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AbstractThe use of computer vision to locate or track objects in images has applicationsin a diversity of domains. It is generally recognised that the analysis of objects ofinterest is eased signi�cantly by making use of models of objects. In many cases,the strongest visual feature of an object is its shape. Also, many objects of interestare non-rigid, or have a non-rigid appearance with respect to a particular viewpoint.For these reasons, there is much interest in the construction of, and tracking with,deformable shape models.A common approach to building such a model is to apply statistics to a set ofreal-life training examples of an object in order to learn shape and deformationcharacteristics. Such methods have proved successful in many speci�c applications;however, they can experience inadequacies in the general case. For example, objectswhich exhibit non-linear deformations give rise to models which are not compact andnot speci�c: in the process of capturing the range of valid shapes, invalid shapesalso become incorporated into the model. This e�ect is particularly pronouncedwhen building models from automatically-gathered training data. Also, in tracking,smooth movement and deformation is generally assumed, but is not always the case:the apparent shape of an object can change discontinuously over time due to, forexample, rotations in 3D.The work in this thesis addresses the above problems.Two extensions to current statistical methods are described. The �rst makesuse of polar coordinates to improve the modelling of objects which bend or pivot.The second uses a hierarchical approach to model more general complex deforma-tions; non-linearities are broken down into smaller linear pieces in order to improvemodel speci�city. In particular, this greatly improves the modelling of objects fromautomatically-gathered training data.A new approach to tracking which complements the latter of these models is alsodescribed. Learned object shape dynamics are combined with stochastic tracking toproduce a system which can track from automatically-generated models, as well asbeing able to handle discontinuous shape changes.Examples are given of the use of these techniques, predominantly in the domainof hand tracking. In particular, it is shown how it is possible to track 3D objectspurely from 2D models of their silhouettes.Also described is the construction of 3D deformable models, and the use of suchmodels in tracking. This approach eases the task of object pose inference, but ismuch less robust than the 2D approach. i
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Chapter 1Introduction
1.1 Problem DomainThe use of computer vision to locate or track objects in images has applications ina diversity of domains.In some cases the goal is to assist humans in tedious or repetitive visual tasks.In surveillance, human body tracking warns night watchmen of potential intruders;in manufacturing, electronic component location is used to spot defects in printedcircuit boards on the production line.Alternatively, there may be a need for accurate measurement or classi�cation. Inmedicine, x-rays of children's hands are analysed to spot defects in bone growth; insports, whole-body tracking is used to analyse and improve the technique of javelinthrowers; in robotics, feedback from vision guides autonomous vehicles around ob-stacles; in animal welfare, livestock tracking is used to monitor behaviour undervarying living conditions.Otherwise, the application might simply be to improve the interaction betweenman and machine. Hand tracking is the �rst step towards gesture analysis and theinterpretation of sign language; gaze analysis can be used to determine the user'spoint of focus on-screen.In all these cases it is generally recognised that analysis of the objects of interestis eased signi�cantly, especially in the presence of noise or background clutter, by1



Chapter 1 2 Introductionmaking use of a priori knowledge of object shape and appearance. In short, werequire models of objects.1.1.1 Models of Objects\If we are to identify objects, we must have some a priori representationfor those objects." Rodney Brooks, 1981 [13].A model of an object is merely a description of its features. This very generalstatement hides a number of underlying questions. Firstly, which features are tobe modelled? In the context of computer vision these should certainly be visualfeatures, such as surfaces, edges, corners or distinctive markings. Secondly, whichattributes of these features are to be described? Shape, colour or texture are allpossibilities. Thirdly, what is the nature of these descriptions? For models of rigidobjects, a single description of appearance is required. For models of classes ofobjects, deformable objects or 2D projections of 3D objects, there might be eithera continuous range or discrete set of valid appearances. For models of dynamicobjects, a description of how appearance changes over time may also be necessary.Only after these questions have been answered can an object model be con-structed (i.e. have its features described). Simple models can be hand-crafted, withthe descriptions of appearance, deformation and dynamics all being hard-coded.However, for more complex models, and also to provide a general framework, it isuseful to look to learning models from real-world examples.The very fact that an object model is being constructed as an aid to objectlocation or tracking seems to negate the possibility of making object feature mea-surements automatically from suitable images. However, it is sometimes possibleto automate or semi-automate the process by providing object examples under con-strained conditions. For instance, it is very easy to locate the boundary of an objectplaced against a homogeneous background.It is perhaps interesting to note that in order to automate fully the constructionof object models, one must automate the design decisions (i.e. the questions posedabove) as well as the measurement process. Otherwise one can only ever build modelsof objects which lend themselves to the particular chosen features and attributes.Models of object shape and appearance are used for object location in images byperforming a match between model and image. Given a set of parameters describingthe model state (e.g. position, orientation or size), the problem reduces to one of�nding values for these parameters which result in the best match. If we select image



Chapter 1 3 Introductionfeatures and look for matching model features we are said to be using a bottom-upapproach. Conversely, if we select model features and search for matching imagefeatures we are taking a top-down approach.At the simplest level, object tracking can be thought of as repeated object lo-cation. However, it would be foolish to ignore the object pose constraints whichexist from frame to frame in an image sequence: models of object dynamics canbe used. The most basic dynamic constraint is proximity; given a su�cient samplerate, an object's appearance in one frame will be very similar in the next frame. Ad-ditionally, any object with mass will experience momentum and inertia, so velocityconstraints can be used. Higher order assumptions can also be made; for example,acceleration models can predict oscillatory behaviour, but beyond that they becomeless powerful.Although certain object models lend themselves to particular trackingparadigms, it is useful to draw a distinction between models and tracking. Trackingshould be thought of as an application of a model; there are other equally worthyapplications such as simulation or visualisation. Also, it it certainly possible for twodi�erent tracking algorithms to make use of the same underlying object model|indeed such trackers could possibly be combined to produce a hybrid tracker whichexhibits the best qualities of the two individuals.Two of the most important factors when considering modelling or tracking tech-niques are performance and reliability. Most of the applications outlined aboverequire real-time tracking, so any successful algorithm must be able to process sev-eral frames per second on technology that is currently available or will be availablewithin, say, the next ten years. Also, a system should be robust enough such thattracking failures rarely occur: humans have a very low tolerance for such failures.Achieving either real-time performance or reliability in isolation is relatively simple;achieving both together is much harder.1.1.2 Deformable Shape ModelsIn many cases, the strongest visual features of an object are its contours (edges),especially those that divide it from its surroundings (i.e. its boundary), and the mostuseful, if not only, attribute of a contour is its shape. Also, many objects of interestare either non-rigid, or else exhibit non-rigid changes in appearance with respectto a particular viewpoint. For these reasons there has been much work publishedon the subject of models of shape and deformation. The features used in such



Chapter 1 4 Introductionwork are almost exclusively contours, allowing the modelling of a very wide class ofobjects (i.e. any object that has a reasonably distinctive boundary). Tracking withsuch models is also generally very successful - edge features are easy to locate inimages, and a top-down approach with sparse image analysis can be used, resultingin high-speed systems which are relatively robust.One of the most successful approaches to modelling shape and deformation hasbeen to use training data to learn an object's shape and how it can vary. Thisgenerally gives realistic, compact models which perform well in many tracking tasks.1.2 Focus of This WorkAlthough the use of deformable shape models has been demonstrated to be success-ful when applied to certain speci�c examples, current models of deformation anddynamics still experience inadequacies in the general case. Some common problemsare:� Models of deformation are not optimally compact, often representing non-linear deformations as a combination of two or more linear ones (Figure 1.1a).� Subsequently, non-valid shapes can be generated via inappropriate combina-tions of these linear deformations | the model is not speci�c (Figure 1.1b).� Automatically gathered training data can produce very poor quality models(Figure 1.1c).� Smooth, continuous dynamics are generally assumed. However, in some cases,sudden shape changes can occur. When tracking a silhouette this can be dueto object deformations, or changes in view of a 3D object (Figure 1.1d).The work in this thesis addresses the above problems. New techniques are de-veloped which improve the speci�city of models, and an approach to tracking isdescribed which complements these models and caters for a wide array of dynamicbehaviours, including non-smooth deformation. The development of 3D object mod-els for tracking from 2D images is also detailed, and their relative merits are dis-cussed.Throughout this work, human hands have been used as the main case study forthe presented modelling and tracking techniques, with the rationale that the abilityto locate hands and recognise gestures would be of great practical use, for example



Chapter 1 5 Introduction

(d)
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Figure 1.1: Examples of inadequacies in existing models of deformation: (a) non-compact linear deformation modes, (b) subsequent non-valid shapes, (c) a modelgenerated from automatically-gathered training data and (d) a discontinuous shapechange.in human-computer interaction and also because it is a di�cult and challenging task.The methods described also apply generally to other objects.1.2.1 Overview of ThesisThe thesis is set out as follows: this chapter has been a general introduction andoverview of the subject; Chapter 2 is a review of background material; the remainderconstitutes the original work and is organised in the following way:



Chapter 1 6 Introduction� Chapter 3 describes an extension to current statistical models: polar coordi-nates are used to improve the modelling of objects which bend or pivot.� Chapter 4 describes an alternative extension which uses a hierarchical ap-proach to model more general non-linear deformation. This improves modelspeci�city, and also enables construction of models from automatically gath-ered training data.� Chapter 5 describes a new approach to tracking: a model of object shapedynamics is combined with stochastic tracking to produce a system which cancope with a wide array of dynamic behaviours, including discontinuous shapechanges. This facilitates the tracking of 3D objects from silhouettes and alsotracking from automatically generated shape models.� Chapter 6 describes the construction of 3D deformable models and the use ofsuch models in tracking from 2D images. The relative merits and drawbackscompared with 2D models are discussed.Finally, some general conclusions are drawn, and there is a discussion of potentialfuture work.



Chapter 2Background
This chapter is divided into two sections. Firstly, there is an overview of previouswork on deformable shape models and their use in tracking. Secondly, there is amore in-depth study of techniques upon which the work in this thesis is based.2.1 Overview of Previous Work2.1.1 Deformable Shape ModelsDeformable shape models date back at least to 1965 and the work of Roberts [64], inwhich simple geometric primitives such as cubes and prisms are permitted to stretchand skew in order to explain observed image features.Many other authors make use of hand-crafted deformable shape models. Inthe ACRONYM [13] system of Brooks, models are built from sets of generalisedcones with variable shape parameters, joined together via translation and orienta-tion constraints. Hogg's `Walker' system [39] uses a 3D articulated `tin-can' modelfor tracking human motion, and Rehg and Kanade take a very similar approach to-wards hand modelling [62]. Both systems incorporate a complex set of hard-codedjoint constraints. Lowe uses a similar system but for more general objects [52]. Yuilledescribes deformable templates [75]: parameterised deformable shape models, con-structed from geometric primitives such as circles and parabolas. Prior probabilitiesare also de�ned for each parameter to indicate the possible range of values.7



Chapter 2 8 BackgroundAll of the above modelling techniques require the investment of time and ex-pertise to produce a model. Deformable models require much more thought thanrigid models because a whole range of possible shapes must be described, preferablyin terms of a small number of parameters. In some cases, there are dependenciesamongst these parameters which must also be modelled (e.g. inter-dependent �ngerjoint angles). Additionally, the approximation of object shape by geometric primi-tives, such as cylinders, lines, boxes or simple mathematical curves, is limited in itsexpressiveness. For example, biological objects can rarely be e�ectively modelled inthis way.The snake [45] of Kass et al provides a more appropriate framework for modellingbiological shapes. A snake is a exible contour (represented by a set of control points)which behaves like an elastic stick with internal physical properties. It can take onalmost any form, but it has a potential energy term which rises as it deforms awayfrom the rest shape. Snakes have no a priori knowledge of object shape; the onlydevice by which they may be customised to a particular shape is by relaxing ortightening the sti�ness constraints at particular nodes.Deformable meshes are the 3D equivalent to snakes. They are surface meshesconsisting of a number of nodes, each connected via virtual springs to a number ofneighbouring nodes. Delingette [25] and Bulpitt and E�ord [14] describe two suchmeshes.Curwen and Blake introduce coupled contours [24]|snakes coupled to �xed-shape templates|to allow models to have a speci�c preferred rest state. Addition-ally, they represent the contour as a cubic B-spline; this requires fewer control pointsand also has implicit smoothness constraints. As with snakes, deformation is basedon an assumption of elastic properties.Grenander et al [30] adopt a statistical approach to incorporating a priori knowl-edge of shape into contours. Several example contour shapes are extracted manuallyfrom training images and the distributions of the angles between adjacent contoursegments are learned and modelled as a Markov chain.Much work has been published on modelling techniques which can be looselyclassed as `base-shape-plus-linear-deformations' approaches. These generally consistof a base shape x (usually coded as the (x; y) co-ordinates of a number of controlpoints) and a number of linearly-independent deformations v1 : : :vt which can beadded to the base shape in various proportions to produce all possible valid shapes:x = x+ tXi bivi (2.1)



Chapter 2 9 BackgroundThe weightings bi are linear deformation parameters and form a t-dimensional shapespace. The advantages of such approaches are low deformational dimensionality andthe use of linear (and hence fast) algebra. The di�erences between the approachesare really to do with the determination of x and the vi.The simplest example of this is the set of a�ne-invariant deformations introducedby Blake et al [8]. The model incorporates three degrees of a�ne deformation fromthe base shape, allowing the modelling of planar objects viewed at any orientation.Pentland and Horowitz [57] describe how it is possible to produce sensible lineardeformations from a single base shape by way of the Finite Element Method (FEM).An FEM model is a physical model, treating the control points as point masses, andincluding sti�ness and damping coe�cients between every pair of points. Suchmodels undergo free vibration when perturbed. Eigenanalysis of the FEM modelcomponents can be used to extract the free modes of vibration. These are useddirectly as the model deformation vectors. Pentland and Horowitz demonstrate theuse of the technique on generic object shapes [57, 58], but it can also be applied tospeci�c object shapes [66].Key frames [10], described by Blake et al, are representative training examples ofan object being modelled. Deformation modes can be constructed as interpolationsfrom the base shape to each of the key frames, hence each key frame gives rise to onedegree of freedom. Key frames must be chosen carefully and control points locatedwith precision to ensure that a good model is produced. Ullman and Basri [73] showhow key frames can also be used in some cases to reconstruct (a limited range of)unseen views of 3D objects.The Point Distribution Model, or PDM [19] of Cootes et al (described in Sec-tion 2.2.1) combines the idea of multiple training examples with statistical analysisto produce models with good speci�city. The use of principal component analysis(PCA) [44] on the deviations of a large number of training examples from the meanshape gives rise to a small number of deformations which are representative of thetraining data. The accompanying eigenvalues provide a measure of signi�cance foreach deformation mode. The main advantages over the use of key frames are thattraining examples do not need to be chosen quite as carefully and the location ofcontrol points need not be as accurate. Both are important factors when consid-ering the possibility of automated training [3], which generally gives rise to largevolumes of noisy training data. PDMs have found many practical applications incomputer vision, including face recognition [49], person tracking [4], medical imageanalysis [38] and car tracking (using 3D models) [67, 74].



Chapter 2 10 BackgroundThe similarity of the above techniques means that they can easily be combinedto produce richer models. Blake et al combine the a�ne-invariant deformations withkey frames in a single model [10], and Cootes and Taylor show how PDMs and FEMmodels can be combined to produce useful hybrid models in the case of having onlya few training examples [16].In some cases the base-shape-plus-linear-deformation approach can fail. Valid ob-ject shapes might form regions in shape space which are non-linear, cyclic, disjoint orof variable dimensionality. Bregler and Omohundro describe constraint surfaces [12](see Section 2.2.2) which provide a means for learning arbitrary regions within highdimensional spaces from training data. They go on to show how this technique canbe applied to shape modelling, using human lips as an example. Ahmad et al [1]describe work along similar lines whereby training shapes of human hands are man-ually categorised into �ve separate gestures and a local PCA is performed on eachone to produce a piecewise-linear hand gesture model.2.1.2 Tracking ParadigmsThere has been much work on location of objects; this is generally treated as aglobal search problem and, as such, is computationally intensive. Most techniquesoperate on a hypothesis/validation (generate-and-test) principle; promising candi-date solutions are generated and then validated via image analysis. E�ciency ishighly dependent on the heuristics for the hypothesis stage. The simplest strategyis pose sampling (e�ectively an exhaustive search), but this is only feasible for veryconstrained search spaces. Techniques such as alignment, the generalised Houghtransform and geometric hashing [40] all depend on the reliable location of `inter-est points' in the image, such as edges or corners (i.e. they adopt a `bottom-up'approach). This is time-consuming, and also not robust because low-level mistakesa�ect high-level performance. Conversely, the Genetic Algorithm approach used byHill et al [34, 33] is entirely top-down: hypotheses are generated without referenceto the image; image analysis is only used in the veri�cation stage.Object tracking has the added advantage of the availability of temporal informa-tion. The simple fact that object movement is generally small between consecutiveframes reduces the global search problem to a local one, implying that any objectlocation technique that is based on local optimisation is also useful for tracking.One such technique is described by Lowe [52], using parameterised, articulatedmodels. The error between projected model edges and nearby image edge features is



Chapter 2 11 Backgroundmeasured, and Newton non-linear least-squares minimisation is used to optimise themodel parameters iteratively for this error. In Lowe's implementation, however, thespeed bene�ts of local optimisation are cancelled out to some extent by the globalcomputation of image edges.The snake of Kass et al [45] is the forerunner to a whole host of work on physics-based tracking. As mentioned above, a snake is a exible contour with certaininternal sti�ness properties. It tracks by being `attracted' to various image features.The scenario is formulated in terms of energy: the image is abstracted as an energylandscape, with desirable features (usually edges) having low energy. A snake, whenplaced on such a landscape, locks onto features by sliding down into these energyminima whilst simultaneously minimising its internal potential energy. In practicalterms, the energy gradient is evaluated (via image analysis) at a set of control pointsalong the snake (the image �rst undergoes a Gaussian blur in order to widen theenergy wells in the landscape) and the snake is deformed iteratively until it reaches astable position. The whole process can alternatively be thought of in terms of force-based tracking: external gravity-like forces pull the snake downhill in the energylandscape and internal forces maintain its smoothness. This is a local optimisationprocess and so extends naturally from object location to object tracking. In addition,the physical properties of the snake can be extended to momentum, thus providingsome form of temporal prediction. Terzopoulis and Szeliski reformulate the snakedynamics within a probabilistic framework and introduce the Kalman snake [72](based on a Kalman �lter) which, as well as predicting the snake's position, canprovide con�dence limits for such predictions.The principles of snake deformation apply to 3D surface meshes in a very similarmanner, with force-based tracking predominantly being used. There is the additionalaspect of structural reorganisation of the mesh to cater for object topography; meshnodes can be added (re�nement) or removed (decimation) in order to provide a moreeven tessellation.Curwen and Blake [24] show how snake technology can be used with B-splinecontours, and also introduce a more e�cient method for feature search, wherebyimage edges are sought along contour normals using a divide-and-conquer strategy.This avoids the need for the Gaussian blur and 2D gradient calculations. In furtherwork [8], Blake et al also combine their approach with the Kalman Filter, whicha�ords several advantages. One bene�t is that the spatial search scale is controlledautomatically according to certainty; if no feature is found, the search scale is in-creased. Also, the temporal scale (i.e. memory) is adaptive; inertia is e�ectively



Chapter 2 12 Backgroundreduced when features are lost, allowing fast recovery. When features are found, thememory is extended to exploit motion coherence.Cootes and Taylor describe Active Shape Models (ASMs or `Smart Snakes') [15,20]: the application to tracking of the PDM. The approach is similar to Lowe'sin that image measurements are projected into the model parameter space andparameter errors are then minimised. However, in this case the minimisation is linearleast-squares, which has a closed form solution and is thus faster to calculate. Themaths involved is further simpli�ed by the fact that the PDM's deformation modesare orthonormal. Also, because there are generally only a few model parameters,this approach is faster than previous snake-like techniques. Performance and speedcan be improved further still by employing a multi-resolution search [21] wherebyearlier iterations proceed at lower image resolution and fewer shape parameters areallowed to vary, with re�nement being permitted in the later stages.Baumberg and Hogg show how ASMs can be coupled with a Kalman �lteringframework to produce a more robust system [4]. This method is very e�cient becausethe �lters for each shape parameter can be decoupled, allowing independent �lteringof each parameter and thus avoiding large matrix computations.All of the approaches described so far have either non-speci�c or hard-codeddynamical systems. Some of them (e.g. Kalman �lters) are adaptive, but none haveany learned dynamics.Hogg's `Walker' model [39] is an early example of a non-trivial temporal model.The kinematics are coupled to a pre-learned periodic walk sequence, modelled viaa series of cubic B-splines, which is used to derive predictions for plausible objectstates in each successive frame.Blake et al describe how dynamics can be learned from training sequences [10]within a Kalman �lter framework. Dynamics up to second order (such as constantspeed, oscillation or decay) can be learned using a simple tracker with default dy-namics in a constrained environment. The trained tracker then improves robustnesson similar motions.Baumberg and Hogg [6] show how to construct temporal models from trainingsequences using FEM model analysis [57]. The models produced exhibit a numberof independent modes of vibration which reect the motions experienced in thetraining sequences. These motions can then be used directly as prediction modelsfor tracking, again, within a Kalman �ltering framework. The use of modal analysismeans that, unlike Blake et al 's model, the Kalman �lter can be decoupled for extraspeed.



Chapter 2 13 BackgroundIsard and Blake's CONDENSATION algorithm [43] (described in Section 2.2.4) pro-vides a much richer environment for temporal prediction. The model state is repre-sented not as a single, deterministic set of model parameters, but as a probabilitydensity function over the whole parameter space. This allows for non-Gaussian (ar-bitrary, in fact) uncertainty and multiple hypotheses. Propagation dynamics arelearned from training sequences; Isard and Blake demonstrate the construction ofsecond order models which can predict constant velocity, oscillatory and decayingdynamics.2.1.3 Hand TrackingAs the focus application of this thesis is hand tracking, it seems appropriate to givea survey of previous work in this area. Pavlovic et al [56] have recently produced avery thorough review of much of this work, also including details on gesture analysis,which involves ascribing meaning to the movements of the hand(s).All (noteworthy) previous work makes use of some form of model of the hand.The types of models used vary enormously but can be categorised broadly as beingeither full 3D models or 2D appearance models.3D approaches have been based almost exclusively on skeletal models of thehand. These manually-crafted models are fairly accurate in that the constraintsamongst joint angles and relative bone lengths are coded explicitly from biologicaldata, but in each case a `generic' hand model is created: the di�erences from personto person are not incorporated. They are also very tedious and time-consumingto build. Tracking with such models involves collecting pieces of image evidenceand calculating changes to the hand position and joint angles which best satisfythe evidence. Both Dorner [27] and Lee and Kunii [50] simplify the image analysistask by using colour-coded gloves. Rehg and Kanade's DigitEyes [62], however, cantrack unadorned hands; the skeletal model is appended with jointed cylinders, andedge detection is used to drive the deformation process. In later work by the sameauthors [63] the subject of self-occlusion is discussed.Systems using 2D appearance models have been more varied. Deformablecontour-based approaches are popular [46, 1, 9]; these use either key frame or sta-tistical shape models, and tracking proceeds in a snake-like manner, with variousadaptations as described in Section 2.1.2.Silhouette shape models have also been used extensively [47, 54, 23, 29, 60, 53].These generally involve a �xed number of static hand poses, indexed into a `gesture



Chapter 2 14 Backgroundlibrary' via some set of measured features, such as silhouette width, height, centroidposition, �rst and second order moments, or even eigenimage decomposition. Undersuch systems, hands are not so much tracked through video sequences as locatedin every frame. A bottom-up approach is used; background subtraction, imagethresholding or colour segmentation techniques are applied to segment the handsilhouette, which is then compared to the library to �nd a match. This comparisonin itself can be non-trivial; Kjeldsen, for example, makes use of a neural network [47]for matching. Such approaches can be very susceptible to background noise andchanges in hand scale or orientation.2.2 Relevant Techniques Studied in Depth2.2.1 The Point Distribution Model (PDM) and DerivativesA PDM is a model of shape built purely from the statistical analysis of a num-ber of examples of the object to be modelled [19]. Given a collection of trainingimages of an object, the Cartesian coordinates of N strategically-chosen landmarkpoints are recorded for each image. Training example e is represented by a vectorxe = (xe1; ye1; : : : ; xeN ; yeN) (for a 2D model).The examples are aligned (translated, rotated and scaled) using a weighted least-squares algorithm, and the mean shape x is calculated by �nding the mean positionof each landmark point. The modes of variation are found using principal com-ponent analysis (PCA) [44] on the deviations of examples from the mean, and arerepresented by N orthonormal `variation vectors' p1 : : :pN . A deformed shape x isgenerated by adding linear combinations of the t most signi�cant variation vectorsto the mean shape: x = x+ tXj=1 bjpj (2.2)where bj is the weighting for the jth variation vector. Figure 2.1 illustrates thetraining procedure.Generally, the signi�cant deformations are captured by only a handful of varia-tion vectors; the rest represent noise in the training data. By choosing t� 2N , weextract only the important deformations, discarding noise, and thus we can com-pactly capture object shape and variation.An instance X of the model can then be generated in the image frame by speci-
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ComponentAveragingFigure 2.1: Training a Point Distribution Model.fying translation, scale and orientation:X =M(s; �)[x] +Xc (2.3)where M(s; �)[:] performs a rotation by angle � and a scaling by factor s, andXc = (Xc; Yc;Xc; Yc; : : : ;Xc; Yc), where (Xc; Yc)T are the coordinates of the centroidof the model instance.The PDM a�ords several advantages over other shape modelling techniques.The use of real-life training data makes for an accurate model of shape. Becausea whole set of these training examples is used, a realistic model of deformation isalso obtained, and without the need for hand-crafting. The statistical nature of theapproach means that a degree of noise in training data annotation is tolerable; thisnoise is �ltered by the PCA.2.2.1.1 Limitations of the PDMA good deformable model should be accurate, speci�c and compact. An accuratemodel includes all valid shapes. A speci�c model excludes all invalid shapes. Acompact model uses the smallest number of parameters possible to describe a shape



Chapter 2 16 Background(i.e. its dimensionality approaches the natural deformational dimensionality of theobject being modelled).Model shape can be thought of in terms of points in an n-dimensional shapespace. In the case of a PDM the dimensions are the x and y coordinates of everylandmark point (so there are 2N dimensions). Within the shape space there isgenerally a continuous region which corresponds to valid shapes; in this thesis thisis referred to as the valid shape region, or VSR.The standard PDM assumes that the set of all valid shapes forms a Gaussiandistribution normally about some mean point in the shape space. By setting a max-imum allowable Malhalanobis distance from the mean, the VSR can be thought ofas being bounded by a hyperellipsoid. In some cases, especially when model land-marks have been chosen strategically, this approximation is su�cient to producea satisfactory model which is both compact and speci�c. However, in many realobjects, non-linear deformations (such as bending or pivoting) are a natural occur-rence. The PDM is forced to model non-linear deformations by the combination oftwo or more linear deformations. Such models are not compact because the dimen-sionality is increased, and not speci�c because invalid shapes can be produced viaan inappropriate combination of linear deformations (see Figure 1.1a for examples).This corresponds to the PDM over -approximating the VSR, and covering a largerregion of shape space than is required. Poor accuracy is the result of the oppositeproblem, whereby the PDM under -approximates the VSR, resulting in some validshapes not being included in the model.2.2.1.2 Adaptations to the PDMThere has been some work on adaptations to the PDM to improve its accuracy,speci�city or compactness.Accuracy is often poor in the case where not enough training data has beenprovided; generally this results in only a subset of the true VSR being modelled(i.e. the PDM is too highly constrained). Improvements can be made by somehowallowing extra degrees of deformational freedom in the model.Kervrann and Heitz [46] show how this is possible by way of a �rst-order Markovprocess, similar to that used by Grenander et al [30]. Landmark points are allowedto move slightly from their current position, but with neighbouring points beingencouraged to move in unison to some extent.Cootes and Taylor show how a similar e�ect can be achieved via FEM modelanalysis [16]; statistical and physical deformations are combined to produce a single



Chapter 2 17 Backgroundmodel, as described in Section 2.1.1. In later work they describe a simpler alternativewhich attempts to introduce extra variability via direct tampering with the shapecovariance matrix [17].All of these processes can be used to `bootstrap' the construction of a PDM byautomatically locating new training examples in unseen poses.Poor speci�city arises generally in the case where the VSR is non-linear, forcingthe PDM to include non-valid shapes in the model. This also results in non-optimalcompactness (see Section 2.2.1.1 above). In such cases it is sometimes possible toimprove speci�city and compactness by performing a non-linear mapping of theshape space into some new space, in the hope of making it more linear. If this canbe done, fewer modes of variation are needed and the model is more compact. Alsobecause non-linearities are not being modelled with two or more modes, speci�cityis improved.Sozou et al describe one such approach, the Polynomial Regression PDM [68],in which the second and subsequent shape parameters, b2 : : : bt, are determined by�xed polynomial functions of the �rst parameter, b1:bj = aj0 + aj1b1 + aj2b21 + � � �+ ajdbd1 (2 � j � t) (2.4)where d is the degree of the polynomial being used. The values of the ajk coe�cientsare determined by �nding polynomials of best �t through the training data. Be-cause, in general, not all legitimate variation can be captured with only one shapeparameter, it is necessary to perform this process iteratively on residual deviationfrom the polynomial curves (hence the term `regression'), until the only remainingvariation is due to noise in the training data.In later work, Sozou et al describe the use of a multi-layer perceptron (MLP)to perform a non-linear mapping of the shape space [69]. A 5-layer perceptron isconstructed with a `bottleneck' in the middle layer. In training, the MLP is forcedto code training shapes in a number of dimensions equal to the number of neurons inthe middle layer, thus e�ecting the required non-linear dimensional reduction. Theprocess works well for one-dimensional deformations but less well in the presence oftwo or more modes of deformational freedom.In the case of modelling continuous contours, an alternative to constructing anon-linear mapping is to look at the possibility of altering the training data itself.Landmarks can be moved around a contour without altering its overall shape. Ifdone intelligently, this can improve model linearity. Hill and Taylor describe agreedy algorithm which attempts to achieve this by minimising the overall model



Chapter 2 18 Backgroundvariance [35]. Baumberg and Hogg [5] describe the use of an alternative componentanalysis (i.e. not PCA) along with stochastic model perturbations in order to re�netraining examples.2.2.2 Shape Space Constraint SurfacesConstraint surfaces (as described by Bregler and Omohundro [12]) provide a methodfor learning an arbitrary surface within an n-dimensional space, using samples takenfrom it. In this context, a surface is de�ned to be a geometric entity | embeddedwithin an n-dimensional space | which can have any topology and whose dimen-sionality can vary arbitrarily over the space (but is generally much less than n).The key to the approach is that a complex, non-linear surface approaches linear-ity locally under magni�cation, and hence can be approximated by a combinationof a number of smaller linear `patches' (i.e. a piecewise linear approach).To build the linear patches, a k-means cluster analysis is performed on the train-ing data in shape space to �nd a number of prototypes. For each prototype, anumber of nearest neighbours are taken from the training set and a PCA is per-formed on them. This produces the desired lower-dimensional linear sub-space inthe region of each cluster (the dimensionality of which is determined by the numberof signi�cant principal components, according to an arbitrary cut-o� point). Thewhole non-linear surface is represented via a combination of these linear patches.For example, a constraint function C can be applied to a general shape x as follows:C(x) = PiGi(x)Pi(x)PiGi(x) (2.5)where Pi(x) is the shape x as projected into the subspace of linear patch i and Gi isthe inuence function for patch i. Gi is a Gaussian and is centred on the k-meansprototype for patch i, with a variance \determined by the local sample density" (norigorous mathematics is given to explain this exactly). Figure 2.2 illustrates thelearning process.This technique applies directly to object shape modelling. If the training samplesare examples of valid object shapes then the surface produced is representative of allvalid shapes. Bregler and Omohundro demonstrate modelling the shape of humanlips in this way [12].Note that in building such a constraint surface there are various design choicesto be made: the number of linear patches to build, how many nearest neighboursto use for each local PCA (this is related to how much the patches should overlap)
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(a) (c)(b)Figure 2.2: Learning a non-linear 1-dimensional surface; (a) the training data, (b)the local linear patches, (c) the learned surface.and, crucially, the cut-o� ratio for deciding the dimensionality of each patch (i.e.how signi�cant a dimension must be for it to be included).Constraint surface models su�er some disadvantages, mostly related to the use ofnon-bounded hyperplanes to represent each linear patch. This is discussed in moredetail in Chapter 4.2.2.3 Active Shape ModelsActive Shape Models [15, 20] are the application of the PDM to object locationand tracking. The approach is similar to the snake algorithm, but with the shapeconstraints coming from the PDM.The starting point is a PDM instance X in the image frame, de�ned in termsof centroid coordinates (Xc; Yc), orientation �, scale s and deformation weightsb = (b1; : : : ; bt)T : X =M(s; �)[x+Pb] +Xc (2.6)where Xc = (Xc; Yc;Xc; Yc; : : : ;Xc; Yc) and P = (p1;p2; : : : ;pt) is the matrix ofvariation vectors (this is a combination of equations 2.2 and 2.3). For each controlpoint i, a suggested movement dXi = (dXi; dYi) is discovered by analysing a line ofpixels normal to the model boundary and locating the strongest edge (see Figure 2.3).The aim is not to update the positions of the control points directly, but to �ndchanges to the model parameters Xc, Yc, s, � and b which move the control pointsas close as possible to their desired locations. The changes in pose (dXc, dYc, dsand d�) are calculated as follows:dXc = 1N NXi=1 dXi dYc = 1N NXi=1 dYi (2.7)
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boundary
modelFigure 2.3: Generating suggested movements for each landmark by searching foredges along a line normal to the model boundary.ds = 1N NXi=1 (dXi � dXc) � (Xi �Xc)kXi �Xck2 (2.8)d� = 1N NXi=1 (dXi � dXc) �R(Xi �Xc)kXi �Xck2 (2.9)where R = 0@ 0 �11 0 1A (2.10)The residual suggested movements are then projected into the model frame:dx =M((s(1 + ds))�1;�(� + d�))[M(s; �)[x] + dX � dXc]� x (2.11)Subsequently the change in shape weights db is given by:db = PTdx (2.12)It can be shown that equation 2.12 is equivalent to a least-squares approximation.The process is applied iteratively to ensure a good �t to the image data. Asis the case for other local optimisation-based object location techniques, this oneextends to tracking by initialising the model in an image frame at the �nal restposition from the previous frame.Improved performance can be achieved in some cases using a multi-resolution



Chapter 2 21 Backgroundsearch [21], whereby a coarse scale is used in the initial stages and �ner resolutionis gradually introduced to allow for re�nement in the later stages. More accuratemodel �tting is also achieved if use is made of grey-level information around thelandmark points [22].Hill et al [36] describe another extension which uses directional constraints tohelp combat the aperture problem, which relates to the uncertainty in the correctposition of a landmark along an image edge. The task of �nding the best changesto the shape parameters is reformulated in terms of errors in normal and tangentialdirections separately. This allows landmarks to `slide' along image edges more freely,and model �tting subsequently proceeds in fewer iterations.2.2.4 The CONDENSATION AlgorithmIn the CONDENSATION (Stochastic Conditional Density Propagation) tracking al-gorithm [43], the location of an object in an image is represented not by a single setof model parameters, but by a probability density function (pdf) over the model pa-rameter space. A model of conditional probability (learned from training sequences)is used to propagate the pdf over time. In other words, given the pdf at time t thereis a mechanism to predict the pdf at time t + 1, based on a simple model of ob-ject motion. The new pdf is consolidated and re�ned using measurements fromthe current image frame. Speci�cally, a �tness function is used to determine thegoodness-of-�t of model to image for any given set of model parameters.In practice, the pdf is represented by a population of samples drawn from theparameter space. Each one has its �tness calculated and factored sampling is usedto choose seeds for propagation. The algorithm proceeds as follows:1. To initialise, generate a population of N candidate model shapes s1 : : : sN atrandom positions in the shape parameter space.2. Iterate:(a) Calculate the �tness fi = F (si) of each shape.(b) To produce each shape in the new population:i. Select a member of the old population randomly, with probability ofselecting shape j being equal to fj=Pi fiii. Apply the propagation function P (s) to produce the new shape. Isardand Blake use a `Fokker-Planck' (drift-and-di�use) stochastic di�er-ential equation [65]:



Chapter 2 22 BackgroundP (s) = As +B! (2.13)where ! is a vector of independent standard normal random variables,and A and B are constant matrices learned from training sequencesof characteristic movements;A de�nes the deterministic `drift' in themodel and B is used to scale and orientate !.
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Chapter 2 23 Background� It incorporates a level of prediction, which improves the speed of convergenceand the quality of results over, for example, a Genetic Algorithm.The prediction aspect is embedded in the propagation equations. Currently thesehave two elements; a deterministic term which allows for simple drifting of the pdf,and a stochastic term which encourages spreading of the pdf. Although the trackercan escape from local maxima (due to the stochastic term), the underlying dynamicalmodel is still based on an assumption of smooth, continuous object movement. Suchan assumption is not always valid.



Chapter 3Statistical Shape Models forObjects which Bend or Pivot
3.1 IntroductionAs discussed in Section 2.2.1.1, the standard PDM is based purely on linear statistics:for any particular mode of variation, the positions of landmark points can vary onlyalong straight lines. Non-linear variation is achieved by combining two or moremodes. This situation is not ideal, �rstly because the most compact representationof shape variability is not achieved, and secondly because implausible shapes can begenerated, due to the incorrect assumption that the variation modes are independent(i.e. models are not speci�c). The speci�city is particularly poor when the objectbeing modelled can bend or pivot.Since bending and pivoting are such major features of so many classes of object,it is reasonable that these actions should be modelled directly. This can be achievedwithin the framework of a PDM by the use of polar coordinates. Objects with bothlinear and angular deformation are best served by a hybrid model in which eachlandmark can exist either in Cartesian or polar space.There has been much work in the past describing the use of articulated modelsfor vision tasks [62, 39, 27]. The approach described here has two advantages oversuch systems: it is more general, not being limited to purely pivotal motion, and also24



Chapter 3 25 Shape Models for Objects that Pivotthe constraints amongst the pivots are captured automatically during the trainingprocess. Overall there is less hard-coding of parameters to be done.The remainder of this chapter gives more details on these ideas. The construc-tion of a Cartesian-Polar Hybrid PDM is explained and an experimental compar-ison of the new technique with both the standard PDM and the Polynomial Re-gression PDM of Sozou et al (see [68] and Section 2.2.1.2) is made. In addition,we present two di�erent algorithms for automatically determining pivot positionswithin a model, via analysis of the training set, and we test them on both real andsynthetic data.3.2 The Cartesian-Polar Hybrid PDMThe Cartesian-Polar Hybrid PDM attempts to overcome limitations of the standardPDM by allowing angular movement to be modelled directly. This is achieved by areparameterisation of coordinates according to some prede�ned mapping function.Landmarks which appear to pivot about some other landmark in the model aretransformed into polar coordinates, with the suspected pivot as origin and someother landmark chosen strategically to de�ne the polar reference axis. Landmarkswhich have no such angular behaviour remain in the Cartesian domain.A shape x = (x1; y1; : : : ; xN ; yN ), where (xi; yi) are the Cartesian coordi-nates of landmark i, is reparameterised by a mapping P into a parameter vectorq = (q1; q2; : : : ; q2N�1; q2N) whereby each (x; y) pair in x is either mapped in a Carte-sian or polar fashion as follows:(xp; yp) Cartesian map=) q2p�1 = xpq2p = yp(xp; yp) polar map=)centre landmark =caxis landmark =a q2p�1 = rp = q(xp � xc)2 + (yp � yc)2q2p = �p = �p + �awhere �i = tan�1 yi�ycxi�xcBy allowing angles to be measured relative to axis reference landmarks, it ispossible to model objects which have series of jointed parts (such as in an angle-poise lamp), or continuous bending regions (such as the tadpoles and chromosomesdescribed by Sozou et al [68]) to a greater degree of accuracy.The axis reference landmark a for a polar-mapped landmark p should be chosen



Chapter 3 26 Shape Models for Objects that Pivotwith care. If p is pivoting o� some locally rigid structure within the object (about acentre landmark c) then a should be a landmark within this structure. For maximumstability, a should be as distant from c as possible (averaged over the training set),and also cyclic dependencies must be avoided. Figure 3.1 gives an example labelling.
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Chapter 3 27 Shape Models for Objects that Pivot3.2.1 Removing Polar BiasA successful PCA requires all dimensions in the shape space to be comparable inthat they have equal levels of signi�cance. For example, angles span a total rangeof 2� radians, whereas displacements could have a range of up to, say, 50 pixels.Quantities measured in these two domains are not directly comparable. Also, apolar-mapped landmark which is close to its pivot gives rise to a large angularmovement for a relatively small displacement, so angles measured at di�erent radiiare not directly comparable.We combat both of these problems with a single solution. Using the relationships = r� (where s is the arc length of an angle � at radius r) we can convert anglesinto arc lengths, which are comparable with displacements. For the conversionof landmark p into polar coordinates, a constant scale factor Rp is used. Rp iscalculated as being the average distance of landmark p from its centre landmarkover the training set; this ensures that every training example is scaled by the samefactor.Recent work by Sumpter et al [70] describes a more general approach to �ndingsuitable linear scalings for non-comparable parameters prior to performing a PCA.Therein, the information content of the model is maximised via the calculation ofeigen-entropy.3.2.2 Coping with the Angle Discontinuity ProblemAnother problem encountered with the use of polar coordinates is that the PCAgives unexpected results when the range of angles measured crosses the 0o/360oangle discontinuity. For example, the samples f1o, 2o, 359o, 358og have a mean of180o and not the desired 0o.This problem can be avoided in all but the most pathological of cases. For anypolar-mapped point, the angle is calculated twice for each training example | oncein the range 0 � � < 360o and once in the range �180o � � < 180o. The standarddeviation of the angles over the training set is calculated separately for both ranges.If the standard deviation is the same for both ranges then no boundary crossing hasoccurred. If it is larger for one range, it is assumed that this involved a boundarycrossing and angles from the other range are used when performing the PCA.



Chapter 3 28 Shape Models for Objects that Pivot3.3 Designing a MappingOf chief importance to the Hybrid PDM is the choice of a suitable parameter map-ping. Each landmark must be classi�ed as either Cartesian- or polar-mapped; in thelatter case, a choice of centre and axis reference is also needed. This can be doneby hand when the pivots are obvious and the model has relatively few landmarks;however, for larger models, automation is desirable.Two di�erent algorithms are proposed for this. The �rst is a simple approach,but is limited in that it assumes that all desired pivots on the object correspond toexisting landmarks. This is not always the case; the second algorithm has no suchrestriction, and is consequently more complex.3.3.1 The `Compacter' Mapping AlgorithmFor a given set of training data, the ideal mapping would provide the most compactmodel. Compactness can be measured in terms of the total variance existing inthe model. The modes of variation produced by the PCA are in fact eigenvectorsof a covariance matrix and the corresponding eigenvalues provide a measure of thevariance captured by each individual mode. The sum of the magnitudes of theseeigenvalues thus gives a measure of the overall variance present in the model. Thesmaller this value, the more compact the model. Hence the best mapping is the onewhich minimises this eigenvalue sum. Trying every possible combination of map-pings takes exponential time and is thus not feasible for large models. A heuristicalternative is suggested below.1. Construct a base set of relatively stable landmarks as follows:(a) Align the training set to a common axis, as for standard PDM training.(b) Find the mean Cartesian shape x.(c) For each landmark, �nd its average displacement (over the training set)from its mean position.(d) Include the landmark in the base set if this average distance is less thana speci�ed threshold value1.(e) Assign an axis reference partner to each base set landmark. This canbe any other base set landmark; choosing the one which maximises the10.05 times the total model size has been used in this work.



Chapter 3 29 Shape Models for Objects that Pivotaverage distance from a landmark to its partner provides the most stableaxes.2. Assign a Cartesian mapping to all base set landmarks. This is acceptable asthere is little deformation in the base set.3. Attempt to assign mappings to the remaining landmarks; the strategy is toselect potential mappings intelligently and use the compactness measure to�nd the best one:(a) Choose the next unassigned landmark. Call this landmark a.(b) Assign a Cartesian mapping to landmark a and perform PCA on thebase set plus landmark a. The sum of the eigenvalues produced givesa measure of the total variance of the model when a is mapped in theCartesian domain.(c) Take each base set landmark in turn; call it landmark b. Calculate thedistance between a and b for every training example. Find the varianceof these distances. If this variance is below a �xed threshold2 then it ispossible that a pivots about b. To test this hypothesis, assign a polarmapping to landmark a, with landmark b as centre landmark and usinglandmark b's axis reference partner. Perform PCA on the base set pluslandmark a, and record the sum of the eigenvalues produced.(d) Once all base set landmarks have been tested against landmark a, �ndthe lowest recorded eigenvalue sum. Assign the corresponding mappingto landmark a (be it Cartesian or polar), and add it to the base set.However, if no base set landmarks were tested against landmark a thendo not add it to the base set. This allows for cases where a is best pivotedaround an as-yet unassigned landmark.(e) Iterate steps (a) to (d) until no more mapping assignments are possible.4. Assign a Cartesian mapping to all remaining unassigned landmarks.This process is computationally intensive, taking several minutes to run evenfor a relatively small model (60 landmarks). However, it is performed o�-line, sospeed is not critical. The technique is heuristic, so is not guaranteed to �nd the bestsolution. Also, the algorithm can only produce sensible results if all pivots presentin the object have been landmarked.20.04 times the total model size has been used in this work.



Chapter 3 30 Shape Models for Objects that Pivot3.3.2 The `Annotator' Mapping AlgorithmThe above algorithm is restricted in that landmarks may only pivot about otherexisting landmarks. The technique suggested below applies a geometric approachto overcome this problem. Statistical analysis of the training data is used to spottrends in the movement of landmarks; broadly speaking, if a landmark appears tomove in an arc then it should be classi�ed as polar and its centre of rotation shouldbe marked. To allow for chains of pivots this idea is extended: polar movementrelative to other landmarks or sets of landmarks is detected. The method employedis to construct sets of landmarks which appear to represent di�erent roughly-rigidparts of the object, and look for pivotal relationships between pairs of sets.3.3.2.1 Finding Rigid Sets of LandmarksSets of landmarks are to be found which appear to be rigid in the sense that theyappear to `move together' over the training set. In order to achieve this, the N byN normalised distance variance matrix D for the training set is �rst calculated:[D]ij = VarjEe=1 0@q(xj;e � xi;e)2 + (yj;e � yi;e)2Se 1A (3.1)where E is the number of training examples, (xi;e; yi;e) are the coordinates of land-mark i in training example e, Var is the variance operator, and Se is a measure ofthe overall size of example e, given by:Se = 1E NXi=1 NXj=1q(xj;e � xi;e)2 + (yj;e � yi;e)2 (3.2)A small value for [D]ij indicates that landmarks i and j move together over thetraining set. Hence D can be used as a basis for `growing' rigid sets as follows:1. Start with each landmark as a singleton set.2. For each set, attempt to add a landmark. If G is the set under consideration,then choose the landmark k 62 G which minimises Sk in:Sk = max([D]ijji; j 2 G [ fkg) (3.3)If Sk is below a �xed threshold then add landmark k to the set, otherwise nolandmark is added.



Chapter 3 31 Shape Models for Objects that Pivot3. Remove any duplicate sets formed as a result of step 2.4. Iterate steps 2 and 3 until sets have stopped growing.5. Finally, discard sets with two landmarks or less. It follows that any landmarkswhich do not form part of a rigid body are not assigned to a set, and areexcluded from the subsequent pivot search.The threshold used for set inclusion is deliberately quite stringent, making setssmaller than they might otherwise be: two sets which should ideally be one can bemerged later when they are discovered to have a similar pivot, but one set whichshould ideally be two can give poor results at the pivot-�nding stage.The use of thresholding can, in some cases, cause problems since di�erent modelcomponents often require di�erent thresholds for good results. For example, inobjects such as the human hand, which consist of a large main body (i.e. the palm)and smaller, pivoting sections (i.e. the �ngers, and in particular the thumb, whichhas two separate rigid portions), a larger threshold is generally required for themain body than for the smaller sections. The method used to combat this involvesa three-stage process:1. The training set is aligned using a weighted least-squares technique [19] (thesame alignment process is used prior to PCA in the training process). Land-marks whose standard deviation from their mean position is less than a �xedthreshold (1.5% of the model size) are deemed fairly static and are thus in-cluded in a base set of landmarks.2. Set-growing is then performed as described above, but using only the land-marks not in the base set.3. When the iteration has converged, base set landmarks are reintroduced, andthe iterative process is again allowed to converge. This �nal step allows overlapbetween the base set and other sets.3.3.2.2 Finding Potential Pivots Between SetsHaving identi�ed rigid sets of landmarks, the next step is to �nd plausible pivots andaugment training examples with additional landmarks at the pivots. A pivot willgenerally have di�erent coordinates in each training example { even if the examplesare globally aligned, a pivot in a chain will not occupy a �xed position. It is therefore



Chapter 3 32 Shape Models for Objects that Pivotnecessary to construct a local coordinate frame for each rigid set in each trainingexample, such that landmarks in the set are roughly static in local coordinates overall training examples. Static pivot positions can be located in the local coordinateframes, and then mapped back into global coordinates. The details of the procedureare as follows:1. For each set g in each training example e, it is necessary to �nd a suitablecoordinate frame transformation Cg;e = (sg;e; tg;e; pg;e; qg;e), where a point (x; y)in local coordinates is transformed onto (x0; y0) in global coordinates by:0BBB@ x0y01 1CCCA = 0BBB@ pg;e �qg;e sg;eqg;e pg;e tg;e0 0 1 1CCCA0BBB@ xy1 1CCCA (3.4)The transformation matrix in (3.4) is labelled Rg;e.An easy way to produce the Cg;e is to perform a least-squares alignment of setg's member landmarks over the training set (this is the same process used fortraining set alignment in PDM construction [19]). We can then say that Rg;eis the inverse of the transformation required to align example e.2. For each pair of sets a and b, the best pivot is found. De�ne this pointto be at (ua; va) in a's local coordinates and at (ub; vb) in b's local coordi-nates. Ideally, for each training example, these two points would both trans-form onto the same global position, i.e. if Rg;e(ug; vg; 1)T = (ug;e; vg;e; 1)T then8e:(ua;e; va;e) � (ub;e; vb;e). Figure 3.2 illustrates.
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Chapter 3 33 Shape Models for Objects that PivotE = EXe=1(ub;e � ua;e)2 + (vb;e � va;e)2 (3.5)Using (ug;e; vg;e; 1)T = Rg;e(ug; vg; 1)T , we obtain:E = EXe=1 (((pb;eua � qb;evb + sb;e)� (pa;eua � qa;eva + sa;e))2+((qb;eua + pb;evb + tb;e)� (qa;eua + pa;eva + ta;e))2) (3.6)To minimise E, equate the partial derivatives @E=@ua, @E=@va, @E=@ub and@E=@vb to zero, and hence obtain four simultaneous linear equations, the so-lution of which simpli�es to:(ua; va; ub; vb)T = EXe=1(JTe Je +KTe Ke)�1 EXe=1(sb;e � sa;e)Je + (tb;e� ta;e)Ke (3.7)where Je = (pa;e;�qa;e; pb;e;�qb;e) and Ke = (qa;e; pa;e; qb;e; pb;e).From here, the pivot point in global coordinates (ca;b;e; da;b;e) can be found foreach training example e by transforming the two points into global coordinatesand averaging them:0@ ca;b;eda;b;e 1A = 12 0@0@ ua;eva;e 1A+ 0@ ub;evb;e 1A1A (3.8)The variability Va;b of the pivot can be measured as the average separation ofthese two points over the training set, when mapped into global coordinates:Va;b = 1E EXi=1q(ub;e � ua;e)2 + (vb;e � va;e)2 (3.9)3. Declare a pivot between sets a and b if all of the following are true:� The variability Va;b of the pivot is less than 5 pixels.� The standard deviation of the distribution of angles between the coordi-nate frames for a and b over the training set is at least 5o.� The normalised deviation (standard deviation divided by mean) in thedistribution of the size ratios of the two coordinate frames is less than0.1 (i.e. the relative size of the two sets remains fairly constant).



Chapter 3 34 Shape Models for Objects that PivotThe thresholds have been chosen to be tolerant, as false pivots can still berejected in the �nal stage.3.3.2.3 Constructing the Pivotal StructureOnce a set of potential pivots has been found, a mapping for use by the HybridPDM must be constructed, noting that the formulation of polar mappings relies onhaving no cyclic dependencies amongst landmarks. Hence, sets are organised intoone or more tree-like structures, where child sets pivot o� parent sets, and the rootset(s) provide(s) a relatively stable reference.The algorithm that has been used in this work caters for most cases. A singletree is constructed: the root is taken to be the largest rigid set found, and a breadth-�rst search is used to attach child sets which have a common pivot with the parentset. Using the breadth-�rst search ensures that the structure found has the shortestpossible pivotal chains.The mapping is then constructed in an obvious fashion: landmarks which are ina set with no parent (i.e. at the tree root or not included in the tree), and landmarksnot in a set, are assigned a Cartesian mapping.Landmarks in parented sets are assigned a polar mapping. New landmarks aregenerated in all training examples to represent the pivots, as described in 5.2.2 above.If a new pivot is consistently su�ciently close (5 pixels) to any existing landmark, itis removed and the existing landmark used instead. A suitable landmark from theparent set is chosen as an axis reference.3.4 Results3.4.1 Comparing the Di�erent Modelling TechniquesIn this section the performance of the Cartesian-Polar Hybrid PDM is comparedwith that of the standard PDM and the Polynomial Regression PDM (PRPDM)of Sozou et al (as described in [68] and Section 2.2.1.2). Thirty training images ofan anglepoise lamp (chosen for its multiple jointed pivots) were captured in variouspositions. The lamp was positioned such that all rotations were parallel to theimage plane i.e. no 3D e�ects were experienced. The locations of 10 landmarkswere recorded for each training image, as de�ned in Figure 3.1. Models were thengenerated using each of four methods: a standard PDM, a quadratic PRPDM, acubic PRPDM and a Hybrid PDM. Figures 3.3, 3.4 and 3.5 show the �rst four modes



Chapter 3 35 Shape Models for Objects that Pivotof variation for three of these models. A range of �2 s.d. is shown, with the darkestcentral �gure being the mean in each case.
Figure 3.3: The �rst four modes of variation under the standard PDM.

Figure 3.4: The �rst four modes of variation under the quadratic PRPDM.
Figure 3.5: The �rst four modes of variation under the hybrid PDM.Figure 3.6 gives a statistical comparison of the modelling techniques. The graphshows, for each model, what proportion of the total standard deviation is captured



Chapter 3 36 Shape Models for Objects that Pivotwith respect to the number of modes used. Unlike the other models, the curve forthe hybrid model does not start at the origin; this is because the reparameterisationprocess captures (or eliminates) a percentage (58.5%) of the deviation as experiencedby the other models (indicated by a lower value for the sum-of-eigenvalues in thecase of the hybrid model).
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Figure 3.6: Graph showing how variation is accounted for under the various models.As can clearly be seen from Figure 3.3, the standard PDM fails to capture thepivotal nature of the object. Landmarks move in straight lines for each variationmode, the lamp head changes size and the pivotal arms are stretched and com-pressed, thus implausible shapes can be generated. The anglepoise has only threepivots, so any variation seen in the fourth mode must be acting purely to compen-sate for inaccuracies in earlier modes. Statistically, this model is the least compact,the cumulative deviation captured being the lowest at every stage.The Quadratic PRPDM improves on the standard PDM; the most signi�cantmode of variation captures some bending, but the circular arc is approximated bya parabola. Again, some stretching is seen, but not to the same degree as for thestandard PDM. There is still a fair amount of compensatory variation in the fourthmode. The Cubic PRPDM performs better statistically than the Quadratic version,and in general, performance increases with polynomial degree.The Cartesian-Polar Hybrid PDM captures the pivotal nature of the object pre-cisely. The modes of variation show no changes in lamp head size or stretchingof arms. It is also interesting to note that the major mode captures the fact thatthe lamp head generally remains facing in the same direction as the lamp body ismoved. Statistically, the mere reparameterisation of the model explains over 50% ofthe standard deviation. The Hybrid PDM is most compact up until the introduction



Chapter 3 37 Shape Models for Objects that Pivotof mode 5, by which time the remaining variation is due purely to noise.Table 3.1 shows how the techniques compare in terms of computational complex-ity. The values shown in the middle column are numbers of machine cycles requiredto generate a model instance (this a�ects the speed of feature location/tracking).The tests were performed on a MIPS R4400 processor, with a MIPS R4010 FPU. Amachine speed of 25MHz is assumed; statistics were captured using the code-pro�ler,pixie. As expected, the standard PDM is the fastest, but note that the hybrid modelis not much slower. Also, and most importantly, the two PRPDMs are substantiallyslower (about 6 times). Model Cycles Time/msStandard PDM 215621 8.6Quadratic PRPDM 1326126 53.0Cubic PRPDM 1417455 56.7Hybrid PDM 221105 8.8Table 3.1: Machine cycles used to generate a model instance under each technique.Figure 3.7 gives another example of a case where the Hybrid PDM is useful.As can be seen, the standard PDM modelling of a golf swing (constructed from asingle continuous sequence of 30 training images) su�ers because of the large angularmovements involved. The Hybrid PDM again performs much better.
Figure 3.7: Modelling a golf swing; one of the training images (left), the mostsigni�cant mode of variation for the standard PDM (middle) and the Hybrid PDM(right).3.4.2 Comparing Mapping Generation AlgorithmsResults are presented for experiments using training data from human hands. Thirtytraining examples were captured, all of hands positioned with the palm down and



Chapter 3 38 Shape Models for Objects that Pivot�ngers outstretched, and the positions of 61 landmarks were extracted manuallyfrom each one. Both of the automatic mapping generation algorithms described inSection 3.3 were applied to the data. Figures 3.8 and 3.9 illustrate the results.
(a) (c) (d)(b)Figure 3.8: Automatic mapping generation for a hand model using the `compacter'algorithm; (a) the base set of landmarks, (b) sets of polar-mapped landmarks andtheir centres of rotation, (c) & (d) two modes of variation of the trained model.
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6Figure 3.9: Automatic pivot generation for a hand model using the `annotator'algorithm; (a) rigid area sets, (b) the augmented pivots, (c) & (d) two modes ofvariation.Figure 3.8 gives results for the `compacter' algorithm, in which existing land-marks are used as pivots. Plot (a) shows which landmarks were included in the baseset, and plot (b) shows how other landmarks were mapped. Several landmarks weregenerally assigned the same pivot { this is indicated by a ring around the landmarksand a line connecting the ring to the chosen pivot. Plots (c) and (d) show two modesof variation after training under this particular mapping.The base set of landmarks includes most of the palm of the hand, as expected.It also extends part way into the middle �nger; this is because following training setalignment, the middle �nger is fairly static. Remaining landmarks generally pivotabout the closest base set landmark, indicating that this strategy gives the mostcompact model.



Chapter 3 39 Shape Models for Objects that PivotFigure 3.9 gives results for the `annotator' algorithm, in which pivots are locatedand augmented onto training examples. Plot (a) shows the landmark sets that havebeen constructed and plot (b) shows the pivots thus generated. Each �nger has asingle landmark set, and the thumb has been split into two sets, giving two rigidsections. Landmarks near the wrist have not been assigned to the `palm' set becausethe wrist angle varies signi�cantly over the training set. They have not been assignedtheir own set because there are too few landmarks for such a set.All pivots (1 to 6) have been placed roughly where one would expect them; thepivotal structure of the thumb is such that pivot 6 is parented by pivot 5.Plots (c) and (d) show examples of the variation modes produced after trainingusing the annotated data. Pivotal motion is visible, especially in the thumb.These results are encouraging: the natural structures present in the human handhave been captured accurately and the pivots have been positioned approximatelyas expected.Quantitative data was obtained in a second experiment. A synthetic model wasconstructed, comprising a �xed body and a pivoting arm (see Figure 3.10). Trainingsets were generated with each example having the arm pivoted at a di�erent angle,and with additive Gaussian noise applied to the position of each landmark. The ideawas to study the accuracy of �nding the pivot whilst varying the following inputparameters:� The range of angles of the pivoted arm (a Gaussian distribution with standarddeviation of �a degrees).� The amount of noise used to displace landmarks (additive Gaussian, withstandard deviation �n pixels).� The number of training examples used, E.� The total number of landmarks in the model, P .
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pointsnFigure 3.10: A synthetic model of an object with a single pivot.



Chapter 3 40 Shape Models for Objects that PivotRunning the `annotator' pivot �nder on the synthetic data produces the coor-dinates of a single pivot. The distance of this pivot from ground truth can becalculated as a measure of accuracy. Several hundred trials were performed for eachchoice of parameters to give the mean output error with tight con�dence limits.The angle range �a is an inherent property of the object being modelled and thenoise �n is dependent on the accuracy of the image capture technique. Figure 3.11(a)shows how they both a�ect accuracy of the pivot position3. As expected, the accu-racy decreases as the angle decreases, and as the level of noise increases.
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size, Epoints per example, PFigure 3.11: Pivot location accuracy under varying conditions of (a) input noise andangle range; (b) training set size and number of points per training example.The remaining parameters E and P can be seen as measures that could beemployed to improve accuracy. As can be seen in Figure 3.11(b), accuracy improveswith an increase in both the training set size and the number of landmarks4. Morespeci�cally, increasing the training set size only helps to a certain extent (in thisinstance, above 25 examples there is little improvement), but increasing the numberof landmarks per example gives a more steady decrease in error.3.5 TrackingTracking proceeds as for the standard PDM, via Active Shape Models (see [15] andSection 2.2.3). However, in the calculation of the change in shape, some of thesuggested landmark movements must be mapped into their polar equivalent in themodel frame. This can be achieved by applying a mapping to the vector dx ofresidual landmark movements from Equation 2.11:3The control values used were P = 32 and E = 20.4The control values used were �n = 3 pixels and �a = 8o.



Chapter 3 41 Shape Models for Objects that Pivotdq =M(dx;x) (3.10)where M maps individual (dxp; dyp) pairs into dq2p�1 and dq2p as follows:(dxp; dyp) Cartesian map=) dq2p�1 = dxpdq2p = dyp(dxp; dyp) polar map=)centre landmark =caxis landmark =a dq2p�1 = drp = Rp xdxp+ydyppx2+y2dq2p = d�p � xdyp+ydxpx2+y2where x = xl � xc, y = yl � yc and Rp is the constant scale factor which convertsthe angle measurement for landmark p into an arc length (see Section 3.2.1 on polarbias).In order to test tracking performance, a real time ASM tracker was imple-mented [32]. A controlled test environment was constructed; a camera was mountedon a tripod, pointing down at a homogeneous dark surface. The various modelswere exercised rigorously in this environment.Tracking with the Hybrid PDM proved promising. Experiments were performedfor hand tracking, a task at which the standard PDM has already been success-ful [32]. However, because the hybrid model requires fewer modes of variation, thesystem runs faster.3.6 Extension to 3DExtension of the Cartesian-Polar Hybrid PDM into 3D can be achieved using eithercylindrical (r, �, z) or spherical (r, �, �) polar coordinates. In either case, threereference landmarks are required for each polar-mapped landmark. Figure 3.12illustrates how they are arranged. 3D hybrid models can thus contain up to threedi�erent mappings|Cartesian, cylindrical polar and spherical polar|each beingchosen where most appropriate. Figure 3.13 shows a 3D human hand model whichhas been constructed using a mixture of Cartesian and cylindrical polar coordinates.Tracking in 3D, using the hand model illustrated in Figure 3.13, was less success-ful than in 2D (see Section 6.5.2). The polar-mapped regions of the model (i.e. the�ngers) sometimes tracked well, but often exhibited unexpected deformations fromwhich it was di�cult to recover. Extensive investigation did not reveal the exact
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Mean +2sd-2sdFigure 3.13: First mode of variation for a 3D Hybrid PDM of a human hand.nature of the instability. The most likely cause is the combination of projectivetransformations and polar mappings giving rise to unstable pose change calcula-tions. This is an artifact of the data-driven approach employed; use of a �tness-based approach, such as a Genetic Algorithm or the CONDENSATION algorithm (seeSection 2.2.4) might alleviate such a problem.3.7 ConclusionsIn this chapter it has been shown how the Cartesian-Polar Hybrid PDM can, insome cases, improve the compactness and speci�city of a deformable shape model.It is possible that improvements could be made to the mapping algorithms. The`compacter' algorithm is heuristic, so there is no certainty that it is �nding thebest mapping. The `annotator' algorithm constructs a pivot `tree' based on a verysimple breadth-�rst search, in which only one set can act as a root. This caters formost cases, but objects with several distinct pivoting structures will cause problems.Both algorithms make use of several manually-�xed thresholds; a method requiringno thresholding would be preferable in order to handle a wider range of tasks.



Chapter 3 43 Shape Models for Objects that PivotAnother important issue concerns modelling objects which rotate uniformlythrough a full 360o; whether or not it is `correct' to have an arbitrary mean po-sition with 180o variation on either side.Whilst the hybrid model was designed with pivotal or bending deformation inmind, it is possible that it can approximate other types of deformation too. Moreimportantly, the concept of a hybrid model can be extended to incorporate othertypes of reparameterisation | such as polynomial, elliptical or sinusoidal | simplyby providing suitable mapping functions.It is clear, however, that there are many classes of deformable objects that can-not be e�ectively modelled using the Hybrid PDM. Also, the Hybrid PDM is insome sense a hand-crafted model; there is an explicit representation of angular de-formation, and this is counter to the desire to construct models of arbitrary objectsfully automatically. In the next chapter a technique which is able to model a widerclass of deformations is described.



Chapter 4Hierarchical Statistical ShapeModels
4.1 IntroductionConsider the construction of a PDM of a human hand which can perform only threegestures: a at palm, a �st or a pointing gesture. The training set would consistof the three gestures and the transitions between them, as illustrated in Figure 4.1.Each outline consists of 100 evenly-spaced landmarks, extracted automatically fromthe images using a simple boundary-�nding algorithm.
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es Figure 4.1: Example training data for a three gesture hand model.44



Chapter 4 45 Hierarchical Shape ModelsA PDM can be constructed from this training data. Figure 4.2 shows projectionsof the distribution of the training shapes transformed into such a PDM's shapespace. As would be expected, the data forms a hollow triangle, with each vertexcorresponding to one of the gestures and the edges being the transitions. The triangleis also non-planar, bending through the third dimension of shape space.
b0

b
2

1b

Figure 4.2: Projections of the `three gesture' training data in PDM shape space. b0,b1, and b2 are the three most signi�cant axes of the space.The region in shape space which corresponds to valid shapes (the valid shaperegion, or VSR, as de�ned in Section 2.2.1.1) in this case occupies only a very smallproportion of the shape space. The model produced is not speci�c and is thuscapable of generating invalid shapes as well as valid ones (see Figure 4.3). Even themean shape is invalid, and although the invalid shapes are not drastically malformedin this case, in a more complex example they might well be.
shape
meanFigure 4.3: Example shapes produced by a standard PDM on the `three gesture'model; good (left) and poor (right).



Chapter 4 46 Hierarchical Shape ModelsWhilst it may be possible to linearise the bending seen in the plot of b2 againstb0 (perhaps using one of the techniques outlined in Section 2.2.1.2), none of theapproaches developed so far can cope with a hollow loop topology such as that seenin the plot of b1 against b0. Another situation which causes di�culty is where anobject can take on two or more distinct shapes, but not any of the shapes in between.This results in a VSR with two or more disjoint parts.A method is required for modelling VSRs which have an arbitrary shape andtopology.4.2 Constraints in Shape SpaceBregler and Omohundro describe the use of shape space constraint surfaces formodelling complex VSRs [12]. The technique is described more fully in section 2.2.2,but the essence is the use of a piecewise-linear approach. The shape space is split intoa number of regions using k-means cluster analysis on the training data. A principalcomponent analysis (PCA) is performed separately on each cluster to produce anumber of linear subspaces with arbitrary orientation and dimensionality. The VSRis represented as a complex, non-linear surface, constructed from a combination ofthese linear patches. To apply shape space constraints to a particular shape instance,a weighted sum of the projections into each subspace is used (see Equation 2.5).Bregler and Omohundro give examples of the technique applied to syntheticdata, and also demonstrate its use in building shape models of human lips [12]. Themodelling of complex topology VSRs is possible, including non-linearities, loop-likestructures, changing dimensionality and (theoretically) disjoint regions, althoughthe latter is not demonstrated.The use of a piecewise-linear approach is promising, however constraint surfacemodels su�er from the following problems:� The linear patches are modelled as hyperplanes embedded in the shape space.This has the following disadvantages:{ The hyperplanes are not limited in extent; they stretch o� to in�nity.When modelling a continuous smooth surface this is not a problem, butat discontinuities or extremities, the hyperplanes cause the surface to be`extended' to in�nity.{ The model cannot cope with surfaces of �nite thickness; each hyperplanedimension is either in�nite or zero.



Chapter 4 47 Hierarchical Shape Models{ The dimensionality of each hyperplane is determined via an arbitrarycut-o� point; this may need to be �ne-tuned for a particular problem.� The cluster analysis and PCA (and hence all constraint calculations) are per-formed in a very high dimensional space (2 times the number of model land-marks). This makes for much slower computation than, for example, a PDM.These problems are illustrated in Figure 4.4(a) below.4.3 A Hierarchical PDMProposed here is an approach to modelling complex, non-linear shape spaces,which is related to the constraint surface models described above. The PCA-basedpiecewise-linear approach is still used, but there are two important di�erences:� The linear patches are represented as hyperellipsoid-bounded regions as op-posed to hyperplanes. This seems more natural, given that the PCA is e�ec-tively �nding a best-�t Gaussian for each patch. The axes for each hyperellip-soid are the principal components from the corresponding PCA, and the sizeis proportional to the signi�cance of each component (i.e. the hyperellipsoid isa surface of �xed Malhalanobis radius).� A two-level hierarchy of PCAs is used. The �rst level is a global PCA, identicalto that used for a standard PDM. The second level introduces the piecewise-linear element.The �rst of these points leads to the most noticeable improvements over Breglerand Omohundro's approach. The use of �nite-sized hyperellipsoid-bounded regionsremoves three problems in one: extremities in the VSR are no longer extended toin�nity, �nite thicknesses can be modelled and there is no need to choose an arbitrarycut-o� point to determine the dimensionality for each patch. Figure 4.4 illustratesthese improvements.The bene�ts of using a two-level hierarchical approach are more subtle. Themain advantage is the decrease in computation time resulting from performing theconstraint calculations in a much lower dimensional shape space (for example, inthe examples we show later, the dimensionality is reduced from 200 to 16). Anotheradvantage is that the initial global PCA helps to remove noise in the training data
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(a) (b)Figure 4.4: Constraining shape using (a) hyperplanes and (b) hyperellipsoids. Thegrey spots are the training data and the arrows show how four general points areconstrained under each model. The hyperplane approach cannot model �nite thick-nesses and also extends the VSR at extremities.caused by outliers, which can otherwise greatly a�ect the calculation of the linearpatches.To summarise, the Hierarchical PDM, or HPDM, produces a VSR which is bothmore accurate and more e�cient in application than a constraint surface model.4.3.1 Implementation DetailsGiven a set of E pre-aligned training shape vectors fx1;x2; : : : ;xEg, wherexe = (xe;1; ye;1; : : : ; xe;N ; ye;N) contains the Cartesian coordinates of each of the Nlandmarks for shape e, an HPDM can be constructed as follows:1. Perform a PCA on all the training data, to �nd the origin x and the t mostsigni�cant axes p1 : : :pt of the global PCA space (these are exactly equivalentto the mean and modes of variation respectively for a linear PDM). In general,t� 2N , giving a signi�cant dimensional reduction.2. Transform each training vector xe into its global PCA space equivalent be.be = PT (xe � x) (4.1)where P = (p1 : : :pt).3. Decide on a value for k, the number of linear patches to use.The choice of k is data-dependent. The more complex and non-linear theVSR, the larger the number of linear patches required to model it accurately.However, there is a trade-o� between accuracy and speed. If speed is not anissue then k can be increased in the limit to E. For noiseless training data



Chapter 4 49 Hierarchical Shape Modelsincreasing k produces the smoothest model; however any noise that is presentis liable to be included in the model.In these experiments k has been chosen manually, based on knowledge aboutthe expected shape of the VSR. It seems likely that it would be possible to�nd a sensible value for k automatically via some optimisation technique.Experimentation suggests that a good �rst guess would be k = E=10.4. Perform k-means cluster analysis on the training data in global PCA space,to produce k exemplars e1 : : :ek.5. For each exemplar ei:(a) Decide a number ni of nearest neighbours to use in the local PCA.Our current strategy is to specify a �xed degree of cluster overlap, O, andset ni = Omi, where mi is the number of members in the correspondingk-means cluster. The argument for overlap is that it results in smoothertransitions between the linear pieces. Initial experimentation suggeststhat O = 1:5 produces a good balance between accuracy (allowing allvalid shapes) and speci�city (disallowing invalid shapes).(b) determine this set of nearest neighbours, using the distance metricjbj � eij.(c) Perform a local PCA on these ni training examples (the global PCA spaceversions bj , as opposed to the original versions xj), to produce a linearpatch, de�ned in terms of its origin bi, axes pi1 : : :piti and associatedvariances �i1 : : : �iti (these are the eigenvalues produced by the PCA).Note that in general, bi 6= ei.The values for t and t1 : : : tk are determined exactly as for the linear PDM [15],by ensuring that a sensible proportion (at least 90%) of the shape variation has beencaptured.4.3.2 Using the Hierarchical PDMFor our representation of the VSR to be of practical use, it must be possible to applya `nearest point' query: \Given a general point in shape space, where is the nearestpoint in the VSR?" This translates as \Given a general shape x, what is the nearestvalid shape x0?" and hence facilitates the application of constraints to ensure thatonly valid shapes are allowed in the context of tracking.



Chapter 4 50 Hierarchical Shape ModelsFor the HPDM, applying such constraints is a two-stage process, correspondingto the two levels in the PCA hierarchy. First it is necessary to convert the shapex (as described by the x and y coordinates of its landmarks) into a correspondingvector b in global PCA space exactly as for the training data (see Equation 4.1):b = PT (x� x) (4.2)Following this, the piecewise-linear model constraints must be applied.The simplest (but not only) way to apply these stage-two constraints is to �nd thenearest linear patch (using the Euclidian distance metric jb�bij, where bi is the ori-gin for patch i), and constrain b to lie within the associated hyperellipsoid-boundedregion. Finding the closest position within such a region involves a time-consuminggradient descent computation; however a good approximation is to consider the re-gion to be a hypercuboid. The other (fast) alternative of moving the point directlytowards the patch origin is grossly inaccurate in the case of eccentric hyperellipsoids.Figure 4.5 illustrates the di�erent possibilities.
(a) (b) (c)Figure 4.5: Constraining a general point to lie within a hyperellipsoid-boundedregion; (a) the correct way, (b) a bad approximate method and (c) a better approx-imate method.The function Ci(b) for constraining into linear patch i is de�ned as follows:Ci(b) = PiLi[PTi (b� bi)] + bi (4.3)where bi is the origin for patch i, Pi = (pi1; : : : ;piti) is a matrix of the axes for patchi, and Li is the limiter function for patch i, which, in the case of our hypercuboidapproximation, is de�ned thus:Li[(y1; y2; : : : ; yti)T ] = (y01; y02; : : : ; y0ti)Twhere y0j = �Mq�ij if yj < �Mq�ijy0j = yj if �Mq�ij < yj < Mq�ijy0j = Mq�ij if yj > Mq�ij (4.4)



Chapter 4 51 Hierarchical Shape ModelsThe �ij are the signi�cances for each axis and M is the Malhalanobis radius ofthe linear patches. We useM = 2:0 which, statistically, should encompass over 95%of valid shapes. A larger value generally leads to an underconstrained VSR.A more general stage-two constraint function C on a shape b can be de�ned asfollows: C(b) = PiGi(b)Ci(b)PiGi(b) (4.5)where Ci(b) is as de�ned in (4.3) and Gi is the inuence function for patch i. SettingGi = 1 if patch i is closest and Gi = 0 otherwise results in the simple nearest-patchalgorithm described above. Alternatively, Gi can be a Gaussian, centred on patchi's origin: Gi(b) = exp kb� bik2Pj �ij ! (4.6)where bi is the cluster mean and the denominator is a scale factor related to theoverall `size' of cluster i. It is important to note that in the above equation, theEuclidian distance (as opposed to the Malhalanobis distance) is used; otherwise theinuence function decays too quickly o�-axis for eccentric hyperellipsoids.For a particular b, Gi(b) will be very small for the majority of i. The calculationof C(b) can be made more e�cient by only including terms for which Gi(b) issigni�cant. A cut-o� point of one tenth of the maximum value is suitable.Using the Gaussian inuence functions has the e�ect of performing an interpo-lation at positions between neighbouring patches, giving smoother joins, especiallyin cases where the patches do not actually overlap. (see Figure 4.6). However, aside e�ect is that the notion of a concrete divide between valid and invalid shapesis lost, insofar that if C(b) = b0 then it is not necessarily the case that C(b0) = b0.It is thus important to apply the constraint function only once each time the shapeneeds constraining. The other disadvantage is that this method is slower than thenearest-patch method.Whichever constraint function is used, �nding the `valid' shape x0 is a matter oftransforming b0 out of global PCA space:x0 = Pb0 + x (4.7)
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(a) (b)

(c) (d)Figure 4.6: The valid shape regions produced under two di�erent constraint algo-rithms; (a), (b) the `nearest cluster' algorithm and (c), (d) the Gaussian combinationalgorithm.4.4 EvaluationWe examined four di�erent modelling tasks. A synthetic anglepoise lamp model wasused for a comparison with the linear PDM and for various other quantitative tests.Synthetic 2D shape spaces were constructed for a comparison with constraint surfacemodels. Models of human hands were built from both manually and automaticallycollected training data in order to demonstrate performance on real world problems.4.4.1 Synthetic Anglepoise LampAs in Chapter 3, an anglepoise lamp was used as an example of an object for whichthe linear PDM produces poor models, however in this experiment the trainingshapes were synthesised. The lamp shape was represented in 2D using 49 landmarks.Training examples were generated by choosing uniformly-distributed random valuesfor the three pivot angles (see Figure 4.7). A global PCA was performed. Figure 4.8shows scattergrams of the position in global PCA space of 500 training examples andFigure 4.9 shows the three most signi�cant modes of variation for the correspondingPDM. As can be seen, even along the principal axes several invalid shapes have beengenerated.A Hierarchical PDM was then constructed from the same training data. Fig-ure 4.10 shows the training set with the linear constraint patches superimposed,giving some idea of the VSR that has been learned. The concept of a mode ofvariation does not exist within the context of a HPDM; the nearest equivalent is to`drag' the model through shape space, whilst applying shape constraints, to produceshape space traversals. This is achieved by �xing one of the global PCA parameters
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Figure 4.7: Three examples from the synthetic anglepoise lamp training set.
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Figure 4.9: The three most signi�cant modes of variation of the linear lamp PDM.Many invalid shapes can be seen.at uniform increments and applying the constraint function to obtain suitable val-ues for all the other parameters. Figure 4.11 illustrates three such traversals. Theresults are much improved over the linear PDM; points are seen to move along arcs,not straight lines, and for the most part the lamp head remains a constant size.A quantitative analysis was undertaken in order to compare the performance ofthe HPDM with previous approaches, to determine the optimum choice of various
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2b

1bFigure 4.10: The lamp model global PCA space (2D projection), showing trainingdata and principal component axes for the constraint patches.
Figure 4.11: Three traversals through the VSR for the lamp HPDM.parameters and to see how performance varies with the number of training examplesprovided. To this end, quantitative measurements have been devised for modelaccuracy and model speci�city.Model accuracy measures a model's ability to allow valid object shapes to bemodelled without distortion. This is also a test of a model's ability to generalisefrom the training data as it involves testing on unseen shapes. To measure thedegree of accuracy:1. Generate or collect a large number L of valid shapes x1 : : :xL, wherexe = (xe;1; ye;1; : : : ; xe;N ; ye;N), and ensure they are correctly aligned.2. Apply shape constraints to each one to produce x01 : : :x0L.3. Find the average landmark displacement D over all the shapes:



Chapter 4 55 Hierarchical Shape ModelsD = 1L LXe=1 1N NXi=1q(x0e;i � xe;i)2 + (y0e;i � ye;i)2 (4.8)4. Express D as a percentage of the average model size:D̂ = D � 1001L PLe=1(max ji ye;i �min ji ye;i) (4.9)Model speci�city measures a model's ability to exclude invalid shapes from theVSR. This directly a�ects robustness of tracking. The notion is to generate ran-dom shapes, apply constraints and then see how far away from ground truth theconstrained shapes are. Ground truth is approximated via a large number of validshapes, since calculating the analytical ground truth is not always possible. Thealgorithm proceeds as follows:1. Generate a large number L of entirely random positions in global PCA spaceb1 : : :bL.2. Apply shape constraints to each one to produce b01 : : :b0L.3. Generate a large number K of valid shapes y1 : : :yL for use as ground truth,and ensure they are correctly aligned.4. Transform the ground truth shapes into global PCA space, using (4.2), toproduce c1 : : :cL.5. For each test shape b0e, �nd the distance te to the nearest ground truth shape:te = min jj jb0e � cjj (4.10)6. The speci�city error is de�ned as the 90th percentile of the te values. Thisgives a measure of the maximum possible distance from ground truth, whilstavoiding statistical outliers.Figure 4.12 shows accuracy and speci�city error graphs for HPDMs of the angle-poise lamp with varying numbers of linear patches and varying degrees of overlap.The degree of overlap is �xed for each curve shown, so as the number of patchesincreases, the size of each patch decreases accordingly.In all cases, accuracy error decreases up to about 30 patches and then increasesmonotonically. The monotonic increase is due to the successive decrease in patch size
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Figure 4.12: Accuracy (left) and speci�city (right) error graphs for anglepoise lampHPDMs with varying numbers of linear patches and degrees of overlap (see text).resulting in decreased accuracy in the local PCAs. As would be expected, speci�cityerror decreases as the number of patches increases: the model becomes more speci�cas the non-linear VSR is better approximated with more linear pieces. In this case,there is little to be gained by having more than 30 patches, especially as this incursboth degraded accuracy and a speed penalty.An increase in overlap e�ectively increases the size of each linear patch. Asexpected, this results in an increase in accuracy but a decrease in speci�city. In thiscase it seems that an overlap of 1.5 is optimal as the improvement in accuracy abovethis value is small, but lowering it would hamper speci�city.Figure 4.13 shows how accuracy and speci�city compares under the various dif-ferent modelling techniques.
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Figure 4.13: Accuracy (left) and speci�city (right) error graphs for anglepoise lampmodels built under the various modelling techniques (see text).The most accurate model is the linear PDM, with zero accuracy error; this is



Chapter 4 57 Hierarchical Shape Modelsbecause the linear PDM shape space covers the whole of the VSR (which in thecase of the lamp model is only 6 dimensional). The HPDM and constraint surfacemodels introduce extra constraints within this space and thus can potentially createaccuracy error by excluding parts of the VSR. Both the HPDM and the constraintsurface model have an accuracy error of less than 1% when over 30 linear patchesare used; this is su�cient for tracking purposes. A `nearest neighbour' accuracy plotis also shown; this involves constraining a shape by moving it to the nearest trainingexample shape. Both the constraint surface and the HPDM out-perform the nearestneighbour algorithm, suggesting that they have learned to generalise the trainingset, and should thus perform well on unseen data.The speci�city graph clearly shows that the HPDM out-performs both the linearPDM and the constraint surface model. At k = 20 its speci�city error is approxi-mately half that of the constraint surface and a quarter that of the linear PDM.Figure 4.14 shows how the size of the training set a�ects the accuracy of thelamp HPDM. Values of k = 20 and O = 1:5 were used.
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Chapter 4 58 Hierarchical Shape Modelsdata; models produced under these conditions are too speci�c, often excluding validshapes.4.4.2 Other Synthetic ExamplesIn this section we show some synthetic examples which illustrate how the HPDMprovides an improvement over constraint surface models.In Figure 4.15, the �rst column shows two di�erent sets of training data; acircle and a `U' shape, both of �nite thickness. The second column shows twocorresponding sets of test data; this data is to be constrained under each model inorder to illustrate the model's performance. Three HPDMs and three correspondingconstraint surface models were built: the circle data was modelled with both 10 and15 linear patches, and the `U' shape was modelled with 15 patches. Columns 3 and4 show the results of constraining the test data under the various models.
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Figure 4.15: Comparison of the HPDM with constraint surface models (see text).In the 10-patch circle model, the constraint surface model has approximated thecircle as a one-dimensional surface; consequently the VSR produced is too thin. The



Chapter 4 59 Hierarchical Shape ModelsHPDM has correctly captured its �nite thickness. In both models there is a degreeof polygonisation of the circle. Increasing the number of patches to 15 improves theHPDM, but the smaller patches in this case have caused the constraint surface tointerpret parts of the circle as two-dimensional, and the VSR is under-constrained.The `U' shape model illustrates how the Constraint Surface tends to extend the VSRat extremities (as described in Section 4.2), whereas the HPDM correctly limits itsextent.4.4.3 Manually Collected Real DataThe �rst real data model built using the HPDM was a 2D multi-gesture hand model.105 examples of hands in �ve di�erent poses (open, �st, point (thumb out), point(thumb in) and crossed �ngers) were each annotated manually with 89 landmarksaround the boundary1. Figure 4.16 shows some examples.A HPDM was built using 20 clusters and an overlap factor of 1.5. Figure 4.17shows a scatter graph of the training data projected into the �rst two dimensionsof global PCA space (left) and the calculated linear patches (right). Figure 4.18compares deformations for the linear PDM (top row) and HPDM (bottom row).
Figure 4.16: Manually annotated training examples for a hand model.Figure 4.17 shows that the VSR for the hand model features a loop. The HPDMhas captured this topology with a series of overlapping patches. It is less obviousfrom Figure 4.18 than for the lamp example that the HPDM has more accuratelycaptured the VSR, however, Figure 4.19 shows some maximally non-valid shapes2both from the linear PDM (top row) and the HPDM (bottom row). The linear PDMis capable of producing a wide variety of implausible shapes, but the HPDM's worstshapes are still all sensible.1Thanks are due to Andreas Lanatis of the Wolfson Image Analysis Unit, University of Manch-ester, for providing the data.2Maximally non-valid shapes are shapes with large speci�city errors.
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Figure 4.17: The manually annotated hand training data projected into the �rsttwo dimensions of global PCA space (left) and the HPDM linear patches (right).
Figure 4.18: Modes of variation for the manually annotated hand PDM (top row)and equivalent HPDM shape space traversals (bottom row).
Figure 4.19: Maximally non-valid shapes for the manually-annotated hand model;linear PDM (top row) and HPDM (bottom row).



Chapter 4 61 Hierarchical Shape Models4.4.4 Automatically Collected Real DataThe main motivation for this work was the desire to build models from automaticallycollected training data. In this experiment, hand shapes were sampled directly froma live video stream. Various gestures were performed against a black background;the image was thresholded and the hand outline extracted using a simple boundary-�nding algorithm. 100 landmarks were positioned at equal intervals around theboundary. This method of data collection su�ers greatly from the problem thatlandmarks rarely mark the same physical object feature across training examples.For example, when the �ngers are outstretched the boundary is much longer thanfor a pointing gesture; the landmarks spread out more and tend to `slide' aroundthe boundary. There were just over a thousand training shapes in all; Figure 4.20shows some examples.Figure 4.20: Automatically collected training examples for a hand model.
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Figure 4.22: Modes of variation for the automatically trained hand PDM (top row)and equivalent HPDM shape space traversals (bottom row).A HPDM was constructed from the training data, using 80 linear patches. Fig-ure 4.21 shows several projections of the training data in the global PCA space,along with the patches calculated, and Figure 4.22 shows the four major modes ofvariation for a linear PDM (top row) and the four equivalent shape space traversalsfor the HPDM (bottom row).Figure 4.21 clearly illustrates that the training data is virtually one-dimensionalin nature, representing transitions between the various gestures. However, the pathsthrough the global PCA space are highly non-linear, spiraling through at least 3dimensions.Figure 4.22 demonstrates how, in this case, the linear PDM fails to produce amodel which would be speci�c enough for object tracking or location. The HPDMtraversals include only valid object shapes. There appear to be discontinuities insome of the traversals; this is expected because the VSR is not necessarily continuousparallel to any one axis in the global PCA space, and is a side-e�ect of the `dragging'technique used to generate the traversals.Figure 4.23 shows some maximally non-valid shapes. As can be seen, the linearPDM is capable of producing shapes which are barely even recognisable as hands,whereas the HPDM's worst shapes are only slightly distorted versions of plausiblehand shapes.
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Figure 4.23: Maximally non-valid shapes for the manually-annotated hand model;linear PDM (top row) and HPDM (bottom row).In terms of quantitative analysis; Figure 4.24 shows how the automatically-trained hand HPDM's speci�city compares to the linear PDM, and how it varieswith the number of clusters used3.
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Figure 4.24: Graph showing how the speci�city of the hand HPDM compares witha linear PDM, and how it varies with the number of clusters used.The trend is very similar to that of the synthetic examples. The graph also showsthat in this case there is not much improvement in speci�city gained by using 80clusters (as we did) over 20 clusters.3An overlap factor of 1.5 was used for this experiment.



Chapter 4 64 Hierarchical Shape Models4.5 Tracking using HPDMsThe chief test of the success of a HPDM is whether it can be used to good e�ectfor object location or tracking. Tracking with a HPDM is straightforward, beingthe same as for the linear PDM (i.e. using Active Shape Models, or ASMs [20]), butwith shape constraints being applied after each iterative deformation.Qualitative tracking experiments were performed using both the manually- andautomatically-trained hand models described above. In both cases, the HPDMwas compared with a linear PDM built from the same training data. A real-timetracker (as described in Section 3.5) was exercised under each of the models; variousgestures were performed in a controlled environment and the models' performancewas observed. The following observations were made:Tracking using the manually trained HPDM proved to be very promising. Incomparison to the linear PDM, the HPDM experienced fewer distractions and track-ing was generally more robust (see Figure 4.25).
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Figure 4.25: Tracking examples using manually-trained hand models; (a), (c) thelinear PDM and (b), (d) the HPDM.Tracking using the automatically-trained hand HPDM was less successful. Some



Chapter 4 65 Hierarchical Shape Modelsdeformations were tracked well, such as movement of the thumb and `waggling' of the�ngers (Figure 4.26(a)). Other deformations were tracked less well. For example, thetransition from �ngers outstretched to a pointing gesture (Figure 4.26(b)) requiresthe movement of landmarks around the boundary, because the overall length of theboundary decreases, causing the evenly spaced landmarks to draw together. TheASM tracker has di�culty coping with such shape changes; there are no image cuesto encourage movement of landmarks along a boundary (this is a manifestation ofthe aperture problem [36]). Another transition which was poorly tracked is thatfrom �ngers outstretched to a at palm (Figure 4.26(c)). In this case there is adiscontinuous change in the boundary shape as the �ngers close together. The ASMtracker, which uses a local optimisation paradigm, cannot cope with such changes.
rate

50%
success

rate

rate

(approx)

(c)

(b)

(a)

0%
success

success
100%

Figure 4.26: Tracking examples using the automatically-trained HPDM of the hand.These problems might be alleviated by improved training data collection. Themovement of landmarks around the boundary is due to the fact that the landmarksare evenly spaced, be the boundary long or short, as opposed to �xed on particularfeatures. A slightly smarter tool for collecting training data might be able to spotfeatures, such as areas of high curvature, and produce training data with a bettercorrespondence between landmarks and object features. Hill et al [35, 37] have



Chapter 4 66 Hierarchical Shape Modelssuggested two possible algorithms for this. However this approach appears to befairly object-speci�c; it is uncertain whether it would work in the general case. Thesudden boundary shape changes are harder to cope with. In this example, theyoccurred when the �ngers closed together. The simple boundary-�nding algorithmused for training has no knowledge of expected hand shape, and consequently locatesonly the tops of the �ngers of a closed palm, as opposed to dipping into the �ngerwebs; hence a very di�erent boundary shape is produced than for a hand with �ngersoutstretched. A possible solution is to use the bootstrapping algorithm described byCootes and Taylor [16] to collect training data; new training examples are located inimages using a model built from previous examples, but with extra variation includedvia a physical (FEM) model. In this way some shape knowledge is incorporated intothe training. However, this process almost certainly requires manual guidance in allbut the simplest of cases, and will also not work for objects which can take on anumber of distinct shapes (this often occurs due to a change in viewpoint).To put this performance in context, tracking using a linear PDM built from thesame training data is very poor indeed. The model is underconstrained to such anextent that tracking is rarely successful (see Figure 4.27).
Figure 4.27: Tracking examples using the automatically-trained linear PDM of thehand.4.6 ConclusionsThe construction of Hierarchical PDMs has been described; use was made of apiecewise-linear PCA strategy. Qualitative and quantitative analyses on syntheticdata have been undertaken, and performance on automatically-collected real data



Chapter 4 67 Hierarchical Shape Modelshas been examined with promising results. The HPDM is a great improvement overboth the linear PDM and constraint surface models, and is a viable solution to theproblem of constructing deformable models fully automatically.The piecewise-linear approach requires a large amount of training data to buildgood models. However, this problem is negated by the fact that training data can becollected automatically. In the example given of the hand, it took less than 5 minutesto collect all the training data and build the model. More intelligent training datacollection (e.g. Hill and Taylor's approach [37]) might give rise to a less complexglobal PCA space which could then be modelled with fewer linear pieces.Another issue is that of speed. When applying the shape constraints it is nec-essary to calculate distances to every linear patch. This process is order n in thenumber of patches. Bregler and Omohundro suggest the use of `Bumptrees' [55] (atree-like data structure for representing functions and constraints) to decrease thenumber of calculations. A related approach would be to extend the hierarchicalmodel to more than two levels, inserting intermediate-sized PCA spaces betweenthe coarsest (global) and �nest levels to give a multi-level tree structure. Search forthe nearest patch(es) would descend through the tree giving, at worst, order n log nperformance and maybe better in the case of only a partial tree descent.There are very strong parallels with this work in the statistics literature. TheVSR can alternatively be thought of as a probability density function, and approxi-mated as a Gaussian mixture. Instead of using k-means to determine the Gaussians,an Expectation-Maximisation algorithm [26] can be used with equal, if not better,success. This approach has very recently been taken by Cootes and Taylor [18];their results are similar to those presented here. However, because their end appli-cation is static object location, little consideration is given to issues of speed, andthe importance of a hierarchical approach is not emphasised.To summarise, HPDMs are a de�nite improvement over linear PDMs. For man-ually collected training data, the improved models produced can be applied directlyto ASM tracking with good e�ect. For automatically collected training data, themodels produced are a vast improvement, but ASM tracking performance is less thansatisfactory. In the next chapter an alternative approach to tracking is describedwhich, when combined with HPDMs, provides an ideal solution to the problem ofbuilding deformable shape models automatically for tracking.



Chapter 5Learning Models of ShapeDynamics
5.1 IntroductionExisting tracking algorithms which use deformable shape models generally rely onthe assumption that objects move and deform smoothly over time. Object featuresand edges are detected in an image via a local search from the object's previousposition. There are cases where this continuous behaviour is not adhered to, themain example being when tracking the silhouette of a 3D object.Object silhouettes change shape smoothly for most of the time, but in certainsituations there can be a discontinuous shape change. For example, in the case ofhuman hands, this occurs when the �ngers close together and the gaps between themdisappear or when the hand turns sideways (see Figure 5.1). Similar e�ects are seenon the arms and legs of a walking person. Sometimes these sudden changes are aside e�ect of temporal sampling (as a result of using, for example, a 25Hz camera)but there are also cases where there is an intrinsic temporal discontinuity (e.g. thetouching together of the thumb and fore�nger).Local optimisation-based approaches generally cannot track objects through suchdiscontinuities; they usually become trapped in a local maximum and sometimes failmore catastrophically. 68
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Figure 5.1: Discontinuous changes in object boundary shape due to deformation(top row) and rotation (bottom row).In the case of models built from automatically-collected training data (by wayof the Hierarchical PDM), as described in Chapter 4, the non-intelligent placementof landmarks means that shape discontinuities are fairly common. In addition, evenduring smooth shape changes, landmarks can in some cases `slide' around the objectboundary; existing trackers do not perform well in such situations (as discussed inSection 4.5).A recent development, the Condensation algorithm (Section 2.2.4), improvesmatters by providing a stochastic framework for tracking. Performance on the typesof deformations described above is superior to previous trackers, mainly due to adeparture from the deterministic hill-climbing approach; Condensation is e�ec-tively able to traverse hills and also jump over (small) valleys. However, there is stillan underlying assumption of smooth dynamics, and abrupt changes are not trackedwell.In this chapter a novel method for modelling shape dynamics is proposed,which encompasses both continuous and discontinuous shape changes in a non-deterministic framework. Continuous shape deformations correspond to continuousmovements through the model shape space, whereas discontinuous shape changesrequire `jumps' through shape space. Use has been made of the Hierarchical PDM,wherein allowable shapes are represented as a union of (learned) bounded regionswithin such a space. Shape changes are described in terms of movement withinand between these regions; discontinuous shape changes involve transitions betweennon-adjacent regions. Transition probabilities are learned from training sequencesand stored as a Markov model. In this way `wormholes' in shape space are created.Tracking with such models is via an adaptation of theCondensation algorithm.Condensation tracks by propagating a probability distribution in model state



Chapter 5 70 Models of Shape Dynamicsspace over time. The propagation algorithm is substituted with an adapted Markovprocess, driven by the new model of shape transition.The remainder of the chapter is set out as follows. Firstly the method for mod-elling shape transitions is described. Secondly it is shown how to adapt the Con-densation algorithm, based on the new model, in order to cope with the trackingof discontinuous shape changes. Following this the new technique is evaluated incomparison to previous approaches. Finally an extension to the Condensationalgorithm is described which gives an improvement in performance, and some con-clusions are drawn.5.2 Modelling Discontinuous Changes in ShapeThe discontinuous shape changes described above are entirely predictable: theyoccur repeatedly between certain pairs of shapes. As such, they can be learned fromtraining sequences containing examples of characteristic object movement.The Hierarchical PDM (HPDM), as described in Chapter 4, has been used. TheHPDM produces a model of shape which is represented by a set of local patches thatcover all the valid regions in shape space. The key to our approach is the observationthat these patches are generally small enough to cover only minor variations in objectshape, and can thus be looked on as being discrete states for the object shape. Thissituation allows for the use of a Markovian representation of object shape dynamics,with each state representing a di�erent shape and the state transition probabilitiesreecting typical shape changes.To this end, a Markov state transition matrix T can be constructed as follows:E pairs of consecutive shapes, xe and ye, are collected from one or more continuoustraining sequences of characteristic object movement1. A preliminary matrix T0 is�rst calculated using: T0 = EXe=1p(xe)p(ye)T (5.1)where p(x) is a vector of probabilities (p(x; 1) : : : p(x; k))T , with p(x; c) being theprobability that shape x is a member of patch c. The simple rule that p(x; c) = 1 ifc is the nearest patch and p(x; c) = 0 otherwise has been used, but a more complexfunction could be derived based on relative distances to patches.1From a training sequence of N frames of object movement it is possible to generate N �1 suchpairs: 1 and 2, 2 and 3, : : :, N � 2 and N � 1, N � 1 and N .



Chapter 5 71 Models of Shape DynamicsThe preliminary matrix T0 is then normalised with respect to each row so that[T]a;b gives the probability of a transition from patch a to patch b:[T]a;b = [T0]a;b=Xi [T0]a;i (5.2)The matrixT provides a probabilistic model of object shape transitions. T wouldbe expected to have large values along its diagonal, indicating that for the majorityof the time a shape remains in the same patch. Large o�-diagonal values representlearned shape transitions, many of which will be to adjacent patches. However, if aspeci�c discontinuous change appears repeatedly in the training data, this too willgive rise to a high transition probability. Figure 5.2 illustrates a typical transitionmatrix.
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Chapter 5 72 Models of Shape DynamicsA more detailed description of Condensation (Stochastic ConditionalDensity Propagation) is given in Section 2.2.4, but the essence of the approachis the representation of an object's location not by a single point in the model pa-rameter space, but by a probability density function (pdf) over the space. A modelof conditional probability (learned from training sequences) is used to propagatethe pdf over time. In other words, given the pdf at time t there is a mechanismto predict the pdf at time t + 1, based on a simple model of object motion. Thenew pdf is consolidated and re�ned by referring to the current image. Speci�cally,a �tness function is used to determine the goodness-of-�t of model to image at anyposition in the parameter space.In practice, the pdf is represented by a population of samples drawn from theparameter space. Each one has its �tness calculated and factored sampling [30] isused to choose seeds for propagation.The bene�ts of Condensation are as follows:� It can support multiple hypotheses; this is represented by a pdf with multiplepeaks.� It provides an improvement over deterministic hill-climbing trackers in that itcan e�ectively traverse hills (in this sense it is a non-greedy algorithm).� It recovers well from failure; the stochastic nature of the algorithm allows itto escape from local maxima.� It incorporates a level of prediction (learned from training data) which im-proves the speed of convergence and the quality of results over, for example,a Genetic Algorithm.The prediction aspect is embedded in the propagation equations. Isard and Blakeuse a `Fokker-Planck' style stochastic di�erential equation (see Section 2.2.4) whichconsists of two elements: a deterministic term which allows for simple drifting ofthe pdf, and a stochastic term which encourages spreading of the pdf. Althoughthe tracker can escape from local maxima (due to the stochastic term), the under-lying dynamical model is still based on an assumption of smooth, continuous objectmovement.The tracking of sudden shape changes is possible via a modi�cation to the prop-agation step of Condensation. The speci�cation for propagation is quite general;the abstract notion is a conditional pdf p(shape at time t+1j shape at time t) which



Chapter 5 73 Models of Shape Dynamicspropagates the shape pdf over time. The algorithmic requirement is a functionwhich, given a vector s, being the shape at time t, returns a new vector s0, being apossible shape at time t+ 1, sampled from the conditional pdf.Our learned model of object shape transitions can be used to provide the controlparameters for a Markov process-based propagation algorithm, using the cumulativetransition matrix de�ned in (5.3). This proceeds as follows, noting that s and s0 arevectors representing shapes within the HPDM global PCA space:1. Determine the HPDM patch membership of the source shape s. Currently itis assumed that s is member of the nearest patch (but, as for the transitionmatrix learning algorithm, a more complex function could be derived basedon relative distances to patches). Label this patch a.2. Use row a of the cumulative transition matrix C to select probabilistically thedestination patch b. To do this, generate a random number z from a uniformdistribution over the range [0; 1] and choose the smallest b such that Ca;b > z.3. Set s0 (the destination shape) at a position within patch b. If b = a then s0 isset to s plus a random perturbation. If b 6= a then s0 is set to the centre ofcluster b plus a random perturbation. In either case, the random perturbationis normally distributed, and scaled and orientated with respect to the principalaxes of linear patch b. Put more formally:s0 = 8<: s+Pb�b
 : a = bbb +Pb�b
 : a 6= b (5.4)where bb, Pb and �b = diag(p�b1 : : :q�btb) are the patch centroid, orientationaxes and variances respectively, as de�ned in Section 4.3.1, and 
 is a vectorof tb independent standard normal random variables.This �nal stage makes the propagation model more than just a discrete-stateprocess; by including a `spread' function the model becomes continuous (infact it becomes very similar to a Hidden Markov Model).The result of using the above algorithm is that a small number of samples fromthe shape population `jump' through wormholes in shape space at every iteration.In most cases these jumps will result in low �tness candidates which are unlikely tosurvive into the following iteration. However, if a sudden shape change has occurredthen a high �tness candidate will be produced and other population members will



Chapter 5 74 Models of Shape Dynamicsquickly migrate to the new �tness peak. This has the desired e�ect of tracking suchdiscontinuous shape changes.5.4 EvaluationIn order to demonstrate the new tracker, a comparative evaluation was performedwith two other trackers: a simple Condensation tracker and the snake-like ActiveShape Model (ASM) tracker used previously.The underlying shape model used for all three trackers was the same: a HPDMof the human hand, similar to that illustrated in Figure 4.22, but with a gestureset chosen speci�cally to produce discontinuities in the shape space. Training datawas collected by recording a sequence of gestures performed against a homogeneousbackground, and applying a simple boundary-�nding algorithm to each frame in thesequence. Each training example consisted of 100 evenly spaced landmarks aroundthe hand silhouette boundary.The HPDM was then constructed as described in Chapter 4. Figure 5.3 showsthe training data (as projected into the two principal dimensions of global PCAspace) and the 20 linear patches which were constructed from it.
Figure 5.3: The automatically captured training examples (projected into the twoprincipal dimensions of global PCA space) and the HPDM linear patch principalaxes.The same training data could also be used to build the Markov transition matrixwhich models the conditional pdf; this was possible because the training exampleswere collected as a continuous sequence. Figure 5.4 shows some example conditionalpdfs for both Fokker-Planck (top row) and Markov model (bottom row) propagationalgorithms, generated by choosing a single `seed' position in global PCA space,calculating a large number of destination positions and compiling a 2D histogram.



Chapter 5 75 Models of Shape DynamicsThe Fokker-Planck algorithm used was in fact `untrained': a zero-velocity as-sumption was made and a simple Gaussian spread used. A trained tracker wouldin theory perform better, but would still be incapable of modelling non-continuousdynamics.
seed 1

Fo
kk

er
-P

la
nc

k
M

ar
ko

v 
M

od
el

seed 4seed 3seed 2

Figure 5.4: Some example conditional pdfs generated from single seeds via boththe Fokker-Planck and Markov model algorithms. The crosses indicate the seedpositions.The Fokker-Planck algorithm essentially produces a Gaussian distributionaround the seed, truncated by the HPDM constraints. The Markov model algo-rithm uses the transition matrix to generate more general conditional pdfs. Thismodel has captured valid jumps through shape space, indicated by the multiple darkareas. Note that the Fokker-Planck algorithm in this example is untrained; trainingwould alter the shape of the pdf, but only in terms of orientation and eccentricityof the Gaussian. More complex pdfs are not possible under this model.To compare the trackers' performance, an unseen sequence of hand movementwas �lmed. The sequence featured many gestures, including the types of suddenshape changes which have caused problems for our previous trackers. Figure 5.5shows a graph of the �tness score2;3 for each tracker over the video sequence. Notethat a hybrid version of the Condensation algorithm was used in this experiment;2The �tness function used examines image pixels along a line normal to the contour at eachcontrol point and returns a score proportional to the number, proximity and strength of edgesfound. More details can be found in [32].3For the Condensation-based algorithms the modal �tness value was used.



Chapter 5 76 Models of Shape Dynamicsthis is detailed in Section 5.5. The failure threshold gives the approximate �tnessvalue (manually determined) above which a good �t is deemed to have occurred.
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Chapter 5 78 Models of Shape Dynamicseach shape is proportional to its �tness so that more CPU cycles are allocated topromising shapes and fewer to poor shapes. A �xed number of iterations are sharedout in order to keep the tracker running at a steady rate. The result is that thepeaks in the pdf are better represented, and consequently a much smaller populationis required for accurate tracking. A similar approach has been used to good e�ectby Hill et al in combining Genetic Algorithms with ASMs [33].Figure 5.7 illustrates the propagation of a population of shapes under the hybridalgorithm. The local optimisation step results in better clustering of samples aroundthe �tness peaks and higher overall �tness levels.
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Chapter 5 80 Models of Shape Dynamics� Tracking using models which have been trained fully automatically is moresuccessful. Previously, manual annotation of training examples was highlydesirable in order to ensure that the models produced were su�ciently speci�cand continuous for tracking purposes.Although the described experiments were performed in a controlled, unclutteredenvironment, Isard and Blake [43] have demonstrated that Condensation is e�ec-tive in a cluttered environment and so it is anticipated that the adapted version willalso cope with such situations.A substantial amount of training data is required to build the underlying HPDMshape model and the transition matrix. However, training data capture is automaticand thus a large number of training shapes can be collected in a short time. In thecase of the hand models, the training phase involved performing several gesturesrepeatedly under a rostrum camera; this took around �ve minutes.There are some useful extensions that could be made to the dynamic model asdescribed:� In the construction of the transition matrix the patch membership of eachtraining example is currently decided in a nearest-neighbour fashion. A bet-ter alternative might be to provide a probabilistic membership function; thiswould be especially useful for shapes which lie halfway between two patches.� The stochastic propagation model could be further re�ned by combining theMarkov model with learned Fokker-Planck `drift and di�use' dynamics. Itwould be possible to learn a di�erent dynamic behaviour for each linear patch,or even for each transition pair or patches.Finally, it is worth noting the similarity of our model to a Hidden Markov Model(HMM) [61]. A HMM di�ers from a standard Markov Model in that each stateis associated not with a single output value, but with a distribution over either adiscrete alphabet or a continuous space. In our case the distribution for each stateis a Gaussian within the (continuous) global PCA space, and the states themselvesare in e�ect `hidden'; only the PCA space is visible. With this observation in mind,it is likely that techniques used in the HMM literature will also be applicable to ourmodel; this is certainly worthy of investigation.



Chapter 6Tracking with 3D DeformableShape Models
6.1 IntroductionSo far the emphasis of this work has been on a 2D approach to shape modelling;the models built have essentially been appearance models, based on the projectionof objects into a 2D plane. The rationale for this has been their suitability to theparticular sensor technology being used (i.e. standard video cameras producing 2Dimages), as well as the associated bene�ts of e�ciency and simplicity.One of the disadvantages of having a 2D abstraction is that it is sometimesdi�cult to infer the 3D pose of an object given only 2D information such as itssilhouette boundary. In particular, the modes of variation of a silhouette modelonly indirectly represent the physical deformations of a 3D object. An obviousalternative is to attempt to build 3D models of objects and use them directly fortracking. Pose inference then becomes trivial, and the need for complex models ofdiscontinuous shape change is alleviated. The questions that arise instead are howcan such models to be constructed, and how is it possible to track with them fromonly 2D images.In this chapter both these issues are addressed. It is shown how it is possible tobuild 3D models as surface meshes, with deformation being achieved via a 3D Point81



Chapter 6 82 3D Shape ModelsDistribution Model. It is then described how the Active Shape Model approach totracking can be modi�ed to enable the �tting of 3D models to 2D image sequences.Finally some qualitative results are presented and discussed.6.2 3D Model ConstructionIn previous work, deformable 3D models used in tracking systems have exclusivelybeen hand-crafted, making use of primitives such as cylinders connected by hard piv-otal constraints. Building such models is generally laborious, and attaining accuracyis also very di�cult.Experiences with 2D modelling suggest that statistical shape models may pro-vide a viable alternative. The use of real-life training examples makes for accuratemodels and deformation characteristics are learned automatically; no hard-codingis required.Point Distribution Models (PDMs) extend naturally into 3D. A PDM is repre-sented in terms of the Cartesian coordinates of a number of landmarks on an object.The extension to 3D involves the inclusion of the z coordinate as well as the x andy coordinates in the model.When working in 2D, the shape of an object has been modelled in terms ofits boundary because this feature is easy to locate in training images, is good forvisualisation, and is well-suited to tracking by way of simple edge detection methods.An analogous approach is taken in 3D: an object is modelled in terms of a meshover the whole of its surface for exactly the same reasons.The main di�culty in the construction of such models is the collection of trainingdata. There are two aspects to this problem: the acquisition of 3D image data fora number of example object shapes and the extraction of a suitable surface meshfrom each of these images.6.2.1 Training Image AcquisitionThe acquisition of good quality 3D image data is certainly not trivial. A variety ofsensor technologies exist, but each has its drawbacks.It is possible to generate 3D data by way of 2D images using stereo or multipleviews. Shape can be deduced quite accurately from multiple views of an object's sil-houette [67]; careful calibration and/or constrained circumstances are necessary forthis. Uncalibrated systems have also been demonstrated [31, 7]; these generally use



Chapter 6 83 3D Shape Modelsfeature correspondence and so require an abundance of distinctive object features,and in any case often produce less than accurate results.One level up in technology are laser range �nders, which produce a depth imageof the target object. Careful calibration is not required and results are more accuratethan from multiple 2D images. However, scans can take up to several minutes andalso, a full 3D image is not obtained { only one side of an object is captured. Fora full 3D image it is necessary to scan an object from two or more directions andattempt to `stitch' the two scans together [25]. Another disadvantage is that atpresent laser technology is not widely a�ordable. A cheaper alternative is to usestructured lighting. The theory is similar, but the hardware is much less expensive;however, the resolution of images produced is lower.The best results are generated from medical 3D imaging apparatus. Magneticresonance (MR), computer tomography (CT) and 3D ultrasound can all produceaccurate gray-scale voxel (3D volume pixel) maps of various types of object. Suchmachines are very expensive and are generally only found in large hospitals, and soavailability is scarce.Strong links with St. James' Hospital in Leeds have meant that it has beenpossible as part of this work to obtain a small number (8) of MR scans of humanhands in various poses. Figure 6.1 shows some slices (parallel to the z axis) fromone of these images.
Figure 6.1: Slices from a Magnetic Resonance scan of a human hand.Each volume image consists of 256 � 256 � 20 voxels, with 1mm resolution inthe x and y axes and 2.4mm resolution in the z axis. The images are 256 levelgrey-scale; the sensor responds to water in objects and hence skin, tissues and bonemarrow appear quite light, whereas bones are much darker.The images were post-processed to make them more suitable for training meshcapture. Firstly, they were re-sampled along the z axis (with each new voxel beinginterpolated from the original image) to give a 256 � 256 � 48 image with 1mm



Chapter 6 84 3D Shape Modelscubic voxels. Following this they were passed through a 3D median �lter to reducethe level of image noise, and �nally thresholded to give a binary image in which thehand was completely white and the background was completely black. Removing theinternal hand features in this way avoided distractions in the mesh-�tting process.6.2.2 Training Mesh CaptureThe collection of training data for a PDM essentially involves �nding the coordinatesof perhaps several hundred landmarks for each of the training images of the objectbeing modelled. For 2D models, this process is often performed by hand, with theaid of some visualisation tool. It is time-consuming and laborious, and inevitablyleads to inaccuracy and error. Gathering landmark data manually for 3D modelsis near-impossible due both to the problem of image visualisation and the sheerquantity of data involved.There are, of course, many established methods for capturing the positions ofimage features automatically. Lorensen and Cline [51] describe a \Marching Cubes"algorithm which triangulates a surface from 3D voxel data. More recently, work onphysically-based deformable meshes [25, 14, 11] has provided more robust methodsof capturing surface information.However, for the purposes of building a PDM there should ideally be a directcorrespondence between similar landmarks across the whole training set (i.e. a par-ticular landmark should mark the same feature on each training example), so apply-ing any of the above techniques independently to each training example is unlikelyto be of much use.Attempts have been made to address this problem. Hill and Taylor [35] andBaumberg and Hogg [3] both describe methods for 2D models which work in the casewhere it is possible to obtain a single clean pixelated boundary from each trainingimage. Hill and Taylor apply a pairwise corresponder in a hierarchical fashion to �ndapproximate matches between training boundaries, whereas Baumberg and Hoggconstrain the problem by assuming constant object orientation. Both employ someform of iterative optimisation to improve the models produced. It may be possible toextend these ideas into 3D: in other work, Hill and Taylor [38] show how to capture3D data by way of 2D slice contours.In this work, a semi-automated process, based on 3D physically-based modellingtechniques, is used. There are two stages to the process. Firstly a surface meshmodel of the object is constructed; this can be done manually, or automatically



Chapter 6 85 3D Shape Modelswith the aid of one of the training examples. Following this, the mesh is deformedto �t each training example in turn: a few key features are located manually andvarious forces are applied to drive the mesh into position. Internal forces keep themesh smooth and even, and image forces help to give an accurate �t.This idea is not entirely new: Cootes and Taylor [16] describe how to combinephysical and statistical shape models in such a way as to rely initially on physicalmodelling but to place emphasis more on statistical modelling as the number oftraining examples increases. They demonstrate how such a system can be used to`bootstrap' a PDM. Syn and Prager [71] develop this idea into a more robust andpractical tool by allowing guided model �tting, whereby key features are locatedby hand. The algorithm described here also makes use of guided �tting, but aslightly di�erent approach to modelling is adopted by drawing a separation betweenthe physical and statistical domains. This allows the use of any physical modellingtechnique, not just the Finite Element Method used in the aforementioned works.6.2.3 Physically-Based ModelsPhysically-based models come in a variety of di�erent forms. They all have incommon the ability to deform under the action of various forces. When applied tofeature location/tracking, a physical model is usually considered as a system of Npoint masses whose motion over time is governed by standard Newtonian dynamics.Two types of force are generally applied:� External Forces: the point masses are `attracted' towards particular imagefeatures in order to �t the model to the image data. These forces might beapplied manually (in a guided system) or via some sort of feature detection(e.g. edge detection).� Internal Forces: the point masses interact with one another to hold the modelin shape. These are usually elastic forces tending to drive the model towardsa stable rest con�guration.By allowing these forces to act over time it is hoped that the model will deformto �t the image data. We can describe the dynamics of the system with the followingNewtonian law of motion: mid2Pidt2 = Fint + Fext �  dPidt (6.1)



Chapter 6 86 3D Shape Modelswhere Pi is the instantaneous position of point i, Fint and Fext are the instantaneousinternal and external forces on point i, mi is its mass and  is a damping factor.If time is discretised in even steps and unit mass is assumed, integrating (6.1) withrespect to time gives the following:P t+1i = P ti + Fint + Fext + (1� ):(P ti � P t�1i ) (6.2)where P ti is the position of point i at discrete time interval t. This equation can beused to calculate the new position of the model, given its previous two positions.Deformation of such a physical model thus progresses iteratively.6.2.4 Simplex MeshesThe physical model used here is a basic version of the Simplex Mesh as describedby Delingette [25]. Simplex meshes are surface meshes which exist in a 3D space,consisting of a number of vertices (of unit `mass'), each connected to exactly threeneighbouring vertices. It is possible to model any conceivable topology in this way.Delingette describes many properties of Simplex Meshes; the most useful is theconcept of the simplex angle - this is measured as shown in Figure 6.2.
P

N
r

R

φ

r

i

circle, C

i

N i,1

P

sphere, S

PN

i,3

i,2

P

RFigure 6.2: The Simplex Angle �i at vertex Pi with neighbours PNi;1 , PNi;2 and PNi;3 .� is a function of only r and R.The simplex angle �i for a vertex Pi is a measure of the surface curvature inthe locality of the vertex. It has the good properties that it is invariant to scale,to the positions of its neighbours PNi;1 , PNi;2 and PNi;3 on the circle C, and to theposition of Pi on the sphere S. The simplex angle can be put to good use whengenerating the model's internal forces. For vertex Pi, an elastic force is constructedwhich drives the point towards a position such that:� The simplex angle subtended is some speci�c angle �i, and



Chapter 6 87 3D Shape Models� Pi is equidistant from PNi;1 , PNi;2 and PNi;3 .Full details are given in [25]. The choice of the �i alters the `stable' shape of themesh. For example, choosing 8i:�i = 0 encourages smoothness over the surface ofthe mesh. Using 8i:�i = �ti (where �ti is the value of �i at time t) sets the stableshape to the shape at time t. Use is made of both of these settings at various stagesof the model �tting process.6.2.5 Initial Mesh ConstructionAs mentioned in Section 1.1.1, the �rst stage in building a model of an object is todecide which features of the object are to be modelled. It has already been decidedto model the surface of objects, via a mesh, but the structure of the mesh must bedetermined: the number of vertices required, which part of the object each vertexrepresents, and how they connect together.For models of a few hundred vertices or less, it is possible to de�ne the structureby hand. However, this is very time-consuming, involving a great deal of pencil-and-paper work, and is also error-prone (although errors are usually easily identi�ed).Alternatively, any of the mesh-�tting algorithms described in [51], [25], [14] or[11] can be used to generate an initial structure for the model automatically byapplying them to one of the training images. However, it is not guaranteed thatparticular object features will be landmarked and for more complex objects somemanual intervention may be required (particularly for Simplex Meshes).The automatic mesh-�tting algorithms also provide an initial shape for themodel, whereas manual construction does not. However, this is not a large handicapbecause the physical deformation can take place (admittedly more slowly) with thevertices initialised at random coordinates, initially using manually-placed guidingforces (as explained below). This is only necessary for the �rst training example;the second and subsequent examples can be deformed from the �rst.6.2.6 Mesh DeformationOnce a physical model has been constructed, it is deformed under the action ofvarious forces in order to �t each training example, using (6.2). Internal forces areas described for the Simplex Mesh above, using various simplex angle constraints asdetailed below. External forces come from two sources:



Chapter 6 88 3D Shape Models� Guiding forces. These are set up manually and are used to help the model �ndits approximate destination in the early stages of deformation. The coordinatesof prominent object features are located in the training image by hand, andvirtual `springs' are attached between these positions and the correspondingmodel vertices. The sti�ness of the springs can be altered to strengthen orweaken the forces. The force Si on vertex i is given by:Si = ki(Di � Pi) (6.3)where Pi is the vertex's current position, Di is the ideal position and ki isthe spring sti�ness coe�cient. A value of ki = 0:7 provides relatively rapidconvergence whilst avoiding oscillation.� Image forces. These are forces exerted on vertices due to the 3D image dataitself. The aim is to drive each vertex towards a `good' position locally withrespect to the image data. In the simple case we look for edges or surfaces inthe image data close to the vertex. The current implementation looks at pixelsalong a normal to the model surface at each vertex (de�ned as the normal tothe plane containing the vertex's three neighbours), �nds the strongest edge(intensity change) within a �xed distance and forces the vertex towards thatedge. This is an extension to 3D of a well-used technique �rst suggested byCurwen and Blake [24].For best results, strategic use of these forces is required. A three-stage deforma-tion has been adopted as follows.1. Gross location using guiding forcesThe initial model is deformed under the action of guiding forces alone to moveit into approximately the right position This can be a trial-and-error process;if the �t obtained is not close enough (as decided by the human eye) then moreguiding forces may be needed. This is especially the case when the vertices areinitially randomly positioned as described in Section 6.2.5 above. The model's`stable' position is chosen to suit the particular situation: if deforming from aninitially randomised position, the maximum continuity constraint (8i:�i = 0)is used, however, if deforming from a previously discovered training exampleshape, the initial shape can be used as the stable shape (8i:�i = �0i ).2. Re�nement using image forces



Chapter 6 89 3D Shape ModelsImage forces are introduced to drive every vertex into its ideal position. Ver-tices which �nd no su�cient image data are pulled into position by theirneighbours. The guiding forces are kept in place during this stage to maintainstability, and the maximum continuity constraint is used to ensure maximumsmoothness.3. Fine tuningThe guiding forces are removed so that previously guided vertices can adjust totheir ideal location. This increases the tolerance for slightly misplaced guidingforces.6.2.7 Example: 3D Hand ModelThe technique was applied to the 3D volume data of human hands, obtained viaMRI, as described in Section 6.2.1. A Simplex Mesh with 498 vertices was con-structed by drawing a mesh on a surgical rubber glove stu�ed with tissue paper,labelling each vertex, then entering the connectivity data by manual inspection.This was a laborious one-o� task, but was deemed quicker and easier than imple-menting a mesh-building algorithm.The processes detailed above were applied to each of 8 training images. For the�rst image, the mesh was deformed from an initially random position, as describedin Section 6.2.5 (see Figure 6.3). Manually-located guiding forces were requiredfor 80 vertices in order to `untangle' the mesh. After 200 iterations, image forceswere introduced at all vertices to draw the mesh towards edge data, and after400 iterations the original guiding forces were removed to allow guided points toequilibrate (this is most noticeable around the wrist).The resulting model was used as a starting position and stable shape for �ttingthe mesh to subsequent training images. Consequently, fewer guiding forces wereneeded (roughly 25 per example), and convergence was quicker (125 iterations asopposed to 460). Figure 6.4 shows �tting to an image where the thumb has moved.After 50 iterations (3rd frame) image forces were applied and after 100 iterations(4th frame) the guiding forces were removed.The eight meshes thus produced were used to construct a PDM; Figure 6.5shows the two most signi�cant modes of variation for the model produced. Thedeformations are realistic, despite the small number of training examples.It is worth noting that the small number of training examples used means that inthis case the examples are e�ectively being used as key frames [10], but with strictly
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Figure 6.3: Deforming a Simplex Mesh from an initially random position to �t MRIdata of a human hand (numbers show iterations).
1250 1005010

Figure 6.4: Deforming the �rst model to �t a second training image.orthogonal degrees of freedom. However, of the 7 modes of variation produced, only5 represented signi�cant deformations; consequently it was decided to remove thelast two from the model.6.3 TrackingThere has been much work on using PDMs for object location and tracking in both2D and 3D. In most of this previous work, the dimensionality of the model hasmatched that of the input image (i.e. a 2D model for 2D images [48, 4, 32] or a 3DPDM for 3D images [38]). Work on matching a 3D model to a 2D image has so farassumed a ground plane constraint and only one degree of rotational freedom [67, 74].
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+2sdMean-2sdFigure 6.5: The �rst (a) and second (b) modes of variation of the Point DistributionModel produced.In this work an attempt is being made to match a 3D PDM to a 2D image underfull 6 degrees of freedom (DoF) plus deformations.An adaptation of the ASM (Section 2.2.3) is used for this task. The key to thismodel-based approach is to �nd the set of model parameter values that cause themodel to �t best the image data. In this case the parameters are a translationvector u = (u; v; w), a 3�3 orthonormal rotation matrixR, a scale factor s and the�ve signi�cant deformation parameters bj (giving a total of 12 DoF). Iterative posere�nement is used: given a fair initial estimate at an object's location, local imageinformation (e.g. edge data) is extracted and used to calculate a small change in themodel parameters which will improve the �t.To compare model and image, it is necessary to project the model onto theimage. The model is �rst deformed from the mean shape x using the standardPDM equation: x = x+ tXj=1 bjpj (6.4)The deformedmodel x is then rotated, scaled and translated into the posedmodelX, such that the position Xi of the ith landmark is given by:Xi = sRxi + u (6.5)X is projected into the 2D image using an orthographic projection (simply by



Chapter 6 92 3D Shape Modelsdiscarding the z-coordinates). This allows projections and inverse projections tobe calculated quickly and, with a su�ciently distant camera, produces negligibledistortion. Of course, z-position information is lost but, assuming a �xed-size objectand known intrinsic camera properties, z-position can be inferred from scaling (thisis e�ectively a scaled orthographic projection).As mentioned above, the intention is to �nd values for u, s, R and the bj whichgive the best match between model and image. These parameters are updatediteratively using image evidence, speci�cally by �nding the best local movementfor individual model landmarks. The result is a collection of suggested landmarkmovements (in the form of (dx; dy) pairs) which undergo statistical voting to changethe overall model pose.Because the process is iterative, it extends naturally to tracking an object overa time sequence of images: the model's �nal position in one image is used as thestarting position for the next image.6.3.1 Gathering image evidenceIt is required to �nd suggested movements for individual landmarks by examiningimage data. The evidence that can be gathered from a 2D image with respectto a 3D model is limited. Firstly, if a hand is to be tracked unmarked, the onlyreliable position evidence that can easily be extracted is from edge data. Also, onlya subset of the model landmarks will lie on the model's boundary in any particular2D projection; no movement evidence can be collected for any other landmarks asthere will be no corresponding edge in the 2D image (Shen observed this in hiswork on vehicle model building [67]). The ASM tracker, as originally described byCootes and Taylor, does not cater for this situation; a landmark weighting schemehas consequently been introduced in the algorithm described below. The apertureproblem [41, 36] is also experienced, in two separate guises. Firstly, the desiredposition along any discovered edge (in the x-y plane) is uncertain. Secondly, becausea single 2D image is being used for input, no depth information is available i.e. thez-coordinate of an edge is uncertain.The data required are a suggested movement dXi for each model landmark i,along with an associated weighting Wi indicating how strong the evidence is forthis movement. Evidence is only collected for landmarks which lie on the projectedmodel boundary. For each landmark i, the unit normal ni to the model surfaceis found, de�ned as the normal to the plane containing landmark i's three mesh



Chapter 6 93 3D Shape Modelsneighbours. If ni subtends an angle of less than 30o to the x-y plane, landmark i isdeemed to lie on or very near to the projected model boundary (this is imprecise,but fast to calculate), and a corresponding image edge is likely. A line of pixels isextracted from the image either side of the landmark and in the direction of theprojection of ni into the x-y plane. The greatest intensity change (i.e. strongestedge) along this line is found and dXi is set accordingly (its z component is set tozero). Wi is set to the magnitude of the intensity change. If ni subtends an angleof greater than 30o to the x-y plane, no image evidence is collected; dXi = 0 andWi = 0 are accordingly set.Figure 6.6 shows an enlargement of the feature extraction on part of the hand.The model is shown in white and the suggested movements, where discovered, areshown as black lines. To increase speed, not every pixel is sampled along the normal;this explains why some of the black lines do not quite meet the image edges.
Figure 6.6: Suggested landmark movements.6.3.2 Updating the model positionGiven a suggested movement dXi = (dxi; dyi; 0) for each landmark i, and an asso-ciated weighting Wi, the task is to update the model parameters u, s, R and theshape parameters bj. A weighted least-squares solution is used, which involves �nd-ing values for u0 = u+ du, s0 = s+ ds, R0 = dRR and b0j = bj + dbj that minimise" in: " = NXi=0WikXi + dXi �X0ik2 (6.6)where X0i is de�ned in terms of u0, s0, R0 and the b0j using equations (6.4) and (6.5).Substituting in gives:



Chapter 6 94 3D Shape Models" = NXi=0WikXi + dXi � (s0R0(x+ tXj=1 b0jpj)i + u0)k2 (6.7)Hill et al [36] describe an iterative solution to this problem, whereby the rigidparameters (translation, rotation and scale) are calculated separately from the de-formation parameters. Hill et al use a quaternion approach to solve for the rotationmatrix, as described by Horn [42]. Instead, an alternative approach is taken here,using a singular valued decomposition (SVD), as described by Arun et al [2]. Theygive an unweighted solution; this is very easily adapted into a weighted version be-cause each component of the solution is some form of summation over the controlpoints, which can be replaced with a weighted summation1. The solutions for du,ds, dR and the dbj are as follows:du = PNi=1WidXiPNi=1Wi (6.8)whereWi = (Wi;Wi; 0), and the products and divisions are performed element-wise.du is then used in the calculation of ds and dR:ds =vuutPNi=1WikXi + dXi � (u+ du)k2PNi=1WikXi � uk2 (6.9)To calculate dR a weighted version of Arun's SVD method [2] is used (the deriva-tion of this method is beyond the scope of this work). The 3 � 3 matrix H is �rstfound. H = NXi=1Wi(Xi � u)(Xi + dXi � (u + du))T (6.10)and then the SVD of H is calculated:H = U�VT (6.11)where, in this case, U and V are 3 � 3 orthonormal matrices and � is a 3 � 3diagonal matrix (see [59] for more details). dR is then given by:dR = VUT (6.12)1The argument being that having an integer weightW is equivalent to havingW control pointsof unit weight at the same location; this can be extended to non-integer weights by consideringthat the use of arbitrarily large integer weights gives exactly the same solution.



Chapter 6 95 3D Shape ModelsBefore calculating the dbj, the e�ects of du, ds and dR are removed from eachdXi: dXi0 = s0R0xi + u0 �Xi + dXi (6.13)The dbj are then calculated thus:dbj = pTj WdX0pTj Wpj (6.14)where W = diag(W1;W1;W1;W2;W2;W2; : : : ;WN).As mentioned above, this solution is iterative. In fact only a single iterationis performed for reasons of speed, given that the tracker is iterative over framesanyway.Although the weighted least-squares approach does �nd a suitable solution, ithas been noted that convergence can be hampered by the aperture problem: if anedge is found along a model normal, the landmark is encouraged towards that point.However the landmark's true resting position might be further along the edge. Also,when tracking from a 2D image, dz = 0 must be assumed, because there is noevidence to the contrary. The true resting position of the landmark may requiredz 6= 0.Hill et al propose a method to overcome these problems using directionalweights [36], whereby landmarks are made free to `slide' along target edges or acrosstarget planes. Hill et al 's solution involves the inversion of large weight matrices;it would be useful to avoid this computationally expensive operation. It is possibleto improve on the `simply' weighted least-squares approach (as described above)without incurring too much computational cost. Directional information from thesuggested landmark movements can be used to determine how much the evidencefrom a particular landmark should contribute towards updating a particular param-eter. For example, if the normal to landmark i is parallel to the x axis, its imageevidence should make no contribution in calculating the y component of du. Thistactic is put into practice as follows: the least-squares equations are as for the `sim-ply' weighted approach; however, in calculating the change dq to a general modelparameter q, the weighting Wi is replaced with Wq;i, which is calculated from Wiand dXi speci�cally with respect to parameter q.The following calculations are used:Wu;i =Wi(jdxij; jdyij; 0) (6.15)



Chapter 6 96 3D Shape ModelsWs;i = WijdXi:(Xi � u)jjXi � uj (6.16)WR;i = qW 2i �W 2s;i (6.17)Wb = diag(W1jdx1j;W1jdy1j; 0; : : : ;WN jdxN j;WN jdyN j; 0) (6.18)where Wb is used in place of W in the calculation of the dbj.It is important to appreciate that the above weighting scheme does not fullyaddress the aperture problem: the weightings are calculated independently for eachmodel parameter; no allowance is made for the interdependency of the parameters.However, it provides an improvement over the simply-weighted scheme at virtuallyno extra computational cost.6.3.3 Handling Self-occlusionPrevious work (due to Rehg [63]) has made use of layered templates to model self-occlusion. A simpler method is adopted here whereby the visibility of each vertexis determined individually by considering whether any model facets lie in front of it(with respect to the image plane).A facet bounded by a set of k vertices, F = fxf1;xf2; : : : ;xfkg, is said to beoccluding a vertex xv if: xv > xmin and xv < xmax andyv > ymin and yv < ymax andzv > zmin and 8i:v 6= fi (6.19)where xi = (xi; yi; zi) for the ith vertex, andxmin = min ji xfi; xmax = max ji xfi;ymin = min ji yfi; ymax = max ji yfi;zmin = min ji zfi; (6.20)Figure 6.7 illustrates this situation. This criterion is of course not precise; ituses the bounding box for the facet, and thus over-estimates the extent of occlusion.A non-occluded vertex which is deemed occluded does not cause a catastrophicproblem; it just means that no image evidence will be collected for that vertex, andtracking might be slightly degraded. This is preferred over a false negative, which



Chapter 6 97 3D Shape Modelsforces an attempt to track from an occluded vertex.
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xvFigure 6.7: Self occlusion of a vertex xv by a facet F .The drawback of this approach is that it is very slow. A `brute-force' imple-mentation has been used here, whereby every potential boundary vertex is checkedagainst every facet. With approximately 200 such vertices in any one pose and1000 facets this represents approximately 1 million comparisons per iteration. It isalmost certain that heuristics can be used to speed this up, either via a pre-learnedlook-up table of all geometrically possible occlusions, or perhaps using some formof hierarchical grouping of facets which allows whole groups to be eliminated fromthe search all at once. Such techniques are commonly found in the �eld of computergraphics [28].6.4 EvaluationAn experimental mock-up of the tracker was constructed using a colour camerapointing downwards at a homogeneous dark surface and connected to a SiliconGraphics Indy workstation running at 134MHz. Images were captured from thecamera and the tracking algorithm was applied in real-time. Images were echoed tothe workstation screen, with the hand model superimposed. The tracking rate wasapproximately 18 frames per second (without occlusion detection), not includingimage echoing and graphical model rendering. To avoid the global search problem(a hand must be found before it can be tracked), the model was initialised centrallyin the image and only began tracking when a hand was moved into position `under'it. This event was detected by the presence of strong edges at over 80% of the



Chapter 6 98 3D Shape Modelsmodel boundary landmarks. The user could see the model tracking his or her hand,providing useful feedback.The tracker was exercised rigorously, with a diversity of movements and defor-mations being performed many times over. Figure 6.8 shows some snapshots fromthese experiments.
(a)

(f)

(b)

(c) (d)

(e)

Figure 6.8: Snapshots from hand tracking experiments using the 3D PDM.A qualitative evaluation of the tracker is as follows:� Changes in x and y translation, scale and rotation in the x-y plane were trackedwith no di�culty, irrespective of the hand pose.� Rotations out of the x-y plane initially caused problems. In particular, thetransition from (a) to (c) in Figure 6.8 produced a decrease in scale instead



Chapter 6 99 3D Shape Modelsof the expected rotation. This is because much of the evidence collected fromthe 2D image (i.e. the sides of the hand moving inwards) is consistent withsuch a change, and the only evidence to the contrary comes from the staticposition of the �ngertips (the wrist is unmarked and provides no evidence).To circumvent this problem, the model size was �xed at a constant value. Therotations were then tracked correctly, at the cost of not being able to trackgross movements towards or away from the camera.� Rotations out of the x-y plane were tracked better with the size constraint.However, success depended very much on the starting pose. Most problemswere caused by ambiguity: because the hand is roughly planar, positive andnegative rotations of the hand viewed from either a direct or sideways-onviewpoint appear very similar in an orthogonal projection (e.g. the transitionfrom (a) to (c)). Consequently the model sometimes rotated the wrong way.� Clearly visible deformations were tracked well; for example, the transitionfrom (a) to (b). Self-occluded deformations were tracked less well, since thereis little image evidence to support them. An example is the transition from(a) to (d), which was always tracked accurately, but more slowly than visibledeformations.� In the case where occlusion detection was not used (in order to increase speed),there were problems: occluded vertices tended to be `attracted' to the nearestvisible edge. This occurred in poses such as (e) and (f). When occlusiondetection was used, these problems were no longer experienced.The system was also tested against a cluttered background. Figure 6.9 shows anexample. It is interesting to note here that the performance was almost as good asfor the homogeneous background, suggesting that the overall approach is generallyfairly robust to image clutter. However, this can be attributed at least partially tothe use of a colour �ltering algorithm to lessen the e�ects of clutter [32].To summarise, tracking was not a failure, but also not as robust and not as fastas the 2D trackers described in previous chapters. This is perhaps to be expectedas a much more complex (perhaps too complex) model is being used.
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Figure 6.9: Tracking against a cluttered background.6.5 Extensions6.5.1 StereoThe use of two or more camera views can help to improve robustness of the tracker.The silhouettes of an object as seen from di�erent views generally correspond todi�erent sets of vertices in the model mesh, so the amount of image evidence thatcan be collected is increased. More importantly, the combination of evidence fromtwo or more non-parallel image planes provides important depth information, andalso helps to resolve many of the ambiguities described in Section 6.4.The nature of the system being used means that the extension to two or morecameras is relatively simple. The object model is projected separately into eachcamera view2 and image evidence (in terms of suggested landmark movements)is collected from each view. These movement vectors are transformed into worldcoordinates and then combined into a single set of movements; the new model poseis then calculated exactly as for the single camera system. In most cases, a particularvertex will only have provided evidence in, at most, one view. In a few cases wherea vertex has measurements from two or more views, the strongest measurement isused3.An experiment was conducted using such a system. Two views were achievedusing a single camera by way of a carefully-placed mirror (see Figure 6.10), e�ectivelyto produce a stereo tracker.2Each camera must be calibrated in order to �nd the transformations from world coordinatesto camera coordinates and vice versa.3A more elaborate scheme might seek to combine evidence from di�erent views by �nding theintersection of the uncertainty plane from each view, thus better constraining the vertex movement.
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mirror

tabletop

camera

Figure 6.10: The stereo tracking environment; two views are achieved from a singlecamera using a mirror.An object of known dimension was used to calibrate the system (see Figure 6.11);four speci�c reference points were located manually in each view and the relevantorthogonal transformation parameters calculated. Because a mirror was being used,one of the transformations also included a reection.
Figure 6.11: Calibration image for the stereo environment, with manually-locatedcalibration points shown.A sequence of hand movement was pre-recorded and the stereo tracker was ap-plied o�-line, using full occlusion detection. The output from the tracker was used



Chapter 6 102 3D Shape Modelsto drive a simple 3D drawing tool in which the index �ngertip was the stylus andthe thumb position determined whether or not to commence drawing. Figure 6.12shows some snapshots from the sequence, and Figure 6.13 shows several views ofthe line drawing produced, demonstrating that it is indeed a 3D drawing.6.5.2 Polar CoordinatesAs described in Section 3.6, it is possible to apply the Cartesian-Polar Hybrid PDMto 3D objects. Figure 3.13 shows the results of using the 3D hand training data inthis context. This approach is used in order to improve the speci�city of the modelproduced, and thus hopefully to improve tracking robustness. In practice however,using such a model for tracking resulted in poor performance: instabilities occurredsuch that the model �ngers would ail uncontrollably with little regard to imageevidence.There are no good explanations for this behaviour; however, several possibilities(none of which are entirely satisfactory) are given below:1. Polar-mapped vertices close to their centre of rotation are causing dispropor-tionate suggested angular movement (although a weighting factor has beenincluded to counteract this behaviour).2. Certain combinations of projective transformations and polar mappings maygive rise to unstable pose change calculations.3. The particular model being used is unsuitable, perhaps due to the small num-ber of training examples giving rise to poor polar modelling. However, to theeye it appears to be an ideal model.4. There is a bug in the code that the author has not been able to �nd.Considerable e�ort has been expended on this problem, but to no avail. Inthe case of the �rst two suggestions, the problem is associated with the use of adata-driven tracking algorithm; use of a �tness-based approach, such as a GeneticAlgorithm or the CONDENSATION algorithm (see Section 2.2.4) might alleviate sucha problem. This line of pursuit has not been investigated because of the apparentlimitations to the 3D modelling approach in general.
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Figure 6.12: Snapshots from a 3D stereo tracking sequence; the video input, whichuses a mirror to give two views of the hand (left), and the tracking result, shownfrom a di�erent angle (right).
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Figure 6.13: Three views of the line drawing output from the 3D stereo trackersequence.6.6 Discussion and ConclusionsIt has been shown how a 3D PDM can be constructed from 3D volumetric trainingimages via the use of physically-based models. The technique is not fully automaticbut guided ; with a well-designed interface user e�ort would be minimal.A speci�c procedure using a Simplex Mesh in 3D has been described. Someobvious generalisations apply:� The physical model used does not have to be a Simplex Mesh. Any physicalmodelling technique could be used, for example the less constrained meshesused in [14], or the Finite Element Method models used in [58].� The technique can be applied in a 2D situation using a 2D physical modelsuch as a Snake.� Where MRI data is not available it may be possible to use a sparser inputsource, such as range data, since internal model forces keep non-visible verticesin position (and in any case, statistical models are fairly robust to small errorsin point position). However, there is still the question of how to obtain aninitial shape.A description has also been given of a system for tracking 3D objects in real timefrom a single camera, using the aforementioned models.It has been shown how information can be extracted from a 2D image to moveand deform a 3D model; the instances where this is most and least successful havebeen highlighted and discussed.The use of a 3D model means that pose inference becomes a trivial task. Also,because the model is a PDM, object shape is described in terms of a small numberof scalars, providing a good starting point for shape inference. However, the cost ofthese bene�ts is reduced speed and robustness as compared to a purely 2D tracker.



Chapter 6 105 3D Shape ModelsAn obvious extension is to use the 3D hand model in a Condensation trackingenvironment. This would perhaps improve tracker performance in the event ofambiguity, as well as improving general robustness. There would of course be aconsiderable speed penalty.



Chapter 7Conclusions
7.1 Summary of WorkThe focus of this work has been the generation of deformable shape models for com-puter vision-based tracking, as well as suitable tracking algorithms to complementsuch models.Various forms of statistical models have been described; object shape being rep-resented by a set of landmarks (generally joined together to form a contour) andprincipal component analysis (PCA) being used as a basis for learning shape anddeformation.The shortcomings of existing statistical shape models have been noted: lack ofspeci�city, lack of compactness, and the e�ort involved in collecting training data.Extensions to existing methods have been developed to overcome these problems.In Chapter 3 a method for better modelling objects which experience bending orpivotal motion was described. This is made possible in a statistical framework byexplicitly remapping selected model landmarks into a polar domain, thus e�ectively`linearising' polar deformations with respect to the PCA. It was noted that the polarmodel is a useful extension to statistical modelling, but only in certain speci�c cases.In Chapter 4 a more general approach was described, detailing how arbitrarynon-linearity in object deformation can be modelled. More speci�c models of shapewere achieved via a hierarchical PCA; the �rst level provides a dimensional reduction106



Chapter 7 107 Conclusionsof the shape space, and the second level captures non-linear detail using a piecewise-linear approximation, formulated as a union of hyperellipsoid-bounded regions. Itwas observed that it is possible to build good Hierarchical PDMs from automatically-captured training data, but that in this case, tracking performance using an ActiveShape Model is less than satisfactory.In Chapter 5 an alternative tracking algorithm was described which enablestracking from fully-automatically generated models, as well as being able to trackdiscontinuous shape changes. The Hierarchical PDM (HPDM) is used as the un-derlying model of shape, and a model of shape dynamics is learned from trainingsequences of characteristic object movement. The dynamic model is representedas a Markov process, the Markov states being the linear patches from the HPDM.The Condensation algorithm provides a non-deterministic framework in which toapply these dynamics. It was shown how this new system can be used for trackingusing automatically-captured training data.In Chapter 6 it was noted that pose inference from 2D shape models is a non-trivial task. Consequently, the construction of 3D statistical shape models wasdescribed, as was tracking with such models, with a view to easing this task. Itwas discovered that, although pose inference is eased, the speed and robustness oftracking with such models is much poorer overall than with the 2D models.7.2 DiscussionAn underlying theme in this thesis had been the learning of various object featuresfrom real-life training examples. This appears, in general, to be a very promisingapproach to computer vision: the models produced are necessarily true-to-life andthe model building process lends itself to automation. The fact that this is howthe human visual system functions perhaps reinforces the argument. However, it isimportant to think carefully about the models being built.Taking too general an approach is certainly a mistake. Take, for example, theapocryphal story of the neural net-based military tank detection system. Full colour,high resolution images were fed straight into the neural net with two classi�cationsto learn: `tank' or `no tank'. The 100% success rate was surprisingly high, until itbecame apparent that all the `tank' training examples were slightly darker and theneural net was simply acting as an averaging thresholder.Conversely, models which are too speci�c are only applicable in a limited domain(e.g. using articulated skeleton models for hands or whole bodies), which is �ne for



Chapter 7 108 Conclusionsa particular application, but not when attempting to develop general techniques.The use of boundary features in models lies in the middle ground. The majorityof (interesting) objects have a coherent boundary, which is useful for both train-ing and tracking; boundaries are also very distinctive (good for recognition) andinvariant to lighting conditions.Statistics have also featured prominently throughout this work. The representa-tion of real life is inherently imprecise (some might say chaotic); the �eld of statisticsprovides the most rigorously formalised tools for dealing with uncertainty, and alsolends itself well to computation. It could be argued that neural networks might bemore appropriate for a task which is attempting to emulate a human process, butpresent-day technology is several orders of magnitude away from true life biologicalneuron counts, and at least with pure statistics there is some sort of order withinthe chaos.Finally, it is worth mentioning that the work in this thesis is presented in aslightly di�erent order to that in which it was conducted. The work on polar modelscame �rst, followed by a strong belief that 2D models were not powerful enough fortracking 3D objects; they were `too limited', not by the use of boundary models, butby the underlying statistical model. The 3D work followed on from that, togetherwith the discovery that tracking with 3D models was not necessarily the way forward.Finally, the 2D emphasis returned and the more general HPDMmodels were derived,along with a suitable tracking process. It is perhaps ironic that the best solution(with respect to tracking) turned out to be the most simple and elegant one.7.3 Future WorkThere are many avenues that, given more time, it would be interesting to explore.The models that have been built are quite general and, as such, might be useful as`enabling technology' for many di�erent applications. Simply exercising the HPDMon di�erent modelling tasks would be desirable, either to validate its generality or todiscover any weaknesses and re�ne the technique, and also to see how well it scalesup to larger problems.A key issue has been the automation of the training process. So far, a rathercrude method of training data acquisition has been used. The fact that this ispossible gives credit to the power of the HPDM and it would be interesting to seehow far this power can stretch. For example, in 3D a fair amount of e�ort wasexpended on developing algorithms to give a good point correspondence between



Chapter 7 109 Conclusionstraining examples; however, if using an HPDM this might not be so crucial.Also on the subject of automation is the issue of �tness function learning. The�tness-based tracking algorithm described in Chapter 5 makes heavy use of a �tnessfunction which has been entirely hand-crafted, with no evaluation of how gooda discriminant it is between good and bad model/object matches. It would befavourable to be able to learn a suitable �tness function in order to improve trackingperformance, or at least to prove that the existing ad hoc �tness function is in factthe right one.The most interesting possibility is a link-up between the 2D and 3D models usedin this work. The 2D models excel in tracking and the 3D models are useful forobject pose inference and graphical rendering. It would seem sensible to use eachmodel for its strengths: track with the 2D model, and infer pose and/or render usingthe 3D model. For this it would be necessary to learn the mapping from 2D modelshape to 3D model shape and orientation. This might be possible by constructingarti�cial training sequences of silhouettes with the 3D model in known poses, andthen using these to learn a suitable mapping.
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