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ABSTRACT 

Crystallization of cocoa butter in the correct polymorphic form (Form V) leads to a volumetric 

contraction of tempered chocolate during solidification and aids in the ease of the demoulding 

process. Specific steps during chocolate bar manufacturing may result in an increased adhesion 

between chocolate and mould surface. causing intermittent problems in demoulding. 

Adhesion is an important physical phenomenon commonly observed in many food-related 

situations. With respect to chocolate adhesion it is expected that the balance of the adhesion 

force between the chocolate and the mould and the cohesion force within the chocolate itself 

determines the stickiness at the chocolate-mould interface during demoulding. The research 

presented investigated the effect of surface thermodynamics and processing conditions on the 

observed extent of adhesion of (aerated) chocolate to four different mould materials (quartz 

glass. stainless steel. polycarbonate. and polytetrafluoroethylene (PTFE». Surface energy of 

solid mould materials was calculated from experimental surface tension and contact angle data. 

An experimental set-up build around a Texture Analyser was developed for the experimental 

surface adhesion force determination. using a simple separation test between the solidified 

chocolate and a mould probe. Process conditions specific to the moulding and demoulding 

phases of the commercial chocolate manufacturing process have been investigated using this 

set-up. 

Surface energy (thermodynamics) has been shown to be the major factor controlling the 

adhesion between chocolate and a mould material. Chocolate-mould adhesion can be 

minimized if the total surface energy of the mould material is < 30 mN m- l
, and the electron 

donor component - 15 mN m- l
. High surface energy materials are assumed to produce more 

compact crystal networks with a resulting increase in crystal-crystal interactions being 

responsible for difficulties demoulding. Processing parameters had a significant impact on the 

crystallization and solidification processes, and are therefore regarded as the key determining 

factors of chocolate-mould interactions. Demoulding can be optimised by pre-heating the 

mould under controlled environmental conditions (% RH. 25-30 0c) and by applying a cooling 

temperature of 10-15 °C. 

Significant differences were observed between standard and aerated chocolate systems. It was 

shown that aeration lowers the cohesive or mechanical strength of the chocolate sample. 

consequently reducing the surface adhesion. Possible mechanisms proposed to impact surface 

adhesion of aerated chocolate, are the heat transfer coefficient of the mould material and the 

presence of water vapour at the mould surface which interacts with the CO2 gas used for the 

chocolate aeration. Edible coatings can reduce the surface adhesion, but often have negative 

effects on chocolate surface characteristics. Further optimisation is required before edible 

coatings can be applied as a surface modification technique. 
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Chapter I. Introduction 

CHAPTER! 

INTRODUCTION 

1.1 OBJECTIVE AND STRATEGY 

Commercial chocolate manufacturing is a continuously evolving process. and with the ever 

increasing product output it is essential to have a good understanding of the manufacturing 

process and processing conditions. and how they impact on chocolate characteristics. Focus 

thereby should not only be on the quality aspect. but on physical and organoleptic 

characteristics as well. An important example in this case is the adhesion of products during 

processing, which is a substantial ongoing problem in the food industry in general. During 

chocolate manufacturing the processes of moulding and demoulding are particularly prone to 

adhesion problems, leading to surface defects, production losses and increasing processing costs 

due to equipment cleaning. 

Moulding is one of the final stages of the chocolate manufacturing process, where tempered 

chocolate is deposited in moulds and subsequently cooled. During cooling the polymorphic 

cocoa butter crystallises and the chocolate solidifies. In the subsequent de moulding stage, the 

solidified chocolate bars are removed from the moulds. This demoulding process is affected by 

two mechanisms: l) the adhesive force between chocolate and the mould surface, and 2) the 

state of crystallization of the fat phase of the chocolate. Crystallization of cocoa butter in the 

correct polymorphic form (Form V) leads to a volumetric contraction of the tempered chocolate 

during solidification and aids in the ease of the demoulding process. Specific steps during 

chocolate bar manufacturing may result in an increased adhesion between chocolate and mould 

surface, as is visualized in Figure 1.1, causing intermittent problems in demoulding. Chocolate 

residues staying behind on the mould surface after demoulding are responsible for poor product 

appearance as they result in defects on the chocolate surface and consequent low consumer 

acceptance, production losses. and increased processing costs due to equipment cleaning. 

The main objectives of this research were to gain an understanding of the mechanisms that 

cause the sticking (adhesion) of (aerated) chocolate to the mould materials. and to identify 

determining factors. 
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Figure 1.1 Schematic representation of the effect of processing on the demoulding stage. 

Based on the assumption that the extent of formation of chocolate deposits on a mould surface 

during demoulding will depend on the balance between the adhesion force (between the 

chocolate and the mould surface) and the cohesion force (within the chocolate itself), two 

different strategies are proposed to achieve a greater ease of chocolate demoulding: either by 

decreasing the surface adhesion between chocolate and mould surface, or by increasing the 

co he ion force of chocolate. The latter strategy is, of cour e, not the manufacturer' s preferred 

choice, becau e it implies modifying the (desirable) texture and sensory properties of the 

chocolate product. Focus in this research is therefore on a method to minimize the adhesion 

force between chocolate and mould surface. 

Two different approache are applied to enhance the understanding of the interactions taking 

place at the chocolate-mould interface: 

• Establi hing relationship between the thermodynamic work of adhesion and the 

ob erved extent of adhe ion of chocolate to a range of mould materials; 

• Establi hing relation hips between processing conditions and the level of adhesion of 

chocolate to the mould urface during demoulding, with particular intere t in 

proces ing condition used during the moulding and cooling stage of the chocolate 

manufacturing proce s. 
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1.2 OUTLINE OF THESIS 

CHAPTER 2 describes the background literature associated with the main subjects studied: fat 

nucleation and crystallization. chocolate processing. adhesion and surface energy. The aim is to 

review the literature regarding work done on these subjects. and to create an understanding of 

correlations made within this research between the areas of chocolate processing and materials 

science. The techniques and methodologies used are based on this review of the literature. and 

are discussed in CHAPTER 3. This chapter also clarifies the choice for the solid mould 

materials and liquids applied. Chapters 4 to 7 present the experimental results obtained during 

this research. In CHAPTER 4 the mould materials are characterised by their solid surface free 

energy. and correlated to the experimental surface adhesion force required to pull the mould 

materials from a solidified chocolate sample. 

CHAPTER 5 subsequently determined the impact of chocolate processing conditions on this 

surface adhesion force. which is a measure of the ease of chocolate demoulding. One processing 

parameter whose impact on demoulding is reviewed in more detail in CHAPTER 6 is aeration. 

Particular interest is given to the effect of bubble size and microstructure of aerated milk 

chocolate systems. The final results chapter. CHAPTER 7. discusses the use of edible coatings 

placed at the chocolate-mould interface as a technique to reduce the surface adhesion and 

improve demoulding properties. CHAPTER 8 correlates the results presented in the previous 

chapters and discusses the implications of these on chocolate manufacturing along with possible 

ideas for future research. 
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2.1 CHOCOLA TE 

CHAPTER 2 

LITERA TURE REVIEW 

In 2006 and 2007 the average UK manufacturing sales of cocoa, chocolate and sugar 

confectionery was £ 3.5 billion (PRODCOM, 2(08), being responsible for around 6.3% of the 

total turnover in the UK food and drink industry (ADAS, 2(07). After Switzerland, the UK has 

the second highest consumption of chocolate in the world, with an average consumption of 9.97 

kg per person (CAOBISCO, 2006). Sales figures indicate that the growth of the confectionery 

market is slowing down, which is considered to be caused by the increasing demand for healthy 

products. The trend observed within the chocolate industry is an increase in sales of dark 

chocolate, due to the health benefits associated with cocoa. Within the UK market, there are 

three major chocolate manufacturing companies, Nestle Rowntree, MarslMasterfoods and 

Cadbury Trebor Bassett. New product development is focussed on brand extension increasing 

variation, rather than the development of completely new concepts (ADAS, 2(07). A good 

understanding of the ingredients and the processing conditions used is essential for the 

chocolate manufacturer to maintain its position within the confectionery market. 

2.1.1 History of chocolate 

The discovery of cacao, and indirectly chocolate, is ascribed to the Maya's in Mexico: "And so 

they were happy over the provisions of the good mountain, filled with sweet things, ... thick 

with pataxte and cacao, ... " (Anonymous, 2(02). In tum, the Aztecs are held responsible for the 

cultivation of the cacao tree. Literally, Theobroma cacao means "food of the gods", and this 

emphasizes the position of the cacao bean in the history of the early Southern and Central 

American civilisations. To both the Mayas and the Aztecs the cacao bean served many different 

purposes, ranging from social and religious purposes to its use as currency (Dhoedt, 2(08). 

However, its main use was in Xocoatl, a drink prepared from cocoa beans, vanilla and chilli. 

Research by Pucciarelli and Grivetti (2008) stresses the importance of this chocolate drink also 

as a medicine in early North America. 

Columbus was the first European to discover the cocoa bean on his travels in 1502, but it was 

Don Cortez who introduced them in Europe in 1528. The cocoa bean was an expensive 

commodity, making it an exclusive privilege of the rich, and limiting its consumption (Dhoedt, 

2(08). The traditional cocoa drink was modified by Spanish monks, adding components such as 

honey, vanilla and sugar cane, creating the foundations for the chocolate recipe as it is known 

nowadays. Solid chocolate, however, was not developed until the 19th century. Due to the fact 
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that the whole cocoa bean was used for the traditional cocoa drink, it was a very fatty product 

(Minifie, 1989). In 1828 Coenraad Johannes Van Houten invented the cocoa press, enabling the 

separation of cocoa solids from cocoa butter, consequently creating a lower fat cocoa powder (-

23% fat). The Industrial Revolution was responsible for the mechanisation of the production 

process, leading to the production of the first solid chocolate bar in 1847 by Joseph Fry. Fry 

used liquid cocoa butter rather than warm water to mix sugar and chocolate powder and produce 

a dry, grainy solid chocolate product. Addition of condensed milk, invented by Henri Nestle, in 

combination with extra sugar, evolved in the production of the first solid milk chocolate by 

Daniel Peter in 1876 in Switzerland. In order to improve the manufacturing process and create a 

smoother and better tasting chocolate, Rodolphe Lindt, in 1880, developed the conche (Beckett, 

1999b). Since then, the chocolate manufacturing process has undergone various changes for the 

purposes of either improved oral experience (flavour and texture) or increased productivity to 

meet increasing demands for chocolate products. 

2.1.2 Chocolate ingredients 

The main ingredients of chocolate are cocoa butter, cocoa solids and sugar. together with milk 

solids in the case of milk chocolate (Fryer & Pinschower. 2(00). Depending on the 

manufacturer and the variety, different chocolate compositions can be obtained using the main 

ingredients. Table 2.1 gives a basic overview of typical chocolate formulations. Knowledge of 

the main chocolate ingredients is essential to understand the chemistry of the product and 

interactions within the food matrix. 

Table 2.1 Typical chocolate formulations (Jackson, 1999; Rousseau, 2007). 

Typical percentage of component in 

Component Milk chocolate Dark chocolate Bittersweet White 
chocolate chocolate 

Cocoa mass 
(cocoa solids and 11.8 39.6 60.7 
cocoa butter) 
Added cocoa butter 20.0 11.8 2.6 23.0 

Sugar 48.7 48.1 36.3 46.5 

Lecithin 0.4 0.4 0.3 0.5 
Flavour compounds 
(e.g. salt and 0.1 0.1 0.2 
vanillin) 
Whole milk powder 19.1 30.0 

Total fats 31.5 36.4 35.4 
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2.1.2.1 Cocoa butter 

In order for a product to be called chocolate, the FAO and WHO require the product to be 

composed of, on a dry matter basis, minimum 35% total cocoa solids, of which at least 18% 

shall be cocoa butter and 14% fat-free cocoa solids (Codex Alimentarius, 2(03). Cocoa butter is 

the fat obtained through pressing of the cocoa liquor / mass, which in turn is a result of the 

grinding of cocoa nibs, a part of the cocoa bean. On average, 55% of the cocoa bean is made up 

of cocoa butter, whilst the other 45% consists of solid material, cellulose, proteins and 

carbohydrates. An essential step in the flavour development of the cocoa components is the 

roasting of the cocoa nibs, resulting in a reduction in the acidity of the cocoa beans and the 

formation of the characteristic colour and chocolate notes of cocoa solids (Beckett, 2(08). The 

typical cocoa aroma is mainly a result of non-enzymatic or Maillard browning, the chemical 

reaction between reducing sugars and amino acids. 

Cocoa butter is composed of a mixture of 40-50 different triacylglycerols (TAG) and trace 

compounds, with three fatty acids, i.e. palmitic, oleic and stearic acid, accounting for 

approximately 95% of the total cocoa butter composition. The three main TAG in cocoa butter, 

which dominate the crystallization and phase transformations, are 1,3-palmitoyl-2-

oleoylglycerol (POP) (15%), I-palmitoyl-2-0Ieoyl-3-stearoylglycerol (POSt) (35%), and 1,3-

stearoyl-2-oleoylglycerol (StOSt) (23%) (Schenk and Peschar, 2004). The composition and 

quality of cocoa butter, however, depends on the cocoa variety and the manufacturing process 

used for the fat extraction. Deshelling of cocoa beans before pressing improves the quality of 

the final cocoa butter product. For milk chocolate, however, an extra deodorization step is 

required to produce a milder flavour. Use of the whole beans, results in the incorporation of 

shell fat, which is known to negatively affect the flavour and setting properties of the cocoa 

butter (Meursing and Zijderveld, 1999). This requires an additional manufacturing step, called 

refining, to ensure the reduction of free fatty acids and the removal of a number of polar 

components, e.g. glycolipids, phosphatides and mucilaginous substances (Dimick, 1999). 

The relatively large amount of saturated TAG in refined cocoa butter causes the fat to show 

similarities with pure compounds with respect to its thermal and structural properties (Loisel et 

aI., 1998b). According to Loisel et al. (l998a) approximately 13% corresponds to 

polyunsaturated and 3% to trisaturated TAG. Thermal and structural behaviour of cocoa butter 

is characterized by the TAG composition. Johnston (1972) mentions the resistance to oxidation, 

as a result of the low amount of polyunsaturated TAG, in combination with the absence of off­

flavours, caused by either fat-splitting enzymes or chemical oxidation. The solidification 

behaviour and physical properties of cocoa butter are determined by its fatty acid composition. 

Long chain, saturated fatty acids account for approximately 1-2% of the cocoa butter 

composition, and have a high melting temperature. Short chain and/or unsaturated fatty acids, 

on the other hand, have much lower melting temperatures (Awad and Marangoni, 2006). 
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Being a mixture of TAG. cocoa butter is partly liquid at room temperature. caused by the 

presence of 5-20% of low melting TAG (Beckett. 2(08). 

2.1.2.2 Sugar 

A general description of chocolate is given in the Codex Standard for Chocolate and Chocolate 

Products (Codex Alimentarius. 2(03): ..... shall be prepared from cocoa and cocoa materials 

with sugars and may contain sweeteners, milk products, flavouring substances and other food 

ingredients". This definition clearly states the importance of sugar as one of the major 

ingredients of chocolate together with cocoa and cocoa materials. The main function of sugar is 

to deliver sweetness. which is especially important in dark chocolate recipes which are 

relatively bitter. General levels of sugar used in the production of different types of chocolate 

can be found in Table 2.1. A limit for the inclusion of sugar is not given. but it has been 

mentioned that small changes in sugar inclusion level (1-2%) significantly affect the product 

and economic costs. while a 5% increase of the sugar level results in the development of 

changes in the flavour profile (Jackson. 1999). 

According to Beckett (2008). chocolate traditionally contained approximately 50% sugar. but 

the requirements for low caloric and sugar-free products have affected the types and level of 

sugars that are used. Originally. predominantly crystalline sucrose (saccharose. C I2Hn O Il ). a 

disaccharide consisting of the monosaccharides glucose and fructose. was used. When using 

amorphous sugar. there is an increased risk of moisture uptake. influencing the viscosity of the 

final chocolate through formation of sticky aggregates. and absorption of flavour compounds. 

affecting the sensory characteristics of the chocolate. Furthermore. the microstructure of sucrose 

is critical with respect to bloom formation. The use of crystalline sugar has been observed to 

instigate bloom formation. whereas amorphous sugar did not (Fryer and Pinschower. 2000). An 

important sugar present in cow's milk and consequently milk chocolate is lactose. 

Other sugars and/or sugar substitutes are often used to replace the sucrose in the chocolate 

recipe. The monosaccharides glucose and fructose are usually not used as single components as 

they are hygroscopic. rapidly absorbing moisture from the air. causing the sugar particles to 

stick together and increase the viscosity of the chocolate. Glucose and lactose have been used to 

replace sucrose. especially in milk chocolate recipes. Lactose. a disaccharide of glucose and 

galactose. has a low sweetening power compared to sucrose. However. lactose positively 

contributes to the sensory characteristics of milk chocolate. through the formation of a mild 

caramelized flavour. as a result of its participation in the Maillard reaction. Sugar substitutes are 

sugar alcohols. e.g. xylitol. sorbitol. isomalt. mannitol and lactitol. They can be used for the 

manufacturing of specific chocolate products. e.g. low-caloric and sugar-free. 
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Due to differences in physical, chemical or physiological composition, sugar alcohols cannot 

always be used in the manufacturing of chocolate products. 

The physical properties of sugar particles determine their behaviour when dispersed in a 

continuous fat phase. The presence of moisture at the sugar particle surface results in the 

formation of particle aggregates, increasing the friction and apparent viscosity. According to 

Kruger (1999), the particle size of sugars should lie between 6 and 30 ~m to optimise the 

rheological and textural properties of the chocolate. Afoakwa et al. (2007) observed different 

crystalline network structures and inter-particle interaction strengths depending on the particle 

size distribution of sugar and cocoa solids in dark chocolate, consequently affecting the 

mechanical properties. Addition of sugar particles also influences the crystallization of cocoa 

butter, by acting as a heterogeneous nucleation agent. In a cocoa butter / sugar mixture lower 

melting points were observed compared to plain cocoa butter, indicating that the presence of 

sugar particles preferentially promotes the formation of lower melting polymorphs (Dhonsi & 

Stapley, 2006). 

2.1.2.3 Milk components 

For a product to be called milk chocolate the Codex Standard requires it to contain at least 2.5-

3.5 ~ milk fat and 12-14 % total milk solids (Codex Alimentarius, 2(03). White chocolate 

contains similar amounts of milk fat and milk solids, but there is no addition of cocoa solids. 

The addition of milk solids to chocolate creates a product that is significantly different from a 

physical and sensory, as well as processing point of view compared to dark chocolate. Pure 

(liquid) milk is not used during chocolate manufacturing, as the high moisture content 

negatively influences the rheological properties of the chocolate. Whole milk, on average, has 

13.5% solids, consisting of approximately 3.4~ protein, 4.6~ fat, 4.7% lactose and 0.7% 

minerals (Haylock and Dodds, 1999). Several techniques are used to obtain milk powder from 

the whole milk, resulting in a number of powders with similar composition but varying physical 

characteristics, e.g. roller-dried and spray-dried whole milk powders and high-fat powders 

(Liang and Hartel, 2004). 

Milk fat is essential for the characteristic texture and flavour of milk chocolate. Compared to 

dark chocolate, milk chocolate is relatively soft in texture and mouth feel, which is due to the 

fact that milk fat is mainly liquid (15-20% solid) at room temperature (Afoakwa et aI., 2007). 

However, a minimum solid fat content of 45% in the finished product is required, in order to 

obtain the desired physical properties, indicating that it is impossible to use only milk fat for the 

manufacturing of chocolate products. Milk fat is compatible with cocoa butter in all proportions, 

without changing the polymorphism of cocoa butter (Haylock and Dodds, 1999). Milk fat 

contains different amounts of high (> 50°C), medium (35-40°C) and low (> 15°C) melting 
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fractions. These different fractions are chemically distinct, consisting mainly of different levels 

of saturated and unsaturated fatty acids. Cocoa butter TAGs are thermodynamically compatible 

with the high melting fraction TAGs, and incompatible with the medium melting TAGs (Awad 

and Marangoni, 2006). Overall, as the milk fat and cocoa butter solids are thermodynamically 

incompatible, they crystallize individually. Induced by molecular geometric constraints, the 

formation of mixed crystals of cocoa butter and milk fat triglycerides is inhibited, causing a 

decrease in the melting point of the mixture below that of the individual components (Awad and 

Marangoni, 2006). A consequence of the lower tempering temperatures is that the setting or 

crystallization rate of the milk chocolate is slowed down (Liang and Hartel, 2004), resulting in a 

decrease in hardness. Finally, a negative side effect of the use of milk fat is its limited shelf life, 

as it is prone to oxidation and lipolysis, enzymatic break down of fats by lipases. On the other 

hand, a resistance to fat bloom exists as a result of the inclusion of free milk fat. 

Depending on the characteristics of the milk powders, different finished products are obtained. 

The properties of milk powders affecting chocolate characteristics and determining their use in 

chocolate manufacturing include free fat content, particle size, particle size distribution and 

particle size structure, specific fat pore surface, air inclusion or vacuole volume, moisture 

content, and milk protein content and type (Liang and Hartel, 2004; Keogh et aI., 2(03). 

Table 2.2 Properties of milk powders and their influence on chocolate properties 

(Liang & Hartel, 2004). 

Properties of milk powder 

Particle size and distribution 

Particle shape 

Surface characteristics of particles 

"Free" fat level 

Particle density 

Flavour attributes 

Properties of chocolate or 

processing conditions 

Flow properties 

Refining operations 

(particle size distribution) 

Tempering conditions 

(cocoa butter crystallization) 

Hardness / Snap 

Bloom stability 

Flavour attributes 

Table 2.2 gives an overview of some of these characteristics of milk powders and how they 

affect the chocolate properties and/or processing conditions. Review of these specific properties 

of milk powders by Liang and Hartel (2004) has identified the free milk fat available to mix 

with the cocoa butter and the particle characteristics as the most important properties 

influencing the characteristics of milk chocolate, although there is not a clearly defined 

mechanism. As discussed previously in this chapter, addition of milk fat requires lower 
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tempering temperatures in order to promote nucleation of cocoa butter, as the milk fat inhibits 

cocoa butter crystallization. Besides influencing the tempering conditions, the free milk fat level 

also influences the rheological properties of the chocolate (Liang and Hartel. 2004). Milk fat 

reduces the yield stress and plastic viscosity, through a combination of reducing the dispersed 

phase volume and the particle size distribution. Depending on the type of milk powder used, e.g. 

skim milk powder or full cream milk powder, the amount of free milk fat available to react with 

the particles and the cocoa butter varies, resulting in different amounts of fat aiding the flow 

properties. In order for chocolate to flow. the particles must pass by one another, and the ease 

with which this happens depends on the viscosity of the system and the particle characteristics. 

Processing techniques used for the milk powder production define the particle characteristics as 

well as flavour characteristics (Beckett, 2(08). 

2.1.2.4 Other components 

The Codex Standard for Chocolate (Codex Alimentarius. 2(03) lists a large number of additives 

which are allowed within chocolate products within the limits specified: acidity regulators, 

emulsifiers, flavouring agents, sweeteners, glazing agents, antioxidants, colours, bulking agents 

and processing aids. Their use is in general regulated by Good Manufacturing Practice (GMP). 

Most important categories are the emulsifiers or surfactants and the flavouring agents, which 

will be discussed in slightly more detail below. 

2.1.2.4.1 Surfactants or surface active agents 

As will be discussed in section 2.1.3.3.1, chocolate is a colloidal system consisting of solid 

particles dispersed in a continuous fat phase. The lyophobic sugar particles are immiscible with 

the lipophilic cocoa butter molecules, creating a system that is thermodynamically not in 

equilibrium and will phase separate on storage. For the creation of a stable system, the use of 

surfactants or emulsifiers is required. The two main surfactants used in chocolate manufacturing 

are lecithin and polyglycerol-polyricinoleate (PGPR). Although there are many other 

surfactants, sometimes more generally called emulsifiers, e.g. sorbitan esters, sucrose 

dipalmitate and ca1cium-stearoyl lactoyl lactate. they often are not as efficient in reducing the 

yield value of the chocolate mixture (Beckett. 2(08). Within the chocolate mixture. the 

positioning of the surfactant or emulsifier at the sugar I cocoa butter interface is responsible for 

a reduction in viscosity. By attaching its hydrophilic head to the sugar surface and leaving its 

hydrophobic tail in the continuous cocoa butter phase, the surfactant aids the flow behaviour of 

the chocolate mixture. As the surfactant covers the sugar particle surface. agglomeration of 

sugar particles is reduced as well as interparticle interactions (Gotz et aI., 2(05). Although a 

significant decrease in viscosity can be obtained by the addition of low levels of surfactant. 
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thickening of the chocolate takes place when sufficiently high surfactant concentrations are 

used. At these concentrations, the surfactants will not only be present at the hydrophilic / 

lipophilic interfaces, but also dissolved in the fat phase either as single molecules, or by forming 

micelles or a bilayer around the sugar particles. The enlargement of the specific surface area of 

sugar molecules, in combination with the larger number of particles present in the continuous 

fat phase is responsible for the increase in viscosity, e.g. thickening of the chocolate. A final 

advantage of the use of surfactants is their application as antibloom agents, as they reduce the 

crystallization rate of cocoa butter (Gotz et aI., 2(05). Specific surfactants may not deliver the 

required efficiency with respect to viscosity reduction, but they may alter the setting rate, 

surface gloss and/or bloom formation rate in chocolate products (Beckett, 2(08). The use of 

combinations or mixtures of different surfactants in chocolate manufacturing is therefore not 

unusual. 

• Lecithin. 

Lecithin is a complex mixture of neutral lipids (triglycerides, sterols and fatty acids) and 

polar lipids (phospholipids and sugar- or glycolipids) (Gotz et aI., 2(05). isolated 

mainly from soybean and egg yolk. The major glycerol phospholipids, derived from 

phosphatidic acid, present within raw soybean lecithin are phosphat idyl ethanolamine 

(PE), phosphatidyl inositol (PI) and phosphatidyl choline (PC) (Belitz et aI., 2004). 

Composition of lecithin varies, depending on origin, raw material quality and 

manufacturing processes. Some suppliers have developed a standardized product, as the 

effect of individual phospholipids on viscosity varies, e.g. PC significantly reduces 

plastic viscosity of some dark chocolates whereas PI and PE are less effective than 

standard lecithin (Chevalley, (999). As lecithin is present within cocoa beans and milk, 

traces of lecithin will always be present within chocolate even if it is not included as a 

surfactant (Afoakwa et aI., 2(07). 

According to Chevalley (1999). a similar reduction in viscosity is obtained by addition 

of 0.1-0.3% lecithin as would be obtained by addition of 10 times that amount of cocoa 

butter. However, thickening occurs at a concentration of 0.3-0.5%. The viscosity 

reducing effect of lecithin is particularly related to its strong binding to the sugar 

particle surface. where it was initially believed to be present in the form of a monolayer. 

The particle size distribution is important for the concentration of lecithin, as smaller 

sugar particles will increase the effective surface area and require an increased 

concentration of lecithin to cover all surfaces. Research by Ziegler et al. (2003). 

however. has shown that lecithin adsorbs in mUltilayers on the surface of both sugar and 

cocoa particles, where it aids in dispersing aggregates and helps reduce the viscosity. 

An additional functional characteristic of lecithin is the fact that it enhances toleration 

of higher moisture levels within chocolate products (Afoakwa et al.. 2(07). 

It has also been observed that the efficiency of lecithin depends on the time of addition 
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to the chocolate mass. Addition too early in the production process. whilst mixing and 

grinding are still being conducted. will increase the risk that the lecithin is absorbed 

onto the cocoa particle where it cannot reduce the viscosity (Chevalley. 1999). At the 

same time. exposure for long time periods to relatively high temperatures negatively 

affects lecithin efficiency. 

• Ammonium phosphatide or YN 

Ammonium phosphatide or YN. also called the synthetic lecithin. is obtained from 

partially hardened rapeseed oil through glycerolysis. phosphorylation and 

neutralization. It has a similar composition and efficiency as soybean lecithin 

(Chevalley. 1999). YN is actually even more effective at low concentrations. and in 

combination with its neutral flavour and (safe) non-GMO status it is a very popular 

replacer of soybean lecithin. At concentrations above 0.5% both lecithin and YN 

decrease the plastic viscosity of chocolate. In addition. YN does not affect the yield 

stress as a result of which there is no optimum dosage (Gotz et al.. 2005). 

• Polyglycerol-Polyricinoleate or PGPR 

Polyglycerol-Polyricinoleate or PGPR is another synthetic emulsifier. The application 

of PGPR in chocolate products is well known. and is mainly based on the effect of 

PGPR on the yield stress. In comparison to lecithin. PGPR can halve the yield value of 

chocolate at a concentration of 0.2% (Beckett. 2008). It is believed that the high 

efficiency of PGPR is a result of its higher molecular weight compared to lecithin. 

enhancing the steric stabilization mechanism and increasing the continuous phase 

volume fraction (Afoakwa et al. 2007). At these low levels of inclusion PGPR shows 

only a minimal effect on the plastic viscosity of the chocolate (Gotz et al.. 2005). 

Inclusion of 0.5-1.0% eliminates the flow point of chocolate. turning it into a 

Newtonian liquid with rapid setting properties. As a result of this behaviour. in 

industrial chocolate manufacturing mixtures of PGPR and lecithin are commonly used 

in order to produce a product with the optimum flow properties. 

2.1.2.4.2 Flavouring agents 

Chocolate flavour is. to a large extent. determined by the processing techniques used. One of the 

key steps in the flavour and aroma development is the roasting of the cocoa beans. which 

ensures the development of flavour compounds that enhance the taste and aroma of the finished 

chocolate. The final flavour depends on the time and temperature of roasting. as well as on the 

origin and quality of the cocoa beans used. as discussed by Jackson (1999) and Dimick and 

Hoskin (1999). Another important processing step in relation to the flavour development is the 

conching process. where undesirable volatile acidic components are removed from the chocolate 

mass. Finally. the ingredients present within the chocolate recipe play an important role in the 
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flavour development. Sugar not only contributes sweetness. it also offsets the bitterness of 

cocoa solids. It can furthermore take part in the Maillard reaction with milk protein at elevated 

temperatures to create a milk caramelized flavour. 

Flavour additions in chocolate manufacturing generally aim to enhance a characteristic flavour. 

rather than masking it. The main flavour additive commonly used is vanilla (natural flavour) or 

vanillin (artificial flavour). which gives a creamy note. Another commonly used flavour additive 

is salt. which enhances clean crispy notes (Jackson. 1999). Other flavour additives. e.g. spices. 

nutmeg and cinnamon. are added to chocolate to create a more specific flavour. 

2.1.3 Crystallization 

Walstra (2003) describes a crystal as a solid state material with closely packed building entities. 

as a result of which the free energy of the material is at minimum. The presence of crystals in 

food products impacts food quality and organoleptic properties like texture. mouthfeel. physical 

stability and consistency. In the specific case of chocolate. the cooling sensation perceived upon 

eating of a piece of chocolate is a result of the endothermic reaction taking place in the mouth. 

Energy released as a result of the temperature difference between the chocolate and the mouth is 

adsorbed by the chocolate. melting the fat I cocoa butter crystals present. Crystallization is the 

process whereby a crystalline lattice structure is formed (Hartel. 200 I). in this case from the 

liquid fat present in the chocolate mixture. Three (Awad and Marangoni. 2006; Lawler and 

Dimick. 2(02) and sometimes four (Hartel. 2001; Walstra. 2003) stages have been defined 

within the crystallization process: 

• Supercooling 

For crystallization to take place. a phase change is required. This can be obtained by 

cooling the liquid cocoa butter below its equilibrium melting point. Below this 

temperature the free energy of the solid (crystalline) phase is lower than that of the 

liquid fat phase. driving crystallization. The deviation in temperature of the 

environment below the melting point of cocoa butter (equilibrium phase transition 

temperature) is defined as the level of supercooling. 

• Nucleation 

Once a certain level of supercooling has been achieved. crystal nuclei are formed. 

Nucleation can be defined as the transition from a metastable to a more stable phase. 

where the liquid state molecules rearrange through a cluster formation into a crystalline 

lattice. The nucleation rate is defined as the rate of formation of critical nuclei in the 

melt per unit time and unit volume. 
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In the case of fat crystallization the monoglyceride content significantly impacts the 

nucleation rate by forming catalytic impurities. Nucleation will be further discussed in 

section 2.1.3.1. 

• Crystal growth 

The nuclei formed during the nucleation stage continue to grow. through diffusion of 

the crystallizing molecule from the melt toward the solid-liquid interface of the 

growing crystal surface. until equilibrium is attained. Only molecules with a suitable 

configuration. e.g. size. shape and orientation. will be able to attach to a specific crystal 

surface. Two main factors drive crystal growth: the degree of supercooling and the 

viscosity of the melt. which controls the mobility of the molecules and consequently the 

rate of diffusion. Crystal size and shape are determined by the temperature and/or 

degree of supercooling. Relatively low supercooling results in the formation of (large) 

spherulites. and eventually a more open (spherical) crystalline structure. whereas 

increasing the degree of supercooling will increase the crystal growth rate. forming 

smaller crystals and a more compact crystalline structure. 

• Recrystallization 

While the crystallization process progresses. a moment exists where the degree of 

supercooling is reduced until equilibrium is obtained. At that stage the melt has been 

transformed into a stable (crystalline) system. However. even after reaching equilibrium 

reorganisations within the crystalline structure have been observed during long-term 

storage. in order to minimize the energy of the system. An increase in critical crystal 

size causes small crystals to dissolve. whilst large crystals continue to grow; this is 

defined as Ostwald ripening. Recrystallization also includes the transition of 

polymorphic forms as a result of storage temperature and time. e.g. fat bloom in 

chocolate products can be caused by a solid-state transition from Form V to Form VI 

polymorphs. 

According to Timms (1997). the partition between crystal nucleation and growth is very thin, 

and these stages often occur simultaneously. Whilst the temperature is reduced to obtain the 

right degree of supercooling. the first nuclei will be formed, hence inducing nucleation and 

successive growth of the original nuclei. Chemical composition (recipe) and processing 

conditions like temperature. cooling rate and shear are the main drivers of fat crystallization. By 

controlling heat. mass and momentum transfer rates. the crystal size and consequently the 

texture and organoleptic characteristics of the cocoa butter system can be kept constant. 
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2.1.3.1 Nucleation 

According to Hartel (200 I). nucleation is the most important stage within the crystallization 

process. Without the formation of the required amount of nuclei at the appropriate time. it is 

impossible to obtain the desired crystalline structure. In other words. nuclei are essential as they 

act as centres of crystallization. Nucleation commences either through agitation. mechanical 

shock. friction or extreme pressures in the melt (Mullin. 200 I). 

Nucleation can be through different mechanisms. related to the driving factor responsible for 

nuclei formation . The overview in Figure 2.1 defines two main mechani sms of nucleation. 

primary and secondary. Primary nucleation can be further subdivided into homogeneous and 

heterogeneous nucleation. Lawler and Dimick (2002) suggested chemical nucleation as a third 

mechanism. based on observations made within the area of polymer science. There is some 

debate. however. as to whether this refers to chemical induction of heterogeneous nuclei or 

rather chemical nucleation resulting in the addition of solid heterogeneous nuclei. 

Nucleation 

_ Primary 

------ ---- ----- --~ ~ 
Secondary 

(induced by crystals) 

Chemical Homogeneous 

(spontaneous) 

Heterogeneous 

(induced by foreign particles) 

Figure 2.1. Nucleation mechanisms (Hartel, 2001; Mullin, 2001). 

2.1.3.1.1 Primary Homogeneous Nucleation 

Primary homogeneous nucleation takes place in a homogeneous system. where no phase 

boundaries exist. Depending on the conditions. molecules can orientate themselves to form 

nuclei spontaneously (Walstra. 2003). Sufficient supercooling of the melt is required to ensure 

that the rate of association is greater than the rate of dissociation . resulting in the formation of a 

cluster of molecules of critical size to be called a nucleus (Hartel. 200 I). The formation of such 

a cluster is relati vely simple in a liquid. by association of solute or vapour molecules. In a solid. 

an additional complexity is that the molecules need to attain a mutual orientation as those of the 

crystals. in order to form a cluster. An embryo is a cluster of molecules which is smaller than a 

nucleus. and which easily re-dissolves. Upon aggregation of the molecules. two opposing 

mechanisms take place. First of all. nucleation is favoured by the release of heat as a result of 

the aggregation process. Secondly. the aggregated cluster has an increased urface area. 
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requiring energy to overcome the surface tension or pressure. If the energy resulting from the 

heat of crystallization exceeds the amount of energy required to overcome the surface energy. 

stable nuclei will be formed (Timms. 1997). The excess free energy of a spherical embryo. 

t....Gemh• with radius r is given by equation [2-1]. in comparison to the excess free energy of a 

similar volume of phase a: 

[2-1] 

where ll.Gv is the free energy change of the material. expressed per unit volume. and ll.Gs is the 

interfacial free energy per unit surface area between the two phases. equalling the interfacial 

tension. y. At low temperature differences the assumption is made that the interfacial tension is 

independent of temperature. and equation [2-1] can be rearranged into 

ll.Gemb = i nr3 ll.GV (1- T:J + 4nr
Zy. [2-2] 

One of the parameters driving the nucleation process is the embryo radius. r. If r < ren the 

embryo will dissolve. resulting in a decrease in free energy. whereas homogeneous nucleation is 

successful if r > r", causing the embryo to grow and form a nucleus. The critical radius for 

nucleation. rer> can be obtained by differentiating equation [2-2] and assuming that ll.G~rrtJ = 

ll.Gmax: 

r = _ 2y 
cr llGV(l-T/Teq ) . [2-3] 

The maximum free energy of the system. ll.Gmax• which can also be used as the activation free 

energy required for nucleus formation. is obtained by incorporating equation [2-3] into equation 

[2-2]: 

[2-4] 

As the level of supercooling required to initiate nucleation is considerable. homogeneous 

nucleation is sparse and is only observed in chemically pure systems (Walstra. 2(03). 

2.1.3.1.2 Primary Heterogeneous Nucleation 

Primary heterogeneous nucleation is induced by catalytic impurities at temperatures above the 

homogeneous nucleation temperature. Thorn. Catalytic impurities are small (foreign) particles or 

surfaces. whose character depends on the composition and purity of the melt (Walstra. 2(03). 

The degree of supercooling required for heterogeneous nucleation is lower than that required for 

homogenous nucleation. consequently reducing the activation free energy associated with the 

formation of a critical nucleus under heterogeneous conditions, ll.G·max (Mullin. 2(01). 
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Equation [2-5] describes the relation be tween homogeneous and heterogeneous nucleation, 

where factor ¢ has a value less than unity. 

[2-5] 

Heterogeneous nucleation can be induced by either a small (foreign) particle, or a solid surface. 

[n both cases, the driving factor is the angle of contact between the surface of the crystalline 

deposit and that of the cata lytic impurity. e. which is schematica lly shown in Figure 2.2. The 

concept of contact angle will be discussed in more detail in section 2.3.2.2. but is mainly 

determined by the interfac ial tension, y. According to the Young's equation [2-30], a balance of 

forces exists at the point where three phases meet. [n thi s case that applies to the point where the 

surface of the catalytic impurity, the crystalline deposit and the melt (liquid continuous phase) 

meet. 

Figure 2.2. Heterogeneous nucleation at the surface of a catalytic impurity (Walstra, 2003). 

The contact angle, e, is dependent on the balance between the interfacial tensions, ,(, of the 

three phases: catalytic impurity or solid (s), melt (m) and crystalline deposit (c). 

Crysta lline deposit will form an e mbryo due to the presence of a solid surface. if cos e is finite : 

8 
Ysm -Yes 

cos =----
Yem 

[2-6] 

where Ysm. Yes and Yem are the surface tensions of the solid- melt. crystal-solid and crystal- melt 

interfaces. respectively. 

An embryo formed spontaneously (homogeneous). and an embryo formed as a result of an 

impurity (heterogeneous) only have the same curvature if the level of supercooling is the same 

in both sy te rns (Walstra. 2003). From Figure 2.2 it can be ob erved that a "heterogeneous" 

embryo will have a lower volume in this situation. Factor ~ (see equation [2-5]) is obtained by 

di viding the volume of a "heterogeneous" embryo by that of a sphere of the same radius: 

(2) = (2+cos 9)(1-cos 9)2 

4 
[2-7] 

Due to the fact that the energy required for the formation of "heterogeneous" embryos is lower 

than that required for "homogeneous" nucleation. heterogeneous nucleation is more commonl y 

observed in food systems (Awad and Marangoni . 2006). 
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The relation between contact angle and the nucleation mechanisms is summarized in Table 2.3. 

Heterogeneous nucleation is favoured at relatively low contact angles (Timms, 1997). 

Table 2.3. Effect of the contact angle, (J, and factor, p, on the free energy of nucleation, NJ 

(Mullin, 2001). 

Contact angle 

o 

2.1.3.1.3 

Factor 

¢=1 

¢<1 

Free energy of 
nucleation 

&G 

Secondary Nucleation 

Comments 

Non-affinity between the crystalline 
deposit and the surface of the catalytic 

impurity. 

Homogeneous and heterogeneous 
nucleation require the same free energy 

of nucleation. 

Partial affinity. 

Heterogeneous nucleation is preferred. 

Complete affinity. 

Obtained when seed crystals are used. 

Secondary nucleation can only occur when crystals are already present in a system, i.e. after 

primary nucleation has taken place. Due to shear or another external force, e.g. a scraped 

surface heat exchanger used during ice-cream manufacturing, growing crystals are fractured. 

The size of the fractured crystal determines whether secondary nucleation will occur. If the 

fractured crystal is below the critical nucleus size, it will re-dissolve. Otherwise, stable crystal 

nuclei are present, which induce crystal (secondary) nucleation and growth (Lawler and Dimick, 

2(02). According to Walstra (2003), the phenomenon described here is not true secondary 

nucleation, where a nucleus is formed in the vicinity of a crystal at the same phase, rather than 

at the surface. 

2. J .3.2 Fat crystallization 

Fat crystallization is an important characteristic of many food products, where the fat crystals 

are responsible for a number of important properties, e.g. mechanical and eating properties, 

physical stability and visual appearance (Walstra, 2(03). However, the characteristics of fats 

and oils make the crystallization process extremely complex. Fats are polymorphic, i.e. they 

contain triglycerides with the same composition which can exist in more than one crystal form 

or configuration (Lawler and Dimick, 2(02). The three major crystal forms are: (1, or hexagonal 
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pac~ing, po, or orthorhombic perpendicular packing, and ~ , or triclinic para lle l packing. They 

vary in melting point and crystal stability, with a crystals having the lowest, and ~ crystals 

having the highest melting point and stability, respectively (Blaurock, 1999). As the free energy 

of nucleation, ~Gmax, is higher for the ~ polymorphic form, see Figure 2.3, triglycerides often 

crysta llize initia lly in a or po structures. However, with time and at constant temperatures, a and 

po crysta ls transform into ~ crystals through solid-solid or solid-liquid-solid transformation 

mechani sms (Awad and Marangoni, 2006). Overall it can be conc luded that polymorphism 

affects the c rystallization rate, crystal size, crystal morphology, and degree of crystallinity 

(Awad and Marangoni , 2006). 

a 

Figure 2.3 Free activation energy of nucleation change (Ad n) for the three main polymorphs, 

whereby AC# n represents the free energy barrier that must be exceeded before stable nuclei 

can be formed (A wad and Marangoni, 2006). 

Most fat s are complex mixtures which are composed of a number of different triglycerides with 

various me lting behaviours. The me lting temperature of a triglyceride is determined by the 

length of the fatty ac id chains, the number and configuration, e.g. cis or trans, of double bonds 

and the distribution of fatty acid residues (Walstra, 2003). As not a ll triglycerides can have the 

same compo ition, a mi xture of different triglycerides, e.g. a fat, will have a melting range 

rather than a single melting point. Within a mixture of triglycerides, the me lting temperature 

and the heat of crystallization of different tri glycerides will be closely related, causing the 

higher melting tri glycerides to dissol ve in the lower me lting ones. 

2.1.3.2.1 Cocoa butter polymorphism 

Processing conditions and TAG composition of cocoa butter determine the c rystal form, mainly 

by determining the packing arrangement during crystallization. For cocoa butter six different 

polymorphic forms have been identified, each with its own phys ical characteri sti cs. 
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Despite many years of research, no uniform nomenclature exists. In general. either the 

convention of Wille and Lutton (1966). based on the Roman numbering system (I-VI) or the 

convention of Larsson (1966), based on the Greek nomenclature. is used. Table 2.4 summarizes 

the characteristics of the different cocoa butter polymorphs. 

Table 2.4 Overview of the physical properties of the polymorphic forms of cocoa butter 

(adapted from Talbot, 1999a and Rousseau, 2007). 

Form Polymorph Melting Chain Molecular Common means 
' 1 ' 2 point [DC] packing packing of development 

Stability 

I W2 or y 16-18 Double Orthorhombic 
Rapid cool from 

Unstable 
melt 

II a 21 -22 Double Hexagonal 
Cool from melt at 

Unstable 
2 DC/min 

III mixed 25.5 Double Orthorhombic 
From Form II on Semi-
storage (5-10 0c) stable 

IV WI 27 -29 Double Orthorhombic 
From Form III on Semi-
storage (16-21 0c) stable 

V P2 34- 35 Triple Triclinic 
Transformation of 

Form IV 
Stable 

From Form V on 

VI PI 36 Triple Tric\inic 
storage (room 

Stable 
temperature, long 

time) 

a The subscnpts I and 2 are used to mdlcate the highest and lowest meltmg form wllh similar crystal 

packing. 

' I As proposed by Wille and Lutton ( 1966) 

' 2 As proposed by Larsson (1966) 

As mentioned earlier. process ing conditions determine the polymorphic form of the cocoa butter 

phase formed. The main parameter affecting the formation of different polymorphic forms is the 

temperature during crystallization. although cooling rate and agitation rate are also known to 

have an effect (Hartel. 200 I). A low temperature and fast cooling rate results in the formation of 

lower melting polymorphs. i.e. Form [ and II, which are generally unstable and are with time 

transformed in higher melting polymorphs. i.e. Form III and IV (Arishima and Sato. 1989). 

These phase transitions are irreversible and are driven by temperature and time. The 

polymorphic form required during chocolate production is Form V. and the processing 

techniques required to obtain this form will be discussed in more detail in section 2.1.4.1. Upon 

storage Form V can transform into Form VI. which is generally associated with fat bloom and 

affects the sensorial propertie of the product. The low melting cocoa butter polymorphs can be 

obtained directly through cry tallization of totally molten cocoa butter. whereas the stable P 
polymorphs can only be obtained through transformation from W. 
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Figure 2.4 shows an isothermal phase-transition scheme of cocoa butter under mechanically 

static conditions (Schenk and Peschar, 2004). The solidification temperature , Tp, has a 

significant impact on the initial polymorph obtained during cocoa butter solidification . At Tp $ 

20 °C, the a and y (W2) polymorphs are obtained after a few minutes or seconds (depending on 

temperature), whilst at 20 < Tp $ 27 °e solidification of the W polymorphs dece lerated to hours 

or days and at Tp ~ 28 °C no solidification was perceived (van Malssen et a I. , 1999). 

l min 

c 
E 

I II 

time (Iagarithmic) 
l J I ,,· 

Figure 2.4 Qualitath'e isothermal phase-transition scheme of static cocoa butter. 

Solid phase present after isothermal crystallization time at Tp (Schenk and Peschar, 2004). 

An important discriminating factor for the diffe rent polymorphs is the molecular conformation 

or packing configuration, which in tum can be characteri zed by the distance between the fatty 

ac id chains and the angle of tilt re lati ve to the plane of the end methyl group (Talbot, 1999a). [n 

general, fa ts can be class ified by three main pol ymorphic forms with increasing thermodynamic 

stability: a , W and p. The a polymorph, which is the least table configuration, has a lkyl chains 

perpendicular to the end plane, resulting in a hexagonal symmetry. According to Rousseau 

(2007) they exist as mall , fragile, transparent pl ate let crystals, - 5 )lm in length , whereas the W 

and p polymorphs exi t as small de licate needles measuring 1-2 )lm and 50 )lm in length, 

respecti vely. The main difference between the p and P' structures are their angle of tilt relative 

to the end of pl ane of the molecules. Within the W polymorph the angle of tilt is greater, with the 

fatty ac id chain packed more perpendicular to each other, forming an orthorhombic structure. 

[n the p structure the fatty ac id chains are paralle l, allowing a closer and more dense packing, a 

triclinic tructure (Schenk and Pe char, 2004). The lamellar spacing and fatty ac id arrangement 

of each polymorph can be identified by X-ray diffraction. Another parameter differentiating 

between the p and po tructure i ' the manner in which the triglyceride crysta llize. 
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As can be observed from Table 2.4, the W polymorph crystallizes in a double chain packing, 

whereas the p polymorph packs in a triple chain. Chain packing is defined as the distance 

between two subsequent methyl end planes. Triglyceride composition and the position of the 

double bond mainly determine the chain packing (Talbot, I 999a). All parameters discussed 

affect the crystallization and solidification characteristics of the cocoa butter, either direct or 

indirect. 

2.1.3.2.2 Cocoa butter crystallization 

Understanding of the crystallization behaviour of cocoa butter is essential, as this behaviour 

affects rheological properties of chocolate during manufacturing, and consequently determines 

the viscosity, demoulding, snap, surface gloss and melting characteristics of the final product 

(Dimick, 1999). Cocoa butter is a complex mixture of triacylglycerols, of which approximately 

75% have a uniform confirmation with oleic acid in the sn-2 position. giving a complex 

polymorphic system whose crystallization behaviour is not straight forward (Toro-Vazquez et 

aI., 2004). It depends on, amongst others, the TAG composition, which may vary depending on 

country of origin, as well as on processing conditions (Awad and Marangoni, 2006). Toro­

Vazquez et at. (2004) mention the existence of slow-nucleating cocoa butter, consisting of a 

higher concentration of di-unsaturated asymmetrical TAG, and rapid-nucleating cocoa butter, 

consisting of a higher concentration of symmetrical TAG. Monotropic polymorphism means 

that each polymorphic form has a different Gibbs free energy, G, and the polymorph with the 

lowest Gibbs free energy is thermodynamically the most stable one. As a result of the 

differences in Gibbs free energy, the less stable polymorphs transform to more stable 

polymorphic forms with time, as shown in Figure 2.4 (Himawan et al., 2006). As the Gibbs free 

energies of the different polymorphs do not cross below their melting points, each form can be 

obtained by crystallization as long as the rate of solid-state transformation is lower than that of 

crystallization (Sato, 1993). 

Figure 2.5 shows the crystallization mechanisms taking place within a cocoa butter system in 

time. The crystallization process starts with supercooling of the liquid cocoa butter (melt), in 

order to induce a liquid-solid phase change resulting in the formation of primary crystals with 

characteristic polymorphism (Brunello et al., 2(03). Both homogeneous and heterogeneous 

nucleation mechanisms, through the presence of endogenous plant materials acting as catalytic 

impurities, are responsible for this initial or primary crystallization stage, in which < 1 % of the 

melt is solidified. It is possible to identify the crystals formed at different stages of the 

crystallization process through thermal and chemical analysis. The first (visible) cocoa butter 

crystals formed during a static crystallization process at 26-33°C were observed to contain POP, 

POSt and StOSt TAGs, and the concentration of StOSt was shown to increase with 

crystallization temperature (Sato & Koyano, 200 1). Loisel et al. (1998a, I 998b ) discuss the 
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segregation of cocoa butter by varying lipid families during crystallization. a process which is 

driven by the crystallization temperature. Nucleation is proposed to start with the complex lipids 

and trisaturated TAGs forming seed crystals if Tc > 26.rC. hypothesizing a fractionated 

crystallization process during cooling. Due to differences in solubility. saturated TAGs (SSS) 

segregate from other mono- and polyunsaturated TAGs upon crystallization. initiating 

crystallization of cocoa butter via the a form. Secondary nucleation can take place once the 

initial crystals have been formed. This may result in the formation of multicomponent fat 

crystals (Dimick. 1999). According to Loisel et al. (1998a) the second nucleation step is driven 

by crystallization of monounsaturated TAGs (SUS). Nucleation is followed by a crystal growth 

stage and finally the formation of a continuous three-dimensional crystal network. According to 

DeMan (1999). the degree of supercooling determines whether nucleation or crystal growth 

predominates. At a temperature halfway between the melting temperature. T m. and the glassy­

state temperature. Tg. the crystallization rate is optimal. whereas close to T m the degree of 

supercooling is low and crystal growth predominates. and close to Tg nucleation predominates. 

Crystal growth is favoured over the formation of the 3D network. as it requires less energy than 

is required for the aggregation and orientation of the melt molecules in a three-dimensional 

network. A heat- and mass-transfer-limited process is responsible for the aggregation of 

crystals. and growth continues until approximately 50-70% of the melt has been solidified 

(Dimick. 1999). The crystal size distribution depends on the nucleation rate and the rate of 

crystal growth. and is an important quality parameter in food systems. From a certain critical 

size fat crystals are detectable on the tongue and the amount and size of the crystals that are 

expected from a palatability point of view will depend on the product texture and the individual 

consumer (Himawan et al.. 2006). The fat crystal size also affects the hardness of the cocoa 

butter system. Assuming that the solid fat content is the same for two products. the product with 

the smaller fat crystals is softer. more plastic. compared to the product with the larger fat 

crystals, which is harder (DeMan, 1999). 

The aggregation or crystal nucleation and growth processes are responsible for an increase in 

the solid fraction or solid fat content (SFC) of the cocoa butter system. This process continues 

until the increase in solid fraction causes the individual crystals to come into contact with each 

other. slowing the crystal growth. At that stage. crystal-crystal interactions start to dominate 

(Himawan et aI., 2006). Although there is some debate as to the exact mechanism, DeMan 

(1999) explains that van der Waals forces are responsible for keeping the crystal network 

together. Depending on the crystal size. van der Waals attractions are responsible for the 

aggregation of crystals. leading to the formation of crystal aggregates. Only at very low mutual 

distance some degree of repUlsion may occur (Walstra et al.. 2(01). Post-crystallization 

processes taking place during storage affect the three-dimensional network that has been formed 

previously through aging of the bonds. Especially physical and/or mechanical properties of the 

fat. such as hardness and snap. have been observed to increase during storage (Himawan et al. 
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2006) . One of the main mechanisms responsible for this increase is called sintering, which is the 

formation of solid bridges between crystals, consequently forming a network (DeMan, 1999; 

Himawan et aJ., 2006). The formation of a fat crystal network gives cocoa butter its plastic 

(physical) characteristics, i.e. external forces applied to the crystallized network cause the fat to 

deform or flow (Walstra et aI., 2001) . 

E 
E 
0 
0 

~ ., 
u 
c:; .. 
-e 
0 
<f) 

" -< 

3 

2 

•• •••• ••• •• 

-/ 

\-\ 
-/ 

Secondary growth 

Secondary induction time ---- / - - Secondary nucl.aDeft', 

Primary growth 

nme (min) 

Figure 2.5 Crystallization events occurring within the bulk during solidification of cocoa 

butter (Dimick, 1999; Himawan et aI., 2006). 

The differences in free energy of activation for nucleation, !J.C#, between different polymorphic 

forms, as shown in Figure 2.3, cause triacylglycerol s to crystallize initially in the unstable a or 

~. form, before tran forming into the table ~ form through solid-solid or solid-liquid-solid 

mec hani ms, depending on temperature and time (Awad and Marangoni, 2006). In the case of 

cocoa butter, several authors (Sonwai and Mackley, 2006; Mazzanti et aI., 2004; van Malssen et 

aI., 1999) ha e observed the initial crystallization of cocoa butter under static conditions into 

e ither y or a (Form II) polymorphs. Depending on time and cooling temperature, the crystals 

formed during the initial nucleation are transformed into the po (Form IV) form, through a solid­

state tran ition. According to Toro-Vazquez et al. (2004) this is followed by a nucleation and 

growth phase, in which additional po crystals are developed directly from the melt. The 

tran formation rate depends on the crystallization temperature, and at 20°C the transition is 

relati vely fast. Eventually, the po polymorphs will transform to the most stable P (Form V) 

polymorph. A thi transition require a more intensive rearrangement of the cry tal planes into 

an ordered and table confirmation, thi is the longest transformation process (Awad and 

Marangoni, 2006). However, the application of shear during the crystallization process induce 

a pha e transition of cocoa butte r from a less stable form, e.g. Form II (a), directly to the stable 
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Form V (P) (Sonwai and Mackley, 2006). Stapley et al. (1999) mention three possible reasons 

why shear promotes the formation of Form V crystals: (i) shear aligns TAG molecules parallel 

to each other, increasing the possibility of interaction and nucleation events (primary 

nucleation); (ii) shear breaks up crystallites, increasing the number of seed crystals, initiating 

secondary nucleation; and (iii) shear force is responsible for a better overall mixing. A fourth 

mechanism has been proposed by Baichoo et al. (2006), who refer to the enhanced crystal 

growth as a result of an increase in the mass transfer by reducing the thickness of the stagnant 

film surrounding the nuclei. Sonwai and Mackley (2006) further mention the observation that 

the shear-induced transition of Form II to Form V coincides with a change in crystal 

morphology, an increase in the crystal volume and the fast transformation from a partially 

crystallized state into an almost completely solidified fat. The overall phase transition 

mechanisms of cocoa butter have been summarized in Figure 2.6. Both isothermal and non­

isothermal phase transitions take place under static conditions. The y, a and po polymorphs can 

be formed directly from the cocoa butter melt, whereas the two P phases (V and VI) can only be 

obtained through solid-state transitions from the po phase (van Malssen et aI. , 1999). Both 

crystallization temperature and cooling rate seem to determine the polymorphic transitions 

observed and the crystal form obtained from the melt (Lawler and Dimick, 2002). 

Liquid 

~ melting 

• direct solidification upon 
sufficient cooling 

t:===:;:::::> solid-state transition 

SHEAR 

Figure 2.6 Phase transition scheme of cocoa butter (van Malssen et al., 1999). 

One of the major compound groups investigated in relation to the crystallization of cocoa butter 

are the phospholipids. By anaJyzing the composition of cocoa butter crystals formed at different 

stages of the crystallization process, Dimick (1999) found that the hi gh-melting crystals formed 
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during the early stage of crystallization, consisted of large amounts of phospholipids and 

glycolipids. He proposed a mechanism whereby the polar lipids form a micelle or inverse 

hexagonal mesophase orientation, locking trace amounts of water in its core. These micelle act 

as crystal nuclei, onto which the high melting trisaturated TAGs, monounsaturated TAGs and 

the lowest-melting di-unsaturated TAGs, respectively, are loaded. Phospholipids present in 

cocoa butter are thus known as important compounds increasing the crystallization rate and 

enhancing the formation of ~ polymorphs (Lawler and Dimick, 2(02). 

By using the "memory" of the cocoa butter, it is possible to crystallize cocoa butter directly 

from the melt in any of the ~ phases. If a sample of cocoa butter, solidified in the ~ phase, is 

heated just above its melting end point, it does not lose all structural information about the 

crystalline state. As a result, upon cooling, the cocoa butter re-crystallizes into the ~ phase 

(Schenk and Peschar, 2004). In contrast to crystallization induced by seeding, where Form V 

cocoa butter or TAGs are added. the structural information or crystal-packing information 

responsible for crystallization in the stable ~ phase is present in the memory of the melt. 

2.1.3.2.3 Cocoa butter microstructure 

As discussed in section 2. 1.3.2.2, the aggregation of crystal aggregates is responsible for the 

formation of a three-dimensional fat crystal network, which determines many of the sensory and 

macroscopic physical properties of the final product. According to Awad and Marangoni (2006) 

the mesoscale structure or microstructure of the fat crystal network is responsible for the 

mechanical properties of the fat. The mechanical strength, in tum, determines a number of the 

sensory properties, such as spreadability, mouthfeel, snap and texture (Narine and Marangoni, 

2(05). An overview of the structural hierarchy defined during the crystallization process is 

shown in Figure 2.7, together with the factors affecting the fat crystal network formation 

(Narine and Marangoni, 2(05). Different structures are formed depending on the crystallization 

conditions and/or the chemical composition of the fat, ranging from primary crystallites (::::: 0.5-1 

~m) to crystal aggregates (::::: 1 00-200 ~m). Crystal aggregates, in tum, can be spherulitic, feather 

like, blade or needle shaped (Tang and Marangoni, 2(07). The fat crystal network 

microstructure combined with the solid fat content (SFC) of the fat and the nature of the 

interparticle interactions is responsible for the rheological properties of the fat. By measuring 

the rheological properties of fat structures using small deformation rheology methods, more 

information is obtained regarding the mechanical properties of the fat crystal network. 

Combining these results with microscopy analysis, e.g. polarized light microscopy, allows the 

determination of the effect of the fat microstructure on the mechanical properties (Tang and 

Marangoni, 2(07). 
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Figure 2.7 Structural hierarchy of the crystallization process and the formation of the fat 

crystal network (Narine and Marangoni, 2005). 

McGauley and Marangoni (2002) describe the microstructure of the different cocoa butter 

polymorphic forms and their relation to the crystallization temperature. Both the a and y 

polymorph, which co-existed, were observed to have similar granular morphologies. The 

morphology of the W polymorph depends mainly on the crystallization temperature and to a 

lesser extent on the formation pathway. When the W polymorph was formed through a solid­

state transition from the a polymorph, a granular morphology was obtained, which showed 

evidence of the initial formation of clusters of spherulites at high crystallization temperatures. 

However, direct crystallization from the melt resulted in W polymorphs with varying 

microstructures depending on the crystallization temperature, e.g. a granular morphology at 20 

°C and needle-like crystallites (- 25 f.lm) at 24°C. In a similar experiment, Brunello et al. 

(2003) did not see changes in microstructure during storage at 5°C, assuming that this was the 

reason for the constant rheological parameters. At higher storage temperatures (20°C), changes 

in mechanical properties were observed as a result of the polymorphic <po to P) transition, which 

was accompanied by an increase in solid fat content (SFC) and resulted in a number of different 

microstructures, e.g. a feather-like morphology. It was concluded that not only SFC but also the 

network structure, e.g. polymorphism. had a significant influence on the mechanical properties 

of the fat crystal network. 

The microstructure of cocoa butter and fat crystal networks in general. is not influenced by the 

depth within the sample at which the measurement is taken, i.e. it is not affected by changes in 

scale or size. As discussed by Narine and Marangoni (2005), this form of symmetry is called 

self-similarity. Fat crystal networks are statically self-similar, which has been described by 

Awad and Marangoni (2006) as "polycrystalline particles arranged in a fractal fashion within 
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clusters. which themselves pack in a Euclidean (homogeneous) nonfraclal fashion". Based on 

the fractal nature of fats the fractal dimension, D, a mathematical indicator of structure, can be 

determined and used as a measure to quantify the microstructure of a system. Crystallization 

kinetics, on the other hand, can be quantified by the induction time, T, and the A vrami exponent, 

n (McGauley and Marangoni, 2(02). Toro-Vazquez et al. (2004) identified two different crystal 

growth mechanisms of the TAGs of cocoa butter, defined by n, in relation to the crystallization 

of the P' polymorph as a phase range with different melting temperatures. If Tcr > 19.0°C a tri­

dimensional (n ::::: 4) or spherulitic crystal growth mechanism was observed, whereas at Tcr < 

19.0°C a bi-dimensional (n ;::; 4) or disk-like mechanism was followed. McGauley and 

Marangoni (2002) established a weak but significant correlation (p = 0.0126) between the 

induction time and the Avrami exponent. A strong correlation (p < O.OOl) was observed 

between the A vrami exponent and the fractal dimension, two parameters which both describe 

microstructural events. A hypothesis was proposed that, under certain conditions, the A vrami 

exponent and the fractal dimension can predict the mechanical strength or hardness of a 

network. 

2.1.3.3 Chocolate crystallization 

Processing conditions and ingredients added to cocoa butter during the chocolate manufacturing 

process significantly affect the crystallization of chocolate. Tempering is the specific processing 

step required to generate a small amount of stable fat crystal nuclei, which act as seed crystals 

during further chocolate manufacturing, promoting the formation of stable Form V crystals. An 

in-depth discussion of the tempering process is given in section 2.1.4.1. In general, temperature, 

time and shear are three parameters known to affect the tempering process. Stapley et al. (1999) 

compared tempered and untempered chocolate, and found that the crystal growth rate is lower in 

tempered chocolate, possibly as a result of changes in cooling rate. A high cooling rate 

promotes the formation of more unstable polymorphs, whilst at lower cooling rates more time is 

available for the formation of stable (higher) polymorphs. Similarly, Baichoo et al. (2006) 

showed that at low cooling rates the growth of stable (Form V) polymorphs in tempered 

chocolate is favoured over the nucleation and growth of unstable polymorphs. In the case of 

rapidly cooled chocolate, low-melting polymorphs are formed initially, but melt on heating and 

re-crystallize in high-melting polymorphs. The commercial tempering process used during 

chocolate manufacturing consists of a well-controlled temperature program, whereby the 

chocolate mass is subsequently heated, cooled and re-heated, as can be observed in Figure 2.11. 

section 2.1.4.1. When re-heating chocolate the temperature is important, as this will affect the 

number and possibly the size of seed crystals remaining (Stapley et al., 1999). A too high re­

heating temperature will melt out the seed crystals, consequently reducing the crystallization 

rate. 
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According to Stapley et al. (1999) a longer induction time does not have a significant effect, e.g. 

the number of seed crystals will not increase with an increase in nucleation time. A strong 

correlation exists between crystallization temperature and induction time, where a lower degree 

of super-cooling (higher temperature) significantly increases the induction time. A low 

induction time, i.e. fast crystallization, is obtained at low hold temperatures (1 3°C), and is 

characterized by the formation of low melting polymorphs (Dhonsi and Stapley, 2006). The 

induction time at higher temperatures is much longer, and favours the formation of the more 

stable higher melting polymorphs. The main method to reduce the induction time at higher 

crystallization temperatures is by applying shear during the cooling and holding stages of the 

tempering process. It appears, however, that a critical shear rate for each temper time below 

which seed crystals are not formed can be found (Stapley et aI., 1999). Simultaneously, a 

maximum shear rate prevails for application during tempering, because of the production of heat 

as a result of the applied shear the risk of melting out the recently formed seed crystals exists 

(Beckett, 2(01). The action of shear on cocoa butter and chocolate crystallization has frequently 

been discussed in literature, and it is generally accepted that shear reduces the induction time, 

probably by affecting the orientation of fat crystals, consequently accelerating the 

interpolymorphic transformations from Form III to Form V (Dhonsi & Stapley, 2006). 

The three-dimensional network formed within chocolate is a result of the crystallization, i.e. 

nucleation and crystal growth, of cocoa butter TAGs. As described by Rousseau and Sonwai 

(2008), the presence of solid particles, e.g. cocoa solids, sugar crystals and milk powder, 

dispersed in the continuous fat phase will affect the crystallization process and subsequently the 

fat crystal nuclei spatial distribution. By acting as a foreign surface or catalytic impurity, the 

solid particles will induce heterogeneous nucleation, accelerating growth processes. Norberg 

(2006) mentions an increase in nucleation rate as a result of the presence of solid particles. 

Additionally, these surfaces are expected to reduce the free energy of nucleation, as a result of 

which a lower degree of supercooling will be required compared to cocoa butter crystallization. 

However, the solidification process as a result of the crystallization of the fat phase and the 

viscosity of the chocolate seem to be closely related (Sato & Koyano, 2(01). Chocolate can be 

described as a pseudoplastic, which means that a force, e.g. shear, needs to be applied to the 

chocolate sample to initiate flow, and that with increasing force the chocolate will become 

thinner, as described by the Casson equation (Beckett, 2(08): 

[2-8J 

where T is defined as the yield stress, TCA is the Casson yield stress, '1CA is the Casson viscosity 

and y is the shear rate. The yield stress is the amount of energy or the force required to initiate 

flow, whereas the Casson or plastic viscosity is the amount of energy required to keep flowing. 

The viscosity of chocolate is affected by recipe, fat content, emulsifier type and content, 

moisture content, particle size distribution of the solids distributed in the continuous fat phase, 
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conching time, temper, thixotropy and vibration (Beckett, 1999b). During the crystallization of 

chocolate, the liquid fat content decreases as a result of the formation of seed crystals, 

consequently increasing the particle size distribution and increasing the chocolate viscosity. 

With the increase in viscosity, heat transfer through the chocolate mass is reduced, causing 

difficulties in creating a uniform temperature control and homogeneous crystallization (Sato & 

Koyano, 2(01). Additionally, the increased frictional heat generated by the increased shear rate 

required by the highly viscous chocolate, will affect the crystallization process. Temperature 

differences within the chocolate mass will be responsible for the generation of different crystal 

polymorphs, which in turn affect the organoleptical and physical properties of the chocolate 

product. Overall it can be concluded that both viscosity and crystallization are critical factors 

that need to be controlled in order to ensure the quality of the finished product. The main 

problem is that it is not always clear what the effect of certain ingredients and/or processing 

steps on the crystallization of the fat phase is, due to the change in viscosity. For example, 

addition of an emulsifier to liquid chocolate will influence the flow properties, causing 

difficulties assessing the effect of the surfactant on the crystallization process 

(Schantz et ai, 2(05). 

Addition of sugar crystals to cocoa butter has been observed to greatly reduce the induction time 

required for the formation of seed crystals (Dhonsi and Stapley, 2006). It is hypothesized that 

this is a result of the sugar crystals acting as heterogeneous nucleation sites, which promote the 

formation of lower melting polymorphs. Further addition of lecithin to this sugar I cocoa butter 

mixture resulted in a slight increase in induction time. This may be caused by the combined 

effect of lecithin reducing the action of sugar as a nucleation site by coating the sugar particles, 

and a reduction in the shear rate within the fat phase by enhancing the slip between the fat and 

sugar crystals. According to Norberg (2006) it is a well known fact that lecithin reduces the 

crystallization rate of fat, and that as a consequence the lecithin concentration needs to be 

controlled. Schantz et al. (2005) compared dark and whole milk chocolate samples and the 

effect of surfactant addition on the crystallization, after eliminating shear flow as a factor by 

applying surfactant specific rotation speeds to approach the torque profile of a lecithin based 

sample. Their results showed limited differences between dark and whole milk chocolate, and 

between lecithin and ammoniumphosphatide (YN). Polyglycerol polyricinoleate (PGPR), on the 

other hand, significantly reduced the induction time, showing a faster seed-forming and shorter 

total crystallization time compared to the other two surfactants. Loisel et at. (1998b) noticed a 

significant modification of the overall rheological behaviour after addition of surfactants, e.g. 

lecithins and PGPR, and as a consequence they had to modify the experimental conditions 

making direct comparison with dark chocolate impossible. However, as the addition of 

surfactants did not induce a faster crystallization of the monounsaturated TAGs of cocoa butter, 

the comment was made that surfactant addition delayed crystallization. Other emulsifiers have 

shown varying influences on cocoa butter and/or chocolate crystallization. 
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Addition of the diacylglycerol 1,3-dipalmitin to palm oil resulted in a higher melting point, 

whereas addition of 1,2-dipalmitin lowered the melting point. Similarly, sorbitan tristearate 

negatively influenced the crystallization rate, but sorbitan monoesters and monoacylglycerols 

improved the crystallization rate of systems where cocoa butter replacers and/or substitutes were 

used (Norberg, 2006). Lawler and Dimick (2002) summarized the effect of surfactants on a 

cocoa butter system as stabilizing the metastable polymorphs, and consequently delaying the 

polymorphic transition to Form V. 

Fat additives are known to affect the crystallization behaviour of cocoa butter, and in particular 

the crystallization rate. Lawler and Dimick (2002) hypothesized that crystal growth is enhanced 

if the chain length of the crystal seed is similar to that of cocoa butter. and that this effect is 

more important than thermodynamic stability and crystal structure. Incorporation of milk fat in 

a chocolate recipe is known to decrease crystallization temperatures at which the various crystal 

polymorphs are formed as a result of the inhibitory effect of milk fat on the cocoa butter 

crystallization (Liang and Hartel, 2004). In mixtures of cocoa butter and milk fat, the rate of 

cocoa butter crystallization was slowed down (Beckett, 1 999b ). 

Norberg (2006) summarized the effect of minor components, e.g. fat additives, emulsifiers and 

solid particles, on the crystallization of cocoa butter and chocolate systems, saying that these 

minor components playa crucial role in the crystallization process, but the mechanisms through 

which they act are often not fully understood. One of the reasons for this is that the levels of 

inclusion of most of these components are low and interactions take place between the 

individual components. 

2.1.3.3.1 Chocolate microstructure 

The aim of discussing the microstructure of chocolate is to link its molecular composition with 

the macroscopic and functional properties of the final product (Rousseau, 2(07). Microstructure 

determines the mechanical and sensorial attributes of a food product, and in this way is an 

important parameter of the quality of a chocolate product as it is perceived by the consumer. 

According to Afoakwa et at. (2009), microstructure can be regarded as a fundamental variable 

which affects transport phenomenon and physical characteristics of a food matrix. 

Ingredients used in the chocolate manufacturing process have been discussed in section 2.1.2. 

Cocoa butter constitutes a major part of the chocolate recipe. Commercial chocolate 

manufacturing, as discussed in section 2.1.4, aims to mix all the ingredients together, under 

controlled conditions, to ensure the development of the correct flavour and texture. 

- 31 -



Chapter 2. Literature review 

A complex combination of processes results in the formation of chocolate, which is defined by 

Wal tra ( 1996) and Aguilera et al. (2004) as "a dispersion of cocoa solids (particles) and sugar 

crystals in a continuous fat phase, consisting of fat crystals and liquid fat (proportions 

depending on temperature)", i.e. chocolate is a colloidal system. The microstructure of 

chocolate is largely determined by the size of the fat crystals and solid particles, which lie in the 

range of 10 - 120 11m, and strongly affect the sensory properties of the chocolate, e.g. taste and 

flavour (Fryer and Pinschower, 2000). As mentioned by Aguilera et al. (2004), it is important 

that the dispersed particulate is relatively small , e.g. in the size range of < 20 to 30 11m, to 

ensure that the mouthfeel is not gritty. Overall it can be concluded that the understanding of the 

micro tructure of chocolate is important with respect to product design, quality preservation and 

helf-life prolongation (Rousseau, 2007). 

Chocolate microstructure evolves throughout the manufacturing process, as well as on storage. 

The initial microstructure obtained within the liquid chocolate mass during the mixing, refining 

and conching stage, is partly determined by the interactions between the different ingredients. 

A schematic representation of the microstructure of a dark chocolate sample showing the 

interactions between the olid cocoa and sugar particles and the continuous fat phase is shown 

in Figure 2.8 . Within a milk chocolate product an extra dimension is present with the 

incorporation of (solid) milk particles. 

• Cocoa particle 

Sugar crystal 

Continuous fat phase 

• Hydrophilic head 

l." Hydrophobic tail 

Figure 2.8 Schematic representation of the microstructure of liquid dark chocolate obtained 

after conching and the stabilizing effect of a surface active agent, e.g. lecithin 

(adapted from Beckett, 2008) (not at scale). 

By u ing confocal la er canning microscopy (CLSM), Rousseau (2007) was able to assess the 

internal structure of cry tallized milk chocolate and the particle size in-situ. Two different 

f1uore cent tain , Nile Red (hydrophobic) and Rhodamine B (hydrophilic), were mixed in with 

the melted milk chocolate and the mi xture was re-crystallized. Nile Red stained the background, 

con equentl y corre ponding to the continuous (hydrophobic) fat phase, whereas Rhodamine B 

tai n were only ob er ed a mall light pots, referring to the either lecithin-coated sugar 

cry tal or perhap cocoa powder particles. Fat crystals could not be located within the sample 
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matrix, as solid fats do not fluoresce or interact with hydrophobic stains. Similar chocolate 

microstructures have been described by other authors (Beckett, 200 I; Gotz et al., 2(05). Due to 

the fact that the sugar particles are hydrophilic and lipophobic they tend to attract water but 

repel fat, i.e. in a liquid chocolate system strong interactions are observed between the sugar 

particles, and simultaneous weak interactions can be observed between the solid sugar particles 

and the continuous fat (cocoa butter) phase. The lower polarity of solid cocoa particles, in 

comparison to that of the sugar particles, causes the cocoa butter molecules to stick 

preferentially to the solid cocoa particle surfaces (Gotz et al., 2(05). Eventually, the weak 

interactions or repulsion between the sugar particles and the cocoa butter will lead to 

destabilization of the colloidal system through phase separation. In order to prevent the system 

against instability, a surface-active agent, often in the form of lecithin, is added. As a result of 

its amphiphilic character, lecithin is able to bind with its lipophobic head to the solid sugar 

particles, while it keeps its lipophilic tail dispersed in the continuous fat phase, as is visualized 

in Figure 2.8. In this way, the lecithin coats the solid sugar surface and forms a boundary layer 

between the sugar and the fat. consequently enhancing the flow properties (Beckett, 2(08). 

According to Rousseau and Sonwai (2008) this heterogeneously distributed particulate network, 

obtained during the chocolate refining and tempering stages, contributes significantly to the 

morphology and crystallization pathway of the cocoa butter. 

During the tempering and cooling stages of the chocolate manufacturing process, the cocoa 

butter partly crystallizes resulting in the formation of a three-dimensional fat crystal network, 

which is responsible to a large degree for the texture and sensory properties of the final 

chocolate product. The tempering and cooling stage influence not only the crystallization rate of 

the cocoa butter phase, but also the crystal morphology and aggregation behaviour of the solid 

particles. All these processing steps and ingredients together are responsible for the 

development of the microstructure of chocolate products (Sonwai and Rousseau, 2(08). The 

exact microstructure of the chocolate after crystallization and solidification, however, is still not 

exactly understood. In part it will depend on the time of measurement, i.e. directly after 

processing or after several weeks or months of storage. 

Loisel et al. (1997) used Mercury porosimetry to study the microstructure of dark chocolate. 

based on the hypothesis that chocolate has a porous matrix through which fat or oil migration 

takes place, which is responsible for the occurrence of fat bloom on the surface. Initial results in 

a chocolate sample with 31.9% cocoa butter showed only limited penetration of the chocolate 

matrix by mercury, indicating that the chocolate pores were either closed or completely (or 

partly) filled with the liquid fraction of cocoa butter. Lowering the cocoa butter content resulted 

in an increase in apparent porosity. It was also observed that the amount of empty spaces 

depends on the condition of the chocolate, e.g. well-tempered or over-tempered. With regards to 

the microstructure they hypothesized that the lecithin coated sugar and cocoa particle surfaces 
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act as nucleation sites, and this progressive crystal growth leads, via semi-solid intermediates, to 

a solid-like structure in which the majority of the cocoa butter is crystallized. Driven by the 

solid fat content, empty spaces occur between crystals during the crystallization process. It was 

observed that the amount of empty cavities or air filled pores was higher at the surface of the 

sample than in the bulk. Aguilera et al. (2004) also assumed the existence of a porous structure 

in chocolate, summarizing its structural composition as a dense bed of solid particles 

(approximately >60% by volume) with interparticle spaces filled with cocoa butter, and the 

overall dimensions of the particulate systems in the order of I to 10 Ilm. Considering the 

particulate nature of chocolate, they debated whether fat migrates through its pores due to 

diffusion or capillary flow. Based on the microstructure of chocolate, kinetic data in 

combination with the Lucas-Washburn equation for capillary rise and the temperature 

dependence of the liquid fat fraction of the chocolate system, they assumed that liquid cocoa 

butter migrates under capillary forces through interparticle passages and connected pores 

existing between the groups of fat-coated solid particles. Using atomic force microscopy 

(AFM), Rousseau (2007) identified the surface structure of a well-tempered milk chocolate 

surface, showing a complex fine-grained spotty topography. Within this irregular texture, 

shallow pores with a depth of 2-2.5 Ilm are observed confirming the porous structure of (milk) 

chocolate. Afoakwa et al. (2009) investigated the effect of particle size and fat and lecithin 

content on the microstructure of dark chocolate. Both microstructural and mechanical properties 

of dark chocolate were observed to be controlled by particle size distribution and ingredient 

content. Low fat (25%) samples showed extensive particle-particle interactions, which seemed 

to result in flocculation and agglomeration of the sugar crystal network. Higher fat samples, on 

the other hand, showed a less dense sugar crystalline network with reduced particle-particle 

interactions. This resulted in the formation of more open structures with empty or void spaces 

between the crystals which were filled with liquid fat. 

Based on the above discussion the proposed microstructure within this research for a solidified 

(dark) chocolate sample is shown in Figure 2.9. The schematic representation depicts the 

particulate nature of chocolate. A crystal network is formed by the fat crystals, in which 

lecithin-coated sugar and cocoa particles are "locked". Interparticle pores or crevices are present 

within the chocolate matrix, and are filled with liquid/solid fat at different ratios, depending on 

the temperature. In the case of milk chocolate, additional solid milk (powder) particles are 

present dispersed in the continuous fat phase. 
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• Cocoa particle 

• Sugar crystal 

Continuous fat phase 

~ Lecithin 

o Fat crystal 

• Interparticle pore 

Figure 2.9 Schematic representation of the microstructure of a crystallized 

and solidified dark chocolate sample (not at scale). 

Temperature fluctuations and/or liquid fat migration from a filling during storage may result in 

changes in viscosity (fluidity) and/or re-crystallization. It can be concluded that the dispersed 

particulates in combination with the changes observed during post-processing influence the 

micro-structural development and fat crystal growth upon storage (Rousseau and Sonwai, 

2008). According to Kinta and Hatta (2007), different areas of a bloomed dark chocolate sample 

do not differ in their composition, i.e. fat content and triacylglycerol composition, and they 

assume that fat eparation i not responsible for the differences observed in colour. Instead, the 

roughness of the lighter coloured ample was observed to show an increased number of 

convexities and concavities affecting the light reflection. Sonwai and Rousseau (2008) followed 

the micro-structural evolution of a milk chocolate sample during I year of isothermal storage. 

All freshly tempered and cooled chocolates had a smooth surface and were more finely textured 

than a freshly tempered cocoa butter surface. During storage, conical features appeared on the 

chocolate sample urfaces. The rate of appearance of these cones depended on sample 

composition. With time the surface of the cones roughened and small crystals started to grow. A 

mechani m was propo ed for the cone formation and olidification, based on the presence of 

micro copic pore or holes on the surface of the chocolate through which liquid triacylglycerols 

could migrate onto the urface. Contraction of the chocolate network, observed if cocoa butter 

cry tallizes in Form V, and the consequent micro-scale reorganization pushes the liquid fat 

urrounding the di per ed particulate from within the matrix onto the surface where it appears as 

mall cones. A contraction continues during the onset of the Form V to Form VI transition, 

enhanced cone formation i promoted. 
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2.1.4 Processing 

Even though the production process and methodology differ hugely between products and 

manufacturers, a basic overview of the main (general) chocolate manufacturing process is 

outlined in Figure 2.10 based on a detailed description by Beckett (2008). The chocolate 

manufacturing process starts with the preparation of the cocoa beans, an essential element 

delivering the major raw materials, cocoa butter and cocoa solids, as well as the characteristic 

flavour of chocolate. A review of the processes applied during the cocoa bean preparation and 

cocoa liquor manufacture is given by Fowler (1999), Heemskerk (1999) and Dimick and Hoskin 

(1999), amongst others. 

Chocolate is a dispersion of cocoa solids (particles) and sugar crystals in a continuous fat phase, 

consisting of fat crystals and liquid fat (Walstra, 1996). In order to obtain this colloidal system 

and to develop the characteristic organoleptic properties of chocolate, it is essential that the 

main ingredients, sugar, cocoa butter and cocoa liquor, follow the appropriate processing steps. 

Chocolate refining is a grinding or milling process, which aims at reducing the particle size of 

the dispersed phase of the chocolate. The solid particles, cocoa liquor, sugar and milk 

components, are mixed with a limited amount of cocoa butter to form a uniform paste. This 

paste is passed through roller refiners, to break up large particles and coat the newly formed 

particle surfaces with fat. For the particles to move past each other and the final chocolate 

product to flow, with a smooth texture and melt in the mouth, it is essential that the solid 

particles are coated with a thin film of fat. Mean particle size is an important parameter for the 

amount of cocoa butter or fat required to coat all particle surfaces. Overall, it can be concluded 

that the particle size distribution is strongly correlated with the finished product quality, and is 

particularly sensitive with respect to flow properties and sensory perception (Ziegler and Hogg, 

1999). According to Beckett (2008), the target particle size is < 30 J,lm, to ensure that there are 

no large particles giving the chocolate an undesirable (gritty) mouthfeel. 

After leaving the roll refiners, the powdery paste or mixture enters the conching phase, aimed 

first of all at turning the powdery mass into a free flowing liquid. Cocoa butter or other fats are 

added to ensure that all particle surfaces are coated with a thin layer of fat, allowing them to 

move past each other, consequently reducing the viscosity of the mixture. For the cocoa butter 

to be liquid, the conche needs to be heated, allowing the cocoa butter to melt and coat the 

particle surfaces. The increase in temperature is also required for the removal of moisture, 

whose presence is detrimental for the chocolate viscosity (Beckett, I 999a). To obtain the 

optimum viscosity, at the last stage of the conching process surfactants and more cocoa butter 

are mixed in. Secondly, the conching process is essential for the finalisation of the flavour and 

taste of the final chocolate product, mainly through removal of undesirable acidic flavours. The 

exact mechanism responsible for the modification in flavour is not understood, but seems to be 

a combination of both chemical changes, like the loss of short-chain volatile fatty acids and the 
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decrease in vo latiles and phenols, and physical change , where the bitterness of the cocoa solids 

and the sweetness of the sugar particles is masked by the coating of cocoa butter (Dimick and 

Hoskin, 1999). 
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Figure 2.10 Schematic diagram of the chocolate manufacturing process 

(adapted from Beckett, 2008). 

Once the mixture has been passed through the refining and conching processes, it can be ca lled 

chocolate. All ingredients have been mixed, and the chocolate has the correct flow properties, 

allowing it to be pumped into storage tanks ready for further proces ing. To be ab le to se ll the 

chocolate to the con umers, it needs to be solidified. The final processing steps, tempering and 

moulding. are essentia l for the creation of a solid chocolate bar with the characteristic snap on 

breaking, gloss and melting behaviour required by the customer. 

2.1.4.1 Tempering or pre-crystallization 

The crystal form that is critical for the phy ical and sensorial propertie of the chocolate is 

Form V. This polymorphic form is obtained during the tempering stage of the chocolate 

manufacturing proce s, basically by cooling the conched chocolate mixture from 45 °C to 

approximately 30 °e . depending on the type of chocolate, i.e. milk or dark chocolate. The aim 

of the tempering proce s i the development of a ufficient number of cocoa butter eed crystals 

and nuclei. The e seed crystals are used during the nucleation stage of the crystallization 
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proce s, and they encourage the formation of stable Form V crystals in the bulk fat phase 

(Talbot, I 999a). 

A described by Beckett (200 I ), it is possible to generate a small number of relatively large 

Form V crystals by keeping chocolate at the appropriate temperature for many hours. Basically, 

two main method are applied to obtain a product with a homogeneous distribution of a large 

number of small fat crystals. The first method uses seed crystals, which have the correct 

polymorphic form (Form V). Main characteristics of these seed crystals are their 

thermodynamic tability and similarity in structure to cocoa butter. Powdered chocolate or 

cocoa butter are good examples, but also other fats with similar characteristics as cocoa butter 

can be used. Addition of pre-crystalli sed seed crysta ls to the chocolate mixture initiates a 

secondary nucleation, which is followed by crystal growth and maturation during the moulding 

and cooling stage of the chocolate manufacturing process (Pinschower, 2003). The second 

method u es a well-defined Temperature-time profile in combination with shear. An example of 

a T-t profile used for the crystallization or tempering of milk chocolate is given in Figure 2.11 . 

Melt out all fat Removal of 
Crystallization: 

Melting out 

crystals : heat. No crystal 
stable (~) and 

unstable (W) 

(remove "history"). : formation. 
unstable (~') 

crystals. 
crystals. 

1 
so O( 

~ 
QJ 

32 °( ... 
::::l 30-32 °( .... 

i~' 
n:l 

~eat 
"-

(solid) QJ 
c 
E chocolate 
QJ I .- 27 O( 

Time 

Figure 2.11 Time-temperature profile for milk chocolate (Talbot, 1999a; Afoakwa et aI., 2007). 

Shear i applied during the whole cycle to accelerate the cocoa butter crystallisation, although 

the hear rate hould be controlled to avoid the production of heat, and consequent melting out 

of the formed cry tal (Beckett, 200 1). The first stage of the tempering process consists of the 

heating of the chocolate, to melt out all fat crystals and in this way remove the "crystal history" 

of the chocolate ample. Once the product is completely liquid, it is cooled to - 27 °C. Agitation 

of the mixture during the cooling tage ensure the removal of heat and furthermore initiates the 

formation of cry tal nuclei . From the melting points of the different polymorphs (see Table 2.4) 

it can be observed that both table and unstable crystal nuclei are formed, i.e. Forms (III) , IV, V 

- 38-



Chapter 2. Literature review 

and VI. The third and final tage of the tempering process reheats the chocolate to a temperature 

of 30-32 °C, melting out unstable polymorphs and leaving only stable Form V (or P) crystals 

(Rou seau, 2007). The appropriate tempering regime or T-t profile to be used depends on the 

chocolate recipe, type of tempering equipment and the final application (Afoakwa et aI. , 2007). 

2.1.4.2 Moulding. cooling and demoulding 

In general, two characteristic methods for producing confectionery sweets are in use, I) through 

enrobing or 2) by using a moulding technique. Enrobing refers to chocolate products where the 

liquid chocolate is poured over a sweet or nutty centre, whereas moulded chocolate is obtained 

by pouring the liquid tempered chocolate in a mould in order to set before removing the mould. 

A more in-depth de cription of the enrobing and moulding process and equipment used is given 

by Nelon ( 1999). This section will focu purely on the moulding of chocolate, and the aspects 

re lated to the moulding step, such a cooling and demoulding. The formation of chocolate shells 

or filled (moulded) chocolate is also not considered in this di cussion. 

Tempered 

dark 

chocolate 

Moulding, cooling and de· 

moulding of dark chocolate 

Deposition of 

chocolate mass into 

polycarbonate moulds 

Vibration, 

to release air and 

spread chocolate in 

moulds 

Cooling of moulds 

with dark chocolate 

mass 

Demoulding of 

solidified chocolate 

Dark chocolate (moulded) product 

Figure 2.12 Chocolate moulding, cooling and demoulding. 
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Moulding is one of the final stages of the chocolate manufacturing process, as can be observed 

from Figure 2.10. The aim of the moulding process is the solidification of the bulk of the fat 

phase of the tempered chocolate mass with the correct crystallization, as this will lead to 

contraction of the chocolate and easy removal of the solidified chocolate from the mould. A 

more detailed description of the moulding process, with the different stages and processing 

conditions is given in Figure 2.12. 

2.1.4.2.1 Chocolate moulding 

Tempered dark chocolate with a temperature of 30-32 DC, depending on the composition, is 

deposited in pre-heated or pre-conditioned polycarbonate moulds. Pre-conditioning takes place 

at a temperature of 28-30 DC, in an environment with controlled RH. An ideal manufacturing 

environment should have 35-40 % RH in order to prevent the chocolate from taking up 

moisture (Beckett, 2(01). The use of a well-conditioned mould is predominantly important for 

obtaining the correct shine or gloss on the chocolate surface (Nice, 200S). 

The tempered chocolate is sensitive to large temperature variations and as a result the 

temperature of the mould should be as close to the temper temperature as possible when the 

chocolate is deposited in the moulds. Depending on the nature of the chocolate product, the 

mould temperature may vary. For example, for large quantities with a higher thermal mass, the 

mould temperature may be lower compared to small volumes, where the mould temperature 

should be as close to the chocolate temperature as possible (Nice, 200S). A too high mould 

temperature will cause the chocolate tablets to stick to the mould upon demoulding. Due to the 

temperature of the mould being higher than that of the chocolate, seed crystals present within 

especially the surface or interfacial layer will be melted out. This will generally lead to the 

formation of less form V crystals during cooling, as the seed crystals are not present, and 

consequently hinder chocolate setting. On the other hand, a too low mould temperature causes a 

flash shock of the chocolate. The sudden temperature drop will cause the chocolate to release 

excessive heat or energy to the mould surface, resulting in immediate crystallization of the fat 

present in the interfacial layer. Unfortunately, this crystallization often results in the formation 

of unstable polymorphic forms, rather than the stable form V. Unlike form V crystals, unstable 

polymorphic forms are much less closely packed and lead to little volume contraction, a 

common cause of demoulding defects. Additionally, the shock associated with depositing the 

tempered chocolate in a cold mould will prevent the chocolate from flowing over the mould 

surface evenly, resulting in the building up of stress within the fat structure and problems 

demoulding (Nice, 2(05). 
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It is important for both the moulding and cooling stage to prevent respectively the presence of 

moisture on the mould surface and the formation of condensate on the chocolate surface. as 

moisture is known to have a detrimental effect on chocolate by inducing sugar bloom amongst 

others. A general recommendation is to keep the cooling temperature above the dew point to 

prevent moisture condensation (Beckett, 2(08). 

2.1.4.2.2 Chocolate cooling 

Following the moulding stage, the filled moulds are vibrated using a combination of low 

frequency and high amplitude. This step is necessary to remove excess chocolate and air 

bubbles present within the tempered mass, and ensure the mould surface is fully wet by the 

chocolate. Subsequently, the vibrated moulds are transported into cooling tunnels to start the 

cooling stage. Depending on chocolate recipe. volume, manufacturer and equipment 

capabilities, different cooling conditions will be used. In general, cooling tunnels are used 

which can be divided into different sections. enabling the use of temperature profiles 

(Cruickshank. 2(05). The first section uses gentle cooling conditions (12-15 DC), to quickly set 

the chocolate (Padley, 1997). Whilst the chocolate matrix is still liquid, cocoa butter might 

migrate to the surface. resulting in the presence of fat bloom on the surface of the chocolate bar. 

Section 2 applies an air flow with a lower temperature, on average approximately 7-10 °C, 

resulting in the largest amount of latent heat being removed. The 3rd and final section applies 

again a relatively gentle cooling, to limit the temperature difference between the chocolate 

sample and the air in the packaging area, effectively heating the chocolate product to a 

temperature above the dew point of the packaging area (Cruickshank, 2(05). A cold chocolate 

surface may otherwise result in the condensation of water vapour, causing the formation of 

blemishes and/or sugar bloom. On average, it takes 40 minutes for a chocolate sample to set, if a 

cooler with a constant air flow and a temperature of 10-15 °C is used. The goal of the use of a 

cold air flow is to remove both specific and latent heat from the liquid chocolate sample, so that 

a solid product can be formed for easy handling during packaging. 

On average, a temperature decrease of 10°C is required during the cooling stage. Assuming the 

specific heat of chocolate to be about 1.6 J g -1 oC-I, and the latent heat to be 45 J g -I (Beckett, 

2(08), a total of 60 J needs to be removed to cool and solidify each gram of chocolate. The time 

required for cooling and solidification depends on the rate of heat transfer from the chocolate 

product to the air, which in turn depends on the temperature and flow rate of the cooling air. 

Due to the low rate of heat conduction through chocolate, large quantities will require longer 

cooling times to allow heat from the centre of the chocolate mass to be conducted to the surface, 

where it can be removed by the cooling air (Cruickshank. 2(05). As described by Nelson 

(1999), the cooling process should not be too short in order to prevent poor chocolate quality. 

At a low air temperature. an increased risk of sugar bloom and a dull finish on the chocolate 
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surface exists, due to moisture condensation on the chocolate surface. A low air temperature 

may also affect the crystallization of the cocoa butter into the correct polymorphic form, 

consequently decreasing the volume-reduction or contraction desired for easy demoulding 

(Beckett, 2(08). A relatively low cooling temperature or short cooling time will promote the 

formation of a larger number of polymorphs with a lower melting point, resulting in a chocolate 

with a lower viscosity (softer) at room temperature and less contraction during solidification 

(Tewkesbury et aI., 2(00). 

Tewkesbury et al. (2000) studied the temperature distribution in chocolate moulds during 

cooling. Their results showed that a complex array of crystallization processes occurs 

simultaneously and results in solidification of chocolate. However, the different polymorphic 

forms present within the finished product are formed through different cooling paths, which 

could be identified as a result of the consequent reduction in cooling rate resulting from the 

evolution of latent heat. 

2.1.4.2.3 Chocolate demoulding 

Basically, demoulding is the removal of the solidified chocolate bars from the mould after they 

leave the cooling tunnel. In an optimal process, the demoulding stage is only a minor part of the 

whole chocolate manufacturing process, with good quality chocolate products without defects 

leaving the moulds easily and cleanly, so that they can be returned to the start of the moulding 

line. In general, a low mechanical force in the form of a hammer or a twisting movement is 

applied to the mould, to aid in the demoulding (Cruickshank, 2(05). 

The efficiency of the chocolate demoulding process depends on the degree of contraction 

obtained during the cooling stage. Contraction of chocolate is a consequence of the phase 

transition from liquid to solid chocolate during the solidification process. However, no or 

limited contraction is observed when untempered or partially tempered chocolate is used. 

Nelson (1999) visualized the observed cooling and expansion of untempered chocolate with 

time, as can be seen in Figure 2.13. A lower crystallization temperature and slower 

crystallization rate are obtained for untempered compared to tempered chocolate. Most 

interesting, however, is the relatively large expansion observed during the initial stage of the 

cooling process. Only after prolonged intense cooling minimal contraction of untempered 

chocolate takes place. 

Chocolate demoulding can be improved not only by using the correct temper, but also through 

mould design. Harbecke (2005) gives guidelines regarding the angles and mould shapes that 

should be used. The use of engravings and a low degree of surface texture is recommended, as 

the mould surface area is increased, consequently enhancing cooling. At the same time, the 

largest contraction is observed when spherical shapes or even circumferences are used, allowing 

- 42-



Chapter 2. Literature review 

an even contraction. The effect of storage and cleaning of moulds on the demoulding efficiency 

is very well known from practical experience. Small defects on the mould surface have been 

observed to significantly increase the amount of chocolate residues sticking to the mould 

surface. Similarly, cleaning of moulds has been shown to negatively affect demoulding 

properties. This is expected to be due to the removal of a thin film of fat present on the mould 

surface after demoulding which enhances subsequent moulding and demoulding processes 

(Harbecke, 2(05). 
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Figure 2.13 Cooling and expansion curves of un tempered chocolate (Nelson, 1999). 

Pinschower (2003) studied the direct measurement of the contraction of chocolate during 

solidification. Initial experiments within this part of the study identified the direction at which 

cooling was applied to the chocolate as an important parameter regarding the direction of 

shrinkage, as a result of the applied cooling, as is schematically shown in Figure 2.14. If cooling 

is applied from the bottom, the chocolate surface shows contraction towards the source of the 

cooling, i.e. inwards towards the mould, resulting in a tight fitted chocolate product and 

difficulties demoulding. If cooling is applied from the top, on the other hand, this contraction of 

the chocolate surface is not observed and it is assumed that it is easier for the chocolate to 

contract away from the mould. However, surface interactions might affect the degree of 

contraction, and the adhesion between chocolate and material surface. A strong attachment of 

chocolate to a cooled metal surface was observed, which seemed to be stronger than the 

attachment of chocolate to an aluminium mould surface. The effect of cooling direction is 

further expected to be less distinct at smaller temperature differences, and in mechanically 

weaker materials, e.g. untempered versus tempered chocolate. 
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Figure 2.14 Suspected direction of shrinkage depending on the cooling direction 

(pinschower, 2003). 

Volumetric expansion , p, of materials generally occurs upon heating, and results in a decrease in 

material density. The coefficient of thermal expansion is a phys ical property used to quantify 

the degree of ex pan ion with temperature. Volumetric expansion is defined by equation [2-9] : 

Vl = Voel + fJ~T) , [2-9] 

where VI refers to the volume at a temperature TI and Vo to the volume at the reference 

temperature To. A the mass of the material does not change with the change in temperature, 

equation [2-9] can be written as: 

1 1 
- = -(1 + PtlT) , 
Pl Po 

[2-10] 

where PI refers to the density at a temperature TI and Po to the density at the reference 

temperature To. A imilar equation applies to the volumetric contraction, which is basically a 

negati ve ex pansion. 

In order to gain more understanding of the contraction of chocolate, Pinschower (2003) 

compared the contraction of chocolate samples with varying levels of temper and determined 

the effect of cooling procedure and process ing history, in an effort to re late the observed effects 

to the volumetric expansion. Chocolate samples with the same level of temper, showed very 

diffe rent contraction behaviour . Further investigation showed that the viscosity of the 

chocolate sample at the time of deposition in the mould has a significant effect on the degree of 

contraction, with a high viscosity showing a relative ly low contraction. Similar to the 

observations made by Nelson ( 1999), Pinschower (2003) concluded that the volume change of 

untempered chocolate occurs much slower compared to tempered chocolate. Depending on the 

degree of temper, the contraction takes place at different tages of the cooling process. Finally, 

the coeffi cient of expan ion, p, was u ed to diffe rentiate between tempered and untempered 

chocolate, but only at low cooling rates. At these low cooling rates, the max imum contraction 

value decreased with increa ing temper. 
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2.2 ADHESION 

Adhesion or stickiness can be desirable attributes in some food applications. such as specific 

food coating and/or processing applications. However. in most cases food adhesion is 

undesirable and a cause for concern. Meiron and Saguy (2007) mention a number of negative 

effects resulting from the adherence of food residues to plastic films and packaging. Not only 

does the interaction of food particles with the packaging material decrease product acceptability. 

increase waste and a lower overall product quality. it also impacts on the risk of migration of 

packaging compounds into the food material, oxidation and the formation of off-flavours. Chen 

(2007) describes a similar negative or undesirable effect of the adhesion of food components to 

packaging on the formation of visual defects of surface texture and consumer rejection of the 

food product. Another area where adhesion of food particles is undesirable and often 

unavoidable is in food processing facilities (Bobe et al.. 2(07), because it leads to fouling of 

production lines. lower product yields, and increased economic costs (Adhikari et aI, 2001; 

Michalski et aI., 1997). In this research particular attention is paid to the application of 

chocolate manufacturing, where adhesion and sticking of chocolate to the mould surface is a 

substantial ongoing problem. leading to poor product appearance. production losses (normally 

those products are considered out of quality standards and rejected), and increased processing 

costs in equipment cleaning. 

2.2.1 Adhesion versus stickiness 

Adhesion IS an important physical phenomenon commonly observed in many food-related 

situations. With respect to the sensory evaluation of food products, the terms stickiness and 

adhesion are often used interchangeably (Adhikari et aI., 2(01). Even though both these terms 

describe well understood phenomena, their meanings can vary somewhat depending on the 

context. For example, in relation to oral sensory perception, the term stickiness was defined by 

10witt (1974) as "possessing the textural property manifested by a tendency to adhere to 

contacting surfaces. especially the palate. teeth. and tongue during mastication." This definition 

does not refer to stickiness of non-oral surfaces, which is commonly encountered in the 

manufacturing and transportation of foods. More general descriptions of stickiness are given by 

Hoseney and Smewing (1999) "the force of adhesion that results when two surfaces are 

contacted with each other" and Bhandari and Howes (2005) "stickiness is the force of adhesion 

or cohesion of two similar or dissimilar surfaces. It is influenced by the adhesive balance 

between contacting surfaces." These last two definitions of stickiness use the force of adhesion 

as an important descriptor of stickiness. A definition of adhesion is given by Kilcast and 

Roberts (1998) stating that "adhesion is broadly defined as the sticking together of m'o 

materials with or without an intermediate layer, Suiface energetic and wetting have been found 
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to be of greatest general importance." Adhesion is commonly referred to as "the physical 

phenomenon by which two materials 'stick' together" (Michalski et al.. 1998b). 

From the definitions given it can be observed that the concepts of stickiness and adhesion are 

very closely related and often focus on the same principle. Within this research. stickiness and 

adhesion are regarded as two different concepts. Adhesion is part of the stickiness definition or 

theory. but it is not equal to stickiness. Stickiness can be defined as the result of the combined 

action of the force of adhesion and the force of cohesion, subsequently originating of 

viscoelastic and adhesive properties of food products. Stickiness is often associated with the 

sensory properties of food products and is consequently perceived in the palate. teeth. and 

tongue when food is being masticated or on non-oral surfaces such as fingers and equipment 

surfaces (Adhikari et aI., 2001). Adhesion on the other hand is rather regarded as a theory. 

model concept or mechanism. The general consensus is that the term adhesion refers to the 

attractive interaction between two surfaces upon close contact, and in particular the energy that 

is required to eparate these surfaces. 

2.2.2 Cohesion and adhesion 

According to Ho eney and Smewing (1999) the force of adhesion. obtained when two surfaces 

are in cia e contact. consists of an adhesive force and a cohesive force. A food material is 

perceived as being sticky when the adhesive force is high and the cohesive force is low. 

Bhandari and Howes (2005) described adhesion as a physical phenomenon. where the bond 

between two surfaces was regarded to be either interfacial (adhesive) or inter-phase (cohesive). 

Inter-phase bonding is defined as the bonding between two same species, and describes the 

strength of the attractive force between molecules in solutions or solids. 

J 

Figure 2.15 Diagram illustrating the concepts of work of cohesion We and work of adhesion Wa 

(McGuire, 2005). 
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More often used are the terms work of cohesion and work of adhesion, which result from the 

thermodynamic 'cohesion' and 'adhesion' process, as illustrated in Figure 2.15. 

Cohesion is the (intermolecular) attraction between similar phases. Based on this definition, the 

work of cohesion We can be defined as the reversible work per unit area required to separate or 

"create" two surfaces of a bulk material i: 

We = 2Yi 

= ~Gc, 

[2-11] 

where G represents the free energy per unit area, and y represents the free energy per unit area 

as well as the force per unit length. The subscripts i and j refer to the phases i and j, 

respectively, whilst ij refers to the interface. The concepts of surface tension, y, and surface free 

energy, G, wiIl be discussed in more detail in section 2.3.2. 

Adhesion is the (molecular) attraction between two different phases. Based on this definition, 

the work of adhesion can be defined as the reversible work required to separate unit area of 

interface ij between two dissimilar phases, i andj (McGuire, 2005; Good, 1992): 

Wa = Yi + Yj - Yij 

= ~Ga· 

[2-12] 

As discussed by Myers (1999), the applicability of the thermodynamic work of adhesion and/or 

cohesion is based on the use of a defined model system which takes molecular interactions, such 

as van der Waals, dipolar and electrostatic forces, into consideration, but not mechanical and/or 

chemical interactions. This means that bulk physical properties, for instance, are not taken into 

consideration, even though these often playa major role in practical adhesion. 

2.2.3 Theories of adhesion 

Various theories and mechanisms have been proposed to explain surface adhesion from the 

point of view of the different fields, such as mechanics, thermodynamics and chemistry. There 

is no universally accepted standardized theory, however, which describes or predicts the 

adhesion behaviour in all situations (Saunders et aI., 1992; Meiron and Saguy, 2(07). Another 

disadvantage of the adhesion theories, as described by Michalski et at. (1999), is that the 

different theories "address adhesion phenomena in general, but only a few studies have 

attempted to apply such theories to predict the adhesion of food materials to solids. Studies on 

this subject often remain highly empirical, applied to specific food product and only a few are 

concerned with fatty products or emulsions." 
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The 6 main theories of adhesion are discussed in more detail below (Adhikari et a!.. 200 I; 

Kinloch. 1980; Comyn. 1997; Michalski et al. 1997): 

I. Mechanical interlocking 

This is the oldest of the adhesive theories. and is commonly observed to affect flow 

properties of food products and adhesion on equipment and packaging surfaces. 

Mechanical interlocking happens when molecules make a physical bond with other 

molecules. and in this process they form a closed bond in which other molecules or 

particles are locked. Rugosity or surface topography is a key parameter by increasing 

the surface area and number of hooking sites available. Due to the rugosity of a solid 

surface. a liquid can be locked into irregularities when it spreads over the surface. 

2. Wetting and thermodynamic adsorption 

The degree of wetting determines whether a liquid will spread on a solid surface. In this 

process the liquid will form a thin film or layer on top of the solid surface or will retract 

as a single drop or multiple drops. Wetting of a solid surface by a liquid occurs when 

the surface energy of the solid is greater than that of the liquid. In order to lower the 

surface energy of a system. low energy materials (liquids) will adsorb strongly to high 

energy surfaces (solids). The concept of thermodynamic adsorption is based on the 

equations of Young (forces equation) and Dupre (energy equation). which will be 

discussed in more detail in section 2.3.2 (equation [2-30] and [2-32]). 

3. Intermolecular and electrostatic forces 

The main intermolecular force is the van der Waals force. while the electrostatic forces 

are a result of opposing charges between particles. Together. these two forces are 

primarily responsible for the cohesion between particles and the adhesion between 

surfaces if there are no material bridges present. Van der Waals forces are only effective 

in close proximity. i.e. by the molecules in the interfacial layer. Although they are 

relatively weak if compared to other forces. they are capable of forming strong adhesive 

joints. The close contact of two materials at the interface means that intermolecular or 

van der Waals forces will always playa role. The DL VO or Derjaguin. Landay. 

Verwey. and Overbeek theory takes into account the long-range electrostatic and 

electrodynamic interactions. and is related to the formation of an electrical double layer 

at the interface. In food systems this approach is often used to explain the adhesion 

between proteins or micro-organisms and particularly stainless steel surfaces. 

4. Diffusion 

Within the food industry. diffusion phenomena are often not a concern in relation to 

adhesion. Diffusion of polymer chains depends largely on the temperature. as the chains 

need to be mobile. and is mainly observed at close contact between compatible 

polymers. such as during solvent-welding of thermoplastics. 
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5. Chemical bonding 

The main requirement for chemical bonding is the formation of covalent, ionic or 

hydrogen bonds across the interface. Chemical bonding in the food industry is 

commonly observed upon storage only, as a sufficient contact time is required for the 

reaction to take place. The adhesion of milk protein on glass surfaces is assumed to be 

an example of chemical bonding. 

6. Weak boundary layers 

A contaminant present at the clean surface of a solid material which is capable of 

forming strong adhesive bonds under normal circumstances will create a cohesively 

weak layer. If the cohesion is weak at the interfacial area between a solid substrate and 

an adhesive, fracture will take place in this interfacial area rather than an adhesive 

failure at the interface between the two adhering materials. 

The most widely used adhesion theories in industry are mechanical interlocking and wetting and 

thermodynamic adsorption (Michalski et aI., 1997). Similarly, according to Kinloch (1980), the 

most generally accepted theory is the adsorption theory, which "proposes that, provided 

sufficiently intimate intermolecular contact is achieved at the interface, the materials will adhere 

because of the surface forces acting between the atoms in the two surfaces; the most common 

such forces are van der Waals forces and are referred to as secondary bonds. In addition. 

chemisorptions may well occur and thus ionic. covalent and metallic bonds may operate across 

the interface; these types of bonds are referred to as primary bonds". From this definition of the 

adsorption theory it can be observed that it is actually a combination of different mechanisms of 

adhesion: wetting and thermodynamic adsorption. interparticle attraction and chemical 

adhesion. Additionally. the involvement of several mechanisms simultaneously requires the 

determination of several different controlling parameters linked to these individual mechanisms. 

such as surface free energy (thermodynamics). morphology (mechanics) and heterogeneity 

(interparticle attraction) (Meiron and Saguy. 2007). Liu et al. (2006a and b) investigated the 

adhesion of fouling deposits, consisting of organic and mineral components. to thermal 

processing equipment surfaces. They defined a number of principal components. which are 

responsible for the adhesion between surface and foulant. These include van der Waals forces, 

electrostatic forces. hydrogen bonding and hydrophobic bonding. in combination with contact 

area effects. Overall. fouling deposits were assumed to result from the adhesion of components 

to the surface and cohesion between elements of the material. 

Solid and liquid bridges are part of the interparticle attraction mechanism proposed by Adhikari 

et al. (200 I). In this research there is a particular interest in the formation of solid and possibly 

liquid bridges with respect to the adhesion between a chocolate system and a solid mould 

surface. Based on the particulate crystal network of chocolate and the presence of pores. as 

discussed in section 2.1.3.3.1. the formation of liquid bridges seems a possibility. However. as 
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these liqu id bridges are fo rmed wi thin the chocolate system, rather than at the chocolate - mould 

interface, they are not assumed to participate in the adhesion mechanism. Solid bridges can be 

fo rmed through several di fferent mechanisms: sintering, melting, crystallizati on, di ssolution and 

drying. An example of the fo rmati on of solid bridges is when a molecule c rystallizes and fo rms 

solid bridges (crystals) at the point of contact (c rystallization). Through the solid bridges several 

mo lecules are connected, resulting in the formation of aggregates. With respect to chocolate the 

possible formation of solid bridges at the chocolate-mould interface should be considered. 

Contaminants present at the interface may ass ist in the formation of solid bridges, as well as the 

possible cry tallization of fat molecules present at the interface. 

2.2.4 Molecular adhesion 

A compari son of the range of action of the different adhesion fo rces in order to distingui sh 

between molecular, electrostatic, grav itat iona l and liquid bridge adhesion was conducted by 

Kenda ll (200 I ). 

n pad 

Liquid drop 

Molecular adhesion I /(.r-d)l 

d dista nce mo ed fro m center .l" 

Figure 2.16 Schematic overview of different types of adhesion forces that exist at various 

distances when two spheres are pulled apart (Kendall, 2001). 

The schematic overview in F igure 2.16 shows a plot of the force against the di stance moved 

from centre fo r the example of two spheres that are being pulled apart . Attracti ve suct ion 

(atmo pheric pressure) forces and liqu id bridge adhesion forces are constant, therefore requiring 

a hi gh amount of energy to pull the two spheres apart . The energy required to separate the two 

spheres i represented by the area under the curve. Electrostatic adhesion require less energy, 
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but can be regarded as long range. A similar curve as that obtained for the electrostatic adhesion 

is obtai ned for Newton's gravitation force, although this latter force is much smaller. Last 

example in Figure 2. 16 is that of molecular adhesion, which is only observed at a very short 

di stance of separation. As the area under the curve is small , the ene rgy required to pull two 

spheres apart that are adhering due to molecular adhesion is almost negligible . The definiti on 

given by Kenda ll (200 I) for molecular adhesion is "the force experienced when bodies make 

contact at the moleclllar level, with gaps near molecular dimensions." Even though the forces 

determined within this research are not at the molecular level, general understanding of the 

concept of molecular adhesion may increase overall unde rstanding of (macro) adhes ion. 

true molecular adhesion 
Apparent contact 

Contaminant atoms 

True surface contact _-'---"-~ 

contamination+ t roughness 

Figure 2.17 Adhesion at the molecular level. 

The magnified apparent contact area shows the adhesion limiting effects of contaminating 

atoms and of surface roughness (Kendall, 2001). 

The gene ral concept of molecular ad he ion is visualized in Figure 2. 17. At the mo lecular level 

the atomic tructures of two materials that are in contact at the macroscopic level do not show 

contac t at all. Contaminating foreign materials such as oxygen and water molecules are 

ad orbed onto the olid urfaces, and subsequently prevent the solid materials from true atomic 

contact. Secondly, rugo ity of the solid materials introduces gaps between the olid surface, 

consequentl y reduc ing the surface interactions further. Overa ll it can be concluded that the 

adhesion observed at macroscopic level and that observed at molecul ar level do not always 

agree well , as a result of which the three laws of mo lecul ar adhesion have been developed, 

which are believed to be uni ver al (Kendall, 2(0 1): 
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• 

• 

• 

1"1 law of molecular adhesion: 

All atoms and molecules adhere with considerable force, causing two solid materials to 

jump into contact when the separation distance is reduced to nanometers; 

2nd law of molecular adhesion: 

The presence of contaminant "wetting" molecules at the solid material surfaces (or at 

the interface) reduces adhesion, and can even result in repulsion between two solid 

materials; 

3n1 law of molecular adhesion: 

Molecular adhesion forces act at short range or separation distances (nanometers). 

which means that various mechanisms such as surface roughness, Brownian motion and 

cracking, will have an impact. The molecular adhesion may be constant, but the 

mechanisms interacting may lead to different types of macroscopic adhesion occurring. 

2.3 SURFACE FREE ENERGY 

Of the theories of adhesion proposed in section 2.2.3, thermodynamics is proposed to be the 

main mechanism of adhesion. The 1 sl condition that needs to be satisfied when forming an 

adhesive bond is the creation of intimate contact between the 2 phases, in combination with the 

development of physical forces at the interface (Meiron and Saguy, 2(07). Many researchers 

have considered that the extent of adhesion is predominantly determined by the surface energy 

of the (solid) substrate, especially in the case of bio- and crystalline fouling (Michalski et al.. 

1998a, 1998b, 1999; Zhao et aI., 2005; Pereni et aI., 2006; Rosmaninho and Melo, 2006). 

Bhandari and Howes (2005) reviewed the stickiness properties of foods during drying, and 

concluded that surface energy of the materials with which the food is in contact is a critical 

factor in relation to the adhesion observed. According to them, many authors, however, do not 

take the solid surface energy into account when investigating the adhesion of food to processing 

equipment surfaces. 

2.3.1 Thermodynamics 

Thermodynamics is the science that studies the principles of energy transformation in 

macroscopic systems. describing the reaction of a system to changes in its surroundings (Erbil, 

2006). In general. there are three components of thermodynamic equilibriums: 

• Mechanical: implying that there are no unbalanced forces; 

• Thermal: implying that there are no temperature gradients: 

• Chemical: implying that there are no chemical reactions and no net transport of 

components occurs. 
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Thermodynamics describes the equilibrium or, if there is no equilibrium, the direction in which 

a change takes place. However, it does not give information about the rate of a reaction or 

change (Walstra, 2(03). The 1st law of thermodynamics states the law of conservation of 

energy, i.e. the increase in the internal energy of a system is equal to the amount of energy 

added to the system by heating, minus the amount lost in the form of work done by the system on 

its surroundings: 

dU = dQ-dW, [2-13] 

where U represents the internal energy of the system, Q the heat added to the system and W the 

work done on the system. The 2nd law of thermodynamics is described by the Kelvin Planck 

statement, concerning the direction of natural processes, and states that the total entropy of any 

thermodynamically isolated system tends to increase over time. approaching a maximum value: 

dS> 0 
dt - , 

where S represents the entropy of the system. 

[2-14] 

Application of the I st law of thermodynamics to the boundary layer or interface between two 

phases shows that interfacial free energy is required for a stable boundary. In order to extend or 

enlarge the boundary, work needs to be done by the system. If no work was required, any 

random force would result in the mixing of the two phases (McGuire, 2005). 

Thermodynamic potentials are parameters that are used when describing thermodynamic 

systems and which have the dimensions of energy. The four most common thermodynamic 

potentials are (Atkins, 1994; Walstra, 2(03): 

• Internal energy: the total energy of a system; 

U, 

• Helmholtz free energy: the maximum amount of work a system can do at a constant 

temperature (isothermal changes); 

F == U- TS, [2-15] 

• Enthalpy: the available thermal energy at constant pressure; 

H == U+pV, [2-16] 

• Gibbs free energy: the maximum amount of work a system can do at a constant 

pressure (isobaric changes); 

G == H - TS = U + pV - TS, [2-17] 

where U represents the internal energy, T the system temperature, S the entropy, p the pressure 

and V the volume. The term free in Gibbs and Helmholtz free energy refers to the portion of 

internal energy that is free to perform work (U-TS). Thermodynamic equilibrium is not 

obtained directly within a system. Each system evolves from its initial state to the equilibrium 
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or final state. Thermodynamic potentials measure the energy change during this system's 

evolution. In that respect, the Helmholtz and Gibbs free energy are measures of the amount of 

energy that is available for work. Specific for Helmholtz is that a constant temperature and 

volume are required, whereas Gibbs requires a constant temperature and pressure. Gibbs free 

energy is most applicable in general situations. In a system with constant pressure, equilibrium 

is obtained at the lowest Gibbs free energy (Walstra, 2(03). 

The relations described in equations [2-15] to [2-17] apply to homogeneous closed systems, 

which mean that there is no exchange of matter between the systems and their surroundings. 

Energy, on the other hand, may be exchanged. For open systems, which can exchange both 

energy and matter with their surroundings, the internal energy is a function of S, V and the 

composition of the system (Erbil, 2006). The result is the fundamental thermodynamic equation 

for an open system: 

[2-18] 

where Pi refers to the chemical potential of component i, and nj to the number of moles of 

component i. Thermodynamics states that systems tend to minimize their total free energy. Two 

important mechanisms which are used to minimize the interfacial free energy of a system are 

minimizing the interfacial area and adsorption of a substance at an interface, respectively 

(McGuire, 2005). 

2.3.1.1 Gibbs dividing plane 

An interface with respect to the Gibbs dividing plane refers to a macroscopic fluid-fluid 

interface, which has a relatively large area compared to molecular interfaces, and is 

thermodynamically defined and a function of state (Lyklema, 2(00). Solid-liquid interfaces and 

their interfacial tensions cannot be measured experimentally, as this requires extending a solid 

surface reversibly without stretching or cleaving. In contrast to molecular interfaces, the solid­

liquid or solid-solid interface is thermodynamically defined by the Gibbs and/or Helmholtz 

energies of stretching and cleaving. Only flat macroscopic fluid-fluid, one- or two-component 

systems are considered here. Assuming a two-phase system, whereby the two phases, a and ~, 

are divided by a flat interface. Both phases are thermodynamically defined and a function of 

state. The Gibbs convention describes the interface between the two phases as an infinitely thin 

boundary layer, the Gibbs dividing plane (Norde, 2(03). The ideal volume of the Gibbs dividing 

plane is 0, as a result of which it is also called the ideal interface. Other models exist which 

consider an extended interfacial region, for example the model of Guggenheim (Butt et aI., 

2003). Both the model of Gibbs and that of Guggenheim are visualized in Figure 2.18. 

Focussing on the Gibbs dividing plane, the question is where exactly the ideal interface or 

dividing plane is located. Assuming a pure liquid in equilibrium with its vapour, it has been 
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observed that the composition, density, structure, electrical potential, etc., of the liquid deviates 

depending on the distance from the bulk. Close to the vapour phase, the deviations are larger 

than close to the bulk of one of the phases. However, it is impossible to define exactly where the 

water phase ends and where the vapour phase starts. According to Gibbs, the excess internal 

energy is totally located in the dividing plane, whereas the individual phases keep their bulk 

properties until the plane (Lyklema, 1991). The interfacial excess is equal to 0 in the middle of 

the interfacial region or dividing plane. Going back to the example of a pure liquid in contact 

with its vapour, the deficit of a component in the liquid phase equals the excess of that same 

component in the vapour phase, creating a net interfacial excess of the respective component 

equal to O. At the arne time, the Gibbs dividing plane is believed to contain the interfacial 

excesses of all other components of a particular system (Norde, 2003). 

Gibbs dividing pla ne 
or 

idea l interface 

Guggenheim's ex tended 
interface 

Figure 2.18 Representation of an interface, a, according to Gibbs (left), consisting of two 

phases, a and p separated by thin boundary layer, and according to Guggenheim (right), 

where an extended interphase with a volume is present (Butt et al., 2003). 

The interfacial exces or urface concentration, r i, can be defined as the surface concentration 

and i obtained by dividing the number of molecule of a substance at the interface, N;" , by the 

interfacial area, A (Butt et aI., 2003): 

Nt! 
r·=-' 

I A 
[2-19] 

As de cribed by Wal Ira (2003), the adsorption of solutes at the interface lowers the free energy 

of the ystem. Gibb thereby assumed that in an equilibrium situation the chemical potential of 

the ad orbate i the arne in the olution and at the surface, and that the plane dividing the two 

phase i infinitely thin. 
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This leads to the formulation of the Gibbs adsorption equation: 

dO = -dy = RTfd Ina, [2-20] 

where y is the surface tension, a the thermodynamic activity of the adsorbate in the solution and 

II the surface pressure. According to Lyklema (1991), the Gibbs adsorption equation can be 

regarded as the surface equivalent of the Gibbs-Duhem relation, equation [2-18]. If the surface 

excess is positive, this means that adsorption takes places at the interface. Equation [2-20] then 

implies that the surface tension, y, decreases, as a result of this adsorption (Atkins, 1994). 

2.3.1.2 Thermodynamics of interfaces 

When discussing interfaces and surfaces, it is important to define these concepts, although they 

are often used interchangeably. In general, interfaces are regarded as the boundaries between 

different phases, whereas surfaces are more restrictive and refer to the boundary or interface 

between a condensed phase (solid or liquid) and a gas phase or vacuum (Walstra. 2003). Two 

important interfacial phenomena need to be discussed when reviewing interfaces: interfacial 

tension and adsorption. Basis for the concept of interfacial tension is the fact that systems try to 

minimize their total free energy. This does not only apply to pure systems. it also applies to 

fluid systems consisting of two phases. For example, oil dispersed in water will assume a 

spherical shape as this is the smallest surface area for a particular volume. Free energy of the 

two phases will be accumulated at the interface. Due to the excess Gibbs free energy at the 

interface, they commonly contract. According to the thermodynamic laws, systems tend to 

reduce their interfacial area in order to decrease the excess free energy. The work used for a 

surface area reduction is: 

dW = ydA. [2-21] 

The thermodynamic interpretation of the interfacial tension is expressed by equations [2-22] and 

[2-23], which describe the change (increase) in Helmholtz or Gibbs free energy of a system 

when the area of that particular interface is increased reversibly, respectively. This increase in 

interfacial area dA is infinitesimal, and takes place at constant temperature and composition, as 

well as constant volume (Helmholtz) or constant pressure (Gibbs) (Lyklema, 2(00): 

y = (iJFI) , 
iJA V,T,n 

[2-22] 

y = (iJG I iJA) p,T,n ' 
[2-23] 

where y refers to the interfacial tension and n is an abbreviation for the set of amounts nj. n2, ....• 

that define the composition of the system. 
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2.3.1.3 Adsorption at the solid surface 

The Gibbs adsorption equation and dividing plane apply primarily to liquid-fluid interfaces. 

According to Lyklema (1995) the driving force for adsorption of gases on solid surfaces are the 

attractive forces, such as London-van der Waals, between the gas molecules and the solid 

surface. Assuming that the Gibbs dividing plane in a flat solid-gas system coincides with the 

physical boundary between gas and solid surface, and that the interfacial or surface excesses are 

reduced to the corresponding analytical surface concentrations, the Gibbs adsorption equation 

for a mixture of gases can be written as: 

[2-24] 

When a vapour adsorbs onto a solid surface it forms a contaminated solid surface where the 

adsorbed layer of vapour molecules on the solid surface is in equilibrium with the vapour of the 

liquid at equilibrium pressure, Ye. This relation is described by the Young equation, which will 

be discussed in more detail in section 2.3.2. 

Yf COS 8 = Y SI1 - Y sf . [2-25] 

The subscripts I, sv and sl refer to the liquid, solid-vapour and solid-liquid interfaces, 

respectively. Comparison of the non-contaminated or clean surface and the contaminated 

surface shows that: 

YSI1 = Ys - De' [2-26] 

where the equilibrium pressure is: ne = -~F,. The increase in Helmholtz free energy, ~F. 

results from the transformation of the clean solid surface by adsorption of the water vapour 

(Schrader, 2(03). 

Adsorption / desorption at a gas-solid interface, as shown in Figure 2.19, results in the 

formulation of an equation for the surface concentration or interface excess at the solid-gas 

interface: 

[2-27] 

where p is the gas pressure. Similar as for a solvent / solute system, the surface free energy of 

the solid decreases when gas or vapour molecules adsorb on its surface, although in this case an 

increase in vapour pressure is observed, resulting in a positive r. When the vapour molecules 

prefer the bulk gas phase, a negative r is obtained. However, if there is any adsorption of 

vapour molecules on the solid surface, than these molecules will be responsible for an increase 

in solid surface free energy compared to that of a clean or "un-adsorbed" solid surface 

(Schrader, 2(03). 
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Figure 2.19 Visualization of the principle of Gibbs adsorption for a solid-gas system 

(Schrader, 2(03). 

Using the principle of the Gibbs adsorption theory and the dividing plane, Chattoraj (2001) 

discusses the adsorption of solute at solid-water interfaces, in addition to the previously 

discussed adsorption at air-water interfaces. It is based on the fact that surface active solutes 

accumulate at the interface, something that can easily be determined experimentally. For the 

adsorption of a surfactant at a solid-liquid interface equation [2-28] describes the surface 

excess: 

[2-28) 

Isotherms obtained for the adsorption of SDS at alumina-water interfaces have shown that r21 is 

positive, resulting in the excess adsorption of solvent, T12, to be negative. 

2.3.2 Solid surface free energy 

As mentioned previously, solid surface free energy is not a straight forward concept. In contrast 

to liquids, where the surface molecules are mobile, the surface molecules of solids can only 

vibrate around their mean position. Once a new solid surface is formed, that solid surface cannot 

reduce its surface area and thus not the excess internal energy. The result is the formation of a 

non-equilibrium surface structure. However, the inward pull responsible for the surface tension 

of liquids is also present on the solid surface molecules. The cohesion between the surface 

molecules is similar to that in liquids, but due to the very low mobility of solid surface 

molecules the surface area reduction is limited and it takes longer for the molecules close to the 

surface to gain an equilibrium distribution and orientation (Walstra, 2(03). Both the concept of 

liquid surface tension and solid surface tension can be defined by the same equation, whereby 

the surface tension of any condensed material, Yj, is defined as minus half the free energy of 

(non-covalent) cohesion. L\G/oh (van Oss. 2006). 

_ 1 LlGcoh 
Yi=-i ii' [2-29] 
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No experimental method or technique is available to measure the solid surface tension or solid 

surface free energy directly. A couple of theoretical estimations exist for the surface free energy 

of solids, which are semi-empirical methods used only for solids which have specific atomic or 

molecular interactions. Unfortunately these cannot be applied to the materials used in this 

research. However, several indirect experimental methods have been developed for the 

determination of the surface free energy of solids. In general, these empirical approaches 

determine the surface tension of a solid, y" by estimating the surface tension of the solid-liquid 

interface, Y,I, which is in tum based on the use of two measurable quantities, the contact angle of 

a liquid drop on a solid surface, e, and the liquid-vapour interfacial tension, Yh" Several 

empirical approaches or theories have been applied in this research which interprets the surface 

free energy in terms of the intermolecular interaction forces at the interface. They are discussed 

in more detail in section 3.3.1.3. 

The basis for these approaches lies in the equations of Young and Dupre (Balkenende et aI., 

1998). First of all the equation of Young, which is a thermodynamic definition of the contact 

angle, e. Young's equation describes the relation between three phases in equilibrium at the 

three-phase contact line, and relates the surface and interfacial tensions of the solid and the 

liquid to the contact angle (Karbowiak et aI., 2006): 

Ylv cos 6 = Ysv - Ysl ' [2-30] 

where YI" Ysv and Ysl are the surface tensions (or free energy per unit area) of the liquid-vapour, 

solid-vapour and solid-liquid interfaces, respectively. 

The solid-vapour interfacial tension is dissimilar to the solid surface tension, but adsorption of 

vapour molecules by the solid surface will reduce the solid surface tension, Ys, to the solid­

vapour interfacial tension, Ys\ (Bateup, 1981). The relationship between solid surface tension 

and solid-vapour interfacial tension is given by the spreading or equilibrium film pressure, 1te: 

7le = Ys -Ysv· [2-31] 

From this equation it can be observed that the spreading pressure represents the reduction of 

solid surface tension due to vapour adsorption (Garbassi et aI., 1994). In order to obtain the real 

work of adhesion, the spreading pressure should be added to the Young's equation. However, it 

is often assumed that the adsorption at the solid-vapour or liquid-vapour interface is negligible, 

implying that Ysv = Ys and Y'v = Yl (Balkenende et aI., 1998). Especially for solids with low 

surface energy, 1te is often regarded as negligible. The spreading pressure is only significant for 

high energy surfaces, as there is a large degree of adsorption at the surface. Within this research, 

1Ce is assumed negligible. 
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Secondly, the equation of Dupre, which describes the thermodynamic, reversible work of 

adhesion: 

W:, = 1Sl1 + 1111 - 1s1 . [2-32] 

The thermodynamic, reversible work of adhesion, Wa, or the negative of the free energy of 

adhesion -fj,Ga can be interpreted as the work required to separate a unit area of solid-liquid 

interface between two different materials (Comyn, 1997) to leave a "clean" solid surface and a 

liquid surface, both in equilibrium with the vapour phase (Karbowiak et aI., 2006). According to 

Lee (1993) it corresponds to the negative of the Gibbs (or Helmholtz) free energy change per 

unit area of interface, _fj,Ga
, whereby it is assumed that a hypothetical interaction takes place 

between two phases across a plane boundary without a change in area. 

Combining equation [2-30] and [2-32] yields the Young-Dupre adhesion model: 

W:, = Y111(C05 8 + 1) . [2-33] 

This model is based on measurable quantities, i.e. the liquid surface tension, Ylv and the contact 

angle, 8, in order to determine the reversible work of adhesion for solid-liquid interactions. In 

this research, the contact angle refers to the angle that chocolate makes with the solid surface, 

the mould, and the liquid-vapour surface tension refers to the chocolate-vapour surface tension. 

2.3.2.1 Surface tension 

Surface tension, y, and surface free energy, !lG, are strictly speaking not the same thing (van 

Oss, 2006), As can be observed from equation [2-34] where !lG/"h is the thermodynamic free 

energy or work of cohesion of material 1, whilst Y I is the surface tension of this same material: 

[2-34] 

The surface tension can be regarded as a physical parameter, which represents both the free 

energy per unit area and the force per unit length (Good, 1992). According to Fowkes (1964), 

the surface tension in a liquid surface resides primarily in the surface monolayer. To ensure, 

however, that the part of the surface tension which is present in the bulk liquid adjacent to the 

surface or interfacial monolayer is also taken into account, the term surface or interfacial region 

is used. Attractive short-range forces between molecules located in the bulk liquid have been 

observed to experience on average a uniform force field. Molecules located at the surface or at 

for example a liquid-air interface experience a non-uniform force field with a net inward pull 

(Shaw, 1992). The attractive forces acting between molecules within the surface region of a 

liquid are responsible for a net attraction into the bulk of the liquid in a direction normal to the 

surface (Fowkes, 1964). Summarizing, the surface tension of a liquid results from an imbalance 

of molecular forces in the surface region of the liquid, as is visualized in Figure 2.20. 
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Air 

Liquid 

Surface 

regIon 

Figure 2.20 Attractive forces between molecules at the surface region and in the bulk of a 

liquid which are responsible for the surface tension (Shaw, 1992). 

As described by equations [2-22] and [2-23], the cutting of a bulk liquid results in the formation 

of a new surface. A consequence of this is that the molecules in the surface need to rearrange 

themselves. sub equently decreasing molecular interactions until equilibrium is reached. At 

equilibrium. there is a decreased interaction of the molecules at the new surface (McGuire. 

2005). The removal of molecular interactions means that the molecules at the surface have an 

exce s of interfacial energy. compared to the molecules in the bulk liquid. e.g. an increa e in the 

excess surface free energy of the molecules along the new surface is obtained. The excess 

energy in the urface region is responsible for a force acting towards the bulk of the liquid. As a 

re ult of the molecule at the surface showing an increased tendency to minimize their surface 

area. the excess energy of the whole system is decreased. Surface tension is defined as the force 

that is respon ible for the minimization of the surface area of liquid matter in order to reduce the 

urface excess energy. 

2.3.2.2 Contact angle 

The interaction between a liquid and a solid-vapour interface can be characterised by the 

contact angle. e. which i the angle that a liquid drop makes when placed on a solid surface. as 

i visualized in Figure 2.21. Characteristic for the three-phase system is the orientation of the 

liquid-vapour interface with respect to the solid urface (McGuire. 2005). Contact angle 

mea urement i regarded as the most accurate method describing the interaction energy of the 

olid-liquid interface at the minimum equilibrium distance. lo. (van Oss. 2(06) . Molecular 

adhe ion force are not pre em at distances above eo. so no interaction i observed. If the 

di tance between a liquid drop and a solid ubstrate is below f o• interaction is ob erved for 

example by a liquid drop jumping onto the solid substrate and spreading out over its urface 

(Kendall . 2(01). Kwok and Neumann (1999) described the mea ured contact angle a the result 

of three interfacial tension in mechanical equilibrium. At this equilibrium state. the liquid drop 

ex hibits a finite contact angle towards the solid (Fox and Zisman. 1950). 
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Figure 2.21 A schematic representation of a liquid drop placed on a solid surface. 

The subscripts s, I and v stand for solid, liquid and vapour, respectively. The contact angle, 0, 

is measured through the drop, at the tangent to the drop, starting at the triple point solid· 

liquid-vapour (adapted from LykJema, 2000; Neumann and Good, 1979). 

The concept of contact angle was first defined by Young in 1805, when he described the three 

phase equilibrium. Young defined the contact angle in terms of the vectorial sum (vector with 

magnitude and direction), which resulted in Young's equation of interfacial equilibrium as 

represented by equation [2-30] (Good, 1992; Kwok and Neumann, 1999). The different 

interfaces a im to reduce the interfacial area and consequently minimize the overall interfacial 

energy of the system. The underlying hypothesis for the Young equation states that solid 

surfaces should be homogeneous and smooth. According to Good (1979), Young's equation can 

be completed by adding the following term: 

If Ysv - Ysl > Ylv , then cos fJ = I . 

According to van Oss (2006), the sessi le drop is a force balance, which determines 

macroscopic-scale interaction energies. Within thi s balance, the cosine of the contact angle 

results from a combination of the energy of cohesion of the liquid, YIIOI
, and the energy of 

adhesion between the liquid and the solid, /)"Gsi' This force balance is shown schematically in 

Figure 2.22. Within this balance the equilibrium spreading pressure, ]te, is neglected and it is 

assumed that YI > Ys. It can be observed from the force balance that finite or non-zero contact 

angles can be obtained only if YI IOI 
> /)"Gs1 and gravity is neglected. A small contact angle 

indicates strong adhesion, high molecular attractions, whereas a large angle shows small or 

limited adhesion, low molecular attractions (Kendall, 2001). 

It can be deduced from Young's equation [2-30] that one contact angle should be obtained from 

the vectorial sum of the three interfacial tensions. However, experimentally it is observed that a 

range of contact angles is obtained when a drop of liquid is placed on a solid surface. Within 

this range of contact angles, a maximum value or advancing contact angle, Bu, and a minimum 

value or recedi ng contact angle, fJr , can be observed (Garbassi et aI., 1994; Kwok and Neumann, 

1999). The words receding and advancing are based on the measurement of these two angles, 

which will be discussed in section 3.3.1.2. According to van Oss (2006) both the Young and 

Young-Dupre equations are only valid for advancing contact angles. Receding or retreating 

contact angles are measured on a contaminated surface, as a result of which it is commonly 
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observed that ()r < ()a. The contamination arises from the wetting of the solid surface by the 

liquid of which the receding drop is composed. An advancing drop on the other hand is placed 

on the non-wetted surface, giving a more accurate determjnation of the three-phase (vapour­

liquid-solid) contact. 

< ) 
< ) 

liquid 

solid 

\~ 

I , 

(1 + cos lJ )y,'"' = 2 (Jy;wyr + JYs(JJy,8 + Jy,9y<,") 

Figure 2.22 The contact angle as a force balance, where cos 0 results from the equilibrium 

between the energy of cohesion within the liquid and the energy of adhesion 

between the liquid and solid surface. 

Correlating this to the Young· Dupre equation it is shown that the left hand side of the 

equation refers to the energy of cohesion, whilst the right hand side refers to the energy of 

adhesion. Within the latter a second division can be made between the contribution of apolar 

<=> ) or Lifshitz-van der Waals interactions and polar ( ~ or Lewis acid-base 

interactions (van Oss, 2006). 
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2.3.2.2.1 Wetting or spreading 

Different definitions exist of what is intended by the word "wetting". These definitions are 

mainly based on the field or sector where it is applied. In certain cases wetting can also be 

considered to be an umbrella term 'describing all phenomena involving contacts between three 

phases, of which at least two are fluid" (Lyklema, 2(00). In general, the following description 

or definition can be applied: 

Wetting means that the contact angle between a liquid and a solid is zero or so close to 

:ero that the liquid spreads over the solid easily, and non-wetting means that the angle 

is greater than 90° so that the liquid tends to ball up and run off the suiface easily' 

(Adamson and Gast, 1997). 

The terms wetting and spreading are related to the reaction of a liquid drop when placed on a 

solid surface. There are two main reactions; either the liquid spreads across the solid surface to 

form a thin film or the liquid will remain a drop on the solid surface. Due to the contact between 

a solid and a fluid/liquid, the mechanical and thermodynamic solid surface tension will change, 

in combination with other properties of the solid (Rusanov, 1996). When the reaction is forced, 

the term wetting is used, whereas spreading occurs spontaneously, often due to liquid-solid 

interactions. 

The wetting process can quantitatively be described by the contact angle, (), based on which 

three stages of wetting can be distinguished (Myers, 1999): 

• Complete wetting 

The liquid will spread on the flat solid surface and form a thin uniform film, () = 0°. 

Important is the long range character of the molecular interactions; 

• Partial wetting 

The liquid will spread on the solid surface to some degree, but it will not form a 

uniform film, approximately 0° < () < 90°; 

• Non-wetting 

The liquid will not or only minimally spread on the solid surface, () > 90°. 

2.3.2.2.2 Thermodynamics of wetting 

Another way of describing the wetting process is by using thermodynamics, which results in the 

formation of three types of wetting: spreading (A). adhesion (B) and immersion (C) wetting. 

These three types of wetting and the work involved are shown schematically in Figure 2.23 

(Lyklema, 2000; Myers, 1999; Shaw, 1992; Bateup, 1981). 
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Figure 2.23 Three kinds of wetting, thermodynamically defined (Lyklema, 2000). 

A. Spreading wetting or spreading 

Harkins ( 194 1) and Harkins and Feldman ( 1922) were among the first to describe the 

different situations that might occur upon contact between a liquid and a solid: 

• All liquids spread 011 a pure suiface: a theory developed by Lord Rayleigh, based 

on the principle that a ll substances attract each other; 

• A liquid (b) will l10t spread on another liquid (a) if: Ya > Yb + Yab ; 

A theory based on the Neumann triangle of forces, where the surface tension of 

each re pective liquid will pull the liquid away from the other liquid; 

• Liqllids whose molecules are polar or contain polar groups, spread on water: a 

theory developed by Langmuir, who stated: 'the only substances which spread are 

those whose molecules contain both hydrophilic and hydrophobic parts'; 

• A liquid will spread if its work of cohesion is less thall its work of adhesion: 

a theory developed by Harkins and Feldman, whereby the tendency of a liquid to 

pread is described by its spreading coefficient, S: S = Wa - We ' 

The Harkins and Feldman theory is developed from the thermodynamics of surfaces, and is 

therefore theoretically the most justified theory. According to Harkins and Feldman ( 1922), 

spreading wetting or spreading is characterized by the spontaneous wetting of the solid 

surface by the liquid. The initial situation consists of a solid and a liquid being in contact 

with each other. Spreading results in the displacement of an area of solid- vapour interface 

by equi valent areas of solid-liquid and liquid-vapour interfaces. 

The thermodynamic preading coefficient, S, describes the relationship between the surface 

free energie that are involved in the spreading process. It gives the free energy decrea e 
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that is obtained during spreading. According to Lyklema (2000), S can be defined as 'the 

isothermal reversible work per unit area of replacing the solid-vapour interface by a solid­

liquid and a liquid-vapour interface: 

-tlGs s=-A ' 
[2-35] 

Spreading occurs when the spreading coefficient has a positive value, indicating that the 

attraction of the liquid for the solid is greater than the internal attraction of a liquid; and 

oppositely, no spreading is observed if the spreading coefficient is negative, indicating a 

greater internal attraction of the liquid. These observations have evolved in the development 

of the following guidelines (Lyklema, 2(00): 

S > 0 spreading will occur spontaneously; 

S = 0 system is at equilibrium; 

S < 0 droplets retract their perimeter, leading to partial wetting. 

B. Adhesion wetting 

The concept of adhesion wetting is based on the adhesion of a liquid to the solid surface 

once the two phases make contact. Initially, both the solid and the liquid are in contact with 

a vapour. Adhesion occurs once the solid is brought into contact with the liquid phase. The 

adhesion wetting process consists of the displacement of an area of solid-vapour interface 

by an equal area of solid-liquid interface. Compared to the spreading wetting process, the 

area of liquid-vapour interface is decreased. 

The Young-Dupre adhesion model, described in equation [2-33] is used to mathematically 

describe the adhesion wetting process. Officially, the equilibrium spreading pressure, 1te, 

which represents the reduction of solid surface tension due to vapour adsorption (Garbassi 

et aI., 1994), should be added to the Young-Dupre equation. However, 1te has been observed 

to be negligible for low surface energy solids. As 1te :::: 0 for low energy surfaces, the work 

of adhesion is shown by equation [2-33], the Young-Dupre equation (Hiemenz, 1986). 

C. Immersion wetting 

The concept of immersion wetting is based on the complete immersion of the solid in the 

liquid phase. Initially, both the solid and the liquid are in contact with a vapour phase, 

similar to the initial situation for the adhesion wetting process. Immersion occurs when the 

solid is brought into contact with the liquid and is completely wet by the liquid. The 

immersion wetting process consists of the displacement of the complete unit area of solid­

vapour interface by a similar unit area of solid-liquid interface. There is not a change in the 

area of the liquid-vapour interface during the immersion wetting process. 

The free energy change obtained during the immersion wetting process is: 
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w: - -t:.Gi 
imm -7' [2-36] 

= Ysv - Ysl . 

Relating this to the Young-Dupre equation for adhesion wetting [2-33]: 

Wimm = Ylv cos 8 . [2-37] 

The following conditions or guidelines have been applied to the immersion wetting 

process: 

Ysv > Ysl then () < 90° and immersion wetting occurs spontaneously; 

Ysv < Ysl then () > 90° and work must be done for immersion to occur. 

Within this research, it is assumed that spreading and adhesion wetting will be the most 

important processes. Spreading wetting applies to the chocolate moulding process, in which 

liquid chocolate is deposited into the moulds and displaces vapour that is in contact with the 

mould surface. Important with respect to the vapour displacement are the cohesive 

intermolecular interactions between the chocolate molecules and the adhesive interactions 

between the chocolate and mould surface. Knowledge of the spreading coefficient would 

increase understanding of the process of chocolate mOUlding. Adhesion wetting, on the other 

hand, applies to both the chocolate moulding and demoulding process, especially once the liquid 

chocolate spreads in the moulds and the subsequent removal of the chocolate from the mould. 

2.4 THERMODYNAMICS VS PRACTICAL ADHESION 

Various theories and mechanisms have been proposed in literature to explain surface adhesion 

and have been discussed in section 2.2.3, i.e. mechanical interlocking, wetting and 

thermodynamical adsorption, electrostatic adhesion, diffusion, chemical adhesion, and weak 

boundary layers (Michalski et aI., 1997; Comyn, 1997). Of these theories, the concept of 

thermodynamically driven surface adhesion is probably the most relevant for food applications. 

Understanding of the mechanisms involved in the phenomena of wetting and spreading, such as 

solid-liquid interactions, is believed to enhance development of new surfaces and interfaces 

through artificial modifications, and subsequently improved manufacturing facilities 

(Karbowiak et aI., 2006). 

Fouling is defined as "the accumulation of unwanted deposits on the surfaces of heat 

exchangers", and results in a reduced efficiency of the equipment due to resistance to heat 

transfer (Bott, 1995). The deposits can be crystalline, particulate or biological material, or the 

result of a chemical reaction, and are caused by the combined effect of adhesion of species to 

(thermal) equipment surfaces and cohesion between elements of the material. General factors 
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believed to be responsible for the adhesion are van der Waals forces, electrostatic forces, 

hydrogen bonding and hydrophobic binding, as well as contact area effects (Liu et aI., 2006a). 

Many researchers have considered that the extent of adhesion is predominantly determined by 

the surface energy of the substrate, especially in the case of bio- and crystalline fouling. 

Michalski et al. (1998a) investigated the relationship between the thermodynamic work of 

adhesion and the weight of fatty food remaining on packaging material after drainage flow. 

Their results showed that pure chemical reference materials, in this case vaseline oil, cannot be 

used to predict the adhesion behaviour of food materials, in particular olive, sunflower and 

soybean oil. Thermodynamic adhesion, however, was shown to be important in the interactions 

between oil materials and packaging or equipment surfaces. Especially the use of liquid surface 

tension and contact angle determinations was recommended for a 'simple and reliable 

estimation of food-to-solid adhesion. Another study with food emulsions showed a similar result 

(Michalski et aI., 1999). The amount of emulsion that adhered to solid surfaces increased with 

solid surface energy. More importantly, a minimal or critical solid surface tension was observed 

for each emulsion, which indicated the starting point for the formation of deposits. 

Well known within the field of biofouling is the Baier curve, representing the relation between 

solid surface free energy and relative bacterial adhesion, see Figure 2.24. Characteristic for this 

relation is the optimum value or minimum of the surface free energy for which bacterial 

adhesion is minimal, which lies in the range of 20-30 mN m- I (Zhao, 2004). A similar 

correlation has also been observed for the adhesion of milk protein at surfaces with varying 

surface energy, where the optimum value of the surface energy falls in the range 30-35 mN m-I. 

Using this information several attempts have focussed on the reduction of fouling using coated 

polytetrafluoroethylene (PTFE) surfaces, which are known to have low surface energy and non­

stick properties (Zhao et aI., 2005). Tsibouklis et al. (1999) investigated two particular classes 

of compounds, silicones and acrylates, in relation to bacterial adhesion, based on suggestions 

that a flexible linear backbone was required for the coating polymer, as this would enhance the 

attachment of side-chains with low intermolecular interactions. However, contact angle 

measurements indicated that the more flexible siloxane coatings exhibited higher surface energy 

values, but both types of coatings were capable of inhibiting bacterial adhesion. Research by 

Zhao et al. (2004b) has shown that the Lifshitz-van der Waals component of the surface free 

energy plays a determining role in the resistance to bio-fouling. Saikhwan et al. (2006) observed 

a similar dependence on the non-polar I dispersive I Lifshitz-van der Waals component of the 

surface energy. 
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Liu et al. (2006b) used the concept of the Baier curve to develop a model which can predict the 

fouling resistant value at which the foulant adhesion force is reduced and the fouling deposit can 

be removed more easily, i.e. it assumes that a minimum adhesion energy between deposit and 

surface exists: 

LW _ 1 ( LW + GW) 
Ysurface - Z Yfoulant ~YflUid . [2-38] 

Experimental results using baked and unbaked tomato paste showed that the experimentally 

determined minimum is in the region predicted by the theory, and that the effect of surface 

energy decreases with increasing deposit thickness. 
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Figure 2.24 Effect of solid surface free energy on bacterial adhesion, Baier curve (left), 

and on protein adhesion (right), respectively (Zhao, 2004). 
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Another area where modified surfaces are applied to reduce the adhesion is in the cleaning of 

food contact surfaces. In many food manufacturing plants the adhesion of food particles to 

equipment surfaces is unavoidable (Bobe et aI., 2(07). Boulange-Petermann et al. (2006) 

investigated the effect of chemical and mechanical surface modifications on the surface energy 

and cleaning ability of stainless steel. A strong correlation was observed between the cleaning 

performance and the polar component of the solid surface energy, where hydrophilic surfaces 

had a much higher oil droplet removal rate. Rosmaninho et al. (2004) and Rosmaninho and 

Melo (2006) concluded that the electron donor component, y", is the main differentiating 

parameter for different types of stainless steel, both modified and non-modified. It affected the 

initial deposition rate of calcium phosphate deposits, which in tum determined the deposit 

structure and amount of material deposited. Surfaces with a high electron donor component 

were regarded as being more prone to nucleation resulting in an increased ability to form 

nucleation sites and subsequently developing more compact deposit structures. Low electron 

donor component surfaces, on the other hand, showed the opposite behaviour and developed 

larger deposits with a more loose structure. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 INTRODUCTION 

This chapter will discuss the experimental materials and methodologies applied during this 

research. 

3.2 MATERIALS 

The materials used in this research are divided into four different categories. according to their 

physical and chemical characteristics and their particular applications: 

• Chocolate systems 

Food grade non-aerated chocolate systems were used for the chocolate-mould adhesion 

determination (section 2.2.2). The results obtained by using these chocolate systems are 

discussed in CHAPTERS 4. 5, 6 and 7. 

• Solid mould materials 

Characteristic mould materials were chosen as solid substrates for surface energy 

(section 2.2.1) and chocolate-mould adhesion determinations. The results obtained by 

using these solid mould materials are discussed primarily in CHAPTER 4. 

• Contact angle liquids 

Standardized contact angle liquids were applied in contact angle and surface tension 

experiments as part of the surface energy determination. The results obtained by using 

these contact angle liquids are discussed in CHAPTER 4. 

• Thin film coating systems 

Food grade coatings composed of a selection of biopolymers and fatty acids were used 

to modify a standard polycarbonate mould surface. and subsequently used for the 

chocolate-mould adhesion determination. The results obtained by using these thin film 

coating systems are discussed in CHAPTER 7. 

3.2.1 Chocolate systems 

General issues relating to chocolate composition and production were discussed in CHAPTER 

2. The chocolate systems used are cocoa butter. dark chocolate and milk chocolate. and their 

approximate composition is summarized in Table 3.1. 
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Table 3.1 Composition (%) of chocolate systems. 

Cocoa solids 

Sugar 

Milk solids 

Other 
components, e.g. 

lecithin and 
vanillin 

Cocoa butter 

100 

Dark chocolate 

52 

47.5 

0.5 

Milk chocolate 

29 

51.5 

20 

0.5 

The use of aerated chocolate in surface energy and adhesion measurements is hindered due to 

mechanical constraints. Melting and other preparative techniques are required to be applied to 

the chocolate samples prior to the application of the various experimental methodologies. 

However, in the case of aerated chocolate these techniques will normally result in a 

modification of the characteristic microstructure and physical properties of the aerated sample. 

As a result the decision was taken to concentrate on the use of "normal", i.e. non-aerated, 

chocolate for the validation of the experimental methodologies applied in the research, as well 

as gaining fundamental understanding. 

3.2.1.1 Cocoa butter 

Deodorized cocoa butter (100% cocoa solids, ADM Cocoa, Koog aan de Zaan) was obtained 

from Nestle PTC, York. The type of cocoa butter used was so called press cocoa butter, which 

is obtained by means of mechanical pressing of cleaned and ground cocoa nibs and 

subsequently only filtered I centrifuged and degummed and/or deodorized, and is the highest 

grade commonly used as a standard within the chocolate manufacturing industry (De Zaan, 

2006). Analytical characteristics have been summarized in Table 3.2. 

As discussed in section 2.1.2.1, cocoa butter is a unique fat, based on its chemical composition. 

It consists of 1,3-dipalmito-2-0Iein, I-palmito-3-stearo-2-olein, and 1,3-distearo-2-0Iein in an 

almost constant ratio of 22 : 46 : 31 (% peak area) (Belitz et aI., 2004). As cocoa butter 

comprises mainly these three triglycerides it behaves like a pure chemical at phase changes, 

with a relatively sharp melting point rather than a melting range. This clear melting point is also 

responsible for the characteristic cooling sensation experienced when cocoa butter melts in the 

mouth. The chemical composition is also responsible for the resistance of cocoa butter to 

autoxidation and microbiological deterioration. In solid form, the cocoa butter exhibits an ivory 

colour, whereas in liquid form a clear, yellowish colour was displayed, without signs of solid 

particles. 
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In this research cocoa butter was used as a reference or model system. Its chemical and physical 

behaviour is comparable with that of a pure or single component system. Furthermore. it is one 

of the main ingredients of chocolate. By using cocoa butter as a model system and comparing it 

to dark chocolate. it allows the determination of specific effects and/or interactions caused by 

the other ingredients present within the chocolate matrix. 

Table 3.2 Specification of pure pressed cocoa butter (De Zaan, 20(6). 

Characteristics Press cocoa butter 

Acidity max. 1.75% 

Refractive index nD (40 °C) 1.456 - 1.458 

Slip melting point 30 - 34 °C 

Clear melting point 32 - 35 °C 

Blue value max. 0.05 

Free fatty acids (as % mlm oleic) 0.5 - 1.75% 

Saponification value (mg KOH g/fat) 192 - 197 

Peroxide value max. 4 

Iodine value 33 -40 

Unsaponifiable matter (% mlm) max. 0.35% 

Adsorbance after washing with alkali max. 0.14 

Colour (yellow + red) min. 40 + 1.0 I max 40 + 2.0 

3.2.1.2 Dark chocolate 

Dark chocolate was prepared according to standard (commercial) recipe by mixing sugar. cocoa 

liquor. cocoa butter. lecithin and vanillin. by Nestle PTe (York) in order to obtain a final 

product with 52% cocoa solids. All samples were tempered using commercial methods prior to 

surface energy and/or adhesion measurements. The temperature profile used was similar to that 

shown in Figure 2.11. except that the temperatures were slightly adjusted for dark chocolate 

where necessary. Mycryo® cocoa butter powder (Cacao Barry) was used as a seeding or 

nucleation agent. to ease the tempering process. by inclusion (I % concentration) in the melted 

chocolate mass at a temperature of 34-35 0c. 

Dark chocolate was chosen as the experimental system over milk chocolate. as it is the simplest 

of all chocolate types consisting mainly of cocoa solids. fat and sugar. Artefacts caused by other 

ingredients are thus negligible. Comparison of dark chocolate and cocoa butter will allow the 

determination of the combined effect of cocoa solids and sugar particles. 
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3.2.1.3 Milk chocolate 

Tempered milk chocolate (29% cocoa solids, 20% milk solids) was obtained from Nestle PTC 

(York) and was prepared according to standard (commercial) recipe. All samples were tempered 

using commercial methods prior to surface energy and I or adhesion measurements. The 

temperature profile used was similar to that shown in Figure 2.11. 

3.2.2 Solid mould materials 

Different types of solid mould materials were evaluated from a physical, e.g. thermal and 

mechanical properties, and chemical, especially surface characteristics, point of view. The final 

four mould materials chosen for surface energy and chocolate-mould adhesion determination 

are polycarbonate, stainless steel, poly(tetrafluoroethylene) (PTFE) (Teflon) and quartz glass. 

and a summary of their most important mechanical and thermal properties is given in Table 3.3. 

I 

Table 3.3 Mechanical and thermal properties of solid mould materials 

(8rydson, 1999; Wyatt et aI., 1998; NVON·commissie, 1998). 

Polycarbonate Stainless PTFE 
steel 

Tensile strength MPa 65.5 580 21 

Elongation at % 
110 55 300 

break 

Density kg m-3 1200 8060 2150 

Specific heat J kg-I K- ' 1180 503 1172 

Thermal Wm-'K' 0.19 16.2 
conductivity 

0.195 

Mean coefficient xl0-6oe l 

of thermal 0.65 17.3 99 

expansion 

Glass transition °C 
-145 N/A 130 

temperature 

Crystal melting °C 
220-230 N/A -

point 

Melting point °C 300 1400 302-310 

Softenmg pomt of quartz glass 
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2200 

670 

1.4 
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Of these solid materials, the first three are known because of their commercial application in 

confectionery manufacturing. Industrial chocolate moulds are now commonly made from 

polished polycarbonate, although they were traditionally made from stainless steel. Flexible 

PTFE and/or silicon rubber moulds have also shown practical advantages, due to their 

flexibility, non-stick character and low surface energy. Quartz glass was primarily chosen as the 

reference material, because of its purity and well-known high surface energy surface 

characteristics. 

3.2.2.1 Polycarbonate 

Polycarbonates are polymers belonging to the group of thermoplastic polymers, which are 

obtained by condensation polymerization of polyhydroxy compounds with a carbonic acid 

(CO(OHh) derivative, resulting in carbonate interunit linkages (-O·CO·O-). In commercial 

applications the polyfunctional hydroxy compounds most commonly applied are diphenyl 

compounds and in particular bisphenol A 2,2-bis-(4-hydroxyphenyl)propane (Brydson, 1999). 

Linear polycarbonates, see Figure 3.1, can be synthesized via four practical routes, but the main 

technique used within industry is the reaction of phosgene (COCI2) with dihydroxy compounds 

in the presence of acid acceptors. An example is the interfacial polycondensation by 

phosgenation process, where bisphenol A and phosgene react in the presence of methylene 

chloride-water mixtures (Ebewele, 2000). 

Figure 3.1 Polycarbonate chemical structure. 

Due to its exceptionally high-impact strength even at low temperatures, low moisture 

absorption, good heat resistance, good rigidity and electrical properties and light transmission, 

polycarbonate finds common use in chemical and engineering applications. One of the major 

disadvantages of polycarbonate is its low chemical and scratch resistance. According to 

Brydson (1999), the ester groups are relatively easily hydrolysed by many organic solvents, e.g. 

alkaline solution and amines. Similar destructive observations were reported by Bayer (Bayer 

MaterialScience, 2004), the producer of Makrolon® polycarbonate, who mentions furthermore 

the migration of low-molecular, aromatic, halogenated. and polar compounds. resulting in 

dissolution or swelling of the polycarbonate sample. 

The polycarbonate samples used during this research were obtained from 2 different suppliers. 

with Barkston Plastics Ltd. (Leeds) supplying the standard polycarbonate and Agathon GmbH 

(Bottrop) supplying Bayer Makrolon 2858 polycarbonate samples with different surface 
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fini shes. Both suppliers use si milar processing methods, e.g. injection moulding, and the 

specifications as summarized in Table 3.3 are in good agreement, from which it was concluded 

that the different samples could be used as interchangeable grades of polycarbonate. The 

appropriate surface fini sh of the standard polycarbonate sample was obtained by abrasion using 

a P600 (3M " MarineWare, Southampton) wet or dry abrasive paper and an abraded surface 

plate. Samples supplied by Agathon, the leading producer of chocolate moulds, varied in 

surface finish and surface texture. Surface finish (gloss and texture) of these samples is a result 

of the contact with the injection moulding tooling, which has been poli shed to different levels, 

depending on the surface fini sh required for the particular application. For example, the cavities 

within a chocolate mould which are in direct contact with the chocolate will have a hi gh gloss 

fini sh, whereas the rest of the mould surface will be relatively glossy, but less so than the 

cavities. 

3.2.2.2 StainLess steel 

Stainless steel is a low carbon alloy, which contains a minimum of 50% iron and 12% 

chromium by weight, givi ng it its characteristic stainless, corrosion resisting properties. The 

strong oxide-forming elements, such as aluminium, si licon and chromium, confer corrosion and 

oxidation resistance through the formation of a strong, though, adherent, invisible film which 

replaces the oxide on the iron surface (Wyatt et aI., 1998). Depending on the chromium content 

and the presence of other elements such as molybdenum, copper, nickel, titanium and nitrogen, 

stainless steel is more or less corrosion resistant. The addition of other elements also enhances 

the structure and mechanical properties of stainless steel, e.g. formability and strength. 

The stainless steel samples used during this research, type 316, were obtained from Richard 

Austin Alloys Ltd. (Leeds) . Stainless steel type 316 is an austenitic stainless steel type with stee l 

name X5CrMo 17 -12-2 and steel number 1.440 I, and its chemical composition according to the 

European standard EN 10088-2: 2005 is summarized in Table 3.4. Austenitic stainless steel is 

most commonly used in dairy and food equipment, chemical and textile plants, and architectural 

applications. 

C 

0.07 

Table 3.4 Characteristic chemical composition of type 316 austenitic stainless steel 

(British Stainless Steel Association, 2007). 

Chemical composition % by mass max. 

Si Mn P S N Cr Cu Mo Ni 

\.00 2.00 0.045 0.030 0. 11 16.5/18.5 - 2.00/2.50 10.0113.0 

Surface finish of the stainless steel samples was obtained by using a P600 (3M"', MarineWare, 

Southampton) wet or dry abrasive paper and an abraded surface plate. 
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3.2.2.3 Polytetrajluoroethylene (PTFE) 

Polytetrafluoroethylene (PTFE) is a high-temperature fluoroplastic, obtained from 

polymerization of tetrafluoroethylene. The resulting homopolymer is a linear chain of repeating 

tetrafluoroethylene units, as can be observed from Figure 3.2. In general, fluoropolymers are 

derived from polyethylenes-polypropylenes by the substitution of fluorine for hydrogen. The 

resulting C-F bond that is formed is very stable, with high bond strength, especially if compared 

to C-H or F-O bonds (Wyatt et aI., 1998). This bond strength and/or stability, in combination 

with the particular chain packing, are responsible for the high chemical resistance of PTFE. 

Teflon® is the brand name of PTFE supplied by DuPont and is commonly used as the trademark 

name for PTFE. 

F F 
I I 

C-C 
I I 
F F 

Figure 3.2 PTFE chemical structure. 

Due to its high melting point, PTFE cannot be melt processed and other processing techniques 

like pressing and sintering are required. Furthermore, the lack of polar groups and low surface­

free energy of PTFE, cause its surface not to be attractive to adhesives. PTFE therefore finds 

common use as a non-stick coating in kitchen utensils for example (Comyn, 1997). 

The PTFE samples used during this research were obtained from Barkston Plastics Ltd. (Leeds). 

An appropriate surface finish was obtained by using a fine tum. Flexible PTFE and/or silicon 

rubber moulds have shown practical advantages in chocolate manufacturing, due to their 

flexibility and low surface energy. These moulds often consist of a PTFE coating or thin film in 

combination with an aluminium or stainless steel base. Different degrees of flexibility of PTFE 

can be obtained through varying processing techniques, e.g. heat sealed, thermoformed, vacuum 

formed, heat bonded, welded etc. Chemical composition of the PTFE film can furthermore be 

varied by incorporation of other compounds during the polymerization or derivation process, 

consequently changing mechanical and thermal properties. 

3.2.2.4 Quartz glass 

Quartz glass (Si02), which is also called fused quartz or fused silica, is obtained by melting pure 

quartz, forming a clear transparent solid. In the crystalline or amorphous state, quartz glass is 

extremely resistant to heat shock, has a high corrosion resistance, and can withstand high 

processing temperatures for relatively long periods of time. Addition of other oxides to the silica 

-76 -



Chapter 3. Materials and Methods 

base will result in a reduction of the softening point and an increase in thermal expansion 

(Wyatt et aI., 1998). 

The quartz glass sample used during this research was obtained from Scientific Optical 

(Hastings), and contained an optical fini sh. Based on its high purity and limited contamination, 

quartz glass was chosen as a reference material. It is expected that the surface energy will be 

relatively constant and independent of processing conditions and techniques. 

3.2.1 Contact angle liquids 

Table 3.5 Characteristics of probe liquids used for surface tension and 

contact angle determinations (Acros Organics, 2009; Sigma-Aldrich, 2009). 

Molecular Boiling 

Liquid Supplier Chemical structure weight Density point 

[g mor l] 
[g mrl] [DC] 

Deionised Millipore H2O 18.02 1.00 0 
water 

Acros OH 
Glycerol Organics HO~OH 92.09 1.262 290 

0 
Formamide 

Sigma- II 45.04 1.132 210 
Aldrich C 

H/ 'NH2 

H H 
Diiodo- Sigma- \ ./ 

267.84 3.32 181 
methane Aldrich C 

1/ "'I 

Melting 

point 
[DC] 

100 

18 

2 

5 

Poly(ethy- Sigma- 10~~H Characteri st ics depend on chain length (n) 
lene glycol) Aldrich 

Bromo- Sigma- ~ 207.08 1.48 279-281 -2 /-1 
naphthalene Aldrich 

Br 

Benzyl- Sigma- ()OH 108.14 1.044 205 -16 
al&Ohol Aldrich 

CI 

Chlaro- Sigma- 6 112.56 1.107 132 -46/-45 
benzene Aldrich 

Hexa- Acros 
C I6H34 226.44 0.773 287 18 

decane Organics 

Decane 
Acros 

Organics CIOHu 142.29 0.73 174.1 -29.7 
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Surface energy of solid materials is determined in this research by measuring the contact angle 

and surface tension of a range of liquids, as described in section 2.3.2. All probe or test liquids 

used are pure liquids (95-100%), which are commonly mentioned in literature for similar 

applications. Chemical structures, molecular weight and boiling and melting points are given in 

Table 3.5. The use of a large range of probe liquids allows the determination of more specific 

information regarding the surface chemistry or surface composition of the solid surfaces, 

polycarbonate, stainless steel, PTFE and quartz glass. 

3.2.2 Thin film coating formulation 

In order to increase the ease of de moulding by reducing the adhesion at the chocolate-mould 

interface, the surface energy and/or surface chemistry of a polycarbonate mould surface was 

adjusted using thin film coatings of edible materials. The aim of using edible coatings or films 

within this research is to change the surface chemistry of the polycarbonate surface and 

consequently change the interactions taking place at the chocolate-mould interface. By using 

edible coatings there are two possibilities, the coatings either adhere to the polycarbonate mould 

surface, or they adhere to the chocolate surface after demoulding. 

Edible coatings are generally classified as natural polymers, obtained from animal and vegetable 

proteins, gums and lipids (Khwaldia et aI., 2004). In this research, coatings were prepared using 

two different types of materials: I) hydrocolloids (inclusive protein), and 2) lipids or fatty acids. 

Based on the results obtained for these one component coatings, additional two or three 

component coatings were prepared by combining a hydrocolloid and a lipid ingredient, and by 

addition of a plasticizer. The methodology used for the preparation of these thin film coatings is 

discussed in section 0 

3.2.2.1 Hydrocolloids 

The use of hydrocolloid coatings, if necessary in combination with sweeteners or plasticizers, 

during production of confectionery products is often mentioned in literature. Brake and 

Fennema (1993) compared various hydrocolloids and their capacities to produce semi-solid 

edible coatings which should be an effective barrier to lipid migration amongst others. Results 

obtained indicated that a combination of high methoxyl (HM) pectin, acacia gum, high fructose 

com syrup, dextrose, fructose and sucrose was the optimum formulation with respect to lipid 

barrier and sensory properties, when tested between chocolate and peanut butter. In another 

experiment, Nelson and Fennema (1991) studied the efficiency of methylcellulose (MC) 

hydroxypropylmethyl cellulose (HPMC), carboxymethylcellulose (CMC) and carrageenan as 

barriers against lipid migration. All hydrocolloids tested were effective in retarding migration of 

moisture and oils. However, when embedded in chocolate products, MC films with a thickness 
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of 0.0051 mm were readily detected by a sensory panel. Whey protein isolate (WPI) coatings 

that are plasticized with sucrose have been shown to be highly glossy. Addition of cocoa butter 

to this mixture further improves consumer acceptance, especially when compared to traditional 

alcohol based shellac coated chocolates (Lee et al., 2(02). Dangaran et al. (2006) further 

investigated the WPI-sucrose and the effect of crystallization inhibitor inclusion on the coating 

gloss. They hypothesized that sucrose crystallization is responsible for the loss of gloss of WPI­

sucrose coatings upon storage. Their results showed that addition of raffinose as a 

crystallization inhibitor prevented cracking of coatings and loss of gloss upon storage. 

In this research the application of three different hydrocolloid coatings at the chocolate-mould 

interface were investigated. The hydrocolloids were chosen based on literature observations 

described previously: 

• High methoxyl pectin 

GENU® pectin type 105 G rapid set and GEN~ pectin type 150 USA-SAG type B 

rapid set were obtained from CP Kelco (A Huber Company, San Diego, USA). Both 

pectin types are high ester pectins extracted from citrus peel and standardized by the 

addition of sucrose. Type 105 G has a degree of esterification of 69.3 %. whereas the 

degree of esterification of type 150 USA-SAG is 70.2%. 

• Carboxymethylcellulose 

Cekol® 30 is a sodium carboxymethylcellulose (NaCMC) or cellulose gum, derived 

from wood pulp or cotton by introducing carboxymethyl groups on the cellulose 

backbone. Cekol® 30. obtained from CP Kelco BV (Nijmegen. the Netherlands). is 

refined to a minimum 99.5% purity and has a degree of substitution of 0.72 % and a 

molecular weight of 120.000 g mOrl. 

It is known for its good film forming (transparent films) properties. 

• Whey protein isolate 

B;PRO® whey protein isolate (WPI) was obtained from Davisco Foods International 

(Minnesota. USA). It is manufactured from fresh dairy whey that is concentrated and 

subsequently spray dried, creating a non-denatured. lactose-free protein. The two whey 

proteins of which WPI is comprised are ~-Iactoglobulin and a-lactalbumin. 

3.2.2.2 Lipids 

Where polysaccharide and protein (hydrocolloid) coatings or thin films exhibit good gas barrier 

and mechanical properties. lipid coatings show the opposite behaviour and exhibit good 

moisture barrier capacities (Nussinovitch. 2(03). Additionally. lipid coatings are often observed 

to be opaque rather than transparent. relatively inflexible. susceptible to rancidity and may 

affect sensorical characteristics. displaying a waxy taste. Bilayer, composite or emulsion-based 

edible films have been developed utilizing the functional characteristics of the different 
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macromolecules, with the hydrocolloids forming a continuous cohesive network and the lipid 

fraction providing moisture barrier properties (Quezado Gallo et aI., 2(00). 

Experiments conducted as part of the surface adhesion force determination, see section 4.3.6.1, 

have shown that a thin lipophilic film or layer is deposited on the mould surface which 

subsequently reduces the adhesion of chocolate. Based on these observations the use of edible 

monoglyceride coatings was proposed. The monoglycerides used in this research were chosen 

based on recommendations from suppliers: 

• Distilled monoglyceride 

Dimodan® HP, a distilled monoglyceride prepared from edible, fully hydrogenated palm 

based oil, is obtained from Danisco NS (Brabrand, Denmark). It is supplied in the form 

of beads, with a total monoglyceride content of minimum 90%, with maximum 1 % free 

glycerol and a dropping point of approximately 69°C. Potential benefits are a reduction 

of the stickiness of caramels and toffees. 

• Acetic acid ester 

Grindsted® Acetem 70-00 P Kosher is an acetic acid ester of monoglycerides made 

from edible, fully hydrogenated palm based oil, and is obtained from Danisco NS 

(Brabrand, Denmark). It is supplied in the form of a plastic wax, with a degree of 

acetylation of 0.7, a saponification value of approximately 325 and a dropping point of 

37°C. Potential benefits are anti-sticking properties in chewing gum, and the reduction 

of stickiness of nuts and dried fruits. 

• Cocoa butter 

The cocoa butter used is described in more detail in section 3.2.1.1. It is suggested that 

the lipophilic film present at the polycarbonate mould surface after demoulding consists 

of cocoa butter residues, and therefore a cocoa butter coating is used as a type of model 

system. 

• Lecithin 

Food-grade lecithin was obtained from Degussa I Cargill Incorporated (Minnesota, 

USA). Its composition is discussed in section 2.1.2.4.1. Lecithin is applied in this 

coating research because of its surface active properties as a result of which it is capable 

of lowering the surface tension of a coating solution, subsequently enhancing 

wettability and adhesion characteristics (Rodriguez et aI., 2(06). 

3.2.2.3 Plasticizers 

Plasticizers such as glycerol, acetylated monoglyceride, polyethylene glycol and sucrose, are 

additives that are commonly used in coating formulation because of their abilities to reduce the 

brittleness and enhance flexibility, extensibility and tear resistance of edible coatings. Negative 

aspect of the addition of plasticizers is a reduction of the structural properties causing increased 
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permeability to gas and moisture (Greener Donhowe and Fennema, 1994). Plasticizers are 

believed to decrease intermolecular attractions between polymeric chains, especially adjacent 

chains, as a result of which flexibility is increased (Rodriguez et aI., 2(06). 

In the present research the inclusion of two plasticizers, sucrose and glycerol (food grade, > 

99.5% purity, Acros Organics), was investigated when added to hydrocolloid coatings 

containing CMC or pectin 105. 

3.3 METHODS 

The methods used in this research are divided into 3 different categories, according to their 

application. Within these categories, further subdivisions are present: 

• Surface energy detennination 

Surface tension of a large range of probe liquids (section 3.2.1) is determined via the 

Wilhelmy plate, while the contact angle of these probe liquids on different solid 

substrates (section 3.2.2) is determined via the sessile drop method. Subsequently, solid 

surface (free) energy can be calculated using a number of different empirical 

approaches. 

• Chocolate-mould adhesion detennination 

The force required to separate a solid mould substrate from a solidified chocolate 

system (section 3.2.1) is defined as the surface adhesion force, and is determined using 

the Texture Analyser (T A). An important aspect in relation to the chocolate-mould 

adhesion is the processing conditions used prior to creating contact between the 

chocolate and mould surface. A number of additional parameters are measured which 

quantify the adhesion as well as chocolate quality. 

• Moisture sorption 

Moisture uptake of a polycarbonate surface at predefined conditions is determined using 

a Cisorp water sorption analyser. 

• Aeration of chocolate 

Aeration of chocolate at controlled air and temperature conditions was conducted at 

Nestle PrC (York), using two different techniques: vacuum box and positive batch rig. 

• Coating fonnulation 

Food grade coatings (section 3.2.2) were prepared using a simple evaporation 

technique, allowing the formation of thin films on the solid substrates. 

• Surface topology 

Surface topology of solid mould substrates at the micro-scale was visualized using 

confocal laser scanning microscopy (CLSM). 
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3.3.1 Surface energy determination 

The theoretical background to solid surface (free) energy has been discussed in CHAPTER 2. 

where the Young-Dupre adhesion model (2-33) was used to describe the interactions taking 

place at the liquid-solid interface. In this equation the only unknowns are the liquid-vapour 

surface tension, "(Iv, and the contact angle, 0, two quantities which are relatively easy to 

determine experimentally in two separate determinations. In this research, surface tension is 

determined via the Wilhelmy plate method, whereas contact angles are determined via the 

sessile drop method. Based on the values obtained for these two quantities, the solid surface 

(free) energy of different solid substrates can be calculated via empirical approaches such as 

Zisman, Fowkes, Owens and Wendt, van Oss - Chaudhury and Good, Della Volpe and Siboni 

and the Equation of State approach developed by Kwok and Neumann. 

3.3. J. J Surface tension of liquids 

The aim of the surface tension determination is to verify that the probe liquids used have a high 

purity, consequently showing consistency with surface tension values known from literature. 

Presence of contaminants within the probe liquids may affect the contact angle determination, 

and should therefore be avoided. 

The surface tension of probe liquids is determined using a KrOss K lOST digital tensiometer 

(Kross), with a platinum Wilhelmy plate. The measurement methodology consists of suspending 

a thin rectangular plate vertically above liquid L, using a micro-balance. By raising the liquid 

beaker until the liquid surface touches the hanging plate, the equilibrium within the liquid is 

disturbed. A thin liquid film is wetting the lower part of the plate upon contact, exerting a small 

additional force, or additional weight, on the hanging plate (van Oss, 2006), as is shown 

schematically in Figure 3.3. 

The resultant downwards pull is caused by the thin liquid film trying to minimize its surface 

area, and the force F applied to resist this surface force exerted by the liquid is measured by the 

digital tensiometer to which the hanging plate is attached: 

F = 2yL. [3-1] 

where y is the surface tension of the liquid and L is the plate width. Factor 2 results from the fact 

that the plate surface is at both faces in contact with the wetting liquid (Kendall, 200 I). 

Equation [3-1] can be rewritten to include the cosines of the contact angle, 0, which the wetting 

liquid makes with the solid platinum plate. However, as the plate is made of roughened 

platinum that is optimally wetted, it gives a contact angle of approximately 0 DC. Considering 

the fact that cos ° = cos 0 :::: I, the only parameters that are important for the surface tension are 

the force acting on the balance, F, and the wetted length, L. 
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Plate made 
of roughened Pt 

Air 

t F = Force. mN/m 

L = Wetted 
Length. mm 

(} = contact angle 

(} = 0 for most liquids 
against platinum 

Figure 3.3 Surface tension determination via the Wilhelmy plate method 

(KRUSS GmbH, 2009). 

In order to determine the effect of temperature variations o n the surface tension of probe liquids, 

the thermostat chamber containing the sample vessel is connected to a wate r bath . Temperature 

ranges used within th is research are 20 - 60 DC similar to the temperature ranges observed 

during chocolate processing and especially the mould and demoulding stage. 

The glass sample vessel is cleaned firstly with a weak detergent solution, fo llowed by acetone 

and finally rinsed with cold distilled wate r. A clean pape r towel is used to remove che mical 

residues mechanically. Soft ti ssues are generally not used, to prevent against small fibres 

adhering to the glass surface. The Wilhelmy plate is generally cleaned by soaking in a diluted 

detergent solution, although this step can be missed out for water soluble liquids, fo llowed by 

extensive rinsing with cold distilled water. In case of organic liquids the oaking step can be 

replaced by a cleaning treatment using acetone. Before each measurement, the plate is 

furthermore glowed to red with a Bunsen burner to remove any chemical residues present. 

For all measurements an equilibrium step is required after the sample vessel has been placed in 

the measurement chamber to allow the liquid and the air surrounding the liquid surface to reach 

equilibrium. Similarly, if elevated temperatures are used an equilibrium step is required to allow 

the probe liquid to reach the temperature of the sample vesse l. The surface tension of each probe 

liquid is measured 8 times at all temperatures, and the results are averaged to obtain the tota l 

surface tension for each individual probe liquid at each temperature. 
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3.3.1.2 Contact angles on solid surfaces 

Contact angles of probe liquids were determined using the ses ile drop method in an apparatus 

pecifically designed for thi purpo e. The apparatus, shown in Figure 3.4, con i ted of a 

Per pex chamber fitt ed with a Pe ltier fan (Stable Micro Systems) linked to a temperature unit to 

a llow for temperature control. Temperature ranges used within thi s research are 10 - 40 °C. By 

using a c losed environment , the humidity and temperature can be regu lated. Inside the chamber 

a teel tand carrying a CCD video camera with zoom (Opti vis ion) was u ed a a ba e to hold 

the o lid ub trate . Special control allowed adju tment of the angle and di stance from which 

the drop was viewed . A camera angle of I-2 °C delivered optimum view of the contac t line or 

three pha e line . Directl y above the base holding the solid substrates a stand was made in the 

Perspex chamber holding the micro-syringe (Hamilton 1710 RN, I 00 ~d). Thi allowed 

mea urement of the dynamic contact angle, by con tantly changing the drop volume (and 

urface boundaries) through ucces ive ly reducing and enla rging the liquid drop. A li ght ource 

is placed behind the camera; uppl ying backli ght ensure the creation of a contra t difference 

between the liquid drop and o lid sub trate, re ulting in a c lear drop profile . 

yringe 

Chocolate bar 

Peltier fan. connected to 
temperature unit 

Microscope and 
video camera 

Controlled 
temperature 
chamber 

Control to adju t 
angle and di tance 
of camera 

Figure 3.4 Overview of the contact angle apparatus designed specifically for this research. 

Prior to each mea urement, the re pecti ve olid ub trate u ed i wa hed to en ure that there are 

no contamination or chemica l re idue pre ent from previou mea urements. A relatively mild 

c leaning procedure i u ed, imil ar to that used in commerci al chocolate manufacturing to clean 

choco late mould . The olid ub trate i soaked in a mild detergent o luti on, rinsed with 

deioni ed water (Millipore) and dried u ing pressuri zed air, be fore be ing placed in desiccator 
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until use. Similarly, the micro-syringe is cleaned before use. After washing with a diluted 

detergent solution and several rinses with deioni sed water, the syringe chamber and needle are 

extensively washed with the respective probe liquid. An experiment starts with the placement of 

the respective probe liquid, solid substrate and micro-syringe inside the Perspex measurement 

chamber at the experimental temperature for I hour in order to reach thermal equilibrium and 

also equilibrium between the vapour and liquid phases. Both solid mould surfaces and chocolate 

surfaces were used as solid substrates for contact angle measurements. However, due to the 

physical characteristics of the chocolate system, e.g. low melting point, this substrate was not 

placed in the measurement chamber for an extensive period of time. 

Sessile drops (2-10 fll) were deposited on the solid substrates using a micro-syringe (Hamilton), 

and the process was captured by a video camera. Advancing, Oa, and receding, On contact angles 

were obtained by increas ing and decreasing the volume of the drop, respectively, as is shown 

schematically in Figure 3.5. According to van Oss (2006), the Young-Dupre equation is only 

valid if the advancing contact angle is used, as this is the angle that a drop makes when it has 

just ceased advancing, consequently reaching surface areas previously non-wetted. Receding 

contact angles are usually smaller than advancing angles, as they are measured on the surface 

that the probe liquid has just wetted. 

Gas 

Solid 

I Liquid 
l Flow 

..---- Syringe 

Syringe 

Figure 3.5 Schematic representation of advancing, Oa, and receding, On contact angles 

(KROSS GmbH, 2009). 

Contact angle hysteresis (H) can be defined as the difference between the advancing and the 

receding contact angle: 

[3-2] 

On average, hysteresis is caused because the system (solid surface) is not ideal, the solid surface 

does not consist of the required smoothness, rigidity or homogeneity. In the case of polar solids, 

hysteresis is often caused by reorientation of molecules in the solid surface, with the liquid 

phase being the driving force . For example, if the liquid phase is water, then the polar parts of 

the solid material tend to come to the surface. Another possible cause for hysteresis is the 

transport of molecules from the liquid across the solid surface, due to surface diffusion, 

evaporation or adsorption onto the solid material (Good, 1992). In general, typical deviations 

- 85 -



Chapter 3. Materials and Methods 

from ideality can be summarized as: surface roughness, macroscopic homogeneity (chemically 

and physically), microscopic heterogeneity (surface energy bands), reorientation of molecules, 

or diffusion, evaporation or adsorption of molecules. Contamination and surface roughness are 

classified as two of the most important causes for hysteresis. With respect to surface roughness, 

it is advised to use surfaces with radii of roughness significantly smaller than I Jim (van Oss, 

2(06). Kendall (2001) compared adhesive hysteresis for example between a rubber and a glass 

surface with contact angle hysteresis. According to his observations he concluded that the solid 

nature of the materials is not responsible for hysteresis, but rather intrinsic properties of the 

interface. 

Contact angles were determined from digital images using the DropSnake program, which is 

based on a cubic B-spline snake (active contours), similar to the polynomial-fitting approach. A 

piecewise-polynomial function is used in combination with an image energy function, for the 

detection of the drop contour profile. An optimization algorithm is then used to determine the 

contact angle (Stalder et aI., 2(06). The averages of the left and right contact angle of five 

different drops placed on two different clean surfaces were used to determine the reported 

surface energy values. 

3.3.1.3 Surface energy of solid surfaces 

Solid surface free energy or the work required to create a new solid surface cannot be measured 

directly. To interpret the surface free energy in terms of the intermolecular interaction forces at 

the interface, and to calculate the solid surface tension, 'Ysv. several semi-empirical approaches 

have been developed in the literature. These approaches mainly correlate liquid surface tension, 

'YIn with the contact angle, 8, for the determination of the surface energy. However, there is not a 

standardized approach and the approach that is most suitable depends on the specific application 

for which it is used. The oldest and most practicable and easy method is Zisman's 'critical 

surface tension' theory, which uses a direct estimation of 'Ysv. Due to the unreliability of this 

theory, new and different models have been formulated. In general, all approaches fall within 

one of two classes: 

1. Surface Tension Component (STC) theory: based on the solid/vapour and liquid/vapour 

interfacial tensions and specific intermolecular interactions, called the components of 

the surface energy: 

• Fowkes, Owens and Wendt, Owens - Wendt and Kaelble, Wu, van Oss -

Chaudhury and Good, and more recently Della Volpe and Siboni; 

2. Equation of State (BPS) approach: based on an equation of state relation, which in tum 

is based on thermodynamics: Ysl = f(Ylv, Ysv) 

• Berthelot, Antonow, Good and Girifalco, and several developments by K wok 

and Neumann. 
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Within this research five of the most widely used approaches for the determination of Ysv have 

been considered, and are discussed in more detail below. 

3.3.1.3.1 Zisman critical surface tension approach 

Fox and Zisman ( 1950, 1952a, 1952b) introduced the concept of the critical surface tension, Ye, 

as a measure of the 'wettability' of solid surfaces. Their approach is based on a plot of the 

cosine of the contact angle versus the surface tension of the test liquids, a Zisman plot, see 

Figure 3.6. All data points are approximately on a straight line and a range of "critical" surface 

tensions can be observed above which no liquid wets the solid surface, and below which all 

studied liquids spread (Fox and Zisman, 1950). Linear regression of the data determines Ylv at 

the value of cos () = I (i.e. () = 0), which is defined as the critical surface tension of wetting, Ye. 

Liquids with a surface tension below Yc are expected to spread easily on the respective solid 

surface. 
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Figure 3.6 Critical surface tension according to Zisman. 

For a first approximation thi s is a very easy and useful method. However, the applicability or 

reliability of this method depends on the number of liquids used and is questioned by several 

authors. If extrapolation over a significant region is required to determine the intercept with the 

line cos () = I, considerable errors may be introduced (Neumann et aI., 1974). Dann (1970) 

showed that the value obtained for the critical contact angle of a particular solid surface depends 

on the types ofte t liquids used. And finally, in Zisman's theory polar liquids cannot be used for 

the determination of the solid surface components (Sharma and Rao, 2002). Or, as stated by van 

Oss (2006), Zisman's approach is valid only for completely apolar liquids. The measurements 

done with polar liquids will deviate on the Zisman plot from linearity. 
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3.3.1.3.2 Fowkes surface tension component approach 

Fowkes ( 1964) was the first to postulate the solid surface free energy to be composed of a sum 

of different surface tension components. These components are the result of the attractive forces 

existing between the solid surface layer and the liquid phase due to different intermolecular 

forces at the surface. In Fowkes approach the components are regarded as independent additive 

terms, and his equation describes the contribution of the different forces to the free energy: 

[3-3] 

where y is the total surface tension and the superscripts d. p. h. i and ab refer to the dispersive. 

dipole-dipole. hydrogen bonding. induced dipole and acid-base interactions of the surface 

tension components. respectively. Equation [3-3] can be rearranged into: 

[3-4] 

where the superscripts d and n refer to the dispersive and non-dispersive (or polar) surface 

tension component. respectively. Basically. equation [3-4] assumes that the total surface tension 

is the sum of the dispersive and the non-dispersive surface tension components. The dispersive 

component results from molecular interactions due to London (van der Waals) forces. whereas 

the non-dispersive component results from non-London (e.g. Keesom and Oebye) forces (Kwok 

and Neumann. 1999). Fowkes assumed a geometric mean of the dispersion force components of 

the surface tension to represent the balance of intermolecular forces at the interface (Fowkes. 

1964). 

YtZ = Yt - Jr'f.Y~ + rz - JY1r~ 

= Yl +Y2 - 2Jyfyf. 

[3-5] 

Equation [3-5] is described as the Fowkes approach and yields the interfacial energy. the sum of 

the tensions in two interfacial layers. I and 2. Combining this geometric mean with the Young 

equation for a solid-liquid interface yields (Kloubek. 1992): 

rivet + cos 8) = 2Jl1r1 . [3-6] 

where the superscripts d refers to the dispersive surface tension component. while the subscripts 

s and I refer to the solid and the liquid. respectively. Consequently. the contact angle of only one 

liquid is required for the calculation of the dispersion force component of the solid surface 

energy. y,d (Sharma and Rao. 2(02). 

As the theoretical viewpoint of the Fowkes approach is not physically real. several adjustments 

have been proposed. The approach. however. is still often used for the determination of the 

dispersion component of the total surface energy. 
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3.3.1.3.3 Owens and Wendt geometric mean approach 

Owens and Wendt ( 1969) further extended Fowkes ' concept of surface tension components, by 

dividing the total urface energy into two components, a dispersion force component and a 

hydrogen bonding or polar component, the latter consists of both hydrogen bonding and 

dipole-dipole interactions. Approximately at the same time as Owens and Wendt, Kaelble also 

published an equation dividing the total surface energy in terms of dispersion and polar forces. 

This approach is therefore often referred to as either Owens-Wendt theory or as Owens-Wendt­

Kaelble theory (K wok and Neumann, 1999). Extending Fowkes equation [3-5] with a hydrogen 

bonding (h) or polar (p) surface tension component results in: 

Y12 = Yl + Yz - 2JYtY~ - 2JYtYz . [3-7] 

Combining this equation with the Young equation for a solid-liquid interface yields: 

Ylv e1 + cos 8) = 2 Jy~yt + 2 Jrsrf . [3-8] 

In this approach, the contact angles of at least two liquids with known surface tension 

components (e.g. water and diiodomethane) are required in order to calculate the surface ten ion 

of the solid surface and its components. From a practical point of view the total surface energy 

and it disper ive and hydrogen or polar components can be determined by plotting 

YlV(1j;1'9) again t ~. The linear Owens and Wendt relationship thus obtained, as 
2 d ~Yf 

visuali zed in Figure 3.7, gives a straight line with slope .;;: and y-intercept .JY!. 

YI. (cos8+1) 

2(g) 

d 
'Ys 

o 

~s 
~:=::'-------' 

o 

Figure 3.7 Linear Owens and Wendt relationship. 
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Similar to Kaelble, Wu proposed the division of the total surface energy in a polar and a 

dispersion component. using a harmonic mean to combine the two components of the surface 

energy. This approach also requires the contact angles of at least two liquids with known 

surface tension components. Although deviation has been observed in the results obtained using 

either a geometric or harmonic mean, the two approaches seem compatible (Sharma and Rao. 

2(02). 

3.3.1.3.4 Van Oss, Chaudhury and Good approach 

This is also known as the LiJshitz-van der Waals / acid-base approach. The basis of this 

approach is again the Fowkes methodology. except that the interactions taking place at the 

interface are separated into long range Lifshitz-van der Waals (LW) interactions and short 

range hydrogen bonding (SR) interactions (van Oss et aI., 1986. 1988a. 1988b; van Oss and 

Good, 1989). The Lifshitz-van der Waals (LW) interactions include all the electrodynamic 

contributions: the dispersion (London) force. the orientation (Keesom) force. and the induction 

(Debye) force: 

yLW = yKeesom + yDebye + yLOndon [3-9] 

The Lifshitz-van der Waals interactions between a solid and a liquid can be calculated using the 

Good-Girifalco-Fowkes combining rule (van Oss et aI., 1988b): 

_.LW = yLW + -.LW _ 2 JyLWyLW r sl s 11 s I . [3-10] 

The short range polar or hydrogen bonding (SR) interactions can be classified as Lewis 

acid-base interactions. including the electron acceptor, l, and the electron donor. i. 

interactions. Problem with defining these acid-base interactions is their asymmetry. and the fact 

that the electron acceptors at the solid surface will interact with the electron donors at the liquid 

surface. Anyway. according to van Oss et al. (I 988b) the Lewis acid-base interactions between 

a solid and a liquid can be expressed as: 

r:r = 2 ( Jyty; + JytYI - JytYI - Jy;yt) . [3-11] 

The total free energy and the total interfacial tension of the interfacial interactions of a 

solid-liquid system can now be defined as: 

y~fT = ~r + r:r 
z 

r~fT = ( Jy~W - J rtw) + 2 ( M - !if) (~ - $) . 
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Combining this equation with the Young equation for a solid-liquid interface yields: 

Yll1(l + cos 8) = 2 (Jy~WYtW + .jY;YI + .jY"iyt) . [3-14] 

Due to the presence of three unknown parameters in equation [3-14], the contact angles of at 

least three liquids (two polar and one apolar) with known surface tension components are 

required to calculate the surface tension of the solid material and its components (Kwok and 

Neumann, 1999; Sharma and Rao, 2(02). In this research, equation [3-14] is solved using 

Surffen4.3, a software program developed in MathPad by Della Volpe and Siboni for the 

calculation of acid-base solid surface free energy components (Della Volpe and Siboni, 2004). 

3.3.1.3.5 Della Volpe and Siboni modified acid-base approach 

Della Volpe et at. (2004) and Siboni et at. (2004) compared the surface tension component 

(STC) theory developed by Fowkes and van Oss, with the equation of state (EQS) approach 

developed by Neumann and co-workers. Even though the theoretical background for these two 

semi empirical models is very different, they proved that the practical results obtained are fairly 

similar. Furthermore, a new model was developed, using the van Oss theory as a basis. Instead 

of the van Oss scale, giving values of acid-base components of liquids proposed by van Oss, 

Chaudury and Good, a new scale was developed, called the Della Volpe and Siboni scale. The 

authors made this change, due to the unreliability of the methods used by van Oss, Chaudury 

and Good. The Della Volpe and Siboni scale calculates the surface tension (acid-base) 

components using the best-fit to an over determined nonlinear set of equations. Basically, the 

Della Volpe and Siboni approach calculates the surface energy of a solid surface based on 

equation [3-14], using the alternative Della Volpe and Siboni scale rather than the original van 

Oss, Chaudhury and Good scale. A so called Singular Value Decomposition (SVD) procedure 

forms the basis of the software program (Surffen4.3). Using three different probe liquids, the 

van Oss, Chaudhury, Good or acid-base approach delivers a linear set of three equations, with 

the three unknowns relative to the solid. These equations can be written in the form of a matrix 

(Ax=b), which can be solved using a linear method calculation (Least Squares procedure) for 

the determined and overdetermined cases (Della Volpe et aI., 2004). 
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3.3.1.3.6 Equation of state (EQS) approach 

An equation of state is a thermodynamic relationship, which on its own cannot be used for the 

determination of the solid surface tension: 

[3-15] 

Berthelot's combining rule, which is based on molecular interactions between like pairs, and is 

related to the London theory of dispersion forces, is often used as the starting point for the 

formulation of an Equation of State: 

C
ij 

- JCiiCii 
6 - 6 6' [3-16] 

where Ci
6 refers to the dispersion coefficient, and Ci

6 and Cii
6 to the pair of molecules of 

species i andj, respectively. Various researchers adopted Berthelot's combining rule as the basis 

for their work, e.g. the methods of Good and Girifalco, Li and Neumann, Kwok and Neumann 

(Neumann et aI., 1974; Li and Neumann, 1990, I 992a, 1992b). They further used the 

thermodynamical Gibbs-Duhem relations for the three different interfaces, solid-liquid, 

liquid-vapour and solid-vapour. From these relations it was observed that the different surface 

or interfacial tensions each are functions of the temperature, T, and the chemical potential of the 

liquid components, 1l2· 

Kwok and Neumann developed the third formulation or proposal of an equation of state for the 

solid surface energy. which is again based on a modified Berthelot's combining rule. 

[3-17] 

where 1(1 is an empirical constant. The term (1 - Kl (Ea - Ejj) 
2 

) is the modifying factor, which 

is a decreasing function of the different (Ea - Ejj) and equals unity when (EU = Ejj). Kwok and 

Neumann (1999, 2000a, 2000b) further modified the equation of state specifically for 

applications to solid-liquid free energy determination. 

[3-18] 

They used an empirical constant, P, which was obtained by fitting their equation of state to a set 

of contact angle data from polymeric solids. Combining this modified equation of state with 

Young's equation leads to the 3n1 formulation of the equation of state: 

[3-19] 

where PI = 0.0001057 (m I mN)2. The advantage of this method is that only one liquid is 

required in order to calculate the surface free energy. However, this approach determines only 

the total surface free energy with no consideration of the components. 
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The thermodynamic foundations of several of the previously discussed semi empirical 

approaches are questioned. Based on these objections. different researchers favour either the 

equation of state approach or the surface tension components approach. Nevertheless, there is 

not one approach that is generally accepted. The most used and probably most accessible 

approach is Zisman' s theory, whereas the Lifshitz-van der Waals I acid-base approach and the 

third formulation of the Equation of State are probably good alternatives for estimating the solid 

surface tension. In this research, the estimations of the solid surface energy obtained via the 

different approaches will be compared to determine which approach is most appropriate for the 

determination of surface energy of solid mould materials in relation to the adhesion of 

chocolate. 

3.3.1.4 Work of Adhesion 

Similar to the definition by Kilcast and Roberts (1998). the thermodynamic work of adhesion 

emphasizes the interactions between two materials or surfaces. The Young-Dupre adhesion 

model, see equation [2-33], can be used to determine the work of adhesion. Wa. In this equation 

there are only two unknowns, the liquid-vapour surface tension. "(Iv. and the contact angle, (). 

two quantities which are relatively easy to determine experimentally. With respect to the present 

research. the contact angle. (), refers to the angle that chocolate makes with the solid surface. the 

mould, and the liquid-vapour surface tension, "(Iv. refers to the chocolate-vapour surface 

tension. 

Due to the viscoelastic nature and the relatively high melting point of chocolate, it is not 

practicable to measure the contact angle of chocolate on different mould surfaces under ambient 

conditions. Therefore, in order to obtain some indication of the interactions involved and the 

degree of wetting, cocoa butter was used as a model replacement system to represent chocolate 

in the application of the Young-Dupre adhesion model. Using the Wilhelmy plate method the 

surface tension of liquid cocoa butter (- 30°C) was determined. whereas the sessile drop 

method was used to assess the contact angle of cocoa butter on different mould surfaces. 

3.3.1.5 Wetting Envelope 

The wetting envelope is a graphical method that is used to give a representative overview of the 

wettability of solids. based on the polar and dispersive solid surface free energy components. 

Based on the wetting envelope diagram a prediction can be made as to whether a particular 

liquid, with known surface tension components, will wet a specific solid surface completely. 

Referring back to the relation between work of adhesion and cohesion, as described in section 

2.2.2, complete wetting of a solid surface will occur when the work of adhesion between the 

solid surface and a liquid is greater than the work of cohesion within the liquid. As the 
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difference between the work of adhesion and the work of cohesion is defined as the spreading 

coefficient, S, a solid surface will be completely wet if S > O. From the equation of Dupre [2-32] 

it can be observed that S = 0 if (J = O. 

A wetting curve is obtained by reversing the empirical surface energy approaches (see section 

3.3.1.3), which have previously been used to calculate the dispersive and polar components of 

the solid surface energy. Assuming that the cosine of the contact angle of a liquid drop on the 

solid that is being examined is I, the reversed empirical approaches can be used to calculate the 

polar and dispersive fractions of the liquid. The wetting diagram is then obtained by plotting the 

polar component against the dispersive component of a liquid that satisfies the requirement cos 

e = I, as is shown in Figure 3.8. A solid surface will be wet by a liquid who's polar and 

dispersive components lie within the area enclosed by the wetting envelope. 

Figure 3.8 Wetting envelope diagram. 

3.3.2 Chocolate-mould adhesion determination 

The theoretical background and mechanisms of adhesion have been discussed in CHAPTER 2. 

In this research, chocolate-mould adhesion is determined via an experimental approach based 

on the measurement of the force required to pull a mould surface off a solidified chocolate 

surface. This approach simulates the chocolate demoulding process, and analyses the balance 

between the cohesive forces of the chocolate system and the adhesive forces between chocolate 

and mould material (Bhandari and Howes, 2(05). The results obtained via this experimental or 

practical approach will be compared to the results obtained for the thermodynamic work of 

adhesion of mould materials, based on the interactions between probe liquids and solid mould 

surfaces. 
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Various mechanisms and instrumental measurements of adhesion of food materials to contact 

surfaces are discussed by Adhikari et al. (2001) and Hoseney and Smewing (1999). There is no 

standardized technique that can be used for all food systems, and the technique most appropriate 

for a certain food system depends on food composition, processing and/or measurement 

conditions. Michalski et al. (1998, 1999) discuss the adhesion of food emulsions and edible oils 

to various contact surfaces, and relate the mass of food residues adhering to these surfaces after 

contact to the solid surface energy of the respective contact surfaces. Food emulsions and/or 

edible oils are placed on the top of a tilted solid surface and allowed to flow down. The weight 

of the food sample or residues adhering to the solid surface after flow has stopped is measured 

and is used as an indication of the global adhesion amount resulting from adhesion and cohesion 

strengths. A different technique is applied when determining the relation between biofouling 

and solid surface energy. Zhao et al. (2005) counted the number of bacteria adhering to a solid 

surface after treatment and forming visible colonies. At the same time, for the measurement of 

crystalline fouling deposits, they weighed the amount of CaS04 deposit formed on a heated 

solid surface. Rosmaninho and Melo (2006) used a similar technique, whereby they placed a 

simulated milk ultrafiltrate solution in a thermostatted vessel of a rotating disk apparatus. Upon 

heating calcium phosphate precipitate in the bulk and adhered to the heated surfaces. After 

weighing the amount of precipitate that adhered, they repeated the experiment replacing the 

milk solution with distilled water to simulate a cleaning process, giving them the total amount 

of deposit detached from the surface. Olcih and Vancso (2005) discuss a number of destructive, 

e.g. tensile, peel and shear experiments, and non-destructive, e.g. atomic force microscopy 

(AFM) and surface forces apparatus (SFA), techniques. The SFA is one of the first instruments 

which successfully applied a direct measurement technique to determine the forces acting on a 

surface. Main principle of this technique is the measurement of contact forces, separation and 

conlact areas between two surfaces, and is based on the Johnson-Kendall-Roberts (JKR) theory 

of contact mechanics. 

In the case of confectionery or high-sugar products, Kilcast and Roberts ( 1998) recommend the 

use of tests based on probe separation or on flat plate separation. A probe separation test 

simulates the oral or tactile processes taking place when a confectionery product is consumed, 

while a flat plate separation test rather simulates the adhesion of confectionery products to 

packaging materials or equipment surfaces used during manufacturing. In this research, a flat 

plate separation type test was used to determine the experimental adhesion force. Due to the 

physical characteristics of chocolate, the use of other instrumental measurements to determine 

the adhesion between the chocolate and the mould surface was limited. Main complication was 

the fact that contact between mould surface and chocolate needed to be created at a temperature 

where the chocolate was liquid, whereas the adhesion needed to be measured at a temperature 

where the chocolate was solidified. 
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3.3.2. 1 Probe geometry development 

Three different probe geometries were developed, based on the adhesive forces invol ved in the 

commercia l chocolate demoulding process, as discussed in section 2. 1.4.2.3. The three probe 

geometries, called lide off, pull off and combined, respecti vely, and the ir correlation with the 

chocolate demoulding process are shown in Figure 3 .9. A pull off force is obtained by using a 

fl at plate placed directly on top of the chocolate surface, creating a force which is working 

pe rpendicular to the chocolate surface. A slide off force , on the othe r hand, is obtained by using 

a cylindrical probe placed inside the chocolate sample, consequently creating a force that takes 

fri ction into account. Compared to the pull off force which measures the surface adhesion, the 

slide off force rather measures the bulk adhesion. A combined force, finally, is obtained by 

using a cone type probe which represents a combination of the pull off and the slide off force. 

demoulding 

c:=::~> 

Experimental 
geometries 

pull off slide off combined 

Figure 3.9 Probe geometries developed specifically for the experimental adhesion force 

determination, based on the forces involved in the commercial chocolate demoulding process. 

A pre liminary study was conducted to assess the applicability of the previously defined probe 

geometrie to determine the experimental ad he ion force. Central within the experimental set-up 

fo r th i preliminary study i the TA-XTplus Texture Analyser (Stable Micro Systems), which is 

u ed to mea ure the force required to separate the experimental probe from the chocolate 

sy te rn . Figure 3. 10 shows the central et-up u ed during thi s preliminary study. 

Contact between a liquid chocolate system and the probe is made at room temperature, and the 

whole et-up i left to olidi fy for I hour. A sample cell holder keeps the chocolate sample cell 

in place. After the chocolate has olidified, the probe is pulled upwards at a constant speed and 

the fo rce required to eparate the probe from the chocolate surface is determined from the peak 

fo rce obtained during the e paration proces . The set-up described here is only used for the 

pre liminary rudy in e tigating the u e of different probe geometries, whilst the final probe 

geometry and et-up u ed to determine the surface adhesion force are described in more deta il in 

ection 3.3.2.2 and 3.3.2.4. 
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conical probe 

Texture Analyzer, 
to apply force to separate 

probe from choco late sample 

chocolate sample cell 

sample cell 
holder 

Figure 3.10 Experimental set-up used for the assessment 

of the effect of diffe rent probe geometries. 

In o rde r to co mpare the experime ntal adhesion force of the different probe geometries, the fo rce 

per probe urface contact area i calculated. The re ult obtained fo r the ex perimenta l adhe ion 

of d iffe re nt mould materia l , determined by the u e of three defined probe geometrie , is shown 

in Fi gu re 3. 1 I . 
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Figure 3.11 Experimenta l urface adhesion as affected by probe geometry. 

Three different probe materials a re evalua ted: polycarbonate ( ), 

tainle teel ~ ) and PTFE ( ~. 

Er ror bar i repre entative of the standard deviation, n = 6. 
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Due to the fac t that the en iron mental conditions, e.g. cooling temperature and relati ve humidity 

of the air, are not controlled in thi preliminary study, larger than average errors are obtained. 

But the 0 erall trend between the three di ffe rent probe geometries is clear. On average there is a 

factor three di fference between the pull off and lide off force. It is expected that this is due to 

the cy lindrical geometry e oking mainl y friction fo rces. Similarly, the relati vely low 

experi mental adhe ion fo rce obtained fo r the conical geometry determining the combined force 

is a re ult of the large contribut ion of friction fo rces. Using the fl at plate to determine pull off 

fo rce , there was a ri k of creating a vacuum which would negati vely affect the chocolate­

mould contact and ubsequentl y the experimental adhes ion fo rce. The experiments in thi s 

preliminary tudy, howe er, ha e hown that there is not a vacuum at the chocolate-mould 

interface, and the liquid chocolate is fully wetting the probe or mould surface, creating direct 

contac t. 

3.3.2.2 Experimental adhesion force 

Experi mental determination of chocolate ad he ion to the mould surface was performed on the 

T A-XTplu Texture Analy er (Stable Micro System ), and was ba ed on a fl at plate separati on 

technique, u ing a fix tu re and set-up specifica lly developed for thi s work. The surface adhesion 

fo rce (or tickine ) was measured by pulling the fl at probe off a solid chocolate ample, a 

shown schematicall y in Figu re 3.12, imitating the forces involved in the commercial 

demoul di ng proce of chocolate bars. The principle of the method is the ame as that used by 

Adhi ka ri et al. (2007) and Werner et al. (2007a; 2007b) in mea uring the tensile trength 

( urface tick ine ) of carbohydrate and protein olutions using a probe tack test, mimicking the 

tickine or fee ling that i ob erved when a surface i touched. 

liquid 
chocolate 

~ 

mould probe 
( olid urface) 

/ 
60 min. 

IS "C 
) 

pull off at a 
constant speed 

ample holder 

Figure 3.12 Schematic representation of the procedure 

and conditions of the surface adhesion measurements. 

All ad he ion te t were carried out in a modi fied Peltier chamber (Stable Micro Systems), see 

Figure 3.13, under a contro lled en ironment of temperature and relati ve humidity, which will be 

d i cu ed in more detai l in ection 3.3.2.4. A flat probe was brought into contact with the liquid 
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chocolate ample. The contact or chocolate-mould inte rface is created at a tempe rature of 

arou nd 30 °C, depending on the type of chocolate used . Prior to contac t, both chocolate and 

mould probe were thermally equilibrated in the contro lled environment fo r 30 minutes. Once 

the interface had been created, the temperature wa adjusted to 15 °C and the ample wa left 

without d i turbance for 60 minute, en uring complete o lidification. The fl a t probe, attached to 

the Texture na ly e r, wa then pulled off the chocolate sample using the tension test mode, at a 

constant peed of 0.00 I m ec -l over a di tance of 5 mm. The chocolate container wa he ld 

firml y in its origina l po ition with the help of a titanium covering pl ate sc rewed to the ba e of 

the Te ture Analy er. In the centre of the co e ring plate is an opening to all ow free movement 

of the probe. After each urface adhe ion determination additional mea urements are taken to 

a e the hard ne of the chocolate ample, the glo o f both chocolate and mould urface, 

the urface chemi try of the mould surface and the res idue weight. The e parameters are 

di cu ed in more detail in ection 3.3.2.5. 

Figure 3.13 Photograph howing the modified Peltier chamber with the Texture Analyser. 

The inset how the experimental set-up within the modified Peltier chamber. 

The Texture nal er 1 a mechanical mea uring device consi ting of a microproce sor 

controll ed y tem. en iti ve load cell i re pon ib le fo r the mea urement of Force, whereas a 

teppi ng motor cont rol the Di tance and peed o f eac h mea urement. By plotting the re ult 

obta ined fo r the fo rce agai n t the di tance or time, addi tional parameter can be dete rmi ned, e.g. 

area unde r the cu r e, gradient o r lope, and mean. The two main paramete r dete rmined within 

thi re earch are i ualized in Figure 3.14 and de cribed be low: 

• Maximum posiril'e peak 

In a fo rce-time or fo rce-di tance plot, the y-ax is is earched until the largest po itive 

a lue i found. Th i va lue i regarded a the max imum peak fo rce. 
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• Area under the curve 

The urn of all the y axis data values between to (start of experiment) and t) (Force = y = 
0) are di vided by the number of points, multiplied by the sum of the x axi value 

differences. This value can also be regarded as the work of adhesion. 

As can be ob erved from Figure 3.14, the force does not start at zero. At the time of the 

chocolate-mould interface creation, the liquid chocolate exerts a suction force on the solid 

mould surface, slightly pulling the probe surface into the chocolate system subsequently 

applying pressure on the load cell of the Texture Analyser. The slight negative force obtained 

after separation, i expected to be due to the contraction of the chocolate system away from the 

probe surface, con equently re ulting in a negative force. 

fore. (kQ) 

Area under the curve 

= 

Work of adhesion 

. 75 lIlI '" IS. In 2-00 
Tlrnt(sec:) 

Figure 3.14 Plot of the force against time, as obtained by the Texture Analyser. 

The experimental adhesion force, Ea, is defined as the force per surface area, 

E = adhesion force 
a surface area ' [3-20] 

where the adhesion force is the peak separation force or max imum positive peak measured by 

the probe pulling te t and the urface area is the contacting area between the probe and the 

chocolate. The mea urement of the adhesion force of two different polycarbonate mould probes 

wa repeated four time . A the results obtained for these measurements showed low standard 

deviation « I O~ ), the procedure was accepted as generally valid. Subsequent measurements 

were repeated four times for each surface. 
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3.3.2.3 ChocoLate crystallization 

A small investigation was conducted to assess the effect of chocolate crystallization. Three 

chocolate samples, one tempered, one non-tempered and one bloomed were compared to 

determine if the presence of different cocoa butter polymorphs and subsequently crystal 

networks impacts on the surface adhesion force. The results presented in Figure 3.1 5 do not 

show significant differences in surface adhesion for the chocolate systems tested. Non-tempered 

and bloom give very similar surface adhesion values, which was expected due to the 

crystallization state of these samples. Bloom is known to arise on surfaces of over- and/or 

under-tempered chocolate and of course non-tempered chocolate. More surprisi ng is the limited 

difference between the tempered and non-tempered chocolate systems. The contraction of 

tempered chocolate upon crystallization in the correct polymorphic form was expected to result 

in a significantly lower surface adhesion, compared to that of non-tempered chocolate, which 

shows no or limited contraction. Results obtained in this study indicate that surface adhesion is 

not driven by the crystallization. Crystallization is an aid in the demoulding process, as the 

observed contraction enhances demoulding, but crystallization is not the prime factor causing 

adhesion of chocolate systems to the mould surfaces. 
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Figure 3.15 Surface adhesion as affected by the level of chocolate crystallization. 

Error bar is representative of the standard deviation, n = 5. 

Although the advice is to use tempered chocolate, the results obtained by using non-tempered or 

bloomed chocolate are not significantly different. In this research tempered chocolate is used for 

all urface adhe ion determinations, wherever possible. Correct crystallization, however, is not 

deemed essential and minor temperature variations in the chocolate system during the 

preparation stage of the chocolate-mould adhesion determination are therefore neglected. 
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3.3.2.4 Cohesive- adhesive f ailure 

The et-up used in this re earch to assess chocolate adhesion bas ically consists of a chocolate 

ample placed in between two surfaces, the glass sample ce ll and the (mould) probe surface. 

Stickiness is thereby a result of the force required to separate the probe surface from the 

chocolate system, and is assumed to be dependent on the work required for this separation 

(Dunnewind et aI. , 2004). Upon separation of the probe surface, the interaction s between the 

chocolate and the re pecti ve probe surface will determine whether the chocolate will adhere to 

the probe or to the glass sample surface. Kilcast and Roberts ( 1998) defined two diffe rent failure 

mechani ms, adhesive and cohesive failure respecti ve ly. Adhesive failure is obta ined when the 

cohesive strength of the food sample is highe r than the adhesive strength of the packaging 

mate rial for example, resulting in a clean failure of the bond between two materials. Cohesive 

failure is the opposite; the cohesive strength of the food sample is lower than the adhesive 

strength of the packaging material, resulting in the adhesion of food res idues to the packaging 

material (Hoseney and Smew ing, 1999). Werner et at. (2007a) and Adhikari et at. (2003) 

explained the fa ilure of urface bonding via one of three different mechani sms, adding a 

cohesive-adhesive fa ilure component. The three different fa ilure mechanisms defined for this 

re earch are hown chematically in Figure 3. 16. Cohesive failure is caused by the adhesive 

(bonding) strength between the chocolate and the mould probe being higher than the cohesive 

strength of the chocolate , resulting in a break o f the bulk of the chocolate sample. Cohesive­

ad he ive fa ilure is a trans ition stage between full cohesive and full adhesive failure, and is e ither 

dominated by cohesive forces, adhesive forces or a ba lance between the cohesive and adhesive 

forces. Either way, a break within the chocolate sample is observed, resulting in the adherence 

of different levels of chocolate residues to the probe surface. Adhesive failure is caused by the 

cohesive strength of the chocolate just exceeding the bonding (adhesive) strength, resulting in a 

tate of non-adhesion where no bonding takes place at the chocolate-mould probe interface, and 

consequently a clean probe surface upon separation . O verall it can be concluded that the re lati ve 

magnitude of the ample- probe adhesion force and the cohesion strength of the sample 

determine which mec hanism dominates surface bonding failure. 

Probe 

> Separa tion 

Cohes ive 
fa ilure 

Cohesive-adhesive 
fa ilure 

Adhesive 
fa ilure 

Figure 3.16 Schematic representation of the three different failure mechanisms specified 

in this research, i.e. cohesive, cohesive-adhesive and adhesive failure. 
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In the case of solid and semi-solid materials. e.g. gels. chewing gums. dough. both cohesive and 

adhesive failure are observed as a result of the balance between the interfacial bonding and the 

internal mechanical strength. In viscous or viscoelastic fluid foods. on the other hand. cohesive 

failure is observed to be the dominant mechanism (Chen et al.. 2(08). 

Within this research the failure mechanism is determined by visual observation of both the 

chocolate and mould probe surfaces after the surface adhesion determination. to determine 

macroscopic failure. Additionally. the weight of the probe after each separation is measured. to 

assess if there is any microscopic failure and to compare the degree of failure obtained. 

3.3.2.5 Chocolate processing conditions 

In order to study the effect of different processing conditions on the surface adhesion force the 

experimental set-up outlined in Figure 3.17 was developed. Not only did this set-up enable the 

controlled variation of a number of processing conditions. such as cooling temperature. probe or 

mould surface temperature. contact time and relative humidity. it also allowed the crystallization 

process of the cocoa butter to be more controlled. 

The central point within the developed application is the sealed Peltier cabinet (9) (dimensions: 

145 mm (W) x 130 mm (D) x 105 mm (H». shown in Figure 3.13. which is temperature 

controlled to enable the adjustment of the experimental cabinet temperature between 0 and 50 

dc. A ventilator (8) situated at the back of the Peltier cabinet is connected to a Peltier cooling / 

heating unit (7), and in combination with the relative small size of the chamber the temperature 

can be adjusted quickly from 32-33°C. at which temperature the chocolate-mould interface is 

created. to 15-20cC. the cooling temperature. Unfortunately it is not possible to adjust the 

cooling rate. 

The relative humidity of the air in the Peltier cabinet is controlled via a separate configuration. 

also shown in Figure 3.17. whereby the supplied air (1) is pressurized (2) to decrease the 

pressure to approximately 2 Bar. before passing through a dry (- 0 %RH) (3 and 5) and/or wet 

column (4). where the air bubbled through distilled water to gain 100 % RH. By using different 

ratios of wet and dry air the relative humidity of the air circulation in the Peltier cabinet was 

controlled. After mixing the dry and wet air. the mixture passes through a copper coil fully 

merged in a water bath (6) to obtain the designed temperature. before entering the Peltier 

cabinet. Using the water bath the temperature of the air mixture was adjusted according to the 

cooling profile used to solidify the chocolate. In general. the temperature profiles used were 

comparable to those used in industry. 

- 103 -



Chapter 3. Material and Methods 

13 

12 

10~ 
11 

9 

5 

3 

2 

1 

Figure 3.17 Experimental set-up developed to measure the effect of 

processing conditions on the surface adhesion force. 

6 

The numbers refer to the air supply (1), pressure valve (2), dry column (3), water column (4), 

valve (5), water bath (6), coolinglheating unit (7), ventilator (8), Peltier chamber (9), sample 

holder (10), chocolate sample cell (11), adhesion probe (12), texture analyser (TA)(13), 

computer (14), respectively. 

Tempe red chocolate i melted u ing a scraped surface heat exchanger type tempering device 

(Revolution 2, Choco Vi ion), shown in Figure 3. 18, which allowed the melting temperature to 

be contro lled to en ure that the cry ta llization of the cocoa butter in the correct pol ymorphic 

form wa not affected . The melted chocolate sample (32- 33 0c) was poured into a glass Petri 

di h or c hocolate ample cell ( II ), which wa sub equentl y placed in the pre-conditioned (33-

34 0C) Pe ltie r cabinet. gla ample cell was chosen because of its high surface energy, to 

which it wa expected that the chocolate would prefer to 'stick '. If the surface ene rgy of the 

. ample cell urfa e i too 10\ , the complete solidified chocolate sample might be pulled out, 
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resulting in a cohe i e failure. Furthermore, an aluminium pl ate is used as sample holder ( 10), 

to keep the chocolate sample and the ample cell on the ground during the experimental surface 

adhesion fo rce determination. In the centre of the aluminium pl ate is a hole, through which the 

adhe ion fo rce probe ( 12) are lowered u ing the Texture Analy e r in order to c reate the 

chocolate-mould interface. Immediately after creation of the interface the temperature of the 

Pe ltier cabinet and the water bath (a ir) are decreased to 15 °C, for solidification (c rystallization) 

of the chocolate to take place. After 60 minutes of cooling the adhesion probe is pulled off the 

o lidified chocolate urface using the Texture Analyser ( 13). The force per distance and per 

econd are recorded on a computer ( 14), and the force versus di stance or force ver u time 

profile that is obta ined, ee Figure 3. 14, can be used to calcu late the max imum force and work 

of adhe ion (area under the cur e) for each measurement. 

Figure 3.18 Revolution 2 (ChocoVision) chocolate tempering device. 

As de cribed in ection 3.3.2.2, the contact between the chocolate and polycarbonate urface 

was created at a temperature of approximately 30 °C, after which the temperature was normally 

adju ted to 15 °C u ing a tandardized temperature profile. Tn order to vary the cooling 

temperature, the temperature of the cabinet was decreased after the chocolate-mould interface 

c reation to 20, 15, 10, 5 or 0 DC, re pecti e ly. For variation in mould temperature the thermal 

equilibration step of chocolate and mould probe of 30 minute wa omitted. The respective 

mould urface temperature of -20, 0, 10, 20, 30 and SO °C were obtained by cooling the 

polycarbonate mould probe in a fridge or freezer or heating in an oven for 30 minutes, 

re pec ti ely. Contact time refer to the time that the chocolate-mould interface was in place, i.e . 

from the moment of contact/interface creation , until the time of probe separation controlled by 

the Texture naly e r ( 13). During this re earch the evoluti on of urface adhesion with contact 

time wa followed from 0 to 450 minute . 
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3.3.2.6 Chocolate and mould parameters 

The temperature and relative humidity in the Peltier cabinet were recorded at the time of 

creation of the chocolate-mould interface and just before determining the experimental 

adhesion force to control the experimental conditions. Additionally, a set of parameters related 

to the physical and chemical properties of the chocolate and/or mould surface were analysed as 

part of the surface adhesion experiments to increase understanding of the interactions taking 

place at the chocolate-mould interface and their relation to the adhesion or stickiness of 

chocolate to mould materials: 

Hardness: 

The solidified chocolate samples were analyzed for hardness by a method described by 

Liang and Hartel (2004), using the Texture Analyser (TA-XTplus, Stable Micro 

Systems). A 2-mm cylindrical stainless steel probe was used to penetrate the solidified 

chocolate sample at a constant speed of 0.1 mmls to a depth of 5 mm. The maximum 

force (N) obtained during this penetration was taken as a measure of the hardness. 

Hardness measurements were done in duplicate, at two different positions on the 

surface. First of all, the hardness was measured at the chocolate-mould interface, after 

the probe or mould surface was removed, as is shown in Figure 3.19C. Occasionally 

this measurement could not be employed, as a result of a cohesive-adhesive failure. 

Secondly, the hardness was measured at the chocolate-air interface, i.e. the chocolate 

surface area that has been in contact with air during the whole experiment. Furthermore, 

based on the force against distance (or time) profile recorded by the Texture Analyser 

during the penetration test, both the surface and the bulk hardness can be determined. 

An example can be seen in Figure 3.19A, where there is an initial sharp increase in the 

force (hardness), and after a maximum has been reached the force stabilizes and does 

not change during the rest of the test. The maximum peak force obtained within the first 

5 seconds is defined as the hardness of the surface (I), whereas the maximum force 

obtained after approximately 20 seconds is defined as the hardness of the bulk (2). At 

this stage the cylindrical probe has travelled into the chocolate sample for> 4 mm. In 

Figure 3.19B a sudden drop in hardness (3) is observed after the initial maximum peak 

force has been reached. This is expected to be due to either the presence of an air bubble 

directly under the surface layer « 0.5 mm), or the formation of a 'skin' layer on the 

chocolate surface during solidification. This skin layer can be a result of differences in 

crystallization at the surface and in the bulk, variations in temperature caused by 

heterogeneous heat transfer, adsorption of moisture at the surface affecting the viscosity 

of the surface layer or maybe the presence of a pore within the particulate network. 

Either way, the initial maximum force is used as the surface hardness, whereas the 

plateau force is used as the bulk hardness. 
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Figure 3.19 Force against time profile obtained for a surface penetration (S mm depth) test of 

chocolate at both the chocolate-mould and chocolate-air surfaces. 

The numbers refer to the hardness of the surface (1), and of the bulk (2), respectively. 

Number 3 indicates the presence of a defect, causing a temporary decrease 

in the hardness force measured. 

• Chocolate re idue weight: 

A menti oned in ection 3.3.2.4, the weight of the experimental mould probes is rated 

afte r each urface ad he ion force determination to assess the failure mec hani sm. The 

chocolate re idue weight or the left-over re idue at the probe surface, expressed as the 

amount of chocolate per unit urface area (mg m-2
), refers to the amount of chocolate 

left on the mould urface after eparation test. A macroscopic failure will normally be 

i ible bee, due to the combined effect of relati ve ly large res idue and the dark 

colour of the chocolate. Micro copic failure, on the other hand, may not be observed by 

i ual in pect ion and can more ea ily be determined by weight changes. 

• Contact angle: 

Change in urface chemi try of the mould urface layer are a es ed by mea uring the 

contacl angle of \ ater on the probe urface afte r the eparation te t . The es ile drop 

method, de cribed in eClion 3.3. 1.2, was u ed for thi purpose using only di tilled 

water a th reference liquid . Within thi re earch the diffe rence in contact angle 

bet een a lean probe urface and the fouled probe urface i defi ned a I::. COil tact 

angle, and i ba don 10 mea urement on the clean surface, whilst the mea urements 

on the foul d urface were done in duplicate. The aim of this test wa to establi h the 
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change in urface character of the mould after contacting with chocolate. For example, 

the migration or ad orption of fat from chocolate to the mould surface will on most 

mould urface re ult in the formation of a more hydrophobic surface, and will 

con equently give a larger contact angle (> 90 0) for a drop of water compared to the 

clean urface. 

• Glo : 

Glo an important quality parameter of commercial chocolate surfaces, and results in 

part from the high surface finish of the mould materials. Analysing the gloss of both the 

chocolate and mould urface after the urface adhesion force determination will aid in 

the under tanding of the interactions taking place at the chocolate-mould interface. The 

glo or light retlection of both chocolate and mould urfaces wa mea ured using a Tri­

GLOSSma ter (S heen Lnstruments). Thi piece of equipment uses a three-angle optical 

geometr approach, ana ly ing the specular retlection of surfaces at 3 angles, 20 0 , 60 ° 

and 85 0 . Angu lar reflection is the capacity of a surface to retlect light, and this 

mea uring principle i isualized in Figure 3.20. Surface with a high glo , for example 

teel urface, will reflect nearly 100% of the illumination, whereas surfaces with a 

lower glo and/or a higher urface roughnes , for example plastics, will absorb and/or 

scatter part of the illumination , as a result of which the retlectance is lower due to part 

of the retlection not reaching the detector. 

Within thi re earch the aim of the glo s measurements was to determine the possible 

de po ition of (fat) re idues on the mould urface, as well as change in chocolate gloss. 

The value obtained for the glo at an angle of 60 °, which is the uni versal mea urement 

angle that i often u ed pecifically for medium or semi-gloss surfaces, i u ed for the 

determination of the urface glo . 

Figure 3.20 Visualization of the measurement principle of the Tri-GLOSSmaster by 

determining the angular reflection at three angles (Sheen Instruments, 2(03). 
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3.3.3 Moisture sorption 

Ad orption a phenomenon observed at the surface of a solid or liquid, whereby a 

monomolecular layer of ad orbate is formed by the ad orption of molecules from a nearby fluid 

pha e on the re pecti ve olid or liquid urface (Wal tra, 2003). An isotherm describes for a 

pecific temperature the relati on between the amounts adsorbed per unit urface area at 

equilibrium and the ac ti vity o f the adsorbate. Moisture adsorption to the polycarbonate mould 

urface at arying relati e humiditie (RHs) was determined using a Ci sorp water sorption 

ana ly er (Cl Electronic Ltd .) . The operating princ iple of the Cisorp, visualized in Figure 3.21 , 

can be defined a a gra imetric method at an ambient pressure. Basically, it consists of three 

eparate chambe r : a weighing chamber, a balance chamber and a humidifier. The humidifier is 

re pon ible fo r the temperature conditioning and for upplying a wet air flow , by pa sing dry 

ga (nitrogen or air) at reduced pre ure through a cavity filled with di stilled water. Both the wet 

and the dry fl ow are brought up to the temperature of the weighing chamber, after which they 

are mi xed and the mi xed air fl ow is fed to the weighing chamber. A calibrated humidity probe 

pre ent in the weighing chamber i u ed to monitor the RH. Two microbalances are placed in 

the balance chamber, with a thin rod, to which a sample holder is connected, being suspended 

into the weighing chamber. Counterweight , located in the balance chamber, are used to 

mechanically ba lance the weighing arm. A microproces or is responsible for the conversion of 

the force required to hold the balance arms horizonta l into weight readings (Mangel , 2007). 

~ ... .., rLO· 
co.~a.\ 

rt#! ,.\ rLO ••• 1U lUI 
""".&T\J'IS • 01\'1.4' 
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Figure 3.21 Operating principle of the Cisorp moisture sorption analyser (Mangel, 2007). 

In order to dete rmin the moi ture orption by a polycarbonate urface during the mould 

conditioning tage, a pol carbonate mould piece wa pl aced in the Ci orp weighing chamber for 

30 minute at a pecific RH and a temperature of 30 cC, whil t the change in weight per minute 

wa recorded. The moi rure uptake by the polycarbonate mould surface wa ca lcul ated a a 

pe rcentage compared to the moi ture uptake re pon ible for saturation , e.g. 100%, 
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Moisture uptake [%] = mRH X 100. 
m sal 

[3-21] 

where mRH i the amount of moi ture uptake after 30 minute at a pecific RH, and I1lsal i the 

amount of moi ture uptake required to reach saturation. By plotting the moi sture uptake against 

the RH at 30 DC an i otherm fo r the ad orption of moi ture by the polycarbonate surface can be 

obtained. 

3.3.4 Aeration of chocolate 

Ln thi re earch two different technique are u ed to introduce bubbles into a chocolate system: 

I. Vacuum box 

The principle of thi method i ba ed on de- orption of gas that is either present within 

the tempered chocolate y tern naturally or injected into the system, e.g. CO2• Oe-

orption of the gas is obtained by applying a vacuum, triggering a pre sure drop. A the 

ga olubilit increa e with pre ure, a pre ure drop cau es the gas to be released from 

the continuou fat pha e (Beckett , 2008). An overview of the principle of bubble 

inclu ion under acuum i hown in Figure 3.22 . 
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Figure 3.22 Operating principle of the vacuum box. 

Tempered chocolate (- 2 DC) i depo ited in polycarbonate mould , which are 

ub equently placed in a acuum box (Euro-Vent Ltd.). After ealing the tainless teel 

enc\o ure containing the chocolate mould a acuum (ranging from 0.04 to 0.1 bar) i 

applied t the chamber. U ing the manual vacuum- etting valve the pre ure applied 

can be adju ted. The chamber operate at a temperature of approximately 10 DC, which 
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en ure the immediate solidification of the cocoa butter or fat phase. Thi s solidification 

of the fat network is re pon ible for the trapping of the gas released from the fat phase 

when appl ing a vacuum. Once the complete chocolate system has been solidified the 

vacuum is re lea ed and the chocolate moulds can be removed from the vacuum box. 

2. Positive pressure batch rig 

The principle of this method is based on de-sorption of gas that is injected within the 

tempe red chocolate ystem under application of a positive pressure. This positi ve 

pre sure en ure the di solution of the gas into the continuous fat phase of the chocolate 

y tern, c reating a chocolate- gas liquid that will flow . Once the mixture leaves the 

y tern, the pre sure drops to atmospheric pressure, resulting in the expansion of the 

di o lved ga . 
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Figure 3.23 Operating principle of a positive pressure aeration system. 

Typical e ample of the u e of positi ve pre sure are Novac, Mondomix and the Sollich 

aero-tempe rer. An 0 e rview of the principle of bubble inclusion using a positi ve 

pre ure I hown in Figure 3.23. A positi ve pressure is applied to a batch tank 

contai ning the tempered chocolate (- 32 cq . From the tank the chocolate is pumped 

toward the beater / mixer, ia two pumps. In between these two pumps pressure 

regu lated ga , e.g. CO_ or N2 is injected into the choco late system. The amount of gas 

that i injected will depend on the chocolate vo lume. A high hear mi xing action by the 
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stator and rotor arrangement in the mixing head is responsible for mechanically 

dispersing the gas phase in the liquid chocolate mass. The mixture is subsequently 

deposited in pre-conditioned chocolate moulds. and as a result of the pressure dropping 

to atmospheric pressure upon discharge of the mixture. the dissolved gas desorbs to 

form bubbles. A final cooling phase is required to solidify the system and form a stable. 

solid chocolate foam. 

Within this research different aerated chocolate systems were prepared to assess the relation 

between chocolate aeration and mould surface adhesion. Main aim was the preparation of 

systems with significantly different air bubble sizes. 

3.3.4.1 Experimental adhesion force of aerated chocolate systems 

The main principles of the experimental adhesion force determination have been discussed in 

section 3.3.2.2. In the case of aerated chocolate systems the preparation of the chocolate sample 

prior to chocolate-mould contact was adjusted. to prevent the loss of air entrapped in the 

chocolate system. Melting of a routine volume of aerated chocolate in the standard glass sample 

holder took place in an oven set at a temperature of approximately 35°C for 30 minutes. Prior 

to the melting stage the thin film (non-aerated) coating surrounding commercial aerated 

chocolate systems was cut off. to ensure contact between the aerated system and the mould 

probe surface. Contact was then created in a similar manner as used previously. 

3.3.4.2 Physical characterisation of aerated chocolate systems 

The density of the aerated chocolate samples was used specifically as a quality measure and to 

determine the gas hold-up of the chocolate mass. This allows the evaluation of the effect of 

processing parameters on the gas holding or air entrapment capacities of the solidified 

chocolate. Density of the aerated chocolate mass is measured by weighing a cup with known 

volume. from which the density can be calculated: 

p = m aero 
aero v· [3-22] 

where m is the mass of the aerated chocolate present within a cup with a volume. V. of 30 m!. 

This simple technique enables a quick determination of the density during aeration experiments. 

Gas hold-up is subsequently calculated by comparing the density of the aerated chocolate. Paero. 

with the density of the same non-aerated or gas-free chocolate system. pstd: 

E = (1- PurD) X 100, 
Pstd 

where e represents the gas hold-up value. 
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3.3.4.3 Structural characterisation of aerated chocolate systems 

A non-invasi e and non-de tructive technique previously used for structural analysi of aerated 

chocolate is X-ray tomography (Haedelt, 2005). The generation of heat during measure me nts, 

however, wa ob erved to negatively affec t the structura l characterisation. As a result, a new 

technique wa te ted at e tie PTC (York) u ing a C-Cell Imagi ng System manufactured by 

Calibre Control International in partnership with Campden & Chorl eywood Food Research 

As ociation (CCFRA) who developed the syste m. The measurement principle of the C-Cell is 

ba ed on the late t image analy is technology, us ing hi gh definition imaging and contro lled 

illumination. A the system operate under tandardized condition, there is no ri sk of affecting 

the cry tallization and olidification of chocolate. Us ing the C-Ce ll equipment lices of aerated 

chocolate are examined and a number of objective parameters are defined: ce ll s/mm2, number of 

cell , area of cell (9c ), cell diameter (mm) a nd non-uni formity. Gra phical visualizati ons are 

prepared that how the tructural c haracteri sation, see Figure 3.24. Thi s approac h wi ll allow the 

qualification and quantification of the internal microstructure of aerated chocolate system . 
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Raw lmage: 
image of the amp\t: a ' co llech::d 

by thl! high re o lution optic. 

Brightness Correction Lmage: 

the raw image is corrected for 
brightnes variat ion . allowing 
textural feature to be assessed. 

CeU [mage: 

Different cell sizes are coloured 
differently. Lighter shades ind icate 

larger cell sizes, whereas red 
represents a hole. 

Figure 3.24 Images obta ined for the structural characterisation 

of aerated chocolate using C-Cell. 
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3.3.5 Thin film coating preparation 

As described by Nussinovitch (2003), the addition of hydrocolloids or high-molecular weight 

molecules to a solvent results in the formation of highly viscous suspensions, solutions or gels 

with low dry ub tance content. 

I -a 
Aqueous 

hydrm.:olloid 
solution (0.1 (It ) 

G l[J 
Deposit 

hydrocolloid 
solution on mould 

surface 

I -h 
Lipid melt (100%) 

c ] 

2 
Coating fomlalion 

Leave to dry at 
room temperature 

andRH for 
> 16 hrs 

3 
Surface adhesion 

force 
dClcmlinalion 

Figure 3.25 Operating principle of the thin film coating preparation. 

Thin layers or films are obtained by drying the hydrocolloid solutions, aimed at decreasing the 

water content. Furthermore, the drying process may enhance the adhesion between the coating 

film and the coated object, bringing the two into maximal contact. Removal of the moisture at 

the urface layer of aqueous coating solutions, in combination with the sedimentation of 

hydrocolloid particles, results in the formation of a thin, dry film layer. 

The general methodology followed to prepare and subsequent apply thin film coatings is shown 

in Figure 3.25. There are three main steps: I) the formation of an aqueous hydrocolloid solution, 

which will be di cussed in more detail in section 0 ; 2) the formation of a thin film coating by 

evaporating the moisture from the aqueou solution whilst in contact with a polycarbonate 

mould surface; and 3) urface adhesion force determination using the operating principle 

descri bed in ection 3.3.2.2, except that the polycarbonate mould surface is coated with a thin 

hydrocolloid film. 
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3.3.5.1 Hydrocolloid coatings 

Hydrocolloid coatings are prepared according to the general operating principle described in 

Figure 3.25, with particular focus on pathway I-a. The method of preparation of the aqueous 

hydrocolloid solutions, however, varies depending on the type of hydrocolloid used. For all 

hydrocolloid coatings, the standard concentration used is 0.1 % w/v to allow direct comparison. 

Additionally, for CMC and pectin 105 in particular a dose response study is conducted to aid in 

the development of the optimum formulation. 

• High methoxyl pectin 

Aqueous pectin solutions (0.1 and 0.5 % w/v) were prepared by slowly adding the 

pectin powder to distilled water that is vigorously stirred. The suspension is 

subsequently mixed for 30 minutes to completely dissolve the pectin, creating a clear 

solution. 

• Carboxymethylcellulose (CMC) 

Aqueous CMC solutions (0.0 I, 0.1, 0.2 and 0.5 % w/v) were prepared by slowly adding 

the CMC powder to distilled water that is vigorously stirred. The suspension is 

subsequently mixed for at least 30 minutes to completely hydrate and dissolve the 

CMC, creating a clear solution. 

• Whey protein isolate (WPI) 

An aqueous WPI solution (0.1 %) was prepared by adding the WPI powder to distilled 

water that is vigorously stirred. The suspension is subsequently mixed for 30 minutes to 

completely dissolve the WPI, creating a clear yellowish solution. A small study was 

conducted to investigate the effect of protein denaturation on the film forming 

capabilities of WPI by heating the solution, but no significant differences in thin film 

coating were obtained. 

The prepared solutions are deposited on the polycarbonate mould surfaces using a pipette and 

left to dry over night at room temperature to remove the moisture and create a thin film. 
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3.3.5.2 Lipid coatings 

Lipid coatings are prepared in a slightly different way compared to the hydrocolloids coatings, 

although they are also prepared according to the general operating principle described in Figure 

3.25, with particular focus on pathway I-b. The method of preparation, however, varies 

depending on the type of lipid or fatty acid blend used. For all lipid coatings, the standard 

concentration used is 100% (no dilution) to allow direct comparison. Additionally, for 

Grindsted® Acetem, a dose response study is conducted to aid in the development of the 

optimum formulation. All three lipids or fatty acid blends contain emulsifying properties, but 

because of physical properties only the acetic acid ester is used at different concentrations. 

• Distilled monoglyceride 

Distilled monoglyceride coatings were prepared by carefully heating the Dimodan® HP 

beads to above their dropping point (- 69 DC), to create a liquid solution. The 

polycarbonate mould surface was subsequently dipped in the liquid distilled 

monoglyceride solution (100%) and left to solidify (set / cool) at room temperature. 

• Acetic acid ester 

Acetic acid ester coatings were prepared by carefully heating the Grindsted® Acetem 

wax to above its dropping point (- 37 Dq, to create a liquid solution. The polycarbonate 

mould surface was subsequently dipped in the liquid distilled monoglyceride solution 

(100%) and left to solidify (set / cool) at room temperature. For the dose response study, 

aqueous acetic acid ester solutions (0.1 and 1.0% w/v) were prepared by adding the 

GrindstedQ\) Acetem wax to distilled water that is stirred. The suspension is subsequently 

heated to above the dropping point of Grindsted® Acetem (- 37 DC) to melt the wax and 

create a clear solution. 

• Cocoa butter 

Cocoa butter coatings were prepared by carefully heating the cocoa butter to above its 

melting point, to create a liquid solution. The polycarbonate mould surface was 

subsequently dipped in the liquid cocoa butter solution (l 00%) and left to solidify (set / 

cool) at room temperature (max. 20 DC). 

• Lecithin 

An aqueous lecithin solution (1.0% w/v) was prepared by slowly adding the lecithin 

powder to distilled water that is stirred. The suspension is subsequently slightly heated 

to dissolve all the lecithin and create a clear solution. 
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3.3.5.3 Plasticizer and multicomponent coatings 

Plasticizer coatings are prepared in a similar way as used for the hydrocolloid coatings. 

Aqueous coating solutions are prepared by adding a hydrocolloid (0.1 % w/v) and a plasticizer 

(0.1 or 1.0% w/v) to distilled water under continuous stirring. The hydrocolloids used are pectin 

105 and CMC. 

Multicomponent coatings consist of a hydrocolloid (0.1 % w/v CMC), with a lipid component 

(0.1 and 1.0% w/v acetic acid ester) and a plasticizer (0.1 and 1.0% w/v sucrose). Aqueous 

solutions are prepared by adding alI three components to distilled water under continuous 

stirring. In order to dissolve the lipid wax the solution is heated slightly. 

3.3.6 Solid surface topology 

Confocal Laser Scanning Microscopy (CLSM) is used in reflection imaging mode to determine 

the surface topology of solid mould surfaces. Surface roughness is known to negatively affect 

contact angle measurements, and contact angle hysteresis can be used to assess the homogeneity 

of surfaces from a macroscopic point of view. CLSM can be used in addition to this to assess 

the surface roughness at a microscopic level, i.e. the surface microstructure. By using reflection 

imaging, the intensity of the reflected light will be analysed. It is assumed that surface 

roughness negatively affects the reflection intensity, which can therefore be used as a measure 

of surface topology. A 30170 RT filter is used to allow the 488 laser line to return to the 

detector, in combination with a PMT collection window which allows 488 nm light in. 
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CHAPTER 4 

SURFACE ENERGY INVESTIGATION OF CHOCOLATE 

ADHESION TO SOLID MOULD MATERIALS 

4.1 INTRODUCTION 

Within the chocolate manufacturing industry, the adhesion and sticking of chocolate to the 

mould surface is a substantial ongoing problem, leading to poor product appearance, production 

losses (normally those products are considered out of quality standards and rejected), and 

increased processing costs partly due to superior equipment cleaning. The extent of adhesion is 

assumed to be dependant of the adhesive force between the chocolate and the mould surface, 

and the cohesive force of the chocolate only. Understanding of the interactions taking place at 

the chocolate-mould interface can be gained by investigating the surface energy of the different 

(solid) surfaces involved. Solid surface energy (or surface tension) is regarded as a characteristic 

parameter of both surface and interfacial processes, such as adsorption, wetting or adhesion 

(Karbowiak et aI., 2006). This part of the research specifically applies the principles of 

thermodynamic adhesion and surface energy to the case of chocolate adhesion, with the aim of 

establishing relationships between the thermodynamic work of adhesion and the observed extent 

of adhesion of chocolate to mould materials. 

4.2 MATERIALS AND METHODS 

The equipment and methodologies used to determine the surface tension, contact angle and 

experimental chocolate-mould surface adhesion force, as well as empirical approaches used to 

calculate the solid surface energy, have been discussed in CHAPTER 3. This section will 

describe specific materials and methodologies that have been used to investigate the surface 

characteristics of a number of solid surfaces, both mould and chocolate materials. 

4.2.1 Materials 

The solid mould materials used in this research were chosen because of their link with 

commercial chocolate manufacturing, as discussed in section 3.2.2, except for quartz glass 

which was chosen as the reference material because of its well-known high surface energy. 

Prior to use in surface energy or adhesion force determinations, the solid surfaces were cleaned 

with detergent (Springdawn High Active) containing 5% ionic surfactant and 5-15% non-ionic 

surfactant, followed by distilled water (Millipore) and acetone (AR grade), where applicable, 

and dried using compressed air. 
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In addition to the probe liquids mentioned in Table 3.5, two additional liquids were included 

especially for the surface energy determination of chocolate surfaces: 1,3-propanediol 

(CH2(CH20Hh) and n-octane (CH3(CH2)6CH3). The use of 1,3-propanediol (Sigma Aldrich) 

was based on work done by Galet et al. (2004), who used different mixtures of water and 2-

propanol to determine the surface free energy of cocoa powder. n-Octane (Fisher Scientific) was 

chosen as a liquid with a low surface tension. 

Dark chocolate (52% cocoa solids) was used as the standard system for the investigation of the 

relationship between solid surface energy and chocolate-mould adhesion. Deodorized cocoa 

butter (100% cocoa solids) and palm olein, supplied by Nestle PTC (York) were used as model 

or reference systems. For surface tension measurements, the standard dark chocolate (52% 

cocoa solids) system is compared to a milk chocolate (Nestle commercial recipe, 29% cocoa 

solids) and a dark chocolate (Cote D'Or, 70% cocoa solids) system. For solid surface energy 

measurements of solid chocolate bars, four commercial chocolate products from Nestle are 

used: Heaven Dark truffle (minimum 43% cocoa solids), Heaven Milk truffle (minimum 30% 

cocoa solids and 18% milk solids), After Eight (52% cocoa solids) and AERO (aerated milk 

chocolate, minimum 25% cocoa solids and 14% milk solids). 

4.2.2 Methods 

The surface tension of the probe liquids as well as the chocolate systems was determined using 

the Wilhelmy plate. Especially for the chocolate systems the use of the Du Nolly ring is 

discouraged as this will not give the actual surface tension force. Chocolate systems were 

carefully melted in an oven at 40°C prior to surface tension measurements. In all cases the 

average of 10 measurements was taken as the liquid surface tension. 

Contact angles of probe liquids on mould and chocolate surfaces were determined using the 

sessile drop method in an apparatus specifically designed for this purpose. With respect to solid 

chocolate surfaces particular attention was paid to the temperature and the time of the 

measurement. All chocolate experiments were conducted at temperatures below the melting 

point of chocolate « 30°C), and the equilibrium stage was omitted to prevent the chocolate 

from interacting with the solvents. Contact angles were taken within seconds after the drop was 

deposited on the surface, and no receding contact angles were measured. In all cases the average 

of the left and right contact angle of 5 different drops placed on two different clean or new 

surfaces was taken as the contact angle and used to determine the reported solid surface energy 

values. 
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4.3 RESULTS 

4.3.1 Surface tension 

As de cribed in section 3.3.1.1 , the liquid surface tension was measured using a Kross K lOST 

digital tensiometer, with a platinum Wilhelmy plate. Us ing thi s technique, the surface tension of 

a set of probe liquids and chocolate systems was determined, as well as the te mperature 

dependence of the probe liquids in the temperature range of 20 - 60 °C. 

4.3.1.1 Surface tension components 

The Wilhelmy plate method is used to determine the total surface tension of liquids, Yi. 

However, in order to increase understanding of the surface chemistry of the solid materials the 

liquid surface ten ion components are used, as is shown in section 3.3. 1.3 by the empirical 

approaches of Fowkes, Owen and Wendt, and van Oss, Chaudhury and Good. These 

approaches assume that different intermolecular forces, such as polar and di spers ive, or short 

range and long range forces are responsible for the interactions between a liquid and a olid 

surface. In order to calculate the total surface energy and its components according to the 

methods mentioned previously, knowledge of the liquid surface tension components is required. 

The di sper ive or apolar or Lif hitz-van der Waals, ylw, and the polar or Lew is ac id- base, yab, 

component of the liquid urface tension can be determined experimentally. 

Table 4.1 Experimental and literature surface tension data. 

Error is representative of the standard deviation, n = 12. 

(Good, 1992; van Oss, 2006; Della Volpe, 2004; Lyklema, 2000). 

E.xperimental Literature 

Total surface 
Total 

Dispersive Electron 
surface 

Polar 
tension 

tension 
component component acceptor 

10 1 Iw ab + 
11 10 1 

11 
11 11 11 

Liquid [roN moll [roN m·ll [roN m·ll [roN m·ll [roN moll 

Deionised waler 72.79 ± 0.45 72.8 2 1.8 51.0 25.5 

Glycerol 65.02 ± 0. 14 64.0 34.0 30.0 3.9 

Formamide 59. 18±0.3 58.0 39.0 19.0 2.3 

Diiodo .relhane 50.85 ± 0.58 50.8 50.8 ::: 0 ::: 0.01 

Poly(ethyk::ne glycoO 45. 19 ± 1.04 48 .0 29.0 19.0 3.0 

u- Brorronaphthak!ne 43.6 1 ± 0.72 44.4 44.4 ::: 0 ::: 0 

Benzytak;ohol 39.7 1 ± 0.54 39.0 30.3 8.7 

Chbrobenzene 33.41 ± 0.22 33.6 32. 1 1.5 

Hexadecare 27.34 ± 0.52 27.5 27.5 27.5 0.0 

Decane 23 .79 ± 0.22 23.8 23.8 0.0 0.0 

1,3-Pro pared io I 48.74 ± 0. 15 46.5 

n-OClane 21.80 ± 0.06 2 1.6 21.6 0.0 0.0 
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One technique measures the contact angle of a liquid with known total surface tension on a 

purely apolar solid surface such as polyethylene or polypropylene, to determine the dispersive 

surface tension component of the respective liquid (van Oss, 2006). Based on the assumption 

that the liquid surface tension is known, the polar surface tension component can then be 

derived from: 

Y _ y'w + yab 
I - I I' [4-1J 

The total liquid surface tensions of the probe liquids determined in this research using the 

Wilhelmy plate method are shown in Table 4.1. In the 2nd column the experimental values are 

shown, whereas the 3rd column refers to total liquid surface tension data from literature (Good, 

1992; van Oss, 2006; Della Volpe, 2004). Comparison of these two columns indicates that the 

surface tensions measured agreed within ± 1.2 mN m·1 of the values found in literature. 

Therefore, surface tension components of the probe liquids are taken as the literature values, as 

shown in columns 4, 5, 6 and 7 in Table 4.1. Empty cells indicate that no literature data were 

available for that specific liquid. 

4.3. J.2 Surface tension of chocolate systems 

Measurement of the liquid surface tension of chocolate was conducted at a temperature of 

50°C. At this temperature all crystallization history is melted out and the chocolate has a 

viscosity that is sufficient for the wetting of the Wilhelmy plate in order to determine the liquid 

surface tension. Figure 4.1 presents the surface tension of a number of chocolate samples with 

different cocoa solids content. For all samples the equilibrium force is taken as the liquid 

surface tension. Upon initial contact, the force with which the chocolate is pulling on the 

Wilhelmy plate is relatively high (::::: 47 mN m'\ However, within seconds the force drops and 

stays constant (not shown here). It is assumed that this effect can be ascribed to the presence of 

a surfactant (lecithin) within the chocolate system. Surfactants present in a liquid are known to 

affect the liquid surface tension (Walstra, 2(03). For aqueous solutions, a low concentration of 

surfactant can significantly reduce the surface tension. Non-aqueous solutions require a higher 

concentration to obtain a similar reduction. In most cases surfactants alter the liquid surface 

tension negatively, reducing the overall surface tension. The mechanism of action of surfactants 

is based upon their ability to adsorb in the surface layer or onto different materials, due to their 

chemical structure and amphiphiIic character (Erbil 2006; Lyklema, 2(00). An example of a 

food system where the migration of surface-active agents to the surface was responsible for a 

decrease in surface tension in time is milk (Michalski and Briard, 2003). In the present research 

the presence of the surfactant lecithin in chocolate systems is believed to be responsible for the 

drop in surface tension observed for all chocolate systems after the initial contact. Cocoa butter 

may contain residues of surface active agents but their presence is not detected during surface 

tension measurements, where the force pulling on the Wilhelmy plate is constant from the 
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moment that contact is made. Upon cooling of the chocolate system in time, a slight increase in 

surface tension is observed, which is believed to result from the solidification of the chocolate. 

With time the vi cosity of the chocolate especially on the surface decreases until after sufficient 

time a solidified chocolate sample will be obtained. The presence of a heated water mantle 

surrounding the sample holder will prevent the bulk chocolate from setting and solidifying. 

However, it cannot prevent the surface of the chocolate system against a decrease in 

temperature and ubsequently viscosity. 
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Figure 4.1 Surface tension as affected by total cocoa solids content. 

Error bar is representative of the standard deviation, n = 12. 

Comparison of the different chocolate systems shows a significant difference between cocoa 

butter and standard dark chocolate (52% cocoa solids) and between the standard dark chocolate 

and milk chocolate (29% cocoa solids) ystems. Aeration, furthermore, does not significantly 

alter the liquid urface tension. The question is raised though to what extent the Wilhelmy plate 

actually measure the urface tension of the liquid chocolate foam. A defined interface between 

two phases doe not exist using the plate method in combination with foam. Combined with the 

fact that both the plate and ring method a sess the static surface tension, it is as umed that the 

urface ten ion obtained for the aerated chocolate is actually the surface tension of the chocolate 

rather than that of the foam . Foam properties can be assessed by dynamic surface tension 

technique , which mea ure for example the maximum bubble pressure and conclude whether it 

i easy to create foams from a liquid solution or not . The addition of lecithin to chocolate 

sy tern i believed to be responsi ble primarily for the difference in surface tension between 
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cocoa butter and sta ndard dark chocolate. Further addition of milk prote ins may explain the 

increase in surface tension observed for milk chocolate syste ms. 

Review of literature indicates that only on two previous occasions the surface te nsion of 

chocolate was assessed. These results are summarized in Table 4.2. The results obtained by 

Haede lt are regarded as less accurate , based on the temperature that was used (30 °C) and the 

technique (Du Noiiy ring). With high viscos ity samples such as chocolate it takes time to reach 

an equilibrium situation, which cannot be measured by the ring method. The results obtained in 

the present research show some correlation with the results obtained for the mode l chocolate 

system, but no conclusions can be drawn. 

Table 4.2 Literature values for the liquid surface tension of chocolate systems 

(Mastrantonakis, 2004; Haedelt, 2005). 

Surface tension [mN m· I
] 

Mastrantonakis (2004) Haedelt (2005) 

T sample: 36 - 38 °C T sample: 30 °C 

Cocoa butter 26 . 1 29.0 

I 
29.88 ± 2.49 (plate) 

Model chocolate syste m 
29.62 ± 0 .56 (ring) 

Milk chocolate 39.3 (ring) 

I The model chocolate syste m conSISted of 50% cocoa butter, 50% fme sugar and 0.5% lecithin . 

In general, only a limited numbe r of publications investi gate the surface tension of non-aqueous 

mixtures. As mentioned previously, Michalski and Briard (2003) assessed the surface te nsion of 

milk. They ob e rved a decrease in surface tension with increasing milk fat content, up until a 

ce rtain level after which the effect was negligible. This raises the question to what extent the 

cocoa butter level is responsible for the surface tension of chocolate. The different chocolate 

systems a se ed in thi s research indicate that there might be an effect of the cocoa butter 

content on the liquid surface tension, although the trend is not c lear and no conclusions can be 

drawn. Allen et a l. ( 1999) devised a method to predict the surface tension of biodiesel fuels, 

based on the fatty ac id composition. They found that the surface tension of a mixture is based 

on a weighted mass-average of the pure components of that mixture . In othe r words, the 

compone nts with a hi gher surface tension have more influence at the surface of the mixture, 

forcing the components with a lower surface tension aw ay from the surface. O vera ll , the liquid 

surface tens ion a lue observed in literature for vegetable oils and fatty acids show strong 

agreement with the surface tension values obtained in this research for the differe nt chocolate 

sy te rns (26 - 33 mN m·
I
), as can be observed from Table 4.3 . Cocoa butter consists for 95% of 

the fatty ac ids palmitic (C I6:0) (P), stearic (C I 8:o) (St) and oleic (C IS I ) (0 ), whereas soybean and 

cottonseed oil are vegetable fats that can be used as cocoa butter equivalents. 
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Table 4.3 Literature values for the liquid surface tension of fatty acids and vegetable oils 

(Allen et aI., 1999, Chumpitaz et al., 1999). 

Surface tension [mN mOl] 

Cocoa Coconut Soybean Cottonseed Palmitic Stearic Oleic 

butter oil oil oil acid acid acid 

(C I6:O) (CI8:0) (CI8:1) 

Measured 28.40 22.80 
30.11 26. 11 28.2 29.0 

28.20 31.90 

Predicted 26.82 28.93 28.76 28.47 28.89 28.88 

Based on this agreement it is hypothesized that the surface tension of chocolate depends on 

cocoa butter and its fatty acid composition . As cocoa butter is a natural product its fatty acid 

composition will differ depending on cocoa bean origin and processing techniques. According 

to Talbot (1999) especially the StOSt/StOO ratio, which is the ratio of a TAG consisting of 

stearic-oleic-stearic acid over a TAG consisting of stearic-oleic-oleic acid, will vary depending 

on origin . Among t the chocolate systems analysed within this research cocoa butters from 

various origins may have been used, which may explain the variabi lity in surface tension, i.e. 

the variability between dark chocolate with 52% cocoa solids and 70% cocoa solids (different 

manufacturers), and that between dark chocolate and milk chocolate. 

4.3.1.3 Relation between surface tension and temperature 

The chocolate moulding process consists of the deposition of liquid chocolate into pre­

conditioned moulds. In the subsequent cooling stage, the mould and chocolate are cooled to a 

temperature of approximately 15-20 0c. On deposition, the liquid tempered chocolate has a 

temperature of on average 30 °C, and the mould is pre-heated to within a few degrees of that 

temperature (Beckett, 2008). In order to assess the impact of the mould surface energy on the 

adhesion of chocolate it is important to know the relation between temperature and mould 

surface energy within the temperature range over which the chocolate is in contact with the 

mould, i.e. 20 - 40 °C. As solid surface energy is calculated using the liquid surface tension and 

contact angle, the impact of temperature on these parameters needs to be determined. Figure 4 .2 

show the surface tension of the probe liquids in the temperature range 20 - 60 0C. For all 

liquid the surface tension declines linearly with increasing temperature, with a value of on 

average !: I mN m· t per 10 °C. Due to this linearity the ; urface tension outside this temperature 

range can be estimated by extrapolation. 
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The linear relation observed between surface tension and temperature is well known in 

literature . Due to the increased temperature, the molecular interactions become weaker and the 

surface ten ion decreases. However, when the temperature reaches the critical temperature, Teo 

the surface ten ion vani shes altogether: y = O. Thi s effect is due to the restraining force on the 

surface molecules which di sappears, whereas the vapour pressure increases (Erbil, 2006). 

Padday ( 1969) describes the relation between surface tension and temperature with Le 

Chatelier 's principle. By increasing the surface area of a liquid adiabatically, work is performed 

on the system. As a result , the temperature drops and the surface tension increases, preventing 

further expansion. Furthermore, the thermodynamic dependence of surface tension on 

temperature is hown in equations [2-15] and [2-17]. With increasing temperature, the entropy, 

S, increase and the urface free energy decreases. 
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Figure 4.2 Surface tension as a function of temperature. 

The symbols refer to the different liquids used: water (_ ), glycerol (e ), formamide ( .. ), 

diiodomethane ( T ), poly(ethyleneglycol), ( .... ) bromo naphthalene ( ~ ), benzylalcohol (. ), 

chlorobenzene' ), hexadecane . ), decane (* ), 1,3-propanediol (e ) and octane (_ ). 

Several empirical equations have been developed to re late the surface tension and the 

te mpe rature, e .g. Eotvo and Guggenheim-Katayama. However, these approaches use critical 

propertie and molar olume and are only applicable for the prediction of the surface tension of 

pure liquid . The linear correlations obtained experimentally for the probe liquids will be used 

to calcul ate the urface ten ion at different temperature, and the e values will be used for the 

urface free energy determination at various temperatures. An interesting observation was 
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made by Zhao et al. (2004a) who noticed a decrease in total surface free energy and dispersive 

surface free energy of different materials with increasing surface temperature, while the acid­

base surface free energy component increased with increasing temperature. 

The temperature dependence of the chocolate surface tension was assessed in a similar way as 

that used for the probe liquids. However, the results obtained (not shown here) showed no 

significant differences in liquid surface tension for dark chocolate systems between 30 and 70 

0c. This is primarily a result of the large error obtained at both 30 and 70°C, which is assumed 

to be a result of differences in total solids content. At higher temperatures all crystals are melted 

out, and the total solids content is reduced. The overall trend shows a decrease in chocolate 

surface tension with increasing temperature, indicating that less energy is required to stretch the 

chocolate surface at higher temperature. 

4.3.2 Contact angle 

Section 3.3.1.2 described the sessile drop technique and contact angle apparatus used to measure 

the advancing and receding contact angle that a liquid drop makes when placed on a solid 

surface. Using this technique, the contact angle of the probe liquids and model chocolate 

systems was determined when placed on different mould materials and solid chocolate surfaces. 

4.3.2.1 Advancing contact angle of probe liquids on mould surfaces 

The advancing contact angle is used as it represents the interactions taking place between a 

liquid drop and a solid surface. Static contact angle measurements, at which the contact angle is 

measured in a static drop resting on a solid surface, are regarded as not very accurate and 

reliable because the assumption is made that equilibrium exists between the three phases. A 

static contact angle generally lies between the advancing and receding contact angle, and the 

main disadvantage is that the static contact angle is not representative of the angle formed upon 

initial contact with a fresh, clean surface (Erbil, 2006). Advancing contact angles on the other 

hand are taken when the three phase contact line is changing, and therefore take into 

consideration the interactions at the interface. Table 4.4 gives an overview of the values 

obtained for the advancing contact angles, Oadv, of the probe liquids when placed on the different 

solid mould surfaces. Empty cells indicate that it was impossible for these specific probe liquids 

and mould materials to be used in combination. From the results obtained it can be observed 

that the probe liquids used give significantly different contact angles depending on the solid 

surface that is used. The general trend for the individual probe liquids is that the highest contact 

angle is fonned when placed on the PTFE surface, whereas the lowest contact angle is obtained 

on the quartz glass surface. On average, the value obtained for the contact angle decreases with 

decreasing polarity of the probe liquid. However, none of the probe liquids show complete 
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wetting of the solid mould surface. The general conclusion that can be drawn is that the contact 

angle that a liquid makes depends on the surface chemistry of the solid material and the 

intermolecular interactions taking place at the solid-liquid interface. 

Table 4.4 The average advancing contact angles, Oadn and standard deviations obtained when 

placing the individual probe liquids on the four mould materials at room temperature (n = 10). 

Contact angle, 8 adv [0C] 

Liquid 
PTFE Polycarbonate Stainless steel Quartz glass 

Deionised water 130.5 ± 1.1 89.8 ± 1.1 58.9 ± 1.1 38.7 ± 0.3 

Fonnamide 108.4 ± 1.3 62.8 ± 0.9 51.8 ± 1.6 20.9 ± 1.2 

Diiodorrethane 98.6 ± 1.1 51.9 ± 1.5 44.8 ± 1.9 41.4 ± 0.7 

Poly(ethylene glycol) 91.9±1.3 44.7 ± 2.1 41.0 ± 1.9 28.82 ± 1.1 

u- Brorronaphthalene 30.9 ± 1.0 

Benzylalcohol 87.8 ± 1.0 35.3 ± 2.1 

Hexadecane 57.4 ± 1.2 

n-Octane 30.6 ± 1.4 14.7 ± 0.9 6.8 ± 0.8 

Contact angles obtained in this research cannot be compared with values referred to in literature. 

Their values are determined by two main parameters, first of all the analytical method in 

combination with the mathematical method used to determine the contact angle and secondly 

the level of ideality of the solid surface. Lyklema (2000) collected contact angle data for water 

and a small number of other familiar liquids with the aim of giving an impression of magnitude 

and extent of (dis-)agreement between different sources. For example, the advancing contact 

angle for water on a stainless steel surface varied from 0 to 76 °, whereas for a PTFE surface the 

range of angles varied from 90 - 130 °. One of the explanations for this level of variability is the 

different (pre-) treatments of the solid and the liquid . In general, the data obtained in this 

research for particularly stainless steel and PTFE fall within the range of advancing contact 

angles published by Lyklema (2000). 

Glycerol , chlorobenzene and decane, probe liquids that were initially proposed in Table 3.5, 

have not been used for contact angle measurements. During a preliminary study it was observed 

that the viscosity of glycerol did not allow the determination of either advancing or receding 

contact angles. Chlorobenzene in particular interacted with the solid surfaces in a negative way, 

and similar observations were made for bromonaphthalene, benzylalcohol, hexadecane and 

decane on specific mould surfaces. Examples of negative interactions observed are visualized in 

Figure 4.3. For polycarbonate the chemical resistance is described by Bayer MaterialScience 

(2004), who mention in particular the destroying power of alkaline solutions, ammonia gas and 

its solution and amines, the dissolving power of a large number of industrial solvents and the 
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swelling power of organic compounds such a benzene, acetone and carbon tetrachloride. 

Particul ar notification is given to the use of low-molecular, aromatic, halogenated and polar 

components which mi grate into the polycarbonate and cause di ssolution and/or swe lling of the 

surface layer, ub equently reducing the mechanical strength. Based on these observations it 

was decided not to use acetone for the cleaning of the solid surfaces, but rather appl y a more 

gentle c leaning process using detergents and cleaning procedures commonly utili zed by 

commercial chocolate manufacturing companies . 

versu 

Surface layer d amaged by 
certain liquids, e.g. 

bromonaphthalene 

Drop causes solid to swell , e.g. 

chlo robenzene on flexible teflon 

Contact angle affected by 
rou ghness of surface layer 

Figure 4.3 Negative interactions observed between certain probe liquids 

and solid mould surfaces. 

4.3.2.2 Advancing contact angle of probe liquids on chocolate surfaces 

In the ame manner as used for the solid mould surface , the advancing contact angles of the et 

of probe liquid on different olid chocolate surfaces are determined. Within the time frame of 

the mea urement no interac tions are observed between the chocolate and the probe liquids. 

However, receding contact angles are not determined , as the chocolate surface layer will 

dis olve in certain probe liquids. For the advancing contact angle the angle is measured upon 

contac t of the liquid with the "fresh" chocolate surface, and negati ve interactions between 

chocolate and probe liquid are assumed to be minimal. Contact angles are determined on both 

the chocolate-mould interface and the chocolate- ai r inte rface. 

Three different et of chocolates and their corresponding advancing contact angles are assessed 

in th is research. Liquid urface tension of chocolate systems can only be determined by melting 

the chocolate y tem , and a a result the impact of cry talli zation cannot be defined. Advancing 

contact angle are dete rmined on solid surfaces, and can therefore be used to measure possible 

diffe rence in urface che mi stry between chocolate systems with varying c rystalli zation 

condition . Table 4.5 pre ents the advanci ng contact angles that are obtained when indi vidual 

probe liquid are placed on dark chocolate urfaces that are class ified by different c rys talli zation 

conditions, i.e. bloom, non-tempered and tempered. Significant differences are visible espec ially 

for the water contact angle , which seem to decrease from the bloomed surface to the non-
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tempered and finally the tempered surface. The high value for the bloomed surface (143.7 0) 

indicates a relatively hydrophobic surface, with limited spreading of the water drop over the 

bloomed chocolate surface. It is assumed that this is caused by the presence of fat molecules at 

the surface which are crystallized and responsible for the white appearance of fat bloom 

(Beckett, 2008). In contrast, the tempered chocolate consists of a homogeneous di spersion of 

cocoa solids (particles) and sugar crystals in a continuous fat phase consisting of fat crystals and 

liquid fat (Aguilera et aI., 2004). When assuming that the surface layer consists of a similar 

homogenous distribution, it is clear that the fat content will be lower and therefore the 

hydrophobicity will be reduced, resulting in a more hydrophilic surface layer and more wetting 

of the surface by a drop of water. 

Table 4.5 The average advancing contact angles, O.dn and standard deviations obtained 

when placing the individual probe liquids on a dark chocolate surface 

and the impact of crystallization (n = 10). 

Contact angle, (J adv [0C] 
Liquid 

Bloom Non-tempered Tempered 

Deionised water 143.7 ± 1.3 112.4 ± 1.4 89.0 ± 0.8 

Formamide 133.2 ± 0.8 86.6 ± 1.2 82.5 ± 1.7 

Diiodorrethane 67.1 ± 0.3 72.1 ±0.8 65.3 ± 1.3 

Poly(ethylene glycol) 80.6 ± 1.8 71.9 ± 1.2 77.9± 1.1 

Benzylalcoho\ 36.7 ± 0.5 60.7 ± 1.4 55.5 ± 0.8 

Hexadecane 29.5 ± 0.2 38.1 ± 1.1 35.7 ± 1.3 

Further investigation of the differences between milk and dark chocolate resulted in Table 4.6, 

which shows the advancing contact angles that are obtained when individual probe liquids are 

placed on chocolate urfaces that are classi fi ed by different ingredient compo itions, i.e. dark 

chocolate (After Eight and Heaven Dark) and milk chocolate (Heaven Milk and AERO). 

Both the angle measured on the chocolate-mould interface and on the chocolate-air interface 

are reported. The difference between these two values a re not significant, except for the contact 

angles of water and formamide on the Heaven milk chocolate surface. Overall it can be 

concluded that the impact of chocolate composition or ingredients is limited and is not expected 

to ignificantly alter the chemi try of the surface layer. 
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Table 4.6 The average advancing contact angles, Bad., obtained when placing the individual 

probe liquids on chocolate surfaces and the impact of ingredients. 

Contact angle , B adv [0C] 

Liquid After eight Heaven dark Heaven milk AERO 

Mould Air Mould Air Mould Air Mould Air 

Deionised water 105.5 103.9 11 3.8 108.2 123.4 107.2 111.9 III 

Formamide 78.2 83.9 85.7 87.6 97.9 88.4 8 1.9 83.8 

Diiodo rrethane 7 1.2 71.7 67.3 69.3 64.6 63.3 62.2 65 .7 

PolyCethylene glycol) 77.8 76.0 75 .6 79.3 

Benzylak:ohol 67 .3 62.7 63.4 63.8 62.5 66 

Hexadecane 4 1.1 40.4 4 1.1 43.6 

Table 4.7 shows the advancing contact angles that are obtained when indi vidual probe liquids 

are placed on dark chocolate surfaces that are class ified by di fferent cooling regimes, i.e. room 

temperature (20 °C), refri gerator (4-7 0C) and freezer (- 18 °C). Again, both the angles measured 

on the chocolate-mould interface and on the chocolate- air interface are reported. In contrast to 

previous results significant diffe rences are observed between the chocolate-mould and the 

chocolate-air interface for the chocolate systems cooled at room temperature and in a freezer. A 

general trend cannot be deduced fro m the results. The presence of water vapour in the ai r is 

be lieved to be responsible for the relatively low water contact angles at the chocolate surfaces 

cooled at room temperature or in the freezer. 

Table 4.7 The average advancing contact angles, Oadv, obtained when placing the individual 

probe liquids on dark chocolate surfaces and the impact of cooling conditions. 

Contact angle , 0 adv [0C] 

Liquid 
Room temperature Fridge Freezer 

M ould Air Mould Air 
24h-

Mould Air 
Mould 

Deionised water 103.6 77 .6 97 .3 93.0 111 .0 11 6.7 88.8 

Formarnide 93.6 110.3 85.1 86.4 83 .5 11 5.2 109.9 

Diiodorrethane 60.7 70.8 62.5 64 .1 57.9 59.4 70.1 

PoJy(ethy1ene gJycoO 65.8 72.3 64.2 71.7 

Benzylak:ohol 54.8 58.4 54.9 59.3 45.9 55.7 67.5 

Hexadecane 36.7 40 37.7 42.7 32.6 39.3 38.2 
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4.3.2.3 Advancing contact angles of model chocolate systems 

The viscoelastic nature and re lati vely high melting point of chocolate mean that it is not 

practicable to measure the contact angle of chocolate on diffe rent mould surfaces under ambient 

conditions. Therefore, in order to obtain some indication of the interactions involved and the 

degree of wetting, cocoa butter and palm olein were used as model chocolate systems. 

Furthermore, by using one of these two materials as mode l replacement system to represent 

chocolate in the application of the Young-Dupre equation, the Work of Adhesion, Wo, can be 

calculated. Cocoa butter is a logical choice as a model chocolate system because it is one of the 

main components of the bas ic chocolate recipe. Palm olein is chosen as a second reference or 

model system as its phys ical and chemical properties are closely related to those of cocoa butte r. 
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Figure 4.4 Contact angles of cocoa butter ~ ) and palm olein ( BI, 
as affected by solid mould surfaces. 

Error bar is representative of the standard deviation, n = 10 

The average advancing contact angles obtained when placing cocoa butter and palm olein on the 

four mould surfaces are shown in Figure 4.4. No significant differences are present between 

cocoa butter and palm olein, based on which it is assumed that they can be used 

interchangeably. As the melting temperature of palm olein lies close to room temperature (20 

°C), it cannot be used for experimenta l surface adhesion force determinations and preference is 

there fore given to the use of cocoa butter within this research . The results obtained for the cocoa 

butte r contact angle on the different mould surfaces shows the opposite trend observed for the 

wate r contact angle with respect to the expected surfac~chemi stry. PTFE has the highest cocoa 

butte r contact angle, indicating a low degree of spreading of the cocoa butter on the PTFE 
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surface, based on which the assumption is made that PTFE is a relatively hydrophilic surface. 

From Table 4.4, however, it can be observed that PTFE also gives the hi ghest water contact 

angle, rai ing the expectation that PTFE is relatively lipophilic. The results obtained for quartz 

glass, which has the lowest cocoa butter contact angle, indicate that it is the most lipophilic 

surface of the four mould materials tested. Again, the water contact angle raises the opposite 

assumption, that it is the most hydrophilic surface. Fats are normally regarded as hydrophobic 

components, and it is assumed that the hydrophilic type of behaviour observed for cocoa butter 

results from the glycerol backbone making up the TAG of cocoa butter. The differences in 

cocoa butter contact angle between stainless steel and quartz glass appear not to be significant, 

and the contact angle on polycarbonate is only marginally higher. 

4.3.2.4 Relation between contact angle and temperature 

The effect of temperature on the advancing contact angle is determined within the temperature 

range of 20 - 40 °C, as this is the temperature range over which the chocolate comes into 

contact with the mould surface. Table 4 .8 reports the advancing contact angles obtained for the 

probe liquids water, formamide, diiodomethane and poly(ethylene glycol). On average, the 

advancing contact angle decreases with increasing temperature. Similar observations are 

reported by Karbowiak et at. (2006), who attributed this effect primarily to the change in liquid 

surface tens ion with temperature. 

Table 4.8 Effect of temperature on the average ad vancing contact angle, Oadv, 

and standard deviations (n = 10). 

Polycarbonate Stainless steel PTFE 

Temperature 20° 30° 40° 20° 30° 40° 20° 30° 

89.8 90.2 88.6 58.9 54.4 49.9 130.5 125.9 
water 

1.1 2.3 1.8 1.1 1.9 1.4 1.1 1.9 

62 .8 60.6 58.1 51.7 47.5 42.7 108.4 105 .8 
formamide 

0.9 0.9 0.9 1.6 1.2 2.7 1.3 0.8 

51.9 45.2 40.7 44.8 41.5 37.6 98.6 95.0 
eli iodomethane 

1.5 1.8 1.8 1.9 1.7 1.1 1.1 0.8 

poly(ethylene glycol) 
44.7 45.7 39 .1 41.0 34.5 31.8 91.9 89.8 
2.1 1.2 1.1 1.9 2.5 0.9 1.3 1.4 
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4.3.2.5 Contact angle hysteresis 

The dynamic process used in this research to determine the advancing and receding contact 

angles of a set of probe liquids describes the interactions taki ng place at the liquid-solid 

boundary during the respective wetting and de-wetting processes (Karbowiak et aI., 2006). 

Contact angle hysteresis, as described in section 3.3.1.2 and equation [3-2], is referred to as the 

diffe rence between the advancing and the receding contact angle, and is an indication of the 

quality of the solid surface. An ideal surface would have almost identical advancing and 

receding contact angles. With increasing surface heterogeneity or surface roughness the value of 

the contact angle hysteresis, H, will increase. 

Within this research the advancing and receding contact angles are measured for water, 

formamide and diiodomethane on the four solid mould surfaces. The results obtained for the 

contact angle hysteresis, H, are presented in Table 4.9. Although there are slight differences 

between the three probe liquids the overall trend is clear. It appears that all four materials have 

relative ly high values of contact angle hysteresis, due to probably heterogeneous surface 

chemistry or surface roughness. The polycarbonate and stainless steel surfaces, which have both 

been treated with abrasive paper, show similar values for H. Therefore it is reasonable to believe 

that their surface roughness is the main cause of their deviation from ideality. Quartz glass, 

which is used as a reference material , shows the lowest level of contact angle hysteresis. 

Table 4.9 Contact angle hysteresis, H, of water, diiodomethane and formamide 

on the four different mould materials. 

H water H formamide H diiodomethane 

Po Iycarbo nate 57.4 43.5 41.2 

Stainless steel 52.7 42.5 30.3 

PTFE (Teflon) 39.9 37.1 37.7 

Quartz glass 30.5 10.3 

4.3.2.5.1 Surface microstructure 

In order to quantify the differences in surface roughness, confocal laser scanning microscopy 

(CLSM) was applied to analyse the microstructure of the four mould materials used in this 

research, as is visualized in Figure 4.5 by the x./z-profiles (top images) and the 3D-structures 

(bottom images). The surface profile indicates the variation in height of the surfaces studied. 

Both PTFE and quartz glass show limited roughness at a microscopic scale, with a relatively flat 

x./z-profile. An increase in surface roughness can be seen for the polycarbonate and stainless 

steel surfaces. Comparison of these two surfaces indicates that stainless steel has the highest 
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urface roughne ,wi th an a erage height difference between the peaks and va lleys of - 5 11m, 

wherea the difference for polycarbonate i - 3 ~lm . 

46.90 11m 47.04 11m 46.89 ~lm 

.~~~\ 

.~" 
, . 

. /' 

Teflon Polycarbonate S tai n Ie s steel Quartz gla 

Figure 4.5 Surface microstructure of the solid mould materials. 

The trend de cribed by Table 4.9 for the macro copic urface roughness how good agreement 

with the re ult obtained for the microscopic urface roughness. Ba ed on the e re ult it is 

a umed that the quartz gla surface approache ideality, and can therefore be used as a 

reference urface. The urface roughnes of the other mou ld materials decrease from stainle s 

teel to polycarbonate and finally to PTFE, which ha the lowest urface roughne s of the e 

urface and approache ideality from a tructural point of view. 

4.3.3 Surface energy of solid mould materials 

The total urfac energy of olid mould material and its component are calcul ated via the 

emi -empirical approache de cribed in ection 3.3. 1.3, u ing the experimental data obtained for 

the urface ten ion and contact angle de cribed in ection 4.3.1 and 4.3 .2, re pectively. 

Depending on the emi-empirical approach adopted in thi s re earch. the urface chemi try in 

term of the intermolecular interacti on force at the interface of the different olid materials will 

be di cu ed in more detail. Thi approach i applied to both the solid mou ld and chocolate 

urface . For the mould material the impact of temperature on the surface energy i determined 

in the temperature range 20 - 40 °C. Finally, a wetting envelope is developed to link the urface 

energy of different mould material wi th that of choco late, in order to determine the wetting 

beha iour of chocolate on th different material. 
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4.3.3. J Semi-empirical approaches 

The semi-empirical approaches applied for the determination of the surface energy of the 

different mould surfaces are: Zisman (Z), Fowkes (F), Owens & Wendt (0 W), van Oss -

Chaudhury and Good (v 0), and Equation of State (E S). Results given in Figure 4.6 represent 

the total surface free energy values of the four mould materials determined with five different 

methods of calculation using at least 4 different probe liquids. Water, formamide, 

diiodomethane and poly(ethylene glycol) were used for all surfaces, and based on the 

interactions taking place at the interface additional probe liquids such as bromonaphthalene, 

benzylalcohol, hexadecane or n-octane were also used. Comparison of the approaches and 

mould materials shows that the calculated surface energy values based on these various 

approaches differ significantly between mould materials, as well as between approaches. Except 

for polycarbonate, the critical surface energy values calculated using the Zisman approach lie 

below the total surface energy values achieved with all other methods. Furthermore, the 

standard deviation is much higher compared to other approaches. The total surface energy 

values calculated for polycarbonate and PTFE by the different approaches are in good 

agreement, but for both stainless steel and quartz glass much more deviation between the values 

calculated by the different approaches can be observed. 

Statistical analysis (one-way ANOV A, p<0.05) is used for the interpretation of Figure 4.6. 

Boxplots are used to visualize the data, with the box between the lower and upper quartiles 

representing the middle 50% of the data and the line across the box representing the median. 

Observations beyond the extent of the whiskers are called outliers and are represented as 

individual points (circles). Because of the relatively low sample size, a boxplot is the best 

method for comparison of the approaches and surfaces. Analysis of variance is used to test the 

null hypothesis, Ho, that the surface energy means obtained by the different approaches for a 

particular surface are equal at a confidence level of 95%. It is assumed that the data follow a 

normal distribution, as a result of which the t-test can be used. The alternative hypothesis, Hit is 

that the means for a particular surface obtained by the different approaches are not equal. As the 

Levene test of homogeneity of variances is significant (p<0.05), the hypothesis of equality of 

variances is rejected for all surfaces. The ANOV A or analysis of variance gives a p-value < 0.05 

for all surfaces, rejecting the Ho and accepting the HI in all cases, i.e. the mean total surface 

energy values calculated via the different approaches are statistically not equal. Rejection of the 

equality of variances means that the Tamhane's test should be used for multiple comparisons of 

all pairs of mean differences. 
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Figure 4.6. The total surface energy of different mould materials 

calculated using various empirical approaches. 

The empirical approaches used where: Zisman (_ ), Fowkes (_ ), Owens & Wendt ( ), van 

Oss, Chaudhury & Good (- ) and Equation of State ( ). Outliers are indicated by 0, and not 

used in the calculation of the median and distance from the median. 

Co mpari on of the approache per surface indicates that for the polycarbonate surface the total 

urface energy alue obtained ia the Fowkes and the van Os , Chaudhury and Good 

approache are not tati tically ignificant different (p = 0.999). For stainless steel the 

approaches that give tati ti ca lly imilar va lue for the tota l surface energy are the approach of 

an 0 , Chaudhury and Good and the Equation of State (p = 0 .275). In the case of PTFE, both 

the approac h pai r Fowke - an 0 , Chaudhury and Good , and van 0 s, Chaudhury Good -

Equati on of State, calculate imilar va lues for y/Ol. Finally, for quartz glass the mean results 

obtained via the 5 emi-empirical approaches are all significantly diffe rent (p = 0.000). 

In general, the cri tical urface energy values obtained by the approach of Zi sman fa ll below the 

total urface free energy va lue obtained with the other approaches. Reasoning for thi s deviation 

I gl en by Gindl et a t. (200 I), who de cribe that the va lue obtained by Zisman is an empirical 

parameter, rather than the total o lid urface free energy. They recommend the u e of the ac id­

ba e or van 0 , Chaudhury and Good approach, as the va lue calculated for the total solid 

urface energy ia thi approach lie clo e to the mean of all methods. Karbowiak et a l. (2006) 
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mention the limitations of the Young equation. on which all the semi-empirical approaches are 

based. such as the deviations from the true equilibrium contact angle and the assumptions that 

are used. e.g. pure liquids are used, YI > Ys. The general consensus is that solid surface energy 

data calculated using different approaches cannot easily be compared, their values will vary 

depending on experimental techniques used to determine contact angle data, the liquids used 

and the nature of the solid material. 

Within this research statistical analysis identified several groups or pairs as equal, depending on 

the solid mould surface. Overall. the different types of mould materials used, however, do not 

show any combination of approaches as homogeneous. For all mould surfaces. the solid surface 

energy according to the van Oss approach conveniently lies in the mid-range of the calculated 

values. The van Oss approach has also been commonly used previously for food-related studies 

(Michalski et aI., 1998a; Zhao et aI., 2005; Liu et aI., 2oo6b; Rosmaninho and Melo, 2006), and 

its acid-base approach is therefore adopted here as a convenient tool for the comparison of 

surface energy data of the different mould materials and for relating the surface energy to the 

experimental adhesion and the work of adhesion. 

4.3.3.2 Van Oss. Chaudhury and Good approach 

Using the van Oss, Chaudhury and Good or acid-base approach, the surface characteristics of 

the different mould surfaces are calculated. Figure 4.7 shows the distribution of the total surface 

energy data in a box plot for the four individual mould surfaces. A general ranking of Ystot can be 

observed: PTFE < polycarbonate < stainless steel < quartz glass. Statistical analysis (ANOY A -

F test, p<0.05) confirmed that all the mould surfaces have significantly different values for 1s101
• 

This trend or ranking. with the lowest value of y/Ol for PTFE and the highest for quartz glass, 

correlates well with trends of literature values (Lewin et aI., 2005; Giilec et ai, 2(06). However. 

the actual numerical values do deviate, as a result of different empirical approaches used for the 

surface energy calculation and different experimental conditions. On average, the surface 

energy of PTFE reported in this research, 8.9 mN m· l
, is fairly low compared to values reported 

in literature, which range from 18.6 to 23.9 mN m· 1 (Lewin et aI., 2005). It can be noticed that 

the experimental contact angles obtained on the PTFE surface in this research were moderately 

higher than those observed by Lyklema (2000). It is suspected that the deviation may be caused 

by the relative inaccuracy of the DropSnake method at high contact angles. leading as a result to 

a lower total surface energy. An experimental condition that may cause deviations is the 

cleaning procedure used. General surface energy experiments often use extensive cleaning 

procedures to ensure a clean surface that is close to ideality. Within this research relatively 

gentle cleaning procedures are used. similar to commercial chocolate manufacturing practices. 

Tsibouklis and Nevell (2003) studied ultra-low surface energy polymers. as these are known to 

exhibit non-stick characteristics. According to them. the value of YsIOI of polymeric materials is 
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primarily defined by the chemical structure of the surface layer, with the following ranking of 

the constituent groups: > CH2 (36) > CH3 (30) » CF2 (23) > CF3 ( 15). Furthermore, with 

respect to PTFE, they mention the fact that PTFE coatings often possess lower surface energies 

than their substrates, and that the degree of fluorination is critical. Overall , it can be observed 

that with minor changes in surface chemistry the surface energy will change. As a result there is 

not a standard value for the solid surface energy, not even for quartz glass surfaces. Janczuk and 

Zdziennicka ( 1994) discuss the surface free energy of quartz and its components based on the 

use of the van Oss ac id- base method and the approach of Fowkes. For y s lOI the results varied, 

depending on the probe liquids used , but the average value reported was 57.20 mJ m·2• This is in 

good agreement with the results obtained in this research (54.36 mN m·I). 

I 
= 

iii 

o 
PTFE Polycarbonate Stainless steel Quartz glass 

(Teflon) 

Figure 4.7 Total surface energy, 1s'0\ of the different mould materials according to the 

Lifshitz-van der Waals I acid-base or van Oss, Chaudhury and Good approach. 

Taking tai nle s steel as an example, there are various types of stainless steel such as type 304, 

3 16 and 3 17. Although the composition of the steel may be re lati ve ly similar for these different 

type, the surface layer shows significant differences with respect to surface texture, roughness 

and chemi try, which subsequently results in varying surface energies. Research by Boulange­

Petermann et al. (2006) investigated different methods used to modify the surface fini shing, 

such as bright annealing, pickling and texturing, and their effect on the surface energy of a 

stainles steel urface. All these diffe rent final surface conditions were ob erved to behave 

independently, howing surface energies, y/Of , ranging from 38 to 58 mN m-I. 
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Furthermore, the surface conditions influenced the surface chemistry, as different polar and 

di spersive components were obtained for the solid surface energy. A comparison of literature 

data on stainless steel 316 and 304 is given in Table 4.10. From these data it can be observed 

that stainless steel 316 has on average a solid surface free energy of 53.5 mN m·l, whereas 

stainless steel 304 has a solid surface energy of approximately 41 mN m· l. The type of stainless 

steel used in this research is 316 and, similar to the results obtained for PTFE, the result 

obtained in thi s research for the total surface free energy of stainless steel (40.57 mN m·l) is 

relatively low compared to those found in literature (53.5 mN m· I
). 

Table 4.10 Surface free energy data of different types of stainless steel found in literature. 

Stainless steel 316 2R Stainless steel 304 

Surface free energy, 
51.9 55 1 40 42.62 

y stot [mN mol] 

Rosmaninho and 
Boulange-

Zhao et aI., Zhao et aI. , 
Reference Petermann et 

Melo, 2006 
al.,2006 

2005 2004a 

I Surface finish obtaIned by a modIficatIOn techntque (brtght annealtng). 

Statistical analysis (one-way ANOV A) further indicated that the surface energy components are 

significantly different (p<0.05) for the four mould material s, except for the electron acceptor 

component of the PTFE and stainless steel surfaces, as can be observed from Figure 4.8. 

Both the Lifshitz-van der Waals or dispersive component and the Lewis acid-base or polar 

component of the surface energy follow approximately the same trend as observed for the total 

surface energy; they increase from PTFE through polycarbonate and stainless steel to quartz 

glass. PTFE is different from the other surfaces as it has a much lower contribution of the 

dispersive component, and for quartz glass the opposite is true as it holds a much higher polar 

contribution to the surface free energy compared to the other surfaces. The dispersive 

component can be observed to be the component dominating the total surface energy of PTFE. 

Although the electron acceptor contribution is stati stically only similar for stainless steel and 

PTFE, there is little variation for the other surfaces. Based on these observations, the 

assumption is made that the electron donor contribution to the surface free energy is the main 

differentiating factor amongst the different mould surfaces. 
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Figure 4.8 Surface free energy components of the different solid mould surfaces according to 

the Lifshitz-van der Waals I acid-base method of van Oss, Chaudhury and Good. 

The dispersive component (A) represents the Lifshitz- van der Waals, , y slw, interactions, 

whereas the polar component (B) represents the Lewis acid- base, ,Ysah, interactions. The latter 

can be further subdivided into the electron acceptor (C), y/, and the electron 

donor (D), Ys·, components of the total surface free energy, YsIOI. 

4.3.3.3 Temperature 

The effect of temperature on the urface energy of solid surfaces is determined by using the 

results obtained for the contact angles and surface tension within the temperature range of 20 -

40 °C. For thi s calculation the van 0 s approach is applied and only the results of water, 

diiodomethane and formamide are used. The results shown in Figure 4.9 indicate a linear 

relati on between y 101 and temperature for all three mould materials within the temperature range 

investi gated. However, the effect of temperature is not stati stically significant at all 

temperatures and for all surface. Based on these results it is assumed that within the 

temperature range u ed for commercial chocolate manufacturing, limited changes in surface 

energy are pre ent, and as a result it is proposed to use the data obtained at 20 °C for future 

reference within thi re earch. 
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Figure 4.9 The effect of temperature on the total surface energy, 1s101
• 

The different symbols represent a stainless steel (_), a polycarbonate (e ), 

and a PTFE ( ... ) surface, respectively. 

Error bar is representative of the standard deviation. 

Zhao et at. (2004a) investigated the effect of temperature on the surface free energy of stainless 

steel 304, titanium, and diamond-like carbon (DLC) and tetrahedral amorphous carbon (ta-C) 

coatings in the temperature range 20 - 95 °C. Their results showed on average a decrease of yslOI 

with increas ing temperature for all surfaces. For the stainless steel and titanium surface this 

decrea e was, however, not tati stically significant in the temperature range 20 - 44 °C. This 

effect is opposite to the observations made in this research, where an increase in yslOI with 

increa ing temperature was observed. According to Zhao et al. (2004a) the effect observed can 

be explained by expressing the surface free energy, Ys, as a function of surface internal energy, 

Us, temperature, T, and surface entropy, Ss: 

[4-2] 

An increase in temperature is responsible for an increase In surface entropy, con equently 

causing the surface energy to decrease with increasing temperature. 

In vestigation of the effect of temperature on the surface energy components resulted in the 

formulation of Figure 4.10. Similar to yslO" the di spersive or Lifshitz- van der Waals component, 

ys'W, increased with increasing temperature. The effect of temperature on the polar or Lewis 

ac id-base component, y/ b, however, varied depending on the mould material. For stainless steel 

and PTFE y ab tays more or less constant, whereas for polycarbonate a decrease with increas ing 

temperature is observed. As ys·b is calculated from the electron acceptor, y/, and electron donor, 

Ys' , component, respectively, their effect on the trends observed can be determined. A large 
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error characterize y/, which subsequently is not significantly different with increasing 

temperature, but is assumed to be one of the main reasons for the non linear behaviour of y: b. 

The main differentiating component is Ys' , which shows an increase with increasing temperature 

for tainless steel and is more or Ie s constant for the other surfaces. Thi s is believed to be the 

mai n factor responsible for the deviating behaviour of stainless steel with respect to Ysab. 
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Figure 4.10 The effect of temperature on the dispersive or Lifshitz-van der Waals component 

(A), the polar or Lewis acid-base component (B), the electron acceptor component (C) and the 

electron donor component (D) of the total surface energy. 

In all graphs (_) represents a stainless steel surface, (e ) a polycarbonate, 

and ( A ) a PTFE surface. 
Error bar is representative of the standard deviation. 

The work reported by Zhao et a t. (2004a) al 0 inve tigated the effect of temperature on the 

urface energy components. Re ults were imilar to those observed for y slOl, showing a decrease 

with increasing temperature. except for the acid- base or polar component, Ysab, whose behaviour 

depended on the emi-empirical approach used to calculate the data. For stainless steel and 

titanium, y ab increa ed with increa ing temperature, which was hypothe ized to be a result of 

the increa e of y" with temperature. However, the main increase of y" was observed at the 
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higher temperatures, which are not of concern in this research. In the lower temperature range, 

between 20 and 40°C, limited variation in surface energy and its components is observed. 

4.3.4 Surface energy of chocolate 

The total surface energy of solid chocolate systems and their components are calculated via the 

Lifshitz-van der Waals I Lewis acid-base approach developed by van Oss, Chaudhury and 

Good, using the experimental data obtained for the surface tension and contact angles of probe 

liquids described in sections 4.3.1 and 4.3.2.2, respectively. The physical characteristics of 

chocolate do not allow the conclusive interpretation of the results obtained, which therefore can 

only be regarded as estimations or guidelines. Within this research, these guidelines on the 

surface chemistry and intermolecular interaction forces of a chocolate bar will be used to 

increase understanding of the interactions taking place at the chocolate-mould interface. In 

contrast to the solid mould materials, the impact of temperature on the chocolate surface energy 

is not determined due to physical limitations, i.e. the chocolate surface will melt upon heating. 

However, three different sub-studies have been undertaken to understand the impact of 

crystallization, ingredients and solidification temperatures on the chocolate surface energy and 

its components, respectively. 

4.3.4.1 Effect of crystallization 

Using liquid or melted chocolate it is not possible to determine the effect of crystallization on 

the surface tension. However, by using solid chocolate bars that are tempered, non-tempered or 

bloomed, the impact of crystallization on the solid surface energy can be determined. In Figure 

4.11 the total surface free energy of chocolate bars with different crystallization profiles is 

plotted. The results obtained previously for the surface free energy of polycarbonate using the 

van Oss approach are included as a reference. Statistical analysis has confirmed that yslo( is not 

significantly different (p < 0.05) for the chocolate bars with varying crystallization 

characteristics. A significant difference (p>O.05) is observed, on the other hand, between the 

solid chocolate bars and the polycarbonate mould surface. 

The application of the Van Oss method allows the determination of the surface chemistry 

characteristics of the chocolate bars, as can be seen in Figure 4.12. In contrast to yslOl, significant 

differences can be observed for the surface energy components as a result of the different 

crystallization profiles. The general conclusion is that the chocolate surfaces have a primarily 

dispersive character. The Lewis acid-base or polar component has a large error and non-normal 

distribution for the bloomed and tempered chocolate surfaces. 
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Thi s is dri ven by the electron acceptor component for the bloomed surface and by the electron 

donor component for the tempered surface. For the other surfaces the electron donor and 

electron acceptor components are similar and very close to the characteri stics of polycarbonate. 
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Figure 4.11 Total surface energy of dark chocolate as affected by crystallization. 

Outliers are indicated by 0 or * t and not used in the calculation of the median 

and distance from the median. 

Bloomed chocolate can only be obtained after solidification and storage, and the experimental 

adhesion force can therefore not be determined as this requires melting and recrystallization of 

the chocolate system. Based on the results obtained for YsIO\ limited differences in adhesion are 

expected for the tempered and non-tempered chocolate systems. One of the main questions is to 

what extent the differences in surface energy components are a result of the presence of 

different cocoa butter polymorphs. As these are formed upon cooling and in part during storage, 

it is expected that their effect will be limited for the adhesion force determinations. Contact 

between the liquid chocolate and mould surface is created at a temperature where a small 

amount of crystals is present, and the crystals formed upon cooling are assumed not to impac t 

on the interactions at the chocolate-mould interface. 
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Figure 4.12 Surface energy components of dark chocolate as affected by crystallization, 

calculated according to the Lifshitz-van der Waals I acid-base method 

developed by van Oss, Chaudhury and Good. 

The dispersive component (A) represents the Lifshitz-van der Waals, , y slW, interactions, 

whereas the polar component (B) represents the Lewis acid-base, ,Ysab, interactions. The latter 

can be further subdivided into the electron acceptor (C), y/ , and the electron donor (D), Ys', 

components of the total surface free energy, y;OI. 

Outliers are indicated by 0 or *, and not used in the calculation of the median 

and distance from the median. 

4.3.4.2 Effec t of ingredients 

Compari son of the liquid surface tension of chocolate systems with varying total cocoa solids 

content , as was di cussed in section 4.3. 1.2, indicated significant differences between dark 

chocolate (52% cocoa solids) and milk chocolate (29% cocoa solids). In Figure 4.1 3 the total 

olid surface free energy of a set of commercial dark and milk chocolate products is presented. 

The re ults obtained for the commerci al dark chocolate systems are not significantly different 

(p<O.05), and are in good agreement with the results obtained for the tempered dark chocolate. 

Similarly. no ignificant difference (p<O.05) is ob erved for the milk chocolate systems. 

However, the dark chocolate ystems are significantly different (p>O.05) from the milk 
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chocolate systems, and show a value for yslOI that lies approximately 10 mN m·1 below that for 

milk chocolate systems, similar to the results obtained for the liquid chocolate surface tension . 

The surface e nergy components of the commercial dark and milk chocolate products are plotted 

in Figure 4.14. Again, all the chocolate systems have a primarily di spe rsive surface 

composition . Similar to the results obtained for y slO" the Lifshitz-van der Waals component is 

significantly lower for the dark chocolate systems compared to the milk chocolate systems. In 

contrast, within the milk chocolate systems a significant difference is present with the AERO 

system having a higher di spersive component. The Lewis acid- base component shows on 

average no significant differences between the chocolate systems, although a large error and 

again a non-normal di stribution can be observed. Main differentiating component is the electron 

acceptor component which is significantly different for certain systems, especially within the 

dark and milk categories . 
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Figure 4.13 Total surface energy of chocolate as affected by chocolate composition. 

After Eight (52% cocoa solids) and Heaven Dark (min. 43% cocoa solids) are both 

dark chocolate systems; Heaven Milk (min. 30% cocoa solids) and 

AERO (min. 25 % cocoa solids) are both milk chocolate systems. 

The main conclusion that can be drawn from the results di scussed here is that dark chocolate 

and milk chocolate systems are significantly different from a surface free energy point of view. 

Although the surface characteristics or surface chemistry may not be that different, as both 
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systems show primarily dispersive or Lifshitz-van der Waals inte ractions, 15101 is significantly 

different fo r these systems and thi s often drives adhesion . To what extent the physical 

characteri stics such as viscosity, hardness or melting point play an important role in the surface 

chemi stry is not known. It is assumed, however, as the contact angle and surface tension data 

are obtained under constant conditions, that the data calculated for the surface free energy are 

representati ve for the systems investigated. 
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Figure 4.14 Surface energy components of chocolate as affected by chocolate composition, 

calculated according to the Lifshitz-van der Waals / acid-base method 

developed by van Oss, Chaudhury and Good. 

The dispersive component (A) represents the Lifshitz-van der Waals, y slw, interactions, 

whereas the polar component (B) represents the Lewis acid-base, y/ b, interactions. The latter 

can be further subdivided into the electron acceptor (C), y/ , and the electron donor (D), Ys', 

components of the total surface free energy, y slOI. AE refers to After Eight, HD to Heaven Dark, 

HM to Heaven Milk, Ae to AERO and PC to polycarbonate. 
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4.3.4.3 Effect of cooling temperature 

Preliminary research (Hoare, 2007) has suggested that the cooling conditions and especia lly the 

cooling temperature impact the surface free energy of chocolate systems. In order to test thi s 

hypothesis a tempered dark chocolate system was cooled in three different ways: at ambient or 

room temperature (20 °C), in a refri gerator (4-7 °C), and in a freezer (-18 °C). The results 

obtai ned for y stO( are shown in Figure 4 .15, and indicate a clear deviation by the system cooled in 

the freezer from the results obtained previously for the tempered dark chocolate system, shown 

in Figure 4.11. Cooling at ambient or refrigerator temperatures does not signifi cantl y affect y stot, 

a lthough the error increases with the lower refri gerator cooling conditions. Thi s is assumed to 

be caused by the presence of a limited amount of water vapour at the chocolate surface after 

cooling at 4 0c. A significant difference can be observed between cooling at ambient 

temperature and at freezer temperatures. The lower y stot obtained at -18 °C is assumed to be a 

result of the formation of condense or water vapour and ice crysta ls on the chocolate surface. 
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Figure 4.15 Total surface energy of dark chocolate as affected by cooling temperature. 

Outliers are indicated by 0 , and not used in the calculation of the median 

and distance from the median. 

It is expected that the presence of water vapour and/or ice crystals will be visible by an increase 

in the polar or Lewis acid- base component of the surface energy, when compared to the 

tempered dark chocolate di scussed in section 4.3.4.1. Figure 4.16 shows the surface energy 

components of a dark chocolate system as a function of cooling temperature. In compari son to 

the previous result obtained for different chocolate systems in Figure 4.1 2, the most remarkable 

result is the re lati vely high Lewis acid- base or polar component, especially for the chocolate 
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system cooled in the freezer. The Lifshitz- van der Waals or di spersive component is again the 

most important with respect to the surface chemi stry. Similar to the results obtained for the 

chocolate systems with varying composition, the e lectron acceptor is the main differenti ating 

component with significant differences between the three cooling temperatures. 

Processing conditions, in particular cooling temperatures, impact the surface free energy and 

surface chemistry of chocolate systems. Based on these results it is concluded that it is essenti al 

to control the temperature upon commerci al chocolate manufacturing, to prevent the 

introduction of an important factor controlling surface characte ri sti cs and possibly adhesion. 
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Figure 4.16 Surface energy components of dark chocolate as affected by cooling temperature, 

calculated according to the Lifshitz-van der Waals I acid-base method 

developed by van Oss, Chaudhury and Good. 

The dispersive component (A) represents the Lifshitz-van der Waals, "(slw, interactions, 

whereas the polar component (B) represents the Lewis acid-base, "(sab, interactions. The latter 

can be further subdivided into the electron acceptor (C), "(/, and the electron donor (0), "(s·, 

components of the total surface free energy, 1s101
• 

Outliers are indicated by 0 or *, and not used in the calculation of the median 

and the distance from the median. 
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4.3.5 Wetting envelope 

A wetting enve lope i prepared by plotting the polar and dispersive surface energy components 

of a liquid for the particular case where the contact angle is 0° (cos () = I ), aga inst each other. 

These data can be calculated using the semi-empirical surface free energy approaches, such as 

Owen and Wendt, or van Oss, Chaudhury and Good, in reverse. In other words, the previously 

determined polar and dispersive components of the solid surface free energy are used to 

calcul ate the polar and dispe rsive components of the liquid for which cos () = I . In general, 

plott ing the polar component again t the di spersive component results in a closed contour which 

i called the wetting envelope (Janssen et aI. , 2006). Using the same mechanism, a contour can 

be developed fo r other situations, such as a contact angle of 20° or 80°. Within this research, the 

area enclosed by the contour or envelope represents the liquids that will wet or make a contact 

ang le of 0° on a particular solid surface. The wetting envelopes plotted in Figure 4. 17 are 

calculated u ing the Owens and Wendt approach and represent the four solid mould materi als 

in e tigated in thi re earch, i.e. polycarbonate, sta in less steel, PTFE, and quartz glass. The 

purple stars repre ent the tempered and non-tempered dark chocolate systems, whereas the 

purple circle repre ent the AERO milk chocolate system. 
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Figure 4.17 Wetting envelopes with 0° contour for the four solid mould materials 

based on the Owens and Wendt approach. 

In this graph, (- ) represents the stainless steel mould surface, (e ) the polycarbonate surface, 

(A ) the PTFE surface, and ( 'Y ) the quartz glass surface. 
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Polar and dispersive components are taken from the solid chocolate surface energy 

determinations discussed in section 4.3.4. All three liquid chocolate systems lie outside the 

PTFE envelope, but fall within the wetting envelopes of polycarbonate, stainless steel and 

quartz glass. This indicates that the respective chocolate systems will not wet the PTFE surface, 

but they will wet all other solid mould surfaces. 

A liquid that wets a solid surface is assumed to have a higher number of interfacial interactions, 

consequently resulting in a higher adhesion force. Based on the low wettability of the PTFE 

surface by the different chocolate systems it is expected that this surface will show the lowest 

adhesion. 

4.3.6 Adhesion of chocolate to mould surfaces 

Adhesion is quantified by two different parameters, the experimental surface adhesion and the 

work of adhesion, respectively. Experimental determination of the adhesion of chocolate 

systems to different mould surfaces was performed on the T A-XTplus Texture Analyser, using 

a fixture specifically developed for this work, as is described in section 3.3.2. The determination 

of the work of adhesion is based on the Young-Dupre adhesion model (equation [2-33], 

described in section 3.3.1.4), which uses the contact angle that an adhesive makes on a solid 

surface. Within this research both these parameters will be measured and related to the solid 

surface free energy of mould materials to increase understanding of the importance of surface 

chemistry in chocolate-mould adhesion. 

4.3.6. J Experimental suiface adhesion 

Surface adhesion of chocolate systems has been investigated for the different mould materials. 

The results presented in Figure 4.18 show the experimental surface adhesion force, expressed as 

the separation force per unit surface area (N m-2
), of both cocoa butter and dark chocolate in 

contact with different solid mould materials. A general conclusion that can be drawn from this 

graph is that the adhesion force for dark chocolate was consistently significantly higher than the 

force required to pull the same mould material off the solidified (non-tempered) cocoa butter 

system. For both systems the quartz glass surface stands out for its highest separation force. 

Focussing on dark chocolate, a significant difference (p>O.05) can be observed between 

polycarbonate and PTFE, but not between polycarbonate and stainless steel. The opposite is true 

for cocoa butter, where the adhesion force of stainless steel is significantly different from that of 

polycarbonate and PTFE, but no difference can be observed between the latter. The overall 

trend observed for both systems is that the adhesion force increases from PTFE through 

polycarbonate and stainless steel to quartz glass. 
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Surface roughness of the different mould materials, as di scussed in sections 3.3.6 and 5.3 .7 , 

shows limited diffe rences in surface roughness between PTFE and quartz glass, with the latter 

approaching ideality. Thi s trend does not re late well to the results obtained for the experimental 

surface adhesion force, where a significant difference is observed between these two surfaces. 

Quartz glass, with the lowest surface roughness, can be seen in Figure 4.1 8 to have the highest 

surface adhesion force. This indicates that the surface roughness of diffe rent mould materi als is 

not the determining factor with respect to surface adhesion. 
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Figure 4.18 Surface adhesion as affected by different solid mould materials. 

rn ) refers to a dark chocolate system, whereas ( ) refers to a cocoa butter system. 

Error bar is representative of the standard deviation, n = 10. 

Further investi gation of the re lationship between mould surface and surface adhesion points out 

the importance of the cohesive forces within the cocoa butter and dark chocolate systems. The 

a mount of res idue left-over at the probe surface was rather different amongst the various mould 

surfaces and between dark chocolate and cocoa butter, as can be seen in Figure 4.1 9A. Based on 

these results it is suggested that different failure mechani sms are invol ved in the sUlface 

adhesion process. According to Werner et al. (2007a and 2007b) and Adhikari et al. (2003), the 

fa ilure of surface bonding is via one of three different mechani sms: cohesive failure, cohesive­

adhesive failure, and adhe ive failure, as discussed in more detail in section 3.3.2.4. Relati ve 

magnitude of the sample-probe adhesion force and the cohesion strength of the sample 

determine which mechani sm dominates surface bonding failure. By examining the probe 

surfaces after separation, two main types of separation were identified in thi s part of the 

research: adhes ive failure and cohesive-adhesive failure. 
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The images shown in Figure 4.20 visualize the concepts of adhesive and cohesive-adhesive 

failure. with image A representing a clean polycarbonate surface after separation and image C 

representing a polycarbonate surface with chocolate residues adhering as an example of 

cohesive-adhesive failure. The transition from adhesive failure to cohesive failure for probes of 

high surface energy is clearly reflected by the amount of residue left on these probes. as is 

shown in Figure 4.19A. For the dark chocolate samples a clean separation was observed for the 

polycarbonate. PTFE and stainless steel surfaces. indicating an adhesive failure at the 

chocolate-mould interface. due to the cohesive strength of the chocolate sample exceeding the 

interfacial adhesive bonding strength between mould material and chocolate. However. the 

quartz glass surface showed cohesive-adhesive failure and in some cases cohesive failure. 

resulting in different amounts of chocolate residues left on the mould probe surface. This 

suggests that dark chocolate has a much stronger surface adhesion force with the quartz glass 

surface than the other mould materials. For the case of cocoa butter. it was found that only the 

PTFE surface gave a clean surface separation with minor cocoa butter residues. All other mould 

materials showed cohesive-adhesive failure with cocoa butter. This suggests a significant 

difference in cohesive strength between dark chocolate and cocoa butter. It is likely that the 

presence of sugar and cocoa particles in the chocolate greatly enhances the cohesiveness 

(internal strength) of the fat crystal network. Differences in crystallinity (polymorphism) 

between dark chocolate and cocoa butter are further assumed to contribute to the observed 

differences in cohesive strength. 

Although minor differences in hardness of the chocolate systems in contact with the different 

mould materials can be observed in Figure 4.19B. none of these differences are significant. In 

general. it can be observed that the hardness of cocoa butter is lower than that observed for dark 

chocolate. but this is only significant (p>O.05) on the quartz glass surface. The general trend is 

that contact with a stainless steel surface gives a chocolate sample with an increased hardness. 

whereas a quartz glass surface tends to decrease the hardness of the chocolate sample. A similar 

trend can be observed for cocoa butter. 

In order to evaluate the change in the surface of the mould probe after its contact with chocolate 

or cocoa butter. the surface contact angle of water and the glossiness of the probes have also 

been monitored. Figure 4.19C shows the change of surface glossiness. whilst Figure 4. 19D 

shows the change of water contact angle of the four mould probes after their contact with 

chocolate. Glossiness is a measure of the extent of light reflection by the surface. Its magnitude 

is affected by parameters like surface roughness and composition. The glossiness of nearly all 

mould surfaces decreased after contact with the chocolate sample. although this decrease was 

not significant (p<0.05) for the PTFE surface. Glossiness of the mould surfaces was not 

measured after contact with cocoa butter due to the visible presence of cocoa butter residues. A 

decrease in glossiness of the mould surface indicates a change of its surface layer. either an 

increased roughness or the adsorption of components from the sample which consequently 
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changes the composition of the surface layer. Stainless steel shows by far the highes t reduction 

in glossiness, which is assumed to be a result of the high initial va lue obtained for the clean 

surface. Compared to the other surfaces, the stainless steel surface is very shiny, and is therefore 

expected 10 reflect the light most effectively. Polycarbonate and PTFE surfaces are be lieved to 

absorb the light better, compared to the stainless steel and quartz glass surfaces. The quartz 

glass surface is expected to change the direction of the li ght , but not necessarily re flec t the li ght 

in the same angle as stainless steel. 
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Figure 4.19 The effect of different mould materials on the amount of residues after probe 

separation (A), the hardness of the solidified chocolate samples (8), the difference of surface 

glossiness (C) and the difference of contact angle (D) of the mould surfaces 

before and after chocolate contact. 

In (A) (_ ) represents the dark chocolate system, whereas (0) represents the cocoa butter 

system. In (8) (_ ) and (0) represent the hardness of the bulk at the chocolate-air and cocoa 

butter-air interface, ( e ) and (0) the bulk at the chocolate-mould and cocoa butter-mould 

interface, (A) and (/l ) the surface at the chocolate-air and cocoa butter-air interface, and 

( " ) and ('V ) the surface at the chocolate-mould and cocoa butter-mould interface, 
respectively. In (D) f2l ) and (B) represent the contact angle difference after contact with 

chocolate and with cocoa butter, respectively. 
Error bar is representative of the standard deviation, n = 10. 
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In contra t to the surface gloss iness, which was lower after chocolate contact, the contact angle 

of water on the mould surfaces showed a significant increase for most mou ld materi als, 

indicating an enhanced hydrophobicity of the probe mate rial. The increase in hydrophobic ity 

wa lowest for the PTFE surface, which a lso showed a reduced change in surface gloss iness. A 

contact angle of water on the quartz g las surface after contact with cocoa butter has not been 

measured due to the large number of cocoa butter re idues adhering to the mould surface. In 

gene ral, contact wi th cocoa butte r or chocolate has the ame effect on the mould urface. 

Figure 4.20 [mages of a polycarbonate mould surfaces before (A) and 

after contact with chocolate (B - D) (scale 1 :0.34). 

[mages Band D show a clean surface separation with the formation of an apparent 

thin film of contamination. [mage C refers to a cohesive-adhesive failure. 

Result from urface glo sine and contact angle measurements seem to suggest an important 

fact that, even though the e probe have a clean eparat ion with little surface re idue , the 

urface after contact appear to be rather different. This applies particularl y to the tainless steel, 

polycarbonate and PTFE surface. In co mbination with optical examination of these surfaces, as 

shown by the image in Figure 4.20B and 0 , it is proposed that a very thin layer of choco late 

(fat) de po it onto the probe surface during it contact with c hocolate, maki ng the urface more 

hydrophobic and Ie glo sy . Similar observati ons were made by Luengo et a l. ( 1997) when 

they conducted a number of wettability ex periment on fres hl y c leaved mica surfaces after 

contac t wi th chocolate . The surface area that had been in contac t with choco late was washed 
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clean with distilled water and dried in an oven. before the contact angle of water was measured 

at different locations both within the area of chocolate-mica contact and several radial distances 

away. Results obtained showed contact angles of> 60 0 in the chocolate-mica contact area and 

no spreading. based on which it was concluded that the whole mica surface became 

hydrophobic during the washing stage. The general conclusion that can be made is that contact 

with chocolate increases the hydrophobicity of mould surfaces. 

4.3.6.2 Swface hydrophilicity 

Once the contact angle of water on the clean mould surface and on the "contaminated" mould 

surface has been determined. the surface hydrophilicity of the various mould surfaces can be 

estimated using the method developed by Krisdhasima et at. (1992) and introduced in the 

investigation of adhesion of food systems by Michalski et at. (1999). In this method the quantity 

Wa~ater or the polar part of the work of adhesion for water. is regarded as an index of surface 

hydrophilicity. and is based upon the interaction between a solid surface and water: 

Wa~ateT = Ywater(cos 9 + 1) - 2 Y~~terY~w. [4-3] 

Figure 4.21 shows the surface hydrophilicity of the different mould materials before and after 

contact with a dark chocolate system. calculated using equation [4-3]. 
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Figure 4.21 Surface hydrophilicity as affected by different mould materials. 

~ ) represents the surface hydrophilicity of the clean mould surface, whereas ( • represents 

the surface hydrophilicity of the "contaminated" mould surface, after contact with chocolate. 
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The surface hydrophilicity values estimated for the clean mould materials used in this research 

compare well to tho e reported by Michalski et al. (1999). More importantly, Wa~ateT appears 

to differ distinctively between the mould materials, indicating its potential use as another 

discriminating factor with regards to the measured adhesion force. Quartz glass, one of the most 

hydrophilic urfaces, has the highe t value (71.42 mN m'I), whereas PTFE, a well-known 

hydrophobic urface, has even a negative surface hydrophilicity (-2.78 mN m'I). In order to 

calculate the surface hydrophilicity of the "contaminated" mould surface, after contact with 

chocolate, it is assumed that the dispersive or Lifshitz-van der Waals component of the solid 

mould surface does not change. It can be ob erved that the hydrophilicity of all surfaces 

decreases due to the contact with chocolate, again indicating that the surface chemistry of the 

mould surface is changed po sibly by the adsorption of a thin hydrophobic film on the solid 

mould surface. Compared to the initial value, only a limited change is observed for the PTFE 

surface. Intere tingly, the estimated values of Wa~ateT for PTFE and polycarbonate after 

contact with chocolate are not significantly different, suggesting that the maximum surface 

hydrophobicity is reached. 
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Figure 4.22 Surface adhesion as a function of surface hydrophilicity. 

(_) refers to a dark chocolate system, and (0 ) to pure cocoa butter. 

Error bar is representative of the standard deviation, n = 10. 
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The surface hydrophilicity can be regarded as a solid surface characteristic, and by plotting the 

experimentally determined surface adhesion force against the urface hydrophilicity, as hown 

in Figure 4.22, the different interactions at the chocolate-mould interface can be revealed. The 

results obtained show an exponential growth of the surface adhesion with increasing surface 

hydrophilicity for both dark chocolate (R2 = 0.763) and cocoa butter (R2 = 0.999). In other 

words, a hydrophobic mould urface is expected to give a lower surface adhesion force for both 

dark chocolate and cocoa butter. 

4.3.6.3 Work of adhesion 

The Young-Dupre adhesion model (equation [2-33]) uses the contact angle of the adhesive on a 

solid surface for the determination of the work of adhesion. In this re earch chocolate would 

represent the adhesive and the mould material the olid urface. As di cus ed in ection 4.3.2.3, 

it is not practicable to measure the contact angle of chocolate on different mould urfaces under 

ambient conditions, and cocoa butter wa used a a model replacement y tern to represent 

chocolate. The contact angles of cocoa butter on the respective mould material have been 

shown in Figure 4.4. Using these cocoa butter contact angles in the application of the Young­

Dupre equation the work of adhesion can be calculated. Figure 4.23 shows a graph plotting the 

experimental urface adhe ion force against the calculated work of adhe ion. 
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Figure 4.23 Surface adhesion as a function of the work of adhesion. 

Error bar is representative of the standard deviation, n = 10. 
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The results show an exponential growth relationship (R2 = 0.901) between the experimental 

surface adhesion force and the calculated work of adhesion, although a comment has to be made 

about the range observed for the thermodynamic work of adhesion, which varies from 52 to 62 

mN mol, approximately. Ranking of the four mould materials with respect to the work of 

adhesion places PTFE at the bottom with the lowest value, followed by polycarbonate, stainless 

steel and quartz glass, respectively. This is exactly the same ranking as obtained for the total 

surface free energy, as discussed in section 4.3.3.2. Of course, it should be noted that chocolate 

and cocoa butter are two different materials, which would be expected to have different values 

for the work of adhesion. Therefore, the results discussed here can only be treated as a useful 

approximation to the behaviour expected for chocolate. 

4.3.7 Comparison of the total surface energy and surface adhesion 

The primary principle of this part of the research was to apply the principles of thermodynamic 

adhesion and surface energy to the case of chocolate adhesion, with the aim of establishing 

relationships between the thermodynamic work of adhesion and the observed extent of adhesion 

of chocolate to mould materials. Plotting the thermodynamic work of adhesion, Wa, against the 

total surface free energy, yslOl, gives a linear relationship (R2 = 0.969), as can be observed in 

Figure 4.24. This implies that the total surface free energy and the thermodynamic work of 

adhesion are strongly correlated, and in principle could be used interchangeably. 
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Figure 4.25 plots the experimental surface adhesion force against the total surface free energy, 

from which immediately a non-linear correlation is evident. Exponential growth curves fitted to 

the data indicate the possible existence of a critical surface energy, below which chocolate has 

minimal surface adhesion with the mould substrate. For all three systems, cocoa butter, dark 

chocolate and milk chocolate, the apparent critical surface free energy of the mould substrate is 

- 30 rnN m· l
. A significant increase in surface energy beyond this value leads to a pronounced 

increase in surface adhesion. Mars Incorporated (1999) report a similar relation between mould 

surface energy and the ease of demoulding. They recommend a mould material with a surface 

energy between 5 and 25 mJ m-2
, which provides sufficient wetting of the mould shape by the 

respective chocolate sy tern in combination with good demoulding characteristic. In reality, 

however, such low surface free energy surfaces or materials are not commonly available. 
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Figure 4.25 Surface adhesion as a function of total surface energy. 

(_) refers to a dark chocolate system, (0 ) to a milk chocolate system 

and ($ ) to pure cocoa butter. 

Error bar is representative of the standard deviation, n = 10. 

60 

The existence of a minimum surface energy has previously been observed by Michalski et al. 

( 1999), who propo ed a critical surface tension (- 38 mN m-I) for the adherence of emulsion 

residues. Within the area of fouling, the Baier curve is an often used reference when discussing 

the relationship between surface free energy and relative bacterial adhesion. According to the 

Baier curve, an optimum exists for the surface free energy at which the bacterial adhesion is 

minimized . Within literature the optimum range for minimal bacterial adhesion is defined as 20 

- 30 rnN m-I (Zhao et aI., 2005; Liu et aI., 2006b). 
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Similar to the biofouling and Baier curve correlation, optimum values have been reported for 

food based y terns, uch a the optimum value for milk protein adhesion (30 - 35 mN m-I) 

(Zhao et aI., 2004a) , the minimum CaS04 deposit formation (26 - 30 mN m-I) (Zhao et aI., 

2005), the minimum adhe ive strength of tomato deposit (20 - 25 mN m-I) (Liu et aI., 2006b), 

or a model food oil (26.5 mN mol) (Saikhwan et aI., 2006) . Within the area of crystalline 

fouling, much re earch focu e on the relation between surface free energy and ease of removal 

or cleaning of surfaces. Boulange-Petermann et al. (2006) di cu sed the pre ence of a critical 

polarity, when defining the relationship between the polar component of the urface energy and 

oil removal. According to Rosmaninho et al. (2007) the olid urface chemistry impacts the 

fouling behaviour, but the exact mechanism depends on the proce sing tage. Earlier re earch 

by Rosmaninho et al. (2004) howed that calcium phosphate deposit formed faster on olid 

surfaces with a low electron donor, y;, component. 
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Figure 4.26 Surface adhesion of different chocolate systems as a function of the surface free 

energy components, according to the Lifshitz-van der Waals / Lewis acid-base approach. 

In all graphs, (_) refers to a dark chocolate system, (D) to a milk chocolate system 

and ($ ) to pure cocoa butter. 
Error bar is representative of the standard deviation. 
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In Figure 4.26 the surface adhesion force is plotted against the different surface free energy 

components of the solid mould materials used within this research. Comparison of the different 

solid surface free energy components indicates a linear relationship between the polar or Lewis 

acid-base component (B) and the experimental adhesion of both dark chocolate (R2 = 0.97) and 

cocoa butter (R1 = 0.97). For the dispersive or Lifshitz-van der Waals component (A) a similar 

(exponential growth) relationship can be observed as was previously obtained for the total 

surface free energy, except for dark chocolate where a sharp and sudden increase is present from 

37 to 38 mN m· l
. As for the other chocolate systems the results obtained are consistent with the 

trends observed, it is assumed that this particular graph represents the true relationship between 

the dispersive component and the surface adhesion force. A plot of the electron donor 

component (D) against the experimental surface adhesion, which can be used as an effective 

differentiating factor, also shows an obvious positive relationship. Fitting a trend line to the data 

indicates a similar functional dependence for the electron donor component as previously 

obtained for the total surface energy. A critical value of the electron donor component of - 15 

mN m-I can be inferred. Below this critical value, the value of chocolate-mould adhesion 

remains minimal. It is noteworthy, however, that the cocoa butter adhesion approaches zero at 

low Ys-, whereas that for the chocolate remains finite. 
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4.4 DISCUSSION 

This research has shown that chocolate adhesion to mould materials has a strong correlation 

with the surface energy of these respective mould substrates. According to Mars Incorporated 

(1999) a good chocolate demoulding is the result of the cohesive forces within the chocolate 

overcoming the adhesive forces between the chocolate and the mould, as is observed during 

standard moulding and demoulding practices in commercial chocolate manufacturing. The 

cohesive forces of chocolate are believed to increase during crystallization, and a low surface 

energy mould material is required to enhance the demoulding characteristics of such chocolate 

systems. Within the current research, the hardness and gloss of the chocolate samples, combined 

with the surface adhesion data, indicate that the crystallization of the cocoa butter (or the 

continuous fat phase) is affected by the surface energy of the mould substrates. According to 

Mullin (200 I), heterogeneous nucleation can be induced by the presence of foreign bodies or 

surfaces. It is expected therefore that the varying surface energies of the mould substrates used 

in this research are responsible for differences in degrees of nucleation, consequently resulting 

in different crystal structures. Crystal growth results in structures with a minimum surface area 

and consequently minimum surface energy, according to the traditional surface energy theories, 

and so the surface energy of the chocolate-mould interface is likely to playa role in determining 

the final crystal structure. 

Cho et al. (2003) and Rosmaninho and Melo (2006) independently investigated the effect of 

substrate surface energy on the crystallization behaviour of isotactic polypropylene and calcium 

phosphate, respectively. They both found that the microstructure of the final crystallized sample 

depended on the surface energy of the substrate. Rosmaninho and Melo (2006) found that solid 

substrates with a high electron donor component of the surface energy showed a higher number 

of nucleation sites, enabling the formation of a more compact structure. Cho et al. (2003) 

observed different crystalline morphologies, dependent on the substrate surface energy. It was 

believed that the formation of a purely transcrystalline region (transcrystallites) on high energy 

substrates was responsible for an increase in interfacial adhesion strength. On low energy 

substrates, however, both spherulites and a minority of transcrystallites were present, resulting 

in fracturing at the boundary of these two morphologies. A similar effect of substrate surface 

energy was also observed by Zhao et al. (2005) when investigating the microstructure of 

calcium phosphate deposits. Forster and Bohnet (1999; 2000) investigated the relation between 

interfacial free energy crystal/heat exchanger surface and fouling, and the effect of 

modifications of the molecular interactions. They indicate that the surface free energy of the 

heat transfer surface is crucial in relation to the deposition process, and that low energy surfaces 

can aid in reducing the nucleation rate and adhesive strength between crystals and heat transfer 

surface. 
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The observation made by Zhao et al. (2005) seem to have some parallel with the chocolate 

solidification on mould surfaces observed in this work. One may expect that different surfaces 

(or surfaces of different surface energy) will lead to different crystal structures, which 

consequently will affect the microstructure of the chocolate in the surface region. Based on the 

above results and discussion, it i clear that a material with a high surface energy, i.e. a high 

electron donor component, hould not be used as a mould material. Such a material would be 

expected to produce a more compact structure of chocolate with strong crystal-crystal 

interactions in the interface region, which will tend to make demoulding more difficult. Figure 

4.27 vi ualize thi hypothesis about the relation between surface energy and chocolate 

microstructure development during cooling / solidification. Starting with the liquid chocolate, 

the microstructure can be described as a dispersion of cocoa solids (particles) and sugar crystal 

in a continuous fat pha e, consisting of fat crystals and liquid fat (Walstra, 1996; Aguilera et aI., 

2004). After tempering, the liquid chocolate is deposited in the chocolate moulds and cooled to 

set or solidify the chocolate, before demoulding can take place. The result obtained in this 

research indicate that the surface free energy of the mould material impacts on the 

crystallization of the cocoa butter forming the continuous phase in a chocolate system. A low 

surface energy material such a PTFE promotes the formation of a 100 e and porou tructure a 

nucleation i limited. Rather than the formation of a large number of nucleation sites, growth of 

the primary nucleus will take place, forming large crystals with an open tructure and a 

relatively low adhesion force. High surface energy material such as quartz gla s, on the other 

hand, promote the formation of more packed and dense structures. Nucleation is favoured, 

resulting in a large number of nucleation sites and relatively small crystals. The increased 

crystal-cry tal and crystal-mould interactions result in both higher cohesive and adhesive 

forces. 

Cocoa particle 

Sugar crystal 

Liquid fat 

Low surface 
energy 

Low surface 
adhesion 

High surface 
energy 

High surface 
adhesion 

Figure 4.27 Relation between chocolate microstructure and 

solid surface free energy, evolvement upon cooling. 
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4.5 CONCLUSIONS 

Contact angle. wetting and thermodynamic surface energy data all are in good agreement. 

indicating that mould material choice is important in relation to chocolate adhesion. Surface 

energy (thermodynamics) is the major controlling factor for the adhesion between chocolate and 

mould material and the adhesion at the chocolate-mould interface can be minimized if an 

appropriate mould material is applied. 

The properties of the mould surface have been shown to have significant influences on how 

chocolate adheres and solidifies during the moulding process. The separation of solidified 

chocolate from the mould was found to be dominated by two different failure mechanisms. 

adhesion failure or cohesive failure, depending on the nature of the mould surface. PTFE, 

polycarbonate, and stainless steel showed clean surface separation of the chocolate, and a 

mechanism of adhesive failure; but quartz glass, a material of much higher surface energy, 

showed predominantly cohesive failure with substantial amounts of chocolate residue left on the 

probe surface. The measured separation forces showed a direct correlation with the surface 

energy of the mould and the work of adhesion. A high surface energy material is generally 

unfavourable for easy separation of the mould from the chocolate. A solid material with a 

surface energy below 30 mN m- 1
, and an electron donor component of - 15 mN m- 1

, is 

recommended as a suitable mould material for chocolate production. 
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CHAPTERS 

PROCESSING CONDITIONS AND THEIR EFFECT ON 

CHOCOLATE DEMOULDING. 

5.1 INTRODUCTION 

A limited number of publications have investigated the relationship between processing 

conditions and chocolate adhesion. Much of the knowledge concerning chocolate manufacturing 

is based on experience, and observations made during processing are often not published. The 

production process and methodology differ hugely between products and between 

manufacturers, as was already mentioned in CHAPTER 2. A basic overview has been outlined 

in Figure 2.10, and extensively discussed by Beckett (2008). With respect to the demoulding of 

chocolate, the basic process techniques and conditions have been discussed in section 2.1.4.2.3. 

One of the critical parameters controlling the demoulding behaviour of chocolate is the cocoa 

butter crystallization. The formation of a large number of polymorphs with lower melting points 

results in a chocolate with a lower viscosity (softer) at room temperature and less contraction 

during solidification, consequently causing difficulties demoulding (Tewkesbury, 2000). Low 

cooling temperatures, for example, may cause the cocoa butter to crystallise in a crystal form 

other than the stable Form V. At the same time, the use of cooling temperatures above the dew 

point is recommended to prevent moisture condensation (Beckett, 2008). The formation of 

(moisture) condense on the chocolate surface will induce sugar bloom, which is not necessarily 

related to the adhesion of chocolate to the mould surface, but does affect the quality of the 

chocolate. From that point of view, Beckett (2001) advised to keep the equilibrium relative 

humidity (ERH) at around 35 - 40% during manufacturing, to prevent detrimental effects of 

moisture on chocolate viscosity and the ease of processing. 

Chocolate deposits on a mould surface after de moulding are believed to be caused by an 

imbalance between the adhesion force (between the chocolate and the mould) and the cohesion 

force within the chocolate matrix. As discussed in CHAPTER 4 and by Keijbets et at. (2009), 

the surface energy of mould materials significantly impacts on chocolate-mould interactions. 

Based on these results, a recommendation was made to use mould materials with a surface 

energy less than 30 mN m· 1 to improve the ease of chocolate demoulding. Aim of this part of 

the research was to investigate the effect of processing conditions on the level of adhesion of 

chocolate to the polycarbonate mould surface during demoulding, in order to enhance the 

understanding of interactions taking place at the chocolate-mould interface. 
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S.2 MA TERIALS AND METHODS 

The equipment and methodology of chocolate-mould adhesion determinations have been 

discussed in CHAPTER 3. This section will describe specific analyses or processing conditions 

that have been investigated, e.g. mould and cooling temperature, contact time, relative humidity 

(RH), cleaning methods and mould surface roughness. 

5.2.1 Materials 

Polycarbonate was chosen as the solid mould substrate in this research because of its 

commercial application as a mould material in chocolate manufacturing. Prior to experimental 

adhesion force determinations the polycarbonate substrates were cleaned with boiling, distilled 

water (Millipore) and dried using compressed air. 

Dark chocolate (52% cocoa solids) was chosen as the standard system for the investigation of 

the relationship between processing conditions and chocolate demoulding. In order to determine 

the effect of different ingredients, the adhesion of the standard system is compared to the 

adhesion of samples of cocoa butter (100% cocoa solids), milk chocolate (29% cocoa solids) 

and dark chocolate (70% cocoa solids, Cote D'Or). 

5.2.2 Methods 

The experimental set-up outlined in Figure 3.17 was developed specifically to determine the 

relationship between process variables and chocolate-mould adhesion. Different cooling 

temperatures were obtained by adjusting both the temperature of the fan in the Peltier chamber 

(9) and the temperature of the water bath (6), used to control the air temperature, after contact 

had been created between the chocolate and the mould surface. Contact time refers to the time 

that the chocolate-mould interface was in place, i.e. from the moment of interface or contact 

creation, until the time of probe separation. A contact time of 10 minutes, flO, means that the 

experimental adhesion force was determined to minutes after the creation of the chocolate­

mould interface, to, i.e. the time of formation of contact between the liquid chocolate surface 

and the mould surface. In order to vary the mould surface temperature, the pre-conditioning or 

thermal equilibration step was omitted. The temperature of the polycarbonate mould samples 

was varied by either cooling the mould probe in a refrigerator (4°C) or freezer (-18°C) or 

heating in an oven. Relative humidity of the air used during the pre-conditioning stage was 

adjusted to the appropriate level by using different ratios of wet and dry air. Table 5.1 describes 

the specific process conditions used to assess the influence of various process variables in more 

detail. 
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5.3 RESULTS 

5.3.1 Ingredients 

Three chocolate systems with varying compositions were compared to cocoa butter with respect 

to their surface adhesion forces . The results presented in Figure 5.1 show significant differences 

in surface adhesion of the chocolate systems tested. With decreasing cocoa solids content the 

surface adhesion force increases, until a maximum is obtained at approximately 350 N m·2 or 

52% cocoa solids. Further decrease of the cocoa solids content to 29% does not increase the 

surface adhesion, but the comment has to be made that thi s sample contains 20% milk solids 

making a total solids content of approximately 49%. Comparison of the two dark chocolate 

systems and cocoa butter indicates a remarkable effect of cocoa solids content on the surface 

adhesion. Dark chocolate with 70% cocoa solids is known from experience to have a lower 

viscosity than a similar system with 52% cocoa solids. In thi s research the assumption is made 

that a system with a low viscosity will show superior wetting behaviour, consequently 

increasing the interfacial interactions and the adhesion. Furthermore, a highly viscous chocolate 

system may have a higher cohesive strength, which is expected to increase the surface adhesion 

force. This hypothesis, however, has not been tested. 

,......, 
'"i 
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200 
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o 

Figure 5.1 Surface adhesion as affected by total cocoa solids content. 

Error bar is representative of the standard deviation, n = 6. 

Further investigation of the relationship between cocoa solids content and surface adhesion 

shows that the reduction in total cocoa solids content results in a reduction of the amount of 

(chocolate) residues present on the mould probe surface after separation and an increase in 

hardness of the chocolate systems, as can be observed from Figure 5.2. The milk chocolate 

system, with 29% cocoa solids, deviates, again, from the trend observed for the dark chocolate 
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systems. In comparison to the dark chocolate system containing 52% cocoa solids, the milk 

chocolate sy te rn is ob erved to have both a much lower hardness and cohesive or internal 

chocolate trength, resulting in an increased amount of residues sticking to the mould surface 

after separation. This is believed to be due to the addition of milk fat , which is known to have a 

softening e ffec t on cocoa butter and/or chocolate as it is mainly liquid at ambient temperature 

(Liang and Hartel, 2004; Beckett, 2008) . Cohesive strength describes the interactions within the 

chocolate system, holding everything together. If the cohesive strength is low, this means that 

the re are limited interactions between the components of the system, resulting often in a soft 

and brittle y tern that i eas ily pulled apart. The reduction in total cocoa solids content, ma inly 

obtained through the inclusion of an increased level of sugar, results in an increase in cohesive 

strength of the sy tern. shown by both the reduction in res idues sticking to the mould surface 

and the increase in hardness. 
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Figure S.2 The effect of total cocoa solids content on the amount of residues after probe 

separation (A), and the hardness of the solidified chocolate samples (B). 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( '" ) the surface at the chocolate-air interface, and ( T ) the 
surface at the chocolate-mould interface, respectively. 

Error bar is presentative of the standard deviation. 

It was hown by Padley ( 1997) that the hardness and mechanica l strength of chocolate develop 

after mo t of the fa t ha been crystallized . In other glyceride systems, however, higher or lower 

degree of hardnes or firmne s are associated with higher or lower solid fat contents, 

re pecti ely. Specifically for chocolate y tems he proposed that solid sugar or cocoa particles 

and fat form random agglomerate during the initial crystallization stage, and that these are 

linked together by the sintering of fat crystals during the subsequent 2nd stage of the 

cry tallization proce . Difference in tota l solids content within the chocolate systems used in 

thi research are belie ed to be responsible for the formation of a variety of networks which are 

more open with lower olid content, and which will sub equently show a reduced hardness. 

- 170-



Chapter 5. Processing conditions 

Afoakwa et al. (2009) discuss the effect of particle size distribution and composition on the 

mechanical properties and microstructure of dark chocolate. A combined effect of fat content 

and particle size distribution was observed to be responsible for variations in hardness. A 

similar effect has been discussed by Narine and Marangoni (1999) who describe the dependence 

of hardness on solid fat content. particle size distribution and particle diameter. although this 

last was an inverse relationship. The solid fat content of milk chocolate is lower than that of 

dark chocolate (Liang and Hartel. 2004). and is responsible for the lower hardness of milk 

chocolate systems. The particle size distribution in part determines the packing ability and inter­

particle interactions of the solid particles present within (dark) chocolate systems. This effect is 

reduced at high fat contents. though. as the fat coats the particle surfaces resulting in a reduction 

in the inter-particle interactions and the creation of a softer system. In this research it is 

proposed that the high fat content of the cocoa butter system is responsible for a reduction in the 

inter-particle interactions. As a consequence of this the crystalline network density is reduced. 

and an open structure is created. The void spaces in the open structure are assumed to fill with 

liquid fat. softening the solidified system. Compared to the cocoa butter system the dark 

chocolate system has lower total cocoa solids content. However. the total solids content of the 

dark chocolate system is not necessarily lower. Inclusion of sugar particles in the dark chocolate 

system increases the total solids content. and leads to the formation of a denser crystalline 

network with increased inter-particle interactions. It is hypothesized based on the results 

obtained in this part of the research that rearrangement of the dispersed particulate affects the 

mechanical properties and cohesive strength of solidified chocolate systems. 

5.3.1.1 Sutface tension 

The surface tension of the liquid chocolate systems is presented in Figure 5.3. Although there 

are differences between the systems. it is not possible to observe a clear trend in the relation 

between cocoa solids content and surface tension. A slight increase in surface tension is 

obtained for the milk chocolate system compared to the dark chocolate system containing 52% 

cocoa solids. 

The Gibbs' equation [5-1] describes the relationship between the surface tension, concentration 

and adsorption of a solute (in a dilute solution) (Walstra. 2003). It predicts that the solute 

gradient at the surface layer compared to the interior is negative, i.e. an increase in solute 

concentration is expected to increase the surface tension. 

dey) = -RTfd(ln C) , [5-1] 

where y refers to the surface tension, r to the amount of solute adsorbed, C to the concentration 

of the solute in the (diluted) solution. R is the gas constant and T is the absolute temperature. 

Even though the chocolate systems used in this research are not dilute or pure solutions, the 

Gibbs' equation can be applied to give an indicative measure. 
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As the cocoa solids are non-surface acti ve substances which do not have any affinity for the 

surface, it is expected, as a result of the Gibbs' equation that the surface tension will increase 

with "solute" concentration. This would explain the results obtained for the 52% and 70% cocoa 

solids systems, but not for the 100% cocoa solids system. However, the presence of other 

components such as sugar may be responsible for these differences. The di fference between the 

two dark chocolate systems cannot be fully explained by their compositi on, but is also thought 

to be partly due to experimental errors, especially in re lation to the viscos ity of the chocolate 

systems. Loss of heat during the measurements in combination with the system viscos ity are 

known to negati vely affect the re liability of surface tension measurements using the Wilhelmy 

plate, and in combinati on with the non-ideality of the chocolate sys tem thi s increases the 

experime ntal error related to liquid chocolate surface tension measurements. 
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Figure 5.3 Surface tension as affected by the total cocoa solids content. 

Error bar is representative of the standard deviation, n = 12. 

By plotting the surface tension against the surface adhesion of the chocolate systems, as shown 

in Figure 5.4, it is c lear that there is no correlation between the surface tension of chocolate 

syste ms and their surface adhesion. From the limited or non significant differences in surface 

tension or surface forces between chocolate systems, it is concluded that these are not the main 

determining fac tor for surface adhesion. 
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Figure 5.4 Surface adhesion as a function of surface tension for a set 

of chocolate samples with varying total cocoa solids content. 

5.3.2 Contact time 

On average, it takes 10-20 minutes for a chocolate sample to solidify in commercial chocolate 

manufacturing, if a cooler with a constant air flow and a temperature of 10-15 °C is used. The 

exact time for the chocolate to set will depend on the quantity of (seed) crystals present in the 

fat phase, the type of chocolate and the amount (Beckett, 2008). The results obtained in this 

research for the effect of contact time on the surface adhesion, as shown in Figure 5.5, indicate 

the dependence of surface adhesion on the contact time. At to, the moment of chocolate-mould 

interface creation, the surface adhesion is minimal. However, as can be seen from the schematic 

representation in Figure 5.5, the amount of residues on the mould surface at this stage was very 

high (see Figure 5.6A). Due to the liquid character of the chocolate at to, chocolate is in close 

contact with the probe (good wetting) and a bridge is formed during separation. With increased 

time the liquid character of the chocolate declines, as crystallization and solidification processes 

continue, resulting in a clean separation, i.e. residue weight becomes neglectable, after 

approximately 60 minutes (see Figure 5.6A). The adhesion force, meanwhile, increases linearly 

with time until a contact time of 100 minutes, after which the force stays constant 

(see Figure 5.5). 
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Figure 5.5 Surface adhesion of dark chocolate as a function of contact time. 

Error bar is representative of the standard deviation, n = 3. 

Further inve tigation of the relationship between contact time and surface adhesion shows no 

effect of contact time on the urface glo of both the chocolate and the mould urface and the 

urface chemi try of the mould material, as determined by the change in contact angle before 

and after chocolate contact, as can be seen in Figure 5.6C and D. With respect to the amount of 

(chocolate) re idue adhering to the mould probe urface after eparation, see Figure S.6A, an 

initial increa e in re idue depo ited on the mould urface i clearly visible. After approximately 

20 minute a harp decline in re idue weight i ob erved, which coincides with an increa e in 

chocolate hardne . The cry tallization taking place during cooling is ba ically a tran formation 

of liquid fat into olid fat cry tal . Depending on the stage of cry tallization, there are different 

quantitie of olid and liquid fat pre ent, which are re ponsible for difference in hardnes a 

ob erved during this part of the re earch. A low hardnes or oft chocolate ystem 

imultaneou ly gi e a large amount of re idue adhering to the mould urface and a low 

urface adhe ion force. Thi s indicate that the rate of setting or solidification determines the 

cohe ive trength of the chocolate y tern, which in tum determines the re i tance again t 

urface eparation. A low cohe ive strength how a low resi tance against eparation, but with 

increa ing cohe ive trength the re i tance against eparation al 0 increa e . 
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Figure 5.6 The effect of contact time on the amount of residues after probe separation (A), the 

hardness of the soUdified chocolate samples (B), the difference of surface glossiness (C) and the 

difference of contact angle (0) of the polycarbonate mould surface 

before and after chocolate contact. 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( A ) the surface at the chocolate-air interface, and ( ~ ) the 

surface at the chocolate-mould interface, respectively. In (C) (+ ) represents the surface 

glo siness of the mould surface, ( ~ ) the chocolate-mould interface, 

and ( ~ ) the chocolate-air interface. 

Error bar is representative of the standard deviation. 

Above re ults al 0 ugge t that, with the applied cooling conditions, a contact time of 60 

minute i required to form a relatively strong cry tal network 0 that the chocolate will have a 

hi gh enough cohe ive strength to withstand the eparation force of demoulding. It can be 

ob erved that a con tant urface adhe ion force i observed only after a contact time ~ 100 

minute , even though the recommendation is 60 minutes. This indicates that the cry tallization 

and olidification proce e have not been completed after 60 minute of cooling. but the 

cohe i e trength i larger than the adhesive strength, con equently re ulting in a clean 

eparation. It can be concluded that cry tallization and olidification are important factor in 

re lation to the adhe ion between chocolate and mould urface and the con equent eparation 

force on demoulding. 
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As discussed by Nelson (1999), cooling time is affected not only by the level of tempering and 

the type and thickness of the chocolate coating in the case of enrobing, but several other 

parameters are also known to influence the cooling time. However, if a chocolate sample is 

properly tempered, the cooling time will depend purely on the type of chocolate, e.g. milk, plain 

or dark chocolate. Referring to the results obtained in section 5.3.1, the differences observed in 

especially surface adhesion and hardness between dark chocolate and milk chocolate may be a 

result of the identical contact time. The presence of milk fat in the milk chocolate system 

inhibits cocoa butter crystallization, and as a result the system requires lower temperatures to 

promote nucleation (Liang and Hartel, 2004). By using the same contact time (60 min.) for all 

samples, different crystal networks will have been obtained due to variations in nucleation and 

crystallization kinetics, for example resulting in a milk chocolate system with a lower cohesive 

strength and hardness. 

Cooling and tempering are identified as the two main processing steps determining the 

crystallization kinetics, e.g. crystallization rate, crystal morphology and aggregation behaviour 

of cocoa butter (Sonwai & Rousseau, 2(08). However, these processes are not temperature 

and/or time limited and will therefore continue after demoulding. Post crystallization processes 

occurring upon storage vary in timescale from minutes to months. The two main post 

crystallization mechanisms are sintering, which is the formation of a crystal network due to the 

formation of solid bridges between crystals, and Ostwald ripening, as a result of polymorphic 

transformations towards a higher stability and changes in size distribution (Himawan et aI., 

2(06). Examples of polymorphic transformations are discussed in section 2.1.3.2.1 and 

2.1.3.3.1, with the transformation of Form V crystals into Form VI crystals upon storage (fat 

bloom), indicating that crystallization is an ongoing process (Beckett, 2008). The dispersed 

particulate in chocolate, e.g. milk and cocoa solids, also affects the fat crystal growth of cocoa 

butter during storage. Rousseau and Sonwai (2008) observed the formation of localized micron­

scale amorphous zones within a milk chocolate system directly after demoulding, which was not 

observed for cocoa butter systems. It is believed that these zones are a result of the contraction 

force pushing liquid-state triacylglycerols to the surface via surface imperfections. Upon 

storage, these amorphous zones evolve further into disordered crystal agglomerates. Lonchampt 

and Hartel (2006) determined the surface composition of chocolate samples that were either 

under-, over or well-tempered. They suggest that growth of cocoa butter crystals at the surface 

of over-tempered chocolate is responsible for its dull surface and essentially happens within 

minutes to hours after solidification. Tscheuschner and Markov (1989) observed Significant 

texture changes of chocolate within the first six weeks of storage, which they described as after­

crystallization. The main question that remains is at which time during the chocolate 

manufacturing process this after-crystallization starts, e.g. during moulding, cooling, 

demoulding or upon storage. 
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Within thi part of the re earch it is propo ed, based on the observations made, that 

crystallization during the early tages of the cooling proce s results in the formation of a limited 

number of crystal , re ulting in a low adhesion force and soft, liquid-like, product. Increasing 

the contact time during cooling will enable further crystallization, and the formation of an 

enhanced fat cry tal network. The packing arrangement of the dispersed phase in chocolate 

systems influence the mechanical propertie of the solidified chocolate product (Liang and 

Hartel, 2004). Also, the Form IV polymorph cry tallize in a double chain, whereas the Form V 

polymorph crystallize in a triple-chain, enabling closer packing and a den er and harder end 

product (Afoakwa et a\., 2007). The packing arrangement of the crystal network will depend on 

the cooling temperature, temper of the chocolate and the pre ence of Form V eeding crystal. 

These factors, in combination with the amount of liquid cocoa butter present, will determine the 

poro ity of the final chocolate product. The evolvement of the chocolate micro tructure with 

contact time i vi ualized in Figure 5.7. A reduction in the amount of liquid fat pre ent within 

the chocolate ystem a are ult of crystallization i re ponsible for the increase in hardnes and 

surface adhe ion force ob erved. Once crystallization is complete reorganization of the crystal 

network will take place, however this is beyond the scope of thi research. 

Cocoa particle 

Sugar crystal adhesion force 

Figure 5.7 Evolvement of microstructure with contact time. 

5.3.3 Mould surface temperature 

The manufacturing of chocolate tablets require the liquid, tempered chocolate (- 28-32 0c) to 

be deposited into pre-conditioned moulds, which are subsequently pa sed over a vibrator, to 

pread the chocolate evenly throughout the mould without air bubble incorporation, as di cus ed 

in ection 2.1.4.2.1. In Figure 5.8 the urface adhesion of dark chocolate is plotted against the 

mould urface temperature, to inve tigate the effect of different mould temperatures at the time 

of moulding on the final demoulding properties as mea ured by the surface adhe ion force. 

Significant difference are clearly ob ervable. The surface adhesion force decreases almost 

linearly with the increa e of mould surface temperature, except for a temperature of -20 °C, 
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where the adhesion force drops to a level significantly lower than that obtained for any of the 

other temperatures. This reduction in surface adhesion force at -20 DC is assumed to be caused 

by the formation of a hydrophilic layer at the interface between the mould and chocolate 

surface. With low temperatures, there is an increased risk of moisture vapour condensation 

and/or ice crystal formation on the mould surface during the pre-conditioning stage, depending 

on the pre-conditioning temperature. The hydrophilic layer thus formed reduces the interactions 

between chocolate and mould surface, consequently greatly reducing the experimental surface 

adhesion force. Crystallization and solidification processes taking place at the interface are 

expected to be the main reason for the observed decrease in surface adhesion with increasing 

mould temperature, especially the formation of unstable polymorphs at low mould surface 

temperatures and the melting out of seed crystals at relatively high mould temperatures. These 

mechanisms are discussed in more detail in section 2.1.4.2.1 
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Figure 5.8 Surface adhesion of dark chocolate as a function of mould surface temperature. 

Error bar is representative of the standard deviation, n = 4. 

Further investigation of the relationship between mould surface temperature and surface 

adhesion shows that at nearly all surface temperatures some degree of cohesive-adhesive failure 

is obtained, as can be observed by the amount of chocolate residue present on the mould surface 

after demoulding, shown in Figure 5.9A. If the cohesive strength of the chocolate sample is 

slightly lower than the interfacial adhesive bond strength between mould material and 

chocolate, a break within the chocolate sample is observed upon separation, resulting in 

chocolate residues adhering to the mould surface. This behaviour can be expected. due to the 

formation of different polymorphic forms at the chocolate-mould interface as a result of the 

variation in mould surface temperature. A mould temperature of 50°C results in the melting out 

of seed crystals present at the surface. consequently reducing the crystallization and 
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olidification of the urface layer of the chocolate sample. The amount of chocolate res idue 

adhering to the mould urface at thi temperature was large, and is thought to be cau ed by the 

fact that there wa no exten ive cry tal network pre ent to give the surface layer of the chocolate 

the required cohe ive trength and hardne s. A imilar trend a that ob erved for the urface 

adhesion wa obtained for the hardness of dark chocolate, as is shown in Figure 5.98. Thi 

indicates that olidification might not be complete when mould surface temperature of ~ 30 °C 

are u ed. A ignificant reduction in hardne and cohe ive strength of the chocolate ample, 

together with an increa e in cohe ive-adhe ive failure and the amount of chocolate re idue 

present on the mould urface, cau e a reduction in the urface adhe ion force . 
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Figure 5.9 The effect of mould surface temperature on the amount of residues after probe 

separation (A), the hardness of the solidified chocolate samples (B), the difference of surface 

glossiness (C) and the difference of contact angle (D) of the polycarbonate mould surface 

before and after chocolate contact. 

In (B) (_) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( .A ) the surface at the chocolate-air interface, and ( . ) the 

surface at the chocolate-mould interface, respectively. In (C) (+) represents the surface 

glossiness of the mould surface, ( ~ ) the chocolate-mould interface, 

and (~ ) the chocolate-air interface. 
Error bar is representative of the standard deviation. 
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Taking a closer look at the mould surface after the surface adhesion measurements reveals 

significant changes in the contact angle of water, whereas the gloss of the different mould 

surfaces is fairly constant. as can be observed from Figure 5.9C and D. respectively. At 

intermediate mould temperatures. e.g. 10. 20 and 30°C. an increase in contact angle can be 

ascribed to the deposition of a thin film of fat on the mould surface. leading to an increased 

surface hydrophobicity. A similar effect was described in section 4.3.6.1 (Figure 4.20). 

Wettability experiments by Luengo et al. (1997) on mica surfaces used for thin film tribology of 

chocolate also confirmed the presence of a hydrophobic monolayer on the solid (mould) surface 

after contact with chocolate. At increased surface temperatures. e.g. 50°C. the amount of 

chocolate residues present at the mould surface was so high that contact angle measurements 

became less relevant to mould surface. but more to chocolate. The low contact angles at 0 and -

20 °C are hypothesized to indicate the existence of a thin film (monolayer) of water molecules 

at the interface. due to condensation and/or the formation of ice crystals. This monolayer 

prevents fat from migrating to the mould surface. 

The use of low temperatures to enhance demoulding is not unknown in commercial chocolate 

manufacturing. Beckett (1999c) describes the frozen cone / plunger method to investigate 

adhesion and crystal formation. A frozen plunger (temperature -5 to -21°C) is inserted into a 

liquid chocolate sample for a short time (2-5 seconds) to solidify a thin shell of chocolate. Ice 

crystals present at the plunger surface in a thin film improve the release of the plunger from the 

chocolate mass. Under such circumstances the fat is expected to set in the unstable crystalline 

form. due to the shock cooling. Whether this observation is true or not requires further 

investigation. 

In general. the results obtained in our investigation have confirmed a strong correlation between 

mould temperature and crystallization behaviour. A mould temperature of 50°C causes melting 

of seed crystals. limiting Form V crystallization whereas a temperature of 0 DC or lower leads to 

the formation of more unstable polymorphic forms rather than Form V. One may conclude that 

the mould temperature affects surface crystallization of chocolate deposits, which in turn 

determines the ease of demoulding. as measured by the force required to pull a mould probe off 

the solidified chocolate. 

5.3.4 Cooling temperature 

The main aim of the cooling step of the chocolate manufacturing process. as discussed in detail 

in section 2.1.4.2.2. is the removal of specific and latent heat from the liquid chocolate sample. 

This will enable the crystallization and consequent solidification of the cocoa butter. If the 

cocoa butter is crystallized in the correct polymorphic form, i.e. Form V. the subsequent 

contraction aids an easy demoulding. Although it is known that the time required for cooling 

and solidification depends on the rate of heat transfer from the chocolate product to the air, 
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which in tum depends on the temperature and flow rate of the cooling air (Beckett, 2008), the 

cooling time and air flow rate have been kept constant in this part of the research. 

The relationship between cooling temperature and surface adhesion is shown in Figure 5.10. A 

nearly linear inverse correlation is visible. Until a cooling temperature of 15°C the surface 

adhesion shows a linear decrease with increasing cooling temperature. A further increase in 

cooling temperature results in a sharp drop in surface adhesion, as is observed for a cooling 

temperature of 20 °C (ambient temperature). An important observation is that at almost all 

cooling temperatures a clean surface separation was observed, as can be seen in Figure 5.11 A. 

This indicates that the cohesive strength of the dark chocolate sample exceeded the surface 

adhesion force, resulting in a clean break and no fracturing at the chocolate-mould interface. 
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Figure 5.10 Surface adhesion of dark chocolate as a function of cooling temperature. 

Error bar is representative of the standard deviation, n = 4. 

Further investigation of the relationship between cooling temperature and surface adhesion 

shows a similar nearly linear inverse correlation between the chocolate hardness and surface 

adhesion force, as can be observed from Figure 5.11 B. The temperature difference between the 

melted, tempered chocolate (30°C) and the cooling air, at the start of the cooling process, is 

expected to be responsible for the differences in surface adhesion and hardness obtained in this 

part of the research. At low cooling temperatures, e.g. 0 °C, the temperature difference between 

the liquid chocolate and the cooling air is relatively large. Consequently, the heat transfer from 

the chocolate surface to the cold air is much higher compared to a cooling temperature of 20°C. 

Although the air flow rate is constant, the heat removal will be higher at low air temperatures 

due to the increased temperature difference between the chocolate and cooling air. It is 

hypothesized that this increased heat transfer is responsible for the formation of a significant 
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amount of small fat cry tals with a den e packing, wherea relati vely high cooling temperatures 

promote the formation of ignificant ly larger cry tal becau e of the faster growth of cry tals in 

compari on to the rate of cry tal nucleation. 

"""-
II) 
::l 
"0 
·Vi 
II) .... .... 
..c 
0.0 . ~ 
~ 

1.0 A 60 
,........, 
~ 50 • E 0.8 T 

• , 
0.0 • ,........, 1 

.::.t. Z 40 . '--' 
II) 0.6 ........ 

en t 
t.) 

~ 
en 30 II) • .... e:: • r ::l 0.4 "0 • en .... 20 • 

:::2 
~ 

::c T 

::l E 0.2 10 

0.0 0 
0 5 10 15 20 0 5 10 15 

Cooling temp rature [0C] Cooling temperature [0C] 

10.0 50 
C 

0' 40 • 
7.5 

........ 
II) 

T ,........, 
I ~ 30 • '--' • 

en ~ 

'" 5.0 .... 
..2 t.) 

0 'IS 20 .... 
e:: 
0 

2.5 U 
LO <l 

0.0 0 
0 5 10 15 20 0 5 10 15 

Cooling temperature [0C] Cooling temperature [0C] 

Figure 5.11 The effect of cooling temperature on the amount of residues after 

probe separation (A), the hardness of the solidified chocolate samples (B), 
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the difference of surface glossiness (C) and the difference of contact angle (D) of the 

polycarbonate mould surface before and after chocolate contact. 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (. ) the bulk at 

the chocolate-mould interface, ( A ) the surface at the chocolate-air interface, and ( ~ ) the 

surface at the chocolate-mould interface, respectively. In (C) (+ ) represents the surface 

glo iness of the mould surface, ( ~ ) the chocolate-mould interface, 

and ( ~ ) the chocolate-air interface. 
Error bar is representative of the standard deviation. 

The effect of heat tran fer on the micro tructure of dark chocolate i vi ualized in Figure 5.1 2. 

A den e and compact fat cry tal network i expected to have a high cohesive strength , due to the 

large number of inter-particle interaction , and con equently a higher surface adhe ion. It i 

furthermore ob er ed that the den e and more compact packing arrangement of the mall 

cry tal at low ai r te mperature e oke an increase in hardne ,which can be obse rved by the 

almo t four tim higher penetration force obtained for the chocolate ample olidified at < SoC 

compared to that formed at 20°C. Fat cry tal Ize I known to influence the hardne of the 
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cocoa butter y tern, although thi is trongly correlated to the solid fat content of the sy tern. 

As uming that the olid fat content i the arne for two product , the product with the smaller fat 

cry tal is ofter, more plastic, compared to the product with the larger fat crystal , which i 

harder (deMan, 1999). Thi trend contradicts the hypothe i propo ed , which may be a result of 

the correlation with olid fat content. The hypothe i proposed as urnes different cry tal izes 

and different total olid fat content for the two ystem, whereas deMan compares two product 

with the same olid fat content. 

Fast heat transfer 

Dense and compact 
crystal network 

Slow heat transfer 

Large crystals 

Figure 5.12 Schematic representation of the effect of cooling temperature 

on the chocolate microstructure. 

The cry taJlization behaviour of fat i a function of triacylglycerol polymorphi m, which in 

tum i influenced among t others by temperature (Sato, 200 I). E pecially temperature 

variation were ob er ed to determine whether polymorphic tran formation occur through 

melt-mediation or in a olid tate. According to Himawan et al. (2006) both kinetic and 

thermodynamic factor determine which polymorph will form from the melt. With re pect to 

cooling temperature and rate, two important ob ervat ions are made: I) the formation of (1- or 

P' polymorph, re pectively, depend on the cooling rate applied, a is hown for the pecific 

ca e of the binary PPP/SSS y tern; 2) rapid cry tallization enhance the formation of poorly 

packed cry tal , which may per i t for year in the ab ence of a liquid phase. The e 

ob ervation are in good agreement with the hypothesis proposed in thi re earch, where the 

cooling temperature determine the type of cry tal and network formed. 

In order for cry tal growth to take place, it i e ential that molecule diffu e through the 

chocolate matrix to the urface of the nuclei. A low cooling temperature, or high cooling rate, 

will decrea e the molecular mobility a a re ult of the olidification front that advances through 

the chocolate. Thi will re ult in a olid product with a cry tal network and individual molecule 

that are not aligned (Pin chower, 2003). Too high a cooling temperature, on the other hand, will 
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increase the number of lower melting point polymorphs. which are crystallizing at the expense 

of Form V polymorphs (Tewkesbury et al.. 2000). 

Even though the exact mechanism responsible for the decrease in surface adhesion with 

increasing cooling temperature is not fully understood. the importance of kinetics on fat 

crystallization and subsequent solidification is clear. In a model to predict the temperature 

distribution within a cooling chocolate. developed by Tewskesbury et al. (2000). it was 

demonstrated that different polymorphic forms formed during the chocolate solidification and 

crystallization process were a result of different cooling paths. The decrease in chocolate 

hardness with increasing cooling temperature indicates that solidification may not be complete 

at these high cooling temperatures. Overall. the use of appropriate cooling times and 

temperatures is essential to ensure that the correct crystallization and solidification processes are 

pursued. subsequently reducing the surface adhesion between chocolate and mould. 

5.3.5 Relative humidity 

The detrimental effect of moisture on chocolate viscosity during chocolate manufacturing has 

been discussed in section 2.104. With that in mind, it has been advised that an ideal 

manufacturing environment should have 35-40 %RH, to prevent the chocolate from taking up 

moisture (Beckett, 200 I). In this research, the relative humidity (RH) of the air, which is in 

contact with the mould surface during the pre-conditioning or thermal equilibrium stage (30 

min. at 30°C), was varied to determine the effect on the surface adhesion force. The results 

presented in Figure 5.13 show significant differences in surface adhesion with varying RH. 

Initially, the surface adhesion increases with increasing RH. At approximately 25 %RH the 

adhesion force stabilizes forming a plateau till ca. 50 %RH. A sharp decrease in surface 

adhesion is observed at RH > 50%. Similar observations have been made in industry, where the 

adhesion of chocolate to roll-refiners increased significantly if the air in the factory was 20-25 

%RH. Based on these observations the assumption is made that changes in surface adhesion are 

related to the change of mould surface hydrophilicity due to the adsorption of water vapour on 

the polycarbonate mould surface. Figure 5.14 shows schematically the effect of water vapour 

condensation on the mould surface. Water vapour from the air surrounding the mould surface 

during the thermal equilibrium stage adsorbs onto the polycarbonate surface, creating a 

hydrophilic surface layer. Depending on the air conditions, it is expected that the water vapour 

present at the mould surface increases with increasing relative humidity, i.e. initially individual 

water molecules will be present, but their number will increase with RH subsequently forming a 

monolayer (thin film) and possibly even a (macroscopic) wetting film at high RH. The presence 

of water vapour at the mould surface reduces the interactions between chocolate and mould 

surface. accordingly reducing the adhesion. 
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Figure 5.13 Surface adhesion of dark chocolate as a function 

of environmental relative humidity. 

Error bar is representative of the standard deviation, n = 5. 

Further investigation of the relationship between relati ve humidity and urface adhesion, as 

presented in Figure 5.15, shows that the initial increase in urface adhesion observed at low RH 

coincide with an increase in cohesive- adhesive failure, i.e. the amount of chocolate adhering to 

the mould urface. At thi s low RH there is limited water vapour present on the mould surface, 

and direct contact between chocolate and mould surface is feasible. A hi gh RH, on the other 

hand, re ulted in a reduction of the surface adhesion, but caused a detrimental effect on the 

chocolate urface glo s, see Figure 5. l5C. 

A B 

1 
t 

Figure 5.14 Schematic representation of the effect of vapour adsorption at the mould surface. 

Image A shows the standard or normal chocolate-mould interface, whereas image B shows the 

presence of water vapour at the chocolate-mould interface and the subsequent reduction in 

chocolate-mould interactions and surface adhesion force. 
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Rather than individual water vapour molecule. a thin film of water molecule i thought to 

have formed on the mould urface. which dissolves the sugar molecules present at the chocolate 

surface that is in direct contact with the thin film, an effect known a ugar bloom. Limited 

interaction between chocolate and mould urface are responsible for the reduction in urface 

adhesion. 
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Figure 5.15 The effect of environmental relative humidity on the amount of residues after 

probe separation (A), the hardness of the solidified chocolate samples (B), the difference of 

surface glossiness (C) and the difference of contact angle (D) of the polycarbonate mould 

surface before and after chocolate contact. 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( . ) the surface at the chocolate-air interface, and ( .. ) the 

surface at the chocolate-mould interface, respectively. In (C) (+) represents the surface 

glo siness of the mould surface, ( ~ ) the chocolate-mould interface, 

and (~ ) the chocolate-air interface. 
Error bar is representative of the standard deviation. 

An intere ting change in contact angle ha been ob erved when placing a drop of water on the 

mould urface after the urface adhe ion mea urement . hown in Figure 5.15D. At high RH 

there i a ignificantly lower change in contact angle ob erved, indicating that a limited amount 

of fat i depo ited onto the mould urface. 
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As a result of the increased mould surface hydrophilicity, the adhesion to the hydrophobic 

chocolate at these air conditions should be lower. The reduction in surface adhesion at high 

%RH, however, shows an increasingly tacky and dull chocolate surface, with bloom occurring 

within days. 
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Figure 5.16 Moisture uptake by a polycarbonate mould surface 

as a function of environmental relative humidity at 30·C. 

5.3.6 Cleaning methods 

In commercial chocolate manufacturing the moulds are normally not washed after each 

production cycle, as a detrimental effect of the use of new and cleaned moulds has been 

observed. This is expected to be due to the formation of a thin film of fat on the mould surface, 

caused by fat migrating from the chocolate matrix to the polycarbonate surface upon contact. 

The increased hydrophobicity of the mould surface enhances demoulding. Results obtained in 

sections 4.3.6.1 and 5.3.3 have shown the deposition of a very thin layer of chocolate (fat) 

residues on the mould surface during its contact with chocolate making the surface more 

hydrophobic and less glossy, and the negative effect of moisture adsorption on the mould 

surface and on the surface adhesion force, respectively. The aim of this part of the research was 

to examine the relation between cleaning methods and surface adhesion, in order to increase 

understanding of the practical observations made in commercial chocolate manufacturing. 

Cleaning methods can be divided into two distinctly different areas of study. cleaning 

procedures and non-cleaning. Cleaning procedures refers to the current practices in commercial 

chocolate manufacturing. with the aim of increasing understanding of the effect of changes in 

surface chemistry of the mould surface on surface adhesion. Non-cleaning refers to the repeated 

use of chocolate moulds in several production cycles without any form of cleaning procedure. 

- 188-



Chapter 5. Processing conditions 

5.3.6. J Cleaning procedures 

Basically, the surface adhesion of four different cleaning procedures is compared to non­

cleaning. All samples are cleaned using the standard method for polycarbonate surfaces, i.e. 

soaking in the respective cleaning solution, rinsing with distilled water and drying using 

compressed air. The cleaning materials used are obtained from Nestle PTC (York), where they 

are used in commercial chocolate manufacturing. Concentrated solutions are used to ensure a 

significant change in surface chemistry of the mould surfaces. 

• Distilled water 

• Concentrated detergent solution (Diverwash HD7) (JohnsonDiversey. 2009) 

Diverwash HD7 (JohnsonDiversey) is a mild alkaline (pH 9.2 - 10.0 for 1 % solution) 

liquid detergent that is low foaming, hard water tolerant and suitable for washing plastic 

trays, e.g. polycarbonate. The main surface active component is tetrasodium 

ethylenediaminetetraacetate, a synthetic surfactant. 

• Concentrated rinsing agent (Suma Rinse A5) (JohnsonDiversey. 2009) 

Suma Rinse A5 (JohnsonDiversy) is a neutral (pH 5.3) rinse aid that is low foaming, 

and contains a special blend of non-ionic surfactants for rapid, spot and streak free 

drying. Approximately 5 - 15% non-ionic surfactant is present, with alkyl alcohol 

alkoxylate representing the main component. 

• Combination of a detergent and rinsing agent 

Polycarbonate surface cleaned with 1.0 % (w/w) detergent solution (Diverwash HD7), 

followed by a rinse using 0.2-0.5 ml rl rinsing agent solution (Suma Rinse A5). 

Concentrations are based on recommendations made by the supplier. 

The results presented in Figure 5.17 show significant differences for the cleaning materials or 

procedures tested. In general it can be observed that the use of a detergent increases the surface 

adhesion, similar to the observations made in industry. Washing of mould materials with a 

detergent is necessary on occasions when macroscopic chocolate residues have been deposited 

on the mould surface. Use of a detergent ensures a clean and fat free mould surface, but often 

causes problems laminating or wetting. possibly due to the presence of detergent residues 

(chemicals) on the mould surface after washing. Rinsing of mould materials with a rinsing aid 

results in a significant reduction in the surface adhesion, especially if compared to the surface 

adhesion force obtained by using a detergent system. By combining a detergent and rinsing aid. 

a decrease in surface adhesion is obtained compared to the sole use of a detergent solution. 

However. non-cleaning is superior over all cleaning materials used for obtaining a low surface 

adhesion. An important observation is that all cleaning procedures result in a clean separation. 

with no chocolate or residues adhering to the polycarbonate mould surface, as can be observed 

in Figure 5.ISA. 
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Figure 5.17 Surface adhesion of dark chocolate as affected by different cleaning procedures. 

Error bar is representative of the standard deviation, n = 4. 

Further investigation of the relationship between cleaning materials and surface adhesion shows 

significant changes in the surface chemistry of the polycarbonate mould urface due to 

treatment with different cleaning materials, as can be observed from Figure 5.18, especially 

graphs C and D. Although the results may not be significant, the glossiness of polycarbonate 

surfaces shows di stinct differences. Particularly focu ssing on the rinsing agent, an increase in 

glos ines for all surfaces, i.e. both chocolate and mould, can be observed. Significant 

differences are obtained for the difference in contact angle of the polycarbonate mould surface 

before and after chocolate contact, which indicates that the use of different cleaning materials 

affects the surface chemistry of a polycarbonate surface in different ways. A more detailed 

visualization of the differences in contact angle before surface adhesion, i.e. on the clean mould 

surface, and after surface adhesion measurements, is given in Figure 5.19. Remarkable is the 

fact that, although the initial contact angle is variable, the contact angle after chocolate contact 

is largely stable over the range of surface treatments, indicating that a thin film of fat is 

deposited on all urfaces, irrespective of the cleaning material applied. Minor differences in 

hardnes can be observed in Figure 5.188, but these are not regarded as significant. 
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Figure 5.18 The effect of different cleaning procedures on the amount of residues after probe 

separation (A), the hardne of the solidified chocolate samples (B), the difference of surface 

glo iness (C) and the difference of contact angle (D) of the polycarbonate mould surface 

before and after chocolate contact. 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( .. ) the surface at the chocolate-air interface, and ( T ) the 

surface at the chocolate-mould interface, respectively. In (C) (+ ) represents the surface 

glo sines of the mould surface, ( ~ ) the chocolate-mould interface, 

and (~ ) the chocolate-air interface. 

Error bar is representative of the standard deviation. 

The contact angle of water drop depo ited on the cleaned mould surfaces, as hown by the top 

row of image in Figure 5.19, indicate that the application of different cleaning material affects 

the urface chemi try and po ibly the urface energy of the polycarbonate mould urface. 

Washing with a detergent create a more hydrophobic urface, which can be ob erved by the 

increa e in water ontact angle compared to a mould urface cleaned with water. Application of 

a rin ing aid on the other hand, make the urface more hydrophilic , re ulting in a water drop 

that preads out a er the polycarbonate and wets the urface. Relating the e ob ervation to the 

re ult obtained for th urface adhe ion ( ee Figure 5.17) hows that a lower surface adhe ion 

i obtained with a more hydrophilic mould urface in comparison with an increa e in surface 

adhe ion for a more hydrophobic mould urface. 
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Application of a combination of both a detergent and a rinsing aid for the cleaning of chocolate 

mould , as i common in industrial chocolate manufacturing, does not how any advantage 

over normal cleaning using boiling water. 

BEFORE surface adhesion measurement 

WATER DETERGENT RINSING AID 

AFfER surface adhe ion measurement 

DETERGENT 

+ 
RINSING AID 

Figure 5.19 Contact angle of water on polycarbonate mould surfaces treated with water, 

detergent, rinsing aid or a combination of detergent and rinsing aid, respectively, 

both before and after contact with a dark chocolate sample. 

5.3.6.2 Non-cleaning 

In indu trial chocolate manufacturing it is normal that chocolate mould are not cleaned 

between production cycle ,a long as there are no chocolate re idue pre ent on the urface or 

phy ical damage i ible. The re ult obtained when repeatedly (4x) re-using the polycarbonate 

mould urface, a een in Figure 5.20, clearly how a reduction in urface adhe ion when the 

mould i not cleaned in between mea urement . The highe t adhesion force is obtained with the 

new or clean mould, and a similar ob ervation i commonly made during commercial chocolate 

manufacturing where new or cleaned (wa hed) mould often how increa ed adhesion. A high 

correlation i further known to exi t between the increa ed adhe ion of new mould and the 

pre ence of defect at the chocolate urface. Picture included in Figure 5.20 show the presence 

of re idue at both the chocolate and the mould urfaces after the surface adhe ion force 

determination. Compari on of the 151 and the 4th repetition clearly show the build up of a fat 

layer on the mould urface, which i assumed to be re ponsible for the decrease in urface 

adhe ion force ob er ed . 
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Chocolate 

surface 

repeat after initial cleaning 

Figure 5.20 Evolution of the surface adhesion of dark chocolate if the mould surface 

is not cleaned between measurements, together with a visualization 

of the mould and chocolate surfaces. 

Error bar is representative of the standard deviation, n = 4. 

Further inve tigation of the relation between non-cleaning and urface adhe ion show that a 

clean eparation i obtained fo r all repeat , a can be ob erved from Figure 5.2 1 A. The picture 

in Figure 5.20, however, do how the de po ition of chocolate re idues on the polycarbonate 

mould urface. The e (chocolate) re idue ha e a di tinct effect on both the mould and 

chocolate urface. Compari on of the clean mould urface with the same urface after 4 repeat 

hows the pre ence of a thin film covering the who le urface. Thi film is expected to be fat, a 

the contact angle of a water drop how an increa e compared to the clean urface, indicating 
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that the surface is becoming more hydrophobic. Figure S.2lD shows only the contact angle 

difference observed between the surface after the 4 th repeat and a clean mould surface. Due to 

the use of water for the contact angle determination, the surface chemistry of the mould urfaces 

will change and therefore the contact angle i only determined at the end of the production 

cycle, i.e . after 4 repeat . T he pictures in Figure 5.20 a lso how the change in urface 

appearance of the chocolate ample, after contact with a non-cleaned mould urface. Non-ideal 

experimental process conditions may be partly re ponsible for these detrimenta l effect on 

surface appearance. Polycarbonate urfaces used in this particular study have not received a 

glo sy fi nish, and this may explain in part the negative vi ual surface appearance. 
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Figure 5.21 The effect of non-cleaning of the mould surface between measurements on the 

amount of residues after probe separation (A), the hardness of the solidified chocolate samples 

(B), the difference of surface glossiness (C) and the difference of contact angle (D) of the 

polycarbonate mould surface before and after chocolate contact. 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( .A ) the surface at the chocolate-air interface, and ( ~ ) the 

surface at the chocolate-mould interface, respectively. In (C) (+) represents the surface 

glossiness of the mould surface, ( .... ) the chocolate-mould interface, 

and (~ ) the chocolate-air interface. 
Error bar is representative of the standard deviation. 

Based on numerou ob ervations and contact angle experiments the a sumption i made that the 

thin film depo ited on the mould urface whil t in contact with chocolate i a fat layer. The 

micro tructure of chocolate ha been di cus ed exten ive ly in ection 2.l.3.3. 1 where it wa 

propo ed that chocolate con i t of olid particle, e.g. fat cry tals, cocoa and ugar particle, 
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dispersed in a continuous fat phase. The exact structure of the dispersed particulate network is 

not fully understood. but evidence exists for a porous structure in which the holes. pores or 

crevices are partly filled with liquid cocoa butter (Loisel et al.. 1997). It has been observed that 

fat migrating to the surface is partly responsible for the formation of fat bloom upon storage. 

Further research has investigated whether this migration of liquid fat through the porous matrix 

happens via diffusion or capillary flow (Aguilera et al.. 2004). Either way. the results obtained 

indicate that not only upon storage but already during chocolate manufacturing liquid fat is 

transported to the surface. Possibly as a result of the contraction of the tempered chocolate. a 

limited amount of liquid fat located between the solid particles is propelled to the surface 

(Quevedo et al.. 2(05). The thus formed thin layer of fat present on the chocolate surface 

adheres to the mould surface upon separation. Assuming that the thin layer of fat contains Form 

V crystals. it can act as a foreign surface with the appropriate crystal form. consequently 

inducing crystallization. Crystallization of the new chocolate sample in contact with the re-used 

mould surface is promoted due to the presence of Form V nuclei on the mould surface. 

subsequently enhancing solidification and contraction. Contraction of the chocolate sample 

away from the mould surface in turn will lower the surface adhesion. 

5.3.7 Mould roughness 

Experience has shown that the use of moulds with visible physical damage negatively affects 

the demoulding process. In order to determine the effect of mould roughness. the surface 

adhesion of a number of polycarbonate mould pieces with varying surface roughness was 

assessed. All polycarbonate mould samples used in this particular study were supplied by 

Agathon GmbH & Co. (Bottrop. Germany). and are commercially available sample plaques 

produced from Bayer Makrolon 2858 polycarbonate with a variety of textures. The roughness of 

the different textures is classified as 0 (smooth. highly glossy). 30. 36. 39. 40 and 42. and refers 

to a grading made by the supplier. where the level of texturing or roughness increases if the 

number is higher. Results obtained for the surface adhesion of the polycarbonate mould surfaces 

with different levels of roughness or texturing are shown in Figure 5.22. A clear positive 

correlation between surface roughness and surface adhesion can be observed. with adhesion 

increasing significantly with surface roughness. As the differences in surface texture have not 

been quantified. it is impossible to say whether this correlation is linear. The photographs 

inserted in Figure 5.22 show the clean mould surfaces with a roughness factor of 30 and 40. 

respectively. From a macroscopic point of view clear differences are visible in roughness and/or 

texture of the mould surfaces used. The increase in effective surface area with increasing 

surface roughness is hypothesized to be responsible for an increase in interactions between 

chocolate and mould. and subsequently an increase in surface adhesion. With the increase in 

surface texture. especially as it is at a macroscopic level. the surface area of the mould surface 
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increase correspondingly. A higher urface area means an increase in the number of attachment 

sites where the chocolate can adhere to the mould surface. The liquid tempered chocolate 

spread out over the polycarbonate mould surface, consequently wetting the whole surface. 

Through an increase in attachment ite and pos ibly a limited degree of mechanical 

interlocking of chocolate in the mould cavitie , the adhesion between chocolate and mould 

surface increa e . Vi co ity of the chocolate could furthermore affect the urface adhesion in 

relation to urface roughne , but a the arne chocolate type is used for all measurement in this 

particular part of the re earch, vi co ity can be disregarded. 
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Figure 5.22 Surface adhesion of dark chocolate as affected by mould surface roughness. 

Error bar is representative of the standard deviation, n = 4. 

Further in e tigation of the relation between mould surface roughne sand urface adhesion 

doe not gi e any ignificant or remarkable ob ervations, a can be een in Figure 5.23. The 

re idue weight adhering to the mould urface, ee Figure 5.23A, indicates a cohesive-adhe ive 

failure at all roughne e. A light reduction in re idue i obtained for a surface roughnes of 

36, but thi i not regarded a ignificant. Except for the high glossines of the mould urface 

with a urface texture of 0, there are no difference in urface glo sine s. It i expected that the 

depo ition mechani m of fat re idue onto the mould surface is oblivious to surface roughne , 

and a uch it i a umed that the urface glo , Figure 5.23C, and contact angle, Figure 5.23D. 

are unaffected by change in urface roughne . Slight difference are observed in contact angle 

of the clean mould urface , howing an increa e in contact angle with increasing urface 

roughne (not hown here). Thi would indicate that the mould surface become more 

hydrophobic ith increa ing texture. 
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However, the presence of a low level of texture means that the surface deviates from the ideal 

situation, making the use of contact angle re latively unreliable. Overall it can be concluded that 

urface roughnes has a negative impact on surface adhesion, but hardly influences chocolate 

hardne s, glos ine and the amount of res idues adhering. 
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Figure 5.23 The effect of mould surface roughness on the amount of residues after probe 

separation (A), the hardness of the solidified chocolate samples (B), the difference 

of surface glossiness (C) and the difference of contact angle (D) of the 

polycarbonate mould surface before and after chocolate contact. 

In (8) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( . ) the surface at the chocolate-air interface, and ( T ) the 

surface at the chocolate-mould interface, respectively. In (C) (+) represents the surface 

glo iness of the mould surface., ( .... ) the chocolate-mould interface, 

and (~ ) the chocolate-air interface. 
Error bar is representative of the standard deviation. 
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5.3.7.1 Surface microstructure 

In order to quantify the differences in urface roughness, confocal la er scanning micro copy 

(CLSM) wa applied to analyse the micro tructure of a set of polycarbonate mould surfaces, as 

i vi uaJized in Figure 5.24. The xlz-profi le (top images), indicate the variation in height of the 

two urface tudied, one with a roughnes of 0 and the other with a roughness of 42. In the 3D 

image hown at the bottom the changes in microstructure are visualized by variation in colour 

(light reflection) inten ity. Combining the xlz-profile with the 3D structure hows a clear 

increa e in urface roughne for the polycarbonate urface called roughnes 42 in compari on 

to the urface called O. 

46.89 J.1IIl 
46.96~m 

Roughness 0 Roughness 42 

Figure 5.24 Surface microstructure of a polycarbonate mould surface 

with roughness 0 and with roughness 42. 

The trend ob er ed in Figure 5.22 for the surface adhe ion shows a sharp increa e for the 

polycarbonate mould material with a roughne of 42 compared to the surface with a roughne 

of O. CLSM r ult confirm that the urface micro tructure i ignificantly different between 

the e two urface, and i therefore expected to be re ponsible for the differences ob erved in 

urface adhe ion force. 
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5.4 DISCUSSION 

Babin (2005) studied the effect of the presence of oil-soluble surface-active components in 

model sugar-oil systems. Results obtained indicated the partial replacement of inner oil 

surfactants from the sugar surface after the addition of an emulsifier in high sugar systems, and 

a reduction in the sediment volume resulting in an increase in the sediment particle packing 

density of 10 wt% sugar dispersions. It was concluded that the adsorption of surfactants at the 

sedimenting sugar particle surface reduced the strength of the attractive interparticle interactions 

between the sugar particles. Similarly, Afoakwa et al. (2009) showed that a dark chocolate 

system containing 25% fat displayed extensive particle-particle interaction strengths and a high 

solids packing density. An increase in the fat content resulted in a reduction of the interparticle 

interactions, subsequently forming a more open sugar crystalline network. This explains the 

observations made in the present research of the differences in cohesive strength of dark 

chocolate and milk chocolate, and the impact of processing variables on the hardness of the 

chocolate system. A reduction in the contact time or an increase in the cooling and/or mould 

surface temperature affects the total solids content of the chocolate systems, subsequently 

altering the particle-particle interactions. It is assumed that a more open structure with void 

spaces between the crystals is obtained as a result of a reduction in the interparticle interactions, 

as is visualized schematically in Figure 5.12 for example. The hypothesis that solid fat content 

is a major factor determining physical and mechanical properties of the chocolate systems is in 

agreement with work published by Awad and Marangoni (2006), who state that "the mechanical 

properties oJJats andJat-structured materials are controlled by the amount oj solids (SFC) and 

the microstructure oj thei r Jat crystal network". 

Contact time, cooling and mould surface temperature all affect the crystallization and 

solidification of the cocoa fat, and consequently the ease of demoulding, as measured by the 

surface adhesion force. During crystallization a three-dimensional amorphous crystal network is 

formed (Awad and Marangoni, 2006). The network formation, however, depends on the 

presence of nuclei formed either in the bulk phase, i.e. homogeneous nucleation, or at the 

surface of existing (foreign) particles, i.e. heterogeneous nucleation (Mullin, 2(01). In the 

present research the assumption is made that the polycarbonate mould surface acts as a foreign 

body, inducing nucleation and affecting crystal growth. Rousseau and Sonwai (2008) discuss 

the effect of the dispersed particulate, such as cocoa solids, sugar crystals and milk powder, on 

the crystallization mechanism. They propose that these particulates act as nucleation sites for the 

cocoa butter and reduce the free energy of nucleation, as a result of which the supercooling 

required for chocolate is lower than that for pure cocoa butter. The polycarbonate mould surface 

in contact with the chocolate surface layer may act in a similar way, subsequently enhancing fat 

crystal growth at the interface. 
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Varying the temperature of the mould surface will change its characteristics, consequently 

affecting the crystal formation of the fat phase at the chocolate-mould interface. Fluctuations in 

mould temperature may cause crystal nuclei at the surface of the chocolate sample to either melt 

or crystallize and solidify in another polymorphic form. In general, the processing conditions 

will alter the crystal growth mechanism and the crystal network formation. As described by 

Mullin (2001), crystal growth can take place via diffusion as a result of differences in 

concentration (see section 2.1.3) or via adsorption onto the crystal surface. Changes in 

temperature will affect especially this latter crystal growth mechanism. Stapley et at. (1999) 

suggest that chocolate crystallization is correlated with cooling rate, as they observed a 

relatively uniform crystallization in untempered chocolate at lower cooling rates and the 

formation of unstable polymorphs in tempered chocolate at higher cooling rates. With respect to 

chocolate microstructure Rousseau (2007) mentions the presence of pores and hairline cracks in 

solidified chocolate systems processed with a too fast a cooling rate. In comparison with these 

results it is expected that in the current research at the higher cooling temperatures, which result 

in a lower cooling rate, and possibly also at the lower contact times, the amount of higher 

melting polymorphs formed is increased, whereas the nucleation and growth of unstable or 

lower melting polymorphs is delayed. Furthermore, melting out of crystals or the presence of 

ingredients (foreign bodies) or water molecules at the chocolate-mould interface for example 

will also affect the crystal network formation, either through a change in surface energy, such as 

observed for the different cleaning methods, or the removal of crystal nuclei at high mould 

surface temperatures. 

Using a specifically developed DSC technique, Baichoo et al. (2006) demonstrated that the 

cooling conditions affect the kinetics of crystal growth. Within a tempered chocolate the 

formation of low-melting polymorphs is enhanced when using a fast cooling rate, whereas the 

formation of higher-melting polymorphs was favoured on slow cooling. According to Loisel et 

al. (1998) the crystallization of dark chocolate during cooling from 40°C is either via a single 

sharp crystallization for a chocolate temperature < 26.2 °C or via a two step fractionated 

crystallization at a temperature> 26.2 0c. Based on these observations it is assumed that 

changes in cooling temperature within the present research result in the formation of varying 

polymorphic forms. The formation of different polymorphic forms furthermore influences the 

crystal packing at the chocolate-mould interface. Schenk and Peschar (2004) discuss the 

differences in crystal packing of the ~. structure, where the layers are packed loosely due to the 

fatty acid chains being organized perpendicular, compared to that of the ~ structure, where the 

chains are organised parallel, consequently forming a much more dense and closed packed 

structure. The varying crystal packing of different polymorphs is responsible for differences in 

the degree of contraction obtained on solidification, which in turn affects the demoulding of the 

solidified chocolate bar (Beckett, 2(01). 
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5.5 CONCLUSIONS 

The processing conditions during the mould and cooling stages of the chocolate manufacturing 

process significantly influence the mechanism of adhesion between chocolate and mould 

surface, consequently affecting the demoulding process. Different processing conditions mainly 

affect crystallization and solidification of the fat phase of the chocolate. Contact time is 

assumed to be highly correlated with the number and size of crystals formed, which in turn are 

correlated with the cohesive strength of the chocolate system. The melting out of crystal nuclei 

at high mould surface temperatures and the formation of polymorphic forms other than Form V 

as a result of processing conditions affect the crystal arrangement of the cocoa butter fat. As a 

result, limited contraction occurs, causing difficulties demoulding. Both cooling temperature 

and the inclusion of different ingredients influence the total solids content, resulting in a change 

in interparticle interactions and chocolate microstructure. With respect to the effect of relative 

humidity, the presence of water vapour leads to the formation of a hydrophilic mould surface, 

which lowers the surface adhesion, due to limited chocolate-mould interactions. Cleaning 

conditions alter the surface chemistry of the polycarbonate mould surface and thus affect the 

surface energy. Overall it can be concluded, based on the results obtained for the different 

processing conditions, that the ease of demoulding can be optimised by pre-heating the 

(polycarbonate) mould under controlled environmental conditions, i.e. 0% RH and 25 - 30 °e, 
and using a cooling temperature of approximately 10- 15°C. 
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CHAPTER 6 

THE EFFECT OF AERATION ON CHOCOLATE DEMOULDING 

6.1 INTRODUCTION 

Within the confectionery industry a significant increase in the launch of new mousse and 

aerated confectionery products has been observed. There has been a sharp rise in both the 

number of aerated products and aeration techniques. as a result of which the fundamental 

understanding of bubble mechanics especially in relation to the production of stable aerated 

products is essential. Aeration is defined by Niranjan (1999) as "a process in which air or 

carbon dioxide or any other gaseous mixture is included within a food system. to produce a gas 

phase and a condensed phase (solid or liquid)." For an intermediate viscosity system such as 

chocolate. bubbles can be included in the continuous fat phase via four mechanisms according 

to Campbell and Mougeot (1999): dough and paste mixing. (cold) expansion extrusion. pressure 

beating (dissolution of air or gas under pressure). and vacuum expansion (followed by rapid 

cooling). One of the advantages of this variability in bubble inclusion methods is that it allows 

the production of a set of aerated chocolate products with slightly varying characteristics. 

However. a negative aspect is that there is limited correlation between processing parameters 

and aeration characteristics such as gas hold-up. bubble size and distribution. or more general. 

bubble formation. behaviour and stability. 

Research by Haedelt (2005) investigated effects of ingredients and processing parameters on 

bubble inclusion. and showed a strong interaction between recipe composition and gas hold up 

and mean bubble section diameter. respectively. It was proposed that the different fat crystal 

network formed in a chocolate product containing milk fat was responsible for the decrease in 

the setting rate. which consequently allowed a higher degree of bubble expansion and 

coalescence. Furthermore. the type of gas was observed to significantly impact the bubble 

inclusion. with low soluble gases such as N2 resulting in micro-aeration, and high soluble gases 

such as C02 giving the chocolate macro-aeration. The present part of this research aimed to 

reveal the effect of bubble inclusion on the level of adhesion. by correlating the experimental 

adhesion to the solid surface free energy. chocolate ingredients and bubble size / distribution. 

This will enhance understanding of adhesion at the chocolate-mould interface and the effect of 

processing conditions on these interfacial interactions. 
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6.2 METHODS 

The aeration equipment and methodologies of chocolate-mould adhesion and the structural 

characterisation of the aerated chocolate have been discussed in CHAPTER 3. Thi s section wi ll 

describe specific materi als and analyses or processing conditions applied in adhesion studi es of 

aerated chocolate systems. 

6.2.1 Materials 

For the determination of the effect of aeration on the experimental surface adhesion force, it is 

important that both the same chocolate systems and the same mould materials are used as 

previously applied in CHAPTER 4. Polycarbonate was chosen as the solid mould substrate 

when determining the importance of bubble size for the same reason as discussed in CHAPTER 

4. Milk chocolate (29% cocoa solids) was used as the standard chocolate syste m, as the 

commercial AERO (Nestle) product is based on a milk chocolate system. 

6.2.2 Methods 

Preliminary investi gations focussed on the technique used to melt the aerated chocolate and 

create contact between a solid mould surface and the aerated chocolate sample. The results of 

this work have shown that the most appropriate technique is to remove the outer chocolate she ll 

present on commercial aerated chocolate products. For pilot plant products the aerated chocolate 

mass is deposited directly into a polycarbonate mould, and there is therefore no need to remove 

the outer shell before adhesion experiments. The aerated chocolate sample is then carefull y 

heated in an oven under controlled temperature conditions, depending on the composition, i.e. 

dark or milk chocolate. Contact between the aerated chocolate and the mould surface is created 

using the same methodology previously applied for non-aerated chocolate systems. 

6.3 RESULTS 

6.3.1 Effect of aeration 

An aerated milk chocolate system was compared to a standard or non-aerated milk chocolate 

system with respect to their effect on the experimental surface adhesion force of a polycarbonate 

mould surface. The same milk chocolate recipe was used, with a total cocoa solids content of 

29%. Figure 6.1 compares the surface adhesion force of both systems, and it clearly shows a 

significant difference as a result of the aeration process. On average, the inclusion of bubbles 

into a chocolate system causes an increase in surface adhesion force, irrespec ti ve of the 

chocolate system. 
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Figure 6.1 Comparison of the surface adhesion of an aerated and 

a non-aerated milk chocolate system. 

Error bar is representative of the standard deviation, n = 4. 

Further investigation of the relationship between aeration and surface adhesion shows that the 

inclusion of a ir bubble results in a significant increase of the amount of milk chocolate res idues 

present on the polycarbonate mould surface after separation, as can be observed from Figure 

6.2A. For all measurement, a cohesive fai lure was observed, indicating that the aeration step 

affects the cohesive strength of the chocolate syste m. Not much difference in hardness of the 

aerated and non-aerated systems is present, although the average value is in all instances lower 

for the aerated system, as can be observed from Figure 6.2B. 

The presence of air bubbles is expected in general to reduce the hardness of the chocolate 

syste ms. In re lation to that, it is hypothesized that the method used to determine the hardness is 

ajvina an indication of the mechanical strength of the chocolate system, rather than the 
I:> I:> 

hardness. In any case, the hardness profile (not shown) is affected by the presence of ai r 

bubbles, as a result of which the penetration force no longer reaches a constant plateau va lue. 

Whenever an air bubble is present, the penetration force shows a drop until the thin film 

urrounding the air i reached, resulting in a hardness profile with hills and valleys. However, 

the overaJl hardness of the milk chocolate system seems not to be affected by the inclusion of 

air in the system. 
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Figure 6.2 Comparison of an aerated and a non-aerated milk chocolate system 

with respect to the amount of residues after probe separation (A), and the hardness 

of the solidified chocolate samples (B). 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( A ) the surface at the chocolate-air interface, 

and ( T ) the surface at the chocolate-mould interface, respectively. 

Error bar is representative of the standard deviation. 

It can be concluded from the re ult obtained for the chocolate re idue adhering and the 

hardne that the interfacial chocolate- mould trength i higher than the bulk cohe ive trength 

of the chocolate, re ulting in a break within the bulk of the chocolate y tern rather than at the 

interface. The rea on for the enhanced interfacial trength i not known, but i a urn d to be a 

con equence of an imbalance of the force at the interface. Surface ten ion, in combination with 

the pre ure in ide and outs ide a bubble must be in equilibrium; otherwi e a bubble will not 

exi t, as i de cribed by the balance of force (Beckett, 2008): 

_ 2y/ Pz - P1 - r , 

[6-1] 

[6-2] 

where PI i the pre ure out ide the bubble, P2 the pre ure in ide the bubble and 2rry refers to 

the urface ten ion acting on the circumference of the bubble. During the proce of creating the 

chocolate-mould interface the interaction within the urface layer of the chocolate will change, 

con equently affecting the urface ten ion and pres ure acting on the bubble . A re toration of 

the balance of force i required for the bubble to exi t, which mean that larger bubble are 

created at the co t of mall bubble a the gas i moving from high pre ure area ( mall 

bubble ) to low pre ure areas (large bubble ). Thi i becau e lower pre sure in the large 

bubble mean a lower amount of energy i required. 

It i u peeted that after olidification an increa ed interfacial strength i obtained, a a re ult of 

the imbalance of force between the bubble at the interface. The pre ure difference aero the 

urface film incre e for mailer bubble, a a re ult of which a higher amount of energy is 

a ailable for particle-particle or cry tal-cry tal interaction in the thin chocolate film , 

ub equently enhancing the interfacial trength. Similarly, the reduced bulk co he ive trength i 
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related to the reduction in interactions in the bulk aerated system, as there are small air bubble 

with a high pre ure pre ent in the bulk which disturb the formation of a trong fat crystal 

network during solidification. These as umption appear to be emphasized by visual 

observations made during the experimental urface adhe ion force measurements. Figure 6.3 

shows image of both the aerated chocolate system (A) and the polycarbonate mould urface (B) 

after the surface adhesion determination. In image A there is a clear difference in bubble ize at 

the urface (bottom of the image) and in the bulk, where the bubbles are much smaller. Similar 

observation can be een in image B. where the larger bubbles are located clo e to the mould 

urface and the smaller bubbles at the line of failure. 

A 

Pol ycarbonate 
B 

Figure 6.3 [mages (scale 1:0.34) of the aerated chocolate (A) and the mould surface (8) 

after the experimental surface adhesion force determination. 

The re ult obtained for the experimental urface adhesion determination are in good agreement 

with common ob ervation made during commercial manufacturing practices. Aerated 

chocolate i often ob erved to adhere to the mould urfaces during production, cau ing 

problem demoulding and the pre ence of defects on the chocolate surface. 
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6.3.2 Effect of different mould materials 

In the same way as for dark chocolate and cocoa butter systems (section 4.3.6.1 ), the surface 

adhesion of aerated milk chocolate has been investigated in relation to the different mould 

materials applied in thi s research. Figure 6.4 shows the experimental surface adhesion force for 

the four solid mould surfaces. Most outstanding result is that obtained for the surface adhesion 

of a PTFE surface, which is not significantly different from a polycarbonate surface, whereas a 

significant difference was previously obtained for non-aerated milk chocolate. Otherwi se, the 

overall trend is the same as that observed previously, with quartz glass having the hi ghest va lue 

for the surface adhesion. 
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Figure 6.4 Surface adhesion of an aerated milk chocolate system 

as affected by different mould materials. 

Error bar is representative of the standard deviation, n = 4. 

Further investigation of the re lationship between aeration and mould material displays some 

very interesting effects on the amount of chocolate residues adhering to the polycarbonate 

surface after the surface adhesion measurement, as is shown in Figure 6.5A. The largest amount 

of chocolate residues is present on the PTFE surface, which previously showed an adhesive 

failure or clean separation for a non-aerated milk chocolate system. Both polycarbonate and 

quartz glass a lso show a cohesive failure, with no difference between the amounts of residues 

adhering. Interestingly, stainless steel shows an adhesive failure with the aerated milk choco late 

system, with little or no residues adhering after separation. Significant differences between the 

mould materials can also be observed for the hardness, see Figure 6.5B. The surface hardness of 

the milk chocolate system that has been in contact with stainless steel is higher than any of the 

chocolate amples in contact with the other surfaces. 
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Thi indicate a difference in the crystallization / olidification mechani m or the average 

bubble ize a a re ult of the phy ical contact with olid mould surface with varyi ng urface 

energie , which is expected to be the main cau e for the clean separation of tainless steel. 

Visual ob ervation have confirmed that all the milk chocolate sy terns were aerated, and that 

the break on eparation took place in the bulk of the aerated system, imilar to the image 

hown in Figure 6.3, re ulting in a cohe ive failure . 
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Figure 6.5 The effect of aeration on the amount of residues after probe separation (A), 

and the hardness of the solidified aerated chocolate samples (B). 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( .A. ) the surface at the chocolate-air interface, 

and ( T ) the surface at the chocolate-mould interface, respectively. 
Error bar is representative of the standard deviation. 

A pilot plant trial ha been conducted at Ne tIe PTC (York) to determine the effect of different 

mould material on the demoulding capabilitie of aerated milk and dark chocolate y tern . 

Aeration was acquired ia the vacuum box method, de cribed in sect ion 3.3.4. The commercial 

mould material u ed were PTFE, polycarbonate and tainle tee I. Although they are the arne 

material a u ed for the experimental urface adhe ion force determination, the compo it ion 

and phy ical / chemical characteri tic of the e re pective commercial mould may differ from 

tho e u ed in thi re earch for adhe ion force mea urements. Figure 6.6 show image of the 

commercial mould urface after the demoulding proce s. All three material how a co he ive­

adhe ive or cohe i e failure, re pectively. Visual ob ervation indicate that the whole PTFE 

urface i co ered with a thin film of milk chocolate (cohe ive failure), whereas the tainle 

teel urface pre ent only a limited amount of chocolate adhering after demoulding (cohe ive­

adhe j e failure). 
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These re ult are not in complete agreement with tho e obtained for the experimental surface 

adhe ion force, where a clean urface separation wa obtained for the stainle teel surface. The 

overall trend is imilar, though. The large t amount of chocolate was present on the PTFE 

surface, as a re ult of which the demoulding process of aerated chocolate y tern is most 

difficult for thi mould material. A relatively low amount of adhe ion is ob erved for the 

tainle steel ystem, con equently showing better demoulding propertie . 

Teflon Polycarbonate Stainless steel 

Figure 6.6 [mages showing the surfaces of commercial mould materials after contact with 

aerated chocolate samples, obtained via the vacuum box aeration. 

Relating the urface adhe ion to the surface free energy gives a po itive correlation, a can be 

een in Figure 6.7. For both an aerated and a non-aerated milk chocolate system the arne 

exponential growth type relation can be observed. Fitting the experimental data to the model 

show a higher correlation for the aerated ystem. The apparent critical surface energy of the 

mould ubstrate remain the arne for both aerated and non-aerated system (- 30 mN mol). 

The main i sue when comparing the correlation between urface energy and urface adhe ion 

for aerated and tandard (non-aerated) chocolate y tern is the ob erved difference in failure. 

Standard chocolate y tern how a break at the chocolate-mould interface, wherea aerated 

chocolate y tern how a cohe ive failure within the bulk of the ystem. Thi mean that Figure 

6.7 actually compare urface adhe ion of a et of mould urfaces with varying urface energy 

with the bulk adhe ion or co he ive trength of aerated milk chocolate y tern . Furthermore, 

variation in the Ie el of aeration and/or bubble ize and di tribution between the different 

ample u ed will affect the co he ive trength of the aerated milk chocolate y tern and 

con equently reduce the accuracy of the adhe ion mea urement and the correlation between 

urface energy and chocolate adhe ion for aerated chocolate ystems. 
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Figure 6.7 Surface adhesion of an aerated (_) and a non-aerated (0 ) milk chocolate system 

as a function of surface energy. 

Gas hold-up of the aerated chocolate system used is approximately SS %. 

Error bar is representative of the standard deviation, n = 4. 

The heat tran fe r capacitie of both the solid mould material s and the chocolate sy te rn are 

hypothe ized to be re ponsible for the differences in urface adhesion and type of failure 

ob erved fo r aerated and non-aerated chocolate system. First of all , the inclu ion of bubble in 

a chocolate y tern cause the system to act a insu1ation, slowing down the heat tran fer from 

the urface to the centre or bulk of the chocolate sy tern (Decker and Ziegler, 2002). Table 6.1 

mentions the heat conductivity value of air and butter, amongst other . Taking butter a a 

replacement for chocolate, and comparing this to the heat conductivity of air, a ignificant 

di fference i vi ible. Incorporation of air or another gas, uch a CO2 or N2 can be ob erved to 

ignificantly reduce the heat conducti vity of a fat based ystem like butter. By acting a an 

in ulator, the aerated chocolate system will normally show a reduced hardnes compared to a 

non-aerated y tern. 

Secondly, the heat transfer rate of the different mould materials i di similar, a can be ob erved 

from the value reported for the heat conductivity in Table 3.3 (section 3.2.2) . Stainless teel ha 

the highe t heat conductivity, indicating that it will transfer the largest amount of heat or energy 

within a pecified time period. Polycarbonate and PTFE, on the other hand, how imilar values 

of heat conducti ity, and can be ob erved to be more likely as insulator materials. Re lating the e 

data to the urface adhe ion of chocolate, it is assumed that the high heat tran fer rate from the 
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stainless steel mould to a chocolate system is responsible for the clean separation and increased 

hardness that is observed. A high heat transfer is assumed to be responsible for a faster 

crystallization and solidification. and an increased (bulk) cohesive strength of the chocolate 

system. This applies not only to aerated but also to non-aerated chocolate samples. 

Polycarbonate and PTFE. on the other hand. show a much lower heat transfer rate, and the 

chocolate systems in contact with these materials subsequently take longer to crystallize and 

solidify. The combined effect of the insulation by the mould material and the aerated chocolate 

system significantly reduce the cohesive strength of the chocolate systems in contact with these 

mould materials. causing a cohesive failure. as is visualized in Figure 6.8. 

Table 6.1 Heat conductivity values of a selection of gases and liquids I food systems 

at 20°C (Singh and Heldman, 2(01). 

Heat conductivity 
[W mot K"t] 

Air (mixture) 0.0251 

CO2 0.014 

N2 0.024 

Water 0.597 

Butter 0.197 

A possible solution would be the use of a mould which consists of a thin film of PTFE coated 

on a stainless steel substrate. This combines the good physical characteristics of stainless steel. 

such as its conductivity properties, and the anti-adhesion chemical characteristics of PTFE. The 

thickness of both the PTFE and the stainless steel will be important in relation to the mould 

functionality. If the PTFE coating is too thick. the positive effect of the stainless steel substrate 

will be reduced. Similarly, if the stainless steel substrate is relatively thin, the heat conductivity 

may not be enhanced to a degree that significantly affects the demoulding properties of the 

aerated chocolate mass. 
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! ~ 
1 cooling demoulding 

Figure 6.8 Schematic representation of the relation between heat conductivity 

and demoulding of aerated chocolate systems. 

Due to the reduced conductivity of both the aerated chocolate mass and the mould material, 

crystallization and solidification are delayed, resulting in a cohesive failure upon demoulding. 

Limited solutions are a ailable to enhance the conducti vity propertie of the aerated chocolate 

mas, e peciaJly a the e are reduced by the aeration. A will be di cu sed in ection 6.3.4 the 

type of gas used affects the aeration, which ub equently impact on the demoulding 

characteri tic . The u e of diffe rent ingredients i not expected to ignificantly impact the heat 

tran fer characteri tic of the aerated chocolate rna . Haedelt (2005) investigated the effect of 

di fferent ernul ifier uch a polyglycerol polyricinoleate (PGPR), sorbitan tri tearate (STS) and 

glycerol mono tearate (GMS), and fats such a milk fat, hard non lauric vegetable fat and oft 

nonlauric vegetable fat, on the aeration of a tandard milk chocolate recipe. Main impact wa 

ob erved fo r milk fat, which increased both the ga hold-up and mean bubble- ection diameter 

compared to the control rec ipe . On the other hand, a reduction in ga hold-up wa ob erved for 

the recipe contain ing PGPR, or oft or hard vegetable fat. However, a urface ad he ion wa 

not mea ured, no mention wa made regarding hardne or cohe ive trength of the e ample . 
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6.3.3 Comparison of aerated dark and milk chocolate 

For non-aerated chocolate systems it was observed in section 5.3 .1 that there was no significant 

diffe rence in surface adhesion force between a dark chocolate (52% cocoa solids) and a milk 

chocolate (29% cocoa solids) system. Further comparison showed that the surface hardness and 

the cohesive strength of the milk chocolate system were significantly lower than those of the 

dark chocolate system. Using the same dark and milk chocolate systems, a comparison ha aLo 

been made afte r aeration. The results obtained for the experimenta l surface adhesion force are 

presented in Figure 6.9, and show a significant diffe rence between aerated dark chocolate and 

aerated milk chocolate. The u e of sli ghtly different pressures and/or aeration techniques is 

expected to result in minor variation between the different systems, but is not expected to result 

in significant differences. 
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Figure 6.9 Comparison of the surface adhesion of an aerated dark 

and an aerated milk chocolate system. 

Error bar is representative of the standard deviation, n = 4. 

One of the reason that would explain the differences between dark and milk chocolate would 

be the same explanation as proposed for the standard non-aerated systems, where the cohesive 

trength of the milk chocolate system is observed to be much lower. However, from Figure 

6. IOA it can be observed that significantly more dark chocolate residues adhere to the 

polycarbonate mould surface after separation. The hardness of the milk chocolate system is 

lower than that of dark chocolate, as can be seen from Figure 6.1 OB . Thi s would indicate that 

the cohesive andlor mechanical strength of the milk chocolate system is lower than that of the 

dark chocolate sy tern . The increased amount of dark chocolate residues would then result from 

a diffe rence in crystalli zation and solidification rather than cohesive strength. 
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Figure 6.10 Comparison of an aerated dark and an aerated milk chocolate system 

on the amount of residues after probe separation (A), 

and the hardness of the solidified chocolate samples (B). 

B 

In (B) (_) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( A ) the surface at the chocolate-air interface, 

and (T ) the surface at the chocolate-mould interface, respectively. 
Error bar is representative of the standard deviation. 

6.3.4 Effect of bubble size 

A po iti e pre ure batch rig wa u ed to incorporate both N 2 and CO2 in tandard milk 

chocolate y tern. By applying different pre sures within the range 0 to 7 bar, a variety of 

aerated structure was created. U ing the same technique as previou Iy applied, the 

experimental urface ad he ion force of the different aerated product wa determined. 

Micro tructure was a e ed via the C-Cell technique, de cribed in ection 3.3.4.3. The re ult 

are di cu ed per ga type u ed for the urface adhesion, and combined for the tructural 

characteri ation . 

6.3.4.1 C02 gas 

Carbon dioxide (C02) i known to give a 0 called macro-aeration to chocolate ystem, with an 

average ga hold-up alue of 68%, a determined by Haedelt (2005). U ing x-ray tomography 

the bubble characteri tics of 2-D bubble ection were analyzed, giving average value for the 

diameter of 0.5\ mm, corre ponding to a mean bubble volume of 0.18 mm3
. It wa concluded 

that aeration u ing CO2 ga increa ed bubble inclu ion within a confined volume and enhanced 

coale cence phenomena. a are ult of the higher olubility of CO2 in cocoa butter fat compared 

to other ga type . The current re earch in e tigated the relation between aeration u ing CO2 ga 

at different pre ures and the experimental urface adhe ion force. Table 6.2 relate the 

proce ing pre ure u ed during the CO2 aeration to the quality of the aerated chocolate 

y tern. as repre ented by the den ity. p, and the ga hold-up value, s. It can be ob erved that 
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the density decreases with increasing processing pressure, whilst the gas hold-up or volume 

fraction of air increases. Both results indicate that by increasing the processing pressure, a 

higher aeration is obtained. A lower density means that more air is present in the same volume, 

whereas a higher gas hold-up means that there is an increase in the vo lume fraction of air 

present in the solidified chocolate system. 

Table 6.2 Density and gas hold-up of aerated milk chocolate systems 

in relation to the CO2 processing pressure. 

Pressure Density Gas hold-up 

[Bar] [g mrl] [%] 

0 1.3 0 

1.3 1.2 13 6.69 

2 1.16 10.77 

3 0.681 47.62 

4.2 0.49 62.3 1 

5.2 0 .37 71.54 

7.2 0 .35 73 .08 

Plotting the experimental surface adhesion force against the CO2 gas hold-up shows an inverse 

exponential relationship, as can be observed from Figure 6.11. Thi s indicates that the adhesion 

or stickiness of chocolate decreases when more air is incorporated in the system. 
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Figure 6.11 Surface adhesion as a function of CO2 gas hold-up. 

Error bar is representative of the standard deviation, n = 4. 
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However, the relation hip between CO2 aeration and surface adhe ion is not a traight forward 

as expected. From Figure 6.12A it can be observed that a cohesive failure i pre ent for all 

aerated systems. Although the amount of chocolate adhering to the mould surface dec rea e 

with the CO2 gas hold-up, this does not mean that the volume of chocolate adhering decrea e . 

The main conclusion is that for al l aerated milk chocolate systems a cohesive failure i ob erved 

within the aerated chocolate rna s, rather than at the chocolate-mould interface, indicating that 

aeration affects the cohe ive strength of the chocolate system. 

The surface hardne in Figure 6.l 2B how ignificant difference between the different 

aerated milk chocolate sy terns. Due to the cohe ive failure, the hardne ha only been 

measured at the chocolate-air interface. No significant differences can be ob erved between the 

hardne s of the bulk and that of the surface. Compared to the tandard non-aerated milk 

chocolate an increase in urface hardness can be observed at low aeration, whil t at higher ga 

hold-up value the surface hardness i ignificantly lower. The initi al increa e i not ignificant, 

and is accompanied by a large error, probably caused by a high degree of non-uniformity. With 

increasing gas hold-up value the hardness dec rea e , indicating that the inclu ion of air bubble 

reduces the hardne s of the milk chocolate system. 
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Figure 6.12 The effect of COl aeration on the amount of residues after probe separation (A), 

and the hardness of the solidified chocolate samples (B). 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, 

and ( A ) the surface at the chocolate-air interface, respectively. 
Error bar is representative of the standard deviation. 
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The general trend observed for the surface adhesion is in good agreement with observations 

made during commercial manufacturing of aerated chocolate products as well as pilot plant 

trials. During this research the products made with CO2 gas inclusion showed problems during 

demoulding at pressures above 3 bar. An additional shock-cooling in the freezer (-18 DC) was 

required to aid demoulding for these products. Besides, a difference in force required to de­

mould the milk chocolate system processed at 2 bar and that at 3 bar was observed, with the 

latter requiring a higher force. 

A good and easy demoulding is observed for the milk chocolate systems with limited CO2 

inclusion (gas hold-up values < 15%), whereas difficulties are obtained at higher CO2 levels of 

aeration (gas hold-up values> 35%). The hypothesis proposed is that a combined effect of the 

CO2 gas and water vapour present at the chocolate-mould interface together with a reduced 

contraction is the main cause. As previously discussed in section 5.3.5, results obtained in this 

research have resulted in the formulation of the hypothesis that water vapour is present at the 

chocolate-mould interface, subsequently reducing the chocolate-mould interactions and surface 

adhesion force. This water vapour present at the chocolate-mould interface is assumed to 

interact with the aerated chocolate mass, by dissolving the CO2 gas present in the surface layer 

of the aerated milk chocolate system. In combination with a decrease in the level of contraction, 

due to the Laplace bubble pressure opposing the contracting forces, these effects are responsible 

for the increased adhesion observed for aerated chocolate products. The explanation proposed 

for the demoulding of aerated products after shock cooling in the freezer is the expansion of the 

water vapour present at the chocolate-mould interface upon cooling. As a result of the water 

vapour expansion, the chocolate is separated from the mould surface and demoulding can 

proceed. 

6.3.4.2 N2 gas 

Nitrogen (N2) is known to give a so called micro-aeration to chocolate systems, with an average 

gas hold-up value of 29% (Haedelt, 2(05). Using x-ray tomography the bubble characteristics of 

2-D bubble sections were analyzed, giving average values for the diameter of 0.13 mm, 

corresponding to a mean 3-D bubble volume of 0.014 mm3
• It was concluded that N2 has a 

lower solubility in cocoa butter compared to CO2• resulting in the formation of a lower number 

of bubble nuclei with overall a limited volume. Due to the relatively small and low number of 

bubbles, the tendency to coalesce is reduced. The current research investigated the relation 

between aeration using N2 gas at different pressures with the experimental surface adhesion 

force. Table 6.3 relates the processing pressures used during the N2 aeration to the quality of the 

aerated chocolate systems, as represented by the density, p, and the gas hold-up value, E. 
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Table 6.3 Density and gas hold-up of aerated milk chocolate systems 

in relation to the Nz processing pressure. 

Pressure Density Gas hold-up 

[Bar] [g rnrl] [%] 

0 1.3 0 

2.4 1.09 16.15 

4.4 0.9 30.77 

6.2 0.85 34.62 

It can be observed that the density decreases with increasing processing pressure, whilst the gas 

hold-up or volume fraction of air increases, simi lar to the trend observed for the aeration using 

CO2• The main difference between the two gases is the rate at which the gas hold-up and density 

increase and decrease, respectively. At a processing pressure of 6 bar, the gas hold-up is above 

70% when using CO2 gas, whereas it is only 34% when using N2 gas. For both gases a higher 

aeration is obtained at increasing processing pressures, although the rate of increase is much 

lower for the N2 gas. These results indicate that a lower aeration is obtained when using N2 gas . 

Based on these results it is expected that N2 gives a micro-aeration, whereas CO2 is rather 

responsible for a macro-aeration of the same chocolate system (Haedelt, 2(05). 
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Figure 6.13 Surface adhesion as a function of Nz gas hold-up. 

Error bar is representative of the standard deviation, n = 4. 
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Plotting the experimental urface adhesion force against the N2 gas hold-up hows a parabolic 

relationship (see Figure 6.(3). The general trend shows an initial increa e in average urface 

adhe ion, followed by a significant decrease of the urface adhesion force with increasi ng N2 

gas hold-up. In contra t to the results previously obtained for CO2, where aeration caused a 

significant decrea e in the cohe ive strength, for N2 a reduction in cohesive strength i only 

observed at a pres ure above 4.4 bar (30% gas hold-up). At lower pre ure the micro-aeration 

obtained when u ing N2 gas i assumed to be re ponsible for a contraction upon cooling, imilar 

to that seen for non-aerated chocolate, subsequently re ulting in an adhe ive failure or clean 

break at the chocolate-mould interface. At a higher pressure (> 4.4 bar), the cohesive trength i 

reduced and a cohesive-adhesive failure is observed, as can be seen in Figure 6.14A. It i 

concluded that N2 aeration doe not impact the surface adhesion below a certain thre hold 

pre ure. 
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Figure 6.14 The effect of N2 aeration on the amount of residues after probe separation (A), 

and the hardness of the solidified chocolate samples (B). 

In (B) (-) represents the hardness of the bulk at the chocolate-air interface, 

and ( £ ) the surface at the chocolate-air interface, respectively. 

Error bar is representative of the standard deviation. 

The hardne in Figure 6.l4B hows ignificant differences between the bulk and the urface for 

ga hold-up value of IS and 30%, re pectively. Both how increased values compared to the 

non-aerated milk chocolate y tern (0% ga hold-up), whose hardne is imilar to that of the 

aerated y tern with a ga hold-up of 35%. Again, a reduction in hardne i ob erved with 

increa ed ga hold-up, although thi coincide with a transition of an adhe ive failure to a 

cohe ive-adhe i e and po ibly even cohesive failure. The y tern howing a failure of the 
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cohesive strength can al 0 be observed to have a significantly lower hardne . Finally, an 

increase in the error observed for the latter system is expected to be caused by the enhanced 

aeration or bubble inclusion. 

The general trend observed for the surface adhesion is in good agreement with observations 

made during the pilot plant trials. During this research the product made with N2 gas inclusion 

howed hardly any problems during demoulding. It i a sumed that the e good demoulding 

characteri tic, i.e. low adhesion or stickiness. are a re ult of the contraction of the micro­

aerated N_ milk chocolate system, similar to a non-aerated milk chocolate y tern. 

6.3.4.3 Microstructure 

Chocolate micro trucrure i an important influencing parameter to the relation hip between 

urface adhesion and chocolate aeration. Structural characteri ation of aerated chocolate 

ystem wa ba ed on a technique called C-Cell. described in more detail in ection 3.3.4.3. 

Two important mea ures defining the quality of the aerated chocolate mass were determined : I) 

the number of cells per urface area, and 2) the average cell diameter. Figure 6.15 shows the 

number of cell per urface area as a function of the gas hold-up value, for milk chocolate 

y tern with both CO2 and N2 gas inclusion . 
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Figure 6.15 Number of cells per surface area as a function of gas hold-up 

of both CO2 ( _ ) and Nz (e ) aerated milk chocolate systems. 

The y tern containing CO2 how a negative exponential relationship (R2 = 0 .999) with the gas 

hold up value, indicating that at higher ga hold-up values the impact on the number of cells per 

urface area i limited. The mo t ignificant change can be ob erved at the initial tage of the 
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aeration proce s, i.e. at low pressure and particularly between a pressure of 2 and 3 bar, 

corresponding to between roughly II % and 48% gas hold-up, respectively. Within this same 

pressure range, the mo t important change in surface adhesion can be observed in Figure 6.1 I. 

For the y terns containing N2 (see red dot in Figure 6.15 and Figure 6.16) a more or les linear 

relationship with the ga hold-up value is obtained, indicating that the microstructure is not 

significan tly affected by inclusion of N2 gas. 

The average cell diameters of above systems are shown in Figure 6. 16. Inclusion of CO2 gas 

re ults in a positive exponential relation hip (R2 = 0.969) between the average cell diameter and 

the ga hold-up value of milk chocolate. An increase in proces ing pressure re ult in an 

increase in the average cell diameter of CO2 gas bubble . Again, the tran ition eems to take 

place between pres ures of 2 and 3 bar, corresponding to gas hold-up value of II ~ and 48%, 

respectively. In contra t to the results obtained at higher gas hold-up value for the number of 

cells per urface area, the cell diameter hows significant differences at the e ga hold-up 

values. Limited difference in average cell diameter are pre ent at the lower end of the cale, 

below 15 % gas hold-up. For N2, on the other hand, a linear re lation hip can be ob erved, 

ind icating that the micro tructure, a a sessed by the average ce ll diameter, is not ignificantly 

affected by the inclu ion of N2 gas. 
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Figure 6.16 Average cell diameter as a function of gas hold-up 

of both CO2 ( _ ) and N2 (e ) aerated milk chocolate systems. 

Error bar is representative of the standard deviation, n = S. 
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80 % 5 % 

Figure 6.17 Cross-sections representing the microstructure of milk chocolate samples 
at varying CO2 gas hold-up values. 

The grey images (top) represent the raw images, whereas the coloured images (bottom) 
represent the cell image, in which lighter shades indicate larger cells. 

Further in e tigation of the impact of proce ing pre ure on the micro tructure of the aerated 

milk chocolate y tern via the cros - ection hown in Figure 6.17 for the ample containing 

C02 ga and in Figure 6. 18 for the ample containing N2 ga how ignificant difference, 

imj lar to the quantitative re ult di cu ed. The image in Figure 6.17 how both a decrea e in 

number of cell and increase in average cell diameter with increasing ga hold-up value for milk 

chocolate y tern containing CO2 ga . At a ga hold-up of 7% nearly the whole image i dark 

blue. With increa ing ga hold-up the air cells become more repre entative, and the change of 

dark blue to light blue, green and yellow indicates an increase in average cell size. 

35 % 15 % 

Figure 6.18 Cross-sections representing the microstructure of milk chocolate samples 
at varying N2 gas hold-up values. 

The grey images (top) represent the raw images, whereas the coloured images (bottom) 
represent the cell image, in which lighter shades indicate larger cells. 
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Figure 6.18 how three fairly similar images, indicating limited differences in micro tructure of 

the milk chocolate ystem containing N2 gas. "Micro" air cells are present in all y tern , but 

neither their number nor the average cell size seem to be affected by the variation in proce sing 

pressure. 

Comparison of the re ults obtained for the surface adhesion force and the structural 

characterisation indicate that the surface adhesion decreases with an increase in average cell 

size and a decrease in the number of cells per surface area for ystem containing CO2 ga ,a i 

shown in Figure 6.19. A linear correlation is observed between the number of cell per urface 

area and the urface adhe ion, whereas a positive exponential relation can be ob erved between 

the average cell diameter and the surface adhesion force. For the latter, an increa e in proce ing 

pressure from 2 to 3 bar is responsible for a significant change in micro tructure and surface 

adhesion force. Contradictory, for systems containing N2 ga the microstructure doe not how 

any significant change which coincide with the change in surface adhe ion force ob erved at a 

gas hold-up value of 35% (see Figure 6.13). 

5 

4 • 
a. 

o 
3 

• 
2 o i . 

3.0 

2.5 

2.0 

1.5 

,..-, 

E 
E 
'-' .... 
~ 
CI.l 
E 
~ 

-0 o 
• ......• 

R2= 0.960 

1.0 v 
U 

0.5 

o +-__ .----.---r--.,..----..---r---r------,.----.-----l 0.0 
o 50 100 150 200 250 

Surface adhe ion (x 1000) [N m·2] 

Figure 6.19 Number of cells per surface area (0 ) and cell diameter (_) 

as a function of surface adhesion of CO2 aerated chocolate systems. 
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6.4 DISCUSSION 

Within literature not much attention has been paid to the subject of chocolate aeration and in 

particular a comparison of aerated and non-aerated samples with respect to mechanical 

properties. An extensive piece of work was conducted by Haedelt (2005), who investigated the 

effect of different bubble inclusion techniques, as well as gas and chocolate composition, on the 

bubble formation mechanism in liquid chocolate. One of the main conclusions was that 

differences in gas solubility were responsible for the variation in microstructure obtained when 

applying different gases. Similar to the results obtained in this research, CO2 gas tended to form 

larger bubbles and a macro-aeration compared to N2 gas, which formed smaller bubbles and a 

micro-aerated structure. It is assumed that the higher solubility of CO2 causes an increase in the 

amount of gas released upon depressurisation, resulting in the formation of larger air cells 

compared to the less soluble N2• Microstructural images obtained in the present research show 

no differences in bubble structure for N2 systems at different processing pressures. This 

indicates that the solubility of N2 is not only lower than that of CO2; there is also a maximum 

level of gas that can dissolve in liquid chocolate, irrespective of the processing pressure. It is 

furthermore assumed that the reduced adhesion of N2 compared to CO2 systems is due to the 

micro-bubbles behaving as particles, subsequently reducing the stickiness. The same does not 

apply for CO2 systems, where an increase in average cell diameter was observed. It is assumed 

that the solubility of CO2 increases with an increase in processing pressure, and that this 

increased solubility is responsible for the formation of larger air cells upon depressurisation. 

The results obtained in this research indicate that the microstructure of aerated chocolate in part 

determines the physical characteristics such as adhesion of the aerated system. Within literature, 

similar observations are made for aerated concrete. Narayanan and Ramamurthy (2000) discuss 

the relation between physical properties of concrete and microstructure. One of the conclusions 

that they draw is that porosity and pore size distribution are important parameters determining 

the physical properties such as strength, permeability and shrinkage. In the case of aerated 

chocolate, porosity would refer to the number of cells per surface area, whereas pore size 

distribution would be more indicative of the average cell size diameter. Similar conclusions are 

drawn in the current research for the particular case of CO2 gas inclusion in milk chocolate 

systems, where a change in number of cells per surface area and average cell size diameter 

impacts on the cohesive strength of the aerated chocolate system, subsequently affecting the 

experimental surface adhesion force. 

According to Muller-Fisher and Windhab (2005), the Laplace pressure or inner bubble pressure 

is lower for a larger bubble, which in turn causes this large bubble to have a higher degree of 

deformability. In correlation with the higher deformability, foams with larger air cells have 

shown a reduced elastic modulus and shape retention capacity. This is in good agreement with 

the observations made in this research, with the presence of cohesive failure of aerated milk 
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chocolate systems in comparison to non-aerated chocolate systems, and the further increase with 

increasing average cell diameter for systems containing CO2 gas. Another consideration is the 

possible change in air cell structure due to contact with the solid mould surface. Especially for 

large air cells with a higher degree of deformability, it is expected that the structural pattern of 

the foam may change due to contact with a solid surface. Mancini and Oguey (2005) discussed 

the surface structure of liquid foam in contact with a solid. A smooth, tlat solid surface was 

observed to promote the formation of circular arcs and 2D foam. Curved solid surfaces and/or 

non-perpendicular contact, however, deform the 2D foam. This implies that the cell structure at 

the chocolate-mould interface is different from that of the bulk chocolate system, another 

parameter complicating interfacial behaviour and surface adhesion. 

Both Dutta et al. (2002) and Boerboom (2000) discuss the impact of surfactants on foam 

formation and stabilization. Dynamic film tension was, in both studies, an important parameter 

determining the bubble size and the amount of air incorporated during the aeration stage. The 

presence of a surfactant such as lecithin within the chocolate system is, however, not expected 

to impact on the mechanical properties of the liquid chocolate foam. It is assumed that 

solidification of the cocoa butter is the main stabilization mechanism. By using tempered 

chocolate a fast crystallization and consequently a fast solidification is obtained. Solidification 

of the fat crystal network could be responsible for the immobilization of the aerated structure 

and the capacity of the chocolate to hold the gas and bubble structure. A similar conclusion can 

be drawn from the Stokes equation, which describes moving velocity of a colloidal particle 

driven by gravity, Vs: 

gt:.pd2 

Vs = IS'1, ' 
[6-3] 

where g is the gravity or acceleration, p the density, d the diameter of the air cell and 'Ie the 

viscosity of the continuous phase. Assuming that the bubble diameter and density remain 

constant, an increase in viscosity would cause the velocity to decrease. So, to prevent creaming 

and/or coalescence, and to obtain a stable aerated chocolate system, an increase in viscosity 

would be beneficial. This can be obtained through crystallization and solidification of the cocoa 

butter. 
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6.5 CONCLUSIONS 

Aeration in combination with chocolate composition are the two most important characteristics 

affecting the cohesive (mechanical) strength of a chocolate system. Milk chocolate is generally 

regarded as being softer and having a lower cohesive strength compared to dark chocolate. 

Aeration does not change this observation, and as a result a lower adhesive force is obtained for 

the aerated milk chocolate system compared to the aerated dark chocolate system. In general, 

however, the reduced cohesive strength of aerated chocolate systems is responsible for a 

decrease in the experimental surface adhesion force of aerated samples when compared to non­

aerated systems. An increased level of deformability due to the presence of air cells, and an 

imbalance of forces within the aerated chocolate surface layer all act together in the reduction of 

both the cohesive strength and surface adhesion of aerated systems. 

Comparison of different mould materials has previously shown a significant impact of the 

surface free energy of the solid mould surfaces. When comparing the same solid surfaces in 

combination with aerated milk chocolate systems a similar trend is observed. On average, with 

the higher surface free energy surfaces a higher surface adhesion force is required. The heat 

transfer coefficient of both the aerated system and the solid mould surface are hypothesized to 

be responsible for this observation. Aeration causes a decrease in the heat transfer rate, 

subsequently increasing the time required for crystallization and solidification. If the processing 

time before demoulding takes place is not prolonged, a cohesive failure is obtained due to the 

reduced bulk cohesive strength. Simultaneously, the heat transfer coefficient differs depending 

on the mould material used. A low heat transfer or conductivity coefficient will also prolong the 

crystallization and solidification processes. 

Structural characterisation of the aerated chocolate systems (as assessed by the number of cells 

per surface area and the average cell diameter) was shown to have a direct impact on the surface 

adhesion force for systems containing CO2 gas. For N2 gas, processing pressure has very limited 

influence on the microstructure, and, therefore, on surface adhesion of such aerated systems. 
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CHAPTER 7 

CHOCOLATE ADHESION TO POLYCARBONATE SURFACES 

COATED WITH A THIN FILM 

7.1 INTRODUCTION 

The use of edible and/or bio-degradable coatings or films in combination with commercial food 

products is increasing. Wu et al. (2002) defined an edible film or coating as "a thin layer of 

material which can be eaten by the consumer, can be applied on or within foods by wrapping. 

dipping, brushing, or spraying and function as selective barriers against transmission of gases, 

vapours and solutes, and also provide mechanical protection". One of the main requisites is that 

the shelf life and quality of food products is guaranteed. Currently new polymeric materials. 

such as bio-nanocomposites. are used to develop so called multi-functional intelligent 

packaging. which have stronger mechanical, barrier and thermal performances (Sorrentino et aI., 

2(07) compared to the standard plastic packaging materials. A disadvantage of the use of 

biodegradable polymers is their performance, processing and cost. Several publications are 

available which review the use of a large range of biopolymers as a packaging or edible coating 

in combination with food products. 

Over the years many different biopolymers have been used for the formation of an edible film or 

coating which can be used to inhibit lipid migration in confectionery products. Migration of low 

melting point lipids from a fat based filling or centre into the chocolate coating negatively 

impacts on the crystallization behaviour of cocoa butter. resulting in chocolate (fat) bloom. 

Nelson and Fennema (1991) investigated the resistance of hydrocolloid films to migration of 

linoleic acid from peanut oil. All films showed good lipid barrier properties. Further 

investigations by Brake and Fennema (1993) focussed on the use of different sweeteners in 

combination with hydrocolloids. The coatings were applied at the interface between chocolate 

and peanut butter for sensory perception testing. Final coating formulation, consisting of a high 

methoxyl pectin, acacia gum. high fructose com syrup, dextrose, fructose and sucrose, had good 

lipid barrier characteristics. 
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Preliminary research by Mastrantonakis (2004) investigated the use of three different 

emulsifiers, polyglycerol polyricinoleate (PGPR), sodium dodecyl sulphate (SOS) and soya 

lecithin, to coat a polycarbonate mould for improved chocolate demoulding. No differences in 

advancing contact angle of a mixture consisting of cocoa butter, fine sugar and lecithin were 

observed for the mould surfaces coated with different emulsifiers. A pilot plant trial was 

conducted to determine the effect of washing of the moulds with a surfactant (Tween 60) 

solution prior to chocolate-mould contact. However, the Tween 60 coating did not reduce the 

adhesion between chocolate and mould surface, rather the opposite. Aim of the current part of 

the research was to investigate the effect of edible coatings placed at the chocolate-mould 

interface on the level of adhesion of chocolate. This will enhance the understanding of adhesion 

phenomena at the chocolate-mould interface in relation to the solid mould surface 

characteristics. 

7.2 METHODS 

The coating preparation and application techniques have been discussed in CHAPTER 3. 

Adhesion and surface characterisation parameters have been applied previously in CHAPTER 4, 

CHAPTER 5 and CHAPTER 6. This section will describe specific materials and coating 

application techniques applied. 

7.2.1 Materials 

Polycarbonate was chosen as the solid mould substrate onto which different coating solutions 

were applied to modify the surface characteristics. Dark chocolate (52% cocoa solids) was 

chosen as the standard chocolate system, for the same reason as discussed in CHAPTER 4 and 

CHAPTER 5. Standard milk chocolate (29% cocoa solids) and aerated milk chocolate were 

used on one instance to assess the impact of chocolate recipe in relation to mould surface 

modifications. 

7.2.2 Methods 

Preliminary investigations focussed on the thin film coating preparation and application 

methodology. The technique described in section 0 is a result of these investigations. Initial 

results showed that a homogeneous thin film or coating could be prepared by using the 

operating principle shown in Figure 3.25. Contact between the chocolate and the coated mould 

surface is created using the same methodology previously applied. 
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7.3 REsULTS 

7.3.1 One component coatings 

To a e s the impact of urface modification through the application of thin film on 

polycarbonate mould surface, two different type of edible coating were prepared. The fir t 

wa based on the u e of degradable biopolymer or hydrocolloid ,wherea the econd te ted the 

u e of different lipid component . For compari on rea on the two type of coating are 

di cus ed individually per type and the results obtained are compared to the re ult obtained for 

a tandard polycarbonate mould urface, a di cu ed in CHAPTER 4. 

7.3.1.1 Hydrocolloids 

Four hydrocolloid coatings (0.1 % olution) with varying compo ition were compared to a 

clean polycarbonate urface without coating. A hydrocolloid concentration of 0.1 % wa cho en 

ba ed on preliminary re ult which showed that at a concentration of 1.0% high methoxyl (HM) 

pectin lOS or carboxymethy\cellulo e (CMC) a 0 called" tand-alone" coating wa form d, a 

can be een in Figure 7.1. 

Thi pre ent 

1.O%CMC 

Polycarbonate 
ub trate 

Figure 7.1 Visualization of a stand-alone 1.0% CMC coating 

formed on a solid polycarbonate substrate. 

ue when creating contact with the liquid chocolate, which i pulled partly 

underneath the coating making direct contact with the polycarbonate ub trate. A a re ult of 

thi , the impact of urface modification on the urface adhe ion force i no longer mea ured. 

Hydrocolloid coatings with a concentration of 0.1 % did not form a tand-alone coating and thi 

concentration wa therefore cho en when comparing the impact of different hydrocolloid 

coatings on the adhe ion force. 

The re ult pre ented in Figure 7.2 show ignificant difference in urface adhe ion of the 0.1 % 

hydrocolloid coating te ted, both individually and if compared to the clean polycarbonate 

mould urface. Except for the HM pectin ISO and the HM pectin lOS coating that wa boiled 
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prior to application, a ll hydrocolloids significantly reduced the surface adhesion fo rce. No 

significant difference was observed between HM pectin 105 and CMC, two hyd roco llo ids 

which were chosen based on results reported by Brake and Fennema ( 1993) and Ne lson and 

Fennema (199 1) on their use in combination with chocolate confec tionery products . 

......... 
N 

E 
6 

Figure 7.2 Surface adhesion of dark chocolate as affected by the type of hydrocolloid coaling. 

Error bar is representative of the standard deviation, n = 4. 

Further investigation of the relationship between surface modifications through the application 

of hydrocolloid coatings on a polycarbonate substrate and surface adhesion shows that the 

positi ve effect of the surface modifications is slightly dimini shed by the presence of a cohesive­

adhesive failure, as can be observed in Figure 7.3A by the chocolate weight adhering to the 

diffe rent surfaces after separation. As can be observed from Figure 7.38, the hydrocolloid 

coatings actually increase surface hardness of chocolate samples compared to that from the 

standard po lycarbonate substrate. Thi s can therefore not explain the cohesive-adhesive failure 

observed for all hydrocolloid coatings. Although the coatings modify the surface chemi stry o f 

the polycarbonate substrate, the thickness is limited and is not expected to impact on the heat 

transfer characteri stics of the solid mould material. 

Both Figure 7.3C and 0 show the effectiveness of hydrocolloid coatings in modifying the solid 

mould surface. Especially for CMC, an increase in surface glossiness of both the mould and the 

chocolate/mould interface is visible. The water contact angle furthermore is lower for the clean 

CMC coating compared to the standard polycarbonate surface. Thi s indicates that the CMC 

coating is responsible for the creation of a mould surface with a higher hydrophilicity . 
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Again all urface how approximately imilar value for the water contact angle after having 

been in contact with the chocolate ystem. 
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Figure 7.3 The effect of different types of hydrocolloids on the amount of residues 

after probe separation (A), the hardness of the solidified chocolate samples (B), 

the difference of surface glossiness (C) and the water contact angle (D). 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( A ) the surface at the chocolate-air interface, and ( T ) the 

surface at the chocolate-mould interface, respectively. In (C) (+) represents the surface 

glos iness of the mould surface, (~ ) the chocolate-mould interface, and ( ~ ) the chocolate-air 

interface. In (D) (0) represents the water contact angle before chocolate contact, (0 ) after 

chocolate contact, and ( the difference in contact angle before and after chocolate contact. 

Error bar is representative of the standard deviation. 

The 0 erall re ult indicate that it i po ible to reduce the urface adhe ion between chocolate 

and a olid mould urface by modifying the ub trate with the application of a hydrocolloid 

coating. Further inve tigation are required to develop a coating with optimum characteristic. 

CMC i as umed to be a good candidate, due to it reduction of the experimental urface 

adhe ion force, and it po itive effect of the urface glo ine of chocolate after being in 

contact with a CMC coated polycarbonate urface. 
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7.3.1.2 Lipids 

Four lipid coatings with varying compositions were compared to a clean polycarbonate surface 

without coating. The acetic acid ester Grindsted Acetem (GA) , the di sti lied monoglyceride 

Oimodan (0 ) and cocoa butter (CB) could all three only be applied as pure substances, i.e . 

100% coatings, whereas lecithin (L) was applied as a I % coating. Figure 7.4 shows the impact 

of surface modificat ions via different lipid coatings on the adhesion force. Both Grindsted 

Acetem and Oimodan significantly reduced the surface adhesion force, whilst a lecithin coating 

had the oppo ite effect, significantly increasing the force required to separate the chocolate and 

solid mould substrate. Cocoa butter showed a slight, non-signi ficant, reduction in surface 

adhesion. 

700 
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Figure 7.4 Surface adhesion of dark chocolate as affected by different types of lipid coating. 

Error is representative of the standard deviation, n = 4. 

Further investigation of the relationship between surface modifications through the application 

of lipid coatings on a polycarbonate substrate and surface adhesion shows again a cohesive­

adhesive failure at the chocolate-mould interface, except for the Oimodan coating, as can be 

observed from Figure 7.5A. Similar to the hydrocolloid coatings, the lipid coatings again 

increase the hardness, as is shown in Figure 7.5B. The observed values for the hardness are 

s li ghtly lower compared to those obtained for the hydrocolloid coatings, indicating that lipid 

coatings have a sli ght softening effect. Still, the hardness is significantly higher compared to 

that obtained previously after contact with a polycarbonate mould surface. 
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In contra t to the re ult obtained for the hydrocolloid coating, where an increa e in chocolate 

glo ine s wa ob erved, the urface glossiness is ignificantly reduced a a re utt of contact 

with the lipid coatings, a can be observed from Figure 7.SC. 
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Figure 7.5 The effect of different types of lipids on the amount of residues 

after probe separation (A), the hardness of the solidified chocolate samples (B), 

the difference of surface glossiness (C) and the water contact angle (D). 

B 

D 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (. ) the bulk at 

the chocolate-mould interface, ( . ) the surface at the chocolate-air interface, and ( T ) the 

surface at the chocolate-mould interface, respectively. In (C) (+ ) represents the urface 

glossiness of the mould surface, ( ~ ) the chocolate-mould interface, and (~ ) the chocolate-air 

interface. In CD) (D) represents the water contact angle before chocolate contact, (0 ) after 

chocolate contact, and ( the difference in contact angle before and after chocolate contact. 

Error bar is representative of the standard deviation. 

Some contra ting re ult are obtained for the water contact angle, hown in Figure 7.SD. A 

Gri nd ted Acetem coating i ob erved to be ignificantly more hydrophilic compared to the 

tandard polycarbonate urface. Cocoa butter, on the other hand, create a urface with a highly 

hydrophobic character, imitar to that obtained after contact with chocolate . A there i no 

difference in water contact angle on the cocoa butter urface before and after contact, this 

confirm the a umption that residue of cocoa butte r are depo ited on the mould urface during 

contact with the chocolate. 

- 233-



Chapter 7. Thin film coating 

The detrimental effect of the lipid coatings on the visual outlook of the chocolate urfaces i 

shown in Figure 7.6, which shows a chocolate surface after contact with lipid-coated 

polycarbonate. A clean and homogeneous surface is obtained after contact with the tandard 

polycarbonate urface. All three lipid coatings seem to depo it minor residue on the chocolate 

surface, affecting the visual appearance of the chocolate sample. Dimodan give the chocolate 

surface agIo sier outlook, compared to Grindsted Acetem and cocoa butter which both eem to 

affect the cry tallization of the cocoa butter in the chocolate system, ub equently impacting on 

the homogeneity of the chocolate surface. 

Figure 7.6 Visualization of the chocolate surfaces after contact with a clean 

polycarbonate surface, or a Grindsted Acetem, or Dimodan, or cocoa butter coating. 

The overaJl re ults indicate that it i possible to reduce the urface adhe ion b twe n chocolate 

and a olid mould urface by modifying the substrate with the application of a lipid coating. 

However, a negative effect was observed on the chocolate urface glos ine ,a a re ult of 

which the u e of lipid coatings i not recommended. Wu et at. (2002) came to a imilar 

conclu ion regarding pure non-polar hydrocarbon-ba ed materials uch a lipid. They 

recommend the combined u e of the e materials with hydrophilic film-forming agents like 

poly accharides and proteins. 

7.3.2 Effect of concentration 

In order to develop the optimum coating with respect to the urface adhesion between chocolate 

and a mould material, the effect of concentration was further inve tigated. One hydrocolloid, 

CMC, and one lipid, Grindsted Acetem, were cho en ba ed on the re ults obtained in ection 

7.3.1.1 
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7.3.2.1 CMC concentration 

The effect of CMC concentration on the experimental surface adhesion force is shown in Figure 

7.7. After an initial decrease in adhesion at low CMC concentrations (0.01 and 0.1 %) compared 

to the standard polycarbonate surface (0%), an increase in the surface adhesion is obtained 

moving from 0.2% to 0.3% CMC. These results clearly indicate that the optimum CMC 

concentration for a coating which reduces the surface adhesion force is approximately 0.1 %. 
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Figure 7.7 Surface adhesion as a function of CMC concentration. 

Error bar is representative of the standard deviation, n = 4. 

Further investigation of the relationship between CMC concentration and surface adhesion 

shows a clear trend with the amount of (chocolate) residues present on the mould probe surface 

after separation. Figure 7.8A shows the transition from a cohesive-adhesive failure with a 

significant amount of chocolate adhering to an adhesive failure with no chocolate residues 

adhering. This transition coincides with the transition observed for the adhesion force in the 

range from 0.1 to 0.2% CMC. The hardness of the chocolate samples, shown in Figure 7.8B is 

fairly constant across the different CMC concentrations, and the variation seems to reduce with 

increasing CMC concentration. 

A positive effect of CMC concentration on the surface glossiness can be observed in Figure 

7.8C. With increasing CMC concentration the surface glossiness of both the mould surface and 

the chocolate-mould interface increases linearly. The glossiness of the chocolate-air interface 

stays constant with increasing CMC concentration, which was expected as there is no surface 

modification involved in the contact. There does not seem to be a correlation between the 

surface glossiness and the water contact angle. 
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In Figure 7.8D an initial decrease in water contact angle measured on the urface before 

chocolate contact i.e. the "clean" surface, i observed. However, with increa ing CMC 

concentration the water contact angle doe not change. So called tick- lip behaviour, though, 

hinder the correct mea urement of the advancing water contact angle of the CMC coating . 

Thi behaviour i i ualized in Figure 7.9. 
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Figure 7.8 The effect of CMC concentration on the amount of residues after 

probe separation (A), the hardness of the solidified chocolate samples (B), 

the difference of surface glossiness (C) and the water contact angle (D). 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( A ) the surface at the chocolate-air interface, and ( .. ) the 

surface at the chocolate-mould interface, respectively. In (C) (+) represents the surface 

glo iness of the mould surface, (~ ) the chocolate-mould interface, and (~ ) the chocolate-air 

interface. In (D) (0 ) represents the water contact angle before chocolate contact, (0 ) after 

chocolate contact, and ( the difference in contact angle before and after chocolate contact. 

Error bar is representative of the standard deviation. 
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Initial contact between water and a 0.5% CMC coating results in the formation of a relatively 

hydrophobic contact angle (> 90°). However, with the increa e in volume required for the 

determination of the advancing angle the drop suddenly preads out over the surface, forming a 

rather hydrophilic contact angle « 50°). A econd increase in water volume increa e the 

contact angle, but does not cau e the drop to spread out over the urface. The urface ten ion of 

the water eem to be tronger than the interaction with the coating urface, re ulting in the 

formation of a relatively hydrophobic drop on subsequent volume increases. Once a certain 

maximum drop pre ure is obtained, subsequent volume increa es re ult again in the water drop 

spreading out over the CMC coating surface. For thi particular tudy the advancing angle i 

taken at a point approximately between image 2 and 3, when the water i in contact with the 

"fresh' CMC coating, i.e. when the three phase contact line is formed on a piece of urface that 

ha not been previously wetted by the water. 

Figure 7.9 Visualization of the stick-slip behaviour observed when determining the 

advancing water contact angle on a 0.5 % CMC coating. 

The progression of the water drop with increasing volume in time 

is represented by the images 1 to 7. 

The overall result indicate that 0.1 % CMC i an optimum concentration tn relation to 

minimizing the urface adhe ion force. A CMC coating furthermore ha a positive effect on the 

vi ual appearance of the chocolate by increa ing the urface glo ines of the chocolate sy tern. 

For further in e tigation it i recommended to u e a coating with 0.1 % CMC. 

- 237 -



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 

West Yorkshire, LS23 7BQ 

www.bl,uk 

PAGE MISSING IN 

ORIGINAL 



Chapter 7. Thin film coating 

Further inve tigation of the relation hip between GA concentration and surface adhe ion doe 

not nece arily how the detrimental effect of GA on the chocolate and mould urface, a can 

be ob erved from Figure 7.12A. At a GA concentration of 0.1 % there are no re idue adhering 

to the mould urface, a determined by weighing the olid mould probe after chocolate contact. 

However, vi uaJ ob er ation as shown in Figure 7. 11 clearly how the pre ence of (chocolate) 

re idue on the coated polycarbonate urface after contact. Figure 7 .12C show the effect of GA 

concentration on the glo ine ,and no di tinct difference can be ob erved between the 

chocolate-mould interface after contact with GA coating with different concentration . The 

urface glo ine of the mould urface with a pure GA coating i lower than that of any of the 

other ample. Re ult obtained for the hardne , Figure 7.12B, and the contact angle, Figure 

7 .12D, are not ignificantly different and lie in the arne range a previou Iy obtained for the 

lipid coatings. 

Mould 
urface 

Chocolate 
urface 

Figure 7.11 Visualization of the chocolate and mould surfaces coated with GA after contact. 

The chocolate urface, on the other hand, show defect in the form of irregular urface . At the 

place where re idue are adhering to the mould urface, the chocolate urface how minor 

hole , re ulting in a relati ely rough and irregular urface. With an increase in GA concentration 

thi effect eem to be enhanced. 

The 0 erall re ult indicate that 0.1-1 .0% GA is an optimum concentration in relation to 

minimizing the urface adhe ion force and detrimental effects of GA on the vi ual appearance 

of both chocolate and mould urface . In contra t to the re ults obtained for CMC coating , GA 

coating ha e a negati e effect on the urface appearance of the chocolate and it i there fore 

recommended not to u e GA a single component coating. Further investigation are required 

to te t the effect of GA inclu ion in 2-component coatings. 
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Figure 7.12 The effect of Grindsted Acetem concentration on the amount of residues 

after probe separation (A), the hardness of the solidified chocolate samples (B), 

the difference of surface glossiness (C) and the water contact angle (D). 

In (B) (_ ) represents the hardness of the bulk at the chocolate-air interface, (. ) the bulk at 

the chocolate-mould interface, ( £ ) the surface at the chocolate-air interface, and ( "' ) the 

surface at the chocolate-mould interface, respectively. In (C) (+) represents the surface 

glossiness of the mould surface, ( ~ ) the chocolate-mould interface, and (~ ) the chocolate-air 

interface. In (0) (0) represents the water contact angle before chocolate contact, and (0 ) after 

chocolate contact. 
Error bar is representative of the standard deviation. 

7.3.3 Two component coatings 

Within the literature, many example exi t of the u e of two-component coating to protect food 

product again t phy ical, chemical or microbiological damage and extend product helf-life. 

PIa ticizer are additi e uch a orbitol, sucro e, glycerol or poly(ethylene glycol), which are 

generally included in coating to enhance the phy ical characteri tic of the coating film, e.g. 

flexibility and e ten ibility. Barreto et al. (2003) de cribe the enhanced film formin g propertie 

of odium ca einate olution after orbitol addition . A typical rheological Newtonian behaviour 

wa obtained. It wa furthermore ob erved that orbitol inelu ion re ulted in the formation of a 

more ordered tructure, as umed to be a re ult of the hydrogen bonding formation between 

orbitol and the amino acid ide chain replacing part of the protein-protein interaction . 
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7.3.3.1 Hydrocolloid and plasticizers 

Lee et a1. (2002b) and Dangaran et al. (2006) investigated the addition of sucrose as a plasticizer 

to whey protein isolate (WPI) coatings applied to chocolate surfaces. General results showed a 

positi ve effect of sucrose on the gloss and visual outlook of the chocolate samples. The present 

research compared two different plasticizers, sucrose and glycerol, when added at two different 

concentrations, 0.1 % and 1.0%, to a 0.1 % CMC film forming solution. Figure 7.1 3 represents 

the results obtained for the surface adhesion force as a function of plastici zer type and 

concentration. In this graph the results are compared to a standard coating prepared from a 0.1 % 

CMC solution. On average, inclusion of a plasticizer in a 0.1 % CMC solution results in an 

increase of the surface adhesion force. For sucrose there was no significant difference between 

0.1 and 1.0%, whereas inclusion of 0.1 % glycerol resulted in a significant increase in the 

adhesion force, whi lst inclusion of 1.0% glycerol gave a surface adhesion similar to that 

obtained for sucrose. Compared to the standard polycarbonate mould surface ( ee Figure 7.2), a 

two-component coating containing 0.1 % CMC and 1.0% plasticizer, ei ther sucrose or glycerol. 

results in a reduction of the surface adhesion force . 
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Figure 7.13 Surface adhesion as affected by plasticizer type and concentration, 

for a 2-component coating with 0.1 % CMC as the 1st component. 

Error bar is representative of the standard deviation, n = 4. 
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An immediate ob ervation made during the experimental urface adhe ion determination i the 

" ticky" character of the coating containing plasticizer . E pecially at high (I %) pI a tic izer 

concentration a ticky, a lmo t gum-like, ela tic behaviour was ob erved at the chocolate­

mould interface. Upon eparation bridges were formed between the chocolate and the mould 

surface, which ruptured as a re ult of thinning behaviour. The re ulting vi ual appearance of the 

chocolate and coated polycarbonate mould urface is hown in Figure 7. 14. 

Figure 7.14 Visualization of a chocolate and mould surface 

coated with 1.0% sucrose, after contact. 

Further inve tigation of the relationship between 2-component coating containing pia tic izers 

and the urface adhe ion force how a po sible urface oftening effect of the chocolate by the 

pia ticizer , a can be ob er ed from Figure 7.ISB, which i also re pon ible for the ticky 

character i uaJized in Figure 7.14. Thi oftening effect of the chocolate urface layer a a 

re ult of the direct contact with the 2-component coating i believed to be a re ult of the 

interaction between the ugar molecules in the coating and tho e in the chocolate. At higher 

concentration (I %) the failure takes place in the coating rather than at the interface, re ulting in 

a clean mould urface for glycerol , see Figure 7.ISA. Furthermore, in contrast to previou 

re ult , there i no migration of a fat component from the chocolate to the mould urface, a can 

be ob er ed in Figure 7.150, where the water contact angle doe not change after chocolate 

contact. The re ult for the contact angle in general show a decrease in water contact angle with 

increa ing pia ticizer content, indicating that addition of ucro e or glycerol make the urface 

more h drophilic . This ob er ation i in line with the re ult obtained in ection 5.3.6 for a 

rin ing agent, howing that an increa e in urface hydrophilic ity reduce the urface adhe ion. 
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Figure 7.15 The effect of plasticizer type and concentration of a 2 component coating system 

with 0.1 % CMC on the amount of residues after probe separation (A), the hardne s 

of the solidified chocolate samples (B), the difference of surface glo siness (C) 

and the water contact angle (D). 

In CB) C- ) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( A ) the surface at the chocolate-air interface, and ( T ) the 

surface at the chocolate-mould interface, respectively. In (C) (+) repre ents the surface 

glossiness of the mould surface, C ... ) the chocolate-mould interface, and (~ ) the chocolate-air 

interface. In (D) (D) represents the water contact angle before chocolate contact, CO) after 

chocolate contact, and ( the difference in contact angle before and after chocolate contact. 

Error bar is representative of the standard deviation. 

Significant difference can al 0 be ob erved for the urface glo ines I a hown in Figure 

7 . ISC. The glo ines of the mould urface after chocolate contact i reduced by the addition of 

low (0. 1 %) concentration of pia ticizer to the tandard coating of 0.1 % CMC. Thi i a umed 

to be a re ult of the cohe i e-adhe ive failure taking place at the e concentration. Addition of 

highe r concentration ( 1%) of pia ticizer ignificantly increa e the urface glo ine of both 

the mould urface and the chocolate-mould interface. The increa ed roughne s of the urface 

after eparation, a can be een in Figure 7.14, i a umed to be re pon ible for the large error at 

the e concentration . Mea urement of the urface glos of the clean coating prior to chocolate 

contact how a harp increa e after addition of ucro e, a can be een from T able 7.1. The 
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plasticizer concentration does not significantly affect the surface glossiness. Both Lee et al. 

(2002b) and Dangaran et al. (2006) mention the positive impact of sucrose addition on the gloss 

of chocolate products. One of the main issues seems to be the long term glossiness. which. 

however. is not an aspect of interest in thi s research. 

Table 7.1 Effect of sucrose addition on the surface glossiness. 

Solid mould surface Surface glossiness [60°] 

Average Std.dcv. 

Polycarbonate 20.57 1.79 

O. I% CMC 12.62 7.86 

0.1 % CMC + 0.1 % sucrose 83.1 0.4 

0.1 % CMC + I % sucrose 77.1 5.1 

The overall results indicate that plasticizers enhance the film forming capac iti e. of 0.1 % CMC 

solutions. and have a positi ve effect on surface glossiness. However. the sticky nature of the 

plasticizers used in the current research imposes problems in relati on to the adhesion at the 

chocolate-mould interface. It is believed that the interactions between plasticizers and chocolate 

at the interface lead to negati ve visual effects. from a consumer point of view. From a practical 

point of view a preference is given to the use of sucrose over glycerol. as the behav iour of 

sucrose is more consistent than that of glycerol. 

7.3.3.2 Hydrocolloid and lipid 

In imitation of the work done by Lee et al. (2002b). who observed that water-based WP[ 

coatings with a lipid (cocoa butter) component had a higher sensorial value than normal alcohol 

based shellac coatings. 2-component coatings were prepared by adding Grindsted Acetem at 

two levels to a tandard 0.1 % CMC film forming solution. [n contrast to the results obtained in 

section O. where the I-component coating systems with Grindsted Acetem significantl y reduced 

the surface adhesion force. addition of Grindsted Acetem at a concentrati on of 0.1 % to 0.1 % 

CMC results in a sharp increase in adhesion. as can be observed from Figure 7.16. 

Further addition of GA up to a total concentration of I % causes the surface adhes ion to drop to 

a si milar level as that obtained for the standard coating with 0.1 % CMC. 
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Figure 7.16 Surface adhesion as a function of Grinsted Acetem concentration, 

for a 2-component coating with 0.1 % CMC as the l SI component. 

Error bar is representative of the standard deviation, n = 4. 

Further investigation of the relationship between 2-component coatings containing Grindsted 

Acetem as the lipid component and the surface adhesion force shows no significant effect on the 

type of failure occurring as measured by the amount of chocolate residues adhering or on the 

hardness of the chocolate systems. as can be observed from Figure 7.17 A and B. respecti vely. 

Compared to the basic 0.1 % CMC coating. the surface glossiness of both the chocolate- mould 

interface and the mould surface is significantly lower for the 2-component coating containing 

Grindsted Acetem. as can be seen in Figure 7.17C. Figure 7.170 shows the water contact angle 

on the clean surfaces and on the same surfaces after chocolate contact. The results indicate a 

limited increase in water contact angle after chocolate contact, suggesting that the mould surface 

is becoming more hydrophobic as a result of the migration of lipid components from the 

chocolate to the mould surface. However, this effect is not as strong as previously observed for 

the standard polycarbonate surface. An increase in the amount of GA in the coating furthermore 

make the mould surface more hydrophilic. The contact angle difference between before and 

after chocolate contact is similar for all surfaces. 

The overall results indicate that addition of a lipid component in the form of the acetic acid ester 

Grindsted Acetem to a coating containing 0.1 % CMC does not show any positive effect on the 

surface adhesion force. From a consumer point of view the lipid component negatively affects 

the visual appearance of the chocolate system. especially the surface gloss. Based on these 

re ults such a 2-component coating is not recommendable. 
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Figure 7.17 The effect of Grindsted Acetem concentration of a 2-component coating ystem 

with 0.1 % CMC on the amount of residues after probe separation (A), the hardnes 

of the solidified chocolate samples (B), the difference of surface glossine s (C) 

and the water contact angle (D). 

In (B) (_) represents the hardness of the bulk at the chocolate-air interface, (e ) the bulk at 

the chocolate-mould interface, ( A ) the surface at the chocolate-air interface, and ( ~ ) the 

surface at the chocolate-mould interface, respectively. In (C) (+) represents the urface 

glossiness of the mould surface, ( .... ) the chocolate-mould interface, and (~ ) the chocolate-air 

interface. In (D) (0 ) represents the water contact angle before chocolate contact, (0 ) after 

chocolate contact, and ( the difference in contact angle before and after chocolate contact. 

Error bar is representative of the standard deviation. 

7.3.4 Three component coatings 

Aim of the pre ent re earch wa to develop a coating ba ed on the re ult previou Iy obtained 

for the indi idual hydrocolloid and lipids and 2-component coating y tern. Four different 

y te rn were prepared including the hydrocolloid CMC a the ba ic thin film forming agent, 

ucro e a the pia ticizer and Grind ted Acetem a the lipid ernul ifier. The re ult pre ented in 

Figure 7.18 how the experimental surface adhesion force a a function of the four differ nt 3-

component coating y te rn developed. 0 . 1 % CMC wa added as the tandard coating y te rn 

for compari on purpo e . Compared to the I-component CMC coating y tern all 3-component 

coating ignificantly increa ed the urface adhe ion force. 
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The only system that has an adhesion force close to that of the standard is the system containing 

0.1 % CMC + 1% Grindsted Acetem + I % sucrose. However, thi s system has a relati vely large 

error and a detrimental effect on the visual outlook of the chocolate system. 
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Figure 7.18 Surface adhesion as affected by the 3-component coating composition. 

GA stands for Grindsted Acetem and S for sucrose. 

Error bar is representative of the standard deviation, n = 4. 

Further investigati on of the relationship between 3-component coatings containing a 

hydrocolloid, plasticizer and lipid component and the surface adhesion force shows a clear 

di stincti on in the amount of residues adhering between 0.1 % GA and I . O~ GA, as can be 

observed from Figure 7.19A. With a low lipid concentration an adhesive failure is observed. 

with no residues adhering to the mould surface after separation. An increase in GA 

concentrati on results in a cohesive- adhesive failure. There is no correlati on between the type of 

failure occurring and the hardness of the chocolate systems, shown in Figure 7.198 . A minor 

softening effec t can be observed for the 3-component coating ystems, but there is no clear 

trend. Similarly, the positive effect previously observed for sucrose addition on the surface 

olossiness is not observed in Figure 7.19C. The interaction between Grindsted Acetem and the 
o 

sucrose is assumed to be responsible for this effect. Results obtained for the water contac t angle, 

Figure 7.1 90 , seem to be the inverse of those obtained for the surface adhesion force. The 

highest adhesion is obtained with the system showing the most hydrophilic character after 

chocolate contact, whilst the system with the most hydrophobic character has the lowest surface 

adhesion force. [n general, the adhesion force seems to increase when the contact angle aft er 

chocolate contact decreases, i.e. the surface is more hydrophilic. 
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Above re ult indicate that the 3-component coating y tern developed in thi re earch are not 

capable of reducing the urface adhe ion force of a polycarbonate mould urface. 
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Figure 7.19 The effect of composition of a 3 component coating system on the amount of 

residues after probe separation (A), the hardness of the solidified chocolate samples (8), the 

difference of surface glossiness (C) and the water contact angle (D). 

Std refers to a standard coating containing 0.1 % CMC, all others samples are based on the 
standard coating and contain in addition 0.1 % GA and sucrose (I), 0.1 % GA and 1 % sucrose 

(11), 1% GA and 0.1 % ucrose (III), or 1 % GA and sucrose (IV), respectively. In (8) (_) 

represents the hardne s of the bulk at the chocolate-air interface, ( e ) the bulk at the 

chocolate-mould interface, ( . ) the surface at the chocolate-air interface, and ( T ) the urface 

at the chocolate-mould interface, respectively. In (C) (+) represents the surface glo ine s of 

the mould urface, ( ~ ) the chocolate-mould interface, and ( ~ ) the chocolate-air interface. [n 

(D) (0 ) represents the water contact angle before chocolate contact, (0 ) after chocolate 

contact, and ( the difference in contact angle before and after chocolate contact. 

Error bar is representative of the standard deviation. 
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7.3.5 Chocolate composition 

A final research study was conducted to determine the impact of chocolate compositi on on the 

surface adhesion force. Figure 7.20 represents the surface adhesion as a functi on of three 1-

component edible coating systems, comparing a dark chocolate (52% cocoa o lids) with a milk 

chocolate (29% cocoa solids) system. Two contrasting behaviours can be observed. Starting 

with a standard polycarbonate mould surface, the surface adhe ion of the dark chocolate 

syste m decreases a a result of the application of diffe rent I-component coating sys tems. T he 

lowest surface adhesion force is observed for a coating system containing Grindsted Ac te m. 

For a milk choco late system, on the other hand, the surface adhesion force increa. es as a result 

o f the surface modifications, with the highest surface adhesion force for a coating sys tem 

contai ning Grindsted Acetem. 
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Figure 7.20 Surface adhesion as affected by different l-component coating systems 

in combination with a dark chocolate (fl:I ) or a milk chocolate ( system. 

Error bar is presentative of the standard deviation, n = 4. 

These results indicate that chocolate composition or ingredients have a strong impac t on the 

urface adhesion force, and that interactions at the chocolate-mould interface should be taken 

into consideration when developing edible coatings which are applied as surface modificati ons. 

A imilar test was done using aerated chocolate samples, which showed a cohesive- adhesive 

fa ilure in a ll instance and negligible differences in surface adhesion. From these results it can 

be concluded that edible coatings can only be applied to indi vidual chocolate samples and 

cannot be used a a generali zed surface modification technique. 
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7.4 DISCUSSION 

One of the main issues in this research concerning edible coatings is the level of adhesion. As 

the coating is edible. there is no preference for the thin film to adhere to the solid mould 

substrate or the chocolate surface. However. it is important that the coating does not show 

interactions with both the mould and chocolate surface, as this will commonly result in an 

increase in the force required to de-mould the chocolate or visual defects. Research done on 

confectionery products has focussed primarily on the use of edible coatings to inhibit lipid 

migration by incorporating thin films in the confectionery products as a barrier between the 

chocolate shell and lipid-based filling (Nelson and Fennema, 1991; Brake and Fennema, 1993). 

Another area of interest within the confectionery industry is the use of edible coatings to 

enhance gloss and overall appearance, for example through the use of polyvinyl acetate 

(Hagen maier and Grohmann, 1999) or whey protein isolate (WPI) (Lee et aI., 2002b). None of 

these approaches. however. investigated the adherence of the coating to a solid substmte such as 

a polycarbonate mould. In those cases where a solid substrate was used for the thin film 

preparation this generally resulted in the formation of a stand-alone film, and the interactions 

with a confectionery product were not analyzed. 

Schou et al. (2005) developed edible sodium caseinate films for the packaging of bread 

products, replacing synthetic plastic packaging materials. One of the problems observed was 

that addition of glycerol as a plasticizer was essential for the formation of a film that would not 

crack during handling. They concluded that the plasticizers competed for hydrogen bonding and 

electrostatic interactions with the protein chains, subsequently lowering the protein chain-to­

chain interactions. A similar conclusion was given by Hong et al. (2004), who assumed that the 

increased mobility of the polymer chains was the reason of the enhanced flexibility of the WPI­

plasticizer coatings. In the present research a polysaccharide, carboxymethyl cellulose (CMC), 

was chosen for more in-depth investigations over a protein, WPI. First of all. in single 

component coatings the WPI coating was very brittle, and thus affected the visual appearance of 

the chocolate surface negatively. Secondly, the CMC coating showed a higher reduction of the 

experimental adhesion force. Finally, the CMC coating improved the surface gloss of the 

chocolate samples more than the WPI coating. Even though CMC is not a protein. it is expected 

that the mechanism responsible for the improvement in film forming properties through the 

addition of a plasticizer is the same as that discussed for proteins, .i.e. an enhanced flexibility 

and mobility of the polymer chains as a result of the location of the plasticizer molecules in 

between the polymer chains. 
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It is generally accepted that plasticizers are essential ingredients to prevent film brittleness and 

to enhance surface gloss. The type of plasticizer depends to a certain extent on the application. 

For chocolate products. Lee et at. (2002a) showed that sucrose gave a chocolate surface a higher 

gloss compared to glycerol. propylene glycol or polyethylene glycol. Oangaran et al. (2006) 

continued this work and related the loss of gloss of WPI coatings with time to the 

transformation of amorphous sucrose to crystalline sucrose. Nucleation and crystal growth 

enhance the surface roughness and subsequently decrease the surface gloss. Addition of a 

crystallization inhibitor, such as lactose, prevents this loss of gloss. The presence of lactose in 

milk chocolate is expected to affect the interactions between an edible coating containing 

sucrose and the chocolate system, which is assumed to be a result of the crystallization 

inhibitive characteristics of lactose. 

The solid substrate is often strongly correlated with the mechanical properties of a thin film, and 

not the coating (Lee et al.. 2(07). Primarily because the surface chemistry of the substrate 

determines the interactions at the interface. Hong et al. (2005) mention the fact that it was 

almost impossible to apply a homogeneous polysaccharide coating on an untreated non-polar 

polypropylene (PP) surface. They hypothesized that the solid substrate did not offer enough 

binding sites for biopolymer coatings. Modification of the PP surface by corona discharge 

increased the surface energy and enhanced film forming properties. A poly(vinyl chloride) 

(PVC) substrate. on the other hand, promoted the formation of uniform WPI coatings (Hong et 

al.. 2004). and it was hypothesized that the molecular structure of PVC allowed the formation of 

enough binding sites between the whey protein and the substrate. Comparing the molecular 

structure of the solid substrate used in this research, i.e. polycarbonate, with that of the main 

coating component, i.e. CMC, leads to the formulation of the hypothesis that there are enough 

binding sites which would promote adhesion of a CMC coating to a polycarbonate mould 

surface. Similar to observations made by Hong et at. (2004), it was observed in the current 

research that CMC concentration did not affect the surface energy of the edible films. The water 

contact angle is independent of the CMC concentration of the coating, see Figure 7.80. It is not 

independent of plasticizer type though, and the water contact angle is shown to decrease with 

increasing molecular weight of the plasticizers. The current research does not show an explicit 

difference between glycerol and sucrose, but clearly shows a reduction in solid surface energy 

as a result of the inclusion of a plasticizer in the coating. In contrast to the results obtained in 

CHAPTER 4, where a reduction in the solid surface free energy caused a decrease in the surface 

adhesion force. the results obtained in the current research showed a slight increase in surface 

adhesion force. Interactions at the chocolate-mould (coating) interface as a result of the 

presence of sugar in both systems are believed to be responsible for this increase in adhesion. 
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7.5 CONCLUSIONS 

Film structure and composition impact the optical, e.g. surface gloss, properties of a coating. 

and these characteristics can be transferred from the coating to a chocolate system upon direct 

contact. The quality attributes of the thin film need to be high in order to deliver a high quality 

surface finish to the chocolate system. Plasticizers have generally been observed to have a 

positive influence on the surface gloss of chocolate samples. 

The results presented in this chapter have shown that it is possible to reduce the surface 

adhesion force by modifying the solid mould surface, especially through the use of hydrocolloid 

coatings. Further optimisations are required to develop an edible coating that is capable of 

lowering the surface adhesion force, without a cohesive-adhesive failure. However, this 

indicates that a combined action might be required, i.e. a solid surface modification to alter the 

surface energy of the mould material, and a chocolate modification increasing the cohesive 

strength of the chocolate system, possibly through addition of an emulsifier or surfactant to the 

chocolate system. 
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CHAPTERS 

CONCLUDING REMARKS 

8.1 SUMMARY OF THE MAIN RESULTS 

Aim of this research study was to gain understanding of the mechanisms that cause the sticking 

(adhesion) of (aerated) chocolate to the mould materials and to reveal determining factors. An 

experimental method was developed to determine the force required to pull a probe off a 

solidified chocolate sample, imitating the chocolate demoulding process. By establishing 

relationships between the surface adhesion force, i.e. the level of adhesion of chocolate to the 

mould surface during demoulding, and the solid surface free energy of a range of mould 

materials, as well as processing conditions, understanding of the interactions taking place at the 

chocolate-mould interface was enhanced. 

Measurement of the surface tension, y, of a set of probe liquids and the contact angle, 0, of each 

individual probe liquid when placed on a solid surface, allows the determination of the solid 

surface free energy, )Is. The surface tension of liquid chocolate was found to vary depending on 

the chocolate composition, and in particular the presence of surface active molecules such as 

lecithin. Fatty acid composition of cocoa butter was hypothesized to be the main factor 

determining the value obtained for the surface tension. Similar results were obtained for the 

total solid surface energy, ystot, of chocolate systems, with milk chocolate showing a 

significantly higher dispersive component of the surface energy, ysd, than dark chocolate. With 

respect to the solid mould materials results obtained for yslOI were in good agreement with those 

observed in literature, i.e. PTFE < polycarbonate < stainless steel < quartz glass. Main 

differentiating factor amongst these solid surfaces is the electron donor contribution to the 

surface free energy, Ys-. 

Correlating the surface energy results with the experimental surface adhesion force shows an 

exponential growth relationship, with an apparent critical surface free energy of the mould 

substrate of - 30 roN m· l
. For solid materials with a surface energy above this value a 

pronounced increase in surface adhesion could be seen. A similar exponential growth 

relationship was established between the electron donor component, y;, and the surface 

adhesion force, with a critical value of the electron donor component of - 15 mN m· 1 below 

which the chocolate-mould adhesion was minimized. Based on a review of literature it is 

proposed that the surface energy of solid mould materials affects the crystallization and 

solidification mechanisms of the cocoa butter present within the surface region of the chocolate 

system. A low surface energy substrate is assumed to promote the formation of a loose and 

porous structure with limited crystal-<:rystal and crystal-mould interactions and subsequently a 

relatively low surface adhesion force. 
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Particular processing conditions generally applied during the moulding and demoulding stages 

in commercial chocolate manufacturing plants were investigated in relation to their effect on the 

experimental surface adhesion force using a set-up specifically developed in this research. 

Variation of the contact time, i.e. the time from the moment of chocolate-mould interface 

creation up to the measurement of the surface adhesion force, affected the crystallization and 

solidification mechanisms. A low contact time is assumed to correlate to low total solids 

content. With increasing contact time the total solids content increases through crystallization of 

liquid fat, resulting in an increase in the cohesive strength of the chocolate system and an 

increase in the resistance against separation. Based on these results a contact time ~ 60 minutes 

is recommended, in combination with the cooling conditions applied in this research. A strong 

correlation with crystallization was also observed for the mould surface temperature, which is in 

good agreement with observations made in literature. High mould temperatures (- 50°C) at the 

time of chocolate-mould interface creation are responsible for the melting out of the seed 

crystals present in the surface region, subsequently limiting the formation of Form V crystals. 

Low mould temperatures (S 0 °C) lead to the formation of polymorphic forms other than Form 

V. Cooling temperature is thought to affect the rate of heat transfer and subsequently the rate of 

crystallization, rather than the polymorphic transition. A high heat transfer rate, i.e. low cooling 

temperature, is proposed to promote the formation of a relatively dense packing with small fat 

crystals. The subsequent increase in crystal--crystal and crystal-mould interactions is expected 

to be related to the observed increase in surface adhesion force, similar to the observations made 

for high surface energy mould materials. A recommendation was made to pre-heat the mould 

materials under controlled environmental conditions, i.e. 0 %RH, 25-30 °C, prior to the 

moulding stage, and to use a cooling temperature of 10-15 °C in order to improve demoulding. 

The negative interaction of chocolate with moisture is well-known. According to the results 

obtained in this research an optimal relative humidity that gives minimum surface adhesion and 

maximum chocolate quality, is 0 % RH. Moisture sorption experiments have confirmed the 

adsorption of water molecules on the polycarbonate mould surface at high relative humidity. 

Desorption was observed at low humidities, and the transition from desorption to adsorption 

coincided almost perfectly with the sharp decrease in surface adhesion at 40 - 50 %RH. The 

formation of a wetting film by the water molecules is assumed to limit the number of 

attachment sites at the chocolate-mould interface, creating a more hydrophilic mould surface. A 

similar observation was made when comparing the effect of different cleaning methods. 

Application of a rinsing aid after cleaning with water enhanced mould surface hydrophilicity 

and decreased the surface adhesion. Application of a detergent made the surface more 

hydrophobic and significantly enhanced the surface adhesion force. The best result, i.e. lowest 

surface adhesion force, was obtained for polycarbonate surfaces which were not cleaned 

between measurements. Migration of fat residues from the chocolate to the solid mould surface 

is assumed to be responsible for this reduction in surface adhesion. 
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A similar correlation between solid surface energy and surface adhesion as obtained for normal 

chocolate systems was found for aerated chocolate systems. With increasing solid surface 

energy the surface adhesion increases. The main difference between the aerated and standard or 

non-aerated systems is the reduced cohesive strength of aerated chocolate systems. All aerated 

systems show a cohesive failure within the aerated chocolate mass, rather than a failure at the 

chocolate-mould interface. This may be caused by a combined insulation effect of the mould 

material and the aerated chocolate system, resulting in a reduction in the heat transfer rate and 

consequently a reduction in the crystallization and solidification rates. 

The gas used for the aeration step significantly affected the aeration and microstructure of 

chocolate systems, CO2 giving a so-called macro-aeration and N2 a micro-aeration. This is 

expected to be a result of the differences in solubility. Structural characterization of the 

microstructure of aerated chocolate using C-Cell allowed the quantitative measurement of the 

number of cells per surface area and the average cell diameter. A linear correlation of the 

surface adhesion force with the number of cells per surface area was obtained for systems 

containing CO2 gas, whereas no significant correlation was found for systems containing N2 

gas. Based on these results the hypothesis is that N2 inclusion in chocolate systems does not 

affect the contraction, and therefore shows good demoulding properties, whereas CO2 inclusion 

negatively affects demoulding at higher concentrations. It is assumed that the CO2 gas dissolves 

in the water vapour present at the chocolate-mould interface, subsequently increasing the 

stickiness. Upon (shock) cooling the expansion of water vapour is thought to be responsible for 

the demoulding of the aerated chocolate system. 

A variety of edible thin film coatings was prepared using either individual hydrocolloids or 

lipids, or a combination of two- or three-components. For the single-component coatings it was 

observed that hydrocolloids in general possessed better surface adhesion reduction capabilities. 

Advantage of hydrocolloids over lipids was primarily their positive effect on the surface 

appearance of the chocolate system. Disadvantage of the use of hydrocolloids was the 

preparation of a stand-alone coating at higher concentrations, as a result of which the surface 

adhesion force could not be determined. The use of plasticizers such as sucrose or glycerol 

positively influenced the film forming capacities of 0.1 % CMC solutions, and enhanced the 

surface glossiness of the chocolate surface. Softening of the coating after plasticizer addition 

negatively affected the stickiness at the chocolate-mould interface, resulting in a cohesive­

adhesive failure. It was concluded that further optimisations are required, but edible coatings 

appear useful as a surface modification technique. 
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8.2 PRACTICAL ApPLICATION 

The results obtained in this research have shown that the surface adhesion of different chocolate 

systems is not necessarily linearly correlated with their composition or with processing 

conditions. From a practical point of view this basically means that the mould material should 

be optimized for each specific application. i.e. chocolate type or product. Low surface energy 

materials such as PTFE are recommended for reduced surface adhesion, but are unfavourable 

for aerated chocolate systems due to their relatively low heat transfer capabilities. Optimization 

of the mould material is therefore recommended, possibly by applying a thin PTFE film on a 

stainless steel base. The relationship between the surface free energy of solid mould surfaces 

and the surface crystallization of chocolate systems implies the possible use of particular 

surfaces as a crystallization enhancer. Complete replacement of the tempering stage is not 

recommended though as the formation of crystal nuclei is still required. 

Until now, observations made during commercial chocolate manufacturing with respect to the 

effect of processing conditions on chocolate manufacturing often were not reported. This 

research increased the scientific understanding of problems during the moulding and 

demoulding stages of the chocolate manufacturing process. This understanding can be used for 

the future optimisation of the processing guidelines. to avoid surface defects and product recalls. 
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8.3 FUTURE WORK 

Future work recommended based on the results obtained in this research: 

• Development of a surface with a non-adhesi ve character: 

o Surface modification through the application of an edible coating. Both surface 

chemistry and surface energy of solid surfaces can be controlled via this 

technique. The use of edible or biodegradable compounds allows the coating to 

adhere to either the mould or the chocolate or both upon demoulding: 

o Surface modification through the inclusion of additives in the cleaning process, 

especially in combination with a rinsing aid; 

o Chemical or physical modifications of mould surfaces, such as ion heam 

irradiation. synchrotron radiation under CO2 gas atmosphere. plasma irradiation 

or corona discharge. These surface modifications are aimed at obtaining a 

material with a low surface energy and a high heat transfer coefticient. 

• Determining the relationship between chocolate composition and the stickiness or 

adhesion of chocolate to mould surface: 

o Research into the use of atomic force microscopy (AFM) to measure the 

adhesion between chocolate and solid mould surfaces. especially in relation to 

the ingredients used; 

o The effect of different emulsifiers and/or surfactants on the cohesive forces of 

chocolate. especially in combination with aeration. 

• Understanding of the interactions taking place at the chocolate mould interface: 

o Application of the extended OVLO theory (named after Oerjaguin. Landau. 

Verwey and Overbeek) in combination with surface thermodynamics to predict 

the adhesion behaviour of chocolate; 

o Investigation of the composition of deposits or residues present on the mould 

surface after demoulding using surface characterization techniques such as 

confocal laser scanning microscopy (CLSM) and/or scanning electron 

microscopy (SEM); 

o Investigation of the effect of solid surface energy and processing conditions on 

cocoa butter crystallization via differential scanning calorimetry (OSC). 
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