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Abstract

The clustering of chemical structures is important and widely used in several
areas of chemoinformatics. A little-discussed aspect of clustering 1s
standardization, it ensures all descriptors in a chemical representation make a
comparable contribution to the measurement of similarity. The initial study
compares the effectiveness of seven different standardization procedures that
have been suggested previously, the results were also compared with
unstandardized datasets. It was found that no one standardization method

offered consistently the best performance.

Comparative studies of clustering effectiveness are helpful in providing
suitability and guidelines of different methods. In order to examine the
suitability of different clustering methods for the application in
chemoinformatics, especially those had not previously been applied to
chemoinformatics, the second piece of study carries out an effectiveness
comparison of nine clustering methods. However, the result revealed that it is
unlikely that a single clustering method can provide consistently the best

partition under all circumstances.

Consensus clustering is a technique to combine multiple input partitions of the
same set of objects to achieve a single clustering that is expected to provide a
more robust and more generally effective representation of the partitions that
are submitted. The third piece of study reports the use of seven different
consensus clustering methods which had not previously been used on sets of
chemical compounds represented by 2D fingerprints. Their effectiveness was
compared with some traditional clustering methods discussed in the second
study. It was observed that no consistently best consensus clustering method

was found.
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Chapter 1 : Introduction

Drug discovery is a time-consuming and costly process. To bring a new drug to
market, it generally takes approximately 15 years and costs approximately 800
million US dollars (DiMasi et al., 2003), and this reveals the complex process
of drug discovery. This process typically involves dealing with vast amount of
information to find compounds with desired properties, using techniques such
as high-throughput screening and virtual screening. In addition, more than 53
million unique chemical substances are known and the number is growing

rapidly (CAS, 2010). The complex and enormous information can only be

- operated by computer techniques.

In fact, computer technology has been applied to the pharmaceutical industry,
especially in drug discovery, for many years. The development of
chemoinformatics was well reviewed by Willett (2008). These techniques

eventually resulted in a new discipline, chemoinformatics, which was first

introduced by Dr. Frank K. Brown in 1998:

“The use of information technology and management has become a critical
part of the drug discovery process. Chemoinformatics is the mixing of those
information resources to transform data into information and information into
knowledge for the intended purpose of making better decisions faster in the

area of drug lead identification and organization.”

Chemoinformatics is simply the use of information techniques to deal with the
chemical data explosion and to solve chemical problems; it speeds up the
process and increases the efficiency of drug discovery (Oprea, 2005). Cluster
analysis is one of these information techniques that find application in
chemoinformatics; it is extensively used to find the representative subsets from
high-throughput screening and combinatorial chemistry for chemical datasets

(Downs and Barnard, 2002). The focus of this thesis is on the method to group



Chapter 1; Introduction

L

2D chemical structures.

Much previous research in chemical clustering is on methods, implementation
and applications, whereas we consider the following three new aspects in this
thesis:
1. role of standardization, which has been little studied in the literature of
chemical clustering, as one component of chemical similarity measures
2. evaluation of clustering methods which have not previously been

considered for chemoinformatics applications

3. consensus clustering methods, which have not been applied to

chemoinformatics applications

Chapter 2 (‘An Introduction to Chemical Information’) first introduces
common and machine-readable representations of molecular structures, which
are the basis for similarity-based chemical computing. Similarity measures are
then discussed along with their crucial component, similarity coefficients. With
these, cluster analysis on chemical structures can be carried out. An overall
discussion of clustering is described in Chapter 3 (‘Clustering’). The traditional
Ward’s and K-Means methods are widely used in chemical applications, and
also used in this thesis. In addition, some novel methods which are reported to
be effective 1n other applications are employed to compare with the traditional

oncs.

In Chapter 4 (‘Experimental and Evaluation Methods’), we describe the
chemical datasets and their representations, clustering methods and evaluation
methods, which have been applied to the experiments of the following three

chapters.

The aim of Chapter 5 (‘Effect of Standardization on Three Different
Representations of Structural Similarity’) is to discuss the effect of
standardization procedures on chemical clustering of structural representations.
The 1itial study employs two traditional clustering methods, i.e. Ward’s and
K-Means; the extensive study in the second part of the chapter uses another

seven clustering methods to obtain more generalized results.
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Chapter 6 (‘Comparison of Chemical Clustering Methods Using
Fingerprint-based Similarity Measures’) seeks to find the most effective
clustering method for the application of fingerprint-based similarity measures,
traditional and novel clustering methods are mixed together to investigate their
performance. The clustering results are evaluated using four different criteria.

A good clustering method should be able to satisfy as many evaluation criteria

as possible.

Consensus clustering offers a way to combine different clustering results with
more confidence. Chapter 7 (‘Comparison of Chemical Consensus Clustering
Methods Using Fingerprint-based Similarity Measures’) 1s an extended study
of Chapter 6. The results from different clustering methods are integrated into a
consensus result, and then compared with the performance of the traditional

Ward’s method and the single best clustering method in Chapter 6.

Finally, Chapter 8 (‘Conclusion and Future Work’) summarizes the results of

this thesis and offers some suggested directions of how this work can be

extended.
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Information

2.1 Chemical Databases
Chemical databases store vast amounts of chemical information such as

compound names, chemical structure representations, or molecular data; they
may contain millions of entries for the purpose of search and retrieval. Hence,
they enable users to search the interesting data in databases and obtain the
results within seconds (Leach and Gillet, 2007; Paris, 2003). They provide an

efficient and convenient manner of storing enormous amounts of chemical

information.

There are varied types of chemical database. However, it depends both on the
properties of chemical information to be stored such as reaction or patent, 2D
or 3D structure, etc., and on the methods of data storage, for example the tables
in a relational database or the objects in an object oriented database (Attwood
and Smith, 1999). All these well-organized chemical databases play an

essential role as a communication tool for chemists, and have been used for

assisting chemists.

Chemusts usually need to know how chemical databases may be used to solve
their problems, the functions that chemical databases provide, and the
efficiency and accuracy of the information that can be retrieved (Paris, 2003).
There 1s a huge number of databases with varied chemical information that can
be accessed on the Internet and these Internet chemical databases usually
provide chemists with a friendly and a simple interface which enables users to
retrieve information, providing a convenient, global networking and

high-performance operating environment (Tarkhov, 2003).
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2.1.1 The Importance of Chemical Databases
Over 53 million chemical compounds (CAS, 2010) have been reported.

Moreover, there are also over one million new compounds per year and more

than 500,000 publications each year that are concerned with chemical

information (Marshall, 2005; Willett, 2007a). It is hard to deal with such a vast
and constantly increasing amount of chemical data by non-electronic methods.
Moreover, the variety of chemical information such as literature, chemical
properties and spectra, can only be encompassed by storing them 1n electronic

format. Hence the useful chemical information can be obtained only by

accessing chemical databases.

The storage and searching of chemical structures are probably the earliest
applications of chemical databases and these are an essential component of
what many now call chemoinformatics (Gasteiger, 2003). Thus,
chemoinformatics should support the chemists with their essential problems,
which they meet in their daily work, and offer a platform for the necessary
communication between theoretical sciences and experimental chemistry

(Gasteiger, 2003). In short, chemical databases play an important role in

chemoinformatics.

Chemical structure databases contain the computer-readable structure
representations of a huge number of chemical molecules. Chemoinformatics
provides a variety of tools that can be used for data mining in these databases,
so as to assist directly in the discovery of new molecules. It plays a major role
in drug discovery (Marshall, 2005). With the increasing costs on drug

discovery, it is expected that more applications will be made of such tools.
Furthermore, the advent of more effective software will enable more accurate
predictions of activity, and thus will enhance the cost-eftectiveness of research
(Leach and Giallet, 2007).
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The application and development of chemical structures can not only be
applied in a similarity search (see Section 2.3.3) from the original collection or
any other databases but also in the usage of identifying other related
compounds. In addition, the application of 2D structures or 3D models may
construct a pharmacophore, and then be used in a 3D search for models which
may adopt relevant molecular conformations using a conformationally flexible
search (Paris, 2003).

2.1.2 Examples of Chemical Databases

There are a variety of chemical databases, and their categories can be generally
classified into literature, factual (alphanumeric) and structural types (Engel,
2003a). However, a common manner of classification of chemical databases is
based on the properties of chemical data, such as chemical structure databases,
organic and inorganic databases, spectroscopic databases, chemical reaction
databases, environmental information databases, patent databases, biochemistry,
molecular biology databases etc.. In addition, different types of database can
also be integrated into one single resource providing more information, such as

Chemical Abstracts Service (CAS). Some well known chemical databases are

discussed in the following paragraphs.

The primary service of Chemical Abstracts Service (CAS) databases is the
Registry File, which currently contains more than 53 million (CAS, 2010)
substance entries including organic compounds, peptides, and a wide variety of
other chemical information (Fisanick and Shively, 2003). Another service from
CAS 1s the CAplus file, it contains more than 32 million (CAS, 2010) patents
and journal article references in chemistry related fields. Also, the CAS
Reaction Search Service (CASREACT) is a chemical reaction database

containing 25 million single- and multi-step reactions which were derived from

750,000 records of journals and patents (CAS, 2010).
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The Beilstein database was transformed from the Beilstein Handbook of
Organic Chemistry. It is the most complete and systematic collection of
evaluated data on organic compounds, and contains information on reactions,
substances, structures and properties. Similar to CAS databases, the Beilstein
database is also a large collection of different types of chemical information
(Wiggins, 2003). The Cambridge Structural Database (CSD) was created and
managed by Cambridge Crystallographic Data Centre (CCDC); it i1s used to
represent the crystal structures of small organic and organometallic compounds,
and contains crystal structure information for more than 500,000 organic and
organometallic structures (CCDC, 2010) analyzed wusing X-ray or
neutron-diffraction techniques (Engel, 2003a). The Protein Data Bank (PDB)
currently contains over 65,000 (PDB, 2010) experimentally determined, X-ray
and Nuclear Magnetic Resonance (NMR) structures of proteins and

protein-ligand complexes. Both CSD and PDB are continuously increasing in

size (Engel, 2003a; Homeyer and Reitz, 2003).

Probably, the most important application of chemical structure databases is

structure retrieval, for example exact 2D structure and substructure search, 2D

and 3D similarity search, 3D volume-based searching and docking.

2.1.3 Summary
The central role played by 2D chemical database systems is reflected in the

significant amount of effort that has been expended to implement and optimize
methods for the storage, search and retrieval of chemical structures and
molecular data (Leach and Gillet, 2007). Besides, chemical structures also play
an important role in the organization, indexing and access to the continually
growing chemical literatures and compounds. The application can apply not
only in chemical structures searching but also in chemical patent searching and
reaction databases (Paris, 2003). They will, hence, continue to play a critical

role in chemoinformatics and will remain vital in the future research.
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2.2 Representation of Molecules
Chemical structures are the easiest notation for chemists but not for computers.

Hence, for the purpose of searching chemical structures, a machine-readable
structure representation is needed; therefore, it is necessary for searching
methods to develop some machine-readable structure representations of the
way in which the atoms and bonds of a molecule are connected together
(Willett, 2003a). This 1s necessary for chemists to search for all compounds in

chemical databases containing a specific structure or a particular substructure

(Barnard, 2003).

Although chemical structure diagrams are the most common and the most
natural means of communication for chemists, such graphical images are not
suitable for the purpose of chemical information retrieval (Engel, 2003; Paris,
2003). Such structural images are of only limited wusefulness in
chemoinformatics and computational chemistry, and structure diagrams have to
be represented in machine-readable forms. With these representations of
chemical structures, molecules and compounds can be stored in a database for
retrieval and search. Although chemical entities can be named according to
varied naming schemes e.g. International Union of Pure and Applied Chemistry
(IUPAC) convention, names are not ideal for chemical information retrieval

because of the lack of flexibility in the representation (Paris, 2003; Willett,

1987). Hence, such naming schemes usually need to be converted into another
type of representation. Different types of chemical representation for a

compound are discussed in the following sections.

2.2.1 Representation of 2D Molecular Structures

There are a variety of structure representations which have been discussed in
the literatures; three common types of molecular representation are systematic
nomenclatures, linear notations and connection table, but only the latter two
representations are used extensively in modern chemoinformatics (Willett,

1987; Willett, 2003). Systematic nomenclature represents a chemical structure

as a unique alphanumerical string, however the relationship between compound
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names and chemical structures is many-to-one, because many different valid
compound names may refer to the same chemical structure. Hence, it is not
suitable for some manipulations in chemical information systems. With such
disadvantage and its complicated naming, it has some limitations in the

development of chemical structure representations (Engel, 2003).

2.2.1.1 Line Notations

Linear notations represent a molecular structure in the form of a linear
sequence of alphanumeric characters. They are simple and compact, and hence
are especially suitable for manipulation, such as storing and transferring large
numbers of molecules, in a chemical information system (Leach and Gillet,
2007). There are varied types of linear notations discussed in the literature but
only some of them are widely accepted and especially important: the
Wiswesser Line Notation (WLN), Simplified Molecular Input Line Entry
Specification (SMILES) and Sybyl Line Notation (SLN) (Engel, 2003; Willett,
2003). These traditional line notations describe chemical structures by
alphanumeric strings mainly based on atomic symbols and bond types.
However, a new and increasingly-used line notation, called InChl (JUPAC
International Chemical Identifier), was proposed by IUPAC (International
Union of Pure and Applied Chemistry) and NIST (National Institute of
Standards and Technology) (McNaught, 2006). It characterizes chemical
structures also by the manner of alphanumeric strings, but contains more
information than traditional line notations, such as the atoms and their bond
connectivity, tautomeric information, isotopic information, stereochemical and
electronic charge information. Figure 2-1 is an example of phenylalanine

represented by above four popular line notations (Engel, 2003; IUPAC, 2010).
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Sy;;:g::w Phenylalanine
O
Structure
Diagram: OH |
NH>
WLN: VQYZIR
SMILES: NC(Cclceeec] )C(=0)0O
SLN: C[1]H:CH:CH:CH:CH:C(@1)CH2CH(NH2)C(=0)OH

| InChl 1/CSH13NO.CH20/c10-9(7-11)6-8-4-2-1-3-5-8;1-2/n1-5,9,11H,6-7,10H2;1H2

Figure 2-1 Example of various line notations of phenylalanine

SMILES notation was used as the input chemical representation to convert into
other file formats for the studies in Chapters 6 and 7. We hence discuss

SMILES in the following paragraphs. It was proposed by Weininger

(Weininger, 1988), and uses a few simple rules to build chemical structures by
alphanumeric strings of characters based on atomic symbols; relative to WLN,
that is also the reason why it is extensively accepted and widely used. With
some significant rules of SMILES notation, atoms are represented by their
atomic symbol, but hydrogen atoms are normally omitted, for SMILES is a
hydrogen-suppressed notation (Engel, 2003).

There may be a variety ways to form the SMILES string for a given molecule,

since, in SMILES notation, the string may be written by a different starting

atom resulting in a different sequence. Hence, several SMILES strings may
represent the same chemical structure. To get rid of the disadvantage of
ambiguity, a method called the Morgan algorithm for generating a canonical
sequence of the atoms has been widely used (Morgan, 1965). The other
well-known technique called CANGEN algorithm has been devised to create a
unique SMILES string for each molecule in the chemical databases (Weininger

et al.,, 1989), and this unique SMILES string is usually termed Canonical

10
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SMILES. It provides the simplest linear code; hence it 1s highly compact and

easy to learn. Moreover, the fast data exchange format and unambiguity are

also advantageous.

2.2.1.2 Connection Tables

Connection tables are the most significant format of chemical structure
representation in a computer system and are also an alternative manner of
representing molecular graphs (Engel, 2003). A connection table 1s a 2D matnx
containing information about all the atoms and bonds in a 2D structure. In
comparison with SMILES notation, a connection table provides the same
information but in a different form; each row lists information about a
particular atom such as the atom number, symbol, and number of atoms to
which it is directly bonded and their bond types. A common example of
connection tables is Tripos mol and mol2 file format (Tripos, 2007). Figure 2-2
illustrates a simple example of connection table of ethylene (Engel, 2003).

Each atom is numbered arbitrarily as an index forming an atom list; moreover
each row in the bond list shows the indices of two atoms connected by a

particular bond type (1 indicates single bond, 2 indicates double bond,

analogically).

L 2 SMILES: C=C

Hs/ }H Compound Name: Ethylene

Bond List

o o

Figure 2-2 Example of the connection table of ethylene

11
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Connection tables are the most commonly used representation of chemical
structures. However, many varied types of connection table have been
discussed in the literature; thus, there are also translation programs to convert
between the different forms. Most chemical software can exchange and store
these as external connection tables. SMILES notation, and molecular

fingerprints also can be generated from connection tables (Engel, 2003; Willett,
1987).

Connection tables are unambiguous because they offer a detailed and exact
description of the topology of the compound that they represent but they are
not unique. Thus, a specific molecule could be represented by different
connection tables (Willett, 1987), because in a connection table the users can
choose a different order to number the atoms. To find the unique identity by
renumbering one of the connection tables in all possible types will be an
important function. For instance, the Morgan algorithm (Morgan, 1965) is a
widely used method to generate a unique order of the atoms. Since the
connection tables involve a complete representation of the inter-connections
between the atoms in a molecule, they can be considered as a labeled graph.
Connection tables are particularly suitable for manipulation of such topological
information, such as structure search, substructure search, and graphical

structure input and output.

2.2.2 Representation of 3D Molecular Structures
There are more than 500,000 compounds whose 3D structures have been stored

by the Cambridge Crystallographic Data Centre (CCDC, 2010), but such a
number is really small when compared with the number of known compounds,
which 1s over 53 million (CAS, 2010). Moreover, the experimental sources of
3D structures are not sufficient and there i1s an essential demand for
computer-generated models. Some theoretical techniques such as quantum
mechanics or molecular mechanics have good performance both on producing

3D molecular models and predicting a number of molecular attributes. These

methods, nevertheless, still need at least some rational 3D geometry of the

12
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molecule to be carried out.

There are two widely used methods for representing a 3D chemical structure.
The major difference of these two methods is that they use different coordinate
systems to characterize the spatial arrangement of the atoms of a molecule of
interest. The first and common method is to store each atom in a molecule as
their three space coordinates, x-, y- and z-coordinate values. It represents the
3D feature and conformation of a molecule. Such connectivity information or
coordinate values can be collected either implicitly by approximating bonding
distances between the atoms, or explicitly by a connection table. The other
method uses internal coordinates, such as bond length, bond angles, and torsion

angles to represent the 3D structure of a molecule. Such representations

describe the spatial arrangement of the atoms relative to each other (Engel,

2003).

Automatic 3D structure generation, the transformation of a 2D connection table
into a 3D molecular model, has become a standard technique commonly used
in many fields of computational chemistry. Much research has focused on
making these 3D structure generators as rapid as possible in order to apply
them to large datasets of molecules (Sadowski, 2003). Since the useful
representation of 3D structures can be transformed from 2D methods, it may be
a better method to devise an efficient 2D method and then transform

appropriately to its 3D usage.

2.2.3 Molecular Descriptors
Molecular descriptors are numerical values resulting from a procedure which

transforms the structural information encoded within a symbolic representation
of a molecule to describe properties of molecules (Leach and Gillet, 2007).
With the use of molecular descriptors, it becomes possible to manipulate and
analyze the chemical structural information very easily. Molecular descriptors,
for example, may represent the physicochemical features of molecules that
may be calculated by applying algorithmic techniques to the molecular

structures. Many different molecular descriptors have been described and used

13
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for a wide variety of purposes; they can be classified by the data type, such as
Boolean, integer or real number, vector etc. of the molecular descriptor and the
molecular representation of the compounds (Terfloth, 2003). The major
difference of varied descriptors is the complexity of the information they
encode and in the time required to calculate them (Leach and Gillet, 2007).

However, the selection of the appropriate set of molecular descriptors is often

the key to success.

Here, we concentrate on the three common types of descriptor that have been

used in similarity search (as discussed in Section 2.3.3): whole-molecule
descriptors, 2D descriptors and 3D descriptors (Willett & Gillet, 2007). The
whole-molecule descriptors are the simplest, they describe a molecule by some
simple properties such as molecular weight and JogP, but a single descriptor is
usually insufficient to find the similarity between a pair of molecules. Hence, it
is normal to use several different types of descriptors together for similarity
searching. Topological indices and fragment-based indices are two common

types of 2D descriptor which can be generated from 2D molecular

representations.

A topological index is a single number that encodes a molecular structure by its
basic properties such as size and shape. With describing such simple properties,
a combination of varied topological indices is usually used for similarity
searching as in whole-molecule descriptors (Willett & Gillet, 2007); this is
described in more detail in Section 2.4.1. Fragment-based descriptors
characterize a molecule by the substructural features. Among varied types of
2D descriptor, 2D fingerprints are the most widely and commonly used
descriptor for similarity searching, and were originally devised for substructure

searching. They are considered one of the earliest similarity searching methods

in the literature by Willett et al, (1998).

Fingerprint encoding is the process of transforming a chemical structure into a
binary format, they capture the topological features of chemical compounds
and convert them into a linear, binary string format which identifies the

presence or absence of specific structural features in a chemical compound
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(Eckert and Bajorath, 2006). There are a number of ways to generate
fingerprints from chemical structures, however all these techniques generally
have been categorized into two different types of 2D fingerprints:

dictionary-based fingerprints, and hashed fingerprints (Flower, 1998; Leach
and Gillet, 2007).

In dictionary-based fingerprints, a structural fragment dictionary is required,

which contains typically from hundreds to thousands of structural fragments
for 2D fingerprints and millions of structural fragments for 3D pharmacophore
fingerprints (Xue et al., 2003); and such a dictionary will be used to determine
whether each bit in the binary string is set or not. Each bit usually maps to a
certain substructure fragment or structural feature in a predefined fragment
dictionary. Hence, if a certain feature is present in a molecule, then the bit
which corresponds to it will be set to ‘1°; otherwise it will be set to ‘0°. Thus,
fingerprints transform the presence or absence of certain features within a
molecule into a binary bit string. One limitation of dictionary-based

fingerprints is that the optimum fragment dictionary is dataset dependent;

another is that they are sparse, since most of the bits in the bit string are set to

‘0’, sometimes a typical molecule has only a few fragments for the bit positions

to represent.

On the other hand, hashed-based fingerprints do not need a predefined

fragment dictionary, and are a very dense representation of the structural
features in a molecule, typically capturing all possible connectivity pathways

through a molecule up to a certain and defined path length. So, a molecular
fingerprint is generated from a hash of all the unique connection paths, up to a
certain maximum size which is predefined, into a fixed length bit string, and
any fragment present in the molecule will be encoded in the fingerprint,
(Willett & Gillet, 2007). Hashed fingerprints generate the bit patterns which are
highly characterized, but several different fragments may set the same bit, that
is the relationship between bit position and fragment is not one-to-one as in
dictionary-based fingerprints. Therefore it becomes impossible to map from a

bit position back to a unique fragment; that is, single bit positions no longer
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correspond to specific structural features, and this leads to the possibility of

ambiguity (Eckert and Bajorath, 2006).

Descriptors that can be generated from 3D molecular representations include
basic fragment-based descriptors and also more complicated representations
that describe molecular properties such as 3D shape and electrostatic fields
(Willett & Gillet, 2007). 3D fingerprints were originally devised for
substructure search as for 2D fingerprints; eventually they have been used for
similarity searching. The 3D fingerprints describe the conformational features
of molecules, such as interatomic distances and angles, by recording the
absence or presence of specific 3D features. With making use of molecular
descriptors, there are a wide variety of further applications of computational
chemoinformatics, such as QSAR, data analysis, similarity searching and

calculation, techniques for selecting diverse compound sets etc. (Leach and

Gillet, 2007).

2.3 Some Common Searching Methods

When a new compound is added into the large chemical database, a structure
search technique is required to ensure that the compound is really a new one,
and 1t should not exist already. There are three major types of searching in
chemical databases for structures: exact structure searching, substructure
searching and similarity searching (Paris, 2003). Each of these types of search

employs different methods because they are aiming to retrieve different types

of information.

Generally speaking, all types of systems for retrieving information from a
variety of databases will basically provide three different searching modes
(Willett, 2003a): exact-match, partial-match, and best-match. These three
modes are equivalent to structure searching, to substructure searching and to

similarity searching respectively, in the chemical context.
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2.3.1 Exact Structure Searching
Exact structure searching is the simplest chemical retrieval technique; it

involves the retrieval of all entities in chemical databases that match exactly
and completely a structure of interest. It involves simply identifying the
presence or absence of a specific molecule in a database and will be efficient if

a canonical notation has been devised (Willett, 2003a).

The canonical representation is significant for exact structure searching, and it
must be unique otherwise that would be problematic. However, a hash function

is usually associated with the canonical representation to accelerate structural

retrieval such as finding items in a database (Leach and Gillet, 2007).

2.3.2 Substructure Searching
Substructure searching is probably the most widely used technique and it is the

process of identifying parts of a given structure that are equivalent to a
specified query substructure (Leach and Gillet, 2007); it identifies all the

molecules in the database that contain a specified substructure. A two-stage
mechanism is usually used in substructure searching. First, a screen search is
executed to eliminate those substructures that cannot possibly match the query

and to generate a subset of the database which might possibly match the query.
Second, each molecule in the subset will pass through a detailed atom-by-atom
graph matching search to decide whether a subgraph isomorphism does exist

for the substructure of interest. Such atom-by-atom matching procedures are

very time-consuming (Willett, 1987).

There are some restrictions of substructure searching. First, the users require
sufficient knowledge in order to construct a meaningful substructure, and this
knowledge is not always available. Second, the users have only limited control
over the size of the searching results: that is, a generic query can result in a
huge amount of hits, but a very specific query may retrieve only a very small

number of hits (Leach and Gillet, 2007).
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The substructure searching technique is usually the first step in the
implementation of other important topological procedures for the analysis of
chemical structures, such as identification of equivalent atoms, determination

of maximal common structure, ring detection, calculation of topological

indices, etc. (Kochev at. el., 2003).

2.3.3 Similarity Searching

Similarity searching provides a complementary, alternative technique to exact
secarching or substructure searching. It involves comparing the query with
every compound in the database and retrieves objects that are similar to a query,

sorted in order of their decreasing similarity (Kochev at. el., 2003).

There are several advantages of similarity searching when compared to
substructure searching. First, one does not need to define a precise substructure
query, since a single active compound is sufficient to undertake a search.
Second, users are able to manage the size of the output because every
compound in the database is given a numerical score, which is calculated by a
similarity descriptor. So it can be used to generate a complete ranking.
Alternatively, users can specify a particular value or level of similarity and
retrieve just those compounds that exceed the threshold. Finally, similarity

searching facilitates an iterative approach to searching chemical databases
since the top-scoring compounds resulting from one search can be used as

queries in subsequent similarity searches (Leach and Gillet, 2007).

2.4 Molecular Similarity Methods

Substructure searching is the major technique for retrieving information from
chemical structure databases, however the focus on such retrieval techniques is
increasingly transferring to similarity searching (Willett, 2003a). There are
many similarity methods in the literature, and each single method has its
application on certain query and biological activity. By evaluating the results
from a single experiment, it is difficult to find a similarity method that is the
best and also will be superior in other type of query and activity (Sheridan &

Kearsley, 2002). Sheridan and Kearsley (2002) therefore, argued that the
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combination of different similarity methods may be needed and the same

method with several variations to get sufficient information to form a query as

well.

The effectiveness of a similarity measure, in terms of its ability to retrieve
bioactive molecules, is usually a crucial factor in similarity searching and some

research has concentrated on the key components of a similarity measure that

influence the effectiveness of similarity searching. There are usually three
crucial components when computing the similarity between a pair of objects
and each component can affect the effectiveness on similarity searching., The
first component is the representation. An appropriate structural representation
must be picked and be used to describe the molecules that are being compared.
The second component is the weighting scheme. It 1s used to allocate different
levels of significance to the varied components of representations, that is,
important molecular features and less important ones can be distinguished. The
final component is the similarity coefficients. They are used to determine the
degree of resemblance between a pair of representations of chemical structures.
Overall, the first component is the most important, since the representation can
influence very strongly the manipulations that are possible and appropriate

when calculating the similarity between a pair of molecules (Willett, 1987;

Willett, 2003a).

2.4.1 Similarity Searching in 2D Databases
Similarity techniques for searching chemical databases were proposed initially

in the mid-1980s (Willett et al., 1986), and their effectiveness usually causes

users most concern and is usually a key factor on similarity searching, Some
research has paid attention to the crucial components of a similarity measure
that influence the effectiveness of similarity searching (Willett & Gillet, 2007).
The similarity score is the basic component on similarity searching. For
calculating the similarity value, there are three major types of representation
which have been used to measure the degree of resemblance between two
chemical structures of 2D databases. These are based on fragment substructures,

on topological indices, and on maximum common subgraphs (Willett, 2003a).
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Fragment substructures were originally devised for the representation of
chemical structures but they are imprecise, as they do not encode how the
fragments are linked together. Hence their usage then became common in the
initial screening stage of 2D substructure searching and then they have
eventually been applied to similarity searching. In similarity searching,
fragment substructures are usually encoded as binary vectors or bit strings that
are based on a pre-defined fragment dictionary or fingerprints. Similar to the

nature of binary fingerprint encoding (discussed in Section 2.3.3), a bit is set to

‘1’ indicating a certain feature or substructure is contained, and otherwise a bit
is set to ‘0’. If the bit strings representing two molecules have a large number

of fragment substructures in common, then these two molecules will have a

high similarity (Willett, 2003a).

As molecular descriptors characterize properties of a molecule, topological

indices describe more specific information on molecular structures. It is
normally a single numeric value that can be generated from 2D representation
of a molecule (Hall & Kier, 2001). A great number of varied topological
indices have been devised in the literature. The general types of topological
indices encode structures by their size, degree of branching such as electronic
information based on the paradigm, and overall shape. For example, one of the

most common indices is the molecular connectivity indices.

In brief, topological indices characterize the structures according to their
topological properties such as size, amount of branching, amount of
unsaturation and other complicated features. With the similarity calculation
using topological indices, it usually needs to operate with many different
indices, and then it uses a multivariate method, such as principal components
analysis (PCA), to generate a smaller number of uncorrelated variables (indices)
to encode all the molecules, i.e. using a smaller number of principal
components to replace those indices with high correlation on some particular
properties. All of these varied indices that can describe the molecular features

have not only been widely used in 2D similarity searching but also increasingly

in 3D. (Willett, 2003a)
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Most similarity measures such as measures based on fragment substructures
and topological indices are global similarity measures; they do not identify the
resemblance of local areas but overall similarity between two molecules.
Willett (2003a) concluded that some local similarity measures, graph-based
approaches, such as maximum common subgraph (MCS) are not only an
alternative but also an effective method for similarity-based virtual screening,
and can carry out feature mapping between two molecules. The similarity
calculation of local regions is operated by creating a mapping from the atoms
of one molecule on to another. With structural diagram representations, graph
matching techniques can easily be used with both 2D and 3D representations
for identifying the MCS. The MCS techniques are devised to find the subgraph
that is the largest set of atoms and bonds, including inter-atomic distances in
the 3D case, in common or shared between two molecules. Furthermore, the
number of atoms and bonds in the MCS can be used to calculate a
Tanimoto-like coefficient that quantifies the degree of similarity between two

molecules (Willett, 2003a; Willett & Gillet, 2007).

2.4.2 Similarity Coefficients
A similarity coefficient is used to quantify the degree of resemblance between

pairs of objects; each object can be described by some number of attributes or
descriptors (Holliday, 2002; Willett & Gillet, 2007). Similarity coefficients are
used in a wide range of disciplines such as, biology, information retrieval,

multivariate statistics, numeric taxonomy and marketing (Willett et al., 1998),

With the wide usage of similarity coefficients in different disciplines, there is a
shortage of the canonical forms of coefficients. Hence, some similarity
coefficients have been re-devised with different names, and many of them are
closely related to each other. For example, some pairs of coefficients are
different when they are used to manipulate continuous attributes but they
become equivalent when they manipulate binary attributes (Willett et al., 1998).
For example, on measuring similarity with binary variables, the Tanimoto

similarity coefficient is equivalent to the Soergel distance, since the Soergel
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distance is the complement of the Tanimoto coefficient (Leach and Gillet,

2007).

There are various types of similarity coefficient and the detail has been
discussed in the reviews by Holliday et al. (2002; 2003), moreover three types
are commonly discussed in the literature as follows: distance coefficients,
association coefficients, and correlation coefficients (Holliday et al., 2002;
Willett, 1987). The first two classifications, distance and association, are
commonly used for similarity searching. Distance coefficients are a widely
used type of similarity measure because their geometric representation is
simple. Two well-known distance coefficients are the Euclidean distance and
Hamming distance (Holliday et al., 2002; Willett, 1987). As for association
coefficients, the Tanimoto coefficient is the most widely used similarity
coefficient. It can be used for both continuous attributes and binary attributes.
With continuous attributes such as topological indices, the value of the data
may be real numbers over any range. While with binary attributes such as 2D

fingerprints, the data are coded as 0 or 1 denoting respectively the absence or
presence of specific substructure features. 2D fingerprints in combination with
the Tanimoto coefficient provide a simple but effective way of quantifying the

similarity relationships between pairs of molecules (Leach and Gillet, 2007).
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For example, the similarity between two binary bit strings 4 and B (denoted by

Sas) can be computed by the commonly used Tanimoto coefficient which 1s

represented as follows:

C
S 5 =—
P a+b-c
where a is the number of bits set to “1” in bit string 4, and

b is the number of bits set to “1” in bit string B, and

¢ indicates the number of bits set to “1” in both 4 and B

bitstring A:0101001100 =4
bitstring B:1001001110 b=5,andcis 3
3
= ——=0(.5
B 445-3

Figure 2-3 Example of calculating similarity based on Tanimoto coefficient

Different types of coefficients calculate similarity in various ways. For
example some coefficients, such as the Tanimoto coefficient and the Dice
coefficient, compute similarity directly. Others, such as the Hamming
coefficient and the Euclidean coefficient, generate the distance or dissimilarity
between pairs of molecules. Moreover, in the case of binary attributes, some
coefficients such as Tanimoto generate a real number within the range from

zero to one but others such as Euclidean provide a wider range from zero to
infinity. Hence, a standardization procedure is required to convert the attribute
value between similarity and distance coefficients. When the attribute values

are limited to the range from zero to one, the measure used for different
similarity and distance measures is simplified and standardized (Holliday et al.,

2002; Leach and Gillet, 2007).

In addition to the normalization on attribute values for different coefficients
mentioned above, the molecular size may also affect the calculation of

similarity especially on the representation with binary fingerprints. For
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example, the Tanimoto, Dice and Cosine coefficients directly compute the
similarity according to the number of bits in common. On the other hand, the
Hamming and Euclidean distances also calculate the similarity by the common
absence of molecular features. Hence, the common presence or absence of

molecular features will influence the similarity score (Leach and Gillet, 2007).

In some cases, the molecular size will directly influence the calculation of
similarity measures by association coefficients such as Tanimoto coefficients
(Holliday et al., 2003; Haranczyk and Holliday, 2008). They cause a bias of
similarity calculation on different size of molecules. For example, in a
similarity measure using fingerprints such as Tanimoto coefficients, the small
molecules will usually have lower similarity score or larger distance value
since they are likely to have fewer bits set in a fingerprint than large molecules.
Conversely, when using the Hamming distance, small molecules tend to be
more similar (Leach and Gillet, 2007). With such bias of coefficients on small
molecules and larger molecules, it also requires some degree of size

standardization to avoid such problem.

Even for a particular application of chemoinformatics, it should not be
considered that a certain coefficient will always give better performance than
others (Willett et al., 1998; Willett, 2003a), and some research has suggested
that using mixed indices which combine two or more standard measures may
have better performance on similarity searching (Leach and Gillet, 2007).
Eventually, it might be true that there is still a need to find the most appropriate
coefficient or combination of coefficients for any specific similarity searching
application. Holliday et al. (2002) combined different coefficients for similarity
scarching using the application of data fusion. Different combinations of
similarity coefficients were employed and the performance with the individual

coefficients was compared; thus, the technique of data fusion has been shown

to improve the performance of similarity searching.
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2.4.3 3D Similarity

It 1s natural that there are differences between 2D molecular features and 3D,
hence 3D similarity measures need different molecular properties such as
conformational properties to be considered and are more complicated
computational processes than 2D methods. The 2D similarity methods have
been developed earlier than 3D methods and they are also the standard retrieval
principles at present. Hence 2D methods have widely been developed as the
fundamental principles for 3D methods. For instance, 3D substructure

searching fingerprints can be used for similarity searching as well as 2D

fingerprints.

There are some common 3D methods which have been discussed in literature,
for example, the 3D equivalents of fragment and MCS methods, and the
alignment methods based on molecular field information. However, some
literature simply divides 3D similarity measures into two categories (Leach and
Gillet, 2007; Willett & Gillet, 2007): alignment methods that are implemented
by manipulating the molecules in 3D space and alignment-independent

methods that do not need such geometric spatial information to be derived.

As mentioned above, 3D fingerprints were originally applied to 3D
substructure searching and then to similarity searching like 2D fingerprints.

But the major difference is that the molecular features, such as spatial
characteristics of conformation that 3D fingerprints encoded are more complex

than 2D fingerprints. The fingerprint can encode the presence or absence, or

the frequency of occurrence of 3D molecular features. 3D molecular
descriptors, such as inter-atomic distance, valence and torsion angles, and atom
triplets, can be represented in a binary fingerprint similar to a 2D fingerprint
and then be used by Tanimoto coefficients. Although, such manipulations of
3D fingerprints are simple, when the conformation flexibility has been

involved, the calculations of all descriptors are quite time consuming (Leach

and Gillet, 2007; Willett, 2003a).
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The 3D graph-matching approaches can also be derived from 2D such as 2D
MCS. The principle of 3D MCS is similar to 2D; it creates a mapping from the
atoms of one molecule on to another and finds the largest set of atoms which
match the distance between atoms. The similarity calculation is still
time-consuming. As for the alignment methods, they take the degrees of
freedom related to the conformational flexibility into account. They mainly
arrange the alignment of two or more molecular structures, and the comparison

between them 1s based on their shape and 3D confirmation (Willett, 2003a;

Willett & Gillet, 2007).

The development of many varied 3D methods is currently at an early stage and
there is still a need to find an efficient method on 3D similarity searching since
most of their manipulations are time consuming or some factors such as

conformational flexibility involving in the similarity calculation will be

complex (Willett, 2003a).

2.5 Summary

There are many ways in which we can calculate the similarity between pairs of
molecules, but the great majority of current similarity-searching systems
employ simple 2D fragment-based measures. The applications of the similarity
measures Include chemical database clustering, reaction similarity searching,
and the analysis of molecular diversity (Willett et al.,, 1998). One very

important application of similarity measures is cluster analysis, it is discussed

in the next chapter.
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Cluster analysis, or clustering, in the most general sense of the term, 1s a
process of partitioning which divides data into a number of groups, so data in
one group are similar and data in different groups are not similar (Halkidi et al.,
2001; Kantardzic, 2003; Milligan and Cooper, 1987). Clustering is a technique
for exploratory data analysis and is used increasingly in preliminary analyses
of large datasets of medium and high dimensionality as a method of selection,
diversity analysis, and data reduction (Downs and Barnard, 2002). The
literature is full of discussions surrounding the applications of cluster analysis,
and that is also the evidence of its importance. With the increasing and
continuing uses of cluster analysis in many research fields, a number of varied
definitions have been proposed in the past several decades, however the
favorite definition may be given according to the discipline involved and the
aim of the researchers (Punj and Stewart, 1983). There are many synonyms of
cluster analysis such as unsupervised learning, numerical taxonomy, typology,
partition (Halkidi et al., 2001), automatic classification (Willett, 1985),

unsupervised classification (Kantardzic, 2003), and unsupervised pattern

recognition (Everitt, 2001).

Some reviews regard cluster analysis as a specific mode of classification
(Dunham, 2003). Clearly, cluster analysis may differ in a number of ways from
classification. For example, in contrast to classification, cluster analysis has no
predefined classes and no examples to show the relations among samples, that
is, there is no prior knowledge concerning the clusters, yet classification
allocates a data item to a predefined set of categories. On the other hand, the
results of clustering are dynamic. It follows from what has been said why

cluster analysis is viewed as an unsupervised process (Halkidi et al., 2001).
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3.1 The Key Components of Clustering
Cluster analysis may be of crucial importance in a wealth of applications in

many disciplines such as business and science, and is on¢ of the most useful

tools for discovering patterns in the underlying data. Several studies (Everitt et
al., 2001; Halkidi et al., 2001; Punj and Stewart, 1983) have proposed the
fundamental functions of cluster analysis such as the following: prediction

based on groups, hypothesis generation and testing, and data reduction and

exploration.

A cluster analysis encompasses a sequence of processes. The sequence shows
the important processes or decisions which have to be made in a cluster
analysis. Sometimes, it may be necessary to adjust the processes In a sequence
to fit a specific application in a certain research field. However, it is also
important for the user to recognize that key decisions have been made.
Although it may seem preferable when the user has no prior knowledge or even
positive information to make a selection, it cannot be assumed that the original

selection is optimal or even correct (Milligan, 1996).

The key processes in clustering can be summarized as follows (Everitt et al.,
2001; Halkidi et al., 2001; Ketchen and Shook, 1996, Punj and Stewart, 1983):

3.1.1 Weighting Variables and Standardization

Choosing and weighting clustering variables for grouping objects are two of
the most troublesome processes in the application of cluster analysis, and thus,
perhaps the most important (Gnanadesikan et al., 1995, Ketchen and Shook,
1996). In addition, in many applications the variables that describe the objects
to be clustered will not be measured in the same units or scales. Indeed they
may often be variables of completely different types, and yet others having an

interval scale. Thus, a simple standardization is needed.
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A standardization process allows variables to contribute equally to the
definition of clusters but may also eliminate the meaningful and important
differences among elements (Ketchen and Shook, 1996). Whether to
standardize clustering variables is an ambiguous issue. Some studies report
standardization is needed to eliminate the potential effects of scale differences
among variables. Others offer experimental evidence that standardization has
no significant effects or generates limited improvement (Bath et al., 1993;
Ketchen and Shook, 1996). Aldenderfer and Blashfield (1984) suggested that
since standardizations may generate adverse effects, it should be carried out
based on a case-dependent basis. Milligan and Cooper (1988) investigated a
study of eight different standardization methods in the cluster analysis and
reported that standardization techniques based on division by the range of
observations were consistently superior to any other standardization
approaches. Conversely, Gnanadesikan et al. (1995) highlighted the drawbacks

of weighting based on the standard deviation or range of variables.

3.1.2 Selection of Similarity or Dissimilarity Measures

As discussed in Section 2.4.2, a similarity or dissimilarity measure is not only
important for similarity searching but also critical to the application of cluster
analysis. These measures reflect the degree of similarity or diversity between
objects, a clustering hence can be carried out based on it. No single coefficient
is applicable to all applications, and different similarity measures generate
various clustering results. This reflects the importance of choosing an
appropriate similarity measure for a particular application. A dissimilarity
measure, such as distance, assumes larger values as two objects become less
similar. Whereas a similarity measure, such as correlation, assumes larger

values as two objects become more similar. The Tanimoto coefficient and

Euclidean distance are two well-known and widely used measures for

similarity and dissimilarity respectively.
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Table 3-1 shows some commonly used similarity and distance coefficients in
chemical application (Willett et al., 1998). In which, S4p denotes the similarity
between 4 and B, and D43 indicates the distance between 4 and B. In addition,
i represents the attribute, and the N 1s the number of attributes. As for binary

variables (e.g. fingerprints), a is the number of bits set to “1” in 4, while b is

the number of bits set to “1” in B, and ¢ is the number of bits set to “1” in both

A and B.

Formula for

Formula for continuous variables : .
dichotomous variables
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Table 3-1 Some commonly used similarity and distance coefficients

3.1.3 Selection of Clustering Methods

The selection of appropriate clustering methods is an important process for
effective clustering (Punj and Stewart, 1983). An efficient good clustering
method is definitely superior to an inefficient bad one; however researchers
have to determine the choice between an efficient bad clustering method and an
inefficient good one; besides, each clustering method has its suitability on

certain areas, hence the decision of these considerations may depend on the

demands of users.
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Two types of clustering methods are common in the literature: hierarchical and

non-hierarchical methods, which are discussed in Section 3.2. With distinct

clustering approaches, each of them has its suitable application and limitation.
For example, the Jarvis-Patrick method was reported to be suitable for
chemical application rather than other fields. Some non-hierarchical methods
usually require a prior setting before clustering, for example a user-defined
number of clusters for K-Means method or a pre-determined k nearest
neighbours for Jarvis-Patrick method, whereas there is no such requirement for
hierarchical methods. In addition, some methods are suitable for dealing with
large datasets, such as CLARA. Some studies (Milligan, 1980; Punj and
Stewart, 1983) proposed that the combination of hierarchical and
non-hierarchical methods offers better performance; these use hierarchical
methods to determine the number of clusters and the cluster centroids, and then

use non-hierarchical methods based on these results. However, the shortcoming

is the extra cost of time and effort.

3.1.4 Decision on the Number of Clusters

A vprior assignment of the number of clusters is needed when the
non-hierarchical methods are carried out, but not for hierarchical methods
(Punj and Stewart, 1983). The hierarchical relationship in hierarchical
clustering may be represented by a dendrogram, which represents the fusions
or divisions made at each continuous stage of the analysis. The visual
examination of a dendrogram is a commonly used and a basic technique to
decide the number of clusters in dealing with hierarchical clustering (Ketchen

and Shook, 1996; Leach and Gillet, 2007). Figure 3-1 illustrates an example of

a dendrogram and the members of clusters in the hierarchical relationship.
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Members of Clusters
[A, B, C,D, E]

[A, B, C]; [D, E]

[A, B]; [C]; [D, El
[A, B]; [C]; [D]; [E]

, [B); [C]; [D]; [E
A B C D E [A]; [B]; [C]; [D]; {E]

Figure 3-1 Example of dendrogram and the members of clusters

Neither hierarchical nor non-hierarchical clustering methods directly address
the issue of determining the number of groups within the data. Different
techniques have been reported for determining the number of clusters on
hierarchical and non-hierarchical clustering methods (Dubes, 1987; Fraley and
Raftery, 1998; Milligan and Cooper, 1987) and their experimental results
concluded some techniques are effective. Ketchen and Shook suggested (1996)

that multiple techniques should be used to determine the number of clusters,

rather than using a single approach, in order to get rid of the drawbacks of each

other.

The partition size for some clustering methods could be determined by a
cut-off parameter or threshold, such as the CAST (Ben-Dor et al., 1999) and

Yin-Chen (Yin and Chen, 1994) methods. However, In some cases, the

partition size is sensitive to the threshold setting.

3.1.5 Validation and Interpretation of Results

Validation of clustering results is also one of the critical processes in cluster
analysis because no clustering method assures offering superior performance
even dealing with the datasets with no error or noise (Milligan, 1980).
Interpretation of the clusters within the applied context requires the knowledge

and expertise of the researcher’s particular discipline (Halkidi et al., 2001).
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3.1.6 Summary

Clustering methodology has been increasingly proposed and widely used in a
variety of research fields such as, archaeology, astronomy, biology, computer
science, electronics, engineering, information science, and medicine. Detailed
review and general introductory texts on the topic of clustering were
summarized by Milligan and Cooper (1987), Everitt et al. (2001), and Jain et al.
(1999). In terms of 1its application in varied disciplines, there are some good
reviews In a variety of areas such as marketing (Punj and Stewart, 1983),
economics (Dunham, 2003), information retrieval (Willett, 2005), image
segmentation, computer science, and data mining (Berkhin, 2002). In addition,
as for chemical application, excellent review articles on the application to
chemical data were summarized by Barnard and Downs (1992), Downs and
Willett (1994), Willett (1987), and Downs and Barnard (2002). The importance
of clustering in many disciplines is evident through its enormous literature and

application in wide range of areas (Kantardzic, 2003).

3.2 Clustering Methods

It is important to distinguish a cluster analysis from a clustering method. A
cluster analysis may refer to the overall sequence of processes that were

discussed in section 3.1. Nevertheless, the clustering method represents a very

important process in the cluster analysis.

Halkidi et al. (2001) proposed three criteria for the classification of clustering
algorithms as follows: the type of data input to the algorithm; the clustering

criterion defining the similarity between data points; and the theory and
fundamental concepts on which clustering analysis techniques are based. For

cach clustering method, the type of variables used in the dataset can be

generally classified into numeric data and categorical data.

Several clustering methods have been proposed in the reviews. However, with
diverse algorithms on the basis of applied fields, the classification of clustering
methods varies. Clustering methods can be generally classified into two

popular categories, hierarchical and non-hierarchical clustering (Downs &
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Barnard, 2002; Kantardzic, 2003; Willett, 1987).

3.2.1 Hierarchical Clustering

Hierarchical clustering methods create a cluster hierarchy. In other words, they

organize data in a nested sequence of groups, which can be displayed in the

form of a dendrogram or a tree-like structure (Kantardzic, 2003). Moreover,

according to the methods that produce clusters, they can be further divided into

agglomerative algorithms and divisive algorithms (Willett, 1987).

Agglomerative methods begin by considering each object as a single cluster,
and gradually merge the objects into bigger clusters. The clustering procedure
produced at each step results from the previous one by combining the two most
similar clusters into a single cluster (Downs and Barnard, 2002; Halkidi et al.,
2001). The most common agglomerative hierarchical methods are the
Sequential Agglomerative Hierarchical Non-overlapping (SAHN) methods. A

non-overlapping technique means that each object belongs to one cluster only.
Some commonly used agglomerative methods can be found in the literature
and they are varied in the measures of distance (or similarity) between clusters
(Ketchen and Shook, 1996; Leach and Gillet, 2007). First, linkage methods
group objects by different types of distance calculation such as: single linkage
(nearest neighbour), calculating the minimum distance between objects;

complete linkage (furthest neighbour), computing the maximum distance; and
group average, measuring the average distance between all pairs of objects.
Second, centroid methods cluster objects based on maximizing the distance
between the centers of clusters. Finally, variance methods generate clusters by

minimizing the increase of variance which is calculated by the error sum of

squares. A well-known example is Ward’s method.

On the other hand, divisive methods begin by treating all objects as a single
cluster and gradually partition the objects into smaller clusters based on a

single descriptor (Downs and Barnard, 2002; Halkidi et al., 2001). Because of

the basis of a single descriptor, divisive methods are faster than the

agglomerative methods. However, the chemical applications of divisive
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methods offer poor performance in comparison with agglomerative methods

(Rubin and Willett, 1983). Hence, little literature has been discussed on the use

of hierarchical divisive methods to deal with chemical datasets.

There are several examples of well-known hierarchical clustering algorithms in
the recent literature as follows: BIRCH (Zhang et al., 1996), CURE (Guha et
al., 1998), and ROCK (Guha et al., 1999). However, in the application of

chemoinformatics, Ward’s clustering method has been widely used for analysis

of chemical structure databases; it groups two clusters by the shortest

Euclidean distance or variance between pairs of centroids (Ward, 1963).
Another study of hierarchical clustering approach is that of ElI-Hamdouchi and
Willett (1987) who employed Ward’s hierarchic, single linkage, complete
linkage, and group average clustering methods for document retrieval and

found group average method has the best performance for document clustering.

3.2.2 Non-Hierarchical Clustering
Non-hierarchical clustering techniques, also known as partitioning clustering,

split a dataset into a prior specified number of smaller datasets or clusters in
some cases such as K-Means clustering. It begins by selecting an object as a
cluster centre or “seed point”, and then clusters all objects according to a

certain threshold value or distance (Ketchen and Shook, 1996; Leach and Gillet

b

2007). It is also a non-overlapping technique as hierarchical techniques, which
means each object is assigned to one cluster only. Contrary to hierarchical
clustering, non-hierarchical techniques split a dataset into groups that have no
hierarchical relationship to each other. Therefore, the computational
requircments for non-hierarchical clustering are generally less than for

hierarchical techniques.

There are three major non-hierarchical methods as follows: relocation

clustering, nearest-neighbour clustering, and single-pass clustering (Willett,
1987). Relocation methods begin with selecting (usually randomly) & objects as
“seed point”, and then the rest are assigned to the closest seed generating a set

of k clusters. With the centroids re-calculated for each cluster, objects are
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relocated to the closest new cluster centroid, and such process is usually
repeated until no objects have been relocated. K-Means method is a commonly
used relocation technique. Second, in nearest-neighbour methods, all pairwise
similarities are measured to find the nearest neighbours of each object and
ranked based on the similarities. A well-known example of chemical
applications is the Jarvis-Patrick method (Jarvis and Patrick, 1973). Finally, in
the single-pass methods, the first object is assigned to the first cluster, and the
next object belongs to the first cluster or a new cluster depending whether their

similarity is over a specified threshold value. Such methods cluster objects

using only one pass over the dataset.

3.2.3 Summary

There is vast number of clustering algorithms available in the literature, and it
may be difficult and confusing for users trying to choose a suitable algorithm
for the problem. Thus, users undertaking a cluster analysis should take two

important issues into account when they use clustering algorithms (Kantardzic,

2003).

First, it is essential for users who utilize a clustering algorithm to have a
complete comprehension of the specific technique being used, as well as to
know the details of the data grouping process. All of these will be the best

criteria to choose an appropriate method. Moreover, the more information the

user has relating to the data, the more likely the user would be able to succeed
in a cluster analysis. Second, there is no single best clustering algorithm and no
single method will be suitable for exploring the variety of structures present in
all types of multidimensional datasets. Therefore, it 1s necessary for a user to

try various algorithms on a given dataset to identify the most appropriate

method for that application.
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3.3 The Comparison of Clustering Methods

In recent years, there has been a dramatic increase in research in many fields

concerned with clustering. Despite its frequent use, little 1s known about the
applicability of available clustering methods, whether the method selected is

suitable for user’s problem at hand, or how clustering methods should be

employed.

There have been various studies in the literature related to the comparison of
clustering methods in varied disciplines such as marketing (Punj & Stewart,
1983), chemoinformatics (Raymond et al.,, 2003; Willett, 1987) and data
mining (Berkhin, 2002). There also have been several extensive discussions of
clustering validation; examples of comprehensive reviews are given by Willett
(1983), the studies of Milligan (1996) and Halkidi et al. (2001) broadly cover
clustering evaluation techniques, whilst discussions of some specific validation

techniques can be found in the studies by Berkhin (2002), Halkidi et al. (2001)
and Jain et al. (1999).

The evaluation of clustering results is always one of the most significant issues
in cluster analysis, and is often done to find the clustering that best describes
the underlying data (Halkidi et al., 2001). The resecarchers cannot assure that

they have a set of useful and meaningful clusters even after careful analysis of

a dataset and the selection of a final cluster method. Furthermore, to evaluate
the quality of clustering results is always a significant issue of the procedure.
On the other hand, the evaluation of clustering methods is also a critical issue
in cluster analysis. Rand (1971) proposed several objective criteria which
depend on a measure of similarity between two different clusterings of the
same datasets, and the measure essentially considers how each pair of objects

is assigned in each single cluster. In addition to evaluating clustering methods

by their results, Murtagh (2000) evaluated clustering methods by their time and

storage costs.

37



Chapter 3: Clustering

An empirical study by Milligan (1980) compared the performance of k-means
methods and hierarchical methods and found that when using random seeds as
the start points, K-means methods generated noticeably worse performance
than hierarchical methods even under the condition of no error or noise.
However if the optimal starting procedures, obtaining the starting seeds from
hierarchical methods e.g. group average method, were carried out instead of
random seeds seclection, k-means methods offered similar or superior

performance to the hierarchical methods.

Brown and Martin (1996) investigated clustering methods to compare their
performance for compound selection by using varied fingerprints. Active or
inactive data was available for the compounds in the datasets used, and then the
evaluation was based on how well clustering separated active from inactive
compounds. Although the Jarvis-Patrick technique was the fastest among all
the methods, it offered the worst performance than any other. Overall, the

Ward’s method produced most consistent and the best performance.

3.4 Chemical Applications of Clustering

In discussions of chemical applications, clustering is one of the most important
of the techniques that have been widely used in the literature. In recent years,
clustering analysis is getting considerable attention not only in many
disciplines such as business and computer sciences but also in
Chemoinformatics; some common chemical applications of which are
high-throughput screening, combinational chemistry, compound acquisition,

and QSAR (Downs and Barnard, 2002).

The clustering of chemical structures may be the earliest and most important
chemical application. The following serve as some examples: Adamson and
Bush (1973) developed a method to classify automatically the chemical
structures, comparing fragment bit-strings for similarity calculation by three
different coefficients and the clustering results were reasonable from a
qualitative viewpoint. Willett et al. (1986) summarized an empirical

comparison of nonhierarchical clustering methods based on simulated property
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prediction experiments, and clustered the outputs resulting from chemical

substructure searches. The finding is that the Jarvis-Patrick method is effective
in operation even with large datasets of many hundreds or thousands of
chemical compounds. The study of Butina (1999) also found that using
Jarvis-Patrick method with Daylight’s fingerprints and the Tanimoto similarity
Index has a good performance in dealing with large datasets. Whilst, Reynolds

et al. (1998) developed a simple clustering method to group structures based on

2D topology descriptors.

With the increasing needs of optimal clustering methods in chemical
applications, a variety of novel methods are found in the literature; for example
CAST (Ben-Dor et al., 1999), Raymond-Willett (Raymond and Willett, 2003),
and Yin-Chen (Yin and Chen, 1994). Raymond et al. (2003) compared five
clustering methods used for chemical structures by graph- and
fingerprint-based similarity measures. Although the results based on graph
similarities are different from fingerprint similarities, they cannot suggest that a
certain method is consistently superior to the other; however, some novel
clustering methods such as CAST and Yin-Chen generate superior performance
to traditional clustering methods such as Ward’s and Jarvis-Patrick over these
tests, and may be useful alternatives for the clustering of chemical structure
databases. Furthermore, they concluded that both graph- and fingerprint-based

similarity measures can be used effectively for chemical clustering.

Hierarchical agglomerative techniques, for example Ward’s method, are widely
used for commercial purposes. The importance of current research is turning
toward the quality of the clustering results. The achievements in chemical
application of clustering are more hopeful than in other disciplines because the
clustering methods in chemical application are able to deal with mixed or
nonnumerical data and pay more attention on cluster size, shapes, and
distribution (Downs and Barnard, 2002). For example, cluster-based and even
dissimilarity-based algorithms, so far, are widely used to select compounds not
only on the basis of chemical similarity or dissimilarity but also on the basis of

other chemical characteristics such as cost, pharmacokinetic properties, and

ease of synthesis (Willett, 2005).
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Bocker et al. (2006) proposed a novel hierarchical clustering approach which is
called NIPALSTREE to analyze large datasets in high-dimensional space. The
clustering results of NIPALSTREE were compared with another hierarchical

k-means clustering method; it was validated using ACE inhibitors in the

COBRA dataset and shown to generate meaningful results.

As for the clustering applications on high-throughput screening in drug
discovery, cluster analysis is a suitable tool for grouping similar compounds

into classes. However, many available clustering methods focus on accurate
classification of objects, and thus, they lead to a time-consuming process. It is
not suitable to apply high-throughput screening on large scale compound
libraries. Li (2006a) proposed a fast clustering method to group a very large
scale dataset with millions of compounds in hours, and to analyze the
redundant compounds of a very large high-throughput screening library. In

addition, the use of clustering methods in high-throughput screening is

discussed by Dunbar (1997).

3.5 Summary

Having introduced the main features of similarity and cluster analysis, the later
three chapters (Chapter 5 to 7) describe the experiment work carried out in this

thesis. One of the problems noted above (in Section 3.1) is the standardization

of variables. This has been little studied in chemoinformatics, and hence
Chapter 5 presents a detailed evaluation of standardization methods using both
the similarity searching and cluster analysis to compare the various methods

that have been suggested in the literature.

In addition, the applications of chemical clustering, especially on 2D structures,

have room for improvement and extension, because there are limitations and

drawbacks in the currently used clustering methods. It is worth employing
some methods that are reported effective in other fields to the application of

chemical clustering (as presented in Chapter 6).
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Due to the studies in the next three chapters containing some experiment
details in common, all experimental contexts are hence presented in this
chapter including the datasets and the chemical representations, clustering

methods and the evaluation measures, which have been applied to the studies

of the next three chapters.

4.1 Datasets

Two chemical databases are used in this thesis. The first is the MDL Drug Data
Report (MDDR) containing 102,535 biologically relevant compounds with
over 452 activity classes, produced formerly by MDL Information Systems and
now by Symyx Technologies (Symyx, 2007). Each compound in the MDDR is
classified into one or several activity classes corresponding to a certain
therapeutic action. It is one of the largest databases of chemical structures with
associated biological activitics and the essential information about biological
activity of the MDDR is mainly acquired from the patent literature, which is a
popular example in the field of chemoinformatics. We randomly selected 10%
from the entire MDDR database with SDF (Structure Data Format) format (for
the experiments in Chapter 5) and SMILES format (for the experiments in
Chapters 6 and 7) by SciTegic Pipeline Pilot software with default random seed
333 obtaining a total of 10,191 and 10,201 molecules respectively.

The other chemical database is the IDAlert containing 11,607 compounds
across 834 activity classes classified by the pharmacological property,
produced formerly by Current Drugs Ltd. and now by Thomson Reuters
(Thomson Reuters, 2007). Similar to the MDDR, each compound in the

IDAlert database is assigned to a certain activity class. This work used the
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entire IDAlert database as the dataset for the studies in different chapters of this

thesis.

Moreover, we chose eleven activity classes from the two databases, which have

been reported previously by Hert et al. (2004), in a study of virtual screening
methods on the MDDR database. The chosen eleven activity classes were
employed as the indicators to evaluate the clustering results as shown in Tables
4-1 (for the MDDR) and 4-2 (for the IDAlert). Each row in the table contains
an activity class, the number of molecules belonging to the class, and the
indication (pairwise similarity and standard deviation) of the class’s diversity.
The diversity of an activity class is computed based on the pairwise Tanimoto
similarities using the Pipeline Pilot ECFP 4 fingerprints (the manner of
calculating Tanimoto similarity is discussed in Section 2.4.2 as Figure 2-3).
However, some classes have different but similar names in these two databases,
for example SHT reuptake inhibitors and D2 antagonists in the MDDR are
called SHT uptake inhibitors and Dopamine D2 antagonists respectively in the

IDAlert.

Active Average Pairwise  Pairwise Standard

Activity Class Molecules Similarit Deviation

SHT3 antagonists 89 0.34 0.11
S5HT1A agonists 94 0.33 0.10
SHT reuptake inhibitors 38 0.35 0.14
D2 antagonists 40 0.35 0.09
Renin inhibitors 112 0.57 0.10
Angiotensin II AT1 antagonists 95 0.40 0.10
Thrombin inhibitors 108 0.42 0.13
Substance P antagonists 1235 0.39 0.11
HIV-1 protease inhibitors 67 0.45 0.12
Cyclooxygenase inhibitors 54 0.27 0.09
Protein Kinase C inhibitors 48 0.31 0.13

Table 4-1 Eleven activity classes and their number of actives in the 10k MDDR dataset
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Activity Class Active Averggq Pairwise  Pairwise Standard
Molecules Similarity Deviation
5SHT3 antagonists 99 0.36 0.12
SHT1A agonists 61 0.33 0.10
SHT uptake inhibitors ® 41 0.32 0.10
Dopamine D2 antagonists ° 20 0.36 0.08
Renin inhibitors 123 0.48 0.14
Angiotensin Il AT1 antagonists 12 0.43 0.08
Thrombin inhibitors 76 0.49 0.15
Substance P antagonists 66 0.41 0.13
HIV-1 protease inhibitors 32 0.42 0.13
Cyclooxygenase inhibitors 87 0.26 0.09
Protein Kinase C inhibitors 51 0.32 0.16

* MDDR activity classes SHT reuptake inhibitors and D2 antagonists are called SHT uptake inhibitors
and Dopamine D2 antagonists respectively in the IDAlert dataset.

Table 4-2 Eleven activity classes and their number of actives in the IDAlert dataset

4.2 Chemical Representations

The two datasets were characterized by four different chemical representations.
Molconn and Pipeline Pilot have similar data type, i.e. real number (numerical),
of descriptors for structure description, but differ in the number of descriptors.
Tripos molecular holograms and Pipeline Pilot ECFP_4 are fingerprint-based
representations, but differ in the data type, integer and binary respectively, of

their descriptors.

4.2.1 Molconn

Molconn structure descriptors are a set of varied types of topological indices of
molecular structure, These indices (i.e. descriptors) show the molecular
structure information which is useful. We used Tripos Sybyl software (Tripos,
2007) to calculate 523 Molconn descriptors from molecular structure (labeled
Molconn-Z in this thesis) containing molecular connectivity (Chi) indices,
electrotopological state (E-state) indices, shape (Kappa) indices, topological
state and equivalence indices. These indices are suitable for QSAR

(Quantitative Structure-Activity Relationships) and QSPR (Quantitative
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Structure-Property Relationships) studies (Tripos, 2007), and are also ideal for

statistical methods e.g. cluster analysis and regression. The Molconn-Z

representation was employed in the experiments in Sections 5.3 to 5.7.

In addition, due to the license of Molconn-Z package in the Tripos Sybyl
software being changed, we employed a new alternative of Molconn tool,
called winMolconn software (HAC, 2010), which 1is available at
http://www.molconn.com and denoted by win_Molconn in this thesis, for the
extensive study of standardization methods in Chapter 5. It generates 668
descriptors from the connection table of chemical structures including three
main categories of elementary structure information indices, molecular
connectivity indices and electrotopological state (E-State) indices. The

win_Molconn representation was used in the experiments in Sections 5.9 to

5.12.

The correlations between many Molconn descriptors, i.e. Molconn-Z and
Win_Molconn, are highly correlated with each other (Shen et. al., 2003).
Hence, the certain information of a set of highly correlated descriptors may
usually be over-represented. In order to get rid of such problem, Principal
Component Analysis (PCA) 1s commonly applied to transform a number of
correlated variables, i.e. descriptors, into a small number of un-correlated

variables which are usually called principal components. In other words, the

number of descriptors, 1.e. the dimensionality of a dataset, is hence reduced to

generate a new set of small number of descriptors.

The process of Principal Component Analysis, in essence, usually involves the
procedure of standardization (Leach & Gillet, 2007; Shen et. al.,, 2003), i.e.

converting the source data to Z-score. However, one aim in the works of
Chapter 5 1s to compare the effectiveness of different standardization
procedures on the chemical data with Molconn representations. To avoid the
Molconn descriptors being re-standardized, the correlations between Molconn

descriptors are ignored here, that is, all Molconn descriptors are kept in the

datasets.
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4.2.2 Pipeline Pilot

Similar to the data type of the Molconn descriptors, we used Scitegic Pipeline
Pilot software (Accelrys, 2007) to generate twelve commonly used structural
descriptors to form this chemical representation (labeled Pipeline Pilot in this
thesis), such as AlogP, logD and PKa, molecular weight, Surface area and
volume, and solubility (summarized in Table 4-3). The major difference
between Pipeline Pilot and Molconn-Z representations is the number of

descriptors they contained. The Pipeline Pilot representation was used in the

study of Chapter 5.

Minimized Energy Gives the molecular energy after a fast minimization procedure

ALooP The Ghose/Crippen group-contribution estimate for LogP, where
Ve P is the relative solubility of a compound octanol vs. water

| The Ghose/Crippen estimate of molar refractivity, which
ALogP_MR contains information about molecular volume and polarizability
of a compound

The ratio of the equilibrium concentrations of all species of a
LogD molecule in octanol to same species in the water phase at a given
temperature.

Molecular weight Molecular weight
Solubility Molecular Solubility
Molecular Volume The 3D volume

Molecular_SurfaceArea The total surface area and polar surface area for each molecule
are calculated using a 2D approximation

Molecular PolarSurfaceArea

ST

!

Molecular_SASA The total solvent accessible surface area
Molecular_PolarSASA The polar solvent accessible surface area
Molecular_SAVol The solvent accessible volume
M

Table 4-3 The summary of descriptors of Pipeline Pilot representation
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4.2.3 Holograms

Molecular hologram representation is a technique of fingerprinting which
consists of all varied molecular fragments within a molecule, and records the
count of the frequency in which each unique fragment occurs rather than
traditional 2D fingerprints that record only the status of absence or presence of
a certain fragment (Tripos, 2007). We used Tripos Sybyl software to calculate
molecular holograms (labeled Holograms in this thesis) containing 997
descriptors. Each descriptor represents a predefined molecular fragment, which
is generated for all possible substructures between 4 and 7 atoms 1n size for all
molecules, to record the number of times a unique fragment occurs in a given

molecule. The Holograms representation was used in the study of Chapter 5.

4.2.4 ECFP 4 Fingerprints

Molecular fingerprints are one of the common chemical representations, and
are widely used for similarity searching, virtual screening and clustering.

Extended-connectivity fingerprints (ECFPs) are a commonly-used example of

molecular fingerprints. They were designed to capture molecular features
which correspond to molecular activity. We used SciTegic Pipeline Pilot
software (Accelrys, 2007), which is available at http://www.accelrys.com to
generate ECFP_4 circular fingerprints (labeled ECFP_4 in this thesis) with a
fixed length of 1024 bits (descriptors).

The suffix number, i.c. 4, after the term ECFP indicates the diameter (in bonds)
of the circular substructure. The data type, in essence, for ECFP_4 is binary.

That 1s, each descriptor encodes simply the absence (zero) or presence (one) of

a 2D structural fragment within a molecule. The main difference between
Holograms and ECFP_4 is that the former records the counts for a certain
fragment, whereas the latter records only the absence or presence of
substructures. ECFP_4 is a type of Extended-Connectivity fingerprint (ECFPs),
and such fingerprints encode circular substructures based on a hash function, a
variation of the Morgan algorithm, which was initially proposed to solve the

molecular isomorphism problem in order to generate a unique structural
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description (Morgan, 1965; Leach and Gillet, 2007). ECFP_4 fingerprint was

used in the studies in Chapters 6 and 7.

Table 4-4 summarizes the overall information for the above four chemical

representations and the context they have been applied to.

Chemical
Representations Data Types Software Tools Context
Molconn-Z Tripos SYBYL Sections 5.3 to 5.7
Win_Molconn Real Number winMolconn software | Sections 5.9 t0 5.12 |
Pipeline Pilot Real Number | Scitegic Pipeline Pilot Chapter §

Holograms Integer Tripos HQSAR Chapter 5
ECFP 4 Binary Scitegic Pipeline Pilot Chapters 6 & 7

Table 4-4 Summary of four chemical representations

4.3 Clustering Methods

The clustering methods used in Chapters 5 and 6 are integrated and discussed
in this section. Some methods, Yin-Chen and CAST, are coded, and the rest of
the methods are carried out using the implementations in specific software
packages. Due to the license of particular software package being changed, the
Ward’s method 1s carried out using different software packages in distinct

experiments of this thesis but with the identical standard Ward’s algorithm.

4.3.1 Yin-Chen

This clustering method involves a two-phase algorithm with fixed-radius
selection (Yin and Chen; 1994). This approach examines the status of
connectivity of pairwise objects: if the distance between them is less than a
certain distance, i.e. two times the mean minimum distance (MMD), then they
will be considered to be connected; otherwise, they will be considered to be
noise and will be removed from the dataset. A graph theoretic procedure, in our

study we chose Breadth First Search (BFS), is applied afterwards to find out
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the connected components based on the status of adjacency. Each connected
component is considered a cluster. In addition, the distance calculation in our
study is based on the Tanimoto distance (Willett et al., 1998; Holliday et al.,
2002; Li, 2006), and the number of clusters is determined by an adjustable

parameter i.e. a cut-off threshold.

4.3.2 CAST

Cluster Affinity Search Technique (CAST) was proposed by Ben-Dor et al.
(1999) for applications on clustering gene expression data. One feature of this
method is using a cut-off parameter as a threshold to adjust the number of the
clusters, therefore no predefined number of clusters is applicable to such
method, and in some applications the number of clusters is usually unknown or
hard to specify. The rationale of CAST, in short, 1s taking turns between
moving the element with maximum similarity in the working cluster, and
removing the element with minimum similarity from it until the working
cluster is stable, i.e. a cluster has been generated; then a new cluster is started
thereafter. In addition, the calculation of similarity is based on the Tanimoto
coefficient (Leach and Gillet, 2007; Haranczyk and Holliday, 2008), and,

similar to the Yin-Chen method, an adjustable parameter is needed to

determine the number of clusters.

4.3.3 UPGMA

CLUTO is the abbreviation of CLUSstering TOolkit and is a suitable software
package for clustering with high dimensional datasets. It has been widely used
in the application of document clustering (Steinbach et al., 2000; Zhao and
Karypis, 2005), while in our study, we applied it to chemical clustering.
Agglomerative clustering methods have been extensively used in a wide range
of fields. Saad et al., (2006) compared the performance between agglomerative
and partitional clusterings and found agglomerative method effective. In
addition, the application of document clustering using CLUTO package also
reported that the agglo method with UPGMA (Unweighted Pair Group Method

using Arithmetic mean) criterion function and the repeated bisection method
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had better performance (Steinbach et al., 2000). In our study, we employed a
hierarchical agglomerative method, agglo, and two partitional-based methods,

direct and repeated bisection (see next sections) for the application of chemical

clustering.

The agglo method is the traditional hierarchical agglomerative method. Initially,
it considers each object in a dataset as individual clusters and then keeps

merging two clusters which are most similar until the desired number of
clusters is found or certain criterion is reached. However, the critical process in
such sort of methods 1s the scheme used to choose which two clusters to be
merged next (Karypis, 2003). The default criterion function of agglo method in
CLUTO is UPGMA, which is also known as average linkage. Two clusters

with minimum distance are merged into one cluster, for which the distance is

based on the average of pairwise distances in each cluster.

4.3.4 Direct

In terms of direct method, the desired & clusters are generated synchronously; it
is similar to traditional K-means type of algorithms. The direct method is
simply a two-step algorithm. The first step involves selecting randomly k

objects from the dataset as the centroids and then assigning each of the rest of
objects to its closest centroid. Hence the initial & clusters are obtained. The
second step contains a number of iterations of refinements. The refinement is
based on a best-one-element-move strategy (Zhao & Karypis, 2005). Each
object is visited in a random order to see if any improvements in the value of a
desired criterion function are found by moving one object to one of the rest of
k-1 clusters. If the improvements are found, then moves this object to the

cluster which leads to the best improvement; if not, this object stays in its

original cluster. The iteration of refinement stops on condition of no objects

moved between clusters.

Both i2 and el criterion functions are used for each of the partitional-based
methods 1.e. direct and repeated bisection. The i2 criterion is based on the

within-cluster similarity; in this measure, each cluster is represented by its
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centroid, and a cluster 1s generated by maximizing the similarity or minimizing
the distance between a cluster centroid and each member in that cluster. The e/
criterion, however, generates clusters by minimizing the similarity or
maximizing the distance between the centroid of each cluster and the centroid
of all clusters. For more detailed explanation of these criterton functions, the

reader is referred to the study by Zhao and Karypis (2005). The equations for
i2 and el are defined as follows (Karypis, 2003)

k
i2=maximize Y |3 similarity(a,b)
i=] \ a,beC,

el = minimize Zk:n. Z“EC;. pec Similarity(a, b)
=l | Za beC, SimllaritY(a: b)

a and b indicate two objects; C is the collection of all objects; C; represents the

collection of objects in a certain cluster; similarity(a,b) indicates the similarity

between object a and b.

4.3.5 Repeat Bisection

The repeated bisection method, which is a variation of K-Means but with
hierarchical divisive method (Downs and Barnard, 2002; Willett, 2009) also
named Hierarchical K-means (Bocker et al., 2005), it divides the dataset
repeatedly into clusters. In a word, the dataset is 1nitially split into two clusters
using the original K-Means algorithm; and then one cluster is chosen and split.
This process repeats until it reaches the desired number of clusters (Barnard
and Downs, 1992). However, the critical process in repeated bisection is the
measure employed to choose which cluster to be divided next, normally the
largest cluster 1s selected for bisection (Steinbach et al., 2000; Saad et al.,

2006). The criterion functions, i2 and el, used for this method were discussed

in Section 4.3 .4.
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4.3.6 K-Means

K-Means algorithm, was first proposed by Stuart Lloyd in 1957 but was not
published until 1982, whereas it was first used by MacQueen in 1967 (Jain,
2010), and is one of the best known partitional clustering methods. Basically, it

1s an iterative clustering algorithm in which objects are relocated among
clusters until some convergence criterion is met. In this thesis, the traditional
K-Means method was carried out using the implementation in the BCI
(Barnard Chemical Information) software package, which i1s now Digital

Chemistry Clustering Tools (Digital Chemistry, 2007), the main steps of this

traditional K-Means method are

1. Choose k random objects as the centroids
2. Assign each object to its nearest centroid, i.e. cluster center

3. Compute the new cluster center as the centroid for each cluster

4. Repeat steps 2 and 3 until no object relocation is needed

The time complexity of K-Means is O(tkn), where ¢ is the number of iterations,
k is the number of clusters, and the » is the number of objects, 1.e. size of
dataset. Obviously, £ and n can substantially influence its efficiency. It is
time-consuming when dealing with large datasets, however it often generates
good results. In addition, it is sensitive to the noise and outliers, since such data

significantly influence the computing of cluster centers on relocating objects.

According to the algorithm of traditional K-Means listed above, it generates

different results with each run, because the clustering results depend on the

random selection of initial centroids. Moreover, it can obtain a local optimum,
.. minimizing intra-cluster variance, but not assure the global optimum.
Hence, extensive variations of the K-Means method are reported in the
literature to obtain the overall optimum. Basically, they differ in the details of
careful selecting the initial centroids, e.g. Direct method of CLUTO, or
adjusting the partition, e.g. if the distance between two cluster centroids is less
than a predefined threshold, then two clusters are merged (Dunham, 2003).

Some methods also operate in a deterministic manner by removing the random
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selection of centroids and the order-dependent processing of objects.

4.3.7 Ward’s

Ward’s method is a well-known hierarchical agglomerative clustering method,
and i1s normally the method of choice in chemoinformatics especially in the
application of chemical clustering of 2D structures (Barnard and Downs, 1997).
Unlike many other clustering methods, Ward’s method (Ward, 1963) considers
clustering as an analysis of variance to evaluate the distance between clusters,
instead of using distance or similarity metrics. The fusion criterion minimizes
the increase of the error sum of squares computed based on Euclidean distance

between two clusters in order to optimize the quality of the new cluster formed

at each step (Everitt et al., 2001). Many hierarchical agglomerative techniques,
e.g. complete, single or average linkage, obtain only the global optimum, i.e.
minimum inter-cluster variance. However, the Ward’s method obtains both
local (intra-cluster) and global (inter-cluster) optimum by minimizing the

increase of the intra-cluster error sum of squares.

4.3.8 Extended Ward’s

This hierarchical clustering method was proposed by Szekely and Rizzo (2005);
its rationale is based on joint between-within cluster distances. Similar to
Ward’s method, extended Ward’s also minimizes the Euclidean distance
between clusters. However, the distance for extended Ward’s, named e-distance,
Is a measure of both the heterogeneity between clusters and homogeneity
within clusters. In the proposed e-distance formula, with a power function a of
the Euclidean distance will generate different clustering methods. For example,

the objective function with a=1 and a=2 are equivalent to the extended Ward’s

and conventional Ward’s method respectively. The formula was defined as
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*(A,B)= nnf 121
| 2

[Il nz i=l =l

where 4 and B represent two non-empty vector space (clusters)

A= {al, Ay cony

anl} and B= {bl, bz, cess bnz}

n; indicates the number of elements in cluster A, while n; represents the

number of elements in cluster B. The a powers of Euclidean distance fall in the

interval (0,2].

A summary of software tools for the above clustering methods and the context

they are applied to

Clustering
Methods

Ward’s

Extended
Ward’s

K-Means

UPGMA

Direct

Repeated
Bisection

is given in Table 4-3.

BCI software Sections 5.3 to 5.7

R software

R software

BCI software

CLUTO

CLUTO

CLUTO

Yin-Chen Coded by Perl Script
CAST Coded by Perl Script

Sections 5.9 t0 5.12
and Chapter 6

Sections 5.9t0 5.12
Chapter 6

Sections 5.3 to 5.7

Chapter 6

Chapter 6

Sections 5.9 to 5.12
Chapters 6 and 7

Sections 5.9 to0 5.12
Chapters 6 and 7

Sections 5.9 t0 5.12
and Chapter 6

Table 4-5 Summary of the software tools and use in thesis of all clustering methods
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4.4 Evaluation of Clustering Results

Evaluation of clustering results is a critical process in cluster analysis, it not
only assesses the clustering techniques but also provides the intensity of
confidence for the clustering. Most clustering applications need an evaluation
measure to assess the results from a certain method, such as the assignment of
objects in clusters, the number of clusters, capturing the intra-cluster similarity
and inter-cluster dissimilarity. There are extensive evaluation measures with
different types in the literature; if a clustering method offers better performance
than others over many evaluation measures, then that clustering method is the

best for a certain type of application. Hence we chose five evaluation measures

for our experiments. Shannon entropy and probability of correct prediction are
two evaluation criteria used in the study of Bocker et al. (2006). Entropy based
on cluster size is a measure which is similar to the conventional Shannon
entropy to observe the distribution of partition sizes. F-measure is a measure
widely used in document clustering for many years (Fung et al., 2003;
Rosenberg and Hirschberg, 2007). Quality Clustering Index (QCI) is a new

evaluation measure recently defined by Varin et al. (2008).

4,4.1 Shannon Entropy

Shannon Entropy (SE) is a technique to evaluate the distribution of active
compounds from inactives for a given class across all clusters (Matter, 1997).
Entropy-based approach assumes that the best possible classification is one in
which all of the actives for a given particular activity class are located in the
same cluster. Conversely, the worst possible classification is one in which they
are distributed equally across the available clusters. The distribution of the

actives was quantified using the Shannon Entropy (SE), which is defined

(Godden and Bajorath, 2001; Batista et al., 2006) as
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d
SE-'-"-- l : and P = —
zi :pl ogZ(pl) | A

where p; is the fraction of the total number of active molecules that occur in the
i-th cluster and where the summation is over all of the clusters

a is the number of active molecules in a certain cluster, and

A is the total number of molecules in a given activity class.

For example, if 4 of the 100 members of an activity class occur in some cluster

A, then p; = 4/100 = 0.04, yielding a contribution to SE of 0.19. The
performance measure is then the calculated entropy, with the results being

averaged over all of the eleven activity classes. For this measure, small entropy

values indicate good clustering results.

4.4.2 Probability of Correct Prediction

This evaluation criterion involves finding the fraction of clusters containing
actives that are predicted to be active or inactive., The Shannon Entropy
observes merely the distribution of actives and takes no account of actives’
co-occurrence with inactives. Whereas, the evaluation using the probability of
correct prediction takes account of both the actives and the inactives for a
certain activity class. Let an active cluster be a cluster that contains at least one

molecule from the chosen activity class. Define P(active) and P(inactive) for a

particular cluster as

P(active) = i— and P(inactive)= I:Tl -1

where N is the total number of compounds in the dataset,

n is the total number of molecules in the current active cluster,
a is the number of active molecules in that cluster, and

A is the total number of molecules exhibiting the chosen activity.
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The two values P(active) and P(inactive) hence describe the proportion of the
actives and the proportion of the inactives that are present in the chosen cluster.
We would hope that P(active) would be greater than P(inactive) in the case of
an active cluster, i.e., that there is a greater concentration of active molecules
present (whereas the converse would imply the presence of some small number
of “stray” actives in a cluster composed predominantly of inactives), We then
use the number of times when this is in fact the case as a measure of the

effectiveness of clustering: the more frequently this happens, the greater the
degree of concentration of the actives in the active clusters. For example,

assume that ¢ = 2 and » = 10 for some cluster and that N = 820 and 4 = 20 for

the dataset. Then the probabilities of activity and inactivity are

10-2
820-20

={(.01]

P(active) = 5% =0.1 and P(inactive)=

with P(active) > P(inactive), as would be predicted to be an active cluster. The
performance measure is then the fraction of active clusters that are indeed

predicted to be active for the chosen activity class, with the results being

averaged over all of the eleven activity classes.

As the equations of P(active) and P(inactive) are listed above, the probability

of a given cluster which is predicted to be active or inactive depends on two
factors. The first factor is the size of dataset (N) and the other is the size of
clusters (n). For example, suppose the size of the MDDR dataset is N=10,000
and the approximate size of clusters is n=20 to 10 (with the number of clusters
500 to 1000). Hence with the same conditions as in above example of a=2 and
n=10 for some cluster and 4=20 for the dataset; even if the number of active

molecules (a) is small, the probability of P(active) tends to be much greater

than P(inactive).
2 : 10-2
Plactive)=—=0.1 d P tive) = ——~——— = 0.0008
(ac ive) 20 an (mac 1ve) 7000020 =
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Obviously, P(active) is much higher than P(inactive), that is, the chosen cluster
is easily to be active. Hence, when dealing with very large dataset and small

size of cluster, the clustering evaluation based on such measure may not be

applicable.

Since this evaluation approach is strongly affected by the size of dataset and of
cluster, we employed it only in the study described in Chapter 5 (Effect of
Standardization on Three Different Representations of Structural Similarity),
that is because the number of clusters in the experiment was set to be 25, 50
and 100. For other experiments, such as the extensive study in Chapter 5, and

other studies in Chapters 6 and 7, the partitions contained 500, 600, 700, 800,
900 and 1000 clusters, in which case the partition size is much smaller.

Consider the size of datasets (approximately 10,000) and the small partition
size (20 to 10 in averages), and find that large size of dataset and small size of

partitions will easily lead the clusters to be identified active. The evaluation
using the probability of correct prediction is not applicable to above

experiments but only to the experiments in Sections 5.3 to 3.7.

4.4.3 Entropy Based on Cluster Size

The rationale of entropy based on cluster size is similar to conventional entropy

as discussed in Section 4.4.1. It evaluates the size distribution over all clusters.

The only difference is the calculation of probability p; in the equation of

Shannon entropy. The p; is defined as

Pi="§

where » is the total number of molecules in a certain cluster, and

N indicates the total number of molecules in the dataset.

This criterion hence considers only the sizes of the clusters, not the activity of

the molecules in the clusters, and 1s hence biased towards a classification

consisting of equal-sized clusters.
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4.4.4 F-measure

F-measure (Rijsbergen, 1979) is the evaluation of external clustering quality
which takes precision and recall into account, this evaluation measure 1s widely
used in document clustering (Steinbach et al., 2000; Fung et al., 2003). For a
certain cluster, the precision and recall can be computed based on a given
activity class. Precision calculates the ratio of molecules in a cluster which
belong to the given activity class to examine how this cluster is with respect to
that activity class; while recall computes the ratio of molecules of the given

activity class in a certain cluster to measure how complete this cluster is with

respect to that activity class. Both can be defined as

. a
Precision = —
n

Recall = 2
A

where a is the number of active molecules of a given class 1n a cluster,
n is the total number of molecules in a cluster, and

A is the total number of molecules exhibiting the chosen activity class.

The F-measure of a certain cluster and a given activity class can be defined as

(Fung et al., 2003; Rosenberg and Hirschberg, 2007)

(2* Recall * Precision )

] (Recall + Precision)

In terms of the F value for entire clustering, it captures the maximum value for
a chosen activity class over all clusters, i.e. finding the “best” cluster for a
certain activity class. In conventional document clustering, the overall F value
is computed using the weighted sum of such maximum values for all activity
classes; and the sum is normally weighted by the ratio of size of a given class
to size of the dataset. However, in our experiment, unlike its calculation in
document clustering applications, the overall F score for entire clustering

performance is the average of these maximum values for all activity classes
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without a weighting scheme; because we chose only 11 activity classes which

we are interested in from the datasets. The F score used in our study can be

defined as

1 k
F overall ?Z max {Fnc }

8C = ]

where max{F..} 1s obtained by comparing the F values over all clusters for a
certain activity class, and
k is the number of activity classes, and

ac indicated an activity class.
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