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Summary 

SUMMARY 

The safe design and operation of Process plants requires an ability to 

predict hazard consequences reliably. One particular hazard is a jet fire that 

might arise from the ignition of an accidental release of pressurised gas or 

liquid. On offshore gas and oil production platforms and also on land-based 

gas facilities, accidental releases might occur of high pressure natural gas 

sometimes containing higher molecular weight components. 

Industries continue to seek efficient and cost-effective means of protecting 

their plants and personnel from the hazards of fires. Following disasters 

which occurred in the past, the need for effective mitigation systems has, 

once again, been highlighted. Mitigation systems involving agents such as 
halons, which are perceived to be environmentally damaging, are currently 

out of favour and interest has revived in the use of water sprays. 
The research work presented here addresses the problem of the suppression 

of a compartment jet fire by water sprays. This involved studying the 

interaction between water spray and a turbulent jet flame inside a 

compartment of dimension 6x2.4x2.4 m3. The fuel used for the jet fire was 

propane emerging from a 2.0 cm diameter vertical nozzle and at a mass 
flow rate of 0.1 kg/s. 

The objectives of the research are to investigate the mitigation of 

compartment jet fires by using water sprays by the application of a 

computational fluid dynamics (CFD) methodology incorporating 
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Summary 

combustion and a radiation model to study the jet fire behaviour and the 

temperature distribution in a compartment. In order to achieve the above 

objectives, it is necessary to produce a workable CFD model of an offshore 

module. 

The radiative heat exchange is considered in the modelling by using the 

Discrete Transfer Radiation Method (DTRM). 

The study of the sprays requires details of the individual drops' sizes. The 

Malvern Particle Sizer was used to measure the drop size of water sprays 

from the different spray nozzles which have been investigated in this study. 

The obtained drop sizes of the spray nozzles investigated are used to model 

the spray in FLUENT, which is a well developed CFD package used in 

industry and university research. 

The research started with the CFD modelling of the compartment fire, 

followed by experimental work done at the university laboratory at Buxton 

to validate the result of the modelling. 

In contrast to previous studies in which the combustion reaction was treated 

as a simple heat source this CFD has included a model of the combustion 

reaction. 
Comparisons are made between the experimental data and the predictions 

of different scenarios (i. e. steady state, different water spray arrangement 

and time dependent). The predicted temperature distributions from 

FLUENT, which includes radiation and surface heat transfer, are found to 

be in close agreement with the experimental data. 

Modelling results showed that the current version of the CFD code is able 

to provide a satisfactory and practical means of modelling jet fire and 

extinguishment processes. 
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Nomenclature 

Nomenclature 

A area [m2] 

a absorption coefficient [m'] 

C, turbulence model constant 

O "S vapor concentration at the droplet surface [moUm3] 

C,;,, vapor concentration in the gas [moUm3] 

cp specific heat capacity [J/kg K] 

Dp particle diameter [m] 

D;;. binary diffusion coefficient [dimensionless] 

Fj external body forces [N] 

Gk rate of production of turbulent kinetic energy (equation 4.5) 

gravitational acceleration [m/s2] 

h, convective heat transfer coefficient [W/m2K] 

h enthalpy [J/kg] 

hw external heat transfer coefficient defined by the user [W/m2. K]. 

hf fluid-side local heat transfer coefficient [W/m2. K]. 

hfg vaporisation enthalpy [J/kg] 

h,,, wall enthalpy, cý(T--T, ) [J/kg]. 

I radiation intensity. 

J. flux of species i [kg/s m2]. 

k kinetic energy of turbulence [W]. 

IC Thermal conductivity [W/m-K) 

k mass transfer coefficient (mis) 

M molecular weight [kg/kmol]. 
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Nomenclature 

MI, mass fraction of species i' [dimensionless]. 

mp mass of the particle [kg]. 

N number of chemical species [dimensionless] 

N1 molar flux of vapour [mol/m2-s] 

Nu Nusselt number [dimensionless]. 

p static pressure [Pa]. 

Pr Prandtl number [dimensionless]. 

q heat transfer rate, kJ per unit time. 

q' convective heat flux from the wall [W/m2]. 

q, d radiative heat flux [W/m2]. 

q internal heat generation rate per unit volume 

R gas constant [J/kg K] 

Re Reynolds number 

Sc Schmidt number [dimensionless] 

Si, source term [W] 

S. mass source term due to dispersed second phase [kg] 

t time [s] 

T temperature [K] 

T local temperature of the conducting walls [K] 

Tw interior wall surface temperature [K]. 

TO exterior wall surface temperature [K] 

T. is the temperature of the radiation source or sink on the exterior of the 

domain [K]. 

T. external heat sink temperature defined by the user [K]. 

Tf local fluid temperature [K]. 

u axial velocity [m/s] 
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Nomenclature 

v velocity in j direction [m/s] 

w velocity in k direction [m/s] 

v velocity vector [m/s] 

V, diffusion velocities [m/s] 

X mole fraction [dimensionless] 

Greek Symbols 

A increment [dimensionless] 

ep particle emissivity [dimensionless] 

ew is the emissivity of the external wall surface [dimensionless] 

E dissipation of k [m2/s3] 

µ viscosity [N s/m2] 

µc turbulent viscosity [N s/m2] 

OR radiative temperature [K] 

p density [kg/m3] 

P". Wall density [kg/m3]. 

a Stefan-Boltzmann constant [5.67 x 10-8 W/m2 K4] 

tik viscous stress tensor [J] 
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Ar wall thickness [m] 

Subscripts 

ew conducting wall 

C convection 

p particle 

cap continuous phase 

f fluid 
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r radiation 

R reference 

vO volatile at initial conditions 

w wall 
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fluctuating component 
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CHAPTER 1 

INTRODUCTION 

Accidents involving fire have occurred ever since man began to use flammable 

liquids and gases as fuels (CCP, 1994). Fire is a main cause of loss in the process 

industries. In particular, fire causes extensive property damage. In fact most 

accidents with large loss of life which are reported in the loss prevention literature 

(Lees, 1991 and Vervalin, 1984) are explosions. Explosions are frequently followed 

by fires, but it is usually the former which are most lethal. 

A list of some major fires in the process industries are listed in table (1.1) below: 
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D L i 
Chemical Consequences 

ate on ocat involved 
Death Injuries 

1944 Cleveland, Ohio, USA LNG 136 200-400 

1962 Ras Tanura, Saudi Arabia Propane 1 114 

1966 Feyzin, France Propane 18 90 

1972 Lynchburg, VA., USA Propane 2 3 

1973 Austin, Texas, USA NGL 6 2 

1973 Staten Island, NY., USA LNG 40 - 

1978 San Carlos de la Rapita Propylene 211 - 

1978 Santa Cruz, Mexico Methane 52 - 

1984 Mexico City, Mexico LPG 650 2500 

1986 Lancaster, KY Natural Gas 3 - 

1987 Grangemouth, UK Hydrogen - - 

1988 Port Arthur, TX Propane - - 

1988 Piper Alpha, North sea Oil, gas 167 - 

1989 Richmond, CA Hydrogen - - 
1990 Denver, CO Jet Fuel - - 
1990 Warren, PA LPG - - 
1990 Stanlow, UK Reaction 

Mixture 
1 5 

1991 Haifa, Israel Chemicals - - 
1994 Dronka, Egypt Fuel 410 - 

1995 Ukhta, Russia Gas - - 

Table (1.1). Some of the major fires [Lees, 1996 and ILO, 19901. 
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Losses from fire have escalated over the last century. Table (1.2) shows the losses in 

property damage within the hydrocarbon processing and chemical industries over the 

period 1953-1982 (Vervalin, 1984). During the first ten years covered in table (1.2), 

12 fires and explosion losses only cost $316 million. Frequency of large loss almost 

tripled during the following decade. From 1973 to 1982 there were four times as 

many large losses as in the previous ten years. From 1983 to 1992 the total cost of 

the losses was $2,770,900,000 (Lees, 1996). In the forty-year period covered, 

trended value of the average loss in each decade has increased from $26,400,000 to 

$55,418,000, more than 100%. 

YEARS NUMBER OF 
LOSSES 

TOTAL OF ALL 
LOSSES, TRENDED 

AVERAGE 
LOSS, TRENDED 

1953-1962 12 $316,799,000 $26,400,000 

1963-1972 32 $841,549,000 $26,298,000 

1973-1982 56 $1,900,417,000 $33,936,000 

1983-1992 50 $2,770,900,000 $55,418,000 

TOTAL 150 $3,058,765,000 $30,588,000 

Table (1.2). Analysis of losses of the largest 150 losses IVervalin, 1984 

and Lees, 1996. 

Jet fires have been involved in a number of accidents. Perhaps the most dramatic 

were the large jet flames from the gas riser on the Piper Alpha oil platform. In other 
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cases jet flames from pressure relief valves have caused adjacent vessels to overheat 

and burst, giving a boiling liquid expanding vapour explosion, or BLEVE; such was 

the case in Mexico City. 

An understanding of the nature and scope of the fire loss problem is necessary to 

provide us with a basis for significantly reducing losses. Losses which have occurred 

offer valuable lessons because they provide the information needed to prevent or 

reduce the impact of a similar loss in the future. 

It is essential, therefore, to understand the way in which fire can occur and develop. 

Normally, fire can take several different forms as a result of leakage or spillage of 

fluid from the plant. 

Combustion of material which has leaked from a plant may take a number of forms. 

A leak of gas or liquid may be ignited at the point of issue so that it behaves like a 

flame on a burner. In some circumstances this flame may be directed like a blow 

torch at another part of the plant. 

1.1 Some Major Incidents 

Three incidents will be described in this section in order to show the consequences of 
these events. 

1.1.1 Piper Alpha, North Sea (6 July 1988) 

The initial cause of the accident was the tripping out of the operating condensate 

injection pump. The duty of the condensate system exceeded the initial design and 

4 



Chapter 1: Introduction 

such problems were not uncommon. Staff started up the spare which had earlier been 

shut down for maintenance, during which the pressure relief cap had been removed 

and replaced by a cap that was not leak proof. Clearly there were failures in the 

communication of information at the change over of shifts in the evening. Gas 

escaped from the cap and ignited. The resulting explosion destroyed the fire control 

and communication systems and demolished most of the firewalls. The incoming gas 

pipeline was ruptured upstream of the emergency isolation valve and the gas burnt as 

if in a blowtorch and a fireball engulfed the platform. The adjacent rigs continued to 

feed gas and oil to Piper Alpha for over an hour. Other pipelines ruptured 

intensifying the fire and eventually most of the platform toppled into the water. The 

platform controller had tried to enact the practised emergency plan which involved 

mustering in the galley and then evacuation by helicopter. However the explosions 

made escape by helicopter impossible. Some survivors escaped by jumping into the 

sea from a height of up to 50 m or by climbing down knotted ropes, but 167 oil 

workers were killed, the platform totally destroyed and British hydrocarbon 

production dropped temporarily by 11%. The Piper Alpha explosion and fire was the 

worst accident which has occurred on an offshore platform (Lees, 1996). 

1.1.2 Mexico City (19 November 1984): 

Some 11000 m3 of LPG was stored in six 1600 m3 spheres and 48 horizontal 

cylindrical bullets, all in close proximity. The legs of the spheres were not 

fireproofed. There was a failure of the overall system of protection (water sprays or 
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deluge) of large LPG storage. A leak of LPG from 8 inch pipe between one of the 

spheres and cylindrical bullets formed a vapour cloud which was ignited by a plant 

flare. The storage area was bunded into 13 separate areas by walls about 1 in high. A 

fierce fire developed engulfing the spheres which went up one after the other in a 

series of BLEVEs. Nine explosions were recorded. This series of LPG explosions at 

the distribution centre resulted in 542 fatalities and over 7000 people being injured. 

Some 200,000 people were evacuated. The fireballs were up to 300 in in diameter 

and lasted as long as 20 seconds. Rain consisting of liquid droplets of cooled LPG 

fell over the housing area covering people and property. It was set alight by the heat 

from the fireballs. Since the construction of the plant some 100,000 people had 

settled in crowded housing on the valley floor and slopes. This had spread to within 

130 m of the plant. The local housing was mainly of single storey and built of brick 

between concrete pillars. At least five people lived in each home. LPG was used for 

heating and cooking and each household had its own small bottles. Some 2000 

houses at 300 m were destroyed and 1800 were badly damaged. Windows were 

broken at 600 m and missiles were thrown a considerable distance. One cylinder was 

thrown 1200 in (Lees, 1996). 

1.1.3 Feyzin, France, (January, 1966) 

A tank farm included eight spheres containing propane and butane. A routine 

drainage operation on a 1200 m3 sphere was carried out using the wrong procedure. 

The isolating valves became inoperable and an uncontrolled leak from a propane 

sphere was ignited by a car on a nearby road. This flashed back to burn as a torch 
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directly under the sphere. Also propane snow had accumulated within the bund. The 

refinery fire brigade attempted to put out the fire but ran out of dry foam. The 

municipal fire company continued to fight the fire using fire water. After 30 minutes 

the safety valve lifted. An hour later a BLEVE ensued. The fire brigade had 

concentrated on cooling the other spheres and not the burning sphere on the 

assumption that the relief valve would provide protection. Approximately 340 m3 of 

liquid propane was released and partially vaporised producing a large fireball and 

ascending mushroom cloud. This BLEVE resulted in over 100 people being killed or 

injured in its vicinity. One missile broke the legs of an adjacent sphere which 

contained 857 m3 of propane. Another piece tipped over another sphere containing 

1030 m3 of butane. Another section travelled 240 m to the south and severed all the 

product piping connecting the refinery area to the storage area. One fragment broke 

piping near four floating roof tanks and fires were started in this area. Extensive 

minor structural damage was caused in the village of Feyzin, a distance centred about 

500 in away. Some 2000 people were evacuated from the surrounding area. A 

further BLEVE and other explosions occurred as the fire spread. Fire fighting 

continued for a further 48 hours until the three spheres which were still intact and full 

of propane and butane were cooled to an appropriate level (Vervalin, 1984). 
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1.2 JET FIRE SCENARIOS 

A jet fire is a turbulent diffusion flame resulting from the combustion of a fuel 

continuously released with some significant momentum in a particular range of 

directions (Cowley, 1992). 

There is a wide variety of situations in which jet flame, or ejected flame, can occur in 

the process industries, either by design or by accident. The principal situations in 

which flames occur by design are in burners and flares. 

Scenarios involving jet flames are not easy to handle, since a large jet flame may 

have a substantial ̀reach', sometimes up to 50 metres or more. 

If a leak forms a continuous jet of gas with significant momentum from process plant, 

this may ignite and cause a jet fire which would appear as a long narrow flame. 

Larger leaks may occur due to failure of a vessel, pipe or pump, and smaller ones 

from flanges, sample and disposing points and other small bore connections. These 

types of leak will form a jet of vapour containing liquid droplets. In addition to the 

jet fire arising from leakage in general, there are certain characteristic types of jet fire 

in process plant. These include well-head blowout fires which are a very large jet fire 

from a high pressure two-phase release, possibly accompanied by rain-out of burning 

liquid fuel which might form pool and running liquid fires. Also in offshore, jet fires 

might result from the failure of an oil riser or a high pressure gas riser. 

If the leak forms a liquid pool on the ground this may ignite and burn. The flame 

may be substantial and may do damage by direct impingement or by radiation. 
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If the leak gives rise to a gas or vapour cloud which grows for a period before it is 

ignited, the resultant effect may be either an unconfined vapour cloud explosion or 

flash fire. In a flash fire the gas could rapidly burn back to the source, but does not 

explode. 

Compartment fire is used to describe a fire burning within a structure where, 

compared with an open fire, there may be coupling between the fire and the structure, 

which influences the fire properties and vice versa (Cowley, 1992). 

These and other types of fire characteristics of process industries will be described in 

more details in chapter 2. 

1.2.1 European Community Programme 

The Commission of the European Communities (CEC) sponsored a project JIVE (Jet- 

flame Interaction with VEssels) within the STEP programme. The general objective 

of the study is to assess the behaviour of jet fires impinging on or engulfing obstacles, 

especially vessels and pipework, and the response of the vessel or pipework and its 

contents to the fire. It included experimental and theoretical work on free and 

obstructed jet flames, thermal response of a vessel including the effectiveness of 

mitigation techniques, and failure modes including full-scale BLEVE trials (Duijm, 

(1994). 

The main finding from the study was the characteristics of medium and large-scale 

natural gas and other hydrocarbon jet-flames from the measurement. The response of 
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engulfed vessels was measured. The catastrophic failure of unprotected two-tonne 

propane tanks, resulting in BLEVE, was studied. It was found that, for the scenario 

tested, water deluge and emergency release are ineffective in providing protection; 

however cementitious insulation was effective. No effective method was found to 

protect flange connections (Wicks and Cole, (1995) and Bennet, (1991). 

1.3 FIRE EXTINGUISHING AGENTS: 

Among the many Halons applications is the suppression of the flammable liquids and 

gases fires (DiNenno, 1993). Halons have been identified as stratospheric ozone- 

depletion agents. 'The Montreal Protocol on Substances that Deplete the Ozone 

Layer', an international agreement, requires a complete phaseout of the production of 

these halons by the year 2000 (Cote, 1992). Carbon dioxide is also used for this 

application as inert gas (DiNenno, 1993). However, because required concentrations 

are lethal (Cote, 1992), alternatives to halons and carbon dioxide are also sought. 

Water spray is an attractive option because the US Environmental Protection Agency 

has determined that it is an acceptable Halons substitute, and that using water spray 

poses no toxicological or physiological hazard and is safe for use in occupied areas 

(Bill, 1997). Water has zero ozone depletion potential, zero global warming 

potential, is non-corrosive and has tremendous cooling capacity (Back, 1996). The 
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primary hazards in offshore compartments are flammable-gas fires resulting from 

fractured gas lines. Because water spray is thought to extinguish fires primarily 

through heat extraction, oxygen displacement and blocking of radiant heat 

(Mawhinney, 1994), hazards with flammable-gas fires in enclosures would be 

expected to be a good candidate for water spray protection. Indeed, water spray 

protection has been shown to be effective for gas turbine enclosures which present 

similar hazards (Wighus, et al., 1993 and Ural et al., 1995). 

It has been known that very small water droplets control or extinguish fires in several 

ways: cooling of the flame and fire plume; oxygen displacement by water vapour and 

radiant heat attenuation (Kim, 1997). The nature of a fire also has an influence on the 

ease with which water can extinguish the fire (Rashbash, 1985). 

Other extinguishing agents include (Cote, 1992): 

Dry chemical agents: a powder mixture that is used as fire extinguishing agent. It is 

efficient in extinguishing fires in flammable liquids; 

Dry powder agents: mainly used to extinguish the fire of the combustible metals; 

Foam agents: an aggregate of gas-filled bubbles formed from aqueous solutions of 

specially formulated concentrated liquid foaming agents. Foams are used to diminish 

or halt the generation of flammable vapours. 
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1.4 WATER SPRAY SYSTEM 

In 1812, the first prototype water spray system was installed in the Theatre Royal, 

Drury Lane, London (Nash, 1973). Its life safety and property protection potential 

were quickly recognised and developed. Today the water spray system is widely 

accepted as the most efficient form of automatic fire extinguishment. 

Historically, the world has experienced many tragic fires (table 1.1). Most of these 

unfortunate experiences led to changes in the codes concerning fire and life safety. 

In the nineteenth century the newly formed insurance companies, like the Mutual Fire 

Insurance company, were the driving force behind the development and subsequent 

setting of the rules and regulations for water spray systems installation (Hoffmann, 

1990). Today research and testing into every aspect of the fire phenomena, from 

collecting fire statistics, understanding the physical and chemical interactions to 

examining the process involved in activating and subsequent working of spray 

systems are carried out at different research organisations such as Fire Research 

Establishment in UK, Building and Fire Research Laboratories in USA, SINTEF 

NBL in Norway and The Technical Research Centre of Finland. 
, 

The characteristics of the water spray determines the mechanism by which it 

suppresses fire. Those characteristics are dependent upon the method of spray 

production, different spray systems producing water spray with different 

characteristics. The important parameters that define the characteristics of the spray 

are drop size distribution, spray flux density, spray angle and spray momentum. 
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1.5 OBJECTIVES OF THE PRESENT 

STUDY 

The objectives of this research are: 

1. To study experimentally the behaviour of jet fire in a compartment of substantial 

size. 

2. To study the temperature distribution inside the compartment and at the 

compartment surfaces. 

3. To prepare a CFD model of the combustion reaction and compare it with 

experimental results. 

4. To include radiation and heat transfer at the compartment surfaces in the CFD 

model. 

5. To test existing water-spray technologies in extinguishing or controlling the 

compartment jet fires. An assessment of water spray design parameters (i. e. flow 

rates, drop size, nozzle location, nozzle numbers and spray angle) was also 

conducted investigating their effects in extinguishing or controlling fires, and in 

understanding the mechanism of extinguishment. 

6. To compare the measured with the predicted results for both fire steady state and 

water sprays. 
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In order to achieve the above objectives, it is necessary to produce a workable CFD 

model of an offshore module and to carry out an experimental programme on 

compartment jet fire. A total of 58 fire tests were done in two phases. Final 

numerical calculations will be performed to help interpret the experimental data and 

understand the suppression mechanisms. 

1.6 LAYOUT OF THESIS 

A general introduction to fire has just been given in this first chapter; the remainder 

of the work is set out as follows. In chapter two the context of the problem is 

explored and the action of the water spray in various burning environments, 

compartment fires and jet flames is reviewed. Chapter three describes the 

experimental setup. Experimental apparatus, sampling gas analysis system and data 

acquisition system are described in this chapter. Experimental procedures and 

conditions are discussed as well as the safety requirement and the risk assessment for 

running the rig. For completeness, outlines of the physical and mathematical 

modelling of a steady-state within a compartment are provided in chapter four. This 

includes the single-phase governing partial differential equations along with the 

auxiliary equations, such as heat losses to the walls, turbulence and boundary 

conditions. The two-phase steady state and transient fire-spray modelling are 
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presented in this chapter as well. Due to the more complex nature of the phenomena 

investigated, the auxiliary equations now also include interphase heat and mass 

transfer. Chapter five is devoted to the setup of the numerical modelling and to the 

results of the single-phase fire modelling and the preliminary results of fire 

extinguishment by water spray. Chapter six presents the measurement of the droplet 

sizes using Malvern Particle Analyser. The successful modelling of the 

extinguishment of the compartment jet fire by water sprays is reliant on accurate data 

of the droplet diameters of the different spray nozzles used. Chapter seven is devoted 

to the result analysis of the test data and includes discussion of the jet fire behaviour; 

comparing the different temperature measurement instruments; investigating the 

different temperature measurement locations; effect of different spray angles; effect 

of spray numbers and locations and the optimum water flow rate. The predictions 

obtained by implementing the fire models are presented in chapter eight. For the 

steady state simulation a jet fire within a compartment was used. The cases 

considered transient studies when the water spray was activated for the two phase 

modelling. The results obtained by implementing the two-phase models are detailed 

in this chapter as well. The effect of different droplet sizes, spray angles, droplets 

velocity, spray number and locations on reducing the overall temperature of the 

compartment are discussed here. Chapter nine contains validation of the measured 

and predicted results. Finally, chapter ten deals with the conclusions and 

recommendations for future work. This chapter presents the main conclusions 

derived from this study. Recommendations for the future design of water spray 

system with the optimum water flow rate are included here (optimum 

characterisation, i. e. water flow rate, droplets diameters, spray angle, etc. ). 
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Recommendations for the future studies are also included in this chapter. A reference 

section at the back contains papers and texts which are of primary importance to this 

work. 
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CHAPTER TWO 

LITERATURE REVIEW AND 

RELATED THEORY 

2.1 INTRODUCTION 

A study of the subject of this work is undertaken in this chapter. In general terms, the 

problem is that of suppressing fires or mitigating their destructive effects. Although 

several means are available by which such mitigation may be achieved, the interest 

here lies primarily in suppression or the mitigation by sprays of water. 

For at least the last five decades, researchers have sought to maximise the efficiency 

of using water spray for fire suppression (Mawhinney, 1997). 

Interest in water sprays for fixed fire suppression systems was vigorously renewed 

with the beginning of the phase-out of halon fire extinguishing agents, which 
followed the signing of the Montreal Protocol in 1987. 

Over the last ten years, there has been great deal of activity in the field of water spray 

research and development. In early 1996, development continued rapidly 
(Mawhinney, 1997). Activities occurred on a variety of fronts from theoretical 

investigations into extinguishing mechanisms, computational fluid dynamics 

modelling, and the development, patenting, and manufacturing of spray generating 

equipment. 
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2.2 THE COMBUSTION PROCESS 

The term `Combustion' usually refers to an exothermic or heat producing, chemical 

reaction between some substance and oxygen. Chemical analysis of the combustion 

products would show the presence of certain molecules involving combinations of 

oxygen atoms with other types of atoms, such as CO2 and H20. 

A flame is gaseous oxidation reaction which occurs in a region of space much hotter 

than its surroundings and which generally emits light. 

Combustion requires a high temperature, and the reactions must proceed fast enough 

at this high temperature to generate heat as fast as it is dissipated, so that the reaction 

zone will not cool down. If any thing is done to upset this heat balance, such as 

introducing a coolant, it is possible that the combustion will be extinguished. It is not 

necessary for the coolant to remove heat as fast as it is being generated because the 

combustion zone in a fire is already losing some heat to the cooler surroundings. In 

some cases, only a modest additional loss of heat is needed to tip the balance toward 

extinguishment. 

Extinguishment can be accomplished by cooling either the gaseous combustion zone 

or the solid or liquid combustible. 
As an alternative to removing heat from the combustion zone to slow the reactions, it 

is also possible to reduce the temperature of the flame by modifying the air which 

supplies the oxygen. Air contains 21 % by volume of oxygen, the remainder being 

almost entirely the inert gas nitrogen. The nitrogen, which is drawn into the flame 

along with the oxygen, absorbs heat, with the result that the flame temperature is 

much lower than it would be in a fire burning in pure oxygen. If additional nitrogen 

or some other chemically unreactive gas, such as steam, carbon dioxide or a mixture 

of combustion products, were to be added to the air entering the flame, the heat 

absorbed by these inert molecules would cause the flame temperature to be even 
lower. 
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The types of fire characteristic of the process industries will be discussed in this 

section, in particular, the main features of large process jet fires. 

2.2.1 JET FIRE: 

Jet fire is a turbulent diffusion flame resulting from the combustion of a fuel 

continuously released with some significant momentum in a particular range of 
directions (Cowley, 1992). Loss of hydrocarbon containment can arise from 

mechanical failure damage or procedural failures. The leakage rates and their time 

dependence, the hydrocarbon type, storage and discharge conditions greatly influence 

the nature and extent of a fire. 

Hydrocarbon fires can have very varied characteristics and encompass a very 

extensive range of site. Fire properties are influenced by surrounding structures and 

equipment. Fires might be followed by an explosion causing damage to structures, 

process plant, or fire protection systems and thereby affecting the extent of air access 

and subsequent fire development. The consequences of fires and explosions and the 

strategies to mitigate them must therefore always be considered together. 

Jet fires vary considerably in their characteristics. Their behaviour depends on the 

source momenta and fuel type. Near the release point, the source momentum is 

usually the dominant effect, and further downstream the buoyancy of the hot gases 

and the forces due to cross flows have an increasingly greater influence. 

2.2.2. Jet Flame Length 

The flame length is the distance from the release point to the defined end of the 

flame. A reasonable measure of the progress of burning of a diffusion flame is its 

height. A jet fuel is assumed to issue from a nozzle of known diameter in a vertical 
direction upward into an ambient medium containing an oxidant. The changes in the 

flame length and shape during this transition are diagrammatically illustrated in 

Figure (2.1). It can be seen that, as long as the flame remains laminar, its length 
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increases with the increase in the velocity of the fuel gas at the burner nozzle up to a 

maximum level; and after reaching this point, a slight flow instability appears at the 

flame tip. With further increase of the fuel velocity at the nozzle the transition point 

moves closer to the nozzle and the flame becomes shorter. When the fuel flow from 

the nozzle reaches a certain velocity, the transition length and the flame length 

become almost constant and the flame length continues to increase with flow velocity 

until a critical Reynolds number is reached. It has been suggested by Hottel and 

Hawthorne (1949) that the propane Reynolds number criteria to determine transition 

from laminar flame to turbulent flame is 8500. 
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Figure (2.1). Progressive change in flame type with increasing jet velocity 
(DiNenno, 1988). 

2.2.3 Flame Lift-off: 

Jet flames are generally lifted, the base of jet flame is not attached to the release 

point. This occurs because the high velocities, strain rates and the richness of the fuel 

near the source make it difficult to maintain a flame. (Phylaktou, 1996). 
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McCaffrey (1989), using data from 7 MW methane flames out of a 30 mm orifice, 
determined that the correlation due to Peters and Williams (1983) predicted the 
distance to blue flame Lf reasonably well. 

Lr = 0.0036 U (2.1) 

Therefore, Lr is independent of jet nozzle diameter, U is the exit gas velocity in m/s. 

2.2.4 Radiation 

Thermal radiation in fires involves energy exchange between surfaces (i. e. walls, 

ceiling, floors) as well as emission and absorption by various gases and soot particles. 

Among those gases of great practical importance to fire are water vapour and carbon 

dioxide, which are strongly absorbing-emitting in the major thermal radiation 

spectrum. 

It has been recognised that radiation is the dominant mode of heat transfer in flames 

with characteristic lengths exceeding 0.2 m (Tien et al, 1988). 

2.2.5 The European Union Programme 

A project JIVE was carried out on the hazard consequences of jet fire interactions 

with a vessel containing pressurised liquids. The Commission of the European 

Communities sponsored the project. The different research subjects within the JIVE 

project are summarised below (Wicks and Cole, (1995), Bennet et al, (1991) and 
Duijm, (1994)). 

A. Modelling of unobstructed jet fires. 

A one-dimensional model to describe the behaviour of unobstructed jet fires was 
developed. This work was a further development of the one-dimensional codes 
UPMFIRE and TORCIA. 
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Jet fire stability and the lift-off distance of the flame from the release nozzle as well 

as sonic and two-phase release were important parameters for extending the models. 

Methane jet flame contents were not significantly changed by adding butane up to 

40% (mass). Radiation levels were proportional to the release rate and are nearly 

independent of wind speed. 

B. Modelling of obstructed jet fires. 

Heat transfer to the obstacles was considered. Distinction was made between jet fires 

engulfing relatively small objects and large obstacles. The work was carried out 

experimentally from impingement and wind tunnel tests. 
The main finding from the study of heat transfer from jet fires to obstacles such as 

pipework and vessels was as follows: the maximum heat flux from methane jet fires 

did not exceed 350 kW/m2, the heat flux distribution on obstacle surfaces was non- 

uniform, dependent on the distance between the obstacle and the origin of the flame. 

The effects of the non-uniformity on the obstacles resulted in thermal stresses on the 

surface of the obstacles and obviously affected the resistance of the obstacles to the 

fire, which could cause failure of the obstacle to occur sooner than if the obstacle was 
fully engulfed by fire (Duijm, 1994). 

Radiative heat transfer to obstacles was often under-predicted, possibly due to 

turbulence or incorrect use of averaging. The maximum heat flux to an obstacle was 

well predicted. Temperature distribution and sizes of jet fires were well predicted by 

one-dimensional and three-dimensional models. 

C. Modelling of the thermal response of a pressure vessel. 
Local heat fluxes and wall temperatures, temperature distribution in the contents, 

pressure build-up, and flow characteristics of the vent flow due to partial heating by 

jet fire impingement on vessel containing pressurised liquids and on nearby flange 

connections, were investigated. 
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At this stage the code ENGULF for investigating the response for vessels which are 
fully engulfed by fire was extended to investigate partially heated obstacles. 
Experiments of full-scale failure were performed on unprotected two-tonne propane 

tanks engulfed by a liquid propane jet flame. Time to failure was found of the order 

of 5 minutes irrespective of the fill level. In some cases, vent operation prolonged the 

life of the tank by increasing the volume of the two-phase region, so improving the 

heat transfer from the formerly dry wall. All unprotected vessels test resulted in 

complete failure and BLEVE. 

D. Assessment of the effectiveness of mitigation techniques. 
Water spray cooling and insulation of obstacles were considered in this research. 
Water spray was only investigated theoretically. The mitigation by insulation was 

made experimentally with flange connections and storage vessels (Duijm, 1994). 
It was found that the water spray cooling of obstacles is less effective for jet fires than 

pool fires. In addition to the water being deflected by the jet, once the tank surface 

became too hot it became partially insulated from the water by a layer of water 

vapour. 

On the other hand, experiments involving a 40 mm thick cementitious coating and a 
13 mm thick epoxy intumescent material showed them to be effective in protecting 

the two-tonne propane tank. The wall temperatures of the tank remained below 

250°C for 80 minutes. 

E. Modelling failure modes of pressure vessels. 
The failure mode of pressure vessels under jet fire attack was investigated 

experimentally. The results were compared with cold vessel failures and small-scale 

laboratory trials results and were included in a model describing the thermal response 

of pressure vessel up to failure. 
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Increasing vapour pressure inside the vessel triggered a relief valve causing a sudden 

pressure drop which resulted in rapid boiling and frothing. This pressure reduction as 

a result of the relief valve opening was only temporary. Soon after that, failure 

occurred and the fuel ignited causing BLEVE with 100 m high cylindrical fireball 

containing most of the remaining liquid contents (Wicks and Cole, 1995). 

2.3 COMPARTMENT FIRE: 

Compartment fire is a fire burning within a structure where, compared to an open fire, 

there may be coupling between the fire and the structure that influences the fire 

properties and vice versa. 
When a fire is burning inside a compartment, the combustion starts as though the fire 

were in the open. If the compartment openings are sufficiently large, and there is 

enough air already present to satisfy the stoichiometric requirement for complete 

combustion, the fire size and intensity are controlled by the fuel burning rate 

(Cowely, 1992). The flame burning under these conditions may impinge on the 

ceiling. The fire is deflected sideways and the plume spreads out into a so-called 

ceiling jet. This jet continues to burn until all the fuel is consumed, and may extend 
beyond the opening if the ceiling is relatively small and shorter than the ceiling jet 

flame extension. There is a net outflow of material through the compartment 

openings as the gases heat up and expand. After a short time a hot gas layer of 

combustion products builds up in the upper part of the compartment which grows and 
descends as gases continue to flow into it. A relatively well-defined interface 

normally forms between the upper hot layer and cool air below. When this interface 

descends below an opening there is a sudden outflow of smoke, combustion products 

or flame. If the compartment openings are small, the fire may not be able to entrain 
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enough air for complete combustion of the fuel inside the compartment. The fire is 

then said to be ventilation-controlled. 
The air supply rate is controlled mainly by the geometry of the opening. In a short 

time, dependent on burning rate and vent size, a steady state is reached in which hot 

combustion products flow out of the top of the opening and ambient air flows in at 

the bottom. There normally exists a well-defined boundary between the hot layer in 

the ceiling and the colder air at the floor. 

The major hazards associated with compartment fires include all those normally 

associated with open fires. However, additional hazards exist due to the effect of 

confinement. For personnel these include: 

Q The extent of external flaming; 

a Impaired visibility along escape route through smoke obstruction; 

Q Increased hazard from carbon monoxide (CO); 

Q Explosion hazard from unburned fuel if the fire extinguishes due to insufficient 

oxygen. 

Heat loading onto vessels, pipework and structures can be greater in compartment 

fires due to the effects of increased soot formation during ventilation-controlled 

conditions, and additional heat radiated from the hot surroundings or walls. 
The primary physical parameters affecting compartment fire behaviour include 

(Persaud, 1997): 

1. Geometry and size of compartment, position and size of vents, and degree of 

thermal insulation present on the boundaries. 

2. Type of fire (jet or pool) and fuel involved. 

3. Release conditions of fuel-mass flow rate, orifice/ nozzle diameter or pool 

diameter, flow regime, orientation of release for jet fire. 

4. The mass transfer from the fire feeding the smoke layer and losses to the outside 

environment through vents. 
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The amount of air present and available for combustion is the controlling factor in 

determining soot and CO production and flammability of the smoke layer. 

5. Radiation and convection heat fluxes to impinged roof, walls and objects. 

6. Mitigating circumstances, such as passive fire protection coatings on objects 

inside the compartment and/or the roof and walls. 

7. Water spray system. 

The processes discussed above are not independent, but are coupled together such 
that a change in any one process can have an immediate effect on all others. (Persaud 

et al., 1997). 
High pressure gas discharges are likely to produce jet fires that are substantially 

distorted by impingement onto large objects or compartment boundary surfaces. The 

impinged area may be much greater than that predicted from overlaps of the free 

flame idealisation with the impinged surface. The flame distortion, local turbulence 

and induced large scale air/product flows within the compartment may produce via 
increased velocities heat transfer to surface different form values encountered in 

relatively unperturbed open flames (Cowely, 1992). 

The flame distortion, induced turbulence, large scale circulation and momentum 

modification via impingement may also modify the internal flame conditions 

themselves because different aeration and turbulent combustion was found by 

Chamberlain (1994) who carried a series of compartment jet fires at large scale to 

study the compartment jet fire behaviour which was part of programme designed to 

provide data on fire severity and smoke emission suitable for hazard model validation 

and guidance on risk assessment, for a range of fire scenarios to be carried out by 

Shell Research Centre (Brightwell, 1995). A large compartment was used with size 

of 135 m3. The fuel flow rate used was 0.3 kg/s. The geometry of the compartment 

and jet characteristics was varied systematically. The jet was directed at a 0.27 in 
diameter pipe target. It was also found gas temperature may be increased or 
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decreased in particular flame regions because the air supply could be enhanced or 

alternatively vitiated. 

The partial products from a ventilation-controlled fire include carbon monoxide in 

concentration which may pose a hazard at a downwind refuge. Under favourable 

conditions of composition and temperature, these products may become flammable. 

A flame may propagate from the fire plume into the hot smoke layer and create 

flames external to the compartment. The sudden increased aeration and high 

temperatures in the external flame then reduce the CO concentration to levels more 

typical of open flames. Therefore, it is important to know the conditions which 

determine the onset of external burning and the extent of the new hazard posed by the 

external flame. Under-ventilation Jet fire could lead to high CO levels, even 

exceeding those from pool fires because of the potential for generating higher 

temperatures in jet fires. 

Persaud (1997) developed a physically based zone model, enabled the hazards of 

compartment fires to be estimated at steady state and at a scale representitive of 

offshore modules. The model was able to estimate global smoke layer properties at 

steady state, such as depth and temperature, radiative heat and mass transfer losses, 

and the extent of external flaming. The results compare favourably with experiments. 

2.3.1 USE OF CFD IN COMPARTMENT FIRE 

The numerical modelling of fires and its use for the assessment of fire hazards in 

compartment presents very attractive alternative to experimental measurements in fire 

research, because of its easy use and relative low cost. A number of recent studies 

have concentrated on the gaseous flow field characteristics in compartment (Kumar et 

al, 1991, Kerrison et al, 1994a and 1994b and Mawhinney et al, 1994b), and tunnels 

enclosing a fire (Woodburn and Bitter, 1996a and 1996b and (Bennardo et al, 1997), 

with effects of turbulence, chemical reaction and radiation (Lewis, 1997) included. 
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The exact equations governing the turbulent flow of hot fluids are known; however, 

their solution for practical purposes is not possible. The problem lies in the very 

nature of turbulence. The physical process controls the growth and decay of turbulent 

motion occurring on scale much smaller than the overall flow scales. To overcome 

this problem semi-empirical turbulence models have been developed, which consist 

of differential or algebraic equations and associated constants. One such model, the 

two-equation k-c model (Jones and Whitelaw, 1992) is generally applied to simulate 

the re-circulating turbulent flow conditions occurring during fire scenario. 

Combustion process is very complex, due to the number of intermediate reactions and 

the formation of short lived species taking place. Turbulence further complicates this 

situation by mixing reactants and products. A single fluid approach was used and 

both the eddy break-up model proposed by Spalding (1971) and the Magnussen and 

Hjertager (1976) model suggested for diffusion flame systems were employed. 

However, combustion reaction is often entirely omitted (Kerrison, 1994a and 1994b, 

Lewis, 1997 and Mawhinney et at, 1994b) in favour of a simply prescribed heat 

source. 

Numerical simulation of the interaction between sprinkler spray and a fire plume 

introduces one more complexity into the already complicated subject (Nam, 1996). 

The numerical modelling of a water spray can be divided into two categories 
depending on how drops in the spray are traced. The gas flow is always treated in an 

Eulerian coordinate system, but the liquid flow can be treated in either Eulerian 

(Hoffmann and Galea, 1991 and Hoffmann et at 1989) or Lagrangian systems 
(Alpert, 1984 and 1985), Chew and Fong (1991), Bill (1993), Fthenakis et at (1993) 

and Berlemont (1991)). 

28 



Chapter 2: Literature review and related theory 

2.4 EXTINCTION MECHANISM 

To suppress a fire, which is burning with a continuous supply of fuel and oxygen, the 

suppression agent must limit either the fuel or the oxygen supply or reduce the 

temperature of the flame zone. 
The mechanisms of extinction of flames in a fire situation have been investigated as 

early as 1955 by two authors, Braidech (1955) and Rasbash (1956 and 1960). 

Research conducted four decades later has not altered the accuracy of this description 

and the results are in general agreement. 

Mawhinney (1993a) and (1993b) described three mechanisms which act together to 

extinguish fire. These mechanisms of extinction of flames are grouped below: 

i. heat extraction (cooling); 
ii, oxygen displacement by water vapor; 
iii. Blocking of radiant heat. 

Wighus (1994,1991a and 1991b) and Hanauska (1993) described the mechanisms as 

gas phase cooling and steam inerting, but made no reference to radiant heat 

attenuation. Although all three mechanisms are involved to some degree in every 

extinguishment. 

For engineering design purposes of reliable water spray fire suppression systems, and 
for computer modelling purposes, it may be sufficient to understand all the 

extinguishing mechanisms. 
Wighus (1991a) and (1991b) carried out a series of experiments to investigate the 

extinguishment of an enclosed 1 MW propane fire. A ventilated enclosure of size 
2.5x2.5x5 m3 with various nozzle was used to run the fire test. The main results from 

these sets of tests were that the absorption of heat from a fire by water spray is 

dependent on the rate of water applied and droplet size distribution. 
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A water flow rate of 1.3 lit/min/m2 was sufficient to extinguish this 1 MW fire when 
the mean droplet diameter was 600 µm. However when the droplet diameter was 

greater than 1000 pm the application rate increased to 3.5 lit/min/m2. 

The main finding from Rasbash (1956 and 1957) tests were the extinction time was 
directly proportional to the drop size of the spray and to the preburn time, and 
inversely proportional to the rate of flow of water per unit of fire area, and also to the 

difference in temperature between the fire point and ambient temperature raised to the 

power 1.75, with the importance of spray momentum being critical to the spray 

penetrating the fire plume, hence extinguishing the fire. 

The local application of water spray, if successful, will bring about the suppression of 

a fire very quickly. Due to the speed of extinction, it can be concluded that the main 

mechanisms, which bring about extinction, are dependent on the evaporation of water 
droplets in the flame. The evaporation of a water droplet can, depending on droplet 

diameter, occur in the time it takes the water droplet to pass through the reaction 

zone. 

The evaporation of water droplets, and the resulting suppression effects from this, 

occurs regardless of the enclosure condition of a fire. For this reason the local 

application of a spray to extinguish a diffusion fire can be regarded as independent of 
the enclosure conditions. 

Ndubizu et. al. (1996) carried out a study on the suppression mechanisms of small 
diffusion and premixed flames by water spray and noted that the real fire condition is 

such that the spray interaction with fire is influenced by the imposed aerodynamics. 
Such aerodynamics would be greatly affected by the fire size, enclosure geometry, 
opening, imposed flows i. e. ventilation system. These complexities have made it 
difficult to acquire a detailed understanding of the physics of water spray fire 

suppression. 
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2.4.1 HEAT EXTRACTION (COOLING OF THE FLAME): 

The predominant mechanism by which a diffusion fire will be suppressed by a locally 

applied water spray is by the extraction of the heat from the flames. 

The heat absorbed by the water spray can be divided into tow categories (Rasbash, 

1957): 
i. The heat to raise the temperature of the water droplets to their boiling point. 
ii. The heat to evaporate the water droplets from their boiling point. 

Although the heat extracted by the spray to raise the temperature of droplets to 
boiling point is one sixth of the heat extracted by evaporating the droplets, there have 

been no investigations (Rasbash, 1957) to compare the competing effects of raising 
the temperature of water used to produce a spray. 
The competing effects would be a reduction in the heat extracted by raising water 
droplets to their boiling point, and an increase in the heat extracted by increasing the 

number of larger droplets which would be fully evaporated. Such an investigation 

may provide valuable information for situations where complete penetration of the 

flames, therefore residence time of droplets in flames, may be sufficient for the full 

evaporation of larger droplets at ambient temperature. Situations in which this occurs 

are predominantly the total flooding situations. 
Water absorbs heat when it is applied to a fire in three areas: from the hot gases and 
flames; from the fuel; and from the objects and surfaces in the vicinity of the fire 

(Mawhinney, 1995). Fuel and nearby objects cooling contributes to reducing fire 

spread, but it does not necessarily require fire drop sizes. In fact, solid fuels wetting 

and cooling is easier to achieve by using larger droplets (> 400 microns) 

The amount of heat removed by the water is dominated by the amount of water which 
is evaporated. The proportion of heat necessary to bring the water from the normal 

ambient water temperature to the boiling point to the heat of evaporation is 1: 6. 
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Ah = Cp(. ater) x AT (2.2) 

where Ah: change in enthalpy (kJ/kg), 

cp: specific heat capacity (kJ/kg K) 

AT: temperature difference (K) 

For example the heat extracted from the compartment fire to heat water from 25°C 

(ambient) to 100°C (boiling point) is equal to AHioo-25 = 4.2 x 75 = 315 [kJ/kg]. And 

the heat extracted to evaporate this water is 1890 [kJ/kg]. So, the most effective way 

of taking heat out of a compartment fire is to evaporate the water inside the 

compartment (Wighus, 1991). 

2.4.2 OXYGEN DISPLACEMENT: 

Water droplets expand approximately 1600 fold upon evaporating (at 95°C, 1 

atmosphere pressure). Due to the latent heat needed to vaporise the water, 

evaporation of the droplets allow very large amounts of heat to be removed from the 

surface. Most of the produced steam will follow the combustion gases through the 

ventilation opening. If evaporation occurs rapidly, the water vapour will displace a 

proportion of the air from the vicinity of the drop. However, injection of a finely 

divided water spray into a hot compartment results in rapid evaporation, which may 

cause blocking of the air supply by the expansion of the evaporation, displacing the 

air in the compartment by steam. And the air drawn into the combustion zone may be 

recirculated from the upper part of the room. This can lead to oxygen starvation in 

the combustion zone, and consequently to extinction. This process is transient, and 

the location of the fire relative to the spray nozzle, the air supply and to outlet 

openings will dominate the result. If the amount of oxygen available for combustion 
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is reduced below a critical level, the fire burns inefficiently and will be easier to 

extinguish by cooling (Mawhinney, 1994a). 
Researchers such as Braidech (1995), Wighus et al. (1994), Mawhinney (1994a) and 

Hanauska and Back (1993) who made tests on diesel and heptane pool and spray 
fires, confirmed that the displacement of oxygen within the region of the fire plays a 

more predominant role in the extinction of a fire than the extraction of heat, both in 

compartments and in open-area pool fires. 

In certain experimental conditions this is true. Certain experiments have taken place 

where the fire size in relation to the enclosure volume was insufficiently large, or 

where the positioning of ventilation openings were not conducive to natural draught 

(Orr, 1996). 

The minimum amount of free oxygen needed to support combustion varies with the 

type of fuel. In general, hydrocarbon gases and vapours cease burning at oxygen 

concentrations below 13 %, while charring solid fuels may burn with oxygen 

concentration as low as 7% (Mawhinney, 1994a). This explains why it is easier to 

extinguish hydrocarbon fires than wood crib fires. 

The effect of oxygen displacement also explains why it is easier to extinguish large 

fires than small fires in a compartment. Large fires release more heat into a 

compartment in the early stages than small fires, so that more heat is available to 

evaporate the fine water droplets. A small fire will have a continuos source of fresh 

combustion air at normal oxygen concentrations. A large fire will reduce the ambient 

oxygen concentration to the point that combustion efficiency will be reduced, prior to 
introducing the water spray (Mawhinney, 1994a). 

2.4.3 BLOCKING RADIANT HEAT: 

Blocking radiant heat was included as a third mechanism of extinguishment which 
stops the fire from spreading to unignited fuel surfaces, and reduces the evolution of 
flammable vapours which would decrease the burning rate of the fire (Orr, 1996). 

33 



Chapter 2: Literature review and related theory 

Blocking of radiant heat transfer is not taken into account by most researchers, 

studying extinction mechanisms of water spray (Braidech, 1955, Rashbash, 1960, 

Wighus, 1993 and Log, 1996). Mawhinney (1994a) studied the problem in depth and 

stressed the potential of reducing thermal feedback to burning and unburned fuel 

surfaces by water sprays. 

The radiation attenuation provided by water spray protects objects and personnel in a 

space from radiant heat damage, whether or not extinguishment occurs. On that 

account, radiant heat blocking is an important benefit of water spray in fires both in 

compartment and in open areas. This heat, radiated to the surroundings, can be 

attenuated by applying a water spray. Mawhinney (1994a) records attenuation levels 

of over 50 % for droplets of around 50 gm diameter, and only 10% for droplets of 
100 gm diameter. However, not all of this heat is absorbed by the spray, an unknown 

quantity will be reflected, or deflected back to the fuel. 
Theoretical considerations suggest that spray or steam that enters the space between a 
flame and the fuel surface will reduce the radiant heat flux to that surface (Jones et al 

1993). 

Recent theoretical work on radiation attenuation by water sprays (Coppalle, 1993 and 
Ravigururajan, 1989) indicates that the attenuation of radiation depends very much on 
drop diameter and mass density of the droplets. 

2.4.4 OTHER EXTINGUISHING MECHANISMS 

Some other extinguishing mechanism discussed in this section includes dilution of 

vapour air mixture. Entrained air which is to be used for combustion will entrain 

water droplets when the compartment was filled with water droplets because the 

water spray will follow the flow pattern dominated by the fire inside the compartment 

used. So air entrained into the compartment contaminated by water droplets may 
dilute the vapour air mixture to below the lean flammability limit. This mechanism 
depends on the fuel type; in some fuels it is difficult to reduce the fuel air mixture to 
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below its lean flammability limit because of the low flash point temperature and high 

vapour pressure, i. e. heptane (Mawhinney, 1995). 

Another extinguishing effect is due to inert gas production, mainly C02, water 

vapour and oxygen consumption by the fire itself, and recirculation of fire products, 

water vapour and droplets into the fire plume. 

Speeding up flow velocity to a level where the residence time of fuel and oxygen in 

combustible mixture is less than needed by the chemical reaction (blow off) is one of 

the extinguishing mechanism which could be used as well as adding components in 

the combustion zone which breaks the chain of chemical reactions by substitution 

with endothermal reaction. 

Finally, self-extinguishment condition can be considered here. It will be achieved in 

an air tight compartment. Realistic compartments are seldom totally air-tight, and 

some supply of air is normal. The temperature increases as the fire burns and the 

oxygen concentration decreases until a critical limit is reached. The reason for self- 

extinguishment is that the fire itself consumes oxygen and produces inert gases, 

mainly C02 and water vapour. The circulation of fire products into the flames and 

the smoke plume leads to self-extinguishing due to lack of oxygen. The rate of 

oxygen consumption is decided by the fire size. 

The inerting of the enclosure requires a certain total amount of water applied into the 

enclosure, and the application rate influences the time to extinguishment only. 
To optimise the effect of a fire suppressant system, a combination of extinguishing 

mechanisms, i. e. cooling and inerting, is favourable. 
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2.5 EFFECT OF COMPARTMENT CONDITIONS 
ON FIRE EXTINGUISHMENT 

The compartment conditions of a fire influence not only the development of the fire, 

but also the mode in which a fire can be suppressed. The ventilation properties of a 

compartment are an influential factor in determining the method of suppression 

which should be used. In a well-ventilated fire the principal mechanism of 

suppression is heat extraction (Orr, 1995). 

The problem of engineering design of a water spray system is to design nozzles 

which produce water spray with optimum droplet size distribution, throw length and 

coverage or density (Wighus, 1995). 

The two main approaches found in the literature (i. e. Wighus, 1995) for designing a 

spray system are: 

- Local application, relevant for well ventilated fires. 

- Total flooding of an enclosure, relevant to compartment fire when air supply may be 

restricted. 

2.5.1 LOCAL APPLICATION 

Instantaneous extinguishment by direct application of water and total coverage of the 

fire area with the spray, and by creation of an inert environment to prevent 

combustion from taking place is the local application. Once the water is vaporised 

the fuel is isolated from the ignition source followed by rapid cooling of the radiated 
heat generated by the surrounding hot surfaces. 

A local application system design is a function of the environmental conditions, the 

type of hazard or fuel and the equipment being protected (Gameiro, 1995). In order 
to compensate for the small mass of the water droplets, hence low momentum, the 

nozzle location must be such to ensure direct delivery of the water spray to the fire. 

This is to ensure that a large number of nozzles should be installed around the hazard, 
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and to compensate for losses due to wind conditions and mostly to offset the 

increased supply of oxygen encountered in an outside scenario. 

2.5.2 TOTAL FLOODING OF AN ENCLOSED FIRE 

Oxygen displacement is the principal mode of suppressing compartment fires with 

restriction to ventilation, where locally applied water sprays are unsuitable. In these 

situations total flooding of the enclosure is required. The activation of a total 

flooding system within the enclosure complements the fire oxygen consumption, and 

its production of inert diluents by obstructing the ingress of air into the enclosure; this 

can be illustrated by Figure (2.2) which shows the result obtained by Wighus (1994) 

from the suppression of 130 m3 enclosure. 

The first curve in Figure (2.2) marked "self extinguishment" represents the oxygen 

level in a compartment resulting from a large fire relative to the size of the 

compartment. If the compartment is air-tight, the fire eventually consumes sufficient 

oxygen to bring its level below that required to sustain combustion. 

The second curve of Figure (2.2) marked "not extinguished", represents a small fire 

in a large enclosure. This type of fire cannot be extinguished, or is difficult to, 

because the heat source is not large enough to cause a significant production of 
inerting gases such as steam, CO and CO2. If the compartment is airtight, eventually 

the fire will become extinct due to a combination of oxygen starvation and build-up 

of steam, etc. If the compartment is previously permitting entry of sufficient oxygen 

to sustain the flame, the fire can be controlled but not necessarily extinguished. 

The third curve in Figure (2.2) marked "extinguishment with water spray" represents 

medium size fire. The small droplets will cool the gases inside the enclosure, and 

water vapour will be produced. A combination of the water vapour and the gases 

produced by the combustion result in an inert situation, with oxygen level below 

15%. The combined effect of cooling and inerting leads to extinguishment. The 

continued application of water spray after extinguishment further cools down the 
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ambient air inside the compartment and scrubs the air from toxic particles and smoke. 
It should also be noted that the oxygen concentration after extinguishment with fine 

water spray is higher than in the case of self-extinguishment. 
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Figure (2.2). Typical gas concentrations in an enclosure with large fire (self- 
extinguished), Medium size fire (Extinguished by water spray) and 
small fire (Not extinguished) [Wighus, 19941. 
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2.6 CONTROLLING AND EXTINGUISHING 
CRITERIA 

A number of investigations have been carried out to examine the suppression effect 

of extracting heat from the flame of a diffusion fire. From these a number of studies 
have set down requirements for the proportion of heat to be extracted by the water 

spray to achieve extinction. 

The process of conversion of water droplet to steam in a diffusion flame absorb heat 

from the flame and fire plume. If sufficient heat is withdrawn, the gas-phase 

temperature can be dropped below that necessary to sustain the combustion reaction 

Figure (2.3) and flame will be extinguished. Theoretical considerations suggest that 

the combustion reaction in a diffusion flame will cease if the flame temperature drops 

below approximately 1600° K (Drysdale, 1985). Various authors constitute sufficient 

heat absorption as it is not necessary to absorb all of the heat generated in a 

combustion reaction to stop it. 

The criterion of extinction of a flame by heat abstraction inside the flame found by 

Burgoyne and Richardson (1949) is that the combustion products as they leave the 

reaction zone should not exceed the temperature they would have for lower limit 

flames; this temperature is about 1580° K for a wide range of flammable vapours and 

gases. A decrease in temperature approximately to this value is obtained when 

extinction is obtained by adding extinguishing agent to flames in stoichiometric 

mixtures. 
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Figure (2.3). Temperature Dependence of Reaction Rate (Typical for 
hydrocarbon fuel), Wighus, 1995. 

Rasbash (1964) found that the amount of heat which needs removing from the flame 

to accomplish extinction, is the difference in heat of combustion of stoichiometric 

and lower limit mixtures. For most flammable organic compounds it is about 45 % of 

the heat of combustion of the fuel. It is important, however, that this heat be removed 

either from the reactants or the reaction zone. In a turbulent diffusion flame it is very 

difficult to differentiate between the reactants, the reaction zone and the combustion 

products. However, it would be expected that if a spray is capable of removing all 

the heat of combustion from the flame, then the flame will be extinguished. 
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Wighus (1991a), (1991b) and (1994) showed that extracting 30 to 60 percent of the 

heat produced by the fire may be enough to cause burning to stop. Wighus (1995) 

discovered an important experimental finding which is: if 1/3 of the heat produced by 

the fire is removed by water spray, extinguishment of well ventilated fires is possible. 

However, Wighus (1993) suggests that this is a minimum temperature, in practice 

temperature higher than this can extinguish a fire. This can occur if critical 

combination between the flame temperature and local oxygen concentration is 

obtained. 

The minimum amount of free oxygen needed to support combustion varies with the 

type of fuel. In general, hydrocarbon gases and vapours cease burning at oxygen 

concentrations below 13 percent (Mawhinney, 1994a). On the other hand, SINTEF 

(1994) found the critical oxygen concentration for extinguishment with water spray 

system was between 15% and 18%. This means that as much as 30 % of the original 

oxygen in the compartment was replaced by an inert mixture. 
Another engineering correlation for local application of water mist is to consider the 

ratio of water-to-fuel necessary to achieve extinguishment. In the SINTEF 

experiments a ratio of approximately 5-6 was found for extinguishment of gaseous 

propane fires. McCaffrey (1984) found the extinguishment occurs with a water spray 
into diffusion jet methane flames at a water-to-fuel ratio less than 10. The spraying 

time to obtain extinguishment by local application is short, in the order of seconds. 

2.7 HEAT TRANSFER AND BALANCE 

2.7.1 COMPARTMENT HEAT BALANCE 

The heat generated by the fire within a compartment is either accumulated in the 

compartment: a major part is absorbed by the compartment boundaries and any other 
structural surfaces, by the surfaces of the fuel, by incoming air and any excess fuel; or 
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transported to the exterior of the compartment in the flame and hot gases that exit 

from the openings: a smaller part is radiated through the openings and the greater part 

will be conducted through the boundaries to the ambient. Steady state occurs when 

the heat absorbed by the compartment surfaces goes to zero as shown in Figure (2.4). 

Activation of water spray systems will change the heat balance in the compartment. 

The water spray systems will generate droplets which will enter the compartment and 

will be heated by the hot gases. The droplets may be fully or partly evaporated or 

survive in the hot gas environment, depending on some factors such as the droplets 

velocity, spray angle and droplets size. But when droplets survive they will hit the 

boundary and maybe evaporate or form a water film which is taking heat out of the 

surface, or run off the surface. 

The heat transfer from the fire to the compartment and the surrounding may be 

influenced by the water spray. The temperature of the gases inside the compartment 

and in the effluent gases may be reduced by the water spray as well. This leads to 

less heat transfer to the walls, the ceiling, the floor and to objects hit by the smoke. 

Direct cooling of the compartment boundary is obtained when water droplets hit it. 

The content of water droplets and vapor increases the absorptivity of the gases inside 

the compartment, and consequently this may lead to reduced radiation from the 

flames to surfaces. 
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H eat Through Run 
Off Water 

Heat To The Ambient 
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Heat Rack ated 
Through Operxng 

Figure (2.4). Heat balance of a compartment fire, with water introduced 
for extinguishment and control (Wighus, 1991). 

2.8 INTERACTION BETWEEN DROPS AND 
HOT GASES 

2.8.1 DROP BEHAVIOUR AND MOVEMENT 

When a water jet comes out and breaks up into droplets, the droplets will continue to 

fall. Water drop particles moving in air with an initial velocity are subject to an 
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accelerating gravitational force and retarding drag forces (Lapple and Shepherd, 

1940). 

The drag force is due to the surface friction and pressure drag. Viscous friction of the 

gas at the drop surface will cause the surface friction. Pressure drag is caused by the 

aerodynamic shape of the drop producing back eddies in the wake of the drop owing 

to the separation of the boundary layer (Jackman, et al, 1993). If initially the velocity 
is low, it will accelerate because of gravitational force. As the droplet accelerates, its 

drag increases, and soon it will reach the condition where the gravitational force will 
balance the drag of the droplet. The resultant velocity is called the terminal velocity 
for the droplet (Yuen, 1974). 

2.8.2 DROP EVAPORATION 

The evaporation of drops in a spray involves simultaneous heat and mass transfer 

processes in which the heat for evaporation is transferred to the drop surface by 

conduction and convection from the surrounding hot gas, and vapour is transferred by 

convection and diffusion back into the gas stream. The rate of evaporation is mainly 

governed by the temperature difference between the droplets and the surrounding 

gases, by the pressure, transport properties of the gas; volatility, and diameter of the 
drops in the spray; and the velocity of the drops relative to that of the surrounding 

gas. 

The primary purpose of atomisation is to increase the surface area of the fuel and 
thereby enhance the rate of heat transfer from the surrounding gases to the fuel. As 

heat transfer takes place the drops heat up and, at the same time lose part of their 

mass by vaporisation and diffusion into the surrounding air or gas. The rate of heat 

and mass transfer is markedly affected by the drop Reynolds number, whose value 

varies throughout the lifetime of the drop, since neither the drop diameter nor the 
drop velocity remains constant. The history of the drop velocity is determined by the 

relative velocity between the drop and the surrounding gas and also by the drop drag 
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coefficient. The latter again depends on the Reynolds number. After a certain time 
has elapsed each drop attains its steady-state temperature corresponding to the 

prevailing conditions. 
The larger drops take longer to attain equilibrium conditions, and their trajectories are 

different from those of the smaller drops since they are less influenced by 

aerodynamic drag forces. However, the smaller drops supplied in the hot zone of the 

fire evaporate faster and produce a cloud of vapour that moves along with air, and 

this will cause the fire to be cooled faster. 

2.8.3 DROP-GAS INTERACTION 

The cooling effect of the drop on the hot gases causes an increase in density, which 

consequently causes a decrease in gas velocities (assuming a constant mass flow 

rate). The gas velocity is also altered by the momentum of the dorps as they pass 

through the gas stream. The subsequent change in velocity is found by using the 

energy balance equation (Welty, Wicks and Wilson, 1984). 

2.8.4 EFFECT OF WATER DROPLET SIZE: 

The smaller the droplet diameter is, the faster it will evaporate in a hot gas 

environment. A large number of very small droplets will have a larger surface area 

than fewer large drops. Presentation of such a large surface area of water within a 

combusting region allows more of the heat generated to be abstracted from the 

reaction and hence improves the chances of extinction. The residence time of a water 
droplet from the spray nozzle till it hits a surface or is blown out of the compartment, 
is the effective time where heat can be absorbed from the flames and the hot gases. 
Small droplets will evaporate before they reach the base of the fire, and they will 

evaporate in the upper part of the compartment, and most of the steam can follow the 

smoke through the exhaust opening. 
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The effect of evaporating water droplets will be cooling of the gases, which may 

consequently lead to extinction of flames. 
However, rapid evaporation of water leads to an increase of volume of the water by a 
factor of about 1600. This may block the air supply to the enclosure. Smoke and 

products from the combustion zone may be recirculated from the upper part of the 

enclosure. This may lead to oxygen starvation in the combustion zone, and 

consequently to extinction. 

However, a counter-argument can be raised over small droplets, which is that large 

water drops are preferred for some applications such as combating fires with higher- 

velocity plumes; this is mainly because the larger drops will have greater momentum, 

and be able to penetrate the fire plume and hit the fuel and the floor without being 

totally evaporated, for the purpose of cooling surfaces to prevent spread of flames. 

There is also a concern that very fine droplets will be carried away on the strong 

convection currents associated with certain types of large fires. These fine droplets 

will thus be transported away from the source of the fire and become unavailable for 

fire control. 

It has been claimed that the optimum droplet size in a spray is 300 gm (Thomas, 

1992). This is based on a theoretical analysis of the trade-off between the cooling 

effect which increases as droplet size reduces, and the throw which decreases as 
droplet size reduces. 

2.8.5 PENETRATION OF DROPS INTO A RISING FIRE PLUME 

Once the water droplets have been discharged from a spray, they finds themselves in 

a hot buoyant fire plume that has been produced by a growing fire. The rising fire 

plume, consisting of flame, hot products of combustion, and entrained air, is a region 
of fairly high velocities and temperature. 
For a spray to be able to exert a useful effect on a fire, it is usually necessary for the 

spray to penetrate to the seat of the fire, particularly to the burning fuel. To do this 
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the spray must be either formed near the fuel or have sufficient forward force to 

prevent too much of the spray being either deflected by or evaporated in the flame 

and hot gases associated with the fire. 

The factors which control the penetration of spray to the seat of a fire are the drop 

size and thrust of the spray, the thrusts of the flames and wind, gravity, and the 

evaporation of spray in the flames (Rasbash, 1964). 

2.8.6 Experimental and Numerical Spray-Fire Interactions 

In an effort to determine the cooling that occurs in a room fire due to the presence of 

water spray, Kung (1977) devised an experiment utilising a pool fire in a room 

enclosed on all sides with the exception of one open window. The sprinkler was 
located in the centre of the ceiling and the orifice size, water pressure, and flow rate 

were varied throughout the tests. Even though the fire was towards one corner of the 

room, the sprinkler was close enough to the fire to provide direct sprinkler-fire 

interaction. Three important parameters were found in the extinguishment and 

cooling of room or enclosure fires: one was the fire size and the amount of fuel 

burned in a given time, another was the flow rate of the water through the sprinkler, 

and finally the nozzle orifice diameter which can control the droplet size was found to 

be important. Large flow rates and small droplets were found the best for fire 

suppression. The study also found that the mole fraction of steam present was good 
indicator of whether or not a fire could be extinguished, the more steam the better. 

Also noted was the fact that smaller droplets evaporate more, increasing the mole 
fraction of steam as compared to large droplets. 

An experiment on the air entrainment into water sprays was conducted by Heskestad 

et al (1976). An array of 32 downward-facing nozzles was set up in rows of four, two 

rows to each height level, with the bottom level being at 2.13 m from the floor. They 

studied the air entrainment in the case of one nozzle operating, then with multiple 

nozzle forming a curtain. In the single nozzle case air velocities were measured at 
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distances of 1.52,3.05 and 5.79 m below the nozzle and at radii 0.31,0.61 and 1.22 

in from the nozzle centreline. Droplet sizes were also measured by freezing them in 

liquid nitrogen at a distance of 5.8 m below the nozzle, which resulted in a 0.4 mm 
Sauter Mean diameter. Performing an integration of the air velocity profiles obtained 

enabled the authors to find flow rates of the entrained air. The nozzles used produced 

a solid cone type spray and it was found that the greatest air entrainment flows 

occurred along the nozzle centreline (vertically beneath the nozzle) with the velocity 
dropping off, slowly at first, then more rapidly at greater radii. The airflow was also 
found to increase with increasing vertical distance from the nozzle. The same trends 

were also found when multiple nozzles were used but with larger airflows obtained. 

The authors also used a theory based on the aerodynamic drag of each droplet in the 

spray of given cross sectional area (and droplet density), droplet velocity, and droplet 

size- this theory produced results within 17% of the experimental values obtained. 
Using this theory it was found that wide sprays entrain far more air than narrow ones. 
It was also found that the air flow was sensitive to changes in water pressure holding 

the nozzle orifice diameter constant, but insensitive to increased flow rates obtained 

through orifice variation with pressure constant. 

In order to predict the interaction between a downward directed water spray and 
buoyant plume induced flow, Alpert (1984) made use of numerical methods in order 

to simulate the situation. In the simulation the sprinkler was located at a height of ten 

meters above the floor and directly above the buoyant plume. Even with the water 

spray having its greatest momentum, the buoyant upward plume along with the 

continuation of the plume above the nozzle and cross the ceiling existed throughout 

the tests. The spray however did cause a widening of the upward plume along with 
downward deflection of the ambient air approaching at the lower levels. The droplets 

in the innermost section of the spray were found to be turned back towards the ceiling 
by the plume at a height of around two meters from the source. The simulated 

velocities and diameters of the droplets were varied to obtain information on the 
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reaction to a change in momentum of the spray. It was found that with greater water 

spray momentum the heat absorption increased, temperature decreased, and the 

ceiling plume velocities were decreased. It was concluded that the properties of the 

flow appear to be dependent on the ratio of the droplet momentum to the buoyant 

sources momentum. 

Chow and Fong (1991) also used a computer model to simulate a fire in an enclosure 

with the effect of water sprinkler activation being assessed. The interaction of one, 
two, then three sprinklers was simulated in the vicinity of the fire with direct fire- 

sprinkler interactions. The temperature-time curve predicted by the model did not 
decrease at the very end of the time period simulated as in the experimental results, 
but the temperature trends were otherwise quite similar. The temperatures predicted 

were also slightly higher than in the experiment. The authors attributed these 
discrepancies to their model not simulating the fire suppression of the fuel. 

Hoffman and Galea (1993) used a Eulerian-Eulerian fire sprinkler model to simulate 
fire-sprinkler interaction. It was found their simulation followed previous 

experimental data quiet well near the sprinkler, deteriorating in the far field. The 

authors stressed the need for detailed experimental data on fire-sprinkler interaction. 

Nam (1993) simulated the interaction of one fire sprinkler located directly over a fire 

source. Different drop sizes from 0.29 to 1.1 mm were used for the simulation of the 

spray. It was found that the model produced results close to previous experiments 

along the centre region but proved less satisfactory in the outer plume area. The 

model predicted higher penetration of droplets in the outer plume area than the 

experiments, which was attributed to possibly inaccurate initial spray conditions. 
Nam (1999) conducted numerical simulation to investigate the interaction between 

ESFR sprinkler sprays and three heat release rates (500,1000 and 1500 kW) under 

two different ceiling heights, 3 and 6.1 m. The water flow rates used vary from 1.9 to 

9.48 lit/sec. Actual delivered densities (ADD) and penetration ratios were computed 

to a target area. The effect of water penetration into a fire plume that could have 
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reduced the fire intensity was not taken into account. It was found that the actual 
delivered density always increases as the flow rate increases, that the actual delivered 

density under the 6.1 m ceiling is generally lower than the corresponding ones under 

the 3.0 m ceiling but the penetration ratios are higher. Also, the results suggested that 

large drops are more important for the penetration capability of spray under the 6.1 in 

ceiling than that under the 3.0 in ceiling. 
Interaction of a water spray with the smoke layer is an important issue for study 
(Morgan, (1979) and Hinkley, (1986) and (1989)). This is so because the fire- 

induced buoyant smoke layer might be cooled down significantly by the water spray. 

Therefore, it could lose buoyancy and fall to a lower level. The occurrence of smoke 
logging reduces the efficiency of smoke extraction systems, causing hazards to 

building occupants. 

It is interesting to know whether the sprinkler water spray obtained under certain 

operating conditions is able to confine a fire. With such knowledge, the minimum 

amount of water can be discharged from an appropriate sprinkler head in order not to 

overflood the compartment and cause water damage. A good understanding of the 

interaction between the fire-induced flow and sprinkler water spray enables engineers 

to improve the present design for sprinkler layout, by applying a reasonable amount 

of water, and giving guidance for modifying the physical features of the sprinkler 
head itself. The sprinkler system can then be designed to perform more efficiently in 

controlling a fire. Solving this problem is very difficult, however, because many 

physical phenomena such as direct cooling of the smoke, air entrainment into the 

spray and water evaporation (Kung, (1977) and You, (1986)) have all to be 

considered concurrently. 

50 



Chapter 2: Literature review and related theory 

2.9 WATER SPRAY SYSTEMS 

Water spray systems, often referred to as deluge systems, consist of open spray 

nozzles fed by a network of small diameter piping, connected through a control valve 

to the fire protection water supply. The control valve may be manually actuated, but 

automatic actuation is preferred. Automatic actuation requires the addition of fire 

detection and automatic control circuits (pneumatic or electrical). Water spray 

systems are commonly provided in areas where rapidly developing, high-intensity 

fires are likely to occur. Depending upon the effect desired (i. e. extinguishment, 

control of fire or exposure protection) the water application rates may vary. 

In design of the water spray systems, the most commonly followed standard is NFPA 

15 "Standard For Water Spray Fixed Systems For Fire Protection" (NFPA, 1994). 

The selection and placement of nozzles must be based upon their characteristics such 

as discharge pattern, drop size. 
Sprinkler systems differ from water spray systems in that all of the sprinkler heads, or 

nozzles, are sealed by a heat-sensitive mechanism. Each head will open individually 

to begin flowing water when exposed to the heat of a fire. There are basically two 

types of sprinkler systems, referred to as wet pipe and dry pipe. Wet pipe systems are 

used in areas which are not subject to freezing. Dry pipe systems are used in 

unheated areas which may occasionally freeze. 

2.9.1 Spray Nozzle Types 

There are different types of spray nozzles commercially available which can be fixed 

in water spray systems. Some of these are discussed below (Cote, 1991): 

1. High velocity spray nozzles, generally used in piped installations, discharge in the 

form of a spray-filled cone. 
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2. Medium velocity spray nozzles designed to produce a solid cone spray. 

3. Low velocity spray nozzles usually deliver a much finer spray in the form of a 

spray-filled spheroid or cone. 
4. Internally impinging type of spray nozzles produce spray by giving the water 

streams a rotary motion in spiral passages inside the nozzles. These rotating 

streams are mixed internally with a centre stream to project a solid cone of water 

spray from the nozzle. 

5. Another type of water spray nozzle uses the deflector principle of a sprinkler. 

The water discharge orifice projects a solid, cylindrical stream of water onto a 

deflector which breaks it up mechanically into a conical distribution of water 

spray. 

6. Spiral-type water spray nozzles which are characteristically different from all the 

others discharge water along the axis of a spiral of diminishing inside diameter. 

This spiral continuously peels off a thin layer of water from the surface of the 

cone, and breaks into spray as it leaves the spiral. 

The selection of spray nozzles should take into consideration such factors as the 

character of the hazard to be protected, the purpose of the system, and the possibility 

of severe winds or drafts. 

2.10 WATER SPRAY CHARACTERISATION 

A spray is generally considered as a system of liquid droplets in a fluid continuous 

phase. Examples of common sprays are rains, fogs and waterfall mists. Other 

artificial sprays are fountain spray and atomiser sprays. Figure (2.5) indicates the 

range of drop sizes as they occur in certain natural phenomena and also as commonly 

produced by atomisers. 
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Figure (2.5). Spectrum of droplet diameters (µm) [Lefebvre, 1989]. 

Drop Size, µm 

The characteristics of the water spray determines the mechanisms by which it 

suppresses fire. Those characteristics are dependent upon the method of spray 

production, different water spray systems producing water sprays with different 

characteristics. 

The characterisation of the spray can be described with four factors for the fire 

suppression purposes; those are: 

o Drop size and distribution (Diameter and range) 

o Spray angle 
o Spray momentum 

o Spray flux density 

o Droplets velocities 
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2.10.1 Drop Size and Distribution 

A more complete picture of any spray can be gained using a distribution function 

(Lefebvre, 1989). 

Drop size distribution refers to the percentage of the total liquid volume contained in 

drops of different diameters, measured at specified location in a spray. A drop size 

distribution is not a constant for spray, it varies with location e. g. closer or farther 

from the nozzle, near the centre or the outer edge of the cone (Lefebvre, 1989 and 

Mawhinney, 1993 a). 

Different designs on spray nozzles will produce sprays with different proportions of 

larger and finer drops (Mawhinney, 1993b). 

ASTM E799 describes a number of representative diameters such as Volume Median 

Diameter (VMD), or the Sauter Mean Diameter (SMD), which could be used to give 

an industry standard for the description of a spray diameter distribution. 

Representative mean diameters can be defined in terms of simple diameter, droplet 

surface area or volume. 

For modelling the interaction of water spray and fire using computational fluid 

dynamics, the distribution of drop sizes in the spray is represented as a function of 

two parameters, one of which is representative diameter and the other a measure of 

the range of drop sizes (Mawhinney, 1993b). 

A number of drop size distributions have been proposed, some are theoretically 

based, others are purely empirically based. Some of these distributions are briefly 

described below (Mugele, 1951, Lefebvre, 1989 and Jones, 1995); 

Rosin-Rammler Distribution Function 

One of the best known empirically-based distribution functions, and widely used 

expression for drop size distribution is one that was originally developed for powder. 
It is frequently quoted in the cumulative form: 
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1- Q= expl (DlD) 4j (2.3) 

Where Q is the fraction of the total volume occupied by drops of diameter less than 

D, D the representative diameter and q the measure of the distribution of the droplet 

sizes. D and q are constants. 
The higher the value of q, the more uniform is the spray. If q is infinite, the drops in 

the spray are all the same size. For most sprays q usually takes values between 1.5 

and 4. The representative diameter, D, is defined such that 63.2% of the spray's 
liquid is found in droplets of smaller diameter. A slight modification of this Rosin- 

Rammler distribution function involves using the logs of the droplet diameter and 

mean diameter. So, re-writing the Rosin-Rammler equation in the form of volume 
distribution equation: 

dQ 
= 

(In D)9-' In D 9 
dD -q D(ln D)4 eXP- (In 

Dý 
(2.4) 

generally provides a good fit to the data. 

However, it is desirable to work only with average diameters instead of the complete 
drop size distribution (Mugele, 1951). Lefebvre (1989) usefully divides the possible 
diameters into two types: these are mean diameters and representative diameters, 

each type has its own attributes and applications. Mean diameters are defined 

according to the general formula (Mugele, 195 1, Lefebvre, 1989 and Jones, 1995); 
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D. 

jD'(dN/dD)dD 
Do 

m" D. 

jD"(dNI dD)dD 
Do 

(2.5) 

Where D is droplet diameter, D. the maximum droplet diameter, D,, the minimum 
droplet diameter and dN/dD the variation in droplet numbers according to their 

diameters. The integers m and n may take on any values between 0 and 4 depending 

on the particular mean being investigated; and the sum (m+n) is called the order of 

that mean diameter. The integer m is greater than n. Examples of m and n of the 

important mean diameters are given in the table below: 

m n m+n symbol Name of mean diameter 

1 0 1 Dlo Length 

2 0 2 D2o Surface area 
3 0 3 D3o Volume 

2 1 3 Del Surface area-length 
3 1 4 D31 Volume-length 

3 2 5 D32 Sauter (SMD) 

4 3 7 D43 De Brouckere or Herdan 

Sauter mean diameter, SMD 

An example of mean diameter is a 5th order mean: m=3, n=2: the volume-surface 

mean diameter (also called the Sauter mean diameter, SM D): 
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D 
JD3 (dNIdD)dD 

Do 
D32 = 

D. 

J D2(dlvldD)dD 
Do 

(2.6) 

Mean diameters can provide an estimation of the quality of the spray. The Sauter 

Mean Diameter (D32) is often used as an indicator of the fineness of a spray, since it 

is heavily weighted by the smaller droplets in a given distribution (Jones, 1995). 

2.10.2 FLUX DENSITY 

The ability of water mist to extinguish a fire depends on more than its drop size 
distribution (Mawhinney, 1993a). Flame suppression with fine spray requires that a 

certain minimum mass of water droplets be suspended as spray. Therefore, a spray 

must have a density, or mass flow rate, that is appropriate for the fire scenario and 

compartment conditions. Whether the extinguishment mechanism is due to heat 

extraction as fire droplets evaporate, or to displacement of oxygen by steam 

expansion, a certain minimum number of droplets per volume of space will be 

required to accomplish suppression. 

The water spray droplets that actually interacts with the fire must be sufficient to 

absorb a significant proportion of the heat given off by the fire. 
Spray flux density is therefore an important characteristic of water spray for fire 

suppression systems. The flux density is the mass of water which is discharged over 

a defined area per unit time (Orr, 1996). 

The initial spray density must be high enough to allow for losses of spray due to 
drops falling out or depositing on the surfaces of obstructions, and still have enough 
suspended water droplets per unit volume of air to be able to extinguish a fire. 
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The flux density, most commonly described by the term "nominal flux density, Nfd", 

was introduced to establish an initial spray flux density that a (full cone only) nozzle 
is capable of delivering (Mawhinney, 1993a), where: 

Nra = Qx / Ac (2.7) 

QN being the nozzle discharge in lit/min and Ac the area of a circle with diameter 

equal to the diameter of the spray cone, measured 1 metre from the nozzle tip. 

2.10.3 SPRAY ANGLE 

The spray angle is usually the angle formed between the outer limits of the spray core 

(Lefebvre, 1989 and Lev, 1991). The spray angle governs parameters which can 

control the interaction between the water spray and the flame (Kim, 1997). 

Therefore, it is necessary to understand its significance in defining appropriate sprays 
for fire suppression applications. Spray angle directly affects the velocity and 

direction of the droplets leaving the spray nozzle. Therefore, for modelling with 

computational fluid dynamics at least, the range of directions of initial droplet 

trajectories is of interest. Spray angle is a critical factor in determining nozzle 

spacing to ensure a relatively uniform distribution of spray, without large void area 
between nozzles. Finally, spray angle is very significant in determining the initial 

velocity and momentum of the spray, which in turn determines its ability to penetrate 

obstructions in the compartment (Mawhinney, 1993b). 

Spray angle will determine the ability to penetrate the flame. The spray momentum 
therefore is highly affected by the spray angle of the nozzle. 
In general, a narrow spray angle of a nozzle will produce higher spray momentum 

and penetrate further than wide spray angle nozzle (Mawhinney, 1993a) and 
(Lefebvere, 1989). 
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2.10.4 SPRAY MOMENTUM 

The ability of the spray to penetrate the fire plume and push the water droplets 

towards the fire in the compartment, and to interact with the flame, depends on the 

spray momentum. This momentum must come from the spray nozzle. 
The spray angle of the nozzle partly participates in the projection ability: the wider 

spray angle of a nozzle has a lower projection than the narrower spray angle. 
Another factor affecting the projection ability is the mechanism for producing the 

spray (Mawhinney, 1993a and 1993b). To maximise spray momentum higher nozzle 

pressure and reduced spray angle are needed. 

Indirect indication of the momentum provided by a nozzle is studied experimentally 

by Mawhinney (1993a) by measuring the horizontal distance of spray nozzle 

projection. 

2.11 WATER DROPLET CHARACTERISATION 
TECHNIQUES 

The various techniques for drop characterisation can be classified as mechanical, 

electrical and optical methods (Lefebvre, 1989). 

The mechanical techniques depend on the collection of drops. The electrical 

techniques rely on the detection and analysis of electronic pulses produced by drops, 

i. e. use indirect probing method; some electrical methods include hot wire technique 

and charged wire technique. 

The optical methods can be divided into imaging, single drop counting and light 
diffraction techniques. There are two main methods of sampling the spray in optical 
drop sizing method in order to determine its droplet size distribution, one 
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representing spatial averaging (light diffraction and imaging methods) and the second 

temporal averaging (single drop analysers) (Bayvel, 1993). 

2.11.1. IMAGING TECHNIQUES 

Imaging techniques include microscopy, photography and holography. In these 

techniques, incandescent lights, mercury vapour lamps, flash and laser light are used 

as light sources. 

The longest established and most inexpensive imaging method is photography. This 

technique involves direct photography of a spray followed by analysis of processed 
film. After development, the negative can be projected at greatly increased 

magnification to obtain direct measurement of particle size. 
Photographic characterisation is able to measure non-spherical drops, and analyses 

events like drop coalescence, break up and oscillations. This technique does not 
disturb the sample and is able to measure in harsh environments (Jackmann et al, 

1992). 

Manual analysis of photographs is very time-consuming and subject to operator 
fatigue and bias. Automatic image analysis is an improvement but must be used with 

care, and the cost of equipment is significantly increased (Chigier, 1983). 

2.11.2. SINGLE PARTICLE ANALYSER 

The theory of phase/Doppler particle analysers was described in Bachalo (1980) who 
developed this method. Two beams of laser light with different angles of approach 
incident on a drop undergo a phase shift. The detection at off-axis angles, the spatial 
frequency of the scattered interference fringe pattern is inversely related to the 

particle diameter. 
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The drop velocity of a single particle can be measured by using crossed-beam. When 

these two beams intersect, stationary interference fringes appears. As the particle 

traverses the fringes, a modulated scattered light signal is produced. 

Three detectors are used to reduce measurement ambiguity, add redundant 

measurements to improve reliability, and provide high sensitivity over a large size 

range (Lefebvre, 1989). The instrument can measure drop size in the range 0.5 to 

3000 microns. 

2.11.3. DIFFRACTION OF LIGHT 

For average size distribution measurement of clouds of droplets in sprays, the particle 

analyser based on Fraunhofer diffraction is proving to be one of the most effective, 

simple and reliable instruments. 

It is particularly useful for testing global (ensemble) characteristics of sprays from a 

wide variety of nozzles. The instrument is easy to use and very little knowledge of its 

basic principles is required for operation. 

The instrument is based on well known optical principles (Chigier, 1980) to be 

discuss in chapter six. The instrument owes its development to Swithenbank et al 

(1977) at Sheffield University and now is commercially available through Malvern 

Instrument Ltd, England. 

The positive points of the Malvern instrument: it is easy to set-up, very versatile and 

requires no calibration; the measurement is non-intrusive, there is no probe to disturb 

the flow and introduce sampling errors and can be used in many environments; it 

gives accurate and repeatable results from large number of drops sampled. 

2.11.4. THE CHOICE OF A TECHNIQUE 

The choice of a technique and instrument for drop size distribution measurements that 

are most appropriate should have the following characteristics: 

a) Make no disturbance to the spray pattern 
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b) Give rapid means of sampling and counting 

c) Good size range capability 
d) Continuous sampling 

It is clear that no single instrument is completely satisfactory and can fulfil all the 

above criteria. 

2.12 FIRE MODELLING 

Modelling is a means of presenting some facets of reality for purposes of explanation, 

manipulation and analysis. (DiNenno, 1988). Modelling are used in many areas of 

fire protection design, including suppression system design, smoke control system 

design, and egress analysis. (DiNenno, 1995). Two model-building strategies have 

evolved for calculating the effects of fire in enclosure (Cox, 1995). 

These are zone model and field model which differ in their concepts, computational 

requirements and potential power. 

2.12.1 ZONE MODELLING: 

Zone modelling is the traditional approach to compartment fire modelling, whereby 

the compartment is subdivided into a series of zones, for example a hot upper layer, a 

cool lower layer, a rising plume of hot gas, a ceiling, upper walls, lower walls, floor, 

fuel source, and an external environment connected via a ventilation opening. This is 

a "three gas zone" model. Some of the zone models programmes are ASET & 

ASET-B, Harvard, FIRST, CCFM, COMM, CSTBZI, FAST and OSU (Ohio State 

University Compartment Fire Computer Program). 
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2.12.2 FIELD MODELLING: 

Field modelling represents a completely different approach to compartment fire 

modelling compared to zone models. Advances in computer power and fundamental 

research over the last decade have made it feasible to directly model turbulent 

combustion phenomena using computational fluid dynamic (CFD). The incentive for 

this approach of detailed models of combustion chemistry, turbulent flow and 

radiative heat transfer, removes much of the dependence of the fire hazard models on 

expensive, large scale experiments. Instead, validation of the CFD turbulent 

combustion model can be made with smaller laboratory, or medium scale 

experiments, and then confidently extended to a larger scale or to more complicated 

release geometries. In addition, CFD calculation can provide insight for the 

development of new robust, simple to use, prediction tools. Field models can be 

difficult for potential users to assess. They are often treated as black boxes perhaps 

with associations of `fundamental' approaches complexity, sophistication and user 
friendly graphics output. Users need a deeper knowledge of the contents of 
individual models. Some of the field models programs are JASMINE (FRS) for 

Smoke Movement Model, and for general purpose CFD models are PHOENICS 

(CHAM Ltd), FLOW3D (AEA HARWELL), FLUENT (CREARE), and 
TEACH/CINAR (IMPERIAL COLLEGE). 

2.13 COMPUTATIONAL FLUID DYNAMICS 
APPLICATIONS 

The importance of CFD as design tools for architects can be seen in the paper by 

Waters (1986). A general purpose computer code was used to study air and smoke 

movement generated by a fire within very large buildings, such as airport terminals or 
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department stores. The environmental conditions within a building and hence the life 

safety aspect in the event of a fire could be assessed with the aid of this model. 
A computational fluid dynamics model designed specifically for aircraft cabin fires 

was developed by Galea and Markatos (1987). It is a steady state and time- 

dependent, three-dimensional model which uses a body-fitted co-ordinate (BFC) to 

accurately model the interior of an aircraft. It has been partially validated and is now 

used as a research tool to investigate design features of aircraft such as the effect of 

the air-conditioning system on the temperature distribution within a burning fuselage 

(Galea and Markatos, 1989). 

Computational fluid dynamics (CFD) simulations are increasingly used to estimate 

the effects of fires in tunnels and corridors investigating the effects of turbulence 

models, model constants, differencing schemes (Bennardo et al, 1997 and Woodburn 

et al, 1996), fuel pan size, fuel inflow profile, upstream smoke layer radiative heat 

transfer, grid refinement on mine gallery fire (Fletcher et al, 1994), ventilation 

schemes (Fletcher et al, (1994) and Brandeis and Bergmann (1983)) and radiation 

modelling (Fletcher et al, (1994), Kumar and Cox, (1988) and Woodburn et al, (1996 

a and b)). 

The CFD was used to investigate the fire accidents that occurred in the past, such as 

the King's cross station fire (Simcox, 1989). 

CFD simulation was carried out on enclosed gas fire extinguishment by water spray 
(Alper, 1984 and Novozhilov et al, 1996) discussed in section (2.8.6). Significant 

effort has been devoted to the modelling of sprinkler interaction with a smoke layer 

because of the important effect of smoke knockdown (Chow and Fong (1993), 

Hoffmann et al (1993 and 1989) and Chow and Cheung (1995)). 

The interaction of fire plume (Hoffmann, (1993), Downie, (1995) and Nam (1996)) 

and the hot air layer (Chow and Fong (1991), (1993)) with water sprays and the 

process of heat and mass transfer in the droplet and the parameters that impact the 

evaporation (Butz, 1992) are other applications of the CFD. 
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Computational fluid dynamics was utilised to investigate the penetration capability of 

sprinkler sprays above a fire source (Nam, 1999). 
Though computational fluid dynamics provided a useful investigation tool, the 

accuracy obtained is paid for by the excessive amount of CPU time required to 

perform the modelling. Partly due to the overheads involved in the calculation of the 

models and the limited amount of experimental data available, thorough validation of 

these models still needs to be carried out. 

2.14 CONCLUSION 

Although there are a number of research studies that have been reported on the 

compartment fire, the behaviour of jet fires and spray-fire interaction, most 

compartment fire research has concentrated on fires in buildings rather than on the 

specialised situation of the oil and gas industries. The EU programme JIVE 

concentrated on the behaviour of jet fires impinging on or engulfing obstacles, 

especially vessels and pipework, and the response of the vessel or pipework and its 

contents to the fire. 

The previous work of spray-fire interaction provided useful information concerning 

some important aspects of droplets emanating from spray systems and the spray-fire 

interaction. However, there are some major points of concern where a compartment 

jet fire scenario could produce entirely different results. In some of the studies, 

strong convective currents and an extreme heat source are not taken into account. 

A review of early work, including its computational fluid dynamics and application 

was given which, however, showed that much less attention has been given to CFD 

modelling of extinction phenomenon and comparison between numerical and 
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experimental results. In addition, the combustion reaction is often entirely omitted in 

favour of a simply prescribed heat source. 
Water spray systems show much potential as effective and safe fire suppression 

systems. There is however general lack of detailed and quantified information 

regarding spray suppression mechanisms for jet fire. 
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CHAPTER 3 

EXPERIMENTAL SETUP 

3.1. INTRODUCTION 

This chapter describes the experimental set-up, which includes the experimental 

rig, apparatus, data acquisition systems and sampling gas analysis systems. This 

chapter also describes the experimental condition and experimental procedures. 

Safety requirements and risk assessment are also described in this chapter. 

3.2 EXPERIMENTAL RIG 

The overall experimental apparatus is schematically shown in Figure (3. l). A 

propane jet nozzle was located at the centre of 6x2.4x2.4 m3 compartment. The 
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water spray nozzles were located at the top of the compartment and could be 

moved any where on the top plane. The compartment was equipped with various 

forms of instrumentation that will be described in detail in the following sections. 

The rig was initially built by Shell specifically for jet fire research and the 

mitigation which includes the use of standard water deluge systems. The results 

found by Shell were not available in the published literature and therefore the data 

were confidential and restricted to Shell's own use. 

3.2.1. Compartment 

The test were performed in a test compartment of 35 m3, located at the University 

of Sheffield Buxton Laboratories at Harpur Hill, near Buxton in Derbyshire. The 

dimensions of the compartment are 6m long, 2.4 m wide and 2.4 m high. The 

compartment was elevated 1m above the ground. The walls, floor and ceiling 

were made of 1.5mm thick corrugated steel plate (channel), shown in Figure (3.2). 

The figure also shows the main dimensions of the compartment. Originally the 

compartment was built as small-scale model of a typical offshore module. 

The air inlet opening covers the width of the enclosure, and is 600 mm high at the 

bottom of the front side. The outlet opening is located at the top of the front side 

and covers the width of the compartment and height of 600 mm too. 
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Figure (3.1). Plan View of the Field General Layout (dimensions in metre). 
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3.2.2. Ventilation 

The compartment has an opening at its front (Northeast) side to provide 

ventilation. There is a baffle in the opening which was used to block half of the 

opening area. It was fixed in the centre of the opening, dividing it into two equal 

vents. Previous experience of Shell indicated that the size of the baffle was 

adequate to reduce the air entrained and limit the ventilation. Figure (3.2) shows 

the baffle dimensions and position in the compartment. 

Figure (3.2). Schematic of Compartment and Cross Sectional of wall Panel 
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3.2.3. Jet Fire Systems 

The propane jet nozzle used in the experiments is 20mm diameter steel pipes 
flowing along the centre of the module. The propane flow rate is 0.1 kg/s; the 

heat release rate of the jet was about 4.6 MW in all the tests. 

  Propane Gas Flow Control: 

A schematic diagram of the propane flow control system is shown in Figure (3.3). 

The gas line was equipped with a main manual shutoff ball valve, and directly 

down stream a pressure regulator was installed. The pressure regulator assured 

that fluctuations in the main line pressure would not affect the flow through the jet 

nozzle. A solenoid valve used in conjunction with the safety system (see section 

3.2.5) was used to stop the gas flow should the flame go out. The pilot flame gas 

supply was taken directly from a small propane cylinder see Figure (3.3). The 

solenoid did not control the flow through the pilot. The gas lines passed through 

two vaporisers before it goes to the jet nozzle (see the figure). Another valve was 

next on the line with the flow meter directory following. The flow meter had a 

valve type flow controller allowing for flow rate adjustment, from the flow meter 

the gas then proceeded directly to the jet nozzle. The instruments used were as 
follows: The pressure regulator, The flow meter and the pressure gage 

manufactured by Platon Instrumentation. All control valves are numbered for 

ease of operation. 

  Vaporiser: 

Two vaporisers were installed three metres away from the propane vessel (see 

Figure 3.3). Two liquid inlet control valves are fitted to vaporisers directly 

connected to the process gas. The controller shuts off the liquid automatically if 

the bath heat exchange fluid temperature falls to a level where vaporisation will 
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not occur. This prevents low temperature vapour or liquid from entering the 

process system. The vaporisers used were 30 kW FGS. 

  Propane Storage Tank: 

The propane storage tank was located 15 m away from the compartment (see 

Figure 3.1). The capacity of the tank was 2 tonnes of liquid propane. For safety 

reasons the storage tank was protected by a fence all around. The tank was 

connected to one supply line connected to a pump and one return line for the 

excess fuel to be returned to the tank. 

  Pilot Flame: 
In order to start the jet fire; it is necessary to have a pilot light to ignite the jet 

flame. The pilot nozzle was adjacent to the jet nozzle and supplied by propane 

gas through a 75 kg cylinder see Figure (3.3). The pilot nozzle was fixed at an 

angle (inclined) to the jet nozzle to make sure that the flame crosses the jet nozzle. 

An ignition source was required to ignite the pilot light. This was provided by a4 

metre hand-held gas torch. 

3.2.4. Water Spray Systems 

The water system to the spray nozzle consisted of a main water line, which was 

supplied from a pressurised hydrant. The water flow rate and pressure were 

measured before the spray nozzle head. Water was supplied through large 

diameter pipe work with a shut-off solenoid valve controlled from the control 

room. The main water line was then connected to 4" pipe which consisted of 

three 2" branches for the spray nozzle heads to be fitted. Flow rate was monitored 
by means of flow meters fixed on each one of the pipe branches. Pressure was 

measured for the water supply on the main by a pressure transducer and the signal 

was sent to the computer through a data channel. A schematic drawing is shown 
in Figure (3.4). 
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Chapter 3: Experimental Setup 

Figure (3.4). Water Flow System Diagram. 

SPRAY CHARACTERISTICS 

The spray nozzle consists of an orifice or nozzle and deflector. The deflector is 

designed to break up the solid jet of water issuing from orifice into small drops, 

which are re-distributed uniformly in a hemispherical pattern below the deflector. 

Four geometrically different nozzles were used for the purpose of this study. 

Different spray angles were used which were 60°, 90°, 120° and 150°. Figure 

(3.5) shows the spray pattern for three sprays and 150° spray angle. The nozzles 

were installed at the centreline of the ceiling with the orifice 100 mm below the 

ceiling and pointing vertically down. The nozzles used in the experiments are the 
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ANGUS Thermospray medium velocity 'open pendant' water spray nozzles. A 

schematic of one nozzle is shown in Figure (3.6). The models used are K50 

150D, K50 120D, K50 90D and K50 60D (ANGUS, 1991). 

2 

3 2 I 0 I 

Compartment Length (metres) 

2 3 

Figure (3.5). Water Spray Pattern for nozzles with 150° spray angle, 'K' 
Factors of 50 and 9.3 mm bore size. 

  Drop Size 

The most surprising observation was how little manufacturers have focused on the 

properties of the water spray; there is for instance hardly any information 

available on the drop size distribution that affects the vaporisation rate. 

  Bore Size: 

Water passes through a hole cylindrically bored before it travels towards the strike 

plate. The pipe fitting of sprays is 1/2 inch. The bore sizes most commonly used 

are between 6 and 14 mm. The orifice diameter, D, of the nozzles used in the 

tests was 9.3 mm. Each spray is given a K-factor, which relates the pressure at the 

spray head to the water flow rate leaving the spray. 
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Where: 

m: Flow rate (litres/min) 

P: Pressure at head (bar). 

iYl = KNlP 

Angus data sheet 102/4/91 shows the K-factor for the ANGUS Thermospray (bore 

size 9.3 mm) is 50, for nozzles with larger bore sizes the K-factor is larger and 
hence the required pressure for the flow rate is lower. 

9.3mm 
NPT Taper 
thread 

\ 
J1 L_1 x 

20 

º1! ºº ý 

K50 135D 

56 

72 

All dimensions in mm. 

Figure (3.6). The nozzle used in the experiment (ANGUS, 1991). 
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  Water velocity: 

The ANGUS THERMOSPRAY is a medium velocity water spray nozzle. The 

water velocity at the nozzle exit lies between 15 m/s and 25 m/s (ANGUS, 1991). 

  Spray Selection: 

The criteria for the selection of spray were primarily based on their water 

distribution. The preliminary spray studies found that each spray at each flow rate 

produced a unique water distribution. The selection criteria were also made with 

regard to spray head characteristics. 

  Spray nozzle Set-up: 

Each spray nozzle was located 10 cm. below the ceiling. Different spray locations 

were used as in Figure (3.2) along the centre line of the compartment. The water 

was released from different flow rate, see section (3.6). Different spray angles 

were used in the experimental programme, see tables (3.1) and (3.2) for further 

details of the different parameters used in the tests. 

The locations of the spray nozzles are: 

NOZZLE X Y Z 

F 1190 2300 1170 

C 3180 2300 1170 

B 5080 2300 1170 

MI dimcnsions in mm. 
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3.2.5 Safety Systems 

The safety system as shown in Figure (3.7) was placed in operation mainly to 

assure that if for some reason the propane gas flow was not ignited during the start 

up or the flame blew out during a test, the gas flow to the jet nozzle would be 

stopped, preventing a dangerous build-up of non-combusted propane gas within 

the compartment. Once the main on/off switch was activated, the emergency 

button could be used for shutting off most of the equipment to stop any further gas 

flow. 

An observer was assigned to announce "test abort" in case the propane gas flow 

was not ignited during the start up or in case the flame blew out during a test, and 

he was ready to act in an emergency. All control valves were numbered for ease 

of operation. 

Emergency Stop Button 

Vaporisers Relay 
Box 

L---- 
T 
----- 

---------; I ONOff 
Solenoid Water Switch 
Valve to control 

the water 

Solenoid Gas Valve 
to control the fuel 

In the site In the control Room 

Figure (3.7). Safety System Schematic. 
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The solenoids valves were connected in such a way that in the event of either the 

Emergency shut off being operated or an electrical supply failure, the system 

would "fail safe". 

To enhance the visualisation of the extinguishing process, two I kW halogen arc 
lamps were placed above the intermediate instrument shelter and above camera 

pad 1, see Figure (3.1). Their height and intensity were adjusted to give 

maximum visibility. 

3.3. EXPERIMENTAL APPARATUS AND DATA 

ACQUISITION SYSTEMS 

3.3.1. Temperature Measurements 

The compartment has been instrumented with a total of 139 data channels, see 
Figure (3.8); these includes 35 aspirated thermocouples, 22 unshielded 

thermocouples, 19 wall temperature 4 mm washer type thermocouples, one gas 

temperature thermocouples. 

Of the 35 aspirated thermocouple, 25 were positioned at the open side, the 

remaining thermocouples were placed in two vertical strings in the centreline 
inside the compartment. The thermocouples were evenly distributed in position, 

and covered both the flame zone, the inflowing air and the smoke. The first string 
(Northeast) was located two metres from the compartment opening and one metre 
from jet nozzle, the second string (Southwest) was located one metre away from 

the jet nozzle and two metres from the back wall; their location is shown in Figure 

(3.9). 

One thermocouple was installed on the fuel nozzle before it went to the 

compartment to measure gas temperature. 
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Figure (3.10) and (3.11) show the unshielded and wall temperature thermocouples 

arrangements and locations. A 4-mm washer type thermocouple, which was used 

as wall thermocouples, is shown in Figure (3.12). Figure (3.13) shows the 

aspirated thermocouples connected to the ejector. 

All thermocouples were type K, fabricated from 30-gage chromel-alumel wire. 

The thermocouples measuring the surface temperatures of the walls, ceiling, and 

floor were mounted in shallow grooves (25 mm long). 

The thermocouple inside the compartment should be shielded from direct water 
During the tests, a continuous flow rate measurement of the propane flow rate was 

made. 
The 139 data signals were monitored by a data acquisition system with Viglen 486 

DX2 computer inside the control room. Every 4 seconds the system scanned each 

of the 139 data channels ten times within a half second and logged the average 

value of each data channel on a magnetic tape. 

Measurement of CO, CO2 and 02 concentration at different location in the 

opening was made. 

Figure (3.12). Showing 4 mm Washer Type Thermocouple. 
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FIGURE (3.11). Wall Temperature Thermocouples 
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Figure (3.13) Aspirated Thermocouple connections. 
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  Aspirated Thermocouple 

The measurement of the temperature of a gas by aspirated thermocouples is 

subjected to errors for different reasons (Mullikin, 1941); Direct impingement of 

water droplets during water spray operation to the gas-temperature measuring 

thermocouples inside the compartment may be one reason for temperature 

measurement error (Shell, 1974 and Kung, 1977). Another reason is that when a 

thermocouple immersed in a gas receives heat by convection from the gas, but 

there will also occur radiant-heat exchange with the compartment walls which it 

can see. If the wall surfaces seen are at the same temperature as the gas, the 

thermocouple will read the true temperature of the gas, because no radiant-heat 

exchange will take place. On the other hand, if the compartment walls are hotter 

than the gas they will radiate heat to the thermocouple which, because of the extra 

heat received, will read higher than the true gas temperature. If the walls are at a 
lower temperature they will absorb radiant heat from the thermocouple and hence 

the thermocouple will read lower than the true gas temperature (Mullikin, 1941). 

Since radiation is proportional to the fourth power of the absolute temperature, the 

radiant-heat transfer will be very great at high temperature where the wall 
temperature is quite different from the gas temperature. 

Shields were placed around the thermocouple hot junction so that it cannot see the 

colder surfaces. In this case the shield assumes a temperature between that of the 

thermocouple and the cold walls. This decreases the radiation errors but unless 

the gas flows through this shield with an appreciable velocity, a considerable error 

still exists (Mullikin, 1941). 

The thermocouple element is surrounded by one or more concentric tubes so that 
flue gas can be drawn over the thermocouple and through the concentric tubes. 
When the flue gas is withdrawn at a high rate, the thermocouple closely 
approaches the true gas temperature whilst it is protected from radiation heat loss 

to the cold walls, by the concentric tubes which themselves approach the flue gas 
temperature. 
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The probe of this instrument consists of a 6.5 outer diameter stainless steel tube 

with a 1.5 mm. 

  Calibration of the Aspirated Thermocouple 

One way to calibrate the aspirated thermocouple is by measuring the rate of the air 
flowing -aspirated- through the thermocouple. This can be done by inserting the 

aspirated thermocouple using a small cylinder connected to the output pipe of a 
flow meter as in Figure (3.14) and by gradually increasing the air flow rate. The 

indicated temperature with no suction, i. e., no gas flow past the thermocouple 

junction, shows a considerable error because of the poor convection heat transfer 

from the gases to the thermocouple. As the suction or gas flow is increased, the 

temperature indicated rises, until a value is reached where the convection heat 

transfer from the gases to the thermocouple is so great that the heat losses of 

thermocouple by conduction and radiation is relatively negligible. A further 

increase in gas flow results in no appreciable temperature rise, thus showing that 

the true temperature has been reached. Figure (3.15) shows a typical temperature 

curve for a different flow rate. It suggests that the aspirated thermocouples 

requires a high suction rate at least 20 lit/min in order to represent the correct 

temperature of the gas entering the probe. 
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Aspirated 
Thermocouple to 
be inserted here. 

ý 

........... 

ý 

4 Flow meter 

Figure (3.14). Aspirated Thermocouples calibration apparatus. 
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Suction Rate, (lit/min) 

Figure (3.15). Relation between temperature indication and airflow rate 
through the Aspirated Thermocouple. 
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  Compressed Air 

Compressed air for control purposes and for powering the airmovers is provided 
by the compressor located in the workshop welding bay. The solenoids valves are 

connected in such a way that in the event of either the Emergency Shut Off being 

operated or an electrical supply failure, the system will "fail safe" to the vent 

mode. 

  Air Mover 

The air mover used is operated by compressed air. Its effect is to produce a high 

velocity jet of air, which is ideal for operating the aspirated thermocouple. In 

generating the high velocity jet a negative pressure is created at the inlet which 

enables the air mover to extract combustion gases from around the aspirated 
thermocouple. The diagram in Figure (3.16) below shows the air mover used 
throughout the experiments. 
Since the air mover is compressed air driven, when low pressure air passes over 

an aerofoil surface it both clings to the surface and accelerates. When the primary 

compressed air enters the manifold through a radial connection and is released 

through an annular gap where it accelerates over an aerofoil surface, then a 

secondary ambient air is sucked into the throat of the airmover to fill the vacuum 

created by the accelerating compressed air, which causes the induced secondary 

air mixes with the expanding primary air in the divergent tube. As a result of that 

the high-velocity air emitted from the outlet entrains additional tertiary into a jet 

stream which can be directed to extract combustion gases through the aspirated 

thermocouple connections which have been discussed in section (3.3.1). 
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A 
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127 

T 

440 

0 ilýe primary compressed air inlet. 

0 The secondary ambient air sucked into the airmover to fill the vacuum 

0 The induced secondary air mixes with the compressed air in the divergent tube near outlet 

ý 

N 

All dunawau in mm 

Figure (3.16). Diagram of the airmover used in the experiments. 

3.3.2. Gas Sampling and Analysis 

Sampling of the combustion gases products were achieved using the flow set up 

outlined in Figure (3.17). The combustion product oxygen, carbon monoxide, and 

carbon dioxide concentrations at the vent plane were monitored by continuously 

drawing samples for analysis from the upper portion of the gas stream emerging 
from the vent. Sample points were chosen at three positions and the streams 

combined in an attempt to obtain representative gas concentrations in the 

emerging products. The gas samples were cooled, dried from the moisture 

content and filtered from any particles before they go to the units. 

The output from the sampling unit was recorded through the data acquisition unit. 
The units used to sample the combustion gases were ADC 7000 for measuring 

99 

41 
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TI-01 

341 

95 
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propane and carbon monoxide, Rotork Analysis NDIR ANALYSER MODEL 401 

for measuring CO2. Servomex 1400B4 02 Analyser for measuring 02. The ADC 

7000 was capable of measuring propane concentrations up to 15% and measuring 

Carbon monoxide up to 10%, the CO2 analyser was capable of measuring up to 

20% and the 02 analyser was capable of measuring oxygen up to 25%. The 

complete sample line length was 15 metres and the tubing outer diameter was 6 

mm. 

Gas sampling flow and calibration gases pass through a set of valves and 

manifolds prior to analyser's connections. The reason for this arrangement was to 

ease the control of the flow and the quantity of the gas required according to the 

analysers requirements. This arrangement is shown in Figure (3.18). 

PELTIER 
Cooler 

Fast loop 

vent 

C3H� 
Analyser 

oz 
Analyser 

Co 
Analyser 

COI 
Analyser 

Calibration gas 
manifold 

See Figure 3.6 

Figure (3.17). Showing gas Sampling Flow set up. 

The analysers were checked and calibrated to examine their stability and 

accuracy. The analysers were calibrated at the beginning of each test day using 

suitable zero and span gas for each analyser. 
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Span c.. 

From Gas Sample 
4- Collection points 

Figure (3.18). Calibration and Sampling Gases Flow Arrangement 

3.3.3. Wind Speed and Directions 

The wind speed and direction and rain affect the test running, therefore when the 

weather conditions were very windy no experiments were done and some of the 

tests were repeated because the wind affected the results. Measurement of wind 

speed and direction was logged to the computer. Figure (3.8) shows the 

arrangement of the measurement. 

3.4. EXPERIMENTAL PROCEDURES 

A number of procedures were carried out before doing any test: 

3.4.1. START-UP PROCEDURES 

  PRE-TEST CHECKLIST: 

1. All critical instruments deemed operational and fit to use, non-operational 
items should be logged. 
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2. Availability of sufficient fuel for the test should be checked as well as the 

vaporiser liquid level. 

3. Atmospheric conditions should be suitable for test; i. e. wind speed, pressure 

stable and no likely rain. 

4. Radios and portable gas monitor must be in working order and charged. 

  PRE-TESTS PROCEDURE 

1. Pre-test checklist should be completed 
2. Water spray position set according to appropriate test in experimental 

programme. 
3. Water supply to be connected to the spray system. 
4. Zero and span gas calibration should be done to the analysers in any test day, 

gas bottles should be switched off after zero and span calibration completed. 
5. Start air compressor in the workshop. 
6. Start main compressor; Charge air tank (100 psi. ). 

7. All in correct positions knowing what to do. 

Controller: inside the control bunker, operating computer and data 

acquisition programme. 
Observer: Checking for propane gas inside compartment, starting pilot 
light, maintaining over site watch. 

Operator 1: Providing additional safety cover and assistance, opening the 

manual propane valve and closing the pilot light valve when the flame is 

stable. 

Operator 2: - Maintaining watch over test site 
8. Check manual valve is fully closed and Vi is off(closed). 

9. Open valves in liquid propane line to allow vaporiser to fill. 

10. Switch on vaporisers 30 min before test (check compressor already up to 

pressure). 

11. Start gas analysers, chiller and associated external pumps 30 min before test is 

on, check volumetric flow rate. 
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12. Set up computer, check signal lines critical to control of test, and that 

acquisition software is set up with proper test reference code in filename. 

13. Perform 'cold run' data acquisition and note defective channels. 

14. Transfer data to Excel 5.0 template and save. Transfer these values to a new 
Excel 4.0 format file and save onto hard disk. 

15. Move data files to Sheffield (label disk for return). 

16. Record test reference code and all defective channels on instrument checklist. 

17. Enter test reference code into data acquisition software and logbook (with link 

to test number in experimental programme). 

18. Switch on hazard warning lights. 

19. Check vaporisers up to temperature. 
20. Start aspirated probe air-mover (P=80 psi). 
21. Check for gas inside box. 

22. Ignite pilot light and check stability. 
23. Check test area clear of personnel. 
24. Record atmospheric data on test data sheet: wind velocity & direction, 

ambient temperature and pressure. 

25. Complete test data sheet. 

3.4.2. TEST RUNNING PROCEDURES 

Before every test a number of procedures were carried out. All the thermocouples 

were cleaned while the wall thermocouples were brushed to remove the rust as 

well. Also on the pre-test checklist were numerous activities to prepare the 

instruments for a test, such as: 

1. Set up the water spray flow meter to the desired flow according to the test 

number in the experimental programme. 
2. When target flow achieved, close auto valve. 
3. Announce beginning of test. 

4. Confirm target fuel mass flow rate (0.1 kg/s). 

5. LPG pump on, announce standby for countdown (All confirm 'READY'). 
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6. Countdown to test (3,2,1, GO). 

7. At GO- open gas release valves (manual and auto VI), adjust manual mass 

flow control valve according to the reading from LCD. 

8. Check flame stability, check instruments (Abort test if flame goes out). 

9. When desired stable mass flow (0.1 kg/s) is achieved, note and announce time 

on internal microphone. 

10. Shut down and isolate pilot light system. 

11. Run until steady thermal state is achieved, then open water spray auto valve. 

12. When the flame goes out, close the fuel auto VI and the water auto valve. 

13. Shut manual fuel mass flow control valve. 

14. Shut manual water mass flow valve. 
15. Terminate data acquisition. 
16. Announce "END OF TEST". 

3.4.3. SHUTDOWN PROCEDURES 

There are certain procedures to be done for shutting down the test safely and 

correctly either normally or in case of emergency: 

  Normal shut Down Procedure 

1. Switch off LPG pump. 

2. Shut down the vaporisers, electrically and manually. 
3. Close all manual propane valves. 
4. Close auto and manual valves of the water systems. 
5. Stop air mover. 

6. Hazard light off. 
7. Stop compressor and shut down. 

8. Do not approach compartment for at least 30 min or while compartment is hot. 

9. Check compartment is cool, with thermocouple data indicating no hot spot 
(i. e. below 40°C). 

10. If gas analyser out put levels below: 
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CO 0.1% 

CO2 5.0% 

C3H8 0.5% 

11. Announce "Safe to manually check compartment gas level". 

12. When gas level falls below: 

CO 0.005% (50 ppm) 

CO2 0.5% 

C3H8 20% LEL 

13. Announce "safe to work in compartment". 

14. Shut down all remaining systems (including chiller and all pumps). 
15. Drain the water system to avoid freezing the water inside the system, which 

may cause damage to the flow meters. 
16. Transfer raw ASCII digital data into Excel 5.0 template format for SI 

conversion, and save file as Excel 5.0 format under test reference code. 

17. Open new Excel file, transfer values from Excel. 

  Emergency shut Down Procedure 

To shut down the test in case of emergency, there is an emergency stop button 

located at centre of release control panel in the bunker. This will shut down: 

1. All field instrumentation inside the compartment and instrument shed 

2. Gas mass flow measuring system 

3. All video equipment in the field and inside the bunker (if available) 
4. All automatic valves (i. e. gas release valve VI will fail safe) 
5. Computer and all other instruments inside the bunker 

6. This will also shut down the auto gas alarms. 

After emergency has passed, to start up again safely: 
1. Ensure all valves in the LPG/gas line are closed. 
2. Personnel are clear from the site 
3. Reset emergency button - All power will be restored to instruments 

4. Reset Gas alarm timers 

5. Check instruments 
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" ABORTED TEST PROCEDURE 

1. Switch off auto-valve ̀ V 1' and close manual flow control valve. 

3.4.4. DATA ACQUISITION 

Data were sampled every 4 seconds and logged by means of the data acquisition 

system DAS 1800, and stored as ASCII file on computer. After data processing, 

the calculation should be readily performed using Excel 97 programmes. 

Extensive use was made of video and still photography. These were invaluable 

for recording flame development inside and outside the compartment. 

3.5. EXPERIMENTAL CONDITIONS 

3.5.1. External Conditions 

Pressure: Atmospheric 

Wind: Calm or very light 

Rain: No likely rain 

3.5.2. Jet Burner 

Gas Flow Rate: 0.1 kg/s 

Exit Gas Velocity 250 m/s 
Jet Nozzle Diameter 20 mm 

3.5.3. Water Spray 

Flow Rate variable 

Number of Nozzle Variable either one, two or three sprays. 
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3.6. SAFETY REQUIREMENTS AND RISK 

ASSESSMENT 

The apparatus has to be operated as a three-man experiment. It is essential that 

good communication is maintained. Portable intrinsically safe radios on a discrete 

frequency are available for this purpose and communication between all working 

parties is encouraged. They were used by all parties operating at the test site. All 

control valves are numbered for ease of operation. 

3.6.1. SAFETY REQUIREMENTS 

These rules must be read in conjunction with COSHH assessment related to this 

work. 

1. It is most important all operations are carried out with due regard to all safety 

regulations and common sense. 

2. All fuel gas piping should be checked for leaks and gas supplies should be 

turned off at the storage tank after finishing the test (before leaving the site) 
3. All personnel involved in the operation of the test should present before 

starting any test. 

4. Before igniting the pilot light, check the fuel level inside the compartment 

from the output of the analyser is less than 20% LEL. 

5. All work must be performed with the correct protective clothing and 

equipment. 

6. When any work not specified in this procedure is being carried out measures 

should be taken to eliminate any hazard at source. If this is not possible the 
hazard should be minimised and the appropriate protective equipment used. 

7. Before commencing work consider if there is any hazard to other workers in 

the vicinity. 
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3.6.2. RISK ASSESSMENT 

1. Propane gas is used to create the fires in the compartment. Any uncontrolled 

release of propane results in an obvious hazard. The consequences of such an 

event could result in damage to the compartment and surrounding shed and 

possible injury to near-by personnel. However this event is unlikely to occur 

as all gas piping is checked periodically. 

2. A 50 kg propane gas cylinder is used to create a pilot flame in order to ignite 

the jet fire. The propane gas is placed in the gas cylinder rack behind a 

protection wall near the compartment (see Figure 3.1). The hazard and 

consequences from the cylinder are as above and the same precautions are 

adopted to remove the risk. 

3.6.3. SITE LOCATION AND TRAVEL 

The Buxton test facility site is on a remote area in the Derbyshire Hills and is 

operated by Sheffield University. Access to the site is restricted by a boundary 

fence and controlled by the Health & Safety Executive (HSE) gatehouse. 

During tests period access to some areas which may be hazardous was barred. An 

"exclusion area" around the immediate vicinity of the compartment apparatus is 

clearly marked with warning signs. The site is rough and largely unpaved. 

3.6.4. COMMUNICATIONS 

Three hand-held radios and one base station were used for running the tests. 

These are very important for providing safe operation of the rig, reducing the 

possibility of any error happening. 
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3.7. TEST PROGRAMME 

The test programme was divided into two phases. Fifty-eight tests were needed in 

order to complete this programme. The tests were done as follows: 

3.7.1. Phase One 

Twenty tests were done in this phase with different flow rates, which were 18,36, 

54,72 and 90 litres/minute. These water flow rates were chosen because they fall 

below the maximum NFPA standard requirements which were 20 lit/min/m2 

(NFPA, 1994). Four spray angles were selected for these investigations namely 

60°, 90°, 120° and 150° spray angles. One spray location was used in this phase. 

All notations are given in table (3-1). The objectives of this phase were to study 

the jet fire behaviour and the temperature distributions, and to study the effect of 
different spray angles which produce different mean droplet sizes in order to find 

the nozzles which perform the best, based on these conditions. The results from 

this phase were used as basis for further investigation in phase two. 

3.7.2. Phase Two 

Based on the tests which were done in phase one, and after detailed data analysis 
(see chapter 7), it was decided to do further investigation with the nozzles which 
have 150° spray angle for different locations and different flow rates, because this 

angle was found to perform the best. Table (3-2) illustrates the notations used for 

the second phase of the programme. The objective of this phase was to study the 

effect of different water flow rates, different nozzle locations and number. 
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Table (3-1). Phase One Experimental Programme. 

Spray Locations Water Flow Rate 
Test No No. of For each T l 

Spray 
nozzle S pray 

ota Angle 
Back Centre Front ks lit/min ks lit/min 

Comp 01 1 � 0.3 18 0.3 18 150 
Com 02 1 � 0.6 36 0.6 36 150 
Com 03 1 � 0.9 54 0.9 54 150 
Com 04 1 � 1.2 72 1.2 72 150 
Com 05 1 � 1.5 90 1.5 90 150 
Comp 11 1 � 0.3 18 0.3 18 60 
Comp 12 1 � 0.6 36 0.6 36 60 
Comp 13 1 � 0.9 54 0.9 54 60 
Comp 14 1 � 1.2 72 1.2 72 60 
Comp, 16 1 � 1.5 90 1.5 90 60 
Comp 19 1 � 0.3 18 0.3 18 90 
Com 20 1 � 0.6 36 0.6 36 90 
Comp 21 1 � 0.9 54 0.9 54 90 
Com 22 1 � 1.2 72 1.2 72 90 
Comp23 1 � 1.5 90 1.5 90 90 
Comp 26 1 � 0.3 18 0.3 18 120 
Comp27 1 � 0.6 36 0.6 36 120 
Comp28 1 � 0.9 54 0.9 54 120 
Comp 29 1 � 1.2 72 1.2 72 120 
Com 30 1 � 1.5 90 1.5 90 120 

Table (3-2). Phase Two Experimental Programme. 

Spray Locations 
Water Flow Rate 

Test No No of T l 
Spray 

nozzle 
B k C F 

For each Spray ota Angle 
ac entre ront ks lit/min ks lit/min 

Com 08 1 � 0.3 18 0.3 18 150 
Com 09 1 � 0.6 36 0.6 36 150 
Comp 10 1 � 0.9 54 0.9 54 150 
Comp 33 1 � 1.2 72 1.2 72 150 
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Com 34 1 � 1.5 90 1.5 90 150 
Comp 15 1 � 0.3 18 0.3 18 150 
Comp37 1 � 0.6 36 0.6 36 150 
Com 38 1 � 0.9 54 0.9 54 150 
Comp39 1 � 1.2 72 1.2 72 150 
Com 40 1 � 1.5 90 1.5 90 150 
Com 43 3 � � � 0.3 18 0.9 54 150 
Com 44 3 � � � 0.6 36 1.8 108 150 
Com 45 3 � � � 0.9 54 2.7 162 150 
Com 46 3 � � � 1.2 72 3.6 216 150 
Com 47 3 � � � 1.5 90 4.5 270 150 
Com 50 2 � � 0.3 18 0.6 36 150 
Comp 51 2 � � 0.6 36 1.2 72 150 
Com 52 2 � 0.9 54 1.8 108 150 
Comp53 2 � � 1.2 72 2.4 144 150 
Com 54 2 � � 1.5 90 3 180 150 
Com 57 3 � � � 0.4 24 1.2 72 150 
Com 58 3 � � � 0.5 30 1.5 90 150 
Com 59 2 � � 0.45 27 0.9 54 150 
Com 60 2 � � 0.75 45 1.5 90 150 
Comp6l 2 � � 0.3 18 0.6 36 150 
Comp62 2 � � 0.45 27 0.9 54 150 
Comp63 2 � 0.6 36 1.2 72 150 
Comp64 2 � � 0.75 45 1.5 90 150 
Comp65 2 � � 0.9 54 1.8 108 150 
Comp66 2 � � 1.2 72 2.4 144 150 
Com 67 2 � 1.5 90 3 180 150 

Comp70 2 � � 0.3 18 0.6 36 150 
Com 71 2 � � 0.45 27 0.9 54 150 
Com 72 2 � � 0.6 36 1.2 72 150 
Com 73 2 � � 0.75 45 1.5 90 150 
Comp74 2 � � 0.9 54 1.8 108 150 
Com 75 2 � � 1.2 72 2.4 144 150 
Comp76 2 � � 1.5 90 3 180 150 
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CHAPTER 4 
NUMERICAL MODELLING 

THEORY 

4.1. INTRODUCTION 
In most flow systems of engineering importance, considerable flow complexity is 

commonly encountered and an analytical solution is not possible. For the past 

several decades, engineers and scientists have developed numerical methods and 

computer software to solve complex systems of partial differential equations 

numerically. Many computer programmes or computer codes, as they are called, 

have been developed specifically to solve flow equations. Each different code 

tends to have certain strengths and is best suited to particular types of flow. In this 

work, a code called FLUENT was chosen and used to perform solutions of the 

governing equations and for modelling the combustion process of jet fire in a large 

scale combustion chamber. 

The equations of fluid dynamics can be solved numerically with the aid of modern 

computers. The set of techniques and procedures to achieve this has led to the 

development of what is known as computational fluid dynamics (CFD). Although it 
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is not possible to leave out real experiments, numerical experiments using CFD 

allow the determination of certain trends and give an insight into the physics of 

complex problems that would be impractical to study experimentally. The subject 

has now advanced to the point where commercial packages are available and can 

be used to simulate or predict fluid dynamics problems using CFD as a black box. 

These codes should not be used as such since any discrepancy between predictions 

and experiments can only be explained in terms of the assumptions made in the 

development of the code. For this reason the code FLUENT is described in some 

detail in this chapter. It is worth emphasising that not all the available options of 

FLUENT are mentioned here, but only those which were used in this work. 

The approach used by FLUENT, to model gas fuel combustion, is to solve the 

basic equations of fluid dynamics to be presented later, accounting for the 

interaction with the droplets of water spray through the inclusion of source terms. 

The water spray droplets, referred to as the second or disperse phase, in turn, 

interact with the fluid phase through the processes of momentum, heat and mass 

exchange, as described below. 

4.2. Choice of the CFD package 
There are several commercial CFD packages available at present in the market 

which have the capability to handle a wide range of fluid flow problems. These are 

FLUENT, PHOENICS, FLOW3D and STAR-CD, each offering similar 

capabilities. The choice of a package will depend on a number of factors: 

1. Its appropriateness to the problem in question; 

2. The easy use of the package and help facilities; 
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3. The cost of software and hardware required; 

4. Technical user support services. 

The present work required facilities for two-phase flow, three-dimensional spray 

modelling and particle tracking. Fluent has these facilities and was already 

available on site (work station, University network and University network remote 

access) with technical user support services. Experience and previous knowledge 

of the research supervisors in FLUENT also was taken into account. Since the 

CFD is advancing rapidly to keep the code up to date The University of Sheffield 

has an agreement with FLUENT Europe for supplying the latest version of 

FLUENT to the University's academic purposes. There was no published work 

found in the literature for modelling spray in a fire environment using FLUENT. 

Therefore, FLUENT was chosen as a basic tool for this work. 

4.3. BASIC CONSERVATION EQUATIONS 

The first step in numerical modelling is to establish the basic conservation 

equations based on the principles of fluid mechanics, heat transfer, combustion and 

the relevant fields of science. These equations constitute a system of non-linear 

simultaneous partial differential equations which can be solved by numerical 

methods. The equations used in this numerical modelling are presented here. It is 

worth emphasising that not all the available models of FLUENT are mentioned 

here, but only those which were used in this work. 

The main problem of fluid dynamics is the determination of the velocity and state 

of the fluid subject to certain imposed conditions. Throughout this work it has been 

assumed that the fluids are gases at ambient pressure which behave ideally. In 
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addition to the fluid dynamics problem, consideration is given to the case when 

several gases are present and chemical reactions occur. The equations that allow 

the solution of the most general case of a multicomponent, reacting, ideal gas 

mixture are the following: 

" Mass conservation: 

at +ax a (Puf)=`Sm 
f 

(4.1) 

The source S,. is the mass added to the continuous phase from the dispersed 

second phase i. e. due to vaporisation of liquid droplets. 

" Momentum conservation: 

at 
(PuJ )+ýj (Pu; uj) _ 

ýt 
paj+ ji 

-ý+ pgj + Fj (4.2) 

The left hand side represents the convection term, and the terms in the right hand 

side represent in sequence the diffusion, pressure body forces, and the momentum 

interaction between forces. 

The continuity and momentum equations are non-linear partial differential 

equations and, together with appropriate boundary conditions, provide a complete 

description of flows for which the density is uniform. 
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4.4. TURBULENCE MODELLING 

Turbulence is one of the remaining unsolved theoretical problems in fluid 

mechanics (Yang, 1989). Nevertheless, there are different approaches in dealing 

with engineering problems. Obviously, the most rigorous treatment is needed for 

predicting complex turbulent flows, such as the three-dimensional jet flow, 

required by this study. In the modelling concerned with this work, the k-E 

turbulence model was used. 

4.4.1. The k-E model 

The above equations describe the time-averaged flow when applied to a finite 

number of discrete control volumes. The effects of turbulence can be included by 

substituting an `effective' viscosity in the equations consisting of the molecular 

viscosity augmented by its turbulent counterpart, lt,. The differential transport 

equations for the kinetic energy of turbulence k and its dissipation rates are: 

49 
c3 
49 (pk) +ý (ý, k) ' 

ý +Gk - p-, 
(i ak &i 

And 

a(ps)+ Ö(pl, 
E) =a 

"' ös 
+C,, -OG, -C2sP s 

cl af a, 66 vk; k 

Where Gk is the generation term of k and is given by: 

Gk _ P, oýc, äký a"lc, 

The turbulent viscosity, µ4, is related to k and e, by 

(4.3) 

(4.4) 

(4.5) 
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k2 
µ`=PCµ (4.6) 

Where Cl., C2., C,,, ßk and a are empirical constants, with values, 1.44,1.92, 

0.09,1.0 and 1.3 respectively. 

4.5 THERMAL AND REACTING FLOWS 

" Conservation of Energy: 

FLUENT solves the energy equation in the form of a transport equation for 

enthalpy, h, and can be written as: 
l ý 

(ph) + (puh)= C K`) 
-ýh; 

, 
J-ýr 

hrJ,; + 
rrprrr 

DP-z; 
k 

ali 
+Sh 

k 
(4.7) 

Where the source term Sh includes heat of reaction, radiation and any interphase 

exchange terms, x+& is the mixture thermal conductivity. Enthalpy h is defined as 

h= cp T (4.8) 

9 Conservation of species: 

FLUENT predicts the local mass fraction of each species, m;,, through the solution 

of a convection-diffusion equation for the i' th species. The conservation equation 

takes the following general form: 

(PM, ') + (Pu, mrr) = j, ", + R. + Si. (4.9) 

r or 
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where Re is the mass rate of creation or depletion by chemical reaction and Sr is the 

rate of creation by addition from the dispersed phase. The reaction rates are 

computed by FLUENT from Arrhenius rate expressions or by using the eddy 

dissipation concept due to Magnussen and Hjertager (1976). In turbulent flows, 

FLUENT uses the mass diffusion in the form: 

J,.,, = PD,.,, +'f. 
9Mr (4.10) 

Scr öxi 

where Scr is the effective Schmidt number (with a default setting of 0.7). 

The source of chemical species i due to reaction, R,,, is computed as the sum of the 

reaction sources over the k reactions that the species may participate in: 

R,. = Rrk 
k 

(4.11) 

where R& is the rate of creation-destruction of species i in reaction k The reaction 

rate, R&, is controlled either by an Arrhenius kinetic rate expression or by the 

mixing of the turbulent eddies containing fluctuating species concentrations. 

The Arrhenius reaction rate is computed as: 

ý, k =_V, ýMrTB'tAr 
rl C f"' exp 

C- EýTJ 
% reactan is 

(4.12) 

where v'i; k is the molar stoichiometric coefficient for species i' 

in reaction k (positive values for reactants, negative 

values for products) [dimensionless] 

Me is the molecular weight of species i' [kg/kmol] 

uk is the temperature exponent [dimensionless] 

Ak is the pre-exponential factor [m3/kg K] 
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c;. 

vjk 

And 

Ek 

is the molar concentration of each reactant species 

j' [kmol/m3] 

is the exponent on the concentration of reactant j' in 

reaction k [dimensionless] 

is the activation energy for the reaction [J/kmol] 

The influence of turbulence on the reaction rate is taken into account by employing 

the Magnussen Hjertager model. In this model, the rate of reaction R; -, k is given by 

the smallest limiting value of the two expressions below: 

I8 MR 
R,,, kM,, Ap- 

K V'R, k MR 

Rf., k=ý,,, kMrABp6 
Zpmp 

- KEP "Pk MP 

where MP is the mass fraction of any product species, P 

[dimensionless] 

mR is the mass fraction of particular reactant, R 

[dimensionless] 

R is the reactant species giving the smallest value of Rjk 

[dimensionless] 

A is an empirical constant [dimensionless] 

And 

B is an empirical constant [dimensionless]. 

(4.13) 

(4.14) 
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4.6 SOLUTION OF THE FLUID PHASE 
EQUATIONS 

The equations mentioned above are transformed into a set of algebraic equations 

that can be solved iteratively. This transformation, also called discretisation, 

involves the following. 

Q The domain is assumed to be divided into cells or control volumes. 

Q The governing equations are integrated over each cell. 

The algebraic equations so obtained are solved by iteration as described later. In 

this section consideration is given to the discretisation procedure. 

4.7. PHYSICAL AND COMPUTATIONAL 
DOMAIN 

In order to perform the discretisation of the governing equations the physical space 

must be subdivided into a number of cells by means of a structured grid. The grid 

can be constructed using a rectangular, a cylindrical or a body-fitted coordinate 

system. In this research, a Cartesian grid was generated directly form FLUENT. 

The cells generated are defined by the node points, i. e. the points where the grid 

lines intersect. It is possible to enumerate the grid nodes, so that instead of 

working with the physical coordinates of the nodes, the integer numbers of the 

enumerated nodes are used. The space where the integers numbers are used is 

called the computational domain, and it is said to be mapped to the physical 

domain once a one-to-one relation has been established. The mapping process 

essentially performs a transformation between the integer indices and the physical 
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coordinates of the nodes and additionally gives weighting factors to each of the 

faces of the cells in order to compute correctly the fluxes and gradients. 

4.8. DISCRETISATION OF THE EQUATIONS 

The discretisation procedure consists of the integration of the conservation 

equations over each control volume assuming uniform values of the variables over 

the cell. This results in a set of algebraic equations which relate the values of the 

variables at discrete points (assumed to be the centres of the cells) and at the faces 

of the cell, the fluxes across the faces of the cell and the dimensions of the cell. It is 

this set of algebraic equations which is actually solved by the code. 

The values of the variables at the centres of the cells become the unknowns. The 

values of the variables at the faces of the cells need to be interpolated between the 

values at the centres of two adjacent cells. This interpolation procedure is an 

important part of the solution scheme and is discussed in the following section. 

4.9. INTERPOLATION SCHEMES 
There are several interpolation procedures, among which the power law, the 

Quadratic Up-wind (QUICK) and the second-order-upwind are used by FLUENT. 

The power-law scheme utilises the solution to a one-dimensional convection- 

diffusion type of equation to interpolate the values at the cell faces. FLUENT 

actually uses a piece-wise approximation to this solution known as the power-law 

(Patankar, 1980). This scheme works well only where the flow can be considered 

locally as one dimensional, and aligned with the grid. The advantage of the 
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interpolation method is its stability and that it always leads to a physically realistic 

solution. 

The QUICK and second-order-upwind can only be used with the cylindrical 

velocity formulation. 

4.10. SOLUTION PROCEDURE 

The three momentum equations and the continuity equation provide four equations 

to determine the three components of the velocity vector and the pressure. The 

way in which the pressure appears in the equations after discretisation, however, 

prevents a direct solution being obtained. This is because the pressure appears 

evaluated not at the nodes, but at the cell faces, and simple interpolation can lead 

to the well known checkerboard problem [Patankar, (1980)]. 

FLUENT uses either the SIMPLE or the SIMPLEC algorithms in which an 

equation is derived for a pressure correction term to replace the continuity 

equation. This equation is then used to update the (guessed) pressure field and this 

updated pressure is in turn used to update the velocity field when the momentum 

equations are solved. The difference between the algorithms just mentioned is the 

neglect of a term that relates the correction term at the node under consideration 

and the correction terms at the neighbour nodes. The algorithm SIMPLEC is said 

to improve convergence. More details can be found in the FLUENT user's guide 

(1996). 
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4.11. BOUNDARY CONDITIONS 

FLUENT allows for a number of different types of boundary conditions. Of special 

interest to this work are the following: 

o Inlet type: the velocity, turbulence, temperature and composition of the flow 

at this type of boundary must be specified. 

Q Outlet type: at an outlet boundary the normal velocities are adjusted to satisfy 

an overall mass balance and no velocity gradients should exist. 

o Wall type: at these boundaries, the normal velocity component vanishes and 

the non-slip condition is observed. Temperature, conduction or heat flux can 

be specified. No species mass flux can occur. The pressure gradient is zero. 

The log-law is used to calculate wall shear stress, in terms of a roughness 

parameter and a dimensionless distance, assuming turbulence equilibrium 

conditions in the turbulent boundary layer. If the dimensionless distance 

becomes less than a certain value, then a laminar expression is used instead. 

4.12. THE ITERATIVE SOLUTION 
PROCEDURE 

The equations are not solved simultaneously at all nodes. The line-by-line solution 

procedure is employed. The last step in the calculation is the inclusion of the 

interaction terms between the second phase and the fluid phase, as discussed in the 

next section. 
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4.13. DISPERSED PHASE 

A second phase is necessary to simulate the water spray. The droplets have their 

own equations of motion and physical evolution which are treated separately from 

the fluid phase but accounted for the interaction between the phases. In this 

section, the equations of motion are briefly described as used in FLUENT. In 

addition, the equations that describe the physico-chemical process undergone by 

the droplets are described more extensively as these are particularly important for 

this study. The equations used by FLUENT are presented and, where appropriate, 

the modifications made for this particular work are explained. 

4.13. lThe equations of motion 

The equations of motion for a single droplet are considered in a Lagrangian frame. 

The particle inertia is equated to the forces acting on the droplet in accordance 

with Newton's second law. When all external effects, except drag, are neglected, 

the equations of motion in Cartesian coordinates can be written as: 

d1 =-FD(up -u. )(Pp +P.. )/Pp (4.15) 

ýp _-FD(vp -vw)(Pp +Pao)/ Pp 

dwP 

_r /- - _.. v_ .- \l- 

dt --l'DkWp -WaoliPp *Paolf Pp 

The equation of trajectory takes the form 

dz 
=up dt 

(4.16) 

(4.17) 

(4.18) 
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dy 

_ Vp 

dt 

dz 
=w dt 

(4.19) 

(4.20) 

where the subscript p refers to the particle and oo to the gas flow. The term F in 

the equation is written as 

F' - 
18pg CDR, (4.21) 
pPDp 24 

where ps is the molecular viscosity of the gas, Dp is the particle diameter. R. 

denotes the relative Reynolds number defined as: 

R, = pg D, I v,, - v. Il p8 (4.22) 

The drag coefficient, CD, is a function of the relative Reynolds number given as: 

Co =a, +a2/R, +a3/R; (4.23) 

Where the a's are constants which are applicable over several ranges of R. given by 

Morsi and Alexander (1972). 

4.13.2. Thermal history of a water droplet 

Modelling of water spray droplets in fire environment undergoes a series of heat 

and mass transfer laws which essentially involve the following process: heating of 

droplets; evaporation of droplets; droplets boiling. 

The duration of each law is governed by the following user inputs: the boiling 

point, the evaporation temperature and the non-volatile fraction. 

The time history of a given droplet starts with the law of heating, which is applied 

until the droplet temperature reaches the vaporisation temperature. Vaporisation 

then follows while the temperature of the droplet lies between the vaporisation and 
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the boiling point values. Boiling continues when the temperature of the droplet has 

reached the boiling temperature until the remainder of the water is consumed; and 

finally, the inert particle is tracked until the end of the calculation steps. Each of 

the above stages is described in detail in the following paragraphs. 

Q heating of a water droplet 

When a droplet enters the combustion chamber the first process it undergoes is 

heating. The droplet receives heat from various sources and in different ways, 

namely, radiation from walls, radiation from hot gases and ignited jet, and 

convection from hot gases. The relative importance of each of them depends 

strongly on the conditions of the whole system, particularly on the temperature and 

the flow pattern. Since very often such conditions are not known a priori, or they 

vary sharply within the same system, it is convenient to develop as comprehensive 

a model as possible. FLUENT V4.4 uses the following heat balance on the droplet: 

mPCPddPp-h, AP(Tm-Tp)+spArFr(BR-7p) (4.24) 

Equation (4.24) assumes that the droplet is at a uniform temperature throughout. 

Radiation heat transfer to the droplet is included only when P-1 radiation model 

has been activated. 

The heat transfer coefficient, h, is evaluated using the correlation of Ranz and 

Marshall (1952): 

h°D I' 
Nu= °=2.0+0.6Reö Prs 

K 
m 

(4.25) 

Finally, the heat lost or gained by the particle as it traverses each computational 

cell appears as a source or sink of heat in subsequent calculations of the continuous 
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phase energy equation. During this heating process, the droplets do not exchange 

mass with the continuous phase and do not participate in any chemical reaction. 

o droplet vaporisation 

This process is initiated when the temperature of the droplet reaches the 

vaporisation temperature (Tp < Tbp), and continues until the droplet reaches the 

boiling point, or until the droplet's volatile fraction is completely consumed (mp > 

(I -fl, )mpo)" 

During the application of this law, the rate of vaporisation is governed by gradient 

diffusion, with the flux of droplet vapour into the gas phase related to the gradient 

of the vapour concentration between the droplet surface and the bulk gas: 

N,. = K° (Cr 
s- 

Cr, j (4.26) 

FLUENT treats the droplet as inert when Ni. = 0.0. 

The concentration of vapour at the droplet surface is evaluated by assuming that 

the partial pressure of vapour at the interface is equal to the saturated vapour 

pressure, P, af at the particle droplet temperature, T,,: 

CAI = 
P, RýTP) (4.27) 

P 

where Paar = saturated vapour pressure (Pa) 

The concentration of vapour in the bulk gas is known from the solution of the 

transport equation for species i': 

P 
Cr" = Xr 

RT 
. 

where Pop = operating pressure (Pa) 

(4.28) 
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The mass transfer coefficient in equation (4.26) is calculated from a Nusselt 

correlation: 
1i 

N, ýB = 
kDP 

=2.0+0.6ReöSc' 

The mass of the droplet is reduced according to: 

mp(t+At)=mp(t)-N,. Ap M,, At 

(4.29) 

(4.30) 

And finally, the droplet temperature is updated according to a heat balance that 

relates the sensible heat change in the droplet to the convective and latent heat 

transfer between the droplet and the gas: 

mP cP 
d tP 

=h, AP (T. - TP + 
d° 

hrg + AP 6P Q(BR - Tp ) 

where 
d°= 

rate of evaporation (kg/s) 

Q droplet boiling 

(4.31) 

When the droplet temperature reaches the boiling point, the following boiling rate 

equation is applied: 

dDp- 4K'm 
I ln 1+cp. 

(Tm - Tp) 

dt ppcp, 
pDp 

` hf8 

where hfg = latent heat of vaporisation (J/kg) 

(4.32) 
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Equation (4.32) has been derived assuming steady flow at constant pressure. The 

model requires that T. > Tbp in order for boiling to occur and that the droplet 

remains at a fixed temperature (Tbp) throughout the boiling process. 

When radiation heat transfer is active, FLUENT uses a slight modification of 

equation (4.32), derived by starting from equation (4.24) and assuming that the 

droplet temperature is constant. 

dm 
- dip 

h& =hýAp(Ta, -Tp)+spApu(9R-7p) 

Or 

dDp 
-2 

[K"oNu(TT)(O4)] 

dt Pphlg p 
dt Pvhlg L Dv 

(4.33) 

(4.34) 

Using equation (4.25) for the Nusselt number correlation and assuming a Prandtl 

number of 0.45 in the fluid, equation (4.34) becomes: 

dD 2 
[2K(1 + 023 ReD ) 

-n= (T. 
0 -Tp)+Ep6(BR-Tp) (4.35) 

dt pp1 jg Dp 

In the absence of radiation, this result matches that of equation (4.32) in the limit 

that the argument of the logarithm is close to unity. 

FLUENT uses equation (4.35) when radiation is active and equation (4.32) when 

radiation is not active. 

The droplet is assumed to stay at constant temperature while the boiling rate is 

applied. 
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4.14. HEAT TRANSFER 

Fluent allows to include heat transfer within the fluid and at walls in the model. 

This section describe the various options that are available for defining heat 

transfer in the fluid and thermal boundary condition at wall cells. 

4.14.1. Radiation modelling 

Fluent provides two radiation models, termed the Discrete Transfer Radiation 

Model (DTRM) and the P-1 Radiation Model, which allow you to include 

radiation model. 

The Discrete Transfer Radiation Model: 

The main assumption of the DTRM is that the radiation leaving the surface element 

in a certain range of solid angles can be approximated by a single ray. 

Fluent provides the DTRM for prediction of surface-to-surface radiation heat 

transfer with or without participating medium. 

The primary advantages of the DTRM are threefold: it is a relatively simple model, 

you can increase the accuracy by increasing the number of rays, and it applies to a 

wide range of optical thickness. 

On the other hand, DTRM has some limitations which are: the effect of dispersed 

second phase of particles or droplets can't be included or considered here, solving a 

problem with a large number of rays is CPU intensive, and the effect of scattering 

is not included. Finally the radiation file which will contain a description of ray 

traces (path-lengths, cells traversed by each ray, etc) requires large disk memory. 
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Constant or variable absorption coefficient can be used with DTRM in FLUENT 

based on local concentrations of CO2 and H2O species in the gas phase. Two 

variable absorption coefficient models are available in FLUENT; the Weighted- 

Sum-Of-Gray-Gases Model (WSGGM) and Modak's model. WSGGM has a 

wider range of applicability and is especially recommended for optically thick 

media or temperatures greater than 2000K. 

In the case of the effective gray gas approximation, the equation for the change of 

radiant intensity, dl, along a path, ds, can be written as: 

d1aQT° 
ds 9 

(4.36) 

Fluent includes an option that allows the influence of the temperature of the gas 

and the walls beyond the inlets or outlets boundaries to be taken into account, and 

specify different temperatures for radiation and convection at inlets and outlets. 

This can be useful when the temperature outside the inlets or outlets differ 

considerably from the temperature in the compartment. 

4.14.2. Heat transfer at walls 

Thermal boundary conditions at wall boundaries tell Fluent the conditions at the 

wall that impact on the rate of heat transfer between the wall and the adjacent live 

or conducting wall cells. These conditions may be defined in terms of 

Set Temperature at the wall and live or conducting wall cell interface. 
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o Set Heat flux at the wall and live or conducting wall cell interface. 

u Set External heat transfer coefficient at the wall and live or conducting wall cell 

interface. 

o External radiation boundary condition at the wall and live or conducting wall 

cell interface. 

o Combined external radiation and external convective heat transfer at the wall 

and live or conducting wall cell interface. 

o Set emissivity of the wall. 

Temperature Boundary Conditions: 

A set temperature is to be defined at the wall surface when a temperature boundary 

condition at wall was used. When the wall borders a live cell, Fluent computes the 

heat transfer to the wall as: 

g"=hf(Tx, -Tf)+grýaa (4.37) 

Fluent computes the fluid-side heat transfer coefficient based on the local flow-field 

conditions (e. g. turbulence level, temperature, and velocity profiles). 

When the wall borders a conducting wall cell, Fluent computes the heat transfer to 

the wall boundary as; 

q" = en (Tw - TM. )+ groa (4.3 8) 
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Heat Flux Boundary Conditions: 

A set heat flux is to be defined at the wall surface when a heat flux boundary 

condition at wall is used. When the wall borders a live cell, Fluent computes the 

heat transfer to the wall as: 

T. _q _rad+TI hr 
(4.39) 

When the wall cell borders a conducting wall cell, the wall surface temperature is 

computed as: 

T- 
(9"-9raa)6kn+T 

wf 
Km 

(4.40) 

Adiabatic wall can be defined via input of a zero heat flux boundary condition. 

External Heat Transfer Coefficient Boundary Conditions: 

The external heat transfer coefficient boundary condition at a wall is the resistance 

to heat transfer starting from the wall/live cell interface (or wall /conducting-wall 

cell interface) out of heat sink temperature which has been defined. 

Fluent uses the input of the external heat transfer coefficient and external heat sink 

temperature to compute the heat flux to the wall as: 

q"=hf(Tx, -Tf)+qý, d 

=h. (T., -T. ) (4.41) 
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External Radiation Boundary Conditions: 

If a radiation heat transfer from the exterior of the physical model is of interest, the 

external radiation option can be used. When this boundary condition option is 

used, Fluent computes the wall heat flux as: 

q"=hr(Tw -Tf)+grod 

= ecaQ(T4 -T°) (4.42) 

Combined External Convective and Radiation Boundary Conditions: 

Fluent computes the heat flux in the case of combined external heat transfer 

condition as: 

q"=hf(Tw-Tf)+qaa 

=h,,, (Tý-Tw)+s, #Q(T. 
' -T) (4.43) 

The input of the external heat transfer condition will include the external heat 

transfer coefficient ha, the temperature of the external medium T,, the external 

emissivity Ear, and the radiant heat sink temperature T.. 
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4.14.3. Modelling conduction using conducting walls 

If conduction in solid regions is to be modelled, the solid is represented via 

conducting wall cells, with thermal boundary conditions supplied at the edge of the 

conducting region via wall thermal boundary conditions. The thermal treatment of 

conducting wall cells is thus not as a boundary condition, but via solution of a 

transport equation. For this reason, conducting walls cannot lie on the periphery 

of the domain and Fluent issues a warning if this situation is detected during an 

attempt to solve the governing equations. 

Fluent solves a multi-dimensional conduction equation in conducting solid regions, 

which can be written as: 
Oh,, 

_ý"x DT + P. at ww9 
(4.45) 

Equation (4.45) is solved in conducting wall cells, with a special treatment at the 

wall-fluid interface where the heat flux is computed via a harmonic mean 

"conductivity" that correctly incorporates the thermal resistance change at the 

interface. 

4.15. Limitations of FLUENT to this 
application: 

Solving Discrete Transfer Radiation Model (DTRM) problem with a large number 

of rays is CPU-intensive. The ray tracing technique used in the DTRM can provide 

a prediction of radiation heat transfer between surfaces without explicit view-factor 

calculations. The accuracy of the model is limited mainly by the number of rays 

traced and the computational grid chosen. Therefore, the issue of the number of 

120 



Chapter 4: Numerical modelling theory 

rays, which involves computational economy, uniformity and accuracy of coverage, 

was investigated in this study and explained in section (8.4.3). 

Radiation heat flux at outlet was computed in the same manner as at walls, by 

using the compartment outlet cells temperature for this computation. This caused 

a considerable error, because the temperature beyond outlet boundaries was much 

lower than the outlet temperature. To avoid this problem and to account for the 

influence of the temperature beyond the outlet by specifying different temperature 

for radiation at outlet, a correction factor was applied. 

When the DTRM was included, a radiation file was created to store all the 

parameters controlling the model (properties, geometry, boundary conditions and 

solution control parameters). The storage requirement in terms of memory and 

disk to run and hold the data for the simulation was very large. 

The computational time to run the simulation until convergence criteria was 

reached when radiation model and dispersed second phase were activated was 

unacceptable. Therefore, reduced convergence criteria was considered. 

Other limitations such as: the effect of scattering in the DTRM used was not 

included and the radiation heat transfer to the particles was not included in the 

DTRM. Access to FLUENT source code for alteration and to minimise this 

limitation was not possible as it is proprietary product and was beyond the 

objective of this research. 

In FLUENT the user does not have a control over the colour-filled contours plots, 

especially when the maximum number of contour lines is requested. As a 

consequence the values of the plotted variables represented in the colour range are 

not the same in the different graphs. 
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4.16. Uncertainties in CFD 

The overall uncertainty involved in CFD modelling can be due to several sources of 

errors such as (i) modelling error (the inaccuracy inherent in the mathematical 

model of certain physical phenomena), domain dependency errors (i. e. errors 

arising from finite representation of a domain, (ii) errors due to inaccurate 

implementation of the boundary and initial conditions, (iii) iterative convergence 

errors (e. g. incomplete convergence), (iv) truncation convergence errors (errors 

due to insufficient grid refinement, i. e. discretisation errors). 

4.16.1. Reduction of Numerical errors 

For a solution to be acceptable, the total error must be reduced to tolerable level. 

Unfortunately, cost may limit the resources that can be brought to bear on a 

problem. It is possible that the problem cannot be solved to the desirable accuracy 

at acceptable cost. In such a case, compromise or another approach is necessary. 

Rapid reduction of convergence error requires methods that converge in few 

iterations at low cost per iteration. Reduction of discretisation error can be 

accomplished through the use of finer grids and/or a more accurate approximation 

of derivatives (higher order methods). 

4.17. CONCLUSIONS 

The basic equations of fluid dynamics constitute a set of simultaneous non-linear 

partial differential equations and its solution can only be achieved numerically in 

the general case. Furthermore, when the problem at hand involves turbulence, the 
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problem needs to be solved through the turbulence approaches, none of which is 

completely satisfactory, especially for three dimensional problems. 

This chapter has outlined the physical relationship and the correlation necessary to 

mathematically simulate the environment created by a compartment fire for steady 

state and time dependent situations using field approach. 
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CHAPTER 5 

NUMERICAL SETUP AND PRELIMINARY 

RESULTS 

5.1 INTRODUCTION 

The simulation of compartment jet fire suppression by using water spray included 

the following steps: 

Phase I: Single Phase Jet Fire Modelling 

o Compartment construction, geometry set up and the generation of the 

computational grid. 

o Completion of the problem definition. 

Q Solution of the problem. 

Phase II: Dispersed Phase (Two Phase) Modelling 

o Water spray setup 

o Solution of the problem and coupling both solutions 
The two phases are coupled using the Lagrangian frame. 

The reacting flow was solved neglecting transport of energy by thermal radiation. 

The effect of radiation on the flow field and heat losses from the compartment are 

explored in chapter 8. 

FLUENT requires defining and inputting many parameters in order to complete 

constructing and setting up the model; these are memory allocation and definition 
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of the size of the computational domain, the number of cells, physical models, and 
boundary conditions selection. 
Once the model construction and setting up is completed, the next stage is to start 

the solution process by setting the solution parameters, the number of iterations or 

time steps of the solver and by controlling the display of the solution residuals 
during the calculation. Most of the important steps to set up the model are 

covered in details in the following sections. However, example of the completed 

model definition and construction listing is given in appendix II. 

This task of CFD fire modelling required a considerable amount of time and effort 
in order to get a reliable prediction, because it incorporated sub-models such as 

turbulence, chemical reaction, radiative heat transfer and dispersed phase. This 

modelling requirement also places great demands in terms of storage and speed on 

currently available computer systems. 

5.2. GEOMETRY AND GRID SET-UP 

This shows the general procedure that was employed when setting up a model in 

the initial stage of the project. It describes how the geometry was set up, the 

specification of the boundary conditions and physical constants and then explains 
the results that were achieved. It contains many flaws as it is the first of many 
trial calculations but, as always, they are used as a learning process and are 
improved in the subsequent specifications of the calculations. 
The philosophy is to carry out the flow simulations at successive levels of detail 

of application in order to understand the calculation at each step. Calculations of 
the flow field in this chapter are made for adiabatic walls and without thermal 

radiation. They establish the method and the calculation for a spray of water 
droplets at a manageable level of complexity for a 3-D simulation. However, they 

are not suitable for direct accurate comparison with the experimental data which is 
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approached in a further step, in chapter 8, by adding the radiation field which has 

further complexity. 

5.2.1 Construction of the Compartment: 

On setting up the initial geometry of the compartment (Figure 3.2) it was 
discovered that in order to investigate the flow at the exit, it was not 
recommended to include the compartment only, another reason being that 
FLUENT would not allow live cells on the edge of a domain; it was also found in 

the previous fire simulations (Markatos et al 1986b, Cox and Kumar 1987 and 
Galea and Markatos 1987) that the flow domains are extended outside the 

compartment of interest for computational purposes only. 
It was therefore necessary to situate the compartment within a larger environment 

chamber, allowing the cells at the compartment opening to be live, and the flow to 

become fully developed. This outer environment chamber could then have an 
inlet for air and an outlet for all the gases to exit, without affecting the flow in the 

compartment. 

It was necessary to start running the model for the flow field in order to examine 

the air movement inside the compartment. The environment was extended six 

meters to the front of the compartment and two meters on each side from the 

compartment was in order to have no effect on the flow also, from experience 

obtained from previous fire simulations (Markatos et al 1986b, Cox and Kumar 

1987, and Galea and Markatos 1987). 

Most of the diagrams of the geometry, grid spacing and results are illustrated by 

showing a slice of the actual compartment through x-y, x-z and y-z planes. The 

outline of the geometry of this design is shown in Figure (5.1) which illustrates 

the compartment within a larger environment. 

The result of examining the flow field showed that the lower opening entrains air 
at higher velocity than the others, so it acted like an inlet . The out-flow attached 
itself to the upper opening as it progressed in the compartment. 
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The problem under consideration had a rectangular physical boundary, so the 

domain was modelled in three dimensions. FLUENT grid-based geometry was 

used, in which the geometry of the compartment is determined by control volumes 
defined by the grid. Cartesian coordinates have been used in which the grid lines 

are aligned with the Cartesian (x, y, z) coordinates. 

The geometry of the compartment was created by defining the number of 
dimensions and overall domain size (overall physical dimensions of the 

compartment and uniform grid size desired in terms of number of control 

volumes). 
The computational time and accuracy was improved by the use of a non-uniform 

grid. Therefore, a uniform grid structure (one with a fixed cell size through the 

domain) would have been unacceptable. A non-uniform grid allowed the grid to 

cluster more densely in areas where the flow is complex or of interest, such as jet 

nozzle and water spray locations; it also allowed the use of grid lines more 

sparingly in regions that are of lesser interest. In addition, non-uniform grid was 

required in order to capture the geometric dimensions of flow inlets and solid 

regions. In this study, the high velocity jet is in a fixed position at the centre of 

the compartment. Therefore, non-uniform grid lines are required along the radial 

and the circumferential directions in order to specify the inlet conditions for the 

high-velocity jet as its dimension is very small, being only 0.0177 metre. The area 

of the jet nozzle has a fixed value of 314.2 mm2. The area of the propane inlet 

was very small compared to the area of the whole domain, and the activity in and 

around this entrance was important to the solution of the problem. In order to 

create the necessary propane inlet dimension it was necessary to alter the grid 

spacing so that it was concentrated at the propane inlet, in both the x- and z- 
directions. A single cell was used as the inlet of 0.0177 in, the cells to the left of 

the inlet were contracted, and the cells to the right gradually expanded in order to 

create a smooth transition between cell sizes. This was necessary, as FLUENT 

calculates the properties of one cell and uses them as an approximation to the next 

cell. It would have caused great problems if adjacent cells were vastly different in 
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size. It can be observed that the grid line becomes narrower near the jet fire 

nozzle. 
The expansion factor (f) which was required for each segment can be calculated 
from the equation below which is related to segment length (L), the starting cell 

size (a), and the number of cells in the segment (N), by the following relationship: 

-1nr(L(f-1)+11 N_ LJ 
in(. f ) (5.1) 

The grid generated was checked mathematically to see if there were some bad 

gridlines, such as skewed or having a high cell aspect ratio (the ratio of the sizes 

of the cell generated). It was also examined graphically to see if a good 

distribution of gridlines had been created. The calculations reported in this 

chapter 5 were carried out on the grid illustrated in Figure (5.2). The grid was 
further refined when making calculation of radiation and the final grid is shown in 

Figure (8.9). 

The actual circular shape of the jet nozzle could not be accurately modelled under 

the Cartesian coordinates. Therefore, the circular inlet of the central jet nozzle 

was replaced by a square inlet having the same cross sectional area. However, it 

was found by Liu (1990) that the flow field in the main chamber cannot be greatly 

affected by this inaccurate setup of jet nozzle. 

5.3 BOUNDARY CONDITIONS. 

In order to complete the numerical model once the geometry set up was 

completed, initial boundary conditions need to be specified which take into 

account the flow rates, species and temperature. 
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5.3.1 Inlet boundaries: 

In order to define the air inlet, only oxygen mass fraction of 23% need to be 

defined for the specified inlet. On the other hand, the fuel injected to the 

compartment need to be specified at the jet nozzle as 100% propane gas (the fuel 

supply was specified at the burner as 100% propane). In FLUENT the mass flow 

rate of the fuel must be input in terms of the velocity which is equivalent to 0.1 

kg/s and 10% turbulent intensity. The boundary conditions specified for the 

input-cells are given in table (5.1). 

Velocity Temperature Chemical 
(m/s) (K) Species % 

Air inlet 298 
02 = 23 

(IA) N2 = 77 

Fuel inlet 193 298 C3HR = 100 
(1J) 

Table (5.1). Boundary Conditions for Inlet Cells. 

5.3.2 Wall conditions 

The nozzle wall surrounding the propane jet was specified as an adiabatic (zero 

heat flux) surface. 

Initially the wall enclosing the compartment was treated as adiabatic wall. Then 

heat transfer and conduction were introduced to the compartment walls with 

proper thermal conductivity set accordingly. 
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5.4 COMPLETION OF THE PROBLEM 

DEFINITION 

Specifying the physical models and constants and boundary conditions for the 

continuous and dispersed phase completed the problem definition. 

5.4.1 Continuous Phase Set-up 

The scope of the problem definition included: 

f Turbulent flow 

f Heat transfer 

f Chemical species transport and reaction 

f Dispersed Phase 

Therefore, the relevant basic physical models and governing equations were 

activated by inputting 'yes' to CALCULATE TEMPERATURE, TURBULENT 

FLOW and to CALCULATE SPECIES. TURBULENT FLOW defined the 

problem as turbulent and activated FLUENT's turbulence models. CALCULATE 

TEMPERATURE added heat transfer and thermal mixing to the model, and 

activated the solution of energy equation. Discrete Transfer radiation model 

(DTRM) was switched on for the radiation heat transfer calculations. 

CALCUALTE SPECIES added chemical species transport and chemical reaction 

to the model and activated the species transport equations. The combustion of 

propane in air was modelled using the following stoichiometric equation, 

C3H8 +5 02 => 3 CO2 +4 H20 

The stoichiomety of the reaction and the number of species were defined in the 

model. Species included were C; HB, 02, C02, H2O and N2. The reaction rate in 

the species conservation equation was determined from the rate expression, which 
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took account of turbulence rather than the Arhennius kinetic rate expression since 
the reaction is most likely to be diffusion-controlled. 

Physical properties of the fluid were input and they included molecular weights, 

viscosity, heat capacity, thermal conductivity, mass diffusion coefficients, 
formation enthalpies. Properties were temperature and/or composition dependent 

with temperature dependence based on a polynomial or piece-wise linear function 

and individual component properties. They were taken from Perry's Chemical 

Engineers Handbook (6th edition, 1984), David (1997) and Roger and Mayhew 

(1921). 

The information on flow/thermal conditions at the boundaries of the physical 

model was provided to FLUENT through boundary conditions. The Cartesian 

velocity components, chemical species concentration, turbulence intensity/length 

scale inlets were given through cell types defined as INLET boundaries. There 

were two inlet boundaries, specified as IJ and IA which presented jet nozzle and 

air inlet respectively. 
Flow exit was modelled using cells specified as OUTLET boundaries. FLUENT 

assumes that at the outlet boundary layer there was no change in the flow 

properties between the live cell upstream of the OUTLET and exit plane. 

The boundary conditions at the wall including wall temperature and diffusion of 

chemical species were specified through WALL boundaries. The wall boundaries 

of the domain were named with different names so that the temperature 

distribution at the wall boundaries of the compartment would be specified. This 

was also necessary since it was aimed at determining where the particles were 
trapped. Zero flux boundary condition (cut link) was defined for each chemical 

species, i. e., no diffusion of chemical species from the fluid to the wall. The shear 

stress and heat transfer between the fluid and the wall were computed based on 

the flow details in the local flow field. 
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5.4.2 Physical Constants 

The gas law was used, so FLUENT calculated the density as a function of local 

composition and temperature throughout the flow field. Therefore the molecular 

weights of each species had to be entered for this calculation to work. 

The viscosity and thermal conductivity were all given values which were 

appropriate for this situation. 

To calculate the required thermodynamic quantities, the specific heat for each 

species is first defined by a third order polynomial in temperature: 

cP (C3H8) _-4.195 + 6.442 T-2.8x 10-3 72 +5x 10_7 79 

cP (Oz) = 6.924 x 102 + 4.647x 10" T-1x 104 +1x 10'8 T' 

cP (CO2) = 5.613 x 102 + 8.064x 10"' 7' - 2x 104 f+2x 10"8 7" 

cP (H2O) = 1.276x 103 + 1.294 T-3 AO 4f+ 2x 10"8 73 

cP (Ný = 7.688x 102 + 5.05 x 10"' T- 1x 104 72 +1x 10"8 78 

The coefficients are found by curve fit of the data tabulated in reference (Perry 

and Green, 1984 and Sinnott, 1996). 

The formation enthalpy for each of the species is shown in the table (5.2) below: 

SPECIES 

C3Hg 

02 
coZ 
H20 
N2 

FORMATION ENTHALPY 

(J/KMOL) 

-1.039x 108 
....... ......... - 0 

.............. 
-3.937x 108 
................................................... 
-2.419x 108 

0 
Table (5.2). Formation enthalpies for species used in the modelling 
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5.5 DISPERSED PHASE SET-UP 

The dispersed (particle) phase was setup by providing initial conditions that 

define the particle type (inert), starting positions (x, y, z), velocities (U, V, W), 

temperature (T), particle size distribution and mass flow rate of particles. A total 

number of 75 injections were defined. A Rosin-Rammler size distribution was 

used to define the water particle size distribution with different spread parameter. 

The Rosin-Rammler size distribution function is given as: 

MD = exp 

(i ýýel 

lDJ \`'/ 

(5.2) 

where: 

mD Mass fraction of particles greater than D. 

q the spread parameters. 
D droplet diameter 
5 representative diameter 

When a particle reached a physical boundary WALL or an INLET, a dispersed 

phase boundary condition ESCAPE was applied to determine the fate of the 

trajectory at that boundary. ESCAPE reported those particles that escaped when it 

encountered the boundary in question. Trajectory calculations were then 

terminated. 

The spray angle used for each of the spray heads is represented by 25 injection 

directions with each direction having the possibility of an independently defined 

size and velocity range. 
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Physical property inputs for the dispersed phase to predict particle trajectories and 
heat transfer included initial density, thermal conductivity, specific heat and 
binary diffusivity. After the model definition was completed it was saved as a 
CASE-FILE. 

5.6. ADOPTED SOLUTION PROCEDURE 

With the model definition completed, the governing equations were solved in 

order to predict the flow fields of velocity, temperature, composition and particle 

trajectories. Two techniques were used to get the calculation off to a good start. 
These include starting with guessed values for some flow variables at all locations 

along the domain (patching), and solving the problem in stages. Because in the 

absence of initial guess, all of the flow variables are assumed to have a value of 0 

throughout with the exception of temperature which has default value of 273 K 

(0°C). The model created included fluid flow, heat transfer, chemical reaction 

and the interaction of two phases, continuous gas phase and dispersed particle 

phase. Therefore, it was a complex problem. To speed up the convergence for 

the problem a step by step solution was adopted. These two techniques were used 

to get converged solution for the governing equations as follows: 

i. An isothermal velocity flow field was obtained by considering only mass and 

momentum conservation equations by turning off the energy and species 

conservation equations and the coupling between the two phases. Flow 

variables including velocity of the fuel through the jet nozzle of 100 m/s and 

air velocity through the air inlet 0.3 m/s, temperature 300 K, mass fraction of 

the oxygen 0.23 and 0.1 mass fraction of the fuel in the centreline of jet 

nozzle, values were patched. The iterations were performed until residual 

values less than 1x 10"5 for velocity components were obtained. Residuals 
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are a measure of how closely each finite equation is balanced. This required 

about couple of thousands of iterations. 

ii. The non-isothermal flow field was obtained by activating the energy and 

species conservation equations. Here an initial guess of 2000 K for 

temperature was patched along the jet nozzle to ignite the fire. Patching of 

temperature was essential since it was needed to overcome the activation 

energy barrier of propane so that the combustion reaction would take place. 

More iterations were performed till residuals of flow variables were less than 

1x 10"s. 

iii. The coupling between the two phases and its impact on both the dispersed 

and continuous phase flow patterns was included. The particle trajectories 

were based on the mean gas velocity and calculated once after every 5 

iteration of continuous phase. The iterations were performed until the 

residual for the enthalpy equation was less than 1x 10'4. Cases solved for 

small particle sizes were found difficult to converge. Thus, the number of 

iterations required to get a converged solution changed between 30000 and 

50000. The results of the calculation were saved in a DATA-FILE. 

iv. After the converged solution was achieved, the results were used for post- 

processing. 
It was found that the optimum strategy was to start the calculation with under- 

relaxation factors of typically 0.4 for the velocities and to reduce these as the 

calculation progressed to allow the stratified flow to develop. 

When DTRM radiation sub-model was included in the model, to be discussed in 

detail in chapter 8, care had to be taken to under-relax the radiation source term 

and to allow the solution to stabilise between calls to the radiation sub-model by 

performing typically 3-6 flow iteration per radiation call. 
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5.7 CONVERGENCE 

The calculation is terminated when the residuals are less than 1x 10"5 in the case of 

steady state. On the other hand, in a transient mode, a few-thousand time steps 

are required before reaching the solution. 

5.7.1 FLUENT RESIDUALS REPORT 

The process of obtaining a converged solution is of great importance in FLUENT 

simulations. FLUENT provides a running report of the residuals for each 

equation at each iteration, hence this process was monitored very carefully. The 

residuals are a measure of how closely each finite difference equation is balanced, 

given the current state of the solution. A typical FLUENT residuals report is 

given in appendix III. 

5.7.2 FLUENT GRAPHICS OUTPUT 

Graphics of the colour-filled contours created by FLUENT which are presented in 

the thesis use the same colour coding range. In the colour scale red represents the 

maximum variable plotted and blue represents the minimum for all the graphics 

shown in this chapter and chapter 8. However the values of the plotted variables 

represented in the scale are not the same in the various graphs. 

5.8 DESCRIPTION OF THE PRELIMINARY 

STUDY 

In order to combat fire it is necessary to understand the nature of the interaction 
between the hot combustion products and the liquid water. Different cases 
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modelled can be classified under five main groups depending on the parameters 
being investigated. Factors which need to be considered include water flow rate, 

spray pattern, droplet size and the number and location of spray heads. 

5.8.1 Determination of Optimum Spray Locations 

The simulation started by studying the effects of a single spray located at different 

positions in the roof of the compartment. This will give a chance to better 

understand the fire-spray interaction and evaluate the best spray location(s) to be 

used to carry out a more detailed investigation. 

Three spray locations were examined. In the first, a single spray is located above 

the propane nozzle. The remaining two were placed on the front/rear axis and 2.0 

m on each side of the centre (Figure 5.3). 

5.8.2 Determination of Optimum Mean Droplet Diameters 

The mean droplet diameters could be chosen within the range from 100 to 600 

Am. 

5.8.3 Determination of Optimum Droplet Velocities 

In addition to the condition simulated above, another experimental condition was 

studied, this was the droplets' velocities. In these studies the velocities of the 
droplets used varied between 5 and 25 m/s. 

5.8.4 Determination of Optimum Spray Angles 

The spray angle used for each of the spray heads is represented by 25 injection 
directions with each direction having the possibility of an independently defined 

size and velocity range. 
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5.8.5 Determination of Optimum Water Flow Rates 

It is important also to find out the maximum amount of water that can be 

discharged from an appropriate spray head in order not to flood the compartment 

and cause water damage. 

The total water flow rate for each of these arrangements was varied from 0.1 to 

2.7 kg/s. 

5.9 RESULTS AND DISCUSSION 

5.9.1 STEADY STATE RESULTS 

The steady state simulation of the flow field was performed using the 

compartment layout discussed in chapter 3, which represents an offshore 

compartment module but with no heat transfer through the walls, i. e. adiabatic and 

no thermal radiation, which are considered in chapter 8. Using the above 

description of the physical setup. The following results were obtained. 

To examine the three dimensional flow structures inside the final compartment 

geometry, the predicted velocity vector distributions of the gas flow field are 

shown on different x-y, y-z and x-z planes through various locations inside the 

compartment. The upper part of the plume can clearly be identified as well as the 

other features such as plume entrainment, the escape of the hot gases through the 

opening and the wall effects on the upper layer's flow as shown in Figures (5.4) to 

(5.10). Whereby Figures (5.4) and (5.5) show flow fields through vertical slice at 

(x-y) and (y-z) planes, respectively at the centre of the jet fire section (z =1.2 and 

x =3 m). These indicated the very strong rising fire plume which, after hitting the 

ceiling, is forced to spread outwards along the ceiling, creating the upper layer. 

The gases are able to escape through the upper opening of the compartment. The 
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way in which the fire plume entrains gases, both hot and cold, is also 

demonstrated. Examination of velocity vectors on vertical planes showed 

recirculation of partial combustion products back into the flame. Two circulation 

zones were observed to the right and the left of the jet flow. These are due to the 

movement of the air entrained by the fire plume upward and downward movement 

of layer. The flow field of further slice position can be seen in Figure (5.6). The 

entrainment of cold air through the lower part (region) of the opening into the 

compartment and subsequently into the base of the fire is clearly shown in 

horizontal x-z plane (y =0.2 meter). The process of air entrainment into the fire, 

vertical acceleration of the plume, formation of a ceiling jet and the establishment 

of recirculation in the cell are clearly evident. The effect of the upper opening and 

the strong flow established by the upper layer, spreading out along the ceiling can 

also be clearly seen in Figure (5.7). The hot fire gases that hit the roof and 

surrounding walls are re-directed towards the upper part of the opening through 

which the hot and subsequently lighter air can leave the compartment whereas 

colder and denser air is entrained into the compartment from the lower part of the 

opening. These two sections are divided by the neutral plane which is predicted 

to be around 0.6 metre above the compartment floor as shown in Figure (5.4). 

The downward movement along the walls by the hot gases can be more clearly 

seen in Figure (5.8) where slices across the compartment are shown. The strong 

upward movement by the plume created circulation fields in the top corners of the 

compartment as shown in Figure (5.9). 

The flow field which occurred on the side of the compartment near the opening is 

shown in Figure (5.10) whereby it should be noticed that the gases are leaving the 

compartment through the upper part and the cooler air is entrained through the 
lower part of the opening. 

The mean flue gas velocity in the compartment was predicted as 8.65 m/s which 

was slightly higher than the one reported in Brightwell and Chamberlain (1997) 

which was 8 m/s. 

139 



Chapter 5: Numerical Setup and Preliminary Results 

The temperature distribution obtained for the whole domain and close to the jet 

nozzle location in adiabatic conditions are given in Figures (5.11) to (5.15). 

These are presented in Kelvin degrees where the temperature contours predicted 

close to the jet nozzle section in the x-y and y-z plane are shown in Figure (5.11) 

and (5.12) respectively. Most of the combustion took place above the jet nozzle 

where the higher temperatures were predicted. Due to the attachement of the 

velocity to the top wall, the temperature flow field also attached to the top wall. 

The temperature of the gas at the location where the flue gas temperature was 

measured for the experimental study was 1900° C. as shown in Figure (5.13). 

Some of the temperature distributions obtained can be seen in Figures (5.14) and 

(5.15). The reason for this temperature pattern becomes more apparent from the 

velocity vectors shown in Figure (5.4). From these it can be seen that air is 

entrained from the outside through the lower part opening and attracted towards 

the fire plume. However, due to the hotter gases being pushed downwards along 

the walls a certain amount of this fresher and cooler air is mixed in with these 

hotter gases. 

The predictions of mole fraction of fuel, oxygen and the combustion products on 

the vertical plane through the centre of the jet nozzle are shown in Figure (5.16) to 
(5.19). Inspection of these shows that the neutral plane occurs around 0.6 meter 

above the floor with oxygen mole fraction above this height being gradually 
decreased from 21 to less than 1 percent and the combustion products CO2 and 
H2O concentrations gradually increased to 11.7 and 15 percent respectively. The 

unburnt fuel mole fraction is everywhere very low, except at the jet nozzle . 
The results of a single-phase simulation are used as the initial conditions of the 

gas phase for the fire-spray simulations which will be described later. Having 

developed a one-phase fire model capable of predicting temperature, species 

concentration, etc., the next stage is to activate the spray. 
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5.9.2 WATER SPRAYS: PRELIMINARY RESULTS AND 

DISCUSSION 

Initially, the steady state behaviour of the compartment fire was evaluated and 

used as the starting condition for the subsequent two-phase calculation. 
Prior to the spray activation, the fire plume was able to rise straight upwards and 

spread outwards along the ceiling. For the case of a single spray located above 

the propane jet and at a low flow rate less than 1 kg/s, two major flows were 

apparent after the solution fully developed. The first, generated by the water 

spray, was downwards whilst the second, generated by the fire, was along the 

ceiling. These two currents met towards the centre of the upper layer of the 

compartment, aiding the mixing and cooling process. 

The value for temperature used in the calculations throughout this section is the 

average temperature from the upper two-third of the compartment. Because of the 

configuration of the inlet to the compartment, realistic values of temperature are 

only obtained above this cooler inlet region. 
From the modelling of different spray locations, the results show that less water is 

needed to extinguish the flame in the case of a single spray located centrally 

above the jet nozzle. For most of the flow rate, this location also gave lowest 

temperatures as shown in Figure (5.20). Subsequent modelling therefore used a 

single spray located in the centre of the compartment above the jet nozzle. 

Figure (5.21) shows the average temperature in the compartment as function of 

mean droplet diameter of 100,200,300,400,500 and 600 gm. The curve is 

nearly parabolic and the lowest temperature was found with mean droplet 

diameters of 300 gm. Subsequent modelling was therefore carried out using mean 

diameters of 300 gm. It is likely that the minimum arises from the competing 

effects of droplet penetration which increases with droplet diameter and total 

droplet surface area for evaporation. 

Modelling different spray angles of 30,60,75,90,100,120,135 and 150° 

indicated that using spray angle of 60° or 75° was most effective in reducing the 
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overall temperature as can be seen in Figure (5.22). Subsequent examination of 

the effect of spray droplet velocity has therefore used this optimised 60° spray 

angle. The effect on average temperature of varying this velocity from 5 to 25m/s 

is shown in Figure (5.23). This shows the limiting behaviour due to the 

effectiveness in penetrating the flame and indicates that for this geometry, 

velocities in excess of 18 m/s should be used. 

For those cases where the water flow rate produced large reduction in average 
temperature, it was considered that the assumption of steady state was invalid 

since extinguishment was the likely outcome. For these cases, a time-dependent 

calculation was performed which has the capability of predicting the change in 

combustion variables with time during this process. This will be taken into 

consideration in chapter 8. 
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Figure (5.1). The initial geometry of the compartment with extended environment. 
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Figure (5.12). Predicted gas temperature contour through the lateral y-z plane through 
the jet fire nozzle using adiabatic conditions. 
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Figure (5.14). Plan view of the predicted gas temperature contours in the x-z plane 2 

cm above the compartment floor. 
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Figure (5.15). Predicted gas temperature contours in the lateral y-z plane 3 cm from 

the back wall of the compartment. 
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Figure (5.16). Predicted mole fraction contours of oxygen at longitudinal x-y plane 
through the jet fire centre. 
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Figure (5.17). Predicted mole fraction contours of CO2 at the longitudinal x-y plane 
through the jet fire centre. 
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Figure (5.18). Predicted mole fraction contours of H2O at the longitudinal x-y plane 
through the jet fire centre. 
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Figure (5.19). Predicted mole fraction contours of the fuel (C3H8) at the longitudinal 

x-y plane through the jet fire centre. 
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Chapter 6: Droplets Sizes Measurements 

CHAPTER 6 

DROPLETS SIZE 

MEASUREMENTS 

6.1 INTRODUCTION 

For the successful modelling of the extinguishment of the compartment jet fire by 

water sprays and for the study of the interaction between sprays and jet fires, it is 

necessary to define the initial conditions with as great accuracy as possible. The 

successful modelling of spray is reliant on accurate experimental data of the droplet 
diameters of the different spray nozzles used. So one of the intended uses of this 
information is for inclusion within FLUENT. 
The most surprising observation was how little manufacturers have focused on the 

properties of the water spray; there is for instance hardly any information available on 
the drop size distribution that affects the vaporisation rate. 
Different designs on spray nozzles will produce sprays with different proportions of 
larger and finer drops (Mawhinney, 1993). 

The Malvern Particle Sizer was used to measure the drop size of water spray from 
four different spray nozzles which have been intensively investigated for different 

water flow rates. 
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6.2 MALVERN PARTICLE SIZER 

Effort has been devoted to measuring the drop size distribution of spray discharge 

under a non-fire condition. The Malvern Particle Sizer is currently one of the most 

effective, simple, and reliable methods that is commercially available. It is easy to 

use. This instrument uses the principle of diffraction from the particles for the 

analysis of the particle size distribution. A low power visible laser transmitter 

produces a parallel monochromatic beam of light which illuminates the particles by 

use of an appropriate sample cell or other measurement technique. The incident light 

is diffracted by the particle movement. As the particles enter and leave the 

illuminated area the diffraction pattern "evolves", always reflecting the instantaneous 

size distribution in this areas. Thus, by integration over a suitable period and using a 

continuous flux of particles through the illuminated area a representative bulk sample 

of particles contributes to the final measured diffraction pattern. Figure (6.1) shows 

the optical arrangements employed in Malvern particle sizer. 

A Fourier transform lens focuses the diffraction pattern onto a multi-element photo- 

electric detector which produces an analogue signal proportional to the incident light 

intensity. This detector is directly interfaced to a computer, which reads the 

diffraction pattern and performs the necessary integration digitally. 

Having measured a diffraction pattern the computer used a non-linear least-square 

analysis to find the size distribution which gives the most closely fitting diffraction 

pattern. 
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Figure (6.1) Optical arrangement employed in Malvern Particle sizer. 

6.3 Limitation of Malvern instrument 

As is the case in all drop size measuring instruments, Malvern Particle Sizer has 

certain limitations. Among them are (Lefebvre, 1989 and Bayvel and Orzechowski, 

1993): 

Multiple Scattering: light that is scattered by a drop may be scattered by a second 

drop before reaching the detector when the spray densities are high. This multiple 

scattering introduces error in the computed size distribution. 

Vignetting: it is important to limit the maximum distance between the spray and the 

receiving optics. This maximum distance depends on the focal length and diameter 

of the receiver lens. When this distance is exceeded, this will result in vignetting of 
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the signal on the outer detector rings, which causes skewing of the measured size 
distribution toward the larger diameters. 
Beam steering: thermal gradients in the hot air refract the laser beam in a random 

high frequency pattern, resulting in a spurious reading on the innermost detectors. 

It is not possible to use the technique when the transmittance is low (Chigier, 1983). 

Among other problems that have arisen with the Malvern Particle Sizer are ambient 
light level restrictions and coarse resolution due to the line of sight of measurement. 

6.4 EXPERIMENTAL SETUP 

The aim was to obtain droplet size data for the spray configuration used in jet fire 

tests. Since the measurement was required within the spray injection region, it was 

necessary to find some means of positioning the Malvern sizer relative to the nozzle. 
For the purpose of comparing the dorps sizes produced by different nozzles, it is 

stated in the NRC (National Research Council of Canada) Design Guide that a drop 

size is best measured at a distance of 1 meter from the nozzle, along the central axis 

of the spray cone (Mawhinney, 1993). 

Due to the considerable weight of the analyser, and to get a good level, it was decided 

to build a solid platform on which to rest it, and to construct adjustable mechanism 

with which to move the spray nozzle to direct it to the suitable position for 

measurement depending on the spray angle to be used. 
The spray nozzle was connected directly to the same fire water source used for the 

compartment jet fire tests. The nozzle was fixed with pressure gauge and water flow 

metre to accurately record the flow rate readings. A manual valve had been fixed on 

the pipe as well to control the amount of the water to be discharged. 

The orientation of the analyser meant that stringent re-aligning of the laser beam had 

to be taken before measurement could proceed. 
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A supporting platform was used which consisted of two steel channels which were 

used to position and clamp the lens on it. 
Since the spray nozzle would discharge an excessive amount of water in the 

measurement region, which might cause some damage to the laser or the receiving 

unit, Polythene sheets were used to protect the Malvern units from the water sprayed 
by covering and isolating the spraying region from the rest of the setup, except for the 

analyser beam path. 

To take a set of measurements, the beam alignment was checked, a background 

measurement was taken without the spray and then the actual measurement was taken 

with the spray in operation. The analyser's software proceeded to calculate the 
droplet size distribution, taking account of the background reading, and copies of the 

result files were obtained for further analysis. 

6.5 USE AND PRESENTATION OF SPRAY DATA 
The frequency data collected by instrument is converted by software to include 

occurrence percentage, surface area percentage, volume and cumulative volume 

percentage, which can be tabulated and plotted. A number of representative mean 
diameters for the spray can be tabulated as well. For this study of sprays for fire 

suppression purposes, the volumetric mean diameter (VMD or Do. s) and Sauter 

Mean Diameter (SMD or D32) were selected as the most meaningful representative 

mean diameters. D�o. s is defined as the diameter of a drop such that 50% of total 
liquid volume is in drops of smaller diameter. On the other hand D32 is defined as the 
diameter of the drop whose ratio of volume to surface area is the same as that of the 

entire spray (Lefebvre, 1989). These data were analysed by using model independent 

program. This program does not assume a particular drop size distribution function. 

Instead it has 15 adjustable parameters corresponding to the 15 size bands of the 
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volume distribution. These parameters are varied systematically until the best fit to 

the experimental data is obtained. 
A useful picture of drop diameters can be obtained by plotting histograms of drop 

data. Additional information can be found from further plots of different spray angles 

and different flow rates to help formulate correlation. The plot of cumulative volume 

percentage curve versus drop diameter was selected as more informative than single 

representative diameter for comparing the characteristics of sprays. 

Droplet data can be used either in their raw form, i. e. drops of various description 

were recorded. Alternatively the drops of various descriptions can take their 

diameters from distribution curves. As Lefebvre (1989) explains a number of 
functions which have been proposed are based on either probability or purely 

empirical considerations. This includes the empirical relationship most widely used 
in the Rosin-Rammler distribution. 

In the CFD modelling part of this study, the mean droplet diameters to be used in 

FLUENT is taken from Rosin-Rammler distribution as well as the spread parameters. 

The Rosin-Rammler distribution was seen to provide an adequate fit when 

experimental data was compared with a number of other distribution functions such 

as normal, log-normal, Nukiyama-Tanasawa and upper limit distributions. It also has 

the virtue of simplicity (Lefebvre, 1989). 

6.6 EXPERIMENTAL MEASUREMENTS 

The first set of experimental measurements were conducted on a 9.3 mm ANGUS 

spray nozzles (K50 150D), spray angle of 150 degrees was used and seven different 

water flow rates were used as well. 

The second set of experimental measurements were conducted with the same type of 

spray but different spray angle (K50 120D) which was 120 degrees and four different 

water flow rates. 
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Experiments in group three collected data at the same water flow rates as experiments 

in group two but the spray angle used was 90 degrees with the same type of spray 

(K50 90D). 

Experiments in group four measure the droplets size of the same type of spray and 

same water flow rates, again the spray angle used was changed to 60 degrees (K50 

60D). 

Full details of the experimental measurement programme are given in table (6.1). 

The measurement experiments completed the study of the spray used in the fire 

experiments and the modelling. 

The data collected from the above experiments were intensively analysed and used to 

calculate some of the statistical mean values. These values are used to compare 

different extinguishing strategies and to find the optimum droplets diameter for jet 

fire extinguishment based on the water flow rates and spray angle used. 

Water Flow 
Rate (lit/min) 

Spray Angle 

60 90 120 150 
............................................................................................................................................................ 

90 ���� 

72 ���� 

54 ���� 

45 � 

36 ���� 

30 � 

24 � 

Table (6.1). Droplet Measurement Tests Programme. 

161 



Chapter 6. " Droplets Sizes Measurements 

6.7 MEASUREMENT RESULTS AND 

DISCUSSION 

To characterise fully, a spray nozzle that is to be used for fire extinguishment 

purposes requires measurement of all the characteristics of the drops in the spray. 
The experiments produced a complete picture of drops from the spray nozzles. Table 

(6.2) shows the calculated values of Sauter Mean Diameter (SMD) and Volume Mean 

Diameter (VMD) for each of the sampling tests. Considering the spray vertical 

angles 150°, 120°, 90° and 60°, the Sauter Mean Diameters are closely grouped, their 

overall mean values are minimum in 150° spray angle nozzle which is 172 µm. 

Likewise the Volume Mean Diameter has the same trend as SMD with 258 pm. 

The results of the measurements are summarised in figures (6.2 to 6.12) which show 

the droplets distributions of the drop diameters as a series of histograms. Each 

histogram shows the spectrum of observed droplet sizes at each of the test 

investigated according to table (6.1). The Malvern analyser gives the percentage of 

the spray's volume (i. e. mass) observed in each of 32 size band. These bands are not 

uniform but their widths increase logarithmically with increasing diameter. The 

mean of each band is calculated and used to represent that band on histograms and 

curves. 
Investigating the effect of increasing water flow rates, the recorded diameter range 

becomes smaller at increased water flow rates. The mean diameter supports this with 

decreasing values at increasing water flow rates (see Figures 6.2 to 6.12). 

The droplets diameters increased with the decreasing of the spray angles for similar 

water flow rates. 
Cumulative frequency plots of each spray type, for all the pressure used in the 

measurements, have been plotted in Figures (6.13) to (6.17) which compare the 
distributions of the drop sizes for different water flow rates in which each curve in the 
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graph represented a different water flow rate plotted against cumulative percentage 

volume. 
The Sauter mean diameter of the spray is presented as a function of the water flow 

rates in Figure (6.18) and the spray angle one of the parameters which can determine 

spatial distribution of water droplets. In Figure (6.19) shows the spray angle as a 
function of the Sauter mean diameter of the spray. 

Table (6.3) shows the Rosin-Rammler distribution data such as the mean droplet 

diameter (x) and the spread parameter (n). 

Some sprays are finer than others, and this generally corresponds to higher flow rate, 

which are caused by higher pressure and the spray angle. 

6.8 CONCLUSIONS: 

1. The higher the water flow rate of the spray nozzle at any angle, the lower the 
droplet diameter size. 

2. From the measurements, it is clear that nozzle K50150D that has spray angle 150° 

gives the finest spray, especially when the flow rate is high such as 90 lit/min. 

3. The K50150D nozzle has reasonably fine initial drop size distribution, wide spray 

angle and good projection, especially when the water flow rates higher than 72 

lit/min. 

163 



Test No. Spray angle 
(deg. ) 

Water Flow 
rate(lit/min) 

Sauter Mean 
Diameter (µm), 

D32 

Volumetric Mean 
Diameter (µm), 

Da,. 5 

MALV-1 150 90 172 258 

MALV-2 150 72 190 294 

MALV-3 150 54 307 389 

MALV-4 150 45 357 450 

MALV-5 150 36 405 644 

MALV-6 150 30 638 704 

MALV-7 150 24 716 910 

MALV-8 120 90 190 263 

MALV-9 120 72 193 273 

MALV-10 120 54 378 487 

MALV-11 120 36 474 590 

MALV-12 90 90 264 352 

MALV-13 90 72 317 407 

MALV-14 90 54 371 476 

MALV-15 90 36 550 723 

MALV-16 60 90 230 298 

MALV-17 60 72 267 347 

MALV-18 60 54 519 676 

MALV-19 60 36 769 947 

Table (6.2). Mean values of drop diameter at each test, output data from Malvern Particle 
Sizer. 
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Test No. 
Spray angle 

(deg. ) 
Water Flow 
rate(lit/min) 

Mean 
Diameter, X 

(µm) 

Spread 
Parameter, 

(N) 

MALV-1 150 90 295 2.09 

MALV-2 150 72 342 2.15 

MALV-3 150 54 417 2.6 

MALV-4 150 45 489 2.73 

MALV-5 150 36 755 2.76 

MALV-6 150 30 706 4.97 

MALV-7 150 24 965 3.8 

MALV-8 120 90 295 2.15 

MALV-9 120 72 302 2.08 

MALV-10 120 54 552 2.45 

MALV-11 120 36 658 2.66 

MALV-12 90 90 386 2.66 

MALV-13 90 72 451 2.47 

MALV-14 90 54 513 2.66 

MALV-15 90 36 827 2.4 

MALV-16 60 90 334 2.39 

MALV-17 60 72 380 2.31 

MALV-18 60 54 760 2.47 

MALV-19 60 36 1084 3.64 

Table (6.3) Mean values of drop diameter at each test based on Rosin Rammler 
distribution, output data from Malvern Particle Sizer. 
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Figure (6.2). Droplet diameter histogram measured by Malvern particle sizer. 
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Figure (6.3). Droplet diameter histogram measured by Malvern particle sizer. 
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Figure (6.4). Droplet diameter histogram measured by Malvern particle sizer. 
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Figure (6.5). Droplet diameter histogram measured by Malvern particle sizer. 
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Figure (6.6). Droplet diameter histogram measured by Malvern particle sizer. 
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Figure (6.7). Droplet diameter histogram measured by Malvern particle sizer. 
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Figure (6.9). Droplet diameter histogram measured by Malvern particle sizer. 
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Figure (6.10). Droplet diameter histogram measured by Malvern particle sizer. 

10-1 

8 

61 
4-1 

0 

Spray Model: K50120D 

Spray Angle: 120° 
Water Flow Rate: 90 lit! min 

z-1 

1 10 100 1000 

Droplet Diameter, I'm 

Figure (6.11). Droplet diameter histogram measured by Malvern particle sizer. 
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Figure (6.12). Droplet diameter histogram measured by Malvern particle sizer. 
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Figure (6.14). Comparison of spray distribution curves for spray nozzle K5090D for 
different flow rates. 

II 

III 

I_ 

III 

III 

IIII 

IIII 

I 
_I_ 

I 

III 

IIII I 
--- 

i 
-- -- ii- -ý- -ii 

iiii 
; 

-36 lit/min 
--s- 54 lit/min '----! -- ' 
-- 72 IiUmin 
I --x, 90 lit/min 

i 
0 200 400 600 800 1000 1200 1400 1600 

Drop Diameter, microns 

Figure (6.15). Comparison of spray distribution curves for spray nozzle K50120D for 
different flow rates. 

172 



100 

90 4 
I 

80 

70 

60 

504 -I 

40-- 

30--- 

20 

10ý 

0 

0 24 lit/min 

-a- 30 lit/min 

- -36 lit/min 

-*- 45 lit/min 

-*- 54 lit/min 

f 72 lit/min 

+90 lit/ min 

0 200 400 600 800 1000 1200 1400 1600 

Drop Diameter, microns 

Figure (6.16). Comparison of spray distribution curves for spray nozzle K50150D for 
different flow rates. 

rI 
- -i -- i- 

ii 
--- -ý---I- ---I---- I 

ýý IIII 

__ 
I 

___ 
I_ 

__I__ 
I 

___ IIIII 

rIi - -ý --I---I--ý-ý- - -, -- , -, -- , -- , -- 

LI --- 
1I 

--- -- --- 
LI- --IIII 

IIIII 

III 

-_-___- ___ 60de-g 

- -- !- '--T90deg 
- -120 deg II 

ý-150de 9ý; 

0 200 400 600 800 1000 1200 1400 1600 

Drop Diameter, microns 

Figure (6.17). Comparison of spray distribution curves for different spray nozzles at 
90 lit/min water flow rates. 

173 



0 20 40 60 80 100 

Water Flow Rate, (lit/min) 

Figure (6.18). The Sauter mean diameter versus the water flow rate at 150° angle. 

300 
30 60 90 120 

Spray Angle, Deg. 

v 
150 

Figure (6.19). The Sauter mean diameter versus the spray angle. 

174 



Chapter 7: Experimental Results 

CHAPTER 7 

EXPERIMENTAL RESULTS 

7.0 INTRODUCTION 

The programme of work that was followed is given in section (7.1) below. All the 

data have been collected, collated, and are now presented as experimental results 
discussed und er jet fires without water sprays and jet fires with water sprays. 

7.1 TEST PROGRAMME 

The test programme was divided into two phases. Fifty-eight tests were needed in 

order to complete it. The tests were performed as follows: 

7.1.1 Phase One: 

First phase was designed to determine the optimum type of nozzle for this 

compartment arrangement, in terms of the spray angles. For this purpose, one 

single overhead nozzle was used, directed at the jet nozzle in a downward 

arrangement. 

Twenty tests were done in this phase with different flow rates which were 18,36, 

54,72 and 90 litres/minutes. Four spray angles were selected for these 

investigations namely, 60°, 90°, 120° and 150° spray angles. The selection of 

nozzles used in this study does not by any means cover the whole range of types, 

but the nozzles differed enough to show different extinguishing characteristics. 

One spray location was used in this phase. All relevant notations are given in 

table (7-1). 
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Spray Locations 
Water Flow Rate 

Test No No. of For each T l 
Spray 

nozzle S pray ota Angle 
Back Centre Front kg/j lit/min kg/s lit/min 

Comp 01 1 � . 0.3 18 0.3 18 150 
Com 02 1 � 0.6 36 0.6 36 150 
Com 03 1 � 0.9 54 0.9 54 150 
Com 04 1 � 1.2 72 1.2 72 150 
Com 05 1 � 1.5 90 1.5 90 150 
Comp 11 1 � 0.3 18 0.3 18 60 
Comp 12 1 � 0.6 36 0.6 36 60 
Comp 13 1 0.9 54 0.9 54 60 
Comp 14 1 � 1.2 72 1.2 72 60 
Comp 16 1 � 1.5 90 1.5 90 60 
Comp 19 1 � 0.3 18 0.3 18 90 
Com 20 1 � 0.6 36 0.6 36 90 
Comp 21 1 � 0.9 54 0.9 54 90 
Com 22 1 � 1.2 72 1.2 72 90 
Com 23 1 � 1.5 90 1.5 90 90 
Comp26 1 � 0.3 18 0.3 18 120 
Comp27 1 � 0.6 36 0.6 36 120 
Com 28 1 17- 0.9 54 0.9 54 120 
Comp 29 1 � 1.2 72 1.2 72 120 
Com 30 1 � 1.5 90 1.5 90 120 

Table (7-1). Phase One Experimental Programme. 

7.1.2 Phase Two: 

Based on the tests which were done in phase one, and after detailed data analysis, 

it was decided to do further investigation with the nozzles which have 150° spray 

angle for different spray numbers, locations and different flow rates, because these 

nozzles were found to perform best over all other nozzles used with different 

spray angles (to be discussed further in section 7.5). Approximately 38 tests were 

conducted in this phase. Table (7-2) illustrates the notations used for the second 

phase of the programme. It was important to observe the effectiveness of the 

water spray under these conditions. 
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Spray Locations Water Flow Rate 
Test No No of F hS T l 

Spray 
nozzle 

B k C F 
or eac pray ota Angle 

ac entre ront kg/s lit/min ks lit/min 
Com 08 1 � 0.3 18 0.3 18 150 
Com 09 1 � 0.6 36 0.6 36 150 
Comp 10 1 � 0.9 54 0.9 54 150 
Comp33 1 � 1.2 72 1.2 72 150 
Comp 34 1 � 1.5 90 1.5 90 150 
Comp 15 1 � 0.3 18 0.3 18 150 
Comp37 1 � 0.6 36 0.6 36 150 
Com 38 1 0.9 54 0.9 54 150 
Com 39 1 � 1.2 72 1.2 72 150 
Com 40 1 1.5 90 1.5 90 150 
Com 43 3 � � � 0.3 18 0.9 54 150 
Comp44 3 � 0.6 36 1.8 108 150 
Comp45 3 � 0.9 54 2.7 162 150 
Comp 46 3 � 1.2 72 3.6 216 150 
Comp47 3 � � � 1.5 90 4.5 270 150 
Com 50 2 � � 0.3 18 0.6 36 150 
Comp 51 2 � � 0.6 36 1.2 72 150 
Com 52 2 � � 0.9 54 1.8 108 150 
Com 53 2 � � 1.2 72 2.4 144 150 
Comp54 2 � � 1.5 90 3 180 150 
Comp 57 3 � � � 0.4 24 1.2 72 150 
Comp58 3 � � 0.5 30 1.5 90 150 
Com 59 2 � � 0.45 27 0.9 54 150 
Comp 60 2 � 0.75 45 1.5 90 150 
Comp6l 2 � � 0.3 18 0.6 36 150 
Comp62 2 � � 0.45 27 0.9 54 150 
Comp63 2 0.6 36 1.2 72 150 
Comp64 2 0.75 45 1.5 90 150 
Com 65 2 0.9 54 1.8 108 150 
Comp66 2 1.2 72 2.4 144 150 
Comp67 2 1.5 90 3 180 150 

Comp70 2 � � 0.3 18 0.6 36 150 
Com 71 2 0.45 27 0.9 54 150 
Comp72 2 1( 40- 0.6 36 1.2 72 150 
Comp73 2 � 0.75 45 1.5 90 150 
Comp74 2 � 0.9 54 1.8 108 150 
Com 75 2 1.2 72 2.4 144 150 
Com 76 2 � 1.5 90 3 180 150 

able (7-2). Phase Two Experimental Programme. 
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7.2 PARAMETER VARIATIONS 

The main variables in the experiments were the nozzle type (spray angle), the water 
flow rate and the number and location of the nozzles. The compartment itself with 
two openings, one air inlet at the floor level of the front wall, and an outlet at the 

ceiling level on the same side, was not altered throughout the experiments. A list of 

parameter variations and some key numbers for identification of each test are given in 

tables (7.1) and (7.2). 

The fire condition was similar in all the experiment, except for some tests when the 

wind speed was high, which caused the jet flame to have stabilisation problem. 
Therefore, these tests were repeated on other days when the weather conditions 
improved. 

7.2.1 Pre-bum Time 

The pre-bum time (steady state) of the fire in the compartment is to be found and 

used for all the subsequent tests. After the steady state burning time is reached, the 

spray is then to be activated according to the test programme. 
The pre-burn time of the fire before spray activation determines the available heat 

accumulated in the compartment. 

7.2.2 Spray Angle 

The spray angle is more a characteristic of the nozzle than the spray, but it is 

nonetheless important to understand its significance in defining appropriate sprays for 

fire suppression applications. Spray angle is a critical factor in determining nozzle 

spacing to ensure a relatively uniform distribution of spray, without large void areas 

178 



Chapter 7: Experimental Results 

between nozzles. The spray angle is very significant in determining the initial 

velocity and direction of the droplets leaving the nozzle, which in turn determines its 

ability to penetrate obstructions in the compartment (Mawhinney, 1993). 

7.2.3 Drop Size 

The drop size produced is a very important parameter in that droplets are the form 

that the water takes as it interacts with the fire. Droplet size affects heat absorption 

and also the spray's ability to slow the progress of the fire by extinguishment and 
dilution of unburned fuel. 

7.2.4 Water Flow Rates 

Water flow rates are also very important parameter to be concerned with. The 

extinguishing effectiveness of a fire is dependent on the absorption of heat from a fire 

by water spray which is a function of the water flow rate. 
Water was applied through one, two or three nozzles mounted in the ceiling, heading 

directly at the propane nozzle according to the test programme. The nozzles 

produced full cone spray, totally covering the jet nozzle area. 

Water sprays for fire protection requirements are usually stated in terms of water 
discharge density and total area of demand or total water volume needed over a time 

period. 
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7.2.5 Spray Location and Numbers 

The location of the fire related to the spray nozzles, wall and objects would influence 

the interaction between water droplets and the flame zone. This will decide the time 

before extinguishment. 

Some combinations of nozzle locations and fire may promote quick extinguishment, 

as other combinations may work against rapid extinguishment. 

The nozzles were mounted along the Northeast-Southwest centre line of the ceiling. 
The distance between the nozzles was 2 metres. 

7.3 JET FIRES WITHOUT WATER SPRAY: STEADY STATE 

RESULTS 

The experiments were carried out in the 35m3 compartment. For all the experiments, 

the jet nozzle configuration location in the compartment and fire size were the same. 
The jet nozzle was supplied with propane at a steady state rate for the duration of the 

experiment. 

The heat release rate in these experiments is based on the measured fuel consumption. 
The flow rate of the propane is measured, and the heat release is calculated from the 

mass flow and the heat of combustion. Figure (7.1) shows the heat release rate based 

on the fuel consumption measured in the experiments. 
All the temperatures presented in this chapter are measured from different locations 

of aspirated thermocouples in the compartment. The location details of the 

thermocouples were discussed in chapter 3. For each experiment, all the measured 

steady state temperatures were calculated from time averages over the last 2 minutes 

of the experiment pre-burn time before water spray activation. 
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During the experiment, the ambient wind velocity in the test site was low and the 

wind direction was opposite to the compartment opening. Experiments were repeated 

on some tests on different days to avoid the effects of the wind direction and speed. 
A propane jet fire was flowing along the vertical central axis, from the floor to the 

ceiling. A lifted conical flame, typical of open flames, but impinging on the ceiling, 

persisted throughout the experiments. The large fire almost filled the compartment. 

The steady flow induced by jet fire in the compartment was viewed in terms of the 

model illustrated in plate (7.1). Air flowed into the compartment from the lower 

vent. Some gases from the hot upper layer were entrained to the air flow and mixed 

with it in the lower layer. The fire plume entrained gas from lower layer and pumped 

it to the upper layer. 

7.3.1 Pre-bum Time 

The effect of pre-burn time was studied by varying the length of the test. It was 
found that the fuel for jet fire was continuously released, that the compartment 

reached a steady state situation after approximately 5 minutes. Continuing the 

burning of the jet fire after the first 5 minutes showed no significant increase in the 

temperature of the gases inside the compartment as shown in Figure (7.2) or the 

temperature of the compartment surfaces as shown in Figure (7.3). After that the 

compartment reached a steady state condition in which there were no significant 

changes. 

Therefore, five minutes was considered as the pre-burn time in all the tests 

programme. 

7.3.2 Temperature Distributions 

The temperatures in the compartment and at the outlet opening are shown in Figures 

(7.4) to (7.6). Following the first minute of ignition and after the full mass flow rate 
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of the fuel was reached, the maximum temperature inside the compartment rose high 

quickly to reach 900 °C before increasing slowly to 1100°C. Finally it reached 

steady state conditions 4 minutes later with a maximum temperature of 1140 °C. The 

same trend was found for the other temperature measurement locations as shown in 

Figures (7.4) and (7.5). 

A steady ceiling temperature of 700 °C was reached in the centre of the compartment 

opposite to the jet nozzle location in the floor after nearly 4 minutes. Then the 

temperature decreased as the distance from the centre of the ceiling increased in both 

directions. The lowest temperature found in the ceiling was 580 °C, as clearly shown 
in Figures (7.7). 

The fact that the front of the compartment was hotter than the back shows the effect 

of the opening on the ceiling jet. It is possible that the dominant flame-flow pattern 

existed towards the front of the compartment as shown in plate (7.2). This caused the 

external flame to be burning at the upper opening at the front of the compartment, 

which would increase the temperature of the front part of the compartment. 
The Southeast side wall temperatures were nearly the same as the Northwest wall 
temperatures. 
The maximum temperature at the Southeast and Northwest walls was 740°C at the 

front upper part of the side wall and 610°C and 660°C at the rear upper part of the 

Southeast and Northwest walls respectively. At the bottom of the side walls the 

maximum temperatures found for both Northeast and Southwest walls were similar. 
The temperature found at the bottom side walls was 485°C. The temperature found 

in the middle of the Northwest wall was 625°C. The temperature distribution is 

shown in Figures (7.8) and (7.9). 

The floor temperature was low compared to the ceiling and other wall surfaces of the 

compartment. The front half floor was found to have a lower temperature than the 

rear half floor. The temperatures found in the front half floor were 114°C and 203°C 
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for the rear half floor. The explanation for this is that the air entrained to the jet was 
flowing over that front part of the floor and caused it to be cooler. Figure (7.10) 

shows the temperature measured at the floor of the compartment. 
The temperature measured at the back wall is shown in Figure (7.11). It shows that 

the temperature increased as the height increased. 

The average temperature distribution in the top half of the vent as in Figure (7.12) 

shows the maximum temperature found near the corners to be 1050 °C. In the figure 

the temperature decreased as the distance increased until it reached the centre where 

the minimum temperature found in the top half vent reached 800°C. Thereafter the 

temperature started to increase again until it got to the other side's corner. Typical 

opening temperature data are included in Figure (7.13). For clarity, the centreline 
temperature within the opening and the East corner are shown. Nevertheless, this 

profile is representative of most off centreline profiles. 
The average temperature of the gas inside the compartment measured from the 

Southwest string increased as the height of the compartment increased. This is shown 
in Figure (7.14). The maximum steady-state temperature measured inside the 

compartment can be found in the upper layer of the front half of the compartment due 

to the flow of the hot combustion gases leaving the compartment through the top half 

vent. The lower temperature in the compartment was found in the lower front part of 
the opening in which the air for the combustion entrained and this in turn cooled the 

lower part of the compartment. The lower part of the rear half of the compartment 

was found to be hotter than the front one. This can be proved very clearly by Figure 

(7.15) which shows the measured temperature from the bottom thermocouples in both 

the Southwest and Northeast strings. 
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7.3.3 Combustion Gases 

Carbon monoxide concentration measured in the compartment jet fire without water 

spray was in the range from 0.5 to 4%. A plot of the concentration of CO versus time 

for the three different sampling points is given, by way of example, in Figure (7.16) 

measured in COMP64. It has been showed that there was very little smoke produced 
in the tests and CO level reached up to 3.5 % at the top half of the vent. 
The oxygen concentration in dry air is normally around 21%. In the tests the 

minimum oxygen concentration at the upper part of the outlet opening was in the 

range from 1% to 3%. This depletion of oxygen was caused by the combustion itself. 

This minimum oxygen concentration corresponded to maximum CO2 concentration, 

which was in the range from 11-15%. Figures (7.17) and (7.18) show examples 
(COMP64) of oxygen and carbon dioxide concentrations versus time for the three 

different sampling points. In these figures the oxygen concentration is 2% and 

carbon dioxide concentration 12%. 

It is clear that at this stage the fire was burning in under-ventilation regime i. e. there 

was not enough air to meet the stoichiometric flame requirement. 

7.4 JET FIRES WITH WATER SPRAY RESULTS 

7.4.1 Phase I Results: Effect of Spray Angles at Different Water Flow 
Rates 

In order to establish the impact of the water spray on the compartment jet fires 

different water flow rates between 18 and 90 lit/min were considered. Four different 

spray nozzles were tested in this phase, having different spray angles of 60,90 120 

and 150°. One spray nozzle location was used in this phase. The spray nozzle 
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location used was in the centre of the compartment located directly above the jet 

nozzle. The objective of this phase is to find out the optimum spray angle to be used 
for further investigations, knowing that larger spray angle with higher water flow 

rates will produce smaller drops (it was discussed in detail in chapter 6). The 

minimum water application rate required for extinguishment is to be found for each 

nozzle type. 

The spray was activated to the required water flow rate approximately 5 minutes after 
the fire ignition and after the full capacity of the fuel flow rate was reached. The 

water flow was kept at a constant rate throughout the whole experiment period, an 

example is shown in Figure (7.19). Each experiment was terminated when 

extinguishment due to the water spray activation or steady state non-extinguishment 
had occurred. 
Figure (7.20) shows the average temperature development for different water flow 

rates at 150° spray angle. Test COMPS, which had a spray angle of 150° and 90 

lit/min water flow extinguished the flame almost immediately, approximately after 10 

seconds. However, COMP4 which had 72 lit/min water flow rate and same spray 

angle extinguished the flame in around 12 seconds. 
After spray activation in COMP3, where the water flow rate of 54 lit/min and 150° 

spray angle were used, the average temperature inside the compartment decreased by 

550° C in test where the water flow rate was insufficient for extinguishment. Figure 

(7.21) shows the average temperature reduction after the water spray activation for 

different water flow rates at 150° spray angle when the water was insufficient for 

extinguishment. 

A typical temperature development for compartment jet fire tests of phase I are 

shown in Figures (7.22) to (7.24) which show the average temperature development 

in the compartment after the water spray activation for different water flow rates at 
different spray angles such as 60,90 and 120°. 
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The figures generally show the temperature reduction increases as the water flow rate 

increases. The fire was not extinguished when smaller spray angles such as 60° and 

90° were used, but was at the maximum water flow rate when 120° spray angle was 

used. 

In the case of small droplets with higher water flow rate test (> 72 lit/min), when the 

spray (150° spray angle nozzle) was activated the flame was distorted and blown 

sideways. The water spray penetrated down to the base of the fire, which affected the 

air entrainment to the jet. The fire was still burning, but with more flickering 

performance. Also, the small droplets were carried with the air entrained to the jet 

which then mixed with the fuel in the lift off distance. 

In this experiment the flame was lifted off the jet nozzle - more than before - when 

the spray was activated, but there were still flames out of the outlet openings. The 

flame became bluish, and was not visible in the vicinity of the jet nozzle. This blue 

flame flickered around in the compartment, then suddenly disappeared, and the fire 

was extinguished. 
In the medium water flow rates (; tý 54 lit/min), after - 30 seconds spray activation, 

grey smoke was flowing through the openings of the compartment through the upper 

part of the openings and the upper part of the lower vent. The overpressure inside the 

compartment forced the smoke and water vapour to leave the compartment. 
The entrained air of the spray mixed with the combustion gases and also pushed the 
flame downwards. 

The difference in the performance of these tests could be from the difference in spray 

momentum when it hit the flame, and in the droplets' sizes. Water spray lost its 

momentum as it travelled through hot fire gases which were flowing in counter 

direction to strong jet momentum. 

From Figures (7.20) to (7.24) plotted from the present tests series in phase I, and 

which show the average temperature of different location in the compartment, it was 
found that the spray reduced the temperature more at 150° spray angle; this is very 
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clear in Figure (7.25a) which shows the average temperature reduction after the water 

spray activation for different spray angles for 72 lit/min water flow rate. So the larger 

the spray angle is, the greater temperature reduction will result. The temperature 

reduction at 60° spray angle was less than any other spray angle. 

The test results with a single spray, located directly above the fuel jet nozzle, 
indicated that the effectiveness of the water spray in extinguishing a fire depended on 

the spray momentum and coverage. With the low flow rates below 54 lit/min., a 

single nozzle located at 2.2 m above the fire reduced the flame size substantially; 

however it failed to extinguish the fire for a period of 5 minutes after the spray 

activation. But for higher flow rates greater than 72 lit/min., the spray quickly 

reduced the flame size and pushed the flame back to the jet fuel nozzle, eventually 

extinguishing it in approximately less than 12 seconds. Therefore, it can be 

concluded that the 72 lit/min for the nozzle type K50 150D with spray angle 150° is 

the minimum water flow rate used in order to have extinguishment situation. 

The difference in extinguishment time between test COMM and COMPS is probably 
due to the lower flow rate in COMP4 and the smaller water droplets' sizes in COMPS. 

This experiment shows the lowest water application rate with extinguishment. 
Table (7.1) summarises the combination of tests variables used and indicates whether 

extinguishment occurred or not. The fire was either extinguished by the water from 

the spray, continued to burn or was controlled to 600°C or less. 
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Table (7.1). Effectiveness of different spray heads and water flow rates in 
extinguishing or controlling jet fire - Number indicates time in seconds to extinction; 
'c' indicates the temperature was controlled to 600°C or less. 

Water Flow Spray Angle 
Rates 

(lit/min) 1500 120° 90° 60° 

90 10 20 100 c 

72 12 30 c c 

54 c c c c 

36 c - - - 

18 - - - - 

7.4.2 Effect of Drop Sizes 

The droplet diameter is very dependent on the water flow rate and on the spray angle 

as shown earlier in chapter 6. 

To determine the relationship between droplet size and extinguishing effectiveness, 

experiments were conducted with 4 different spray nozzle angles. The test nozzle 

was located in the centre of the compartment directly above the jet nozzle. Similar 

types of nozzles were used that produced Sauter mean droplet sizes (SMD) ranging 
from 170 to 770 gm. The results indicate that the extinguishing effectiveness of the 

water spray decreases with increasing droplet diameter, as shown in Figure (7.25b). 
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7.5 EFFECT OF SPRAYS NUMBER AND LOCATIONS AT 

DIFFERENT WATER FLOW RATES 

The experiments were carried out in the same 35 m3 compartment as used in phase I, 

and with the same propane nozzle. One, two or three spray nozzles, using water only, 

operating at different water flow rates from 18 to 90 lit/min for each nozzle were 

tested. Three different spray locations with seven spray combination arrangements 

were used. A minimum water flow rate required for extinguishment was found for 

each arrangement. The different spray arrangements were characterised by different 

water flow rates, spray number, locations relative to the jet flame and mean droplet 

diameters, based on data found from previous measurements for different spray 

characterisation and presented in chapter 6. 

The results from phase one showed that the best spray angle to be used for further 

investigation with this arrangement of compartment jet fire was spray angle of 150°. 

7.5.1 Effects of One Spray Nozzle 

Figure (7.26) shows the average temperature reduction due to water spray activation 

when one spray nozzle positioned at different locations inside the compartment was 

used for water flow rate of 72 lit/min and 150° spray angle in three different tests. 

The figure shows the spray located in the centre (C) was more effective in reducing 

the average temperature from the compartment, followed by spray located in front 

position (F). 

In similar test, but using lower water flow rate like 18 lit/min, one spray located 

either in front (F) or back (B) locations, it was observed that there was not much 
difference in fire behaviour and temperatures during suppression as compared to the 

test without water spray as shown in Figures (7.27) and (7.28). However, for 90 

lit/min water flow rate, it was found from Figures (7.27) and (7.28) that when the 
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spray in the front was used, it caused the flame to extinguish; in the other hand, the 

spray in the back position was not able to extinguish the flame when the same water 
flow rate was used. However, for lower water flow rates (less than 54 lit/min) the 

temperature reduction was nearly the same when either one of them was used. 

7.5.2 Effects of Two Sprays Nozzles 

When tests were conducted with two-spray nozzle combinations, either positioned in 

the front and the back (F+B), in the front and the centre (F+C) or in the centre and the 
back (C+B) locations which were 2 metres apart and 2.2 metres above the jet nozzle, 
the total water flow rate of 72 lit/minute for both sprays controlled the fire and 

reduced the average temperature by 200° C for the front and centre (F+C) nozzle 
location, which was not enough to extinguish the flame. This can be seen clearly in 

Figure (7.29) which also shows that the temperature for the front and the back (F+B) 

spray nozzle position was reduced by only 160° C. 

The results of tests conducted with the jet fire placed in the middle of two nozzles, 
(F+B), with the total water flow rate of 90 lit/min and less for both sprays showed 

that this arrangement controlled but did not extinguish the flame. However, with 

similar water flow rate and less, such as 72 lit/min, the jet fire was extinguished by 

using one spray located in the centre of the compartment. On the other hand, water 
flow rate of 90 lit/min and greater for two spray nozzles located in the centre and 
front (C+F) nozzle position extinguished the jet flame. But with the same water flow 

rate for the other spray locations such as the back and the centre (B+C) nozzle 

position, this quantity of water flow rate was not able to extinguish the flame. For 

combinations (F+B) and (B+C), which were not able to extinguish the flame at a total 

of 90 lit/min, the minimum water flow rate required to extinguish the flame was 
found to be 108 lit/min. Figures (7.30) to (7.32) show the different temperature 

190 



Chapter 7: Experimental Results 

profiles after water spray activation when two sprays located at different nozzle 

positions were used. 
As discussed previously, the two nozzles system produced lower spray flux density at 

the center of the space where the fire was located, compared to a single nozzle 

located directly above the fire. 

A temperature development for the compartment is shown in Figures (7.33) and 

(7.34). When 72 and 90 lit/min from two spray nozzles located at the front and the 

centre (F+C), the front and the back (F+B) and centre and the back (B+C) were 

activated, then the temperature dropped relatively fast in around 12 second by about 

200° C, then decreased more slowly by 1000 C. The fire was extinguished after about 

60 seconds when two spray nozzles were located at the centre and the front (F+C) 

position at flow rate of 90 lit/min. 

7.5.3. Effect of Three Spray Nozzles 

Figure (7.35) shows the temperature profile for different water flow rates when three 

sprays were used. The results show that using three sprays at the same time was one 

of the three worst cases of spray location arrangement. It was found that the 

minimum water flow rates to extinguish the jet flame by using three sprays was 108 

lit/min. However, in the worst case scenario of two sprays, the minimum water flow 

rate required for extinguishment was 108 lit/min. In the optimum case where two 

sprays were used the minimum water flow rate required to extinguish the jet flame 

was 90 lit/min. So the worst case scenario found for any spray locations arrangement 

was the use of two spray nozzles positioned at the back and front (B+F) or at the 

centre and the back (C+B) of the compartment, and the use of three sprays (F+C+B) 

at the same time. 
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7.5.4 Spray Locations, Numbers, and Water Flow Rates 

One effect of the spray when extinguishment occurred was that the flames became 

blue, flickering about, from one part of the compartment to another before 

disappearing totally. The duration of this period was less than 12 seconds in 

experiments with small droplets sizes and high water flow rates, and up to 60 seconds 

with the relatively larger droplets and less water flow rates. 

When different water flow rates were used for one spray located in one of the spray 

nozzles, either centrally, back or in front inside the compartment, it was noticed that 

the flame was extinguished when the nozzle positioned either in the centre or front 

was used, with different minimum water flow rates for each location. 

From comparing these locations together it was found that using the nozzle located in 

the centre reduced the average temperature more than any of the other positions. 

However, using the front (F) nozzle reduced the temperature more than the back (B) 

nozzle position. The reason for that was that, when using the nozzle in the front (F) 

position, the spray pattern covered the external flame burning near the upper vent as 

well as part of the jet flame. Another reason was that the front (F) nozzle sprayed the 

water to the space near the opening, which created a water curtain which, in turn 

obstructed the air entrainment to the jet flame which was necessary for the 

combustion continuation. Also, the water curtain obstructed the combustion gases 
from leaving the compartment through the upper opening. This forced the 

combustion gases produced to recirculate back to the jet flame, which inerted the 

compartment. 
It appeared that water vapour from evaporated drops was pushed towards the fuel 

nozzle where it displaced the oxygen and perhaps interrupted radiant feedback to the 

fuel flow, and the air flow to the jet flame. 

The behaviour of the flame when the spray was activated for medium water flow 

rates and no extinguishment occurred, was that no flame was seen above the jet 
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nozzle; but the fire, which was burning at the top of ceiling as shown in plate (7.3), 

then engulfed the entire compartment from inside, disappeared for 3 seconds and then 

re-ignited. 

There was appreciable change in visible mean flame height upon activation of the 

spray for tests with water flow rates higher than 36lit/min. 

From the tests series in phase I and II, the main result found was that for similar water 
flow rate and when using one spray in any location, the test with one spray located 

centrally gave the overall best result of temperature reduction. Also, the one in the 

back (B) will be the worst location to be used due to its being farthest from the vent. 

However, the test with one spray in the front gave reasonable temperature reduction . 
A minimum water flow rate of 72 lit/min using one spray nozzle located centrally 

above the jet nozzle with spray angle of 150° was found to extinguish a 4.5 MW jet 

fire in this type of arrangement in 12 sec. 

However, the minimum water flow rate required for jet fire extinction with multiple 

spray nozzles resulting from phase II tests was found in COMP73 which was 90 

lit/min, with only 2 nozzles activated at front and centre (F+C) locations. When the 

same experiment arrangement with the same water flow rate but different spray 

nozzle locations (back and centre (B+C) and front and back (F+B)) was tested in 

COMP60 and COMP64, extinguishment was not obtained. The time of 

extinguishment for COMP73 was found to be in the order of 60 seconds. 

Table (7.1) summarises the combination of tests variables used and indicates whether 

extinguishment occurred or not. The fire was either extinguished by the water from 

the spray (E), continued to bum (N) or was controlled to 600°C or less (c). 
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Table (7.2). Effectiveness of different spray numbers and locations and water flow 
rates in extinguishing or controlling jet fire- 'E' indicates extinguished, 'N' not 
extinguished, 'c' indicates temperature was controlled to 600°C or less and N/A' not 
applicable. 

Water flow 
r t f 

Spray Numbers and Locations 
or a es 

each spray 
lit/ i ) 

One spray Two sprays Three Spray 
( m n 

C F B F+C C+B F+B C+F+B 

90 E E N E E E E 

72 E E N E E E E 

54 c N N E E E E 

45 N/A N/A N/A E c c N/A 

36 c N N C N N E 

18 N N N N N N N 

C: The spray nozzle positioned at the centre of the compartment 
F: The spray nozzle positioned at the front of the compartment 
B: The spray nozzle positioned at the back of the compartment 

7.5.5 Combustion Gases 

Examination of the resulting trends of gases concentrations shows that the minimum 

oxygen measured was found before water spray was turned on . 
This can be seen very 

clearly in Figure (7.36). The oxygen concentration in the out-flowing gases at the 

upper part vent rose from 4% in test COMP29 to about 13% indicating that the 
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combustion had become fuel-controlled. Figures (7.37) and (7.38) show carbon 

monoxide and carbon dioxide concentrations. These figures show that the jet fire had 

decreased the carbon dioxide concentration after the activation of the water spray 
from 14% to about 5%, and decreased the carbon monoxide to about 0.62 %. When 

the water flow rate was insufficient for extinguishment the oxygen concentration 
increased for the first 30 second and then the jet fire started to stabilise and to 

consume the oxygen available in the compartment and produced carbon dioxide as 

shown in Figure (7.39). 

7.5.6 Compartment Surfaces Temperature 

Temperature of the compartment surfaces from Figure (7.40) showed that it was 
difficult to reduce the temperature from 18 lit/min water flow rate during the 

extinguishing time. The reduction of the temperature required more time than the ten 

minutes extinguishing time as in COMP1 in order to reduce the temperature below 

the re-ignition temperature inside compartment and to avoid re-ignition in case of 

extinguishment occurrence. Maximum temperature reduction in this test was 50°C in 

the roof and 100°C in the other sidewalls. 
In test with higher water flow rates, when the water flow rate was insufficient for fire 

extinguishment, the surface temperature was reduced by average of 150°C on the 

ceiling and 250°C on the side walls when 72 lit/min in COMP57 was used, and 

reduced by 50° C and 100° C in the roof and side walls respectively when 54 lit/min 

in COMP71 was used as shown in Figures (7.41) and (7.42). However, when the 

water flow rate was sufficient for extinguishment as in COMP4, which uses 72 

lit/min, there was no temperature reduction in the compartment surfaces as shown in 

Figure (7.43). 
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The spray angle affected the surfaces temperature reduction. The larger the spray 

angle, the more the temperature was reduced, because the larger spray angle had large 

coverage area in which the water drops hit a bigger area of the walls. Also, smaller 
drops were produced from a larger spray angle for similar water flow rate than from 

smaller spray angle, and this enhanced the rapid evaporation of the drops and the 

cooling of the compartment. The comparison in the surfaces temperatures reduction 

of a jet fire with one spray nozzle located centrally (C) having spray angles of 60 and 

150° is shown in Figure (7.44). 

7.6 DISCUSSION 

The fire in the compartment showed two different results, depending on the 

characteristics of the spray. The first 60 seconds of the spray action was very critical 

regarding extinguishment or not. The water spray acted on the flames from the 

propane nozzle by deflecting and shortening them, and the evaporated water entered 

the combustion zone. In the first critical phase there was a fight between the flames 

and the spray, where the flames became bluish and were replaced by steam. The 

flames may however survive in other parts of the enclosure, even burn at the outlet 

opening only. If the spray has an efficiency to remove the flames at the centreline of 

the jet nozzle for more than 10 seconds, there is a good chance of permanent 

extinguishment of the fire. If not, the flames re-enter the compartment and more or 
less stabilise, influenced only by the flow induced by the spray. The fire is now 

controlled, but not extinguished. 

Extinguishment of flames take place when the conditions in the flaming zone of a fire 

reach a critical combination of temperature and mixture of oxygen, the so-called inert 

condition. To extinguish a gas fire it is normally sufficient to keep the critical 

combination for a very short time, and/or one may denote this as instantaneous 
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extinguishment. If the fuel can be isolated from all ignition sources after 
instantaneous extinguishment, permanent extinguishment is obtained. 
Therefore, the fire was considered permanently extinguished when no re-ignition in 

the compartment occurred within 20 seconds. 
So, inerting of a whole compartment requires that the conditions of the total enclosure 

reach the critical combination. The principle of inerting the whole compartment is to 

keep the atmosphere of the enclosed space at inert condition as long as the risk of re- 
ignition exists. 

However, because extinction is not the only measure for the success of suppression 

on arbitrary control criteria, the fire was deemed to be under control when both a) the 

average temperature at thermocouples strings was reduced to reach 600°C and 

surface temperatures decreased by 200°C, and b) the flame length in any direction 

decreased permanently below the ceiling and there was no external flame. The flame 

length was determined from the visual observation. 
In practical terms all the tests with medium water flow rates such as 36 lit/min (at 

150° spray angle) or higher at smaller spray angles can be regarded as controlled 

because the fire was always limited to the fuel nozzle and the temperature of the 

surrounding structure was generally reasonable, which posed no danger of destroying 

the surrounding structures. 
It was noticed that the water flow rate required for temperature reduction for 

controlling the jet fire changed with the different conditions used (i. e. spray angle and 
droplets diameters). When the spray angle of the nozzle changed, the droplets 

diameters changed, hence the water flow rate required had to be changed to meet the 

new condition. Figure (7.45) shows the temperature reduction effect for the different 

water flow rate recommended for controlling the jet fire in the compartment. It can 
be seen that the reduction in temperature for the different conditions is almost the 

same. The water flow rate required for controlling the fire for different conditions is 

increasing as the spray angle decreases, starting as minimum as 36 lit/min when 150° 
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spray angle was used and ending at 90 lit/min water flow rate when 60° spray angle 

was used. 
Figure (7.45) suggests that the amount of cooling due to vaporisation of the entrained 

water droplets, and subsequent dilution due to the addition of water vapor, was not 

sufficient to cause significant changes in the flame temperature and hence 

extinguishement, but was enough to control the fire. 

Figure (7.46) shows the temperature profile after the spray activation for the optimum 

combination of the spray characterisation for a total of 72 lit/minute water flow rate, 

150° spray angle and the optimum spray number and locations arrangement which 

was found previously for each arrangement. The result showed that using the one 

spray located in the centre of the compartment gave the overall best results from the 

point of maximum temperature reduction with the lowest water flow rate. 
A more efficient spray may then be one with larger proportion of smaller droplets. 

With this in mind, the optimum drop size (D,, o. 5) is found in Figures (7.25b) to (7.35) 

to extinguish a compartment jet fire which was 295 µm (SKID=190 pm). This was 

based on the cooling effect which increased as the water flow rate and spray angle 

increased, hence the droplets size was reduced. 

Finally, the water flow rate 72 lit/min delivered from the spray nozzle located in the 

centre of the ceiling was found in this study as the optimum to extinguish the jet fire 

issued from the centre of the compartment floor. But when the jet nozzle location 

changes, this optimum will not be useful for extinguishing the fire in the new jet 

position. From this, one can conclude that this optimum water flow rate can be used 

to determine the water flow rate required to extinguish the fire from any jet nozzle 
location. Therefore, all the water spray nozzles should be activated, with water flow 

rate for each of them similar to the optimum found earlier, hence the resulting total 

water flow rate required to extinguish the jet fire, irrespective of the location of the 

fire nozzle, is 216 lit/min. As the protection requirements are usually stated in terms 
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of water discharge density and total area of demand or total water volume needed 

over a time period the water flow rate required is 15 lit/min/m2. 

7.7 CONCLUSIONS 

The heat produced by the fire ended up partly in the compartment itself and was 

partly being transported to the surroundings. The time to heat the compartment walls 

and ceiling to steady state temperature where almost all the heat transported into the 

compartment was convected to the surroundings was 5 minutes. So the pre-burn time 

of the fire before water was applied was chosen to be 5 minutes, to assure equal 
initial conditions in every experiment. 
One main part of the heat lost was leaving the compartment as hot combustion gases 
through the outlet opening. The other part of the heat lost was to the walls and the 

ceiling, and then a fraction to the floor. 

The water spray tests were planned to find the limit for extinguishment for one, two 

or three nozzles producing different droplet sizes. To characterise the spray action in 

a situation without extinguishment, several tests with low water flow rate were 

studied as well. Before water spray was activated the large fire almost filled the 

compartment. Each experiment was terminated when extinguishment due to the 

water spray activation or steady state non-extinguishment occurred. 

Experiments were conducted at different water flow rates, using different spray 

nozzles, to determine if water flow rate had an effect on extinguishment. Each nozzle 

was tested with increasing pressure, which led to higher water flow rate and lesser 

mean droplet diameter. The results of the flow rate experiments showed a slight 
decrease in the time to extinguish the fires when the water flow rate increased, in the 

cases when the water flow rates were able to extinguish the flame. 
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It became apparent early in the experimental programme that the amount of water 

necessary for extinguishment varied greatly with the types of spray. 

The use of 72 lit/min was found to produce the best overall results in terms of water 

usage for extinguishment. A further increase in application rates produced a 

significantly higher water usage with negligible decrease in extinguishment time. An 

application rate of 36 lit/min with spray angle of 150° proved to be the most effective 
in terms of minimum water usage for control of fire. 

The varying of spray patterns produced significant differences in the results. 
However, that of 150° spray angle gave the best overall performance. This is 

probably due to the generation of a larger number of smaller droplets at higher flow 

rate. 
Comparing the different spray angle tests has shown that increasing the spray angle 

will reduce more temperature. 

The water droplets follow the air flow pattern in the vicinity of the fire. To 

extinguish a fire, the water droplets have to reach the flame zone by supplying it with 
the air going to the flame. 

The presence of droplets increases the total amount of water present in the plume, and 
the local distribution of water vapor within the plume is expected to influence the 
flame chemistry. The temperature decrease is due to evaporative cooling from water 
droplets. 

Generally, for two sprays nozzle system, the highest temperature reduction was found 

when the nozzle was located in the front and the centre (F+C) positions. Then the 

next temperature reduction occurred with the sprays located in the centre and back 

(C+B) and in the front and back (F+B). However, for the same water flow rate, the 

overall optimum arrangement to be used for any combination was found to be one 

spray nozzle located centrally. 
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These experiments showed that it is possible to extinguish fires in compartment 

without direct hit, but with higher water flow rate as compared to direct hit, provided 

that the fire and the spray create sufficiently effective mixing of water droplets with 

the flames. 
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Figure (7.1). Heat release rate based on the measured fuel consumption. 
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Figure (7.2). Temperature profile to show the pre-burn time for ASP- I (COMP 1). 
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Figure (7.6). Temperature development in the outlet opening for different 
thermocouples. 
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Figure (7.7). Temperature development in the ceiling for different thermocouples. 
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Figure (7.8). Temperature development in the Southeast wall for different 
thermocouples. 
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Figure (7.10). Temperature development in the floor for different thermocouples. 
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Figure (7.18). Carbon dioxide concentration for steady state (COMP64C). 
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Figure (7.21). Average temperature reduction (drop) after water spray activation for 
different water flow rates at 1500 spray angle when the water was insufficient for 
extinguishment. 
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Figure (7.27). Average temperature distribution after water spray activation for different 

water flow rates at 150° spray angle for one spray located at the back of the 
compartment. 
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Figure (7.28). Average temperature distribution after water spray activation for different 
water flow rates at 150° spray angle for one spray located at the front of the 
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Figure (7.29). Average temperature reduction (drop) after water spray activation for 
two-spray nozzle for different locations and different water flow rates at 1500 spray 
angle when the water was insufficient for extinguishment. 
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Figure (7.30). Average temperature distribution after water spray activation for two- 
spray nozzle used (front and back) for different water flow rates at 150° spray angle. 
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Figure (7.31). Average temperature distribution after water spray activation for two- 
spray nozzle used (front and centre) for different water flow rates at 150° spray angle 
(E=extinguished). 
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Figure (7.32). Average temperature distribution after water spray activation for two- 
spray nozzle used (centre and back) for different water flow rates at 150° spray angle. 
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Figure (7.33). Average temperature distribution after water spray activation of 72 
lit/min for two-spray nozzle at different spray locations in the compartment at 150° 
spray angle. 
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Figure (7.34). Average temperature distribution after water spray activation of 90 
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Figure (7.36). Oxygen Concentration after water spray activation for 72 lit/min for one 
spray nozzle at 120° spray angle (COMP29). 
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Figure (7.37). Carbon dioxide concentration after water spray activation for 72 lit/min 
for one spray nozzle at 120° spray angle (COMP29). 
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Figure (7.38). Carbon monoxide concentration after water spray activation of 72 lit/min 
for one spray located centrally at 120° spray angle (COMP29). 
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Figure (7.39). Oxygen and Carbon dioxide concentrations after water spray activation 
of 72 lit/min for three sprays at 150° spray angle (COMP57). 
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Figure (7.40). Average wall temperature profile after water spray activation for 18 
lit/min one spray nozzle located at the centre of the compartment (COMP I ). 
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Figure (7.41). Average wall temperature profile after water spray activation for 54 
lit/min for two spray nozzles located at the front and the centre of the compartment 
(COMP71). 
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Figure (7.42). Average wall temperature profile after water spray activation for 72 
lit/min for three spray nozzles (COMP57). 
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Figure (7.43). Average wall temperature profile after water spray activation for 72 
lit/min one spray nozzle located at the centre of the compartment (COMP4). 

700 
-Roof-60deg 

- Back Wall-60deg 

Side Wall (NW)-60deg 

-Side Wall (SE}BOdeg 

-0 Roof-150 deg 

t Back Wall-150 deg 

-Side Wall (WW)-150 deg 

-Side Wall (SE)-150 deg 

9 
E 200 
aý ý 

100 ý 

0 
0 100 200 

Time (sec. ) 

300 400 

Figure (7.44). Average wall temperature profile after water spray activation for 54 
lit/min for 60° and 150° spray angle for one spray nozzle located centrally (C) (COMP3 
&13). 
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Figure (7.45). Average temperature profile after water spray activation for different 
water flow rates for one-spray nozzles located at the centre of the compartment and 
different spray angles which show similar temperature reduction. 
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Figure (7.46). Average temperature distribution after water spray activation for different 
spray arrangements (number and locations) inside the compartment for 72 lit/min water 
flow rate at 150° spray angle (E = extinguished). 
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Plate (7.1). Photograph of the flame inside the test compartment at steady state. 

Plate (7.2). Photograph of the test compartment showing the external flame burning at 
the upper opening. 
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Plate (7.3). Photograph of test compartment when the water spray was activated, 
showing no flame shape was clearly noticed. 
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CHAPTER 8 

NUMERICAL RESULTS BASED 

ON EXPERIMENTAL 

CONDITIONS 

8.1 HEAT TRANSFER MODELLING 

In order to simulate the heat transfer in the compartment, different modelling 

strategies have been used. To demonstrate and validate the model, a simple 2D 

steady state system was modelled. With this simple geometry, several tests were 

done to check the applicability of some sub-models (i. e. radiation) to the existing 

study, and to find the correct parameters to be used in the final solution. 

Then the system was modelled on 3-D geometry. 
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8.1.1 Conditions at the walls 

The modelling went through different stages. Initially, an adiabatic condition was 

used to model the fire in the compartment. The outside wall surfaces were assumed 

to be adiabatic. The temperature contours on longitudinal plane along the jet nozzle 

are shown in Figure (5.11). From the figure the maximum temperature was found to 

be 2320 K. 

Then heat transfer through the walls was applied by using the combined external 

convective and radiation boundary condition. The average combined (convection and 

conduction) heat transfer coefficients for the compartment external surfaces were 
determined and used. Experience has indicated that satisfactory solutions may be 

obtained by combining the heat loss effects together in an overall heat transfer 

coefficient, hh. A simplified approach was used to estimate the heat transfer 

coefficient as in the following (Foster, 1999): 

TW Toutside 
wall T. d 

Conduction 

Convection 

Figure (8.1) Overall heat transfer through a plane wall. 
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From Figure (8.1): 

Ä 
Ax= T. - TTI., 

g1 
=T -T A ho 

T. T. 

ý dx 
+ 

1]=T 
w _T 

0 
Tý, -Tý 

A dx+1 

K ho 

Äh,,, (T. -T., ) 

h= 1 
AX 1 
-+- K' h, 

x= 50 W/m K [Smithells, 1983]. 

ho = 10 W/mý K [Foster, 1999] 

dx=1.5mm 

h 1 
1.5x10-3 I 

+- 
50 10 

0.10003 

hý =10 W/ms K 

(s. 1) 

(8.2) 

(8.3) 
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The calculations above assume that the fire is fully developed and a design value of 

about 10 W/m2 k is recommended for the coefficient of heat transfer. However, 

better results are obtained if ham., is assumed to change linearly from zero at the start of 

combustion to a maximum value when the temperature of the gases and the steel 

element become equal. Unfortunately, since FLUENT did not have the facility to 

input ham, as function of temperature, a constant value of ham, is the only way to be 

used in FLUENT. 

The results from this model are shown in Figures (8.2) and (8.3) which show the 

maximum temperature was 2100 K. 

Since the model used combined external convective and external radiation boundary 

condition, it was decided to use heat transfer coefficient (hr) to substitute for the 

external radiation boundary condition. 

Wall 
Text 

a 

0 

Interior of 
Compartment 

Tc 

Figure (8.4) showing Cross section of compartment wall panel 
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From Figure (8.4) 

q, = (hc + h, )(T, +T.. rr 
) 

q, = k(TT -T. ) 

q, = h, (T� - Tm ) 

= 0.8ß(T: -T) 

= 0.8ß(T'0 -T )(Tw +Tw)(T; +T ) 

From equation (8.6) and equation (8.7): 

h, = 0.8a(T. +T., )(TT +T ) 

hý = 0.8x5.672 x10(873+295) ((873)2+(295)2) 

h, =45W/m2 K. 

From equation (8.3) and equation (8.8): 

h,.,,, = h, + h, 

hTo,,, = 55 W/m2 K. 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

The results show that there is no difference between both cases as can be seen in 

Figures (8.5) and (8.6). Using either of these cases will give the same result; however 

using heat transfer coefficient for external radiation boundary condition will reduce 

the computational time, although this way will assume constant external radiation 

over the whole of the surfaces, which is not true. 

8.1.2 Choice of radiation model 

The next stage is to introduce the radiation model to the system. Radiative heat 

transfer plays an important role in the modelling of the combustion system. It shares 
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an equal role with convection for the transfer of heat within a turbulent diffusion 

flame. Radiation heat transfer is a demanding calculation because many coupled 

processes contribute. At a particular position within a flame, the local cooling due to 

the loss of radiative heat depends on the local absorption coefficient and the local 

temperature. However, the local temperature partly depends on the local heating 

from absorbed radiation which has emanated from other regions of the flame. The 

absorption coefficient is related to the local mass fractions of carbon dioxide and 

water vapour which themselves depend partly on the local temperature. 

The discrete Transfer Radiation Model (DTRM) was chosen for use in these 

calculations because it is suitable for moderate optical thicknesses and also data are 

available for C02, H2O and soot mixtures in Nitrogen. It employs a ray tracing 

procedure in which the radiative transfer equation is solved along paths generated by 

the angular discretisation of boundary cell faces. The radiative loss (or gain) of an 
individual control volume is then evaluated as a balance between emission and 

absorption for all the rays traversing that control volume. Summation of the final 

intensity at the end of a line of sight from rays in all directions intersecting a wall cell 

yields the incident flux. 

In the present study, the radiation properties along the non-homogeneous ray paths 
have been computed using the weighted sum of grey gases method (FLUENT, 1996). 

8.1.3 Choice of Number of Rays 

Radiative exchange in the compartment fire studied was computed for 6 and 8 rays, 
fired from the solid surface of each boundary cell. Figure (8.7) and (8.8) show the 

filled temperature contours for two different cases simulated with radiation in the 

flow. The radiation was computed for two different ray numbers to test the effect of 

the ray numbers on the accuracy of the prediction. The ray numbers used were 6 and 
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8. From these figures it can be seen that the temperatures are not affected by the 

changing of the ray numbers. The result shows that 6 is to be used for the number of 

rays of both (0 and 0). This value reflects a compromise between computational 

economy, uniformity and accuracy of coverage. The wall emissivity used 

(McAdams, 1954) was 0.8. 

8.1.4 Radiation Correction Factor 

The radiation boundary temperature correction was used to solve the problem of the 

outlet in the radiation calculation. It has been noticed when investigating details of 

the radiation calculation that the outlet radiates back to the compartment, which 

causes a temperature increase. FLUENT used the inlet and outlet cells temperature to 

compute the radiation heat flux while the actual temperatures beyond the outlet 
boundary are less than the outlet temperatures. FLUENT includes an option that 

allows the influence of the gas temperature beyond the inlet and outlet boundaries to 

be taken into account, and to specify different temperatures for radiation at inlet and 

outlet. FLUENT will not take into account the influence of the temperature of the 

ambient beyond the outlet boundary without specifying the radiation boundary 

temperature correction option. 

8.1.5 Conduction Modelling 

Alternatively, modelling conduction can be performed by using conducting wall. A 

combined external convective and external radiation boundary condition was 

modelled on the exterior wall with a thin layer of conducting wall placed next to it. 

The discrete transfer radiation model (DTRM) was activated to ensure both 
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convection and radiation was calculated during the process in the compartment. The 

thermal conductivity of all structure components was modelled by temperature 

dependent profiles. 

8.2 STEADY STATE FIRE RESULTS 

The refined grid distribution which was used to model the steady state flow reported 
in this section is shown in Figure (8.9). The temperature distribution obtained for the 

whole domain and close to the jet nozzle location when using the radiation sub- 
model, combined external heat transfer and external radiation is given in Figures 
(8.10) to (8.14). This clearly shows that approximately 20% of the peak temperature 
has been reduced from the adiabatic values in excess of 2350 K to approximately 
2000 K. 
Figure (8.10) shows the temperature predicted through the jet nozzle section in (x-y 

plane). It is clear in this figure that the maximum temperatures in this section were 

predicted above the jet nozzle. The cooling effect of the air entrainment from the 

lower opening is also clearly presented in this figure which displays the minimum 
temperature in the whole compartment. Also this can be seen very clearly in Figure 

(8.11) which shows the predicted temperature through the side view of the jet nozzle 
(y-z plane). This figure also shows the flame shape which is consistent with the 

experimental observation. 
Figure (8.12) shows the filled contours of the temperature through a (x-z plane) 
below the ceiling. The maximum temperature was found in the centre where the jet 

hit the ceiling. 

The average predicted temperature of the gas exiting at the upper opening was 1373K 
(1100° C) as shown in the Figure (8.13) which shows the temperature filled contours 
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at (y-z plane) at the compartment opening. The figure also shows the cooler lower 

opening through which the air was entrained. 
Back wall filled contours temperature obtained from the prediction can be seen in 

Figure (8.14). The figure shows the maximum temperatures were found in two 

circles in the upper middle of the back wall. This can be explained by Figure (8.15) 

which shows the velocity vector of the slice next to the back wall. In this slice, it has 

been found that in a position coinciding with the two hot circles the flow of the hot 

combustion gases hits the position which cause the circles to increase in temperature. 

The figure shows that gases flow towards the centreline of the slice from the 

sidewalls, which causes two small circulation zones to the left and right of the centre 
line. Also there were two circulation zones in the bottom corners. 
Figures (8.16) to (8.19) show the predicted velocity vectors in different slices of the 

compartment, with Figure (8.16) showing the velocity vector below the ceiling in the 

x-z plane. After hitting the roof the jet fire spread outward along the ceiling. Most of 

the flow which was directed towards the vent escaped through the upper opening and 

a little mixed with the entrained air and recirculated back toward the flame. On the 

other hand, the flow directed towards the back wall was circulated back to the flame. 

This also can be seen in Figures (8.17) and (8.18). These figures show the x-y plane 

and the y-z plane of the compartment through the jet fire section respectively. 

The velocity vector predicted at the compartment opening is shown in Figure (8.19). 

The figure clearly shows some of the flow escaping through the upper opening and 

the other part mixing with the entrained air through the lower opening and circulated 

back to the flame. 

Finally, The predicted temperature filled contours of the side wall (x-y plane) and the 

slice next to it were shown in Figure (8.20) and (8.21) respectively. It shows the 

maximum temperature was found in a circle below the ceiling in the centreline and to 

the right in the opening direction. The reason for that can be explained by Figure 

(8.22) which shows the velocity vectors for the (x-y plane) next to the wall, and 
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Figure (8.18). The flow of the jet hits the ceiling and then flows outwards along the 

ceiling at the same time as the jet flow hits the upper side wall at the centreline, 

which will affect that area by increasing its temperatures. 

8.3 TWO-PHASE STEADY STATE 

Using the field modelling approach it is possible to simulate the action of water 

sprays in a fire compartment. As this scenario is a continuation of the earlier steady 

state fire simulation presented in the previous section, the compartment temperatures 

and flow field for the steady state modelling was used as an initial condition for the 

water spray modelling. 
FLUENT approximates the nature of sprays by calculating trajectories of droplets 

with five different diameters. The water spray is represented by distribution of 
droplets of varying sizes and initial projectile angles projected into the fire field from 

a chosen starting point. The droplet size distribution was described by the Rosin- 

Rammler distribution function. Each group of droplet sizes was further discretised by 

considering a distribution of initial projectile angles in order to represent a full spray 

cone. For each spray 25 injections were specified, covering an initial angle range 

represented by a range of initial droplet velocities. The mass flow along each 

trajectory is distributed to provide an initial mass distribution which is proportional to 

the solid angle. When using FLUENT four characteristics of the spray must be 

specified; the droplet diameters, the total water flow rate, the initial position and the 
injection velocity which represents the initial velocity and spray angle. The injection 

velocity specified is constant for all the drop sizes. 

Using the description of the physical set-up and the outlined mathematical model 
described in chapter 4, the following results for steady state and time-dependent 

water spray modelling to be discussed were obtained. 
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In this study the spray locations were chosen so that they would provide a good 

coverage of the whole compartment. 
The spray behaviour depends greatly on the initial angles of the droplet trajectories 

and the drop sizes. The initial angles were chosen so that a wide variety of angles can 
be used in such a way that, in the absence of the fire, all droplets fell within the jet 

fire source and the surrounding area. 
The trajectory of particles obtained for the mean particle tracking are shown in 

Figures (8.23) to (8.26) for the different spray angles used without fire. The effect of 

the jet on droplets motion can be seen in Figures (8.27) to (8.30) in which trajectories 

of different mean droplets diameters with different spray angles are shown when the 

jet fire is fully developed. As can be seen from the figures some of the water is 

collecting along the floor and some is escaping through the upper and lower opening. 

The remaining part is shown with "+" at the end of the trajectories, representing the 

point at which complete evaporation has occurred. 

An inspection of the trajectories of all droplets reveals that smaller droplets (less than 

330 µm) do not actually penetrate the jet and are deflected by the effect of the jet and 

then evaporated. On the other hand, larger droplets (larger than 330 µm) penetrate 

the fire and hits the floor. It is clear that the droplets with diameter of 330 micron or 
less do not have sufficient momentum to penetrate the jet near the centreline. 
Therefore, the spray must have sufficient forward force so that too much of it is not 
deflected by the flame and hot gases associated with the fire and then escapes through 

the upper opening. The factors which control the penetration of sprays to the centre 

of the flame are the drop size and thrust of the spray, the thrust of the flames, the 

gravity and the evaporation of spray in the flames. 

The results on the flow field and the particle trajectories indicated that both the water 
trajectories and the air flow pattern were affected by the water flow rate and the 
droplet projectile angles. If the water flow rate and spray angle were increased, the 
drag (throw) force would increase. 
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In addition, the downward motion of the spray with the deflected smaller drops 

created a type of water barrier which tended to obstruct the upper opening and to 

confine the hot gases to the far end of the compartment as can be seen in Figures 

(8.28) and (8.30). The hot gases were initially flowing below the ceiling and escaped 

through the upper portions of the outlet. Meanwhile, cooler gases were entrained at 

the lower levels. However, the spray churned up this stable process by mixing the 

hot gases with the cold water droplets as they were forced out and downwards by the 

spray, as can be seen in Figures (8.32) and (8.33). 

Figure (8.31) clearly shows some of the drops which fall in the air entrainment path 

will be carried and pushed with the air currents towards the jet fire which will enter 

the lower flame region and then evaporated. 
Figures (8.32) and (8.33) show the predicted velocity vectors at the centre of the 

compartment. Figure (8.32) depicts the interaction between the jet fire and the 90 

lit/min spray. It indicates that the overall flow is dominated by the jet and the 

presence of spray seems to make almost no impact on the jet flow. Figure (8.33) 

shows the interaction of the jet fire with 36 lit/min spray. Prior to the spray 

activation, the jet fire was able to rise straight upwards and spread outwards along the 

ceiling. After the spray activation (one single spray case) two major flows were 

apparent. The first, generated by the water spray, was downwards. The second, 

generated by the fire, was upward and hit the ceiling. These two currents met 

towards the centreline of the compartment, 0.4 metre below the ceiling, aiding the 

mixing and cooling process. 
In Figures (8.34) and (8.35) two planes through the spray (y-z planes) illustrate the 

effect of the spray on the overall gas flow field. The spray forces the gases 
downwards as well as entraining air from its surroundings. The subsequent 

circulation pattern causes the air to be forced upwards along the walls. 
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The resulting flow field near the back wall is illustrated in Figure (8.35). It is worth 

noting how the air and gases are pushed upwards along the outside walls as well as 
forced downwards by the entrainment of the spray. 
The hot gases created by the fire are also confined and further pushed back to their 

source. Therefore, the flame length was shortened due to the momentum of the spray 
drops as shown in Figure (8.36). However, the newly generated circulation pattern 

causes the lower levels to be slightly warmed up due to mixing of the hot upper layer 

gases and the colder lower layer gases. 

Some of the resulting gas temperature distributions are shown in Figures (8.37) to 
(8.40). These clearly show the effect of the spray conditions on the gas temperatures. 
An application of water flow rate to the jet fire in a compartment when steady state 

condition has been reached produces a temperature drop; however this temperature 
drop varies according to the spray condition used. These conditions include water 
flow rates, droplets diameters, spray angle, spray location and number of sprays used. 
The same conditions previously used in the experiments will be used for the 

modelling, which will promote the validation and comparison of these results. 
In order to investigate the effect of the spray angles alone on the average gas 

temperature reduction different spray angles were studied at 54 lit/min water flow 

rate. It was found that the maximum reduction in the gas temperature was reached 

when 150 degree spray angle was used. 
Figure (8.36) clearly shows the reduction of average temperature from around 1520K 

before water spray activation to maximum reduction of 730 K in COMP18 after 

water spray activation; it also shows that steady state condition was reached. 
However, the minimum reduction for one spray nozzle was found when smaller spray 

angle and larger droplet sizes were used. Initially hot gases were rising from the jet 

nozzle. They were entrained by the spray, then forced downward and cooled down. 

An application rate of 90lit/min for one spray was the maximum water flow rate at 

any spray angle to be used in the modelling. Therefore the maximum drop in 
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temperature after the application of this water flow rate at 150 degree spray angle was 
found to be 600 degrees. 

Figure (8.41) illustrates the maximum reduction in the average temperature for 

different spray numbers and locations at fixed total water flow rate. The results show 

a higher reduction in the temperatures when the total flow rate for one spray is used. 
However, the spray located in the centre reduced higher temperatures. 
One finds in general that as the water application rate is increased, keeping all other 

conditions fixed, the maximum reduction in the average temperature is consistent 

with the increased water flow rates until 72 lit/min water flow rate has been reached 

when the drop in the temperature occurs abruptly above a certain increment as shown 
in Figure (8.42). The rapid drop of flame temperature in this case may be due to the 

penetration of the water drop into the flame and the relatively smaller drops produced 

with this flow rate, which increases the predicted evaporated mass flow. However, 

when the water flow rate further increases, the reduction in the temperature is not 

significant compared to the total large water usage. 
The higher reduction in the temperature observed is in the path of the water 
injections. 

Figures (8.43) and (8.44) taken through horizontal and vertical planes across the wall 

and the floor show the water mass fraction. 
The wall surface temperatures, appear to be little affected by the water spray as after 

steady state condition is reached. The temperatures of the side walls have higher 

effects when using 150 spray angle. On the other hand the lower part of the side 

walls have higher temperature reduction when smaller spray angle was used. 
The resulting compartment temperature distribution of water flow rate with 36 

lit/min, 60° spray angle with mean drop diameters 1084 µm at slice x-y plane across 

the jet nozzle is shown in Figure (8.39). It clearly shows the reduction in the average 

temperature from 1520 to 1456 K. It also shows that the water flow rate and drop 
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diameters used were not affecting the temperature because the low flow rate and 
larger drops produced made evaporation difficulties. 
The temperature stratification within the compartment was disturbed by the injected 

water spray. The water spray had cooling effect on the temperature of gases which 

existed in the spray region. As the hot gases were initially accumulating in a layer 

below the ceiling, when the water spray got activated and the flow rate was at 108 

lit/min, the maximum drop in average temperature occurred (800 K). The lowest 

temperature was in the corner (opposite to the ventilation opening). 

Table (8.1) shows the predicted evaporation rate for different cases modelled. 

Prediction of the evaporation rate when using a total of 90 lit/min water flow rate for 

different arrangements of spray nozzle number and locations has been studied. It is 

clear that using one spray nozzle with 90 lit/min will give the highest predicted 

evaporation rate. However, there is no significant changes in the predicted 

evaporation rate between 90 lit/min and 72 lit/min for the same conditions. But the 

use of the same water flow rate for three or two sprays located at any position 

arrangement such as the centre and front (F+C), centre and back (C+B) or front and 
back (F+B), will yield less evaporation rate than one spray. This can be attributed to 

the fact that with higher water flow rate the nozzle will produce relatively smaller 
droplet sizes than spray with lower water flow rates. Therefore, the smaller the 

droplet diameter is, the faster it will evaporate in a hot gas environment. On the other 
hand, larger drops take longer to attain equilibrium conditions, and their trajectories 

are different from those of the smaller drops since they are less influenced by 

aerodynamic drag forces. 

As far as the evaporation is concerned, spray angle makes less significant 

contribution to the evaporation of the drops. From table (8.1) it was found that for 

the same water flow rate of 54 lit/min used for different spray angles with one spray 
located centrally, a spray angle of 150 degrees will produce the highest evaporation 

rate. There are two reasons for that, because of the spray angle effect which controls 
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the velocity of the drops relative to that of the surrounding gas, and the smaller drops 

produced with the 150 degrees. However, less momentum and mixing characteristics 

can be found with this spray angle. 
When these arrangements were used to find the highest predicted evaporation rate for 

different spray locations it was found that the highest evaporation rate occurred when 

the spray was in the centre of the compartment. The reason for that is that the rate of 

evaporation depends on the temperature of the surrounding hot gases. Since the spray 

nozzle is located above the jet fire which has the maximum temperature. Therefore, 

the water drops injected from the central position will face the highest temperature in 

the compartment. The evaporation of drops involves simultaneous heat and mass 

transfer processes in which the heat for evaporation is transferred to the drop surface 

by conduction and convection from the surrounding hot gas, and vapour is transferred 

by convection and diffusion back into the gas stream. This will cause cooling and 

inerting of the flame and the combustion area. 
Some of the cases modelled show very low evaporation rate, which means most of 

the drops didn't evaporate completely. However, the drops heat up and, at the same 

time lose part of their mass by vaporisation and diffusion into the surrounding air or 

gas as they travel until they hit the floor or the walls. 

The above results for the steady state clearly demonstrate the significant effect an 

active spray has. Not only have the gas temperatures considerably decreased, but 

also the complex circulation pattern which aids this process has been captured. 

However, the important factor is that it provides initial guidelines as well as 

confidence for the design of a time-dependent two-phase fire-spray model. The 

results of the study for time dependent models are presented below. 

In view of the effect of larger water flow rates on chamber temperatures, it was clear 
that a time-dependent approach would be more representative, since extinguishment 

would be associated with time dependence of the main variables. 
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Test No. Spray 
location 

Spray 
angle 

Mean 
drop 

diameter 

m 

Spray 
number 

Total 
water 

flow rate 
lit/min 

Predicted 
evaporated 

mass % 

Predicted 
evaporated 
mass flow 

lit/min 

COMP3 C 150° 417 1 54 31 16.8 

COMP4 C 150° 342 1 72 42.4 30.5 

COMP5 C 150° 295 1 90 41 36.9 

COMP 10 B 150° 417 1 54 28.6 15.4 

COMP 13 C 60° 761 1 54 17.8 9.6 

COMPI4 C 60° 380 1 72 39.7 28.6 

COMP21 C 90° 335 1 54 29.5 15.9 

COMP23 C 90° 386 1 90 35.4 31.9 

COMP28 C 120° 553 1 54 23.1 12.5 

COMP38 F 150° 417 1 54 26.3 14.2 

COMP51 F+B 150° 756 2 72 10.1 7.3 

COMP57 F+B+C 150° 966 3 72 4.3 3.1 

COMP58 F+B+C 150° 706 3 90 6.9 6.2 

COMP63 C+B 150° 756 2 72 12.6 11.3 

COMP72 C+F 150° 756 2 72 11.6 8.4 

Table (8.1) Predicted evaporation rate in the compartment for different spray 

arrangements. 
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8.4 TIME DEPENDENT 

For the time-dependent simulation, the general description and conditions of the 
compartment previously given for the steady state water spray modelling were not 
altered for this current simulation. As already mentioned, the predictions made and 
discussed in section (8.2.1) are used as the initial conditions for this simulation. 
The time-dependent option in FLUENT was activated at the same time as the water 
sprays activation after the single-phase steady state simulation was reached. 
The simulation was performed initially with one millisecond time step for time 
dependent cases, then was increased to 0.1 second. During these steps iterations 

across the domain were carried out until convergence criteria of the variables solved 
were satisfied; typically, residuals fall between 104 and 10-6 . The number of 
iterations required during each time step calculation was set to be 500. 
Results from these for the one spray case located centrally above the jet fire with 72 

lit/min water flow rate and 150 degree spray angle are shown in Figures (8.45) and 
(8.46) which illustrate the general conditions within the compartment and the way in 

which they vary in time. Gas temperature filled contours are used to show the effect 
of the spray on the temperature reduction and at (y-z) planes cross the jet fire at 
distinct time within the compartment. The time intervals shown are 0 and 12 seconds 
after spray activation, whereby Figure (8.45) is used to show more clearly the effect 
of the spray. In these figures the reduction in the flame height was very clear. The 

gas temperatures were reduced as the time increases. 

The peak gas temperatures in the compartment, Figure (8.47), initially, after 5 

seconds, appeared to be hardly affected. However, after 12 seconds they showed a 
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reduction of only 125°C. Temperatures in the upper portion of the flame are lowered 

by the heating and evaporation of water spray in the flame. 

Figures (8.46) and (8.47) clearly show how the stable temperature stratification is 

quickly disturbed by the addition of the cooling water particles which are injected 

downwards through their centre. Hence, cooler gas is generated and pushed 
downwards resulting, with time, in a form of water curtain. This in turn confines the 

hot gases which are still generated by the fire, whilst cooling down the gases near the 

escape opening. 

Figure (8.48) shows average temperature prediction in the compartment against time. 

In this figure a large drop in the average temperature occurred in the first second after 

the activation of the water spray. Thereafter, the temperature decreases slowly as the 

time increases. 

Figures (8.49) and (8.50) show the prediction of the gas temperature at the centreline 

of the compartment in two different grid locations in the x-axis, within different 

layers at the compartment height. The two x-axis locations at 1.5 meter downstream 

and upstream the flame, ASP-26 to ASP-30 and ASP-31 to ASP-35, respectively. 

Detailed investigation of the results showed that a rapid drop in the gas temperature 

occurred in the first second after the water spray activation within the upper layer 

downstream the flame at locations ASP-26 and ASP-27 in Figure (8.49). Therefore, 

the interesting feature to point out is that after 8 seconds, the peak gas temperature 

reduction has occurred above 1.6 meter from the floor, indicating the overall cooling 

effect within the upper layers. A slight increase in gas temperature observed in 

location ASP-34 below that height illustrated the initial mixing of the hot and cold 

gases as they were pushed downwards by the spray as well as an overall cooling in 

the upper level. These characteristics were also observed for locations ASP-35 and 
ASP-29 when the gas temperatures almost remained unchanged. 
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Figure (8.51) shows the prediction of the gas temperature varying with time at 

different grid points along the compartment upper opening, ASP-1 to ASP-5. It was 

observed that the gas temperature was drastically reduced within the upper opening 1 

second after the water spray activation, a characteristic similar to the prediction made 
inside the compartment within the upper layer. The overall cooling effect within the 

upper layer had reduced the external flame length which was burning near the 

compartment upper opening. The trend of the gas temperature reduction was similar 
for all locations along the compartment opening ASP-1 to ASP-5. 
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Figure (8.3). Predicted gas temperature contours through the lateral y-z plane at the centre of the 
jet fire with external convective heat loss, h,, of 10 W/m2 K, and no radiation, either external or 
in the flow. Showing the effect of a coarser grid. 
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Figure (8.5). Predicted gas temperature contours through the longitudinal x-y plane at 
the centre of the jet fire with no radiation in the flow, but with both convective and 
radiative external heat loss when h,, r= 55 W/m2 K has been used. 
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Figure (8.6). Predicted gas temperature contours through the lateral x-y plane at the 
centre of the jet fire with no radiation in the flow, but with both convective and radiative 
external heat loss for when h,, = 55 W/m2 K has been used. 
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Figure (8.7). Predicted gas temperature contours through the longitudinal x-y plane at 
the centre of the jet fire using the DTRM radiation model in the flow and both external 

convective and radiation heat loss, the number of rays used, 0=8 and 4=8. 
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Figure (8.8). Predicted gas temperature contours through the longitudinal x-y plane at 
the centre of the jet fire using the DTRM radiation model in the flow and both external 
convective and radiation heat loss, the number of rays used, 9=6 and ý=6. 
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Figure (8.9). Refined grid distribution in the compartment. 
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Figure (8.10). Predicted gas temperature contours through the longitudinal x-y plane 
through the jet fire section using the DTRM radiation model in the flow and both 

external convective and radiation heat loss, with a refined grid (see Figure 8.9). 
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Figure (8.11). Predicted gas temperature contours through the lateral x-y plane through 
the jet fire section using the DTRM radiation model in the flow and both external 
convective and radiation heat loss, with a refined grid (see figure 8.9). 
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Figure (8.12). Plan view of the predicted gas temperature contours in the x-z plane 1 cm 
(1 cell) below the ceiling when DTRM radiation model has been used. 
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Figure (8.13). Predicted gas temperature contours with radiation at the flow at the 
lateral y-z plane 1.3 cm from the baffle, showing the temperature of the inlet and exit 
flows. 
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Figure (8.14). Predicted wall temperature contours (y-z plane) of the back wall when 
the DTRM radiation model with external convection and radiation- 
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Figure (8.15). Velocity vectors predicted in the lateral y-z plane 3 cm from the back 

wall. 
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Figure (8.16). Predicted velocity vector 2 cm below the ceiling (1 cell) in x-z plane. 
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Figure (8.17). Predicted velocity vector of the jet fire section at longitudinal x-y plane at 
the centre of the jet fire. 
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Figure (8.18). Predicted velocity vector of the jet fire section at lateral y-z plane at the 

centre of the compartment. 
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Figure (8.19). Predicted velocity vector of the jet fire section at lateral y-z plane 1.3 cm 
from the baffle, showing the inlet and exit flow. 

9tbGa02 

9 718a02 

9Q. 62Fw02 

9 396.02 

9.27E. OY 

9.16E. 02 

9 Ol8.02 

e. 92e. o2 

6.818.02 

8.698.02 

8.578.02 

B. J6Fw02 

8 316.02 
8238.02 

8 11Fw02 

7 998.02 

7.868.02 

7 768.02 

7.618.02 

7 538.02 

7 118.02 
7 ? 98W2 

7I RF. p2 

ý aß. 02 

ö 918.02 

6838.02 

6J 18.02 

6398.02 
618Fw02 

6 36&. 02 

Y 
ýl 

Temperatine (K) 
Lnax=9.857E402 Lnin=6.361Et02 

May 05 1999 
Fluent 4.51 
Fluent Inc. 

Figure (8.20). Predicted temperature filled contours of the side wall in longitudinal x-y 
plane when radiation sub-model and he; a = 10 W/m2 K has been used. 
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Figure (8.21). Predicted temperatures filled contours of slice in the longitudinal x-y 
plane near the side wall when radiation sub-model and h,, = 10 W/m2 K have been used. 
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Figure (8.22). Predicted velocity vector at longitudinal x-y plane 15 cm (1 cell) from the 
side wall, showing the inflow direction and velocity in the bottom right and outflow 
velocity and direction at the top right corner. 
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Figure (8.23). Predicted trajectories of water droplets injected from one spray 
located in the centre of the compartment for 150° spray angle (with out fire). 
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Figure (8.24). Predicted trajectories of water droplets injected from one spray 
located in the centre of the compartment for 1200 spray angle (with out fire). 
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Figure (8.25). Predicted trajectories of water droplets injected from one spray 
located in the centre of the compartment for 600 spray angle (with out fire). 
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Figure (8.26). Predicted trajectories of water droplets injected from one spray 
located in the centre of the compartment for 90° spray angle (with out fire). 

1,00&09 

9.47E-04 

8.95E04 

817E04 

7 89E04 

7.97E04 

6.64E-04 

6.62E04 

5.79EO4 

5.36&04 

4.71E-04 

471E04 

363PO1 

3.16L01 

1431A 

3. l1aa 

IIl9F. Oi 

5.26FA5 

OOOPw00 

259 



, 
IOOo-03 

917E-0t 

69&01 

612E0/ 

69FA4 

37P. O1 

6/B0/ 

01 3211 

5.7601 

S. ä6&01 

1.71&01 

4 21F-04 

3 6e&o1 

3.16601 

243601 

z. 11601 

-59 04 

05&W 

526&05 

000Fw00 

Y 
or 

PatticldDiopkt Tc+jocboiiea 
Ttajoctaties Colatcd By Pattick Diameta (M) 

Jul 22 1999 

Fluent 431 

Fluent inc. 

Figure (8.27). Predicted trajectories of water droplets injected over the jet fire for 

water flow rate of 90 lit/min, 90° spray angle and d= 386 µm (COMP23). 
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Figure (8.28). Predicted trajectories of water droplets injected over the jet fire for 

water flow rate of 90 lit/min, 60° spray angle and d= 335 µm (COMP16). 
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Figure (8.29). Predicted trajectories of water droplets injected over the jet fire for water flow 

rate of 54 lit/min, 150° spray angle and d= 417 µm (COMP3). 
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Figure (8.32). Predicted velocity vectors after the water spray activation for 90 
lit/min (COMP16). 
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Figure (8.33). Predicted velocity vectors after the water spray activation for 36 
lit/min (COMP12). 

ý 1.93E10? 
1.166102 

1 79E402 

1.73610f 
1.66E102 

1 99601 

1 516d 
1 26607 

1J0Q. 02 
1.33E02 
1ffiE102 

1_20E102 
1. U6102 

9.326101 
166Fi01 
7 99601 

7 31601 

6.67E101 

l9. 

6 OOG01 

5.31E101 

1.61601 
1.016101 

3.35601 

1.696.01 
2.03601 
3.366.01 
6 91Eý0p 

3 62E-01 

Velocity Vectors W) 

Laoaz - 1.926E+02 Lmiu = 3.624E-0I 

Jul 22 1999 
Fluent 4.51 
Fluent Inc. 

Figure (8.34). Predicted velocity vectors at lateral y-z plane through the 
compartment centre when 90 lit/min water spray activated, (COMP 16). 
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Figure (8.35). Predicted velocity vectors at the back wall when 72 lit/min water 
flow rate used, (COMP51). 
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the flame length, (COMP 18). 
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Figure (8.37). Predicted filled contours temperatures for 54 lit/min water flow rate 
discharged from one spray located at the back of the compartment, (COMP 10). 
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Figure (8.38). Predicted filled contours temperatures for 72 lit/min water flow rate 
discharged from one spray located in the centre of the compartment, (COMP14). 
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Figure (8.39). Predicted filled contours temperatures for 36 lit/min water flow rate 
discharged from one spray located in the centre of the compartment, (COMP12). 

I 
1.7tä03 
1.738.13 

1685.03 

1.638.03 

l58ä03 

1538.03 

1.488.03 

I. 43ä03 

I. 395.03 

13lä03 

1298.03 

1218.03 

I19ä03 

1.145.03 

1.0iä03 

1.018.03 

9 905.07 

9.405.0? 

8.9Iä01 

$.. 42äm 

7 978.0' 

74 35.0 

6.93ßO? 

64lß02 

5.95äO2 

5.458.02 

l96ß02 

4.468.02 

3 978.02 

3.475.02 

2.986.02 

Iº= Tunpciatuic (K) 
Lanex = 1.781 E+03 Lmiu = 2.980E+02 

May 10 1999 
Fluart 4.51 
Fluent inc. 

Figure (8.40). Predicted filled contours temperatures for 54 lit/min water flow rate 
discharged from one spray located in the centre of the compartment, (COMP21). 
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Figure (8.44). Predicted filled contours of the water mass fraction on the walls from 90 
lit/min flow rate, (COMP 16). 
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Figure (8.45). Predicted filled contours temperatures before water spray activation 
(time=O S). 
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Figure (8.46). Predicted filled contours temperatures after water spray activation (time = 
12 S) for one spray nozzle located centrally with 72 lit/min water flow rate. 
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Figure (8.47). Predicted filled contour temperatures after water spray activation (time = 
5 S) for one spray nozzle located centrally with 72 lit/min water flow rate. 
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Figure (8.50). Predicted temperature versus time when one spray nozzle has been used 
with 72 lit/min water flow rate, (COMP4). 
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Figure (8.51). Predicted temperature versus time when one spray nozzle has been 
used with 72 lit/min water flow rate, (COMP4). 
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Chapter 9: Comparison ojExperimental and Numerical Results 

CHAPTER 9 

COMPARISON OF 

EXPERIMENTAL AND 

NUMERICAL RESULTS 

9.1 INTRODUCTION 

Numerical modelling was validated against programmes of experiments carried out in 

the 35 m3 steel compartment. Steady state without water spray (one phase) and with 

water spray (two phases) and time-dependent (transient) two-phase simulations were 

chosen for final validation purposes. 

In order to be able to have confidence in the predictions made by the model, the 

steady state and the time varying gas temperatures at the thermocouples locations 

ASP-1 to 5 and ASP-26 to 35 were monitored. From these locations and the 

arrangement of the numerical grid used some coincident positions were chosen for 
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comparison purpose. The comparison between predicted and experimental data of 

each test in the steady state case can be made using three different figures. 

Identical conditions were modelled to that used in the experiments to give the best 

similarity between predicted and measured results. 

9.2 STEADY STATE COMPARISON 

Direct comparisons between measured data and the FLUENT predictions of the 

temperature distribution at different locations along the compartment are made in 

Figures (9.1) to (9.8). 

Predicted gas temperature in the compartment shows a steady increase from floor to 

ceiling, in good agreement with the experiment. Temperatures measured at two 

vertical thermocouples strings situated 1 meter either side of the jet fire nozzle on the 

central plane, and comprising 5 thermocouples each are compared with predictions in 

Figures (9.1) and (9.2). 

Detailed data of the gas temperature distribution at the compartment opening is 

compared with the numerical results obtained by the FLUENT code in Figure (9.3). 

The mean gas temperature readings measured at five thermocouples locations of the 

compartment upper opening for the last two minutes are presented and compared 

with the data predicted when steady state conditions were reached in the same 
locations. The figure shows the predicted gas temperature is in good agreement with 

the measured data from the compartment outlet. 
Measurements from three thermocouples located at the vertical centreline of the back 

wall are compared with the predicted temperature in Figure (9.4). Overall agreement 

can be seen to be reasonably good, although wall temperatures close to the floor are 

predicted somewhat high. On the other hand, Figure (9.5) shows the measured 

temperature from four wall thermocouples located at the horizontal centreline of the 
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ceiling, and the predicted temperature for the same locations. From the figure the 

predicted temperature in the centre of the ceiling directly above the jet nozzle was 
higher than measured temperatures by 160° C. The most pronounced discrepancy 

between measured and predicted temperatures occurs at the location above the jet 

nozzle. With increasing distance from the jet nozzle, the predicted gas temperature 

distribution is in better agreement with the data. This is almost certainly due to the 

treatment of heat losses to the boundaries assumed to be prescribed by a fixed heat 

transfer coefficient of 55 W/m2 K. One factor which might cause this discrepancy 

between the measured and the predicted data is due to both numerical and measured 

error which contributes to this disagreement. Another reason for this discrepancy is 

that, at high temperatures, the products of combustion are partially dissociated into a 

number of atomic, molecular and free species. As each dissociation is endothermic 
(absorbs energy rather than releases it), this will tends to depress the final 

temperatures. 

Wall surfaces temperature predictions are compared in Figures (9.6) to (9.10) with 

measurements for both Southeast and Northwest walls. Whereby Figures (9.6) and 
(9.7) illustrated comparison between predicted and measured wall temperatures on 

vertical line at distance from the compartment opening at the Southeast wall at 4.467 

and 1.520 metres, respectively. 
The predicted and measured wall temperature distributions at the Northwest wall are 

compared in Figure (9.8). 

Temperature contours as estimated by five wall thermocouples in the experiment 
when steady state condition has been reached for the Northwest wall are shown in 
Figure (9.9). On the other hand, a contours plot has been made as well for the 

comparable wall location with same conditions shown in Figure (9.10). These two 
figures of contours plot show that relatively good agreement between FLUENT 

prediction and the experimental data of wall temperatures can be achieved; they also 
demonstrate the temperature distribution on the walls. 
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The average temperature of the gas at the location where the flue gas temperature was 

measured for the experimental study was 989° C. This was in good agreement (about 

4% less) with the predicted temperature which was 1030C. 

Overall properties and some point determinations are compared in table (9.1). The 

observation from the 02 and CO2 percentage experimental data reasonably agreed 

with the predicted concentrations. 
It was observed from the predicted and measured compartment surfaces temperatures 

shown in table (9.1) that there was greater heat loss in the experiments than in the 

prediction. This can be attributed to the facts that the exact compartment structure 

conditions were not known, and heat transfer from the structure elements and 

compartment to the outside atmosphere was based on assumptions. Also the 

uniformity of the heat transfer coefficient and emissivity used may have contributed 

to the difference. 

Property Prediction Measured 

Exit gas temperature 1030° C 989° C 

Exit 02 concentration 2.09 % 1.88 % 

Exit CO2 concentration 12.50 % 12.03 % 

Ceiling temperature 679° C 641 °C 

Floor temperature 520° C 200° C 

Southeast wall temperature 554° C 545° C 

Northwest wall temperature 556° C 548° C 

Back Wall Temperature 513° C 483° C 

Table (9.1). Summary of the averaged predicted and measured values for some data 
at steady state. 
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The results in table (9.1) show that the steady state model predictions are in excellent 

agreement with measurement. 
In general agreement is seen to be excellent although both the measurement and the 

numerical calculation errors can make contributions to this disagreement. 

9.3 WATER SPRAY MODELLING 

The comparison results of the water spray extinguishment are displayed through the 

same locations and positions as for steady state single phase fire scenario in section 

(9.2). 

The steady state water spray extinguishment comparison will be made on selected 

cases to represent coverage for the different parameters used, low and high water 
flow rate, small and large spray angle and spray number and spray locations. Some 

of the time dependent prediction were compared as well. 

93.1 STEADY STATE COMPARISON 

When no extinguishment occurred after the water spray activation and the burning 

continued, this is considered as two phase steady state. 
The results presented in Figure (9.11) and Figure (9.12) depict the temperature 

variation at the five locations at the Northeast string and upper opening, following 

spray activation for COMP13 which has 54 lit/min and one spray nozzle located 

centrally. From these, very interesting facts concerning the spreading of the spray in 

the compartment can be observed. Spray nozzle with 60° spray angle reduce the 

temperature of the middle and lower layers more than that of the upper layers. The 
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prediction point below the ceiling which corresponds to ASP-26 in the measurement 

is hardly affected by applying the narrow cone spray. However, this location is 

predicting higher temperature than respective measured thermocouple. Therefore, the 

decrease in gas temperature remote from the spray trajectories is, as expected, not as 

steep as the one in the spray region. The gas temperature comparisons, shown in 

Figure (9.11), are at the location near the upper opening, 0.38 metre below the 

ceiling. After the spray activation in this test, the conditions used in COMP 13 were 

not able to extinguish the fire, and steady state condition was reached, which made 

part of the flame burn at the upper opening. This caused the thermocouple at the 

opening to register higher temperature readings as can be seen in Figure (9.11). The 

results show that the prediction are in good agreement with the measurement, except 

in Figure (9.12) where FLUENT over predicted the temperature near the ceiling. 

The resulting comparisons of predicted and measured data for COMP21 are shown in 

Figures (9.13) and (9.14). From these comparisons, it can be observed that the right 

trend has been obtained for all five monitoring locations throughout the compartment. 

In this test the spray angle used was 90 degree and had larger coverage area than 

COMP13. As a result, the temperature reduction at the compartment opening was 

more than COMP13. 

Figure (9.15) plots all measured temperatures versus the predicted temperatures from 

all the Northeast string, from one spray located centrally which has 54 lit/min water 

flow rate and 150° spray angle nozzle. 

In Figure (9.16) the predicted and measured temperature of water spray 

extinguishment for COMP28 at the compartment opening is plotted . 
COMP28 has 

one spray nozzle located in the centre of the compartment with 54 lit/min water flow 

rates and 120 degree spray angle. On the other hand comparison COMP38 was made 

between predicted and measured results shown in Figures (9.17) and (9.18) for the 

front positioned spray with 54 lit/min and 150° spray angle. 
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Chapter 9: Comparison ofErperimental and Numerical Results 

Figures (9.19) to (9.21) show comparison between predicted and measured wall and 

ceiling temperatures when three spray 150° nozzles were used with 90 lit/min total 

water flow rate. 
As indicated in above Figures, (9.13) to (9.21), the results show that the two-phase 

steady state model prediction is in good agreement with the measurement. 

9.3.2 TIME DEPENDENT COMPARISON 

A further comparison between the predicted and measured temperatures for some of 
the tests which represent extinguished tests was made. 
The transient variations of the temperatures predicted at the thermocouple locations 

ASP-2, ASP-26 and ASP-33 are shown in Figures (9.22) to (9.24), together with the 

experimentally determined values. The test used was for one spray nozzle located 

centrally with 72 lit/min water flow rate. 
Figure (9.24) shows that after 8 seconds the predictions are much closer to 

measurements. 
Although temperature predictions are decreasing in time and follow the measured 

trend, the temperature difference between predicted and measured data could be 

accounted for in the coarseness of the grid existing around these locations, which 

makes it difficult to specify the coincidental locations of thermocouples used 

experimentally. Another important reason is the limitation for the modelling of the 

spray geometry and distributions. However, FLUENT user's manuals (1996) raises 

and points out limitation and skepticism about using time dependent models with 
dispersed phase simulation. 
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Figure (9.1). Comparison between predicted and measured temperatures at the 
Northeast string (ASP-26 to 30). 
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Figure (9.2). Comparison between predicted and measured temperatures at the 
Southwest string (ASP-31 to 35). 
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at ASP1-5 for 54 lit/min, one spray located centrally at 90° spray angle (cmp21). 
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Figure (9.14) Comparison between predicted and measured steady state temperature 
at ASP26-30 for 54 lit/min, one spray located centrally at 90° spray angle (cmp21). 
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Figure (9.16) Comparison between predicted and measured steady state temperature 
at ASP] -5 for 54 lit/min, one spray located at the centre of the compartment (cmp28). 
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ASP26-30 for 54 lit/min, one spray located at the front of the compartment (cmp38). 
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Figure (9.18) Comparison between predicted and measured steady state temperature at 
ASP31-35 for 54lit/min, one spray located at the front of the compartment (cmp38). 
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Figure (9.19). Predicted and measured back wall temperature comparison for three 
sprays used with total water flow rate of 90 lit/min and 150° spray angle, (COMP58). 
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Figure (9.20) Predicted and measured Northwest wall temperature comparison at 1.5 
in from the opening for three sprays used with total water flow rate of 90 lit/min and 
150° spray angle, (COMP58). 
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Figure (9.21) Predicted and measured Northwest wall temperature comparison at 
4.5 m from the opening for three sprays used with total water flow rate of 90 
lit/min and 150° spray angle, (COMP58). 
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Figure (9.23) Predicted and measured ASP-33 temperature comparison for one 
spray 150° nozzle used with total water flow rate 72 lit/min (COMP4). 
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Chapter 10: Conclusions and future work 

CHAPTER 10 

CONCLUSIONS AND FUTURE 

WORK 

10.1 CONCLUSIONS 

An experimental and computational work was conducted to study the 

behaviour and the temperature distribution of a jet fire in a compartment, to 

produce CFD model with combustion and heat transfer, and to determine the 

relationship between the extinguishing effectiveness of water spray and droplet 

size and distribution, and the location of the spray nozzle regarding the jet fire 

nozzle position. A large-scale compartment jet fire suppression rig was used 

and modified to simulate the offshore compartment. 
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10.1.1 JET FIRE WITHOUT WATER SPRAYS 

Case studies representing compartment jet fire were examined. They showed 
that the flow of the high momentum jet can induce a very powerful 

recirculation flow in the compartment. The temperature distribution 

predictions of the gases and of the compartment surfaces made were in good 

agreement with experimental measurements. Correct trends in gas temperature 

changes were obtained. 

The discrete transfer radiation model (DTRM) and heat transfer at the 

compartment surfaces was used in the modelling. Implementation of these 

models improved the accuracy of the prediction, in comparison with the 

adiabatic condition. The radiation model (DTRM) was computed for 6 and 8 

rays, fired from the solid surface of each boundary cell. The results showed 

that the radiation calculation was the same in both cases. Therefore, six was 

used for both 0 and 0, which reflects a compromise between computational 

economy, uniformity and accuracy of coverage. Applying a radiation 

correction factor at the compartment opening was recognised to be very critical 

to the accuracy of the radiation calculation and prediction of the temperature in 

the compartment, which takes into account the influence of the temperature of 
the gas beyond the inlet and outlet boundaries, and corrects these temperatures. 

The heat transfer at the walls was applied by using the combined external 

convective and external radiation boundary conditions. A simplified approach 

was used to estimate the heat transfer coefficient. 

The DTRM radiation model and heat transfer at the compartment surfaces 

showed that nearly a 20% temperature reduction resulted when compared with 
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the adiabatic conditions, and this was a closer match to what was actually 
observed. 

The model developed showed that the FLUENT prediction procedure is 

capable of producing the main features of the three-dimensional flow field, and 

of predicting the steady state temperature distribution in the compartment with 

good accuracy. 

10.1.2 JET FIRE WITH WATER SPRAY 

The water spray was activated experimentally when the 5 minutes pre-burn 

time was reached. In the simulation when the fire reached steady state, the 

water spray was activated, and computation was continued iteratively until the 

two-phase converged to another steady state. 

In order to supply data for spray characterisation in the numerical modelling, 
droplet size measurements with four different types of spray nozzle were 

made. The results from droplets measurements showed that in each case 
increasing the water flow rate decreased the water spray droplets diameter at 

constant spray angle. In the other hand, it was found that high dependence on 
droplet size with spray angle occurred and the higher the spray angle, the 

smaller the droplet size produced at constant water flow rate. 

A simple approach for modelling the water spray in the CFD was used. As 

only limited number of droplets can be tracked computationally, the spray 
droplet distribution needs to be discretised. The spray is represented by five 

groups of droplets. Different water droplet sizes and similar water flow rate 
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was assigned for each group in order to get a uniform distribution. Each spray 
in the model was simulated using twenty-five injections. The model was 

completed by assigning the spray angle, droplet discharge velocity and spray 
location. The water particles were introduced into the gas phase flow 

computation every 5 iterations to balance conservation equations (mass, 

momentum and energy). Large numbers of iterations were allowed until both 

water spray and continuous phase flow reached a steady state simultaneously. 

The drop in temperatures after water spray activation is characteristic of all 

thermocouples location inside the compartment, and is reflected in reduced 

temperature at the outlet opening as well. However, the absorption of heat 

from a fire by a water spray is defmitely a function of a water discharge rate 

and mean droplets size. 

The minimum water flow rate resulting in extinguishment of a jet fire in a 

compartment is strongly dependent on several variables such as spray angle 

and mean droplet diameter. A 150° spray angle was found to be the most 

effective in achieving temperature reductions because it produced the smaller 
droplet sizes. However, the minimum amount of water required for effective 

extinguishment of a 4.5 MW propane jet fire was determined for the different 

extinguishing arrangements. To extinguishing the jet fire from a single spray 

nozzle, the minimum water flow rate was about 72 lit/min for the nozzle type 

K50 150D, with a 150° spray angle, located centrally directly above the jet fire 

nozzle. The extinguishment time was found to be 12 seconds for the 35 m3 

compartment. For three spray nozzles the minimum amount of water flow rate 

was found to be 108 littmin. In the case of the two spray nozzles setup the 
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total water flow rate needed was in the range of 90 lit/min, for the spray 
located centrally and in the front of the compartment. This result shows that it 

may be possible to extinguish a jet fire with water spray without a direct hit but 

with higher water flow rate. However, for controlling the jet fire, the 

minimum amount of water flow rate was found for each spray angle used (60, 

90,120 and 150°) and for each spray nozzle arrangement. It showed that the 

minimum amount of water required for controlling jet fire was 36 lit/min found 

at 150° spray angle when one spray nozzle was used. The maximum water 
flow rate required to control the jet fire before extinguishment could occur was 
found to increase with the decrease of the spray angle. It reached 90 lit/min at 
60° spray angle. For the different spray number and location at 150° spray 

angle, the minimum amount of water required for controlling jet fire was found 

to be 72 lit/min when two spray nozzles were used and located at the front and 

centre of the compartment. A higher water flow rate of 90 lit/min was required 
for controlling the other two spray nozzles arrangements. 

The limited number of nozzles and test conditions does not allow a too general 

conclusion to be drawn. It was found that the minimum extinguishing water 
flow rate per spray depends on the location of flame with respect to the spray 
heads and number of spray nozzles activated, e. g. minimum water flow rate 
from one spray nozzle located above the flame was 72 lit/min; from two spray 

nozzles located above the flame and in the front of the compartment it was 45 

lit/min and from three spray nozzles with one of them located above the flame 

36 lit/min. To make a comparison with existing standards it is necessary to 

simplify the above observations, because these minimum water flow rates to 

extinguish the jet fire were based on specific fire-spray arrangements. If the 
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simplification is made by accounting for the different fire locations with 

regards to the spray heads the resulting scenario will be as follows. When the 

arrangements change these minima may not be enough to extinguish the fire. 

Therefore, in order to extinguish the jet fire which could issue from any 

position in the compartment, all the three spray nozzles in the compartment 

should be activated at a flow rate per spray head typical of the minimum rate 
found for one spray above the flame, i. e. 72 littmin; this gives a total flow rate 

of 15 lit/min/m2. This result can be compared with one of the most used 

guidelines for design of an extinguishment or fire control system which 

showed agreement with NFPA-15 (NFC code, 1994) and NFPA-750 (NFC 

Code, 1997). The result, which is 15 lit/min/m2, falls within normal NFPA 

range which applied to most flammable gases as ranging from 8.1 to 20.4 

lit/min/m2. 

When a spray systems design is to be made, consideration should be taken of 
the areas around the vent or any opening, because near the vent there will be an 

external flame. So more care should be given to that area. In addition, using a 

spray nozzle at a location near the opening will help extinguishment because 

the water droplets will be carried with the air entrained and the spray will 

create a water curtain which will obstruct the air entrainment and will limit the 

combustion gases from leaving the compartment. 

From the tests it is observed that the extinguishing effectiveness of the water 

spray decreased with increasing droplet diameter. In the tests, the optimum 
Sauter mean diameter found was 190 pm (SMD), with at least 15 m/s water 

velocity at the exit. Therefore, nozzles that produce the highest velocity and 
the largest number of small droplets will be the most successful. 
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The spray angle effect when used with a jet fire is not still understood, because 

in this study different spray angles used produced different droplets sizes when 
the water flow rate and the other conditions were constant; the larger the spray 

angle, the smaller the droplets sizes produced were. Therefore, to find out the 

parameters of the extinguishing effectiveness when the water flow rate, spray 

number and location conditions were fixed, it was not clear that the reduction 

of the temperature was due to either the spray angle or the different droplet 

sizes produced with this type of spray angle. Nevertheless, a larger spray angle 

of 150° gave the maximum overall temperature reduction and is recommended 

to be used since it gave a larger coverage area and smaller drops sizes at any 
flow rate used. 

The present study shows that the current version of the CFD code (FLUENT) 

is able to provide a satisfactory and practical means of modelling jet fire and 

extinguishment processes and is a very competent tool for predicting flow 

patterns within a confined volume. It is clear that present CFD codes with 

combustion are now able to provide us with details of the factors which control 
the steady state behaviour of confined fires and allow a mechanistic approach 

to the study of the dynamics of extinguishment. 

Correlation between the predicted and observed wall temperature data could be 

improved further by accounting for the non-uniformity of steel temperature, 

heat transfer from the enclosure to the surroundings and by using a better 

estimate of the coefficient of heat transfer. 

The water discharge rate and the median drop size of the water spray were 
recognised as important parameters in the cooling of compartment fires by 
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water spray. The stable temperature stratification within the compartment was 
disturbed by the injected water spray, and as a result, the mixing process and 

churning up of the layers appeared to cause an increase in the temperatures in 

the lower level of the compartment. Time dependent calculations provide a 

valuable insight into the changes taking place during the extinguishment 

process and indicate that time scales are consistent with observed values in 

field experiments. 

The results have demonstrated the capabilities of the present prediction 

technique in modelling the mitigation of a compartment jet fire. It is 

encouraging to see that the numerical results indicated the correct trends. The 

computational and experimental study of the mitigation of the compartment jet 

fire and extinguishment by water spray reveals some interesting data. 

Computational fluid dynamic modelling using radiation and surface heat 

transfer provides a good representation of measured temperatures. 

The relatively good agreement with experiments has shown that the model 

reproduces the water spray fire interaction with considerable accuracy. 
However, to predict fire extinguishment phenomenon more accurately, a 

computer model which accounts for effect of radiation on the droplets and 

spray interaction with the surface of the compartment should be developed. 

This success increases confidence in the use of this CFD package for further 

simulation to reveal essential information about the ability of a water spray 

system to mitigate a compartment jet fire. Testing such a system 

experimentally needs a lot of auxiliary equipment and delicate instruments 

with high accuracy, which increases the cost of the experiment. The CFD 
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technique was introduced and verified as an alternative option. Therefore, the 

CFD results bring some confidence in its use as a design tool to improve and 

extend previous knowledge about the mitigation of compartment jet fires. 

The test programme has shown, for at least the scenarios investigated, the 

promise and potential capabilities of the water spray systems as a fire 

suppression system for compartment jet fires. There is however still much to 

be learned for proper system design, engineering and reliability. 

10.2 RECOMMENDATIONS FOR FUTURE 
WORK 

The resolution in data logging system is 4 seconds, and the best estimate 

of extinguishing time is 4 seconds. This time is considered large for the 

extinguishing time in which so much action could happen in this period. 

Therefore, a data logging system with finer resolution should be used 
for further study. 

2. In the experiments, it has been observed that it is difficult to get 

parameters such as droplets size, water flow rate and spray angle 
independent from other parameters. Therefore, similar study but with 

parameters independent of one another should be used by providing the 

proper facility. 

3. Further study should be made by investigating some other variations to 

the different parameters to investigate the effect of the heat release rate 
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on the characterisation of the spray system. Therefore, studying the 

effect of the spray characterisation based on these variables should give 
insight into the fire-spray interaction and could provide general 

engineering conclusions. 

4. The jet nozzle location is a very important parameter which influences 

the size and strength of the combustion recirculation zone on the 

extinguishing effectiveness and quality. Therefore, further study which 

takes into account the jet nozzle locations would provide very valuable 
information. 

5. Ventilation is a critical parameter which affects the stability and the 

combustion efficiency inside the compartment as well as the flow field 

of the combustion gases. Since this study kept the ventilation parameter 

as a constant, studying the effect of the ventilation on the extinguishing 

effectiveness would be very useful. 

6. In this study, the amount of CPU time involved to simulate a time 

dependent case is clearly unacceptable. Very careful investigations for 

the time dependent model in CFD and further research which focuses on 
investigating time dependent cases is needed, in order to reduce this 

CPU time. 

7. Studying the rate of evaporation and the distribution of water in the 

experiments will give insight into the effectiveness of the systems used. 
These can be investigated by placing many small cylindrical buckets on 

the compartment floor with weighing facility. 
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8. In this study reasonable agreement has been achieved between the 

experimental results and the steady state CFD model predicted results 
for fire conditions in an offshore compartment module. Further 

research focusing on validating the CFD time dependent model under 

realistic jet fire conditions is recommended. 

9. Since the wind speed and direction will affect the behaviour of the jet 

fire, future research should take into account the wind speed and 
direction as a variable parameter in studying the mitigation of 

compartment jet fires. 
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NUMERICAL MODELLING STUDIES OF A COMPARTMENT 
JET FIRE USING WATER SPRAY 

K Alageel, BCR Ewan, J Swithenbank 
Department of Chemical and Process Engineering, University of Sheffield, Mappin 
Street, Sheffield, S 13JD 

The research work presented here addresses the problem of the 
suppression of a compartment jet fire by water sprays. This involved 
studying the interaction between water spray and a turbulent jet flame 
inside a compartment of dimension 6x2.4x2.4 m. The fuel used for the jet 
fire was propane emerging from a 1.5 cm diameter vertical nozzle and at a 
mass flow rate of 0.1 kg/s. Using a CFD code with combustion, the time 
dependent behaviour of the droplet dynamics was studied as well as its 
effect on the fire's temperature, 02 consumption and species concentration. 
The results obtained have a relevance to the design and operation of 
offshore modules. The study can be divided into two main stages. The first 
dealt with the modelling of the turbulent confined jet fire and the flow of 
the combustion gases produced within a compartment, whilst the second 
involved the introduction of the cold water droplets through different spray 
head arrangements for different parameters. 

Results show that present CFD codes are able to make sensible predictions 
about the stratified nature of the flow during steady state burning and also 
predict the behaviour of temperature and species concentration during the 
extinguishment process on a time dependent basis. 
Keywords: Compartment fire, Jet fire, Water spray, Fire extinguishment. 

INTRODUCTION 
The safe design and operation of process plants requires an ability to predict hazard 
consequences reliably. A particular hazard is a jet fire arising in a confined space 
such as may exist on offshore gas and oil production platforms or land based gas 
facilities, the particular concern being the capability of such fires to produce large 
amounts of soot and carbon monoxide. 
Industries continue to seek efficient and cost-effective means of protecting their plants 
and personnel from the hazards of fires. Following disasters, which occurred in the 
past, the need for effective mitigation systems has, once again, been highlighted. 
Mitigation systems involving agents such as halons, which are perceived to be 
environmentally damaging, are currently out of favour and interest has revived in the 
use of water sprays. 
The main objective of the study is to investigate the interaction of the water sprays 
with a jet fire in an underventilated (confined) space, using CFD. In order to achieve 
the above objective, it is necessary to produce a workable CFD model of a confined 
jet which is representative of conditions which might exist offshore. 
For this purpose a compartment has been chosen since this represents a geometry 
which has been the subject of a number of experimental and analytical studies. 

COMPARTMENT GEOMETRY AND OPERATING CONDITIONS 
The compartment dimensions were those of a standard container being 6m in length 
by 2.4m high and 2.4m in width. In order to extend the computation space beyond the 
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Experimental and modelling studies of 

Compartment Jet Fire Suppression Using Water Spray 

K Alageel 
, 

BCR Ewan and J Swithenbank 

Chemical Engineering and Fuel Technology 

Mechanical and Process Engineering Department 

University of Sheffield 

Mappin Street 

Sheffield, Si 31D, UK 

The safe design and operation of process plants requires an ability to predict hazard consequences 
reliably. A particular hazard is a jet fire that might arise from the ignition of an accidental release of 
pressurised gas or liquid. Mitigation systems involving agents such as Halon, which are perceived to be 
environmentally damaging, are currently out of favour and interest has revived in the use of water sprays. 

The objective of this study is to assess the effect of fine water spray droplets on a propane jet fire which 
burns at 0.1 kg/s inside a compartment 6m long, 2.5 m wide and 2m high (fig. 1). The total volume is 
30 m3 with reduced ventilation to simulate accidental fires in offshore modules. The vertical jet nozzle 
size is 1.5 cm. in diameter. 

Mathematical modelling was done by using the computational fluid dynamics programme FLUENT. The 
modelling approach used divided the domain of interest (i. e. the compartment) into a number of discrete 
cells (25000) and the conservation equations was solved foreach cell to obtain the field variables such as 
the fluid density, species concentrations, and temperature. The geometry was specified to be open at one 
end with induced ventilation arising from the jet entrainment. 

In the initial stages of this study, the modelling of the development of the jet fire and the associated 
movement of combustion products within closed system of inter-connected compartment was carried 
out. This was followed by the development of the model for the dispersion of water spray droplets. 

The simulation starts by first running the code without combustion to do the cold flow calculations in the 
compartment. Following that, the jet fire is ignited and the calculation was resumed until the dispersion 
of water spray is activated, the code tracks the flow of water droplets in the compartment and the 
interaction between the droplets in terms of mass, momentum and heat transfer. The water flow rates 
used in the studies were 0.05,0.075,0.1,0.15 or 0.2 kg/s in each time for different spray(s) locations. 
For propane flame, fuel dilution due to water evaporation decreased the CO2 and CO production rate and 
the O2 depletion rate, figures 2-6. Less hydrocarbons were burned and the hydrocarbon percentage was 
observed to increase as the water application rate was increased with further increase in the water 
application rate, dilution effects become dominant and the flame gets extinguished. 
The result shows that, for this study, oxygen depletion is not the'main cause of extinguishment as there is 
still enough oxygen in the compartment to sustain the combustion. 
The result of this work will be validated with experimental result. 
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MITIGATION OF COMPARTMENT JET FIRE USING WATER SPRAY 

K Alageel, BCR Ewan, J Swithenbank 
Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield, Si 3JD, UK 

INTRODUCTION 
The main objective of the study is to investigate the interaction of the water sprays with a jet fire in an underventilated 
(confined) space, using CFD. In order to achieve the above objective, it is necessary to produce a workable CFD model of a 
confined jet which is representative of conditions which might exist offshore. 
For this purpose a compartment has been chosen since this represents a geometry which has been the subject of a number of 
e-Mperimental and analytical studies. 

COMPARTMENT GEOMETRY AND OPERATING CONDITIONS 
The compartment dimensions were those of a standard container being 6m in length by 2.4m high and 2.4m in width In order 
to extend the computation space beyond the actual compartment, in the manner recommended for example by Markatos (1), 
the compartment was situated within a larger chamber, allowing the cells at the compartment opening to be live. This outer 
environment provided the source for combustion air and an outlet for all the gases to exit, without imposing restrictions to the 
flow into and out of the compartment. 
Propane gas is injected into the compartment through a 1.5 cm diameter nozzle of length 25 cm situated on the floor of the 
compartment and at its centre. Air is provided from the outer environment chamber into the region of the compartment 
opening and at low velocity to enable the compartment to entrain as much as is required for combustion. 
The propane gas jet entrains air into the compartment, and so the flow rate of air into the domain defined by the outer 
chamber needed to be several times the stoichiometric quantity needed for combustion. This outer air supply flow velocity 
was around 0.3m/s and the propane velocity at the jet nozzle was equal to 250 m/s. 

TWO-PHASE MODELLING 
In order to combat fire it is necessary to understand the nature of the interaction between the hot combustion products and the 
liquid water. Factors which need to be considered include water flow rate, spray pattern, droplet size and the number and 
location of spray heads. 
It is important also to find out the maximum amount of water that can be discharged from an appropriate spray head in order 
not to flood the compartment and cause water damage. 
The simulation started by studying the effects of a single spray located at different positions in the roof of the compartment. 
This will give a chance to better understand the fire-spray interaction and evaluate the best spray(s) location to be used to 
carry out a more detailed investigation. The total water flow rate for each of these arrangements was varied from 0.1 to 3.3 
kg/s and the velocities of the droplets used varied between 5 and 25 m/s. The mean droplet diameters could be chosen within 
the range from 100 to 600 . un. Finally the spray angle used for each of the spray heads is represented by 5 injection 
directions with each direction having the possibility of an independently defined size and velocity range. 
Three spray locations were examined In the first, a single spray is located above the propane nozzle. The remaining two 
Placed on the font/rear axis and 2. Om on each side of the centre. 

RESULT AND DISCUSSION 
Initially, the steady state behaviour of the compartment fire was evaluated and used as the starting condition for the 
subsequent two phase calculation. Prior to the spray activation, the fire plume was able to rise straight upwards and spread 
outwards along the ceiling. For the case of a single spray located above the propane jet and at a low flow rate less than 1 
kg's, two major flows were apparent after the solution fully developed. The first, generated by the water spray, was 
downwards whilst the second, generated by the fire, was along the ceiling. These two currents met towards the centre of the 
compartment, aiding the mixing and cooling process. The value for temperature used in the calculations throughout this paper, is the average temperature from the upper two-third 
of the compartment. Because of the configuration of the inlet to the compartment, realistic values of temperature are only 
obtained above this cooler inlet region. From the modelling of different spray locations, the results show that less water is needed to extinguish the flame in the case 
of a single spray located centrally above the jet nozzle. For most flow rate, this location also gave lowest temperatures as 
shown in Figure 4. Subsequent modelling therefore used a single spray located in the centre of the compartment above the jet 
nozzle. 
Figure 1 shows the average temperature in the compartment as function of mean droplet diameter of 100,200,300,400,500 
and 600 µra The curve is nearly parabolic and the lowest temperature was found with mean droplet diameters of 300 lim. 
Subsequent modelling was therefore carried out using mean diameters of 300 µm. It is likely that the minimum arises from 
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FLUENT setup and input parameters 
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Appendix III 

FLUENT Residuals Report 
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