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Abstract 

The clustering of chemical structures is important and widely used in several 

areas of chemoinformatics. A little-discussed aspect of clustering is 

standardization, it ensures all descriptors in a chemical representation make a 

comparable contribution to the measurement of similarity. The initial study 

compares the effectiveness of seven different standardization procedures that 

have been suggested previously, the results were also compared with 

unstandardized datasets. It was found that no one standardization method 

offered consistently the best performance. 

Comparative studies of clustering effectiveness are helpful in providing 

suitability and guidelines of different methods. In order to examine the 

suitability of different clustering methods for the application in 

chemoinformatics, especially those had not previously been applied to 

chemoinformatics, the second piece of study carries out an effectiveness 

comparison of nine clustering methods. However, the result revealed that it is 

unlikely that a single clustering method can provide consistently the best 

partition under all circumstances. 

Consensus clustering is a technique to combine multiple input partitions of the 

same set of objects to achieve a single clustering that is expected to provide a 

more robust and more generally effective representation of the partitions that 

are submitted. The third piece of study reports the use of seven different 

consensus clustering methods which had not previously been used on sets of 

chemical compounds represented by 2D fingerprints. Their effectiveness was 
compared with some traditional clustering methods discussed in the second 
study. It was observed that no consistently best consensus clustering method 
was found. 
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Chapter 1: Introduction 

Drug discovery is a time-consuming and costly process. To bring a new drug to 

market, it generally takes approximately 15 years and costs approximately 800 

million US dollars (DiMasi et al., 2003), and this reveals the complex process 

of drug discovery. This process typically involves dealing with vast amount of 
information to find compounds with desired properties, using techniques such 

as high-throughput screening and virtual screening. In addition, more than 53 

million unique chemical substances are known and the number is growing 

rapidly (CAS, 2010). The complex and enormous information can only be 

operated by computer techniques. 

In fact, computer technology has been applied to the pharmaceutical industry, 

especially in drug discovery, for many years. The development of 

chemoinformatics was well reviewed by Willett (2008). These techniques 

eventually resulted in a new discipline, chemoinformatics, which was first 

introduced by Dr. Frank K. Brown in 1998: 

"The use of information technology and management has become a critical 

part of the drug discovery process. Chemoinformatics is the mixing of those 

information resources to transform data into information and information into 

knowledge for the intended purpose of making better decisions faster in the 

area of drug lead identification and organization. " 

Chemoinformatics is simply the use of information techniques to deal with the 

chemical data explosion and to solve chemical problems; it speeds up the 

process and increases the efficiency of drug discovery (Oprea, 2005). Cluster 

analysis is one of these information techniques that find application in 

chemoinformatics; it is extensively used to find the representative subsets from 

high-throughput screening and combinatorial chemistry for chemical datasets 

(Downs and Barnard, 2002). The focus of this thesis is on the method to group 

1 



Chapter !: Introduction 

2D chemical structures. 

Much previous research in chemical clustering is on methods, implementation 

and applications, whereas we consider the following three new aspects in this 

thesis: 

1. role of standardization, which has been little studied in the literature of 

chemical clustering, as one component of chemical similarity measures 

2. evaluation of clustering methods which have not previously been 

considered for chemoinformatics applications 
3. consensus clustering methods, which have not been applied to 

chemoinformatics applications 

Chapter 2 ('An Introduction to Chemical Information') first introduces 

common and machine-readable representations of molecular structures, which 

are the basis for similarity-based chemical computing. Similarity measures are 
then discussed along with their crucial component, similarity coefficients. With 

these, cluster analysis on chemical structures can be carried out. An overall 
discussion of clustering is described in Chapter 3 ('Clustering'). The traditional 

Ward's and K-Means methods are widely used in chemical applications, and 

also used in this thesis. In addition, some novel methods which are reported to 

be effective in other applications are employed to compare with the traditional 

ones. 

In Chapter 4 ('Experimental and Evaluation Methods'), we describe the 

chemical datasets and their representations, clustering methods and evaluation 

methods, which have been applied to the experiments of the following three 

chapters. 

The aim of Chapter 5 ('Effect of Standardization on Three Different 

Representations of Structural Similarity') is to discuss the effect of 

standardization procedures on chemical clustering of structural representations. 
The initial study employs two traditional clustering methods, i. e. Ward's and 
K-Means; the extensive study in the second part of the chapter uses another 

seven clustering methods to obtain more generalized results. 

2 



Chapter l: Introduction 

Chapter 6 (`Comparison of Chemical Clustering Methods Using 

Fingerprint-based Similarity Measures') seeks to find the most effective 

clustering method for the application of fingerprint-based similarity measures, 

traditional and novel clustering methods are mixed together to investigate their 

performance. The clustering results are evaluated using four different criteria. 

A good clustering method should be able to satisfy as many evaluation criteria 

as possible. 

Consensus clustering offers a way to combine different clustering results with 

more confidence. Chapter 7 (`Comparison of Chemical Consensus Clustering 

Methods Using Fingerprint-based Similarity Measures') is an extended study 

of Chapter 6. The results from different clustering methods are integrated into a 

consensus result, and then compared with the performance of the traditional 

Ward's method and the single best clustering method in Chapter 6. 

Finally, Chapter 8 (`Conclusion and Future Work') summarizes the results of 

this thesis and offers some suggested directions of how this work can be 

extended. 

3 



Chapter 2: An Introduction to Chemical 
Information 

2.1 Chemical Databases 
Chemical databases store vast amounts of chemical information such as 

compound names, chemical structure representations, or molecular data; they 

may contain millions of entries for the purpose of search and retrieval. Hence, 

they enable users to search the interesting data in databases and obtain the 

results within seconds (Leach and Gillet, 2007; Paris, 2003). They provide an 

efficient and convenient manner of storing enormous amounts of chemical 
information. 

There are varied types of chemical database. However, it depends both on the 

properties of chemical information to be stored such as reaction or patent, 2D 

or 3D structure, etc., and on the methods of data storage, for example the tables 

in a relational database or the objects in an object oriented database (Attwood 

and Smith, 1999). All these well-organized chemical databases play an 

essential role as a communication tool for chemists, and have been used for 

assisting chemists. 

Chemists usually need to know how chemical databases may be used to solve 

their problems, the functions that chemical databases provide, and the 

efficiency and accuracy of the information that can be retrieved (Paris, 2003). 

There is a huge number of databases with varied chemical information that can 
be accessed on the Internet and these Internet chemical databases usually 

provide chemists with a friendly and a simple interface which enables users to 

retrieve information, providing a convenient, global networking and 
high-performance operating environment (Tarkhov, 2003). 

4 



Chapter 2: An Introduction to Chemical Information 

2.1.1 The Importance of Chemical Databases 
Over 53 million chemical compounds (CAS, 2010) have been reported. 

Moreover, there are also over one million new compounds per year and more 

than 500,000 publications each year that are concerned with chemical 

information (Marshall, 2005; Willett, 2007a). It is hard to deal with such a vast 

and constantly increasing amount of chemical data by non-electronic methods. 

Moreover, the variety of chemical information such as literature, chemical 

properties and spectra, can only be encompassed by storing them in electronic 

format. Hence the useful chemical information can be obtained only by 

accessing chemical databases. 

The storage and searching of chemical structures are probably the earliest 

applications of chemical databases and these are an essential component of 

what many now call chemoinformatics (Gasteiger, 2003). Thus, 

chemoinformatics should support the chemists with their essential problems, 

which they meet in their daily work, and offer a platform for the necessary 

communication between theoretical sciences and experimental chemistry 

(Gasteiger, 2003). In short, chemical databases play an important role in 

chemoinformatics. 

Chemical structure databases contain the computer-readable structure 

representations of a huge number of chemical molecules. Chemoinformatics 

provides a variety of tools that can be used for data mining in these databases, 

so as to assist directly in the discovery of new molecules. It plays a major role 

in drug discovery (Marshall, 2005). With the increasing costs on drug 

discovery, it is expected that more applications will be made of such tools. 

Furthermore, the advent of more effective software will enable more accurate 

predictions of activity, and thus will enhance the cost-effectiveness of research 
(Leach and Gillet, 2007). 
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The application and development of chemical structures can not only be 

applied in a similarity search (see Section 2.3.3) from the original collection or 

any other databases but also in the usage of identifying other related 

compounds. In addition, the application of 2D structures or 3D models may 

construct a pharmacophore, and then be used in a 3D search for models which 

may adopt relevant molecular conformations using a conformationally flexible 

search (Paris, 2003). 

2.1.2 Examples of Chemical Databases 
There are a variety of chemical databases, and their categories can be generally 

classified into literature, factual (alphanumeric) and structural types (Engel, 

2003a). However, a common manner of classification of chemical databases is 

based on the properties of chemical data, such as chemical structure databases, 

organic and inorganic databases, spectroscopic databases, chemical reaction 
databases, environmental information databases, patent databases, biochemistry, 

molecular biology databases etc.. In addition, different types of database can 

also be integrated into one single resource providing more information, such as 
Chemical Abstracts Service (CAS). Some well known chemical databases are 
discussed in the following paragraphs. 

The primary service of Chemical Abstracts Service (CAS) databases is the 

Registry File, which currently contains more than 53 million (CAS, 2010) 

substance entries including organic compounds, peptides, and a wide variety of 

other chemical information (Fisanick and Shively, 2003). Another service from 

CAS is the CAplus file, it contains more than 32 million (CAS, 2010) patents 

and journal article references in chemistry related fields. Also, the CAS 

Reaction Search Service (CASREACT) is a chemical reaction database 

containing 25 million single- and multi-step reactions which were derived from 

750,000 records of journals and patents (CAS, 2010). 
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The Beilstein database was transformed from the Beilstein Handbook of 

Organic Chemistry. It is the most complete and systematic collection of 

evaluated data on organic compounds, and contains information on reactions, 

substances, structures and properties. Similar to CAS databases, the Beilstein 

database is also a large collection of different types of chemical information 

(Wiggins, 2003). The Cambridge Structural Database (CSD) was created and 

managed by Cambridge Crystallographic Data Centre (CCDC); it is used to 

represent the crystal structures of small organic and organometallic compounds, 

and contains crystal structure information for more than 500,000 organic and 

organometallic structures (CCDC, 2010) analyzed using X-ray or 

neutron-diffraction techniques (Engel, 2003a). The Protein Data Bank (PDB) 

currently contains over 65,000 (PDB, 2010) experimentally determined, X-ray 

and Nuclear Magnetic Resonance (NMR) structures of proteins and 

protein-ligand complexes. Both CSD and PDB are continuously increasing in 

size (Engel, 2003a; Homeyer and Reitz, 2003). 

Probably, the most important application of chemical structure databases is 

structure retrieval, for example exact 2D structure and substructure search, 2D 

and 3D similarity search, 3D volume-based searching and docking. 

2.1.3 Summary 
The central role played by 2D chemical database systems is reflected in the 

significant amount of effort that has been expended to implement and optimize 

methods for the storage, search and retrieval of chemical structures and 

molecular data (Leach and Gillet, 2007). Besides, chemical structures also play 

an important role in the organization, indexing and access to the continually 

growing chemical literatures and compounds. The application can apply not 

only in chemical structures searching but also in chemical patent searching and 

reaction databases (Paris, 2003). They will, hence, continue to play a critical 

role in chemoinformatics and will remain vital in the future research. 
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2.2 Representation of Molecules 
Chemical structures are the easiest notation for chemists but not for computers. 
Hence, for the purpose of searching chemical structures, a machine-readable 

structure representation is needed; therefore, it is necessary for searching 

methods to develop some machine-readable structure representations of the 

way in which the atoms and bonds of a molecule are connected together 

(Willett, 2003a). This is necessary for chemists to search for all compounds in 

chemical databases containing a specific structure or a particular substructure 
(Barnard, 2003). 

Although chemical structure diagrams are the most common and the most 

natural means of communication for chemists, such graphical images are not 

suitable for the purpose of chemical information retrieval (Engel, 2003; Paris, 

2003). Such structural images are of only limited usefulness in 

chemoinformatics and computational chemistry, and structure diagrams have to 
be represented in machine-readable forms. With these representations of 

chemical structures, molecules and compounds can be stored in a database for 

retrieval and search. Although chemical entities can be named according to 

varied naming schemes e. g. International Union of Pure and Applied Chemistry 

(IUPAC) convention, names are not ideal for chemical information retrieval 
because of the lack of flexibility in the representation (Paris, 2003; Willett, 

1987). Hence, such naming schemes usually need to be converted into another 
type of representation. Different types of chemical representation for a 

compound are discussed in the following sections. 

2.2.1 Representation of 2D Molecular Structures 
There are a variety of structure representations which have been discussed in 

the literatures; three common types of molecular representation are systematic 

nomenclatures, linear notations and connection table, but only the latter two 

representations are used extensively in modern chemoinformatics (Willett, 

1987; Willett, 2003). Systematic nomenclature represents a chemical structure 

as a unique alphanumerical string, however the relationship between compound 
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names and chemical structures is many-to-one, because many different valid 

compound names may refer to the same chemical structure. Hence, it is not 

suitable for some manipulations in chemical information systems. With such 
disadvantage and its complicated naming, it has some limitations in the 

development of chemical structure representations (Engel, 2003). 

2.2.1.1 Line Notations 

Linear notations represent a molecular structure in the form of a linear 

sequence of alphanumeric characters. They are simple and compact, and hence 

are especially suitable for manipulation, such as storing and transferring large 

numbers of molecules, in a chemical information system (Leach and Gillet, 

2007). There are varied types of linear notations discussed in the literature but 

only some of them are widely accepted and especially important: the 

Wiswesser Line Notation (WLN), Simplified Molecular Input Line Entry 

Specification (SMILES) and Sybyl Line Notation (SLN) (Engel, 2003; Willett, 

2003). These traditional line notations describe chemical structures by 

alphanumeric strings mainly based on atomic symbols and bond types. 

However, a new and increasingly-used line notation, called InChI (IUPAC 

International Chemical Identifier), was proposed by IUPAC (International 

Union of Pure and Applied Chemistry) and NIST (National Institute of 
Standards and Technology) (McNaught, 2006). It characterizes chemical 

structures also by the manner of alphanumeric strings, but contains more 
information than traditional line notations, such as the atoms and their bond 

connectivity, tautomeric information, isotopic information, stereochemical and 

electronic charge information. Figure 2-1 is an example of phenylalanine 

represented by above four popular line notations (Engel, 2003; IUPAC, 2010). 
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i 

Systematic 
Name: Phenylalanine 

Structure 
Diagram: 

0 

OH 

NH2 

WLN: VQYZIR 

SMILES: NC(Cc 1 cccccl)C(=O)O 

SLN: C[1]H: CH: CH: CH: CH: C(: @I)CH2CH(NH2)C(=O)OH 

InChI 1 /C9H 13NO. CH2O/c10-9(7-11)6-8-4-2-1-3-5-8: 1-2/h 1-5,9,11 H, 6-7,10H2; 1 H2 

Figure 2-1 Example of various line notations of phenylalanine 

SMILES notation was used as the input chemical representation to convert into 

other file formats for the studies in Chapters 6 and 7. We hence discuss 

SMILES in the following paragraphs. It was proposed by Weininger 

(Weininger, 1988), and uses a few simple rules to build chemical structures by 

alphanumeric strings of characters based on atomic symbols; relative to WLN, 

that is also the reason why it is extensively accepted and widely used. With 

some significant rules of SMILES notation, atoms are represented by their 

atomic symbol, but hydrogen atoms are normally omitted, for SMILES is a 

hydrogen-suppressed notation (Engel, 2003). 

There may be a variety ways to form the SMILES string for a given molecule, 

since, in SMILES notation, the string may be written by a different starting 

atom resulting in a different sequence. Hence, several SMILES strings may 

represent the same chemical structure. To get rid of the disadvantage of 

ambiguity, a method called the Morgan algorithm for generating a canonical 

sequence of the atoms has been widely used (Morgan, 1965). The other 

well-known technique called CANGEN algorithm has been devised to create a 

unique SMILES string for each molecule in the chemical databases (Weininger 

et al., 1989), and this unique SMILES string is usually termed Canonical 
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SMILES. It provides the simplest linear code; hence it is highly compact and 

easy to learn. Moreover, the fast data exchange format and unambiguity are 

also advantageous. 

2.2.1.2 Connection Tables 

Connection tables are the most significant format of chemical structure 

representation in a computer system and are also an alternative manner of 

representing molecular graphs (Engel, 2003). A connection table is a 2D matrix 

containing information about all the atoms and bonds in a 2D structure. In 

comparison with SMILES notation, a connection table provides the same 

information but in a different form; each row lists information about a 

particular atom such as the atom number, symbol, and number of atoms to 

which it is directly bonded and their bond types. A common example of 

connection tables is Tripos mol and mo12 file format (Tripos, 2007). Figure 2-2 

illustrates a simple example of connection table of ethylene (Engel, 2003). 

Each atom is numbered arbitrarily as an index forming an atom list; moreover 

each row in the bond list shows the indices of two atoms connected by a 

particular bond type (1 indicates single bond, 2 indicates double bond, 

analogically). 

H43 
\12 /H SMILES: C=C 

/c=c H56H Compound Name: Ethylene 

Atom List 

I C 
2 C 
3 H 
4 H 
5 H 
6 H 

Bond Lis t 

1" atom 2nd atom Bond Type 

1 2 2 

1 4 1 

1 5 1 

2 3 1 

2 6 1 

Figure 2-2 Example of the connection table of ethylene 
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Connection tables are the most commonly used representation of chemical 

structures. However, many varied types of connection table have been 

discussed in the literature; thus, there are also translation programs to convert 

between the different forms. Most chemical software can exchange and store 

these as external connection tables. SMILES notation, and molecular 
fingerprints also can be generated from connection tables (Engel, 2003; Willett, 

1987). 

Connection tables are unambiguous because they offer a detailed and exact 
description of the topology of the compound that they represent but they are 

not unique. Thus, a specific molecule could be represented by different 

connection tables (Willett, 1987), because in a connection table the users can 

choose a different order to number the atoms. To find the unique identity by 

renumbering one of the connection tables in all possible types will be an 
important function. For instance, the Morgan algorithm (Morgan, 1965) is a 

widely used method to generate a unique order of the atoms. Since the 

connection tables involve a complete representation of the inter-connections 

between the atoms in a molecule, they can be considered as a labeled graph. 

Connection tables are particularly suitable for manipulation of such topological 

information, such as structure search, substructure search, and graphical 

structure input and output. 

2.2.2 Representation of 3D Molecular Structures 
There are more than 500,000 compounds whose 3D structures have been stored 
by the Cambridge Crystallographic Data Centre (CCDC, 2010), but such a 

number is really small when compared with the number of known compounds, 

which is over 53 million (CAS, 2010). Moreover, the experimental sources of 
3D structures are not sufficient and there is an essential demand for 

computer-generated models. Some theoretical techniques such as quantum 

mechanics or molecular mechanics have good performance both on producing 
3D molecular models and predicting a number of molecular attributes. These 

methods, nevertheless, still need at least some rational 3D geometry of the 
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molecule to be carried out. 

There are two widely used methods for representing a 3D chemical structure. 

The major difference of these two methods is that they use different coordinate 

systems to characterize the spatial arrangement of the atoms of a molecule of 

interest. The first and common method is to store each atom in a molecule as 

their three space coordinates, x-, y- and z-coordinate values. It represents the 

3D feature and conformation of a molecule. Such connectivity information or 

coordinate values can be collected either implicitly by approximating bonding 

distances between the atoms, or explicitly by a connection table. The other 

method uses internal coordinates, such as bond length, bond angles, and torsion 

angles to represent the 3D structure of a molecule. Such representations 

describe the spatial arrangement of the atoms relative to each other (Engel, 

2003). 

Automatic 3D structure generation, the transformation of a 2D connection table 

into a 3D molecular model, has become a standard technique commonly used 

in many fields of computational chemistry. Much research has focused on 

making these 3D structure generators as rapid as possible in order to apply 

them to large datasets of molecules (Sadowski, 2003). Since the useful 

representation of 3D structures can be transformed from 2D methods, it may be 

a better method to devise an efficient 2D method and then transform 

appropriately to its 3D usage. 

2.2.3 Molecular Descriptors 
Molecular descriptors are numerical values resulting from a procedure which 

transforms the structural information encoded within a symbolic representation 

of a molecule to describe properties of molecules (Leach and Gillet, 2007). 

With the use of molecular descriptors, it becomes possible to manipulate and 

analyze the chemical structural information very easily. Molecular descriptors, 

for example, may represent the physicochemical features of molecules that 

may be calculated by applying algorithmic techniques to the molecular 

structures. Many different molecular descriptors have been described and used 
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for a wide variety of purposes; they can be classified by the data type, such as 

Boolean, integer or real number, vector etc. of the molecular descriptor and the 

molecular representation of the compounds (Terfloth, 2003). The major 

difference of varied descriptors is the complexity of the information they 

encode and in the time required to calculate them (Leach and Gillet, 2007). 

However, the selection of the appropriate set of molecular descriptors is often 

the key to success. 

Here, we concentrate on the three common types of descriptor that have been 

used in similarity search (as discussed in Section 2.3.3): whole-molecule 

descriptors, 2D descriptors and 3D descriptors (Willett & Gillet, 2007). The 

whole-molecule descriptors are the simplest, they describe a molecule by some 

simple properties such as molecular weight and logP, but a single descriptor is 

usually insufficient to find the similarity between a pair of molecules. Hence, it 

is normal to use several different types of descriptors together for similarity 

searching. Topological indices and fragment-based indices are two common 

types of 2D descriptor which can be generated from 2D molecular 

representations. 

A topological index is a single number that encodes a molecular structure by its 

basic properties such as size and shape. With describing such simple properties, 

a combination of varied topological indices is usually used for similarity 

searching as in whole-molecule descriptors (Willett & Gillet, 2007); this is 

described in more detail in Section 2.4.1. Fragment-based descriptors 

characterize a molecule by the substructural features. Among varied types of 
2D descriptor, 2D fingerprints are the most widely and commonly used 
descriptor for similarity searching, and were originally devised for substructure 

searching. They are considered one of the earliest similarity searching methods 

in the literature by Willett et al. (1998). 

Fingerprint encoding is the process of transforming a chemical structure into a 

binary format, they capture the topological features of chemical compounds 

and convert them into a linear, binary string format which identifies the 

presence or absence of specific structural features in a chemical compound 
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(Eckert and Bajorath, 2006). There are a number of ways to generate 

fingerprints from chemical structures, however all these techniques generally 

have been categorized into two different types of 2D fingerprints: 

dictionary-based fingerprints, and hashed fingerprints (Flower, 1998; Leach 

and Gillet, 2007). 

In dictionary-based fingerprints, a structural fragment dictionary is required, 

which contains typically from hundreds to thousands of structural fragments 

for 2D fingerprints and millions of structural fragments for 3D pharmacophore 

fingerprints (Xue et al., 2003); and such a dictionary will be used to determine 

whether each bit in the binary string is set or not. Each bit usually maps to a 

certain substructure fragment or structural feature in a predefined fragment 

dictionary. Hence, if a certain feature is present in a molecule, then the bit 

which corresponds to it will be set to `1'; otherwise it will be set to V. Thus, 

fingerprints transform the presence or absence of certain features within a 

molecule into a binary bit string. One limitation of dictionary-based 

fingerprints is that the optimum fragment dictionary is dataset dependent; 

another is that they are sparse, since most of the bits in the bit string are set to 

`0', sometimes a typical molecule has only a few fragments for the bit positions 

to represent. 

On the other hand, hashed-based fingerprints do not need a predefined 

fragment dictionary, and are a very dense representation of the structural 

features in a molecule, typically capturing all possible connectivity pathways 

through a molecule up to a certain and defined path length. So, a molecular 

fingerprint is generated from a hash of all the unique connection paths, up to a 

certain maximum size which is predefined, into a fixed length bit string, and 

any fragment present in the molecule will be encoded in the fingerprint, 

(Willett & Gillet, 2007). Hashed fingerprints generate the bit patterns which are 

highly characterized, but several different fragments may set the same bit, that 

is the relationship between bit position and fragment is not one-to-one as in 

dictionary-based fingerprints. Therefore it becomes impossible to map from a 

bit position back to a unique fragment; that is, single bit positions no longer 
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correspond to specific structural features, and this leads to the possibility of 
ambiguity (Eckert and Bajorath, 2006). 

Descriptors that can be generated from 3D molecular representations include 

basic fragment-based descriptors and also more complicated representations 

that describe molecular properties such as 3D shape and electrostatic fields 

(Willett & Gillet, 2007). 3D fingerprints were originally devised for 

substructure search as for 2D fingerprints; eventually they have been used for 

similarity searching. The 3D fingerprints describe the conformational features 

of molecules, such as interatomic distances and angles, by recording the 

absence or presence of specific 3D features. With making use of molecular 
descriptors, there are a wide variety of further applications of computational 

chemoinformatics, such as QSAR, data analysis, similarity searching and 

calculation, techniques for selecting diverse compound sets etc. (Leach and 

Gillet, 2007). 

2.3 Some Common Searching Methods 
When a new compound is added into the large chemical database, a structure 

search technique is required to ensure that the compound is really a new one, 

and it should not exist already. There are three major types of searching in 

chemical databases for structures: exact structure searching, substructure 

searching and similarity searching (Paris, 2003). Each of these types of search 

employs different methods because they are aiming to retrieve different types 

of information. 

Generally speaking, all types of systems for retrieving information from a 

variety of databases will basically provide three different searching modes 
(Willett, 2003a): exact-match, partial-match, and best-match. These three 

modes are equivalent to structure searching, to substructure searching and to 

similarity searching respectively, in the chemical context. 
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2.3.1 Exact Structure Searching 
Exact structure searching is the simplest chemical retrieval technique; it 

involves the retrieval of all entities in chemical databases that match exactly 

and completely a structure of interest. It involves simply identifying the 

presence or absence of a specific molecule in a database and will be efficient if 

a canonical notation has been devised (Willett, 2003a). 

The canonical representation is significant for exact structure searching, and it 

must be unique otherwise that would be problematic. However, a hash function 

is usually associated with the canonical representation to accelerate structural 

retrieval such as finding items in a database (Leach and Gillet, 2007). 

2.3.2 Substructure Searching 
Substructure searching is probably the most widely used technique and it is the 

process of identifying parts of a given structure that are equivalent to a 

specified query substructure (Leach and Gillet, 2007); it identifies all the 

molecules in the database that contain a specified substructure. A two-stage 

mechanism is usually used in substructure searching. First, a screen search is 

executed to eliminate those substructures that cannot possibly match the query 

and to generate a subset of the database which might possibly match the query. 
Second, each molecule in the subset will pass through a detailed atom-by-atom 

graph matching search to decide whether a subgraph isomorphism does exist 

for the substructure of interest. Such atom-by-atom matching procedures are 

very time-consuming (Willett, 1987). 

There are some restrictions of substructure searching. First, the users require 

sufficient knowledge in order to construct a meaningful substructure, and this 

knowledge is not always available. Second, the users have only limited control 

over the size of the searching results: that is, a generic query can result in a 
huge amount of hits, but a very specific query may retrieve only a very small 

number of hits (Leach and Gillet, 2007). 
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The substructure searching technique is usually the first step in the 

implementation of other important topological procedures for the analysis of 

chemical structures, such as identification of equivalent atoms, determination 

of maximal common structure, ring detection, calculation of topological 

indices, etc. (Kochev at. el., 2003). 

2.3.3 Similarity Searching 
Similarity searching provides a complementary, alternative technique to exact 

searching or substructure searching. It involves comparing the query with 

every compound in the database and retrieves objects that are similar to a query, 

sorted in order of their decreasing similarity (Kochev at. el., 2003). 

There are several advantages of similarity searching when compared to 

substructure searching. First, one does not need to define a precise substructure 

query, since a single active compound is sufficient to undertake a search. 
Second, users are able to manage the size of the output because every 

compound in the database is given a numerical score, which is calculated by a 

similarity descriptor. So it can be used to generate a complete ranking. 

Alternatively, users can specify a particular value or level of similarity and 

retrieve just those compounds that exceed the threshold. Finally, similarity 

searching facilitates an iterative approach to searching chemical databases 

since the top-scoring compounds resulting from one search can be used as 

queries in subsequent similarity searches (Leach and Gillet, 2007). 

2.4 Molecular Similarity Methods 
Substructure searching is the major technique for retrieving information from 

chemical structure databases, however the focus on such retrieval techniques is 

increasingly transferring to similarity searching (Willett, 2003a). There are 

many similarity methods in the literature, and each single method has its 

application on certain query and biological activity. By evaluating the results 
from a single experiment, it is difficult to find a similarity method that is the 

best and also will be superior in other type of query and activity (Sheridan & 

Kearsley, 2002). Sheridan and Kearsley (2002) therefore, argued that the 
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combination of different similarity methods may be needed and the same 

method with several variations to get sufficient information to form a query as 

well. 

The effectiveness of a similarity measure, in terms of its ability to retrieve 

bioactive molecules, is usually a crucial factor in similarity searching and some 

research has concentrated on the key components of a similarity measure that 

influence the effectiveness of similarity searching. There are usually three 

crucial components when computing the similarity between a pair of objects 

and each component can affect the effectiveness on similarity searching. The 

first component is the representation. An appropriate structural representation 

must be picked and be used to describe the molecules that are being compared. 

The second component is the weighting scheme. It is used to allocate different 

levels of significance to the varied components of representations, that is, 

important molecular features and less important ones can be distinguished. The 

final component is the similarity coefficients. They are used to determine the 

degree of resemblance between a pair of representations of chemical structures. 

Overall, the first component is the most important, since the representation can 
influence very strongly the manipulations that are possible and appropriate 

when calculating the similarity between a pair of molecules (Willett, 1987; 

Willett, 2003a). 

2.4.1 Similarity Searching in 2D Databases 
Similarity techniques for searching chemical databases were proposed initially 

in the mid-1980s (Willett et al., 1986), and their effectiveness usually causes 

users most concern and is usually a key factor on similarity searching. Some 

research has paid attention to the crucial components of a similarity measure 

that influence the effectiveness of similarity searching (Willett & Gillet, 2007). 

The similarity score is the basic component on similarity searching. For 

calculating the similarity value, there are three major types of representation 

which have been used to measure the degree of resemblance between two 

chemical structures of 2D databases. These are based on fragment substructures, 

on topological indices, and on maximum common subgraphs (Willett, 2003a). 
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Fragment substructures were originally devised for the representation of 

chemical structures but they are imprecise, as they do not encode how the 

fragments are linked together. Hence their usage then became common in the 

initial screening stage of 2D substructure searching and then they have 

eventually been applied to similarity searching. In similarity searching, 
fragment substructures are usually encoded as binary vectors or bit strings that 

are based on a pre-defined fragment dictionary or fingerprints. Similar to the 

nature of binary fingerprint encoding (discussed in Section 2.3.3), a bit is set to 

`1' indicating a certain feature or substructure is contained, and otherwise a bit 

is set to `0'. If the bit strings representing two molecules have a large number 

of fragment substructures in common, then these two molecules will have a 

high similarity (Willett, 2003a). 

As molecular descriptors characterize properties of a molecule, topological 

indices describe more specific information on molecular structures. It is 

normally a single numeric value that can be generated from 2D representation 

of a molecule (Hall & Kier, 2001). A great number of varied topological 

indices have been devised in the literature. The general types of topological 

indices encode structures by their size, degree of branching such as electronic 

information based on the paradigm, and overall shape. For example, one of the 

most common indices is the molecular connectivity indices. 

In brief, topological indices characterize the structures according to their 

topological properties such as size, amount of branching, amount of 

unsaturation and other complicated features. With the similarity calculation 

using topological indices, it usually needs to operate with many different 

indices, and then it uses a multivariate method, such as principal components 

analysis (PCA), to generate a smaller number of uncorrelated variables (indices) 

to encode all the molecules, i. e. using a smaller number of principal 

components to replace those indices with high correlation on some particular 

properties. All of these varied indices that can describe the molecular features 

have not only been widely used in 2D similarity searching but also increasingly 

in 3D. (Willett, 2003a) 
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Most similarity measures such as measures based on fragment substructures 

and topological indices are global similarity measures; they do not identify the 

resemblance of local areas but overall similarity between two molecules. 

Willett (2003a) concluded that some local similarity measures, graph-based 

approaches, such as maximum common subgraph (MCS) are not only an 

alternative but also an effective method for similarity-based virtual screening, 

and can carry out feature mapping between two molecules. The similarity 

calculation of local regions is operated by creating a mapping from the atoms 

of one molecule on to another. With structural diagram representations, graph 

matching techniques can easily be used with both 2D and 3D representations 

for identifying the MCS. The MCS techniques are devised to find the subgraph 

that is the largest set of atoms and bonds, including inter-atomic distances in 

the 3D case, in common or shared between two molecules. Furthermore, the 

number of atoms and bonds in the MCS can be used to calculate a 

Tanimoto-like coefficient that quantifies the degree of similarity between two 

molecules (Willett, 2003a; Willett & Gillet, 2007). 

2.4.2 Similarity Coefficients 
A similarity coefficient is used to quantify the degree of resemblance between 

pairs of objects; each object can be described by some number of attributes or 

descriptors (Holliday, 2002; Willett & Gillet, 2007). Similarity coefficients are 

used in a wide range of disciplines such as, biology, information retrieval, 

multivariate statistics, numeric taxonomy and marketing (Willett et al., 1998). 

With the wide usage of similarity coefficients in different disciplines, there is a 

shortage of the canonical forms of coefficients. Hence, some similarity 

coefficients have been re-devised with different names, and many of them are 

closely related to each other. For example, some pairs of coefficients are 

different when they are used to manipulate continuous attributes but they 

become equivalent when they manipulate binary attributes (Willett et al., 1998). 

For example, on measuring similarity with binary variables, the Tanimoto 

similarity coefficient is equivalent to the Soergel distance, since the Soergel 
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distance is the complement of the Tanimoto coefficient (Leach and Gillet, 

2007). 

There are various types of similarity coefficient and the detail has been 

discussed in the reviews by Holliday et al. (2002; 2003), moreover three types 

are commonly discussed in the literature as follows: distance coefficients, 

association coefficients, and correlation coefficients (Holliday et al., 2002; 

Willett, 1987). The first two classifications, distance and association, are 

commonly used for similarity searching. Distance coefficients are a widely 

used type of similarity measure because their geometric representation is 

simple. Two well-known distance coefficients are the Euclidean distance and 

Hamming distance (Holliday et al., 2002; Willett, 1987). As for association 

coefficients, the Tanimoto coefficient is the most widely used similarity 

coefficient. It can be used for both continuous attributes and binary attributes. 

With continuous attributes such as topological indices, the value of the data 

may be real numbers over any range. While with binary attributes such as 2D 

fingerprints, the data are coded as 0 or 1 denoting respectively the absence or 

presence of specific substructure features. 2D fingerprints in combination with 

the Tanimoto coefficient provide a simple but effective way of quantifying the 

similarity relationships between pairs of molecules (Leach and Gillet, 2007). 
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For example, the similarity between two binary bit strings A and B (denoted by 

Sab) can be computed by the commonly used Tanimoto coefficient which is 

represented as follows: 

SAB =C 
a+b-c 

where a is the number of bits set to "1" in bit string A, and 

b is the number of bits set to "1" in bit string B, and 

c indicates the number of bits set to "1" in both A and B 

bit string A: 0 10 100 11 00 a=4 
bit string B: 1001001110 b=5, and c is 3 

3 s'4B _ 4+5-3 __ 0.5 

Figure 2-3 Example of calculating similarity based on Tanimoto coefficient 

Different types of coefficients calculate similarity in various ways. For 

example some coefficients, such as the Tanimoto coefficient and the Dice 

coefficient, compute similarity directly. Others, such as the Hamming 

coefficient and the Euclidean coefficient, generate the distance or dissimilarity 

between pairs of molecules. Moreover, in the case of binary attributes, some 

coefficients such as Tanimoto generate a real number within the range from 

zero to one but others such as Euclidean provide a wider range from zero to 

infinity. Hence, a standardization procedure is required to convert the attribute 

value between similarity and distance coefficients. When the attribute values 

are limited to the range from zero to one, the measure used for different 

similarity and distance measures is simplified and standardized (Holliday et at., 

2002; Leach and Gillet, 2007). 

In addition to the normalization on attribute values for different coefficients 

mentioned above, the molecular size may also affect the calculation of 

similarity especially on the representation with binary fingerprints. For 
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example, the Tanimoto, Dice and Cosine coefficients directly compute the 

similarity according to the number of bits in common. On the other hand, the 

Hamming and Euclidean distances also calculate the similarity by the common 

absence of molecular features. Hence, the common presence or absence of 

molecular features will influence the similarity score (Leach and Gillet, 2007). 

In some cases, the molecular size will directly influence the calculation of 

similarity measures by association coefficients such as Tanimoto coefficients 

(Holliday et al., 2003; Haranczyk and Holliday, 2008). They cause a bias of 

similarity calculation on different size of molecules. For example, in a 

similarity measure using fingerprints such as Tanimoto coefficients, the small 

molecules will usually have lower similarity score or larger distance value 

since they are likely to have fewer bits set in a fingerprint than large molecules. 

Conversely, when using the Hamming distance, small molecules tend to be 

more similar (Leach and Gillet, 2007). With such bias of coefficients on small 

molecules and larger molecules, it also requires some degree of size 

standardization to avoid such problem. 

Even for a particular application of chemoinformatics, it should not be 

considered that a certain coefficient will always give better performance than 

others (Willett et al., 1998; Willett, 2003a), and some research has suggested 

that using mixed indices which combine two or more standard measures may 
have better performance on similarity searching (Leach and Gillet, 2007). 

Eventually, it might be true that there is still a need to find the most appropriate 

coefficient or combination of coefficients for any specific similarity searching 

application. Holliday et al. (2002) combined different coefficients for similarity 

searching using the application of data fusion. Different combinations of 

similarity coefficients were employed and the performance with the individual 

coefficients was compared; thus, the technique of data fusion has been shown 

to improve the performance of similarity searching. 
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2.4.3 3D Similarity 
It is natural that there are differences between 2D molecular features and 3D, 

hence 3D similarity measures need different molecular properties such as 

conformational properties to be considered and are more complicated 

computational processes than 2D methods. The 2D similarity methods have 

been developed earlier than 3D methods and they are also the standard retrieval 

principles at present. Hence 2D methods have widely been developed as the 

fundamental principles for 3D methods. For instance, 3D substructure 

searching fingerprints can be used for similarity searching as well as 2D 

fingerprints. 

There are some common 3D methods which have been discussed in literature, 

for example, the 3D equivalents of fragment and MCS methods, and the 

alignment methods based on molecular field information. However, some 
literature simply divides 3D similarity measures into two categories (Leach and 
Gillet, 2007; Willett & Gillet, 2007): alignment methods that are implemented 

by manipulating the molecules in 3D space and alignment-independent 

methods that do not need such geometric spatial information to be derived. 

As mentioned above, 3D fingerprints were originally applied to 3D 

substructure searching and then to similarity searching like 2D fingerprints. 

But the major difference is that the molecular features, such as spatial 

characteristics of conformation that 3D fingerprints encoded are more complex 

than 2D fingerprints. The fingerprint can encode the presence or absence, or 

the frequency of occurrence of 3D molecular features. 3D molecular 
descriptors, such as inter-atomic distance, valence and torsion angles, and atom 

triplets, can be represented in a binary fingerprint similar to a 2D fingerprint 

and then be used by Tanimoto coefficients. Although, such manipulations of 
3D fingerprints are simple, when the conformation flexibility has been 

involved, the calculations of all descriptors are quite time consuming (Leach 

and Gillet, 2007; Willett, 2003a). 
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The 3D graph-matching approaches can also be derived from 2D such as 2D 

MCS. The principle of 3D MCS is similar to 2D; it creates a mapping from the 

atoms of one molecule on to another and finds the largest set of atoms which 

match the distance between atoms. The similarity calculation is still 

time-consuming. As for the alignment methods, they take the degrees of 
freedom related to the conformational flexibility into account. They mainly 

arrange the alignment of two or more molecular structures, and the comparison 
between them is based on their shape and 3D confirmation (Willett, 2003a; 

Willett & Gillet, 2007). 

The development of many varied 3D methods is currently at an early stage and 
there is still a need to find an efficient method on 3D similarity searching since 
most of their manipulations are time consuming or some factors such as 

conformational flexibility involving in the similarity calculation will be 

complex (Willett, 2003a). 

2.5 Summary 

There are many ways in which we can calculate the similarity between pairs of 

molecules, but the great majority of current similarity-searching systems 

employ simple 2D fragment-based measures. The applications of the similarity 

measures include chemical database clustering, reaction similarity searching, 

and the analysis of molecular diversity (Willett et al., 1998). One very 
important application of similarity measures is cluster analysis, it is discussed 

in the next chapter. 
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Cluster analysis, or clustering, in the most general sense of the term, is a 

process of partitioning which divides data into a number of groups, so data in 

one group are similar and data in different groups are not similar (Halkidi et al., 

2001; Kantardzic, 2003; Milligan and Cooper, 1987). Clustering is a technique 

for exploratory data analysis and is used increasingly in preliminary analyses 

of large datasets of medium and high dimensionality as a method of selection, 

diversity analysis, and data reduction (Downs and Barnard, 2002). The 

literature is full of discussions surrounding the applications of cluster analysis, 

and that is also the evidence of its importance. With the increasing and 

continuing uses of cluster analysis in many research fields, a number of varied 

definitions have been proposed in the past several decades, however the 

favorite definition may be given according to the discipline involved and the 

aim of the researchers (Punj and Stewart, 1983). There are many synonyms of 

cluster analysis such as unsupervised learning, numerical taxonomy, typology, 

partition (Halkidi et al., 2001), automatic classification (Willett, 1985), 

unsupervised classification (Kantardzic, 2003), and unsupervised pattern 

recognition (Everitt, 2001). 

Some reviews regard cluster analysis as a specific mode of classification 

(Dunham, 2003). Clearly, cluster analysis may differ in a number of ways from 

classification. For example, in contrast to classification, cluster analysis has no 

predefined classes and no examples to show the relations among samples, that 

is, there is no prior knowledge concerning the clusters, yet classification 

allocates a data item to a predefined set of categories. On the other hand, the 

results of clustering are dynamic. It follows from what has been said why 

cluster analysis is viewed as an unsupervised process (Halkidi et al., 2001). 
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3.1 The Key Components of Clustering 
Cluster analysis may be of crucial importance in a wealth of applications in 

many disciplines such as business and science, and is one of the most useful 

tools for discovering patterns in the underlying data. Several studies (Everitt et 

al., 2001; Halkidi et al., 2001; Punj and Stewart, 1983) have proposed the 

fundamental functions of cluster analysis such as the following: prediction 
based on groups, hypothesis generation and testing, and data reduction and 

exploration. 

A cluster analysis encompasses a sequence of processes. The sequence shows 

the important processes or decisions which have to be made in a cluster 

analysis. Sometimes, it may be necessary to adjust the processes in a sequence 

to fit a specific application in a certain research field. However, it is also 

important for the user to recognize that key decisions have been made. 

Although it may seem preferable when the user has no prior knowledge or even 

positive information to make a selection, it cannot be assumed that the original 

selection is optimal or even correct (Milligan, 1996). 

The key processes in clustering can be summarized as follows (Everitt et al., 
2001; Halkidi et al., 2001; Ketchen and Shook, 1996; Punj and Stewart, 1983): 

3.1.1 Weighting Variables and Standardization 

Choosing and weighting clustering variables for grouping objects are two of 

the most troublesome processes in the application of cluster analysis, and thus, 

perhaps the most important (Gnanadesikan et al., 1995; Ketchen and Shook, 

1996). In addition, in many applications the variables that describe the objects 

to be clustered will not be measured in the same units or scales. Indeed they 

may often be variables of completely different types, and yet others having an 
interval scale. Thus, a simple standardization is needed. 
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A standardization process allows variables to contribute equally to the 

definition of clusters but may also eliminate the meaningful and important 

differences among elements (Ketchen and Shook, 1996). Whether to 

standardize clustering variables is an ambiguous issue. Some studies report 

standardization is needed to eliminate the potential effects of scale differences 

among variables. Others offer experimental evidence that standardization has 

no significant effects or generates limited improvement (Bath et al., 1993; 

Ketchen and Shook, 1996). Aldenderfer and Blashfield (1984) suggested that 

since standardizations may generate adverse effects, it should be carried out 
based on a case-dependent basis. Milligan and Cooper (1988) investigated a 

study of eight different standardization methods in the cluster analysis and 

reported that standardization techniques based on division by the range of 

observations were consistently superior to any other standardization 

approaches. Conversely, Gnanadesikan et al. (1995) highlighted the drawbacks 

of weighting based on the standard deviation or range of variables. 

3.1.2 Selection of Similarity or Dissimilarity Measures 

As discussed in Section 2.4.2, a similarity or dissimilarity measure is not only 

important for similarity searching but also critical to the application of cluster 

analysis. These measures reflect the degree of similarity or diversity between 

objects, a clustering hence can be carried out based on it. No single coefficient 
is applicable to all applications, and different similarity measures generate 

various clustering results. This reflects the importance of choosing an 

appropriate similarity measure for a particular application. A dissimilarity 

measure, such as distance, assumes larger values as two objects become less 

similar. Whereas a similarity measure, such as correlation, assumes larger 

values as two objects become more similar. The Tanimoto coefficient and 

Euclidean distance are two well-known and widely used measures for 

similarity and dissimilarity respectively. 
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Table 3-1 shows some commonly used similarity and distance coefficients in 

chemical application (Willett et al., 1998). In which, SAB denotes the similarity 
between A and B, and DAB indicates the distance between A and B. In addition, 
i represents the attribute, and the N is the number of attributes. As for binary 

variables (e. g. fingerprints), a is the number of bits set to "1" in A, while b is 

the number of bits set to "1" in B, and c is the number of bits set to "1" in both 

A and B. 

Formula for continuous variables 
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dichotomous variables 
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Table 3-1 Some commonly used similarity and distance coefficients 

3.1.3 Selection of Clustering Methods 

The selection of appropriate clustering methods is an important process for 

effective clustering (Punj and Stewart, 1983). An efficient good clustering 

method is definitely superior to an inefficient bad one; however researchers 

have to determine the choice between an efficient bad clustering method and an 

inefficient good one; besides, each clustering method has its suitability on 

certain areas, hence the decision of these considerations may depend on the 
demands of users. 
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Two types of clustering methods are common in the literature: hierarchical and 

non-hierarchical methods, which are discussed in Section 3.2. With distinct 

clustering approaches, each of them has its suitable application and limitation. 

For example, the Jarvis-Patrick method was reported to be suitable for 

chemical application rather than other fields. Some non-hierarchical methods 

usually require a prior setting before clustering, for example a user-defined 

number of clusters for K-Means method or a pre-determined k nearest 

neighbours for Jarvis-Patrick method, whereas there is no such requirement for 

hierarchical methods. In addition, some methods are suitable for dealing with 

large datasets, such as CLARA. Some studies (Milligan, 1980; Punj and 

Stewart, 1983) proposed that the combination of hierarchical and 

non-hierarchical methods offers better performance; these use hierarchical 

methods to determine the number of clusters and the cluster centroids, and then 

use non-hierarchical methods based on these results. However, the shortcoming 

is the extra cost of time and effort. 

3.1.4 Decision on the Number of Clusters 

A prior assignment of the number of clusters is needed when the 

non-hierarchical methods are carried out, but not for hierarchical methods 
(Punj and Stewart, 1983). The hierarchical relationship in hierarchical 

clustering may be represented by a dendrogram, which represents the fusions 

or divisions made at each continuous stage of the analysis. The visual 

examination of a dendrogram is a commonly used and ,a 
basic technique to 

decide the number of clusters in dealing with hierarchical clustering (Ketchen 

and Shook, 1996; Leach and Gillet, 2007). Figure 3-1 illustrates an example of 

a dendrogram and the members of clusters in the hierarchical relationship. 
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AB CD E 

Members of Clusters 

[A, B, C, D, E] 

[A, B, C]; [D, E] 

[A, B]; [C]; [D, E] 

[A, B]; [C]; [D]; [El 

[A]; [B]; [C]; [D]; [E] 

Figure 3-1 Example of dendrogram and the members of clusters 

Neither hierarchical nor non-hierarchical clustering methods directly address 

the issue of determining the number of groups within the data. Different 

techniques have been reported for determining the number of clusters on 

hierarchical and non-hierarchical clustering methods (Dubes, 1987; Fraley and 

Raftery, 1998; Milligan and Cooper, 1987) and their experimental results 

concluded some techniques are effective. Ketchen and Shook suggested (1996) 

that multiple techniques should be used to determine the number of clusters, 

rather than using a single approach, in order to get rid of the drawbacks of each 

other. 

The partition size for some clustering methods could be determined by a 

cut-off parameter or threshold, such as the CAST (Ben-Dor et at., 1999) and 

Yin-Chen (Yin and Chen, 1994) methods. However, in some cases, the 

partition size is sensitive to the threshold setting. 

3.1.5 Validation and Interpretation of Results 

Validation of clustering results is also one of the critical processes in cluster 

analysis because no clustering method assures offering superior performance 

even dealing with the datasets with no error or noise (Milligan, 1980). 

Interpretation of the clusters within the applied context requires the knowledge 

and expertise of the researcher's particular discipline (Halkidi et al., 2001). 
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3.1.6 Summary 

Clustering methodology has been increasingly proposed and widely used in a 

variety of research fields such as, archaeology, astronomy, biology, computer 

science, electronics, engineering, information science, and medicine. Detailed 

review and general introductory texts on the topic of clustering were 

summarized by Milligan and Cooper (1987), Everitt et al. (2001), and Jain et al. 
(1999). In terms of its application in varied disciplines, there are some good 

reviews in a variety of areas such as marketing (Punj and Stewart, 1983), 

economics (Dunham, 2003), information retrieval (Willett, 2005), image 

segmentation, computer science, and data mining (Berkhin, 2002). In addition, 

as for chemical application, excellent review articles on the application to 

chemical data were summarized by Barnard and Downs (1992), Downs and 

Willett (1994), Willett (1987), and Downs and Barnard (2002). The importance 

of clustering in many disciplines is evident through its enormous literature and 

application in wide range of areas (Kantardzic, 2003). 

3.2 Clustering Methods 
It is important to distinguish a cluster analysis from a clustering method. A 

cluster analysis may refer to the overall sequence of processes that were 

discussed in section 3.1. Nevertheless, the clustering method represents a very 

important process in the cluster analysis. 

Halkidi et al. (2001) proposed three criteria for the classification of clustering 

algorithms as follows: the type of data input to the algorithm; the clustering 

criterion defining the similarity between data points; and the theory and 
fundamental concepts on which clustering analysis techniques are based. For 

each clustering method, the type of variables used in the dataset can be 

generally classified into numeric data and categorical data. 

Several clustering methods have been proposed in the reviews. However, with 
diverse algorithms on the basis of applied fields, the classification of clustering 

methods varies. Clustering methods can be generally classified into two 

popular categories, hierarchical and non-hierarchical clustering (Downs & 
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Barnard, 2002; Kantardzic, 2003; Willett, 1987). 

3.2.1 Hierarchical Clustering 
Hierarchical clustering methods create a cluster hierarchy. In other words, they 

organize data in a nested sequence of groups, which can be displayed in the 

form of a dendrogram or a tree-like structure (Kantardzic, 2003). Moreover, 

according to the methods that produce clusters, they can be further divided into 

agglomerative algorithms and divisive algorithms (Willett, 1987). 

Agglomerative methods begin by considering each object as a single cluster, 

and gradually merge the objects into bigger clusters. The clustering procedure 

produced at each step results from the previous one by combining the two most 

similar clusters into a single cluster (Downs and Barnard, 2002; Halkidi et al., 

2001). The most common agglomerative hierarchical methods are the 

Sequential Agglomerative Hierarchical Non-overlapping (SAHN) methods. A 

non-overlapping technique means that each object belongs to one cluster only. 
Some commonly used agglomerative methods can be found in the literature 

and they are varied in the measures of distance (or similarity) between clusters 

(Ketchen and Shook, 1996; Leach and Gillet, 2007). First, linkage methods 

group objects by different types of distance calculation such as: single linkage 

(nearest neighbour), calculating the minimum distance between objects; 

complete linkage (furthest neighbour), computing the maximum distance; and 

group average, measuring the average distance between all pairs of objects. 

Second, centroid methods cluster objects based on maximizing the distance 

between the centers of clusters. Finally, variance methods generate clusters by 

minimizing the increase of variance which is calculated by the error sum of 

squares. A well-known example is Ward's method. 

On the other hand, divisive methods begin by treating all objects as a single 

cluster and gradually partition the objects into smaller clusters based on a 

single descriptor (Downs and Barnard, 2002; Halkidi et al., 2001). Because of 

the basis of a single descriptor, divisive methods are faster than the 

agglomerative methods. However, the chemical applications of divisive 
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methods offer poor performance in comparison with agglomerative methods 

(Rubin and Willett, 1983). Hence, little literature has been discussed on the use 

of hierarchical divisive methods to deal with chemical datasets. 

There are several examples of well-known hierarchical clustering algorithms in 

the recent literature as follows: BIRCH (Zhang et al., 1996), CURE (Guha et 

al., 1998), and ROCK (Guha et al., 1999). However, in the application of 

chemoinformatics, Ward's clustering method has been widely used for analysis 

of chemical structure databases; it groups two clusters by the shortest 

Euclidean distance or variance between pairs of centroids (Ward, 1963). 

Another study of hierarchical clustering approach is that of El-Hamdouchi and 

Willett (1987) who employed Ward's hierarchic, single linkage, complete 

linkage, and group average clustering methods for document retrieval and 

found group average method has the best performance for document clustering. 

3.2.2 Non-Hierarchical Clustering 
Non-hierarchical clustering techniques, also known as partitioning clustering, 

split a dataset into a prior specified number of smaller datasets or clusters in 

some cases such as K-Means clustering. It begins by selecting an object as a 

cluster centre or "seed point", and then clusters all objects according to a 

certain threshold value or distance (Ketchen and Shook, 1996; Leach and Gillet, 

2007). It is also a non-overlapping technique as hierarchical techniques, which 

means each object is assigned to one cluster only. Contrary to hierarchical 

clustering, non-hierarchical techniques split a dataset into groups that have no 

hierarchical relationship to each other. Therefore, the computational 

requirements for non-hierarchical clustering are generally less than for 

hierarchical techniques. 

There are three major non-hierarchical methods as follows: relocation 

clustering, nearest-neighbour clustering, and single-pass clustering (Willett, 

1987). Relocation methods begin with selecting (usually randomly) k objects as 

"seed point", and then the rest are assigned to the closest seed generating a set 

of k clusters. With the centroids re-calculated for each cluster, objects are 

35 



Chapter 3: Clustering 

relocated to the closest new cluster centroid, and such process is usually 

repeated until no objects have been relocated. K-Means method is a commonly 

used relocation technique. Second, in nearest-neighbour methods, all pairwise 

similarities are measured to find the nearest neighbours of each object and 

ranked based on the similarities. A well-known example of chemical 

applications is the Jarvis-Patrick method (Jarvis and Patrick, 1973). Finally, in 

the single-pass methods, the first object is assigned to the first cluster, and the 

next object belongs to the first cluster or a new cluster depending whether their 

similarity is over a specified threshold value. Such methods cluster objects 

using only one pass over the dataset. 

3.2.3 Summary 
There is vast number of clustering algorithms available in the literature, and it 

may be difficult and confusing for users trying to choose a suitable algorithm 

for the problem. Thus, users undertaking a cluster analysis should take two 

important issues into account when they use clustering algorithms (Kantardzic, 

2003). 

First, it is essential for users who utilize a clustering algorithm to have a 

complete comprehension of the specific technique being used, as well as to 

know the details of the data grouping process. All of these will be the best 

criteria to choose an appropriate method. Moreover, the more information the 

user has relating to the data, the more likely the user would be able to succeed 

in a cluster analysis. Second, there is no single best clustering algorithm and no 

single method will be suitable for exploring the variety of structures present in 

all types of multidimensional datasets. Therefore, it is necessary for a user to 

try various algorithms on a given dataset to identify the most appropriate 

method for that application. 
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3.3 The Comparison of Clustering Methods 
In recent years, there has been a dramatic increase in research in many fields 

concerned with clustering. Despite its frequent use, little is known about the 

applicability of available clustering methods, whether the method selected is 

suitable for user's problem at hand, or how clustering methods should be 

employed. 

There have been various studies in the literature related to the comparison of 

clustering methods in varied disciplines such as marketing (Punj & Stewart, 

1983), chemoinformatics (Raymond et al., 2003; Willett, 1987) and data 

mining (Berkhin, 2002). There also have been several extensive discussions of 

clustering validation; examples of comprehensive reviews are given by Willett 

(1985), the studies of Milligan (1996) and Halkidi et al. (2001) broadly cover 

clustering evaluation techniques, whilst discussions of some specific validation 

techniques can be found in the studies by Berkhin (2002), Halkidi et al. (2001) 

and Jain et al. (1999). 

The evaluation of clustering results is always one of the most significant issues 

in cluster analysis, and is often done to find the clustering that best describes 

the underlying data (Halkidi et al., 2001). The researchers cannot assure that 

they have a set of useful and meaningful clusters even after careful analysis of 

a dataset and the selection of a final cluster method. Furthermore, to evaluate 

the quality of clustering results is always a significant issue of the procedure. 
On the other hand, the evaluation of clustering methods is also a critical issue 

in cluster analysis. Rand (1971) proposed several objective criteria which 
depend on a measure of similarity between two different clusterings of the 

same datasets, and the measure essentially considers how each pair of objects 

is assigned in each single cluster. In addition to evaluating clustering methods 

by their results, Murtagh (2000) evaluated clustering methods by their time and 

storage costs. 
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An empirical study by Milligan (1980) compared the performance of k-means 

methods and hierarchical methods and found that when using random seeds as 

the start points, K-means methods generated noticeably worse performance 

than hierarchical methods even under the condition of no error or noise. 

However if the optimal starting procedures, obtaining the starting seeds from 

hierarchical methods e. g. group average method, were carried out instead of 

random seeds selection, k-means methods offered similar or superior 

performance to the hierarchical methods. 

Brown and Martin (1996) investigated clustering methods to compare their 

performance for compound selection by using varied fingerprints. Active or 
inactive data was available for the compounds in the datasets used, and then the 

evaluation was based on how well clustering separated active from inactive 

compounds. Although the Jarvis-Patrick technique was the fastest among all 
the methods, it offered the worst performance than any other. Overall, the 
Ward's method produced most consistent and the best performance. 

3.4 Chemical Applications of Clustering 
In discussions of chemical applications, clustering is one of the most important 

of the techniques that have been widely used in the literature. In recent years, 

clustering analysis is getting considerable attention not only in many 
disciplines such as business and computer sciences but also in 

Chemoinformatics; some common chemical applications of which are 
high-throughput screening, combinational chemistry, compound acquisition, 

and QSAR (Downs and Barnard, 2002). 

The clustering of chemical structures may be the earliest and most important 

chemical application. The following serve as some examples: Adamson and 
Bush (1973) developed a method to classify automatically the chemical 

structures, comparing fragment bit-strings for similarity calculation by three 
different coefficients and the clustering results were reasonable from a 
qualitative viewpoint. Willett et al. (1986) summarized an empirical 

comparison of nonhierarchical clustering methods based on simulated property 
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prediction experiments, and clustered the outputs resulting from chemical 

substructure searches. The finding is that the Jarvis-Patrick method is effective 
in operation even with large datasets of many hundreds or thousands of 

chemical compounds. The study of Butina (1999) also found that using 

Jarvis-Patrick method with Daylight's fingerprints and the Tanimoto similarity 
index has a good performance in dealing with large datasets. Whilst, Reynolds 

et al. (1998) developed a simple clustering method to group structures based on 
2D topology descriptors. 

With the increasing needs of optimal clustering methods in chemical 

applications, a variety of novel methods are found in the literature; for example 
CAST (Ben-Dor et al., 1999), Raymond-Willett (Raymond and Willett, 2003), 

and Yin-Chen (Yin and Chen, 1994). Raymond et al. (2003) compared five 

clustering methods used for chemical structures by graph- and 
fingerprint-based similarity measures. Although the results based on graph 

similarities are different from fingerprint similarities, they cannot suggest that a 

certain method is consistently superior to the other; however, some novel 

clustering methods such as CAST and Yin-Chen generate superior performance 

to traditional clustering methods such as Ward's and Jarvis-Patrick over these 

tests, and may be useful alternatives for the clustering of chemical structure 

databases. Furthermore, they concluded that both graph- and fingerprint-based 

similarity measures can be used effectively for chemical clustering. 

Hierarchical agglomerative techniques, for example Ward's method, are widely 

used for commercial purposes. The importance of current research is turning 

toward the quality of the clustering results. The achievements in chemical 

application of clustering are more hopeful than in other disciplines because the 

clustering methods in chemical application are able to deal with mixed or 

nonnumerical data and pay more attention on cluster size, shapes, and 
distribution (Downs and Barnard, 2002). For example, cluster-based and even 
dissimilarity-based algorithms, so far, are widely used to select compounds not 

only on the basis of chemical similarity or dissimilarity but also on the basis of 

other chemical characteristics such as cost, pharmacokinetic properties, and 

ease of synthesis (Willett, 2005). 
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Bäcker et al. (2006) proposed a novel hierarchical clustering approach which is 

called NIPALSTREE to analyze large datasets in high-dimensional space. The 

clustering results of NIPALSTREE were compared with another hierarchical 

k-means clustering method; it was validated using ACE inhibitors in the 

COBRA dataset and shown to generate meaningful results. 

As for the clustering applications on high-throughput screening in drug 

discovery, cluster analysis is a suitable tool for grouping similar compounds 

into classes. However, many available clustering methods focus on accurate 

classification of objects, and thus, they lead to a time-consuming process. It is 

not suitable to apply high-throughput screening on large scale compound 

libraries. Li (2006a) proposed a fast clustering method to group a very large 

scale dataset with millions of compounds in hours, and to analyze the 

redundant compounds of a very large high-throughput screening library. In 

addition, the use of clustering methods in high-throughput screening is 

discussed by Dunbar (1997). 

3.5 Summary 

Having introduced the main features of similarity and cluster analysis, the later 

three chapters (Chapter 5 to 7) describe the experiment work carried out in this 

thesis. One of the problems noted above (in Section 3.1) is the standardization 

of variables. This has been little studied in chemoinformatics, and hence 

Chapter 5 presents a detailed evaluation of standardization methods using both 

the similarity searching and cluster analysis to compare the various methods 

that have been suggested in the literature. 

In addition, the applications of chemical clustering, especially on 2D structures, 
have room for improvement and extension, because there are limitations and 
drawbacks in the currently used clustering methods. It is worth employing 

some methods that are reported effective in other fields to the application of 
chemical clustering (as presented in Chapter 6). 
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Methods 

Due to the studies in the next three chapters containing some experiment 

details in common, all experimental contexts are hence presented in this 

chapter including the datasets and the chemical representations, clustering 

methods and the evaluation measures, which have been applied to the studies 

of the next three chapters. 

4.1 Datasets 

Two chemical databases are used in this thesis. The first is the MDL Drug Data 

Report (MDDR) containing 102,535 biologically relevant compounds with 

over 452 activity classes, produced formerly by MDL Information Systems and 

now by Symyx Technologies (Symyx, 2007). Each compound in the MDDR is 

classified into one or several activity classes corresponding to a certain 

therapeutic action. It is one of the largest databases of chemical structures with 

associated biological activities and the essential information about biological 

activity of the MDDR is mainly acquired from the patent literature, which is a 

popular example in the field of chemoinformatics. We randomly selected 10% 

from the entire MDDR database with SDF (Structure Data Format) format (for 

the experiments in Chapter 5) and SMILES format (for the experiments in 

Chapters 6 and 7) by SciTegic Pipeline Pilot software with default random seed 
333 obtaining a total of 10,191 and 10,201 molecules respectively. 

The other chemical database is the IDAlert containing 11,607 compounds 

across 834 activity classes classified by the pharmacological property, 

produced formerly by Current Drugs Ltd. and now by Thomson Reuters 

(Thomson Reuters, 2007). Similar to the MDDR, each compound in the 

IDAlert database is assigned to a certain activity class. This work used the 

UNIVERSITY 
41 OF SHEFFIELD 

LIBRARY 



Chapter 4: Experimental and Evaluation Methods 

entire IDAlert database as the dataset for the studies in different chapters of this 

thesis. 

Moreover, we chose eleven activity classes from the two databases, which have 

been reported previously by Hert et al. (2004), in a study of virtual screening 

methods on the MDDR database. The chosen eleven activity classes were 

employed as the indicators to evaluate the clustering results as shown in Tables 

4-1 (for the MDDR) and 4-2 (for the IDAlert). Each row in the table contains 

an activity class, the number of molecules belonging to the class, and the 

indication (pairwise similarity and standard deviation) of the class's diversity. 

The diversity of an activity class is computed based on the pairwise Tanimoto 

similarities using the Pipeline Pilot ECFP 4 fingerprints (the manner of 

calculating Tanimoto similarity is discussed in Section 2.4.2 as Figure 2-3). 

However, some classes have different but similar names in these two databases, 

for example 5HT reuptake inhibitors and D2 antagonists in the MDDR are 

called 5HT uptake inhibitors and Dopamine D2 antagonists respectively in the 

IDAlert. 

Activity Class Active 
Molecules 

Average Pairwise 
Similarity 

Pairwise Standard 
Deviation 

5HT3 antagonists 89 0.34 0.11 
SHTIA agonists 94 0.33 0.10 
5HT reuptake inhibitors 38 0.35 0.14 
D2 antagonists 40 0.35 0.09 
Renin inhibitors 112 0.57 0.10 
Angiotensin II AT1 antagonists 95 0.40 0.10 
Thrombin inhibitors 108 0.42 0.13 
Substance P antagonists 125 0.39 0.11 
HIV -1 protease inhibitors 67 0.45 0.12 
Cyclooxygenase inhibitors 54 0.27 0.09 
Protein Kinase C inhibitors 48 0.31 0.13 

Table 4-1 Eleven activity classes and their number of actives in the 10k MDDR dataset 
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Activity Class Active 
Molecules 

Average Pairwise 
Similarity 

Pairwise Standard 
Deviation 

5HT3 antagonists 99 0.36 0.12 
5HTIA agonists 61 0.33 0.10 
5HT uptake inhibitors a 41 0.32 0.10 

Dopamine D2 antagonists a 20 0.36 0.08 
Renin inhibitors 123 0.48 0.14 
Angiotensin II ATI antagonists 12 0.43 0.08 
Thrombin inhibitors 76 0.49 0.15 
Substance P antagonists 66 0.41 0.13 
HIV -1 protease inhibitors 32 0.42 0.13 
Cyclooxygenase inhibitors 87 0.26 0.09 
Protein Kinase C inhibitors 51 0.32 0.16 

a MDDR activity classes SHT reuptake inhibitors and D2 antagonists are called SILT uptake inhibitors 
and Dopamine D2 antagonists respectively in the IDAlert dataset. 

Table 4-2 Eleven activity classes and their number of actives in the IDAlert dataset 

4.2 Chemical Representations 

The two datasets were characterized by four different chemical representations. 

Molconn and Pipeline Pilot have similar data type, i. e. real number (numerical), 

of descriptors for structure description, but differ in the number of descriptors. 

Tripos molecular holograms and Pipeline Pilot ECFP_4 are fingerprint-based 

representations, but differ in the data type, integer and binary respectively, of 

their descriptors. 

4.2.1 Molconn 

Molconn structure descriptors are a set of varied types of topological indices of 

molecular structure. These indices (i. e. descriptors) show the molecular 

structure information which is useful. We used Tripos Sybyl software (Tripos, 

2007) to calculate 523 Molconn descriptors from molecular structure (labeled 

Molconn-Z in this thesis) containing molecular connectivity (Chi) indices, 

electrotopological state (E-state) indices, shape (Kappa) indices, topological 

state and equivalence indices. These indices are suitable for QSAR 

(Quantitative Structure-Activity Relationships) and QSPR (Quantitative 
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Structure-Property Relationships) studies (Tripos, 2007), and are also ideal for 

statistical methods e. g. cluster analysis and regression. The Molconn-Z 

representation was employed in the experiments in Sections 5.3 to 5.7. 

In addition, due to the license of Molconn-Z package in the Tripos Sybyl 

software being changed, we employed a new alternative of Molconn tool, 

called winMolconn software (HAC, 2010), which is available at 
http: //www. molconn. com and denoted by win_Molconn in this thesis, for the 

extensive study of standardization methods in Chapter 5. It generates 668 

descriptors from the connection table of chemical structures including three 

main categories of elementary structure information indices, molecular 

connectivity indices and electrotopological state (E-State) indices. The 

win Molconn representation was used in the experiments in Sections 5.9 to 

5.12. 

The correlations between many Molconn descriptors, i. e. Molconn-Z and 
Win_Molconn, are highly correlated with each other (Shen et. al., 2003). 

Hence, the certain information of a set of highly correlated descriptors may 

usually be over-represented. In order to get rid of such problem, Principal 

Component Analysis (PCA) is commonly applied to transform a number of 

correlated variables, i. e. descriptors, into a small number of un-correlated 

variables which are usually called principal components. In other words, the 

number of descriptors, i. e. the dimensionality of a dataset, is hence reduced to 

generate a new set of small number of descriptors. 

The process of Principal Component Analysis, in essence, usually involves the 

procedure of standardization (Leach & Gillet, 2007; Shen et. al., 2003), i. e. 

converting the source data to Z-score. However, one aim in the works of 
Chapter 5 is to compare the effectiveness of different standardization 

procedures on the chemical data with Molconn representations. To avoid the 
Molconn descriptors being re-standardized, the correlations between Molconn 

descriptors are ignored here, that is, all Molconn descriptors are kept in the 

datasets. 
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4.2.2 Pipeline Pilot 

Similar to the data type of the Molconn descriptors, we used Scitegic Pipeline 

Pilot software (Accelrys, 2007) to generate twelve commonly used structural 

descriptors to form this chemical representation (labeled Pipeline Pilot in this 

thesis), such as AlogP, logD and PKa, molecular weight, Surface area and 

volume, and solubility (summarized in Table 4-3). The major difference 

between Pipeline Pilot and Molconn-Z representations is the number of 

descriptors they contained. The Pipeline Pilot representation was used in the 

study of Chapter 5. 

Descriptors Descriptions 

Minimized Energy Gives the molecular energy after a fast minimization procedure 

ALogP 
The Ghose/Crippen group-contribution estimate for LogP, where 
P is the relative solubility of a compound octanol vs. water 

ALogP_MR 
The Ghose/Crippen estimate of molar refractivity, which 
contains information about molecular volume and polarizability 
of a compound 

LogD 
The ratio of the equilibrium concentrations of all species of a 
molecule in octanol to same species in the water phase at a given 
temperature. 

Molecular weight Molecular weight 

Solubility Molecular Solubility 

Molecular Volume The 3D volume 

Molecular_SurfaceArea The total surface area and polar surface area for each molecule 
Molecular PolarSurfaceArea are calculated using a 2D approximation 

Molecular_SASA The total solvent accessible surface area 

Molecular_PolarSASA The polar solvent accessible surface area 

Molecular SAVol The solvent accessible volume 

Table 4-3 The summary of descriptors of Pipeline Pilot representation 
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4.2.3 Holograms 

Molecular hologram representation is a technique of fingerprinting which 

consists of all varied molecular fragments within a molecule, and records the 

count of the frequency in which each unique fragment occurs rather than 

traditional 2D fingerprints that record only the status of absence or presence of 

a certain fragment (Tripos, 2007). We used Tripos Sybyl software to calculate 

molecular holograms (labeled Holograms in this thesis) containing 997 

descriptors. Each descriptor represents a predefined molecular fragment, which 

is generated for all possible substructures between 4 and 7 atoms in size for all 

molecules, to record the number of times a unique fragment occurs in a given 

molecule. The Holograms representation was used in the study of Chapter 5. 

4.2.4 ECFP 4 Fingerprints 

Molecular fingerprints are one of the common chemical representations, and 

are widely used for similarity searching, virtual screening and clustering. 

Extended-connectivity fingerprints (ECFPs) are a commonly-used example of 

molecular fingerprints. They were designed to capture molecular features 

which correspond to molecular activity. We used SciTegic Pipeline Pilot 

software (Accelrys, 2007), which is available at http: //www. accelrys. com to 

generate ECFP 4 circular fingerprints (labeled ECFP 4 in this thesis) with a 

fixed length of 1024 bits (descriptors). 

The suffix number, i. e. 4, after the term ECFP indicates the diameter (in bonds) 

of the circular substructure. The data type, in essence, for ECFP_4 is binary. 

That is, each descriptor encodes simply the absence (zero) or presence (one) of 

a 2D structural fragment within a molecule. The main difference between 

Holograms and ECFP_4 is that the former records the counts for a certain 
fragment, whereas the latter records only the absence or presence of 

substructures. ECFP_4 is a type of Extended-Connectivity fingerprint (ECFPs), 

and such fingerprints encode circular substructures based on a hash function, a 

variation of the Morgan algorithm, which was initially proposed to solve the 

molecular isomorphism problem in order to generate a unique structural 
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description (Morgan, 1965; Leach and Gillet, 2007). ECFP_4 fingerprint was 

used in the studies in Chapters 6 and 7. 

Table 4-4 summarizes the overall information for the above four chemical 

representations and the context they have been applied to. 

Chemical 
Representations Data Types Software Tools Context 

Molconn-Z 

Win_Molconn Real Number 
Tripos SYBYL 

winMolconn software 

Sections 5.3 to 5.7 

Sections 5.9 to 5.12 

Pipeline Pilot Real Number Scitegic Pipeline Pilot Chapter 5 

Holograms Integer Tripos HQSAR Chapter 5 

ECFP_4 Binary Scitegic Pipeline Pilot Chapters 6&7 

Table 4-4 Summary of four chemical representations 

4.3 Clustering Methods 

The clustering methods used in Chapters 5 and 6 are integrated and discussed 

in this section. Some methods, Yin-Chen and CAST, are coded, and the rest of 
the methods are carried out using the implementations in specific software 

packages. Due to the license of particular software package being changed, the 

Ward's method is carried out using different software packages in distinct 

experiments of this thesis but with the identical standard Ward's algorithm. 

4.3.1 Yin-Chen 

This clustering method involves a two-phase algorithm with fixed-radius 

selection (Yin and Chen; 1994). This approach examines the status of 

connectivity of pairwise objects: if the distance between them is less than a 

certain distance, i. e. two times the mean minimum distance (MMD), then they 

will be considered to be connected; otherwise, they will be considered to be 

noise and will be removed from the dataset. A graph theoretic procedure, in our 

study we chose Breadth First Search (BFS), is applied afterwards to find out 
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the connected components based on the status of adjacency. Each connected 

component is considered a cluster. In addition, the distance calculation in our 

study is based on the Tanimoto distance (Willett et al., 1998; Holliday et al., 

2002; Li, 2006), and the number of clusters is determined by an adjustable 

parameter i. e. a cut-off threshold. 

4.3.2 CAST 

Cluster Affinity Search Technique (CAST) was proposed by Ben-Dor et al. 

(1999) for applications on clustering gene expression data. One feature of this 

method is using a cut-off parameter as a threshold to adjust the number of the 

clusters, therefore no predefined number of clusters is applicable to such 

method, and in some applications the number of clusters is usually unknown or 

hard to specify. The rationale of CAST, in short, is taking turns between 

moving the element with maximum similarity in the working cluster, and 

removing the element with minimum similarity from it until the working 

cluster is stable, i. e. a cluster has been generated; then a new cluster is started 

thereafter. In addition, the calculation of similarity is based on the Tanimoto 

coefficient (Leach and Gillet, 2007; Haranczyk and Holliday, 2008), and, 

similar to the Yin-Chen method, an adjustable parameter is needed to 

determine the number of clusters. 

4.3.3 UPGMA 

CLUTO is the abbreviation of CLUstering TOolkit and is a suitable software 

package for clustering with high dimensional datasets. It has been widely used 
in the application of document clustering (Steinbach et al., 2000; Zhao and 
Karypis, 2005), while in our study, we applied it to chemical clustering. 

Agglomerative clustering methods have been extensively used in a wide range 

of fields. Saad et al., (2006) compared the performance between agglomerative 

and partitional clusterings and found agglomerative method effective. In 

addition, the application of document clustering using CLUTO package also 

reported that the agglo method with UPGMA (Unweighted Pair Group Method 

using Arithmetic mean) criterion function and the repeated bisection method 
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had better performance (Steinbach et al., 2000). In our study, we employed a 
hierarchical agglomerative method, agglo, and two partitional-based methods, 
direct and repeated bisection (see next sections) for the application of chemical 

clustering. 

The agglo method is the traditional hierarchical agglomerative method. Initially, 

it considers each object in a dataset as individual clusters and then keeps 

merging two clusters which are most similar until the desired number of 

clusters is found or certain criterion is reached. However, the critical process in 

such sort of methods is the scheme used to choose which two clusters to be 

merged next (Karypis, 2003). The default criterion function of agglo method in 

CLUTO is UPGMA, which is also known as average linkage. Two clusters 

with minimum distance are merged into one cluster, for which the distance is 

based on the average of pairwise distances in each cluster. 

4.3.4 Direct 

In terms of direct method, the desired k clusters are generated synchronously; it 

is similar to traditional K-means type of algorithms. The direct method is 

simply a two-step algorithm. The first step involves selecting randomly k 

objects from the dataset as the centroids and then assigning each of the rest of 

objects to its closest centroid. Hence the initial k clusters are obtained. The 

second step contains a number of iterations of refinements. The refinement is 

based on a best-one-element-move strategy (Zhao & Karypis, 2005). Each 

object is visited in a random order to see if any improvements in the value of a 
desired criterion function are found by moving one object to one of the rest of 
k-1 clusters. If the improvements are found, then moves this object to the 

cluster which leads to the best improvement; if not, this object stays in its 

original cluster. The iteration of refinement stops on condition of no objects 

moved between clusters. 

Both i2 and el criterion functions are used for each of the partitional-based 

methods i. e. direct and repeated bisection. The i2 criterion is based on the 

within-cluster similarity; in this measure, each cluster is represented by its 
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centroid, and a cluster is generated by maximizing the similarity or minimizing 

the distance between a cluster centroid and each member in that cluster. The el 

criterion, however, generates clusters by minimizing the similarity or 

maximizing the distance between the centroid of each cluster and the centroid 

of all clusters. For more detailed explanation of these criterion functions, the 

reader is referred to the study by Zhao and Karypis (2005). The equations for 

i2 and el are defined as follows (Karypis, 2003) 

k 

i2 = maximize VZ similarity(a, b) 
ICI a, beCI 

k 9ECK, bEC similarity(a, b) 
el = minimize n; 

W ZB, 
b¬C, similarity(a, b) 

a and b indicate two objects; C is the collection of all objects; Ci represents the 

collection of objects in a certain cluster; similarity(ab) indicates the similarity 

between object a and b. 

4.3.5 Repeat Bisection 

The repeated bisection method, which is a variation of K-Means but with 

hierarchical divisive method (Downs and Barnard, 2002; Willett, 2009) also 

named Hierarchical K-means (Bucker et al., 2005), it divides the dataset 

repeatedly into clusters. In a word, the dataset is initially split into two clusters 

using the original K-Means algorithm; and then one cluster is chosen and split. 
This process repeats until it reaches the desired number of clusters (Barnard 

and Downs, 1992). However, the critical process in repeated bisection is the 

measure employed to choose which cluster to be divided next, normally the 
largest cluster is selected for bisection (Steinbach et al., 2000; Saad et al., 
2006). The criterion functions, i2 and el, used for this method were discussed 

in Section 4.3.4. 
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4.3.6 K-Means 

K-Means algorithm, was first proposed by Stuart Lloyd in 1957 but was not 

published until 1982, whereas it was first used by MacQueen in 1967 (Jain, 

2010), and is one of the best known partitional clustering methods. Basically, it 

is an iterative clustering algorithm in which objects are relocated among 

clusters until some convergence criterion is met. In this thesis, the traditional 

K-Means method was carried out using the implementation in the BCI 

(Barnard Chemical Information) software package, which is now Digital 

Chemistry Clustering Tools (Digital Chemistry, 2007), the main steps of this 

traditional K-Means method are 

1. Choose k random objects as the centroids 

2. Assign each object to its nearest centroid, i. e. cluster center 
3. Compute the new cluster center as the centroid for each cluster 
4. Repeat steps 2 and 3 until no object relocation is needed 

The time complexity of K-Means is O(tkn), where t is the number of iterations, 

k is the number of clusters, and the n is the number of objects, i. e. size of 
dataset. Obviously, k and n can substantially influence its efficiency. It is 

time-consuming when dealing with large datasets, however it often generates 

good results. In addition, it is sensitive to the noise and outliers, since such data 

significantly influence the computing of cluster centers on relocating objects. 

According to the algorithm of traditional K-Means listed above, it generates 
different results with each run, because the clustering results depend on the 

random selection of initial centroids. Moreover, it can obtain a local optimum, 
i. e. minimizing intra-cluster variance, but not assure the global optimum. 
Hence, extensive variations of the K-Means method are reported in the 

literature to obtain the overall optimum. Basically, they differ in the details of 

careful selecting the initial centroids, e. g. Direct method of CLUTO, or 

adjusting the partition, e. g. if the distance between two cluster centroids is less 

than a predefined threshold, then two clusters are merged (Dunham, 2003). 

Some methods also operate in a deterministic manner by removing the random 
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selection of centroids and the order-dependent processing of objects. 

4.3.7 Ward's 

Ward's method is a well-known hierarchical agglomerative clustering method, 

and is normally the method of choice in chemoinformatics especially in the 

application of chemical clustering of 2D structures (Barnard and Downs, 1997). 

Unlike many other clustering methods, Ward's method (Ward, 1963) considers 

clustering as an analysis of variance to evaluate the distance between clusters, 
instead of using distance or similarity metrics. The fusion criterion minimizes 

the increase of the error sum of squares computed based on Euclidean distance 

between two clusters in order to optimize the quality of the new cluster formed 

at each step (Everitt et al., 2001). Many hierarchical agglomerative techniques, 

e. g. complete, single or average linkage, obtain only the global optimum, i. e. 

minimum inter-cluster variance. However, the Ward's method obtains both 

local (intra-cluster) and global (inter-cluster) optimum by minimizing the 

increase of the intra-cluster error sum of squares. 

4.3.8 Extended Ward's 

This hierarchical clustering method was proposed by Szekely and Rizzo (2005); 

its rationale is based on joint between-within cluster distances. Similar to 

Ward's method, extended Ward's also minimizes the Euclidean distance 

between clusters. However, the distance for extended Ward's, named e-distance, 
is a measure of both the heterogeneity between clusters and homogeneity 

within clusters. In the proposed e-distance formula, with a power function a of 
the Euclidean distance will generate different clustering methods. For example, 

the objective function with a=l and a=2 are equivalent to the extended Ward's 

and conventional Ward's method respectively. The formula was defined as 
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where .4 and B represent two non-empty vector space (clusters) 

A={a,, a2,..., a�1} and B={b1, b2,..., bn2} 

nj indicates the number of elements in cluster A, while n2 represents the 

number of elements in cluster B. The a powers of Euclidean distance fall in the 

interval (0,2]. 

A summary of software tools for the above clustering methods and the context 

they are applied to is given in Table 4-5. 

Clustering Software Tools Use in thesis 
Methods 

BCI software Sections 5.3 to 5.7 
Ward's 

R software 
Sections 5.9 to 5.12 

and Chapter 6 
Extended R software 

Sections 5.9 to 5.12 
Ward's Chapter 6 

K-Means BCI software Sections 5.3 to 5.7 

Yin-Chen Coded by Perl Script Chapter 6 

CAST Coded by Perl Script Chapter 6 

Sections 5.9 to 5.12 
UPGMA CLUTO Chapters 6 and 7 

Direct CLUTO 
Sections 5.9 to 5.12 

Chapters 6 and 7 
Repeated CLUTO Sections 5.9 to 5.12 
Bisection and Chapter 6 

Table 4-5 Summary of the software tools and use in thesis of all clustering methods 
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4.4 Evaluation of Clustering Results 

Evaluation of clustering results is a critical process in cluster analysis, it not 

only assesses the clustering techniques but also provides the intensity of 

confidence for the clustering. Most clustering applications need an evaluation 

measure to assess the results from a certain method, such as the assignment of 

objects in clusters, the number of clusters, capturing the intra-cluster similarity 

and inter-cluster dissimilarity. There are extensive evaluation measures with 
different types in the literature; if a clustering method offers better performance 

than others over many evaluation measures, then that clustering method is the 

best for a certain type of application. Hence we chose five evaluation measures 

for our experiments. Shannon entropy and probability of correct prediction are 

two evaluation criteria used in the study of Bäcker et al. (2006). Entropy based 

on cluster size is a measure which is similar to the conventional Shannon 

entropy to observe the distribution of partition sizes. F-measure is a measure 

widely used in document clustering for many years (Fung et al., 2003; 

Rosenberg and Hirschberg, 2007). Quality Clustering Index (QCI) is a new 

evaluation measure recently defined by Varin et al. (2008). 

4.4.1 Shannon Entropy 

Shannon Entropy (SE) is a technique to evaluate the distribution of active 

compounds from inactives for a given class across all clusters (Matter, 1997). 

Entropy-based approach assumes that the best possible classification is one in 

which all of the actives for a given particular activity class are located in the 

same cluster. Conversely, the worst possible classification is one in which they 

are distributed equally across the available clusters. The distribution of the 

actives was quantified using the Shannon Entropy (SE), which is defined 

(Godden and Bajorath, 2001; Batista et al., 2006) as 
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SE = -ý P1log2 (pi) and P; =Ä 

where p; is the fraction of the total number of active molecules that occur in the 
i-th cluster and where the summation is over all of the clusters 

a is the number of active molecules in a certain cluster, and 

A is the total number of molecules in a given activity class. 

For example, if 4 of the 100 members of an activity class occur in some cluster 

A, then pi = 4/100 = 0.04, yielding a contribution to SE of 0.19. The 

performance measure is then the calculated entropy, with the results being 

averaged over all of the eleven activity classes. For this measure, small entropy 

values indicate good clustering results. 

4.4.2 Probability of Correct Prediction 

This evaluation criterion involves finding the fraction of clusters containing 

actives that are predicted to be active or inactive. The Shannon Entropy 

observes merely the distribution of actives and takes no account of actives' 

co-occurrence with inactives. Whereas, the evaluation using the probability of 

correct prediction takes account of both the actives and the inactives for a 

certain activity class. Let an active cluster be a cluster that contains at least one 

molecule from the chosen activity class. Define P(active) and P(inactive) for a 

particular cluster as 

P(active) =Ä and P(inactive) =N-a 

where Nis the total number of compounds in the dataset, 

n is the total number of molecules in the current active cluster, 

a is the number of active molecules in that cluster, and 
A is the total number of molecules exhibiting the chosen activity. 
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The two values P(active) and P(inactive) hence describe the proportion of the 

actives and the proportion of the inactives that are present in the chosen cluster. 

We would hope that P(active) would be greater than P(inactive) in the case of 

an active cluster, i. e., that there is a greater concentration of active molecules 

present (whereas the converse would imply the presence of some small number 

of "stray" actives in a cluster composed predominantly of inactives). We then 

use the number of times when this is in fact the case as a measure of the 

effectiveness of clustering: the more frequently this happens, the greater the 

degree of concentration of the actives in the active clusters. For example, 

assume that a=2 and n= 10 for some cluster and that N= 820 and A= 20 for 

the dataset. Then the probabilities of activity and inactivity are 

P(active) = 20 = 0.1 and P(inactive) = 820 
- 20 

= 0.01 

with P(active) > P(inactive), as would be predicted to be an active cluster. The 

performance measure is then the fraction of active clusters that are indeed 

predicted to be active for the chosen activity class, with the results being 

averaged over all of the eleven activity classes. 

As the equations of P(active) and P(inactive) are listed above, the probability 

of a given cluster which is predicted to be active or inactive depends on two 

factors. The first factor is the size of dataset (N) and the other is the size of 

clusters (n). For example, suppose the size of the MDDR dataset is N=10,000 

and the approximate size of clusters is n=20 to 10 (with the number of clusters 

500 to 1000). Hence with the same conditions as in above example of a=2 and 

n=10 for some cluster and A=20 for the dataset; even if the number of active 

molecules (a) is small, the probability of P(active) tends to be much greater 

than P(inactive). 

P(active) = 
20 

= 0.1 and P(inactive) =1010 -20.0008 
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Obviously, P(active) is much higher than P(inactive), that is, the chosen cluster 
is easily to be active. Hence, when dealing with very large dataset and small 

size of cluster, the clustering evaluation based on such measure may not be 

applicable. 

Since this evaluation approach is strongly affected by the size of dataset and of 

cluster, we employed it only in the study described in Chapter 5 (Effect of 

Standardization on Three Different Representations of Structural Similarity), 

that is because the number of clusters in the experiment was set to be 25,50 

and 100. For other experiments, such as the extensive study in Chapter 5, and 

other studies in Chapters 6 and 7, the partitions contained 500,600,700,800, 

900 and 1000 clusters, in which case the partition size is much smaller. 

Consider the size of datasets (approximately 10,000) and the small partition 

size (20 to 10 in averages), and find that large size of dataset and small size of 

partitions will easily lead the clusters to be identified active. The evaluation 

using the probability of correct prediction is not applicable to above 

experiments but only to the experiments in Sections 5.3 to 5.7. 

4.4.3 Entropy Based on Cluster Size 

The rationale of entropy based on cluster size is similar to conventional entropy 

as discussed in Section 4.4.1. It evaluates the size distribution over all clusters. 

The only difference is the calculation of probability pi in the equation of 
Shannon entropy. The p, is defined as 

pi 

where n is the total number of molecules in a certain cluster, and 

N indicates the total number of molecules in the dataset. 

This criterion hence considers only the sizes of the clusters, not the activity of 
the molecules in the clusters, and is hence biased towards a classification 

consisting of equal-sized clusters. 
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4.4.4 F-measure 

F-measure (Rijsbergen, 1979) is the evaluation of external clustering quality 

which takes precision and recall into account, this evaluation measure is widely 

used in document clustering (Steinbach et al., 2000; Fung et al., 2003). For a 

certain cluster, the precision and recall can be computed based on a given 

activity class. Precision calculates the ratio of molecules in a cluster which 

belong to the given activity class to examine how this cluster is with respect to 

that activity class; while recall computes the ratio of molecules of the given 

activity class in a certain cluster to measure how complete this cluster is with 

respect to that activity class. Both can be defined as 

Precision 
n 

Recall =a A 

where a is the number of active molecules of a given class in a cluster, 

n is the total number of molecules in a cluster, and 

A is the total number of molecules exhibiting the chosen activity class. 

The F-measure of a certain cluster and a given activity class can be defined as 

(Fung et al., 2003; Rosenberg and Hirschberg, 2007) 

F= 
(2 * Recall * Precision) 
(Recall + Precision) 

In terms of the F value for entire clustering, it captures the maximum value for 

a chosen activity class over all clusters, i. e. finding the "best" cluster for a 

certain activity class. In conventional document clustering, the overall F value 

is computed using the weighted sum of such maximum values for all activity 

classes; and the sum is normally weighted by the ratio of size of a given class 

to size of the dataset. However, in our experiment, unlike its calculation in 

document clustering applications, the overall F score for entire clustering 

performance is the average of these maximum values for all activity classes 
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without a weighting scheme; because we chose only 11 activity classes which 

we are interested in from the datasets. The F score used in our study can be 

defined as 

1k 
Foverall 

"ý - 
Zr 

max l 
Fac 

J 
ac"I 

where max{F8c} is obtained by comparing the F values over all clusters for a 

certain activity class, and 

k is the number of activity classes, and 

ac indicated an activity class. 

The value for F measure is between 0 and 1. In addition, larger F score value 

indicates better clustering results. This is an upper-bound criterion since it is 

based on identifying the best possible single cluster for a given activity class. 

4.4.5 Quality Clustering Index 

A previous study (Brown and Martin, 1996) used the ratio of active molecules 

in the active or inactive clusters as the clustering evaluation; however, this 

usually leads to bias when only a small number of active molecules exist in 

inactive clusters. In order to eliminate such bias on clustering evaluation, Varin 

et al. (2008) proposed a new index, Quality Clustering Index (QCI), to evaluate 

the separation between active and inactive molecules during the clustering 

process. They offered a new definition to verify a cluster as active or inactive 

by comparing the ratio of active molecules in a cluster and in the dataset. That 

is, if the ratio of active molecules is greater than the original ratio of total 

active molecules in the dataset, the cluster is considered to be active. The 

equation of QCI is defined as 
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QCI =ax 100% 
a+b+c+d 

where a is the number of active molecules in active clusters, 
b represents the number of inactive molecules in active clusters, 

c indicates the number of active molecules in inactive clusters, and 

d is the number of active singletons. 

4.5 Evaluation of Correlation 

The evaluation of correlation is an important procedure in comparative studies 

where many experiments are carried out, and is a measure to compare the 

various methods under study. Here we are interested in the extent to which 

different conditions (e. g. different activity classes) rank a set of objects (e. g. 

different clustering methods), and the extent of the correlation between the 

different conditions. If a set of objects is always, or nearly always, ranked in 

the same order, then we can have some belief in the validity of that ordering. 

Rank transformation procedures are a nonparametric approach that involves 

replacing the data values with their rankings, and this technique has been 

applied in clustering analysis, multiple regressions, and multiple comparisons 
(Conover and Iman, 1981). The Kendall rank coefficient is a technique to 

measure the degree of correlation between two rankings of N objects, as well as 

to assess the significance of the correlation. When there are more than two sets 

of rankings, Kendall's coefficient of concordance W can be used to measure the 

correspondence and its strength among them. For example, in our study in 

Chapter 5, we applied the Kendall W test to rank the performance of eight 

standardization methods, with each test comparing the three raters, Pipeline 

Pilot, Molconn-Z, and Holograms. In other study in Chapter 6, four evaluation 

criteria were considered as judges to rank the nine clustering methods in order 

to obtain a more quantitative view of the effectiveness of the clustering 

methods. The evaluation of correlation by Kendall's W test is applied to the 
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studies in Chapters 5 and 6. 

The equation of calculation for the value of W is listed as follows (Siegel and 
Castellan, 1988): 

W 12ER, 2 -3k2N(N+1)2 
k2N(NZ -1)-kET, 

where k is the number of sets of ranking 

N is the number of objects being ranked 

R; is the summation of the ranks 

T; is the correction of tied observations 

However, when the tied ranks are obtained, each observation is assigned the 

average of the ranking scores which would have been assigned when no ties 

occurred. In addition, the sample size N will influence which approach for 

testing the significance of the Kendall coefficient of concordance should be 

used. When dealing with larger samples (N > 7), W is approximately 

distributed as xZ (chi square) with N-1 degrees of freedom and can be tested 

using 

Z2 = k(N - I)W 

In brief, the purpose of the Kendall W test in our studies is to determine 

whether or not the agreement occurred on ranking different procedures. If a 

statistically significant level of correlation is obtained, then we have more 

confidence in the validity of that ranking. 
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4.6 Conclusions 

In this chapter, we discussed the two datasets, MDDR and IDAlert, which are 

employed for the next three chapters. Four different chemical representations 
for these two datasets are also discussed, Molconn, Pipeline Pilot, and 
Holograms are used only in Chapter 5, while ECFP_4 fingerprint is used in 

Chapters 6 and 7. 

Varied clustering methods discussed here are used in Chapters 5 and 6, and the 

clustering results in Chapter 6 are employed to generate a similarity matrix for 

the application of consensus clustering in Chapter 7. Five different evaluation 

criteria are discussed and verified their suitability for clustering evaluation. The 

evaluation using the probability of correct prediction is used only in the first 

experiment in Chapter 5 due to its applicability. While the evaluation criteria, 

Shannon Entropy, Entropy based on partition size, F-Measure, and QCI, are 

employed to evaluate clustering performance in the Chapters 6 and 7. 
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Chapter 5: Effect of Standardization on Three 
Different Representations of Structural 
Similarity 

5.1 Introduction 

The representation of chemical structures is one of the essential and crucial 

tasks in chemoinformatics (Engel, 2003). Once the structural descriptors of a 

certain chemical representation have been calculated, some critical 

chemoinformatics tasks, such as similarity search, as well as clustering of 

chemical structures or other applications, can be done. However, the 

standardization of descriptors or variables is a vital procedure when carrying 

out similarity searching or chemical clustering with different chemical 

representations, as well as when the descriptors have particularly varied 

characteristics. The aim of standardization is to adjust the magnitude or scale 

of the score of input variables to be equal. 

Studies of standardization techniques in this chapter include two parts. The first 

part (Sections 5.3 to 5.7) involves the evaluation of standardization methods 

based on the results from similarity searching and clustering. Ward's and 

K-Means methods, which are commonly used in the application of 

Chemoinformatics, were employed for clustering in the first experiment. The 

second part (Sections 5.9 to 5.12) is an extension of the first study: it 

investigates the effect of the same standardization methods but with another 

seven clustering methods which were reported effective in the literature. 
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5.2 Standardization Methods 

Milligan and Cooper (1988) discussed the use of standardization in cluster 

analysis, and evaluated the results of different standardization methods with 

artificial data. They concluded that, as far as standardization approaches are 

concerned, the standardizing transformations which involve the division by the 

range of variable have consistently better recovery of the underlying cluster 

structures; moreover, the most common Z-Score method proved to be less 

effective in some situations. Different standardization techniques reveal 
different performances in varied applications, however some reviews reported 

that the standardization procedures offer, at least, a limited advantage for those 

data needed to be grouped (Edelbrock, 1979; Milligan, 1980; Good et at., 

2004). Moreover, Rogers et al. (1991) argued that poor standardizing of 

variables influences the performance of clustering procedures and algorithms. 

Instead of using traditional standardization procedures, Stoddard (1979) 

proposed a linear model for scaling measurements as the standardization 

procedure and concluded it is necessary to remove the variability of datasets 

but keep the differences in the size of the properties for generating the superior 

clustering results. 

Bath et al. (1993) used eight different standardization techniques for the 

measures of intermolecular structural similarity and concluded that there was 

no significant difference in the effectiveness of various standardization 

methods when standardized fragment-based data was used for similarity 

searching on 2D chemical structures. Another study was carried out by Turner 

et al. (1995); both similarity coefficients and standardization methods were 

used on the calculation of field-based similarity search. The results showed that 

there is no significant difference among seven different standardization 

methods. Evaluations of different standardization methods with chemical 

properties are rarely seen. Dorans and Kulick (1986) summarized the utility of 

the standardization method to search unexpected differences in item 

performance over different subpopulations of educational test data. They 

concluded that the standardization approach is an effective technique for 
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comparing the item performance of groups of unequal properties; and the 

limitation is that relatively large sample sizes are required. Strike et al. (2001) 

developed quantitative models of software cost estimation with incomplete 

data and concluded the traditional Z-Score standardization method offered 

consistently the best performance. As for other non-chemical application of 

standardization, Doherty et at. (2004) investigated whether standardization will 
influence the clustering results generated by different norms such as the 

Minkowski or Euclidean norms, and their result showed that a significant 

improvement was obtained in the class accuracy recovery between 

standardized and un-standardized synthetic datasets. Account for the 

performance of different clustering methods, the Neural Gas clustering has the 

most remarkable improvement in the class recovery rate using standardization 

procedures in comparison with K-Means and nearest neighbour clustering 

methods. 

Numerous standardization techniques have been discussed in the literature, the 
detailed review are well described by Milligan and Cooper (1988). Seven 

standardization techniques were used in this study, based on those used 

previously in a study of fragment-based similarity applications (Bath et al., 
1993). With all these standardization methods, we used the standard statistics 

notation, in which X denotes the observation value of the variable, U denotes 

the average of observations for the variable, s denotes the standard deviation 

for the variable. MAX(Aq and MIN(X) denote the maximum and minimum 

values of the variable respectively. All these standardization forms are as 
follows: 

1. The most common and traditional standardization method is the Z-Score, 

which has been proposed by Sokal (1961) and Williams & Lambert 

(1966), and the transformation of variable will have a zero mean and a 

variance of 1. 

Si =X -P 
s 
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2. The second form of standardization is similar to Z-Score and has been 

proposed by Cormack (1971), 

S2 =X 
S 

which will result in a variance of 1 and a transformed mean of 'u 
S 

3. Cain and Harrison (1958) suggest a similar transformation, which 

involves dividing the value of each variable by the maximum value. 

X S, _ MAX(X) 

4. Carmichael et al. (1968) proposed a standardization that involves the use 

of the variable's range as the divisor. 

X S4 _ MAX(X)-MIN(X) 

5. The fifth standardization is similar to S4 using the variable range as well, 

which has been proposed by Gower (1971). 

_X 
-MIN(X) SS 

MAX(X)-MIN(X) 

6. Another standardization approach normalizes by the sum of the 

observations for a variable (Romesburg, 1984), which will result in a 

mean of 1/n. 

s6 X 
xx 

7. Sneath and Sokal (1973) proposed a distinctive standardization method, 

which differs from the above six methods in using the rank of data instead 

of its value. 

S, =Rank (X) 
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The advantage of such method is that it can reduce the influence of outliers in 

the sample. Hence, for all data, the mean will be (n+1)/2, and 

variance (n + 1) ( 2n6+1 
- 

n4+1 1. Moreover, when observations have same value, 

each observation will have the same rank. To get rid of such tied ranks, each 

observation will be assigned the average of ranks to adjust the ranking tied 

scores. 

Finally, So denotes the original data that is unstandardized. The eight 

standardization procedures above are summarized in Table 5-1. 

Standardization 
Methods 

Description 

So Un-standardized dataset 

Si 
d dd i ti t li db h N 

S2 an ar ev a on yt es orma ze 

S3 Normalized by the maximum 

S4 
i bl e th ' db N li 

S5 s rang e var a e orma ze y 

S6 Normalized by the sum of the variable 

S7 Using rank of data instead of its value 

Table 5-1 Summary of standardization methods 

5.3 Experimental Details 

The MDDR and IDAlert datasets were represented by three different types of 

chemical representations, Pipeline Pilot, Holograms and Molconn-Z (both 

datasets and representations are discussed in detail in Chapter 4). However, for 

the Molconn-Z representation, some molecules failed to generate descriptors 

for both datasets and were removed. Hence, in order to obtain the equal size of 
datasets, we also removed those molecules in the datasets with Pipeline Pilot 

and molecular holograms representations. We then standardized each 
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representation with the eight different standardization methods defined in 

Section 5.2. For each dataset, with the combination of standardization methods 

and chemical representations, we hence had twenty-four test-datasets. With 

each test-dataset, the standard K-Means and Ward's methods are carried out 

using the implementations in BCI (Barnard Chemical Information) software, 

which is now Digital Chemistry Clustering Tools provided by Digital 

Chemistry (Digital Chemistry, 2007). These methods were carried out to 

generate partitions containing 25,50 and 100 clusters. 

5.4 Evaluation of Standardization Methods 

The evaluation of standardization methods was carried out according to the 

clustering results and similarity searching results in this study, discussed in 

Sections 5.4.1 and 5.4.2 respectively. 

5.4.1 Evaluation Based on Clustering Results 

Two types of evaluation techniques were employed for analyzing the clustering 

results. One is the calculation of average probability that clusters could be 

active over the eleven activity classes with each standardization method 

(Matter, 1997). The other technique, Shannon Entropy, is to evaluate the 

distribution of active compounds from inactives for a given activity class 

across all clusters (Matter, 1997). Both evaluation techniques were discussed in 

detail in Chapter 4. 

5.4.2 Evaluation Based on Similarity Searching Results 

A similarity searching technique was carried out for analyzing the varied 

standardization methods. The majority of molecular attributes in this study are 

calculated physicochemical properties such as Pipeline Pilot and Molconn-Z 

representations; hence the distance coefficient, Euclidean distance listed as 
follows (Willett et al., 1998), was used for similarity searching. 
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N 

Euclidean distance: DA, = (x, 
A - X, B 

)2 

where DAB is the distance between compound A and B. 

x1,4 is the value of ih descriptor for compound A. 

x; B is the value of i`" descriptor for compound B. 

Nis the number of descriptors. 

A random set of 10 known active compounds for each of the 11 activity classes 

(listed in Tables 4-1 & 4-2) was selected as the reference compounds for 

similarity calculation, and then the distance was calculated for database 

compounds based on the Euclidean coefficient. The number of compounds 

within the same activity class was counted from the top-ranked 100 and 500 

database compounds. These counts were employed to compute the recovery 

rate, i. e., the number of actives divided by the size of a given activity class. 

Eventually, for each activity class, the mean recovery rate was computed 

averaged over 10 independent reference compounds. 

5.4.3 Evaluation of Correlation among Structural Representations 

Kendall's W test of concordance was used here to evaluate the significance of 

the correlation; this was discussed in detail in Chapter 4. As mentioned earlier, 

two datasets with three chemical representations, Pipeline Pilot, Molconn-Z 

and Holograms, were used in this experiment. Hence, we considered each 

single representation as a judge, i. e. k=3, ranking the eight different 

standardization methods, i. e. N=8, according to the results from clustering and 

similarity searching in the order of decreasing effectiveness. 
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5.5 Results and Discussions of Clustering Results 

In this section, we first consider the performance of clustering methods 

(Section 5.5.1), then have a more detailed analysis on the effect of the 

representations (Section 5.5.2), the number of clusters (Section 5.5.3) and, 

most importantly, the standardization methods (Section 5.5.4). 

5.5.1 Evaluation of Clustering Methods 

The overall results that we obtained are detailed in Table 5-2 (for (a) MDDR 

and (b) IDAlert datasets). In each case, the results are averaged probability or 

Shannon Entropy over all eight different standardization methods. The 

probability shows the percentage of successful prediction, that is, the higher the 

probability the better quality of clustering results. On the contrary, the Shannon 

Entropy represents how split the actives are. Hence, the larger the Shannon 

Entropy, the worse quality of clustering results, since for a good clustering 

result, all actives of a certain class should be grouped together. 

As for the overall results of the MDDR datasets (Table 5-2(a)), no significant 

benefit was found on using K-Means and Ward's methods in the evaluation 

using the probability of correct prediction, whereas the evaluation using 

Shannon Entropy, Ward's method has consistently better performance over 
different numbers of clusters than K-Means method. The actives in the Ward's 

clustering are more concentrated among clusters than K-Means. In addition, the 
Hologram representation with either clustering method always has the best 

values of Shannon Entropy. 

The overall results for the IDAlert datasets (Table 5-2(b)) have a similar trend 

to the MDDR datasets. Again, no clustering method was found offering 

consistently better probability of correct prediction, that is, no significant 

difference between using K-Means and Ward's methods. Moreover, the Ward's 

method has consistently better values of Entropy across all numbers of clusters 

than the K-Means method, however no specific chemical representation was 
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found providing consistently better performance with either clustering method. 

MDDR datasets 

Probability K-Means Ward's 

# clusters 
Pipeline 

Pilot Molconn-Z Holograms Pipeline 
Pilot Molconn-Z Holograms 

100 0.84 0.83 0.70 0.77 0.75 0.68 

50 0.64 0.64 0.60 0.61 0.67 0.62 

25 0.55 0.54 0.54 0.56 0.58 0.55 

Entropy K-Means Ward's 

# clusters 
Pipeline 

Pilot Molconn-Z Holograms Pipeline 
Pilot Molconn-Z Holograms 

100 4.27 4.00 3.02 3.94 3.54 2.63 

50 3.54 3.40 2.58 3.27 2.83 2.08 

25 2.77 2.59 2.14 2.42 2.17 1.64 

(a) 

IDAlert datasets 

Probability K-Means Ward's 

# clusters 
Pipeline 

Pilot Molconn-Z Holograms Pipeline 
Pilot Molconn-Z Holograms 

100 0.77 0.71 0.72 0.71 0.69 0.67 

50 0.61 0.59 0.60 0.57 0.61 0.60 

25 0.46 0.51 0.55 0.47 0.54 0.54 

Entropy K-Means Ward's 

# clusters 
Pipeline 

Pilot Molconn-Z Holograms Pipeline 
Pilot Molconn-Z Holograms 

100 4.62 4.71 4.30 4.29 4.05 4.18 

50 4.02 3.93 3.77 3.69 3.11 3.57 

25 3.24 2.97 3.17 2.99 2.37 2.78 

(b) 

Table 5-2 The overall clustering results of the (a) MDDR and (b) IDAlert datasets 
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5.5.2 Evaluation of Structural Representations 

We first consider the inspection of the overall clustering results across varied 

standardization methods on the MDDR datasets Table 5-2(a). No structural 

representation offers the consistently best probability, whereas the Hologram 

representation provides consistently the best Entropy with either clustering 

method. The other manner of inspection is carried out to analyze the clustering 

results on individual structural representation on the MDDR datasets (Figures 

5-1 and 5-2). We first inspect the evaluation using probability (Figures 5-1) on 

the dataset with no standardization procedure, i. e. So, the Molconn-Z 

representation has consistently the best performance with only K-Means 

clustering across all partition sizes, whereas the Holograms has consistently the 

worst. Moreover, using the same evaluation criterion on the datasets with 
different standardization procedures, no chemical representation was found 

offering consistently the best values of probability. Secondly, the evaluation 

using Shannon Entropy (Figures 5-2) on the datasets with all standardization 

procedures, i. e. So-S7, no structural representation was found providing 

consistently the best values of Shannon Entropy. Hence, for the clustering 

results of MDDR datasets here, we can conclude that there is no obvious 

difference for selecting any one of the chemical representations. 

Similar pattern of analysis is also carried out on the IDAlert datasets. 

According to the overall clustering results over all standardization procedures 

listed in Table 5-2(b), it shows that there is no significant difference on 

choosing any one of these three chemical representations. The other type of 
inspection of the clustering results on individual chemical representation is also 

carried out (Figures 5-3 and 5-4). Figure 5-3 shows the evaluation using 

probability of correct prediction on the IDAlert datasets with different 

clustering methods over three different numbers of clusters. We found that 

there is no chemical representation consistently providing the best or worst 

performance among all standardization methods. Moreover, with the evaluation 

using Shannon Entropy (Figure 5-4), the Molconn-Z representation with So and 

S6 standardization methods has significantly low Entropy values especially 
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clustering by Ward's method. In addition, when the datasets employing no 

standardization procedure, i. e. S0, with Ward's clustering, Molconn-Z has 

consistently the best and Pipeline Pilot has consistently the worst performance. 

Apparently, some outliers were found in the above evaluation of structural 

representations (Figures 5-1 to 5-4). For example, the MDDR datasets using S6 

standardization with Molconn-Z representation clustered by the Ward's method 
has extremely high values of probability especially on smaller partition sizes, 

such as 50 and 25 clusters. A similar outlier was also found in the evaluation 

using Shannon Entropy with the same standardization procedure, structural 

representation and clustering method on 25 clusters. The other example is the 

IDAlert datasets using S6 standardization: the Molconn-Z representation with 

Ward's method has the smallest probability on 100 clusters partitioning and has 

extremely largest probability on 50 and 25 clusters partitionings. Moreover, 

this was also found in the evaluation using Shannon Entropy especially on 50 

and 25 clusters partitionings. 

To sum up, there is something in common in the cases of above abnormal 

outliers. These extreme values of evaluation always occurred with smaller 

partition sizes of the Ward's clustering on the Molconn-Z representation dataset 

using S6 standardization. It is difficult to identify the cause of these extreme 

values coming from clustering method, standardization procedure, chemical 

representation or even partition size. 
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Figure 5-I The evaluation using probability of correct prediction of the combination of 
clustering methods and representations on different standardization procedures of the MDDR 

datasets 
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Figure 5-2 The evaluation using Entropy of the combination of clustering methods and 
representations on different standardization procedures of the MDDR datasets 
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Figure 5-3 The evaluation using probability of correct prediction of the combination of 
clustering methods and representations on different standardization procedures of the IDAlert 
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5.5.3 Evaluation of the Number of Clusters 

In this section, the focus in on finding the optimal number of clusters to the 

clustering results. First, consider first the representation of Pipeline Pilot. 

Figure 5-5 illustrates the comparison of evaluation based on different numbers 

of clusters on the MDDR datasets. The consistent trend reveals that the larger 

number, e. g. 100, of clusters has larger probability and Entropy. As discussed 

in the Section 4.4.2, evaluation using probability of correct prediction, the 

smaller partition size is, the cluster is more likely to be active, i. e. high value of 

probability. Also, evaluations using Shannon Entropy, the smaller the partition 

size is, the more likely the actives are to be scattered, i. e. high value of Entropy. 

This is because, in addition to the applicability of a clustering algorithm to the 

dataset, these two evaluation criteria, in essence, naturally depend on the 

number of clusters. 

The similar trend was also found in the MDDR datasets with the other two 

chemical representations, i. e. Molconn-Z and Holograms. Generally speaking, 

the overall trend is that the larger number of clusters, the larger probability and 

Entropy. However, some exception occurs on the Molconn-Z datasets using S6 

standardization with Ward's clustering on small numbers, e. g. 25 and 50, of 

clusters. 

We also pick the IDAlert datasets with Pipeline Pilot representation (Figure 5-6) 

as an example to inspect the performance over different numbers of clusters. 

Similar trend was also found in the IDAIert datasets with the other two 

representations as in the MDDR datasets. To combine the analysis on the 

MDDR and IDAlert datasets together, it is concluded that the performance of 

varied cluster sizes strongly depends on the evaluation criteria. For the study 

here, the optimal number of clusters can be determined based on individual 

evaluation criterion, but it is hard to decide based on overall evaluation criteria. 
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Figure 5-5 Comparison of the evaluation based on the number of clusters on the MDDR 
datasets 
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5.5.4 Evaluation of Data Standardization Methods 

In the context of this study, the most important part of the results is the effect of 

the various standardization methods. These results are shown in Figures 5-7 

and 5-8 (MDDR datasets) and 5-9 and 5-10 (IDAlert datasets). 

We first consider the results on the MDDR datasets based on individual 

evaluation criterion. Figure 5-7(a) shows the Pipeline Pilot representation 

evaluated by the probability of correct prediction. Apparently, S7 procedure has 

consistently the best performance when the cluster sizes are 100 and 50. 

However, no standardization method was found providing consistently the best 

performance over all combinations of clustering methods and numbers of 

clusters. With the inspection of Figure 5-7(b), S7 method has consistently the 

best performance only when the partition size is 100. As we discussed in 

Section 5.5.2, S6 method has extremely good results when dealing with 

Molconn-Z datasets using Ward's clustering on small number of clusters. 

Hence, S6 procedure has the best values of probability with Ward's clustering 

on partition size 50 and 25. As for the performance of Holograms listed in 

Figure 5-7(c), no single best standardization procedure was found consistently 

effective over all combinations of clustering methods and numbers of clusters. 

The evaluation using Shannon Entropy on the MDDR datasets with different 

structural representations is listed in Figure 5-8. In terms of the Pipeline Pilot 

(Figure 5-8(a)), So method offers consistently the best values of Shannon 

Entropy across all combinations of clustering methods and partition sizes, and 

this also indicates that no benefit can be obtained from using any one of these 

standardization methods. However, with the evaluation on Molconn-Z datasets 

(Figure 5-8(b)), the result was also consistent. S6 standardization provides 

consistently the best performance over all combinations of clustering methods 

and cluster sizes. As for the Holograms datasets (Figure 5-8(c)), when it 

employs the K-Means clustering, S6 procedure has consistently the best 

performance over all partition sizes. While clustering using Ward's method, S1 

and S2 methods have the identical best Entropy over all partition sizes. 
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Figure 5-7 Comparison of standardization methods evaluating by probability of correct 
prediction on the MDDR datasets with (a) Pipeline Pilot, (b) Molconn-Z and (c) holograms 
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Figure 5-8 Comparison of standardization methods evaluating by Shannon Entropy on the 
MDDR datasets with (a) Pipeline Pilot, (b) Molconn-Z and (c) Holograms 
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Combining the above analysis in Figures 5-7 and 5-8, no single standardization 

procedure was found consistently effective over all combinations of evaluation 

criteria, clustering methods and partition sizes. Some results (Figures 5-8(a)) 

even show that the datasets without using any standardization methods would 
have a superior performance to standardized datasets. We hence summarized 

the single best standardization method for the combination of chemical 

representations, evaluation criteria, clustering methods and partition sizes in 

Table 5-3. 

#clusters 100 

Evaluation using Probability 
K-Means Ward's 

50 25 100 50 25 
Pipeline Pilot S7 S7 S5 S7 S7 S1, SZ 
Molconn-Z S7 S5 So S7 S6 S6 
Holograms S5 S6 S6 S7 S, So 

Evaluation using Entropy 
K-Means Ward's 

#clusters 100 50 25 100 50 25 
Pipeline Pilot so so so so so so 

Molconn-Z S6 S6 S6 S6 S6 S6 

Holograms S6 S6 S6 S1, 
S2 SI, S1 

S1, 
S1 

Table 5-3 The best standardization method(s) evaluated by different criteria on the MDDR 
datasets 

According to the overall results listed in Table 5-3, S6 method tends to be more 

effective than any others on the MDDR datasets, and has the best performance 

13 times out of 36. The study of Milligan and Cooper (1988) reported that 

those standardization approaches involving division by the range, such as S4 

and S5, have better performance than other methods. But in our study, we did 

not find any obvious advantage from those standardization methods. In 

addition, the effectiveness of standardization method tends to depend on the 

types of chemical representation and evaluation criterion. 
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We then inspect the results on the IDAlert datasets also based on individual 

evaluation criterion. Figure 5-9 represents the evaluation using the probability 

of correct prediction with different types of structural representations. As for 

the Pipeline Pilot datasets Figure 5-9(a), the performance of standardization 

methods with a certain partition size is very close to each other. However, no 

single best procedure was found to keep offering the best probability values. 
Similar trend was also found in Figure 5-9(c), with the Holograms datasets, no 

standardization method has consistently the best results over all combinations 

of clustering methods and partition sizes. With the inspection of the evaluation 

on the Molconn-Z datasets (Figure 5-9(b)), S3 standardization has consistently 

the best performance over the two clustering methods when dealing with the 

partitioning of 100 clusters. While S6 method yields consistently the best 

values of probability over these two different partitioning approaches when the 

number of clusters is 50 or 25. 

Figure 5-10 represents the evaluation using Shannon Entropy on the IDAlert 

datasets with different structural representations. In terms of the Pipeline Pilot 

(Figure 5-10(a)), S6 standardization offers the best values of Shannon Entropy 

with Ward's clustering on partition size is 50 or 25. However, with the 

Molconn-Z datasets (Figure 5-10(b)), S6 method has consistently the best 

performance on K-Means clustering over all numbers of clusters, and is not 

surprisingly having good results on Ward's clustering with small partition sizes 

of 25 and 50. A similar trend was also found in the Holograms datasets (Figure 

5-10(c)), S6 method, again, provides consistently the best Entropy on Ward's 

clustering over all partition sizes, and also has the leading performance on 
K-Means partitioning when the number of clusters is 100 or 50. 

Combining the results of the MDDR and IDAlert datasets, two findings are 

worth noticing. First, the Ward's results of the standardization method pairs of 

(SI, S2) and (SOS) are identical, i. e. S1=S2 and S4=SS (Figures 5-7 to 5-10) over 

all structural representations, evaluation criteria and partition sizes. One 

explanation is that there is a linear relation (see equations below) between the 

pairs of(S1, S2) and (S40S5). 
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X -P X sl 
s 

s4 __ MAX(X)-MIN(X) 

S2 Xs 
-_ 

X- MIN (X) 
2ss MAX(X)-MIN(X) 

Take (Si, S2) as an example, objects in the S1 dataset are equivalent to the 

objects in S2 dataset have a move of ,u offset, in essence, on the linear 

relationship. Although their coordinates or positions in the vector space are 
different, their pairwise distances are the same. Hence, clustering algorithms 
based on the distance measuring, e. g. Ward's method, with the (S i, S2) or (S4 , S5) 

standardized datasets will obtain equivalent dissimilarity (or similarity), and 

this will also naturally lead to the identical clustering result. However, above 
behaviour would not apply to K-Means clustering, since different sets of 

random seeds are picked in different runs from the dataset by the BCI software 

as the initial centroids of each cluster, and the final clustering result strongly 
depends on these initial random seeds. 

Secondly, when Ward's clustering deals with Holograms datasets, S3, S4 and S5 

methods have the exactly identical values of probability (Figures 5-7(c) and 
5-9(c)) and Entropy (Figures 5-8(c) and 5-10(c)). Such behaviour simply 

comes from the characteristic of Holograms fingerprints. As we mentioned in 

Section 4.2.3, each descriptor (or bit) in the molecular holograms 

representation records the number of times a unique fragment occurs in a given 

molecule. A Hologram molecule contains 997 descriptors, however most of the 

descriptors have the value of zero, i. e. absence of a certain fragment. In that 

case, considering the standardization procedures of S4 and S5, the minimum for 

those descriptors is zero. 

X S3 _ MAX(X) 

Since the minimum is zero, i. e. MIN(X) = 0, the standardization procedures of 
S4 and S5 will hence be identical to S3. In addition, this situation would not 
happen on the Monconn-Z and Pipeline Pilot representations, because their 

manner of descriptors calculating is different from Holograms. 
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Figure 5-9 Comparison of standardization methods evaluating by probability of correct 

prediction on the IDAlert datasets with (a) Pipeline Pilot, (b) Molconn-Z and (c) Holograms 
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Figure 5-10 Comparison of standardization methods evaluating by Shannon Entropy on 
the IDAlert datasets with (a) Pipeline Pilot, (b) Molconn-Z and (c) Holograms 

88 

So Si S2 S3 Sd1 S5 S6 S7 
Standardization Methods 



Chapter 5: t; fTect of Standardisation an lhiree Different Representations of Structural Similarity 

Above analysis of the IDAlert datasets were summarized in Figures 5-9 and 
5-10: as with the MDDR datasets, no significant benefit was obtained on 

choosing any one of the standardization procedures for our study here. Table 

5-4 summarized the single best standardization method for the combination of 

chemical representations, evaluation criteria, clustering methods and partition 

sizes on the IDAlert datasets. 

Evaluation using Probability 
K-Means Ward's 

#clusters 100 50 25 100 50 25 
Pipeline Pilot S4 So S7 S7 S6 S7 

Molconn-Z S3 S6 S6 S3 S6 S6 

Holograms S3 S6 S2 So S3S4S5 S1S2 

Evaluation using Entropy 
K-Means Ward's 

#clusters 100 50 25 100 50 25 
Pipeline Pilot S6 Sl SS Si Sz S6 S6 
Molconn-Z S6 S6 S6 So S6 S6 
Holograms S6 S6 S5 S6 S6 S6 

Table 5-4 The best standardization method(s) evaluating by different criteria on the IDAlert 
datasets 

According to the overall results listed in Table 5-4, S6 method tends to be more 

effective on the IDAlert datasets, and has the best performance 19 times out of 

36. However, S4 and S5 were not found effective as reported in the study of 

Milligan and Cooper (1988). Moreover, S7 tends to yield worse results on the 

values of Shannon Entropy especially with the Pipeline Pilot and Holograms 

representations. One possible cause is that the object function of clustering 

algorithm and standardization method applied on a dataset are two vital 

components for clustering. The aim of standardization is to adjust the 

magnitude or scale of the score of input variables to be equal. However, a 

proper standardization procedure can keep the magnitude of dissimilarity (or 

similarity) between objects after standardizing, and which is ideally to obtain 

good quality of clustering. Among these eight standardization methods 

discussed in Section 5-2, S7 is one of the procedures, which loses more 
dissimilarity or similarity between objects after standardizing. Take S6 and S7 

together as an example: 
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S6 =Xx S, = Rank (X) 

with four objects A=1, B=100, C=9999 and D=10000. We standardized these 

four objects by above two procedures, and get the results as follows: 

S6: A=0.00005 B=0.005 C=0.5 Di: 0.5 
S7: A=1 B=2 C=3 D=4 

Obviously, according to the above example, the significant difference between 

these four objects remains after using S6 procedure, while the difference 

becomes much less significant after using S7 procedure. 

In addition, with the wide data range of the Molconn-Z descriptors, the 

performances of S7 were average. It is interesting that the traditional Z-Score 

standardization procedure, i. e. S1, revealed only ordinary performances, since it 

was placed either in the superior or worse group. This finding is in line with 

previous study (Milligan and Copper, 1988). Finally, the performance of no 

standardized procedure So was not as bad as expected, and no complementary 

relation of performances was found between So and S1. 

As mentioned in the previous passage, in the case of the IDAlert datasets here, 

the effectiveness of standardization method remains depending on the types of 

chemical representation and evaluation criterion. In order to obtain a more 

quantitative view of the effectiveness on these standardization procedures, the 

Kendall's W test of statistical significance was carried out to evaluate the 

consistency of ranking judged by these three chemical representations in the 

next section (5.6). 

Moreover, some standardization procedures were also found having a linear 

equivalent relationship as in the MDDR datasets. However, in the case of the 

IDAlert datasets here, the pairs of (Si, S2) and (S4, S5) also have linear 

equivalent relationship with Ward's clustering over all structural 

representations, and Ward's clustering with S3, S4 and S5 standardizations also 

obtains identical results on the Holograms representation. 
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5.6 Results and Discussions of Correlation Tests 

The Kendall coefficient of concordance W was used to measure the degree of 

association among three different chemical representations. Thus, the three 

types of representation are regarded as judges of the effectiveness of the eight 

types of standardization. If it can be shown that there is a statistically 

significant level of correlation between the rankings, it will be possible to 

provide an overall ranking of them (Siegel and Castellan, 1988). Hence, ranked 

the performance obtained from a certain evaluation criterion with a given 

partitioning method. The values of W and X` (chi square) of Kendall test based 

on the set of rankings are then calculated. For example, the values of 

probability based on K-Means clustering with partition size of 100 were 

obtained (see Table 5-5), and then ranked the performance in descending order 

based on individual representation, i. e. judge (see Table 5-6). 

K-Means clustering with 100 clusters on the MDDR datasets 

Sp S1 S2 S3 S4 S5 S6 S7 

Pipeline Pilot 0.78 0.85 0.86 0.84 0.81 0.84 0.80 0.92 

Molconn-Z 0.82 0.76 0.81 0.88 0.85 0.88 0.71 0.91 

Holograms 0.69 0.66 0.68 0.63 0.74 0.76 0.66 0.72 

Table 5-5 Evaluation using probability of K-Means clustering with 100 clusters on the 
MDDR datasets 

K-Means clustering with 100 clusters on the MDDR datasets 

Sp Si S2 S3 S4 S5 S6 S7 
Pipeline Pilot 8 3 2 4 6 5 7 1 

Molconn-Z 5 7 6 2 4 3 8 1 

Holograms 4 6 5 8 2 1 7 3 

Table 5-6 Ranks obtained by the performance of K-Means clustering with 100 clusters on the 
MDDR dataset 
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With the comparison of ranks averaged by structural representations (as the 

example listed in Table 5-6), the values of W and X2 (chi square) of Kendall 

test were calculated and listed in Tables 5-7 and 5-8 (MDDR datasets) and 

Tables 5-9 and 5-10 (IDAlert datasets). Consider first the Kendall test on the 

MDDR datasets. In Table 5-7, the calculation of W and X2 were based on the 

probability of correct prediction of active clusters in the MDDR datasets. The 

lower value of W indicates that the agreement among the three structural 

representations is also lower, i. e. less significant. It can be seen that the W 

value for 100 clusters by K-Means and Ward's clustering is 0.49 and 0.51 

respectively, obviously higher than partition sizes of 50 and 25. It can be 

concluded that the ranking by three structural representations of 100 clusters is 

more consistent than 50 and 25 clusters. Inspect the value of X2 (chi square) of 

each single Kendall's test to see if it reaches the significant level of 95% 

(a=0.05) and 99% (a=0.01). The critical value of the chi square distribution at 

a=0.05 level with 7 degrees of freedom is 14.07 and at a=0.01 level is 18.48. 

There are 8 standardization methods to be evaluated, so the degree of freedom 

is 7 (Siegel and Castellan, 1988). 

However, none of the three combinations listed in Table 5-7 with K-Means 

clustering methods are significant at a=0.05 or a=0.01 level. It is hence can be 

concluded that with K-Means clustering method across all partition sizes, there 

is no correlation between the rankings of the standardization methods by the 

three chemical representations. Moreover, the Kendall's tests of Ward's 

clustering also show the same results, no significant agreement between the 

different chemical representations at both a=0.05 and a=0.01 level. 

Evaluation using Probability 
K-Means Ward's 

#clusters W X, w X, 

100 0.49 10.33 0.51 10.69 

50 0.33 6.94 0.14 2.97 

25 0.17 3.64 0.22 4.58 

Table 5-7 Kendall Wand X? values based on the evaluation using probability of active 
clusters correct prediction on the MDDR datasets 
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Table 5-8 shows the values of W and X2 based on Shannon Entropy in the 

MDDR datasets. Inspect first the K-Means results, and found that the X2 value 

for 25 clusters by K-Means clustering is 14.00, a little greater than the values 

of 50 and 100 clusters. It almost reaches the significant level of 95% (14.07). 

In addition, a similar trend was also found with Ward's clustering. We obtained 

the same values of W and X2 with Ward's clustering, although they had similar 

ranks. However, the results are close to the significant level at a=0.05 level. 

Combining all tests listed in Table 5-8, none of the six combinations are 

significant at a=0.05 and a=0.01 level. 

#clusters 
100 

50 

25 

Evaluation using Entropy 

K-Means Ward's 

w x2 w x2 
0.60 12.67 0.66 13.91 

0.58 12.11 

0.67 14.00 

0.66 13.91 

0.66 13.91 

Table 5-8 Kendall Wand X2 values based on the evaluation using Shannon Entropy on 
the MDDR datasets 

Overall, considering all analysis in Tables 5-7 and 5-8, none of the twelve 

combinations are significant at either a=0.05 or a=0.01 level. It is hence can be 

concluded that, for chemical data of the sort considered here, there is no 

obvious performance benefit that is likely to be obtained from the use of any 

particular standardization method. The choice of standardization method is 

hence not a critical component of a procedure for chemical clustering. 

The results of Kendall test for the IDAlert datasets are shown in Tables 5-9 and 

5-10. Inspect first the calculation of W and X2 based on the probability of 

correct prediction of active clusters (Table 5-9). As in the MDDR datasets, the 

W value for clusters numbers of 100 by K-Means clustering method is 0.35, 

obviously higher than when clusters numbers are 50 and 25. It indicates that 

with larger partition size, e. g. 100 clusters, there is more correspondent among 

the ranking by three structural representations than the clusters numbers of 50 
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and 25. However, none of the three combinations listed in Table 5-9 with 
K-Means clustering methods are significant at either a=0.05 or a=0.01 level, 

their chi square values (X`) are still far from the critical value (14.07 at a=0.05 

level). Similar results of Ward's clustering also showed that no combinations 

were found significant at either a=0.05 or a=0.01 level. 

Evaluation using Probability 
K-Means Ward's 

#clusters w X' W X; 

100 0.35 7.33 0.57 12.07 

50 0.25 5.33 0.12 2.62 

25 0.28 5.89 0.51 10.80 

Table 5-9 Kendall Wand X2 values based on the probability of active clusters correct 
prediction on the IDAlert datasets 

The calculation of W and X2 based on Shannon Entropy is hence carried out 

(Table 5-10). A similar trend as in Tables 5-7 and 5-9 is also found here, 

clustering with larger partition size, e. g. 100, tends to have higher values of W 

and X2. K-Means clustering with 100 clusters, and Ward's clustering with 100 

and 50 clusters have reached the significant level at a=0.05. However, none of 

the combinations are significant at a=0.01 level. Six Kendall tests were carried 

out in Table 5-10, whereas only three out of six are significant at a=0.05, but 

none of them is significant at a=0.01 level. The result for the IDAlert datasets 

is insufficient to show the significant correlation among standardization 

methods. As the finding in the case of MDDR datasets, no consistence between 

these three structural representations in the case of IDAlert datasets, no benefit 

can be obtained from choosing any particular standardization method. 
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Evaluation using Entropy 
K-Means Ward's 

#clusters wyw 

100 0.74 15.56 0.83 17.37 

50 0.66 13.89 0.88 18.41 

25 0.59 12.44 0.63 13.22 

Table 5-10 Kendall W and X' values based on the values of Shannon Entropy on the 
IDAlert datasets 

Overall, taking the results of the MDDR and IDAlert datasets together, it is 

found that the Kendall W and X2 values based on the evaluation using Shannon 

Entropy are higher than the probability of correct prediction. Moreover, among 

the overall 24 Kendall tests, only three of them reach the significant level of 

a=0.05. It can be concluded that, for chemical data of the sort considered here, 

there is no obvious performance benefit that is likely to be obtained from the 

use of any particular standardization method. The choice of standardization 

method is hence not a critical component of a procedure for chemical 

clustering. 

5.7 Results and Discussions of Similarity Searching 

The evaluation of standardization in the previous two sections (5.5 and 5.6) is 

based on the clustering results. However, in this section, the evaluation is based 

on the recovery rates from similarity searching, which was discussed in detail 

in Section 5.4.2. The evaluation based on similarity searching results for the 

MDDR and IDAlert datasets is discussed in Sections 5.7.1 and 5.7.2 

respectively. 
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5.7.1 Analysis of Similarity Searching Results of the MDDR 
Dataset 

The similarity searching results that we obtained are detailed in Table 5-11. In 

each case, the results are averaged recovery rates over all eleven different 

activity classes used in the MDDR dataset. 

MDDR Datasets 

Standardization 

Methods 

Pipeline Pilot MolconnZ Holograms 

Top 100 Top 500 Top 100 Top 500 Top 100 Top 500 

So 5.53% 18.76% 4.23% 16.03% 14.44% 22.95% 

S, 6.60% 22.48% 12.62% 27.69% 13.48% 20.92% 

S2 6.60% 22.48% 12.62% 27.69% 13.48% 20.92% 

S3 4.55% 14.87% 1.99% 9.78% 13.17% 20.27% 

S4 6.65% 22.04% 10.98% 25.25% 13.17% 20.27% 

S5 6.65% 22.04% 10.98% 25.25% 13.17% 20.27% 

S6 6.07% 19.33% 8.44% 21.61% 13.16% 20.36% 

S7 6.14% 20.37% 13.38% 29.79% 15.23% 26.61% 

Average 6.10% 20.30% 9.41% 22.89% 13.66% 21.57% 

Table 5-11 The recovery rates of 3 chemical representations of the MDDR datasets 
over 11 different activi ty classes 

5.7.1.1 Evaluation of Standardization Methods Based on Similarity Searching 
Results of the MDDR Dataset 

According to the details listed in Table 5-11, S3 offers noticeably worst 

performance with Molconn-Z (1.99% in top 100; 9.78% in top 500) and 
Pipeline Pilot (4.55% and 14.87% in top 100 and 500 hit list respectively), 

while S7 provides the best performance with Molconn-Z and Holograms. 

However, no standardization method provides consistently superior or worst 

recovery rate over the three structural representations. The Holograms 

standardized datasets have similar recovery rates (between 13.16 and 13.48% 

in top 100; between 20.27 and 20.92% in top 500) except S7. Comparing the no 

standardization procedure (So) with others (S1 to S7), the performance of 

unstandardized datasets (So) is better than some standardized datasets, such as 
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S3 in Pipeline Pilot and Molconn-Z, and all others in Holograms. 

One noticeable finding is worth discussing here. The pairs of (S1, S2) and (S4, S5) 

have identical recovery rates for each individual structural representation, 

while S3. S4 and S5 standardizations generate exactly the same results with the 

representation of Holograms. As we discussed in the Section 5.5.4, the pairs of 

(S1, S2) and (S4, S5) also have a linear equivalent relationship with the 

distance-based Ward's clustering over all structural representations, and same 

clustering with S3. S4 and S5 standardizations also obtains identical results on 

the Holograms representation. However, the similarity searching we carried out 

here is based on the Euclidean distance. Hence these pairs of standardization 

methods will obtain the identical recovery rates as shown in Table 5-11. 

5.7.1.2 Evaluation of Structural Representations Based on Similarity 
Searching Results of the MDDR Dataset 

According to the Table 5-11, in the hit list of top-ranked 100 compounds, 

Holograms has superior overall average recovery rate, while Molconn-Z offers 

better overall average recovery rate in the aspect of 500 most similar database 

compounds list. However, there is no chemical representation that provides 

consistently better performance on both top 100 and 500 hit lists. Comparing 

the effect between no standardization (So) and standardization (S1 to SO) 

methods, So with Holograms tends to offer superior performances than others 

except S7. Hence, no significant difference of performance was obtained 

between standardized and unstandardized datasets with Holograms. On the 

other hand, as for the standardized datasets, Molconn-Z standardized datasets 

offer apparently better recovery rates than unstandardized dataset except S3. To 

sum up, for the application of similarity searching, dataset with Holograms 

may offer better recovery rate than Molconn-Z and Pipeline Pilot. 
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5.7.1.3 Measures of Correlation among Three Structural Representations of 
the MDDR Dataset 

As discussed in previous passage (Section 5.6), the Kendall coefficient of 

concordance W has been employed to measure the degree of association among 

three structural representations. The same analysis was also done in this section. 
The Wand X2 values of Kendall test are shown in Table 5-12. 

In Table 5-12, the calculation of W and X2 were based on the recovery rates 

with different numbers of compounds in the hit list. The higher value of W 

indicates that the agreement among these three chemical representations is also 

higher. According to the agreement test of the top 100 searching, it can be seen 

that the W value is 0.55 and X2 is 11.49. However the critical values of the chi 

square distribution at a=0.01 and a=0.05 significant level with 7 degree of 

freedom are 18.48 and 14.07. Obviously, none of these two tests has reached 

these two significant levels. Hence, we can conclude that there is no correlation 

among these three chemical representations by the datasets when the data is 

standardized, and there is no consistent ranking of the standardization methods. 

MDDR datasets 

Hit rates w XZ 
Top 100 

Top 500 

0.55 

0.62 

11.49 

13.11 

Table 5-12 Kendall Wand X2 values based on the Recovery Rates of the MDDR 
datasets 

5.7.2 Evaluation of Similarity Searching Results of the IDAIert 
Dataset 

The recovery rates of similarity searching on the IDAlert dataset with different 

structural representations are listed in Table 5-13. In each case, the recovery 

rates are averaged over all eleven activity classes used in the IDAIert dataset. 

The evaluations of standardization methods (Section 5.7.2.1) and three 

structural representations (Section 5.7.2.2) were carried out based on the 
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recovery rates. 

IDAlert Datasets 

Standardization 
Methods 

Pipeline Pilot Molconn-Z Holograms 

Top 100 Top 500 Top 100 Top 500 Top 100 Top 500 

So 5.38% 19.21% 4.39% 15.74% 11.62% 23.55% 

St 6.64% 21.05% 11.13% 26.16% 9.14% 18.30% 

S2 6.64% 21.05% 11.13% 26.16% 9.14% 18.30% 

S3 4.44% 14.63% 2.78% 9.66% 9.05% 17.95% 

S4 6.36% 21.10% 8.33% 23.71% 9.05% 17.95% 

S5 6.36% 21.10% 8.33% 23.77% 9.05% 17.95% 

S6 6.62% 20.69% 6.89% 20.34% 8.97% 16.78% 

S7 6.86% 21.39% 13.94% 30.86% 11.70% 23.93% 

Average 6.10% 20.30% 8.36% 22.04% 9.71% 19.34% 

Table 5-13 The Recovery Rates of 3 Chemical Representations of the IDAlert datasets 
over 11 Different Activity Classes 

5.7.2.1 Evaluation of Standardization Methods Based on Similarity Searching 
Results of IDAlert dataset 

With the visual inspection on Table 5-13, S3 offers noticeably the worst 

performance with Molconn-Z (2.78% in top 100; 9.66% in top 500) and 

Pipeline Pilot (4.44% and 14.63% in top 100 and 500 hit list respectively), 

while S7 provides consistently superior performance over three different 

chemical representations. We can conclude that for the IDAlert datasets we 

used here, S7 method is the optimal choice on the standardization of dataset to 

obtain the better recovery rate. 

In addition, the relationship of linear equivalence between pairs of 

standardization methods was also found in the case of IDAlert datasets. The 

pairs of (S1, S2) and (S4, S5) have identical recovery rates for each individual 

structural representation, while S3, S4 and S5 standardizations generate exactly 

the same results with the representation of Holograms. 
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5.7.2.2 Evaluation of Structural Representations Based on Similarity 
Searching Results of IDAlert dataset 

According to the Table 5-13, in the hit list of top-ranked 100 compounds, 

Holograms has superior overall recovery rate (9.71%), while Molconn-Z offers 

the best overall recovery rate (22.04%) in the aspect of 500 most similar 

database compounds list. However, there is no chemical representation that 

provides consistently better performance on both top 100 and 500 hit lists. As 

for the unstandardized datasets (S0), Holograms have remarkably better 

performances in both top 100 and 500 hit lists than standardized datasets (S1 to 

S6). On the contrary, Molconn-Z datasets using standardization procedures 

offer apparently better recovery rates than unstandardized datasets except S3, 

whereas Holograms datasets using standardization methods provide worse 

performance than unstandardized datasets except S7. 

5.7.2.3 Measures of Correlation among Three Structural Representations of 
IDAIert dataset 

The Kendall test was employed to measure the concordance of three structural 

representations as listed in Table 5-11. Considering first the agreement test of 

top 100 searching, it can be seen that the W value is 0.74 and X? is 15.64, and 

the critical values for chi square distribution at a=0.01 and a=0.05 significant 

level with 7 degree of freedom are 18.48 and 14.07 respectively. These two 

tests have reached the significant level at a=0.05. Hence, we can conclude that 

there is correlation among these three chemical representations by the datasets 

when the data is standardized by a particular procedure. According to the 

analysis in Section 5.7.2.1, S7 method is the best choice for the application of 

similarity searching. 

IDAlert datasets 
Hit rates w X2 
Top 100 0.74 15.64 

Top 500 0.68 14.37 

Table 5-14 Kendall Wand XZ values based on the Recovery Rates of the IDAlert datasets 
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5.7.3 Summary 

The first experiment in this chapter was carried out to evaluate the effect of 

standardization methods based on clustering results (Sections 5.5 and 5.6) and 

the results of similarity searching (Section 5.7). According to the analysis in 

those sections, there is no standardization method that provides consistently 

superior or worse performance in both the MDDR and IDAlert datasets at the 

a=0.01 level of statistical significance, however we found statistically 

significant at the a=0.05 level on the tests based on the results of similarity 

searching only on the IDAlert datasets. Hence, we conclude that there is no 

obvious performance benefit that is likely to be obtained from the use of any 

particular standardization method. 

In terms of the comparison of structural representation, according to the 

analyses in the Sections 5.5.2 and 5.7, no chemical representation is found 

offering the consistently superior performance for the evaluation either based 

on the clustering results or based on the results of similarity searching. We 

hence conclude that there is no obvious difference for selecting any one of the 

chemical representations. 

The first experiment in this chapter is largely focusing on evaluating the effect 

of standardization methods using clustering results. However, our findings 

show that the performance is affected by the clustering methods. For example, 

the pairs of (S1, S2) and (S4, S5) generate the same results when using Ward's 

method (distance-based method). We hence carried out the evaluation of 

standardization methods with more and diverse clustering methods in the 

extensive study in the next sections. 
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5.8 Extensive Study of the Effect of Standardization Methods 

We have carried out an extensive study based on the previous sections (5.5 to 

5.7) in this chapter. There are three differences between these two studies of 

this chapter. First, seven clustering methods were employed instead of two. 

Second, the partition size here contains 500,600,700,800,900 and 1000 

clusters. Finally, the evaluation using the probability of correct prediction and 

Shannon Entropy have been replaced by F-Measure and QCI (discussed in 

Chapter 4) here. The main goal is again to find the effect of standardization 

procedures on the chemical clustering. 

5.9 Experimental Details of the Extensive Study 

5.9.1 Datasets 

The same datasets, MDDR and IDAlert, were used in this experiment. The 

same three chemical representations were also employed, the only difference is 

that we used an alternative tool, winMolconn software, to generate 

win_Molconn representation for the experiment here. Again, during the process 

of calculating Molconn descriptors, some molecules fail to generate descriptors. 

We hence removed those molecules from datasets with all chemical 

representations to obtain equal size of datasets. These datasets eventually 

comprised 10,179 molecules from the MDDR dataset and 11,447 molecules 
from the IDAlert dataset. For each dataset, with the combination of 

standardization procedures and chemical representations, we hence obtained 24 

test-datasets. 

5.9.2 Clustering Methods 

Seven clustering methods were used in this experiment. The Ward's and 

extended Ward's methods were carried out using the Energy package in the R 

software, and denoted by WD and EW respectively in the tables and figures of 

later context. The other five methods were carried out using the 

implementations in CLUTO (for CLUstering TOolkit) software package. 
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Direct and Repeated Bisection methods employed two criterion functions, el 

and i2, for each method, and denoted by D_el, D J2, RB_el and RB_i2 in the 

tables and figures of the later paragraphs. The final method is the traditional 

agglomerative clustering with the criterion function of UPGMA (for 

Unweighted Pair Group Method using Arithmetic mean), also known as 

average linkage, and denoted by UPGMA in the tables and figures of the later 

context. All these clustering methods were discussed in detail in Chapter 4. 

5.9.3 Standardization Procedures 

Eight standardization methods, i. e. ZO to Z7, were employed in this experiment, 

where ZO denotes the original, unstandardized dataset. All these standardization 

procedures are discussed in detail in Section 5.2. However for the same eight 

standardization methods used here, we use a different notation, Zo to Z7 to 

distinguish different experiments in the same chapter. 

5.9.4 Evaluation Criteria 

The combinations of 2 datasets, 3 chemical representations, 8 standardization 

procedures, 7 clustering methods and with 6 partition sizes, hence generated 

2016 clustering results, which were evaluated by F-Measure and QCI (Quality 

Clustering Index), which are discussed in detail in Chapter 4. As discussed in 

previous section (4.4.2), the evaluation using probability of correct prediction 

is not applicable to the case of small clusters here. 

5.10 The Comparison between Standardization Procedures 

The performance criteria of F-Measure and QCI were computed for each 

clustering result which was based on the combination of dataset, partition size, 

chemical representation and standardization procedure. Tables 5-15 (for the 

MDDR dataset) and 5-16 (for the IDAlert dataset) show the best single 

standardization procedure offering the best evaluation for the combination of 

dataset, partition size and chemical representation. For example, in Table 

5-15(a), the best F-Measure value on Ward's 600-cluster clustering is generated 
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by the standardization procedures of Z12, which denotes Z1 and Z2 having the 

same best performance in the combination of the MDDR dataset, 600 clusters, 

and win Molconn representation. The shaded grids in Tables 5-15 and 5-16 

indicate the no standardization procedure, i. e. Zo, has better result than 

standardization procedures. 

With the visual inspection in Tables 5-15 and 5-16, for each table, no single 

standardization procedure provides consistently the best performance across all 

252 possible combinations of clustering method, partition size, evaluation 

criterion and chemical representation. However, at least, the results suggest 

standardization procedures have better performance 235 times out of 252 (93%) 

on the MDDR datasets (Table 5-15) and 229 times out of 252 (91%) on the 

IDAlert datasets (Table 5-16) than non-standardization procedure, i. e. Zo 

(shown in shaded boldface in tables). This suggests that the use of 

standardization procedures is a critical component to improve the performance 

on chemical clustering. 

Moreover, the visual inspection for the most effective standardization method 

was carried out, the results in Table 5-15 shows that Z7 is the most consistently 

effective of the standardization procedures on the evaluation using QCI on 

Ward's and eWard's clusterings across three chemical representations on the 

MDDR datasets, and the same trend was also found on the IDAlert datasets 

(Table 5-16). This would suggest that Z7 is the best choice of standardization 

method on Ward's and eWard's clusterings evaluated using QCI over all 

datasets and representations. In addition, focusing on the win_Molconn 

datasets in each table, Z7 also tends to be more effective over all 84 possible 

combinations of clustering method, partition size and evaluation criterion, 

which is the best 54 times out of 84 on the MDDR dataset (Table 5-15(a)) and 

72 times out of 84 on the IDAlert dataset (Table 5-16(a)). 
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MDDR win Molconn Datasets 

WD FW IJPGMA 1) el I) i2 RR el RB i2 

clusters F Q F F Q F F Q F Q F Q 
500 Z7 Z7 Z7 Z7 ZI Z7 Z7 Z7 Z7 ZI Z2 Z7 Z2 ZI 
600 Z12 Z7 Z7 Z7 ZI Z7 Z7 Z7 I Z7 Z7 ý Z2 Z7 Z2 ZI 
700 Z12 Z7 Z7 Z7 ZI Z5 Z7 Z7 Z7 Z7 Z2 Z7 Z2 ZI 
800 Z12 Z7 Z7 Z7 Z7 Z5 Z7 Z7 Z7 Z7 Z2 Z7 Z2 ZI 
900 Z12 Z7 Z7 Z7 Z7 Z5 Z7 Z7 Z2 Z7 Z2 Z7 Zl ZI 
1000 Z7 Z7 Z7 Z7 Z7 Z7 Z7 Z7 Z7 Z7 Z2 Z7 ZI ZI 

(a) 

M DDR Pipeline Pilot Datasets 

WD EW UPOMA D el D i2 RR el RB i2 

a clusters F Q F Q F Q F F Q F Q F Q 
500 Z12 Z7 Z6 Z7 Zl Z7 Z7 Z7 ZI Z7 Z7 Z7 Z17 Z7 
600 I Z12 Z7 Z12 Z7 ZI Z7 Z2 Z5 Zl Z7 Z7 Z7 ZI Z7 
700 Z12 Z7 Z6 Z7 ZI Z7 Z4 Z5 I ZI Z5 Z7 Z7 ZI Z7 
800 Z12 Z7 Z6 Z7 Z1 Z7 Z2 Z7 Z4 Z5 Z7 Z7 Z7 Z7 
900 Z12 Z7 Z45 Z7 ZI Z7 Z6 Z5 Z6 ZI Z7 Z7 Z7 Z7 
1000 Z12 Z7 Z45 Z7 ZI Z7 Z7 Z7 Z2 ZI Z7 Z7 ZI Z7 

(b) 

MDDR Holograms Datasets 

WD EW UPGMA 1l el nil RR el RR i2 

k clusters F Q F Q F Q F Q F Q F Q F Q 
500 ZO Z7 Z345 Z7 ZI ZI ZO Z7 ZO ZI Z345 Z345 Z7 /] 
600 ZO Z7 ZI Z7 ZI ZI Z6 Z7 ZO 76 Z345 Z345 ZO /2 
700 ZO 77 ZI Z7 ZI ZI ZO 77 ZO ZI Z345 Z2 ZO /6 
800 ZO 77 Z345 Z7 ZI ZI Z6 Z7 76 Z2 2345 Z2 ZO /6 
900 ZO Z7 Z345 Z7 ZI ZI Z7 Z7 Z6 Z7 ý ZO Z345 ZO t6 
1000 ZO Z7 ZI Z7 ZI ZI Z7 Z7 Z6 Z7 [77 Z2 ZO Z6 

(c) 

Table 5-15 The best standardization procedure(s) of 7 clustering methods over 6 different 
numbers of clusters using 2 types of evaluation on the MDDR datasets with (a) win Molconn, 
(b) Pipeline Pilot, and (c) Holograms representations. (F represents F-Measure, and Q: QCI) 
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IDAlert win Molconn Datasets 

WD RW IIPGMA D el D i2 RB el RB i2 
# clusters F Q F Q F Q F F Q F F Q 

500 Z7 Z7 Z7 Z7 Z7 Z5 Z7 Z7 Z7 Z7 Z7 Z7 Z7 Z7 
600 Z7 Z7 Z7 Z7 Z7 Z5 Z7 Z7 Z7 Z7 Z7 Z7 Z7 Z7 
700 Z7 Z7 Z7 Z7 Z7 Z5 Z7 Z7 Z7 Z7 Z7 Z7 Z2 Z7 
800 Z7 Z7 Z7 Z7 Z7 Z5 Z7 Z7 Z7 Z7 Z7 Z7 Z2 Z7 
900 Z7 Z7 Z4 Z7 Z7 Z7 Z7 Z7 Z7 Z7 Z7 Z7 Z2 Z7 
1000 Z7 Z7 Z4 Z7 Z7 Z7 Z4 Z7 Z5 Z7 Z7 Z7 Z2 Z7 

(a) 

IDAlert Pipeline Pilot Datasets 

WD EW UPGMA D el D i2 RB el RB i2 
# clusters F Q F Q F Q F F Q F Q F Q 

500 Z2 Z7 Z2 Z7 Z7 Z7 Z4 Z7 Z4 Z7 Z5 Z7 Zl Z7 
600 Z2 Z7 ZI Z7 Z2 Z7 Z4 Z7 ZI Z7 Z5 Z7 ZI Z7 
700 Z4 Z7 ZI Z7 ZI Z7 Z4 Z7 ZI Z7 1.5 /7 Z5 Z7 
800 Z4 Z7 Z5 Z7 Z2 Z7 Z4 Z7 Z1 Z5 ZO Z7 Z5 Z7 
900 Z6 Z7 j Z5 Z7 Z4 Z7 ZO Z7 ZI Z7 ZO Z7 Z5 Z7 
1000 Z2 Z7 Z4 Z7 ZI Z7 Z5 Z7 Z1 Z7 Z4 Z7 ZI Z7 

(b) 

IDAlert Holograms Datasets 

WD RW l1PGMA F) PI F iI) RR ei RR 

N clusters F FQ FQ FQ FQ F FQ 

500 ZO Z7 ZO Z7 ZI ZI Z7 Z2 ZO ZI Z2 Z2 ZO Z2 
600 ZO 77 ZO Z7 7_ IZI ZO Z2 !_I Z6 Z2 Z6 71 72 
700 ZO 77 ZO 77 7I 7. I ZO Z6 ZO Z2 Z2 Z6 ZO 72 
800 ZO 7.7 71 77 7! 7. I 77 Z2 77 7345 Z2 Z6 /7 Z6 
900 ZO 77 ZO /7 ZO ZI ZO Z7 ZO Z7 Z345 Z7 /7 Z2 
1000 ZO Z7 ZO 77 77 ZI Z345 Z2 /2 77 Z345 Z7 Z7 Z2 

(c) 

Table 5-16 The best standardization procedure(s) of 7 clustering methods over 6 different 
numbers of clusters using 2 types of evaluation on the IDAlert datasets with (a) win_Molconn, 
(b) Pipeline Pilot, and (c) Holograms representations. (F represents F-Measure, and Q: QCI) 
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The performance of standardization procedures seems to depend on the 

clustering method, chemical representation or dataset. For example, using 

specific standardization methods on the MDDR datasets with win Molconn 

and Pipeline Pilot representations always improves performance significantly. 
However, using no standardization procedure, i. e. ZO, on the datasets with 
Holograms sometimes has better results than standardization procedures (see 

shaded grids in Tables 5-15(c) and 5-16(c)). Hence, in order to obtain a more 

quantitative view of the effectiveness on the standardization methods, we 

employed Kendall's W test of statistical significance to evaluate the 

consistency of k different sets of ranked judgements of the same set of N 

different objects. Here, we have considered each of the representations i. e. 
Pipeline Pilot, win_Molconn and Holograms, as a judge ranking the different 

standardization procedures in order of decreasing effectiveness, i. e., k--3 and 
N=8. 

We ranked the performance obtained from a certain clustering method with a 

predefined partition size based on a certain evaluation measure. For example, 

we obtained the F-Measure values based on Ward's clustering with 500 clusters 

on three different representations of the MDDR datasets (as shown in Table 

5-17), then ranked the performance in descending order based on individual 

representation (Table 5-18). In addition, averaging ranks is used to deal with 

tied values if any. It simply averages the ranks of all tied observations if they 

are distinguishable. Finally, the W and chi-square (ý) values of Kendall's W 

test can be computed based on the equations listed in Chapter 4. 

Ward's clustering with 500 clusters on the MDDR datasets 

zo Zi Z2 Z3 Z4 Z5 Z6 Z7 

win_Molconn 0.0876 0.2207 0.2207 0.0779 0.2206 0.2206 0.1811 0,2289 

Pipeline Pilot 0.1098 0.1383 0.1383 0.0893 0.1368 0.1368 0.1304 0.1214 

Holograms 0.2950 0.2353 0.2654 0.2634 0.2634 0.2634 0.2926 0.2309 

Table 5-17 Evaluation using F-Measure of Ward's clustering with 500 clusters on the MDDR 
datasets 
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Ward's clustering 500 clusters on the MDDR datasets 

zo Z, ZZ Z; Z4 ZS Z6 Z7 

win_Molconn 7 2.5 2.5 8 4.5 4.5 6 I 

Pipeline Pilot 7 1.5 1.5 8 3.5 3.5 5 6 

Holograms 1 7 3 5 5 5 2 8 

Table 5-18 Ranks obtained by the performance of Ward's clustering with 500 clusters on the 
MDDR dataset 

Tables 5-19 (for MDDR) and 5-20 (for IDAlert) present the results of a 

Kendall's W analysis, showing the chi-square (ý) values based on the 

combination of partition size, clustering method and performance criterion. 

The critical value of the chi-square (ý) distribution at a=0.05 level with 7 

degrees. of freedom is 14.07 and at a=0.01 level is 18.48. The shaded grids in 

these two Tables indicate statistical significance was found at a=0.05 level. The 

inspection based on individual clustering methods shows that using UPGMA 

method on the MDDR datasets has 12 combinations out of 14 (86%) found 

significant at a=0.05 level. The results here would suggest there is obvious 

ranking of the eight standardization procedures. However, in order to obtain an 

overall and confident view of statistical significance, inspection of more 

combinations of clustering method and partition size is needed. We hence 

carried out an overall inspection based on datasets. 

Inspection of Table 5-19 (for MDDR) shows that only 20 combinations out 84 

(24%) were found significant at a=0.05 level, and no combination reached the 

significant level of a=0.01. A similar trend was also found in Table 5-20 (for 

IDAlert), only 14 combinations out of 84 (17%) were found significant at 

a=0.05 level, and only one combination, D_el 500 clusters evaluating by QCI, 

reached the significant level of a=0.01. Taking the inspections from the MDDR 

and IDAlert together, there is no correlation between the rankings of the 

standardization methods by the three chemical representations. We can 
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conclude that, for the chemical datasets considered here, there is no obvious 

performance benefit that is likely to be obtained from the use of any particular 

standardization procedure. The choice of standardization method is hence not a 

critical component of a procedure for chemical clustering. 

# clusters 500 600 700 Rnn qnn i nnn 
Evaluations F Q F Q F Q F Q F Q Q 

Ward's 6.31 12.28 7.69 11.93 7.69 12.74 5.05 10.56 8.03 11.93 2 
AO 

14.80 
e-Ward's 6.89 12.28 14.11 12.99 9.07 12.74 7.11 13.89 8.69 12.05 I 8.72 11.18 
UPGMA 15.35 15.02 15.24 14.34 14.68 14.11 14.23 14.11 13.66 14.11 12.87 15.81 
Di re ct_e l 8.93 17.73 13.77 15.92 12.19 15.69 12.76 16.37 13.55 16.03 16.94 16.03 
Direct-i2 7.00 15.69 10.05 12.98 8.47 15.24 7.79 11.40 9.48 12.19 11.52 17.27 

RB_el 11.97 7.00 8.58 7.11 9.60 8.47 7.34 10.06 9.82 8.92 10.84 10.50 
RB_i2 ý 8.70 10.50 4.85 9.49 8.58 10.05 ý 5.19 9.15 3.61 9.15 2.71 9.15 

Table 5-19 The chi-square (x2) values of the Kendall's test based on the ranking by 
F-Measure and QCI evaluations of clusterings over varied numbers of clusters on the MDDR 

datasets (F represents F-Measure, and Q: QCI) 

# clusters 500 600 70() RM Qnn I Ann 
Evaluations F F Q F F Q F F Q 

Ward's 8.76 9.33 7.29 9.06 6.66 10.76 8.12 10.93 2.30 10.86 4.03 12.18 

e-Ward's I 5.20 11.89 5.12 8.99 3.81 9.22 6.09 8.99 9.30 9.90 5.51 10.81 
UPGMA 14.79 12.65 13.21 11.97 12.53 14.45 13.35 14.11 11.18 14.06 11.97 14.56 
Direct_e l 13.83 18.74 10.84 15.24 1 12.87 12.31 13.21 14.56 13.10 17.16 16.15 14.45 
Direct-i2 10.05 12.98 8.13 9.78 7.79 7.06 8.21 12.87 7.11 13.10 7.74 16.82 

RB_e 1 10.39 9.37 7.90 8.35 11.63 11.74 10.27 11.74 10.27 13.10 9.60 13.77 
RB_i2 8.58 6.40 10.05 10.18 3.05 12.83 5.19 15.92 4.29 14.06 2.94 13.69 

Table 5-20 The chi-square (x`) values of the Kendall's test based on the ranking by 
F-Measure and QCI evaluations of clusterings over varied numbers of clusters on the IDAlert 

datasets (F represents F-Measure, and Q: QCI) 
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5.11 The Comparison between Clustering Methods 

We carried out the comparison between clustering methods based on the 

datasets with no standardization procedure, i. e. Zo (Figures 5-11(a)) and the 

single best standardization procedure (as listed in Tables 5-15 and 5-16) on the 

individual clustering method (Figures 5-11(b)). First, we would like to know if 

any benefit can be obtained from the use of any particular standardization 

method by simply comparing Figures 5-11(a) and (b). Secondly, we would also 

like to know the performance of each clustering method with its single best 

standardization procedure in order to find the optimal, if any, combinations of 

clustering method and standardization procedure. 

First consider the MDDR dataset with no standardization procedure, i. e. ZO, no 

clustering method offers consistently the best performance across all numbers 

of clusters with three different representations (see Figure 5-11(a)). Hence, we 

inspect each criterion performance with different representation individually. 

As the evaluation using F-Measure shown in Figure 5-11(a), with the 

Holograms representation, Ward's method tends to have better values of 

F-Measure. While with win_Molconn, the agglomerative UPGMA method has 

consistently best performance. No clustering method was found offering 

consistently better results with Pipeline Pilot. Again, inspection on the single 

best standardization procedures (Figure 5-11(b)), the UPGMA method with 

Pipeline Pilot representation is consistently superior to all of the other 

approaches, and this clustering method also tends to have better F-Measure 

with win_Molconn, whilst no single clustering method can yield consistently 

better performance with the Holograms representation. 

We compared Figures 5-11(a) with 5-11(b) to find the difference of the datasets 

with or without standardization procedure. Overall, the performance of the 

datasets with win_Molconn and Pipeline Pilot representations has improved 

significantly by using the single best standardization procedures. However, the 

performance of Holograms datasets has limited improvement on only some 

clustering methods, e. g. UPGMA. 
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A similar inspection on the MDDR dataset but with the evaluation using QCI, 

the Direct methods with criterion function of el or i2 have consistently the best 

performance over three representations with no standardization procedure 

(Figure 5-12(a)), and the results of Direct ei and Direct_i2 are close to each 

other. In addition, contrary to the criterion performance of F-Measure, the 

UPGMA method yields consistently the worst QCI over all representations. 

While with the single best standardization procedures (Figure 5-12(b)), Direct 

methods have consistently better results with the Holograms representation, 

and the Direct el and Direct_i2 methods have similar values of QCI. Similar 

behaviour was found on the Pipeline Pilot representation, Ward's and e-Ward's 

methods have close and consistently better QCI values. With the win_Molconn 

representation, Ward's method yields consistently the best performance. In 

addition, the UPGMA method is still consistently inferior to all of other 

clustering methods over all representations on the MDDR datasets with the 

standardization procedures. 

Again, we compared Figures 5-12(a) with 5-12(b) to find the difference of the 

datasets with or without standardization procedure. Significant improvement 

was found on the datasets with win_Molconn and Pipeline Pilot especially on 

Ward's, extended Ward's and Direct method. Moreover, limited improvement 

was obtained on the datasets with Holograms on only some clustering methods, 

e. g. UPGMA method. 

Overall, the performance of the datasets with win_Molconn and Pipeline Pilot 

representations has improved significantly by using the single best 

standardization procedures. However, the performance of Holograms datasets 

has limited improvement on only some clustering methods, e. g. UPGMA. The 

overall comparison between clustering methods based on two criteria 

performance and three representations on the MDDR datasets is summarized in 

Table 5-21. 
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Figure 5-13 The evaluation using F-Measure of 7 clustering methods over 6 different 

numbers of clusters of(a) no standardization and (b) the single best standardization procedures 
on 3 chemical representations of the IDAlert datasets 
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Figure 5-14 The evaluation using QCI of 7 clustering methods over 6 different numbers of 

clusters of (a) no standardization and (b) the single best standardization procedures on 3 
chemical representations of the IDAlert datasets 
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Chapter 5: Effect of Standardisation on Three Difrerent Representations of Structural Similarity 

With the IDAlert datasets, no overall best clustering method was found on the 

performance of F-Measure with no standardization or standardization 

procedures across all chemical representations (Figure 5-13). As for the 

performance of QCI (Figure 5-14), the Direct methods tend to have 

consistently better results. The results of Direct-el and Direct-i2 methods are 

very close, while the UPGMA method has the worst overall performance, as on 

the MDDR datasets. The overall comparison is summarized in Table 5-22. 

As for the improvement on the use of standardization procedure, the 

comparison between Figure 5-13(a) and Figure 5-13(b), and Figure 5-14(a) and 

Figure 5-14(b) also shows the similar trend, in which noticeable improvement 

was found the datasets with win Molconn and Pipeline Pilot, limited benefit 

was found with Holograms, when employing the single best standardization 

procedures. 

With the summary in Tables 5-21 and 5-22, for those clustering methods 

having consistently better performance, we can find its corresponding single 

best standardization procedure in Tables 5-15 and 5-16. For example, the 

UPGMA method has the best overall performance on the MDDR datasets with 

Pipeline Pilot (see Table 5-21), hence we can find its corresponding single best 

standardization procedure is Zl for the evaluation using F-Measure, and is Z7 

for the evaluation using QCI. 

MDDR datasets 

F-Measure QCI 

No standardization Standardization No standardization Standardization 
procedure Zo procedures (Z I" Z7) rocedure Zo procedures (Z I- ZO 

UPGMA the best UPGMA tends to Ward's method the 
win Molconn 

- overall have better results best overall 
Direct methods Ward's and 

No overall best UPGMA the best tend to be 
e-Ward's methods 

Pipeline Pilot 
method overall 

better consistently tend to have 

UPGMA the worst consistently better 

Ward's tends to No overall best overall 
Direct methods 

tend to have Holograms have better results method consistently better 

Table 5-21 Summary of effectiveness of clustering methods on the MDDR datasets 
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IDAlert datasets 

F-Measure QCI 

No standardization Standardization No standardization Standardization [ 

procedure Zo procedures Z1- Z7 procedure Za procedures (Z- Z7) 

win_Molconn Direct methods tend to be consistently 
Pipeline Pilot No overall best method better 

ll UPGMA the worst overa 
Holograms 

Table 5-22 Summary of effectiveness of clustering methods on the IDAlert datasets 

5.12 The Comparison between Chemical Representations 

We first consider the comparison of the effect of three different types of 

chemical representations on the MDDR datasets. The Figures 5-11 and 5-12 

show the F-Measure and QCI values respectively, which are obtained by (a) no 

standardization procedure, i. e. Zo, and (b) the single best standardization 

procedure from the MDDR datasets with three different representations over 

six numbers of clusters. Obviously, the unstandardized dataset with the 

Holograms representation consistently offers the best performance of 

F-Measure and QCI values when compared to the other two representations, 

while the performance of win_Molconn and Pipeline Pilot representations is 

worse and similar to each other. Similarly, the performance of Holograms 

representation with the unstandardized IDAlert dataset (Figures 5-13 and 5-14) 

is also consistently yielding the best results. 

In terms of the performance of the single best standardization procedures, the 

improvement of the Holograms representation was limited, especially in 

comparison with win Molconn. For example, the F-Measure results of 

Holograms obtained by Direct-i2 clustering method with the standardized 

MDDR datasets are even worse on 500,600, and 700 clusters (Figure 5-11(b)). 

By comparison, the performance of the win_Molconn representation with the 

single best standardization procedure improved significantly, and is similar to 

Holograms. Also, the performance of the Pipeline Pilot representation 

117 



Chapter 5: 1 JT ct of Standardization on 'I hree DilTerent Representations or Structural Similarity 

improved but not as much as win_Molconn. That is, the performance of 

win_Molconn and Pipeline Pilot can be improved by choosing a proper 

standardization procedure. Similar trends are also found with the standardized 

IDAlert datasets, as shown in Figures 5-13(b) and 5-14(b). However there are 

no standardized datasets with a certain chemical representation that could offer 

consistently better performance. 

The overall performance of three chemical representations with the 

unstandardized and standardized datasets discussed above, suggests 

(summarized in Table 5-23) that the un-standardized dataset with Holograms is 

the most effective chemical representation that we have tested here. As for the 

standardized dataset, although no consistent benefit can be obtained from 

choosing a certain chemical representation, for the datasets using either 

win Molconn or Pipeline Pilot are suggested to employ a proper 

standardization procedure, if any, to improve its performance according to our 

finding in this study. 

MDDR and IDAlert datasets 
Performance of using Performance of using 

Improvement made by 

non-standardization standardization 
--q- standardization procedure procedure 

Pipeline Pilot Worse performance Has the worst performance Improved 

win_Molconn Worse performance Have significantly better Significantly improved 

performance than Pipeline Limited improvement 
Holograms Has consistently best 

. Pilot, and similar results on only with certain 
results clustering methods 

Table 5-23 Summary of effectiveness of three chemical representations 
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5.13 Conclusions 

Account for the magnitude of the variability obtained in different BCI 

K-Means runs, in the first experiment of Chapter 5, the implementation of the 

BCI K-Means clustering was carried out in a default mode, using different 

random seeds in different runs. Hence, in order to investigate the variability 

caused by the different random seeds in different runs of BCI K-Means 

clustering, one dataset is picked, e. g. the MDDR with pipeline pilot 

representation and SI standardization procedure in the following case, and run 

20 times of K-Means clustering on the same dataset. The clustering results 

were evaluated by probability of correction prediction and Shannon Entropy, 

and are listed as follows: 

Run 
Probability of 

correction prediction 
Shannon Entropy 

1 0.6378 3.5089 
2 0.6228 3.5335 
3 0.6163 3.4995 
4 0.5804 3.4803 
5 0.6481 3.4644 
6 0.6213 3.4966 
7 0.6193 3.4507 
8 0.6313 3.4601 
9 0.6289 3.5182 
10 0.6379 3.4862 
11 0.5948 3.5088 
12 0.6620 3.4319 
13 0.6175 3.4749 
14 0.6507 3.5164 
15 0.6061 3.4958 
16 0.6341 3.5054 
17 0.6099 3.4439 
18 0.6168 3.4962 
19 0.6395 3.4610 
20 0.6247 3.4482 

Average 0.6249 3.4805 
Standard 
Deviation 0.0191 0.0262 

Table 5-24 The evaluation of 20 runs of K-Means clustering using probability of correct 
prediction and Shannon Entropy on the S1 Pipeline Pilot MDDR dataset. 
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The averages of 20 runs of evaluation using probability and Shannon Entropy 

are 0.6249 and 3.4805 respectively, which are close to the results, 0.6 and 
3.4665 respectively, listed in Figures 5-1 (probability) and 5-2 (Entropy). In 

addition, the standard deviations for the two evaluation measures are 0.0191 

and 0.0262, which means the magnitude of the variability caused by the 

different random seeds in different runs of BCI K-Means clustering is not 

significantly large. 

In addition, the variation of K-Means method, CLUTO Direct method, was 

employed in the extended work of Chapter 5; the Direct method was 

implemented in a default mode which the clustering result is the one has the 

best performance over 10 runs. However, the focus of chapter 5 is mainly on 

the effectiveness of different standardization procedures rather than the 

effectiveness of different clustering methods. Moreover, the effect of 

standardization was also carried out by means of similarity searching. All these 

findings lead to the same conclusion that no standardization procedure was 

found offering consistently best performance over the two datasets. 

Combining the analysis and discussion from two experiments in this chapter, 

no standardization procedure was found offering consistently the best 

performance over two datasets, i. e. no overall best method. However, the use of 

standardization methods tends to provide significant improvement especially in 

the Molconn and Pipeline Pilot datasets, and limited improvement in the 

Hologram datasets. 

The evaluation of clustering methods in this chapter shows that no single 

clustering approach has the best overall performance over the combination of 

representations and datasets. The result also shows that the clustering 

performance depends on the many factors, such as the use of standardization 

procedures, the feature of evaluation criterion, and the data type of dataset. For 

example, in the extensive experiment, Z7 standardization procedure has overall 

the best performance on the Ward's and e-Ward's clusterings; Z1 procedure 

with UPGMA clustering yields the overall best F-Measure only on the MDDR 

datasets; while the non-standardization procedure (Zo) with Ward's clustering 
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offers the best F-Measure on the Holograms datasets only, and with UPGMA 

clustering provides the worst QCI on all representations. 

Hence, the use of standardization procedures does not bring any consistent 

benefit in terms of clustering behaviour. In the next chapter, we investigate the 

applicability of nine clustering methods on the same datasets but characterized 

by binary fingerprints. 
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Chapter 6: Comparison of Chemical Clustering 
Methods Using Fingerprint-based 
Similarity Measures 

6.1 Introduction 

Cluster analysis is a process to identify groups of similar objects; the objects in 

the same cluster are similar, while the objects in different groups are dissimilar. 

Some introduction content and methodologies were well reviewed by Milligan 

and Cooper (1987), Jain et al. (1999), Berkhin (2002), and Xu and Wunsch 

(2005). However, it has also been extensively discussed in many disciplines, 

such as document clustering (El-Hamdouchi and Willett, 1986; Willett, 1988; 

Zhao and Karypis, 2002). In addition, there is also considerable interest in 

chemoinformatics including high-throughput screening, combinatorial 

chemistry, compound acquisition, and QSAR. Moreover the applications of 

chemical clustering are well reviewed previously by Willett (1985,1987) and 

by Downs and Barnard (2002). 

The early works of chemical clustering were largely by Willett and co-workers 
(Downs and Willett, 1994), their studies showed the Jarvis-Patrick clustering 

method offered better performances for different types of chemical datasets 

(Willett et at., 1986; Willett, 1987). Moreover, the later work by Brown and 
Martin (1996) reported Ward's method had better performance than other 
hierarchical methods for the biologically active and inactive molecules 

separation. In a more recent study, Holliday et al. (2004) verified the ability of 
fuzzy K-means method on small datasets by highlighting the multicluster 

membership and finding outlier objects in comparison with Ward's and original 
K-means methods. 
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A wide variety of clustering methods have been proposed in the literature, they 

are classified into hierarchical, partitional, and density-based clustering 

methods. Choosing the right clustering method is always a critical issue of 

clustering analysis. Some comparative studies on chemical datasets can be 

found in the literature. Rubin and Willett (1983) compared four hierarchical 

divisive methods on eleven small datasets represented by substructural 

fragments. Their results showed that no single method offered consistently 

better performance, and most of the clustering methods are not suitable for 

dealing with thousands of objects at that time. Downs et al. (1994) applied 

agglomerative hierarchical, divisive hierarchical and non-hierarchical 

clustering methods on physicochemical properties of large datasets, and found 

that hierarchical methods had better performances than the Jarvis-Patrick 

non-hierarchical method. Raymond et al. (2003) compared five published 

clustering methods using graph- and fingerprint-based similarity measures, and 

their study reported that two methods, CAST and Yin-Chen methods, which 

have been applied previously in clustering on gene expression patterns were 

found effective for the clustering of 2D chemical structures. 

No single method is applicable for all types of data, and not all methods are 

equally applicable to all problems. Different clustering methods will generate 

different types of clustering results; that is, clustering different types of data 

with one single clustering method will have varied performances. Most 

clustering methods are dependent on the features of the dataset, e. g. data types, 

or are sensitive to parameter setting; that is, some algorithms will be more 

suitable for certain types of data than others (Gionis et al., 2007). 

The Jarvis-Patrick and Ward's methods are the clustering procedures of choice 

in most chemoinformatics applications and software packages. However, 

cluster analysis is a strong focus in data mining research and this has resulted 

in the recent development of many new clustering methods that can be applied 

to large databases. In this chapter, we consider the utility of some of these new 

methods for the use in chemoinformatics. The main focus of this study is to 

investigate the suitability of different clustering which were reported effective 

in other applications to the chemical clustering on 2D structures, and also to 
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compare their performance with some commonly used methods in 

chemoinformatics. 

6.2 Clustering Methods 

Nine clustering methods were evaluated in this study. The first two clustering 

methods, Yin-Chen and CAST, were coded by Perl script in this study; the next 

two methods, Ward's and extended Ward's, used the implementations in the 

Energy package of the R statistical system (available at 

http: //www. r-proiect. org/); while the other three clustering procedures, 

agglomerative hierarchical, Direct and Repeated Bisection, were carried out 

using the implementations in the CLUTO (for CLUstering TOolkit) software 

package (available at http: //izlaros. dtc. umn. edu/2khome/Cluto/cluto/overview). 

In addition, we used the default criterion function, UPGMA (Unweighted Pair 

Group Method using Arithmetic mean), for the agglomerative hierarchical 

method. However, the Direct and Repeated Bisection methods employed two 

criterion functions, el and i2, hence with the combinations of clustering 

method and criterion function, we obtain four different methods. 

In addition to the Ward's and UPGMA methods are commonly seen in 

chemical clustering, the other seven methods are new or little discussed to the 

application of clustering for 2D structure. However, all these clustering 

methods and their criterion functions were discussed in detail in Chapter 4. The 

software tools and denotations of these nine clustering methods are 

summarized in Table 6-1. 
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Clustering Methods Software Tool Code in Tables 
and Figures 

Yin-Chen Coded using Perl YC Script 

CAST Coded using Perl CAST Script 

Extended Ward's R software EW 

Ward's R software WD 

agglo method with UPGMA CLUTO package UPGMA 
criterion function 

Direct method with el CLUTO package DR-el 
criterion function 

Direct method with i2 CLUTO package DR-i2 
criterion function 

repeated bisection method CLUTO package RB-el 
with el criterion function 
repeated bisection method CLUTO package RB-i2 
with i2 criterion function 

Table 6-1 Summary of the software tools and denotations of the nine clustering methods 

6.3 Experimental Details 
The MDDR and IDAlert datasets were characterized by ECFP_4 fingerprints 

using SciTegic Pipeline Pilot software (both datasets and representation are 
discussed in detail in Chapter 4), and were coded as being active or inactive in 

eleven activity classes that had been studied previously by Hert et al. (2004). 

These two datasets were then clustered by above nine clustering procedures to 

generate partitions containing 500,600,700,800,900 and 1000 clusters. 
However, the number of clusters in some clustering methods, such as Yin-Chen 

and CAST, is determined by an adjustable parameter or a cut-off threshold and 
is sensitive to the setting of the threshold, we attempted to generate the number 

of clusters which are as close to above numbers as possible (as shown in Table 

6-2). 
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Yin-Chen CAST 
# clusters MDDR IDAlert MDDR IDAlert 

500 513 499 505 501 
600 599 600 594 598 
700 704 698 695 701 
800 801 798 799 803 
900 903 904 892 899 
1000 1002 999 994 1001 

Table 6-2 The numbers of clusters determined by the adjustable parameter for the Yin-Chen 
and CAST clustering methods 

6.4 Evaluation of Clustering Performance 
Evaluation is one of the critical components in cluster analysis. Most clustering 

applications need the evaluation measures to assess the clustering results from 

a certain criterion such as, capturing the intra-cluster similarity and inter-cluster 

dissimilarity. There are extensive evaluation measures of different types in the 

literature, if a clustering method offers better performance than others over 

many evaluation measures; we can claim that clustering method should be the 

best for a certain type of application. Hence we employed four criteria in this 

study and each of them was discussed in detail in Chapter 4. The Shannon 

entropy is a criterion to observe the distribution of actives of a given class, 

while the Entropy based on cluster size is a measure similar to the conventional 

Shannon entropy to investigate the distribution of cluster sizes. 

The F-Measure is a measure widely used in document clustering in information 

retrieval (Fung et al., 2003; Rosenberg and Hirschberg, 2007), and the Quality 

Clustering Index (QCI) is a new evaluation measure defined by Varin et al. 
(2008). Both the F-Measure and QCI are the measures based on the extent of 

how the compounds with the same bioactivities can be grouped together, 

especially the eleven active classes mentioned in Chapter 4. However, the 

evaluation using the probability of correct prediction is not applicable to the 

clustering validation here due to the smaller partition size as we discussed in 

Section 4.4.2. 
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6.5 Results & Analysis 
The evaluation and analysis of clustering results are carried out in three aspects. 

The first is the evaluation of clustering methods over all criteria; the Sections 

6.5.1 and 6.5.2 are for the evaluation of the MDDR and IDAlert datasets 

respectively. The next aspect of evaluation of clustering methods is based on 

individual criterion (Section 6.5.3). The final aspect (Section 6.5.4) focuses on 

the comparison of some particular clustering methods, such as the Ward's and 

extended Ward's methods, and the Direct and Repeated Bisection methods in 

the CLUTO tool kit. 

6.5.1 The Evaluation of Clustering Results of the MDDR Dataset 

Table 6-3 displays the clustering performance of 1000 clusters on the MDDR 

dataset over all evaluation criteria. The values in each row represent the 

clustering result evaluated by the four criteria for a specific clustering method. 
For example, the Yin-Chen clustering result evaluated by the two types of 
Shannon Entropy, F-Measure and QCI are 5.83,9.89,7.83%, and 11.07% 

respectively. 

MDDR dataset 

Entropy Entropy 
based on size 

1000 clusters 
F-Measure QCI 

YC8 5.83 9.89 7.83% 11.07% 

CAST' 3.87 8.79 22.26% 10.08% 

EW 4.26 9.68 21.86% 23.40% 

WD 4.13 9.74 24.23% 25.59% 

UPGMA 2.93 8.84 29.62% 18.29% 

DR-el 4.18 9.84 24.21% 28.81% 

DR-i2 4.16 9.81 23.83% 28.83% 

RB-e1 4.57 9.81 21.72% 20.40% 

RB-i2 4.68 9.78 20.61% 18.43% 
' The numbers of clusters for the Yin-Chen and CAST methods generated by their adjustable 
parameters are 1002 and 994 respectively. 

Table 6-3 The evaluation of different clustering methods (1000 clusters) for the MDDR 
dataset based on the four different evaluation criteria 
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The visual inspection of results in Table 6-3 suggests that UPGMA method has 

significantly the best performance on the evaluation criteria of Shannon 

Entropy and F-Measure, and better result on the Shannon Entropy based on 

cluster size, but ordinary performance on the QCI. In addition, the Direct 

method has the noticeably the best performance on the QCI criterion. Contrary, 

the Yin-Chen method is consistently inferior. As for the comparison between 

the Ward's and extended Ward's, the Ward's method has consistently better 

performance than the extended Ward's. In terms of the two partitional 

clustering methods in the CLUTO toolkit, the Direct method offers consistently 

better performances than the Repeated Bisection on the evaluation criteria of 

Shannon Entropy, F-Measure and QCI. However, they have similar results on 

the Entropy based on cluster size. As for the effect of two different criterion 

functions, the performance of the use of el and i2 on either the Direct or 

Repeated Bisection methods is similar. The use of el and 0 reveal a high 

degree of variability offering inconsistently superior or inferior performance to 

each other, i. e. no significant difference between the use of el and 12. 

The evaluations for the rest of numbers of clusters on the MDDR dataset are 

similar to the case of 1000 clusters. With visual inspection, no clustering 

method is found offering consistently the best performance over all evaluation 

criteria. 

In order to obtain a more quantitative view of the effectiveness of the clustering 

methods, we employed Kendall's W test of statistical significance to evaluate 

the consistency of k different sets of judgements of the same set of N different 

objects. Here, we have considered each of the four evaluation criteria as a 

judge ranking the nine different clustering methods in order of decreasing 

effectiveness, i. e. k=4 and N=9, as shown in Table 6-4 (MDDR 1000 clusters). 

The equation of Kendall's W test has been given in Chapter 4, together with the 

use of (chi-square) test to assess the significance of the calculated W value. 

Since the sample size N is greater than 7, it will be considered a large sample. 

The Kendall's W values for large sample can be computed using these four sets 

of rankings, and the significance test can also be carried out using j 
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distribution with N-1 degrees of freedom. 

MDDR dataset 

Entro Entropy 
py based on size 

1000 clusters 

F-Measure QCI Q 

YC 9 9 9 8 
CAST 2 1 5 9 

EW 6 3 6 4 

WD 3 4 2 3 

UPGMA 1 2 1 7 

DR-el 5 8 3 2 

DR-i2 4 6.5 4 1 

RB-el 7 6.5 7 5 

RB-i2 8 5 8 6 

Table 6-4 The performance of clustering methods ranked by the four criteria functions for the 
MDDR dataset (1000 clusters) 

The critical values of the chi-square (y) distribution at the a=0.01 level of 

statistical significance is 20.09 for eight degrees of freedom, and at the a=0.05 

level of statistical significance is 15.51. 

Table 6-5(a) (for the MDDR dataset) reveals the results of a Kendall's W 

analysis, showing the W and values for the combination of number of 

clusters and clustering performance generated by four evaluation criteria. For 

example, the computed values of W and ý for the MDDR dataset with 1000 

clusters are 0.50 and 16.15 respectively (as shown in Table 6-5(a)). Five in six 

tests have reached the significant level of a=0.05, while none of these values 

have reached the significant level of a=0.01. Therefore, there would hence 

appear to be no strongly significant measure of agreement between the 

clustering methods and the evaluation criteria. Hence, it is not possible to 

recommend any particular clustering method as being of general applicability. 
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# Clusters 

(a) 

MDDR dataset 

w 

(b) 

IDAIert dataset 

we 

500 0.53 16.93 0.37 11.91 
600 0.49 15.80 0.33 10.67 
700 0.48 15.48 0.35 11.11 
800 0.53 17.04 0.45 14.53 
900 0.56 17.82 0.41 13.24 
1000 0.50 16.15 0.26 8.22 

Table 6-5 Kendall Wand x2 values based on the four different evaluation measures for the (a) 
MDDR and (b) IDAIert datasets 

6.5.2 The Evaluation of Clustering Results of the IDAIert Dataset 

The overall evaluations of clustering performance for the IDAlert dataset are 

shown in Table 6-6 (1000 clusters). In this case, for a certain clustering method, 

the values are generated by the same evaluation criteria mentioned previously. 

For example, the computed values of two types of Shannon Entropy, 

F-Measure, and QCI of 1000-cluster CAST clustering for IDAlert 10K dataset 

are 4.25,8.90,17.74%, and 5.62% respectively (as shown in Table 6-6). 

IDAlert dataset 1000 clusters 

Entro py 
Entropy 

based on size 
F-Measure QCI Q 

YC 4.84 9.64 14.18% 9.29% 
CAST 4.25 8.90 17.74% 5.62% 

EW 4.34 9.15 19.17% 8.93% 

WD 4.29 9.10 20.60% 10.38% 

UPGMA 3.17 8.61 22.92% 8.72% 

DR-el 4.26 9.82 22.75% 15.71% 

DR-i2 4.29 9.81 21.42% 15.29% 

RB-el 4.57 9.78 18.68% 13.22% 

RB-i2 4.53 9.77 20.65% 12.24% 
The numbers of cl usters for the Yin-Chen and CAST methods generated by the adjustable 

parameters are 999 and 1001 respectively. 

Table 6-6 The evaluation of different clustering methods (1000 clusters) for the IDAlert 
dataset based on the four different evaluation criteria 
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Focusing on Table 6-6 with the visual inspection, the result is similar to the 

MDDR 1000 clusters (as shown in Table 6-3), the agglomerative method, 

UPGMA, has the consistently and noticeably the best performance on two 

types of Shannon Entropy and F-Measure, but ordinary result on the QCI. The 

Direct method has the significantly best performance on the QCI, and the 

Ward's method has consistently better performance than the extended Ward's. 

As for the comparison between the Direct and Repeated Bisection methods, the 

Direct method has consistently better performance on the Shannon Entropy, 

F-Measure and QCI evaluations than Repeated Bisection, but has similar 

results on the evaluation using Entropy based on cluster size. However, the 

same clustering method with two different criterion functions, el and i2, 

generated similar and closer values of evaluation criteria. In addition, either el 

or i2 offers inconsistently better or worse performance to each other. In 

addition, none of these clustering methods is the most consistently ineffective 

in this case. Again, for getting a more quantitative view of the effectiveness of 

the clustering methods, a Kendall's W test of statistical significance was 

employed to evaluate the consistency. 

Table 6-5(b) (for the IDAlert dataset) reveals the results of a Kendall's W 

analysis, showing the W and Z values for the combination of number of 

clusters and clustering performance generated by four evaluation criteria. The 

computed values of W and y for the IDAlert dataset with 1000 clusters are 0.26 

and 8.22 respectively (as shown in Table 6-5(b)). 

As we mentioned previously, the critical value for chi-square (x) distribution 

at a=0.05 level of statistical significance is 15.51 for eight degrees of freedom. 

Similarly, an identical lack of consistency is also found in the IDAlert dataset, 

and it will hence be reported that none of these values in Table 6-5(b) are 

significant at either a=0.05 level or a=0.01 level. Therefore, there would hence 

appear to be no strongly significant measure of agreement between the 

clustering methods and the evaluation criteria. Hence, there is no obvious 

"best" clustering method recommended to be generally applicable. 
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In the next section, a different type of evaluation of correlation based on 
individual evaluation criterion was carried out. 

6.5.3 The Evaluation of Clustering Methods Based on Individual 
Criterion 

There is no consistency between clustering methods and evaluation criteria (see 

Table 6-5), we hence carried out a distinct condition of Kendall's W test of 

statistical significance to find if there is any consistency between clustering 

methods and activity classes for a particular evaluation criterion. Taking the 

MDDR dataset as an example, we generated the Shannon Entropy (Table 6-7) 

and QCI (Table 6-9) values over eleven activity classes. In the case of the 

MDDR 500 clusters (Table 6-7), the Shannon Entropy values of the Yin-Chen 

and CAST clusterings based on AC1 (i. e. activity-class-1, which is the 5HT3 

antagonists in Table 4-1) are 6.24 and 3.95 respectively. The eleven activity 

classes are denoted by AC1 to ACII in Tables 6-7 to 6-10. The other case of 

the MDDR 800 clusters (Table 6-9), the QCI values of the Yin-Chen and CAST 

methods based on AC2 (5HTIA agonists) are 8.05% and 6.76% respectively. 

These eleven activity classes were then considered as the judges ranking the 

nine clustering methods instead of the four evaluation criteria in order of 

decreasing effectiveness, i. e. k=11 and N=9. In Table 6-8, we rank these 

Shannon Entropy values based on each single activity class in ascending order 

(small Entropy value indicates good clustering). Hence, the rankings for the 

Yin-Chen and CAST methods based on AC1 are 9 and 3 respectively. Similarly, 

in Table 6-10, the QCI values are ranked based on individual activity class, the 

rankings for the Yin-Chen and CAST methods based on AC2 are 8 and 9 

respectively. 
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MDDR dataset 500 clusters Evaluation using Shannon Entropy 

AC1 AC2 AC3 AN AC5 AC6 AC7 AC8 AC9 ACIO ACII 

YC 6.24 6.25 5.07 5.03 6.32 6.18 6.34 6.67 5.83 5.53 5.42 

CAST 3.95 3.46 3.59 2.94 0.15 0.57 2.84 3.70 1.62 4.38 4.12 

EW 4.22 4.59 3.89 4.21 2.17 3.27 3.81 4.21 3.22 4.53 4.18 

WD 4.16 4.75 3.84 4.05 2.13 3.31 3.86 4.21 3.25 4.48 4.02 

UPGMA 3.32 3.31 3.61 2.74 0.07 0.53 2.74 3.32 1.92 4.21 3.73 

DR-el 4.04 4.47 3.89 4.38 1.78 3.01 3.58 4.18 3.36 4.40 4.23 

DR-i2 4.23 4.45 3.86 4.23 2.24 2.55 3.64 4.22 3.51 4.65 4.33 

RB-el 4.77 4.99 4.04 4.51 2.35 3.94 4.38 5.13 3.61 4.68 5.06 

RB-i2 4.83 5.07 4.32 4.78 2.24 3.73 4.46 5.50 3.91 4.96 4.79 

Table 6-7 The Shannon Entropy values of clustering methods for each activity class of the 
MDDR dataset 

MDDR dataset 500 clusters Ranked by the Shannon Entropy 

ACI AC2 AC3 AC4 ACS AC6 AC7 AC8 AC9 AC10 ACII 

YC 9 9 9 9 9 9 9 9 9 9 9 

CAST 2 2 1 2 2 2 2 2 1 2 3 

EW 5 5 5 4 5 5 5 4 3 5 4 

WD 4 6 3 3 4 6 6 5 4 4 2 

UPGMA 1 1 2 1 1 1 1 1 2 1 1 

DR-el 3 4 6 6 3 4 3 3 5 3 5 

DR-i2 6 3 4 5 6 3 4 6 6 6 6 

RB-el 7 7 7 7 8 8 7 7 7 7 8 

RB-i2 8 8 8 8 7 7 8 8 8 8 7 

Table 6-8 The performance of clustering methods for each activity class ranked by the 
Shannon Entropy values for the MDDR dataset 
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MDDR dataset 800 clusters Evaluation using QCI 

AC! AC2 AC3 AC4 ACS AC6 AC7 AC8 AC9 AC10 AC11 

YC 7.85% 905% 8.43% 800% 10.42% 8.82% 9.13% 9.62% 7.69% 8.45% 8.07% 

CAST 7.73% 6.76% 3.51% 3.31% 13.91% 25.47% 7.45% 9.50% 6.67% 6.55% 6.77% 

EV) 13.93% 12.40% 884% 9.20% 68.71% 32.09% 30.77% 20.87% 15.88% 850% 9.80% 

WD 17.98% 14.87% 10.73% 9.83% 69.14% 30.45% 30.51% 21.78% 1806% 10.51% 12.03% 

UPGMA 18.00% 12.20% 6.08% 6.68% 1493% 38.78% 9.38% 8.78% 5.48% 10.47% 10.29°/'. 

DR-el 21.76% 18.29% 1402% 11.43% 58,03% 35.85% 36.49°/. 32.38% 19.88% 14.03% 14.55% 

DR-i2 17.91% 17.47% 11.55% 10.15% 77.24% 38.15% 27.84% 28.09% 18.77% 13.14% 14.95% 

RB-el 16.39% 12.62% 10.67% 9.01% 37.21% 23.57% 21.01% 17.83% 14.35% 13.40% 9.06% 

RB-i2 13.76% 11.41% 8.90% 7.75% 39.72% 19.51% 14.10% 13.57% 15.73% 9.59% 9.86% 

Table 6-9 The QCI values of clustering methods for each activity class of the MDDR 
dataset 

MDDR dataset 800 clusters Ranked by the QCI 

AC I AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC 10 AC I1 

YC 8 8 7 6 9 9 8 7 7 8 8 

CAST 9 9 9 9 8 6 9 8 8 9 9 

EW 6 5 6 4 3 4 2 4 4 7 6 

WD 3 3 3 3 2 5 3 3 3 4 3 

UPGMA 2 6 8 8 7 1 7 9 9 5 4 

DR-el 1 1 1 1 4 3 1 1 1 1 2 

DR42 4 2 2 2 1 2 4 2 2 3 1 

RB-el 5 4 4 5 6 7 5 5 6 2 7 

RB-i2 7 7 5 7 5 8 6 6 5 6 5 

Table 6-10 The performance of clustering methods for each activity class ranked by the QCI 
values for the MDDR dataset 
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In addition, all evaluation criteria can be judged by these eleven activity classes 

except the evaluation using Entropy based on cluster size, because the value of 

Entropy based on cluster size is simply based on the number of objects in a 

cluster instead of the activity classes. Hence, only three evaluation criteria, 

Shannon Entropy, F-Measure and QCI, are discussed in this section. 

With these rankings judged by the eleven activity classes, the extent of the 

correlation among eleven sets of rankings for nine clustering methods can be 

checked by the Kendall's W test. The overall results were obtained and shown 

in Tables 6-11 (for the MDDR dataset) and 6-12 (for the IDAlert dataset). 

# Clusters 

Shannon Entropy 

W X2 

MDDR dataset 

F-Measure 

W X2 W 

QCI 

X2 

500 0.90 79.63 0.41 36.25 0.73 64.62 

600 0.83 73.23 0.46 41.24 0.74 65.55 

700 0.79 69.56 0.43 37.94 0.75 66.13 

800 0.87 76.67 0.36 32.17 0.73 65.09 

900 0.80 71.14 0.44 39.08 0.78 68.99 

1000 0.74 65.30 0.39 34.86 0.76 67.48 

Table 6-11 Kendall W and x2 values based on 11 different activity classes for each evaluation 
measure on the MDDR dataset 

Table 6-11 shows the Kendall W and Z values based on eleven different 

activity classes for each evaluation criterion on the MDDR dataset. For 

example, in the case of the MDDR dataset with the evaluation using Shannon 

Entropy, the values of W and chi-square (Z) for the 500 clusters are 0.90 and 

79.63. 

The critical value of the chi-square (y) distribution mainly depends on the 

sample size i. e. the number of clustering methods in our study. However, even 

with the change of the number of judges, the critical values of the chi-square 

135 



Chapter 6: Comparison of Chemical Clustering Methods Using Fingerprint-based Similarity Measures 

(, ý) distribution remain the same 20.09 and 15.51 (as in Section 6.5.1) for the 

a=0.01 and a=0.05 levels respectively for the degrees of freedom is eight. 

In terms of evaluation using Shannon Entropy, all f values of different 

numbers of clusters are significantly larger than the critical values at a=0.01 

and a=0.05 levels, i. e. all tests are significant. Tables 6-13 and 6-14 summarize 

the top three best performances of clustering methods evaluated by individual 

criterion over varied partition sizes for the MDDR and IDAlert datasets 

respectively. Moreover, the best method for the combination of partition size 

and evaluation criterion is represented in bold font. We hence had a visual 
inspection on the Entropy values for each single Kendall's W test on the 

MDDR dataset (Table 6-13), and found the UPGMA method has consistently 

and significantly the best performance across all partition sizes. In addition, the 

CAST method is consistently in the leading group (i. e. top three best 

performances). Hence, we can conclude that the UPGMA method has obvious 

performance benefit, and the active molecules of clustering results are more 

concentrated in certain clusters. 

All the tests in the evaluation using F-Measure of the MDDR dataset are also 

found statistical significance (Table 6-11). According to the visual inspection in 

Table 6-13, there is not a single clustering method offering consistently the best 

results over all partition sizes. The UPGMA and Ward's methods tend to be 

more effective than the others on the evaluation using F-Measure. 

As for the evaluation using QCI for the MDDR dataset, all tests show statistical 
significance (Table 6-11). The visual inspection in Table 6-13 found that the 

Direct-el method has consistently and significantly the best performance over 

all numbers of clusters, and the Direct-i2 and Ward's methods consistently 

remain in the leading groups. Hence, we can conclude that the Direct-el 

method has obvious performance benefit. 
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IDAlert dataset 

Shannon Entropy F-Measure QCI 

# Clusters W X2 W X2 W X2 

500 0.80 71.07 0.59 52.52 0.45 40.15 

600 0.79 69.87 0.59 52.32 0.45 40.02 

700 0.79 69.92 0.65 57.77 0.46 41.21 

800 0.79 69.86 0.67 58.98 0.43 38.23 

900 0.79 69.91 0.60 53.24 0.40 35.52 

1000 0.80 71.08 0.58 51.22 0.38 33.64 

Table 6-12 Kendall W and x2 values based on 11 different activity classes for each evaluation 
measure on the IDAlert dataset 

Table 6-12 shows the results of the Kendall W test for the IDAlert dataset. A 

distinct condition of Kendall's W test of statistical significance was also carried 

out for this dataset. In terms of the evaluation using Shannon Entropy, all these 

six tests are found statistical significance. A visual inspection of Entropy values 

for each single Kendall's W test, we found the leading groups of CAST, Ward's 

and e-Ward's clustering methods consistently offer the better performance over 

all numbers of clusters (Table 6-14), of which the CAST method has the 

consistently best performance. 

In terms of the evaluation using F-Measure, all the tests are found statistical 

significance (Table 6-12). However, a similar result to the Shannon Entropy, 

the individual inspection of F-Measure values for each single Kendall's W test 

shows that the leading group of Ward's, e-Ward's and CAST clustering 

methods has consistently better performance, of which the Ward's method 

consistently offers the best results. 

As for the evaluation using QCI, all these tests are found statistical significance 

(Table 6-12). The individual inspection of QCI values in Table 6-14 shows that 

the Ward's method provided the consistently best results over all partition sizes. 

Furthermore, the e-Ward's and Yin-Chen clustering methods also consistently 

remain in the leading groups. Hence, we can conclude that the Ward's method 
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has obvious performance benefit. 

Combining all the analysis in this section (6.5.3) can be summarized by 

following findings: first, according to the top three best performances of 

clustering methods evaluated by each criterion function across all partition 

sizes on two datasets (Tables 6-13 and 6-14), the leading group of clustering 

methods in the IDAIert dataset is more consistent than in the MDDR dataset. In 

addition, it is easy to identify the best method or the method tending to be the 

best, across the combinations of evaluation criterion and partition size. 

However, no single clustering method was found to be consistently effective 

over the combinations of evaluation criterion, partition size and dataset. 

Second, the inspection of the leading groups in both datasets shows that the 

CAST method tends to have better Shannon Entropy, and the Ward's method 
tends to have better F-Measure and QCI values over two datasets. However, 

some methods have the best results only on a specific dataset. For example, the 

UPGMA and Direct-el methods have the consistently best Shannon Entropy 

and QCI respectively on the MDDR dataset only; the e-Ward's method tends to 

have better performance over all evaluation criteria on the IDAlert dataset only. 

MDDR dataset 

# Clusters Shannon Entropy F-Measure QCI 

500 UPGMA, CAST, DR-el WD, DR-el, EW DR-el, DR-i2, WD 

600 UPGMA, CAST, DR-i2 DR-i2, WD, DR-el DR-el, WD, DR-i2 

700 UPGMA, CAST, DR-el DR-el, WD, UPGMA DR-el, DR-i2, WD 

800 UPGMA, CAST, DR-el UPGMA, WD, DR-el DR-el, DR42, WD 

900 UPGMA, CAST, DR-el UPGMA, DR-i2, WD DR-el, DR-i2, WD 

1000 UPGMA, CAST, DR42 UPGMA, WD, DR-el DR-el, DR-i2, WD 

Table 6-13 The top three best performances of clustering methods evaluated by each criterion 
function for varied numbers of clusters of the MDDR dataset 
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IDAlert dataset 

# Clusters Shannon Entropy F-Measure QCI 

500 CAST, WD, EW WD, EW, CAST WD, EW, YC 

600 CAST, WD, EW WD, EW, CAST WD, EW, YC 

700 CAST, WD, EW WD, EW, CAST WD, EW, YC 

800 CAST, WD, EW WD, EW, CAST WD, EW, YC 

900 CAST, WD, EW WD, EW, CAST WD, EW, YC 

1000 CAST, WD, EW WD, EW, CAST WD, YC, EW 

Table. 6-14 The top three best performances of clustering methods evaluated by each criterion 
function for varied numbers of clusters of the IDAlert dataset 

6.5.4 The analysis of Comparative Clustering Methods for the 
MDDR and IDAlert datasets 

In this section, we carried out conventional comparison of clustering methods, 

which can been found in the literature e. g. the comparison between hierarchical 

and partitional methods, Ward's and e-Ward's, and two divisive clustering 

methods in CLUTO tool kit. 

We first consider the conventional comparison of hierarchical and partitional 

clusterings, taking Tables 6-13 and 6-14 together into account, the hierarchical 

clustering of UPGMA and CAST methods have better performance on the 

evaluation using Shannon Entropy than the partitional clustering of Direct and 

Repeated Bisection methods over the two datasets. As for the evaluation using 
F-Measure and QCI, hierarchical clustering of Ward's method is superior to 

partitional clustering methods only on the IDAlert dataset. Hence there is no 

consistent performance benefit on choosing either hierarchical or partitional 

clustering methods. 

As for the comparison between Ward's method and its variation of e-Ward's 

method, the Ward's clustering method has consistently better performance than 
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e-Ward's across all types of evaluation on the two datasets (Tables 6-13 and 

6-14). Hence, on the choice of Ward's and e-Ward's methods for the chemical 

data of the sort considered in this study, we suggest using Ward's method to 

generate performance benefit rather than e-Ward's method. 

Two partitional clustering methods in CLUTO tool kit were also evaluated. The 

Direct method is consistently superior to the Repeated Bisection method over 

all types of evaluation on the two datasets (Tables 6-13 and 6-14). Although 

Repeated Bisection method has been reported effective in the application of 

document clustering (Steinbach et al., 2000), for chemical data of the sort 

applied in this study, we suggest that the use of the Direct method could bring 

performance benefit rather than the Repeated Bisection. 

Figures 6-1 to 6-4 show the overall clustering performance evaluated by varied 

evaluation criteria over two datasets. Overall, the MDDR dataset has better 

performance on the evaluation using F-Measure and QCI (Figures 6-3 and 6-4). 

That is because the evaluation using F-Measure and QCI is based on the 

number of actives for a certain activity class. For some activity classes e. g. 

Angiotensin II AT1 antagonists, Substance P antagonists, HIV -1 protease 

inhibitors, and 5HT1A agonists, the number of actives for these classes in the 

MDDR dataset is much more (from 83 to 33 actives) than in the IDAlert 

dataset (see Table 4.1). Hence, under the condition of same number of clusters, 

the performance of F-Measure and QCI on the MDDR dataset is easily better 

than the IDAlert dataset. 

The clustering performances evaluated by Shannon Entropy in Figure 6-1 are 

very similar except the Yin-Chen and CAST methods. That is because the 

number of clusters for those two clustering methods is determined by an 

adjustable parameter which sometimes may be sensitive and fail to generate 

exactly partition sizes (see Table 6-2). Generally speaking, in each Yin-Chen 

clustering result, the MDDR dataset tends to have slightly more number of 

clusters than the IDAlert; whereas, in each CAST clustering result, the MDDR 

dataset tends to have slightly less partition sizes than the IDAlert dataset. In 

addition, the Shannon Entropy, in essence, is basically dependent on the 
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number of clusters. The more number of clusters tends to lead worse Shannon 

Entropy. Hence, the more number of clusters with Yin-Chen method on the 

MDDR dataset is inferior (high Entropy value) to the IDAlert dataset; on the 

contrary, the less number of clusters with CAST method of MDDR dataset is 

superior (low Entropy value) to the IDAlert dataset. 

MDDR -#- IDAlert 

10 

8 

b 

4 

2 

0 
YC CAST ED WD UPGMA DR-el DR-i2 RB-el RB-i2 

Clustering Methods 

Figure 6-1 The overall performance evaluated by the Shannon Entropy over two datasets 

I -+- MDDR :; 
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Figure 6-2 The overall performance evaluated by the Shannon Entropy based on cluster size 
over two datasets 
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Figure 6-3 The overall performance evaluated by the F-Measure over two datasets 

MDDR -ý-IDA1ert 
30% 

25% 

20% 

15% 

10% 

5% 

0% 
YC CAST ED WD UPGMA DR-el DR42 RB-el RB-i2 

Clustering Methods 

Figure 6-4 The overall performance evaluated by the QCI over two datasets 
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6.6 Conclusions 
There are many different clustering methods published and used in a wide 

range of application domains, some are reported effective in certain 

applications or fields. Moreover, the type of data is also a critical factor of 

clustering quality. In this study, we experimentally evaluated nine clustering 

methods by means of four evaluation criteria to obtain clustering solutions 

from chemical datasets characterized by ECFP_4 fingerprint. A clustering 

method offering consistently better performance over more evaluation criteria 

indicates a superior partitioning. However, it is difficult for a single clustering 

method to provide consistently better performance over multiple evaluation 

criteria, especially over different types of criterion. One clustering method 

could have superior performance on a specific evaluation criterion but have 

ordinary result on another criterion as in our findings. 

Two findings are worth discussing: first, according to the conclusions (Section 

5.13) in Chapter 5, the non-standardization procedure (Zo) with Ward's 

clustering offers the best F-Measure only on the datasets with Holograms 

fingerprints. However, in this chapter, the same datasets were unstandardized 

and characterized by the ECFP_4 fingerprints. The results (Tables 6-13 and 

6-14) shows that the Ward's clustering offers the consistently best F-Measure 

on the IDAlert dataset, and tends to have better F-Measure (i. e. remains in the 

leading group) on the MDDR dataset, over all partition sizes. This finding 

suggests that the Ward's method tends to have better F-Measure on the 

chemical data with binary (e. g. ECFP_4) or non-binary (e. g. Holograms) 

fingerprints representation. 

Second, according to the conclusions (Section 5.13) in Chapter 5, the 

non-standardization procedure (Zo) with UPGMA method yields the worst QCI, 

and with Direct method tends to have better QCI, on the datasets with all 

representations (including, of course, the Holograms fingerprints). In this 

chapter (see Figure 6-4), the UPGMA method provides the consistently worst 

QCI, and the Direct method generates the consistently best QCI, in comparison 
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with the other six clustering methods, which are also used in the extensive 

study of Chapter 5 (i. e. the nine clustering methods in this chapter except the 

Yin-Chen and CAST methods). The finding here is in line with the conclusions 

in Chapter 5, and suggests that the Direct method tends to have better QCI for 

the chemical data of binary (e. g. ECFP 4) or non-binary (e. g. Holograms) 

fingerprints representation used in this thesis. 

Our results suggest that, for chemical data of the sort considered here, no 

consistent performance benefit that is likely to be obtained from the use of any 

particular clustering method using the chosen evaluation methods. Since no 

single clustering method is universal to all applications, the study of consensus 

clustering is hence carried out in the next chapter to integrate the clustering 

results from different methods and with the aim of generating a representative 

consensus result which is reported robust and reliable. 
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7.1 Introduction 
An inherent feature of clustering is that distinct methods or even a single 

method on the same dataset will generate different clustering results. In 

addition, most clustering methods offer simply an approximation to the optimal 

result, and find only a single result based on some specific clustering criterion. 

Hence, instead of determining one specific clustering method, some typical 

issues have been discussed such as selecting the best result, verification of the 

best result, and fusion of all results to get a consensus clustering of a dataset. 

Data fusion is the technique that combines the information from different 

results or data sources aiming to obtain the efficient and accurate output rather 

than using a single source. There is a growing interest in the literature e. g. 

chemoinformatics, because several studies found that data fusion improved the 

results significantly in virtual screening experiments (Holliday et al., 2002; 

Salim et al., 2003; Whittle et al., 2003; Willett, 2006). A similar technique to 
data fusion, consensus clustering is the process of combining the different 

clustering results in order to yield a result with robustness and confidence. 

Consensus clustering, also known as clustering ensemble, clustering 

combination, median partition, clustering of clustering, and clustering 

aggregation (Gionis et al., 2007), is a technique that integrates the results of 

multiple runs from either different clustering methods or different 

initializations e. g. parameter or random values of a specific clustering approach, 
into a single representative consensus (Topchy et al., 2004 ). It can not only 
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enhance the robustness but also usually offers better clustering results than 

using a single clustering method, also it is less sensitive to the dataset 

variations, noise, and outliers (Nguyen & Caruana, 2007). For example, 

K-Means method is usually sensitive to the initialization, however by 

integrating the multiple runs of K-Means clustering, the consensus result will 
be more reliable. Also, when there is no prior knowledge for the number of 

clusters, it will be difficult to determine. However, the consensus clustering 

over multiple runs can be more confident in determining the number of 

clusters. 

In theory, the aim of consensus clustering is to find a median point (clustering) 

among the clustering space, which minimizes disagreement between the input 

clusterings. Consensus clustering in essence is NP-complete as has been 

proven in the literature (Filkov & Skiena, 2004a), and a variety of 

approximations have been applied to such a problem. A simplified example of 

consensus clustering is shown as Figure 7-1, where Clustering 1 to 4 can be 

different runs of a single clustering method or varied clustering methods. 
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Figure 7-1 Example of consensus clustering 

Few studies of consensus clustering employ weighting schemes. One reason is 

that most applications of consensus clustering involve multiple runs of a single 

clustering method; all results are treated equally. However, the consensus 

results may consist of very different clusterings, and these input clusterings 

could be significantly different or correlative. Hence treating all input 

clusterings equally may not be effective on the consensus result. Some studies 

(Gullo et al., 2009; Li & Ding, 2008; Domeniconi & Al-Razgan, 2009; Wang et 

al., 2009) addressed the importance of weighting schemes and showed that the 

performance of consensus clustering can be improved by using proper 

weighting schemes, and can even give results as good as the individual best 

clustering method (Al-Razgan & Domeniconi, 2006). 
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Previous studies of consensus clustering were mostly the applications of 

multiple runs of a single clustering method, and treated the various clustering 

results equally (Fred and Jain, 2002; Nguyen and Caruana, 2007). However, 

our study is based on different clustering methods, and considers the clustering 

results from distinct methods differently by employing a simple weighting 

scheme. 

In addition, the application of consensus clustering has been shown to be 

effective in various fields, such as data mining, pattern recognition, and 

machine learning (Gionis et al., 2007); and is largely based on categorical data 

and heterogeneous data. For example, in dealing with the attribute of 

categorical data in the manner of consensus clustering, not only can each single 

attribute be treated as an input clustering, but also each single class can be 

considered as a cluster of its attribute, rather than finding a similarity or 

distance function which is believed difficult to determine (Goder & Filkov, 

2008). Application in chemical information has mainly been reported in the 

field of bioinformatics e. g. gene expression data (Filkov & Skiena, 2004a; 

Monti et al., 2003), but there has been no application on the field of 

chemoinformatics. Our study is in this field using chemical fingerprints to 

represent molecules. 

7.2 Related Work 
A number of algorithms have been proposed to solve the consensus clustering 

problem, and classification of these algorithms may be different (Strehl & 

Ghosh, 2002), some well know classes are Clustering-based Similarity 

Algorithms, HyperGraph Partitioning Algorithms, and Meta-Clustering 

Algorithms. However, we only briefly review some commonly used consensus 

clustering algorithms. 

Cluster-based Similarity Algorithms are mainly based on a similarity matrix in 

which each entry records pairwise relationship of the number of times objects i 

and j have been clustered together to the input clusterings; the details of 

constructing the similarity matrix will be discussed in a later section. It is the 
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simplest and most commonly used class of consensus algorithm. Most existing 
clustering algorithms perform clustering based on such a similarity matrix. 

Bertolacci and Wirth (2007) apply consensus clustering to the categorical 

datasets, Mushroom and 20 Newsgroups, from the UCI repository; and found 

the CCLP-pivot algorithm, a variation of the CC-pivot algorithm, proposed by 

Ailon et al. (2008) had better performance on the consensus clustering problem, 

while the Furthest Linkage Algorithm had the worst result. Although, the 

CCLP-pivot algorithm has been reported effective, it is a time consuming 

algorithm with 0(n8), and is thus not suitable to deal with large datasets 

(Bertolacci & Wirth, 2007). Thus, we just simply employed the CC-pivot 

algorithm in our experiment, which has time complexity 0(kmn), where k is the 

number of clusters and m represents the number of input clusterings for 

consensus. Moreover, the Average Linkage Algorithm was found also offered 

as good performance as the CCLP-pivot algorithm in their study. Nguyen and 

Caruana (2007) proposed three iterative algorithms to carry out the consensus 

clustering, which can be considered as the variations of K-Means method, and 

compared with eleven commonly used algorithms in consensus clustering. The 

result showed that the performance was as good as, and often better than, 

others. 

Meta-Clustering Algorithms (Caruana et al., 2002) offer many clusterings for 

users to select which are considered to be good, rather than just generating a 

single optimal clustering. Zeng et al. (2002) compared the meta-clustering 

algorithm with those algorithms that have been successfully applied on 

bioinformatics e. g. K-Means, average linkage, and self-organized-maps (SOM), 

on both artificial and real (categorical) datasets. Their result showed that the 

meta-clustering algorithm with the proposed distance measure is effective. 

In addition to the above two types of consensus algorithm, some other 

algorithms have been used in the literature. Fred and Jain (2002) proposed a 

single linkage technique, Minimum-Spanning-Tree (MST) based algorithm, to 

combine the results from multiple runs of K-Means method on both synthetic 

and real datasets, and found it effective. Our work here uses the same 

clustering technique but with cluster-based similarity approach. 
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7.3 Experimental 
Our consensus clustering experiments used the MDDR and IDAlcrt datasets 

with the molecules represented by ECFP_4 fingerprints discussed previously in 

Chapter 4 

7.3.1 Measuring Consensus 

There are varied methods to measure the similarity of a set of clusterings, such 

as Rand (Rand, 1971), Fowlkes-Mallows (Fowlkes and Mallows, 1983) and 

Jaccard Indices (Ben-Hur et al., 2002). The application of consensus clustering 

in our study is based on the similarity or distance between the input clusterings, 

in order to measure the consensus between input clusterings, with N objects of 

a dataset, we defined a (N X N) symmetric matrix to record the pairwise 

similarity relationship; each entry in the matrix represents the proportion of 

clustering runs or number of input clusterings in which two objects are 

clustered together. It simply counts the pairs of co-clustered objects in the set 

of clusterings (Filkov & Skiena, 2004). That is, the entry (i, j) in the similarity 

matrix indicates the number of times objects i and j are assigned to the same 

cluster divided by the total number of clustering runs. The consensus similarity 

matrix in essence is similar to the well known Rand Index. Most of the 

commonly used consensus clustering algorithms as described in the later 

section can be carried out with the consensus similarity matrix. Figure 7-2 

illustrates how the measure of consensus similarity is computed with an 

example. 

A set of in put clusterings 
Pertttlon t: {1,3}; {2,4,5} 

2: {1,2,4}; {3,5) 
3: {1,2,3}: {4,5}... 
4: {1}; {2,3}. {4.5}. 

6: {1,3,5}; {2,4} 
.. 7' {9,2,3,5); {4}. 

8: {1,2}; {3,4,5}... 
9: {1.5): J2.3.41... 

Consensus Similarity Matrix 
12345... 

2 clustering 
convert 3 by 

4 court the number of times -ý% 
5 objects (1,3) co-clustered 

Consensus Clustering 

I Majority Rule 
2 Averege Urkege 
3 Furthest Lir <age 
4 CCPiv 1 
5 Direct 
6 Graph-based 

7 BOK 

Figure 7-2 Example of consensus similarity measuring 
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7.3.2 Weighting Scheme 

A common shortcoming for most consensus clustering methods is that the 

importance of all input clustering results is considered equally. Different 

clustering methods have different clustering performance. Weighting different 

clustering results for consensus clustering is expected to have better 

performance rather than simply averaging all results. However, only a few 

studies (Al-Razgan and Domeniconi, 2006; Li and Ding, 2008) in the literature 

have discussed the weighting schemes for consensus clustering. Gullo et al. 

(2009) proposed three types of diversity-based weighting schemes for 

consensus clustering, Single Weighting, Group Weighting and Dendrogram 

Weighting. These weighting schemes are designed to be independent of any 

specific consensus clustering method, moreover the correlations among input 

clusterings are also considered. Although there was no consistent benefit found 

from their weighting schemes over all datasets, the majority of results have 

been improved over the unweighting consensus clustering for certain datasets. 

In addition, for these studies, the classification of each object in the datasets is 

known, i. e. clustering on categorical data, and most datasets are from UCI 

(University of California in Irvine) data repository. Hence, the evaluation of 

clustering result is simply verifying if each object has been assigned to the 

right class, while in our study we used four different types of evaluation which 

have been discussed in Chapter 4. 

In our study, the weighting scheme employed for measuring consensus is 

simply to apply larger weights to the clustering method with better 

performance based on a certain evaluation criterion. For example (see Table 

7-1), on measuring the consensus of a pair of objects co-clustered, the best 

clustering performance (CLUTO-UPGMA) based on Shannon Entropy 

evaluation over these nine clustering methods will be given a weight of 9 to 

stress its importance rather than just given a count of I in the case of no 

weighting scheme. By Contrast, the worst, Yin-Chen method obtains a weight 

of 1. All these nine input clusterings in this experiment are basically from the 

previous study carried out in Chapter 6 and ranked by varied evaluation criteria. 
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However, in our example, a rank of 1 indicates the best performance, and a 

rank of 9 denotes the worst. 

500 clusters of clustering on the MDDR dataset 
evaluated by Shannon Entropy 

Clustering Methods Ranks Weights 
Yin-Chen 9 1 

CAST 2 8 
e-Ward's 5 5 
Ward's 4 6 

UPGMA 1 9 
Direct-el 3 7 
Direct-i2 6 4 

Repeated Bisection-el 7 3 
Repeated Bisection-i2 8 2 

Table 7-1 Example of the weights on measuring consensus 

The consensus procedure could employ the above weighting scheme to 

generate a weighted consensus similarity matrix. Again, all the consensus 

algorithms except BOK (discussed in next section) can be carried out based on 

such a weighted consensus similarity matrix. This is because the essence of 

BOK algorithm is simply based on the calculation of average consensus 

similarity (or Rand distance) rather than by taking the ranking of different 

clustering methods into account. 

7.3.3 Algorithms 

Seven consensus clustering methods were employed in this study. CC-Pivot 

and BOK methods (Goder & Filkov, 2008) were coded using Perl script based 

on their algorithms, while the other five methods, Majority Rule, Average 

Linkage, Furthest Linkage, Direct and Graph-based, were carried out using the 

implementations in the CLUTO software package (CLUTO, 2003). In addition, 

the graph-based clustering method in CLUTO employs hypergraph partitioning 

algorithms as well as the efficient multilevel graph partitioning algorithms 
derived from METIS and hMETIS (Karypis, 2003) which are the commonly 

used packages in the application of graph-based consensus clustering (Nguyen 
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& Caruana, 2007; Strehl & Ghosh, 2002). 

7.3.3.1 Majority Rule 
The Majority Rule is also called the Quota Rule (Goder & Filkov, 2008). In 

nature, it is a bottom-up agglomerative procedure in which every single object 

is considered as a cluster in the beginning, then for every pair of objects for 

which their consensus similarity is greater than a predefined threshold, these 

are merged into the same cluster; if objects are in the different clusters, then the 

clusters are merged. Those remaining objects which have not been assigned to 

any cluster will be considered as singletons (Fred, 2001). This technique is 

equivalent to the single linkage clustering (Fred & Jain, 2002). The threshold in 

this experiment is determined by the desired number of clusters. That is, the 

threshold is adjusted to generate the closest number of clusters to 500,600,700, 

800,900 and 1000. 

7.3.3.2 Average Linkage 

The Average Linkage is a standard bottom-up agglomerative method which is 

also known as group average or Unweighted Pair-Group Method using 

Arithmetic averages (UPGMA). It begins with every object being assigned to a 

cluster; then, two clusters are merged with the minimum mean distance or 

maximum mean consensus similarity. However, the calculation of the mean 

distance or consensus similarity is based on the pairwise relationship between 

two clusters. It takes account of all possible pairs of objects between two 

clusters, not only the minimum or maximum distance (Everitt et al., 2001). 

Such iterative procedure of finding the maximum consensus similarity can be 

terminated when the maximum consensus similarity is smaller than a 

predefined threshold or when reaching the desired number of clusters. In our 

study we chose the latter as the terminating criterion in order to compare the 

performance of our previous study. 

7.3.3.3 Furthest Linkage 
This is also known as complete linkage or farthest neighbour, which is the 

opposite of single linkage. The distance between two clusters is based on the 
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maximum of all possible pairwise distances i. e. farthest pair of objects, one 

object from each cluster. In each step, two clusters are merged with the smallest 

maximum pairwise distance, that is, the largest minimum pairwise consensus 

similarity in our study. However, there are variations of furthest linkage 

discussed in the literature (Bertolacci & Wirth, 2007; Gionis et al., 2007; 

Nguyen & Caruana, 2007), few are reported effective. Hence, in our study, we 

employed the traditional agglomerative furthest linkage clustering method 

provided in the CLUTO package to deal with the consensus problems. 

7.3.3.4 CC-Pivot 
The CC-Pivot usually picks an object p randomly as a pivot, and then assigns 

every object having a consensus similarity with p greater than a predefined 

threshold to one cluster. It then iteratively chooses a new pivot object from the 

un-clustered objects. The procedure is executed repeatedly until all objects 

have been clustered. Again, the threshold is determined by the number of 

clusters as for the Majority Rule method. In addition, there are alternative ways 

to pick the pivot object in the literature (Zuylen, 2005), such as picking the 

pivot object with the smallest, average, or maximum consensus similarity or 

other similarity functions. However, in our study, we employed the most 

common random pivot object selection method. 

7.3.3.5 Direct 

Nguyen and Caruana (2007) proposed a variation of the K-Means method, 

which is called Iterative Pairwise Consensus in their study, based on a 

consensus similarity matrix to solve the consensus clustering problem. The 

Iterative Pairwise Consensus (IPC) method offered better performance under 

some evaluation criteria rather than being consistently superior to others. 

However, we found another variation of the K-Means method useful in our 

previous study of Chapter 6, which is called the direct method in the CLUTO 

toolkit package developed by Karypis (2003) and is discussed in detail in 

Chapter 4. Hence we also employed the direct method based on the consensus 

similarity matrix to cope with the consensus problem in this study. 
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7.3.3.6 Graph based 
The graph-based consensus clustering method basically constructs a sparse 

graph to represent the similarity relations between the different objects 

(Karypis et al., 1999). In the essence of graph theory, the objects in the 

consensus similarity matrix correspond to the vertices or nodes, while the 

consensus similarities correspond to the edges. In the literature (Nguyen & 

Caruana, 2007; Strehl & Ghosh, 2002), METIS and hMETIS are the commonly 

used software packages in the application of graph-based consensus clustering 

such as HyperGraph partitioning clustering (HGPA) and Cluster-based 

Similarity Partitioning Algorithm (CSPA). In our study, we employed 

CLUTO's graph partitioning based clustering algorithm, graph method, since it 

integrates and exploits the advantage from the previous graph and hypergraph 

partitioning algorithms of METIS and hMETIS software packages. In graph 

method, each object (vertex) is connected to its most similar other objects 

using a nearest-neighbor algorithm to form a graph. The graph is then split into 

desired number of clusters using a min-cut graph partitioning algorithm 

(Karypis, 2003). 

7.3.3.7 BOK 
This algorithm may be the simplest one and is also known as The Best 

Clustering Algorithm (Gionis et al., 2007; Bertolacci & Wirth, 2007). It 

arbitrarily picks one clustering from the input clusterings as the consensus in 

turn, and then calculates its Rand distance (Rand, 1979) between the consensus 

and the rest of input clusterings. The consensus which has the minimum 

average distance will be considered as the best of clustering (BOK) (Filkov & 

Skiena, 2004a; Goder & Filkov, 2008). 
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Above seven consensus clustering methods and their abbreviations used in the 

following sections are summarized and shown in Table 7-2. 

Consensus 
Clustering Methods Software Tools 

Code in Tables 
and Figures 

Majority Rule 
Agglomerative method with criterion 
function of sinle linkage in CLUTO MR 

Average Linkage 
Agglomerative method with criterion 
function of u ma in CLUTO AL 

Furthest Linkage 
Agglomerative method with criterion 
function of furthest linkage in CLUTO FL 

CC-Pivot Coded by Perl script CCP 

Direct Direct method in CLUTO DR 

Graph based Graph method in CLUTO GB 
F BOK Coded by Perl script BOK 

Table 7-2 Summary of consensus clustering methods 

7.3.4 Determining the Number of Clusters 

The number of clusters is normally determined by the consensus algorithm 

(Gionis et al., 2007; Bertolacci & Wirth, 2007). In our study, in order to 

compare the performance of consensus clustering with our previous study, we 

set the same number of clusters, which is 500,600,700,800,900, and 1000 

clusters for each consensus clustering run for both datasets. For the Majority 

Rule and the CC-Pivot methods, the number of clusters is determined by the 

predefined threshold. Within these two consensus clustering methods, the 

CC-Pivot method is extremely sensitive to the number of clusters with regard 

to the initial threshold setting and the random pivot objects selecting. To work 

such problem out, we chose the closest number of clusters from over 30 

clustering runs by adjusting the threshold. 
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7.4 Results and Analysis 
Evaluating the clustering results is a critical issue of consensus clustering. 
There are extensive evaluation measures in the literature. If a clustering method 

offers better performance than others over many evaluation measures, then we 

can claim confidently such clustering method should be the best for a certain 
type of application. The four evaluation measures used in our previous study 

are also employed in this experiment as discussed in Chapter 4, entropy, 

entropy based on cluster size, F-Measure and QCI. 

7.4.1 Evaluation of the MDDR Dataset 

7.4.1.1 Evaluation using the F-Measure on the MDDR Dataset 

Our previous study carried out the comparison of performances between nine 

different clustering methods. However in this section, the performances of 

seven consensus clustering methods are compared with the single best 

clustering based on a certain evaluation from our previous study in Chapter 6; 

for example if evaluating the MDDR 500-cluster results using the F-Measure, 

single best clustering would be method that gave the best F-Measure results 

with the 500 MDDR clusters. In addition to the single best clustering, the 

Ward's method is the clustering procedure of choice in most Chemoinformatics 

applications and software packages. Hence, the performance of Ward's method 

in our previous study is also included in the comparison with consensus 

clustering. 

The consensus clustering result for unweighted consensus similarity using the 

MDDR dataset was evaluated by the F-Measure and its evaluation is shown in 

Figure 7-3. The performances evaluated by the F-Measure of seven consensus 

clustering methods are significantly split into two groups, the Majority Rule 

method gives the consistently worst results over all numbers of clusters, and 

the rest of consensus clustering methods are in the leading group. The reason 
for the Majority Rule method offering the significantly worst results is because 

of its worse clustering generating many active singletons (Table 7-3) and few 
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big clusters, and this will lead to worse evaluation on the F-Measure. 

Consensus 
Clustering 
Methods 

# clusters 
Unweighted datasets 

MDDR IDAlert 

Weighted datasets 

MDDR IDAlert 

500 31 27 26 22 

600 25 31 28 22 

Majority 700 29 31 34 36 

Rule 800 44 45 44 39 

900 44 50 47 45 

1000 55 60 56 53 

Table 7-3 The number of active singletons in the consensus clustering results of the Majority 
Rule method for unweighted and weighted datasets. 

In the leading group, Average Linkage, K-Means based, and Furthest Linkage 

have the best performance with different numbers of clusters. However, no 

single consensus clustering method yields the consistently best results over all 

numbers of clusters. In comparison with the single best clustering (SBC) 

method from our previous study, the performance of single best consensus 

clustering methods provides superior results over 800,900, and 1000 clusters; 

while over 500,600, and 700 clusters, the single best conventional clustering 

method has better performance than the single best consensus clustering 

methods. There is thus no consistent benefit gained in comparison with the 

single best conventional clustering. However, in comparison with the most 

commonly used Ward's (WD) clustering, 5 in 6 single best consensus 

clusterings have shown better performance. 
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Figure 7-3 Comparison of evaluation using F-Measure between weighted and unweighted 
M DDR datasets 

The performance evaluated by the F-Measure on weighted consensus similarity 

using the MDDR dataset is shown in Figure 7-3. Similar to the result of the 

unweighted MDDR dataset, the Majority Rule method provides consistently 

worst performances across all numbers of clusters. K-Means based, Average 

Linkage, and Furthest Linkage methods in the leading group still yield the best 

results with different numbers of clusters. Again, in comparison with the single 

best clustering method (SBC), consensus clustering methods tend to have 

better performance than the single best clustering method when there are large 

numbers of clusters e. g. 800 and 1000 clusters. Similarly, in comparison with 

the most commonly used Ward's (WD) clustering, 4 in 6 single best consensus 

clusterings have shown better performance. 
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The comparison of evaluation using F-Measure between weighted and 

unweighted consensus similarity on the MDDR datasets is listed in Figure 7-3. 

As we described previously in Section 7.3.2, the weighting scheme is applied 

to all consensus clustering methods except the BOK method. Hence, six 

consensus clustering methods are listed in Figure 7-3 have performance with a 

weighting scheme. The result shows that, for all consensus clustering methods 

with the F-Measure evaluation, there is no significant difference between 

weighted and unweighted datasets across all numbers of clusters. In other 

words, no single consensus clustering method with weighting scheme can 

consistently offer better performance than any single unweighted consensus 

clustering method. Even though some weighted consensus clustering 

methods are better on the clustering with certain numbers of clusters, their 

improvement is limited. 

In addition, according to the evaluation using F-Measure in Figure 7-3, 

employing a weighting scheme or not for consensus clustering fails to yield 

obvious difference between the single best consensus clustering method in this 

study and the single best clustering method in our previous study. No notable 

benefit is gained from consensus clustering under the F-Measure evaluation. 

However, several cases where the best consensus method is better than the 

standard Ward's method. 

160 



7.4.1.2 Evaluation using the QCI on the MDDR dataset 

30Y 

7t4 i 

ri II 
MDDR 700 <'(u. icn 

urn - 

MR AL ft P h\I t(h BK SHl' WD 

MDDR I)(X) chlslrrrs 

tiiriii1iri 

MR AI. 11. ((1, K%l Iqb Itn "I" W'I) 

MDDR600Clustcn 

20% - 
g 

17ý 

'`4 

mij. 

I 

MR Al. F1, ('CP KM Gh Rh: ý! u ýýU 

MDDR 10.00 Clumm. - 

un 

ýIIý 11 IIýti Wd b HK SBC WD 

Figure 7-4 Comparison of evaluation using QCI between weighted and unweighted MDDR 
datasets 

Figure 7-4 presents the results of QCI evaluation of consensus clustering on 

unweighted consensus similarity using the MDDR dataset, and includes the 

performance of the single best conventional clustering method. The 

performances evaluated by QCI of seven consensus clustering methods show 

that K-Means based and Graph based methods are consistently in the leading 

group and keep offering better QCI values. Similarly, the Majority Rule 

method consistently has worst results over all numbers of clusters due to its 

worse clustering containing many singletons and few big clusters. According to 

the equation of QCI discussed in Chapter 4, as the number of active singletons 
increased, the value of QCI decreased. In the leading group, K-Means based 
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method has the noticeably and consistently best performance with all numbers 

of clusters. In comparison with the single best clustering (SBC) method from 

our previous study, the performance of consensus clustering methods provide 

superior results only with 500 clusters, while the single best clustering method 

has better performance with the rest of different numbers of clusters. In spite of 

this, there is no overall superior performance found to single best clustering 

method. However, in comparison with the most commonly used Ward's (WD) 

method, 5 in 6 single best consensus clusterings are found to be superior. 

The performances evaluated by QCI on weighted consensus similarity of the 

MDDR dataset are also shown in Figure 7-4. Identical to the result of the 

unweighted MDDR dataset, the Majority Rule method provides consistently 

worst performances over all numbers of clusters. The K-Means based method, 

Direct, in the leading group still yields the best results across all partition sizes. 

Again, the single best consensus clustering method, Direct method, has better 

performance than the single best clustering (SBC) method only with 500 

clusters. However, in comparison with the most commonly used Ward's (WD) 

method, 5 in 6 single best consensus clusterings are found to be superior. 

The comparison of QCI evaluation between weighted and unweighted 

consensus similarity using the MDDR datasets is shown in Figure 7-4. The 

result shows that for all consensus clustering methods with QCI evaluation, 

there is no significant difference between weighted and unweighted datasets 

over all numbers of clusters, that is, no single consensus clustering method 

with weighting scheme can consistently offer better performance. Even 

though some weighted consensus clustering method is better on the clustering 

with certain number of clusters, its improvement is limited. 

In addition, according to the QCI evaluation in Figures 7-4, notwithstanding 

the consensus clustering method is with or without weighting scheme, there is 

no obvious difference between the single best consensus clustering method in 

this study and the single best clustering method in our previous study. No 

significant benefit is gained from consensus clustering with the QCI 

evaluation. 
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7.4.1.3 Evaluation using Entropy and Entropy based on cluster size on the 
MDDR dataset 

7.4.1.3.1 Evaluation using Entropy on the MDDR dataset 

Shannon Entropy was employed to evaluate the distribution of active 

compounds over all clusters, the smaller Entropy value the better the 

performance. Figure 7-5 shows the Entropy evaluation of six consensus 

clustering methods with weighted scheme, seven consensus clustering methods 

with unweighted scheme, and also the single best clustering and the Ward's 

method from our previous study. 
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Figure 7-5 Comparison of evaluation using Shannon Entropy between weighted and 
unweighted MDDR datasets 
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Obviously, the Majority Rule consensus clustering method has the consistently 

and noticeably best (smallest) Entropy values than any others on either 

weighted or unweighted using the MDDR dataset. However, with visual 
inspection on the clustering results of the Majority Rule, there are many 

singletons, many small clusters, and few big clusters. Most of the active 

compounds have been assigned to these few big clusters, and this leads to the 

smaller Entropy value, since Shannon Entropy, in essence, focuses on the 

distribution of active compounds without taking the number of singletons into 

account. 

However, evaluating without the abnormal Majority Rule method, the Average 

Linkage consensus method tends to have the best performance over all 

numbers of clusters except the clustering of 1000 clusters with the unweighted 

scheme. In terms of weighting scheme, the result is identical to the unweighted. 
The Average Linkage method yields the consistently best performance over all 

numbers of clusters except the clustering of 1000 clusters. 

In comparison with the single best clustering (SBC) method from our previous 

study, the Majority Rule consensus clustering is significantly better than 

conventional clustering. However, in our experiment, the Majority Rule 

method offered abnormal clustering somehow. Hence, comparing without the 

Majority Rule method, the performance of conventional single best clustering 
is better than consensus clustering on both weighted and unweighted MDDR 

datasets. Nevertheless, in comparison with the most commonly used Ward's 

(WD) method, most consensus clusterings are found to be superior in Entropy 

values. 

7.4.1.3.2 Evaluation using Entropy Based on Cluster Size on the MDDR 
Dataset 

Similar to the evaluation of Entropy, the Majority Rule consensus clustering 

method has the consistently and noticeably best (smallest) Entropy values than 

any others on either the weighted or unweighted MDDR dataset. However, 

with visual inspection of the clustering results of the Majority Rule, there are 
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many singletons and small clusters. Since Entropy based on cluster size 

measures the distribution of cluster size, multiples clusters with similar size 

will definitely give a better result. 
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Figure 7-6 Comparison of evaluation using Entropy based on cluster size between weighted 
and unweighted MDDR datasets 

After discarding the abnormal Majority Rule method, the leading group of 
CC-Pivot and Average Linkage methods have better results. Nevertheless, the 

CC-Pivot consensus method provides the consistently best performance over 

all numbers of clusters with the unweighted MDDR dataset. As we described 

previously, the CC-Pivot method is extremely sensitive to the number of 

clusters with its initial setting. For example, in our experiment, doing CC-Pivot 

consensus clustering with unweighted consensus similarity matrix generated by 
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500 clusters of different clusterings will eventually produce 541 clusters. In 

theory, the additional 41 clusters will more or less decrease the value of 

Entropy based on cluster size. However, as shown in Figure 7-6, as the number 

of clusters increase, the value of Entropy based on cluster size does not always 
decrease. The cluster size actually depends on the clustering algorithm itself 

more than the number of clusters. In terms of the weighted MDDR dataset, the 

Average Linkage and CC-Pivot methods are still in the leading group. 
Moreover the Average Linkage consensus clustering method provides 

consistently the best performance over all numbers of clusters except 600 

clusters. 

In comparison with the single best clustering (SBC) method from our previous 

study in Chapter 6, the result is identical to Entropy evaluation. The Majority 

Rule consensus clustering is superior to conventional clustering with the 

evaluation of Entropy based on cluster size. However, when comparing without 

the abnormal Majority Rule method, performance of the single best 

conventional clustering is consistently better than consensus clustering on both 

weighted and unweighted MDDR datasets. In terms of evaluation of Entropy 

based on cluster size, the clustering performance failed to benefit from 

consensus clustering. Nevertheless, in comparison with the most commonly 

used Ward's (WD) method, most consensus clusterings are found to be superior 

with regard to Entropy value based on cluster size. 

7.4.1.3.3 Summary 
Table 7-4 summarizes the performance evaluated by four different criteria, and 

the comparison with the single best clustering and Ward's methods from our 

previous study in Chapter 6. 
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MDDR dataset 

Evaluations Performance of Comparison with the Comparison with 
consensus clusterings single best clustering Ward's method 

Except 500,600 and 

No consistently better 700 clusters of 5 in 6 the best consensus 
F-Measure 

method 
clusterings, the single clustering method is 

best consensus better 
clusterings is better 

The consensus 6 in 6 the best consensus 
QCI K-Means based method clustering is better only clustering method is 

is the best with 500 clusters of better 
clustering 

Shannon 5 in 6 clusterings, AL 

Entropy method is the best 
(discard MR) Consensus clustering 

6 in 6 the best consensus 
Entropy methods are worse clustering method is 

based on 
No consistently better better 

cluster size 
method (discard MR) 

Table 7-4 Summary of the performance of consensus clusterings and the comparison with 
previous study using the MDDR dataset 

7.4.2 Evaluation of the IDAlert Dataset 

7.4.2.1 Evaluation using F-Measure on the IDAlert dätaset 

The consensus clustering results of the unweighted IDAlert dataset were 

evaluated by the F-Measure as shown in Figure 7-7, and it also includes the 

single best conventional clustering method from our previous study in order to 

compare their performance. Obviously, the Majority Rule consensus method 

has the consistently worst results over all numbers of clusters. The reason is 

that it yields worse clustering with many singletons (Table 7-3) and a few big 

clusters as we discussed in Section 7.4.1.1. In addition, the Average Linkage 

method has the best F-Measure values with all numbers of clusters except 500 

clusters; the K-Means based method also has better performance with most of 

the numbers of clusters. 

However no single consensus clustering method is found to be effective 

providing consistently best results over all numbers of clusters. In comparison 

with the single best clustering method from our previous study, the 

performance of single best consensus clustering method, Average Linkage 
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method, provides superior results over all numbers of clusters except 500 and 

700 clusters to the single best conventional clustering method. Nevertheless, 

the single best and some consensus clusterings consistently offer better 

performance than the Ward's method from our previous study. 
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Figure 7-7 Comparison of evaluation using F-Measure between weighted and unweighted 
IDAlert datasets 

The performances evaluated by the F-Measure on weighted consensus 

similarity using the IDAlert dataset are also listed in Figure 7-7. Similar to the 

result with the unweighted IDAlert dataset, the Majority Rule consensus 

clustering method provides consistently worst performances over all numbers 

of clusters due to its poor clustering with a large number of singletons. Similar 

to the unweighted IDAlert dataset, in addition to the Average Linkage method, 
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no others consistently remain in the leading group. The Average Linkage still 

offers the best results in most of the numbers of clusters. Again, the single best 

consensus clustering method, the Average Linkage, produces better 

performance than the single best clustering method over all numbers of clusters 

except 500 and 800 clusters. Although, with the F-Measure evaluation, no 

significant evidence shows consensus clustering improved the performance or 

even better than conventional clustering, the differences between single best 

consensus and single best conventional clustering methods are limited. Similar 

to the result of unweighted IDAlert dataset, the single best and some consensus 

clusterings have consistently better results than the Ward's method from our 

previous study. 

The comparison of the F-Measure evaluation between weighted and 

unweighted consensus similarity using the IDAlert datasets is also shown in 

Figure 7-7. The result shows that for all consensus clustering methods with the 

F-Measure evaluation, there is no significant difference between weighted and 

unweighted datasets over all numbers of clusters. In other words, no single 

consensus clustering method with weighting scheme can consistently yield 

better performance. Even though some weighted consensus clustering methods 

are better on the clustering with certain number of clusters, their improvement 

is limited. 

7.4.2.2 Evaluation using the QCI on the IDAlert dataset 

The consensus clustering results for unweighted consensus similarity using the 

IDAlert dataset were evaluated by QCI and the evaluation is shown in Figure 

7.8. The performance evaluated by QCI of seven consensus clustering methods 

shows that K-Means based and Graph based methods consistently offer better 

and similar QCI values, and this is similar to the results on the MDDR dataset. 

The only difference is, in the leading group, the Graph based method yields the 

consistently best performance with all numbers of clusters except 1000 clusters. 

Again, the Majority Rule method consistently has the worst results over all 

numbers of clusters due to its poor clustering. The single best clustering 

method from our previous study in Chapter 6 provides superior results with all 
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numbers of clusters. However the single best consensus clustering method, i. e. 

Graph based method, has closer results to it. Nevertheless, the single best and 

some consensus clusterings consistently offer better performance than the 

Ward's method from our previous study. 
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Figure 7-8 Comparison of evaluation using QCI between weighted and unweighted IDAlcrt 
datasets 

Figure 7-8 also presents the performances evaluated by QCI on weighted 

consensus similarity using the IDAlert dataset. Similar to the result of the 

unweighted IDAlert dataset, the K-Means based and Graph based methods 

remain in the leading group offering better results. 1-however, with the 

weighting scheme, the K-Means method yields the best performance instead of 

the Graph based method over all numbers of clusters except 800 clusters. 
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Similarly, the Majority Rule method provides consistently poor performances 

over all numbers of clusters because of its worse clustering. Again, no single 
best consensus clustering methods have consistently better performance than 

the single best clustering method for all numbers of clusters. The difference of 

performance between the single best conventional clustering and single best 

consensus clustering is limited. No benefit is obtained from the application of 

consensus clustering. Again, similar to the result of the unweighted IDAlert 

dataset, the single best and some consensus clusterings consistently offer better 

QCI values than the commonly used Ward's method from our previous study. 

The comparison of QCI evaluation between weighted and unweighted 

consensus similarity using the IDAlert datasets is also shown in Figure 7-8. 

The result shows that for all consensus clustering methods with QCI evaluation, 

there is no notable difference between weighted and unweighted datasets over 

all numbers of clusters, that is, no single consensus clustering method with 

weighting scheme can consistently offer better performance. Even though 

some weighted consensus clustering methods are better on the clustering with 

certain number of clusters, their improvement is limited. 

In addition, according to QCI evaluation in Figures 7-8, there is no obvious 

difference between the single best consensus clustering method in this study 

and the single best clustering method in our previous study in spite of the 

consensus clustering method is with or without weighting scheme. There is no 

significant benefit found from consensus clustering with the QCI evaluation. 
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7.4.2.3 Evaluation using Entropy and Entropy based on cluster size on the 
IDAlert dataset 

7.4.2.3.1 Evaluation using Entropy on the IDAlert dataset 

Shannon Entropy was employed to evaluate the distribution of active 

compounds over all clusters, the smaller Entropy value the better performance. 

Figure 7-9 shows the Entropy evaluation of seven consensus clustering 

methods with the unweighted scheme, and six methods with the weighted 

scheme. Figure 7-9 also represents the performance of the single best 

conventional clustering method and the performance of Ward's method. 
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Figure 7-9 Comparison of evaluation using Shannon Entropy between weighted and 
unweighted IDAlert datasets 
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Similar to the result of the MDDR dataset, the Majority Rule consensus 

clustering method has the consistently and noticeably best (smallest) Entropy 

values for either the weighted or unweighted IDAlert dataset. However, with 

visual inspection on the clustering results of the Majority Rule, there are many 

singletons, many small clusters, and few big clusters. The active compounds 

are largely assigned to these few big clusters, and this leads to the smaller 

Entropy value. This is because Shannon Entropy, in essence, focuses on the 

distribution of active compounds without taking the number of singletons into 

account. 

However, evaluating without the abnormal Majority Rule method, the Average 

Linkage consensus method tends to have the best performance over all 

numbers of clusters except the clustering of 900 clusters with the unweighted 

scheme. In terms of weighting scheme, the result is similar to the unweighted 

scheme. The Average Linkage method yields the consistently best performance 

over all numbers of clusters. 

In comparison with the single best clustering method from our previous study, 

the Majority Rule consensus clustering does significantly better than the 

conventional clustering methods; however, in our experiment, the Majority 

Rule method offered abnormal clustering somehow. Hence, comparing without 

the Majority Rule method, the performance of the conventional single best 

clustering is better than consensus clusterings on both the weighted and 

unweighted IDAlert datasets. However, the single best and some consensus 

clusterings have consistently better Entropy values than the commonly used 

Ward's method from our previous study. 
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7.4.2.3.2 Evaluation using Entropy Based on Cluster Size on the IDAlert 
Dataset 

The evaluation of Entropy based on cluster size for the IDAlert dataset is 

shown in Figure 7-10. Similar to the evaluation of Entropy, the Majority Rule 

consensus clustering method has the consistently and noticeably best (smallest) 

Entropy values than any others on either the weighted or unweighted IDAlert 

dataset. However, with visual inspection of the clustering results of the 

Majority Rule, there are large numbers of singletons and small clusters, and 

this leads to the consistency of cluster size in the form of multiple small 

clusters, since Entropy based on cluster size is an evaluation to measure the 

distribution of cluster size, clusters with similar small size will definitely yield 

better entropy values, 

Under the situation of discarding the abnormal Majority Rule method, the 

leading group of the CC-Pivot, Furthest Linkage and Average Linkage methods 

have better results in the unweighted IDAlert dataset. Identical to the result of 

MDDR, the CC-Pivot consensus method provides the consistently best 

performance over all numbers of clusters. The CC-Pivot method is extremely 

sensitive to the number of clusters with its initial setting as we described 

previously. In terms of the weighted IDAlert dataset, the Average Linkage, 

Furthest Linkage and CC-Pivot methods are still in the leading group. But no 

single consensus clustering method provides the consistently best performance 

over all numbers of clusters. 

In comparison with the single best clustering method from our previous study, 

the result is identical to Entropy evaluation. The Majority Rule consensus 

clustering is superior to conventional clustering with the evaluation of Entropy 

based on cluster size; however, comparing without the abnormal Majority Rule 

method, performance of the single best conventional clustering is consistently 
better than consensus clustering on both weighted and unweighted IDAIert 
datasets. Nevertheless the single best and some consensus clusterings have 

consistently better Entropy values based on cluster size than the commonly 
used Ward's method from our previous study. In terms of evaluation of Entropy 
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based on cluster size, the clustering performance failed to benefit from 

consensus clustering. 
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Figure 7-10 Comparison of evaluation using Entropy based on cluster size between weighted 
and unweighted IDAlert datasets 

7.4.2.3.3 Summary 
Table 7-5 summarizes the performance evaluated by four different criteria, and 

the comparison with the single best clustering and Ward's method from our 

previous study in Chapter 6. 

175 



Chapter 7: Comparison of Chemical Consensus Clustering Methods Using Fingerprint-based Similarity 
Measures 

IDAIert dataset 

Evaluations Performance of 
consensus clusterings 

Comparison with 
the single best 

clustering 

Comparison with 
Ward's method 

5 in 6 clusterings, 5 in 6 clusterings, 
F-Measure Average Linkage method consensus 

is the best clusterings are better 

QCI 5 in 6 clusterings, Graph 6 in 6 the best 
based method is the best consensus clustering Shannon Weighted AL method is Consensus method is better 

Entropy the best (discard MR) clusterings are worse 
Entropy based Unweighted CCP method 
on cluster size is the best (discard MR) 

Table 7-5 Summary of the performance of consensus clusterings and the comparison with 
previous study using the IDAlert dataset 

7.5 Conclusions 
We compared seven consensus clustering methods evaluated by four different 

criteria discussed in our previous study. The results indicate that, for each 

single evaluation criterion, a certain consensus clustering method is possible to 

be found consistently effective; however for overall evaluation criteria, it is 

difficult to find the single best consensus clustering method. Our results also 

show that there is limited difference between using conventional and consensus 

clustering methods, that is, no significant benefit is obtained from using 

consensus clustering in our study. In terms of weighted scheme applied to the 

consensus similarity matrix, the improvement is also limited. It is suggested 

that other weighting schemes might be more successful. The results in our 

study still show that consensus clustering methods are dataset dependent as 

reported in the literature; no single best clustering method can be applied to all 

applications and all fields. 
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Chapter 8: Conclusions and Future Work 

8.1 Conclusions 
The work described in this thesis has discussed the application of clustering on 
2D chemical structures. 

The initial study of this thesis shows the effect of standardization procedures 

on chemical clustering and similarity searching. No standardization method 

was found that provides consistently superior or worse performance in both the 

MDDR and IDAlert datasets at the a=0.01 level of statistical significance, 

moreover we found statistically significant at the a=0.05 level on the tests 

based on the results of similarity searching only on the IDAIert dataset. We 

hence conclude that there is no obvious performance benefit that is likely to be 

obtained from the use of any particular standardization method. In a later 

extensive study, we employed more diverse clustering methods, but the 

performance of standardization methods is similar to the previous study. 

Overall, standardization procedures can improve the clustering performance 

more and less, but no method was found to be consistently effective. 

Next, the comparison of nine clustering methods showed that, for the ECFP 4 

chemical representation considered in this work, no consistent performance 
benefit is likely to be obtained from the use of any particular clustering method 

using the chosen evaluation methods. One possible reason to explain the 

inconsistent performance is the diverse evaluation criteria, for example 

CLUTO-Direct method has consistently better F-Measure and QCI results but 

worse Entropy based on cluster size. That is, the clustering results of 
CLUTO-Direct did not yield clusters with equal size but obtained good 
F-Measure and QCI values. Can we conclude a clustering with equal size of 

clusters is a good partition, or a clustering without equal size of clusters a 

worse partition? To sum up, the result reveals that it is difficult for a clustering 
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method to satisfy all our evaluation criteria. 

Finally, the performance of seven consensus clustering methods evaluated by 

four different criteria shows that evaluating using only one single criterion, a 

certain consensus clustering method is possibly to be found consistently 

effective; whereas evaluating using overall evaluation criteria, it is difficult to 
find the single best consensus clustering method. Our results also show that 

there is limited difference between using conventional and consensus 

clustering methods. That is, no significant benefit is obtained from using 

consensus clustering in our study. In terms of weighted scheme applied to the 

consensus similarity matrix, the improvement is also limited. The results in our 

study still show that consensus clustering methods are dataset dependent as 

reported in the literature. Although no single best clustering method can be 

applied to all applications and all fields, consensus clustering still offers more 

confidence to the result. 

Quantitative evaluation of clustering methods is not simple. The applicability 

of different evaluation measures is varied in essence. The use of several 

different evaluation measures in this thesis is expected to get some consistency 
to make results believable. Shannon Entropy based on cluster size takes only 

cluster size into account and ignores the number of actives, whereas Shannon 

Entropy considers only the distribution of actives and neglects the cluster sizes. 
However, both evaluation measures are not suitable to the clustering outcome 

containing one very large cluster and many small clusters. Such an abnormal 

clustering usually leads an extremely low Entropy value. Conversely, they are 

suitable to the clustering methods, e. g. Repeated Bisection method, which tend 

to generate similar cluster sizes. The combination of Shannon Entropy and 
Entropy by cluster size might not be used to fit above abnormal clustering, 
because Entropy, in essence, is an index to measure the distribution of a 

variable (e. g. actives or cluster sizes). If a clustering generates only one 

extremely large cluster, it is naturally not the case of distribution. Hence, a new 

or the other index to detect such abnormal situation may be needed 
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Moreover, F-Measure considers only the maximum F-value in a given active 

class rather than the average of F-value; for the case of abnormal clustering 

discussed above, it may not reflect the true quality of clustering. The evaluation 

using probability of correct prediction takes both actives and cluster sizes into 

account; however it is not applicable to the large datasets. Finally, the QCI 

takes both actives and inactives into account. In addition, for some cases of 

abnormal clustering, the number of singletons is also considered in the 

calculation of QCI. Hence, considering five evaluation measures used in this 

thesis, it is suggested that QCI is the evaluation measure of choice for the 

application of clustering on chemical structures. 

Account for the upper and lower bounds of the evaluation measures. The 

boundary of evaluation using probability of correct prediction is [0,1]. The 

essence of Entropy-based measures is to evaluate the distribution of a given 

variable, e. g. actives or cluster sizes. Hence, the Entropy value naturally 

depends on the partition size, i. e. scope of distribution, as well as the number of 

actives (for evaluation using Shannon Entropy) or dataset size (for evaluation 

using Entropy based on cluster size). In the worst case, a given variable is 

equally distributed over all clusters; the worst possible Entropy value could be 

varied, since it depends on above two factors, therefore, no upper bound for 

these two evaluation measures. Conversely, in the theoretically best case of 

Shannon Entropy, all actives of a certain class stay in one single cluster, the 

best possible Entropy value (lower bound) will be zero. Similarly, as for 

Entropy based on cluster size, clustering outcome containing one extremely 
large cluster and many singletons will leads the theoretically best (lowest) 

Entropy value, approaching zero, however it is actually an abnormal clustering 

result in practice. 

According to the equations discussed in Sections 4.4.4 and 4.4.5 for the 

evaluation using F-Measure and QCI, both measures consider the number of 

actives and dataset size, that is, both evaluation measures depend on number of 

actives and dataset size. For example, large dataset size and small number of 

actives tend to generate low value of F-Measure or QCI; by contrast, if the 

number of actives is close to the dataset size, the value of F-Measure or QCI 
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will possibly be high. The boundary of evaluation using F-Measure and QCI is 

(0,1]. 

In this thesis, it was initially expected that it would be possible to find a 

standardization method, clustering method or consensus clustering method 

offering consistent benefit in the applications of chemical clustering. However, 

the results show that this is not the case, as reported in the literature. No 

clustering technique is universal to all applications. 

8.2 Future Work 
This thesis involved the application of standardization procedures to chemical 

clustering, which is little studied in chemoinformatics, and the application of 

consensus clustering, which is discussed for the first time in chemoinformatics. 

Thus, there is obviously a lot of space for improvement and extension. 

First, for the manners of measuring consensus similarity in our work, we just 

simply count the pairs of co-clustered objects in the set of clusterings. However, 

varied techniques (Saporta and Youness, 2002) to compute consensus similarity 

by comparing partitions were reported in the literature. Different techniques to 

calculate consensus similarity will result in different types of similarity matrix, 

and this will also, of course, lead to varied performance of consensus clustering 

methods. 

Along with the measuring consensus similarity, the weighting scheme is also a 

component worth discussing in consensus clustering. In our study, we simply 

weight the consensus similarity based on the performance of a given clustering 

method from prior result. As we described in Section 8.1, many weighting 

schemes for consensus clustering were reported effective in the literature (Li 

and Ding, 2008; Domeniconi and Al-Razgan, 2009). Two types of weighting 

schemes might be worth applying to the field of chemoinformatics as follows: 
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Li & Ding (2008) proposed a weighted consensus clustering which is based on 

a non-negative matrix factorization (NMF) framework. A NMF is a matrix 

which can usually be factorized into two non-negative matrices (factors) (Berry 

et. al., 2006). In addition, each input clustering in the weighted consensus 

clustering is treated unequally with a weight which is automatically determined 

by a weighted aggregate connectivity matrix which records the co-clustered 

relationship of pairwise objects. They also showed their NMF framework is an 
instance of spares Principal Component Analysis, therefore their weighting 

scheme is able to deal with the case when some input clusterings are highly 

correlated, their weights will be small. 

The second is that Gullo et. al. (2009) proposed diversity-based weighting 

schemes, as mentioned in Section 7.3.2. The main difference between above 

NMF-based and the diversity-based is that the consensus clustering problem 
has to be formulated into NMF framework, while diversity-based weighting 
schemes consider only general properties of consensus clustering and is based 

on different implementations of diversity functions e. g. Normalized Mutual 

Information (NMI) and F-Measure in their study. Moreover, the diversity-based 

weighting schemes can be applied to any Instance-based, Cluster-based and 

Hybrid consensus clustering method. 

Our works in Chapters 6 and 7 deal with the chemical datasets represented by 

ECFP 4 fingerprints. Basically, clustering is dataset dependent as reported in 

the literature. Hence, clustering on the datasets represented by similar 
fingerprints (e. g. molecular holograms) or different chemical representations 
(Molconn-Z) may result in different results. 

Finally, the evaluation of clustering is another critical component. Different 

evaluation criteria evaluate different features of a clustering. It is difficult to 

find a clustering method can fit all types of evaluation criterion. Evaluation 

using similar types of criterion may be more likely to result in consistent 

evaluation of clustering performance. 
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