m

-D + (n - j)o +µ >- -, ßj, j=0,..., n,

74

CHAPTER 4. PREPROCESSING OPERATIONS 75

which is a standard linear programming (LP) problem whose objective function is

T

T-D=
11

-1 00J
D

0

A

There are 2(m +n+ 2) constraints in this LP problem, and as noted above, if a

coefficient a; or bj is equal to zero, then the corresponding constraints are deleted.

To recover the optimal values ao and 0o of a and B, respectively, recall that 0= log 9

and p= log a. The solutions ao and Bo of (4.7) are the optimal values of a and B,

respectively, and thus the polynomials (4.5) and (4.6) become

m

.
feo(w) = E(äaBo -i)w"`-i (4.8)

i=O

n

9e0(w) = E(bjBo-j)wn-3

j=o
(4.9)

Since the Sylvester matrix and its subresultant matrices are used for the computation

of an AGCD of two inexact polynomials, all the computations are performed on

Sk(fo
, ao go.), where k denotes the subresultant matrix order, and fo (w) and goo (w)

are defined in (4.8) and (4.9), respectively.

CHAPTER 4. PREPROCESSING OPERATIONS

Example 4.1. Let two exact polynomials be

1(y) = (y - 10-3)4(y - 10-1)2(y - 104)

9(y) _ (y - 10-3)3(y - 10-2)3(y - 104),

76

whose coefficients have been scaled by ao = 1.1545 and Bo = 0.0362, after normal-

ising each polynomial by the geometric mean of its coefficients, and it can be seen

that deg GCD(f, g) = 4. Figures 4.1 (a) and (b) show how scaling by these two pa-

rameters reduces the variation in the magnitude of the coefficients of f (y) and g(y),

respectively. Figure 4.1(a) shows that the ratios

maXi_o,..., 7 äi j
and log I aieö lo -t

g
mini=o,..., 7 äi an ö

mini=o,..., 7 I diep -'
I1

of the coefficients of j (y) and fo0(w), respectively, have reduced from 32.2362 to

14.6347, and for g(y), Figure 4.1(b) shows that the reduction in the ratios

log
maxj=o,..., 7 bi

minj=o,..., 7
bi

maxo,..., 7 I b; 90 -i
and log

min m-j

of g(y) and goo (w) is from 34.5388 to 14.6347. This shows that the preprocessing

operations have reduced the variations in the magnitude of the coefficients of the

polynomial by several orders of magnitude.

Figure 4.2 shows the normalised singular values of S(f, g) and S(foo, ao goo), where

clearly it can be seen that the rank of S(f , g) is not defined, whereas the rank of

S(feo, aogo,,) is equal to 10 and thus deg GCD(feo, geo) = 4, which is correct. Thus,

in this example, the preprocessing operations that have been presented in this chapter

CHAPTER 4. PREPROCESSING OPERATIONS 77

10

5

ý
ö0
C
0
ü

-5 IF
m
8

-10

ý 3 -15

-zoº

-25' 1

A

z

0

A

3

0

A

(a)

0

A

5

0
A 0

A

7

0

5

10

-0 a a bo
c
ý o -5
ý

-10
F

.? -15

-20

-25'
1

i

0

A AL

z 7

0

A

0

A

15
1

(b)

0
A 0

A

a
7

Figure 4.1: (a) The coefficient ranges of the normalised exact polynomial f (, y). "
and the scaled version of it. f, (b) The coefficient ranges of the normalised exact
polynomial g(y), " and the scaled version of it, f.

Figure 4.2: The normalised singular values of S(f, g) o and S(fo, ao ge0) x, for Ex-

ample 4.1.

CHAPTER 4. PREPROCESSING OPERATIONS 78

do not only minimise the coefficient variations, but also help to obtain a well-defined

rank deficient matrix. Q

4.5 Summary

This chapter has discussed the preprocessing operations that are required to be per-

formed on the given inexact polynomials f (y) and g(y), before the computation of

their Sylvester matrix S(f, ag), in order to provide more reliable computations. In

particular, three polynomial preprocessing operations were described. The first pre-

processing operation normalises each polynomial by the geometric mean of its coeffi-

cients. The second uses the relative scaling of the given polynomials by the parameter

a. The third preprocessing operation scales the independent variable with the pa-

rameter 9.

The first preprocessing operation is motivated by the fact that if the coefficients of

the polynomial f (y) are much smaller or larger than those of the polynomial g(y),

the Sylvester matrix S(f, g) is not balanced and therefore the coefficients of the poly-

nomials f (y) and g(y) must be normalised. In this work, the geometric mean is used

as it provides a better average. The second preprocessing operation is motivated by

the partitioned structure of the Sylvester matrix. To balance this partitioned struc-

ture, the parameter a is used as the weight of g(y) relative to the unit weight of

f (y). Finally, the concern of the third preprocessing operation is to provide more

reliable computations on polynomials, whose coefficients vary widely in magnitude,

through scaling the independent variable. The criterion used for the computation of

the parameters a and 9 is based on minimising the ratio of the maximum coefficient,

in magnitude, to the minimum coefficient, in magnitude, and a technique from linear

CHAPTER 4. PREPROCESSING OPERATIONS 79

programming has been used to compute these two parameters, simultaneously.

It has also been shown, in this chapter, that the use of these preprocessing techniques

yields significant improvements in computations performed on the Sylvester matrix.

Chapter 5

Overview of AGCD computation

It has been shown in Chapter 1 that the roots of a polynomial f (y) can be computed

using a GCD-based algorithm. In particular, if d(y) = GCD(f (y), f (1) (y)), then the

values of the distinct roots of f (y)/d(y) are identical to the distinct roots of f (y)"

Furthermore, the roots of f (y)/d(y) are simple, and they are therefore numerically

better conditioned than the multiple roots of f (y).

In addition to its application in the root finding problem, the computation of the GCD

of two polynomials has widespread applications in different fields, such as control the-

ory [5], signal processing, system identification [56,59,71], satellite communications

and image processing [42,62]. In communications, for example, the output data

is represented as a convolution of the input data and the impulse response of the

channel. Let xi(n) represent the ith input of a multichannel system whose impulse

response is given by h(n). The ith output yi(n) of this system can be represented by

y, (n) = xi(n) * h(n), and the z-transform Y(z) of y; (n) is

Y(z) = Xi(z)H(z),

80

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 81

where X; (z) and H(z) are the z-transforms of xz(n) and h(n), respectively. The

property H(z) is a common factor in all receiving blocks is used for the blind channel

identification problem [56,72]. In [56], for example, two receiving blocks were used

such that the output of these blocks are given by,

Yl(z) = Xl(z)H(z), and Y2(z)=X2(z)H(z)

respectively. The z-domain channel impulse response H(z) is then regarded as the

GCD of Yi(z) and Y2(z), provided that the inputs Xi(z) and X2(z) are co-prime.

In a similar manner, in image processing the final image is represented by a convo-

lution of the desired image and the blurring function (e. g. camera movement). The

desired image in the z-domain can be considered as the GCD of two or more bivariate

polynomials representing images of the same scene.

Practically, exact GCDs are not defined as data are corrupted by random noise, in

addition to roundoff error associated with the computation in a floating point envi-

ronment. Therefore, the computation of the exact GCD in the presence of noise is

meaningless and an approximate solution, that is, an AGCD, should be considered.

The problem of computing an AGCD for a pair of polynomials has been presented

intensively in the literature. This chapter is devoted to provide an overview of the

previous work proposed for the computation of an AGCD of two inexact univariate

polynomials. The problem of computing an AGCD is first addressed, in Section 5.1.

Section 5.2 discusses some of the literature on AGCD definitions. Some known ap-

proaches are summarised in 5.3, and these include Euclid's algorithm, the resultant

approach, and the optimisation approach. The root solver developed in this the-

sis involves the development of robust methods for the computation of an AGCD

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 82

of two polynomials, and its contributions towards the research done in the AGCD

computation is listed in Section 5.4.

5.1 Problem statement

The problem of computing the GCD of two polynomials is usually stated as follows:

Given two polynomials f (y) and g(y), compute their greatest common divisor, d(y),

that is,

f(y) = u(y)d(y), 9(y) = v(y)d(y),

where, u(y) and v(y) are co-prime. The most widely known algorithm for calculating

the GCD of a pair of polynomials is Euclid's algorithm [1] which is the oldest non-

trivial algorithm still in use [40]. This algorithm is efficient if the given data and the

arithmetic operations are error-free. This ideal situation is not achieved in practice

because a small perturbation in the coefficients of the given polynomials may yield,

with high probability, a constant GCD. Thus in the presence of noise, the GCD is not

defined and only an AGCD can be considered. An important difference between these

two types of GCDs is that the exact GCD is unique, up to an arbitrary non-zero scalar

multiplier, whereas the AGCD is not unique. In particular, an AGCD can be defined

in several ways, and the definition used must be appropriate for the problem to be

solved. Moreover, for a certain AGCD definition, there may exist several polynomials

that satisfy the requirements of this definition. Some of the AGCD definitions found

in the literature are considered in the next section.

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 83

5.2 Definitions of the AGCD

Several definitions of an AGCD of a pair of inexact polynomials are proposed in the

literature, including the f-GCD [8,16,24,51,63], the b-GCD [51,53], the appGCD

[63] and the quasi-GCD [68].

The E-GCD or so-called the nearest GCD is the most widely considered AGCD. The

common underlying principle in computing this type of AGCD is to find a nearby

pair of polynomials I (y) and g(y) that are within a distance e from the given poly-

nomials f (y) and g(y), and have a non-trivial GCD. An E-GCD of two given inexact

polynomials can be defined as follows:

Definition 5.1. A polynomial d(y) is said to be an e-GCD of the given inexact

polynomials f (y) and g(y), whose degrees are m and n, respectively, if there exist

small perturbations bf (y) and bg(y), such that for I (y) =f (y) + 5f (y) and g(y) _

g(y) + Sg(y), the following statements hold true:

1. deg f (y) =m and deg g(y) = n.

2. IIf(y) - f(y)II <_ EIIf(y)II and IIg(y) -g(y)II <_ EII9(y)II.

3. d(y) is an exact GCD of f (y) and g(y).

It follows from Definition 5.1 that an e-GCD is not unique because there may exist

several polynomials 1(y) and g(y) that satisfy the properties in the definition.

In [53], Pan argues that the e-GCD is unstable since its degree is sensitive to small

perturbations of its coefficients. He introduces the ö-GCD. This AGCD is defined

by the roots rather than the coefficients of the polynomial. It implies that the roots

of the polynomials have to be computed first, and Pan has suggested some available

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 84

root finder algorithms such as [50,52,54]. An obvious disadvantage of this approach

is that it requires the roots to be calculated accurately.

The definitions of the c-GCD and ö-GCD consider the inexact polynomials whose

coefficients are known imperfectly or are perturbed with roundoff error. This is in

contrast to the quasi-GCD definition proposed by Schönhage. In particular, given

two univariate polynomials f (y) and g(y) with error bound e>0, a polynomial h(y)

is called a quasi-GCD if h(y) is an c-approximate divisor of f and g, and any exact

common divisor off and g is an approximate divisor of h(y). The computation of h(y)

requires the computation of the cofactors u(y) and v(u) such that luf +vg-hl < efhj.

While the input data, in reality, can only be found for limited digits of accuracy, the

quasi-GCD definition assumes that more digits can be obtained on demand. This

assumption limits the use of the quasi-GCD polynomials to symbolical computations.

Zeng [84] states that an AGCD must possess the following properties:

1. Nearness: The AGCD is the exact solution of a nearby pair of polynomials.

2. Max-degree: The AGCD has the maximum degree among all polynomials that

satisfy the nearness property.

3. Min-distance: The AGCD of a given pair of polynomials minimises the distance

between the polynomials for which it is exact, and the given polynomials.

The definition of an AGCD for the work presented in this thesis is based on the

assumption that the degree of the AGCD is known using the methods described in

Chapter 6, and it can be formalised as follows:

Definition 5.2. Given a pair of polynomials f=f (y) and g= g(y), whose AGCD

d(y) is of degree d, with deg f=m and deg g=n, compute 1= 1(y) and g= g(y),

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 85

such that

1. deg i=m, and deg g=n.

2. The error

II f (y) -f (y) II2 + 11 g(y) - NO II2+

is minimised.

3. d(y) is an exact GCD of f (y) and g(y), and deg d(y) = d.

5.3 The AGCD computations: Some known ap-

proaches

Once a definition for the AGCD has been chosen, the computation of an AGCD

for a given pair of inexact polynomials can be performed via several approaches.

This section summarises some known approaches for the computation of an AGCD,

which includes Euclid's algorithm [33,48], the resultant approach [16,24], and the

optimisation approach [14,37,38].

5.3.1 Euclid's algorithm

Euclid's algorithm for the computation of the GCD of two exact polynomials is con-

sidered by Brown [13], and Collins and George [15]. Its numerical case has been

handled by several researchers, using variants of Euclid's algorithm. In order to il-

lustrate the use of the modified versions of Euclid's algorithm in the computation

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 86

of an AGCD of two inexact polynomials, it is important to first review the classical

Euclidian algorithm for the computation of the GCD of two exact polynomials.

Classical Euclid's algorithm

The computation of the GCD of two polynomials using Euclid's algorithm can be

described as follows: Given a pair of exact polynomials, j (y) and g(y), with deg f >_

deg g, compute the GCD of j (y) and g(y) through repeated polynomial divisions

f; (y)/I (y), such that

fi(y) = 4t(y)9i(y) + ri(y),

where di(y) are the quotient polynomials, ri(y) are the remainder polynomials, and

My)
= f(y), 9i (y) = (y), i=0

fi(y) = 9i-1(y), MY) = pi-1(y) i>0.

The process is repeated until ri =0 in which case GCD(j, g) = gi. Algorithm 5.3.1

describes the application of Euclid's algorithm for the computation of the GCD of

two polynomials.

Algorithm 4.1: Euclid's Algorithm

Input The exact polynomials j(y) and §(y).

Output The GCD d(y) of j (y) and g(y).

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION

Begin

1. Set i=0, fi(y) = f(y), 9i(y) =§(y)-

2. While f (y) 54 0.

(a) Compute the polynomials 4i(y) and Ti(y), such that

fi(y) = 4i(y)9i(y) + ri(y)"

(b) i-+i+1.

(c) Set i(y) = 9i-, (y), 9i(y) = ra-1(y)"

End While

3. Set d(y) = gi(y).

End

87

The set of polynomials rl, r"2i """, Tk 5L 0 is called the polynomial remainder sequence,

PRS. Note that Euclid's algorithm must terminate as the degree of rt(y) is decreasing

with i.

Example 5.1. Consider the polynomials

f(y) = y3 + 3y2 -4= (y + 2)2(y - 1),

g(y) = y2 + 2y -3= (y - 1)(y + 3).

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 88

The polynomial division f (y)/g(y) yields

y3+3y2-4= (y + 1)(y2 + 2y - 3) + (y - 1),

for which Ta(y) =y-10, and therefor the process should continue, that is

fl(y) = g(y) and gl(y) = r"o(y). The second polynomial division yields,

y2+ 2y -3= (y + 3)(y - 1).

Since r"1 = 0, the divisions stop and G CD (j, g) =y-1, which is correct. 0
As noted above Euclid's algorithm requires recursive polynomial long divisions,

which is computationally unstable [85]. This instability of Euclid's algorithm was

pointed out by several researchers, and stabilised versions of Euclid's algorithm have

been proposed. The stabilised versions are mainly based on either a careful choice of

the termination criterion [32,33,48] of the algorithm or look ahead strategies that

jump over the ill-conditioned subproblems [6].

5.3.2 Resultant approach

It is recalled from Chapter 3 that the GCD of two exact polynomials can be computed

using resultant matrices. More precisely, the GCD computation involves two stages:

1. The identification of the degree of the GCD

2. The determination of the coefficients of the GCD.

It was shown in Chapter 3 that the problem of computing the degree of the GCD is

reduced to a rank determination problem. Once the degree of the GCD is known,

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 89

its coefficients can be found by applying a triangular decomposition of the resultant

matrix, such as LU or QR [28], (see Example 3.1). These computations are usually

applied to the Sylvester resultant matrix and the other resultant matrices.

Considering the inexact polynomials, several algorithms have been proposed to cal-

culate approximate solutions for the two stages of the GCD computation.

The computation of the rank of a matrix is usually performed using the singular

value decomposition, SVD [28], and the theoretical basis of this use of the SVD for

the calculation of the degree of an AGCD is considered in detail in Chapter 6. Corless

et al. [16], for example, compute the degree of the AGCD by using the SVD of the

Sylvester matrix of the given polynomials. In particular, they look for the largest

gap in the singular values of the Sylvester matrix. To compute the coefficients of

the AGCD, they propose several strategies, including solving a minimisation problem

using an optimisation technique. Emiris et al. [23], apply the SVD to the subre-

sultant matrices of the Sylvester matrix of the given polynomials to compute upper

bounds of the degree of the AGCD. Generally, the use of the SVD-based approach

for the computation of an AGCD is considered to be stable. However, the SVD based

methods are computationally intensive, especially as the degree of the polynomial

increases. Moreover, Emiris et al. [24], show that using the singular values of the

Sylvester matrix is not enough to solve the problem completely, and established a gap

theorem on the singular values of the subresultant matrices that provides conditions

under which the degree of the AGCD can be certified.

Methods based on the QR decomposition have also been used [17,83], for the com-

putation of an AGCD of two inexact polynomials. These methods exploit the fact

that the QR decomposition of the resultant matrix of two polynomials reveals the

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 90

coefficients of the GCD in the last non-zero row of the upper triangular factor R.

However, if the coefficients of the polynomial are perturbed randomly with noise, it

is impossible to identify the last non-zero row. Zarowski et al. [83] show that the

rank of R is equal to the index of last non-zero row, and instead of using the SVD

to compute the rank of R, they use the estimated smallest singular values of leading

principal submatrices, using an estimator provided by Bischof [10]. The estimated

smallest singular values are then further processed to estimate the last non-zero sin-

gular value using the algorithm presented by Zarowski [82]. The methods based on

the QR decomposition are generally stable, but suffer from instability if the given

polynomials have large common roots. Corless et. al. [17] have pointed out this

instability and suggested a method to improve it. Zarowski et. al. [83] attempt to

solve this problem by making the polynomial monic, but it is observed in [87] that

this strategy does not guarantee stability. However, the results in [2] show that the

QR-based method proposed by Corless et. al. in [17] fails to achieve the correct

GCD degree if the leading coefficient is less than 10-5. Bini and Boito [2] suggest an

alternative solution to overcome the instability of the QR decomposition. They use

the QR decomposition with pivoting to determine the upper bound on the degree of

the AGCD. Due to the pivoting, the coefficients of the AGCD are no longer available

in R, and in order to compute the coefficients of the AGCD, Bini and Boito compute

the co-prime factors of the given polynomials from the null space of the Sylvester

matrix after which they apply polynomial division to obtain the coefficients of the

AGCD. The computed AGCD is then refined iteratively.

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 91

5.3.3 Optimisation approach

In this approach, the problem of computing an AGCD is posed as an optimisation

problem, with the aim of minimising the distance between the given polynomials

and the computed perturbed pair. The problem formulation for this approach can

be stated as follow: For a given pair of polynomials f and g with deg(f) =m and

deg(g) = n, compute f and g with deg(f) =m and deg(g) = n, such that the error

f_1 11 2+ 11 II9-9II2,

is minimised [14,37,38]. Karmarkar and Lakshman [38] developed algorithms to

compute the nearest AGCDs of maximum degree of a given inexact pair of polyno-

mials by minimising the perturbations to be added to the given polynomials. They

point out that the efficiency of [31] decreases as the multiplicities of the roots increase,

and they claim that their optimisation approach can be extended to compute roots

of higher multiplicities.

Chin and Corless [14] have formulated and solved a non-linear optimization problem

that minimises the perturbation that can be added to a polynomial pair to have a

non-trivial GCD. They assumed that the degree of the AGCD as well as its initial

estimate are known, using the methods in [16].

Other AGCD computation approaches involve the Pade approximation [6,51] and

statistical approaches [71]. Stoica and Söderström [71] introduced a non-iterative

maximum likelihood-based method through which the coefficients of the polynomials

are assumed to have a Gaussian random distribution, which is in reality not true and

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 92

the polynomials may be much more complicated.

Currently, the most computationally efficient methods are the structured matrix

based methods [39,41,78,87]. Despite the extensive work conducted using this

approach, there are still some open issues such as those related to the nature of the

minimum perturbation to be added to the inexact polynomials in order to have a

non-constant GCD, the technical complexities encountered with hard classes of poly-

nomials, such as those with several multiple roots, roots with high multiplicities and

close roots, and more importantly, the development of data driven methods that do

not require prior knowledge about the noise level.

5.4 Contributions to the literature

Generally, the study of the methods considered in the literature shows that the vast

majority of these methods require a threshold to determine the index of the largest

non-zero singular value in order to determine the degree of the AGCD of the given

polynomials from the rank of their resultant matrix. This requires prior knowledge

about the noise level, which may not be known or only known approximately. Thus,

methods that do not require any prior knowledge about the noise level need to be

developed. In addition, the preprocessing operations that scale the given polynomials

before the AGCD computations are performed, provide more reliable computations,

but these operations are neglected from the majority of the studies.

The work in this research differs from the previous work in the following aspects:

1. It develops of a set of preprocessing operations that improve the quality of the

computed AGCD. In particular, they involve

CHAPTER 5. OVERVIEW OF AGCD COMPUTATION 93

(a) The normalisation of the given polynomials by the geometric means of their

coefficients, instead of the 2-norms of their coefficients.

(b) Technique from linear programming for the computation of the optimal

values of two parameters that make the AGCD computations more reliable.

These parameters are necessary if the coefficients of the polynomials vary

widely in magnitude.

2. It introduces methods for the determination of the rank of the AGCD of two

inexact polynomials that do not require the noise level to be known.

3. It introduces the use of the non-linear structure preserving matrix methods for

the computation of an AGCD.

5.5 Summary

This chapter has provided an overview of the AGCD computation which forms one of

the main stages in the developed root solver. The concept of the AGCD has been il-

lustrated and its non-uniqueness has been discussed, based on the different definitions

available in the literature. The main approaches for the AGCD computation have

been presented and some of the deficiencies in these approaches have been discussed.

Finally, the contributions of the work in this research towards the research done in

the area of AGCD computations have been listed.

Chapter 6

The computation of the degree of

an AGCD

The root solver considered in Section 2.3 is a GCD-based root solver and it can be seen

from Algorithm 2.3.1 that the computation of the GCD of two polynomials forms the

first step in this root solver. However, practically, problems exist when computations

are performed on polynomials whose coefficients are contaminated with error. Thus

the GCD of two polynomials is not defined and it is only possible to compute an

AGCD. Usually, the computation of an AGCD of two inexact polynomials involves

two stages. In particular, in the first stage the degree of the AGCD is determined,

after which the coefficients of the AGCD are calculated. This chapter and the next

chapter consider, respectively, the computation of the first and second stages in the

AGCD computation.

The computation of an estimate for a degree of an AGCD of two inexact polynomials

is a non-trivial task. It has been shown in Section 3.1 that this problem is reduced

to a rank determination problem because the degree of the GCD of two polynomials

94

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 95

is equal to the rank loss of their Sylvester matrix. The most frequently used method

for solving this rank determination problem is the SVD [16]. In particular, let R be

an mxn matrix and UE R"' and VE Rnxn be orthogonal matrices. The matrix

R can be factorised as [28]

R= UEVT,

where

E E= diag(Ql, a2,. .., up) IR p= min(m, n), mxn

and the a1i=1,2, """, p, are the singular values of R. Let the number of the non-

zero values of u, be r, which is then referred to as the rank of the matrix R. This

implies that

Q1>Q2>... >Ur >Qr+1-... -Qp=O.

The question that now arises is: Is this condition always satisfied by exact matrices

whose entries are specified exactly, when computations are performed on them? The

answer to this question will be clear from the following two examples.

Example 6.1. Consider the following two exact polynomials

f(y) _ (y - 3)(y - 1)2(y - 2)3,

9(y) _ (y - 1)2.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 96

Clearly it can be seen that deg GCD(f, g) = 2. Thus, by Theorem 3.1, the theoretical

rank of S(f, g) is (6 + 2) -2=6. This result agrees with the result obtained using

the MATLAB function svd() to compute the singular values of R. The normalised

values of these singular values are plotted in Figure 6.1, in a logarithmic scale. It is

obvious that the rank of S(f, g) is r=6, and therefore deg GCD (f
,
g) = 2, which is

correct. Q

I

Figure 6.1: The normalised singular values of S(f, g), on a logarithmic scale, for
Example 6.1.

Example 6.2. Consider the following two exact polynomials

j (y) = (y-3.5)(y-3.7)2(y - 3.9)3,

9(y) = (y-3.7)5.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 97

Clearly it can be seen that deg GCD(f, g) = 2. Thus, by Theorem 3.1, the theoretical

rank of S(f, g) is (6 + 5) -2=9. This result is not obtained by the function svd()

in MATLAB. In particular, the normalised values of R are shown in Figure 6.2, in a

logarithmic scale, and it is obvious that the rank of S(f, g) is r=6, and therefore

the degree of the GCD of f (y) and g(y) is equal to 11 -6=5, which is incorrect. Q

0

-4

-6

-8

ö -10

-12

-2

-14

-16

_18L 0 2 4 6 8 10 12

Figure 6.2: The normalised singular values of S(f, g), on a logarithmic scale, for
Example 6.2.

Example 6.2 shows how easily the SVD-based method fails in the presence of small

errors such as roundoff errors. In practice, the SVD-based methods usually require

a threshold on the small singular values of S(f, g), and they fail to compute the

correct rank loss of S(f, .) if inexact data is considered. These limitations provide

the motivation for the computational methods for the determination of the rank of

the Sylvester matrix that are proposed in this chapter. Three methods are developed

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 98

for computing the degree of a GCD/AGCD of two univariate polynomials. All of

them use the Sylvester matrix, but they differ in the criteria used. These methods

perform all the computations on the coefficients of the polynomials and do not require

any prior knowledge about the noise level.

The first two methods are applicable to an arbitrary pair (f (y), g(y)) of polynomials.

The third method, on the other hand, is only applicable to a polynomial and its

derivative because it uses a constraint between a polynomial and its derivative.

The theories of the first two methods are given in Section 6.1, where exact polynomials

are considered. Section 6.2 extends the methods explained in Section 6.1 to make them

suitable for the computation of the degree of an AGCD, that is, when the polynomials

are inexact and the computations are performed in a floating point environment.

Examples that demonstrate the theory in Section 6.2 are given in Section 6.3. These

examples show the computation of the degree of an AGCD of two inexact polynomials

whose exact forms have roots of high multiplicities, using the methods in Section 6.2.

The third method is described in Section 6.4. Similar to the first two methods, the

third method is first illustrated for the computation of the degree of the GCD of

an exact polynomial and its derivative, in Section 6.4.1. Modifications of the theory

discussed in Section 6.4.1 are given in Section 6.4.2 to illustrate the computation of

the degree of an AGCD of an inexact polynomial and its derivative. Examples that

demonstrate the theory in Section 6.4.2 are given in Section 6.5.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 99

6.1 Computing the degree of the GCD of two ex-

act polynomials

Consider the two exact polynomials j (y) and g(y) defined in (3.1), and let these two

polynomials be non-coprime whose GCD is of degree d. It is recalled from Section

3.2 that the linear algebraic equation

Ak2k = Ck7 (s. l)

possesses solutions for k=1, """,
d. Thus ck lies in the column space of Ak only for

these values of k, from which it follows that

Gk C Rk for k=1, """, d,

Gk Z Rk for k =d+ 1, """, min(m, n), (6.2)

where Gk and xk are the spaces spanned by ck and the columns of Ak respectively.

This forms the bases of two new approaches for the compution of the degree of the

GCD of j (y) and g(y). These two methods determine whether Ck lies in the column

space of Ak or not, using two different criteria, namely the angle between the sub-

spaces 4 and lIk, and the residual of (6.1). In each of these approaches the degree

d is equal to the largest value of k for which Ck lies in the column space of Ak.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 100

Method 1: First principal angle. Let F and G be subspaces in R", and assume

that

p=dimF>dimG=q>1.

Definition 6.1.1121 The principal angles Bi E [0, -7r/2], for i=1, """, q, between F

and G are defined by

cosO =maxmaxuHV=u1v, IIuIl2=1,1IvII2=1,
uEF vEG

such that ufu = 0, vHv = 0, j=1,... , k- 1.

The vectors (ul, """, ui,) and (vi, """, v9) are called principal vectors of F and G.

The determination of the degree d of the GCD of j (y) and g(y), in this method, is done

through computing the angle ck between the subspaces Gk and Rk that are spanned

by the column cl, and the columns of Ak respectively, for k=1, ."", min (m, n). If

this angle is equal to zero, then Gk lies in ilk, which implies that the vector ck lies in

the column space of the matrix Ak. Therefore, due to (6.2), Ok satisfies,

Ik =0 for k=1,.. " ,
d, (6.3)

Ok >0 for k= d+1,
--- , min(m, n).

The degree, d, can then be chosen to be the largest value of k for which c5k = 0.

Method 2: Residual. In this method, the residual of equation (6.1) is used as

an error indicator, from which the GCD degree can be deduced. Particulary, in light

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 101

of (6.2) it can be seen that the residual rk,

rk - IlCk - Akxkll)

satisfies

rk =0 for k=1,..
,
d, (6.4)

rk >0 for k=d+1, """, min(m, n).

Clearly, this shows that the change in rk occurs after k=d, and therefore the GCD

degree is equal to largest value of k for which rk = 0.

Though these two methods have been developed independently, they are related ge-

ometrically as shown in Figure 6.3. Consider the linear algebraic equation Ax = b,

Figure 6.3: Geometry of the least squares problem.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 102

A ERAx9A. The least squares solution of this equation is

xo = Alb, At = (ATA)-IAT,

and the residual associated with this approximate solution is,

r=b-Axo=(I-AAt)b.

This residual is related to the angle 0 between Axo and b by the relation sin 0= jjbjj

Let b9 and Jr represent the small changes in the angle and the residual, respectively,

then

sin(B+bB)=
llr+brll

Ilb+sbll'

where

lir + Sril _
r(rt

+ br;)2, rA

and

C
br 1 (1+2) br

(r; + bri)2 = r? 1+ J2r; r;

Thus

T

IIr+BrII "' IIrII2+2rT8r= IIrII2I 1+2II
IF /=

IIrII l1+ IIrII2/'

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 103

to the first order. Similarly,

T

IIb+SbiI -' IIbII \1 IIbbb

Therefore,

sin(O + bB)
_

bTbb rTbr

sing IIb112 IIr112, 1+

to the first order. Since 0«1,

Se rTSr bTSb
_1

rS(IlrI12) S(11b112)
0 IITIIZ IIb112 2L llrl12 11 býý2 J

where

ö(Ilr112)
=

b(rTr)
_

2rTör
and a(Ilb112) =

8(bTr)
_

2bTöb
Ilrll2 Ilrl2 Ilrll2 Ilbl12 Ilbll2 Ilbl12

Thus,

I bel 1 (-I IIabII l
101 <2 Ilril + IIbII I

6.2 Computing the degree of an AGCD of two in-

exact polynomials

The previous section considers the computation of the degree of the GCD of two exact

polynomials. The methods discussed in that section assume that the data is error free

and the computations are done in a perfect computational environment. Practically,

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 104

the subresultant matrices of the Sylvester matrix of inexact polynomials have full

rank and only an AGCD for these polynomials is defined and can be computed. This

section extends the theory discussed in the previous section to make it suitable for

the computation of the degree of an AGCD of two inexact polynomials.

It is recalled that the preprocessing operations discussed in Chapter 4 are needed

when inexact polynomials are specified. These preprocessing operations transform

the given polynomials f (y) and g(y) into f o,, (w) and ao go,, (w), which are defined

in (4.8) and (4.9) respectively, where ao and Bo are the optimal values of a and 0

respectively, and their values are obtained by solving the LP problem in (4.7). Thus

all the computations are performed on these polynomials.

6.2.1 Best column selection

It was shown in Section 3.2 that if the exact polynomials j (y) and g(y) are considered,

and they have a common divisor of degree k, then the first column Ck of Sk (f, g) can

be moved to the right hand side because it necessarily lies in the column space of

Sk(f The situation is more complicated when the inexact polynomials feo (w) and

ao goo (w) are considered because Sk(feo, ao goo) has full rank and none of columns of

Sk(foo, ao goo) lie in the space spanned by the remaining columns of Sk(f, ao goo), for

all values of k=1, """, min(m, n). Equation (3.11) must therefore be modified to

reflect the non-singular property of Sk (foo, ao goo)

Let ck, i denote the ith column of Sk (feo, ao goo), i=1, """, m+n- 2k + 2. If the ith

column is moved to the right hand side, (3.11) is replaced by the approximation,

Ak, ixk, t ;,, Ck,;, (6.5)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 105

where Ak, i is the matrix formed by the remaining columns of Sk (f00, ao goj, that is,

Aki =
[Ck

1 Ck, 2 ' '' Ck, i-1 Ck, i+1 ''' Ck, m+n-2k+2]"

The best values of k and i are calculated such that the error in (6.5) is minimum. Note

that, depending on the value of i, the ck, j entries may contain either the coefficients

of feo (w) or the coefficients of ao goo (w). This problem is ignored in the literature,

where the default value i=1 is always used, but it is addressed in detail in this thesis.

Moreover, the careful selection of the indices k and i allows robust methods for the

computation of the degree of an AGCD of two inexact polynomials to be developed.

Kaltofen et. al. [36] use one example to argue that the first column of the Sylvester

matrix of the exact polynomials j (y) and g(y) should be chosen to form the overde-

termined system (6.5), that is i=1. The following two examples demonstrate the

weakness of this argument. The first example considers the same example given in

[36] and the second example considers another pair of polynomials.

Example 6.3. Consider the two exact polynomials,

f(y) = y2 +y= y(y + 1),

g(y) = y2 +4y+3= (y + 3)(y + 1),

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 106

whose Sylvester matrix is given by

s= s(f, 9) =

1010

1141

0134

0003

To examine whether the first column is the best column to be taken to the right hand

side or not, S(f, g) has been partitioned into [ci Ai], where ci is the ith column of

S(f , g) and Ai is the matrix formed by the remaining columns of S(f, g). The systems

of the equations Aix = ci derived from S(f
, g) were formed for i=1,2,3 and 4, and

the results of computing the error made in solving these systems are shown in Table

6.1.

Table 6.1: The solutions and the associated residuals of the systems of equations for
Example 6.3.

Column index x Residual
1 [-3 1 0] 2.9966 x10-11
2 [-0.3333 0.3333 0] 1.4199 x 10-15
3 [1 3 0] 1.1102 x 10-15
4 [-1273 0.8182 0.7273] 3.4641

These results show that the first, second and third columns of S(f, g) are all perfectly

adequate and any one of them can be moved to the right hand side, but the fourth

column gives the wrong answer and thus it should not be moved to the right hand

side. Q

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 107

Table 6.2: Comparing the residuals for Example 6.4.

Column index Residual
- - - - - 1

8
8.6 38 2 > <152

1.1894

Example 6.4. Consider the two exact polynomials,

1(y)
= (y + 4.6)6(y - 8.5)10(y - 1.8)4

9(y) = (y - 8.5)'°(y - 1.8)7,

whose GCD degree is 14. The residuals of the overdetermined systems of S14(f, 9)

have been computed for i=1,2, """ ,
11, where i denotes the column index of

S14(f
,
g). The minimum residual, which was found to be associated with i=8,

was then compared with the residual computed at i=1. Table 6.2 shows this com-

parison, where it is shown that the first column is not the best column to be taken

to the right hand side to form the system (6.5). This result contradicts the theory in

Section 3.2 where it is assumed that, considering exact data, the first column of the

kth subresultant matrix can always be taken to the right hand side to form (3.11).

This discrepancy between the theoretical and computational results is due to roundoff

error. Also the wide variation in the magnitude of the coefficients of the polynomials

of this example, which does not exist in Example 6.3, may also explain the differences

between the theoretical and the computational results. Q

Examples 6.3 and 6.4 show that even if exact polynomials are considered, the first

column of their Sylvester matrix is not always the best column to form Akxk = ck,

especially if the coefficients of the polynomials have wide variation in magnitude and

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 108

the computations are performed in a floating point environment. It is therefore clear

that, the situation is more complicated when the inexact polynomials f (y) and g(y),

are considered.

Considering inexact polynomials, it follows from (6.5) that for the values of k=

1, """, min(m, n), the values of cbk and rk defined in (6.3) and (6.4), respectively, are

non-zero. Thus, Methods 1 and 2 described in the previous section need to be modi-

fied to accommodate the inexact nature of the polynomials.

The rest of this section extends the computation of the degree of the GCD dis-

cussed in the previous section to make them suitable for inexact polynomials fo (w)

and ao goo (w). It is shown that the computation of the optimal column index i of

Sk(fea, ao goo) follows directly from the computation of the degree k=d of the AGCD

of feo (w) and ao goo (w).

6.2.2 Method 1: First principal angle

The smallest angle between the space Gk, i spanned by Ck, j and the space fk, i spanned

by the columns of Ak, i is called the first principal angle, Ok, i [75]. Thus,

Wk, i = min L(Gk, i, Hk, i), k=1, """, min(m, n); i=1, -" ", m+n- 2k + 2, (6.6)

where

dim Ck, i =1 and dim 7-(k, i =m+n- 2k + 1.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 109

For each value of k, the minimum value cbk of Ok, i is computed such that

Ok = min{I wk, i 1: i=1, "", m+n- 2k + 2}, (6.7)
i

and the column index i= qo, k at which the minima Ok occurs is recorded to yield the

optimal column vector qý,

-+o -
[Qo,

1, q, 0,27 ... i
QO, min(m, tt)) i (6.8)

where the subscript 0 denotes that a criterion based on the first principal angle is

used to compute these column indices.

Let do denote the computed degree of an AGCD. Although the values of cbk for

k=1, """, do can not be zero because of the presence of inexact data, the values of

Ok for these values of k are small compared to those values of qk for k> do. Thus

the degree do of an AGCD equals the index k for which the change in Ok between

two successive values of k is maximum,

do = {k : (Ok+l - lpk) -) max; k=1, ""-, min(m, n)}, (6.9)

and the index i= gm, d4 of the optimal column Ck, i in (6.5) is the doth element in (6.8).

Example 6.5. Let min(m, n) =7 and the vector 01,02, ""., 07] of the

angles be

0=[10-8 10-9 10-8 10-3 10-3 10-2 10-3].

The values of the angles 01,02 and 03 are relatively small and therefore the associated

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 110

approximate solutions of (6.5) are acceptable. By contrast, the values of the angles

041 """ 07 are large, which suggests that the associated approximate solutions of (6.5)

are associated with large errors. This discussion therefore leads to the conclusion that

there are common divisors of degrees 1,2 and 3, but there is no common divisor of

degree greater than 3. Thus the degree do of the AGCD is equal to three. 0

To be able to use the expression in (6.9) that defines the criterion for computing

do, it is first required to evaluate the angle 'Yk, i defined in (6.6), between the space

Gk, i spanned by ck, i and the space %lk, i spanned by the columns of the matrix Ak, i.

The following theory discusses the computation of 'Yk, i. According to [49], this com-

putation goes back to Jordan 1875, and it has been considered in [28,75].

In order to obtain an expression for &k, i, it is required to calculate an orthonormal

basis for lk, i, and this can be obtained by applying the QR decomposition to the

matrix Ak, i,

Ak, i = Nk, iRk, i,
Ný

iNk, i = Im+n-2k+1i (6.10)

where the columns of Nk, { E JR(m+n-k+1)x(m+n-2k+1) define an orthonormal basis for

71k, i, and Rk, i E R("`+n-2k+1)x(m+n-2k+1) is an upper triangular matrix. Thus each

vector Vk, i E lk, i can be written as

vk, i = Nk,
iwk, c, wk,, m+n-2k+1

The first principal angle 0k, i between Gk, i and Nk, i is equal to the smallest angle

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 111

ck" between the unit vectors Uk, i = I1ck,, 11 E Gk, i and Vk, i E iik, i,

COS'1k, i = max 1Lk ivk, i = max (u,
iNk, i) wk, i. (6.11)

Ilvk, ill =1 Ilwk, ill =1

If the SVD of UT tNk, i is

T /ýT uk, iNk, i = £k, iýwk, i)

Where Ek, i = [Ok, i, l 0 ... 0] E Rm+n-2k+1 and Qk, i E R(m+n-2k+1)x(m+n-2k+1) is

an orthogonal matrix, then (6.11) yields

COS y k, i = max UT ivk, s = max (ý. 'Q
il k, wk, i =

II2Gk,
iNk ,

11
- Uk i1.

11vII =1 llwII =1

This implies that the cosine of the first principal angle is equal to the 2-norm of

uk, iNk, i, or equivalently, the largest singular value of uk iNk, i,

T COS Ok, i =I uk, iNk, i = Qk, i, l

This maximum is attained when Wk, i is equal to the first column gk, i, l of Qk, i,

Vk, i = Nk, igk, i, l"

Thus, the first principal angle between Gk,; and rlk, i is given by

lPk,; = cos-1 Qk, ti, l. (6.12)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 112

However, this equation implies that to first order,

S'Ok,
i, I =-

bak,;,
l (6.13)

sin)k, i'

and clearly it can be seen that in the presence of inexact data, the formula in (6.12)

does not yield correct results for small angles, 'Pk, i s: 0, because IS k, il » IöQk, %, ll if

Ok, i ^ 0. An alternative approach for computing ? Vk, i is given in [75] by considering

the orthonormal complements Gk i and 7-Li, i, where

Gk,
i U Gk i= Ii8' and 'Hk, { U xk

i=
Rrv

dimGks=r-1 and dimý-l, -i=r-

and r=m+n-k+1 and q=m+n- 2k + 1. The consideration of the orthogonal

complements Gk i and H' i leads to a stable expression for small Y1k, i.
Let the columns of the matrices Uk, i, 2 E Rrx(r-1) and Nk, i, 2 E Rr"(r-9) define the

orthonormal bases for Gk i and 7-lk i respectively, and redefine the vector uk, i and the

matrix Nk, i to be uk, i, 1 and Nk, i, 1 respectively,

uk, i, 1 :=u ERr and Nk, i, 1 :=NER rx4.

Thus uk, i, l defines a unit vector that spans Ck, i, and the columns of Nk, i, i define an

orthonormal basis for xk, i. It follows that the columns of Uk, i and Nk, i, which are

redefined as

Uk, i =[uk j1 Uk, a, 2] ERrxr' lJkTilJk, i = Uk, iUki - Irl (6.14)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 113

and

Nk, i =I Nk, s, l Nk,, 2]E
j[$rxr NI

zNk, i = Nk, iNk i= I*ý (6.15)

respectively, define orthonormal bases for W.

Theorem 6.1. Let Gk, i and %lk, i be subspaces of jar, and let Bi be the ith princi-

pal angle between them. The unit vector uk, i, l E R' spans the line Gk, i, and the

columns of Nk, i, l E R'xq define an orthonormal basis for fk, i. Also, let the columns

of Uk, i, 2 E R"`«'-') and Nk, i, 2 E Rr, (r-e) define orthonormal bases for Gki and

Wj
, respectively, where (6.14) and (6.15) are satisfied. Then the singular values

of Uk i 2Nk, i, 1 E R('-') "9 and uk i 1Nk i, 2 E j[$'-4 are

sin e1 < sin 82 <"""< sin Oq.

Proof Since Uk, i is an orthogonal matrix and Nk, ti, l has orthonormal columns,

the columns of Wl E IR xq

T
ukTi, lNk, i, 1

Wl = Uk, iNk, Z, I UkT
, i, 2Nk, i, 1

T
uk, i, iNk, *, 1 E Rq, UT

k, i, 2Nk, i, 1 E jýýr-lýxq'

are also orthonormal. Also, the singular values of u i, 1Nk, i, i are ryi = cos Bi, i=

1, ... , q, and it follows from Theorem 6.16 that the singular values of Uk i, 2Nk,,, 1 are

o-i= 1--y? =sin Bi, i=1,..., q.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD

Consider now the vector W2 E R'',

T
NkTq

luk, i, l W2 =N uk, i, l =
T Nk, 2uk, q, l

Nk, T
t, luk, i, l E ýQ NT -q

k, Zuk,,, l
E Ifg

114

The singular values of Nk ;, luk, i, l are cos Bi, i=1,. .., q, and thus it follows from

Theorem 6.16 that the singular values of Nk i, 2uk, i, 1 and uk i, 1Nki, 2 are sin 6i, i=

l,, q. Q

Since the singular values of uT ki 1Nk, i, 2 and Zki, 2Nk, i, 1 are Qi = sin Bi, i

it follows that the principal angles are

Bt = Slri-i QiI 2=

and thus to first order,

bQi

be; 1,..., 4, cos Bs (6.16)

from which it follows that if Bi :. 0, then IS0, l r, I6o-il. The principal angle Bi is

therefore stable with respect to changes in vi when Bi 0, which must be compared

with the situation defined in (6.13). By contrast, if 0i 2, then (6.13) shows that

Bi can be calculated in a stable manner from Gk, i and Wk, i, but it follows from (6.16)

that its calculation from Gk i and 7-k' i is unstable.

The only issue that must still be addressed is the calculation of the matrices Uk, i, 2

and Nk, i, z, whose columns define orthonormal bases for Gk i and ý-lk i respectively. It

is recalled that Nk, i, l is calculated from the QR decomposition of Ak, i, as shown in

(6.10), with u and N replaced by uk, i, l and Nk, i, l respectively, as noted above.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 115

The unit vector uk, i, l lies in Ck, i, and thus all vectors xE Rr that satisfy

uk,, lX =0,

are orthogonal to uk, i, l, from which it follows that they lie in Gk i. It is necessary

to choose an orthonormal set of vectors x because an orthonormal basis for Lk ', i is

required.

If the SVD of uk, i, l is

uk, i, l =P,
0

where PEP X1' is orthogonal, vER is the singular value of uk, i, l, and the zero vector

is of order r-1, then

uk, i, lTýk =1U ýT I PTpki

where Pk, k=1, ... , r, is the kth column of P. It is necessary to consider two

situations, which are defined by k=1 and 2<k<r.

Ifk= 1, then

uk, i, 1P1 =U oT J e1 = U,

where el is the first unit basis vector.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 116

If 2<k<r, then

T(ul Pk =lo OT ek = ýý

where ek is the kth unit basis vector, and thus the last r-1 columns of the left

singular matrix P of uk, i, 1 provide an orthonormal basis for Gk i, that is,

Ük, +, 2 =L P2 P3 ... pr-1 Pr

I,

where

TTT Uk,
i, 2Uk, i, 2 = Ir-1ý uk, i, lUk, i, 2 = 0, Uk

i, 2Uk, i, 1 = 0.

(6.17)

The calculation of an orthonormal basis for ß-l4 i, that is, the columns of Nk, {, z, follows

similarly. Specifically, if the SVD of Nk, =, 1 is

Nk, i, i =PE QT,
0

where PE 118r"r, QE 1189"9, EE 1[89"9 is a diagonal matrix of the singular values Qs

of N1, arranged in non-increasing order, and the zero matrix is of order (r - q) x q,

then

Nk,
i, lpk =QI ET oT 1

PTpk)

where pk, k=1,
... , r, is the kth column of P. It is necessary to consider two

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 117

situations, which are defined by 1<k<q and q+1<k<r.

If 1<k<q, then

T oT

J
ek = QkQkv Nk,

i, lpk =Q Ir

where qk is the kth column of Q.

Ifq+l < k<r, then

T Nk,
i, lpk =Q ST ýT ek = ýý

and thus the last r-q columns of the left singular matrix P of Nk,;, l provide an

orthonormal basis for lk ;, that is,

Nk, i 2-[Pg+1 Pq+2 ... pr-i Pr If
where

NT
k,,, 2Nk, i, z -

I,.
-q,

T Nk,:, 1Nk,,, 2 = O, Nk,, zNk, %, i = 0.

(6.18)

It follows from (6.17) that Uk, i, 2 is defined by the last r -1 columns of the left singular

matrix of uk, i, l, and similarly, it follows from (6.18) that Nk, i, 2 is defined by the last

r-q columns of the left singular matrix of Nk, i, i

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 118

6.2.3 Method 2: Residual

Let x* be an approximate solution for (6.5), and thus the residual of this approxima-

tion is

rk, i - Ck, i -
Ak,

ixk, it xk, i = AkCk,
i, Ak -(Ak iAk, i)-'A k, ii (6.19)

for k=1, """, min(m, n), and i=1, """, m+n- 2k+2. For each value of k, the

minimum value of II rk, iI I is computed using (6.19), such that

rk = min{ llrk, i ll :i=1, ", m+n- 2k + 2}, k=1, """, min(m, n), (6.20)

and the column index i= qr, k at which each minimum rk occurs is recorded to yield

the optimal column vector q,.,

qr = [Qr, i r Qr, 2 7'''r Qr, min(m, n)] 7
(6.21)

where the subscript r denotes that these column indices are computed using a criterion

based on the residual. Let d, denote the computed degree of an AGCD. Although

the values of rk for k=1, """, d, can not be zero because of the presence of inexact

data, the values of rk, for these values of k are small compared to those values of rk

for k>d,. Thus the degree dr of an AGCD equals the index k for which the change

in rk between two successive values of k is maximum,

d,. = {k : (rk+l - rk) -+ max; k=1, ..., min(m, n)}, (6.22)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 119

and the index i=q,, d,, of the optimal column ck,; in (6.5) is the d, th element in

(6.21). Since the polynomials have been normalised before being involved in the

AGCD computations, the non-normalised residual has been considered in (6.19).

6.3 Examples

This section discusses two examples that illustrate the methods explained in Section

6.2 for the computation of estimates for the degree of an AGCD.

Uniformly distributed random noise was first added, in a componentwise sense, to

the coefficients of the theoretically exact polynomials. The resulting polynomials

were then called the given polynomials. In particular, consider the exact polynomials

f (y) and g(y) that are defined in (3.1). Adding componentwise uniformly distributed

noise to the coefficients of f (y) and g(y) yields,

m

f(ý) _E (d; + 8ä,)y',
; =o n

g(y) =
E(b; + bb;)y',

j=o

where bä, =ä rjE ,j=0, """, m, and bbd = bjrj8,, j=0, """, n, rj is a uniformly

distributed random number in the interval [-1,1] and eC is the upper bound on the

componentwise signal-to-noise ratio.

The polynomials f (y) and g(y) were then preprocessed according to the preprocessing

operations given in Chapter 4 to have the scaled polynomial forms given in (4.8) and

(4.9), respectively.

Example 6.6. Componentwise noise with signal-to-noise ratio cc -1 = 104 was added

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 120

to the coefficients of the polynomials whose roots and multiplicities are defined in Ta-

ble 6.3. It can be seen that f (y) and g(y) have a GCD of degree d=7. The perturbed

polynomials were then normalised by the geometric means of their coefficients and

preprocessed by the optimal scaling factors ao = 0.920253 and Bo = 2.905596. Using

Methods 1 and 2, the values of /k and rk defined in (6.7) and (6.20) respectively, were

computed for k=1, """, 28, and the results of the variations of log cbk and log rk with

k are shown in Figure 6.4. It can be seen that the maximum gradients (6.9) and (6.22)

occur at k= do = d,. = 7, which suggests that the degree of the AGCD of feo (w) and

goo (w) is d=7, which is correct as d=7.

Furthermore, the results of computing the optimal columns of Sk(feo, ao geo) for

which the minimisations in (6.7) and (6.20) are achieved using Methods 1 and 2,

for k=1, """, 28, are shown in Figure 6.5. It can be seen that Methods 1 and 2 do

not necessarily have the same optimal column for each value of k. However, despite

this difference, both methods meet the same value of k= do = d,. =7 at which their

criteria are achieved as shown in Figure 6.4. Figure 6.5 shows that at k=7 the

optimal columns qo, 7 = 26 and q,., 7 = 26. Q

Table 6.3: The roots and multiplicities of 1(y) and g(y) for Example 6.6.

Root of f (y) Multiplicity
0.6290 5
2.6760 8

-9.7181 4
-0.5926 11

Root of g(y) Multiplicity

-9.7181 8

-0.5926 3
7.7265 7

-7.7194 10

Example 6.7. Consider the theoretically exact polynomials f (y) and g(y), that are

specified by the roots and multiplicities given in Table 6.4. It can be seen that f (y)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 121

Figure 6.4: (a) The variations with k, of 109 Ok and log rk for Example 6.6, where
denotes the exact GCD degree d.

and g(y) have a GCD of degree d=7. The polynomials were first perturbed by

noise in a componentwise sense such that the signal-to-noise ratio was e. 1= 104.

The resulting polynomials were then normalised by the geometric means of their

coefficients and scaled by the optimal preprocessing parameters ao = 2.387441 x 102

and 00 = 7.644097 x 10-3. Using Methods 1 and 2, the values of Ok and rk defined in

(6.7) and (6.20) respectively, were computed for k=1, """, 19, and the results of the

variations of log tk and log rk with k are shown in Figure 6.6. It can be seen that

the maximum gradients (6.9) and (6.22) occur at k=d, = d,. = 7, which suggests

that the degree of the GCD of fay, (w) and geo (w) is d=7, which is correct as d=7.

Furthermore, the results of computing the optimal columns of Sk (fa", a0 go) for which

the minimisations in (6.7) and (6.20) are achieved using Methods 1 and 2, for k=

1, """, 19, are shown in Figure 6.7.

It can be seen that Methods 1 and 2 do not necessarily have the same optimal

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 122

40

35

30

c E 25
7

0
20

f0
E
6

.
15

0

Q
Ö.

ýo

Iý
Iý

ý1ý

r 1! 1
I

10

5

oý 0 5

\ ýýý

ý 1I -ýk

ý N4,

10 15 20
k

14 v ý
ý,

0 25 30

Figure 6.5: The optimal columns of Sk(fo0, ao goo) for which the minimisations in
(6.7) and (6.20) are achieved, using Method 1 x, and Method 2 o, for Example 6.6.

column for each value of k. Both methods yield the same value of k= do = d,. =7

at which their criteria are achieved, as shown in Figure 6.6. Figure 6.7 shows that at

k=d,. = d,, =7 the optimal columns qß, 7 = 14 and q,, 7 = 14.1

Experimental results show that Methods 1 and 2 described in Sections 6.2.2 and

6.2.3, respectively, do not necessarily yield the same optimal columns of the Sylvester

matrix of feo (w) and aogoo (w). However, the effect of this is negligible because it

will be shown in the next chapter that the computed structured low rank approxi-

mations of S(feo, ao g©0) differ slightly and always have a well defined rank drop at

k= deg GCD(feo, ao g©o). Thus the structured low rank approximations from both

methods can be used for subsequent computations.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 123

Table 6.4: The roots and multiplicities of f (y) and g(y) for Example 6.7.

Root of f (y) Multiplicity
5.312896426e-005 5
6.532513514e-005 5
9.373846382e-005 4
7.098856547e-005 2
5.825141918e-005 3

Root of g(y) Multiplicity
5.312896426300e-005 5
6.532513514100e-005 2

-8.990899936627e+00 4

-6.311317686013e+00 3

-9.086833530452e+00 2
7.700830040825e+00 4

6.4 AGCD degree of a polynomial and its deriva-

tive

The methods considered so far for the computation of the degree of an AGCD are

applicable to any pair of polynomials, and thus they can be applied to a polynomial

and its derivative. However, the computation of an AGCD of a polynomial and its

derivative provides a derivative constraint between them, from which another method

for the computation of the degree of an AGCD is proposed.

This section introduces this constraint first and then a method that uses this con-

straint for the computation of the degree of an AGCD of a polynomial and its deriva-

tive, is explained. For simplicity, the exact polynomials are first considered and then

the necessary modifications to accommodate the uncertainty of the inexact polyno-

mials are discussed.

6.4.1 GCD degree of an exact polynomial and its derivative

Consider the exact polynomial f=f (y) and its derivative g(y) = f(') (y) defined in

(3.1). It is recalled from Section 3.2 that if the degree of the GCD of f (y) and f (l) (y)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD

m 0

5

0

-5

-10
15

-a-
-20

-25

-30
-35

-40 d

0
-45

°°°0e°°°7

f
,

0

5 10 15
k

_p

-4

-6

-8
-10

Of
O

-12

-14

-16

20

-18

-20

r°8°°3°°°W1

(3E70000*

0 10
k

20

Figure 6.6: The variations with k, of log Ok and log rk for Example 6.7, where
denotes the exact GCD degree d.

is equal to d, then there exist quotient polynomials uk(y) and vk(y), and a common

divisor polynomial dk(y), such that for k=1, """, d,

and thus,

dk(y) =f
(y)

=f
ýl(y)

flk(y) vk(Y)

where deg 11k < deg f= in, deg 1k< deg f (1) =n=m-1, and

flk(Y) = Em, -k'fbym-k-i
i-p k, i

vk(y) _ En-kv yn-k-ý i-o k, i ý

f(y) = uk(y)dk(y), and J(l)(y)
= Vk(Y)dk(Y),

dk(y) _ 1-zk=0 dk iyk-i

(6.23)

(6.24)

(6.25)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 125

25

20

F15

Ö
U

(6

.a
E

10
0

5

0

ý ý
M{

1 p.
ý

5

\ý

ö+o

oax
`o

10
k

15 20

Figure 6.7: The optimal columns of S, k (feo
, ao 990) for which the minimisations in

(6.7) and (6.20) are achieved, using Method 1 x, and Method 2 o, for Example 6.7.

Differentiating f (y) yields

d ük(y)dk(y)
ýýý (ý) =ýd= üý1) (y)dk(y) + ýk(y)d(') (y), k =1, ..., d, (6.26)

y

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 126

which, in terms of a matrix-vector product, can be written as,

dk, o

äk, 1

_(1)

dk, 0

äk, 1
dk, k

(m - k)ük, o

(m -k- 1)wk, i

2Uk,
m, _k_2

ük,
m_k_1

dk, k I
kdk, o

(k -1)dk, l
kdk, p

(k - 1)dk, l

dk, k

+

Uk, O

ük, l

fLk,
m-k-2

L uk, m-k-1 J
äk,

k

= Fk(dk)u(kl) + Cry'k(dk) uki (6.27)

where Fk(dk) and Gk(dk) are Cauchy matrices whose entries are the coefficients of

dk(y), which is defined in (6.25), and its derivative, respectively, and ük and ü(l) are

the coefficient vectors of ük(y), and its derivative, respectively, where ük(y) is defined

in (6.25),

T
ük

[k,

o 2Lk, 1 jlk,
m_k

IE
Rým-k+1, (6.28)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 127

uý1) =

[(m

- %C)2Lk, p (m
-k- 1)71k, 1 ... 2uk,

m-k-2 uk, m-k-1

Let

m-k 0

m-k-1 0

R=

20

10

and thus the vector ük') can be expressed in terms of ük as follows,

Üklý = Rük.

Therefore, using (6.27) and (6.30), it can be verified that

ýT
E R'-k

(6.29)

(6.30)

li)
=

(Fk(dk)R + Gk(dk)) ük, k=1, ... ,
d, (6.31)

but it follows from (6.23) that

e1
= Fk(dk)-4, k=1, .. d, (6.32)

where Vk is the vector of the coefficients of bk(y) defined in (6.25),

T
n-k+l ý'k = vk p vk 1 vk

n_k
ER (6.33)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 128

Thus it follows from (6.31) and (6.32) that

Fk(dk)Vk -
(Fk(dk)R+Gk(dk))ük

=0, k-1, "" ,
d, (6.34)

where vk and ük are defined in (6.33) and (6.28), respectively. It follows that if

ek = Fk(dk)vk -
(Fk(dk)R+ck(k))nk,

then fork= 1, -.. m-1

Ilekll = 0, k=1,..., d,
Ilekll > 0, k=1, , m-1.

(6.35)

(6.36)

Since (6.34) is satisfied for k=1, """, d only, the value of d can be considered to be

the largest value of k for which (6.34) is satisfied.

An important difference between criterion (6.36), and the angle (6.3) and residual

(6.4) criteria used by Methods 1 and 2 respectively, is that the entries of criterion

(6.36), which is defined by (6.35), include the coefficients of dk(y), and thus it requires

initial estimates of the common divisors cdk(y). The computation of these initial

estimates is now considered.

It follows from (6.24) that, for k=1, """, d

vk (y)f (y) = ük (y)f (1) (y)j (6.37)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 129

where ük(y), vk(y) and dk(y) are as defined in (6.25). The polynomial products in

(6.37) can be written in matrix-vector form,

[Ck DkJ Ivk =Sk Ivk 1 =0, k=1,... m-1, (6.38)
Uk -Uk

where

vk = 0,

ük = 0,

where Ck = Ck(f) E R(2m-k)(m-k) and Dk = Dk(f (1)) E R(2m-k)(m-k+1) are Cauchy

matrices whose entries are the coefficients of j (y) and j(1) (y) respectively, vk and ük

are defined in (6.33) and (6.28) respectively, and Sk = Sk(f, f(1)) E R(2m-k)x(2m-2k+1)

is the kth Sylvester subresultant matrix of f (y) and f(') (y), which can be partitioned

, into a matrix Ak E R(2m-k)X(2m-2k) and the vector ck E R(2m-k)

Sk=
[Ck

Akl ,

where ck is the first column of Sk and Ak is the matrix formed from the remaining

columns of Sk. Since the degree of the GCD of j (y) and j(') (y) is equal to d, vk, o 36 0

for k=1, """, d and since exact data is being considered, vk, o can be moved to

the right hand side without loss of generality, that is, vk, o = -1. Thus using the

partitioned form of Sk and the condition 7Jk, O _ -1, allows (6.38) to be written as,

IC = 1, ... ý Cý, Akxk = Cki

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 130

where

Akxk 0 Ck, k= 1,

and fork=1, """, m-1,

rT
t1 2m-2k Xk = AkCk Zk, l Ük

m_k_1 -1lk p -ük, +n_k JER
(6.39)

Estimates for the vectors ük and vk can be calculated from (6.39), and estimates for

dk can be obtained from ük and 'rk. In particular, the equations in (6.23) can be

combined in one matrix-vector form,

Qk,
l

Qk,
2

where Qk, 1 and Qk, 2 are Cauchy matrices whose entries are the coefficients of ük and

Vk respectively, that are calculated from (6.39), and i and f
1)

are the vectors of the

coefficients of j (y) and fill (y), respectively. Thus, dk can be obtained from,

äk
Qk, 1

Qk, 2 Qk, 2 I' [
f

;, (1) 1 k=1, """ , m-1.

6.4.2 AGCD degree of an inexact polynomial and its deriva-

tive

This section extends Section 6.4.1 to the situation that occurs when the inexact

polynomials f (y) and its derivative f (fl (y), whose exact forms have a GCD of degree

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 131

d, are considered. It follows that, for k=1, , d, (6.23) must be replaced by the

approximations

f(u) uk(y)dk(y), and f(1)(y) '` Vk(y)dk(y)+

and the derivative constraint (6.26) must be replaced by

f(1)(y) uk1)(y)dk(y)+uk(y)dkl)(y). (6.40)

where

uk(y) Em-k'tik,
iym-k-je i=0

vk(y) _ Ein=-0k vk, iyn-k-iý

dk / y) _ Ek yk p
dk, i -a

It has been shown in Chapter 4 that it is necessary to process f (y) and f (1) (y) before

an AGCD is computed. In particular, it is required to normalise f (y) and f (')(y) by

the geometric means of their coefficients, and thus

m
%(y) =E aiym-je

i=0

aq

(n, '`oI aiI)
I

m+1

m

and

I Il
i=o

M-1

g(y) biy , m-i-i
(m - i)ai

`-0 (n; `0-' I(m-7)aiI)m

M-1

-1ý 11 Jbtl
i=O

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 132

are considered, where g(y) is proportional to, and not equal to, f(l)(y). Specifically,

it can be verified that

mm
I

.1
\1 ,, i=0, """ , m-1. (6.41)

Cý.

ý=o 1 a. %! Im
mtl

Thus,

g(y) = , \fl"(y)"

Scaling f (y) and g(y) by the scaling factors ao and Oo as described in Chapter 4 yields

the polynomials

m m-1

feo(w) = Ea"w, "`-' and ao9eo(w) = aoEbi'w"`-i-1, (6.42)
i=O i=O

whose coefficients are

ai = äO1 and bi = bi0o -'-1,

where ao and Co are the optimal values of a and 0, respectively, whose values are

obtained by solving the LP problem (4.7). It also follows from (6.41) and (6.42) that

goo (w) = veolýw), (6.43)

which establishes the relation between go, (w) and fBä(w).

It is assumed that f (y) is inexact, and thus for k=1, ."", d, an approximate common

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 133

divisor dk(w) of f(Bow) and go,, (w), of degree k, satisfies

f90(w) ~ uk, eo (w)dk, 9o (w), aogeo (w) ^ vk, eo (w)dk, 90 (w), k=1, ... , d, (6.44)

where,

Uk, Oo (w)

Vk, eo (w)

dk, eo (w) =

Also, scaling (6.40) by 0o yields,

m-k
m-k-i k-i

uk, iw , uk, i = Ck, iBO -

i=0
n-k

n-k-i n-k-i ZJk, iZU , 7Jk, i - ek, ie0

i=0
k

k-{ k-i dk
iZll , Cýk Tk iB0

i=0

(6.45)

(6.46)

(6.47)

1k

,
fäo)ý'lU) E (4'k,

iB0-s) wk-t 2lk1Bp(2U) -}-
i=0
k-1

k-i-1 ((k - 2)rk, iBUk-i-1) w uk, go(w)

i=0 i=0
k

(\ r k, iBO_tl wk-' uk10Q (w) +

t=0 i=0
k-1
E

i=0

\
k-i-1 k-i-1 (Sk,

iBO
)W uk, eo (w)+

i=0 i=0

using (6.45), (6.46) and (6.47), where the coefficients of dklea (w) are

8k, i=(k-2)Tki, 2=0,..., k-1.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 134

In terms of a matrix-vector product, the coefficients of fB' (w) can be written as,

rk, oeo
rk,

leö-1
Tk pBý

ý{1) _ B" 0

rk, k

rk, k

Sk pek0-1

k-2
Sk, 180

Sk, k-1

L sk, k-1 J

= Lk BoCkläo + Mk, Bo6k, Bo7

where ck, 90 is the vector of coefficients of Uk, eo (w) defined in (6.45),

Tk 1 Bk0-1

Sk pep-1

Sk 180-2

(m - k)c gm-k-1 k, 0 0

(m
-k- 1)ck, 180 -k-2

2Ck,
m-k-2B0

Ck, m-k-1

Ck, pBÖ -k

m-k-1 Ck 180

Ck, m, _k_lep

Ck, m-k ý

+

(6.48)

T f
m-k m-k-1 m-k}1 Ck 90 -L Ck OBO Ck 1B0 ... Ck m_k_1e0

Zk
m_k

Eý ý

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 135

and ck ep is the vector of coefficients of the derivative with respect to w,

f; k, 00ok

Lk, Bo =

k-1
rk 1 B0

1'k, 0B0

k-1
rk, 1BO E 1I8'n" (m-k)

,

7'k, k

rk, k

and

k-1
Sk pe0

Sk 1Bp-2

A1k, eo =

sk oeo-i
k-2 Sk 1B0 E ýmx(m-k+1)

Sk, k-1

Sk, k-1

It is readily verified that ckleo and ck, ep are related by the diagonal matrix RE

(m-k)x(m-k+1) which is defined in (6.29),

Bocklep = Rck, ep. (6.49)

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD

It follows from (6.48) and (6.49) that

ýBo) ,1
o

(Lk,
BoR + BoMk, eo) ck, eo

136

(6.50)

and, from (6.43) and (6.44) that

(aoA) feo)('w) = vk, eo(w)dk, eo(w)i
m! Co-/m

rýJ

0
(Q'7Iý m m}1

ý

and thus the vector of coefficients (aoA) f(Bo) of (ao)) f (1 (w) can also be approximated 00

by

(ao. 1) eBö) s'ti Lk, epek, ep, (6.51)

where ek, 90 is the vector of coefficients of Vk, Oo(w) defined in (6.46),

ek, eo =I ek ,,)Om-k-1 ek leÖ -k-2

T

E 1[8"`_k ek, ýn-k-2B0 ek, m-k-1

The combination of (6.50) and (6.51) yields

(
Co Lk, goek, go -

(Lk,
OOR + B°Mk, ep) ck, Bo ý 0. (6.52)

a°, \

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 137

It follows from (6.52) that

1 [Vk,
eý Lk, epR + Uk, eo

Vk, eo

Je0, (6.53)
-tik, Bo

where Vk, oo =
(JOJI) Lk, eo and Uk, 9o = OoMk, o,. This approximation allows the error

measure,

ek =

IIVk,
eo Vk, go -(Lk, Bo R+ Uk, go

)
uk1eo

11

k=1, "". m-1, (6.54)
IIVk,

eoVk, 9oII +I
I

\LkBoR+Uk, eo 1Uk, go11'

to be calculated for each value of k. The normalisation in (6.54) guarantees that ek

is always finite and independent of any arbitrary scaling. The value of k, for which

the error measure (6.54) achieves its minimum value is equal to the degree d of the

AGCD. The reason for this follows from the following observations (see Section 3.2

for the case when an exact polynomial is considered):

Observation 1: For k=1, """, d-1, the solutions ('k, 90, ük, eo) of (6.53) are,

with high probability, coefficients of polynomial approximation to rational functions.

Therefore, ek in (6.54) is large.

Observation 2: For k=d, (6.53) is satisfied with a minimum error, since there is

a unique approximate solution (Vd, eoi üd, ea), corresponding to an AGCD. Therefore,

ek in (6.54) is small.

Observation 3: For k= d+ 1, """, m- 1, the coefficient matrix in (6.53) is far from

singularity because there does not exist an A GCD of degree greater than d. Therefore,

ek in (6.54) is large.

It therefore follows that the index k for which the error in (6.53) is a minimum is

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 138

equal to the degree d of an AGCD of f (y) and g(y). Let de =d denote the computed

degree of an AGCD, using the error measure (6.54), then

de={IC: ek-->min; k=1, """, m-1}.

The computation of the error measure (6.54) requires estimates of the common di-

visors dk, ea (w), k=1, """, m-1. These estimates require that the approximation

(6.5)

Ak,
ixk, i t: ck, i, k=1, """, m- 1; i=1, , 2m - 2k + 1, (6.55)

be considered, where ck, i is the it' column of Sk(fk, eo, aogk, eo), Ak, i is the matrix

formed by the remaining columns of Sk(fk, eo, aogk, eo), and the vector Xk, i contains the

coefficients of the quotient polynomials uk, eo (w) and vk, eo (w) defined in (6.45) and

(6.46), respectively. It follows from (6.44) that the estimates of the common divisors

dk, ea (w), k=1, """, m-1 can be obtained from the least squares solutions of

Qk, l dk 90 -f
Bo k-1, ..., m-1,

Qk, 2 aogeo

where Qk, 1 and Qk, 2 are Cauchy matrices whose entries are the coefficients of uk, eo (w)

and vk, ep(w) respectively, that are calculated from xk, 1, and foa and goo are the vec-

tors of the coefficients of foo (w) and goo (w), respectively. The indices (k, i) must be

calculated such that the error in (6.55) is small. It has been shown in Section 6.2

that the index i of the optimal column of Sk(fk, eo, aogk, eo), for the computation of

the degree of the AGCD of fk, oo(w) and ao9k, eo, for each value of k=1, """, m-1,

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 139

can be computed based on the angle between the subspace spanned by ck, t and the

subspace spanned by Ak, E, or based on the residual of the approximation in (6.55),

as shown in Sections 6.2.2 and 6.2.3, respectively. Therefore, the error measure ek in

(6.54) can be computed using:

1. The criterion that is based on the first principal angle, to yield ek, t.

2. The criterion that is based on the residual, to yield ek,,..

Thus based on the use of the above two criteria, the error measure (6.54) provides

two estimates de, t and de,,. of d, respectively, and since it is assumed that the error is

small, the desire is that both estimates are equal.

6.5 Examples

This section provides two examples that demonstrate the use of the three methods

described in this chapter for the computation of the degree of an AGCD of an inexact

polynomial and its derivative. In particular,

1. The first method uses first principal angle and it is described in Sections 6.2.2.

2. The second method uses the residual of an algebraic form derived from the

Sylvester matrix of two inexact polynomials and it is described in Section 6.2.3.

3. The third method is discussed in the previous section. It uses a constraint

between a polynomial and its derivative.

The first two methods are applicable to any pair of polynomials, whereas the third

method is only applicable for a polynomial for a polynomial and its derivative. More-

over, it is noted above that the this method uses the error measure ek in (6.54),

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 140

0 ý, ý o
ý x aý
O_ -5

0)
0

-10
0 20

k

J
40

Figure 6.8: The variations with k. of log Qk. log rk, log ek, t and log ek. r
for Example

6.8, where * denotes the exact GCD degree d.

which have two forms ek, t and ek, r., and the computation of both of these forms are

considered in these examples.

Example G. S. Consider the exact polynomial

1(9)
= (y - 9.2393)10(y + 7.8313)8(y + 9.2777)7(y - 2.3618)6(y - 1.3429)3,

for which the GCD of f (y) and f (1) (y) is equal to

4(y) = (y - 9.2393)9(y + 7.8313)7(y + 9.2777)6(9 - 2.3618)5(y - 1.3429)2,

and the degree d of the GCD of f (y) and f (1) (y) is equal to 29. Componentwise

ýý

ýý ý

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 141

C 0
'6 oý

Iý',
ý'

L
Y

N

0 -5
0)
0

-10L 0

II 4
10 20

k
30

Figure 6.9: The variations with k, of log Ok, log rk, log ek, t and log ek,, for Example

6.9, where * denotes the exact GCD degree d.

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 142

noise with e, = 10-8 was added to the coefficients of i (y). The perturbed polynomial

f (y) and its derivative f (1) (y) were then normalised by the geometric means of their

coefficients and preprocessed by the optimal scaling parameters ao = 1.9056 and 8o =

5.8975. The values of c5k, rk, and ek, defined in (6.7), (6.20) and (6.53) respectively,

were computed for k=1, """, 33, and the results of the variations of log Ok, log rk

and log ek with k, are shown in Figure 6.8 It can be seen that the maximum changes

in 109 c5k and log rk occur at k=d, = d,. = 29, and the minimum values of log ek, t

and log ek,, occur at k= de, t = de,,. = 29. These results suggest that the degree of

the AGCD of fea (w) and its derivative is d= 29, which is correct because d= 29.

Thus all of the three methods were successful in computing the degree of the AGCD

of f (y) and f (l) (y), for this example. 0

Example 6.9. Consider the theoretically exact polynomial j (y) that is specified by

the roots and multiplicities given in Table 6.5, along with the roots and multiplicities

of the theoretical exact GCD of f (y) and its derivative, q(y) = GCD(f, f (l)). It can

be seen that f (y) and g(y) have a GCD of degree d= 21. Componentwise noise with

s, = 10-$ was added to the coefficients of f (y). The perturbed polynomial f (y) and

its derivative f (') (y) were then normalised by the geometric means of their coefficients

and preprocessed by the optimal scaling parameters ao = 1.3862 and Bo = 2.3838.

The values of Cpk, rk, and ek, defined in (6.7), (6.20) and (6.53) respectively, were

computed for k=1, """, 28, and the results of the variations of log Ok, log rk and

log ek with k, are shown in Figure 6.9.

It can be seen that the maximum changes in log Ok and log rk occur at k= do = d,.

21, and the minimum values of log ek, t and log ek, r occur at k= dc, t = de,,. = 21. These

results suggest that the degree of the AGCD of fop(w) and its derivative is d= 21,

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 143

Table 6.5: The roots and multiplicities of f(y) and q(y) = GCD(f, f(1)) for Example
6.9.

Root of f (y) Multiplicity

-7.5947 6
1.4923 5

0.63371 5
5.4862 4

-3.3076 3

-3.067 2
2.5090 2
0.4224 2

Root of q(y) Multiplicity

-7.5947 5
1.4923 4

0.63371 4
5.4862 3

-3.3076 2

-3.067 1
2.5090 1
0.4224 1

which is correct because d= 21. Thus all of the three methods were successful in

computing the degree of the AGCD of f (y) and f (l)(y), for this example.

6.6 Summary

0

This chapter has discussed three rank evaluation methods for the computation of the

degree of an AGCD of two inexact polynomials f (y) and g(y). All three methods use

the Sylvester matrix S(f, g) of f (y) and g(y) and its subresultant matrices, but they

differ in the criteria derived from the Sylvester resultant matrix.

The first method uses the first principal angle between the space spanned by one col-

umn of Sk (f, g) and the space spanned by the remaining columns of Sk (f, g), where k

denotes the order of the subresultant matrix. The second method uses the residual of

an approximate linear algebraic equation derived from Sk(f, g). These two methods

differ in the criteria used for the computation of the degree d of an AGCD of two

polynomials, and they are applicable to any pair of polynomials. The third method,

on the other hand, uses the constraint between a polynomial and its derivative and

CHAPTER 6. THE COMPUTATION OF THE DEGREE OF AN AGCD 144

it is only applicable for a polynomial f (y) and its derivative f (l) (y). In this method

an error measure that is derived from this constraint is used for the computation of

d. It has been shown that this error measure provides two estimates of d based on

the criterion used to form Sk(f, f(')).

Chapter 7

The computation of an AGCD

The computation of the GCD of two polynomials has several applications, including

the computation of multiple roots of a polynomial. However, it was noted in Chapter

5 that the GCD is not defined if the coefficients of the polynomial are only known

within a limited accuracy or the computations are performed in a floating point

environment, in which case only an AGCD can be defined. This chapter describes

two methods for the computation of an AGCD of two inexact polynomials f=f (y)

and g= g(y). These methods apply the method of structured non-linear total least

norm (SNTLN) to the computation of a structured low rank approximation S(f, g)

of the Sylvester matrix S(f, g) of the inexact polynomials f (y) and g(y), from which

an AGCD of f (y) and g(y) can be computed. The first method applies the method

of SNTLN to the Sylvester matrix S(f, g), whereas the second method applies the

method of SNTLN to the approximate polynomial factorisation (APF) of f (y) and

g(y). Both methods require that the degree of an AGCD be first determined, after

which the coefficients of the AGCD are computed. The computation of the degree d

of an AGCD was discussed in Chapter 6, and it is therefore assumed that d is known.

145

CHAPTER 7. THE COMPUTATION OF AN AGCD 146

It is required to compute the coefficients of the AGCD, given d, and this topic is

addressed in this chapter.

The first section in this chapter demonstrates the relation between the structured low

rank approximation and the computation of an AGCD of two inexact polynomials.

Section 7.2 describes the application of the method of SNTLN to the Sylvester matrix,

for the computation of a structured low rank approximation of the Sylvester matrix

of f (y) and g(y). Examples that demonstrate the theory in Section 7.2 are given in

Section 7.3. Section 7.4 describes the application of the method of SNTLN to the

APF of two polynomials for the computation of structured low rank approximations

of the Sylvester matrix of f (y) and g(y). Examples that demonstrate the theory in

Section 7.4 are given in Section 7.5.

7.1 Structured low rank approximation of

the Sylvester matrix

It is recalled from Theorem 3.1 that the degree of the GCD of the exact polynomials

f=f (y) and (y), defined in (3.1), equals the rank deficiency of their Sylvester

matrix S(f, g), and that the coefficients of the GCD lie in the last non-zero row of

S(f, g)T, after reducing it to an upper triangular form.

The case is different when inexact polynomials f (y) and g(y) are considered, since

their Sylvester matrix S(f, g) has, with high probability, full rank. The coefficients of

f (y) and g(y) can be perturbed such that their perturbed forms 1(y) =f (y) + if (y)

CHAPTER 7. THE COMPUTATION OF AN AGCD 147

and g(y) = g(y) + ög(y) have a non-constant GCD, that is

rank S(f, g) = rank (S(f, g) + S(ö f, ög)) < (m + n), (7.1)

where, the perturbations bf and Sg can be obtained using the method of SNTLN.

The GCD of I (y) and g(y) is an AGCD with respect to the inexact polynomials f (y)

and g(y). The underlying principle of using the structured low rank approximation

methods for computing an AGCD of two inexact polynomials can therefore be sum-

marised as follows:

Given the Sylvester matrix of inexact polynomials f (y) and g(y), compute the struc-

tured perturbation Sylvester matrix S(S f, Sg) such that (7.1) is satisfied.

Once S(f, g) is calculated, an AGCD of f (y) and g(y) can be obtained from the

corrected polynomials f (y) and g(y) using the properties of the Sylvester matrix in

Theorem 3.1. Specifically, an AGCD of f (y) and g(y) is, up to a non-zero multiplier,

defined to be equal to the GCD of j (y) and g(y). Thus the discussion above suggests

that there is a close relation between the computation of an AGCD of f (y) and g(y)

and the computation of a structured low rank approximation S(f, g) of S(f, g). The

computation of an AGCD using the structured low rank approximation methods,

however, requires that the degree of an AGCD be defined, and it is therefore assumed

that the methods in Chapter 6 have been used.

The use of the method of SNTLN in constructing low rank approximations of S(f, g)

using both the Sylvester matrix and APF of two given inexact polynomials, is con-

sidered in this chapter.

CHAPTER 7. THE COMPUTATION OF AN AGCD 148

7.2 Calculating an AGCD using the Sylvester ma-

trix

This section considers the use of the method of SNTLN in constructing a low rank

approximation of the Sylvester matrix S(f, g) of the inexact polynomials f (y) and

g(y), whose theoretical exact forms have a non-constant GCD.

It is assumed that the given polynomials have been preprocessed using the methods

in Chapter 4, and thus the polynomials fe(w) and go(w) defined in (4.5) and (4.6),

respectively, are considered. However, the method of the SNTLN requires that the

values of the parameters a and 0 be calculated iteratively with initial values of ao

and 00, respectively, whose values are obtained from solving the LP problem (4.7).

The following forms are therefore used,

m\
fe (w) =E(

at
J em-awm-t

Bm-i
i=0 0

n*

and 9e(w) =
EC

on
lB"`-'w"-`

'/ ,
i=0 0

where

aý = äO' and b; = bi9o-i,

where ä1 and bi are defined in (4.2) and (4.3), respectively, and the value 0 of 0 is

retained in the denominators of ai and bi to simplify the update process between

the successive iterations in the method of SNTLN. The method of STLN can also be

used in constructing a low rank approximation of S(f, g), in which the parameters a

and 0 are hold constant. However, it shown in [79] that the method SNTLN provides

better approximation of an AGCD of two inexact polynomials.

CHAPTER 7. THE COMPUTATION OF AN AGCD 149

It is assumed that deg AGCD(fe, age) =d where d is calculated using the methods

in Chapter 6. Since fe(w) and age (w) are co-prime, and the perturbations are small,

the dth Sylvester subresultant matrix of fe(w) and age(w) is nearly singular. It is

recalled from Section 6.2.1 that this property of Sd(fo, age) leads to the approximation

(6.5), and for k=d and i=q this approximation yields,

Ad,
ex N Cd, g, X= Xd, q E Rm+n-2d+1 (7.2)

where the column cd, q E Rm+n-d+1, the qth column of Sd(fo, ago), is the optimal col-

umn for the computation of the degree of an AGCD of fe(w) and a go (w), as discussed

in Section 6.2.1, and it has been shown in Sections 6.2.2 and 6.2.3 that the value of q

follows directly from the computations of d. The matrix Ad,
q E R(m+n-d+1)x(m+n-2d+1)

is formed from the remaining columns of Sd(fo, ago).

Structured perturbations must be applied to the approximation (7.2) to make it an

equation that has an exact solution. In particular, let

T r
m+1 \ zig =L zoom, ... ý zm_lg, Z. E II$,

(7.3

and

azyB = I Ckzm+len, -� I

JT
cxzm+ne, zm+n+l ER (7.4)

be the vectors of the structured perturbations to be added to the coefficients of ff(w)

and ag9(w), respectively. The dth Sylvester subresultant structured perturbation

CHAPTER 7. THE COMPUTATION OF AN AGCD 150

matrix Bd = Bd(a, 0, z) E R(m+n-d+1)x(m+n-2d+2)
of Sd(fe, age) is therefore,

zoom azm+1on

zl Om-1 Q Z. +20'-'

Ba = , Zm
_ 19

zm

zoom azm+iOn

ziem-1 azm+nO azm+2en-1

azm+n+1

azm+ne

where

r

zm aZm+n+l

T
m+n+2 Z= ZO, I Zm, zm+l ,ý zm+n+l ER (7.5)

Then the application of the method of SNTLN to the computation of an AGCD of

fe(w) and age(w) requires consideration of the equation

(Ad,
e(a, 0)+ Ed, e(a, B, z)) x= cd, v(a, 9) + hd, a(a, B, z), (7.6)

which is the perturbed form of (7.2), where hd, q is the qth column of Bd(a, 8, z), Ed, q
is the matrix formed by the remaining columns of Bd(a, 0, z), and they have same

structure as Ad, q and Cd, q, respectively, and as noted before, it is assumed that the

values of d and q are known. The quantities a, 0 and z are to be computed using

the method of SNTLN. Since the first n-d+1 and the last m-d+1 columns

of Sd(fe, ago) contain the coefficients of fe(w) and age (w), respectively, the vectors

Cd, q and hd, q may or may not be dependent on a, depending on the value of q. In

CHAPTER 7. THE COMPUTATION OF AN AGCD 151

particular,

cd, q = cd, g(B), hd, q = hd, g(B, z) if 1 <q: 5 n- d+ 1

Cd, q = cd, g(a, 0), hd, q = hd,

q(a, 0, z) if n-d+2 <q< m+n- 2d + 2.

The theory for the computation of a, B and z is developed, considering the case for

which, n-d+2<q<m+n- 2d + 2, and the necessary modifications to derive the

theory for 1<q<n-d+1 are obtained by setting a=1 and thus the derivative

with respect to a is equal to zero.

It is recalled from Section 7.1 that constructing a low rank approximation S(fo, ago)

of S(f, g) for the computation of an AGCD of f (y) and g(y) requires that fo(w) =

fe(w) +Szfe(w) and go (w) = go(w) +a6z9B(w) have a non-constant GCD, where the

polynomials öz fe (w) and abz9e (w) are defined by the vectors of coefficients z f, and

az9B defined in (7.3) and (7.4), respectively. However, it follows from Theorem 3.1

that the polynomials je(w) and ago(w) have a non-constant GCD if and only if the

non-linear equation (7.6) possesses a solution. This equation can be solved iteratively

for the values of a, 9, x and z. The associated residual of computing an approximate

solution of (7.6) is,

r(a, 0, x, z) - cd, 9(a, 0) + hd,
9(a, e, z) -(Ad, 9(a, 0) + Ed, k(a, e) , z)

)
x, (7.7)

and thus the residual that is associated with the successive iterations can be defined

as r" = r(a + Ja, 0+ 60, x+ öx, z+ 6z). Using the Newton-Raphson method [69], the

CHAPTER 7. THE COMPUTATION OF AN AGCD 152

first order approximation yields,

r" = cd, g (a + öca, B+ öB) + hd, q (a + öa, 8+ öB, z+ öz)

IV
N

-(Ad, g(a+bca, 9+bB)+Ed, q(a+Sa, B+bB, z+(5z))(x+bx)

aCd (ýCd ahd, ahd, ahd, 9
Cd, q + äa4

Ja + a9g
59 + hd, q + äa4

ba + ä9
g bB +E

m+n+1

özi
bzti

i=O

-Ad, qx - Ad, gbx -
(aaa'Qx)

ba -
(a eQx)

68

-Ed, qx - Ed, gbx -(
aaä'g x) ba -

(aE0dq

ax
I 60

m+n+1

-ý
äEg, a özi X.

ý=o
öz;

It follows from (7.7) that

r(a, B, x, z) -
((aa8'4

+ aaeg) x-

(aae4
+ aaee SB

aAd, 4
aEd9 aCd

4 atýd, 4 - (Ad, q + Ed,
4)bx -((49a

+
49a

)x-(

aa
+ aa ja

m+n+1 ajL m+n+1
d, 4 4 +ý bxi - I: (aEdbzi

x,
i=O

azi
i=0

azi
(7.8)

where the last two terms can be simplified using the expressions of hd, q and Ed, gx, in

terms of z. In particular, the vector hd, q can be written as,

f
Og-n+d-2,

m+1

hd, q = aPdz =a

Oq-n+d-2,
n+1

G z,

L Om+n-2d-q+2,
m+1

Om+n-2d-q+2,
n+1

On+1,
m+1

CHAPTER 7. THE COMPUTATION OF AN AGCD

where Pd = Pd(O) E R(m+n-d+l)x(m+n+2),

G= G(B) = diag I on on-1 ... 91JE

and z is defined in (7.5). Thus,

m+n+1 Öhd, bad,
4 =ý9 öz; = aPdJz.

8zi
: =o

R n+l) x (n+l)
r

153

The vector Ed,
qX can be expressed in terms of z as follows,

Ed, qX = Ydz,

where Yd = Yd(a, 0, x) E R(m+n-d+1)x(m+n+2). Differentiating both sides of this equa-

tion with respect to z yields,

i=0

Replacing the last two terms of (7.8) with aPd8z and YdSz, respectively, simplifies

(7.8) to

r r(a, B, x, z) -((
000 q+ aöB q)x-

(I9
009 +

ýB'9I
I 60

m+ntl \ ý(BaEdaözi
Ix= (JEd,

9 x= YdSz.
: -n

V'zf ///

-(Ad, a + Ed, e)bx -CC aAd, 9 + aEd91 x-ý ea ,9+ aahds g Ja ýý

-(Yd - aPd)bz.
(9a Oa

)

(7.9)

CHAPTER 7. THE COMPUTATION OF AN AGCD

For simplicity, let,

Hz = Yd - aPd E]Ig(m+n-d+l)x(m+n+2)

Hx =

Ha =

He =

Ad,
q + Ed

qE
R(m-}. n-d+1) x (m+n-2d+1)

C
aAd, e +

aEda

/
x-

(äcd, a +
ähd, a

1E
l[ýmtn-d+l

Da Da j äa ea l'
aAd, 4 +

C)Ed,
9 x- (aCd9 + ahd, 9 ERmFn-d+l ý

00 00
)

00 00

154

It follows from Definition 5.2 that the perturbations defined by the elements of the vec-

tor z in (7.5), have to be minimised, that is, the given inexact polynomials are moved

by the minimum amount such that the refined polynomials have a non-constant GCD.

In terms of HZ, HH, H,, and H9, the jth iteration in the Newton-Raphson method for

calculating z, x, a and 0 is

IHZ
Hy Ha HB

lJ

bz

bx

ba

50

(j)

= T(. i), (7.10)

where rU) = rU)(a, B, x, z), and the values of z, x, a and 0 at the (j + 1)th iteration

are,

z

2

a

(i+1)
z

x

a

(i)

+

Sz

bx

Ja

(1)

eý Leý L11

CHAPTER 7. THE COMPUTATION OF AN AGCD 155

such that at j=0, z(°) =0 because the given data is inexact, and a(°) and 0(0) are

the solutions a° and 0° of the LP problem (4.7).

Clearly, it can be seen that (7.10) is of the form

Cy=b,

where CE R('n+n-d+1)x(2m+2n-2d+5), yER 2m+2n-2d+5, bE Rm+n-d+l,

bz

r 1(ý)
C=LHz H. Ha HBJ , y=

60

Since the nearest polynomial that has a multiple root is sought, it is required to

Öx

ba

U)

b= r(j). (7.11)

minimise,

zu+i) - z(°)

xu+i) - x(0)

a(. i+i) - ao

g(i+1) - Bo

zW + 6z(j) 1
x(j) + 8x(j) - xo

a(j) + 8a(i) - ao

B(>) + aeU) - eo

where

:= IIEy - PII,

rT
E= I2m+2n-2d+5, P=-I z(i) xU) - xo a(i) - ao Bi - Bo

1,
(7.12)

CHAPTER 7. THE COMPUTATION OF AN AGCD 156

and y is defined in (7.11). The initial value xo of x is obtained by setting a= ao,

0 =8o andz=0 in (7.7),

xo = arg min IIAd, 9
(ao, 0o)w - Cd, e(ao, eo) II (7.13)

w

It follows from the discussion above that the method of SNTLN yields the following

least squares equality (LSE) problem,

min IIEy - piI subject to Cy = b. (7.14)
v

The QR decomposition [28] can be used to solve this problem.

The following algorithm shows the application of the method of SNTLN to the

Sylvester matrix of two inexact polynomials f (y) and g(y), for computing a struc-

tured low rank approximation of S(f, g), where the QR decomposition is used to solve

the LSE problem (7.14).

Algorithm 7.2: A structured low rank approximation of the Sylvester

matrix using the method of SNTLN

Input

(1) f=f (y) and g= g(y), the inexact polynomials whose degrees are m and n,

respectively.

(2) ao and 0o, the initial values of a and 0, respectively.

CHAPTER 7. THE COMPUTATION OF AN AGCD 157

(3) d< min (m, n), the degree of the AGCD of f (y) and g(y).

(4) q, the index of the optimal column for the computation of the degree of an AGCD.

Output A structured low rank approximation of S(f, g) with rank m+n-d. Begin

% Initialisation

1. Set z=0, and thus Ed q=
88 =

eä
=0 and hd, q = 88

= 8äB
= 0.

2. Calculate Ad,
q, Yd, q, Pd, Cd, q,

8ä
,

8äB 88
and

8äe for a= a0,0 = 0o and

x= x0, which is defined in (7.13). These initial values will also set p in (7.12)

to be equal to 0. Calculate the initial value of b, that is, the residual

r(a0, B0, x0, z= 0) = Cd, q -
Ad,

gXO-

3. Calculate the matrices C and E defined in (7.11) and (7.12), respectively.

4. % Solve the LSE problem (7.14), using the QR decomposition

% Set iterations = 0.

Repeat

(a) Compute the QR decomposition of CT,

(iT =QR=n
R1

0

I

(b) Set wl = Ri T b.

(c) Partition EQ,

EQ =1 El E2
1,

CHAPTER 7. THE COMPUTATION OF AN AGCD 158

such that El E R(2m+2n-2d+5)x(m+n-d+1)
and E2 E R(2m+2n-2d+5)x(m+n-d+4)

(d) Compute

'w2 =E2(p -Eiwi)"

(e) Compute the solution

y=Q
wl

w2

(f) Set z: =z+Sz, x: =x+bx, a: =a+Saand 0: =B+SB.
aY aA0s Ea dq aEd. v ecd, 9 ah (g) Update Ad, qe as 80 d, 9j Oct ' ae ' Ydo pd) ed, 9i as ae hd, q,

eä 8äB from a, 0, x and z. Using the updated values, update C and p.

(h) Calculate the updated value
/of

b, that is the residual

r(a, 0, x, z) ý (ßd,
4 + hd,

q) - (Ad,
q

+ Ed, q)X.

(i) Increment the iterations.

Until 1< 10-12 or iterations < 50 11 Cd, 4+hdr4
11 -

End

7.3 Examples

This section contains two examples that show the use of the method of SNTLN for the

construction of a structured low rank approximation S(f0., a* ge*), of S(f, g) of two

CHAPTER 7. THE COMPUTATION OF AN AGCD 159

inexact polynomials f=f (y) and g= g(y), by applying the method of SNTLN to

the Sylvester matrix S(f, g), where a" and 9* are the values of a and 0, respectively,

at the termination of the method of SNTLN, and fe. = fe" (w) and ge. = go" (w). The

following notation is used in these examples:

1. j (y) and g(y) are the theoretically exact polynomials.

2. f (y) and g(y) are the inexact polynomials whose coefficients are calculated

from f (y) and g(y), respectively, after adding componentwise noise to their

coefficients and normalising them by their geometric means.

3. fa,, (w) and aogeo (w) are the preprocessed inexact polynomials that are used

in the computation of the structured low rank approximation of the inexact

polynomials f (y) and g(y).

4. fe. (w) and §o. (w) are the corrected polynomials whose coefficients are computed

by the method of SNTLN.

5. The entries of the Sylvester matrices S(f, g), S(f, g) and S(fe", a' go-), are cal-

culated from the theoretically exact, inexact and corrected pairs of polynomials,

respectively, after normalising them by the geometric means of their coefficients.

Example 7.1. Consider the polynomials

f(y) _ (y - 0.3396)3(y + 0.5790)3(y - 10.7712)5 x

(y - 5.8708)4(y - 20.7633)5,

g(y) _ (y - 0.3396)3(y + 0.5790)5(y + 5.2495)3 x

(y - 5.8708)2(y - 1.0777)3,

CHAPTER 7. THE COMPUTATION OF AN AGCD 160

whose Sylvester matrix is of order 36, and since the degree of their GCD is equal to 8,

C

Figure 7.1: The normalised singular values of the Sylvvester matrices
S(f, g) o, S(f

,
g) + and S(ff., a* go.) x, for Example 7.1.

the theoretically exact rank of S(f, g) is equal to 36 -8= 28. Noise with componen-

twise signal-to-noise ratio of 106 was added to the coefficients of these polynomials,

which were then normalised, thereby yielding the polynomials f (y) and q(y).

The method of the first principal angle, which is discussed in Section 6.2.2, was used

to calculate the degree d=8 of the AGCD of f (y) and q(y), which is correct, and

the index of the best column, q=3, to form the approximation in (7.2). These

results were then used in the implementation of Algorithm 7.2. It was found that two

iterations were required for the solution of the LSE problem (7.14), and the following

CHAPTER 7. THE COMPUTATION OF AN AGCD 161

values were obtained at the termination of Algorithm 7.2:

II Ey - pII = 10-7.7 and II Cy - bII = 10-15.4

Very similar results were obtained when the method that uses the residual, which is

discussed in Section 6.2.3, was used to find the values of d and q.

Figure 7.1 shows the normalised singular values of the Sylvester matrices S(f, g),

S(f, g) and S(fe., a' ga.). It can be seen that the rank of S(fe., a" ga.) is equal to 28,

which is the correct value, whereas S(f
, g) and S(f, g) have full rank which suggests

that j (y) and g(y) are co-prime, which is incorrect.

Example 7.2. Consider the polynomials

f(y) = (y - 3.671684 x 10-5)5(y - 3.062163 x 10-5)2(y - 5.724097 x 10-5)4 x

(y - 3.981184 x 10-5)2(y - 6.896876 x 10-5)3(y - 1.151630 x 10-4)5,

g(y) = (y - 3.671684 x 10-5)5(y - 3.062163 x 10-5)2(y - 3.330558)4 x

(y + 6.437351)4(y + 7.439712)3(y - 9.981608)4,

whose Sylvester matrix is of order 43, and since the degree of their GCD is equal to 7,

the theoretically exact rank of S(f, g) is equal to 43 -7= 36. Noise with componen-

twise signal-to-noise ratio of 108 was added to the coefficients of these polynomials,

which were then normalised, thereby yielding the polynomials f (y) and g(y).

The method of the first principal angle was used to calculate the degree d=7 of the

AGCD of f (y) and g(y), which is correct, and the index of the best column, q, to

form (7.2). These results were then used in the implementation of Algorithm 7.2. It

was found that one iteration was required for the solution of the LSE problem (7.14),

CHAPTER 7. THE COMPUTATION OF AN AGCD 162

C

-10

-20

-30

'ý2-40

dF50
0

-60

-70

-80

-90L 0 5 10 15

i=36

w11wJ

x
c

20 25 30 35 40 45

Figure 7.2: The normalised singular values of the Sylvvester matrices
S(f, g) o, S(f, g) + and S(fe.

, a` ge.) x, for Example 7.2.

and the following values were obtained at the termination of Algorithm 7.2:

IIEy - pll = 10-11.4 and II Cy - bll = 10-15.1.

Similar results were obtained when the method that uses the residual was used to

find the values of d and q.

Figure 7.2 shows the normalised singular values of the Sylvester matrices S(f, g),

S(f, g) and S(fe-, a* go-). It can be seen that the rank of S(fe-, a* 9e-) is equal to

36, which is the correct value, whereas rank S(f, g) = rank S(f, g) = 22, which is

incorrect. 0

CHAPTER 7. THE COMPUTATION OF AN AGCD 163

7.4 Calculating an AGCD using APF

The method considered in this section computes a low rank approximation S(f9., a* go.),

see Section 7.1 for more details, of S(f, g) of the inexact polynomials f=f (y) and

g= g(y), by applying the method of SNTLN to the approximate polynomial fac-

torisation of f (y) and g(y), where a* and 0* are the values of a and 0 respectively,

at the termination of the method of SNTLN. This method differs from the method

discussed in Section 7.2 because it explicitly computes the GCD of fB. (w) and ge" (w).

On the other hand, the Sylvester matrix requires that S(fe", a* ge") be reduced to a

triangular form, which can be unstable [2].

The application of the method of SNTLN to APF of two inexact polynomials f (y) and

g(y) for computing AGCD(f, g) requires that their scaling forms fe(w) and age(w),

which are defined in (4.5) and (4.6), respectively, be considered. Specifically,

r"
r/m\
JBýw) _E

(Bmt
i IB'"-`w"`-' and ge(w)

(ebi
i)emýtwn-t,

i=0 0/ i=0 0

where

ai = äi00 -' and bi = b; 0o-',

where di and b; are defined in (4.2) and (4.3), respectively. It is assumed that the

degree d of the AGCD of f (y) and g(y), is known using the methods described

in Chapter 6. The coefficients a; and bi form the entries of Sd(fei age), and the

parameters a and 0 need to be iteratively refined starting from ao and Bo, which are

obtained from solving the LP problem (4.7).

The approximate factorisation of the inexact polynomials fe(w) and ge(w) can be

CHAPTER 7. THE COMPUTATION OF AN AGCD

written as

164

fe(w) ^ý ue(w)do(w) and ago (w) ve(w)de(w), (7.15)

where

dd

d do w
(io

e, Bd-s, wd-i r. od-. wd i e=() 9a-'-;
(,,

%=o t=o

is an AGCD of degree d of the inexact polynomials fe(w) and go (w), and the quotient

polynomials

ue = ug(w)

ve=ve(W) =

are co-prime, where

m-d m-d (Ui)
Bm-d-im-d-i Bm-d-i m-di

L (ý)
: -n 0 : -n i=0

76-u nr-a (o:
i_. i)

r end_iwn_d-i
- \es

en-d t)

i=0

de, i u9, i ve, i ri = Bd_i , Cj = Bm_d_i I and ei = Bn_d_i 000

(7.16)

The value Bo of 0 is retained in the denominators of the coefficients of de(w), ue(w)

and ve(w) to simplify the update process between the successive iterations of the

method of SNTLN. It follows that the full form of (7.15) is

m (m-d d
ýaiem-i1 w+n-i NE (C', em-d-i\ wm-d-i

E (sied " wd-t
a=0

\J
i=o

J
i=o

`

CHAPTER 7. THE COMPUTATION OF AN AGCD 165

and

n (n-d d

(xp
Z (bien-i)

wn-$:: Z (eien-d-i)

wn-d-i Z (rd
ied-i) wd-i

i=0 i=0 i=0

These approximations can be combined in matrix form as

Cl (c, B)
r(O) %v

f(B)

C2(e, 0) aag(B)

where

i=0 \ i=0

c, (c, 9) =

CID Bm-d

Clem-d-1 Cpem-d

C2 em-d-2 Clem-d-1

C2 em-d-2

Cm-d-le

Cm-d Cm-d-1B

Cm-d

CO Bm-d

Cl Bm-d-1

C2Bm-d-2

Gm-d-1e

i=0

(7.17)

E ý(m+1)x(d+1)
,

Cm-d

CHAPTER 7. THE COMPUTATION OF AN AGCD 166

and

C2 (e, B) =

eoen-d

ei on-d-1 epen-d

e2 on-d-2 ei on-d-1

en-a-le

en-d

e28n-d-2

en-d-le .

en_d

epBn-d

ei on-d-1

e2 on-d-2

. en-d-10

en_d

and

f(B) =

g(B) =

r(B) =

E I[8(n+1)x(d+1)

T [äo9m
&i97n-1 ... a+n-lo am E 1[8'll,

IT
boon blon-1 bn_le bn E][gn+I,

T ý
rood rled-i .. rd-10 rd 1E IIgd+i

The application of the method of SNTLN requires that the coefficient matrix and the

right hand side vector of (7.17) be perturbed such that the approximation is replaced

by

I Ci (e, e) + Ei (z, 6)
r(6) =

f(6) + s(p, e) (7.18)
C2(e, 0) + E2(z, B) (ao + ßo) (g(B) + t(q, B))

CHAPTER 7. THE COMPUTATION OF AN AGCD

which has an exact solution, where

r
zoom-d

Ei (zd, 6) =

zm-d+lBn-d

. Zpem-d

zl Bm-d-1

z2Bm-d-2

. z, m_d_1B

z, n_d

ý(mtl)x(d-t1)
ý

zm-d+2Bn-d-1

zm-d+3 on-d-2
, Zm _d+l

en-d

n-d-1 xm-d+2 B

E2(zd) e) _

zm+n-2de

zm+n-2d+1

zm-d+3en-d-2

zm+n-2de

zm+n-2d+1 J

are the Cauchy matrices of the perturbations

x- r z0 ''' zm-d zm-d+1 '" * Zm+n-2d+1

. Z1 Bm-d-1

z2Bm-d-2

. Zm_d_le

I

E R(rz+l)x(d+l)
,

E Rm+n-2d+2
e

167

CHAPTER 7. THE COMPUTATION OF AN AGCD 168

that are added to the coefficients ci and es. The vectors s= s(p, 0) E]Rm+l and

t= t(9,0) E l[8"+i,

s=ý poem plem-1 ... pm-le pm
IT ERm+l

T n+l t goen glen-1 ... gn-16 gn IT R ý

where

p=[po pi "-" pm-1 pm IT E]I8"`+1,

4= [qo 41 """ 4n-1 4n IT E lI8n+1,

are the vectors of the perturbations that are added to the coefficients of fe(w) and

go(w), respectively, and ßo is the perturbation that is added to ao. The computations

of the perturbation vectors z, p, and q, an estimate for r(O), and the scalars ßo and 0,

require that (7.18) be solved. This equation is non-linear and it is solved iteratively

using the method of Newton-Raphson.

An approximate solution for (7.18) yields the following residual

f(B) + s(p, 6)

(ao +, 30) (g(0) + t(4,8))

Cl (c, 0) + El (z, 0)

C2(e, 0) + E2(z, 0)
r(8). (7.19)

CHAPTER 7. THE COMPUTATION OF AN AGCD 169

Thus, a first order Taylor expansion yields

r(Qo+ö, Qo, B+öB, z+öz, r+ör, p+öp, g+ög)

I f(B+öB) +s(p+öp, B+öB)
I

(ao+, ßo+Ößo)(g(9+a6)+t(g+Jq, 6+b6))

Cl(c, B+BB) +El(z+Jz, B+öB)

C2(e, 0 + 8B) + E2(z + Sz, B + ö9)

To simplify the analysis of this expression, let us first consider (7.20):

To first order, the approximation of the first expression in (7.20) is

f(e+be) +s(p+bp, a+be) ýf+s+ afbe+ aSbe+E
8p,

b
as

ae 070- e ý_a
p;,

and the approximation of the second expression in (7.20) is

(ao + ßo + 90o) (g(o + öo) + t(g + äq, e+ 50))
%e (ao + ,

Co) (g + t) + (ao + Qo) (00 60 + aa
do + ýt

o
äq 45q=)

+(g+t)bßo.

r(B + (5B). (7.21)

(7.20)

The vectors s and t can be written as s= Sp and t= Tq, respectively, where

S= S(9) = diag I em

T= T(9) = diag I on

0-_1 911E R(m+1)x(m+1)
e

on-1 011 ER (n+l)x(n+l)
(7.22)

CHAPTER 7. THE COMPUTATION OF AN AGCD

It follows that

Thus

and

as at Jpi = Sap and bqi = Tbq.
s=o

Ti
i_o q;

Using (7.23) and (7.24), the expression in (7.20) can be written as

f+s

(ao +)3o) (g + t)
+

f(e + Se) + s(p + Sp, e+ Se) :.. f+ s+B SB +B SB + SSp, (7.23)

(ao + Po + S, Qo) (g(B + SB) +t (q + Sg, B+ SB))

~ (ao + Qo) (g + t) + (ao + Qo) (
ý8

SB +9 SB + TSg)

+(g+t)SQo.

f+s f

170

(7.24)

19, Jo + ä0b8 +Söp
L (ao+, Cjo) (? BSB+äaSB+Tbg) +(g+t)S, Qo

Consider now the expression in (7.21). The following substitutions

B= B(c, e, 8) =
cl (c, e)

and E= E(z, B) = [C2(e,
O)j

El (z, 0)

E2 (z, B)

(7.25)

CHAPTER 7. THE COMPUTATION OF AN AGCD

allow (7.21) to be rewritten as

-
(B(c,

e, 0+ JO) + E(z + 8z, 0+ JO)) r(O+ö9),

whose first order approximation is

where

171

m-}-n-2d+1

_-(B++E+' äz-;
(r(9)

+d
(d9e))

be) Ö

-(B+E)r-
(5O

+ aebe+bE)r-(B+E)debe, (7.26)

m+n-2d+1 aE,
8E = bzi.

äzi i=0

Also, let Y1 E I[8(m+1) x (m+n-2d+2), Y2 E R(n+1) x (m+n-2d+2) and

where

I Yi (r, 9)
Y= Y(r, 9) _j, (7.27)

Y2 (r, 9)

CE IIý(^'+l)x(m-d+l) ý'i(r, e) = C3(r)®1 Om+1,
n-d+1 , 3(r)

Y2 (r, 9) = I On+l,
m-d+l C4(r)02 1, C4(r) E][$(n+1)x(n-d+1)ý

CHAPTER 7. THE COMPUTATION OF AN AGCD 172

where the matrices C3(r) and C4(r) are the Cauchy matrices of r, with different

dimensions, and

©1 = diag
(

gm-d Bm-d-1

©2 = diag r en-d on-d-1

g 11 E -d+1) x (m-d+1)
v

01]E R(n-d+l)x(n-d+l)

The expression in (7.26) can be simplified by differentiating, with respect to z, both

sides of the equation

Y(r, 9)z = E(z, 9)r,

to give,

SE(z, 8)r = Y(r, 8)bz.

Therefore, (7.21) can be written as

- (B + E) r- (B + E)
de

öB - Ybz -I
ýe

r -}-
ýe

r) 6e. (7.28)

CHAPTER 7. THE COMPUTATION OF AN AGCD

Substituting for (7.25) and (7.28) into (7.20) and (7.21), respectively, yields

r(/jo+(5ßo, 0+50, z+Sz, r+5r, p+bp, q+5q)

ýe r(Qo, B, z, r, p, q)

-sp 1

.ý
Of 8e S Om+l,

n+l
Om+l,

l 80
+

8B

1

bq

On+l,
m+l

(a0+ý0)T g+t (a0+Q0)(
\B+ B/

J, 30

bB

-(B+E)dýbB-YBz- I
ýBr+ ýer

I dB.

173

The jth iteration in the Newton-Raphson method for calculating z, p, q,, 30 and 0 is

ý,. -S
On+1,

m+1

Om+1,
n+1

0m+1,1

-(ao+Qo)T -(g+t)

F bz

-(äe+ää)ý'(äe + äe) r+(CI+El)äe

-(ao +, Qo) (äe + aä) + (ee +e)r+ (CZ + E2) ää

ý)

(j)

Sp

8q

aao
se

= r(i)(Qo, B, z, r, p, 9)" (7.29)

CHAPTER 7. THE COMPUTATION OF AN AGCD

The values of z, p, q, Qo and 0 at the (j + 1)th iteration are

z

p

4

QO

0

Jz

bp

ý bq

b, ßo

ý 60

U) (i+i)
z

p

4

Qo
0

ý(i)

and the initial values in these iterations are

x(°) = 0, p«» = 0, q«» = 0, ß(00) = 0, e(0) = 00.

Clearly it can be seen that (7.29) is of the form

Cy=9,

where CE R(m+n+2) x (2m+2n-2d+6)
,yE

R2m+2n-2d+6
,9 =E Em+n+2,

C=y -S
On+1,

m+1

VJ

-(ä+äe)+(8 +ä)r+(C1+Ei)de

-(ao+ßo)(8e+äe)+(äe + äe)r+(C2+E2)dB
-ýäý'äel+(äe + äe) rý"(Cl-ý El) de

Om+1,
n+1

0m+1,1

- (ao + /jo) T -(g + t)

(j)

174

(7.30)

CHAPTER 7. THE COMPUTATION OF AN AGCD 175

y=

J, z(J)

jp(. i)

bqU) and g= r(i) (, Qo, e, z, r, p, g) "

600)
10

beu)

Since it is required to move the given inexact polynomials the minimum amount, the

function

z(J+l) - z(o)

p(i+l) - p(o)

q(i+l) - q(o)

q0(i+l)
-

0O0)

B(i+l) - 60

zu) + bz(j)

pCi) + bp(i)

q(j) + bg(i)

ßo) +aQo)
6U) + JeW - eo

: =IIEy-fll,

must be minimised, where

[z(J) T
E= I2m+2n-2d+s, and f=- p(i) q(i) ßoi) 6(i) - go (7.31)

It follows that the SNTLN method yields the following LSE problem

min IlEy - f11 subject to Cy = g. (7.32)
Y

An important issue that need to be addressed is the computation of the initial value

of r(O). An estimate of this value can be obtained from the least squares solution of

CHAPTER 7. THE COMPUTATION OF AN AGCD

(7.17),

r(°) (eo) A: ý
Ci(c, Bo) f(eo)

t)

C2 (e, eo) aog(eo

176

(7.33)

This initial value r(°)(0°) of r(0), however, requires initial estimates of the coefficients

of ue(w) and vo(w), in order to compute c and e whose coefficients are defined in

(7.16). This issue is now considered.

It follows from (7.15) that

veo (w)
.
fBo (w) = veo (w) 990 (w),

and these polynomial products can be written in matrix-vector form as,

LCDJ

V9o

-
Sd

Vgo

-ügo -ueo

VBo

_ ueo
ý o, (7.34)

where CE JR(m+n-d+1)x(n-d+1) and DE]R(m+n-d+i)x(m-d+1) are the Cauchy matrices

whose entries are the coefficients of feo (w) and geo (w), respectively, veo and ueo, are

the vectors of the coefficients of veo and uepi respectively, and Sd = Sd(feo, aogoo) E

R(m+n-d+i)x(m+n-2d+2) is the dth Sylvester subresultant matrix. The approximation

in (7.34) can be written as

= Sd

Ax , z: i b, (7.35)

CHAPTER 7. THE COMPUTATION OF AN AGCD 177

where AER (m+n-d+i)x(m+n-zd+1), bE Rm+n-d+1 is the column of Sd(feo, ao goo) that

yields the minimum error in (7.35) 1. Initial estimates for the vectors uea and veo can

be obtained from the least squares solution of (7.35)

x= Atb. (7.36)

Algorithm 7.4 shows the application of the method of SNTLN to the APF of two

inexact polynomials f (y) and g(y) for the computation of a structured low rank

approximation of their Sylveste matrix S(f, g).

Algorithm 7.4: A structured low rank approximation of the Sylvester

matrix using APF

Input

(1) f=f (y) and g= g(y), the inexact polynomials whose degrees are m and n,

respectively.

(2) ao and Bo, the initial values of 0 and a, respectively.

(3) d< min (m, n), the degree of the AGCD of f (y) and g(y).

(4) q, the index of the optimal column for the computation of the degree of an AGCD.

Output A structured low rank approximation of S(f, g) whose rank is equal to

m+n-d, and an AGCD of f (y) and g(y).

'Sections 6.2.2 and 6.2.3 describe two methods for the selection of this column.

CHAPTER 7. THE COMPUTATION OF AN AGCD

Begin

1. % Initialisation

(a. 1) Initialise the following variables with zeros,

Qö°)
, z> p(°) , 4(°) , s, t,

as at
ý E,

aE f,
ae ae äe

178

and set 0= 0° and a= a°.

(a. 2) Form the vectors f(O) and g(6).

(a. 3) Calculate the coefficients of uo(w) and vo(w), from in (7.36).

(a. 4) Form the matrices Cl (c, 0) and C2 (e, 0), and their derivatives.

(a. 5) Calculate the initial values of the AGCD, r(°)(0) from (7.33) and its

derivative de, and the residual b= r(°) (0,0
i 0, r(°) (Oo), 0,0),

r(O, eo, O, r(°)(eo), O, O)
f(Bo) Ci (c, Bo)

r(°) (80)

aog(Bo)

[c2e,

oo)

(a. 6) Calculate Y(r(°), 0)), defined in (7.27).

(a. 7) Evaluate äe and a at 0= 0°.

(a. 8) Form the diagonal matrices S and T, defined in (7.22).

(a. 9) Form C and E, defined in (7.30) and (7.31), respectively.

(a. 10) % Solve the LSE problem (7.32) using QR.

Initialise the iteration counter, iterations=0.

CHAPTER 7. THE COMPUTATION OF AN AGCD 179

Repeat

(b. 1) Compute the QR decomposition of CT,

CT =QR=Q

(b. 2) Set wl = Ri T b.

(b. 3) Partition EQ as

EQ =1 Ei

such that

R1

0

E21,

E1 ER (2m+2n-2d+6) x (m+n+2), and E2 ER (2m+2n-2d+6) x (m+n-2d+4)

(b. 4) Compute

w2=Ez(f-Elwl)"

(b. 5) Compute the solution

y=Q
wl

W2

(b. 6) Set z :=z+ 6z, p :=p+ 5p, q: = q+ öq, and

Qo: =Qo+S, Qo, B: =B+JO.

(b. 7) Update C from the updated values of

CHAPTER 7. THE COMPUTATION OF AN AGCD 180

f(B), g(B), B(c, e, B), ää, e and e from 0.
aä

S and T defined in (7.22) and thus s(p, 0) and

t (q, 0) and ä from q and 0.

E(z, 0) and aää'8 from z and 0.

r(0) and its derivative ddä from 0.

äe from p and 0, and

Y(r, 9) from r and 9.

(b. 8) Calculate the residual r(, ßo, 0, z, r, p, q), defined in (7.19), and thus

update g.

(b. 9) Update f, which is defined in (7.31), from z, p, q, 0 and /30.

(b. 10) Calculate

f(B) + s(p, B)
e,. =

(ao + Qo)(g(e) + t(4, B))

Until II*(äo, O, z, r, n, c)II < 10-12 or Iteration > 50. II er II

End

7.5 Examples

This section contains two examples that show the use of the method of SNTLN for

the construction of a structured low rank approximation S(fe", a`9e.), of SU, g) of

two inexact polynomials f=f (y) and g= g(y), using the APF of f (y) and g(y),

where a" and 0* are the values of a and 0 at the termination of Algorithm 7.4. The

CHAPTER 7. THE COMPUTATION OF AN AGCD 181

same notation that was used in Section 7.3 is used in these examples.

Example 7.3. Consider the polynomials

j (y) = (y + 9.2934)8(y - 4.8386)3(y - 2.8515)8(y - 3.0467)5,

g(y) = (y + 9.2934)8(, y - 4.8386)3(y + 8.9904)5(y + 7.5947)5,

_20L 05 10 15 20 25 10 15
i

30 35 40 45

Figure 7.3: The normalised singular values of the Sylvvester matrices
S(f, g)o, S(f, g)+ and S(fe., a*go-)x, for Example 7.3.

whose Sylvester matrix is of order 45, and since the degree of their GCD is equal

to 11, the theoretically exact rank of S(],) is equal to 45 - 11 = 34. Noise with

componentwise signal-to-noise ratio of 108 was added to the coefficients of these poly-

nomials, which were then normalised, thereby yielding the polynomials .f
(y) and g(y).

CHAPTER 7. THE COMPUTATION OF AN AGCD 182

The method of the first principal angle, which is discussed in Section 6.2.2, was used

to calculate the degree of an AGCD of f (y) and g(y), and it was found that d= 11,

which is correct, and the index of the best column that formed (7.35), was 16. These

results were then used in the implementation of Algorithm 7.2. It was found that

two iterations were required for the solution of the LSE problem (7.32) to compute

S(f9., a' ge.), where the following values were obtained at the termination of Algo-

rithm 7.2:

Il Ey -f 11 =10-2.1 and II Cy - 9ll = 10-is. i

Very similar results were obtained when the method that uses the residual, which is

discussed in Section 6.2.3, was used to find the values of d and q.

Figure 7.3 shows the normalised singular values of the Sylvester matrices S(f, g),

S(f, g) and S(fe", a*ge.). It can be seen that the rank of S(fe., a*ge*) is equal to 34,

which is the correct value, whereas S(, f, g) and S(f, g) have full rank, which is not

correct. undefined. Q

Example 7.4. Consider the polynomials

f(y) = (y + 6.5914)7(y + 4.8442)5(y + 2.0640)10(y + 8.5201)5,

g(y) = (y + 6.5914)2(y + 4.8442)4(y - 5.1622)2,

whose Sylvester matrix is of order 35, and since the degree of their GCD is equal to 6,

the theoretically exact rank of S(f, g) is equal to 35 -6= 29. Noise with componen-

twise signal-to-noise ratio of 101 was added to the coefficients of these polynomials,

which were then normalised, thereby yielding the polynomials f (y) and g(y).

CHAPTER 7. THE COMPUTATION OF AN AGCD 183

The method of the first principal angle was used to calculate the degree d of an

Figure 7.4: The normalised singular values of the Sylvvester matrices
S(f, g) o, S(f, g) + and S(fe., a*go.) x, for Example 7.4.

AGCD of f (y) and g(y), and it was found that d=6, which is correct, and the

index of the best column, q= 14, to form (7.35). These results were then used in the

implementation of Algorithm 7.2. It was found that four iterations were required for

the solution of the LSE problem (7.32), to compute S(fe", ca'ge"), where the following

values were obtained at the termination of Algorithm 7.2:

IlEy-fl =10-0" and IICy-9ll=10-15.8.

Very similar results were obtained when the method that uses the residual was used

to find the values of d and q.

CHAPTER 7. THE COMPUTATION OF AN AGCD 184

Figure 7.4 shows the normalised singular values of the Sylvester matrices S(f ,g
S(f, g) and S(fe., a*ge.). Clearly, it can be seen that the rank of S(fe., a*ga.) is

equal to 29, which is the correct value, whereas rank S(f, g) = rank S(f, g) = 27,

which is incorrect. Q

7.6 Summary

This chapter has considered the computation of a structured low rank approximation

S(fe., a*ge.) of S(f, g) of the inexact polynomials f (y) and g(y), whose theoretical

exact forms have a non-constant GCD. It was shown that the method of SNTLN can

be used to calculate the smallest perturbations to be added to f (y) and g(y), which are

with high probability co-prime, such that they have a non-constant GCD of degree

d. The perturbed polynomials were called the corrected polynomials fe. (w) and

ge. (w), and they can be used to calculate an AGCD of f (y) and g(y). Two SNTLN-

based methods for the computation of S(fe., a*ge.), were given. The first applies

the method of SNTLN to the Sylvester matrix of f (y) and g(y), after preprocessing

them by the methods discussed in Chapter 4 to obtain feo (w) and ao go. (w). The

second method also considers the preprocessed polynomials but it applies the method

of SNTLN to the approximate factorisation of these polynomials, instead of to their

Sylvester matrix. The second method explicitly computes a GCD of the corrected

polynomials, whereas the Sylvester matrix requires further computations to compute

a GCD of the corrected polynomials. Both methods yield excellent results. However,

if the GCD is required explicitly then it is better to use the second method. Moreover,

more experiments must be performed in order to compare them for the computation

of an AGCD.

Chapter 8

Polynomial deconvolutions

An important operation that is used extensively in Algorithm 2.3.1, which describes

the root solver considered in this thesis, is polynomial division (deconvolution). It

was noted in Section 2.3 that this operation is ill-posed because even if f (y)/g(y) is a

polynomial, the ratio (f (y)+ö f (y))/(g(y)+ög(y)) is, with high probability, a rational

function, for arbitrary öf(y) and ög(y). Algorithm 2.3.1 requires, however, that this

ratio reduce to a polynomial and not a rational function. This problem can be solved

by perturbing the coefficients of the polynomials f (y) and g(y) the minimum amount

such that the polynomial in the denominator is an exact divisor of the polynomial in

the numerator. This chapter discusses the numerical computation of the two sets of

polynomial divisions,

hi (y)
=

9i-1(y), i
4i(y)

wi(y) - hh+((y)' Z=1,..., 1 - 1, (8.1)

185

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 186

which are associated with the implementation of Algorithm 2.3.1, where l is the high-

est root multiplicity. The method of structured total least norm (STLN) is used to

calculate the smallest perturbations that must be added to the coefficients of the

polynomials in the numerator and denominator such that the polynomial divisions

yield a polynomial. Section 8.1 addresses the problem of computing several poly-

nomial deconvolutions simultaneously, and Section 8.2 applies the method of STLN

for the computation of the smallest perturbations to be added to the coefficients of

the polynomials gi_1(y) and qi(y) such that the polynomial division yields a poly-

nomial rather than a rational function. Since hi(y)/hi+l(y) is of the same form as

gi_1(y)/qi(y), the same procedure is also applicable for hi(y)/hi+1(y)"

8.1 Problem statement

Consider the first set of polynomial deconvolutions in (8.1),

hz(y) =
42-l (y)

q1 (y) (8.2)

If the ratio gi_1(y)/gi(y) is a polynomial, a small level of noise in the coefficients of

either polynomial is able to transform this ratio into a rational function. A good

solution for this problem can be obtained by slightly perturbing qi-1(y) and qi(y)

such that the perturbed form of qi(y) is an exact divisor of of the perturbed form of

gi_1(y). Moreover, it is noted that qi(y) occurs in the ith and (i + 1) deconvolutions,

in Algorithm 2.3.1, and computing the polynomial deconvolutions in (8.2) simulta-

neously allows this coupled form to be preserved. These simultaneous computations

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 187

require that the following variables be defined,

mi = deg 4i(y), i=0, ... '
1,

ni = deg hi(y),

such that

L-1 L

M= E(mi
+ 1), M1 =

E(mi + 1), M1 =M+ (ml + 1),
i=o i=o

and

I
N= E(n, + 1).

i=l

The set of polynomial deconvolutions in (8.2) can be written in matrix form as

C(q)h = q,

C'1(qi)

C2(q2)

h1

h2

9o

Cj-1(q_1) hi-i

Ci(qi) hi

where C= C(q) E II$"'x^', hERN, qE RM, and

C'i(gi) E R(''--1+1)x(n, +1), i=1, ... ,
1,

qi E Rm'-1+1 i=0, ..., 1,

hi E R'1, +1
,i=1, ... ,

1.

qi

(8.3)

ql-2

q1-1

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 188

The simplest solution for (8.3) is the least squares (LS) solution,

h= Ctq.

However, it is assumed the data is inexact and the residual that is associated with

this LS solution is

T= (I
- C(q)C(q)t)h) 11 > 0,

from which it follows that the contents of the vector h are coefficients of polyno-

mial approximations of rational functions because qi_1(y)/qa(y), i=1, """ ,l are not

polynomials. A better solution is obtained when the coefficient matrix and the right

hand side of (8.3) are slightly perturbed such that it has an exact solution. These

perturbations can be calculated using the method of STLN, which is considered in

the next section.

8.2 STLN for polynomial deconvolutions

The application of the method of STLN for solving (8.3) requires that a structured

matrix be added to the coefficient matrix, and a structured vector be added to the

right hand side of this equation.

Let z; E R', +' be the vector of perturbations added to the vector qi that contains

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 189

the coefficients of the polynomial qi(y), i=0, """ ,
1, that is,

ZO =[z0 e... e zmp]T E R'no+l
,

T
Z1 =[zmo+1' ... , zmo+mi+1

jT R"+',

zi =[zM, . , zMl-1
]T E R"+1

Each Cauchy matrix Ci(gi), i=1, """ ,
1, in (8.3) is added to a Cauchy matrix E, (zi) E

ý8i"`'-l+i)X(n. +1) of structured perturbations. Thus Ci(gi) + Ei(zi), for i=0, """ ,
1,

form the entries of the matrix of the perturbed coefficients. Therefore, the perturbed

form B(zl, """, Zd) E RMXN of the coefficient matrix in (8.3) is

C(gi,. .., qi) + E(zi, ..., zi)

f Cl(ql)
C2(q2)

+

Cl-1(ql-1)

Cj(q1) j
E1(zl)

E2(z2)

E1_1(z_)

(8.4)

J Ei (z1)

CHAPTER 8. POLYNOMIAL DECONVOLUTIONS 190

The perturbations added to the coefficients of the polynomial qt(y) in the matrix

CC(gi) are also added to the vector of coefficients q2 of qi(y) on the right hand side.

Therefore, the perturbed form of the right hand side of (8.3) is

go + zo

qi +z1

qt-2 + Zi-2

ch-i + ZI-i J

where

qo

4i

+I IM 0J

ql-2

qd-1 I

ZO

21

ZI_1

Zl

qo

qi

ql-2

C11-1 ý

+ Pz, (8.5)

11
P= IM 0J and z= (zo, zi, ... ý zl]T E lI8M

It therefore follows from (8.4) and (8.5) that the perturbed form of (8.3) is,

(c(qi,
... , qi) + E(zi, ... , zt)) h=q+ Pz,

where

h=

hl

h2

E RN and q=

qo

E IIBM.

h1_1

h1

qi

ql-2

Lq1-1J

(8.6)

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 191

Equation (8.6) is non-linear and can be solved by the Newton-Raphson method [69]

for the vector h and the vector of the structured perturbations z. The residual that

is associated with an approximate solution of (8.6) is

r(z) = (q + Pz) -
(C(qi,

..., qt) + E(zi, ..., zi)) h.

A first order Taylor expansion of r(z) yields

r(z + Jz) =
(g

+ P(z + öz))

-
(C(gl,

..., qt) + E(zi + bzi, ."", zi + 8zi)) (h + öh) (8.7)

= r(z) + Pbz -
(C(ql,

..., qt) + E(zi, ..., zi))Jh - bE(zi, ".., zl)h,

where

öEi (zl)

JE2(z2)

öE(zl, ..., z,) -

SEI-i(zi-i)

8Ei(zi) ý

There exist matrices Y(h,) E][ýý"`i-1+1)x(rn, +1)ý i=1, """ ,
1, such that

Ei(zi)hi = Y(hi)zi and thus SEi(zi)hi = Y(hi)özi.

It follows that

öE(zl, ..., zi)h = Yöz, (8.8)

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS

where

0 Yl(hl)

0 Y2(h2)

y= y(hl, ... �h1)=

0 Y_1(hj_1)

0 Y(hi)

and

izp

Szl

öz =

8zi_1

Jzj

Using (8.8), the expression for r(z + 5z) in (8.7) can be simplified to

r(z + 8z) = r(z) - (C + E)5h - (Y - P)bz,

and therefore it is required to solve

(bh
I (C + E) (Y - P)

1

6z

l=

r,
L

192

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 193

which is an under-determine equation, with

+ E) (Y - P) JE
RMxMI)

[(C

,

and r= r(z). The jth iteration in the Newton-Raphson method for the calculation

of h and z is,

(i)
r ý (8.9) I (C + E) (Y - P)

öh

L Jz

Let z(°) =0 be the initial value of z and h(°) be the initial value of h. Since the

nearest solution is sought, it is required to minimise

hC'+1) - h(°)

ZU+1)

h(j) + öh(j) - h(°)

ZU) + öz(. i)

r

_I
bh(j) II _(hv) - h(°')

F 1-i JZ(j) I I- Z(j) 111
subject to (8.9), where F= IN+, y,. This is an LSE problem of the form

min II Fy - sll subject to Gy = t, (8.10)

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS

where

bh(')
G=[(C+E) (Y-P) J y=

bzU>

S=
-(hU) - h(o))

_ZU)
et- TC7),

and h(°) is obtained from the least squares solution of (8.3),

Cl(ql)

h(°) =

Cl-1(qt-i)

Cl (ý) ý

t
qo

9i

q1-2

qa-i

194

(8.1 1)

The application of the QR decomposition to solve the LSE problem (8.10) is shown

in Algorithm 8.2.

Algorithm 8.2: QR decomposition for polynomial deconvolution

Input The polynomials q1(y), i=0, """, 1.

Output The polynomials hi(y), i=1, ,
1.

Begin

C2 (q2)

1. Set z=0 and compute h(°) from (8.11).

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 195

2. repeat

(a) Compute the QR decomposition of GT,

GT =QR=Q
R1

0

(b) Set wl = Rj-Tr.

(c) Partition FQ, into Fl E R(N+MI)xM and F2 E R(N+M1)x(N+MI-M)

FQ=I Fi F2J"

(d) Compute

w2=F2(s-Flwl).

(e) Compute the solution

y=Q
4U1

W2

(f) Seth :=h+ 8h and z :=z+ 8z.

(g) Update G, s and t, then evaluate the residual

res = (q + Pz) -
(C(ql,

... , qt) + E(z1, ... , zi)) h.

11rea 12
ilntll

IIq+Pzll - lO

CHAPTER 8. POLYNOMIAL DECONVOLUTIONS

End

196

An important issue that should be addressed is that the polynomials q1+i (y),

i=0, """ , 1, are the AGCDs of the successive polynomials q; (y) and q; l)(y), and each

AGCD is computed with different value of 0. For example, if the given polynomial is

in the variable y, and 0 and 02 are obtained from the LP problem (4.7), then

Y= Biwi wl = e2w2" (8.12)

and

9i = AGCD(4o, 9ö1)), qi = qi("ýiýý

42 = AGCD(q,, Qil)), Q2 = 42 (W2)"

It is therefore important to transform the polynomials gl(wl) and q2(W2) to the same

independent variable. For example, it follows from (8.12) that

Y= 0102w2,4i = Qi
()

and q2 = 42
(BZ

B2
)-

ol

The same process is repeated for all gi(wi).

8.3 Summary

This chapter has discussed the computational implementation of polynomial decon-

volution, which is used extensively in the proposed root solver. It has been shown

CHAPTER 8. POLYNOMIAL DECONVOL UTIONS 197

that this problem is ill-posed because even if this division yields a polynomial, a small

random perturbation added to the coefficients of the polynomials in the numerator

and denominator, yields, with high probability, a rational function. It has been shown

that the method of STLN can be used to impose the requirement that polynomial

division yields a polynomial.

Chapter 9

Polynomial root solver

This chapter considers the application of the developed root solver, which follows

the method described in Algorithm 2.3.1, for the computation of the roots of inexact

polynomials, whose exact forms contain multiple roots. This root solver involves the

following problems

1. The computation of successive AGCDs.

2. The computation of successive polynomial divisions.

3. The computation of several polynomials, all of whose roots are simple.

The first problem involves two stages:

(a) The computation of the degree of an AGCD.

(b) The computation of the coefficients of this AGCD.

These two stages have been considered in Chapters 6 and 7, respectively. The second

problem has been considered in Chapter 8.

198

CHAPTER 9. POLYNOMIAL ROOT SOLVER 199

The last stage of Algorithm 2.3.1 requires the solution of several polynomial equations,

all of whose roots are simple. These roots can be refined by the method of non-linear

least squares. The task of computing the simple roots and refining them is considered

in the Section 9.1, and Section 9.2 presents some examples.

9.1 The computation of the roots and their refine-

ment

The developed root solver that is described in Algorithm 2.3.1 follows the Divide and

Conquer Strategy, by which a polynomial that has multiple roots is broken down into

several polynomials, each of which only has simple roots. Thus, the last stage of this

algorithm requires solving several polynomial equations, all of whose roots are simple

and can be computed using classical root solving methods (e. g those described in

Chapter 1). The multiplicities of these roots are determined by the successive AGCD

computations in Algorithm 2.3.1, and it has been shown in Section 2.3 that the values

of these multiplicities follow directly from the index of the second set of polynomial

deconvolutions w,, j=1,2, """, r�wz, where is the highest root multiplicity.

Thus, in addition to the computation of the roots of a polynomial, Algorithm 2.3.1

computes the multiplicity structure of this polynomial.

Once the roots and their associated multiplicities are known, the values of the roots

can be refined under the constraints of the multiplicity structure. In particular, con-

sider the polynomial f (y), which is defined in (2.7), and let the initial estimates of the

l distinct roots of f (y) be yo = [yo, i, yo, 2, """, yo, i] and the associated multiplicities

be defined by the vector m= [m11 m2, """, mt]. It follows from Kahan's observations,

CHAPTER 9. POLYNOMIAL ROOT SOLVER 200

which are illustrated in Section 2.2, that this multiplicity structure defines the pejora-

tive manifold on which the polynomial f (y) lies. Furthermore, a small displacement

of f (y) on this manifold yields a small change in the roots of f (y) under the constraint

that the multiplicities of the roots are preserved. A geometrical interpretation of this

process is given in Section 2.3.3.

It was shown in Section 2.2 that the pejorative manifold of the polynomial f (y), which

is defined in (2.7), is given by Vieta's system (2.7) Pm(y) = a,

pm(Y) =

pi(Y) = al

P2(y) = a2

n p(y) =a

(9.1)

and it is required to find the vector y=[yl, ... , yi], with minimum error. Thus,

the problem of computing the roots y� j=1,2, """ , 1, is reduced to the minimisation

problem,

n

miýný IIPm(Y) - a11z = min E(pj(Y)
- Qi)2,

i-1

which is a non-linear least squares problem, and can be solve iteratively, using the

Gauss-Newton method [11].

Let J= J(y) be the Jacobian matrix of Pm(y), and the entries of J(y) are Jaj = ävl

CHAPTER 9. POLYNOMIAL ROOT SOLVER

i=1, """, n, andj=1, """, l, that is,

J=

aP1 Y aP1 Y aP1(y)
aY1 aY2 aY1

aP2 (Y) aP2 (Y)
...

aP2
aY1 aY2 aNl

. 9Yn Y "/'n y... OP. y

L 81n ava 8bt

The (k + 1)th iteration in the Gauss-Newton method is given by,

Yk+1 - Yk -
! jk Jk`-1 JTr(Yk)

ý

201

(9.2)

where r(yk) = Pn, (yk) - a. The matrix inverse in the iteration (9.2) exists only if

Jk = J(Yk) is non-singular, (i. e. Jk has full rank for all k). It is shown in [85) that

Jk is non-singular, since the roots yi, y2i """, yj in P. (y) are all distinct.

The initial estimates of the distinct roots yj, j=1,2, """, l of f (y) are calculated by

solving the polynomial equations w= (y) = 0, i=1,2, "", r, nax, in Algorithm 2.3.1,

all of whose roots are simple, where rmax is the highest root multiplicity. Given these

initial estimates of the roots of an inexact polynomial f (y), and the associated multi-

plicity structure, Algorithm 9.1 refines these estimates using the method of non-linear

least squares.

CHAPTER 9. POLYNOMIAL ROOT SOLVER 202

Algorithm 9.1: The refinement of the roots

Input

1. The vector aE Rn+1 of the normalised coefficients of f (y).

2. The initial estimates of the distinct roots yo = [yo, l, yo, 2, ."., yo, t] of f (y), and

the multiplicity mj of each distinct root yoj, j=1, """ , 1.

Output The refined roots y= [yl) y2i """, yi] of f (y).

Begin

1. Set k=0 and yk = Yo-

2. Repeat

(a) Calculate the vector Pm(yk) defined in (9.1), and the residual vector,

rk =P(Yk)--a.

(b) Calculate the Jacobian matrix Jk = J(yk).

(c) Calculate yk+i defined in (9.2).

(d) Calculate rk+j,

rk+1 = 1'm(Yk+1) - a.

CHAPTER 9. POLYNOMIAL ROOT SOLVER 203

(e) Calculate the error,

IIrk+1 - rk II
ek+1 - Ilrk II

(f) Increment k.

Until ek+1 < 10-14

3. Set y= yk+1.

9.2 Results

This section contains some examples that show the results of computing the roots of

inexact polynomials using the root solver described in this work. The computation

of AGCDs of several pairs of polynomials forms the most crucial stage in this root

solver. The degrees of the AGCDs were determined by applying the majority voting

principle to the set of the results produced by the methods discussed in Chapter 6.

It was shown that an AGCD of two inexact polynomials can be be computed using

either the Sylvester matrix or APF of these two inexact polynomials. Although both

methods can be used to compute a structured low rank approximation of the Sylvester

matrix, the method of APF is superior for the calculation of an AGCD because it

yields the AGCD explicitly, and no extra calculation is required. By contrast, the

Sylvester matrix must be reduced to an upper triangular form using either the LU or

QR decomposition, but this may cause numerical problems.

CHAPTER 9. POLYNOMIAL ROOT SOLVER 204

It was found experimentally that the first AGCD computation must be performed

using APF, and that subsequent AGCD computations can be performed using the

Sylvester matrix. It is believed that this is because the AGCD computed from the

APF in the first AGCD computation is of sufficiently high quality, such that the

Sylvester matrix can be used for all subsequent AGCD computations.

Two root solvers were used to test the results produced by the developer root solver;

the function roots() in MATLAB and the suite of MATLAB programmes MULTROOT

which is developed by Zeng [85], and it is called with the function multroot=(poly,

threshold). The first argument poly is the vector of the coefficients of the polynomial,

and the second argument threshold is the error tolerance. If the second argument is

omitted, then the default value threshold = 10-10 is used.

The examples included in this section contains three sets of polynomials:

1. The first set considers some of the test polynomials from the test collection in

[86], after adding componentwise noise to the coefficients of the polynomials.

The developed root solver and MULTROOT work well with this set. MULTROOT

requires, however, the noise level in order to produce good results, whereas the

developed root solver does not require this information.

2. The second set considers test polynomials including some hard classes of poly-

nomials suggested by the author of this thesis, and the results of each example

in this set are compared with the results from MULTROOT, and the function

roots(). The developed root solver performs well with the examples given in

this set. In contrast to Set 1, it is shown in this set that MULTROOT does not

always work well even if the noise level is specified. The function roots() fails

also to compute the correct answers of the examples in this set.

CHAPTER 9. POLYNOMIAL ROOT SOLVER 205

3. The last set considers the case when the signal-to-noise ratio of each coefficient

of a given polynomial is a random variable between a and b, where b/a = 103,104

or 105. The results of each example in this set are also compared with the results

from MULTROOT, and the function roots(). It is shown that MULTROOT fails

to compute the roots of the polynomials in this set for all threshold values in

the range a< threshold < b. Similar results were obtained when the function

roots() was used. On the other hand, the developed root solver works perfectly

as it does not require any knowledge about the noise level.

Polynomial Set 1: This set contains three examples from [86]. The roots of the

polynomials in this set were computed using both the developed root solver and

MULTROOT. Both root finders yield satisfactory results. However the noise level

was required to be given for MuLTROOT as an input argument threshold, in order to

provide good results, whereas it was not required by the developed root solver.

Example 9.1. Consider the exact polynomial fl(y) whose roots and multiplicities

are given in the first and second columns of Table 9.1, respectively.

Table 9.1: The roots and multiplicities of fl(y) for Example 9.1.

exact root exact
mult.

computed root computed
mult.

relative error

1 8 1.000000000e+000 8 7.129630220e-012
2 16 -2.000000000000463e+000 16 2.315925229e-013
3 24 2.999999999991630e+000 24 2.790064476e-012

Componentwise noise with -, = 10-10 was added to the coefficients of this polynomial

to create the inexact form f, (y) of ji (y). The results of computing the roots of f, (y),

and their corresponding multiplicities, using the root solver described in this work

CHAPTER 9. POLYNOMIAL ROOT SOLVER 206

are given in the third and fourth columns of Table 9.1, respectively. The fifth column

of Table 9.1 shows that the relative error in computing each distinct root is between

two and three order of magnitude smaller than eý = 10'10. Similar results were also

found by MULTROOT with the argument threshold = 10'10. However, it is shown in

Set 2 that in contrast to the developed root solver, if fl (y) is perturbed by e, = 10-8,

MULTROOT fails to compute the roots of fl(y) even if threshold is set equal to 10-8.

0

Example 9.2. Consider the exact polynomial /2(y) whose roots and multiplicities

are given in the first and second columns of Table 9.2, respectively.

Table 9.2: The roots and multiplicities of f2(y) for Example 9.2.

exact root exact
mult.

computed root computed
mult.

relative error

2.727272727e+000 2 2.727271785e+000 2 3.455067788e-007
1.818181818e+000 3 1.818182510e+000 3 3.806444900e-007
9.090909090e-001 5 9.090908204e-001 5 9.751830201e-008

Componentwise noise with e, = 10-8 was added to the coefficients of this polynomial

to create the inexact form f2(y) of f2(y). The results of computing the roots of f2(y),

and their corresponding multiplicities, using the root solver described in this work

are given in the third and fourth columns of Table 9.2. The fifth column of Table

9.2 shows that the relative error in computing each distinct root is between one and

two order of magnitude larger than e, = 10-8. Similar results were also found by

MuLTROOT with the argument threshold = 10-8. O

Example 9.3. Consider the exact polynomial 13(y) whose roots and multiplicities

are given in the first and second columns of Table 9.3, respectively.

CHAPTER 9. POLYNOMIAL ROOT SOLVER 207

Table 9.3: The roots and multiplicities of f3(y) for Example 9.3.

exact root exact
mult.

computed root computed
mult.

relative error

2.35 3 2.559999568e+00 3 1.6855607569e-07
2.56 1 2.350000137e+00 1 5.774327796e-08

Componentwise noise with s. = 10-8 was added to the coefficients of this polynomial

to create the inexact form f3(y) of f3(y). The results of computing the roots of f3(y),

and their corresponding multiplicities, using the root solver described in this work are

given in the third and fourth columns of Table 9.3, respectively. The fifth column of

Table 9.3 shows that the relative error in computing each distinct root is acceptable

with respect to s, = 10-8. Similar results were also found by MULTROOT with the

argument threshold = 10-8. Q

It is noticed that for the classes of the polynomials considered in Set 1, both

the root solver described in this work and MULTROOT work well, provided that the

argument threshold> e, is satisfied for MULTROOT.

Polynomial Set 2: This set of examples consider harder polynomial classes that

may include close roots, roots with high multiplicities, and/or several multiple roots,

in which case clustering analysis fails to give the correct number of distinct roots.

This set contains four examples. The first three examples are suggested by this work

and the fourth example considers the polynomial fl (y) in Example 9.1, but with a

lower signal-to-noise ratio. Unlike the results in the first set of examples, this set of

examples demonstrates that MULTROOT does not always work well if the noise level

is specified. On the other, the root solver developed in this thesis performs very well

without prior knowledge of the noise level.

CHAPTER 9. POLYNOMIAL ROOT SOLVER 208

Example 9.4. Let the exact polynomial f4(y) be defined by the roots and multiplic-

ities given in the first and second columns of Table 9.4, respectively.

Table 9.4: The roots and multiplicities of f4(y) for Example 9.4.

exact root exact
mult.

computed root computed
mult.

relative error

-7.5947e+00 6 -7.59343498e+00 6 1.66566613e-004
6.3371 e-01 5 6.33767034e-01 5 9.00006631 e-005

1.4923e+00 5 1.49217406e+00 5 8.43930316e-005
5.4862e+00 4 5.48668014e+00 4 8.75174996e-005

-3.3076e+00 3 -3.10954147e+00 3 5.98798325e-002

-3.0670e+00 2 -3.36592459e+00 2 9.74648171e-002
4.2244e-01 2 4.22380231 e-01 2 1.41486013e-004

2.5090e+00 2 2.50915603e+00 2 6.21875010e-005

0.4

03

0.2

a 0.1
to
c rm o
m ý
- -o. i

-0,2
-0.3

-0.4
-10

(a)

-8 -6 -4 2 4 6

Figure 9.1: The computed roots of f4(y) in Example 9.4, using (a) MULTROOT, and
(b) the MATLAB function roots().

Noise with signal-to-noise ratio 106 was added to the coefficients of this polynomial

to create the inexact form f4(y) of f4(y). The results of computing the roots of f4(y),

and their corresponding multiplicities, using the root solver described in this work

117

++

ý
-8 -6 -4 -2 0

Real

++ +

++ +

2 4 6

0.3

0.2

o. a ý,

++ + + ++ # #ý ++
+ ++ +

4. +-

0.1 z ß C oo ý E
- -0.1

-o. 2

-0.3

-OA
-10 -2 0

Real

(b)

CHAPTER 9. POLYNOMIAL ROOT SOLVER 209

are given in the third and fourth columns of Table 9.4, respectively. The fifth column

of Table 9.4 shows the relative error in computing each distinct root. The results of

computing the roots of f4(y), using MULTROOT with threshold = 10-s, and roots()

are plotted in Figures 9.1 (a) and (b), respectively.

The results in Table 9.4 show that the developed root solver computes the roots

of f4(y), despite the low signal-to-noise ratio, the high multiplicities and the low

separation between some of them such as -3.3076 and -3.0670. On the other hand,

Figures 9.1 (a) and (b) show that MULTROOT, with threshold = 10-s, and MATLAB

return simple roots, and thus the multiplicities of the roots are lost. Considering

lower signal to noise ratios such as cc-' < 105, however, causes the developed root

solver to fail as well. Q

Example 9.5. This example considers the polynomial f5(y) whose whose roots and

multiplicities are given in the first and second columns of Table 9.5, respectively. Noise

with componentwise signal-to-noise ratio eý 1= 107 was added to the coefficients of

f5(y). The results in Table 9.5 show that the roots of f5(y) were computed with

Table 9.5: The roots and multiplicities of f5(y) for Example 9.5.

exact root exact
mult.

computed root computed
mult.

relative error

5.36868065e+000 10 5.36868078e+000 10 2.32121468e-008
6.66252854e-001 9 6.66252846e-001 9 1.26828432e-008

-8.00831536e+000 5 -8.00831726e+000 5 2.37076153e-007

-8.99239567e+000 3 -8.99239169e+000 3 4.43280353e-007

good accuracy, despite the high multiplicities and the low signal-to-noise ratio. The

results of computing the roots and associated multiplicities of f5(y) using MULTROOT

with threshold = 10-7, and MATLAB are shown in Figures 9.2 (a) and (b). As in the

CHAPTER 9. POLYNOMIAL ROOT SOLVER

1
0.8

oß

0.4

0.2
m ý0

-0.2

-04

-0.6

-0.8

-1

ý ++
++

k++ ++
-10 -5

ý
ý

0
Real

(a)

ý +
+

+

+

+

+

+
+

ý 5 10

1
0.8

0.6

0.4

ý 0.2
A
c 0

-0.2

-0.4

-0.6

-0.8

-1

ý ++
++

k++ ++
-10 -5

ý

0
Real

(b)

210

ý +
+

+

+

+

+

+
+

ý 5 10

Figure 9.2: The computed roots of f5(y) in Example 9.5, using (a) MULTROOT, and
(b) the MATLAB function roots().

previous example, it is noted that both MULTROOT and MATLAB fail to compute

the correct roots because they return simple roots. Considering lower signal to noise

ratio such as ec 1= 106, however, causes the developed root solver to fail as well. Q

Example 9.6. Example 9.1 has consider the exact polynomial f, (y) from Zeng's set

in [86]. The same polynomial is considered in this example with threshold = 10-8

instead of 10-1().

Table 9.6: The roots and multiplicities of fl(y) for Example 9.6.

exact root exact
mult.

computed root computed
mult.

relative error

1 8 1.00000000e+000 8 1.826900853e-009
2 16 2.00000000e+000 16 5.466993524e-010
3 24 1 1 2.999999999e+000 24 2.317150916e-010

Componentwise noise with E, = 10-8 was added to the coefficients of this polynomial

to create the inexact form f, (y) of fl(y). The results of computing the roots of f, (y),

CHAPTER 9. POLYNOMIAL ROOT SOLVER 211

and their corresponding multiplicities, using the root solver described in this work

are given in the third and fourth columns of Table 9.6, respectively. The fifth column

of Table 9.6 shows that the relative error in computing each distinct root is between

one and two order of magnitude smaller than cc = 10-8. On the other hand, both

the root solver MULTROOT with threshold = 10-8, and the function roots() returned

simple complex conjugate pairs of roots. Q

Despite the difficulty of the polynomial classes and the low signal-to-noise ratios,

used in Set 2, it was shown that the developed root solver performs very well. On the

other hand both MULTROOT, with threshold= e,, and root() return simple complex

conjugate pairs of roots. This shows that the structured polynomial root solver

described in this work provides more reliable computations, in the presence of noise,

than MULTROOT, and this is due to its robust structured methods that allow lower

levels of signal-to-noise ratios to be handled.

Polynomial Set 3: The examples in Sets 1 and 2 added noise to the coefficients of the

given polynomial such that the componentwise signal-to-noise ratio cc 1 is constant.

The examples in this set allow the ec 1 to vary between the coefficients, that is, the

signal-to-noise ratio of each coefficient varies between a and b, where b/a = 103,104

or 105.

Example 9.7. Let the exact polynomial f6(y) be defined by the roots and multiplic-

ities given in the first and second columns of Table 9.7, respectively. The different

coefficients of f6(y) were perturbed independently with variable a whose value ranges

between 10-10 and 10-5.

The results of computing the roots of f6(y), and their corresponding multiplicities,

using the root solver described in this work are given in the third and fourth columns

CHAPTER 9. POLYNOMIAL ROOT SOLVER 212

Table 9.7: The roots and multiplicities of 16(y) for Example 9.7.

exact root exact
mult.

computed root computed
mult.

relative error

2 5 2.00002785e+000 5 1.39246339e-005
3 3 2.99970072e+000 3 9.97587653e-005

-6 2 5.99968552e+000 2 5.24133777e-005
4 F-- 11 1 4.00133963e+000 1 3.34906515e-004

of Table 9.7, respectively. The fifth column of Table 9.7 shows that the relative

error in computing each distinct root is adequate with respect to 10'10 < e, < 10-5.

MULTROOT yields unsatisfactory answers for threshold = 10-10,10-9,10-8,10-7,10-6

and 10'5, because it returned simple complex conjugate pairs of roots and similar

results were obtained using roots(). Q

Example 9.8. Consider the exact polynomial f7(y) which is defined by the roots

and multiplicities given in the first and second columns of Table 9.8, respectively.

The different coefficients of f7(y) were perturbed by variable e, whose value ranges

between 10-9 and 10-1.

Table 9.8: The roots and multiplicities of 17(y) for Example 9.8.

exact root exact
mult.

computed root computed
mult.

relative error

-7.5947e+00 6 -7.59470511e+00 6 6.73425542e-07
6.3371e-01 5 6.3371.3762e-01 5 5.93626159e-06

1.4923e+00 5 1.49228952e+00 5 7.02533502e-06
5.4862e+00 4 5.48617804e+00 4 4.00225089e-06

-3.3076e+00 3 -3.30759693e+00 3 9.29136428e-07

-3.0670e+00 2 -3.06700249e+00 2 8.12519187e-07
4.2244e-01 2 4.22435986e-01 2 9.50092906e-06

2.5090e+00 21 1 2.50904664e+00 2 1.85908575e-05

CHAPTER 9. POLYNOMIAL ROOT SOLVER 213

The results of computing the roots of f7(y), and their corresponding multiplicities,

using the root solver described in this work are given in the third and fourth columns

of Table 9.8, respectively. The fifth column of Table 9.8 shows the relative error

in computing each distinct root. MULTROOT() yielded unsatisfactory answers for

threshold = 10-9,10-8,10-7,10-6, because it returned simple complex conjugate pairs

of roots and similar results were obtained using roots(). Q

Example 9.9. The procedure described in the previous two examples was repeated

for the polynomial whose roots and multiplicities are given in the first and second

columns of Table 9.9. Consider the exact polynomial f8(y) which is defined by the

roots and multiplicities given in the first and second columns of Table 9.9, respectively.

The different coefficients of f8(y) have been perturbed independently with variable

randomly by e, whose value ranges between 10-10 and 10-8.

Table 9.9: The roots and multiplicities of f8(y) for Example 9.9.

exact root exact
mult.

computed root computed
mult.

relative error

-8.79070000e+00 9 -8.79070047e+00 6 5.39267513e-08

-1.99840000e+00 4 -1.99839999e+00 5 2.51676037e-09
6.63740000e+00 4 6.63740102e+00 5 1.53471615e-07

4.44700000e+00 3 4.44699986e+00 4 3.04789679e-08
9.01830000e+00 2 9.01829716e+00 3 3.14759166e-07

-7.31320000e+00 1 -7.31319737e+00 2 3.59548548e-07

The results of computing the roots of f8(y), and their corresponding multiplicities,

using the root solver described in this work are given in the third and fourth columns

of Table 9.9, respectively. The fifth column of Table 9.9 shows the relative error in

computing each distinct root. The root solver MULTROOT yielded unsatisfactory an-

swers for threshold = 10-10,10-9,10-8, because it returned simple complex conjugate

CHAPTER 9. POLYNOMIAL ROOT SOLVER 214

pairs of roots and similar results were obtained using roots(). Q

It is shown in this section that the developed root solver and MULTROOT work well

in the presence of noise. However, MULTROOT requires that the argument threshold>

e, be satisfied. On the other hand, the developed root solver does not require that

the noise level be known. This is due to the fact that the developed root solver uses

data-driven methods. In particular, the determination of the degree of an AGCD of

two inexact polynomials is done using (6.9) and (6.22), which depend on the given

data rather than a fixed threshold value. This property in the developed root solver

allows it to handle harder classes of polynomials with a lower signal-to-noise ratio.

In such cases, MTLTROOT does not always provide satisfactory results even if the

exact e, is known and the argument threshold is set equal to e,. Furthermore, in

practice, different coefficients of a polynomial may have different values of signal-to-

noise ratio. When such situations were tested, it was shown that the developed root

solver provided better results than MULTROOT, and it is suggested that, with this

class of polynomials, it is hard to define a threshold value for MULTROOT.

9.3 Summary

In this chapter the final stage of Algorithm 2.3.1 has been discussed. It has been

shown that it requires the computation of the solution of several polynomial equa-

tions, all of whose roots are simple, distinct and can be computed using classical root

solving methods. The method of non-linear least squares has been used to refine the

values of these roots under the constraint that their multiplicities are preserved.

Experimental results of applying the developed root solver on different polynomial

CHAPTER 9. POLYNOMIAL ROOT SOLVER 215

classes have been presented, in the presence of noise. These results have been com-

pared with the results obtained from MULTROOT which is developed by Zeng [85]

and the MATLAB function roots().

While the developed root solver provides excellent results, both MULTROOT and the

function roots() perform badly, in the presence of noise. In particular, MULTROOT

does not provide good results if the noise level is greater than the default setting of

the threshold, and even if the threshold is set at the known signal-to-noise ratio, it

does not necessarily preserve the multiplicities of the theoretically exact roots.

Chapter 10

Conclusions and future work

10.1 Conclusion

The work presented in this thesis has described a polynomial root solver that com-

putes multiple roots of inexact polynomials. Due to the ill-posed nature of this

problem, a small perturbation is sufficient to break up the multiple roots into simple

roots, and many of the root solving methods in the literature fail to compute the

correct values of the multiple roots. The algorithm used in the root solver developed

in this work first computes the multiplicity structure of the given polynomial through

successive AGCD computations. It then uses two sets of polynomial divisions to

break up the given polynomial into several polynomials whose roots are simple and

distinct. Finally, a refinement stage is used to improve the accuracy of the results.

thereby yielding superior results. Following this procedure in computing the roots

has shown significant improvements in the results with respect to the previous work.

The computational implementation of this algorithm involves three main operations:

216

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 217

1. The computation of successive AGCDs.

2. The computation of successive polynomial divisions.

3. The computation of several polynomials whose roots are simple and distinct.

The first operation AGCD computation involves two stages

(a) The computation of the degree of the AGCD.

(b) The computation of the coefficients of the AGCD.

Three methods are used to compute the degree of the AGCD. The first and second

methods are applicable to any pair of polynomials, whereas the third method is only

applicable to a polynomial and its derivative. All three methods use the Sylvester

matrix S(f, g) of f (y) and g(y) and its subresultant matrices, but they differ in the

criteria used to evaluate the error in a linear algebraic equation.

The first method uses the first principal angle between the space spanned by one col-

umn of Sk(f, g) and the space spanned by the remaining columns of Sk(f, g), where

k denotes the order of the subresultant matrix. The second method uses the resid-

ual of an approximate linear algebraic equation. The third method uses the relation

between a polynomial and its derivative and therefore it is only applicable for a poly-

nomial and its derivative. The majority voting principle is then used to determine

the degree of the AGCD.

Once the degree of the AGCD is known, its coefficients are computed in the second

stage, using the method of non-linear structured total least norm. Two different al-

gorithms are developed for the computation of the coefficients of an AGCD. Both

algorithms use the method of SNTLN. In particular, the first method applies the

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 218

method of SNTLN to the Sylvester matrix of the inexact polynomials, and the co-

efficients of the AGCD can either be taken from the last non-zero of the Sylvester

matrix after reducing its transpose to upper triangular form, or they can be taken

from the null space of the Sylvester matrix. On the other hand, the second method

computes the AGCD explicitly without the need for extra computation as it applies

the method of SNTLN to the approximate factorisation of two inexact polynomials.

The examples in Chapter 7 show that both methods give excellent results for hard

classes of polynomials.

The second operation polynomial division is an ill-posed computation and thus it

is treated with care to provide more accurate results. In particular, the coefficients of

the polynomials that are involved in the divisions qi(y)/q(i+l)(y), are perturbed with

structured perturbations, using the method of STLN, such that the perturbed form

of q(i+i)(y) is an exact divisor of the perturbed form of qi(y). A similar procedure is

applied to the second set of division hi(y)/hi+1(y)"

In Chapter 9, the first and second operations are combined and applied successively,

and this yields several polynomials, each of which only has simple distinct roots. The

MATLAB function roots() has been used to solve these polynomial equations. Im-

proved results are obtained when the method of non-linear least squares is used to

refine the values of these roots. This refinement process is done under the constraint

of the multiplicity structure of the given polynomial, such that the polynomial defined

by the refined roots is kept on the same manifold as that of the polynomial formed

by the initial roots estimates.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 219

The developed method has been used to compute the multiple roots of hard classes

of polynomials and it is shown in Chapter 9 that it gives very good results.

To summarise, in addition to developing a root finding method that computes the

multiple roots of inexact polynomials, the work in this thesis shows that:

1. The computation of the multiplicity structure of the given inexact polynomial

is the most crucial stage in the computation of its multiple roots.

2. Based on the geometric interpretation described in this thesis, the computation

of the multiple roots of inexact polynomial is well conditioned if the multiplicity

structure of the polynomial is preserved.

3. Preprocessing the given polynomial, using the preprocessing operations de-

scribed in this work, has a significant effect in providing more reliable com-

putations.

4. The computation of the optimal values of the scaling parameters a and B can

be performed by solving a linear programming problem.

5. The numerical rank of the Sylvester matrix can be computed directly from the

given data without the need for prior knowledge about the level of the noise.

6. The method of SNTLN can be used to compute an AGCD of inexact polyno-

mials.

7. The method of STLN can be used to impose a constraint on the polynomial

division in order to induce a polynomial rather than a rational function as the

solution.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 220

8. The method of non-linear least squares is efficient in refining the values of the

roots.

10.2 Future work and improvements

The work in this research only considers the feasibility of using structured methods

for computing multiple roots of an inexact polynomial and it is shown that it provides

encouraging results. However, further work is needed to improve its computational

efficiency by developing fast algorithms that exploit the structure nature of the de-

veloped methods. In particular, the proposed methods used for the computation of

the rank of the Sylvester matrix of inexact polynomial require the computation of

the SVD for each subresultant matrix, which is expensive computationally. Since

two successive subresultant matrices differ only in one column, an update procedure

should be used for computational efficiency, and thus the QR decomposition [27,57]

can be used. Moreover, the method that uses the APF for the computation of an

AGCD of two polynomials uses two Cauchy matrices. A fast algorithm can be devel-

oped to exploit the structure of a matrix that contains two Cauchy matrices.

Curves and surfaces in geometric modelling are represented as polynomials in the

Bernstein basis, and thus intersection problems reduce to the solution of one or more

polynomial equations. This application requires extending the work presented in this

thesis to the Bernstein basis. Another application is blind image deconvolution, in

which two noisy images of the same scene are used to obtain an improved image

(high signal-to-noise ratio) of the scene. Although this is a bivariate problem, Fourier

transforms enable this problem to be reduced to a univariate GCD problem [43,62],

and thus the methods discussed in this thesis are appropriate.

Bibliography

[1] H. L. Porteous A. C. Baker. Linear Algebra and Differential Equations. Ellis

Horwood Limited, New York; London, 1990.

[2] Dario A. Bini. Structured matrix-based methods for polynomials e-gcd: Analysis

and comparisons. Adv. Comp. Math., 2007.

[3] A. Aliphas, S. Narayan, and A. Peterson. Finding the zeros of linear phase fir

frequency sampling digital filters. IEEE f-ansaction on Acoustics, Speech and

Signal Processing, 31: 729-734,1983.

[4] Marc Van Barel, Raf Vandebril, and Paul Van Dooren. Implicit double shift

QR-algorithm for companion matrices, 2008.

[5] S. Barnett. Polynomials and Linear Control Systems. Marcel Dekker, New York,

USA, 1983.

[6] Bernhard Beckermann and George Labahn. A fast and numerically stable

euclidean-like algorithm for detecting relatively prime numerical polynomials.

J. Symb. Comput., 26(6): 691-714,1998.

[7] D. A. Bini, Y. Eidelman, L. Gemignani, and I. Gohberg. Fast QR eigenvalue

algorithms for Hessenberg matrices which are rank-one perturbations of unitary
221

BIBLIOGRAPHY 222

matrices. SIAM Journal on Matrix Analysis and Applications, 29(2): 566-585,

2007.

[8] D. A. Bini and P. Boito. Structured matrix-based methods for polynomial e-gcd:

analysis and comparisons. In Proceedings of the 2007 international symposium

on Symbolic and algebraic computation, pages 9-16. ACM, 2007.

[9] D. A. Bini, P. Boito, Y. Eidelman, L. Gemignani, and I. Gohberg. A fast im-

plicit QR eigenvalue algorithm for companion matrices. Linear Algebra and its

Applications, 432(8): 2006 - 2031,2010. Special issue devoted to the 15th ILAS

Conference at Cancun, Mexico, June 16-20,2008.

[101 Christian H. Bischof. Incremental condition estimation. SIAM J. Matrix Anal.

Appl., 11(2): 312-322,1990.

[11] A. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia,

USA, 1996.

[12] A. Bjork and Gene H. Golub. Numerical methods for computing angles between

linear subspaces. Mathematics of Computation, 27: 579-579.

[13] W. S. Brown. On euclid's algorithm and the computation of polynomial greatest

common divisors. J. ACM, 18: 478-504, October 1971.

[141 Paulina Chin, Robert M. Corless, and George F. Corliss. Optimization strategies

for the approximate GCD problem. In ISSAC '98: Proceedings of the 1998

international symposium on Symbolic and algebraic computation, pages 228-235,

New York, NY, USA, 1998. ACM.

BIBLIOGRAPHY 223

[15] George E. Collins. Subresultants and reduced polynomial remainder sequences.

J. ACM, 14: 128-142, January 1967.

[16] R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt. The singular

value decomposition for polynomial systems. In Proc. Int. Symp. Symbolic and

Algebraic Computation, pages 195--207. ACM Press, New York, 1995.

[17] R. M. Corless, S. M. Watt, and L. Zhi. QR factoring to compute the GCD of uni-

variate approximate polynomials. IEEE Trans. Signal Processing, 52(12): 3394-

3402,2004.

[18] D. A. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms: An

Introduction to Computational Algebraic Geometry and Commutative Algebra,

3/e (Undergraduate Texts in Mathematics). 2007.

[19] Germund Dalhquist, Ake Björck, and Ned Anderson. Numerical Methods.

Prentice-Hall Series in Automatic Computation. 1974.

[20] J. Demmel. On condition numbers and the distance to the nearest ill-posed

problem. Numerische Mathematik, 51: 251--289,1987.

[21] D. K Dunaway. A Composite Algorithm for Finding Zeros of Real Polynomials.

PhD thesis, Southern Methodist University, Texas, USA, 1972.

[22] A. Edelman and 11. Nlurakami. Polynomial roots from companion matrix eigen-

values. Mathematics of Computation, 64(210): 763-776,1995.

[23) I. Emiris, A. Galligo, and II. Lombardi. Numerical univariate polynomial GCD.

In J. Renegar, M. Schub, and S. Smale, editors, The Mathematics of Numerical

BIBLIOGRAPHY 224

Analysis. Volume 32 of Lecture Notes in Applied Mathematics, pages 323-343.

AMS, 1996.

[24] I. Emiris, A. Galligo, and H. Lombardi. Certified approximate univariate GCDs.

J. Pure and Applied Algebra, 117,118: 229-251,1997.

[25] C. F. Gerald and P. 0. Wheatley. Applied Numerical Analysis. Addison-Wesley,

USA, 1994.

[26] S. Ghaderpanah and S. Klasa. Polynomial scaling. SIAM Journal on Numerical

Analysis, 27(1): 117-135,1990.

[27] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic

Press, San Diego, USA, 1995.

[281 G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University

Press, Baltimore, USA, 1996.

[29) Richard W Hamming. Numerical methods for scientists and engineers (2nd ed.).

Dover Publications, Inc., New York, NY, USA, 1986.

[30] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadel-

phia, USA, 2002.

[31] D. G. Hough. Explaining and Ameliorating the Ill Condition of Zeros of Poly-

nomials. PhD thesis, Department of Computer Science, University of California,

Berkeley, USA, 1977.

[32] V. Hribernig. Sensitivity of Algebraic Algorithms. PhD thesis, Technical Univer-

sity of Vienna, 1994.

BIBLIOGRAPHY 225

[33] V. Hribernig and 11. J. Stetter. Detection and validation of clusters of polynomial

zeros. Journal of Symbolic Computation, 24: 667-681,1997.

[34] W. Kahan. Conserving confluence curbs ill-condition. Technical report, Depart-

ment of Computer Science, University of California, Berkeley, USA, 1972.

[35] W. Kahan. The improbability of probabilistic error analyses for numerical com-

putations. http: //www. cs. berkeley. edu/ -wkahan/improber. ps, 1996.

[36] E. Kaltofen, Z. Yang, and L. Zhi. Structured low rank approximation of a

Sylvester matrix. Symbolic-numeric computation, pages 69--83,2007.

[37] N. Karmarkar and Y. N. Lakshman. Approximate polynomial greatest common

divsior and nearest singular polynomials. In Proc. Int. Symp. Symbolic and

Algebraic Computation, pages 35-39. ACM Press, New York, 1996.

[38] N. K. Karmarkar. On approximate GCDs of univariate polynomials. J. Symb.

Comput., 26(6): 653-666,1998.

[39] S. R. Khare, H. K. Pillai, and M. N. Belur. Computing approximate GCD of

univariate polynomials. In Control Automation (MED), 2010 18th Mediterranean

Conference on, pages 437 -441,2010.

[40] D. E. Knuth. The Art of Computer Programming, Vol 2. Addison-Wesley,

Reading, USA, 1969.

[41] Bingyu Li, Zhuojun Liu, and Lihong Zhi. A fast algorithm for solving the

sylvester structured total least squares problem. Signal Process., 87(10): 2313-

2319,2007.

BIBLIOGRAPHY 226

[42] Zijia Li, Zhengfeng Yang, and Lihong Zhi. Blind image deconvolution via fast

approximate GCD. In Proceedings of the 2010 International Symposium on Sym-

bolic and Algebraic Computation, ISSAC '10, pages 155-162, New York, NY,

USA, 2010. ACM.

[43] Ben Liang and S. U. Pillai. Blind image deconvolution using a robust 2-d GCD

approach. In Circuits and Systems, 1997. ISCAS '97., Proceedings of 1997 IEEE

International Symposium on, volume 2, pages 1185 -1188 vol. 2, June 1997.

[44] D. Manocha and J. Demmel. Algorithms for intersecting parametric and alge-

braic curves II: Multiple intersections. Graphical Models and Image Processing,

57(2): 81-100,1995.

[45] C. Moler. Cleve's corner: roots of polynomials. The Math Works, Newsletter,

5(1): 8-9,1991.

[46] Arnold Neumaier. Enclosing clusters of zeros of polynomials. J. Cornput. Appl.

Math., 156(2): 389-401,2003.

[47] B. Nobel and J. W. Daniel. Applied Linear Algebra. Prentice Hall, Englewood

Cliffs, New Jersey, USA, 1988.

[48] M. T. Noda and T. Sasaki. Approximate GCD and its application to ill-

conditioned linear algebraic equations. Journal of Computational and Applied

Mathematics, 38: 335-351,1991.

[49] C. C. Paige and M. Wei. History and generality of the cs decomposition. Linear

Algebra and its Applications, 208-209: 303 - 326,1994.

BIBLIOGRAPHY 227

[50] V. Y. Pan. Solving a polynomial equation: Some history and recent progress.

SIAM Review, 39(2): 187-220,1997.

[51] V. Y. Pan. Computation of approximate polynomial GCDs and an extension.

Information and Computation, 167: 71-85,2001.

[52] Victor Y. Pan. Optimal (up to polylog factors) sequential and parallel algorithms

for approximating complex polynomial zeros. In STOC '95: Proceedings of the

twenty-seventh annual ACM symposium on Theory of computing, pages 741-750,

New York, NY, USA, 1995. ACM.

[53] Victor Y. Pan. Approximate polynomial GCDs, pade approximation, polynomial

zeros and bipartite graphs. In SODA '98: Proceedings of the ninth annual ACM-

SIAM symposium on Discrete algorithms, pages 68-77, Philadelphia, PA, USA,

1998. Society for Industrial and Applied Mathematics.

[54] V. Y. Pan. Optimal and nearly optimal algorithms for approximating polynomial

zeros. Computers & Mathematics with Applications, 31(12): 97--138,1996.

[551 Nicholas M. Patrikalakis and Takashi Maekawa. Shape Interrogation for Com-

puter Aided Design and Manufacturing. Springer, 2009.

[56) D. H. Pham and J. H. Manton. A subspace algorithm for guard interval based

channel identification and source recovery requiring just two received blocks. In

Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003

IEEE International Conference on, volume 4, pages IV - 317-20 vol. 4,2003.

BIBLIOGRAPHY 228

[57] William H. Press, Saul A. Teukolsky, and Brian P. Vetterling, William

T. and Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cam-

bridge University Press, New York, NY, USA, 2nd edition, 1992.

[58] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical recipes in C (end ed.): the art of scientific computing. Cam-

bridge University Press, New York, NY, USA, 1992.

[59] W. Qiu and Y. Hua. A gcd method for blind channel identification,. Digital

Signal Processing, 7(3): 199 - 205,1997.

[60] J. Ben Rosen, H. Park, and J. Glick. Total least norm formulation and solution

for structured problems. SIAM J. Mat. Anal. Appl., 17(1): 110-128,1996.

[61] J. Ben Rosen, H. Park, and J. Glick. Structured total least norm for nonlinear

problems. SIAM J. Mat. Anal. Appl., 20(1): 14-30,1998.

[62] Ben Liang S. Unnikrishna Pillai. Blind image deconvolution using a robust GCD

approach. IEEE Transaction on image processing, 8(2), 1999.

[63] M. Sanuki and T. Sasaki. Computing approximate GCDs in ill-conditioned cases.

In Proceedings of the 2007 international workshop on Symbolic-numeric compu-

tation, pages 170-179. ACM, 2007.

[64] T. Sasaki and F. Kako. An algebraic method for separating close-root clusters

and the minimum root separation. Symbolic-Numeric Computation, pages 149-

166,2007.

BIBLIOGRAPHY 229

[65] Tateaki Sasaki and Akira Terui. Computing clustered close-roots of univari-

ate polynomials. In SNC '09: Proceedings of the 2009 conference on Symbolic

numeric computation, pages 177-184, New York, NY, USA, 2009. ACM.

[66] SS Sastry. Introductory methods of numerical analysis. PHI Learning Pvt. Ltd.,

2006.

[67] C. E. Schmidt and L. R. Rabiner. A study of techniques for finding the zeros

of linear phase FIR digital filters. IEEE Trans. Acoustics, Speech and Signal

Processing, 27: 96--98,1977.

[68] A. Schönhage. Quasi-gcd computations. Journal of Complexity, 1: 118-137,1985.

[69] C. G. Small and J. Wang. Numerical methods for nonlinear estimating equations.

Oxford statistical science series. Oxford University Press, 2003.

[70] K. Steiglitz and B. Dickinson. Phase unwrapping by factorization. IEEE Trans-

actions on Acoustics, Speech and Signal Processing, 30(6): 984-991,1982.

[71] Petre Stoica and Torsten Söderström. Common factor detection and estimation.

Automatica, 33(5): 985-989,1997.

[72] Borching Su. Blind channel estimation using redundant precoding : new algo-

rithms, analysis, and theory. 2008.

[73] Nai-Kuan Tsao and Franklin F. Kuo. On machine precision, computation error

and condition number in solving linear algebraic systems.

[74] J. V. Uspensky. Theory of Equations. McGraw-Hill, New York, USA, 1948.

BIBLIOGRAPHY 230

[75] D. S. Watkins. Fundamentals of Matrix Computations. John Wiley and Sons,

New York, USA, 1991.

[76] J. Wilkinson. Rounding Errors In Algebraic Processes. Prentice-Hall, Englewood

Cliffs, N. J., USA, 1963.

[77) J. R. Winkler. Condition numbers of a nearly singular simple root of a polyno-

mial. Applied Numerical Mathematics, 38: 275-285,2001.

[78] Joab R. Winkler and John D. Allan. Structured total least norm and approximate

gcds of inexact polynomials. J. Comput. Appl. Math., 215(1): 1-13,2008.

[79] Joab It. Winkler and Madina Hasan. A non-linear structure preserving matrix

method for the low rank approximation of the sylvester resultant matrix. Journal

of Computational and Applied Mathematics, 234: 3226-3242,2010.

[80] Joab R. Winkler and Xin Lao. The calculation of the degree of an approximate

greatest common divisor of two polynomials. Journal of Computational and

Applied Mathematics, 2010.

[81] Xinyuan Wu. On zeros of polynomial and vector solutions of associated polyno-

mial system from vieta theorem. Applied Numerical Mathematics, 44(3): 415 -

423,2003.

[82] C. J. Zarowski. The MDL criterion for rank determination via effective singular

values. IEEE Trans. Signal Processing, 46(6): 1741-1744,1998.

[83] C. J. Zarowski, X. Ma, and F. W. Fairman. QR-factorization method for comput-

ing the greatest common divisor of polynomials with inexact coefficients. IEEE

Trans. Signal Processing, 48(11): 3042-3051,2000.

BIBLIOGRAPHY 231

[84) Z. Zeng. The approximate GCD of inexact polynomials. Part 1: A univariate

algorithm, 2004. Preprint.

[85] Z. Zeng. Computing multiple roots of inexact polynomials. Mathematics of

Computation, 74: 869-903,2005.

[86] Zhonggang Zeng. Algorithm 835: Multroot-a matlab package for computing

polynomial roots and multiplicities. ACM Transactions on Mathematical Soft-

ware, 30: 218-236,2004.

[87] L. Zhi. Displacement structure in computing approximate GCD of univariate

polynomials. In Proc. Sixth Asian Symposium on Computer Mathematics (ASCM

2003, pages 288-298,2003.

