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Abstract

This thesis addresses the problem of estimating the surfacereflection model of objects ob-
served in a terrestrial scene, illuminated by natural illumination; that is, a scene which is illumi-
nated by sun and sky light alone. This is a departure from the traditional analysis of laboratory
scenes, which are illuminated by idealised light sources with positions and radiance distributions
that are precisely controlled. Natural illumination presents a complex hemispherical light source
which changes in both spatial and spectral distribution with time, terrestrial location, and atmo-
spheric conditions.

An image-based approach to the measurement of surface reflection is presented. The use
of a sequence of images, taken over a period of time, allows the varying reflection from the scene
due to the changing natural illumination to be measured. It is shown that the temporal change in
image pixel values is suitable for the parameters of a reflection model to be estimated. These pa-
rameters are estimated using regression techniques. Two such regression methods are considered:
a traditional non-linear method and the probabilistic approach of simulated annealing. It is shown
that simulated annealing provides consistent performancein this application.

This work focuses on the use of physically-based models of illumination, surface reflection
and camera response. Using such models allows the system to produce quantitative, as opposed
to qualitative, results and allows radiometric measurements to be made from image pixel values.
The use of accurate models of daylight illumination allows scenes illuminated by skies of varying
atmospheric conditions to be considered. The results obtained by the presented methods may be
used for a variety of tasks ranging from object recognition to the automated generation of virtual
environments.

Results are presented which show that the proposed method issuitable for the wide variety
of camera positions, surface orientations and sky conditions that may be experienced. The method
is also shown to be tolerant of image noise and may be used on single or multiple pixels within
each image. These results are based on the analysis of synthetic image sequences generated using
a validated lighting simulation system. Results are also presented for real data recorded using a
camera.
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Chapter 1

Introduction

A human observing a scene can acquire a wealth of informationregarding the shape of objects

in the scene, the nature of the light sources and the nature ofthe material with which objects

are composed. This in-depth analysis of a scene, possible even when presented with a single

image, is attained with little conscious effort by the observer. To date, no machine-based system

has managed to achieve a performance similar to that of the human visual system. This thesis

focuses on a single aspect of these abilities: analysis of the surface material or, more specifically,

the modelling of light reflection from that material. However, this cannot be achieved without

consideration of object shape and illumination. The appearance of an object is a direct product of

object shape, surface material and illumination. None of these may be adequately considered, in

the context of image shading, without accounting for the accompanying factors.

This thesis focuses on the estimation of a surface reflectionmodel for an object within a

naturally illuminated scene. That is, a scene which is illuminated by light from the sun and sky.

This represents a dramatic departure from the traditional analysis of images which have been ob-

tained under laboratory conditions using idealised light sources. Such ideal sources of illumination

provide convenient conditions in which to interpret image information. Natural illumination, how-

ever, provides a complex and ever changing light source. This change is both temporal and spatial.

The apparent movement of the sun with time yields an illumination which changes throughout the

day, the year, and for differing terrestrial locations. Theillumination due to the sky changes not

only with the motion of the sun but also with atmospheric conditions. These conditions provide

a hemispherical source of illumination which exhibits spatial variation in brightness and spectral

1
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composition.

Results from the analysis of naturally illuminated scenes can be used for a variety of pur-

poses. Object recognition relies heavily on both shape and material properties; using either char-

acteristic in isolation will not provide a generalised recognition system. For example, a robotic

system requested to select the “glossy red ball” requires both the shape and reflection characteris-

tics of each object in the scene to ensure that the task is performed correctly.

The results may also be used for remote sensing purposes, such as planetary surface explo-

ration. The reflective properties of a planetary terrain provide vital information on the physical

structure and chemical composition of its topmost layer, and hence on the geological history of

the terrain.

This technique could also be used for the generation of virtual environments based upon

existing, naturally illuminated, scenes. Once the reflective properties of the scene have been mea-

sured, the resulting virtual environment may be illuminated using a wide variety of illuminants,

not just natural ones, and observed from camera positions not used when the scene was analysed.

A practical application of this would be in architectural design. The material reflection properties

of an existing building may be measured and the resulting information used to model structural

modifications or extensions in a virtual environment.

1.1 Quantifying Reflection

The study, and quantification, of light reflection dates backto the 18th century. At this time

the performance and limitations of the human visual system were being explored. Leading this

pioneering work was Pierre Bouguer (1760). Bouguer’s work defined the field of photometry and

hence allowed scientific measurement of human visual capabilities. It is also at this time that the

first mathematical models of surface reflection were being formulated. Lambert’s (1760) theory

of light scattering from surfaces is still widely used today.

The work of James Clark Maxwell (1864) provided a physical and theoretical framework

with which to understand light’s interaction with the environment. The modelling of light as an

electromagnetic wave unifies the theory of light propagation with that of radiant heat transfer.

This theory, and that of the quantum nature of light, has provided many models of light reflection.
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Each of these models presents an approximate solution to Maxwell’s fundamental equations, for a

variety of surface types.

The field of radiometry provides a physically-based framework within which light reflection

may be studied. It provides a set of quantities which allow the reflection from a surface to be

measured. This thesis examines two aspects of light reflection: the scattering of incident light by

the surface material, and the attenuation of wavelength to produce apparent surface colour. The

distribution of light reflected from a surface is determinedby the scattering that takes place at the

surface and within the bulk of the material. The level of scattering is governed by the material

type and the roughness of the surface. The perceived colour of an object is a product of the

illumination and the surface material. These factors can becharacterised in a functional model of

surface reflection.

Using measurements of surface reflection, a mathematical model of a surface’s character-

istics may be formulated. The resulting model is a function of both illumination and viewing

positions as well as the spectral and spatial nature of the light source. A general reflection model

may be considered as having variables and parameters. The variables of the model describe the

directional quantities being considered and the wavelength of illuminating light. These values will

change for a given object as the light source is altered or theobject is moved about the scene.

However, the parameters of the model characterise the levelof scattering from the surface and the

wavelength attenuation of incident light. These parameters are fixed for any given surface mate-

rial, regardless of how the object is viewed or illuminated.It is these parameters which are to be

estimated by the system presented in this thesis.

1.2 Physics-Based Machine Vision

In the early 1970s, Berthold Horn saw that the use of radiometric models of light reflection and

image formation allowed detailed analysis of digital images. In particular it was shown that surface

shape could be estimated from a single image by analysis of image shading. The use of such

physically-based models presented a departure from the traditional, geometry-based, approaches

which used oversimplified models of illumination, surface reflection and camera optics.

The advent of ever increasing computing power has allowed physically-based models, de-
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rived from the consideration of differential quantities, to be employed. These models have been

developed in the fields of radiant heat transfer, energy conservation, computer graphics and ma-

chine vision itself. Such models are used in this work for allaspects of the imaging process. Whilst

accurate models of image formation and surface reflection have been used before in machine vi-

sion, the use of physically-based models of daylight illumination have not. This thesis, therefore,

presents a significant extension to the study of physics-based machine vision.

The use of such models allows quantitative, as opposed to qualitative, results to be produced.

These results may be used in a variety of applications which require accurate measurements. For

example, a system which determines a surface to be red and glossy is not providing results suitable

for predicting light levels in a room containing the surface. Such calculations require radiometric

models of surface reflection that quantify surface properties. This thesis presents a system that can

determine appropriate radiometric models for materials ina naturally illuminated scene, given a

sequence of images of that scene.

1.3 Approach Used

The approach used in this thesis is to determine surface reflection model parameters for an object

observed in a sequence of images obtained with a static camera. The images of the sequence are

acquired over a period of time. Given that the observed sceneis illuminated by sun and sky light, it

is expected that the nature of the illumination will change over the duration of the sequence. Each

image of the sequence, therefore, observes the scene in a different set of illumination conditions.

A typical sequence of images, taken hourly on a clear day, is shown in Figure 1.1. This sequence

clearly shows how the appearance of an object is dependent upon the changing natural illumination

in conjunction with the surface properties. It shows not only a change in total brightness but also

the spectral change in the illumination.

It is assumed that the location and geometry of the scene, thecamera’s projection charac-

teristics, and the prevailing weather conditions for each image in the sequence are knowna priori.

Each of these may be estimated using existing methods, whichshall be discussed where applica-

ble. Whilst these are significant assumptions, it is felt that future work may look to relaxing these

requirements. Further to this, it is shown that the methods developed in this thesis may be used

directly if such information is not known, though experiments are not performed to evaluate this.
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Figure 1.1: Sequence of images showing a building, ob-
served hourly, on a clear day.

The pixel values of an image sequence represent light reflected from the observed surface

in the direction of the camera. Using the physically-based models derived for illumination and

camera response it is possible to use such pixel values as a measurement of reflected energy. The

task presented by this thesis is, therefore, to find the parameters of a model which best charac-

terise the observed reflection. This common problem, of finding the model parameters which best

fit observed data, is that of regression. Two methods of regression are considered: Levenberg-

Marquardt non-linear regression, and the probabilistic approach of simulated annealing. The for-

mer technique is commonly used for such tasks but it is shown to be unsuitable in this case. The

use of simulated annealing for this task is a novel approach to solving the problem of reflection

model parameter estimation.

This thesis will show that it is possible to estimate the parameters of a surface reflection

model which best characterise the object’s surface material characteristics using the temporal

change in image pixel values. It shall be shown that such analysis may be performed by consid-

ering a single or multiple image pixels within each image. The methods suitable for this analysis

will be developed by considering synthetic image sequencesproduced using a validated lighting

simulation system. The analysis of such sequences providesan understanding of the limitations

of the methods and the effects that the many viewing, illumination, and surface orientation condi-

tions may have on system performance. Using such sequences,the consequences of image noise

shall also be considered. Comparative results are presented for the two regression methods consid-

ered. Finally, a real image sequence, observing a variety ofmaterial samples, and obtained using

a camera, is analysed.



Chapter 1. Introduction 6

1.4 Overview of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: A review of the relevant background material and related research.

Chapter 3: A detailed discussion of light reflection based upon electromagnetic and quantum

theory. A model of surface reflection is presented which accounts for the reflection from a

wide variety of surface types.

Chapter 4: A description of daylight illumination models developed bysolar energy researchers.

This chapter also presents a description and comparison of various methods to enable their

use in machine vision tasks.

Chapter 5: Development of a radiometric sensor model which will allow surface reflection to be

measured from a colour digital image. The model allows imagepixel values to be interpreted

in the context of a surface reflecting light which is incidentfrom a possible hemisphere of

directions.

Chapter 6: A description of methods which may be used to estimate the parameters of a surface

reflection model from a sequence of colour images. These methods are developed by consid-

ering a number of synthetic image sequences. These sequences allow the limitations of the

methods to be explored for the wide variety of viewing, illumination and surface orientation

conditions that may exist.

Chapter 7: Results for two of the suggested regression methods. Results are shown from the

analysis of synthetic image sequences in addition to a real image sequence.

Chapter 8: Conclusions and a discussion of future work.

Appendix A: Relevant radiometric and photometric definitions and nomenclature.
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Related Work

The measurement of surface reflection or, more specifically,a bidirectional reflectance-distribution

function (BRDF)1 may be achieved through the use of expensive, specialised equipment such as

a gonioreflectometer [89]. Such devices use precise light sources, often lasers, and accurately

calibrated sensors to measure reflectance for the full rangeof possible incident and reflection

directions. The fine precision of such measurements resultsin data from which an accurate BRDF

model can be developed. Owing to their precise nature and specialised application area these

devices are expensive and often inaccessible. There is alsothe need to obtain a suitable sample of

the material for analysis in the device. This is often impractical when considering natural scenes,

where the object under consideration cannot be moved out of the scene and into the laboratory.

There has, therefore, been a demand for cheaper and more convenient methods of measuring

surface reflectance. Of particular interest has been the useof images, which are themselves a

representation of surface reflection, to determine the reflection characteristics of observed surfaces.

Research into this subject area has been led mainly by two activities: computer graphics

and machine vision. The computer graphics community has required the accurate modelling of

materials for environment simulation. The apparent realism of a virtual environment is enhanced

through the accurate modelling of light’s interaction withthe scene. The use of precise geometric

scene modelling may be wasted if the reflection models used torender the scene are simplistic,

resulting in apparently unnatural images. Traditionally,virtual environment builders have em-

pirically estimated surface characteristics but the increasing demand for more physically-based

1See Chapter 3 and Appendix A for an explanation of the radiometric terms used in this chapter.

7
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lighting simulation has led to the need for accurate BRDF measurements for a wide variety of

materials. Many reflection models have been proposed by the graphics community (see Chapter

3), some derived from a physical consideration of the processes involved, but it is the parameters

of these models, for a variety of different surface materials, that are required. An inexpensive and

accessible method of obtaining parameter values is therefore highly desirable.

Machine vision has also been a driving force behind image-based measurement of surface

reflection. Such data can be used for a variety of tasks. The segmentation of images into contigu-

ous regions, representing the projection of a scene object,has traditionally relied on the detection

of high contrast areas to locate object boundaries. However, such contrast may be due not only to

object changes but also to reflection effects such as specular highlights. Object recognition may

be aided by the use of reflection characteristics in additionto shape [66]. Observed surface reflec-

tion can also be used to aid product inspection for quality control [82]. However, most work in

this field has been associated with photoclinometric orshape-from-shadingtechniques [50]. Such

techniques attempt to recover scene geometry from images based upon the variation in observed

shading. However, the interpretation of image shading requires knowledge of the surface reflection

model. Therefore, much work on reflection model estimation has been undertaken in the context

of shape-from-shading and its related topics.

This chapter presents work related to the estimation of a reflection model for a surface ob-

served in image data. It initially presents methods for the direct measurement of surface BRDF

which may only be obtained by sampling the full hemisphere ofpossible illumination and view-

ing directions. It will then discuss intensity-based approaches using a limited number of scene

observations to estimate surface reflection characteristics. Much of this work is related to the

shape-from-shading problem. It will then proceed to discuss colour reflection analysis which has,

in general, been associated with image segmentation and object recognition.

2.1 Image Based Measurement of BRDF

A gonioreflectometer measures surface reflectance characteristics by sampling the full hemisphere

of possible incident and reflection directions. This is achieved through accurate manipulation of

the sample material, the light source, and the sensor device. This section presents two image

based methods which, like the gonioreflectometer, considerthe full range of geometries within
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which reflection can take place. In this respect this sectiondiffers from subsequent sections, which

attempt to determine surface reflectance from a restricted number of images. The accuracy of the

resulting reflectance models is determined by the density with which measurements are taken.

Ward [141] recognised the need for an inexpensive device formeasuring reflectance and

designed an image-based gonioreflectometer to measure the anisotropic reflectance of a material

sample. Theimaging gonioreflectometeruses a half-silvered hemisphere and a fish-eye lens to

capture the hemispherical reflectance from a surface in a single image. In this way the reflected

radiance in the hemisphere of possible reflection directions, due to a single incident direction,

can be obtained. The system measures the reflected radiance relative to a standard Lambertian

sample of known reflectance, to aid calibration. The apparatus consists of a white collimated light

source, outside of a half-silvered hemisphere, which illuminates the surface sample within. A

static camera is used to record the image obtained from the reflective surface of the hemisphere. A

number of images are obtained as the light source and the material sample are manipulated. Ward

obtained reflectance measurements for a wide variety of materials including brass, aluminum,

wood, cardboard, ceramic, plastic, paper and paint. However, his system is unable to measure

ideal, or near ideal, reflectance from specular surfaces dueto the limited directional accuracy. The

resulting measurements have been used to derive a model of surface reflectance that is applicable

to a wide variety of surface types.

Dana et al. [16] used a similar, image-based, approach to measure anisotropic surface re-

flectance from a variety of material samples. They used a radiometrically calibrated camera and

extended light source to measure reflected radiance. The resulting measurements were fitted,

using a least-squares approach, to both the Oren-Nayer [102] and Koenderink [68] reflection mod-

els. Both camera and light source were manipulated about thesurface sample to record reflectance

from the full range of incident and reflection directions. Upto 200 geometry combinations were

considered in this way. From the resulting measurements a database of colour reflection model

parameters has been produced. This includes data for 61 material samples such as frosted glass,

feathers, cotton, cardboard, wood, orange peel and straw.

Whilst these approaches to image-based reflectance measurement are relatively inexpensive,

they have not addressed the issue of practicality. They are,like the gonioreflectometer, laboratory-

based systems which require a suitable material sample to beobtained. This is often an impractical

requirement. However, such studies do allow for the evaluation of reflection models and the accu-



Chapter 2. Related Work 10

mulation of material data. They also serve to show that radiometric measurements can be obtained

using simple imaging devices, such as CCD cameras, providedsuitable calibration is performed

(see Chapter 5).

2.2 Greyscale Image Analysis

This section considers work on estimating surface reflection properties from a restricted number of

greyscale images. Typically, these images view complex scenes and not simply individual objects.

In these cases it is not possible to directly measure BRDF, since the full range of illumination

and viewing geometry cannot be sampled in a single, or a limited number of images. Therefore,

these approaches attempt to find the parameters which yield abest fitbetween observed data and

a given model of reflection. Other methods attempt to detect,rather than measure, features such

as interreflection or specular reflections, to aid image segmentation or other machine vision tasks.

As stated above, related work in this area of study has typically been associated with other

image processing tasks such as shape-from-shading or imagesegmentation. Little work has been

performed on the task presented in this thesis of estimatingreflection model parameters from

a complex scene of known geometry. This is probably due to therelatively recent advances in

range finder technology, which have meant that inexpensive devices can now be obtained to ac-

curately determine scene geometry. Such devices can be usedto obtain 3D scene geometry (or

relative location and surface normal) irrespective of surface material or illumination. The result-

ing geometric data may then be used to aid the analysis of observed image shading. However,

shape-from-shading methods are still required for tasks such as remote sensing where the terrain

is not knowna priori.

2.2.1 Single Image Methods

The problem ofshape-from-shading(SFS) from a single image was originally presented by Horn

[49]. Horn’s original work showed that areflectance mapcan be used to relate image shading to

surface orientation independently of position within the image. In its most general form, Horn’s

method is able to determine the shape of surfaces, with arbitrary reflectance, under perspective

projection and illumination from a nearby light source. A first-order partial differential equation
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known as theimage brightness equationis derived in terms of five dependent variables. These

define the surface patch location and gradient in a viewer-oriented co-ordinate space. A set of

five ordinary partial differential equations are then derived and solved using the characteristic strip

method which places constraints upon the resulting surfacetopology. However, this method suffers

from several practical problems including noise sensitivity and error accumulation in numerical

integration of the differential equations [75].

The original SFS problem may be simplified by considering orthographic projection, a dis-

tant light source from a known direction, and Lambertian surfaces of known constant albedo.

These assumptions enable the reflectance map to be defined in terms of two variables, owing to

the view independence of the Lambertian reflection model [51]. However, such precise knowl-

edge of the environment severely limits the applicability of the method. There has, therefore, been

much work on improving the original SFS algorithm to relax some of these assumptions. Light

source position, for example, may be estimated by a number ofmethods [28, 104]. Of particular

interest here are approaches which estimate the Lambertiansurface albedo in addition to shape

[153]. Horn and Brooks [50] and Zhang et al. [152] provide a thorough performance analysis of

the major SFS algorithms.

Natural scenes typically deviate from the Lambertian idealand contain rough surfaces

which exhibit both diffuse and specular reflections. The reflection characteristics of such sur-

faces cause difficulties for traditional SFS algorithms. There is therefore a need for methods that

are applicable to a wide variety of surface types. This requires the definition of reflectance maps

to model the reflection from differing materials. Various improvements over the Lambertian re-

flection model have been proposed [102, 127, 150]. These attempt to account for attributes such as

surface roughness and glossy reflections. Healey and Binford [43] show that a Torrance-Sparrow

reflection model [134] may be used to determine shape from rough surface specular reflections. A

combination of the Lambertian and Torrance-Sparrow reflection models, in the context of the SFS

problem, has also been considered [136]. A recent approach to SFS using a generalised reflectance

map is given by Lee and Kuo [75]. Typically, the resulting estimation of surface topology leads to

the evaluation of parameters for the applied reflection model.

Interreflection, or mutual reflection, between surfaces in ascene also presents problems for

traditional SFS algorithms. Koenderink and van Doorne [67]have presented a formal treatment of

the process of interreflection between Lambertian surfacesof arbitrary shape and varying albedo.
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Nayer et al. [92] have looked at the analysis of such interreflections within an image as indicators

of surface shape and albedo. They again assume Lambertian surfaces, but present an iterative

approach that recovers both surface shape and albedo.

The SFS problem has also been considered in the case of more natural illumination. Langer

and Zucker [73] have approached the problem of SFS under a diffuse hemispherical illuminant

which, they suggest, is similar to that of an overcast sky. They show that shape recovery is possible

but assume the scene to be composed of Lambertian surfaces ofknown albedo.

Thea priori knowledge of scene geometry aids the estimation of surface reflectance prop-

erties. Karner et al. [58] used an image-based system to estimate the parameters of the Ward

reflection model [141] for a planar material sample observedin a precise position. They used a

diffuse reflectance standard within the same image for calibration and comparison purposes. Two

measurements are obtained, with and without a fixed point light source, to compensate for ambient

and stray light. A ratio of the known sample and the measured sample image intensities across the

image are used to derive the surface BRDF parameters. Results are shown for both metallic and

dielectric materials.

Ikeuchi and Sato [53] have studied the fusion of a single range and intensity image to obtain

object shape and surface reflectance. The proposed reflection model has three components: a dif-

fuse Lambertian lobe; a specular lobe conforming to the Torrance-Sparrow rough surface model

[134]; and a specular spike modelled using a delta function.Using least-squares fitting, they esti-

mated model parameters for an observed object. Results are shown for Lambertian and specular

objects assuming uniform reflectance properties over the whole surface.

In the field of remote sensing the shape-from-shading problem is more commonly termed

photoclinometry. Though the images considered here are typically obtained at great distance, such

as those from a satellite, aerial observation, or a planetary image, the problem is very similar to

that of SFS. In this case, parameter values are estimated assuming a given surface geometry. The

resulting values provide information concerning the stateof the surface, such as particle size or

undulation. The validity of the results is determined by howwell the reflection model characterises

the observed surface. Hapke’s extensive reflection model [37, 38] has been fitted to observed

shading sensed from a number of surface types including soil[109], snow and ice [11, 140]. Other

models have also been fitted to observed data for surfaces such as forest canopy [33], sand and
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cloud [115].

2.2.2 Multiple Image Methods

Reflection model estimation, and shape recovery, using a single intensity image is highly under-

constrained due to the limited variation in illumination geometry that is represented. The degree

of geometry variation is dependent upon the change of surface normal across the observed ob-

ject. The use of further images can help to constrain the problem of reflection model estimation.

Two approaches may be used: observing a static scene under varying illumination conditions,

or observing a moving object. This section considers such approaches. As with the single im-

age methods presented above, much of the work presented hereis primarily concerned with the

estimation of surface shape.

Static Scenes

Woodham introduced the concept ofphotometric stereowhereby a scene is illuminated from dif-

ferent, known light source positions [151]. Using Horn’s reflectance map, the observed image

intensities, in each of the images, can be used to determine surface shape. Woodham showed

that, in the case of a Lambertian surface, three images, illuminated by non-coplanar light sources,

are required to sufficiently constrain the problem of shape estimation. The resulting inversion of

the image formation process allows surface albedo to be estimated. The same approach can be

used for the analysis of ideal specular surfaces illuminated by extended sources [52]. Coleman

and Jain [13] have extended the principle to analyse textured and specular surfaces. In this case

it is shown that a four light photometric stereo technique isnecessary to extract the shape since

specular highlights may occur in any one of the three images used in Woodham’s method. This

is true provided that specular highlights do not overlap between images. Although no attempt is

made to determine the level of specular reflection, they are able to subtract it from the images to

provide intrinsic Lambertian images for analysis. A four-light illumination has also been used by

Solomon and Ikeuchi [123] to determine the roughness of a specularly reflecting Torrance-Sparrow

[134] type surface. Silver [122] has also developed ways of applying the basic photometric stereo

method to surfaces of differing reflectance properties. This work also showed that photometric

stereo could be conducted using experimentally measured reflectance maps.
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The similar concept ofphotometric samplinghas been introduced by Nayer et al. [93]. In

this case extended, rather than point sources, are used to illuminate the object from a variety of

source positions. The resulting sequence of images is used for shape and reflectance estimation. A

least-squares technique is used to estimate the parametersof a combined Lambertian and simpli-

fied Torrance-Sparrow model [134], though experiments focus on the analysis of smooth surfaces.

Again, it is assumed that highlights do not overlap between images. Though quantitative results

are not presented, the subtraction of the specular component to aid shape recovery is applied and

the relative strength if the diffuse component is calculated. Kay and Caelli [60] applied the same

reflection model and used non-linear regression techniquesfor the analysis of glossy reflections

from rough surfaces. It was shown that parameter estimationmay be carried out locally at each

pixel rather than globally on the entire image. In this case the light source positions are contained

within a plane and rotated about the camera’s principal axis. Tagare and deFigueiredo [126] have

also considered the estimation of shape and reflectance for Lambertian and glossy specular objects,

though they are unable to provide a stable solution for reflection model parameter estimation.

Grimson has shown that existing photometric stereo methodscan be modified to be used for

binocular stereo where the scene is observed from two differing camera positions [34]. Grimson

showed that surface orientation can be estimated along withreflectance. Again, Horn’s reflectance

map is used; however, in this case reflectance is modelled using Phong’s empirical model [108].

The use of data obtained by a range finder enables surface normal estimation to be per-

formed independently of model parameter fitting. Kay and Caelli [59] fuse range and brightness

images to derive surface shape and reflectance. In this case the reflection model parameters are

estimated locally for each image pixel. Brightness images are obtained under 4 or 8 differing

illumination conditions. However, this method is unable tocope with highly textured surfaces or

scenes consisting of many varied materials.

The separation of specular reflection highlights from images can be achieved through the

use of polarising filters. Wolff and Boult present a unified framework for the analysis of polarised

images and present theFresnel reflectance model[149]. Using this model to interpret differently

polarised images enables the classification of smooth metallic and dielectric materials [148]. This

is due to the differing ratio of Fresnel coefficients for conductive and dielectric materials. Wolff

also considered reflection from rough surfaces in accordance with the Torrance-Sparrow model

[134] and successfully determined quantitative diffuse and specular reflection components [147].
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Moving Scenes

Scenes in which objects move provide an alternative to the photometric stereo and sampling meth-

ods presented above. In this case the motion, and hence changing illumination and viewing ge-

ometry, is used to constrain traditional SFS methods. Pentland uses optic flow andphotometric

motion for the estimation of surface shape and Lambertian albedo [105]. Again, Horn’s reflectance

map is used to relate image intensity to surface orientation, but in this case a sequence of images

observing a moving object under a known illuminant is considered. This requirement fora priori

knowledge of the illuminant has been recently examined by Mukawa [88].

Lu and Little [79] present a method which observes a rotatingobject illuminated by a

collinear light source. The light source lies on or near the optical axis of the camera. It is shown

that surface reflectance can be directly estimated from the image sequence which observes a com-

plete rotation of the object. The reflectance model is estimated usingsingular surface pointswhose

normals are in the viewing direction and as such are assumed to exhibit maximum image intensity.

Given the 3D location of these singular points, and their brightness values in the image sequence,

the Lambertian reflectance of the surface can be estimated.

2.3 Colour Image Analysis

Surface colour is an important characteristic of an object.However, apparent colour is a product

of both the spectral nature of the illumination and materialproperties. A given object may appear

to have very different colouring when viewed in illumination of differing spectral composition.

Colour constancyis the ability to recover a surface description of colour which is independent of

the illumination. Therefore, even if illumination colour changes, the surface descriptor of colour

remains constant. This provides a useful attribute for object recognition. Approximate colour

constancy is exhibited by the human visual system. Humans perceive the colour of a surface as an

invariant characteristic. For example, a human observer recognises grass as being green despite

the changing spectral composition of daylight illumination. Conversely, a camera would give a

high red channel response, rather than green, to grass observed at sunset.

Section 2.3.1 presents methods of colour constancy that areable to determine the spectral

properties of a material independently of the illuminant. Typically, such methods assume a scene
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of known geometry and Lambertian materials. Colour constancy algorithms typically neglect

rough surfaces and glossy reflections. Attempts to analyse more complex reflection characteristics

have generally focused on the use of the dichromatic reflection model [119]. These methods are

presented in Section 2.3.2. Finally, the use of alternativemodels is considered.

2.3.1 Colour Constancy

The first computational model of human colour constancy was proposed by Land and McCaan

[72]. Their retinex theoryassumes a Mondrian2 world which consists of planar patches of dif-

ferently coloured paper. The illumination across this Mondrian world is assumed to be smoothly

varying over the observed scene. As such, sharp changes in colour signal intensity can be at-

tributed to object boundaries, whereas smooth changes are due to illumination variation. Brainard

and Wandell [9] have examined the properties of the retinex algorithm and have found it to be an

effective colour constancy method. In general the algorithm can determine constant colour de-

scriptors despite changes in illumination. However, if thescene surrounding a patch is changed,

different colour descriptors are generated.

More recent approaches to colour constancy have used a finite-dimension linear model in

which surface reflectance and illumination are both expressed as a weighted sum of fixed basis

functions [10, 21, 25, 47, 80]. The task of colour constancy,therefore, becomes that of estimating

the reflectivity weights for the object and the illuminationweights. Typically the scene is assumed

to be Mondrian and composed of Lambertian surfaces. Maloneyand Wandell [80] defined a num-

ber of conditions to be satisfied for efficient colour constancy. They show that illumination must

be constant over a given segment of an image and a sufficiency of different chromatic information

must be available. They also show that, ifn weighted basis functions are used as a surface de-

scriptor, then at leastn+1 spectral samples of reflected radiance are required. This requirement

has since been improved upon by Ho et al. [47] who show three parameter recovery of a surface

descriptor and illumination descriptor from a three channel colour signal. Recently, Finlayson et

al. [23] have shown colour constancy using two reflectance measurements under spectrally distinct

illuminations. Interreflection between surfaces has also been considered in the context of colour

constancy [25].

2After the Dutch abstract artist Piet Cornelius Mondrian.
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Supervised colour constancy uses objects of known properties as reference materials within

the same image. From the reflected signal from these known samples the illuminant colour can

be estimated [98]. The resulting illuminant information can be used as a constraint in determin-

ing object colour. A similar approach is proposed by Ohta andHayashi for daylight illuminated

scenes [100]. Knowledge of the possible spectral composition of daylight illumination allows the

performance of existing colour constancy algorithms to be improved.

The extension of colour constancy to more natural scenes, which have varying scene geome-

try and surfaces which exhibit glossy reflection, has been considered by D’Zmura and Lennie [21].

They assumed that the specular component of reflectance is constant with wavelength and show

that the hue of a surface is constant with respect to changinggeometry. Tominaga and Wandell

[133] also considered scenes which have a spectral reflection component and varying geometry.

They employed the dichromatic reflection model [119] to describe interface and body reflection

processes, typically observed from plastics.

Tominaga has recently presented a method for the measurement of surface spectral re-

flectance from a scene composed of objects which exhibit highlights [131]. In this case a mono-

chrome CCD camera, with extended dynamic range, is used withfilters so that a six channel

image is recorded of the scene. The camera’s sensitivity to each filtered wavelength is determined

by prior calibration. Results from experiments on a small number of surface samples indicate that

accurate estimation of surface colour can be achieved in addition to the illumination’s spectral

composition.

2.3.2 Colour Model Estimation

Whilst colour constancy attempts to determine spectral reflectance properties, a full colour de-

scription of a surface material must also consider surface roughness and glossy reflections. Such

reflection models are necessary for the analysis and interpretation of natural scenes which include

a wide variety of material types. Much of the work in this areaof study has focused on the use of

the dichromatic reflection model [119], however alternative models have been used for the analysis

of colour reflection.
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The Dichromatic Reflection Model

The dichromatic reflection model, originally proposed by Shafer [119], provides a model of re-

flection for inhomogeneous dielectric materials. In particular, it considers smooth, pigmented

materials which contain colouring dye particles suspendedin a medium. This class of materials

includes plastics, paint, ceramics and some textiles. Onlytwo lobes of reflection are considered:

ideal, specular interface reflection from the material surface; and diffuse body reflection due to

scattering within the bulk of the material. The model is typically used to aid segmentation of

colour images through the ability to detect and remove specular reflections which are assumed

not to have been coloured by the pigment particles [66]. Shafer has shown that RGB pixel values

corresponding to a single material will lie on a parallelogram within the colour space [119]. In

a similar approach, H.-C. Lee et al. [74] have developed the Neutral Interface Reflection (NIR)

model which has been shown to be suitable for identifying specular reflections.

Klinker [66] and Gershon [27] independently showed that dichromatic reflection from inho-

mogeneous dielectric materials is characterised by two connected clusters in RGB colour space.

Klinker describes the resulting shape as askewed-T formation. From the orientation of these

clusters, the illuminant colour and material pigment can bedetermined, as can the level of spec-

ular reflection. This information may be used for segmentation purposes or for the estimation of

material colour and the relative contributions of body and interface reflection. Hashimoto et al.

[39] have used this characteristic clustering of pixel values in colour space for the recognition of

material types under white light. They applied the dichromatic model to a single image to distin-

guish between metallic, matte non-metallic, and glossy non-metallic surface types. However, they

made no attempt to quantify the specular surface reflection characteristics. It has also been noted

that the characteristic clustering occurs in other colour spaces, such as the HSI space [1, 76]. The

conversion of image data to these spaces provides a more direct correspondence between clusters

and surface shading due to body and interface reflections.

Tominaga and Wandell [132, 129] have tested the adequacy of the dichromatic model for

characterising reflection from inhomogeneous materials. It is reported to apply well for plastic,

paint, ceramic, vinyl, fruit and leaves; however, it failedon metal, textiles and paper. Tomi-

naga [130] has extended the standard model with the inclusion of a wavelength dependent in-

terface reflection component. In the case of metallic surfaces, the diffuse body component is
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neglected. They show that three variants of the basic dichromatic model are suitable to describe

the reflectances of most materials.

As with greyscale images, interreflection between surfacescan cause problems for image

analysis methods. Bajcsy et al. [1] and Novak and Shafer [97]have used the dichromatic model

to detect highlights and interreflections in images. This has been performed as an aid to image

segmentation where the characteristic colour bleeding presents difficulties. It is noted that extra

clusters in colour space are observed due to interreflectionprocesses.

Real scenes are complex, with objects that may be textured orhave patches of different

reflectance properties. Cluster analysis, in the context ofthe dichromatic model, assumes smooth

surfaces and an object which has been sufficiently segmentedfrom other image data. These con-

ditions allow surface colour and illuminant analysis to be estimated from the cluster orientations.

Rough surfaces and image noise cause the clusters to spread and hence make it difficult to separate

the reflection into its components. This problem is highlighted by Novak and Shafer [97] and S.

W. Lee [76]. Novak also showed that histogram shape is related to illumination intensity and the

phase angle between camera and light source.

Sato and Ikeuchi [116] have used the cluster analysis methodin the context of an image

sequence. In this case the object is observed under an extended light source which is placed in a

number of differing positions, as with the photometric sampling method [93]. The resulting pixel

values may be plotted in a five dimensionaltemporal-colour space. It is shown that clustering

also occurs in this space. From analysis of the clusters, theorientation and the reflectance can be

determined for each individual pixel. This is a departure from the previous cluster based methods

which have required pixel values from a region of the object.The method cannot be applied where

interreflection occurs, though the method is shown to be applicable to both dielectric and metallic

surfaces.

Sato and Ikeuchi [117] have extended the work presented in [116] to scenes observed under

daylight illumination conditions. Again, the dichromaticmodel is used to interpret a sequence of

images obtained over a period of time. The duration of the image sequence is such that the move-

ment of the sun provides an illuminant suitable for analysisby the photometric sampling method.

In this case, the natural daylight illumination is modelledby a sun, represented as a Gaussian disc,

and a sky which is assumed to have uniform radiance over the illuminating hemisphere. They
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show that surface normal recovery is under-constrained dueto the sun’s limited trajectory across

the sky hemisphere. Using the dichromatic model, they analyse a real image sequence and es-

timate the colour vectors due to Lambertian and specular reflection. Analysis focuses upon the

detection of highlights due to the sun and the subsequent separation of reflection from sun and sky

illumination. This is shown to allow shape determination rather than quantitative reflection model

parameter estimation.

In a similar approach to Wolff [149], Nayer et al. [91] have recently used polarisation for

the analysis of colour images. In the context of the dichromatic reflection model, polarisation

can be used to separate specular and interface components. In this case, it is assumed that light

becomes polarised after having been reflected from the specular interface of the material. This

allows for specular component removal from the images to aidanalysis using the resulting diffuse

component images. The algorithm is applied to complex scenes which include textured objects

and interreflections. Results show that estimates can be made of the specular component.

Alternative Colour Models

Owing to the many successful applications of the dichromatic reflection model, and its derivatives,

little work has been performed on colour image reflection analysis using alternative reflection

models. This section presents two alternative approaches which have utilised range finder data to

aid scene analysis.

Baribeau et al. [2] have used range and colour images to estimate local reflection properties

in the context of the Torrance-Sparrow model [134]. The use of this model allows the analysis

of rough surfaces which exhibit glossy reflections. An extended source is used to illuminate the

scene to enable surface roughness and Fresnel reflectance parameters from three selected object

areas to be estimated.

Sato and Ikeuchi [118] have also employed a laser range finderto estimate object shape. In

this case, however, the object is observed whilst it performs a 360� rotation, with the illuminant

position similar to that of the camera. The resulting sequence of range images is used to generate

a set of triangular patches to represent object shape. The colour image sequence, of up to 120 im-

ages, is then separated into diffuse and specular reflectioncomponents using the method presented

in [116]. However, in this case the reflection model is a linear combination of the Lambertian and
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a simplified Torrance-Sparrow model [134]. This allows surface roughness to be accounted for in

the specular component. Results are shown for a glossy plastic object with parameters estimated

using Levenberg-Marquardt regression [5].

2.4 Summary

This chapter has presented a review of work related to reflection model estimation from image

data. It has shown that imaging devices, such as CCD cameras,may be successfully used for the

measurement of reflection provided that suitable calibration is undertaken. The use of imaging

devices allows more complex and natural objects to be analysed within their environment. This

method of analysis is to be contrasted with the use of specialised devices, such as the gonioreflec-

tometer, which require a material sample to be obtained for laboratory-based experiments.

The estimation of surface reflection properties from image data has typically been per-

formed in conjunction with a specific task, such as image segmentation, object recognition or

shape estimation. These methods often only attempt to detect reflection characteristics, such as

highlights or interreflection, that may assist in the primary objective. These methods result in a

qualitative analysis of surface reflection rather than an estimation of reflection model parameters.

Such results may be used, however, to provide a broad classification of observed objects by their

material type.

The measurement of spectral material properties presents many difficulties for image based

systems. This is due to the observed reflection being a product of both the illuminant and mate-

rial properties. There has, therefore, been a need for an illuminant invariant description that can

be recovered from image data. This problem has been addressed by colour constancy methods.

However, as this chapter has shown, these typically requireunnatural constraints to be placed on

the observed scene.

The study of natural scenes, illuminated by natural illumination, has received little attention.

Those studies that have examined machine vision tasks undersuch complex illumination have

typically employed simplistic reflection models which are applicable only to specific material

types. Quantitative analysis of reflection in such environments, accounting for surface roughness

and a variety of materials, has not been attempted.
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Surface Reflection

Our perception of objects is governed by the interaction of light with the environment. The physics

of light propagation and reflection has been the subject of intense study for hundreds of years. To-

day the true nature of light still remains unresolved. Two theories have come to the fore, each with

its protagonists. James Clark Maxwell (1864) formalised the view of classical physics by defining

the relationship between electric and magnetic fields. Maxwell determined that electromagnetic

waves propagate with the speed of light indicating that light itself is an electromagnetic wave

[121]. More recently the quantum model of light has found favour, depicting light as a distribution

of charge packets. Neither the classical wave model nor the quantum model is able to adequately

explain the phenomena that light exhibits in nature [124]. This chapter will focus on the wave

model which is able to describe most of the reflection characteristics exhibited by natural surfaces.

The study of light’s interaction with the environment needsto encompass the three processes

that light may undergo on meeting a material interface:reflection, absorptionand transmission.

This chapter focuses on the study of opaque objects which do not transmit light. As shall be shown

in the proceeding sections, a complete study of reflection must not neglect light transmission. As

Maxwell’s equations show, light reflected from opaque conductive materials may be attenuated

by the transmissive nature of the material. In the case of dielectric surfaces this chapter will

concentrate on the processes of reflection and absorption only. This chapter will also assume an

air-object interface which is that most commonly encountered in natural scenes.

Maxwell’s equations are used to describe the interaction ofelectromagnetic waves with any

22
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isotropic medium under the condition of no accumulation of static charge. For the processes of

visible light interaction, this chapter considers only radiation in the visible region of the spectrum

(380-770 nm). Maxwell’s equations cover wave-surface interaction for ideal surfaces which are

optically smooth, clean and reflect light in an ideal specular fashion. In this context a surface is

deemed smooth if surface irregularities are small comparedto the wavelength of incident light (see

Section 3.3). These equations provide a basic understanding of light reflection but are complex to

compute. They also depart from observed measurements due tosurface roughness, surface con-

tamination, material impurities and crystal structure modification by surface working. It is these

natural surface characteristics that must be addressed by apractical model of surface reflection.

This chapter presents models of light reflection that are applicable to this thesis. These mod-

els have been developed from the study of radiant heat transfer and applied to computer graphics

and machine vision tasks. Any model of surface reflection presents either a solution or an ap-

proximation to Maxwell’s fundamental equations. This chapter begins by defining a method of

measuring and describing a surface’s reflecting characteristics. Fresnel’s solution to Maxwell’s

equations for ideal surfaces will then be considered. This solution provides the basis for the

computational models which follow. Models of surface imperfections are also presented as these

enable the theoretically ideal reflection models to be applied to real-world surfaces.

3.1 Reflectance: The Measure of Reflection
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Figure 3.1:Surface reflection geometry.
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Reflection is the process by which incident flux leaves a stationary1 surface from the incident

side without change in frequency [95]. Figure 3.1 shows the reflection geometry for a differential

surface elementdA. Note that the angles of incidence and reflection,θi and θr , are measured

relative to the surface normal,n. The azimuthal angles,φi and φr , are measured relative to a

reference vector perpendicular to the surface normal.

A surface may not reflect the same quantity of flux for each possible incident direction.

It is also possible that the surface may cause scattering of the incident light into a distribution

of reflection directions. This section presents distribution functions which enable the reflection

properties of a surface to be fully described by a single function.

3.1.1 Reflectance

Reflectance,ρ, represents the ratio of reflected flux to incident flux2 [31]. It is a function of the

geometry of the incident and reflected flux and may be dependent upon the wavelength of incident

light. When considering flux incident on or reflected from a surface it is necessary to define the

distribution of directions within which the flux is constrained. Different reflectance terms are used

to specify the geometry under consideration. Table 3.1 shows the nine possible reflectance geome-

tries for a planar surface element. In this contextdirectionalrefers to flux within a differential solid

angle (~ω), conical refers to flux within a cone of finite solid angle (∆~ω) andhemisphericalrefers

to flux within a hemisphere of directions (ω = 2π). The directional-hemispherical reflectance is

also referred to as the surfacealbedo.

Reflectance defines the total quantity of flux reflected by a surface. The hemispherical and

conical reflectances give no indication as to the relative distribution of the flux, either incident

on or reflected from a surface. To consider the spatial distribution of flux a more fundamental

measure of reflection is required.

1If the surface were to be in motion the reflected light would besubject to Doppler shift.
2See Appendix A for an explanation of the radiometric quantities used in this chapter.
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Table 3.1:The nine reflectance geometries.

Bi-directional ρ(~ωi !~ωr)
Directional-conical ρ(~ωi ! ∆~ωr)
Directional-hemispherical ρ(~ωi ! 2π)
Conical-directional ρ(∆~ωi !~ωr)
Bi-conical ρ(∆~ωi ! ∆~ωr)
Conical-hemispherical ρ(∆~ωi ! 2π)
Hemispherical-directional ρ(2π !~ωr)
Hemispherical-conical ρ(2π ! ∆~ωr)
Bi-hemispherical ρ(2π ! 2π)
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3.1.2 The Bidirectional Reflectance Distribution Function

Nicodemus et al. [95] presented a defining paper which provided a standard framework for the

description of light reflection from a surface. The fundamental contribution of this work was the

presentation of thebidirectional reflectance-distribution function(BRDF). This provides a flexible

and general mathematical function with which to describe the anisotropic reflection of incident

flux from most surface types [31]. The BRDF,fr , describes the distribution of reflected light as a

function of the incoming and outgoing directions and relates reflected radiance,Lr , to differential

incident irradiance,Li;

fr(θi ;φi ;θr ;φr) = Lr(θr ;φr)
Li(θi ;φi)cosθi dωi

[sr�1]: (3.1)

The BRDF has the following properties:

1. The BRDF obeys theHelmholtz reciprocity principleso that if the incident and reflection

directions are reversed thenfr is unchanged,

fr(~ωi !~ωr) = fr(~ωr !~ωi): (3.2)

2. The BRDF is, in general,anisotropic. That is, if the surface is rotated about the surface

normal whilst the incident and reflected directions remain unchanged then the value offr

may change. A surface which isisotropic has a BRDF which is independent of the surface

orientation,

fr(θi ;φi +φ;θr ;φr +φ) = fr(θi ;φi ;θr ;φr): (3.3)

Nicodemus et al. show that each of the nine reflectance functions shown in Table 3.1 can

be defined using the BRDF [95]. The BRDF can be readily extended to include a dependence

on the wavelength of the light under consideration. With this extension the BRDF can be used

to describe wavelength attenuation by the surface material. This is the cause of apparent object

colour. A wavelength dependent BRDF can be defined as,

fr(θi ;φi ;θr ;φr ;λ) = Lr(θr ;φr ;λ)
Li(θi ;φi ;λ)cosθi dωi

: (3.4)
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Figure 3.2:Behaviour of an incident wave at the interface between two media.

3.2 Fresnel’s Laws of Reflection

Maxwell’s equations provide the basiclaw of reflectionwhich state that incident and reflected

waves have directions symmetrical with respect to the normal at the point of incidence and are

contained within the plane of incidence,θi = θr (see Figure 3.2). Such ideal reflection is termed

mirror or specularreflection and the surface is termed aspecular surface.

Maxwell’s equations also provides the derivation of Snell’s law of refraction, again with the

transmitted wave refracted within the plane of incidence,

sinθt

sinθi
= n1

n2
; (3.5)

wheren1 is the refractive index of medium 1 in which the incident wavepropagates andn2 is the

refractive index of medium 2. In the special case where medium 1 is air,n1 � 1 and hence

n2 = sinθi

sinθt
: (3.6)

The refractive index of a material is determined by the speedwith which light propagates in the

material relative to a vacuum,n= c=cm, wherec is the speed of light in a vacuum andcm is the

speed of light in the medium [31]. Since the refractive indexis a function of wavelength it can

be seen that the angle of refraction is dependent upon the wavelength of incident light. In the

case of materials with finite conductivity (such as metals) the refractive indices become complex

quantities,

n̄= n+ iγ; (3.7)

wheren̄ is the complex index of refraction andγ is the materialsabsorption coefficient.
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Fresnel’s coefficients [144] give the amplitude of the reflected electric field in terms of

the electromagnetic fields parallel and perpendicular to the plane of incidence. From these the

isotropic reflectance for unpolarized radiation can be determined,

ρ(~ωi ! 2π;λ) = 1
2

sin2(θi �θt)
sin2(θi +θt)�1+ cos2(θi +θt)

cos2(θi �θt)� : (3.8)

Equation 3.8 is known as Fresnel’s equation. It defines the directional-hemispherical re-

flectance as a function of wavelength and the angle of incidence and refraction. Note that Fresnel’s

equation obeys Helmholtz’s law of reciprocity. The equation is a minimum whenθi = 0 and is

unity (no light is absorbed by the material) whenθi = π
2. Fresnel’s equation shows that metals

have a higher reflectance than dielectrics. For example silver and aluminum reflect over 90 per

cent of all visible light [124], and the reflectance of metal varies considerably with wavelength.

Fresnel’s laws of reflection characterise the reflected and refracted light as they depend on

wavelength, polarisation and angle of incidence. Since they are derived directly from Maxwell’s

equations they assume a surface is optically smooth. Modelsof surface reflection and refraction

build upon Fresnel’s laws and extend them to encompass roughsurfaces of differing material

types.

3.3 Modelling Surface Structure

The preceding sections of this chapter have so far assumed anideal reflecting surface. That is, a

surface which is smooth, clean and reflects light in a specular fashion. Such surfaces are rarely

encountered in the natural environment and depart from thisideal in a number of ways.

The Rayleigh criterion is an approximate quantification that defines when a surface may

be considered rough, or when specular reflections become scattered [144]. It states that a surface

is considered rough when the change in surface height is suchthat reflected light undergoes in-

terference. This interference occurs when light waves become out of phase due to the different

reflection path lengths caused by the changes in height of a rough surface (see Figure 3.3).

The scattering of light from rough surfaces has been the subject of much study, especially

in the field of photometry. These models have in general focused upon the particulate surfaces that

are to be found on planetary bodies. The models thus derived [11, 37] may be applied to terrestrial
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surfaces such as sand and dry soil. Stochastic models have also proved to be suitable for describing

surface roughness, either through the use of fractals [20, 114] or Monte Carlo processes [145].

This section only considers isotropic surfaces and two popular models are presented. Such

surfaces exhibit the same surface texture in all directions. An anisotropic surface may appear

to have different surface textures when rotated about the surface normal [110, 141]. Whilst

anisotropic surfaces are commonly encountered in natural scenes they have not been included

in the initial investigations. Dirt and other surface impurities are also present in natural scenes.

These effects have not been the subject of much study and are hence not considered here.

out of phase
Reflected light

in phase
Incident light

Figure 3.3:Difference in path lengths for light reflected from a rough surface.

3.3.1 Surface Height Distribution

σ

τ

z

Average slope

Mean
surface

Figure 3.4:Surface height distribution model.

The height of a point on a surface can be described by a stationary random function which has

zero mean and is spatially isotropic. A Gaussian process is the common method for modelling

surface heightz, which is given by the probability distribution:

p(z) = 1

σz
p

2π
e

z2

2σ2
z (3.9)

whereσz is therms roughnessof the surface. This, however, does not provide a full description of

the surface geometry as there is no indication of the distance between surface peaks. Equation 3.9

can be extended to become a two point probability function which represents the two point height
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distribution of the surface [42]:

p(z1;z2) = exp
��(z2

1+z2
2�2C(r)z1z2)=2σ2

z(1�C(r)2)�
2πσ2

z

p
1�C(r)2

(3.10)

wherer is the horizontal Euclidean distance between the points andC(r) is theautocorrelation

coefficient. Figure 3.4 shows the profile of a surface which can be modelled using such a function.

The autocorrelation coefficient is a circularly symmetric function ofr,

C(r) = e
�r2

τ2 ; (3.11)

whereτ is thecorrelation distancewhich represents the average peak to valley distance [36]. Using

such a representation, surface roughness can be modelled using just two parameters,σz andτ. The

average slope of the surface facets for this representationis 2σz
τ [4].

3.3.2 Facet Slope Distribution

α

normal
Mean surface

Facet normal

Figure 3.5:Facet slope distribution model.

A popular alternative to the height distribution model considers the surface as a collection of

planar microfacets. The surface has a mean normal and each microfacet has a local normal which

deviates from the mean by an angleα (see Figure 3.5). The distribution of facet normals can be

modelled by assumingα to be a random variable with a distribution rotationally symmetric with

the mean surface normal. Assuming the mean surface normal tohave a slope deviation of zero,

the distribution ofα can be produced using a Gaussian process [134],

p(α) = ce
� α2

2σ2α ; (3.12)

whereσα is therms slopeandc is a normalisation constant. Cook [14] proposes using the Beck-

mann distribution, which has a similar shape but without thearbitrary constant3,

p(α) = 1
4σ2

α cos4 α
e�(tanα=σα)2: (3.13)

3Cook’s original paper [14] omits the 4 in the denominator. This was corrected by Hall [36].
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This surface representation has advantages in its simplicity and can be used to represent most

isotropic surfaces. It can, however, be difficult to visualise the true shape of the surface based on

the single parameterσα. There is no direct comparison between the slope and height distribution

models but He et al. suggest that rms slope is proportional toσz
τ [42]. Despite not providing a

complete model of surface geometry the facet slope model is popular and the scattering of light

from real surfaces has been found to be dependent on local slope rather than the height change of

the surface [94].

3.3.3 Shadowing and Masking

Facet shadowingFacet masking

Figure 3.6:Facet shadowing and masking.

Blinn [7] and Cook [14] introduced the effects of self-shadowing and self-masking by rough sur-

faces to the field of computer graphics. At large angles of incidence or reflection some surface

facets may be shadowed and/or masked by other facets (see Figure 3.6). The net effect is to reduce

the amount of reflection that would normally be observed froman ideal smooth surface. Blinn and

Cook both adopt a geometrical approach to modelling the effects by assuming the surface facets

to be arranged in symmetric V-grooves. Shadowing and masking has become an integral part of

many other models of reflection [37, 42, 41, 101].

3.4 Modelling Surface Reflectance

The BRDF of a surface can be measured for a set of surface orientations and illumination geome-

tries using agonioreflectometer[89]. This device enables the surface reflectance characteristics

to be measured and recorded in the form of a look up table. Use of the resulting data is, however,

impractical as it may contain noise and will not cover the entire domain of the BRDF. It is there-

fore desirable to be able to represent the BRDF in terms of a functional model [31]. Such a model



Chapter 3. Surface Reflection 32

would need to encapsulate all the features of the surface butshould not be expensive in terms of

computing time. Ideally, the model would have parameters with a physical meaning with which

to describe the surface’s reflection characteristics [36].
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Figure 3.7:Linear approximation to BRDF.

Tagare and deFigueiredo [127] provide a good framework for the study of BRDFs and the

different reflection mechanisms that contribute to them. They present the BRDF as being a linear

composition of four approximating basis functions (see Figure 3.7). These represent an ideal

specularly reflected ray, a forescatter lobe, a normal lobe,and a backscatter lobe,

fr(~ωi ! ~ωr) = κspecfspec(~ωi ! ~ωr)+κ f scf f sc(~ωi ! ~ωr)+κnormfnorm(~ωi ! ~ωr)+κbscfbsc(~ωi ! ~ωr); (3.14)

whereκspec, κ f rc, κnorm, κbscare dimensionless constants which represent the contribution of each

of the respective lobes. Each of these lobes may have a dependence on the wavelength of incident

light and, hence, may attenuate the reflected wavelength. Few models employ all four terms, with

the specular ray and backscatter terms often being omitted.This section presents the popular

models used in computer vision and graphics with reference to these lobes of reflection.

reflection

reflection
Incident

light

Body

Pigment

Interface

Figure 3.8:Light reflection from pigmented dielectric material.

The dichromatic4 reflection model, introduced by Shafer [119], is an example of a lobed

4Similar to H.-C. Lee’sNeutral Interface Reflection(NIR) model [74].
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model. In this variant the backscatter and specular reflection components are ignored. Further

to this, the glossy reflection component is assumed not to have been coloured by the surface

material. The forescatter BRDF approximation therefore has no dependence on the wavelength

of incident light. The dichromatic model assumes the wavelength of normal lobe reflection to be

determined by a combination of incident wavelength and selective material absorption. The glossy,

interface, reflection is assumed not to have been attenuatedand hence has the same wavelength

as the incident light. Such a model is useful in describing the reflection from inhomogeneous

opaque dielectric materials such as plastics. The selective absorption of certain wavelengths by

colour pigments in the body of the material gives rise to a coloured body reflection. Such a surface

typically has few pigment particles on the surface and hencethe surface reflection component is

unattenuated. Figure 3.8 shows the processes assumed by thedichromatic model. A thorough

analysis of the dichromatic model and its various uses in computer vision is given by Klinker [66].

An obvious failing of the dichromatic model is the inabilityto model conductive materials which

do not exhibit body reflection and attenuate the wavelength of interface reflections. Consideration

of such materials, as well textiles, within the context of the dichromatic model has been attempted

by Tominaga [130].

A number of studies have looked at modelling surface reflectance of particular materials.

These include: vegetation [61]; snow and ice [140]; and baresoil [109]. Whilst these represent

surface types that one would expect to encounter in natural scenes they have not been considered

here. This work looks at the use of a single model that may be applicable to a wide variety of

surface types.

Care should be taken when attempting to construct a hybrid reflection model based upon

lobe models proposed by different authors. When considering a physical model of light reflection,

it is imperative that the resulting total BRDF function has proper normalisation. A reflectance

model that does not yield a correct energy balance is uselesswhen considering the physical process

of light reflection [141]. Failure to ensure this could causethe model to predict more light energy

to be reflected than is incident on a surface. For this reason the reflectance model proposed by

Ward is treated in isolation, though still with reference tothe lobe model above. This model has

been formulated to ensure proper conservation of energy andshould not be used in conjunction

with the other lobe models without proper normalisation.
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3.4.1 Ideal Specular Reflection

A perfectly specular (mirror-like) reflecting surface reflects incident radiance only in the mirror

direction defined by the law of reflection. Such a surface can be described in terms of a BRDF

involving Dirac delta functions [12],

fspec= δ(cosθi �cosθr)
cosθi

δ(φi � (φr �π)); (3.15)

where the Dirac delta functions,δ, have the following properties:

δ(x) = 0 for x 6= 0;R
δ(x)dx= 1; andR
f (x)δ(x�a)dx= f (a): (3.16)

Ideal specular surfaces are rarely encountered in natural scenes. Almost all surfaces contain

surface imperfections which render the above consideration of specular reflection impractical. For

this reason many reflection models neglect this portion of the total reflectance.

3.4.2 The Normal Lobe

Incident light reflected about the surface normal, independent of the incident direction, is con-

tained within thenormal lobe. Real-world surfaces can reflect a high proportion of incident energy

into this lobe. The earliest and simplest normal lobe reflection model is that proposed by Lambert

(1760) [71] and has since become known asLambert’s law. Stated in terms of a BRDF this gives

fnorm(~ωi !~ωr) = 1
π
: (3.17)

Lambert’s model has been shown to approximate experimentaldata for a large set of mate-

rials. A complete explanation of Lambert’s law has not yet been proposed [127]. It is generally

thought that incident light undergoes repeated scatteringwithin the bulk of the material (see Figure

3.8) [150] . This scattering causes the emergent radiation to be uniform about the surface normal

(see [127] for a summary of the various normal lobe theories).

Studies by Oren and Nayer [101, 102] have shown that the Lambertian model is a poor

approximation for rough surfaces. The Oren-Nayer reflectance model uses the Gaussian facet
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slope distribution of Section 3.3.2 with each Lambertian facet having the same albedo. The model

accounts for facet shadowing, foreshortening and interreflection. The Oren-Nayer model provides

a useful alternative to the Lambertian model in the case of rough surfaces and reduces to the

Lambertian model for smooth surfaces. The model has been shown to fit experimental data when

combined with the Cook-Torrance model for the forescatter lobe (see Section 3.4.3) [16]. Care

must be taken, however, in combining this model with the backscatter models of Section 3.4.4,

since an element of reflection within the backscatter lobe istaken into account by this model.

3.4.3 The Forescatter Lobe

An early attempt to model the observed glossy reflections associated with the forescatter lobe was

made by Phong [108]. This was an empirical model which cannotbe adequately expressed in

terms of a BRDF, as presented in this chapter due to its failure to be bidirectional. The model

assumes maximum reflectance along the perfect mirror direction, θr = θi . Reflectance falloff is

approximated by cosnα wheren is the surface’sspecular-reflection exponentandα is the angular

difference between the considered reflection direction andthe ideal mirror direction. Phong’s

model fails to account for Fresnel effects and assumes smooth surfaces. For this reason images

generated using this model appear plastic and, in many cases, unnatural.

Torrance and Sparrow [134] used geometrical optics methodsto consider the phenomenon

of observed off-specular peaks and incident light attenuation by metals. They concluded that

this was a result of roughened surfaces and Fresnel effects.They employed the Gaussian slope

model of Section 3.3.2 and added a geometric attenuation factor to account for facet masking and

shadowing. Cook and Torrance [14] adapted the model and applied it for use in computer graphics.

They replaced the Gaussian slope distribution with the one proposed by Beckmann (see Section

3.3.2). The resulting forescatter model accounts for many of the observed shading effects seen

especially from conductive materials with surface finishes,

f f sc(θi ;φi ;θr ;φr ;λ) = DGF(λ)
πcosθi cosθr

; (3.18)

whereD is the Beckmann microfacet distribution of Section 3.3.2,F is the Fresnel term (see

Section 3.2) andG is a geometric attenuation factor to account for surface shadowing and masking

(see Section 3.3.3).

There are many alternative models for the forescatter lobe.Hall provides a good overview
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of the various models that may be used [36]. Despite these, the Cook-Torrance model has re-

mained the most popular geometric model. Physical models (such as [4, 42, 41]) derived from a

consideration of the wave nature of light and the molecular structure of the material produce good

results but are complex. It is important that a model should adequately describe the process of

reflection but not at the expense of undue complexity. In the context of machine vision, the time

taken to evaluate a model for a single surface patch is of importance when considering algorithms

that are required to apply repeated evaluations over a wholeimage, or a sequence of images.

3.4.4 The Backscatter Lobe

Observed natural shading of many materials has provided evidence for the backscatter lobe [22,

87]. A well studied example is that of the surface of the Moon and other planetary bodies whose

reflectance peaks in the direction of incidence, sometimes termed theopposition effect[38, 121].

This effect is most apparent from particulate surfaces suchas sand or dry soil. Experimental

evidence suggesting the existence of the backscatter lobe can also be found in the data supplied

by Torrance and Sparrow [134]. Models for the backscatter lobe are presented by [127] and [102].

They have not been considered in this work owing to their complexity and relative immaturity.

3.4.5 Ward’s Reflection Model

The reflection model proposed by Ward [143, 141] has been derived empirically from reflectance

data obtained using an imaging gonioreflectometer. Despitenot having been formulated from a

thorough consideration of the physics of light reflection, Ward’s model has been shown to provide

an accurate simulation of light reflection in complex environments [35, 81].

Ward’s model dispenses with the specific geometric attenuation and Fresnel terms adopted

by many models in favour of a single normalisation factor. This ensures that the reflection function

integrates predictably over the hemisphere of incident andreflection directions, within the limits

defined by the conservation of energy. This is an important point to consider. Some reflection

models, though derived using a physically based approach, fail to account for this and hence may

provide inaccurate results when global illumination is considered.

In a similar approach to the model proposed by Cook and Torrance (see Section 3.4.3),



Chapter 3. Surface Reflection 37

Ward uses a Gaussian process to model isotropic surface slope and hence glossy reflection into the

forescatter lobe. This is combined with the Lambertian reflectance model covered in Section 3.4.2

to account for normal lobe reflection,

fr(θi ;φi ;θr ;φr) = ρd

π
+ρs � 1p

cosθi cosθr
� exp

�� tan2 δ=σ2
α
�

4πσ2
α

; (3.19)

whereρd is the diffuse reflectance into the normal lobe,ρs is the specular reflectance into the

forescatter lobe,σα is the rms slope (see Section 3.3.2),δ is thehalf angle, andρd +ρs� 1. The

half angle is the angle between the surface normal and a vector bisecting the incident and reflection

directions. Reflection into the backscatter lobe is not considered by this model. The inclusion of a

specular term allows the modelling of perfectly smooth, glossy surfaces which do not scatter light.

Ward suggests thatρd values of less than 0:5 be used to model plastics, whilstρs values

greater than 0:5 be used for metallic surfaces. By making each of the reflectance terms a function

of wavelength, the model can be extended to characterise reflection from coloured surfaces. In

the case of plastics, coloured body reflection can be achieved by makingρd a function of wave-

length, specular interface reflection being the colour of incident light, as described by the dichro-

matic model. For metals, bothρd and ρs are made a function of wavelength, hence providing

the coloured specular reflection characteristic of metal surfaces. This may be performed provided

ρd+ρs� 1. Experimental data also suggests that a practical range for σα is (0.0 – 0.2) [141]. The

model can be further extended to model Fresnel effects by making theρs term a function of both

wavelength and geometry, though this is not considered here.

This work considers three variants of the basic reflection model given by Equation 3.19.

The first requires thatρd +ρs = 1 and therefore has two free parameters:ρs andσα. The second

variant provides an achromatic reflection model which allows the total reflectance of the surface to

be given. This model therefore has three parameters:R, ρs, andσα whereR is the total reflectance

andρd = 1�ρs;

fr(θi ;φi ;θr ;φr) = R

"
ρd

π
+ρs � 1p

cosθi cosθr
� exp

�� tan2δ=σ2
α
�

4πσ2
α

# : (3.20)

Finally a colour reflection model is considered. This replaces the total reflectanceRwith a material

colour vectorC to denote the reflectance of the surface at three discrete wavelengths. Again,

ρd + ρs = 1 but how the colour vector is used in the model depends upon the value ofρs. If

ρs < 0:5 the material is considered plastic and as such the colour ofthe glossy highlight is not

affected byC. If ρs > 0:5 the material is considered to be metallic and bothρs andρd are made
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functions ofC to provide coloured body reflection and coloured glossy highlights. Note that the

colour vectorC is not normalised.

The reflectance function given in Equation 3.19 has been derived using reflection data ob-

tained from a broad variety of material types. As such, it hasnot been designed to model reflection

from a particular class of materials. This is a particular failing of the previous models presented

in this chapter. Though alternative models provide accurate simulation of light reflection from

surfaces they do not, in general, extend to cover a wide variety of surface types. Ward’s model

has been shown to characterise reflection from surfaces suchas wood, metal, cardboard, plastic,

ceramic and paper. One would expect to encounter such surface types in a natural scene.

Since Ward’s model has been derived from the fitting of observed reflection data, it would

appear suitable for the machine vision task of surface modelestimation presented here. Reflec-

tion from the surface types mentioned above have been shown to fit the model in the laboratory

situation and it would therefore be expected that similar results could be obtained from surfaces

observed under natural illumination.

This model may be extended to characterise anisotropic surface reflection by the inclusion

of further roughness parameters. Since such reflection is not considered here, the full anisotropic

model is not presented.

3.5 Summary

This chapter has shown the development of models to describesurface reflection. These have been

derived by consideration of the interaction of light with ideal surfaces. Practical models extend this

theory to characterise reflection from surfaces which deviate from the ideal. As such, the models

presented are able to account for scattering by material structures and by surface irregularities.

These enable the modelling of some of the observed reflectionphenomena which may be observed

from many surfaces. It has also been shown that specific models exist to describe light reflection

from a number of natural surfaces.

It has been shown that the reflection model due to Ward is most suited to the task presented

here. It is able to model the reflection from a wide variety of surfaces and is computationally con-

venient. Since this model has been developed using an imaging gonioreflectometer in laboratory



Chapter 3. Surface Reflection 39

conditions it would appear to be suitable for the similar, image-based, system observing natural

scenes presented here. Whilst the methods developed in thisthesis do not pertain to any particular

reflection model, the Ward model has been selected for experimental purposes.
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Natural Illumination

The appearance of an object is determined not only by the material properties discussed in Chapter

3 but also by the illumination to which the object is exposed.For example, a mirror viewed under

a diffuse, uniform light source will appear very different to one observed under a single point

source. It is also necessary to consider the spectral natureof the illumination. A material which

absorbs radiation in the red region of the spectrum will appear to have no reflective properties

when viewed under red illumination. In the case of natural illumination, an object illuminated by

a cloudy, overcast sky may well look different to an identical object viewed under a clear blue sky

with an unobstructed sun. This chapter is concerned with theeffects of natural illumination on

objects and how their subsequent appearance may be modelled.

Natural illumination, or more specifically daylight illumination, can be considered as being

composed of two components: direct solar and diffuse sky light illumination. The magnitude

and distribution of each of these components is determined by factors such as location, time and

weather conditions. In order to predict how an object will appear given these parameters, a reliable

and accurate daylight illumination model is required. Suchmodels have been used extensively in

the energy and architecture communities and their use is nowbecoming more common in computer

graphics and machine vision.

40
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4.1 Direct Solar Illumination

4.1.1 Solar Geometry

The earth rotates about the sun approximately once every 3651
4 days in an almost circular path.

The sun is located slightly away from the centre of the earth’s orbit which causes the solar intensity

to be about 7 per cent higher in January than July. The earth also spins about its axis every 24 hours

giving diurnal variation in solar intensity. The earth’s axis of rotation is tilted by 23:5� relative to

its plane of motion and this causes seasonal variation in sunposition. Therefore, the position of

the sun in the sky hemisphere, and hence solar intensity, is determined by date, time and global

location. The average solid angle subtended by the sun at a point on the earth is 6�10�5 steradians

[103].

At any time, the position of the sun,S, in the sky hemisphere for a global location can be

specified by spherical polar co-ordinates(θs;φs), whereθs is the solar zenith andφs is the solar

azimuth. These angles represent the location of the sun relative to a vertical direction and the

north direction at a solar hour angle,h. The solar hour angle is calculated from the local solar time

(LST). LST accounts for location longitude and uses theequation of timeto compensate for the

eccentricity of the earth’s orbit [112]. Local solar time issuch that at 12:00 hours, the sun is due

south of the location. Given a local solar time, the hour angle h is given by,

h= (LST�12)�15�: (4.1)

Figure 4.1 shows the horizontal plane at a global locationO with latitudeL� in the northern

hemisphere. On an equinox (April 21 or September 21) the declination of the earth is such that the

sun appears to move within a plane tilted byL� along the west-east axis. Such a plane is termed

the equatorial planefor the locationO. On other dates the declination of the earth, relative to

the sun, is such that the plane of apparent motion of the sun isshifted by an angle equal to the

declinationd. This plane of apparent motion is termed thedeclination planefor the location. The

directionV is anup direction which is perpendicular to the horizontal plane atthe locationO.

The directionP is a direction perpendicular to the sun’s plane of apparent motion. Note that the

possible declination planes for a location are parallel to the equatorial plane.

Looking at the spherical trianglePVS, which is composed of great circles, the solar zenith,
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Figure 4.1:Solar geometry (follows Rapp [112]).
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θs, is given by the law of cosines,

cosθs = cos(90�d)cos(90�L)+sin(90�d)sin(90�L)cosh= sindsinL+cosdcosLcosh (4.2)

where

sind =�cos

�(Ds�1) 180�
182:6�sin(23:45�) (4.3)

whereDs = 1 on December 21, andDs = 365 on December 20.

The solar azimuth angle,φs, is defined as the angle between the north direction and the

projection of the sun onto the horizontal plane. Applying the cosine law to the spherical triangle

PVSthe azimuth angle can be found as,

cos(90�d) = cos(90�L)cosθs+sin(90�L)sinθscosφs

cosφs = sind�sinLcosθs

cosLsinθs
(4.4)

where sind is given by Equation 4.3.

4.1.2 Solar Intensity

Owing to the elliptical trajectory of the earth, the distance between the sun and earth changes

throughout the year. The extraterrestrial irradiance due to the sun on a surface normal to the sun,

when the earth is at a mean distance from the sun, is termed thesolar constant. Traditionally

this has been taken to be 1353Wm�2 [17]. Measurements suggest, however, that a value of

1377Wm�2 is more appropriate [112]. The extraterrestrial solar intensity, Next, for a given day in

the year may be estimated from the solar constant [112],

Next = S(1+ εcosφ)2(1� ε2) (4.5)

where,S is the solar constant,ε is the eccentricity of the earth’s orbit (=0.01672) andφ is given by,

φ = (D j �2) 360�
365:2 (4.6)

whereD j is the day of the Julian year. Figure 4.2 shows a graph of extraterrestrial solar irradiance

on a surface normal to the sun’s rays on the twenty first day of each month as given by Equation

4.5, assuming a solar constant of 1377Wm�2.
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Figure 4.2:Extraterrestrial solar irradiance incident on a surface normal
to the direction of the sun’s rays on the twenty first day of each month,
calculated using Equation 4.5.

The intensity of the sun at the earth’s surface is reduced from the extraterrestrial amount due

to atmospheric scattering and absorption. Section 4.2 discusses the scattering processes which so-

lar radiation undergoes in order to form the diffuse sky light. The amount of direct solar radiation

lost to scattering and absorption is dependent upon the pathtaken by the radiation through the

atmosphere. The level of radiation received by a surface outside of the atmosphere is referred to

asair mass zero. When the sun is directly above a surface at sea level, the radiation received is

air mass one. When the sun is located such that the radiation passes through a greater amount of

atmosphere, the effective air mass is increased. The effective path length to sea level through the

atmosphere,l , and hence air mass, at any time is given byl = secθh, whereθh is the solar zenith.

The fraction of light absorbed by the atmosphere over a path length ofl is given by exp(�β(λ)l),
whereβ(λ) is theextinction coefficientfor radiation of wavelengthλ. The extinction coefficient

for radiation of all visible wavelengths may be approximated by a single value. A reasonable

approximation for a clear sky isβ(λ) = 0:431 [112]. Increased scattering due to moisture or pol-

lution will increase the extinction coefficient such that direct solar irradiance becomes negligible

as the atmosphere becomes more overcast.

The direct solar irradiance received by a plane at the earth’s surface, oriented such that it is

normal to the direction of the sun’s rays is,

N = Nextexp(�β(λ)secθh): (4.7)
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Figure 4.3:Tilted surface geometry.

A tilted plane will receive more or less irradiance direct from the sun. Maximum irradiance will be

received when the surface is tilted such that the sun is in line with the surface normal. Figure 4.3

shows the geometry under consideration for a tilted surfaceilluminated by direct solar irradiance.

The cosine of the angle between the sun direction and the tilted surface normalθT is given by,

cosθT = cosθncosθh+sinθnsinθhcos(φh�φn): (4.8)

Direct solar irradiance incident on the tilted plane,DT , is therefore,

DT = NcosθT : (4.9)

Figure 4.4 shows the direct solar irradiance on a horizontalsurface and a surface tilted

30� to the south for a location with latitude 31�N on a clear day. Values were calculated using

Equations 4.7 and 4.9 assuming noon air mass of 1.7, constantextinction coefficient of 0.23, and

solar constant of 1377Wm�2. Measured data was recorded at a location with the same latitude,

on a clear day in 1977, using a normal incidence pyrheliometer [113].

4.1.3 Spectral Distribution

The sun emits radiation over a wide range of wavelengths. Of particular importance is radiation

within the visible spectrum between 0:4µm and 0:7µm. Extraterrestrial data suggests that the

radiation emitted by the sun compares closely with the expected radiation from a black body at

5762K [112]. Scattering and absorption by the atmosphere ofparticular wavelengths causes the

terrestrial spectral distribution of direct solar energy to be shifted (see Section 4.2). The spectral
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Figure 4.4:Measured and predicted solar irradiance on a horizontal and
tilted surface for a location with latitude31�N on January 4 1977. The
tilted surface is inclined30� to the south. Predicted solar irradiance is
calculated using Equations 4.7 and 4.9 assuming noon air mass of 1.7,
constant extinction coefficient of 0.23, and solar constantof 1377 W m�2

[113].
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composition of terrestrial sunlight depends upon the levelof scattering and hence upon the com-

position of the atmosphere. Measured data shows that the terrestrial solar spectrum correlates to

black body radiation at 4000K [46, 48, 56, 128]. As the sun’s altitude increases the spectrum can

be compared to a correlated colour temperature of 5500K [48].

4.2 Diffuse Sky Light Illumination

To an observer on the ground, sky light appears to emanate from a hemisphere of directions. The

diffuse nature of sky light is due to atmospheric scatteringof radiation incident from the sun.

Scattering occurs when light strikes particles suspended in a medium and can be due to reflection

or refraction on meeting the particles. Two widely used models account for scattering by particles

of varying sizes [85]:

Rayleigh Scattering: This scattering model is applicable for particles which aresmaller than the

wavelength of light under consideration. This model is of particular interest when consider-

ing scattering by air molecules.

Mie Scattering: Scattering by particles which are larger than the wavelength of light is described

by Mie scattering theory. This model accounts for scattering by aerosols. This model is

applicable when considering moisture, dust and pollutantssuspended in the atmosphere.

The extent to which light is scattered in each of the above cases is dependent upon the

wavelength of light being considered. The characteristic blue sky observed on clear days is due

to Rayleigh scattering, and the absence of Mie scattering bymoisture particles. The colour of the

sky shifts towards longer wavelengths as the level of moisture increases. Pollutants also play an

important role in determining the overall scattering of solar radiation by the atmosphere.

Computer graphics and machine vision systems have generally used a constant ambient

light to model the diffuse nature of sky light. This is a poor approximation because sky light, es-

pecially clear sky light, has high spatial variation. The following section provides a more detailed

description of sky light which enables a more accurate modelto be developed.



Chapter 4. Natural Illumination 48

S

E

P
ζ

sθ
pθ

W

φpφs

N

Z

Sun

Figure 4.5:Sky luminance geometry.

4.2.1 Sky Light Distribution Models

The Commission Internationale de L’Éclairage (CIE) has formulated standard luminance distri-

bution models for various reference skies. These were originally commissioned in response to a

need by the illumination engineering community for a set of standard reference skies for light-

ing calculations. Two such models have been formulated, namely theCIE standard clear skyand

CIE standard overcast sky. These two reference skies represent luminance distributions for ex-

treme ideal weather conditions. To extend these models to account for skies between these two

extremes, a general or intermediate sky needs to be defined. The CIE have yet to approve a gen-

eral sky model which is applicable to all global locations and atmospheric conditions but various

models have been proposed [106, 107].

Figure 4.5 shows the sky hemisphere geometry required for calculating the relative lumi-

nance of a discrete sky point. The solar zenith,θs, and azimuth,φs, can be determined using the

equations given in Section 4.1.1.

CIE Standard Clear sky

The clear sky luminance,Lcl, of a point in the sky hemisphere with zenith angleθp and azimuth

angleφp is,
Lcl(θs;θp;ζ)

Lzcl(θs) = γ(θp) f (ζ)
γ(0) f (θs) (4.10)
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where

Lzcl(θs) = clear sky zenith luminance; (4.11)

γ(θ) = 1�e(�0:32=cosθ); (4.12)

f (ζ) = 0:91+10e�3ζ +0:45cos2ζ; (4.13)

cos(ζ) = cosθscosθp+sinθssinθpcosjφs�φpj : (4.14)

The clear sky model can be further extended to account for atmospheres polluted with

particulates. Such extensions typically use a sky turbidity factor to account for the level of at-

mospheric pollution [18]. Such models are particularly suitable for urban or industrial regions.

Regional models also exist to account for the sky luminance distribution for a particular location,

for example [90].

Figure 4.6 shows sky point luminance relative to the sky zenith luminance for clear skies

with solar altitudes of 22:5�, 45� and 67:5�. Each greyscale image is accompanied by a false

colour image showing the pattern of relative luminance overthe whole sky hemisphere.

A general equation for the absolute clear sky zenith luminance has yet to be standardised

by the CIE. A popular model, which is applicable to a variety of global locations, suitable for

θs > 30�, is given by Kittler [64],

Lzcl(θs) = 300+3000cotθs [cdm�2]: (4.15)

Figure 4.7 shows the overcast sky zenith luminance as predicted by this model. As with the

luminance distribution model, a variety of alternative zenith models exist to account for differing

conditions. In particular, models attempt to account for pollution and high turbidity. An overview

of possible alternative models is given by [18].

CIE Standard Overcast Sky

The overcast sky luminance,Loc, of a point in the sky hemisphere with zenithθp and azimuthφp

is given by the CIE standard overcast sky model,

Loc(θp)
Lzoc(θs) = 1+2cosθp

3
(4.16)
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Figure 4.6:Greyscale images of clear sky luminance relative to zenith
as modelled by Equation 4.10 for: (a)θs = 67:5�; (b) θs = 45�; (c)
θs = 22:5�; and false colour images for: (d)θs = 67:5�; (e)θs = 45�; (f)
θs = 22:5�.
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Figure 4.7:Sky zenith luminance for clear and overcast skies predicted
by Equation 4.15 and 4.17.
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whereLzoc(θs) is the overcast sky zenith luminance. Note that, unlike the clear sky model, the

luminance of a sky point does not depend on its position relative to the sun. Also note that the

distribution of relative illuminance is independent of thesolar zenith angle.

Figure 4.8 shows sky point luminance relative to the sky zenith luminance for an overcast

sky. The greyscale image is accompanied by a false colour image showing the pattern of relative

luminance over the whole sky hemisphere.

(b)(a)

0.33

Relative luminance

1.0

Figure 4.8:(a) Greyscale overcast sky luminance relative to zenith for
sun zenith angle of45� as modelled by Equation 4.16, and (b) false
colour image of the same sky.

As with the clear sky model, there is no standard formula for calculating the overcast sky

zenith luminance. A model which has been shown to match measured data is given by Krochmann

and Seidl, [70]:

Lzoc(θs) = 123+8600cosθs [cdm�2]: (4.17)

Figure 4.7 shows the overcast sky zenith luminance as predicted by this model.

Intermediate Sky

Models for describing intermediate skies have yet to be standardised by the CIE. Such a sky

model would need to account for the large variety of weather conditions that are possible between

the ideal clear and overcast skies presented above. A variety of methods for describing such

intermediate skies are discussed in the CIE daylight report[18]. The method used in this work is

the simple combination proposed by Gillette and Kusuda [29]. This model uses asun probability,
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ϕ, to interpolate between the CIE clear and CIE overcast sky models,

Lin = (1�ϕ)Loc+ϕLcl; (4.18)

whereLoc andLcl are the CIE luminance distributions for overcast and clear skies respectively. A

clear sky has a high sun probability, henceϕ = 1. Similarly, an overcast sky is modelled usingϕ =
0. This model assumes that cloud cover is homogeneous. Models to account for inhomogeneous

skies, with patches of cloud and blue sky, have been considered but are not sufficient for practical

use at present [135].

Figure 4.9 shows sky luminance relative to the sky zenith luminance for intermediate skies

with a solar altitude of 45�, calculated using Equation 4.18. The skies shown have sun probabilities

of 0.25, 0.5 and 0.75 and each greyscale image is accompaniedby a false colour image showing

the pattern of relative luminance over the whole sky hemisphere.

(a) (b) (c)

5.553.97

(d) (e) (f)

2.380.68 0.71 0.67

Relative luminance Relative luminance Relative luminance

Figure 4.9:Greyscale images of intermediate sky luminance relative to
zenith for sun zenith angle of45� as modelled by Equation 4.18 for: (a)
ϕ = 0:25; (b) ϕ = 0:5; (c) ϕ = 0:75; and false colour images for: (d)
ϕ = 0:25; (e) ϕ = 0:5; (f) ϕ = 0:75.
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This intermediate sky model has been evaluated by Littlefair, who compared the model to

illuminance data recorded near London between July 1991 andJanuary 1993 [77]. The results

suggest that, over the whole sky hemisphere, the model has anRMS error of 43 per cent when

compared to measured data for skies over this period. The model performs well when considering

cloudy and intermediate skies but performs relatively poorly when considering clear skies. Little-

fair shows that, in the case of intermediate skies (ϕ = 0:5), the intermediate sky model predicts

increased sky luminance values. This may be due to the assumption of homogeneous cloud cover.

Despite these deficiencies, the model is simple to compute and requires few parameters. Deter-

mining a sun probability value for an observed sky is simple when compared to calculating the

parameters that are required for more accurate intermediate sky descriptions.

4.2.2 Sky Light Luminous Efficacy

The above models provide photometric luminance values for discrete sky points. In order to

convert these to radiometric quantities the luminous efficacy of the light must be considered. The

luminous efficacy relates the luminous intensity of the sky to a radiant intensity. The luminous

efficacy of light is dependent upon wavelength since it is based upon the photopic response of the

human visual system (see Appendix A).

Assuming a luminous efficacy which is constant with respect to wavelength, data suggests

that a value of 150lmW�1 for clear skies and 115� 125lmW�1 for overcast skies is suitable

[48, 70]. The change in luminous efficacy between clear and overcast skies is due to the shift in

spectral distribution and hence the perceived brightness.

By applying the above efficacy values to the appropriate zenith luminance models for each

reference sky, the zenith radiance may be determined. When combined with the relative distribu-

tion models, the radiance of any point in the sky hemisphere may be determined.

4.2.3 Spectral Distribution

The scattering processes described in Section 4.2 show thatthe specular distribution of sky light is

dependent upon the extent and type of scattering that incident solar radiation undergoes. Klassen

[65] and Inakage [55] have shown that, by modelling the various scattering processes, the spectral
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attenuation of light due to the atmosphere can be modelled. Asimilar approach has been used

by Tadamura et al. [125] which they show to match closely the CIE illuminance distributions. An

alternative, and less complex, approach is to use measured data, which suggests a correlated colour

temperature of 4500�7000K for overcast skies and 104�105K for clear skies [46, 48].

4.2.4 Surface Irradiance

Each of the sky models described above provides the radianceincident from a differential solid

angle. To calculate the total irradiance incident on a surface from the sky it is necessary to integrate

the distribution functions over the visible sky hemisphere. In the case of a horizontal surface

element this requires integration over the whole sky hemisphere. In the case of a tilted surface it

is necessary to determine the regions of the sky which are visible above the horizon. In scenes

where there may be shadowing, it is necessary to calculate which regions of the sky are masked by

other objects before computing the sky irradiance. As shownin Appendix A, surface irradiance is

calculated by integrating incident radiance over the hemisphere of visible directions [32]. In the

case of a surface illuminated by sky light this integration becomes,

E = Z 2π

0

Z π
2

0
L(θ;φ)cosθdθdφ (4.19)

whereL(θ;φ) is the sky radiance determined using the models described inSection 4.2. To account

for tilted surfaces and shadowing a sky visibility term would need to be added into Equation 4.19

for each differential direction.

The integration of available light incident on a surface is acommon problem in computer

graphics and a variety of solutions have been proposed. Numerical integration of the irradiance

is desirable but comes at the expense of computational time.Equation 4.19 can be approximated

using methods derived from computer graphics and heat transfer studies. Three such methods are

considered here.

Hall’s Hemispherical Integrator

Hall has presented a simple method for calculating the irradiance incident on a surface from a

hemisphere of directions [36]. This technique is easily adapted to the computation of sky irra-

diance for tilted and shadowed surfaces. The surface element, for which the calculation is to be
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(a) (b) (c)

Figure 4.10:Irradiance from a CIE clear sky calculated on the surface
of a sphere. The camera is viewing the sphere from the north and the
sun is located due west with a zenith angle of30�: (a) Irradiance calcu-
lated using Hall’s hemispherical integrator with an angle increment of
π=16 (11.3 minutes); (b) calculated using Nishita’s band methodusing
24 bands (25.6 minutes); (c) calculated using Ward’s Radiance lighting
simulation system using high image quality parameters (3.5minutes).
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Figure 4.11:Use of a local hemisphere of incident directions to sample
the sky hemisphere.
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Figure 4.12:Geometry for sky irradiance calculation using Hall’s hemi-
spherical integrator [36].

performed, is assumed to be in the centre of the base of the skyhemisphere. This is a fair assump-

tion assuming the size of the sky hemisphere to be large when compared to the size of the element.

A local hemisphere of visible directions is placed over the surface patch under consideration. This

local hemisphere is positioned such that its zenith is coincident with the surface normal. The lo-

cal hemisphere of directions is sampled and these directions are mapped to the sky hemisphere

to provide radiance values. Figure 4.11 shows the use of a local hemisphere for sampling the

global sky hemisphere. The figure shows a sample directiona which successfully samples the sky

hemisphere and hence contributes irradiance. Sample direction b is below the horizon and hence

irradiance from the sky does not contribute from this direction. Sample directionc is incident on

another scene object and is therefore shadowed from sky irradiance in that direction.

To calculate irradiance the local surface hemisphere is divided into discrete elements such

that the angle increments in the longitudinal and latitudinal directions are equal (dθ = dφ) (see

Figure 4.12). The centre of the hemisphere element is sampled to determine the possible sky

radiance of the element. When the direction is below the horizon or is incident on another object

in the scene, the sky element is assigned a radiance of zero. Equation 4.19 is now approximated

by summing the contribution from each hemisphere element

E � n

∑
i=0

4n

∑
j=0

L(iπ=2n; jπ=2n)cos(iπ=2n)dω (4.20)

wheredω is the projected solid angle of the element source andn is the number of divisions made.

Figure 4.10(a) shows the irradiance incident on a sphere calculated using this sampling

method. Slight spatial aliasing can be seen, owing to insufficient sampling of the hemisphere. The
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technique does, however, provide a good approximation of the irradiance incident on the surface.

Nishita’s Band Integrator

Band l

δl

Sample line

2∆δ

Sky element

α

Figure 4.13: Geometry for sky irradiance calculation using Nishita’s
band source integration method [96].

A popular computer graphics technique for calculating sky light irradiance is due to Nishita and

Nakamae [96]. This method aims to reduce the time spent in determining which regions of the

sky are visible to an element. As with Hall’s method above, the hemisphere of possible incident

directions is placed above the surface element. This local hemisphere is divided into bands which

are treated as transversely uniform band luminaires (see Figure 4.13). When determining sky

visibility, only the mid-line of each band is sampled. The visible band region is then integrated

to determine the irradiance received by the element from thesky band source. The irradiance

received from bandl is given by

El = dl

Z α

0
L(α;δ)sin2αdα: (4.21)

wheredl = (cosδ0l �cosδ0l+1) andδ0l = δl �∆δ. The total irradiance is calculated by summing the

contribution from each of the band sources,

E � n

∑
l=0

El : (4.22)

Figure 4.10(b) shows the irradiance incident on a sphere calculated using this method.

Aliasing in the form of bands can be seen owing to insufficientsampling of the hemisphere. This

is due to the technique being originally intended for planarconvex polygons as opposed to the

curved surface presented by a sphere. The approximation could be improved by dividing the lo-

cal hemisphere into more bands but this would be at the expense of increased computation time,
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though the method has since been modified so as to improve rendering time [19]. Results using

this method are poor when compared to the simple method advocated by Hall.

Ward’s RadianceLighting Simulation System

An alternative to the deterministic sampling techniques described above is to randomly sample

the local hemisphere of visible directions shown in Figure 4.11. Provided that enough samples

are taken and the sample density is uniform, Equation 4.19, and hence irradiance incident on the

surface, can be approximated. Such a stochastic method is often termed a Monte Carlo approach,

due to the inherent random nature [32]. The use of Monte Carlotechniques to determine surface

irradiance is ill-advised when considering daylight [120]. This is due to the high spatial variance of

the illumination, especially when considering clear and intermediate skies. When direct irradiance

from the sun is also considered, the use of stochastic methods is to be avoided owing to the small

size of the sun relative to the sky hemisphere. In order to ensure that the high radiance regions of

the hemisphere are not missed by the random sampling, many thousands of samples would have

to be taken. Despite this, a lighting simulation system based on Monte Carlo methods, developed

by Ward, has proved successful for the simulation of daylight illumination [142, 81].

TheRadiancelighting simulation system [142] was originally designed for artificial interior

lighting calculations and has been extended to account for exterior and daylit scenes. The system

uses a hybrid deterministic and stochastic ray tracing technique to provide physically accurate

lighting calculations for an extensive range of surfaces and illuminants. The system primarily

uses a Monte Carlo technique to account for diffuse illumination such as sky light. Since direct

solar and clear sky illumination have a high variance, deterministic methods are also used. In the

case of a clear sky with a sun, Monte Carlo methods would be used to sample the majority of the

sky hemisphere. Knowing that the regions of high variance inthe sky hemisphere exist near the

location of sun the majority of samples are made in this region. This hybrid technique allows for

accurate calculations with the advantage of low cost. The number of rays cast using this method

is considerably lower than in the methods presented previously. Mardaljevic [81] has shown a

good correspondence between the results produced by theRadiancesystem and actual daylight

measurements for a variety of sky conditions.

Figure 4.10(c) shows integrated irradiance on the surface of a sphere incident from a clear
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sky without a sun. This method does not exhibit the aliasing effects which are produced by the

Hall and Nishita methods. However, this improved calculation of surface irradiance does not

come at the expense of computation time, as indicated by the comparative timings1 shown in

Figure 4.10. The time taken to compute the irradiance valuesis significantly improved over the

two previous methods. Figure 4.14 shows a reconstruction ofthe daylight sequence shown in

Figure 1.1 produced using theRadiancelighting simulation system.

Figure 4.14: Reconstruction of the daylight image se-
quence shown in Figure 1.1, produced using the Radiance
lighting simulation system.

4.3 Summary

Natural illumination can be considered as being the combination of two light sources. These

are direct irradiance from the sun and diffuse irradiance from the sky hemisphere. The relative

contribution of each of these is determined by the atmospheric conditions which affect the level

of direct solar illumination reaching the terrestrial surface. Each of these sources of illumination

have been treated separately in the models presented.

This chapter has shown that models developed in the solar energy community may be used

directly to provide a physically based model of natural illumination. These can be used in conjunc-

tion with computer graphics techniques to calculate the total irradiance on a surface, and hence

reflected radiance. Such calculations allow for the interpretation of reflection measurements made

by the methods developed in this thesis.

1Timings obtained on SiliconGraphics Indy.
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A Sensor Model

Accurate measurement of the radiance reflected by a surface in the direction of a sensor can be

achieved using a specialised calibrated device such as a gonioreflectometer [89]. Measurements

obtained using such devices can be used directly for the development of a bidirectional reflectance-

distribution function (BRDF) model. Machine vision has, however, relied on the use of CCD1

cameras and digitised photographic images. Such image based sensors provide cost effective,

compact and robust technology that can be used in a wide variety of situations. Before measure-

ments are made from the images provided by such cameras, caremust be taken to consider the

processes by which the resultant image is formed. This chapter will focus upon the characteristics

of CCD based devices in the context of measuring scene radiance. Similar consideration need be

applied to digitised photographic images as these are typically scanned using a CCD device, and

hence, similar sources of error may be encountered. In either case the limitations imposed by the

camera optics are the same.

The sensor model developed here is based upon that of a CCD sensor device with appropri-

ate optics to capture an image of a scene. Such a camera has inherent sources of error and these

shall be discussed in this chapter. The significance to whichthese errors affect the resultant image

can be determined by prior calibration of the camera. This chapter will discuss both radiometric

and projective calibration. The sensor model developed here may be adapted to allow the analysis

of data obtained using alternative image based sensors.

1Charge-Coupled Device.

60
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5.1 Projection of the Scene

To determine which regions of a scene contribute to an area ofthe image it is necessary to model

the projection of the three dimensional scene onto the imageplane [24]. Ideally, this perspective

projection of the 3D scene onto the 2D image plane would be achieved using a pin-hole aperture.

The use of such an ideal, infinitesimally small, aperture provides an undistorted projection of

the scene onto the image plane, with all objects in sharp focus. This model of projection is that

which is commonly used in the computer graphics community but the model only approximates

the processes by which a scene is projected onto the image plane by a practical lens.

The sensitivity of a sensor determines the flux necessary to produce an image. The aperture

may therefore need to be enlarged to allow sufficient light onto the image plane. This increase in

aperture size compromises the pin-hole model. So that objects are brought to focus on the image

plane, a lens is used in conjunction with the aperture. Only objects within theprincipal planeof

the lens are brought to sharp focus, whilst those within thedepth of fieldof the lens are brought to

apparent focus on the image plane. Objects beyond the depth of field are represented by a region

on the image plane, termed thecircle of confusion. The perspective projection of objects within

the depth of field can be approximated by the pin-hole model, the parameters of which may be

determined by prior calibration (see Section 5.4).

To determine which regions of the scene contribute to an individual image pixel it is nec-

essary to perform the inverse perspective projection. Thiscan be achieved using the common

computer graphics technique of tracing a ray backwards through the projection and into the scene

[30, 31]. The surface patch which contributes to the selected pixel is determined by intersecting

this ray with the scene. This technique requiresa priori knowledge of the scene geometry within

a defined co-ordinate system.

5.2 Image Plane Irradiance

A camera lens provides a system of optics through which lightis focused onto the image plane.

Figure 5.1 shows a single lens of focal lengthfp and aperture of diameterD bringing an image of

a surface patch,dAo, to focus on the sensor’s image plane. Image plane irradiance, Ep, is due to
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Figure 5.1:Imaging geometry for a simple camera model.

the flux within the projected solid angle of the patch passingthrough the aperture of the lens,

Ep = dΦ
dAp

: (5.1)

This flux is due to the reflected radiance from the patch withinthe solid angle,

dΦ = dAo

Z
Ω

Lr(θr ;φr)cosθr dω; (5.2)

whereΩ is the projected solid angle subtended by the aperture. Substituting into Equation 5.1

gives:

Ep = dAo

dAp

Z
Ω

Lr(θr ;φr )cosθr dω: (5.3)

Comparing the projected solid angles subtended bydAo anddAp at the aperture shows,

dAocosθ0r
f 2
o

= dApcosα
f 2
p

: (5.4)

Image plane irradiance can therefore be defined in terms of the reflected scene radiance and the

lens system,

Ep = ( fo= fp)2cosα
Z

Ω
Lr(θr ;φr)�cosθr=cosθ0r� dω: (5.5)

Assuming the aperture of the lens to be small relative to the distance from the object allows the

ratio of the cosines,(cosθr=cosθ0r), to be unity. It can also be assumed that the reflected radiance

from the surface patch will tend to be constant over the entire solid angle. These assumptions

allow Equation 5.5 to be approximated [51]:

Ep = �π
4

��D
fp

�2

cos4 αLr(θr ;φr)= l(α)Lr(θr ;φr): (5.6)
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The reflected radiance,Lr(θr ;φr), from a surface is due to incident irradiance from light

sources and interreflection from other surfaces being reflected in accordance with the surface’s

reflection characteristics. Chapter 3 has shown that a surface’s reflection characteristics are most

generally defined using a BRDF,fr . The reflected radiance due to illumination incident from the

hemisphere of possible directions about the surface normalis,

Lr(θr ;φr) = Z 2π

0

Z π
2

0
fr(θi ;φi ;θr ;φr)Li(θi ;φi)cosθi dθi dφi : (5.7)

This double integral equation has a similar form to that of Equation 4.19 for the calculation of sur-

face irradiance due to sun and sky light. Equation 5.7 may be solved using the same computational

methods used to compute incident irradiance (see Section 4.2.4).

The image plane irradiance due to the illuminants and scene objects, given the simple cam-

era model above, is therefore,

Ep = l(α)Z 2π

0

Z π
2

0
fr(θi ;φi ;θr ;φr)Li(θi ;φi)cosθi dθi dφi : (5.8)

In the case of a scene illuminated by sun and sky light the incident radiance,Li, can be provided by

the illumination models presented in Chapter 4 and from surface interreflection. This work does

not consider the contribution due to surface interreflection and hence illumination is due only to

visible sun and sky light.

5.3 Production of the Digital Image

An image represents the spatial variation of radiance incident in the direction of the camera from

the scene. For the purposes of machine vision, this continuously varying radiance is discretised to

provide a numeric representation of the scene in the form of an array of pixel values. This section

considers how such an image is formed in a CCD camera. The models presented in this section

may equally be applied to cameras using photographic media,in which case the discretisation

takes place when the image is scanned to provide pixel values.

A CCD chip, used in the majority of commercial imaging systems, is segmented into a

grid of individual sensor sites. When a photon strikes a CCD site an electron is generated in the

silicon structure. Each site will integrate photons over the duration that the site is exposed by the

mechanical shutter or, in the case of an electronic shutter,until the photon-generated electrons are
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collected from the site. The charge generated at each site isread off and amplified by the CCD chip

circuitry to provide a signal suitable for processing. The resultant signal is quantised to provide

a pixel value within a range of discrete values, thedynamic range. A thorough description of the

processes by which a CCD chip generates a signal is provided by Healey and Kopendupy [44].

An achromatic camera will provide a grey-scale image of the scene. The grey levels in the

image are due to scene radiance integrated over the wavelengths of light to which the CCD sensor

is responsive. To provide a colour representation of the scene the light is selectively filtered, either

over the individual sensor sites or over different CCD chips, to provide a composite image. This

section presents pixelised image formation for both achromatic and colour cameras.

5.3.1 Achromatic Image Formation

The number of photons striking an individual sensor site on aCCD chip is proportional to the

incident flux over the duration to which the site is exposed toflux. The total flux incident upon an

individual sensor site at grid location(i; j) within the CCD grid,Φp, is

Φp = Z
x

Z
y
Ep(i; j)dydx; (5.9)

wherex andy are the dimensions of the sensor site andEp is irradiance incident on the site given

by Equation 5.8. Assuming the surface patch in the scene, from which this flux originates, to be

small and the surface to be within the camera’s depth of field,it can be assumed that irradiance is

constant over the area of the sensor, hence,

Φp = ApEp(i; j); (5.10)

whereAp is the area of the sensor.

The range of electro-magnetic radiation to which a CCD is sensitive is wider than that of

the human visual system. Figure 5.2 shows the relative spectral response of a typical CCD device.

It can be compared to the photopic equivalent for the human visual system. It can be seen that

the CCD device is responsive to a broader spectrum and is particularly responsive to infrared

radiation. This sensitivity can be reduced by the use of appropriate filters to block out unwanted

radiation. The spectral response of a camera can be determined by the use of calibration methods

(see Section 5.4) and a response function,s(λ), can be formulated. A discrete pixel valueV is
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Figure 5.2:Relative sensitivity to wavelength of a CCD camera and the human eye.

obtained by quantisation of the total irradiance incident on the sensor site during the exposure

time set by the shutter speed,

V = T QAp

Z
λ

s(λ)Ep(λ)dλ; (5.11)

whereT in the integration time as determined by the shutter andQ is a model of the quantisation

process in the form of atransfer function. The transfer function defines the rate at which the pixel

value increases in proportion to an increase in irradiance.This function also defines the dynamic

range of the pixel values.

Commercial CCD cameras have primarily been designed for theacquisition of images for

display purposes. This has significance when using these cameras for image processing in the

context of measuring scene radiance. It should be noted thatthe transfer function of the camera

may not be linear and hence an increase in scene radiance is not complemented by an proportional

increase in image pixel value. This is due to the displaygammatypically used to provide a qual-

itative representation of the scene. This can be compensated for by the use of gamma correction

methods [36].

5.3.2 Colour Image Formation

In order that a colour image may be produced, the scene radiance is sampled in three wavelength

regions representing red, green and blue light. This is typically performed using filters with trans-
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mittance functionsτR(λ), τG(λ) andτB(λ), see Figure 5.3. From the composition of these three

samples the variation of wavelength from the scene may be approximated. The errors incurred by

the use of such a tristimulus colour approximation are discussed in [36].
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Figure 5.3:Relative sensitivity of CCD camera to filtered wavelengths.

The use of three filters to sample the scene radiance yields a triplet of values for each image

pixel, (VR;VG;VB). The composite RGB pixel value can be obtained by extending Equation 5.11:

VR = T QAp

Z
λ

s(λ)τR(λ)Ep(λ)dλ; (5.12)

VG = T QAp

Z
λ

s(λ)τG(λ)Ep(λ)dλ; (5.13)

VB = T QAp

Z
λ

s(λ)τB(λ)Ep(λ)dλ: (5.14)

5.4 Sources of Error and Calibration

The processes by which the scene is projected and the image recorded are subject to a number of

error sources. These errors originate from non-uniform projection by the optics of the scene and

the sensor used to create the image. The detection and subsequent reduction of such errors can be

achieved by the use of calibration methods. This section summarises the problems associated with

CCD cameras and calibration techniques.
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5.4.1 Optical Errors

Lenses do not provide a uniform projection across the area ofthe image. This results in two

forms of aberration: spherical and chromatic. The use of spherical lenses, as opposed to the ideal

parabolic shape, results in the scene being projected non-uniformly onto the image plane. The

resulting image may exhibit blurring due to objects not being brought to focus uniformly across

the image. Chromatic aberration is due to the refractive nature of the lens material. The extent to

which light is refracted by the lens is a function of wavelength. Light, originating from the same

scene point, of differing wavelength will not be focused to precisely the same point on the image

plane. The aberration thus caused is particularly evident at the periphery of an image. Novak et

al. suggest a method for the detection and correction of chromatic aberration [99].

Commercial lenses attempt to reduce aberrations. In practice camera lenses consist of a

system of optics, typically a double-Gauss system. A physically-based model of such lenses is

provided by Kolb et al. [69]. This model allows for the computation of irradiance incident on the

image plane to be made for a variety of commercial lenses. Such a model is invaluable for the

accurate radiometric analysis of image pixel values from cameras. Chromatic aberration may be

reduced by the use of coatings applied to the surface of the lens.

Determining the perspective projection provided by the lens, and hence the parameters to

the pin-hole approximation, can be achieved using a number of calibration methods. An overview

of the various techniques is provided by Tsai [137].

5.4.2 Sensor Errors

The process by which a CCD chip generates an image of the spatial distribution of incident radi-

ance is not without inherent errors. The silicon which makesup a CCD chip is thermally sensitive

and may produce a signal due to ambient temperature. This results in dark noiseacross the im-

age. The quantum process by which electrons are generated byincident photons is subject to

uncertainty and results inshot noise. The dynamic range of a sensor site may cause regions of

the image to be over or under exposed. Over exposure is a particular problem when using a CCD

sensor since the resulting overflow of charge from a sensor site causes neighbouring sites to pro-

duce increased signals. The resultantblooming in the image causes highlight regions to appear
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enlarged in the image. Detection and calibration of the errors due to the use of CCD sensors is

presented by Healey and Kondepudy [44, 45] and Klinker [66].

The projection of the scene onto a segmented sensor to produce a digital image is the cause

of spatial aliasing artifacts. The resulting errors, due tothe quantisation of the projection process,

are discussed in [40] and [57].

The sensitivity of the CCD sensors to both change in intensity and wavelength of light varies

between manufacturers. For accurate analysis of the resulting pixels it is necessary to determine

the transfer function of the sensor. Such calibration can beachieved by the use of test targets such

as the Macbeth ColorChecker [84, 31]. Such targets provide samples of known chromaticity and

reflectance so that the linearity of the camera’s response can be assessed. Calibration methods for

determining sensor sensitivity are provided by [66, 99, 146].

5.5 Summary

This chapter has briefly discussed the characteristics of CCD devices for the purposes of obtaining

digital images from which radiometric measurements can be taken. The development of a camera

model has shown that, given suitable calibration, such images can be used for measuring the

reflected radiance from a surface patch.

Despite the inherent errors of such devices, CCD cameras anddigitised photography may

be used for surface reflection model estimation. The accuracy of the resulting model will be de-

pendent upon the accuracy of the sensor used and of the sensormodel. Errors in the measurements

can be accommodated by a system but only if the magnitude and distribution of such errors has

been determined by prior calibration.
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Surface Model Estimation

The aim of this chapter is to show how the reflection characteristics of an observed surface, illumi-

nated by natural daylight, may be estimated. Chapter 3 has discussed how the reflection character-

istics of a surface can be described in terms of a functional model. The most general description

of reflection is given by the bidirectional reflectance-distribution function (BRDF) (see Section

3.1.2), which defines reflected radiance in terms of incidentradiance confined within differential

solid angles. Surface BRDF can be approximated for use in computer graphics and machine vision

tasks using the reflection models presented in Chapter 3. It is the parameters of such a reflection

model that are to be estimated by the methods presented here.

The appearance of an object is determined by both the illumination and the object’s sur-

face properties. This work assumes that the illumination consists of sun and sky light alone and

corresponds to the models presented in Chapter 4. It is therefore necessary to determine whether,

given a priori knowledge of the illumination and a sensor measurement of reflected energy due

to this illumination, the parameters of a reflection model can be determined. Further to this, it is

necessary to determine whether a solution is unique and to what degree of certainty the solution

found is accurate.

The use of the sensor model developed in Chapter 5 allows image pixel values obtained from

a camera to be interpreted in the context of a surface reflecting incident radiance in the direction of

a sensor. In a natural scene, this illumination is due to sun and sky light. These are characterised

by the models of Chapter 4. This work only considers regions of the scene which are within the

69
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camera’sprinciple plane of focus. Only these objects are brought to sharp focus on the image

and hence, for the purposes of this work, it can be assumed that radiance from a small area on an

object’s surface is projected onto the pixel area of the sensor plane [51]. Surface interreflection is

not considered.

An image of a scene represents a number of measured values. Each value is the result of re-

flected light in the direction of the camera. Given accurate models of daylight illumination, surface

reflection and sensor response it is possible to predict these measured values for any given scene.

Any discrepancy between the measured and predicted values would be due to either measurement

error or inadequacies in the models. Givena priori knowledge of the scene geometry, the sensor,

and the nature of the illumination, the free parameters of the complete model for predicting pixel

values are those which describe the surface reflection characteristics. We wish to select these pa-

rameters such that the discrepancy between measured valuesand those predicted by the model are

minimised. This chapter presents a measure of difference between such values and methods by

which it can be minimised.

It should be noted that a surface’s BRDF cannot be measured directly. This is due to the

differential quantities used in the definition of BRDF. As such, any model of surface BRDF derived

from finite measured data is only an approximation. As Nicodemus states [95];

‘The BRDF itself, as a ratio of infinitesimals, is a derivative with “instantaneous”

values that can never be measured directly. Real measurements involve non-zero

intervals of the parameters, e.g∆ω or ∆λ rather thandω or dλ, and hence, can yield

only average valuesfr over these parameter intervals.’

6.1 Theχ2 Metric

The difference between a set of measured values and those predicted by a model can be evaluated

in a least-squaressense. This provides a figure-of-merit function which evaluates the correspon-

dence between measured data and a model. Given a set ofmobservations,yi , and an associated set

of model values,y(xi ;a), obtained for the same data points,xi , the least squares difference between
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the data and the model is given by

least-squares difference= m

∑
i=1

[yi �y(xi ;a)]2 ; (6.1)

wherexi are the model variables anda is a vector of parameters upon which the model depends.

Selection of these parameters, such that the least-squaresdifference is minimised, provides the

model which most accurately describes the given data.

In practice measured data will have an associated error. In the case of digital images, the

sources of such error are described in Chapter 5. With suitable calibration the error of a sensor

may be determined and knowledge of possible measurement error may be included in the figure-

of-merit function. If each measured data value,yi , has an associated Gaussian error with standard

deviationσi , achi-squaredmetric may be used [5]:

χ2 = m

∑
i=1

�
yi �y(xi ;a)

σi

�2 : (6.2)

Minimisation of this function will yield the parameters which best model the measured values

given the estimate of the measurement errors. The process bywhich these optimal parameters are

determined is termedregression.

Minimisation ofχ2 to find the optimal model parameters is a method ofmaximum likeli-

hood. Given a model, it is assumed that the set of measured data values are observations from the

parent distribution of possible model values. Minimisingχ2 is the equivalent of maximising the

probability that the observations are from the parent distribution. The performance of the least-

squares method of model parameter estimation is governed bythe accuracy of the sensor readings

and the quality of the model. It is also dependent upon the number of observations made. Mea-

sured values which are not within the error estimationσi cause problems when considering theχ2

metric. Such outlying values in the measured data will give apoor fit between data and model and

yield poor estimates for the parameters.

It can be seen from Equation 6.2 thatχ2 is a function of the model parameters. Theχ2

function therefore describes a hypersurface in a space of dimension equal to the number of model

parameters. The global minimum of this hypersurface is the point at which the parameter values

provide a least-squares fit with the measured data. Minimisation of Equation 6.2 is equivalent to

locating the global surface minimum within the parameter space.
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6.2 Description of Data and Associated Model

Consider the simple case of a surface illuminated by a singlepoint source with reflected energy

being measured at a single discrete wavelength by a sensor. The intensity of the reflected energy

at this wavelength is due to the intensity of the point source, the reflectance of the surface, and the

extent to which light is scattered and attenuated by the surface structure. Surfaces which exhibit

different levels of scattering and absorption may appear similar to a sensor which is only receiving

reflected light from a single, small direction, see Figure 6.1.

(b)(a)

Figure 6.1:Sensor measuring reflected radiance within a small solid an-
gle due to a point source: (a) Lambertian surface; (b) glossysurface. In
each case the magnitude of the reflected radiance incident onthe sensor
is the same.

This simple example highlights the problems of the task. Thesensor can provide no infor-

mation regarding light reflected into directions other thanthose which are incident on the sensor.

A single measurement provides information relating only tothat particular instance of the view-

ing and illumination geometry. Using the single measurement from a calibrated device would not

provide suitable information with which to determine the surface’s reflection characteristics.

So that more information can be obtained regarding the surface’s reflection characteristics

it is necessary to obtain further measurements. In this monochromatic case, the BRDF of a sur-

face is a function of the incident and reflection directions relative to the surface normal. Hence, it

would be advantageous to obtain a number of measurements each of which is a result of a different

illumination or viewing geometry. Each measurement provides data to which a proposed reflec-

tion model can be compared. Figure 6.2 shows possible methods of obtaining further reflection

measurements.

Moving the light source, as shown in Figure 6.2(a), will provide a number of measure-
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(a) (c)(b)

Figure 6.2:Methods for obtaining further measurements of surface re-
flection: (a) moving the light source; (b) moving the sensor;(c) sam-
pling other regions of the surface.

ments from which the surface reflection model can be estimated. In laboratory conditions the light

source can be positioned such that many measurements can be obtained from a wide distribution of

source positions. In the case of a scene illuminated by natural light alone, such control over light

source position is not possible. However, if the scene is observed over a period of time, the relative

position, and hence surface irradiance, of the sun will change, as will the spatial and spectral distri-

bution of radiance from the sky. These temporal changes are characterised by the models given in

Chapter 4 and hence provide a variety of illumination conditions from which measurements can be

obtained. In the case of a naturally illuminated scene, light is incident from a possible hemisphere

of directions, depending upon the surface orientation. Each of the directions may contribute to the

light reflected in the direction of the sensor.

Figure 6.2(b) shows that further measurements can be obtained from a single surface patch

by moving the position of the sensor, hence changing the viewing geometry. This method is not

considered here.

The use of an image obtained by a CCD camera provides a number of measurements, each

of which may be considered to be due to light reflected from a different surface patch. As shown in

Figure 6.2(c), each pixel of such an image represents a different illumination and viewing geom-

etry. The extent to which these geometries vary is dependentupon the change of surface normal

across the visible surface.

It is proposed that a combination of changing illumination and the sampling of different sur-

face regions will provide data suitable for a surface’s reflection model to be determined. The basic

approach will be to observe a surface over a period of time, thus providing varying illumination
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conditions. The temporal change in value of a single pixel across the resulting image sequence

provides a measure of surface reflection from that surface patch, given the changing illumination.

Since the projection of the visible surface may cover a groupof image pixels, a number of such

measurements can be obtained from each individual image in the sequence. Each pixel in an image

sequence represents a measured data value,yi , to be used in the evaluation of Equation 6.2. Figure

6.3(a) shows the change in value of a single pixel across an image sequence observing a glossy

surface under a clear sky. The variation in the values acrossthe sequence is due only to the change

of illumination over the duration of the sequence. The extent of this variation is determined by the

reflection characteristics of the surface. Figure 6.3(b) shows the values of a number of pixels from

the same surface image. Here it can be seen that, though the material has remained constant, the

differing illumination and viewing geometries presented by each pixel has resulted in a variation

in values between the pixels. Again, the extent to which the values from different pixels vary will

be determined by the reflection characteristics of the surface.
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Figure 6.3:The change in image pixel value across a sequence of thir-
teen images for: (a) a single pixel in each image; (b) three pixels in each
image.

6.2.1 Selection of a Suitable Model

The model,y(xi ;a), used in Equation 6.2 is to be defined such that it describes the variation in

observed image pixel values over an image sequence. The variables,xi , of this model represent

the camera position, time the image was taken, and the orientation of the surface. From these

variables the illumination due to sun and sky light can be determined, as can the direction of

reflection towards the camera. The unknown parameters of themodel,a, are therefore those which

describe the surface’s reflection characteristics such as roughness, Fresnel effects or wavelength
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attenuation.

Initial work proposed the use of a surface reflection model alone to describe the variation

of image pixel values [78]. In this case, illumination from the sky was neglected and the sun was

modelled as a moving point source. The surface reflection model used was a combination of those

proposed by Lambert and Phong (see Chapter 3). Results showed that, whilst this model of pixel

value variation across a sequence did allow the estimation of model parameters, there were strict

limitations as to the success of the method. Since only direct solar illumination was considered it

was necessary for the surface to be orientated such that it faced the sun. This limitation obviously

excluded the consideration of overcast skies. The results were also shown to be dependent upon

the location of the camera with respect to the surface. In this case the model chosen fory(xi ;a)
did not attempt to predict image pixel values. It attempted only to describe the variation of values

across the sequence and not absolute pixel values.

The use of the full sensor model presented in Chapter 5 ensures a more accurate description

of pixel value variation. Equations 5.8 and 5.12 show how daylight illumination and surface

reflection models can be incorporated into the sensor model so that pixel values may be predicted.

The use of this more complex model allows illumination due tosky light and the characteristics of

the sensor to be accounted for. It is intended that the provision of this, more accurate, model will

provide improved results over those presented in [78].

It is proposed to evaluateχ2 using image pixel values and pixel values predicted by the

sensor model of Chapter 5. Givena priori knowledge of the illumination and scene geometry,

the free parameters of this model are those of the function used to describe surface reflection. All

other aspects of the sensor model shall be assumed to have been recorded at the time the image

was taken. Therefore, the evaluation ofy(xi ;a) will be performed using the full sensor model

with a being the parameters of the chosen surface reflectance function. In this way, the optimal

parameters of the reflectance function may be estimated by minimisation of theχ2 function for a

given image sequence.

6.2.2 χ2 for an Image Sequence

Given that the supplied data are to be in the form of a sequenceof images, theχ2 function can

be redefined specifically for this application. Consideringa single pixel across a sequence ofm
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images,I , the value of the pixel, in a single image, with co-ordinatesx;y is denoted byI i(x;y)
wherei = 1; : : : ;m. A single pixel of a colour image is typically represented bya triplet of values.

These represent the sensor response to three wavelength regions (see Section 5.3.2). Each of

these values may be treated in isolation and is a result of sampling the model over the range of

wavelengths to which light has been filtered. The tristimulus value of a single pixel in a colour

image of the sequence is, therefore,
�

I i
R(x;y); I i

G(x;y); I i
B(x;y)	, whereR;G;B denote the three

sampled wavelengths represented by each of the values.

The model used to describe the variation of pixel values across an image sequence is dis-

cussed in Section 6.2.1. Again, in the case of colour images,three values may be associated with

a pixel. The tristimulus pixel value predicted by the model for a given set of reflection model

parametersa is denoted byfM(i;x;y;R;a);M(i;x;y;G;a);M(i;x;y;B;a)g, whereM is the pixel

value model. Note that the image number,i, the pixel co-ordinates, and the filtered wavelengths

are variables of the model. These denote the time the image was taken, the sampled wavelengths

of light, and the location of the pixel within the consideredimage.

If the values of a number of colour pixels in each image of a sequence are considered then;

χ2 = m

∑
i=1

∑
x;y ∑

λ

1

σ2
i

�
I i
λ(x;y)�M(i;x;y;λ;a)�2 ; (6.3)

whereλ = fR;G;Bg, x andy are the co-ordinates of each considered pixel, andσi is the expected

error associated with the pixel value.

In the above definition of theχ2 function, the difference between each individual pixel and

that predicted by the model is summed individually and independently of other pixel values in

the sequence. In the case of colour images, each of the RGB values is treated as an individual

measurement. Therefore, a single evaluation of the term to be summed only calculates the ability

of the model to predict that particular pixel value. Only by the use of the complete summation can

the ability of the model to predict values across the whole sequence be determined.

Equation 6.3 is a good measure of the difference between image and predicted pixel values

across an image sequence since, in its evaluation, each frame, and each pixel within the frame, is

considered independently. If a set of measured pixel valuesand predicted values have the same

combined magnitude but the values occur in a different orderin the sequence then theχ2 value

will be high. To achieve a lowχ2 value both the magnitude and order of the pixel values must be

similar. Therefore, both the shape and the magnitude of the curves presented in Figure 6.3 must
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be modelled by the function selected forM(i;x;y;λ;a) in Equation 6.3.

When dealing with digital images, pixel values are typically integer quantities. Therefore

the calculation of difference between actual and predictedpixels in Equation 6.3 involves integer

values (though predicted values may be estimated to floatingpoint accuracy). It is also the case

that, given an accurate model of the imaging process, as the estimated parameters approach those

of the observed surface, the difference in Equation 6.3 willtend to zero. Both of these situations

give a potential for error in the calculation ofχ2 for an image sequence. However, as shall be

shown in the results (see Chapter 7), in the case of real imagesequences,χ2 rarely approaches

zero and in some cases may be considered large.

As stated in Chapter 5 the error in the actual pixel values is due to sensor and optical error.

In the case of CCD devices this error is a quantum process and is therefore more adequately

modelled as Poisson distribution. The magnitude of opticalerror varies with respect to image

pixel coordinates and is not uniform across the image. It is therefore an approximation to model

these expected errors with the single Gaussian termσ2
i in Equation 6.3. For these reasons the use

of theχ2 metric in the case of digital images may not be seen as ideal. The derivation of a more

suitable metric is seen as a possible direction for future work.

6.3 Topology of theχ2 Hypersurface

As stated in Section 6.1, the optimal model parameters are tobe estimated by minimisation of

theχ2 function. To determine the most appropriate method for searching the parameter space, the

expected topology of theχ2 hypersurface is now considered. Only with an understandingof the

nature of theχ2 function can methods be developed which will allow minimisation.

Synthetic image sequences provide noiseless data obtainedusing a precise camera model.

To generate these image sequences theRadiance1 lighting simulation system has been used. The

images are of a scene composed of an object with known surfacemodel parameters and use the

sky models presented in Chapter 4. We aim to search the parameter space of the same reflection

model used to generate the image sequence, and thus would expect to find aχ2 value of zero where

the reflection model parameters are the same as those used to generate the image sequence.

1See Section 4.2.4 for a description of this system.
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The reflection model used in theRadiancelighting simulation system is that due to Ward

[141] and has been described in Section 3.4.5. Sampling light at three discrete wavelengths, repre-

senting red, green and blue light, provides an approximation of the spectrum of reflected light. In

this case, the colour reflection model has five parameters which represent the surface reflectance at

three discrete wavelengths, surface roughness and a measure of surface gloss. Visualisation of the

resulting five-dimensionalχ2 hypersurface in the parameter space, for a given image sequence, is

not possible. Reducing the number of free reflection model parameters to two will allow the sur-

face to be presented. To allow this, the two-parameter version of this reflection model described in

Section 3.4.5 shall be used. Here, the two free model parameters represent surface gloss,ρs, and

surface roughnessσα. All other parameters are fixed at appropriate values. Observations made

from the examples in this reduced parameter space may not necessarily extend to the full reflec-

tion model, or to other reflection models. However, minimisation within a higher dimensional

parameter space is expected to be at least as difficult as these observations will show.

To appreciate the topology of theχ2 surface for a specific image sequence we first consider

a horizontal, unoccluded Lambertian surface (ρs = 0, σα = 0), illuminated by a sun and clear sky,

and observed from a camera situated in the north such that it looks down upon the surface at an

angle of 45� to the surface normal. The image sequence consists of thirteen images, each taken

hourly between 06:00 and 18:00. Selected images from this test sequence are shown in Figure 6.4.

(a) (b) (c) (d)

Figure 6.4: Selected images from a sequence showing a Lambertian
disc, illuminated by a clear sky, on June 21 at terrestrial location
40�N,0�W. The camera is situated in the north and looks down upon
the disc at an angle of45�. Each image is taken at (a) 08:00, (b) 12:00,
(c) 14:00, (d) 18:00.

First theχ2 function for a single pixel at the centre of each image is considered. Note that

theχ2 value at each point in the parameter space is found by evaluating Equation 6.3 for the same

pixel within each image of the sequence. Figure 6.5 shows theχ2 surface for this pixel within

the permitted parameter space of the Ward model. Note that, as expected, the minimum in the
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parameter space occurs on the lineρs = 02.

χ2
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Figure 6.5: χ2 function for a single pixel in an image sequence of a
horizontal Lambertian disc illuminated by a clear sky and viewed from
the north.

Figure 6.6 shows theχ2 function for an image sequence, of the same length and duration,

observing a disc generated with various reflection model parameter values. In each case the min-

imum χ2 coincides with the model parameters used to generate the original sequence. These

examples show that, in the situations considered, a single minimum exists in theχ2 function. This

minimum coincides with that of the optimal parameter valuesin each case. All other parameter

value combinations yield a higherχ2 value. It is therefore proposed that the minimisation of the

χ2 function will lead to correct estimation of the model parameters in these cases.
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Figure 6.6:χ2 function for a single pixel in an image sequence of a hori-
zontal disc illuminated by a clear sky and viewed from the north: (a) disc
with Ward parametersρs= 1:0,σα = 0:0; (b) disc with Ward parameters
ρs = 0:8,σα = 0:1; (c) disc with Ward parametersρs = 1:0,σα = 0:2.

6.3.1 Effect of Camera Position

We now consider the same scene and illumination conditions as above but viewed from differing

camera positions. It would be expected that the existence ofa highlight due to a bright sun would

2Surface roughness,σα, has no significance in the Ward model whenρs= 0.
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Figure 6.7:χ2 function for a single pixel in an image sequence of a hor-
izontal disc illuminated by a clear sky and viewed from the east: (a) disc
with Ward parametersρs= 0:0,σα = 0:0; (b) disc with Ward parameters
ρs = 1:0,σα = 0:0; (c) disc with Ward parametersρs = 1:0,σα = 0:2.

provide evidence that the observed surface is glossy. In thecase of a camera sited in the south, the

illumination geometry would be such that a highlight could not occur when using Ward’s reflection

model. In the following experiments, a camera in the east andsouth is considered. Since motion

of the sun, and hence the spatial distribution of sky radiance, is symmetric about the north-south

axis, it is not necessary to consider a camera in the west. Theeffect of other camera positions can

be inferred from these examples.

Figure 6.7 shows theχ2 function values generated by the east view sequence for a variety

of surface types. This surface shows a more complex topologythan that shown in Figure 6.6. The

ridged nature of the surface shows that a gradient descent search method (see Section 6.4) would

be inefficient in this case. In general, the global minimum issurrounded by steep regions. Away

from the optimal parameter values, plateau and local minimaexist in these surfaces. Such regions

on theχ2 surface may cause difficulties for a method which searches the parameter space for the

optimal parameters.
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Figure 6.8:χ2 function for a single pixel in an image sequence of a hori-
zontal disc illuminated by a clear sky and viewed from the south: (a) disc
with Ward parametersρs= 0:0,σα = 0:0; (b) disc with Ward parameters
ρs = 1:0,σα = 0:0; (c) disc with Ward parametersρs = 1:0,σα = 0:2.
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Figure 6.8 shows theχ2 function for scenes observed from the south. As stated above, with

the Ward reflection model a glossy highlight would not be expected to be within the sequence

with the camera in this position relative to the surface. It can be seen from the graphs that the

resulting topology lacks features, though surface gloss has been correctly indicated by a lowχ2

function value. However, changes in surface roughness are not observable due to the absence of

any highlight information. Theχ2 surfaces of Figures 6.8(a) and 6.8(b) do not show any variation

with surface roughness.

The above experiments show that the position of the camera has significant effect on the

expected performance of the system. The absence of highlight information, such as that missing

from the data obtained from the south view, prevents determination of surface roughness. In the

absence of this information any system based onχ2 minimisation would be unable to determine

whether it is observing a Lambertian surface of low albedo ora glossy surface with a geometry

such that a glossy highlight is not visible in the sequence. Both the north and east camera positions

provide some highlight information due to the movement of the sun over the duration of the image

sequence. The above examples show the significance of the sunfor the estimation of surface

parameters.

6.3.2 Effect of Sky Conditions

A CIE clear sky, as considered in Section 6.3 and Section 6.3.1, provides a hemispherical illumi-

nant which has temporally varying spatial distribution of radiance over the duration of an image

sequence. It also allows direct solar illumination, due to the sun, to be considered. It is therefore

expected that such illumination would provide the most suitable conditions for reflection model

parameter estimation. This section considers scenes whichhave been illuminated by alternative

sky conditions such as those described in Chapter 4.

Figure 6.9 shows theχ2 function for scenes illuminated by an intermediate sky (ϕ = 0:5)

and observed by a camera in the east position. These surfacesare similar to those of Figure

6.7. However, the overall gradient of the surface is reduced, which indicates a lessening of the

difference between the possible pixel values predicted by the model. Figure 6.9(b) clearly shows

a local minimum which has a significantly higherχ2 value than that of the global minimum. This

may present problems to a search algorithm which is based upon a gradient descent of the surface.
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It is expected that, since these examples show a similar topology to those presented for a clear sky,

the results obtained from intermediate skies will be comparable.
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Figure 6.9: χ2 function for a single pixel in an image sequence of a
horizontal disc illuminated by an intermediate sky and viewed from the
east: (a) disc with Ward parametersρs = 0:0,σα = 0:0; (b) disc with
Ward parametersρs= 1:0,σα = 0:0; (c) disc with Ward parametersρs=
1:0,σα = 0:2.

Figure 6.10 shows theχ2 function for scenes illuminated by a CIE overcast sky and ob-

served by a camera in the east position. In comparison with results presented for the same scenes

illuminated by clear and intermediate skies, these surfaces have lowχ2 values. This indicates that

there is a much reduced difference between the pixel values predicted for differing model parame-

ters. However, the topology of the surface in each case is notfeatureless. It can be seen that scenes

of differing surface types have produced strikingly similar χ2 surfaces. Only in the cases shown

in Figures 6.10(a) and 6.10(b) does the surface slope towardthe optimal parameters. However,

in each of these cases the minimum covers a region of the surface and as such a unique optimal

solution could not be determined. In the case shown in Figure6.10(c) minimisation ofχ2 would

lead to incorrect parameter estimation.
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Figure 6.10: χ2 function for a single pixel in an image sequence of
a horizontal disc illuminated by an overcast sky and viewed from the
east: (a) disc with Ward parametersρs = 0:0,σα = 0:0; (b) disc with
Ward parametersρs= 1:0,σα = 0:0; (c) disc with Ward parametersρs=
1:0,σα = 0:2.
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6.3.3 Effect of Camera Noise

The expected effect of camera noise on the system’s performance is now considered. As described

in Chapter 5, any practical image acquisition system is subject to noise. In the case of CCD digital

cameras, noise comes from a variety of sources such as optics, sensor and quantisation. For the

purposes of system evaluation camera noise is modelled hereas an additive Gaussian process.

Whilst this is not an accurate representation of the expected noise, it serves to provide a measure

of system performance. Care must be taken in using additive noise so as to not exceed the actual

dynamic range of the pixel values. A negative pixel value, for example, is not permissible. In

these examples, the standard deviation of the Gaussian noise is expressed as a percentage of the

pixel dynamic range.

Figure 6.11 shows the value of a pixel throughout an image sequence viewing a rough

metallic disc, illuminated by a clear sky and observed by a camera positioned in the east. The

graph shows the values of the same pixel for clean images which contain no noise, images to

which Gaussian noise with a standard deviation of 5% has beenadded, and images to which

Gaussian noise of with a standard deviation of 10% has been added.
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Figure 6.11: Value of a pixel in each image of a sequence to which
Gaussian noise has been added.

Figure 6.12 shows theχ2 function for the pixel over the sequence to which Gaussian noise

with a standard deviation of 5% has been added. These should be compared with those in Figure

6.7. It can be seen that, in this case, the general topology ofthe surfaces has been unaffected by

the addition of noise. The effect of noise has been to reduce the values of theχ2 function for any

set of parameter values, and hence reduce the gradient of thefunction.
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Figure 6.12: χ2 function for a single pixel in an image sequence of
a horizontal disc illuminated by a clear sky and viewed from the east.
Additive Gaussian noise with a standard deviation of 5% has been added
to each image: (a) disc with Ward parametersρs= 0:0,σα =0:0; (b) disc
with Ward parametersρs= 1:0,σα = 0:0; (c) disc with Ward parameters
ρs = 1:0,σα = 0:2.

Figure 6.13 shows theχ2 function for the same sequence but with Gaussian noise with a

standard deviation of 10%. Again, the topology is similar tothat found in the clean images shown

in Figure 6.7. These examples serve to show that theχ2 function is suitable for the comparison

of pixel values and model predictions in the case of noisy images. The general topology of the

examples has remained similar to those presented for clean images. The effect of noise has been

to reduce theχ2 function values and hence the gradient of the function. As noise is increased it

is expected that theχ2 surface will flatten such that minimisation will not be possible. It should

be noted that, as stated in Section 6.1, noise in the form of outliers compromises the least-squares

fit. Such outliers may, in the context of images, be incorrectly interpreted as highlight peaks in the

sequence values.
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Figure 6.13:χ2 function for a single pixel in an image sequence of a
horizontal disc illuminated by a clear sky and viewed from the east. Ad-
ditive Gaussian noise with a standard deviation of 10% has been added
to each image: (a) disc with Ward parametersρs= 0:0,σα =0:0; (b) disc
with Ward parametersρs= 1:0,σα = 0:0; (c) disc with Ward parameters
ρs = 1:0,σα = 0:2.
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6.3.4 Sampling Multiple Pixels with Similar Surface Normals

It would be expected that sampling more than one pixel of the 2D projected surface image would

provide further evidence to support a set of hypothesised reflection model parameters. This section

considers the same image sequences as those presented abovebut with four pixel values used in

the calculation of theχ2 function.

Figure 6.14 shows the value of four pixels across the image sequence for a number of

possible reflection parameter combinations. Figure 6.14(a) shows the pixel values sampled from

a Lambertian disc. As expected the slight variation in viewing geometry provides no difference

between the pixel values. Values sampled from a smooth metallic disc, shown in Figure 6.14(b),

show slight variation. The peak value for each pixel varies,though the small highlight has not

been sufficiently sampled by these pixels. Figure 6.14(c) shows pixel values sampled from a

rough metallic disc. It can be seen that the peak pixel value occurs in a different image of the

sequence in each case. In this case however, the increased size of the highlight, due to the rough

nature of the surface, has meant that it appears in the graphsfor these pixels.
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Figure 6.14:Values of four pixels within an image across a sequence: (a)
disc with Ward parametersρs=0:0,σα =0:0; (b) disc with Ward param-
etersρs = 1:0,σα = 0:0; (c) disc with Ward parametersρs = 1:0,σα =
0:2.
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Figure 6.15 shows theχ2 function for these scenes. These should be compared to thoseof

Figure 6.7 which show the same sequence but with a single pixel being used for the calculation

of χ2. It can be seen that the gradient of the function is higher than those for a single sampled

pixel. This is to be expected due to the increased number of summations performed in evaluating

Equation 6.2. The addition of further pixels also has the effect of smoothing theχ2 function in

each case. This would be advantageous for any search method that is to be used to find the optimal

parameters.
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Figure 6.15:χ2 function for four pixels in an image sequence of a hori-
zontal disc illuminated by a clear sky and viewed from the east: (a) disc
with Ward parametersρs= 0:0,σα = 0:0; (b) disc with Ward parameters
ρs = 1:0,σα = 0:0; (c) disc with Ward parametersρs = 1:0,σα = 0:2.

6.3.5 Sampling Multiple Pixels with Differing Surface Normals

Figure 6.16 shows selected images from a sequence observinga Lambertian sphere illuminated

by a clear sky and viewed from an east position. The sequence consists of thirteen frames taken

hourly, starting at 06:00 and ending at 18:00. The change in surface normal provides a variation

of shading across the surface of the sphere. It is expected that sampling a number of pixels across

the image sequence would provide suitable variation of pixel values so that the reflection model

parameters may be determined.

Pixel values sampled from sequences imaging spheres of differing surface models are shown

in Figure 6.17. In each case the values of five pixels are shown. Figure 6.17(a) shows values

sampled from a sequence of a Lambertian sphere. Owing to the change in surface normal there

is variation in the pixel values. This is to be compared to thevalues sampled from a Lambertian

disc shown in Figure 6.14, where no variation can be observed. Figure 6.17(b) shows pixel values

sampled from a smooth metallic sphere. The selected pixels have not adequately sampled the

highlight, which is present due to the sun, hence the pixel values have little variation across the
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(a) (b) (c) (d)

Figure 6.16:Selected images from a sequence showing a Lambertian
sphere, illuminated by a clear sky, on June 21 at terrestriallocation
40�N,0�W. The camera is situated in the east and looks down upon the
horizontal plane at an angle of45�. Images taken at (a) 08:00, (b) 12:00,
(c) 14:00, (d) 18:00.

sequence. Figure 6.17(c) shows values obtained from a roughmetallic sphere. It can be seen that,

in this case, the roughness of the surface is such that a highlight due to the sun has been sampled

by some of the pixels. There is significant difference between the location of these peaks within

the image sequence for each pixel.

Theχ2 surface for three image sequences of a sphere illuminated bya clear sky and observed

from the east is shown in Figure 6.18. These show a similarityto those of Figure 6.7 and Figure

6.15.

The effect of sampling pixels of an object which represent regions of different surface nor-

mals for the problem situations highlighted above is now considered. Section 6.3.1 and Section

6.3.2 have shown that a camera situated in the south and objects illuminated by overcast skies

presents problems for the estimation of surface model parameters usingχ2 minimisation. Figure

6.19 shows theχ2 surfaces for spheres illuminated by a clear sky and observedin the south. In

comparison with the results shown in Figure 6.8, it can be seen that there is more detail contained

in the surfaces. In the case of the metallic spheres (ρs = 1) the difference in surface roughness

can now be observed. The addition of data from regions with different surface normals has, in this

case, provided suitable information for greater accuracy to be achieved.

Section 6.3.2 highlighted the difficulties presented by an overcast sky. In this situation there

is no illumination provided by the sun and sky light radiancechanges only in magnitude and not

spatial distribution. Figure 6.20 shows that theχ2 surface has been smoothed with the sampling

of further pixels. However, in the case of the rough metallicsphere, the minimum is not in the

expected position ofρs = 1 andσα = 0:2. This would result in the incorrect reflection model
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Figure 6.17:Values of five pixels within an image across a sequence:
(a) sphere with Ward parametersρs = 0:0,σα = 0:0; (b) sphere with
Ward parametersρs = 1:0,σα = 0:0; (c) sphere with Ward parameters
ρs = 1:0,σα = 0:2.
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Figure 6.18:χ2 function for five pixels in an image sequence of a sphere
illuminated by a clear sky and viewed from the east: (a) sphere with
Ward parametersρs = 0:0,σα = 0:0; (b) sphere with Ward parameters
ρs = 1:0,σα = 0:0; (c) sphere with Ward parametersρs = 1:0,σα = 0:2.
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Figure 6.19:χ2 function for five pixels in an image sequence of a sphere
illuminated by a clear sky and viewed from the south: (a) sphere with
Ward parametersρs = 0:0,σα = 0:0; (b) sphere with Ward parameters
ρs = 1:0,σα = 0:0; (c) sphere with Ward parametersρs = 1:0,σα = 0:2.

parameters being estimated by minimisation ofχ2 in this case. This example serves to show the

difficulties presented by overcast sky illumination for reflection model estimation.
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Figure 6.20:χ2 function for five pixels in an image sequence of a sphere
illuminated by an overcast sky and viewed from the east: (a) sphere with
Ward parametersρs = 0:0,σα = 0:0; (b) sphere with Ward parameters
ρs = 1:0,σα = 0:0; (c) sphere with Ward parametersρs = 1:0,σα = 0:2.

6.3.6 Effect of Sequence Length and Image Frequency

The above sections have considered image sequences which cover the majority of the daylight

period of a day and sampling the scene hourly. This section considers the effects of sequence

length and image frequency on the possible performance of the system. Here image sequences of

a disc illuminated by a clear sky and observed from the north are considered. Figure 6.21 shows

the χ2 surfaces for discs of a variety of materials observed over a sequence of five images taken

hourly between 12:00 and 16:00. These should be compared with those of the complete image

sequence shown in Figure 6.5 and Figure 6.6.

It can be seen that, owing to the short sequence length, and hence reduced number of sum-
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Figure 6.21: χ2 function for one pixel in a short image sequence of
a disc illuminated by a clear sky and viewed from the north: (a) disc
with Ward parametersρs= 0:0,σα = 0:0; (b) disc with Ward parameters
ρs = 1:0,σα = 0:0; (c) disc with Ward parametersρs = 1:0,σα = 0:2.

mations performed in the evaluation of theχ2 function, the gradient of the function is reduced.

The overall topology of the surfaces is similar to those of the full sequence. Performance of the

system would therefore be expected to degenerate as the sequence length becomes shorter. Fewer

pixel samples across an image provide less supporting evidence for a particular set of reflection

model parameters. It would also be expected that, if the period over which the sequence is taken

is such that the illumination and reflection geometry does not allow the characteristic highlights

of glossy surface to be observed, then the performance of thesystem will be poor. For example,

a camera sited in the east would not observe a highlight due tothe sun in a sequence of images

taken in the morning hours of a day. This is a similar problem to that encountered with the camera

sited in the south. In such a situation the system will have difficulty in differentiating between

Lambertian and glossy surfaces usingχ2 minimisation.

The frequency with which images are taken of the scene will also affect the ability of a

system to estimate surface reflectance. It has been found that images taken hourly or half hourly

provide a suitable sampling frequency so that glossy highlights may be observed. If this frequency

is reduced then the rate of change in illumination may be suchthat highlights, characteristic of

some surface types, may not be observed in the pixel values ofthe image sequence. This depen-

dence on frequency can be seen in Figure 6.22. Here the temporal change in surface reflection has

not been sufficiently sampled over the duration of the sequence and the peak reflected radiance has

been missed. A number of reflection models, characterising very different materials, may provide

a good fit with the resulting data.
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Figure 6.22:Sampling reflected radiance at three hour intervals, indi-
cated by dashed lines.

6.3.7 Observations from Simple Experiments

The experiments presented above have shown the difficultiesof determining surface reflection

properties from a sequence of images. In each case the problem presented has been simplified so

that the topology of theχ2 function can be visualised. They have, however, served to highlight the

conditions of illumination or viewing geometry which may cause problems for any system based

upon the minimisation of theχ2 difference between image pixel values and those predicted by a

model.

The extension to a full colour reflection model would increase the dimension of the pa-

rameter space from that shown in the above examples. These extra parameters would account for

surfaces of differing reflectance, Fresnel effects and surface colour. It is expected that the inclusion

of these extra parameters would cause the topology of the surface to be at least as complicated as

the above examples have illustrated. In these situations itis important that the method used to find

the optimal parameters (those that yield a lowχ2 value) is efficient and robust. Given the contin-

uous range of each of the parameters there is a potentially high number of parameter possibilities,

hence the search space can be considered large.

It should be noted that the performance of the system is intrinsically dependent upon the

performance of the camera. A camera which is not sufficientlysensitive to respond to the subtle

changes, which a reflection model parameter attempts to model, will not provide suitable infor-

mation for the system. Performance is also determined by theaccuracy of the illumination and

surface reflection models used. Natural surfaces and actualskies present a wide variety of observ-

able effects. Some of these are not encapsulated in the models presented in Chapter 3 and Chapter
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4.

6.4 Minimising χ2

Section 6.3 has shown the topology of theχ2 surface in the strictly limited case of a reflection

model with two parameters. Observations made from theχ2 examples show that the surface may

contain local minima and plateau regions. In the case of a complete reflection model, the param-

eter space is multidimensional and hence the regression method chosen for this purpose must be

suitable for such a search space. It is therefore necessary that the method used to minimise the

χ2 function should not be misled by plateau regions or non-global minima. Typically, a model of

surface reflection has a non-linear dependence on the parameters. It is therefore the case that the

complete sensor model, which utilises the surface model, isnon-linear. Any regression method

used to minimiseχ2 in this case must therefore be suitable for non-linear dependence of model

parameters.

6.4.1 Brute Force Search

The simplest method of locating the parameters which yield aminimum in theχ2 hypersurface is

that of a brute force search. The parameter space can be sampled at regular increments of each of

the parameters,∆aj , comparing the function value with that of the minimumχ2 thus found. Whilst

this approach is certain to sample the parameter space with uniform density, it is not certain that it

will locate the optimal solution. The global minimum may liein between the sampled positions in

the parameter space. The accuracy of this systematic searchmethod is determined by the size of

the increments used to sample the search space. Reducing thesize of these increments, and hence

increasing the density of the samples, requires further evaluations of theχ2 function.

This method also suffers from poor scalability. As the number of model parameters in-

creases, as does the dimensionality of the search space. Therefore, the number ofχ2 evaluations

required increases exponentially with the number of model parameters. It would be desirable to

have a method of minimisation that does not exhibit this lossof performance.

Given that each parameter of a reflection model lies in a continuous range of values, such
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a discrete sampling of the parameter space to locate the optimal values would not appear to be

practical. In searching for the optimal parameters it wouldbe desirable for the search not to be

limited by the discrete nature of the chosen method. For these reasons the brute force approach to

locating the optimal model parameters is not considered further.

6.4.2 Gradient Search

By starting with an initial estimate of the model parameters, it is possible to traverse theχ2 hy-

persurface such that a minimum is found. By considering the gradient ofχ2 with respect to each

of the model parameters a path can be followed which will leadto a minimum. The method of

gradient search[5] increments the parameters of an initial estimate such that χ2 is reduced by

following the path of steepest descent. The direction of maximum gradient,γ, is determined by

evaluating the first order partial derivatives of theχ2 function at each step,

γ j = ��∂χ2

∂aj

�
δaj j = 1; : : : ;n ; (6.4)

whereδaj is an increment of the model parameteraj .

This method of gradient search performs poorly as the searchapproaches the minimum. It

is also the case that this method is easily misled by local minima in the hypersurface. Naively

following the path of steepest descent does not ensure that the global minimum is located for any

given starting estimate of the parameters. This can be overcome by repeated trials using different

initial estimates of the parameters. Provided a suitable number of trials are performed, at suitably

spaced starting points, the true global minimum should be located. The success of such a method

is not assured, however.

6.4.3 Analytical Search

The method of gradient search performs iterative refinementof the initial parameters using a num-

ber of steps to find a minimumχ2. At each iteration the gradient must be evaluated with respect

to each of the parameters. It would be desirable to perform a single step from the initial estimate

and locate the minimum directly. This can be achieved by analysis of theχ2 function, as given in

Equation 6.2.
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Theχ2 value of an initial set of parameters,ao, is denoted byχ2
o,

χ2
o = m

∑
i=1

�
yi �y(xi ;ao)

σi

�2 : (6.5)

The first order Taylor expansion ofχ2 about this point is given by

χ2 � χ2
o+ n

∑
j=1

�
∂χ2

o

∂aj
δaj

� ; (6.6)

whereδaj is an increment of the model parameteraj . Equation 6.6 is at a minimum when the

partial derivative with respect to each of the parameters iszero. Therefore, at the minimum,n

equations are satisfied simultaneously,

∂χ2

∂ak
= ∂χ2

o

∂ak
+ n

∑
j=1

�
∂2χ2

o

∂aj ∂ak
δaj

�= 0 k= 1; : : : ;n: (6.7)

Evaluation of the parameter increments,δa, that satisfy Equation 6.7 will provide the optimal

parameters,a+δa, which yield a minimumχ2.

The first and second order partial derivatives ofχ2
o are obtained from Equation 6.5:

∂χ2
o

∂ak
= �2

m

∑
i=1

1
σ2

i

�[yi �y(xi ;ao)] ∂y(xi ;ao)
∂ak

� ; (6.8)

∂2χ2
o

∂aj ∂ak
= 2

m

∑
i=1

1

σ2
i

�
∂y(xi ;ao)

∂ak

∂y(xi ;ao)
∂aj

� [yi �y(xi ;ao)] ∂2y(xi ;ao)
∂ak ∂aj

� : (6.9)

The set of linear simultaneous equations of Equation 6.7 cannow be presented as a matrix equa-

tion,

β = δaα; (6.10)

where,

βk =�1
2

∂χ2
o

∂ak
; α jk = 1

2
∂2χ2

o

∂aj ∂ak
: (6.11)

The optimal parameter increments are given by solving the matrix equation,

δa= β [α]�1 : (6.12)

The symmetric matrix of partial derivativesα is termed thecurvature matrixand represents a

measure of theχ2 surface curvature.

Once convergence has been achieved by this method a measure of the confidence in the

result can be determined by inspection of the curvature matrix. The covariance of the fitted param-

eters is given by[α]�1. Hence, the leading diagonal of this matrix gives a measure of confidence

in each of the parameters [111].
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This parabolic approximation of theχ2 hypersurface is, in general, accurate close to the

minimum. However, if the initial parameters,ao, are far from the optimal parameters the approxi-

mation fails. A common approach used to rectify this problemis to use the gradient search method

far from the solution and resort to the parabolic approximation as the solution is approached.

This combination of the two methods is provided by the Levenberg-Marquardt method [3, 83].

Many such Newton and quasi-Newton methods for non-linear regression exist. The Levenberg-

Marquardt method is considered here as being representative of those various methods. For the

purposes of this thesis, the implementation of the Levenberg-Marquardt method due to Press et al.

[111] has been used.

Section 6.3 has shown that theχ2 hypersurface for an image sequence contains local min-

ima for certain illumination conditions and camera positions. It is therefore assumed that a search

based on gradient descent will not be suitable for the minimisation ofχ2 for all image sequences.

It will, however, provide an efficient method for the cases where the minimum is unique. The per-

formance of this method, for models with more than two parameters, cannot be fully determined

by considering the examples given in Section 6.3.

6.4.4 Simulated Annealing

First developed as a physical simulation of the cooling of crystalline structures, simulated anneal-

ing has become an established method for constraint satisfaction and combinatorial optimisation

[138]. The algorithm, first developed by Metropolis et al. [86], provides a simulation of a col-

lection of metallic atoms through stages of cooling. As the temperature is lowered the material

structure attempts to achieve a state of thermal equilibrium such that the relative positions of the

atoms in the crystalline lattice minimise the potential energy. The success with which an opti-

mal, low energy, structure is reached is governed by the rateat which the material is cooled. By

slow cooling near the material’s freezing point the material is able to achieve itsground stateof

minimal energy. Rapid cooling around this critical temperature will cause non optimal crystals to

form and the ground state will not be achieved. The resultingmaterial may have defects and only

locally optimal structures. The process by which materialsare given time to achieve optimal low

energy states as they cool is termedannealing. Metropolis’ algorithm provides a statistically based

simulation of the atoms’ behaviour as cooling occurs.
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Kirkpatrick et al. first recognised the similarity between statistical mechanics and combina-

torial optimisation [63]. The search for a global minimum configuration to a constraint problem

is analogous to that of obtaining the ground state by annealing. In this context the energy of the

system is equated to the cost of a given combination of parameters. The simulated annealing al-

gorithm for combinatorial problems requires an initial state of parameters,xo, the energy of which

is evaluated by acost function, E. The state is given a random perturbation,∆x, and the resulting

change in energy evaluated,

∆E = E(x+∆x)�E(x): (6.13)

If the new state has a lower energy it is accepted with probability 1, else it is accepted with a

probability determined by the Boltzmann distribution,

p= ke(�∆E=T); (6.14)

whereT is the current temperature andk is the Boltzmann constant. As the temperature is de-

creased the probability of changing to a higher energy stateis reduced. Provided the system is

allowed to cool sufficiently slowly the optimal, minimal cost, parameter combination should be

achieved. The efficiency of the algorithm in finding the global minimum is penalised by the in-

creased number of cost function evaluations required over that associated with gradient based

optimisation methods. The technique does, however, have the ability to ignore local topology at

high temperatures to find the region of low cost. As temperature is reduced the solution is further

refined.

Though originally designed for the optimisation of problems where each parameter may

take on a discrete value, the method of simulated annealing has since been extended to problems

defined in a continuous domain [139]. Here, the annealing method can be used to locate the global

minimum of a function of many variables. The state of the system is analogous to a position

on the function hypersurface. Randomly perturbing this state provides a random walk about the

domain of the function. Using the Boltzmann distribution, the state can be progressed out of local

minima such that the global minimum is located. The method has been successfully employed

for a number of optimisation tasks [8, 15, 139]. It has also been shown to provide a regression

technique for non-linear least-squares fitting problems [139].

Press et al. [111] present a variation on traditional simulated annealing which is cited as

more efficient than the methods given above. They propose theuse of a geometric simplex of
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points to represent the system state. This simplex lies on the hypersurface of the function to be

minimised, in this case theχ2 function. As such, the simplex hasn+1 vertices wheren is the

number of parameters. The simplex is allowed to undergo a number of transformations. These

are depicted in Figure 6.23. In each case the highest vertex of the simplex is translated toward

the lowest face. The magnitude of the translation is determined by the relative decrease in cost

thus achieved. At zero temperature the simplex is allowed tomove such that it traverses the

hypersurface following the path of steepest descent. At higher temperatures the simplex is able

to accept translations which result in a higher cost. This isachieved by perturbing the simplex

vertices in relation to temperature and thus providing the simplex with a Brownian motion which

allows it to escape local minima. At each temperature the simplex is allowed to undergo a number

of moves to find a low energy state.
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Figure 6.23:Simplex translations: (a) original position of the simplex,
vertex 1 has the highest cost; (b) reflection; (c) reflection and expansion;
(d) contraction.

The efficiency of any simulated annealing approach is governed by correct selection of a

cooling schedule. This determines the initial start temperature,T0, the rate at which this temper-

ature is reduced and the stop criterion for halting the search. In the case of the simplex approach

it also necessary to define how many translations the simplexmay undergo at any given tempera-

ture. Many cooling schedules have been proposed and the performance of each is problem specific

[138]. This work uses the simple schedule proposed by Kirkpatrick et al. [62]. Here, the initial

temperature is reduced by a constant factorα after everyn translations of the simplex,

Ti+1 = αTi i = 0;1;2; : : : ; (6.15)

whereα is a constant smaller than, but close to, one. The selection of T0 is again problem specific.

It should be high enough such that all states are reachable from the initial position of the simplex,

but not excessively high so as to cause unnecessary computations [138]. Ideally the system should

be cooled slowly in the temperature region where the energy of the system decreases most rapidly.

This is called thephase transitionand is analogous to the freezing point of a material. Figure 6.24

shows the expected change of energy as a system is cooled.
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It is proposed that the method of simulated annealing is suitable for all theχ2 examples

given in Section 6.3 since it can escape the local minima thathave been shown to exist in these

cases. Further to this, it should be equally applicable to models with more than two parameters.

Whilst the Levenberg-Marquardt method may prove to be efficient, it is expected that it will not

be suitable for all image sequences.

6.4.5 Limiting the Search Space

As stated in Section 3.4.5, each of the reflection model parameters has a finite range. It has been

found that the technique used to constrain each of the above search methods, so that resulting es-

timated parameters are kept within these ranges, has significant affect on performance. Bounding

the permitted parameter space by a plateau of highχ2 value presents difficulties when the opti-

mal parameters lie on or near to a permitted range limit. In this case the minimum presented at

the optimal parameters may not be adequately approximated by a parabolic, as required by the

Levenberg-Marquardt method. Difficulties with such a bounding technique have also been expe-

rienced in the use of simulated annealing. Again, it would appear that the possibility of highχ2

function values surrounding the region of a minimum compromises the ability of the simplex to

converge satisfactorily.

It has been found that the regression techniques exhibit improved performance if the permit-

ted parameter space is bounded by a monotonically increasing χ2. In the case of the Levenberg-

Marquardt regression this can be shown to be more suitable for the parabolic surface assumption.

In the case of simulated annealing, the simplex is able to move beyond the permitted parameter
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values but will descend the gradient towards the minimum andshall therefore result in parameters

which are within the permitted values.

6.5 Summary

This chapter has shown that a sequence of images, obtained from a static camera over a period of

time, may be used to determine the parameters of a reflection model which best characterise the

observed material. It is expected that the temporal change in image pixel values, due to changing

natural illumination, will provide suitable information for such parameters to be derived. The

limitations of this assumption have been assessed and it hasbeen shown that, in some cases, an

accurate estimate may not be possible using the proposed methods.

This chapter has presented a measure of the difference between the temporal change in

image pixel values and that predicted by a model. This measure,χ2, allows for the comparison of

image data with a model of the processes by which light reflected from a scene creates an image.

The minimisation of the difference between such measured values and those predicted by a model

allows a best fit model to be estimated. In this context, surface reflection is measured using an

image based system. Therefore, the data is comprised of image pixel values. As such, the model

used to describe the pixel values calls upon models of cameraresponse and natural illumination in

combination with models of surface reflection. With the parameters of these extra models known

a priori, the free parameters of the combined model are those of that used to describe the reflection

characteristics of the observed surface. Regression techniques allow the estimation of these free

parameters and hence the surface reflection model for the observed material may be determined.

Based upon analysis of theχ2 function for a variety of image sequences two regression

methods have been proposed. These methods should allow for the estimation of best fit parameters,

in a least-squares sense, to the observed data. The performance of these two methods shall be

compared for an increasing number of free parameters in the results.



Chapter 7

Results

This chapter presents results obtained using two regression methods with synthetic as well as real

image sequences. The use of synthetic image sequences allows the performance of each of the

techniques to be understood in the context of clean data obtained in known conditions. Work

on synthetic sequences cannot, however, replace observations made on real data obtained with a

camera. For this reason an image sequence obtained from a clear day and consisting of a number

of material types is considered.

The synthetic image sequences have been produced using theRadiancelighting simulation

system. This has been described in Chapters 4 and 6 and allowsfor an accurate simulation of

illumination by sun and sky sources. The results presented here focus on the analysis of scenes

illuminated by a clear sky. The illumination therefore corresponds to a visible sun and a CIE

clear sky, as presented in Chapter 4. The illumination models used to generate the synthetic image

sequences are the same as those used in the regression techniques. Also, these results only consider

the analysis of a single pixel in each image of a sequence. Further to this, only horizontal planar

surfaces are analysed in each case. The effects of alternative illumination and surface orientations

have been described in Chapter 6.

Actual data obtained by a camera has been obtained from a sequence of images viewing a

collection of planar horizontal surfaces. These material samples have been illuminated by a natural

clear sky. Again, only a single pixel from the projection of each sample is considered.

This chapter focuses on the use of Ward’s reflection model. Whilst the techniques developed

100
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in Chapter 6 for the estimation of model parameters are not linked to a particular model, the Ward

model is chosen here for its applicability to a wide variety of surface types. Three variants of the

basic Ward model, each with an increasing number of parameters, are considered, and these are

summarised in Section 7.1.

7.1 Overview of the Reflection Model

The reflection model considered in this chapter is that due toWard [141], as described in Section

3.4.5. It is briefly summarised here for convenience. The bidirectional reflectance-distribution

function, fr , is modelled by,

fr(θi ;φi ;θr ;φr) = ρd

π
+ρs � 1p

cosθi cosθr
� exp

�� tan2 δ=σ2
α
�

4πσ2
α

; (7.1)

whereρd is the normal lobe reflectance,ρs is the forescatter lobe reflectance,σα is the rms rough-

ness of the surface , andδ is thehalf angle. This chapter considers three variants of this basic

model, each with an increasing number of parameters.

A two-parameter model requires thatρd+ρs= 1 and as such the total reflectance of surfaces

modelled by this function are constant. The resulting parameters to be estimated for this model

are, therefore,ρs andσα.

A three-parameter achromatic model allows for the inclusion of a total reflectance term,R.

This allows control over the total reflectance of a surface aswell as the proportion of reflection

into each of the reflection lobes. Again,ρd +ρs = 1, and the three parameters to be estimated are

R, ρs andσα.

A five-parameter model replaces the total reflectance term,R, with a material colour vector,

C. This vector gives the reflectance of the surface at three discrete wavelengths,Cred, Cgreenand

Cblue. How this colour vector is used in the model depends upon the value ofρs. It allows for

the modelling of coloured reflection from plastic and metallic surfaces. The five parameters to be

estimated for this model are, therefore,Cred, Cgreen, Cblue, ρs andσα. The permitted range forσα

is (0.0 – 0.2) whilst all other parameters have a range of (0.0– 1.0).
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7.2 Levenberg-Marquardt Regression

The Levenberg-Marquardt method of regression (see Section6.4.3) provides a gradient descent

based approach of theχ2 surface from an initial estimate of the parameters. It has been shown in

Chapter 6 that this regression method may be misled by local minima in theχ2 surface; however,

in the two-parameter model these local minima were not apparent in all cases. This section will

look at the performance of this technique when considering the two and three-parameter reflection

models.

7.2.1 Two-Parameter Reflection Model

This section considers the performance of the Levenberg-Marquardt technique on three synthetic

test sequences. These are selected from those examined in Chapter 6. Two of these examples

have been shown not to contain non-optimal minima and have gradients which descend toward the

location of the optimal parameters. As such, it would be expected that this method would perform

well in these cases. A third example, shown to exhibit local minima, is also considered.

Table 7.1 shows the performance of this technique when used on the sequence observing a

Lambertian disc from the north. Theχ2 values for this example are shown in Figure 6.5. Given that

the global minimum lies at the optimal parameters, and that this minimum is unique in this case,

it would be expected that this gradient descent method wouldperform well. Two observations can

be made from these results. There are a number of cases where the method has failed to converge

upon a solution and the method has not consistently found theoptimal parameters.

Failure to converge, in this case, is due to the curvature matrix becoming singular, hence

the matrixα of Equation 6.12 may not be inverted to find the necessary parameter incrementsδa.

This has occurred owing to the nature of the Ward reflection model nearρs = 0. In the case of

the Ward model, whenρs = 0 the roughness parameter,σα, has no significance. It is therefore the

case that, as the method converges towardsρs = 0, the partial derivative∂χ2

∂σα
! 0. This leads to

an asymmetric curvature matrix and the method fails. This highlights an inherent problem with

using regression methods that rely on the evaluation of partial derivatives. If the data is such that

a change in value of a model parameter has no effect on the value of χ2, the method is prone to

failure since it cannot determine the direction of steepestdescent.



Chapter 7. Results 103

The results in Table 7.1 show that, as the distance of the initial, starting estimate from the

optimal parameters is increased, the performance of the method degenerates. This behaviour is

clearly shown in Figure 7.1. In this graph the error, based ondistance in the parameter space from

the solution, of the initial estimate is compared with the error of the final result. Points below the

dashed diagonal indicate an improvement of the initial estimate toward the expected result. It can

be seen that, for initial estimates which are close to the optimal parameters, the method converges

to the expected values. However, as the distance of the initial estimate from the optimal parameters

is increased the error in the estimated parameters also increases. Such dependence upon the initial

parameter estimates is a characteristic of this method [5],though the extent to which it affects the

result is problem specific.

Table 7.1: Levenberg-Marquardt results for two-parameter model.
Optimal parameter values areρs = 0:0 whereσα has no significance.

Initial Result Variance χ2 of χ2

ρs σα ρs σα ρs σα result evaluations

0.1 0.00 0.04 0.00 0.095 0.101 11 65
0.0 0.10 Fail - - - -
0.1 0.10 Fail - - - -
0.2 0.05 Fail - - - -
0.2 0.20 0.01 0.20 0.007 0.063 41 39
0.4 0.05 0.00 0.00 0.358 0.126 11 52
0.4 0.15 Fail - - - -
0.6 0.05 0.00 0.00 0.233 0.806 11 52
0.6 0.20 Fail - - - -
0.8 0.00 0.07 0.00 0.090 0.077 1527 52
0.8 0.15 0.00 0.19 0.023 1.362 11 65
1.0 0.10 Fail - - - -
1.0 0.20 0.00 0.20 35.147 47.925 11 65

Table 7.2 considers a rough metallic disc observed from the north. Theχ2 values for this

example are shown in Figure 6.6(c). Again, as with the above example, the surface descends

toward the optimal parameters ofρs = 1, σα = 0:2. In this case failure to converge, owing to a

singular curvature matrix, has only occurred when the initial estimate of the parameters isρs =
0. However, it can again be seen that, as the distance of the initial estimate from the optimal

parameters is increased, the performance of the method degenerates. This behaviour can be clearly

seen in Figure 7.2.
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Figure 7.1:Error in resulting parameters against error of initial estimate
for two-parameter model. Sequence observes a Lambertian surface from
the north.

Table 7.2: Levenberg-Marquardt results for two-parameter model.
Optimal parameter values areρs = 1:0 andσα = 0:2.

Initial Result Variance χ2 of χ2

ρs σα ρs σα ρs σα result evaluations

1.0 0.15 1.00 0.20 0.023 0.002 15 52
0.9 0.20 1.00 0.20 25.219 119.174 15 39
0.9 0.10 1.00 0.20 22.188 11.951 15 52
0.8 0.15 1.00 0.19 0.059 0.000 17 39
0.8 0.05 0.80 0.05 0.001 0.009 103348 39
0.6 0.10 1.00 0.20 137.527 61.821 15 52
0.6 0.00 0.60 0.00 0.002 0.026 130216 39
0.4 0.15 1.00 0.20 19.474 78.482 15.23 39
0.4 0.05 0.40 0.05 0.002 0.027 200227 39
0.2 0.20 1.00 0.00 13.960 207.219 148269 52
0.2 0.05 0.20 0.05 0.003 0.062 289681 39
0.0 0.05 Fail - - - -
0.0 0.15 Fail - - - -
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Figure 7.2:Error in resulting parameters against error of initial estimate
for two-parameter model. Sequence observes a rough metallic surface
from the north.

Table 7.3 considers the case of a smooth metallic disc observed from the east. Figure 6.7(b)

showed that, in this case, there exists a non-optimal minimum in the surface of theχ2 function.

The problems that this presents are shown in the results for this experiment. It can be seen that, for

initial starting positions that are contained within the region of this local minimum, the gradient

descent method is unable to locate the global minimum. This can be seen with many of the

poor results being in the region ofρs = 0:2;σα = 0:2. As with the above example, where the

optimal parameters are reachable using a gradient descent method, the accuracy of the method

still depends upon the distance of the initial estimate fromthe optimal parameter values. Figure

7.3 clearly shows this behaviour. This figure also shows a cluster of results corresponding to the

non-optimal minimum.

Since the Levenberg-Marquardt method provides an estimateof the confidence in the re-

sulting parameters it would be hoped that, in the cases wherethe result has a high error, this would

be indicated by the values of the curvature matrix on convergence. However, as Figure 7.4 shows,

there is no observable correlation between the confidence inthe resulting parameters indicated

by the curvature matrix and the known error in the result. This is partly to be expected since the

confidence values only give an indication of how well the hypersurface at the minimum matches

the parabolic assumption. A non-optimal minimum in the hypersurface may be more adequately

approximated by a parabolic than that of the optimal global minimum.
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Table 7.3: Levenberg-Marquardt results for two-parameter model.
Optimal parameter values areρs = 1:0 andσα = 0:0.

Initial Result Variance χ2 of χ2

ρs σα ρs σα ρs σα result evaluations

1.0 0.05 1.00 0.02 0.069 0.002 116 52
0.9 0.00 1.00 0.00 0.064 0.005 8 39
0.9 0.10 1.00 0.08 0.019 0.001 203974 39
0.8 0.15 0.45 0.20 0.006 0.017 140935 39
0.8 0.05 1.00 0.02 0.038 0.000 116 52
0.6 0.10 0.60 0.10 0.005 0.000 34596 39
0.6 0.00 1.00 0.00 0.000 0.000 8 52
0.4 0.15 0.28 0.20 0.004 0.021 127466 39
0.4 0.05 1.00 0.00 0.004 0.006 8 39
0.2 0.20 0.20 0.20 0.006 0.007 122432 39
0.2 0.05 0.47 0.00 0.018 0.166 50783 39
0.0 0.05 0.37 0.00 0.022 0.052 63979 39
0.0 0.15 0.10 0.15 0.004 0.004 123292 39
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Figure 7.3:Error in resulting parameters against error of initial estimate
for two-parameter model. Sequence observes a smooth metallic surface
from the east.
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Figure 7.4:Variance of resulting parameter estimates. Note log scale on
ordinate axis.

7.2.2 Achromatic Reflection Model

This section considers the three-parameter achromatic reflection model and synthetic greyscale

image sequences. The topology of theχ2 surface for such cases has not been considered in Chapter

6, though it can be assumed that it is at least as complex as observations from the two-parameter

model suggested.

Figure 7.5 shows results obtained from a sequence observinga Lambertian disc viewed

from the east. The optimal parameters for this sequence areρd = 0:33, ρs = 0:0 andσα = 0:05.

As with the two-parameter results given in Section 7.2.1, itcan be seen that the performance of this

method is dependent upon the accuracy of the initial parameter estimates. This trend is repeated

for the examples shown in Figure 7.6 and 7.7. In these examples the number ofχ2 evaluations

required for convergence were similar to those of the two-parameter examples above.

7.2.3 Summary of Levenberg-Marquardt Performance

The number ofχ2 evaluations required for convergence in these examples is low compared to that

which would be required by a brute force search of the parameter space. To sample the value ofχ2

at ten per cent increments in each dimension would require 102 and 103 samples with the two and

three-parameter reflection models respectively. The Levenberg-Marquardt method has required

significantly fewer evaluations to obtain a result. However, the quality of this result has been

shown to be dependent upon the initial estimate of the parameter values. Given that such initial
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Figure 7.5:Error in resulting parameters against error of initial estimate
for three-parameter model. Sequence observes a plastic surface with
parametersR= 0:33, ρs = 0:2, σα = 0:05 from the east.
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Figure 7.6:Error in resulting parameters against error of initial estimate
for three-parameter model. Sequence observes a metallic surface with
parametersR= 0:66, ρs = 0:8, σα = 0:15 from the east.
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Figure 7.7:Error in resulting parameters against error of initial estimate
for three-parameter model. Sequence observes a metallic surface with
parametersR= 1:0, ρs = 1:0, σα = 0:2 from the east.

estimates of the parameters are not available to the system,the method proves to be inappropriate

for this application. This could be overcome by performing several repeated applications of the

method using uniformly distributed starting positions. This would require an increased number of

χ2 evaluations and, depending on the density of the starting positions, may not find the optimal

parameters.

It has also been shown that, in some cases, the method is unable to converge upon a solution.

Whilst this is due to the nature of the Ward model, similar conditions may also apply to alternative

reflection models. Given the poor performance of the Levenberg-Marquardt regression method in

these experiments it has not been used in the case of the five-parameter colour reflection model,

nor has it been used on the real image sequences.

7.3 Simulated Annealing

This section considers the performance of simulated annealing for regression. The Levenberg-

Marquardt method has shown three distinct problems in this application: the dependence on the

initial parameter estimates; the possibility of a singularcurvature matrix; and the problem of non-

optimal minima. It is expected that simulated annealing, described in Section 6.4.4, will overcome

these three issues with respect to this application.

Since this method does not rely on the calculation of partialderivatives the situation where
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ρs = 0 does not present the problem it did for the Levenberg-Marquardt method. If the simplex

does enter a plateau region, the thermal motion of the simplex will allow it to traverse theχ2

surface.

The simulated annealing method will randomly search the entire parameter space. There-

fore, the accuracy of the solution should not be dependent upon the initial parameter estimates.

This will be true provided that the selected cooling schedule allows the simplex to escape local

minima and to traverse theχ2 surface such that the global minimum is located. As stated inSec-

tion 6.4.4, the method of simulated annealing is able to ignore local topology at high temperatures

and is, therefore, able to locate the optimal parameters which yield a minimumχ2 value.

7.3.1 Selection of Cooling Schedule

The performance of simulated annealing is highly dependenton the selection of an appropriate

cooling schedule. This section looks at the selection of a cooling schedule suitable for the two-

parameter reflection model considered in the examples of Chapter 6. As stated in Section 6.4.4,

the cooling schedule should be such that, at the initial temperature,T0, all points on the surface are

reachable with equal probability.

To understand the significance that the cooling schedule hason the performance of this

method, the case of a smooth metallic disc observed from the east is considered. Theχ2 function

values for this example are shown in Figure 6.7(b). In each ofthe experiments that follow, the

initial position of the simplex is in the local, non-optimal, minimum indicated in Figure 6.7(b).

Figure 7.8 shows the average energy of the simplex as the system is cooled from three different

values ofT0. It can be seen that, if the initial temperature is too low, asshown in Figure 7.8(a), the

simplex is not provided with sufficient energy with which to escape the local minimum in which it

starts. In this example the optimal parameters are not correctly estimated by the method. Starting

the system with a high temperature, as in Figure 7.8(c) does allow the simplex to escape the local

minimum and the global minimum is located as the system is cooled. However, the average energy

of the simplex remains high and rapidly reduces towards the end of the cooling. This is due to

the simplex having an initially high level of energy and exhibiting erratic behaviour regardless

of the gradient of theχ2 surface. At these high temperatures the simplex is randomlysampling

points on theχ2 surface and is not attempting to refine the solution. Only when the temperature
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has sufficiently reduced is the simplex able to descend toward the global minimum. Whilst such a

cooling schedule does enable the global minimum to be located, it is at the expense of increased

evaluations ofχ2. Figure 7.8(b) shows an improved cooling schedule. Here thesimplex is started

at a sufficiently high temperature to escape the local minimum but is reduced sufficiently slowly

so as to refine the solution.

χ2<    > χ2<    > χ2<    >

0 0 0
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Figure 7.8:Effect of initial temperature on simulated annealing perfor-
mance: (a)T0 = 105; (b) T0 = 106; (c) T0 = 107.

The rate of cooling from the initial temperature should allow sufficient time in the phase

transition region shown in Figure 6.24. This is controlled by two parameters of the cooling sched-

ule: the rate at which the system is cooled,α, and the number of iterations,m, that are allowed

at each temperature. As stated in Section 6.4.4, the temperature is reduced by a factorα at each

stage of the cooling. Figure 7.8(b) shows cooling withα = 0:7 andm= 10. Alternative values for

these two parameters are shown in Figure 7.9.

Figure 7.9(a) shows cooling whereby increased iterations are allowed at each temperature.

This has shown no improvement in the accuracy of the result and has come at an increased number

of evaluations ofχ2. Figure 7.9(b) shows cooling withm= 5. In this case the system has not been

allowed sufficient iterations with which to attempt to find anequilibrium at each temperature. The

inability to refine the solution has resulted in the final simplex position not being at the global

minimum. This can again be seen in Figure 7.9(c), however, this has been the result of cooling too

rapidly with α = 0:6. Here, the system has been quenched and has not been able to settle into the

optimal state. Figure 7.9(d) shows cooling withα = 0:8. Here the temperature is reduced slowly

but the solution is not improved over that obtained withα = 0:7. The consequence of using a

reduced cooling rate has been the increased number ofχ2 evaluations required.

This section has shown the importance of the selection of an appropriate cooling schedule

in the performance of the method. Incorrect selection of thevarious parameters may lead to non
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Figure 7.9:Effect of cooling rate on simulated annealing performance:
(a) α = 0:7, m= 20; (b) α = 0:7, m= 5; (c) α = 0:8, m= 10; (d)
α = 0:6, m= 10.

optimal solutions or to unnecessary evaluations of theχ2 function. Where a sequence contains

a large number of images, or a number of pixels are consideredwithin each image, the repeated

evaluations ofχ2 may prove to be computationally expensive.

7.3.2 Two-Parameter Reflection Model

The performance of simulated annealing for the two-parameter model and synthetic image se-

quences is now considered. In each of the examples presentedhere, the cooling schedule used is

T0 = 106, α = 0:7, m= 10. Section 7.3.1 has shown this to be a suitable cooling schedule for this

model.

Table 7.4 shows results for a Lambertian disc viewed from thenorth. These results should be

compared with those presented in Table 7.1. It can be seen that the optimal parameters have been

correctly estimated by this method, and that the accuracy ofthe result has not been determined by

the initial estimate of the parameters. Note that the value of σα is not significant whenρs = 0, as

it does in this example. It can be seen, however, that using this cooling schedule has required a

significantly increased number ofχ2 evaluations over that required by the Levenberg-Marquardt

method.
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Table 7.4: Simulated annealing results for two-parameter model.
Optimal parameter values areρs = 0:0 whereσα has no significance.

Initial Result χ2

ρs σα ρs σα evaluations

0.90 0.18 0.00 0.19 464
0.58 0.02 0.00 0.14 463
0.78 0.00 0.00 0.00 462
0.16 0.02 0.00 0.04 461
0.62 0.01 0.00 0.07 434
0.34 0.16 0.00 0.11 463

Table 7.5 and Table 7.6 show results for differing materials. These results should be com-

pared to Tables 7.2 and 7.3 respectively which consider the same image sequences. Again, it can

be seen that the accuracy of the result is not dependent upon the initial estimate. It can also be

seen that the method has not been misled by local, non-optimal, minima. These results show little

variance in the estimated parameters.

Table 7.5: Simulated annealing results for two-parameter model.
Optimal parameter values areρs = 1:0 andσα = 0:2.

Initial Result χ2

ρs σα ρs σα evaluations

0.40 0.04 1.0 0.20 311
0.33 0.04 1.0 0.20 376
0.31 0.10 1.0 0.20 409
0.02 0.07 1.0 0.20 390
0.86 0.01 1.0 0.19 364
0.65 0.18 1.0 0.20 367

Figure 7.10 shows a typical random walk for the smooth metallic disc sequence considered

for Table 7.6. It can be seen that, despite being started in a local minimum, the nature of the

annealing process has allowed the simplex to escape and locate the global minimum.

7.3.3 Achromatic Reflection Model

This section considers the performance of the simulated annealing method on the achromatic re-

flection model and synthetic greyscale image sequences. This reflection model has three param-
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Table 7.6: Simulated annealing results for two-parameter model.
Optimal parameter values areρs = 1:0 andσα = 0:0.

Initial Result χ2

ρs σα ρs σα evaluations

0.03 0.01 1.0 0.0 354
0.78 0.18 1.0 0.01 334
0.31 0.10 1.0 0.0 321
0.23 0.07 1.0 0.0 401
0.87 0.12 1.0 0.0 364
0.11 0.05 1.0 0.0 334

σα

ρs0
0.2

0.4
0.6

0.8
1

0

0.05

0.1

0.15

0.2
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Figure 7.10:Typical random walk over aχ2 surface.
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eters and therefore requires the simplex to traverse a higher dimension space as that considered

above. Owing to this higher dimensionality, it has been found that slower cooling has provided

consistent results for this reflection model. For these examples the selected cooling schedule has

beenT0 = 106, α = 0:8 andm= 10.

Table 7.7 shows results for a plastic disc with Ward reflection model parametersR= 0:33,

ρs = 0:20 andσα = 0:05. It can be seen that, in each case, the method has correctlyestimated the

optimal parameters regardless of the initial estimate of the parameters. These results should be

compared to those shown in Figure 7.5 for the Levenberg-Marquardt method on the same image

sequence.

Table 7.7: Simulated annealing results for three-parameter model.
Optimal parameter values areR= 0:33, ρs = 0:2 andσα = 0:05.

Initial Result χ2

R ρs σα R ρs σα evaluations

0.64 0.22 0.05 0.33 0.21 0.05 719
0.77 0.49 0.14 0.33 0.20 0.05 725
0.50 0.08 0.16 0.33 0.20 0.05 717
0.60 0.22 0.17 0.33 0.20 0.05 719
0.85 0.80 0.03 0.33 0.20 0.05 721
0.11 0.20 0.14 0.33 0.20 0.05 728

Table 7.8 shows results for a metallic disc with Ward model parametersR= 0:66,ρs= 0:80

andσα = 0:15. It can be seen that, in each case, the method has correctlyestimated the optimal

parameters. Again, these results should be compared to the performance of the gradient descent

method on this image sequence, shown in Figure 7.6.

Table 7.8: Simulated annealing results for three-parameter model.
Optimal parameter values areR= 0:66, ρs = 0:8 andσα = 0:15.

Initial Result χ2

R ρs σα R ρs σα evaluations

0.40 0.15 0.20 0.66 0.80 0.15 718
0.48 0.80 0.14 0.66 0.80 0.15 715
0.32 0.03 0.09 0.66 0.80 0.15 711
0.88 0.85 0.10 0.66 0.80 0.15 712
0.18 0.78 0.06 0.66 0.81 0.15 719
0.09 0.48 0.17 0.67 0.80 0.15 719
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Table 7.9 shows results for a metallic disc with Ward model parametersR= 1:0, ρs = 1:0
andσα = 0:0. Again, it can be seen that, in each case, the method has correctly estimated the

optimal parameters. These results should be compared to those shown in Figure 7.7 for the same

image sequence.

Table 7.9: Simulated annealing results for three-parameter model.
Optimal parameter values areR= 1:0, ρs = 1:0 andσα = 0:0.

Initial Result χ2

R ρs σα R ρs σα evaluations

0.54 0.01 0.06 1.0 1.0 0.0 725
0.74 0.63 0.08 0.99 1.0 0.0 736
0.77 0.72 0.11 1.0 1.0 0.0 730
0.28 0.84 0.01 1.0 0.99 0.0 718
0.42 0.78 0.16 1.0 1.0 0.01 727
0.87 0.24 0.13 1.0 1.0 0.0 730

These results have shown significant improvement over the gradient descent method con-

sidered in Section 7.2.1. As with the two-parameter model, these results show little variation in

the final estimated parameter values.

7.3.4 Colour Reflection Model

The performance of simulated annealing with colour images and the five-parameter colour reflec-

tion model is now considered. In this five dimensional parameter space it has been found that a

cooling schedule ofT0 = 107, α = 0:8 andm= 20 provides consistent results. Each of the image

sequences considered here has been synthetically generated. Results for three such sequences are

presented.

Tables 7.10, 7.11 and 7.12 show results for horizontal plastic surfaces with differing reflec-

tion model parameters. It can be seen that, in each case, the method has correctly estimated the

optimal parameter values. As with the previous reflection model examples, there is little variation

in the estimated parameter values in each case.
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Table 7.10: Simulated annealing results for five-parameter model.
Optimal parameter values areCred = 0:25, Cgreen= 0:50, Cblue= 0:75,
ρs = 0:2 andσα = 0:05.

Initial Result χ2

Cred Cgreen Cblue ρs σα Cred Cgreen Cblue ρs σα evaluations

0.67 0.48 0.47 0.09 0.120.25 0.50 0.75 0.20 0.05 1561
0.99 0.94 0.64 0.31 0.110.25 0.50 0.74 0.20 0.05 1574
0.13 0.78 0.18 0.23 0.030.25 0.50 0.74 0.20 0.05 1574
0.30 0.30 0.18 0.15 0.160.25 0.50 0.75 0.21 0.05 1405
0.85 0.65 0.61 0.18 0.030.25 0.50 0.75 0.20 0.05 1561
0.65 0.51 0.73 0.87 0.010.24 0.50 0.75 0.21 0.05 1574

Table 7.11: Simulated annealing results for five-parameter model.
Optimal parameter values areCred = 0:75, Cgreen= 0:50, Cblue= 0:25,
ρs = 0:8 andσα = 0:15.

Initial Result χ2

Cred Cgreen Cblue ρs σα Cred Cgreen Cblue ρs σα evaluations

0.92 0.57 0.87 0.20 0.190.75 0.50 0.25 0.81 0.15 1401
0.69 0.31 0.95 0.53 0.050.75 0.49 0.24 0.80 0.15 1575
0.88 0.85 0.52 0.40 0.050.75 0.50 0.25 0.81 0.15 1478
0.11 0.64 0.77 0.70 0.150.75 0.50 0.25 0.81 0.15 1575
0.91 0.89 0.16 0.26 0.190.74 0.49 0.25 0.82 0.15 1575
0.09 0.38 0.86 0.94 0.190.74 0.49 0.24 0.81 0.15 1575

Table 7.12: Simulated annealing results for five-parameter model.
Optimal parameter values areCred = 1:0, Cgreen= 1:0, Cblue = 1:0,
ρs = 1:0 andσα = 0:0.

Initial Result χ2

Cred Cgreen Cblue ρs σα Cred Cgreen Cblue ρs σα evaluations

0.15 0.54 0.08 0.17 0.030.99 1.0 1.0 1.0 0.0 1564
0.01 0.21 1.0 0.70 0.10 0.99 1.0 1.0 1.0 0.0 1574
0.99 0.28 0.0 0.24 0.14 1.0 0.98 1.0 1.0 0.0 1575
0.46 0.59 0.32 0.29 0.020.98 0.98 1.0 1.0 0.0 1574
0.66 0.68 0.84 0.75 0.100.99 1.0 0.99 1.0 0.0 1575
0.73 0.62 0.77 0.33 0.13 1.0 1.0 1.0 1.0 0.0 1574
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7.3.5 Summary of Simulated Annealing Performance

This section has demonstrated the effectiveness of simulated annealing for the estimation of re-

flection model parameters. The results are much improved over those obtained using the gradient

descent approach shown in Section 7.2 and do not exhibit the problems encountered with that

method.

The quality of these results is to be expected, however. These trials have been performed

using synthetic image sequences, observing surfaces generated using the same reflection model. It

is also the case that, in each example, the camera and illumination models used are the same. There

is, therefore, no reason why, given a suitable cooling schedule, this method shall fail to estimate

the optimal parameter values in each of the above cases. The main purpose of these experiments

has been to validate the regression technique in this application.

The improved results obtained by simulated annealing have come at the expense of an in-

creased number ofχ2 function evaluations over that required by the Levenberg-Marquardt method.

However, the number of evaluations should be compared with that required by a brute force search

of the parameter space. In the case of the five-parameter colour reflection model, a brute force

search would require 105 χ2 function evaluations to sample the parameters at increments of 10 per

cent in each dimension. This can be compared with the averageof 1548 function evaluations re-

quired by simulated annealing. In the case of simulated annealing with the five-parameter model,

a typical execution time is in the order of four hours1.

7.4 Real Image Sequence

This section considers real data obtained using a photographic camera, with images subsequently

scanned to provide a digital image. Whilst the camera model developed in Chapter 5 is not directly

applicable to these images, it has been found that the imagesobtained by this method are suitable

for analysis. Calibration of these images has been achievedthrough the use of an ANSI IT8

colour target within each image. This has been used to ensurelinearity in response and colour

reproduction across the image sequence.

1Timings obtained on SiliconGraphics Indy.
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The image sequence consists of thirteen images, taken half-hourly. The scene was observed

on August 16 with the first image taken at 12:00 BST (British Summer Time) and the final image

at 18:00 BST. The location of the scene was 53�N, 1�W and with sky conditions described as a

clear sky with little observable pollution. The camera is located in the east and looks down upon

the sample area at an angle of 37� to the surface normal. The scene is composed of eight material

samples, horizontally orientated, to which the full sky hemisphere is visible. A typical image from

the sequence is shown in Figure 7.11. The eight material samples observed in this sequence are

described in Table 7.13.

Figure 7.11:An example image from a sequence observing a selection
of sample materials on a clear day. The camera is situated in the east.

Table 7.13:Description of sample materials.

1 White paper.
2 Pale blue paper.
3 White gloss paint.
4 Polished mild steel.
5 Mild steel roughened using a 400 grit abrasive.
6 Mild Steel roughened using a 40 grit abrasive.
7 Yellow gloss paint.
8 Red gloss paint.

Figure 7.12 shows the change in colour pixel value, for a single pixel within each of the

material samples, across the image sequence. It can be seen that the data contains noise but a

difference in each of the graphs can be observed. It should also be noted that there is an increased

blue pixel response. This is due to the predominantly blue illumination obtained from a clear sky.
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These pixel values shall be analysed and parameters estimated for both achromatic and colour

reflection models.

7.4.1 Achromatic Analysis

This section uses simulated annealing to estimate the parameters of the achromatic reflection

model for each of the material samples. For this purpose the image sequence has been converted

to a greyscale sequence. The cooling schedule used for the analysis of this data is that used in

Section 7.3.3. The resulting estimated parameter values are shown in Table 7.14.

Table 7.14:Estimated achromatic model parameters for material samples.

Sample Estimated Parameters χ2 of χ2

number R ρs σα result evaluations

1 0.44 0.28 0.00 6179 618
2 0.51 0.51 0.09 4535 629
3 0.66 0.51 0.01 6253 620
4 0.17 0.50 0.07 6813 570
5 0.61 0.83 0.13 5647 608
6 0.30 0.79 0.18 49817 479
7 0.36 0.50 0.00 1414 727
8 0.17 0.50 0.01 510 722

The correct parameter values cannot be determined without thorough analysis of the re-

flection characteristics of each material sample. However,the results are broadly consistent with

expectations. In the case of the painted samples (3, 7 and 8) the estimated parameters differ only

in the total reflectance, which would be expected since only the colour of the paint differs. The

mild steel samples (4, 5 and 6) do exhibit increasing values of roughness, though the polished

steel sample would be reasonably expected to have a higher value of ρs than that estimated. In

general, the metallic samples have estimatedρs values higher than those of the other, non-metallic

materials.

7.4.2 Colour Analysis

This section uses simulated annealing to estimate the parameters of the colour reflection model for

each of the eight material samples. Here the cooling schedule used for the analysis is that used in
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Figure 7.12:Values of a single pixel within the projection of each ma-
terial sample across the image sequence: (a) sample 1; (b) sample 2; (c)
sample 3; (d) sample 4; (e) sample 5; (f) sample 6; (g) sample 7; (h)
sample 8.
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Section 7.3.4. The resulting estimated parameter values are shown in Table 7.15.

Table 7.15:Estimated colour model parameters for material samples.

Sample Estimated Parameters χ2 of χ2

number Cred Cgreen Cblue ρs σα result evaluations

1 0.46 0.45 0.46 0.30 0.05 7974 1403
2 0.55 0.58 0.54 0.52 0.00 4472 1433
3 0.61 0.61 0.56 0.46 0.01 6536 1383
4 0.21 0.24 0.25 0.47 0.06 6692 1425
5 0.63 0.60 0.60 0.80 0.13 8111 1428
6 0.37 0.36 0.34 0.78 0.1745225 1221
7 0.56 0.48 0.06 0.50 0.03 3155 1498
8 0.44 0.08 0.02 0.50 0.04 1325 1575

The predicted pixel values for each sample across the image sequence are shown in Figure

7.14. These have been calculated using the estimated model parameters found by simulated an-

nealing. It can be seen that there is, in most cases, a strong similarity between the actual pixel

values shown in Figure 7.12. Only in samples 3 and 4 has the model had difficulty in matching the

actual pixel values. The estimatedρs andσα values for this colour reflection model exhibit a simi-

larity to those found for the achromatic model. This shows a consistency in the results obtained by

this method. It can also be seen that the method has correctlyestimated the colour of the painted

samples, as well as the dominance of the blue pixel values in each case. However, in the case of

the pale blue paper (sample 2) the system has been unable to discern a colour difference. As stated

above, the correct parameter values for each sample can onlybe determined by thorough analysis

of the materials. However, Figure 7.14 shows that the estimated parameters are sufficient for an

accurate reproduction of the measured data. A reconstruction of the image sequence, created using

the estimated parameter values, is shown in Figure 7.13.

These results show some promise for the proposed method of reflection model parameter

estimation. Failure to accurately model the observed data is due to inadequacies in the models.

Each of the models employed by the method presents an approximation of the process involved.

As such, the accuracy of the parameter estimation is limitedby the accuracy of the models used

for camera response, illumination and surface reflection.
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(e)

(c)

(f)(d)

(b)(a)

Figure 7.13:Reconstruction of the real image sequence using estimated
parameters: (a) 12:00; (b) 13:00; (c) 14:00; (d) 15:00; (e) 16:00; (f)
17:00.

7.5 Summary

This chapter has examined the performance of two regressiontechniques on synthetic and real

image sequences. For synthetic image sequences, which provide the most suitable conditions for

parameter estimation, the Levenberg-Marquardt regression method has been shown to have serious

deficiencies. These have been due to both the characteristics of the method and of the application

in which it has been used. The failings of this method in the case of simple models with two and

three parameters have been clearly demonstrated.

It has been shown that the method of simulated annealing provides consistent results, pro-

vided that a suitable cooling schedule is devised. The effectiveness of this method has been demon-

strated in the case of simulated image sequences and reflection models with two, three and five

parameters. The method has been shown to be successful in those cases where traditional regres-

sion methods have failed.

In the case of a real image sequence, simulated annealing hasbeen used to estimate the

parameters of both an achromatic and a colour reflection model. There has been some consistency

in the results for each of these reflection models, though theaccuracy of the values cannot be
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Figure 7.14:Pixel values for each material sample modelled using the
estimated colour reflection model parameters: (a) sample 1;(b) sample
2; (c) sample 3; (d) sample 4; (e) sample 5; (f) sample 6; (g) sample 7;
(h) sample 8.
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evaluated without using material samples of known reflectance. However, the results show that

the estimated colour reflection model parameters are suitable for an accurate simulation of the

observed data. Such results would enable the simulation of the observed scene in differing illumi-

nation conditions and from alternative camera locations. This type of simulation could be used as

a virtual environment depicting the observed scene.



Chapter 8

Conclusions

The aim of this thesis has been to develop a method for estimating a model of reflection for

an object observed under natural illumination by a static camera. Further to this, it has been

required that the results obtained are quantitative, such that they may be used for subsequent

lighting calculations or simulations. Such results may be used for a variety of applications. These

include object recognition, material analysis, or automated virtual environment generation from

existing natural scenes. This latter application has been the subject of some study. It has been noted

that the apparent realism of a virtual environment is not simply achieved by accurate modelling of

object shape [6, 26]. Realism is enhanced through the use of accurate surface reflection models

which provide a sense of texture, gloss and colour.

Chapter 3 has shown how the reflection characteristics of a surface may be encapsulated

in a functional model. Such computational models allow the approximation of a bidirectional

reflectance-distribution function (BRDF) for a surface. Ithas been shown that many such models

exist, each formulated for a particular application or surface type. One model has been selected

for evaluation in this thesis, that being the model due to Ward [141]. It has been shown that this

model is applicable to many material types and that it has theadvantage of being computationally

convenient. Three variations of this basic reflection modelhave been considered, each with an

increasing number of parameters to be estimated, and accounting for both achromatic and colour

reflection.

This thesis has considered natural illumination consisting of two main sources: direct il-

126
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lumination from the sun and diffuse illumination from the sky. Many computer graphics and

machine vision applications have neglected the complexityof these sources. Typically the sun

is modelled inaccurately as a point source. Illumination from the sky is often either neglected,

substituted by an ambient term, or assumed to be a hemispherical source of uniform brightness.

Neither of these naive simplifications adequately describes the complexity of natural illumination.

Chapter 4 has presented physically-based models of sun and sky light which have been developed

by the solar energy research community. As such, they accurately model the distribution and mag-

nitude of radiance from both the sun and sky. It has also been shown that, by consideration of

the scattering processes which light undergoes as it passesthrough the atmosphere, the spectral

distribution of light may be modelled. Models have been presented which describe how natural

illumination changes with time, terrestrial location, andweather conditions. Methods have also

been compared which allow these illumination models to be used in the context of machine vision.

This research has used images obtained by a camera to measuresurface reflection. In order

that measurements can be made from the values of image pixels, it has been necessary to derive

a sensor model suitable for this application. Such a model has been presented in Chapter 5. This

has considered the camera optics required to project an image and the process by which an image

is discretised to form a colour digital image. The use of a radiometric camera model allows image

pixel values to be interpreted in the context of a surface reflecting incident irradiance. Measure-

ments made from image data can, therefore, be used in the formulation of a BRDF model for an

observed surface.

Chapter 6 has shown that, by considering a sequence of images, taken over a period of time,

a scene may be observed in a variety of illumination conditions. This is due to the changing nature

of daylight illumination over time. It has been shown that the temporal change in image pixel

values, over the duration of an image sequence, provides sufficient information for the surface

reflection characteristics to be modelled. It has been shownthat such analysis may be performed

using a single pixel, or multiple pixels, within each image of a sequence.

The estimation of reflection model parameters from observedimage data has been achieved

through the use of regression techniques. Such methods attempt to find model parameters which

reduce the least-squares difference between observed dataand a model. This difference is eval-

uated using aχ2 metric. It has been shown that minimisation of thisχ2 function will yield the

optimal reflection model parameters, in the least-squares sense. The use of theχ2 metric also
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provides a tolerance of image noise due to sensor error.

Two methods of regression have been considered. The first hasbeen the Levenberg--

Marquardt method which is commonly used for parameter estimation. The second method is

the probabilistic approach of simulated annealing. The useof the latter method of regression is

novel in this area of study. These two methods have been selected by considering the nature of

the reflection models. The expected performance of each method has been analysed by consid-

ering a large number of synthetic image sequences. These have allowed the performance of each

technique to be assessed in precisely controlled conditions.

The presented methods have requireda priori knowledge of scene geometry, camera pa-

rameters and illumination conditions for each image in a sequence. This has been required so that

the free parameters of the complete model, used to predict image pixel values, are those of the

selected reflection model alone. Whilst these are significant assumptions, it has been shown that

parameters other than those of the reflection model may be estimated using existing methods. In

particular, scene geometry may be determined using a numberof shape recovery techniques.

8.1 Performance

Chapter 7 has presented results for the three variants of theWard reflection model that have been

considered. Each of these models has had an increasing number of parameters to be estimated.

The performance of the two proposed methods of regression has been evaluated using synthetic

image sequences. These have allowed a thorough comparison of the techniques to be made for a

variety of sequences captured under precisely known conditions.

It has been shown that the Levenberg-Marquardt method is notsuitable for this application.

Chapter 6 showed that theχ2 function for some examples contained local minima corresponding

to non-optimal parameters. Such parameters do not yield thebest, least-squares, fit between mea-

sured and modelled data. The gradient descent approach willoften identify these local minima

as solutions. It has also been shown that, even in the simple cases where only a global optimal

minimum exists, the accuracy of the estimated parameters isdependent upon the initial parameter

estimates. Therefore, this technique requires an estimateof the reflection model parameters to be

made that is sufficiently close to the optimal values for accurate results to be obtained. Such initial
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estimates are not available without prior analysis of the image data.

The method of simulated annealing has shown itself to be useful for this application. Whilst

it requires a significantly increased number of computations to be made, the method shows none

of the failings of the Levenberg-Marquardt method. The technique is not misled by local, non-

optimal, minima and provides consistent results independently of the initial starting parameters.

Despite the increased number ofχ2 function evaluations that are required, it has been shown that

the computational complexity of the method is less than thatof a naive brute force search of the

parameter space. It has been shown that, given a suitable cooling schedule, simulated annealing is

able to consistently estimate parameters for the achromatic and colour reflection models. This has

been shown through the analysis of synthetic image sequences.

The analysis of real images presents a significant test of anymachine vision system. In this

case, a single clear sky sequence showing a variety of eight planar surface samples has been used.

This sequence has been analysed and model parameters estimated for both the achromatic and

colour reflection models. The estimated parameters for eachreflection model have been shown

to be consistent for each of the eight surface samples. Theseestimated parameter values have

correctly indicated surface roughness, surface gloss and material colour. However, the accuracy

of the estimated parameters cannot be determined without the use of calibrated materials.

8.2 Future Work

The current method assumesa priori knowledge of weather conditions, camera parameters and

surface orientation. These assumptions represent a significant amount of information which is

required for each image of a sequence. However, each of thesefactors are merely parameters of

the various models used to describe illumination, camera response and surface orientation. Given

that the method of simulated annealing scales well with an increasing number of parameters, it

might be possible to estimate these in the regression process. For example, the method could be

extended to a situation in which surface normal is unknown. In this case, the regression would

estimate not only the parameters of the reflection model but also the orientation of the surface.

Chapter 3 has shown that there is no single reflection model which is suitable for character-

ising the reflection from all types of surface material. Thisis especially true for the many natural
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surfaces, such as vegetation or sand, which may be experienced in a terrestrial scene. Given that

the regression methods developed here are independent of the selected reflection models, it would

be possible to select the model most suited to the observed scene. In this case the system would

select the model, as well as the associated parameters, which yield a minimum least-squares dif-

ference. However, there could be many problems associated with such a generalised approach.

Primarily, the effect on the regression method of a transition between reflection models, possibly

resulting in a change of parameter space, would need to be understood. The use of many reflection

models could result in a global minimum which is not the desired solution.

The presented methods have considered static scenes observed by a static camera. However,

a moving camera or animated scene would be expected to provide an increased variation in image

pixel values. As has been demonstrated, an observed highlight serves to distinguish between

matte and glossy surfaces. Changing the orientation of a surface with respect to the camera would

provide an increased probability of observing such a highlight. This improvement would not

require any change to the regression method or to the dimension of the parameter space, provided

that camera and object position are recorded for each frame.

The observed shading of a surface is not due only to direct illumination from light sources

but also interreflection from other surfaces. All the scenesconsidered in this work have been such

that interreflection could not take place. It may be possibleto extend the methods to account for

interreflection using global illumination techniques. However, this presents a considerably more

complex problem than that presented here. In the case of an occluded surface reflecting light

onto a visible surface, it would not be possible to determinethe quantity of light being mutually

reflected, if the reflectivity of both surfaces is unknown.

The method of simulated annealing requires a significant amount of computing time in

order to converge to a solution. This is due to the repeated evaluation of theχ2 function for each

hypothesised set of parameter values. Eachχ2 evaluation requires the irradiance upon the sensor to

be evaluated for each considered pixel in the sequence. Thisis clearly a computationally intensive

task, the performance of which could be improved with further investigation. One approach would

be to parallelise the algorithm. In the simulated annealingcase, each vertex of the simplex could

be evaluated independently. Similarly, the calculation ofthe difference between predicted and

measured pixel values, for each image in the sequence, couldbe distributed.
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8.3 Closing Comments

This thesis has shown that the estimation of reflection modelparameters is possible for surfaces

visible in images of naturally illuminated scenes. This is asignificant departure from the study

of laboratory scenes, in which the problem of modelling reflectance is usually much simpler.

This work has shown that existing, physical, models of natural illumination may be successfully

employed in machine vision. These models allow quantitative results to be obtained, which can

then be used for a variety of applications.



Appendix A

Radiometry and Photometry for

Machine Vision

To simplify the sharing of data and methods between scientific communities a standard set of

metrics and definitions are required. Where possible this thesis has used recognised notation as

defined by the Illumination Engineering Society [54]. This appendix defines some of the terms

presented in this thesis.

Radiometry is the science of the physical measurement of electromagnetic radiation. A ra-

diometric measurement ofradiant energyis expressed in Joules [J]. The amount of energy at each

wavelength of light can be measured using a spectroradiometer. The resulting measurements pro-

vide the spectrum of the light source. Photometry, however,is the psychophysical measurement of

the visual sensation experienced by a human observer to the light. Pierre Bouguer (1760), founder

of the field of photometry, first noted that a human observer could not provide a quantitative de-

scription of perceived brightness but was able to compare the brightness of two light sources.

Since the human visual system has varying response to wavelength, sources of equal radiant en-

ergy but differing spectrum may have different perceived brightnesses. This relative sensitivity to

wavelength can be plotted on a curve termed thespectral luminous efficacy curve, see Figure A.1.

Brightness, orluminous energy, is measured in units of talbots.

The rate of flow of radiant energy,radiant power, between two points is measured in Joules

per second or Watts [W]. The photometric equivalent is the rate of flow of luminous energy,lu-
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Figure A.1:Spectral luminous efficacy curve.

minous power, is measured in talbots per second or lumens. Since radiometry is more physically

fundamental than photometry, radiometric quantities may be computed from their photometric

equivalents. This is possible by considering theefficacy of the light at each wavelength. Effi-

cacy is measured in lumens per Watt and defines the energy per lumen for light of a particular

wavelength. For example, considering the visible wavelengths of light, the radiant power,Φ, of a

source with luminous powerL and luminous efficacyE is;

Φ = Z 770

λ=380nm

L(λ)
E(λ) dλ: (A.1)

In measuring radiant power, or flux, it is necessary to consider the direction of flow. This is

given as solid angle of directions measured in steradians [sr]. A solid angle is the three dimensional

equivalent of angle in plane geometry. A solid angle,ω, is measured in terms of the area on a

sphere intercepted by a cone whose apex is at the sphere’s centre. A unit solid angle intercepts an

area equal to the square of the sphere’s radius,r [24]. A hemisphere, therefore, has a solid angle

of 4πr2=2r2 = 2π sr. A differential solid angle of directions,dω, may be termed aray.

The projected area of a surface is the apparent area of the surface seen by an observer from

a particular direction. This projected area,dA?, is the surface areadA multiplied by the cosine

of the angleθ which the surface normal makes with the observer,dA? = dAcosθ [103]. The

projected area of a surface is, therefore, dependent upon the relative orientation with the observer.

The solid angle subtended by a surface about a particular point may be derived in terms of the
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projected area. A surface of projected areadA?, at a distancer from a point, subtends a solid

angledω:

dω = dA?
r2 = dAcosθ

r2 : (A.2)

The following are radiometric quantities which may be derived from the basic units pre-

sented above. Each is accompanied, where applicable, by thecorresponding photometric term.

Radiant intensity [Wsr�1] : The power per unit solid angle radiated about a particular direction.

The corresponding photometric quantity isluminous intensity[Candela].

Radiance [Wm�2sr�1] : Radiance,L, is the power per unit projected area perpendicular to the

ray per unit solid angle in the direction of the ray. Radiancehas two useful properties [12]:

1. The radiance in the direction of a ray remains constant as it propagates along the ray.

This is valid provided there are no losses due to scattering or absorption.

2. The response of a sensor is proportional to the radiance ofthe surface visible to the

sensor.

The corresponding photometric quantity isluminance[Nit].

Irradiance [ Wm�2] : The total radiant energy per unit area incident on a surfaceof fixed ori-

entation from the hemisphere of incident directions is termed irradiance,E. Irradiance is

calculated by integrating incident radiance,Li, over the visible hemisphere,Ω;

E = Z
Ω

Li cosθi dω; (A.3)

whereθi is the angle of incidence relative to the zenith. The corresponding photometric

quantity isilluminance[Lux].

Radiosity [Wm�2] : Whereas irradiance is due to incident radiance, radiosity, B, is the energy

per unit area that leaves a surface. The corresponding photometric quantity isluminosity

[Lux].
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