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Abstract

Many problems in artificial intelligence and computer science can be formulated as constraint

satisfaction problems (CSPs). A CSP consists of a set of variables among which a set of con-

straints are imposed, with a solution corresponding to an assignment for every variable such that

no constraints are violated. Most forms ofCSP are NP-complete.

Recent research has shown that theCSP exhibits aphase transitionas a control parameter is

varied. This transition lies between a region where most problems are easy and soluble, and a

region where most problems are easy but insoluble. In the intervening phase transition region, the

average problem difficulty is greatest. Phase transition behaviour can be exploited to create test

beds of hard and easy problems forCSP algorithms. In this thesis, we study the phase transition

of the binaryCSP and examine various aspects of complete search algorithms forit.

The phenomenon of exceptionally hard problems (‘ehps’) is examined in detail: these are

rare searches on easy problems which become exceptionally expensive for a particular complete

algorithm following a poor early search move. An explanationfor the occurrence ofehps is

proposed, and the relative susceptibility of certain algorithms to the phenomenon is explored.

We then show that the phase transition paradigm can be applied totwo tasks of polynomial cost

complexity: attempting to establish arc and path consistency inaCSP. Phase transition behaviour

analogous to that found when searching for a solution is demonstrated for these tasks, and the

effectiveness and cost of establishing arc and path consistency isexamined.

The theme of establishing consistency inCSPs is extended by studying an algorithm which

maintains arc consistency during search. Its performance is compared with that of an algorithm

which maintains a lower level of consistency, and it is shown that the higher level of consistency

reduces average search cost andehp behaviour on many types ofCSP.

Finally, the subject of dynamically selecting the variable toinstantiate at each stage in the

search process is considered. We compare a number of heuristics which attempt to select the

variable most likely to lead to failure, and show that the supposed principle behind these appears

to be fundamentally flawed.
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Chapter 1

The Constraint Satisfaction Problem

and its Phase Transition

Consider the task of creating an examination timetable for a large university. Every one of the

exams must be assigned a room, time and invigilating member of staff. These assignments are

subject to a number ofconstraintswhich must not be violated, such as: the capacity of the rooms

must be sufficiently large to house all the candidates; two exams cannot run concurrently if one

or more students plan to sit both; staff must be available for invigilation duty at the right time;

disabled students must be placed in rooms with sufficient facilities; and no student must sit more

than two exams in any one day and six exams in any one week. Of allthe permutations ofhroom,

time, staffi assignments which can be given to the set of examinations, only those which satisfy

all of the constraints constitute valid solutions. Such a timetabling problem is an example of a

constraint satisfaction problem.

Another problem which can be formulated as a constraint satisfaction problem is a simple

chess puzzle known as then-queens problem. The objective here is to assignn chess queens to

positions on ann�n chess board, such that no two queens threaten each other. The constraints

specify, therefore, that no two queens must lie on the same row, column or diagonal on the board.

The entities in a constraint satisfaction problem to which values must be assigned are itsvari-

ables. Even small numbers of variables in a problem can create a vast search space, and the

solutions to the problem, if there are any, may be widely scattered over this space. These two

factors combined can often make the time taken to search for a solution unfeasibly long.

A vast search space does not necessarily mean an intractable problem, however, and many con-

straint satisfaction problems are in fact very easy. If the examination timetable described above

were to involve, say, only three exams involving a handful of students with plenty of suitable

accommodation, staff and time available, then the constraints are so loose that a solution is very

easy to find. Similarly, if twenty exams must be scheduled into only two days with one room

available, then the problem is hopelessly over-constrained and it is easy to prove that no solutions

exist. The difficult problems lie between these extremes, when it is not so clear whether a solution

can be found or not.
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Figure 1.1: Example solutions to the 8-queens problem and the larger, easier, 12-queens problem.

Problem size is not necessarily a guide to difficulty, either. Then-queens problem actually be-

comes less tightly constrained as the number of queens (and thesize of the board) increases (Tsang

1993), which essentially makes the problem easier to solve. To understand this, consider that an

increase inn from, say, eight to nine adds one queen to the problem, but seventeen additional

board squares. Figure 1.1 illustrates an example solution to the8-queen and 12-queen problems.

A queen placed on the 8 row board can rule out as many as 27 of the63 remaining positions

(43%), while a queen on the 12 row board can rule out at most 43 ofthe other 143 positions

(30%). The very specific properties of this problem prompt Tsang to advise the use of caution if

usingn-queens to benchmark the performance of search algorithms.

The behaviour of constraint satisfaction problems varies greatly, depending on the problem

size and its level of constrainedness. Recent insights into the circumstances under which problems

are easy or hard, and whether they have solutions or not, have increased understanding of how

they can be searched more efficiently. This in turn has promoted more rigourous testing of search
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techniques.

The behaviour of the constraint satisfaction problem and the study of search techniques for

it form the basis of this thesis. We begin in this chapter by noting the importance of constraint

satisfaction in many areas of computer science, and by formallydefining the constraint satisfac-

tion problem. The task of searching these problems is discussed, and the pattern of behaviour

known as thephase transitionis introduced. The role of phase transitions in the study of search

techniques is then examined and an overview of the structure of the thesis is given. A number

of important terms are introduced which are used throughout this thesis. These are introduced in

bold type.

1.1 The Ubiquity of Constraint Problems

The constraint satisfaction problem is a simple but extremely powerful paradigm for representing

many types of problem which arise in the fields of artificial intelligence and computer science.

(Meseguer 1989), (Kumar 1992) and (Tsang 1993) discuss applications of the constraint satisfac-

tion problem in areas including:� Belief Maintenance (Dechter and Pearl 1988)� Configuration (Mittal and Falkenhainer 1990)� Databases (Dechter and Pearl 1989)� Design (Navinchandra and Marks 1987)� Diagnosis (Sabinet al. 1995)� Machine Vision (Montanari 1974)� Planning (Kautz and Selman 1992)� Scheduling (Fox 1987)� Temporal Reasoning (Allen 1983)� Truth Maintenance (de Kleer 1986; de Kleer 1989)

The power of formulating problems in terms of entities linked by constraints lies in the ability to

create a representation that closely mirrors the actual problem. Such an intuitive representation

makes solutions easier to understand, and assists the process of creating search heuristics which

exploit characteristics of the problems.

The ubiquity of constraint satisfaction problems throughout the world of computation makes

efficient techniques for solving them highly desirable. This desire has led to the development of

constraint programming tools and languages, which provide built-in constraint handling functions

and the facilities to represent problems easily. Well known constraint programming languages

include CHIP (Constraint Handling in Prolog) (Simonis and Dincbas 1987) and the more recent

C++ based ILOG Solver (Puget 1994).
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1.2 The Constraint Satisfaction Problem

Constraint satisfaction problems (CSPs) appear in many forms, linked by a number of basic prop-

erties. To provide a context for our study of theCSP, a number of important formal definitions

are given below. These are followed by discussion of the issues relating to finding solutions for

the problem, the conditions which make most forms of theCSP fundamentally difficult to solve,

and strategies which can reduce the search space of aCSP prior to search.

1.2.1 Formal definitions

The following series of definitions relating to the constraintsatisfaction problem and associated

properties are based on those provided by (Tsang 1993).

A constraint is defined by a pair(V;R): V is a set of variablesfvi ; :::;v jg, each with adomain

of possible valuesD; R is a relation such thatR� Di � :::�D j . Informally, a constraint specifies

the allowed tuples of values for the variables involved.

The arity of a constraint denotes the number of variables involved: binary constraints, for

example, involve pairs of variables, while ternary constraints involve triples.

A generalconstraint satisfaction problem(CSP) is defined by the tuple(V;D;C): V is a set

of variables;D is a function mapping each variable inV to its domain of possible values;C is a

(possibly empty) set of constraints, each involving an arbitrarysubset ofV.

A finite constraint satisfaction problem imposes the restriction that the number of variables,

the sizes of their domains, and the number of constraints are finite. For brevity, we use the

termsconstraint satisfaction problemandCSP to denote a finite constraint satisfaction problem

throughout the rest of this thesis.

A constraint graph, defined by a pair(V;E), can be associated with anyCSP: the vertices,

V, correspond to each problem variable; the edges,E, are placed between pairs of vertices whose

corresponding variables are mutually involved in one or moreconstraints of any arity. Properties

of the constraint graph for aCSP include the density of the constraints, the degree of vertices

(variables) and the bandwidth.

A solution to aCSP is a total assignment,S, such that for each variablev2V, S(v) 2 Dv and

for each constraint(fvi ; :::;v jg;R), fS(vi); :::;S(v j)g 2 R. Informally, a solution is an assignment

to every variable of a value that is a member of its domain, andthat does not violate any of the

constraints placed on the variables.

A CSP for which there exists one or more solutions is said to besoluble, while one without

solutions isinsoluble.

1.2.2 Issues involved with the CSP

The solubility or insolubility of any (finite)CSP is determinable, since the set of all total assign-

ments to the problem is finite. Thus, theCSP avails itself to asearch processwhich can look for

solutions.

Tasks associated with searchingCSPs include: determining whether or not a solution exists

(thedecision problem); finding a solution if one exists (thesearch problem); finding all solutions
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(theenumeration problem); determining the number of solutions (thecounting problem); and

finding the optimal solution, given an optimality criterion (theoptimisation problem).

Thearity of a CSP is defined by the maximum arity among its constraints. The studies pre-

sented in this thesis are restricted to dealing with thebinary constraint satisfaction problem. A

binaryCSP involves only unary or binary constraints. However, since unary constraints on vari-

ables can be dealt with simply by removing disallowed values from their domains, the binary

CSPs we will deal with in practice contain only binary constraints.

Concentrating solely on binaryCSPs does not necessarily lead to a loss of generality in our

analysis. AnyCSP of higher arity can theoretically be reduced to a binaryCSP, and (Tsang 1993)

presents two methods for this. It should be noted, however, thatthe representation of some high-

arity constraints may require a number of binary constraints that is exponential in the arity of the

original constraint.

1.2.3 Computational complexity

The CSP in its general form is NP-complete (Garey and Johnson 1979). This means that it is

unlikely that an algorithm for the search problem exists that does not have a worst-case time

complexity exponential in the size of the problem. ACSP with n variables, each with domains

of sizem, hasmn total assignments, giving rise to a worst-case time complexity that is potentially

O(mn).
Even heavily restricted forms ofCSP are NP-complete. To illustrate this, consider aCSP

consisting of Boolean variables (domain sizes of 2) and ternaryconstraints (arity 3). This class of

CSP subsumes the 3-satisfiability (3-SAT) problem, which was the first computational task shown

to be NP-complete by (Cook 1971). Cook showed that if the arityof a Boolean Satisfiability

(SAT) problem is greater than 2, the problem is NP-complete.

Similarly, the graph colouring problem is NP-complete when3 or more colours are avail-

able (Garey and Johnson 1979). 3-colouring can be transformed into a binaryCSP with domain

sizes of 3. ACSP with arity 2 and only boolean variables has a worst-case time complexity poly-

nomial in the problem size, but almost any relaxation of this will make the problem NP-complete.

1.2.4 Constraint propagation

The complexity of theCSP stems from interaction between the explicitly defined constraints,

which produces many more implicit constraints. One approach to simplifying, conceptually, the

search process is topropagate the effects of the explicit constraints around the problem prior to

search. Such a preprocessing step establishes some level ofconsistencyin theCSP. The level of

consistency achieved by a constraint propagation process is denoted by the termk-consistency,

for which (Meseguer 1989) and (Kumar 1992) provide similar definitions, summarised here as:

A set of variables isk-consistent if for each set ofk� 1 variables with values sat-

isfying all the constraints among them, it is possible to find a newvalue for a new

variable such that all the constraints among thek variables are satisfied. If the set of

variables isj-consistent for all allj � k, then it isstrongly k-consistent.
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C(1,2)

v2

v1 v3

C(2,3)

Implicit C(1,3)

Figure 1.2: An implicit binary constraint created by two explicit ones.

Strong 2-consistency is known asarc consistency. Informally, all pairs of variables in an arc

consistentCSP are mutually consistent, in that any value in the domain of one variable is consis-

tent with at least one value in the domain of every other variable. Establishing arc consistency in

a CSP often results in the removal of inconsistent (orunsupported) values from the domains of

variables, thereby reducing the size of the problem’s search space. Values that are unsupported

do not form part of any solution to theCSP. If the process of making aCSP arc consistent causes

adomain wipe-out for a variable, then the problem is proven to be insoluble.

Strong 3-consistency is known aspath consistency. Here, all triples of variables in theCSP

are made mutually consistent. For a binaryCSP, establishing path consistency effectively makes

explicit the implicit constraints that bind triples of variables. Hence, this process may add ex-

tra explicit binary constraints to the problem in addition toremoving unsupported values from

variable domains. To illustrate this, consider three variables,v1, v2 andv3, linked by two binary

constraints as shown in Figure 1.2. The path consistency process calculates the implicit binary

constraint betweenv1 andv3 that arises from the combined effects of the two explicit constraints

which indirectly link them. If this new constraint is non-trivial, it is added to the problem and

takes part in the arc consistency phase of the process.

If a CSP is stronglyk-consistent, wherek is the number of variables in the problem, then

solutions may be obtained without any need for search. The task of establishing such a level of

consistency is, however, NP-complete itself (Tsang 1993).

1.3 Searching CSPs

Three important properties are associated with any search process:soundness, completenessand

termination . Given a problem, an algorithm which is sound will find only valid solutions, and

one that is complete will find all solutions given enough time.The termination property is usually

a by-product of completeness.

Any credible algorithm for theCSP must be sound, though it need not necessarily be com-

plete.Complete algorithms for theCSP usually involve some systematic search process which

methodically explores the search space of the problem.Incomplete algorithms for the CSP

sacrifice the property of completeness in return for greater mobility to jump around areas of the

search space, usually using some stochastic exploration technique. Brief reviews of complete and

incomplete methods for searching theCSP are presented below.
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var[j]

var[n]

var[1]

var[h]

var[i]

Past variables

Current variable

Future variables

Figure 1.3: The three variable states during backtracking search.

1.3.1 Complete algorithms

Many systematic search algorithms exist to find a solution to aCSP or show that it is insoluble.

These algorithms tend to be refinements ofbacktracking search (Golomb and Baumert 1965).

Backtracking search aims to build and extendpartial solutions until a complete solution is found.

This is achieved byinstantiating the problem variables with values from their domains, using a

pre-definedinstantiation ordering .

At any stage in a backtracking search process, each variable is inone of three possible states:� Past variableshave been instantiated with values from their domains that are consistent

with the instantiations of all other past variables.� Thepresent variable is about to be instantiated with a value from its domain. This must

be consistent with the instantiations of all past variables.� Future variables have not yet been instantiated.

Figure 1.3 illustrates these variable states graphically. Thesearch process consists of a number of

search moveswith the following characteristics:� A forward search move successfully instantiates the present variable and moves on to the

next variable in the instantiation order.� A dead endmove occurs when all values of the current variable are inconsistent with the

current partial solution.� A backward search move follows a dead end. The search steps back to a past variable and

tries a new instantiation for it.� A solution is found if the search moves forward past the final variable in the instantiation

order.
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� The search is exhausted if it steps back beyond the first variable.It then terminates.� Insolubility is proved if the search terminates without finding any solutions.

Each forward move in a backtracking search requires some form of consistency checkingto

validate the instantiation being made. This can be performedeither by checking backward against

the instantiations of the past variables, or by checking forward against the domains of the future

variables and making them consistent to some extent with the current instantiation. These styles

of forward move are known aslookback andlookaheadrespectively.

Similarly, there are two possible styles of backward search move. Chronological backtrack-

ing allows the search to step back only to the most recently instantiated variable, whileback-

jumping allows the search to jump back past a number of instantiated variables.

The generic backtracking algorithm (Golomb and Baumert 1965) uses lookback consistency

checking and chronological backtracking. Refinements to this algorithm which introduce back-

jumping capability include Backjumping (Gaschnig 1979) andConflict-Directed Backjumping

(Prosser 1993). Algorithms which use lookahead techniques with chronological backtracking in-

clude Backmarking (Gaschnig 1977; Gaschnig 1979), Forward Checking (Haralick and Elliott

1980) and algorithms which maintain arc consistency during search (Gaschnig 1979; Sabin and

Freuder 1994). The sophistication of lookahead and backjumping techniques can be combined

to produce hybrid algorithms (Prosser 1993). Complete algorithms for theCSP are discussed in

detail in Chapter 2.

1.3.2 Incomplete methods

CSPs with large numbers of variables often prove to be intractable to complete search methods,

due to the overwhelming search spaces involved. Incomplete search techniques, however, can

often find solutions to these problems within a reasonable amount of time by sacrificing com-

pleteness for efficiency.

Incomplete algorithms tend not to terminate naturally. This means that they may be have to be

terminated forcefully before they can find a solution, and alsomeans that they are incapable of

proving insolubility in a problem.

Incomplete search algorithms tend to use stochastic techniquesand are often based on physical

models (eg. hill climbing and simulated annealing) or biological models (eg. genetic algorithms

and neural networks). Well known hill climbing procedures includeGSAT (Selmanet al. 1992)

and the min-conflicts procedure (Mintonet al. 1992). TheGENET system (Wang and Tsang

1991) is an example of a neural network for constraint satisfaction.

1.4 Phase Transition Behaviour

Many types of NP-complete search problems are known to exhibit phase transition behaviouras

a control parameter is varied. This behaviour can be observedin populations of problems whose

characteristics, apart from those defined by the control parameter, remain relatively homogenous.

(Cheesemanet al. 1991) first identified the phase transition in graph colouring problems as the
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interface between a region where almost all problems have many solutions and are relatively

easy to solve, and a region where almost all problems have no solution and their insolubility is

relatively easy to prove. In this intervening region, the probability of problem solubility falls from

close to 1 to close to 0. Additionally, they observed empirically that the average cost of searching

these problems reaches a peak in this region.

Phase transition behaviour has been reported in an increasing number of computational prob-

lems, including boolean satisfiability (SAT) problems (Mitchellet al. 1992; Kirkpatrick and Sel-

man 1994; Crawford and Auton 1996; Gentet al. 1996a), Hamiltonian paths (Cheesemanet al.

1991), the travelling salesperson problem (TSP) (Gent and Walsh 1995a) and number partition-

ing (Gent and Walsh 1996a). (Williams and Hogg 1993) suggest that this phenomenon exists for

many general problems of search, and phase transitions are generally believed to be ubiquitous

amongst NP-complete problems.

Section 1.2.3 notes that graph colouring is a restricted case of a binaryCSP. Phase transition

behaviour in the binaryCSP was observed as early as (Gaschnig 1979), though only properly

recognised in the light of the seminal paper by Cheesemanet al.

The initial identification of phase transition behaviour has prompted a flurry of subsequent

work on the phenomenon. (Williams and Hogg 1994) have developed approximations to the cost

of finding the first solution and to the probability that a problem is soluble, both for specific

classes of constraint satisfaction problem (graph colouring,SAT) and for the general case. These

approximations are based on the asymptotic behaviour of the problems as the number of variables

becomes large; an instantaneous phase transition is predictedin the limit, where a step change in

the probability of problem solubility coincides with the peak in the cost of finding a solution at a

critical value of the control parameter.

Phase transitions in finite-sized problems tend not to be instantaneous, however, and occur over

a range of values of the control parameter. In drawing an analogy between the phase transition in

finite binaryCSPs and the physical phase transitions modelled by applied mathematicians, (Smith

1994) terms the region over which probability of problem solubility falls from 1 to 0 themushy

region. Significant theoretical work on predicting the location ofthe phase transition in binary

CSPs is presented by (Smith and Dyer 1996).

(Mitchell et al. 1992) empirically show that the peak in average cost to find the first solution to

SAT problems occurs at the value of the control parameter where 50% of the instances sampled are

soluble. This feature has been demonstrated empirically for other types of problem, for instance

in binary CSPs by (Prosser 1996). Theoretical work on predicting the location of the point of

50% solubility is presented by (Crawford and Auton 1996), who term this point thecrossover

point.

An illustration of phase transition behaviour in a type of computational problem is provided

by Figure 1.4. Thex-axis of both plots shows the control parameter of the problems, which in

this example are a type of binaryCSP. Ensembles of sample problems are searched at each point

along the control parameter range, with they-axis of the top plot showing how the median cost of

these searches varies as the control parameter changes1. They-axis of the bottom plot shows the

1They units used in this plot are not important, but can be regarded as ‘time’
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Figure 1.4: An illustration of phase transition behaviour in a computational search problem.
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proportion of soluble problems observed for each ensemble.

The plots show that low values of the control parameter correspond with aneasy-solublere-

gion, and that high values correspond with aneasy-insolubleregion. In between, search cost rises

to a sharp peak, and there is a mushy region where problem populations are a mixture of soluble

and insoluble instances. Comparison of the plots shows that the observed peak in median search

cost does coincide with the point at which around half of the problems sampled are soluble. It is

noticeable that the median cost at the crossover point is almost two orders of magnitude greater

than that in the easy regions.

To summarise, at the heart of what we will term thephase transition modelis the notion that,

for certain types of problem, the likelihood that solutions exist can be governed by adjusting one

or more parameters. In cases where solutions are very likely, weshould expect the cost of finding

one to be low. Similarly, where solutions are very unlikely, we can expect the cost of proving that

there are none to be low. It is on the problems that are as likely to be soluble as insoluble that the

cost of resolving the issue may be very high.

1.5 Exceptionally Hard Problems

Recent studies have highlighted a phenomenon that complicates the phase transition model. The

existence ofexceptionally hard problems(‘ehps’) has been reported in graph colouring (Hogg and

Williams 1994),SAT (Gent and Walsh 1994a), and binaryCSPs (Smith 1994; Frost and Dechter

1994). These studies show that although there is a well-defined peak in themediancost of finding

a solution in the region of the phase transition, this is often not where the hardest individual

instances occur. Given a large sample of problems, individual problems which are very hard to

solve with a particular algorithm may occur in the region where most problems are relatively easy

to solve. These searches may be so hard that their cost significantlyaffects the value of the mean

cost; it is for this reason that authors reporting phase transition behaviour have often used the

median rather than the mean as a measure of average difficulty.

Figure 1.5 illustrates the phenomenon of exceptionally hardproblems occurring outside of the

mushy region. The upper graph plots the mean and median costs offinding a solution (using a log

scale) against the control parameter. The lower graph shows themedian and higher cost percentile

levels, up to the maximum observed. The mean and median costs aresimilar and stable, except in

the region leading up to the phase transition, where the mean cost becomes high and very erratic.

Looking at the higher percentiles, stable behaviour in cost of search is observed right up to the

99% level at all values of the control parameter. In the region leading up to the phase transition,

however, it can be seen that there are some outlying searches whose cost could be described as

exceptional. In particular, the most expensive search that canbe seen lies well into the easy-

soluble region of the control parameter. This search is more than six orders of magnitude more

expensive than 90% of all others seen at this point, and is more than an order of magnitude more

expensive than the hardest observed at the crossover point. These few exceptional searches are

sufficiently expensive to affect the mean cost in the way that canbe seen.

Ehps appear to be a feature of a particular search algorithm behaving abnormally. Individual
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problems that are exceptionally hard for one algorithm tendto be easy for any another algorithm.

This creates a clear distinction betweenehps and the hard problems occurring at the phase transi-

tion: phase transition problems are thought to be fundamentally difficult, and expensive to search

with any algorithm;ehps are easy problems which appear to highlight deficiencies in a particular

algorithm.

To date no complete search method has been shown to be completely immune fromehps, al-

though studies of various algorithms (Smith and Grant 1995a;Smith and Grant 1995b; Davenport

and Tsang 1995; Baker 1995) have shown that their incidence andmagnitude varies greatly be-

tween search methods. It is clearly important, therefore, to consider relativeehp behaviour when

comparing the performance of complete algorithms.Ehps appear to be a feature only of complete

search methods: no such behaviour has yet been reported for credible incomplete methods (Hogg

and Williams 1994; Gent and Walsh 1994b; Davenport and Tsang 1995). The issue of exception-

ally hard problem behaviour in complete search methods is explored in detail in Chapter 5.

1.6 Applications of Phase Transition Behaviour

The existence of phase transition behaviour in NP-complete problems presents a great opportunity

for increasing knowledge of both hard computational search problems and the algorithms used to

search them. The phase transition model shows us that while a classof NP-complete problems

contains many instances that are fundamentally difficult, even intractable, these problems reside

in a relatively narrow region of the class’ parameter space. Outside of these regions, problems are

usually easy to solve or prove insoluble (though peculiar phenomena such asehp behaviour add

a level of uncertainty to this).

For well defined types of NP-complete problems, such as binaryCSPs, SAT and graph colour-

ing, the phase transition is well understood and theory alreadyexists to make predictions about its

characteristics. These principles may, in future, be extendedto more complex types of problems

containing ‘real world’ features. If this is achieved, then powerful predictions about the nature of

any given search problem might be possible. As an example, consider a large scheduling problem

which might require days of computational effort to solve. Ifthe underlying characteristics of

this problem could be mapped to a well known set of order parameters, then it may be possible to

make predictions like:� whether the problem has a solution or not.� the likely number and distribution of solutions.� how expensive it is likely to be to solve.� the best search method to apply to the problem.� if the problem is hard or insoluble, how constraints could be relaxed to move the problem

into the ‘easy’ region.

The ability to make sound predictions about the characteristics of hard computational problems

before any search is attempted could take these tasks from the edge of intractability into the realm
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of real-time processing. However, current understanding of phase transition behaviour places

these goals beyond the foreseeable future.

A much more immediate application for the phase transition model, however, lies in the testing

and comparison of search techniques. Knowledge of the phase transitions for many types of

problem has forced a major re-think of the way that algorithmperformance is assessed. There

has been a rapid move away from attempting to classify algorithms on the basis of limited testing

on sets of homogenous problems, such as then-queens or the zebra (Dechter and Pearl 1988)

problem, towards attempts to classify algorithms in terms of performance on large samples of

problems of varying size, topology and position in relation tothe phase transition. (Tsanget al.

1995), for example, use a series of empirical studies to producea ‘map’ of good algorithm and

heuristic combinations for various types of binaryCSP. This data has been used to produce a

technique ofadaptive constraint satisfaction(Borrett et al. 1996), which switches to the most

appropriate algorithm given the current problem characteristics.

1.7 Overview

The objective of the work presented in this thesis is to study thephase transition of the binary

constraint satisfaction problem, and to use the phase transition model as a platform for conduct-

ing rigourous empirical studies of search techniques for theCSP. The techniques studied are

restricted to complete search algorithms, heuristics and constraint propagation techniques, with

those covered introduced in detail in Chapter 2 . The empirical studies to be performed require

large populations ofCSPs to which the various algorithms can be applied, and the method used

for generating these problems is presented in Chapter 3.

Chapter 4 then introduces the framework and methodology usedto conduct the empirical

studies, discussing the generic format of the experiments and thetask of collecting and presenting

the data produced. A major objective pursued throughout the thesis, given its empirical nature,

is that implementation details and the experimental methodology should be clear and consistent

throughout.

Chapters 5 to 8 present the results of our studies into phase transition behaviour in theCSP.

These studies focus initially on the problems and their behaviour, but gradually move towards the

algorithms and the effect of the phase transition on their performance. Relevant literature and

related work specific to these individual chapters is reviewedin detail at the beginning of each.

Chapter 5 looks in depth at the issue of exceptionally hard problems which occasionally occur

for complete search methods. The circumstances under which these abnormal searches arise are

investigated, and the relative susceptibility of certain algorithms to the phenomenon is explored.

Chapter 6 reports the existence of phase transition behaviour associated with the task of establish-

ing levels of consistency inCSPs, and exploits this to gain new insights into the performance of

consistency algorithms.

Exceptionally hard problems and the phase transitions found in both full search and establish-

ing consistency are considered in the study of twoCSP search algorithms which maintain arc

consistency during search, presented in Chapter 7. The study of these algorithms in the context
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of phase transitions shows that there are types ofCSP for which they perform significantly better

than more commonly used techniques.

Having looked in depth at the behaviour of complete algorithms for theCSP, Chapter 8 looks

at the heuristics with which they are often combined. A theoretical interpretation of the principle

behind many popular heuristics is tested empirically and, surprisingly, the results obtained suggest

that this principle may be fundamentally flawed.

Finally, Chapter 9 analyses the work that has been presented, drawing conclusions and dis-

cussing future related work.
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Chapter 2

Complete Algorithms for the CSP

The search techniques for constraint satisfaction problems that are used throughout this thesis are

complete methods, based on backtracking search. The particular algorithms used are introduced

and discussed below, together with a framework for their implementation that includes searching

for one solution, searching for all solutions, and searching usingadditional heuristic techniques.

A number of algorithms which establish arc and path consistency in CSPs before search is under-

taken are also discussed.

2.1 Search Algorithms

The backtracking search paradigm is introduced in Section 1.3.1. Recall that this search process

involves forward moves, which instantiate variables with consistent values, and backward moves,

which undo instantiations when dead ends are reached. Forward search moves may be made using

lookback or lookahead techniques, while backward moves may involve a chronological backtrack

or a jump back over several variables.

2.1.1 Backtracking and backjumping

Chronological Backtracking (BT) (Golomb and Baumert 1965) is the generic backtracking algo-

rithm, employing the most primitive forms of forward and backward search move. To instantiate

the current variable,i, BT chooses a value from its domain and checks for consistency with the

instantiations of all past variables. If inconsistent, this value is removed from the domain ofi and

the next available value is tried. If the domain ofi is exhausted, a dead end has been reached and

BT backtracks to the most recently instantiated variable,h. This instantiation is discarded and

removed from the domain ofh, and the search attempts to move forward again.

Backjumping (BJ) (Gaschnig 1979) employs the same forward move asBT, but attempts to

jump back to the cause of a dead end rather than simply to the previous variable. The algorithm

records the most recently instantiated past variable,h, which precludes a value from the domain of

the current variable,i, upon consistency checking. IfBJ cannot move forward pasti, then it jumps
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back toh. The reasoning behindBJ is that re-instantiating any of the variables betweeni andh is

guaranteed to be fruitless since the reason for the dead end ati will not have been addressed.

Conflict-Directed Backjumping (CBJ) (Prosser 1993) is a refinement ofBJ which attempts

to preserve knowledge about the cause of conflicts over a series of backward moves. Aconflict

setis maintained for each variable, which records every past variable precluding values from its

domain. If a dead end is reached with the current variable,i, CBJ jumps back to the most recently

instantiated variable named in its conflict set,h. The search knowledge ofi is carried upwards to

h by unifying their conflict sets, minush itself. Thus ifh itself cannot be re-instantiated,CBJ will

then jump back to the deepest variable in conflict with eitheri or h.

2.1.2 Looking ahead

Backmarking (BM) (Gaschnig 1977) adds a primitive level of lookahead to basic chronological

backtracking. It attempts to save consistency checking cost by recording, for each instantiation

attempted during search, the most recently instantiated variable (if any) which causes this to fail.

Each variable also maintains a record of the deepest variable backtracked to since this information

was recorded. If an instantiation is re-attempted at some later point, consistency checks with past

instantiations that are unchanged become unnecessary.BM’s consistency checking still takes

place against past variables, but future variables are notifiedevery time a backtrack occurs. A

considerable drawback of the algorithm is that a static order of instantiation must be observed,

ruling out the use of dynamic variable ordering (see Section 2.4).

Forward Checking (FC) (Haralick and Elliott 1980) performs its consistency checking against

the future, rather than the past, and backtracks chronologically. To instantiate the current variable,

i, FC checks its selected value against the future (uninstantiated)variables. Inconsistent values in

the domains of the future variables are removed: if this process does not result in annihilation of

a future variable domain, thenFC moves forward to the next variable; otherwise, the effects of

checking forward are undone and a new value is tried fori. The backward search move ofFC is

the same as that forBT.

TheFC algorithm can be seen as making the subproblem of future variables node consistent

with respect to the current partial solution, by removing inconsistent values from domains. If

further propagation of the effects of removing these inconsistent values is performed around the

subproblem, some form of arc consistency can be achieved. Partial Look Ahead (Haralick and

Elliott 1980) extendsFC by making additionally the variables in the future of each uninstantiated

variable consistent with its remaining domain, according to the current instantiation order.

This algorithm saves around half of the consistency checking cost of Full Look Ahead (Haral-

ick and Elliott 1980), which establishes full arc consistency inthe subproblem of future variables

during search. Full Look Ahead was originally reported by (Gaschnig 1979)1 and more recently

by (Sabin and Freuder 1994), who term the algorithmMAC, for Maintaining Arc Consistency,

which is the name that we use here. AMAC algorithm uses an arc consistency technique (dis-

cussed later in Section 2.5) to propagate the effects of instantiating the current variable around the

1Gaschnig originally termed this algorithm DEEB (domain element elimination with backtracking).
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Figure 2.1: Hybrid combinations ofCSP search algorithms.

future subproblem. If a future domain is annihilated,MAC tries the next value or chronologically

backtracks if no more values remain.

(Haralick and Elliott 1980) investigated these four styles of forward search move forCSP

algorithms, testing each one empirically on a set of problems including then-queens. They con-

cluded thatFC provides the most efficient search, striking a balance between the effectiveness

and the cost of its lookahead technique. We challenge this conclusion in Chapter 7, where the

performance ofFC is compared to that ofMAC over a wider variety of test problems.

2.1.3 Hybrid combinations

(Prosser 1993) shows how the forward search move of a lookahead algorithm may be combined

with the backward search move of a backjumper to produce the hybrid combinationsBMJ, BM-

CBJ, FC-BJ andFC-CBJ. Later, in (Prosser 1995), he also shows howMAC andCBJ may combine

to form MAC-CBJ (and by assumption howMAC andBJ may formMAC-BJ).

Figure 2.1 is similar to Figure 2 in (Prosser 1993). It shows how the basicBT algorithm may be

refined through more sophisticated forward moves (vertical axis) or backward moves (horizontal

axis). Hybrid combinations lie at the intersections of the basic forward and backward styles. The

figure has been extended to include hybrid combinations ofMAC.

2.1.4 Theoretical evaluation

A theoretical evaluation of many backtracking search algorithms is presented by (Kondrak and

van Beek 1997). They prove the correctness ofBT, BJ, CBJ, BM, FC and all hybrid combinations

of these algorithms. Hierarchies of algorithm performance are also produced, in terms of both

the search tree and the consistency checking cost. These hierarchies apply to dynamic variable

ordering strategies (see Section 2.4) as well as static instantiation orderings.

It is shown that the search tree forfCBJ,BM-CBJg is always a subset of the search tree for
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1. function bcssp(n, status)
2. begin
3. consistent := TRUE;
4. status := UNKNOWN;
5. i := 1;
6. while status == UNKNOWN do
7. begin
8. if consistent then i := label(i,consistent)
9. else i := unlabel(i,consistent);
10. if i > n then status := SOLUTION
11. else if i == 0 then status := IMPOSSIBLE;
12. end
13. end

Figure 2.2: Driver function for backtracking search.

fBJ,BMJg, which in turn is a subset of that forfBT,BMg. The search tree forFC-CBJ is a subset

of that forFC, which is a subset of that forfBJ,BMJg.
In terms of consistency checks,BM costs no more thanBT, while BMJ costs no more thanBJ,

which costs no more thanBT. BM-CBJ costs no more thanCBJ, which costs no more thanBJ, and

FC-CBJ costs no more thanFC.

Kondrak and van Beek show that the search tree for an algorithm employingCBJ is always a

subset of that for an algorithm employing the same forward move with chronological backtrack-

ing. We can therefore infer that the search tree forMAC-CBJ is a subset of that forMAC.

2.2 Implementing Backtracking Search

The nature of the backtracking search process suggests a recursive implementation, with instan-

tiations being pushed onto or popped off from the solution ‘stack’. A disadvantage to this ap-

proach, however, is that all search ‘knowledge’ is hidden within the procedure stack and becomes

inaccessible during search. This is undesirable if hybrid combinations of algorithms are to be

constructed.

(Prosser 1993) describes an alternative iterative implementation of backtracking search. This

encoding uses two functions,label andunlabel, which perform forward and backward search

moves respectively. These functions are called from a driver function which controls the search

process.

In order to solve the binary constraint satisfaction search problem (that is, to find the first

solution to aCSP), Prosser defines a driver functionbcssp to implement a backtracking search.

Figure 2.2 describes this function in a pseudo-code form. The code used here is similar to, though

not exactly the same as, that used by Prosser. It is based on Pascal andC, and uses:= as the

assignment operator and== as the equality operator.

Functionbcssp takes in aCSP containingn variables, returning a status flag denoting the

result of the search. The function assumes a static instantiation order, with the identifieri denoting
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the current search variable. A successful call to the functionlabel returns a positiveconsistent

flag and setsi to be the next variable in the instantiation order. An unsuccessful call to label

leavesi unchanged and causes a call tounlabel. This function setsi to be the variable that the

search steps (or jumps) back to. It returns a positiveconsistent flag if a new instantiation is

found for this variable, otherwise it causes a further call tounlabel on the next iteration.

The central loop ofbcssp calls forward and backward search moves until alln problem vari-

ables have been instantiated (and a solution has been found), or the search backtracks past the

first problem variable (and we have exhausted the search space).

2.3 Finding All Solutions

Descriptions ofCSP search algorithms are traditionally given in terms of findingthe first solution

to problems, at which point the algorithm terminates. In some instances, however, it may be

desirable to find all solutions to aCSP. One application of finding all solutions is in verifying the

correctness of an algorithm implementation by comparing thenumber of solutions found with that

of another implementation (and this has been carried out forall of the algorithm implementations

reported here). Another application is in selecting problems with a desired number of solutions

for specific purposes. For example, when studying incomplete search methods it is desirable to

know beforehand whether a problem has any solutions, and if so how many there are.

To be capable of finding all solutions, a refinement must be made toa backtracking algo-

rithm’s move upon finding each solution. Kondrak discusses these refinements in his Masters

thesis (Kondrak 1994), and studies which include finding many or all solutions toCSPs have

been reported (Kwanet al. 1995; Smith and Dyer 1996). Although the refinements that mustbe

made are not particularly difficult, precise implementationdetails are not readily available. For

this reason, we present implementation details below, showinghow Prosser’s iterative description

of backtracking algorithms may be extended to enable all solutions to be found.

2.3.1 Driving the search for all solutions

We can amend thebcssp function, shown in Figure 2.2, to make it find all solutions to the binary

constraint satisfaction problem. The new driver function,bcsp, is shown in Figure 2.3. The new

function maintains a facility for finding only the first solution, making the description a little more

complex than is strictly necessary.

Lines 10 and 11 ofbcssp have been replaced with lines 11 to 24 inbcsp. In the new function,

when a solution is found and we wish to find more, a call is made to aspecial instance of the

algorithm’s backward move (line 16), which we have termedbacktrack. This special move is

described for theBT, BJ andCBJ styles of backward move below.

2.3.2 Backtracking and Backjumping

The backward move which must be made upon finding a solution in the case of a chronologically

backtracking algorithm is extremely simple. Prosser’s description of the chronological backtrack-
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1. function bcsp(n, status, all_solutions?)
2. begin
3. consistent := TRUE;
4. status := UNKNOWN;
5. num_solutions := 0;
6. i := 1;
7. while status == UNKNOWN do
8. begin
9. if consistent then i := label(i,consistent)
10. else i := unlabel(i,consistent);
11. if i > n then
12. begin
13. if all_solutions? == TRUE then
14. begin
15. num_solutions := num_solutions + 1;
16. i := backtrack(i,consistent);
17. end
18. else status := SOLUTION;
19. end
20. else if i == 0 then
21. begin
22. if num_solutions == 0 then status := IMPOSSIBLE
23. else status := SOLUTION;
24. end
25. end
26. end

Figure 2.3: Driver function for backtracking search finding all solutions.
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1. function bt_unlabel(i, consistent)
2. begin
3. h := i - 1;
4. current_domain[i] := domain[i];
5. remove_from_set(instantiation[h], current_domain[h]);
6. consistent := not_empty(current_domain[h]);
7. return(h);
8. end

Figure 2.4: Unlabelling function for theBT algorithm.

1. function bt_backtrack(i, consistent)
2. begin
3. h := i - 1;
4. remove_from_set(instantiation[h], current_domain[h]);
5. consistent := not_empty(current_domain[h]);
6. return(h);
7. end

Figure 2.5: Special backtrack function for theBT algorithm.

ing algorithmBT uses the functionbt unlabel, shown in Figure 2.4. Having unsuccessfully tried

to instantiate variablei, BT backtracks to the previous variable,h, in the instantiation order, re-

stores the domain ofi and removes the previous instantiation ofh from its domain.

In the case of having found a solution to aCSP with n variables,i has the valuen+1 and

we must backtrack to variablen. Having done this, we then remove the current instantiation of

variablen, but do not restore the original domain ofn. Thus the search continues by attempting

to instantiate the next value in the current domain ofn. Removing line 4 ofbt unlabel produces

bt backtrack, shown in Figure 2.5

In the case of the Backjumping algorithm,BJ, its ability to jump back over problem variables

appears to give rise to the potential for pruning out solutions,should this happen immediately after

a solution is found. However, as (Kondrak 1994) notes,BJ can only jump back over variables if an

attempt to instantiate a variable fails, and in the case of having found a solution this is clearly not

the case. Therefore thebt backtrack function is also suitable for use by algorithms employing

BJ.

2.3.3 Conflict-directed backjumping

The backward move which must be made upon finding a solution in the case of an algorithm em-

ployingCBJ is a little more complex. Kondrak discusses the problem of conflict set interpretation

on page 25 of his Masters thesis (Kondrak 1994):

The problem here is that the conflict sets of CBJ are meant to indicate which in-

stantiations are responsible for some previously discovered inconsistency. However,

after a solution is found, conflict sets cannot always be interpreted in this way. It is
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1. function cbj_unlabel(i, consistent)
2. begin
3. h := max_set(conflict_set[i]);
4. union_set(conflict_set[i], conflict_set[h]);
5. remove_from_set(h, conflict_set[h]);
6. for j := (h+1) to i do
7. begin
8. clear_set(conflict_set[j]);
9. current_domain[j] := domain[j];
10. end
11. remove_from_set(instantiation[h], current_domain[h]);
12. consistent := not_empty(current_domain[h]);
13. return(h);
14. end

Figure 2.6: Unlabelling function for theCBJ algorithm.

the search for other solutions, rather than an inconsistency, that forces the algorithm

to backtrack.

We need to differentiate between these two causes of CBJ backtracks: (1) de-

tecting an inconsistency, and (2) searching for other solutions.In the latter case the

backtrack must always be chronological, that is, to the immediately preceding vari-

able (otherwise we risk pruning out solutions).

(Prosser 1993) describes the backward move ofCBJ in terms of the functioncbj unlabel,

shown in Figure 2.6. This function jumps back from variablei to variableh, the deepest variable

named in the conflict set ofi. In the case of having found a solution, we cannot trust the con-

flict set, as the instantiations are consistent, and so we chronologically backtrack fromn+1 to

variablen and undo this instantiation. We now need to ensure that the algorithm chronologically

backtracks on itsfirst visit to each search level after each solution is found. After a level has been

re-visited following each solution, it then becomes safe to jump back to that level on subsequent

visits. For example, suppose that in a search involving 20 variables (which has search levels 0

to 20), a solution has been found and the algorithm has chronologically backtracked to level 14

before moving forward again to level 18. A ‘backjumping window’ between levels 20 and 14

now exists, and the algorithm may now safely backjump from level18 to levels 14, 15, 16 or 17.

If the conflict set at level 18 indicates a backjump to a level higher than 14, the algorithm must

backjump only to level 14 and chronologically backtrack from there.

Kondrak suggests an implementation of this which makes use of anarraycbf (chronological

backtrack flag) to record the shallowest level visited since the last solution. However, a simpler

way of achieving the same effect is simply to ‘fill’ the conflict set of variablen with variables 1 to(n�1), forcing chronological backtracking to each level for the first time after each solution. Thus

we have the functioncbj backtrack, shown in Figure 2.7, which is the same asbt backtrack

but with the addition of lines 5 and 6.
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1. function cbj_backtrack(i, consistent)
2. begin
3. h := i - 1;
4. remove_from_set(instantiation[h], current_domain[h]);
5. for g := 1 to (h-1) do
6. add_to_set(g, conflict_set[h]);
7. consistent := not_empty(current_domain[h]);
8. return(h);
9. end

Figure 2.7: Special backtrack function for theCBJ algorithm.

Note that an equivalent action upon finding each solution would be to add to the conflict set of

each variablek the preceding variable(k�1) in the instantiation order (for 2� k� n and again

assuming a static ordering).

2.3.4 Remarks

Thebacktrack functions that are presented here forBT, BJ andCBJ do not need to be modified in

any way for use with hybrid algorithm combinations (such asFC, FC-BJ andMAC-CBJ). Also, the

descriptions presented here have assumed a static variable instantiation order purely for simplicity.

Dynamic variable ordering can easily be introduced, and Section 2.4 shows how this is done.

A situation in which it may be undesirable to attempt to find all solutions to a problem clearly

arises when there is likely to be a very large number of solutions. An example is when a problem

is highly underconstrained and so almost every assignment is consistent. A theoretical expression

to calculate the expected number of solutions to aCSP, plus data on the search effort involved in

finding all solutions, has been presented in (Smith and Dyer 1996).

2.4 Search Heuristics

In its basic form, a backtracking algorithm is given a static variable instantiation ordering (SVO)

which is unchanged during search. Significantly more efficient search can be achieved for cer-

tain algorithms, however, by allowing dynamic variable ordering (DVO). At each forward search

move, a DVO uses a heuristic method to select the next variable which should be instantiated,

given the current search conditions.

(Bitner and Reingold 1975) first proposed the use of ‘dynamic search rearrangement’ as a

technique to improve backtracking search. (Purdom 1983) performed a theoretical analysis of

dynamic variable ordering for backtracking search, finding all solutions to sets of random conjuc-

tive normal form predicates. This type of problem has clearlydefined parameter regions where

the average number of solutions is either polynomial or exponential. Purdom showed that DVO

reduces from exponential to polynomial the average time costof algorithms on the problems con-

taining polynomial numbers of solutions. He also showed that theoverhead associated with DVO

does not make it worthwhile on very easy instances, and conjectures that on the hard instances
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with exponential numbers of solutions, DVO achieves an exponential reduction in average cost

from that of static ordering, even though this reduced cost remains exponential.

More recent empirical studies of DVO include (Dechter and Meiri 1994). They showed em-

pirically that for backtracking search on binaryCSPs, dynamic ordering was superior to every

one of a number of informed static orderings that were tested. Since a dynamic choice of the next

variable to instantiate is based on the changing state of the future subproblem, it is obvious that

DVO is useful only with algorithms that perform a lookahead style of forward move, such asFC

andMAC. (Bacchus and van Run 1995) state this explicitly.

(Haralick and Elliott 1980) show that a simple and effective DVO heuristic is to instantiate

the variable that has the fewest remaining values left in its domain. The reasoning behind this

‘smallest domain first’ strategy is that the most heavily constrained variable at each stage of the

search should be tackled as a priority: if it leads to a failure and subsequent backtracking, it is

better that this is discovered sooner rather than later. This notion of selecting the variable to

instantiate which is most likely to lead to failure has become known as the ‘fail-first’ principle.

Other heuristics that may be used to guide backtracking search include value ordering heuris-

tics, which order the domain elements of variables a way designed to reduce search cost (Dechter

and Pearl 1988). The scope of this thesis, however, is restrictedto dynamic variable ordering

heuristics. An implementation of DVO consistent with the descriptions of backtracking search

algorithms presented by (Prosser 1993) is described below.

2.4.1 Implementing dynamic variable ordering

A DVO implementation should allow for ‘fair’ comparison of algorithms employing the same

forward search move and DVO, but a different backward move. For example, consider the case

of FC andFC-CBJ both employing some form of DVO.FC-CBJ will always perform no more

consistency checks thanFC (Kondrak and van Beek 1997),as long asthe algorithms always

have the same choices at each forward search move. When the order in which future variables

are examined is not the same, any tie-breaking condition means that the above requirement is

not satisfied, and the algorithms may follow entirely different search paths and find different

first solutions. Two or more algorithms employing the same style offorward search move and

DVO should therefore always examine future variables in the same order when selecting the next

variable to instantiate.

2.4.2 DVO with a backtracker

At search depthi, the next variable to be instantiated is selected and swaps positions in the order-

ing with the variable currently at positioni. To present all algorithms employing the same forward

move with an identically ordered set of future variables at each search depth, we must explicitly

record the swap (if any) that was most recently performed at each search level, and undo this swap

every time search backtracks past a particular level.

Functionbcssp dvo is shown in Figure 2.8, and shows how functionbcssp (Figure 2.2) is

modified to enable dynamic variable ordering. Note that the variablei of bcssp has been re-
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1. function bcssp_dvo(n, status)
2. begin
3. consistent := TRUE;
4. status := UNKNOWN;
5. ii := 1;
6. while status == UNKNOWN do
7. begin
8. if consistent then
9. begin
10. dvo_select_next_variable(ii);
11. ii := label(ii,consistent);
12. end
13. else
14. begin
15. ii := unlabel(ii,consistent);
16. dvo_undo_last_swap((ii+1));
17. end
18. if ii > n then status := SOLUTION
19. else if ii == 0 then status := IMPOSSIBLE;
20. end
21. end

Figure 2.8: Driver function for a backtracking search with dynamic variable ordering.

namedii in order to emphasize that its value represents the current search depth only. Lines 10

and 16 have been added to the basicbcssp function to producebcssp dvo. It is assumed that an

initial instantiation order has already been created.

Line 10 ofbcssp dvo selects the next variable to be instantiated, according to therules, by

calling a functiondvo select next variable to make the instantiation selection and record any

swap that must be made. This function is described in Figure 2.9.The call in Line 3 returns the

positionjj in the instantiation order of the future variable that has been selected. If this variable

is not already the next in the instantiation order (Line 4) then its position is swapped with that of

the variable that is currently next (Line 6). If such a swap has to be made at the current search

level, ii, then the original position,jj of the selected variable is recorded in elementii of a

1. function dvo_select_next_variable(ii)
2. begin
3. jj := select_according_to_dvo_criteria();
4. if jj != ii then
5. begin
6. swap_instantiation_places(ii, jj);
7. swaps[ii] := jj;
8. end
9. end

Figure 2.9: Dynamically selecting the next variable to instantiate.
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1. function dvo_undo_last_swap(ii)
2. begin
3. if ii == 1 then return
4. else if swaps[ii] != 0 then
5. begin
6. swap_instantiation_places(ii, swaps[ii]);
7. swaps[ii] := 0;
8. end
9. end

Figure 2.10: Undoing the effects of a dynamic variable swap.

one-dimensional arrayswaps(Line 7).

Line 16 ofbcssp dvo undoes any swap that has been made at a search level, in the eventthat

the search backtracks past this depth, by calling a functiondvo undo last swap. The call to

unlabel of Line 15 has reset the search depthii and so the level(ii+1)must be given to the

call todvo undo last swap. A pseudo-code description of this function is shown in Figure 2.10.

Once again, if search is at depth 1 then this operation does notapply (Line 3), otherwise if a swap

has been made at the given search level (Line 4) then the swap is undone (Line 5) and the entry

in the arrayswapsis cleared.

2.4.3 DVO with a backjumper

In the case of dynamic variable ordering being used by an algorithm with backjumping capability,

the same process is carried out. However, as the search may now backjump up past several search

levels, it must undo any swaps that have been made foreach intermediate search level, in order.

To realise this, a minor refinement must be made to functionbcssp dvo, represented by the

following pseudo-code fragment:

14. begin

14b. mark := ii;

15. ii := unlabel(ii,consistent);

15b. for level := mark downto (ii+1) do

16. ff_undo_last_swap(level);

17. end

Line 14b marks the search depth we jump back from, and following the call tounlabel in Line

15,ii now represents the search level we have jumped back to. Lines 15b and 16 undo the swaps

made at levelsmark down to(ii+1) in that order.

2.5 Consistency Algorithms

Many algorithms have been described which use constraint propagation (Section 1.2.4) to estab-

lish levels of consistency inCSPs. Although algorithms exist which can establishk-consistency
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for any value ofk (Cooper 1989), the high cost associated with even low-level consistency means

that for practical purposes only arc consistency and occasionally path consistency are ever at-

tempted. In some circumstances, however, it might be feasible topropagate the effects of particu-

lar constraints in the problem. Consistency is often introduced into aCSP as a preprocessing step

to search, or as a lookahead component of the actual search process.

A wide range of arc consistency algorithms exist, the most popular and useful of which are, ar-

guably,AC3, AC4 andAC6. AC3 is a relatively simple method, introduced by (Mackworth 1977).

It places all binary constraints on a queue and propagates theeffects of each one in turn, adding

all constraints affected by each round of propagation to the back of the queue. The algorithm

terminates when the queue is empty. The generalAC3 algorithm is shown by (Mackworth and

Freuder 1985) to have a worst-case time complexity that is bounded from above byO
�
m3e

�
and

from below byΩ
�
m2e

�
, wherem is the size of the largest variable domain ande is the number of

constraints in theCSP. The algorithm’s space complexity isO(e+nm), wheren is the number of

variables.

AC4 is presented by (Mohr and Henderson 1986), and has a worst-case time complexity of

O
�
m2e

�
, which is optimal. This algorithm runs in two stages. For each value of each variable, a

record is made of all the values in the problem which support its inclusion in the arc consistent

domain. Arc consistency is then enforced by removing unsupported domain elements, and prop-

agating the effects of their removal by adjusting the relevant support records for other variable

domain members. The additional space overhead associated with the support counters make the

space complexity ofAC4 O
�
m2e

�
.

(Bessìere and Ŕegin 1995) address the expensive space requirements ofAC4, introducingAC6.

This algorithm eliminates some redundant support checking activities carried out byAC4, reduc-

ing the space complexity toO(me).
Although the worst-case time complexity ofAC4 is optimal, empirical study shows that its

averageperformance is poor, often close to the worst case, and is in factmore expensive than

AC3 on many types ofCSP (Wallace 1993). Bessière, meanwhile, demonstrates thatAC6 can

outperform the other two algorithms on many problems. He doesnote, however, thatAC3 is

“never really bad”, and thatAC6 is not particularly suited to incorporation within a search process.

Algorithms for path consistency tend to be derived from those for arc consistency. The most

common examples arePC2 (Mackworth 1977), derived fromAC3, andPC4 (Han and Lee 1988),

derived fromAC4. Path consistency algorithms are expensive, both in terms of space and time:

PC2 has worst case time complexityO
�
m5n3

�
and space complexityO

�
n3+n2m2

�
; PC4 has

worst case time complexityO
�
m3n3

�
and space complexityO

�
m3n3

�
.

The algorithm to establishk-consistency which (Cooper 1989) proposes,KS-1, is based on

PC4 and has worst case time complexity and space complexity that arebothO
�
∑k

i=1

�
nCi :mi

��
.
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Chapter 3

Random Problem Generation

Randomly generated binaryCSPs form the basis of the empirical studies reported throughout this

thesis. Thus, we require a random generation model which allowsthe creation of largeensembles

of CSPs with similar properties, enabling conclusions to be made aboutthe general behaviour of

these problems.

The issue of random problem generation in empirical AI is complex, and recent literature

points to examples of how poor random generation models can lead to flawed results and conclu-

sions inSAT (Mitchell and Levesque 1996) andCSP (Gentet al. 1997a). Therefore, care must be

taken in generating suitable sets of random problems. This chapter describes in detail the creation

and implementation of the random generation model used, discussing the options available and

justifying the choices made.

Before devising and implementing a randomCSP generator, we need to be satisfied that the use

of random problems to test algorithms is justified. Having donethis, the set of parameters used to

produce theCSPs must be defined. From these parameters, a method of generating populations of

CSPs which have consistent and known properties, but without bias towards particular features,

can then be devised. Potential sources of variation within populations of problems should be kept

to a minimum, and those that remain must be understood and controlled. Finally, a good random

generation model also requires a good random number generator.

These issues are discussed over the following sections, after which the implementation of the

resulting random problem generator is described. A number of potential extensions to the random

generation model are then discussed.

3.1 Justification for Random Problems

The use of randomly generated problems in the empirical study of algorithms has been criticised

in some quarters. Methodological discussions such as (Mitchell and Levesque 1996) and (John-

son 1996) warn that these problems may lack the features and characteristics of the ‘real world’

problems for which an algorithm is ultimately intended. Conclusions based on random problems

may be flawed unless sufficient structure is imposed upon the random generation model to give
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the resulting problems an element of realism.

If random problems are to be avoided, the alternative is to test algorithms on ‘real’ benchmark

problems which can be found in various repositories. However,these problems may be similarly

criticised for being unrepresentative (Hooker 1994). A further important caveat is that it is cur-

rently impossible to obtain populations of ‘real world’ problems in sufficient quantities to enable

meaningful statistical analyses of their general behaviour. The current state of the art means that

large populations of sample problems invariably entail some form of random generation.

The whole dilemma of finding representative problems to test algorithms on may not in fact

be as significant as it appears. (Hooker 1994) argues that whileany choice of problem may be

criticised for being unrepresentative, the experiments can be designed around this. In particular:

One can investigatehow algorithm performance depends on problem characteristics.

The issue of problem choice, therefore, becomes one of experimental design. Rather

than agonise over whether a problem set is representative of practice, one picks prob-

lems that vary along one or more parameters.

We choose to follow this suggestion, developing a random generation model for creating ensem-

bles ofCSPs based on a set of variable parameters. The random generation model provides an

effectively limitless supply ofCSPs whose properties can be adjusted to simulate ‘real’ situations,

and whose sizes may be increased to arbitrary levels. The parameters to be used are introduced in

the following section.

3.2 CSP Parameters and Properties

A binaryCSP, as described in Chapter 1, consists of a set of variables, each of which has a domain

of possible values, and a set of constraints defining allowed combinations of values between

certain pairs of variables. The binaryCSPs that form the basis of our empirical studies are

characterised by four parameters:

n the number of problem variables.

m the number of values in each variable’s domain.

p1 the probability that there is a constraint between a pair of variables (theconstraint

density).

p2 the conditional probability that a pair of values is inconsistent for a pair of vari-

ables, given that there is a constraint between them (theconstraint tightness).

Using these parameters, we can generate ensembles ofCSPs with similar characteristics, denoted

by the 4-tuplehn;m; p1; p2i. Randomly generatedCSPs of this type have been studied extensively,

for example by (Freuder and Wallace 1992), (Dechter and Meiri 1994), (Williams and Hogg

1994), (Frost and Dechter 1995), (Tsanget al. 1995), (Smith and Dyer 1996) and (Prosser 1996).

Some of these studies use alternative nomenclatures tohn;m; p1; p2i, between which (Prosser

1996) provides a series of translations.
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3.2.1 Properties of hn;m; p1; p2i CSPs

It is known that a phase transition (Section 1.4) occurs for theseCSPs as p2 is varied whilen,

m and p1 are fixed (Smith and Dyer 1996). A significant amount of theoretical study has been

devoted to making predictions about the location and properties of the phase transition for these

problems. (Smith and Dyer 1996) and (Williams and Hogg 1994) have developed an expression

for the expected number of solutions,E(N), for anhn;m; p1; p2i CSP. This is calculated as:

E(N) = mn(1� p2)p1:n(n�1)=2

which is the number of possible assignments ofm values ton variables, multiplied by the proba-

bility that a randomly-chosen assignment is consistent.

(Smith and Dyer 1996) suggest that aCSP for which E(N) = 1 can be expected to lie on

or near the crossover point at the phase transition. Making this assumption, an estimate for the

critical value of constraint tightness, ˆp2crit , at which the crossover point for anhn;m; p1i class of

CSP lies can be calculated as:

p̂2crit = 1�m�2=p1(n�1)
Empirical studies by (Prosser 1996) show ˆp2crit to be an accurate prediction of the location of the

crossover point, except for sparsely constrained problems (withlow p1). For the sparse problems,

the prediction tends to be an overestimation, suggesting thatE(N) for theseCSPs is greater than

1 at the crossover point; reasons for this are discussed in depth by (Smith and Dyer 1996).

More general work on phase transition behaviour in combinatorial problems has lead to (Gent

et al. 1996b) formalising a notion of problemconstrainedness, encapsulated by thegeneral

constrainedness parameter, κ. This parameter generalizes the specific parameters definingcon-

straints in several classes of NP-complete problem, such asCSP, SAT and graph colouring. The

constrainedness of anhn;m; p1; p2i CSP containingeconstraints, and for which a solution can be

represented inN bits, is calculated as:

κ = 1� log2(E(N))
N= �elog2(1� p2)

nlog2(m)
The predicted crossover point occurs atκ = 1, which is equivalent to the prediction of its occur-

rence atE(N) = 1. Thus, in general, under-constrained problems haveκ< 1 and over-constrained

problems haveκ > 1. Sinceκ is based onE(N), it tends to be underestimated for sparseCSPs.

3.3 Models for Problem Generation

Having defined four parameters for the experimentalCSPs, we must choose the way in which

they are applied to produce ensembles of randomly generated problems. The constraint graph
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(Section 1.2) of aCSP can be represented by a symmetricaln� n matrix of boolean values,

where a binary constraint between variablesvi andv j is indicated by a ‘true’ value at positions(i; j) and( j ; i). Each binary constraint relation between two variables withdomain sizem can

be represented with anm�m boolean relation matrix. Here, each ‘true’ value indicatesthat the

corresponding pair of values are disallowed by the constraint.

There are a number of ways in which we can use valuesp1 andp2 to generate constraint graphs

and constraint relation matrices respectively. (Smith and Dyer 1996), for instance, refer to two

models for matrix generation: ‘Model A’ and ‘Model B’, based on work by (Palmer 1985):

Model A treatsp1 andp2 as probabilities, selecting each of then(n�1)=2 possible edges in the

constraint graph independently with probabilityp1. Relation matrices for each constraint are then

generated, assigning ‘true’ values to each of them2 value pairs independently with probabilityp2.

Problems generated using Model A should contain, on average,p1:n(n�1)=2 constraints, each

containing on averagep2:m2 disallowed value pairs.

Model B treatsp1 and p2 as fixed proportions, which specifypreciselyhow many constraints

and inconsistent value pairs each problem should contain. To construct the constraint graph for

a problem we randomly selectp1:n(n� 1)=2 pairs of variables as constraints, and for each of

these we randomly selectp2:m2 pairs of values as being disallowed. Where necessary, values are

rounded to the nearest integer to give the actual number of constraints and conflicts required.

Both models of constraint and conflict generation have been used in recent empirical studies;

for example, (Tsanget al. 1995) use Model A generation, while (Smith and Dyer 1996) use

Model B generation. A combination of models is also possible; for instance Model A constraint

graph generation with Model B conflict generation. (Smith and Dyer 1996) note that while the

expected number of solutions,E(N), for Model A and Model BCSPs is the same, the variance

in this quantity is not. They also note that Model B problem generation allowsp2 to be varied in

steps no finer than 1=m2. The use of Model A generation simplifies theoretical analysis, due to

the use of probabilities. This use of probability, however, does imply variations in the properties

of CSPs in an ensemble.

For most the experiments with randomly generatedCSPs presented in this thesis, the Model

B method will be used for generating both constraint graphs andrelation matrices, unless specif-

ically stated otherwise. Model B problem generation allows the empirical studies to use sets of

problems containing identical numbers of constraints and conflicts, whereas Model A generation

produces ensembles of problems containing an unknown amountof variation in these quantities.

The loss of control over basic properties of the experimentalCSPs that would occur using

Model A generation may obscure attempts to study the behaviourof problems with particular

properties, threatening the validity of any conclusions drawn. However, use of Model A is appro-

priate when testing algorithms or heuristics whose reasoning isbased on probabilistic analysis of

CSPs. Several techniques of this kind are examined in Chapter 8, which uses a hybrid genera-

tion model that employs Model B to generate constraint graphsand Model A to generate relation
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matrices.

3.4 Constraint Graph Connectivity

CSPs produced using the Model A or Model B random generation methods cannot be guaranteed

to contain constraint graphs that are connected, ifp1 is sufficiently small. If constraint density,p1,

is very low then a significant proportion of the random constraint graphs may in fact consist of two

or more independent sub-graphs, forming the basis of two or moreindependent sub-problems.

The appearance of disconnectedCSPs in the experimental ensembles is undesirable, since

these problems would in practice be dealt with separately, using a ‘divide and conquer’ strat-

egy (Tsang 1993). We feel that any conclusions based on disconnected constraint graphs would

be flawed, and so choose to exclude them from our study. This can beachieved either by a method

of forcing the generation of connected constraint graphs, or by simply discarding instances of dis-

connected graphs. It should be noted that the requirement for connected constraint graphs imposes

a lower limit on values ofp1, since connectivity requires at leastn�1 constraints.

An example of a technique to guarantee the generation of connected constraint graphs is pro-

vided by (Sabin and Freuder 1994), who randomly generate a tree of constraints, after which the

remaining constraints are added. However, we choose the simpler option for excluding discon-

nectedCSPs. Each constraint graph produced is tested for connectivity, with disconnected graphs

discarded and replacements generated until a connected one is found.

Excluding disconnectedCSPs makes our populations of sparse constraint graphs unrepresen-

tative of all random graphs. However, the aim is to study the properties of randomCSPs not

random graphs, and the method of ensuring connectivity allowsus to retain control of a vital

property of theCSPs whilst keeping the random generation model simple. Theoretical work on

the connectivity of random graphs can be found in (Bollobas 1985).

3.5 Random Number Generation

The key features of a random generation model for our experimentalCSPs have been established,

designed to enable the generation of problems with consistent properties but without bias towards

particular features. To successfully implement this model, access to a reliable source of random

numbers is essential. The issue of reliable random number generation is not simple, and the

dangers of poor use of random numbers in problem generation have been documented (Gentet

al. 1997a). Therefore, the requirements for the random number generator are discussed below,

after which an appropriate source method of generation is selected.

3.5.1 Required properties

The chosen model for random matrix generation (Section 3.3) requires long streams of random

numbers. Streams of random numbers produced using a deterministic method are of course only

pseudo-random, and as such will generate pseudo-randomCSPs.
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(Knuth 1981) discusses the requirements of a ‘good’ pseudo-random number generator in

depth. Essentially, a good generator must reasonably represent aknown probability function,

avoiding any built in trends, biases or periodicities. It is usually expected that a value generated

should not be correlated in any way with previous values in thestream.

3.5.2 The Linear Congruential Method

A simple and popular method for generating streams of pseudo-random numbers is the Linear

Congruential Method (Knuth 1981), which uses a recurrence relation of the form:

Ik = (aIk�1+c) modm

The valuesa, c andmare constants, known as the multiplier, increment and modulusrespectively.

(Knuth 1981) notes that the choice of values for these constants is crucial in determining the

quality of the generator.

We choose to use a Linear Congruential generator to produce ourexperimentalCSPs using the

constant valuesa= 16807,c= 0 andm= 2;147;483;647. This generator is proposed by (Park

and Miller 1988) as being the best choice for the production of32-bit pseudo random number

streams, and is known as theminimal standardrandom number generator. The period of this

generator (the length of the number stream produced before repetition) is 231�1, the maximum

possible, and this is appropriate for the problem generation application.

The minimal standard generator is commonly used by compilers and software applications.

However, to avoid any issues of platform dependency for ourCSP problem generator, the random

number generator will be implemented internally.

3.6 Random Problem Generator Implementation

The framework required for the implementation of a suitable pseudo-random problem generator is

now complete. The experimentalCSPs will be generated from the parametershn;m; p1; p2i using

either the Model A or B generation method, with disconnected problems excluded. Random

number streams will be provided from the minimal standard random number generator.

EachCSP at a particularhn;m; p1; p2i can be generated from a single integer ‘seed’ value, from

which the required stream of random numbers can be produced. This allows the easy identification

and reproduction of any individualCSP or ensemble.

Our implementation of a randomCSP generator is publicly available on the World Wide Web,

as part of the software system used to conduct the empirical studies. Further details on this can

be found in Appendix A.

3.7 Extensions to the Random Generation Model

Section 3.1 discusses some of the criticisms that have been levelled at the use of randomly gener-

ated problems in the empirical study of algorithms. Reservations about random generation tend
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to centre around the risk that features of the resultant problems can be unrepresentative of ‘real

world’ situations. Methodological discussions such as (Mitchelland Levesque 1996) and (John-

son 1996) do suggest, however, that random problems might be given some extra structure to

make them more representative. (Johnson 1996) also calls for problem generators which allow

extra parameters to be set which allow the investigation of certain properties.

There are several extensions which can be made toCSPs generated using thehn;m; p1; p2i
model which might add more realism to these problems. (Gentet al. 1996a), for example,

propose two extensions to thehn;m; p1; p2i model designed to add elements of (controlled) non-

uniformity to the domain sizes and the tightness of constraints:

Varied domain sizes may be achieved by selecting one of a number of cardinalities for each

variable domain with certain probabilities. Gentet al. use this technique to experiment with

problems containing domain sizes ofm= f10;20g, where the probability of each value is 0:5.

Varied constraint tightness may be achieved in a similar way, with each constraint within a

problem generated with one of a number of tightness values according to probability. Gentet

al. use this technique to generate problems wherep2 = f0:2;0:8g with probabilities 0:8 and 0:2
respectively.

These modifications are compatible with the current random generation model, and it may

be appropriate to make use of them during the experiments. However, the introduction of an

additional two degrees of freedom to the experimentalCSPs would increase the complexity of the

empirical studies to the extent that this is not feasible. Therefore, we restrict the main experiments

to CSPs usinghn;m; p1; p2i according to the basic random generation model.
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Chapter 4

The Empirical Study of Algorithms

In calling for anempirical science of algorithms, (Hooker 1994) laments the infrequent use of ex-

perimental design principles, and the failure of most publishedempirical studies to observe “even

minimal standards of reproducibility”. The methodologicaldiscussion presented by (Johnson

1996) warns of a number of common mistakes which can compromisethe integrity of empirical

studies. A number of these opportunities for flawed studies revolve around the issue of irrepro-

ducibility, particularly the failure to disclose key implementation and environmental details.

In an attempt to address the criticisms levelled at empirical studies of algorithms, we begin

here by laying out a clear framework for the experiments thatwill be conducted. A consistent

nomenclature for the description of the problems and algorithms to be used is presented, and

the environment under which the experiments are performed is recorded. A generic format for

the main experiments, based on the phase transition model, is then presented, and the issues of

collecting meaningful search data and presenting it lucidly are addressed.

4.1 Experimental Nomenclature

To promote clarity and brevity when describing the empiricalstudies reported throughout this

thesis, a consistent nomenclature for describing aspects of the experiments has been devised.

This nomenclature covers the description of groups ofCSPs and the combinations of algorithms

and heuristics used to process them.

4.1.1 CSP nomenclature

The termCSP refers to a pseudo-random binary constraint satisfaction problem, generated ac-

cording to the model presented in Chapter 3. Groups ofCSPs are described using the following

terms:� An ensembleof CSPs is generated for a particular value of the 4-tuplehn;m; p1; p2i.� Phase transitions from under- to over-constrained problems are observed asp2 varies, while

n, mandp1 are kept fixed (Section 3.2);classesof CSPs with fixedn, mandp1 and varying
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p2 are referred to by the tuplehn;m; p1i.� A measure of the ‘local’ density of constraints around eachCSP variable is theaverage

degree, γ. This is the average number of constraints incident upon eachvariable, calculated

as (2� numconstraints)=n. Thus, aCSP class might also be referred to by the tuplehn;m;γ = xi.� Discussion ofCSP sizerefers to the tuplehn;mi.
4.1.2 Algorithm nomenclature

An overview of completeCSP search algorithms is provided in Section 2.1, and many of these

are used in the empirical studies. Table 4.1 names all of the basicalgorithms to be used, notes

the source of the original descriptions, and records the published implementation details that are

used.

Algorithm Source Implementation Description
BT (Golomb and Baumert 1965) (Prosser 1993) Chronological backtracking
CBJ (Prosser 1993) (Prosser 1993) Conflict-directed backjumping
FC (Haralick and Elliott 1980) (Prosser 1993) Forward checking
FC-CBJ (Prosser 1993) (Prosser 1993) Hybrid combination
MAC (Gaschnig 1977) (Prosser 1995) Maintaining arc consistency
MAC-CBJ (Prosser 1995) (Prosser 1995) Hybrid combination

Table 4.1: Sources, implementations and brief descriptions for theCSP algorithms used.

Each reference to a named algorithm, such asMAC-CBJ corresponds to the implementation

recorded in Table 4.1. In addition to the basicCSP algorithms, features such as dynamic variable

ordering heuristics (Section 2.4) are often used. The use of a heuristicHEU with MAC-CBJ would

be denoted asMAC-CBJ-HEU.

Some of the experimental studies may use other extensions to basic CSP algorithms, such as

preprocessing or a fixed initial variable ordering. Naming strategies for these combinations will

be introduced pragmatically in the relevant chapters.

4.2 Experimentation Environment

The software system which conducts the empirical studies is implemented using theC language.

This system is comprised of three main modules: a problem generator, capable of producing

ensembles of randomCSPs; a suite of search algorithms, problem preprocessors and heuristics

which can be combined to process these problems; and a data collection module which produces

statistics about individual searches and groups of searches.

Development of this system is carried out under aUNIX environment on a Sun SparcStation

platform. The system is then transferred to aUNIX environment on a Silicon Graphics Indigo

platform, enabling the experiments to be distributed over a network of 75 workstations. Access

to this considerable computing resource in practice providesapproximately one CPU year of

available processing power per week.
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As has been mentioned in Section 3.6, software capable of reproducing the experiments re-

ported throughout this thesis is publicly available on the World Wide Web. Further details on this

can be found in Appendix A.

4.3 Phase Transition Experiments

The main purpose of the empirical studies is to investigate the performance of different algorithms

on CSPs of varying size and constraint topology. This usually requiresthe application of the

algorithms to several classes ofCSP over a range of problem sizes.

The application of an algorithm to anhn;m; p1i problem class forms the basic building block

of most of the empirical studies, and we use the termphase transition experimentto describe such

an operation. A phase transition experiment is formed by varying constraint tightness,p2, in steps

of 1=m2 over the range[1=m2::1]. At each of these points, an ensemble ofCSPs is generated for

the currenthn;m; p1; p2i, and each member problem is searched by the algorithms being studied.

By covering each possible value ofp2, a phase transition experiment will apply algorithms

to problems in the under-constrained ‘easy-soluble’ problem region, through the ‘hard’ phase

transition region, and into the over-constrained ‘easy-insoluble’ problem region. In order to accu-

rately gauge the average and extremes of algorithm behaviour, eachhn;m; p1; p2i ensemble must

be sufficiently large. A typical ensemble consists of 1;000CSPs, while sample sizes of 10;000

problems are often required if rare features of algorithm behaviour are being investigated.

To illustrate the typical format of an empirical study into algorithm behaviour, consider the

example of testing theFC algorithm (Section 2.1) on problems of sizeh30;10i. To investigate

the performance of the algorithm as constraint density varies,p1 is varied in steps of 0:1 over the

range[0:1::1:0]. A phase transition experiment is then performed for eachh30;10; p1i class:p2

is varied in steps of 0:01 over the range[0:01::1:00]; ensembles of 1;000CSPs are generated at

each of these points, and the problems searched byFC.

The above example entails the generation and search of one million CSPs, which may require

several CPU days of processing power. Such an experiment would form only a small part of a

comparative study of many algorithms on many types ofCSP, possibly involving a total invest-

ment of several CPU years.

4.4 Measuring Search

The cost of a search performed by an algorithm on aCSP may be measured and expressed in a

number of ways. These ‘instruments’ for measuring search cost may vary in their level of depen-

dency upon implementation and environment, and may also varyin their perceived relevance to

the ‘true’ cost of a search. However, many if not all of these measures may make a valid contri-

bution to the understanding of a search process, and methodological discussions such as (Gentet

al. 1997b) encourage empirical studies to “measure with many instruments”.

In order to provide as many views of the search process as possible, seven different aspects of

each search are measured in the empirical studies presented here. These measures are described
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below.

4.4.1 Consistency checks

When checking that a valuex for a variablevi is consistent with a valuey for a variablev j , a

single consistency check is counted. If the variables involvedare not constrained, then no check

is counted. The consistency checking cost of a search is regardedby many as a good surrogate

for ‘real’ time.

Consistency checks are environment independent, but are highly dependent on implementa-

tion efficiency. Also, for some algorithm implementations, it may be neither possible nor sensible

to count consistency checks due to the way in which the constraints are implemented: for in-

stance theAC4 arc consistency algorithm (Mohr and Henderson 1986), which performs all of its

consistency checking during an initialisation stage.

4.4.2 Nodes visited

Every trial instantiation of a variable made during search corresponds to a single node in the search

tree having been visited. This definition corresponds to that given by (Kondrak and van Beek

1997).

This measure is both environment and implementation independent, given the same variable

instantiation ordering, and so allows direct comparison between any implementation of a particu-

lar algorithm. However, it may not reflect the varying levelsof search effort required during each

trial instantiation, and so is not as analogous to real time as consistency checks.

4.4.3 CPU time

The amount of CPU time elapsed during each search is measured approximately. CPU time is

regarded by many as the true ‘bottom line’ of search cost, and often as theonly relevant mea-

sure. However, execution time is highly environment and implementation dependent, and is a

notoriously difficult measure to take accurately.

Circumstances may arise, though, when CPU time is the only suitable measure of cost. These

include trying to estimate overheads that are not reflected inthe number of consistency checks or

nodes visited: for example the conflict set maintenance cost associated with theCBJ algorithm,

described in Section 2.1.

4.4.4 Permanent nogood values

SomeCSP algorithms are capable of removing values from the domains of variables that are

proven not to form part of any solution. These algorithms include preprocessors such asAC3

(Section 2.5).

For searches using these types of algorithm, the number of permanently removed ‘nogoods’ is

recorded. This measure is both environment and implementation independent.
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4.4.5 Temporary nogood values

The lookaheadCSP search algorithms presented in Section 2.1, such asFC andMAC remove

values from the domains of uninstantiated variables during forward search moves, which may

later be reinstated upon backward search moves. These ‘temporary nogoods’ are counted during

searches with these algorithms.

While this measure is environment independent, the number oftemporary nogoods during

a search can be affected by sensitive implementation features, such as the order in which the

effects of instantiations are propagated. Therefore, it could be said to be partially implementation

dependent.

4.4.6 Labellings

The number of forward search moves during which a variable is successfully instantiated, or

labelled, are counted. This measure differs from nodes visited in that the labelling of a variable

may require a number of trial instantiations before a valid one is found, corresponding to several

nodes.

4.4.7 Unlabellings

The number of backward search moves, or unlabellings, made uponencountering dead ends are

recorded. This measure is environment and implementation independent, given the same instan-

tiation ordering.

The number of unlabellings during search might give a good indication of the effectiveness of

an algorithm’s forward move. However, this measure will not indicate the ‘length’ of jumps made

by backjumping algorithms.

4.5 Presenting Search Data

The phase transition experiments (Section 4.3) which form thebasis of the empirical studies

involve the search of many thousands ofCSPs. Each of these searches produces a number of

search cost measures, resulting in large quantities of raw data tobe analysed. In order to draw

useful conclusions from all the data produced by the experiments, it is essential that it is collected

and presented in a manageable and comprehensible form: that is,we must obtain a goodviewof

the data.

There are essentially two types of view of a phase transition experiment that should be avail-

able. Observing general behaviour of an algorithm on a problem class requires what might be

termed a ‘telescopic’ view of the search data, while an understanding of the mechanics of indi-

vidual searches by an algorithm requires a ‘microscopic’ viewof the search process.

A number of techniques are employed to obtain search data and present it in a way that pro-

vides the views required. These are described below.
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4.5.1 Summary statistics

The ‘telescopic’ view of a phase transition experiment is provided by a number of summary

statistics. The following statistics are calculated for each measure of search cost on each ensemble

of CSPs:� the proportion of soluble problems,psat.� the proportion of problems shown to be inconsistent (and insoluble) by consistency meth-

ods,pinc, if applicable.� the minimum and maximum costs.� the mean cost.� the standard deviation of cost.� the median cost, plus higher cost percentiles(75%;90%;99%;99:9%;99:99%;99:999%)
as applicable.� the separate median costs for soluble and insoluble problems in the ensemble.

4.5.2 Search profiling

A ‘microscopic’ view of the search process for an algorithm is provided by a search profiling

facility. The total search cost incurred at each level in the search tree is measured, for each type of

cost measure, and can be used to form an individual profile for a singleCSP search, or a summary

profile for an ensemble ofCSPs.

The use of search profiling is not new, and has been presented in well known empirical studies

such as (Haralick and Elliott 1980). An illustration of the insights gained by looking inside search

using the profiling facility is shown by Figure 4.1. The two plots compare the work done at each

search depth by two different algorithms on the same problem. Algorithm A can be seen to be

doing most of its work deeper into the search tree than Algorithm B, which spends most of its

time at shallow search depths. Comparisons like this might help to explain differences in scaling

properties or extremes of behaviour between these algorithms.

4.5.3 Cost percentiles

Investigation of the general behaviour of an algorithm will tend to focus on the mean and me-

dian values of various search costs. Occasionally, however, thedistribution and extreme values

of search cost over samples ofCSPs are of interest. This particularly applies to the study of

exceptionally hard problem behaviour (Section 1.5).

Ehps by definition represent extreme behaviour in a population of problems, and so will not be

evident in a plot of median cost to find a solution; they will affect the mean cost, but not in a way

which elucidates what is happening. For some problem classes, therefore, we plot the median and

higher percentiles of search cost, up to the maximum cost, for the sets of problems; this follows

graphs shown by (Hogg and Williams 1994) and (Gent and Walsh 1994a).
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Figure 4.1: Search profiles for two algorithms on an ensemble ofCSPs.

4.5.4 Cost against constrainedness, κ

Phase transition experiments (Section 4.3) onCSPs take the general form of varying the control

parameter,p2, for a number of relatedCSP classes. The location of the crossover point at the

phase transition usually lies at different values ofp2 for each problem class studied, and the

‘width’ of the phase transition region often varies if the classes involved have different constraint

topologies.

Plotting search cost againstp2 for a number of differentCSP classes can obscure attempts

to compare their phase transition behaviour, given the variations in apparent location and width.

This problem can be alleviated, however, by plotting search costs for the different types ofCSP

against the general constrainedness parameter,κ, introduced in Section 3.2.

Plotting the empirical data for anhn;m; p1i problem class againstκ is effectively doing so

against a re-scaledp2, and enables direct comparison of apparently diverse phase transition re-

gions. To illustrate the improved view of phase transition behaviour offered by this technique,

Figure 4.2 plots the median consistency checking cost of an algorithm applied to nineh20;10; p1i
problem classes. The upper graph plots cost againstp2 while the lower graph plots cost againstκ.

Re-scaling of the nine phase transitions around the valueκ= 1 removes the overlapping curves

that appear in the upper graph, and shows the patterns of the transitions to be more similar than
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Figure 4.2: Plotting several phase transitions againstp2 (top) andκ (bottom).
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the plots againstp2 would suggest. The alignment of the phase transition peaks in thelower

graph also makes the scaling relationship asp1 increases a lot clearer. A slight limitation of

this technique, however, is that peaks for the more sparsely constrained problem classes do not

quite line up at the valueκ = 1 (this can be seen forp1 = f0:2;0:3g in Figure 4.2). Recall from

Section 3.2 thatκ tends to underestimate the constrainedness of sparseCSPs.
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Chapter 5

Exceptionally Hard Problems

The phenomenon of exceptionally hard problem (ehp) behaviour which is occasionally exhibited

by completeCSP search algorithms was introduced in Section 1.5. To recap,ehps are extremely

expensive searches which sometimes occur for a particular algorithm at values of the control pa-

rameter where most problems are extremely easy. The magnitudeof these exceptional searches is

often sufficient to greatly distort the mean cost observed for large populations of similar problems.

Exceptionally hard problems are believed to be a feature of exceptional behaviour being ex-

hibited by a particular algorithm, rather than the discoveryof a fundamentally difficult problem

instance in the region where most are easy. In the phase transition, problems are hard on average

due to the fact that either an exhaustive search must be undertaken if no solution exists, or an

extensive search must be undertaken if the problem has few solutions. In some cases, though,

a particular algorithm may find the solution to a phase transition problem very quickly due to a

favourable instantiation ordering (Smith and Dyer 1996). Inthe easy-soluble region, most prob-

lems are very easy because they are underconstrained and have many solutions. In some cases,

though, a particular algorithm may find a solution extremely difficult to find due to an exception-

ally unfavourable instantiation ordering which it cannot recognise as such.

This chapter examines the incidence and magnitude ofehp behaviour for a number of com-

pleteCSP search algorithms. The study looks atehps at both a ‘macroscopic’ level, considering

their incidence over populations of problems, and at a ‘microscopic’ level, examining in detail the

search process for many individual instances. A review of previous studies of the phenomenon

is followed by a statement of the criteria used here to classify instances ofehp behaviour. The

empirical study initially considers the basic backtracking algorithm,BT. The nature of exception-

ally hardBT searches is examined, and strategies to reduce the incidence of ehp behaviour are

proposed. These include the use of algorithms employing more sophisticated forms of forward

and backward search move, and the use of a dynamic variable ordering strategy. Although their

incidence is greatly reduced, these search strategies still produce some level ofehp behaviour for

many types ofCSP. We conclude by discussing the results of this study and the relevance of the

ehp phenomenon in the overall study of algorithms for theCSP.
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5.1 Related Work

(Hogg and Williams 1994) studied the application of depth-first search to large populations of

graph colouring problems, and found that the most expensive of all searches were concentrated not

at the phase transition, but in an area before it, where problems are easy in the average case. They

identified the occurrence of these difficult problems with a second peak in the higher percentiles

of search cost, which corresponds to the transition between polynomial and exponential scaling

of the average search cost.

(Gent and Walsh 1994a) studied the performance of the Davis-Putnam satisfiability procedure

on populations of3-SAT problems, using two models of problem generation. They reportthat the

most erratic behaviour in search cost occurred in the easy regionof this class of problem, finding

searches there that were orders of magnitude more expensive than the hardest phase transition

problems. They attributed these exceptionally hard searches to either hard unsatisfiable instances

(which can occur in relatively under-constrained problem regions forSAT), or to a bad choice of

variable ordering producing a hard unsatisfiable subproblem.

In the case of binaryCSPs, (Smith 1995) has reported a preliminary investigation intoex-

ceptionally hard problems occurring in the easy-soluble region. Smith suggested that factors

contributing toehps could include an unusually small number of solutions, a clustering of all

solutions in one region of the search space, or an unusually largesearch space induced by the

variable ordering strategy of the algorithm. (Frost and Dechter 1994) also report evidence of

ehps in binaryCSPs, noting that problems with many loose constraints can be much harder than

those with fewer and tighter constraints.

Subsequent studies have empirically compared the levels ofehp behaviour between different

complete search algorithms. (Davenport and Tsang 1995) showed that the use of backjumping

techniques and sophisticated variable ordering techniques significantly reduces the incidence of

ehp behaviour for theFC algorithm, applied to sets of graph colouring problems.

Similarly, (Baker 1995) applied various algorithms with varying levels of backjumping ca-

pability to large sets of 100 variable 3-colouring problems.Ehp incidence was reduced by

more intelligent backjumping, and Baker made the claim, based purely on empirical results, that

dependency-directed backtracking (Stallman and Sussman 1977) eliminates the phenomenon on

these problems completely.Ehp behaviour was attributed simply tothrashingbehaviour (Mack-

worth 1977), which sees algorithms with more naive forms of backward search move continue to

make the same mistakes in a pathological fashion. The exact nature of this behaviour, however,

was not examined closely1.

Recently, (Gomeset al. 1997) have analysed the distribution of search cost over populations

of soluble combinatorial problems, and show that these distributions are invariably ‘heavy-tailed’

in nature. That is, given sufficiently large populations, the outlying cases tend to be situated

extremely far from the average case. They show that this distribution can in fact be modelled as

a stable distribution, using a technique that has been applied to real-world chaotic phenomena

such as weather patterns and stock market behaviour. In addition, they show that a strategy which

1Curiously, Baker erroneously claimed that Hogg & Williams and Gent & Walshoffered no explanation for theehp
behaviour that they observed.
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re-starts search from a different point after a certain cost limit has been reached is effective in

curbing the heavy-tailed distribution; that is, it reduces the likelihood of an exceptionally hard

search on an easy soluble problem.

Ehps appear to be a feature only of complete search methods. Neither(Hogg and Williams

1994), in looking at heuristic repair methods on graph colouring problems, nor (Gent and Walsh

1994b) in applying theGSAT hill-climbing procedure to satisfiability problems, have found any

evidence ofehp behaviour for these algorithms. Similarly, (Davenport and Tsang 1995) found no

sign ofehps when applying theGENET neural network to graph colouring problems.

5.2 Criteria Used

In the study presented in this chapter (and in later studies), a problem instance is said to be an

exceptionally hard problem (ehp) if:

1. it occurs in the region where almost all problems are soluble, and on average easy to solve

(that is, outside the mushy region);

2. it is much more difficult, by at least an order of magnitude, than almost all other problems

with the same parameter values;

3. it is more difficult than almost all the problems occurring in the mushy region.

This is intended to be a description, rather than a precise definition. As will be seen, a problem

which is exceptionally hard for one algorithm may be very easyto solve for another algorithm

(or even for the same algorithm with a different variable instantiation order). Hence,ehps do

not appear to be exceptional problems, but rather to cause exceptional behaviour in a specific

algorithm. So although we should consider individualehps and why the algorithm gets into such

extreme difficulties with these problems, it is the incidence of ehps in populations of problems,

in relation to particular search algorithms, that is of most interest.

For the purposes of the empirical study presented later, we define the mushy region (Sec-

tion 1.4) arbitrarily as the range of values ofp2 for which the probability that a problem has a

solution lies between 0.01 and 0.99. This allows us to estimateits boundaries by finding the

largestp2 for which more than 99% of problems are soluble and the smallestp2 for which fewer

than 1% of problems are soluble.

The empirical study ofehp behaviour is presented in the following sections. The problems

used are binaryCSPs, generated according to the Model B random generation method presented

in Chapter 3.

5.3 Basic Ehp Behaviour

The empirical study ofehp behaviour begins with the simple backtracking algorithm,BT. (Prosser

1993) notes that, “We should considerBT as describing the most primitive forward move (check-

ing against past variables) and the most primitive backward move(chronological backtracking)”.
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Figure 5.1: Ranges of consistency checking cost forBT on h20;10;0:2i andh20;10;1:0i CSPs.

Three phase transition experiments were conducted using theh20;10;0:2i, h20;10;0:5i andh20;10;1:0i CSP classes. These problem classes were chosen to provide a range of constraint

tightnesses over whichehp behaviour may vary considerably. The size of eachp2 step for the

three classes is 0:01, and ensembles of 5,000 problems were generated at everyh20;10; p1; p2i
point in order to increase the likelihood of observing extremesearch behaviour.BT was applied to

eachCSP in the study using a static lexical (effectively random) variable instantiation ordering.

5.3.1 Naive chronological backtracking

Figure 5.1 shows the median and higher percentiles of consistency checking cost forBT over theh20;10;0:2i andh20;10;1:0i problem classes. Costs are plotted against constraint tightness, over

a range covering the region leading up to and beyond the phase transition.

Looking first at the median cost of solving these problems, the usualphase transition behavior

is seen, with a peak at the point where half the problems are soluble and half insoluble. In the

case ofh20;10;1:0i, when p2 < 0.2, all the problems searched have solutions, and whenp2 >
0.24, none do. At small values ofp2 for both classes, most problems are very easy to solve: up

to the point where the gradient of the median cost curve starts to climb steeply, at least half the

problems can be solved without ever backtracking to a previous variable.

However, the higher percentiles show that for most of the easy-soluble regions, except for the

smallest values ofp2, there is a small proportion of problems which is extremely costly to solve.

For both classes, the most expensive searches occurring to the leftof the phase transition are much

more costly (by at least an order of magnitude) than 99% of the other problems occurring in the
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Figure 5.2: Mean consistency checking cost forBT on h20;10;0:2i andh20;10;1:0i CSPs.

ensemble at the same value ofp2; much more costly (again, by at least an order of magnitude)

than 99% of the sample problems in the phase transition; and occur well below the values of

p2 at which the first insoluble problems are found. Thus they fit thedescription given earlier

and areehps. These rare problems are sufficient to increase the mean cost enormously: on theh20;10;1:0i class for instance, the most expensive problems at aroundp2 = 0.1, which take more

than 109 consistency checks, are each sufficient to increase the mean by 200,000, at a point where

the median cost is less than 1,000. This effect ofehp behaviour on the mean costs ofBT over theh20;10;0:2i andh20;10;1:0i classes is illustrated by the plots in Figure 5.2.

It should again be emphasized that all of theehps shown in Figure 5.1 are solubleCSPs. For all

the experiments reported in this thesis, no instances of insoluble ehps in the easy-soluble region

of anyCSP class have been found. Furthermore, allehps which we have studied in detail appear

to have many solutions, typical for such underconstrained problems. As discussed in (Smith

1995), if an insoluble problem were to occur in the easy-solubleregion of aCSP class, it would

be extremely hard to prove insoluble. It seems, though, thatehps of this type are exceptional even

amongstehps.

5.3.2 Inside a BT ehp

To gain some insight into what turns aBT search into anehp, we examined in detail the progress

of the algorithm on one of the difficulth20;10;1:0i problems whenp2 = 0.07; this problem took

31 million consistency checks to solve.BT frequently finds partial solutions with 19 of the 20

variables instantiated, and then backtracks, since it cannot find a value for the last variable which
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is consistent with the past assignments. This is due to the fact thatthe last variable (v20) has no

values that are consistent with the first 8 instantiations made. Eventually, the eighth instantiation

is changed, fromv8=1 tov8 = 4, and a solution is found almost immediately.

It is clear that the reason for the high cost of solving this problem is that the algorithm is

thrashing (Mackworth 1977); repeatedly re-discovering essentially the same failure. Attributing

ehp behaviour to thrashing is not new: (Baker 1995) makes a similarsuggestion, although his

explanation applies only to problems with disconnected constraint graphs. Mackworth pointed

out that a local inconsistency can cause thrashing in an algorithm that is unable to detect it. But

from results on establishing consistency inCSPs, presented later in Chapter 6, we know that

in this case theehp could not be avoided by making the problem node, arc or path consistent.

However, if, after the first 8 assignments, we were to form the subproblem consisting of the

future variables and those of their values which are consistentwith the past assignments (as is

done explicitly by the forward checking algorithm), the subproblem could be thought of as being

node inconsistent, sincev20 would then have no values remaining in its domain.BT is subject to

thrashing in this situation because it cannot detect this node inconsistency without an exhaustive

search of the insoluble subproblem.

This ‘insoluble subproblem’ explanation forehp behaviour is very similar to the experience

reported by (Gent and Walsh 1994a); they found a satisfiability problem which required more than

350 million branches to solve, using a simplified version of the Davis-PutnamSAT algorithm. The

first choice made by the algorithm led to a very difficult unsatisfiable problem, which required

almost all the search effort; the alternative choice led immediately to a solution. They conclude

that, “These difficult problems are either hard unsatisfiable problems or are satisfiable problems

which give a hard unsatisfiable subproblem following a wrong split”. They also report similar

experience with travelling salesman problems in (Gent and Walsh 1995b); they were concerned

with the decision problem, i.e. whether there is a tour of length l or less, and found that ifl is

increased from the minimum possible length, the problem can sometimes become much more

difficult, rather than easier, as would be expected. This is because a bad decision made early on

can lead to a long and unsuccessful search for an acceptable tour of the remaining cities: the bound

is insufficiently tight to cut off search until nearly all the cities have been considered, whereas a

tighter bound allows backtracking to be triggered much earlier.

In order forBT to find a problem in the easy-soluble region exceptionally difficult in this way,

a combination of circumstances must occur:� the first few assignments must together conflict with every value of the last variable in the

instantiation order (or perhaps, in larger problems, one of thelast);� it must be easy to find values for the intervening variables which are consistent with the

first few assignments.

The first condition ensures that an insoluble subproblem is created. The second ensures that

searching the subproblem takes a very long time: the algorithmdoes not encounter any failure

causing it to backtrack to a previous assignment until the last variable is reached; and the search

tree has many branches, because the first variables in the subproblem have many values which are
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consistent with the past assignments.

These two conditions are contradictory, given the Model BCSP generation model used to

produce Figure 5.1. Hence, the combination is inherently very rare. However, circumstances can

be imagined in which the conditions would be easier to meet: for instance, if the tightness of the

constraints varied, in such a way that the constraints between the first few variables and the last

were tighter than other constraints. As discussed in (Baker 1995), if the graph is disconnected,

and the algorithm does not solve each component separately, thrashing can occur relatively easily.

Recently, (Smith and Grant 1997) have looked at exceptionally hard problem behaviour by

the BT algorithm in more detail. They use the insoluble subproblem explanation as a basis for

constructing a model ofehp behaviour and its expected cost. Looking initially atBT on CSPs

whose constraint graph is a clique (i.e.p1 = 1), the probability that the conditions leading to a

hard insoluble subproblem arise has been calculated, as has an estimate for the resulting search

cost. From this, Smith and Grant derive a theoretical cost distribution which suggests that the

hardest searches in the easy-soluble region will form a second peak in the higher cost percentiles

similar to that which (Hogg and Williams 1994) have observed empirically. It is anticipated that

this model will be extended to other algorithms in future, such as forward checking, and toCSPs

with non-clique constraint graphs.

5.3.3 Improving BT’s variable ordering

The empirical study ofBT described above deliberately uses what is effectively a random instan-

tiation ordering, so as to test the algorithm in perhaps its mostnaive form. It may be the case,

however, that a more informed choice of instantiation order may have an impact of the incidence

of ehps. To test this, a second study ofBT was conducted, using a heuristic technique described

by (Gibbset al. 1976) to give each search a small-bandwidth static variable ordering. The band-

width of an ordering is the maximum distance in the ordering between any pair of variables which

have a constraint between them. A small-bandwidth ordering should makeehps less likely to oc-

cur, and less costly if they do occur. This is because when the instantiation of a variable causes

a domain wipeout in some future variable, the smaller the bandwidth, the smaller the distance

between these two variables, and therefore the smaller the number of intervening variables over

which the algorithm has to backtrack.

Dense constraint graphs are not particularly relevant to such astudy, since if all variables

are constrained by nearly every other, then a small-bandwidthordering will not exist. A phase

transition experiment using this technique was therefore conducted using the sparseh20;10;0:3i
problem class. The size of eachp2 step was again 0:01, but this time ensembles of 10,000 prob-

lems were generated at everyh20;10;0:3; p2i point to further increase the chances of exceptional

searches.

Figure 5.3 plots the median and higher percentiles of consistency checking cost forBT over

the problem class, against constraint tightness. Compared to theh20;10;0:2i plot in Figure 5.1,

ehp behaviour using this version of the algorithm is as bad, if not worse, than the naive lexical

ordering. It appears that a more sophisticated approach is needed to tackle the phenomenon.
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Figure 5.3: Ranges of consistency checking cost forBT (using a minimum bandwith ordering) onh20;10;0:3i CSPs.

5.4 Strategies for Avoiding Ehps

BT is of course an extremely naive algorithm, and we might expectthat more sophisticated algo-

rithms will reduce the incidence ofehps, as well as improving the average cost of search. In one

sense, it is trivial even forBT to avoid anehp in an individual problem: theBT ehps that have

been examined, including that described in Section 5.3.2, arise through encountering insoluble

subproblems early in the search; if a different instantiation order is used, the subproblem will not

be created. Another algorithm applied to anehp may also find the problem easy simply because it

considers variables in a different order. What is required, however, is an algorithm which reduces

the incidence or difficulty ofehps overall.

There are, in theory, two potential ways for a search algorithm to avoidehps which arise

through encountering insoluble subproblems early in the search: one is to avoid getting into such

subproblems in the first place, and the other is to detect that the subproblem is insoluble more

quickly. Sections 5.5, 5.6 and 5.7 study these approaches in isolation, and then in tandem.

5.5 Looking Forward

Algorithms which perform a lookahead style of consistency checking (Section 1.3.1) to some

extent make the future subproblem consistent with each instantiation made. Such a process is

likely to detect the insolubility of many of the subproblems which lead toehp searches. Below,

we consider algorithms performing two levels of lookahead: forward checking and maintaining
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Figure 5.4: Ranges of consistency checking cost forFC on h20;10;1:0i CSPs.

arc consistency. The effects of using these algorithms with a variable ordering heuristic are also

examined.

5.5.1 Forward checking

BT may thrash when it encounters an insoluble subproblem early in the search. If node inconsis-

tencies are created in the subproblem following an instantiation, the forward checking algorithm

(FC) can avoid an exhaustive search. By removing those values from the domains of future

variables which conflict with the past assignments,FC can detect when a future variable has no

remaining values, and hence recognize immediately that the subproblem is insoluble.

FC, using a static lexical variable ordering, was applied to theh20;10;1:0i CSPs that were

searched byBT in the previous section. Sample sizes were increased to 10,000 problems at each

p2, however, so an additional 5,000CSPs were effectively added to each ensemble. Figure 5.4

shows the results of applyingFC to these problems, in a similar style to Figure 5.1. As expected,

FC reduces the incidence and severity ofehps considerably. However, there are still some prob-

lems which are extremely difficult by comparison with the median difficulty at the same constraint

tightness. Examination of individual problems of this kind, some of which is presented later in

Section 5.8, shows that theehp is still due to an insoluble subproblem formed by the first few

instantiations. Once again, when the algorithm eventually backtracks to this point and tries a dif-

ferent instantiation, a solution can be found almost immediately. However, rather than a simple

node inconsistency in the subproblem, there is an arc inconsistency involving the last variable.

Although this will manifest itself eventually in a domain wipeout of the last variable (whichFC
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can detect, and so do much better than BT even on these more complex problems) it still has to

do a good deal of backtracking before proving that the overall subproblem is insoluble.

5.5.2 The effect of adding search heuristics

CSP algorithms with lookahead capability, includingFC, often use a dynamic variable ordering

(DVO) strategy (Section 2.4). A popular technique is to instantiate the the variable that has the

fewest remaining values left in its domain, in an attempt to follow the ‘fail-first’ principle2. We

use a variant of this heuristic, proposed by (Frost and Dechter 1994) which selects thefirstvariable

to instantiate as the one with the highest degree, i.e. the one constraining the largest number of

other variables. Thereafter, the ‘smallest remaining domain’strategy is used. Frost and Dechter

use the generic termDVO for this specific heuristic, but here we use the nameFFdeg, for fail-first

with initial degree ordering.

Four phase transition experiments applying theFC-FFdeg algorithm were conducted, using theh20;10;0:2i, h20;10;0:3i, h20;10;0:5i andh20;10;1:0i CSP classes studied earlier. For these ex-

periments, ensembles of 10,000CSPs were generated and searched at everyh20;10; p1; p2i. Fig-

ure 5.5 plots the median and higher percentiles of consistencychecking cost, againstp2, around

the phase transition regions for each of these problem classes.

Remarkably, the heuristic appears to have completely eliminated thrashing in the easy-soluble

regions of the densely constrained classes. It must meet arc inconsistent subproblems at roughly

the same rate asBT andFC (though not the same ones, since the instantiation order is different),

and it is surprising that simply considering next the variable with smallest domain is sufficient to

detect the inconsistency whenFC cannot. To provide further verification for the eliminationof

ehp behaviour on densely constrained problems,FC-FFdeg was again applied to theh20;10;1:0i
class. This time samples of 50,000 problems were searched at eachvalue ofp2. A small increase

in the maximum cost was observed, but without any signs ofehp behaviour.

For the more sparsely constrained problem classes, however,ehp activity can still be observed

with FC-FFdeg. Clearehps are to be found in the easy-soluble region of theh20;10;0:2i class,

while the instability of the maximum cost curve forh20;10;0:3i suggests thatehps will be ob-

served with larger sample sizes. The incidence ofehp behaviour withFC-FFdeg on sparseCSPs is

clearly lower than that for bothBT and plainFC, however. In Section 5.5.3, the incidence ofehp

behaviour for this algorithm on larger sparse problems is examined. Later, Section 5.8 also looks

at the behaviour of specificehps for FC-FFdeg.

Ignoring the higher percentiles for a moment, the median costcurves in Figures 5.5 and 5.1

demonstrate how much more expensiveBT is thanFC-FFdeg, for most values ofp2. For theh20;10;1:0i class, the peak in median cost occurs at the same value ofp2 for both algorithms, but

is about two orders of magnitude higher forBT than forFC-FFdeg. Whenp2 is small, however,

the median cost is lower forBT than forFC: when the constraints are very loose and solutions are

easy to find, the effort of checking all the values of the futurevariables is often not worthwhile.

2Chapter 8 examines this principle, and DVO heuristics based on it, in more detail.
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Figure 5.5: Ranges of consistency checking cost forFC-FFdeg on fourh20;10i CSPs.
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Figure 5.6: Ranges of consistency checking cost forFC-FFdeg on h50;10;0:1i CSPs.

5.5.3 Large sparse problems

From the plots of phase transition behaviour that have been presented so far, it is clear that the

phase transition is less sharp in sparse problem classes than in dense ones, given the same values

of n andm. It is also known from many empirical studies (for instance (Prosser 1996)) that for

low values ofp1, the phase transition grows sharper asn is increased.

It might be suspected, therefore, that theehps still seen forFC-FFdeg in theh20;10;0:2i prob-

lem class are a side-effect of this. It may be the case that in larger sparse problems, as the phase

transition becomes more abrupt,ehps will disappear from these problems as well as the more

densely constrained ones (for this algorithm).

Therefore, another phase transition experiment usingFC-FFdeg was conducted. This time, theh50;10;0:1i CSP class was examined, withp2 varied in steps of 0:01 and ensembles of 10,000

problems generated at each point. Figure 5.6 plots the median and higher percentiles of con-

sistency checking cost against constraint tightness. It is worth pointing out that data plotted in

Figure 5.6 is based on solving 230,000 individualCSPs; since the peak median cost is approxi-

mately 1 million consistency checks, and since it takes hours to solve some of the worst individual

problems, Figure 5.6 represents a considerable investment of cpu time.

As expected, theh50;10;0:1i problems show a much sharper peak in the median than theh20;10;0:2i problems, and the mushy region is much narrower (using the criteria given in Sec-

tion 5.2 its range is 0.53 - 0.59). So as far as the median behaviour is concerned, the increase

in n from 20 to 50 has caused the phase transition to become more abrupt, even though the den-

sity is lower. However, far from disappearing,ehps are if anything more common, and are more
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extreme, than in the smaller problems. This suggests that ehps are not a transient phenomenon,

associated only with small problems, and that asn increases and the phase transition becomes

more abrupt,ehps will continue to appear and will be increasingly extreme.

Figure 5.6 shows also a ‘spike’ in the maximum cost curve in the insoluble region, atp2=0:63.

This is extremely untypical behaviour: in the insoluble region, all the maximum cost curves that

we have seen, with this one exception, decline smoothly from the peak. This problem is itself

insoluble, and not anehp by our criteria; it is so far unique in our experiments, and is examined

briefly in Section 5.8 as a possible exceptionally hard problemoccurring in the insoluble region.

5.5.4 Maintaining arc consistency

As discussed in Section 5.5.1, forward checking avoids many of theehps that simple backtrack-

ing suffers from because it can detect immediately the infeasibility of the subproblem in which

thrashing occurs.FC is itself subject toehps, however, and in those cases the reasons for the

infeasibility of the subproblems are clearly more complex than a simple domain wipeout.

When a future variable has no values consistent with the current partial solution, the sub-

problem consisting of the future variables and their remaining values can be thought of as node

inconsistent. (Mackworth 1977) pointed out that a local inconsistency of this kind can cause

thrashing in an algorithm that is not able to detect the inconsistency. Although node inconsisten-

cies do not occur in our experimentalCSPs, the basis of the forward checking algorithm is that

node inconsistencies can occur in subproblems, even when the overall problem is node consistent.

BT is subject to thrashing in problems whichFC finds easy precisely because of this.

In the light of this, it is natural to suppose that some of theehps which FC suffers from are

caused by arc inconsistency in the insoluble subproblem. We therefore investigated the impact

onehp behaviour of an algorithm which re-establishes arc consistencywhenever a subproblem is

created. Thus, theMAC algorithm (Section 2.1) was applied to theh50;10;0:1i CSPs examined

in the previous section. As forFC, MAC was combined withFFdeg dynamic variable ordering to

produceMAC-FFdeg.

Figure 5.7 plots the median and higher percentiles of consistency checking cost against con-

straint tightness. As expected,MAC-FFdeg is less subject toehps thanFC-FFdeg. However, a very

prominentehp can be seen atp2 = 0:49, which costs over 1.547 billion consistency checks and

38 million nodes to solve. This particular problem is examined in more detail in Section 5.8.

We assume that in at least someMAC ehps, the insoluble subproblem is path inconsistent. Re-

establishing path consistency in every subproblem would then still further reduce the risk of

thrashing (which is already very small), but probably at the expense of a vastly increased average

cost.

5.5.5 Summary

The approach of looking ahead into the future subproblem during search does indeed bring ben-

efits in terms ofehp behaviour as well as average search cost.FC reduces the incidence ofehp

behaviour over theh20;10; p1i problem classes, although far from completely. Thoseehps that
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Figure 5.7: Ranges of consistency checking cost forMAC-FFdeg on h50;10;0:1i CSPs.

are found forFC still appear to be caused by insoluble subproblems that the algorithm cannot

identify.

The addition of ‘fail-first’ dynamic variable ordering, however, has a major effect onehp be-

haviour in densely constrained problem classes. There is no hint of FC-FFdeg encounteringehps

in the h20;10;1:0i problem class, nor, we conjecture, in densely constrained problems gener-

ally. Further experimentation carried out onh20;10; p1i problems shows little indication ofehps

occurring forp1 � 0.5. We have also examined larger dense problem classes (h20;20;1:0i andh30;10;1:0i) and found similarly that the higher percentiles are all closetogether, as in Figure

5.5, with no sign ofehps. If these are typical, then forFC-FFdeg, ehps in dense problems must be,

at the least, extremely rare compared with those in sparse problems.

Extending lookahead capability to that ofMAC further reducesehps. TheMAC algorithm and

its effect on both the average and extremes of search cost are examined in detail in Chapter 7,

where a far wider range ofCSP classes are examined.

In terms of whereehp behaviour occurs over a problem class, the experiments withBT show

that it is subject to thrashing over a much wider range of valuesof p2 than the lookahead algo-

rithms are. Because the median behaviour ofBT over the phase transition is so bad compared to

FC, the very difficult problems in the soluble region do not always meet all the criteria forehps

given earlier. However, it is clear that problems which are at least as difficult as most of those

occurring in the phase transition occur at a higher rate, as well as over a much wider range of

values ofp2, for BT than forFC andMAC.
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5.6 Jumping Back

In searching for an algorithm which would avoid the thrashing thatBT is subject to, another pos-

sibility is to use some kind of informed backtracking, rather than chronological backtracking as

in the algorithms considered so far. When an insoluble subproblem is created and the infeasibility

detected as the last few variables are instantiated, such an algorithm might be able to backtrack

immediately to the true cause of the failure, that is, the first few instantiations.

(Baker 1995) suggests thatall exceptionally hard problems can be defeated by a search strat-

egy which uses a sufficiently intelligent backtracker. He presents experiments on graph coloring

problems using dependency-directed backtracking, which records all the nogoods it discovers

during search and uses these to avoid repeating work. However, it accumulates an ever-increasing

number of nogoods as it backtracks, which may not be practicable in difficult cases.

As discussed in Section 2.1, the conflict-directed backjumping(CBJ) algorithm maintains for

each variable aconflict set. This is the set of past variables which it failed consistency checks

with. If no consistent instantiation can be found for a variablevi , the algorithm jumps back to the

deepest variable,vh, listed in its conflict set. In the individualCSP discussed in Section 5.3.2,

which causesBT to thrash, every value for the twentieth variable conflicts with one of the first

eight assignments. ApplyingCBJ to this problem, the conflict set forv20 contains (at most) the

first eight variables, and when no value can be found forv20, the algorithm jumps back tov8,

and tries an alternative value for it. This leads directly tothe solution whichBT eventually finds.

Thus,CBJ can jump out of a node inconsistent subproblem as soon as the variable which has no

consistent values left in its domain is reached for the first time.

Figure 5.8 shows theCBJ algorithm applied to the set ofh20;10;1:0i problems solved earlier

usingBT (Figure 5.1) and is also comparable with Figures 5.4 and 5.5. As for the experiment

with BT, the algorithm uses a static lexical instantiation ordering.CBJ does much better thanBT

everywhere, both on average and especially in avoidingehps. AlthoughCBJ is more expensive

than FC on average over the phase transition, its worst-case performance at low values ofp2

is better. In the problems whichFC finds most difficult, the first few instantiations create an

arc inconsistent subproblem, with the last variable involved inthe inconsistency.FC can only

detect an inconsistency later on when this causes a domain wipeout; it then has to backtrack

chronologically over several variables before arriving back at the true cause of the inconsistency.

CBJ, on the other hand, cannot detect the inconsistency until it reaches the domain wipeout; it

then jumps back to the immediate cause, which is the point where FC would detect it. However,

from there, if there are no more values for the current variable, it can often jump back to the

ultimate cause of the inconsistency, i.e. the first few instantiations, and thereby beatFC.

5.7 Combining Techniques

If the two approaches of looking forward into insoluble subproblems and jumping back out of

them are successful in reducing the occurrence ofehps, then we might expect that combining

these techniques produce even better results. Hybrid combinations such asFC-CBJ andMAC-CBJ

are discussed in Section 2.1, and here we study their effects onehp behaviour. As withFC and
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Figure 5.8: Ranges of consistency checking cost forCBJ on h20;10;1:0i CSPs.

MAC, the hybrids are used with theFFdeg heuristic to produceFC-CBJ-FFdeg andMAC-CBJ-FFdeg.

The implementation of dynamic variable ordering used by bothalgorithms (discussed in Sec-

tion 2.4) means that the sets of nodes visited byFC-CBJ-FFdeg andMAC-CBJ-FFdeg are a subset of

those visited byFC-FFdeg andMAC-FFdeg respectively. Therefore the hybrid algorithms can only

find a problem exceptionally hard if the basic lookahead algorithm does so. Equally, if the basic

algorithm finds a problem exceptionally hard, the hybrid algorithm must meet the same insoluble

subproblem which causes the basic algorithm to thrash, and can only avoid thrashing if it can

jump out of it.

Figure 5.9 shows the results of running the two hybrid algorithms over theh50;10;0:1i prob-

lem class, as used in Figures 5.6 and 5.7. It is noticeable that the addition ofCBJ to the algorithms

is effective in further reducing the occurrence ofehps, but does not reduce the average search cost

by any significant amount. The effects of addingCBJ to FC andMAC are studied in greater detail

in Chapter 7.

We have looked at the performance ofFC-CBJ-FFdeg on a number of individualCSPs which

areehps for FC-FFdeg because of arc inconsistency in a subproblem. Sometimes the arc incon-

sistency is particularly simple, i.e. two future variables areleft without any mutually consistent

values by the first few instantiations.FC-CBJ-FFdeg can then jump back to the true cause of the

difficulty as soon as it has tried to assign a value to one of these two variables. In such cases,

FC-CBJ-FFdeg does better thanMAC-FFdeg, because it does not have the overhead of the arc con-

sistency algorithm.

Often, however, the proof of arc inconsistency is complex, involving many of the future vari-

ables. In such cases,FC-CBJ-FFdeg cannot jump out of the subproblem as soon as it meets the
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Figure 5.9: Ranges of consistency checking cost forFC-CBJ-FFdeg and MAC-CBJ-FFdeg onh50;10;0:1i CSPs.

inconsistency, because of the other variables involved. However, even being able to jump back

over a few variables is an advantage over chronological backtracking.

The comparison betweenMAC-FFdeg andMAC-CBJ-FFdeg is similar. The main benefit ofMAC-

CBJ-FFdeg is that it improves the worst-case performance ofMAC-FFdeg in the easy-soluble region,

in some cases dramatically, as with the individual problem atp2 = 0.49. Just asFC-CBJ-FFdeg

cannot directly detect arc inconsistency but can still do well by jumping back in arc inconsistent

subproblems,MAC-CBJ-FFdeg can similarly do well even though it cannot detect whatever higher

level of inconsistency is present in the subproblem.

The effect of adding conflict-directed backjumping to bothFC andMAC is examined in detail

for some individualehp cases in the following section.

5.8 Inside Ehps

To understand better the causes ofehps, we have examined carefully many individualh50;10;0:1i
problems whichFC-FFdeg andMAC-FFdeg found exceptionally hard. The focus onh50;10;0:1i is

not significant, but as this is the largest class ofCSPs studied so far, we tend to see the most

extreme individualehp behaviour here.

An analysis of threeehps is presented here: two are found byFC-FFdeg, while the other is

encountered byMAC-FFdeg. The behaviour observed is typical of that seen for the otherehps

that have been analysed. The effect of increasing the level of lookahead on the twoFC ehps is
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also examined, as is the effect of introducingCBJ to all three. Finally, graphical profiles of some

interesting individual searches are examined.

5.8.1 Two forward checking ehps

Section 3.6 notes that every experimentalCSP is generated from a single integer seed, so that

ensembles of problems effectively contain individually numberedCSPs. The exampleehps are

described below are thus referred to by their seed value.

Problem 898 in theh50;10;0:1;0:47i ensemble is anehp for FC-FFdeg. The median search cost

over the ensemble is just over 1000 consistency checks, but in thiscase the algorithm makes over

190 million consistency checks and visits 56 million nodes before finding a solution.

Re-solving problem 898 and printing out the current partial solution at regular intervals makes

the reason for its difficulty apparent. The first four instantiations made by the algorithm are

v31 = 1,3 v34 = 1, v41 = 4 andv4 = 2. The subproblem created by these instantiations, consisting

of the future variables and their remaining values, is insoluble. However, proving insolubility

accounts for almost all of the consistency checks required to solve the overall problem. During

the course of the search, partial solutions with 47 of the 50 variables instantiated are found: the

47th variable is always the same (v45). Invariably, the only future variable at that point which

conflicts withv45 is v38; the instantiation ofv45 evidently causes the domain ofv38 to become

empty, so that the algorithm has to backtrack. Hence, the insolubility of the subproblem is due to

the constraint betweenv45 andv38: a minimal relaxation of this constraint to allow an additional

pair of values is sufficient to make the subproblem soluble, and to allow the algorithm to solve

the overall problem very quickly. Without this modification, however, the algorithm eventually

proves that the subproblem is insoluble and then tries an alternative instantiation forv4, which

immediately leads to a solution. The search considers only one possible instantiation of the first

variable,v31.

In searching the insoluble subproblem, the algorithm clearly shows thrashing behaviour, re-

peatedly backtracking to variables betweenv4 andv45 and re-instantiating them. All of this work

is wasted, since it is only by going back to the first four variables that any progress can be made.

SinceFC-FFdeg cannot recognise this, however, it is doomed to keep on thrashing until the sub-

problem has been exhaustively searched.

Problem 358 in theh50;10;0:1;0:48i ensemble is also anehp for FC-FFdeg. The first four in-

stantiations made by the algorithm arev5 = 1, v16= 4, v22= 9 andv37= 4. It eventually becomes

clear that this set of assignments leads to an insoluble subproblem. However, proving insolu-

bility takes more than 79 million consistency checks and 8 million nodes visited; the algorithm

frequently finds partial solutions with 38 or more variables instantiated before detecting an infea-

sibility and backtracking. Once it has been proved that thereis no solution to the subproblem, the

alternative assignment ofv37 = 10 is tried and leads almost immediately to a solution. The search

considers only one possible instantiation of the first variable,v5.

3i.e. variable 31 is assigned the value 1.
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Problems 898 and 358 are typical of forward checkingehps. In everyehp that we have exam-

ined in detail, the first few assignments lead to a subproblem which has no solutions, and almost

all the search effort is expended in proving this. Partial solutions involving most of the variables

are found in the course of searching the subproblem, resulting ina great deal of backtracking. As

with the two problems above, the solution eventually found has the first variable assigned its first

value, so that there are very probably many solutions in other areas of the search space.

5.8.2 Extending lookahead

To examine the effects of increasing the level of lookahead onindividualehps, problems 898 and

358 described above were searched byMAC-FFdeg. To ensure a fair comparison, re-establishing

arc consistency is suspended in theMAC algorithm until the insoluble subproblem has been cre-

ated: for instance, if the first four instantiations lead to an insoluble subproblem, theMAC al-

gorithm is constrained to behave likeFC until depth 4 in the search tree, so that the same four

instantiations will be made.

Re-searching problem 898 usingMAC-FFdeg from depth 4, a solution is found after 6917

checks and 51 nodes. The algorithm clearly discovers that the subproblem is arc-inconsistent

and performs a single backtrack before proceeding to the solution. On problem 358,MAC-FFdeg

finds a solution after around 173,000 checks. In this case, the algorithm does perform some search

on the inconsistent subproblem, but backtracks quickly out of it.

Occasionally, however, making the subproblem arc consistent isnot sufficient to show that it

is insoluble, and the cause is more complex:

Problem 4150 in the h50;10;0:1;0:49i ensemble is anehp for MAC-FFdeg, and is the search

that stands out prominently in Figure 5.7. Nearly all of the 1.547 billion consistency checks and

38 million nodes visited are spent searching an insoluble subproblem created by the first seven

assignments.

5.8.3 Additional backjumping

The effects of introducing backjumping capability to the algorithms which produce the 898, 358

and 4150ehps was examined. Recall that the backjumping versions of the algorithms visit a sub-

set of the nodes visited by the basic algorithm, and so are bound toencounter the same insoluble

subproblems.

In the case of the forward checkingehps, problems 898 and 358,FC-CBJ-FFdeg does not find

the insoluble subproblems exceptionally difficult. This is precisely because the backjumping can

detect that the subproblems have no solutions much more quickly than chronological backtracking

can. There is a vestige of the earlier difficulty with problem 358: FC-CBJ-FFdeg takes more than

3 million consistency checks to prove insolubility and this is one of the most difficult problems at

that value ofp2. Problem 898, on the other hand, succumbs toCBJ very quickly: the subproblem

is proved insoluble in only 150,000 consistency checks. Problem4150, which is theMAC ehp,

was searched byMAC-CBJ-FFdeg in just over 150,000 consistency checks.
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5.8.4 Profile of an ehp

Adopting the adage that a picture tells many words, Figure 5.10 presents a profile (Section 4.5)

of the consistency checking cost of four ‘interesting’ searches at each search depth. The searches

examined are the threeehps discussed above (problems 898, 358 and 4150), plus the unusually

hard insolubleh50;10;0:1;0:63i problem mentioned in Section 5.5.3. A linear scale is used on

they-axis of each plot to emphasise the imbalance of the cost distributions.

The profiles of the threeehps show fairly consistent patterns. Nearly all of the search effort

is spread over a small subset of variables deep in the search tree. It is clear that the algorithms

consistently fall just short of finding a solution before running into the same dead end. The plots

in many ways drive home the enormity of the search spaces over which solutions are spread: the

subproblem created by the first four instantiations, for instance, is only one of 104 possible; but

within this, most of the searching is actually done after aroundtwenty-five variables are instanti-

ated; so this exceptionally long search process is actually spending most of its time in only a few

out of a possible 1025 subproblems.

The behaviour of the unusually difficult insoluble search is interesting. It is clear that partial

solutions of around twenty variables are consistently built upbefore a dead end is reached. From

further analysis of the search trees of forward checking algorithms, presented in Chapter 7, we

know that it is unusual forCSPs in this part of the insoluble region to have such a large subset

of mutually consistent variables. Given the sparseness of the constraints, it may be the case that

the constraint graph for thisCSP is bipartite, dividing the problem into two subproblems which

are connected by only a handful of constraints. The instantiation order of the algorithm might

then mean it effectively searches one of the subproblems before considering the other. If the

first subproblem is relatively under-constrained, then many permutations of instantiations for its

variables would be possible. This is speculation, though, and more detailed analysis of this search

might prove more enlightening.

The profiles of other measures of search cost (listed in Section 4.4) have also been considered,

and the patterns for each are similar to those seen for consistencychecking.

5.9 Conclusions

Exceptionally hard problems in the easy-soluble region occurwhen the first few variable instan-

tiations lead to the creation of a subproblem which is insoluble: the insoluble subproblem causes

the algorithm to thrash, repeatedly rediscovering the same inconsistency, deep in the search tree.

However, once the algorithm escapes from the insoluble subproblem, a solution can be found

almost immediately without further backtracking. These problems are not inherently difficult; a

better algorithm will often find it trivial to prove the subproblem insoluble. This is quite different

from the behaviour of tree search algorithms on the most difficult insoluble problems occurring

in the phase transition region, where searches take a long time simply because every path through

the search tree has to be followed and every one leads to a dead end.

All the ehps that we have seen in these experiments are themselves soluble; ifan insoluble

problem were to occur well below the phase transition, we expect that it would be extremely hard
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Figure 5.10: Profiles of fourh50;10;0:1i exceptional searches.
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to prove insoluble, just as finding all solutions is extremely hard, since a complete exploration

of the search space is required. However, it seems that ehps of this type are exceptional even

amongstehps, if they occur at all.

It is remarkable that the qualitative behaviour of the median cost, over a wide range of values

of p2, is the same for the different search algorithms considered here, when the behaviour of the

higher percentiles varies so markedly, sometimes tracking the median closely, and in other cases

peaking much earlier and at a much higher level. We have shown that the occurrence ofehps in the

easy-soluble region is highly algorithm dependent: we have found ehps usingBT in populations

with both high and low constraint density, whereas the other algorithms we have considered do

not appear to suffer fromehps in problems with dense constraints. Furthermore,BT hasehps at

values ofp2 for which almost all problems require no backtracking: when better algorithms have

ehps, it is at values ofp2 much closer to the phase transition. Using the most complex algorithm

we have considered (MAC-CBJ-FFdeg), we have found noehps in the experiments reported here.

The algorithms studied can be seen as using two different strategies for avoiding thrashing

in the insoluble subproblems that occur inehps. One is to look ahead, in order to detect the

inconsistency without searching the subproblem (FC andMAC); the other is to jump back when

the inconsistency is met, rather than stepping back chronologically (e.g.CBJ). The strategies can

be combined in the hybrid algorithmsFC-CBJ andMAC-CBJ.

The first strategy is guaranteed to be able to detect the inconsistency in the subproblem, pro-

vided that it is of the right kind (node inconsistency forFC, arc inconsistency forMAC). Looking

ahead can also cope to a certain extent with higher levels of inconsistency: for instance,FC is

much better thanBT even when the subproblem is arc rather than node inconsistent. However,

there is a danger that the algorithm will then do a great deal of unnecessary backtracking, by step-

ping back chronologically to possibly irrelevant variables. Because they jump back to a variable

involved in the conflict,CBJ-based algorithms reduce this danger. They also have some capabil-

ity for handling a higher level of inconsistency. For instance,CBJ can handle node inconsistency

very well;FC-CBJ can jump out of subproblems with the simpler forms of arc inconsistency; and

presumablyMAC-CBJ can sometimes deal with path inconsistencies, since it can sometimes solve

very easily problems whichMAC finds exceptionally hard. TheMAC-CBJ algorithm has almost

completely avoidedehps in our experiments, and shows the effectiveness of combining the two

strategies.

An area which needs further investigation is the role of the fail-first heuristic in avoiding

thrashing. It appears that when the constraint density is high,FC-FFdeg is virtually immune from

ehps: even arc inconsistent subproblems do not cause thrashing. It is not clear how fail-first

achieves this, especially asFC-FFdeg is not immune fromehps when the constraints are sparse,

and the difficulties are then due to arc inconsistent subproblems.

It should be noted that our graphs exhibitingehps show no sign of the double peak in the higher

percentiles found by (Hogg and Williams 1994), except perhaps for BT over theh20;10;1:0i
class (Figures 5.1 and 5.2). However, their experiments, on 3-colouring problems, used far larger

samples than ours; they had between 10,000 and 1 million samplesfor each data point, and were

thus able to see smooth behaviour in the 99.95 percentile. Withmuch larger samples, binary
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CSPs might well show a similar double peak. The recent theoretical study by (Smith and Grant

1997), described in Section 5.3.2, predicts the existence of adouble peak, initially for the case of

BT on CSPs with complete constraint graphs.

Finally, the whole subject of exceptionally hard problems isa source of much debate in the

CSP community. Many researchers consider the issue to be either unimportant or irrelevant. An

argument justifying the irrelevance ofehp behaviour is that, in practical terms, dealing with this

behaviour is in fact extremely easy: a strategy of randomly re-starting search after a time bound

is broken has been proposed by (Gomeset al. 1997); (Baker 1995) pushes the phenomenon

beyond the horizon of experimental scutiny in his empirical studies by using a complex form of

backjumping; and searching aCSP with a number of search ‘agents’, even if these agents use

fairly naive algorithms, will reduce the likelihood of encountering anehp to a negligible level

((Grant 1994) has conducted a study of ‘multi-agent cooperative search’ for theCSP).

However, there is a compelling case for at least understanding the causes ofehp behaviour in

complete algorithms: all of the algorithms studied are essentially refinements of simple backtrack-

ing search; failure to understand how and why these simple algorithms can perform in the most

unexpected ways places the development of more advanced complete methods in a precarious po-

sition. If the precise search conditions which lead to anehp eventually become well understood,

susceptible algorithms could be refined to incorporate this knowledge. They would then be able

to detect dangerous situations and take very simple measures tochange the nature of the search.

Such an approach seems eminently sensible: increasing the sophistication of the algorithms in

a ‘brute force’ approach will raise the average search cost on problems that are essentially very

simple; whereas by accepting that such anomalies may occur forany complete search algorithm,

and learning to recognise and deal with their occurrence, a simple and effective approach can be

retained.

The investigation ofehps has given new insight into the behavior ofCSP algorithms, including

some which have been in use for a long time (BT andFC). It has also given new understanding of

the phenomenon of thrashing behaviour: until its relationship with ehps was seen, thrashing was

not recognized as a localized phenomenon, occurring in the easy-soluble region, which could be

seen as part of the phase transition behavior ofCSP algorithms.
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Chapter 6

Phase Transition Behaviour in Arc and

Path Consistency

Phase transition behaviour has made a major impact on the empirical study of algorithms for

NP-complete problems such as theCSP, leading to more rigourous experimentation and a better

understanding of where algorithms perform well or badly. An interesting question that arises

is whether phase transition methodology can be applied to polynomial classes of computational

task. In this chapter we demonstrate that it can, showing that the polynomial tasks of establishing

arc and path consistency inCSPs exhibit phase transition behaviour very much analogous to that

associated with the NP-complete task of finding solutions to theseproblems.

Previous studies of arc consistency techniques (Bessière 1994; Borrett and Tsang 1995) sug-

gest that the cost of consistency follows an easy-hard-easy pattern, and we show here that this

pattern also exists for path consistency. These peaks in cost coincide with a transition between a

region where arc or path consistency can be established in all problems, and achieving this is easy,

and a region where attempting to enforce arc or path consistency fails for all problems, showing

each to be insoluble, and achieving this is easy. The peak in average cost is observed to coincide

with the point where around 50% of problems can be made consistent.

An empirical study applies the principles of phase transition research to examine where arc

and path consistency processing is useful in removing domain values. This reveals that the effec-

tiveness of establishing consistency rises and falls with the cost.Theoretical and empirical results

are also presented which show the average cost of theAC3 arc consistency algorithm to be much

lower than its worst-case time complexity suggests.

6.1 Related Work

Popular algorithms to establish arc and path consistency inCSPs are discussed in Section 2.5.

Empirical studies of these techniques have revealed some interesting behaviour.

(Bessìere 1994) introduced theAC6 algorithm, and conducted an empirical study to position

it with respect to theAC3 andAC4 procedures. The three algorithms were applied ton-queens
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problems, the Zebra problem (Dechter 1990), and three classes of CSP: h20;5;0:3i, h12;6;0:5i
and h18;9; p1; p2i. The algorithms were set to do just enough work to achieve consistency or

prove insolubility. The analysis, done in terms of constraint checking cost, showed thatAC3 and

AC6 followed an easy-hard-easy pattern over theCSP classes. The cost ofAC4 was consistently

high in the under-constrained regions, due to the high basic overhead associated with setting up

support counters. Although these patterns suggested some form of phase transition, Bessiére did

not point this out.

(Borrett and Tsang 1995) conducted an empirical study, usingAC6, of where arc consistency

preprocessing is effective in terms of removing inconsistent values from the domains of variables.

CSP classes of sizeh10;10i andh20;10i were examined, covering a range of constraint densities.

Unlike Bessíere’s study,AC6 was run to completion. Borrett and Tsang observed a coincidence

between peaks in mean cost of the algorithm and the points where the algorithm ceases to be

effective, but did not relate this to a form of phase transitionbehaviour. They did conclude that

preprocessing of this kind is only generally effective on over-constrained problems.

6.2 Terminology

The termsarc consistency (AC), path consistency (PC)andk-consistencyare used as defined in

(Tsang 1993) and Chapter 1.2.4. AC and PC are sometimes referred to as 2- and 3-consistency

respectively. We talk ofestablishingarc consistency or path consistency in a problem as an

attempt to enforce AC or PC respectively. If a problem isarc-inconsistentor path-inconsistent

then it is not possible to establish AC or PC respectively; attempting to do so will show that

the problem has no solution. If a domain element of a problem variable is arc consistentor

path consistent, then that element will not be removed upon establishing AC or PC respectively.

A domain element isarc- or path-inconsistentif it will be removed upon establishing AC or

PC respectively. EachCSP is therefore in one of three states: the problem is already AC or

PC, and so has no inconsistent domain elements; or the problem ispotentiallyAC or PC, and

establishing consistency will remove some inconsistent domain elements; or the problem is arc-

or path-inconsistent, and attempting to establish consistency will prove insolubility. Finding a

solution to a problemprovesthat it can be maden-consistent.

6.3 The Empirical Studies

The experiments reported here were performed using randomly-generated binaryCSPs, generated

according to the Model B method described in Chapter 3. Our empirical study of establishing arc

consistency and path consistency in sets ofCSPs uses theAC3 andPC2 algorithms respectively,

introduced in Section 2.5, which are closely related. A usefulproperty of these algorithms for

our purposes is their relative simplicity: neither involves any complex initialisation stage that

creates a high basic overhead for each run. Thus the cost of runsreflects the true complexity of

establishing consistency.

We examine the effects of processing theCSPs in terms of the amount of variable domain
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pruning that occurs (permanent nogood values - Section 4.4), the number of consistency checking

operations, the CPU time taken, and also the proportion of problems in each sample which are

found to be inconsistent. As we are dealing with the practical application of AC and PC pro-

cessing, we also terminate the algorithms upon a domain wipe-out (the removal of every possible

value from a variable’s domain), in which case we know that there are no solutions and that all

other variable domains would be wiped out if the algorithm continued. This approach is simi-

lar to that of (Bessìere 1994), but contrasts with that of (Borrett and Tsang 1995),who run the

consistency algorithms to completion.

A number of phase transition experiments (Section 4.3) were undertaken, applyingAC3 and

PC2 to CSPs of sizeh20;10i. p1 was varied in steps of 0:1 over the range[0:2::1:0] in order

to cover a full range of constraint densities. For eachh20;10; p1i problem class,p2 was varied

in steps of 0.01 over the interval[0:01::1:00]. Ensembles of 1;000 problems were generated at

eachh20;10; p1; p2i point and processed withAC3 andPC2. Theh20;10;0:1i problem class was

omitted from the study: these sparse problems need only be made arc consistent in order to be

solved, since connected constraint graphs in this class are all trees (Tsang 1993).

6.4 The 2-Consistency Phase Transition

The empirical study of AC processing by (Borrett and Tsang 1995) showed that its usefulness

is restricted to problems that are over-constrained. They observed a transition between a region

where constraints are very tight and, for all problems, processing eliminates the entire set of vari-

able domains (proving the problems to be insoluble without need for search), and a region where

constraints are loose and no pruning of domains occurs. In the intervening region, limited pruning

of some variable domains occurs on average, which in principle should make search easier by re-

ducing the potential search space1. Because the AC algorithm was run to completion, the curves

of domain pruning were observed to rise to a plateau as constraint tightness was increased. How-

ever, if the algorithm is terminated as soon as a domain wipe-out occurs, the number of values

pruned and the effort required to prove insolubility decreaseas the constraint tightness increases.

Figure 6.1 shows the effects ofAC3 processing on the sets ofh20;10; p1; p2i problems. These

plots show the median curves of the consistency checking effortand the number of values pruned

from variable domains, together with a curve showing the proportion of arc-inconsistent problems

found at eachh20;10; p1; p2i ensemble. The three plots use the general constrainedness param-

eter,κ (Section 3.2), on thex-axes. The use ofκ allows easy comparison of the location of the

peaks inAC3 cost with those predicted for full search.

The curves of the median pruning effects for each problem class show that as constrainedness

increases, the number of values removed rises from zero, increasing slowly at first but then rising

sharply to a peak, and then drops down tom (the size of the variable domains). As these curves

are rising,AC3 is finding an increasing number of arc-inconsistent values in median problems,

although not enough to cause the complete wipe-out of any variable domain. At the peaks, domain

1It has, however, been demonstrated (Prosser 1994; Sabin and Freuder 1994) that algorithms employing dynamic
variable ordering can occasionally perform more poorly as a result of the pruning effects of constraint propagation.
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Figure 6.1: Effects ofAC3 on h20;10; p1i CSPs.
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Problems κ peak median effort pinch20;10;0:2;0:73i 1.08 4455 0.640h20;10;0:3;0:68i 1.41 6363 0.431h20;10;0:4;0:66i 1.78 8246 0.582h20;10;0:5;0:64i 2.11 9887 0.559h20;10;0:6;0:63i 2.46 11500 0.735h20;10;0:7;0:61i 2.72 12234 0.408h20;10;0:8;0:60i 3.02 13741 0.440h20;10;0:9;0:60i 3.40 15565 0.721h20;10;1:0;0:59i 3.68 16869 0.638

Table 6.1: Properties ofh20;10; p1; p2i CSP ensembles at AC phase transition peaks.

wipe-outs occur for about 50% of problems, allowing the algorithm to terminate early. As the

curves fall, the number of arc-inconsistent values forAC3 to find is still increasing, and hence

domain wipe-outs are occurring more quickly, resulting in the earlier termination of the algorithm.

When the curves fall tom, there are no arc consistent values in any variable domain, andso the

algorithm immediately removes them values in the domain of the first variable it examines, and

terminates.

The consistency checking curves show a similar pattern, as mightbe expected, with a peak

in cost coinciding with the peak in values pruned by the algorithm. The patterns of these peaks

as constraint density varies is the reverse of that for pruning,however: although problems with

high constraint density generally require fewer arc-inconsistencies to cause a domain wipe-out,

as the effects of removing values tend to be greater, the propagation of these effects has a higher

overhead. This results in a greater consistency checking effort on average than for less densely

constrained problem classes.

From the curves showing the proportions of arc-inconsistent problems, it can be seen thatAC3

is exhibiting behaviour exactly analogous to the phase transitions observed for complete search.

The peaks in consistency checking and domain pruning occur between regions where all problems

can be made arc consistent andAC3 quickly establishes this, and regions where all problems are

arc-inconsistent andAC3 quickly proves this. In the intervening ‘mushy’ region, a proportion

of problems are arc-inconsistent, and the peaks in checking and pruning approximately coincide

with the point where this is true for 50% of problems.

In order to demonstrate this behaviour more clearly, Table 6.1 shows some properties of theh20;10; p1; p2i ensembles for which the peaks in median consistency checking effort for AC3

occur. The values of constrainedness (κ), actual peak median effort, and the proportions of arc-

inconsistent problems found (pinc) are given for these sets of problems. From this data, it can be

seen that the peaks in median cost do indeed occur when approximately half of the sampled prob-

lems are arc-inconsistent, and certainly in the transition region. The deviations from proportions

close to 0:5 may be attributable to the coarseness of the experiments: the mushy region is very

narrow and the changes inpinc between consecutive values ofp2 can be very large; finer grained

experiments could be expected to show the location of the 50% point more accurately.

Observation of the actual positions of the pruning curves agree with the findings reported
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in (Borrett and Tsang 1995), in that AC preprocessing has very little effect (in removing values)

unless the problems are highly constrained. For all of theh20;10; p1i problem classes studied

here, perhaps with the exception ofh20;10;0:2i, this means thatAC3 processing only has an

effect in the insoluble problem region; it is only for very sparsely constrained problems, where

the phase transition between solubility and insolubility occurs at high levels of constrainedness,

that AC processing has any effect on the hard problems in the mushy region. For the more densely

constrainedh20;10; p1i problem classes, the regions where any domain pruning occurs lie further

into the insoluble problem region.

These findings suggest that establishing arc consistency as a preprocessing step before full

search is only generally effective on over-constrained problems. It should be noted, however, that

whether or not any values can be pruned depends upon the tightness of individual constraints, and

if this is not uniform then AC preprocessing may be worthwhile at lower values of constrainedness

than is implied by the plots shown. The curves in Figure 6.1 formedian consistency checking

effort also show thatAC3 is a relatively ‘cheap’ algorithm in most cases. Therefore anAC3

preprocessing step will not usually add a significant overhead to overall search cost. In the next

section we consider the cost of theAC3 algorithm in greater detail.

6.5 The Cost of AC3

(Mackworth and Freuder 1985) showAC3 to have a worst-case time complexity bounded from

above by O
�
m3e

�
and from below byΩ

�
m2e

�
, wheree is the number of constraints. In Sec-

tion 2.5, we note that (Wallace 1993) presents a series of arguments favouring the use ofAC3

overAC4. AlthoughAC4 has a better worst-case time complexity, Wallace demonstratesthat the

worst-case conditions forAC3 are rarely encountered.

We look at the cost ofAC3 on theCSPs used in our experiments, considering the cost in the

simplest cases, the cost on problems that are already arc consistent, and the cost at the AC phase

transition peak where the hardest problems encountered byAC3 are found.

6.5.1 AC3 on the simplest problems

For the implementation ofAC3 used here, there are two specific cases where the algorithm has a

small and fixed cost.

Firstly, whenp2 = 0 (i.e. the constraints allow all pairs of values),AC3 requires 2meconsis-

tency checks: there are 2e arcs, and for an arc between variablesvi andv j , all m values forvi are

supported by the first value tried forv j .

Secondly, when the constraints are very tight (eg. wherep2 = 1 and the constraints forbid

all pairs of values) the first arc considered, (vi,v j ), may cause a domain wipe-out of variablevi

because no value ofv j supports any value ofvi . The algorithm will immediately terminate, having

performedm2 consistency checks.
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6.5.2 AC3 on arc consistent problems

Figure 6.1 shows that there are regions of constraint tightnessfor eachh20;10; p1i CSP class

where many problems are already arc consistent. Although the effort spent here byAC3 is wasted,

this cost appears to be small. We look here at how the average costof the algorithm on AC

problems grows with domain size,m.

It is possible to derive an expression for the expected consistencychecking cost of AC3 for

the special case of problems that are already AC. Consider the revision of an arc between two

variables,(vi;v j), that is already consistent: each valuexi 2 domaini will be supported by at least

one value indomainj . The probability that support for a particularxi value will be found afterc

consistency checks is calculated as:

P(c) = pc�1
2 (1� p2)

1� pm
2

for 1� c�m

It should be noted thatp2 is treated here as a probability applied independently to each pair of

values, so this is not quite accurate given that the experiments here use Model B rather than Model

A problem generation. The expected number of consistency checks performed during revision of

a single consistent(vi ;v j) arc is then calculated as:

E(c) = m

∑
c=1

cP(c)
= 1

1� p2
+m

�
1

1� pm
2
�1

�
There are 2earcs in aCSP with econstraints, so the total expected number of consistency checks

performed byAC3 is calculated as:

2me:E(c) = 2me

�
1

1� p2
+m

�
1

1� pm
2
�1

��
! 2me

1� p2
for large m

Problems that are already arc consistent tend to have lowp2, so even for smallm, the
�

1
1�pm

2
�1

�
term becomes negligible (this has been verified for theCSPs used in the empirical studies).

Hence, the average case complexity ofAC3 applied to problems that are already arc consistent

is approximately linear inm. These results strengthen the case for the use ofAC3 as a preprocessor

to search: for the problems on whichAC3 is ineffective in terms of removing values, proving arc

consistency can be done in time linear inm.

6.5.3 AC3 on the hardest problems

To investigate whether the potentially cubic worst-case complexity of AC3 is encountered in prac-

tice, a further set of phase transition experiments were conducted, designed to measure the growth

in the peak median cost asm is varied, withn and p1 fixed. AC3 was applied toCSPs of size
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Problems κ pinc min max mean medianh20;5;1:0;0:35i 2.63 0.479 580 5900 3528 3404h20;10;1:0;0:59i 3.68 0.638 7371 28261 16869 16528h20;12;1:0;0:64i 3.89 0.510 12129 42264 25741 25042h20;15;1:0;0:70i 4.25 0.724 22620 73515 46434 45873h20;17;1:0;0:73i 4.39 0.688 31806 103242 65293 64957h20;20;1:0;0:77i 4.66 0.913 36359 152361 96301 96300h20;22;1:0;0:79i 4.79 0.958 55433 197838 120316 120110h20;25;1:0;0:81i 4.90 0.920 84893 274172 181515 180669h20;30;1:0;0:84i 5.12 0.975 122455 461194 281573 282203

Table 6.2: Data for theh20;m;1:0; p2i CSP ensembles at AC phase transition peaks.

h20;mi, with p1 varied in steps of 0:1 over the range[0:2::1:0] as before, and withm taking the

valuesf5;10;12;15;17;20;22;25;30g. In order to reduce the processing cost of these experi-

ments,p2 was varied in steps of 0:01 for all m� 10, rather than in steps of 1=m2. Ensembles

of 1;000CSPs were generated and processed at everyh20;m; p1; p2i point. For eachh20;m; p1i
problem class, the peak median consistency checking cost was recorded.

Table 6.2 shows data for the eighth20;m;1:0; p2i ensembles for which the peak median con-

sistency checking cost occurs at each value ofm. Although pinc rises further away from 0:5
asm increases, this can perhaps be attributed to the coarseness of the p2 steps combined with

the decreasing width of the phase transition regions. The remaining fields in the table show the

minimum, maximum, mean and median of consistency checking costfor each ensemble.

In order to determine the rate ofAC3 cost growth asm increases, we attempted to fit the data

in Table 6.2 to a curve of the formamb. If the data can be accurately described using this model,

we would expect to find a rate of growth somewhere between quadratic and cubic. Plotting the

cost againstm, using a logarithmic scale on both axes, we should expect a curve of the formamb

to appear linear (because logy= a+blogm).

Figure 6.2 presents two such plots, with the upper plot using the peak median consistency

checks and the lower plot using the peak maximum values. It can be seen that the curve is close

to linear over the eight points betweenm= 10 andm= 30. The curvesy= 40m2:6 andy= 65m2:6
have been added to the respective plots: these close fitting curves were selected by performing

linear regression using the method of least squares. This appears to confirm that the cost growth

can be modelled byamb, and that its rate is considerably less than cubic, even for themost

expensive problems.

These results further support the use ofAC3 as a preprocessor, and also support (Wallace

1993), who shows that the worst-case conditions forAC3 rarely arise.

6.6 The 3-Consistency Phase Transition

Figure 6.3 shows the effects ofPC2 processing on the sets ofh20;10; p1; p2i ensembles, plotted

against constrainedness. These plots show the median curves of CPUtime and values pruned

from variable domains, together with a curve showing the proportion of path-inconsistent prob-
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Figure 6.2: Peaks of median and maximum costs ofAC3 againstm.
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Figure 6.3: Effects ofPC2 on h20;10; p1i CSPs.
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Problems κ med. cost pinch20;10;0:2;0:69i 0.97 172s 0.412h20;10;0:3;0:59i 1.10 180s 0.628h20;10;0:4;0:53i 1.25 185s 0.548h20;10;0:5;0:49i 1.39 201s 0.548h20;10;0:6;0:47i 1.57 225s 0.576h20;10;0:7;0:44i 1.67 241s 0.779h20;10;0:8;0:42i 1.80 254s 0.832h20;10;0:9;0:40i 1.90 260s 0.748h20;10;1:0;0:39i 2.04 269s 0.838

Table 6.3: Properties of problems at PC cost peaks.

lems found at eachh20;10; p1; p2i. It is worth pointing out, incidentally, that path consistency

preprocessing is usually performed in order to tighten the constraints in problems, and not just to

remove values from domains.

The general pattern of these curves is similar to those forAC3, with the medians of both

domain pruning and CPU time rising to a peak as constrainedness increases, before falling again.

With PC2, these curves rise as an increasing number of path-inconsistent values are being found,

although not enough to cause the complete wipe-out of any variable domain. At the peaks, domain

wipe-outs occur for about 50% of problems, allowing the algorithm to terminate early.

The peaks coincide with a transition between regions where all problems can be made path

consistent andPC2 quickly establishes this, and regions where all problems are path-inconsistent

andPC2 quickly proves this. Table 6.3 shows some properties of theh20;10; p1; p2i problems at

which the peaks in median CPU time occur, in a similar style to Table 6.1. As forAC3, thePC2

peaks coincide fairly closely with the 50% inconsistency points, although the coarseness of the

p2 steps limits accuracy in the more densely constrained problem classes.

Observation of the actual positions of the pruning curves showsthat the PC phase transitions

for each problem class occur at lower values of constrainednessthan those for AC. This is pre-

dictable, as the set of path-inconsistent problems subsumes the set of arc-inconsistent problems

(i.e. a problem which is path-inconsistent must also be arc-inconsistent). For problems to be path

consistent, a lower level of constrainedness is required than that which allows the same problems

to be arc consistent, and so AC can occur in more highly constrained problems than PC can. The

behaviour of theh20;10;0:2i transition is interesting, in that it is widely spread out: thispattern

is similar to the phase transitions that occur between solubility and insolubility for many sparsely

constrained problem classes (Prosser 1996). The location of the PC mushy region forh20;10;0:2i
problems also straddles the point at whichκ = 1. Althoughκ = 1 is not an accurate estimate for

the phase transition between solubility and insolubility for such a sparsely constrained problem

class (Gentet al. 1996b), the PC phase transition would still appear to be close to that for n-

consistency. This suggests that many of these problems which are path consistent are in fact

n-consistent.

The curves in Figures 6.1 and 6.3 of the median amount of domain pruning show that the

actual numbers of values removed byPC2 on average are considerably smaller than forAC3 on
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the same problems. This may appear slightly counter-intuitiveat first, since values which are

arc-inconsistent are also path-inconsistent. However, the PC phase transitions occur at lower

values of constrainedness than those for AC: where large numbers of values are being removed

by AC3, these problems are already path-inconsistent, and soPC2 will find domain wipe-outs

and terminate more quickly, thus pruning fewer values. The propagated effects of removing path-

inconsistent values are also greater than those for removing arc-inconsistent values, meaning that

fewer inconsistencies are needed to induce a domain wipe-out.

As a preprocessing step, the curves of CPU time show that our implementation ofPC2 is

clearly not feasible. The peak average cost for some problem classes is over 200 seconds: the

comparative figures forAC3 are around 0.3s, while an average forward checking search at the

phase transition costs around 9s. It should be noted that thePC4 algorithm for path consistency

(Section 2.5) has a significantly lower worst-case time complexity thanPC2, although this is still

cubic in bothn andm.

6.7 Interpretation of the AC and PC Phase Transitions

In presenting the phase transition behaviour associated with establishing arc consistency and path

consistency inCSPs, we have made the analogy with the phase transition behaviour observed

when finding asinglesolution to the same problems. This connection may at first glanceappear

to be incorrect: when establishing AC we must makeall arcs in the problem consistent; similarly

when establishing PC we must makeall paths of length 2 consistent; so should the analogy made

with n-consistency not be made with respect to findingall solutions to the problem? However,

if we consider establishing a certain level of consistency in a problem asperforming the mini-

mal amount of work necessary to prove that the problem can possess suchconsistency, then the

validity of the analogy becomes clear: when attempting to establishk-consistency in a problem,

wherek < n, all paths of lengthk must be made consistent, and the effects of the removal of

inconsistent assignments must be propagated around the other paths; but when attempting to es-

tablishn-consistency, only one path of lengthn exists (the variable ordering is immaterial), and

the discovery of one consistent set of labels for the variables inthe form of a solution is sufficient

to provethat the problem can be maden-consistent.

In order to relate the phase transition behaviour of establishing arc consistency and path con-

sistency with that of establishing the existence ofn-consistency, the ensemblesh20;10;0:5i prob-

lems that were processed byAC3 andPC2 were also searched by a complete search algorithm.

The algorithm selected was forward checking (FC), using theFFdeg dynamic variable ordering

heuristic introduced in Section 5.5.2, although any other complete search method could have

been used. Figure 6.4 shows the phase transition behaviour of establishing AC usingAC3, PC

usingPC2, andn-consistency usingFC-FFdeg. The curves of median consistency checking effort

for each algorithm are shown on the respective plots, together with superimposed curves show-

ing the proportions of inconsistent problems as constrainedness varies. These plots highlight the

similarities in the phase transition behaviour that occurs foreach level of consistency. Starting

with the plot forFC-FFdeg, showing the phase transition between solubility and insolubility, it can
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be seen that this phase transition is firmly centered around the valueκ = 1 and the mushy region

(where inconsistency levels lie between 0 and 1) is narrow, covering a range ofκ of around 0:2.

The PC phase transition occurs relatively close to that forn-consistency, although the respec-

tive mushy regions do not overlap, and for PC this region is slightly wider, covering a range of

κ slightly greater than 0:25. The phase transition region for AC occurs well into the region of

over-constrained problems, with a mushy region covering a range of κ of around 0:5.

From the patterns of behaviour observed in Figure 6.4, it seemsreasonable to conclude that

there must be a further series of phase transitions associated withestablishing increasing levels

of consistency, from that among subsets of 4 variables to that among subsets ofn�1 variables.

Each of these phase transitions must occur at decreasing values ofconstrainedness, between that

for establishing PC and that for establishingn-consistency, forming ahierarchyof phase transition

behaviour, and becoming increasingly narrow as the level of consistency increases. It seems likely

that for manyCSP problem classes, the location of the phase transitions for establishing high

levels of consistency will all but converge with that for establishingn-consistency, as problems

containing a higher degree of partial consistency are more likely to be soluble.

It might be noted that node consistency (consistency in all unaryconstraints on variables) is

not included in this hierarchy. For the binaryCSPs generated as described in Chapter 3, prob-

lems have node consistency by construction, and so a study of establishing NC is not feasible.

Achieving NC is a trivial task for most conceivable types of constraint problem (with a time com-

plexity that is O(mn)), and so it seems unlikely that establishing NC in problems will show any

interesting phase transition behaviour.

6.8 Discussion

We have demonstrated phase transition behaviour analogous to the well-established phase transi-

tion between soluble and insoluble problem regions, occurringfor two problems of polynomial

complexity: establishing arc consistency and path consistency inCSPs. In the case of establishing

AC usingAC3, the peak in cost coincides with the transition between a region where AC already

exists or can be established for all problems, and a region where all problems are arc-inconsistent.

The transition appears to coincide with a change in order of the average cost of the algorithm,

and it has been shown in Section 6.5 that this change in order isfrom a cost that is approximately

linear in m in the case of problems that are already AC, to a cost that has been observed to be

between quadratic and cubic inmat the AC phase transition peak. A similar pattern appears to be

evident in the case of establishing PC usingPC2, although the cost levels are considerably greater

than forAC3. However, insufficient evidence is presented in the empiricalstudy reported here to

be able to establish the growth in average cost ofPC2, and further study of the behaviour of this

algorithm is required.

In addition to reporting the phase transition behaviour foundin establishing AC and PC, we

have also consideredAC3 andPC2 in terms of their usefulness as preprocessors, to be used prior

to full search. Areas where establishing AC or PC in problems hasno effect in reducingCSP

variable domains have been observed, as have regions where doing so is effective in this respect.
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However, we have derived an expression for the expected cost ofAC3 on these problems which

shows it to be approximately linear inm. It has also been shown that for the hard problems at the

AC phase transition peak, both average cost and maximum cost growat a rate that is significantly

slower than cubic inm. These results supports the claims by (Wallace 1993) thatAC3 has an

average-case cost significantly lower than its worst-case complexity analysis suggests.

That AC3 appears to be cheap to perform in nearly all cases also adds support to the use of

the algorithm as a preprocessing step prior to search. The resultsof PC processing in Section 6.6

appear to rule out this method as a practical preprocessor, given the very high average cost of the

PC2 algorithm. More efficient PC algorithms (Mohr and Henderson 1986) still have high time

complexities, and so a change of algorithm is also unlikely to make PC preprocessing practical.

Understanding of the phase transition behaviour of consistency techniques is useful in under-

standing the phase transition behaviour of search techniques which perform consistency mainte-

nance. An example of such a technique is aMAC algorithm, which maintains arc consistency.

The phase transition behaviour ofMAC is explored in Chapter 7.

It should be remembered that the empirical studies are based on random problems, generated

according to the model described in Chapter 3. Problems with more structured constraint graphs,

varying domain sizes and/or individual constraint tightnessesmay well behave differently when

attempting to establish consistency. Quite how such changes might affect the performance of the

consistency algorithms remains to be studied.

The results of this study of establishing AC and PC in problems maybe relevant to the notion

of a ‘constraint gap’, proposed by (Gent and Walsh 1996b) as the conditions arising in sparsely

constrained problem classes that give rise to the occasional occurrence of exceptionally hard

problems (ehps). They show that inSAT problems,ehps tend to occur in problem regions where

the propagation of ‘goods’ and ‘nogoods’ (i.e. values which can be shown to be valid in any

solution, and those which can be shown to form part of no solution)is ineffective. If such a

constraint gap exists forCSPs, the AC and PC data (concerning propagation of nogoods) together

with data concerning the propagation of goods (such asCSP reduction operators (Rossi 1995))

may provide empirical evidence for it.

6.9 Subsequent Studies

The study of phase transition behaviour presented in this chapter was first published in (Grant and

Smith 1996a) and (Grant and Smith 1996b). This work has since been followed up by (Gentet al.

1997b), who have devised a new constrainedness parameter,κac. They show that the AC phase

transitions for many classes ofCSP occur at the same value of this parameter. They also use

finite-size scaling techniques (Gentet al. 1995) to propose an alternative model for the growth

in cost ofAC3. This model suggests that the growth in average cost at the AC phase transition is

cubic inm. Gentet al. go on to testκac as the basis for a constraint ordering heuristic to increase

the efficiency ofAC3’s processing. The proposed heuristic processes first the constraintwhose

propagation will minimiseκac in the rest of the problem, and it is shown empirically that this

produces more efficientAC3 processing than a number of other constraint ordering strategies.
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Chapter 7

The Phase Transition Behaviour of

Maintaining Arc Consistency

The study of establishing arc consistency presented in Chapter 6 shows that it tends to be useful,

in terms of removing inconsistent values, only onCSPs in the over-constrained problem region.

It is known, however, that re-establishing arc consistency in the subproblem of uninstantiated

variables during search can be a worthwhile exercise onCSPs in all problem regions. In this

chapter, we examine two search algorithms which do this: Maintaining Arc Consistency,MAC,

and its hybrid combination with Conflict-Directed Backjumping, MAC-CBJ.

The behaviour ofMAC andMAC-CBJ is studied with respect to the phase transition behaviour

of binaryCSPs, enabling the algorithms to be applied to many problems covering a range of sizes,

topologies and expected difficulties.MAC performs a higher degree of lookahead than Forward

Checking (FC), which maintains only node consistency in the future subproblem. In order to

study the effects of using this increased lookahead capability, we also compare the performance

of MAC with that ofFC, and ofMAC-CBJ with the equivalent hybridFC-CBJ, over the same sets

of problems.

It is shown that compared toFC, MAC develops a far smaller search tree, enables backtrack-

free search over a wider range of problems, and greatly reducesthe occurrence of exceptionally

hard problems (ehps). The performance ofMAC also scales much better than that ofFC as the

number of problem variables increases. The addition ofCBJ to MAC further reduces the incidence

of ehps to produce stable performance in almost all populations of problems, although its effect

on the average search cost is not significant.

7.1 Related Work

Maintaining arc consistency during search is a popular technique employed by the constraint pro-

gramming community, and is used by many constraint solving tools such as ILOG Solver (Puget

1994). However, its application by the constraint satisfaction community has until very recently

been passed over in favour of the lesser level of lookahead provided byFC. A likely explanation
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for this stems from the previous lack of understanding of the great difference that exists between

the behaviour ofCSPs with high and low constraint density. More specifically, many ofthe prob-

lems that have until recently formed the test bed for assessing newalgorithm performance (in

particularn-queens and similar problems) have constraint graphs that are cliques (i.e. each vari-

able (queen) is constrained by every other): for these problems we would expect the lookahead

cost ofMAC to be very high.

Much of FC’s prominence in recent years can be attributed to the study oflookahead search

techniques presented by (Haralick and Elliott 1980). They studied the basic backtracking algo-

rithm, BT, plus algorithms with four levels of lookahead: backmarking1, BM; Forward Checking,

FC; Partial Look Ahead; and Full Look Ahead (which maintains arc consistency). All of these al-

gorithms are discussed in Section 2.1. Haralick and Elliott applied these algorithms to the task of

finding all solutions to then-queens problem and ensembles of five randomhn;n;1;0:35i CSPs,

for the valuesn= 4;5;6;7;8;9;10. The results showed thatFC performed the fewest constraint

checks on these problems. The number of nodes visited during search was also examined, and

it was shown that greater levels of lookahead resulted in smaller search trees. Looking at pro-

files of nodes visited at each search depth, they showed that the lookahead algorithms do most

of their work at shallow levels of the search tree, carefully building up partial solutions, while

non-lookahead algorithms spend most of their effort deep in the search tree, trying to complete

the partial solutions that they build up quickly. Haralick and Elliott also examined the effect of

dynamic variable ordering on lookahead search, showing that this can improve efficiency further.

The role of dynamic variable ordering withFC andMAC is studied in detail in Chapter 8.

A further study of lookahead techniques for theCSP was reported by (Nadel 1989). A num-

ber of procedures to establish partial levels of arc consistencywere proposed, and it was shown

how these can be incorporated into a backtracking search framework to produce algorithms with

various levels of lookahead. A number of such algorithms weretested empirically: backmarking,

Forward Checking, Partial Look Ahead and Full Look Ahead, asused by (Haralick and Elliott

1980); and a new algorithm called ‘Really Full Look Ahead’, which makes the whole constraint

network arc consistent at every stage of search (rather than just the subproblem of future vari-

ables). The set of test problems used were then-queens problems, and the ‘confused’n-queens

variant, in which all queens must attack each other. Once again, the algorithms performing the

least amount of checking in the future subproblems,FC andBM, proved to be the cheapest. Nadel

concluded that although higher lookahead reduces the number of nodes visited, the extra work

required at each node more than cancels out any savings. These results further cemented the

position ofFC as the standard backtracking search strategy used by the constraint satisfaction

community.

The use ofMAC on CSPs covering a range of problem topologies was eventually reported

by (Sabin and Freuder 1994), who presented an implementationbased on theAC4 arc consistency

algorithm. They applied this algorithm to small samples of very sparsely-constrainedCSPs with

50 variables and domain sizes of 8. Compared with Forward Checking, and with AC preprocess-

ing followed by Forward Checking,MAC took considerably less time to search these problems.

1Backmarking can only loosely be said to perform lookahead: see Section 2.1.
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Sabin and Freuder’s study ofMAC prompted the investigation of theAC3-basedMAC andMAC-

CBJ algorithms presented here, some results of which were presentedin (Grant and Smith 1995)

and (Grant and Smith 1996c). Subsequently, (Bessière and Ŕegin 1996) presented a detailed

empirical study of anAC7-basedMAC, first described in (Bessière et al. 1995). Testing the

algorithm on fifty-variableCSPs, they showed thatMAC performed much better thanFC-CBJ on

hard and sparsely-constrained ensembles. For constraint densities below approximately13, MAC

is the better algorithm, while above this levelFC-CBJ becomes cheaper. Bessière and Ŕegin

also suggested thatCBJ is an unnecessary addition to a search algorithm which combinesa good

lookahead technique with dynamic variable ordering.

Sabin and Freuder have recently revisitedMAC. In (Sabin and Freuder 1997) they propose

an improved version ofMAC which takes advantage of constraint graph topology to instantiate

a ‘cyclic cutset’ of variables. Removing this subset of variables from theCSP reduces the con-

straint graph of the remaining subproblem to a tree. We have already noted in Chapter 6 that such

problems need only be made arc consistent in order to be solved (Tsang 1993). The new algo-

rithm is termedMACE, for MAC Extended.AC7-based versions ofMAC andMACE are compared

empirically over small ensembles ofh20;20; p1; p2i andh40;10; p1; p2i CSPs drawn from phase

transition regions.MACE out-performsMAC over all but the densely constrained problem sets.

7.2 Structure of this Study

This chapter presents a study of the performance of theMAC andMAC-CBJ algorithms over a

large range ofCSP sizes and topologies, showing where the algorithms perform well and badly,

and how their performance compares with theFC andFC-CBJ algorithms employing a lesser level

of lookahead. The relative performance of the algorithms interms of the incidence and magnitude

of exceptionally hard problems (ehps) is also investigated, following on from the studies reported

in Chapter 5.

The following section recaps the work on exceptionally hard problems presented in Chapter 5.

Features of theAC3-basedMAC and MAC-CBJ algorithms are then considered, followed by a

description of the main empirical studies that were undertaken. Examination of the performance

of MAC at the population level shows that the extra lookahead produces large regions of backtrack-

free search, and that whileehps can still occur, their incidence is greatly reduced from thatof

FC. The cost ofMAC is also observed to scale much better than that ofFC as the number of

problem variables increases. It is then shown that while the addition of CBJ to MAC gives little

improvement in performance in the average case, the incidence of ehps is further reduced to

the point where only one clear instance is found among several million candidate sparseCSPs. A

study of the internal behaviour of the algorithms shows that the search tree ofMAC is considerably

smaller than that ofFC, and we conclude by discussing the further issues raised.
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7.3 Revisiting the Exceptionally Hard Problems

Although we are interested naturally in studyingMAC andMAC-CBJ in terms of achieving im-

proved general performance over other algorithms on certain problems, a further motivation arises

from the performance of the algorithms in reducing the incidence of exceptionally hard problems,

examined initially in Chapter 5.

Study ofehp behaviour for a number of algorithms showed that the unusuallyhigh search cost

of these problems can be attributed to the early creation of aninsoluble subproblem which the

algorithm cannot detect as such without conducting an exhaustive search. Algorithms employing

a lookahead style of forward move reduce the chances of being unable to detect a subproblem’s

insolubility by checking for some level of consistency in it. We conjectured that theehps which

remain for lookahead algorithms contain subproblems with a level of inconsistency that is beyond

that which is tested for. That is,ehps for FC contain arc-inconsistent subproblems, while those for

MAC contain path-inconsistent subproblems. The addition of backjumping capability appeared

to assist the lookahead algorithms in detecting these higher levels of inconsistency, effecting a

further reduction inehp behaviour. Another significant factor was the use of dynamic variable

ordering, which appeared to eliminateehp behaviour completely from densely-constrainedCSP

classes. The most stable performance seen for all of the algorithmsstudied in Chapter 5 was

that exhibited byMAC-CBJ-FFdeg, which combined the most advanced forms of lookahead and

backjumping with dynamic variable ordering.

The empirical studies reported in this chapter extend the ‘macroscopic’ view of theehp be-

haviour exhibited byMAC andMAC-CBJ and alsoFC andFC-CBJ, by covering a broader range

of CSP classes than those examined in Chapter 5.

7.4 The Algorithms

It was noted in Section 7.1 that this study was prompted by thatreported in (Sabin and Freuder

1994). TheMAC and MAC-CBJ algorithms presented by (Prosser 1995) are based onAC3,

whereas theMAC algorithm reported by Sabin and Freuder is based onAC4. AlthoughAC4 is

arguably a more efficient algorithm thanAC3 (this is discussed in Chapter 6), theeffectof estab-

lishing arc consistency is invariant of the technique used. Prosser also notes that the cost of the

AC3-based algorithms may be measured in consistency checks, giving an important advantage in

investigating the effects of increasing algorithm lookahead. Sabin and Freuder’sAC4 basedMAC

performs all consistency checking during the initialisation of the AC4 support counters. During

search, all the work of maintaining arc consistency is done by reference to these counters and

not to the original constraints. Thus Sabin and Freuder measured the performance of theirMAC

implementation in terms of CPU time rather than consistency checks.

The initial stage of a algorithm which maintains arc consistency is naturally to establish a

state of arc consistency in the problem. (Borrett and Tsang 1995)discuss the usefulness of AC

preprocessing, while Chapter 6 shows that establishing arc consistency exhibits its own phase

transition behaviour, and study the average cost of usingAC3.
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In all of the experiments reported here,MAC, MAC-CBJ, FC andFC-CBJ use a dynamic vari-

able ordering heuristic based on the ‘fail-first’ principle: the first variable to be instantiated is that

which is most constrained, and thereafter, the next variable to be instantiated is that with fewest

remaining values in its domain. This is theFFdeg heuristic, used in Chapter 5 and studied further

in Chapter 8. For brevity we omit the-FFdeg tag when naming the algorithms during the rest of

this chapter. The implementations ofFC-CBJ andMAC-CBJ, discussed in Chapter 2, are such

that the set of nodes visited is a subset of those visited byFC andMAC respectively. Both base

algorithms consider the uninstantiated variables in the same order as theirCBJ hybrid at each for-

ward move, and it is only on backward moves that the algorithms differ. FC-CBJ andMAC-CBJ

therefore always find solutions in the same order and take no more consistency checks thanFC

andMAC respectively. As a side effect, theCBJ hybrids cannot find a problem exceptionally hard

unless their base algorithms also do.

7.5 The Empirical Studies

The objective of the empirical studies undertaken was to establish the behaviour of theMAC and

MAC-CBJ algorithms over large populations of problems of varyingsizeandtopology. The prob-

lems studied are binaryCSPs, generated according to the Model B random generation method

presented in Chapter 3. For theseCSPs, defined byhn;m; p1; p2i, the effects of varying problem

topology may be studied by varyingp1 whilst holdingn andmconstant. In order to independently

study the effects of increasing problem size, the problem topology must be maintained, and this

is achieved by holding the average degree (introduced in Section 4.1.1) constant whilst varying

n andm. It is not sufficient to fixp1 whilst varying problem size:γ increases linearly with the

number of variables if constraint density is constant, so for instance asn is doubled with constant

p1, γ also approximately doubles. Note that the predicted criticalvalue of constraint tightness,

p̂2crit (Section 3.2), is identical forCSP classes having the same values ofγ andm. Thus, the

phase transitions of these classes are expected to coincide.

7.5.1 The main experiments

To show how the behaviour ofMAC andMAC-CBJ varies as problem size,n, and average degree,γ,

are varied, two main groups of phase transition experiments were conducted. The first heldn at 30

while varyingp1 in steps of 0:1 over the range[0:1::1:0], and the second heldγ at approximately

4:9 (allowing for some rounding errors since the number of constraints must be an integer) while

varying n in steps of 5 over the range[20::70]. Variable domain sizem was held at 10 in all

experiments. The decision to useγ � 4:9 for the second set of experiments was taken in order

to give problems that are fairly sparsely constrained, and for which at least one member class

of problems (h50;10;0:1i, studied in Chapter 5) is known to produce a number ofehp instances

usingFC andMAC.

The sets ofh30;10; p1i andhn;10;γ � 4:9i CSP classes studied are listed in Tables 7.1 and

7.2 respectively, along with additional background information. The tables include the theoretical

critical value of constraint tightness, ˆp2crit introduced in Section 3.2, at which average search
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Problems γ p̂2crit p2 range samples per p2 Algorithmsh30;10;0:1; p2i 2.934 0.80 0.50–0.90 10,000 Allh30;10;0:2; p2i 5.80 0.55 0.20–0.70 10,000 Allh30;10;0:3; p2i 8.73 0.41 0.20–0.50 10,000 Allh30;10;0:4; p2i 11.60 0.33 0.15–0.40 10,000 Allh30;10;0:5; p2i 14.53 0.27 0.10–0.40 1,000 Allh30;10;0:6; p2i 17.40 0.23 0.10–0.30 1,000 FC/FC-CBJh30;10;0:7; p2i 20.33 0.20 0.10–0.30 1,000 FC/FC-CBJh30;10;0:8; p2i 23.20 0.18 0.05–0.30 1,000 FC/FC-CBJh30;10;0:9; p2i 26.13 0.16 0.05–0.30 1,000 FC/FC-CBJh30;10;1:0; p2i 29.00 0.15 0.01–0.30 1,000 All

Table 7.1: The set ofh30;10; p1i problem classes studied.

Problems γ p̂2crit p2 range samples per p2 Algorithmsh20;10;0:2579; p2i 4.90 0.61 0.3–0.8 10,000 Allh25;10;0:2067; p2i 4.96 0.60 0.3–0.8 10,000 Allh30;10;0:1701; p2i 4.93 0.61 0.3–0.8 10,000 Allh35;10;0:1445; p2i 4.91 0.61 0.3–0.8 10,000 Allh40;10;0:1256; p2i 4.90 0.61 0.3–0.8 10,000 Allh45;10;0:1121; p2i 4.93 0.61 0.3–0.8 10,000 Allh50;10;0:1000; p2i 4.92 0.61 0.3–0.8 10,000 Allh60;10;0:0836; p2i 4.93 0.61 0.3–0.8 1,000 Allh70;10;0:0712; p2i 4.91 0.61 0.3–0.8 1,000 All

Table 7.2: The set ofhn;10;γ� 4:9i problem classes studied.

effort is expected to be maximal.

The phase transition experiments on eachhn;m; p1i CSP class variedp2 in steps of 0:01. En-

sembles of 10;000 problems were generated at everyhn;m; p1; p2i point for sparsely constrained

classes (whereehps are likely), while smaller sample sizes of 1;000 problems were used for more

densely constrained classes.CSPs generated were searched withMAC, MAC-CBJ, FC andFC-

CBJ. The use of large sample sizes, particularly on the sparsely-constrained classes, was intended

to increase the probability of seeing the extremes of search behaviour for each of the algorithms.

During the running of the experiments shown in Table 7.1, it became clear that the overhead

of MAC becomes very high for densely constrained problems. For this reasonMAC andMAC-

CBJ were not run on the classes of problems wherep1 = f0:6;0:7;0:8;0:9g. (Borrett and Tsang

1995) and Chapter 6 show that the range of constraint tightness in which arc-inconsistent values

are found in problems shrinks as constraint density increases. Meanwhile, the cost ofAC3 grows

linearly with the number of constraints. It is this combination of increasing cost and decreasing

effect that provides a likely explanation for the high cost ofMAC on densely constrained problems.

Figure 7.1 shows the observed satisfiability curves, asp2 is varied, for each of theh30;10; p1i
problem classes andhn;10;γ � 4:9i problem classes studied. The left graph plots satisfiability

against constrainedness,κ, in order to line up the phase transitions around one location.The right

hand graph simply plots against constraint tightness, since the phase transitions for problems
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Figure 7.1: Observed satisfiability curves for theCSP classes listed in Tables 7.1 and 7.2.

with similar average degree occur at similar values ofp2. As expected (Section 3.2), the phase

transitions of the smaller or more sparsely constrained classes plotted in Figure 7.1 do not line up

exactly with those for the larger or more densely constrained classes.

The complete set of experiments outlined here represent a total investment of around 1,200

days (28,000 hours) of cpu time.

7.6 Macroscopic Performance of MAC

In analysing the performance ofMAC at the population level, the behaviour of the algorithm is

studied both in isolation, and in comparison withFC over the same populations of problems. To

investigate the general behaviour of the algorithm, we plot the median search costs in terms of

consistency checks. However,ehps by definition represent extreme behaviour in a population

of problems, and so for someCSP classes we plot the median and higher percentiles of cost, as

discussed in Section 4.5.

7.6.1 General and extreme behaviour

Figure 7.2 shows the median behaviour ofMAC, in terms of consistency checks, on a selection

of then= 30 problem classes, while Figure 7.3 shows the median and higher cost percentiles for

three of these problem classes. All graphs plot cost againstp2. We can see the clear differences in

phase transition behaviour as the constraint density,p1, of the problems (and the average degree,

γ) decreases. The behaviour of theh30;10;1:0i problem class is typical of problems with high
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Figure 7.2: Median cost ofMAC overn= 30 series, in terms of consistency checks.
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Figure 7.3: Ranges of consistency checking cost forMAC on threen= 30 CSP classes.
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constraint density: in this case,p1 = 1, i.e. the constraint graph is complete. In terms of median

search cost, a sharp transition occurs as constraint tightness increases, from the region where

problems have very many solutions and are easy to solve, throughthe crossover point, and into

the insoluble region where the cost gradually decreases. Looking at the maximum cost, a similarly

smooth curve is seen, with values not greatly above those of the median. In particular, in the easy-

soluble region whereehps may occur, even the most difficult problem at each value ofp2 is still

easy, compared with those in the mushy region.

As problems become more sparsely constrained, the peaks in median search cost become

less sharply defined, although for each problem class there is still a clear phase transition peak.

However, the maximum cost becomes highly erratic for the sparseproblems. Atp1= 0:1 we begin

to observe instances of exceptionally hard problems in the easy-soluble problem regions that are

much more difficult (by at least an order of magnitude) than 99%of the other problems occurring

in the sample at the same constraint tightness, and much more difficult (again by at least an order

of magnitude) than 99% of the sample problems in the phase transition. As in Chapter 5, noehps

were found in the easy-soluble regions that are insoluble problems: we continue to conjecture

that in the case ofCSPs such problems must be exceptionally rare, even amongehps (although

it should be noted that this is not necessarily true for other classes of problem such asSAT (Gent

and Walsh 1994a)).

Figure 7.4 shows the median behaviour ofMAC, in terms of consistency checks, on a selection

of the γ � 4:9 problem classes, while Figure 7.5 shows the median and higher percentiles for

four of these problem classes2. As expected, the median consistency checking effort increases

steadily asn increases, and the phase transition regions are in approximately the same location, as

indicated by the satisfiability curves of Figure 7.1. Asγ is relatively low for these problem classes

we would expect to see someehp activity, and indeed clearehps are visible from the plots of

Figure 7.5. However, the incidence ofehp behaviour is low, particularly in comparison withFC

on the same problems, as is shown later in Section 7.6.3. There are indications in these plots that

the incidence and magnitude ofehps increases asn is increased; this pattern is more evident in ex-

periments with algorithms that are more susceptible toehps, such asFC. The single most difficult

problem encountered byMAC in the whole study is still that which occurs ath50;10;0:1;0:49i,
which was analysed in detail in Chapter 5. Solving this problem takesMAC over 1.547 billion

consistency checks – over five orders of magnitude greater thanthe median at that point, and over

100 times more difficult than the hardest phase transition problem.

7.6.2 Backtrack-free search

Looking at the performance ofMAC in terms of search nodes visited, it can be seen that there

are sets of problems for which no backtracking during search isrequired, on average. When a

problem has a solution, a backtrack-free search will successfully instantiate the first value tried

for each variable, resulting inn nodes visited. For problems with no solution, we can identify

regions where no backtracking is required on average, whereeither: AC preprocessing wipes

out an entire variable domain, in which case no search is required and so no nodes are visited;

2It should be noted that theh50;10;γ � 4:9i plot also appears in Figure 5.7 of Chapter 5.
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Figure 7.4: Median cost ofMAC overγ� 4:9 series, in terms of consistency checks.

or preprocessing removes some inconsistent values and then every instantiation tried for the first

variable is inconsistent, in which casek nodes are visited, wherek is the size of the reduced

domain of the first variable;or preprocessing has no effect in removing values, but theMAC

lookahead shows every value of the first variable’s domain to beinconsistent, in which casem

nodes are visited. It should be noted that the definition of backtrack-free search on insoluble

problems is not strictly correct, as the undoing of each trialinstantiation made for this variable is

technically a backward search move.

Figure 7.6 shows the median behaviour ofMAC in terms of nodes visited, for each of the

n= 30 andγ � 4:9 problem classes to which it was applied. As for Figure 7.1, thegraph for the

n= 30 classes plots cost against constrainedness, while that for theγ � 4:9 classes plots against

constraint tightness. This places the phase transition peaks on top of each other, illustrating the

differences in average behaviour more clearly. From these plots, it can be seen that for each

problem class there are parts of the easy-soluble problem region for which at least half of all

searches are backtrack-free. On the other side of the phase transition the median curves again

fall, to m or less, and for some of the problem classes with lowγ (and where a sufficiently wide

range ofp2 has been covered) we can see that for much of the insoluble region, half of all searches

are backtrack-free.

An interesting observation from the left hand set of graphs in Figure 7.6 is that the regions

where backtracking search occurs on average are ‘squeezed’ asγ falls. This shows the opposite

trend to that of consistency checks, where the peaks coincidingwith the phase transitions spread

out asγ falls. In fact, the region of backtracking search is all but squeezed out of existence for

the h30;10;0:1i problem class. There is a barely perceptible rise just aboven in the median as
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Figure 7.5: Ranges of consistency checking cost forMAC on fourγ� 4:9 CSP classes.
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the constrainedness increases, followed by a sharp drop belown and quickly to zero. The sudden

drop in the curve clearly corresponds with the crossover point,separating the regions where more

than half of the problems are soluble and more than half are insoluble.

7.6.3 Comparison with FC

The relative performance ofMAC andFC can be compared by plotting the median behaviour in

terms of both consistency checks and nodes visited, and by studying the relative incidence ofehps

over the same populations of problems. It should be noted that fair comparison of performance

between standardMAC andFC searches onindividual problems is difficult, as the nature of the

fail-first principle means that the algorithms do not necessarily follow the same search paths —

thus problems that are hard for one algorithm are not necessarily hard for the other.

Figure 7.7 plots the relative median cost of the algorithms againstp2 over each of then= 30

problem classes studied, in terms of both checks and nodes visited. From these plots, it can be

seen thatMAC performs more poorly on average, in terms of consistency checks, for each class.

The differences are particularly large over the easy-solubleregions, although this is partly to be

expected as the extra lookahead ofMAC (and indeed the lesser lookahead ofFC) is redundant

effort on most of these very easy problems.

However, a significant improvement occurs on average forMAC over FC in terms of nodes

visited over each problem class. Significantly, it can be seen that MAC extends the part of the easy-

soluble region in which no backtracking during search is required (for at least half of the problem

samples) further towards the crossover point. This agrees with the observations of both (Haralick

and Elliott 1980) and (Nadel 1989). Study of the effects of ACpreprocessing in Chapter 6 show

that it has little effect in removing values from the domainsof variables in problems that lie in

the easy-soluble region. It is therefore clear that it is the re-establishing of arc consistency that

extends the region of backtrack-free search, and not the initial preprocessing.MAC also extends

the part of the insoluble problem region in which no search is required for at least half of the

problems further towards the crossover point. This is undoubtedly due in large part, however, to

the AC preprocessing becoming effective when the constraints are tight. In short, the plots of

nodes visited show that by usingMAC rather thanFC, the range of values over which any search

is required for at least half of the problems is squeezed towards the phase transition.

Figure 7.8 compares the median consistency checking cost ofMAC andFC for three of theγ�
4:9 problem classes. For smalln, FC always outperforms this implementation ofMAC. However,

as problems become larger, it can be seen that the rate of growth of search effort forMAC on

the hard phase transition problems is less than that forFC: at n = 60 MAC outperformsFC on

average around the crossover point, and atn= 70 MAC is almost an order of magnitude better on

these hard problems. To investigate this scaling relationship, the respective median consistency

checking costs forMAC andFC at theobserved p2crit values (Section 3.2) were compared for

eachγ � 4:92 problem class. A plot of these values againstn can be seen in Figure 7.9. With

a logarithmic scale along the y-axis, the curves forMAC andFC are roughly linear, and it can

clearly be seen that the curve forMAC has a lower gradient than that forFC.

Figure 7.10 shows the median and higher percentiles of consistency checking for FC on four



102 Chapter 7. The Phase Transition Behaviour of Maintaining Arc Consistency

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

0 0.2 0.4 0.6 0.8 1

C
on

si
st

en
cy

 C
he

ck
s 

(lo
gs

ca
le

)

Constraint Tightness (p2)

p1=1.0

p1=0.5

p1=0.3

p1=0.2

p1=0.1

MAC Median
FC Median

1

10

100

1000

10000

100000

1e+06

0 0.2 0.4 0.6 0.8 1

N
od

es
 V

is
ite

d 
(lo

gs
ca

le
)

Constraint Tightness (p2)

p1=1.0

p1=0.5

p1=0.3

p1=0.2

p1=0.1

MAC Median
FC Median

Figure 7.7: Comparison of median cost ofMAC versusFC for n = 30 series, in terms of both
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Figure 7.8: Comparison of the median cost ofMAC andFC for threeγ� 4:9 CSP classes, in terms
of consistency checks.
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of the γ � 4:9 problem classes. These plots can be directly compared with thoseshowing the

performance ofMAC over the same problems, in Figure 7.5. Making this comparison, it can

clearly be seen that althoughMAC has been shown to still be susceptible toehps, their incidence

is greatly reduced from that ofFC over the same populations of problems. Whether the use of

MAC also reduces the magnitude of the exceptionally hard searchesthat it does encounter is not

entirely clear, however: although the heights of theehp ‘peaks’ that can be seen in the plots for

MAC are generally lower than those forFC, someMAC ehps such as that ath50;10;0:1;γ� 4:9i
(Figure 7.5) are more extreme than nearly allFC ehps in the same problem class.

7.6.4 Overall performance

Since the number of consistency checks performed by aMAC algorithm will depend on the arc

consistency algorithm used, it should be considered in conjunction with the number of nodes vis-

ited when assessing the maintenance of arc consistency as a generalstrategy. We have seenMAC

perform poorly in terms of consistency checks on densely constrained problems, where Sabin and

Freuder reported significant gains in terms of cpu time by their version ofMAC, based onAC4

over FC. However, when comparingMAC andFC in terms of nodes visited — an implementa-

tion independent measure —MAC performs much better thanFC on problems of all constraint

densities. Naturally, the efficiency of theMAC implementation will be a very important issue in

practical situations.

On sparsely constrained problems,MAC performs much more favourably in terms of consis-

tency checking. It has been seen that the growth in cost at the phase transition peak as the number

of problem variables increases, with problem topology maintained, is considerably slower than

that for FC. It may be the case that a similar scaling relationship holds for densely constrained

problems, but the high costs of an empirical study have prohibited investigation of this.

In terms of exceptionally hard problems, the value of using an increased lookahead withMAC

has been demonstrated in its ability to greatly reduce the incidence ofehps compared toFC over

the same populations of sparse problems.

7.7 Macroscopic Performance of MAC-CBJ

The performance ofMAC-CBJ in isolation is observed in terms of its average cost, and the inci-

dence and magnitude of exceptionally hard problems is compared with that forMAC in order to

determine the effects of introducing backjumping. A comparison with FC-CBJ is then made in

order to study the the effect that extra lookahead has when backjumping is also available.

7.7.1 General and extreme behaviour

Figure 7.11 shows the median behaviour ofMAC-CBJ, in terms of consistency checks, plotted

against constrainedness for a selection of then = 30 problem classes, while Figure 7.12 shows

the median and higher percentiles for three of these problem classes plotted against constraint

tightness, and Figure 7.13 shows a similar analysis for a selectionof theγ� 4:9 problem classes.
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Figure 7.10: Ranges of consistency checking cost forFC on fourγ� 4:9 CSP classes.
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Figure 7.11: Median cost ofMAC-CBJ over n = 30 series, in terms of consistency checks per-
formed.

These figures can be directly compared with those showing the equivalent data forMAC, shown

in Figures 7.2, 7.3 and 7.5 respectively.

By comparing the sets of plots, it is evident that the behaviourof MAC and MAC-CBJ is

very similar at the median and higher percentile levels apartfrom the maximum, for all prob-

lem classes. This suggests thatCBJ’s biggest effect is on the most difficult problems, and that its

performance is otherwise similar to chronological backtracking, when ‘fail-first’ dynamic variable

ordering is used. The set of plots also agree with the observationin Chapter 5 that the addition

of CBJ does significantly reduce the difficulty of theehps thatMAC finds in populations of prob-

lems. We observe from the maximum curves for theMAC-CBJ plots that backjumping greatly

moderates the extreme problem behaviour for all of the sparsely constrained problem classes, in-

cluding even the extremely sparseh30;10;0:1i populations of problems, for which highly erratic

maximum behaviour withMAC still occurs. It should be remembered thatMAC andMAC-CBJ

have been implemented so that they both follow the same search paths. Thus,MAC-CBJ must en-

counter the same subproblems which leadMAC into exceptionally hard search, but clearly deals

with them much more quickly than the chronological backtracker can.

These results are similar to those reported in (Smith and Grant 1995a), where the effects of

addingCBJ to FC were studied. However, the difference in performance between MAC andMAC-

CBJ on the non-exceptional problems is less than that betweenFC andFC-CBJ. A noticeable

improvement was observed withFC-CBJ at the 99% level of behaviour (and at lower levels in

some cases) for sparsely constrained classes of problems. However, nonoticeable differences in

performance can be seen at the 99% level whenCBJ is added toMAC for any of the sparsely
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Figure 7.12: Ranges of consistency checking cost forMAC-CBJ on threen= 30 CSP classes.

constrained problem classes studied here. We investigate the reasons for this in Section 7.8, by

studying the relative structures of the search trees ofMAC andFC searches.

7.7.2 Comparison with FC-CBJ

Figure 7.14 shows the median and higher percentiles of consistency checking effort forFC-CBJ

on the sameγ � 4:9 problem classes shown forMAC-CBJ in Figure 7.13, with which it can be

directly compared. Once again, it should be noted that fair comparison of performance between

standardMAC-CBJ andFC-CBJ searches on individual problems is not possible as the algorithms

will generally not follow the same search paths, as explained inSection 7.6. An improvement in

terms of maximum and median consistency checks byMAC-CBJ overFC-CBJ similar to that of

MAC over FC is observed. In particular, for the maximum curves it can be seen that whileFC-

CBJ clearly suffers from instances of exceptionally hard problems, the extra lookahead ofMAC

combined with the backjumping ofCBJ results in clearehp behaviour being almost eliminated

from the populations of sparse problems. However, a small amountof ehp behaviour can still be

observed forMAC-CBJ: the spike in the maximum curve for theh40;10;0:1256i problem class at

p2 = 0:5, which can be seen in Figure 7.13, clearly fits theehp criteria given in Section 5.2. These

results indicate that whileMAC-CBJ shows the most stable performance in respect of the occur-

rence of exceptionally hard problems, a very few instances canstill arise in sparsely constrained

problem classes.
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Figure 7.13: Ranges of consistency checking cost forMAC-CBJ on fourγ� 4:9 CSP classes.
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Figure 7.14: Ranges of consistency checking cost forFC-CBJ on fourγ� 4:9 CSP classes.
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7.8 The Search Trees of MAC and FC

In sections 7.6 and 7.7, we compared the overall search costs ofMAC-based algorithms withFC-

based algorithms. However, these measurements give little indication of the comparative structure

of the algorithms’ search trees, which must surely be different. We have seen that for many of

the problem classes examined,FC outperformsMAC in terms of consistency checks, while the

opposite is true in terms of search nodes visited. This suggests that MAC tends to do more work

earlier on in search thanFC does.

In order to investigate the relative structures of theMAC andFC search trees, the search effort

spent at each depth in the search tree was studied, focusing on theh30;10;γ� 4:9i problem class.

Looking inside the search process in this fashion is not new: (Haralick and Elliott 1980) per-

formed a similar investigation into the search depths where thevarious lookahead algorithms they

studied did most of their work. For implementation reasons, the mean numbers of consistency

checks and nodes visited at each search depth for each set of problems were recorded, rather than

the median. As a result, data from theFC-CBJ andMAC-CBJ searches was used instead of that

from FC andMAC, so as to minimise any effects on the mean behaviour caused by exceptionally

hard problems.

Figure 7.15 presents a three-dimensional plot, showing whereFC-CBJ spends its consistency

checking effort. The vertical and horizontal axes show the number of checks againstp2, while

the axis projecting from the page shows the depth in the search tree. The range of search depth

values is[0::30], for consistency with later plots ofMAC-CBJ, where depth 0 represents the AC

preprocessing stage. ForFC-CBJ there are no values at depth 0, since no preprocessing is done.

Below the 3-d plot, a two-dimensional profile of the surface is shown, looking along the constraint

tightness axis.

The left hand side of the surface in Figure 7.15 represents the easy-soluble problem region.

Here, the highest number of checks occur at depth 1, where there is the maximum number of

future variables (0:17(n�1)) to check against. Progressively less checking occurs at lower depths,

as the number of forward checks to make decreases. As there is little or no backtracking necessary

on these problems, the mean number of checks falls smoothly to zero at depthn. Moving into

the clear phase transition region, we see a great deal of consistency checking deep into the search

tree. From the lower profile plot, the peak in this effort liesat depth 8, and not zero. It appears

to be the case than when Forward Checking on these sparse problems,the first few instantiations

are fairly easy to make. Making further instantiations becomes more difficult, resulting in a lot

of backtracking to the higher levels of the search tree. In theinsoluble region, to the right, the

majority of checking occurs at the top of the search tree. Thisis due to insolubility being detected

early in these problems, given their over-constrainedness. The number of checks at depth 1 in this

region starts off relatively high near the phase transition, where many future variables must still be

examined, but falls asp2 increases. Asp2 approaches 1 (not shown in Figure 7.15), insolubility

will be determined by examining only one constraint, requiringm2 checks.

Figure 7.16 is similar to Figure 7.15, showing the consistency checking behaviour ofMAC-

CBJ over the same problems. It should be noted, however, that asMAC-CBJ includes anAC3

preprocessing stage, we see consistency checking activity at depth zero. We also see the additional
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transition associated with establishing arc consistency, discussed in Chapter 6, which lies well into

the insoluble problem region as expected.

It is immediately apparent from Figure 7.16 thatMAC-CBJ expends the majority of its effort at

shallower depths of the search tree thanFC-CBJ. The profile plot shows that the peak in checking

at the phase transition now occurs at depth 1, compared with depth 8 for FC-CBJ. However, the

amount of effort involved is considerably larger: the vertical axis in Figure 7.16 has a range more

than an order of magnitude greater than that in Figure 7.15. Thus, whileMAC-CBJ could be said

to do less searching, this takes more effort. In the insoluble problem region, we can see the point

at which AC preprocessing becomes sufficient to prove insolubility in all problems, where no

consistency checking occurs at depth 1 or beyond. Immediatelyprior to this,MAC-CBJ can detect

insolubility at depth 1 on many problems.

Figure 7.17 examines the same set of problems forFC-CBJ, this time plotting the search effort

on the vertical axis in terms of nodes visited. In the easy-soluble region, the flat area lies at height

1 on the vertical axis. This represents the backtrack-free soluble problems, where one search node

is visited at each depth in instantiating a variable. Meanwhile, in the easy-insoluble region there

are few nodes visited at great depths. We therefore observe a ‘step’ in nodes visited from 1 to 0

at maximum search depth, at the phase transition crossover point.In the phase transition region,

we see a similar pattern to that observed in Figure 7.15, although the peak in nodes visited occurs

at depth 11, rather than 8 where the peak in consistency checks occurs. This difference may be

attributed to the fact that at depth 11 there is a smaller set of future variables to check against than

at depth 8, so although more nodes are visited here, the amount of resultant checking is slightly

less. Only slightly fewer nodes are visited at depth 8 than 11.

Figure 7.18 shows the search nodes visited byMAC-CBJ at each search depth, in a similar

style to Figure 7.17. This time there are no values at depth 0, since no nodes are visited during

preprocessing. It is noticeable that the range on the verticalaxis is only 10, while that forFC-

CBJ is 80. This coarseness results in very pronounced contours on the MAC-CBJ surface. The

step in the surface between the soluble and insoluble regions at the greater depths is clear, as is

the point at which preprocessing eliminates the need for any search in the insoluble region. At

the phase transition, the peak in nodes visited again occurs at depth 1, and it can be seen that

the mean number of nodes falls to exactly one at depth 11. Thisshows that on 10;000 of the

hardest problems in this class, the lookahead ofMAC-CBJ means that inconsistent subproblems

are detected after at most 11 instantiations.

The brief look inside the search process ofFC-CBJ andMAC-CBJ presented here has demon-

strated that the size of the search trees produced byMAC-based searches is considerably smaller

than those produced byFC-based searches. In Section 7.7, it was observed that the addition of

CBJ to MAC leads to only a tiny improvement in search cost that is difficultto notice even at the

99% level of behaviour. The likely explanation for this is that the comparative shallowness of

MAC search trees provides very limited scope for effective backjumping. It appears that the large

amount of effort expended byMAC in making its early search moves means that later moves are

less likely to fail, so that backtracking from deep in the tree is similarly unlikely.
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Figure 7.17: Mean nodes visited at each search depth byFC-CBJ on h30;10;γ� 4:9i problems.
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Figure 7.18: Mean nodes visited at each search depth byMAC-CBJ onh30;10;γ� 4:9i problems.
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7.9 Discussion

We have examined two algorithms which maintain arc consistency, and attempted to position

their performance in terms of the average and extremes of behaviour. This has involved rigorous

empirical experimentation over a broad range of problem sizes and topologies in a manner which

has until recently been extremely rare. In doing so, the findings that have been reported throw up

a number of subsidiary issues, which warrant major studies in theirown right and so lie beyond

the scope of this investigation. These are briefly discussed a little later in this section.

In studying the general behaviour of theMAC andMAC-CBJ algorithms, and comparing them

with theFC andFC-CBJ algorithms, an emphasis has been placed on the number of search nodes

visited as a good measure with which to compare performance. Ithas been observed from study-

ing nodes visited that the lookahead ofMAC produces backtrack-free searches on average over a

greater range of values of the control parameter than the lesser lookahead ofFC can. This has been

the case for all of theCSP problem classes studied. As might be expected, as the searches become

harder the extra lookahead ofMAC also allows the algorithm to visit far fewer search nodes on

average thanFC, again over all observed problem classes. Looking at consistency checking effort

(an implementation-dependent measure), we seeMAC perform poorly compared toFC on smaller

problems of all constraint densities, due to the high arc consistency overheads. However, by

studying the independent effects of altering problem size andtopology it has been shown that as

problem size increases, theFC consistency checking effort on the hard phase transition problems

grows at a greater rate than that forMAC, which becomes by far the cheaper algorithm on larger

problems over these regions. Study of the effects of combiningMAC with CBJ show that little

benefit is gained, except for the very hardestMAC searches, in a similar fashion to that of com-

bining FC andCBJ. All of these observations appear to reinforce the increasingly prevalent view

that ‘champion’ algorithms which perform extremely well onall types of problem do not exist.

Algorithms should clearly be chosen to suit the problem characteristics, based on the knowledge

gained from empirical studies such as those presented here and in(Tsanget al. 1995).

An area for future study is a more detailed investigation of exactly how algorithm performance

scales as problem size increases. We have been able to show thatMAC performance scales at a

better rate thanFC as problems become larger, but at present the rates of increasecannot be

specified exactly. The application of techniques such as finitesize scaling (Gentet al. 1995) may

make this possible in future, and this would constitute a major advance in the development of an

‘empirical science of algorithms’.

Throughout the main empirical studies that have been conducted, theMAC andMAC-CBJ algo-

rithms have employed ‘fail-first’ dynamic variable ordering, and have maintained arc consistency

from search depth zero (i.e. as a preprocessing step, and at everysearch stage). It is clear that

many alternative choices may be made for these aspects of the algorithm specifications, and these

may affect their behaviour. The use of a number of alternativedynamic variable ordering heuris-

tics with bothFC andMAC is studied in Chapter 8. Varying the depth from which we choose to

maintain arc consistency may have the most interesting effects on performance: for instance it has

been shown in (Borrett and Tsang 1995) and Chapter 6 that AC preprocessing has no effect on

problems with very loose constraints, and so it would clearly be sensible to only enforce arc con-
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sistency from search depth 1, or perhaps lower, on such problems. It should also be remembered

that that all of the experiments are based on random problems generated according to the model

described in Chapter 3. Problems with more structured constraint graphs, varying domain sizes

and/or individual constraint tightnesses may well behave differently. Quite how such changes

might affect the performance of the algorithms, or the incidence ofehps, remains to be studied.

The study reported in Section 7.8 could be said to have taken a microscope to the search

process ofMAC andFC, albeit still considering behaviour at the population level.From this, we

have enhanced our understanding of the performance of an algorithm which has until recently

been rejected by the constraint satisfaction community. The lesson appears to be that to truly

understand the nature of search, we must study it using both the ‘telescopic’ means of large

population studies and the ‘microscopic’ means of looking inside individual searches.
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Chapter 8

Dynamic Variable Ordering Heuristics

It is well known that the efficiency of complete search algorithms for theCSP can be increased

considerably by the use of dynamic variable ordering (DVO) heuristics (Section 2.4). The most

popular DVO heuristics aim to instantiate the variable whose instantiation is most likely to lead to

a dead end, in an attempt to observe the ‘fail-first’ principle,introduced by (Haralick and Elliott

1980). This principle recommends instantiation of the variable most likely to lead to failure,

so that dead ends are detected as early as possible. Haralick andElliott expressed the fail-first

principle as “To succeed, try first where you are most likely to fail”. They implemented it by a

DVO heuristic which chooses next the variable with smallest remaining domain.

‘Smallest remaining domain’ is still a popular variable ordering heuristic, and is often seen

as synonymous with the fail-first principle. It is not the only way of implementing the fail-

first principle as a DVO, however, and many subsequent heuristicsalso attempt to instantiate the

variable most likely to result in failure. The empirical studies reported in Chapters 5 and 7, for

instance, use a popular variant of Haralick and Elliott’s heuristic, which selects the first variable

to be instantiated as that with the greatest degree in the constraint graph, and thereafter selects the

next variable to be instantiated as that with the smallest remaining domain.

The fail-first principle has become an item ofCSP folklore, to which the success of many

DVO heuristics has been informally attributed. However, fewconvincing insights into the reasons

for the success of fail-first DVO heuristics have been made, and new techniques which claim to

implement the principle have tended to be introduced pragmatically.

There are dangers associated with failure to understand the true nature of algorithms and

heuristics. (Hooker and Vinay 1995), for example, showed that the motivation behind a well

known DVO heuristic for boolean satisfiability (SAT) problems1 did not explain its performance.

The reasons for its success were considerably more complex than the simple principle behind it,

which produced an effective heuristic only by coincidence. In such a situation, any attempts at

refining this heuristic would have been based on false assumptions,and successful refinements

would have worked only by accident.

This chapter takes a new look at the use of the fail-first principle in designing DVO heuristics.

1In SAT terms, the equivalent to DVO heuristics are calledbranching rules.
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A theoretical interpretation of the principle is devised, and from this a series of new heuristics is

obtained which uses probabilistic methods to select the variable most likely to fail. An empirical

study of these new heuristics, along with several existing fail-first DVOs, suggests that the fail-

first principle is not as effective as has been assumed.

The study reported in this chapter began as an attempt to find improved dynamic variable

ordering heuristics based on the fail-first principle for a classof CSPs. This attempt failed, which

leads us to some unexpected conclusions about the fail-first principle itself.

8.1 Related Work

Intuitively, the rationale for the fail-first principle is that if the current path in the search tree will

not lead to a solution, it is best to find this out as soon as possible:any delay means wasted effort.

In terms of variable ordering, Haralick and Elliott argued that choosing next the variable to which

the search algorithm is least likely to be able to assign a value successfully will minimise the

expected length of each branch in the search tree. Doing so should reduce both the expected cost

of search and the variance of this average.

Making the assumption that every value in a variable’s domain is equally likely to succeed,

Haralick and Elliott showed that choosing the variable with smallest remaining domain will min-

imise the expected branch length. They conducted a small empirical study, finding all solu-

tions to then-queens problem and ensembles of five randomhn;n;1;0:35i CSPs, for the values

n = 4;5;6;7;8;9;10. Compared to static random variable ordering, the fail-first DVO heuristic

significantly improved the search efficiency of the lookahead algorithms examined, includingFC

and Full Looking Ahead.

The fail-first principle can be applied to static variable ordering (SVO) strategies as well as

DVO heuristics. An SVO which considers variables in order of decreasing degree (Dechter and

Meiri 1994) aims to cause failures early, as does an ordering which minimises the width of the

constraint graph (Freuder 1982). However, studies such as (Purdom 1983; Dechter and Meiri

1994) have supported the general conclusion that dynamic variable ordering is superior to static

variable ordering.

8.1.1 Alternative fail-first DVO heuristics

We give Haralick and Elliott’s original fail-first DVO heuristic of selecting smallest domain first

the termFF. A number of variants on theFF heuristic have been proposed, which we experi-

mentally evaluate in the following sections. These variants are based on the intuitive idea that

a variable which constrains a large number of future variables is also likely to cause a domain

wipeout, so that the degree of the variables should be taken into account as well as their domain

sizes.

A shortcoming of theFF heuristic is that when all variables have the same initial domain size,

the choice of first variable becomes effectively random. A variant used by (Frost and Dechter

1994) selects the first variable to instantiate as the one with the highest degree, i.e. the one con-
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straining the largest number of other variables. Thereafter, the ‘smallest remaining domain’ strat-

egy is used. This is the heuristic used in Chapters 5 and 7, which we continue to termFFdeg.

A DVO heuristic originally developed for graph colouring problems by (Bŕelaz 1979) can

also be applied to CSPs. The Brélaz heuristic,BZ, selects the variable with the smallest remain-

ing domain and breaks ties by selecting the variable with the highestfuture degree, i.e. the one

constraining the largest number of future variables.

(Bessìere and Ŕegin 1996) show that the SVO mentioned earlier which considersvariables

in descending order of degree gives good results in comparison with FF when the constraints are

sparse, but performs very badly on complete constraint graphs, when it degenerates to lexico-

graphic ordering. Conversely,FF does much better when the constraints are dense, since the fact

that it ignores the degrees of the variables becomes less important. They introduce a heuristic,

dom/deg, which combines the two by selecting the variable which minimises the ratio of current

domain size:degree. Bessière and Ŕegin report that using the ‘global’ degree of variables over

the entireCSP is roughly as effective as calculating their degree in the future subproblem. We

therefore focus on the version of this heuristic that uses global degrees2 and use the termDD for

brevity.

None of these fail-first DVO heuristics have been presented with any analytical explanation

of their behaviour, although all have been shown empiricallyto perform well on many types of

CSP. More recent work, however, has taken a more theoretical approach to the design of search

heuristics.

8.1.2 Minimising subproblem constrainedness

DVO heuristics based on an entirely different principle are presented in (Gentet al. 1996a).

These are based on minimising theconstrainedness(Section 3.2) of the future subproblem. The

heuristics use three very general theoretical measures that have been developed forCSPs and

other types of problem: the expected number of solutions,E(N); the expected solution density,ρ;

and the general constrainedness parameter,κ, which combines these measures. By maximising

the first two measures, or minimising the third, during search, it is hoped that the search process

will be guided towards under-constrained subproblems with many solutions which will be easy to

solve.

Although minimising the constrainedness of the subproblem is achieved by selecting the most

constrained variable, this approach cannot be said to follow the fail-first principle, as it attempts

to select search paths that are most likely to succeed rather thanfail. However, these three new

heuristics are empirically shown to perform better than existing versions of fail-first DVOs on

some types ofCSP, particularly those that are densely constrained or have non-uniform constraint

tightness.

The success of these new heuristics leads us to consider one of them, that which minimisesκ,

along with the fail-first heuristics studied. We term this heuristic kappa.

2The variant ofdom/deg which uses future degrees is considered in Section 8.7.
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8.2 Studying the Fail-First Principle

Our discussion of DVO heuristics based on the fail-first principle is presented in the context of

the binaryCSPs used throughout this thesis. It is assumed that all variables initially have the

same domain size, and that all constraints are uniformly tight:again, similar assumptions have

been almost universal in experimental studies. Dynamic variable ordering is only considered in

the context of the lookahead algorithmsFC andMAC: Section 2.4 notes that DVO has no effect

without a search algorithm that has a lookahead capability.

The following section presents the theoretical analysis of fail-first, from which three new

heuristics are derived. The framework under which the empirical studies are conducted is then

laid out, followed by analysis of the series of results obtained. The consequences of these results

for the fail-first principle are discussed, and future trends in the design of DVO heuristics for the

CSP are considered. We conclude with a summary and evaluation of this work.

8.3 A Theoretical Interpretation of Fail-First

(Hooker 1996) heavily criticises the use ofcompetitive testingwhen evaluating the performance

of a new search heuristic. He suggests that such an approach, in which the new heuristic tends to

be accepted or disregarded on the basis of its performance against other heuristics, tells us “which

algorithms are better, but not why”. Purely competitive testing of a heuristic (or of any algorithm)

fails to provide insights into its behaviour which might aid the development of better techniques.

Hooker suggests an alternative approach ofcontrolled experimentation:

Based on one’s insights into an algorithm, for instance, one might expect good per-

formance to depend on a certain problem characteristic. How to find out? Design a

controlled experiment that checks how the presence or absenceof this characteristic

affects performance. Even better, build an explanatory mathematical model that cap-

tures the insight, as is done routinely in other empirical sciences, and deduce from it

precise consequences that can be put to the test.

We attempt here to follow this approach and construct a mathematical ‘theory’ for the fail-first

principle. This theory3 is designed to specify the circumstances under which the selection of a

particular variable to instantiate might to lead to failure.The analysis is based on binaryCSPs

using thehn;m; p1; p2i model defined in Section 3.2, and assumes an algorithm with a lookahead

capability.

8.3.1 Three new fail-first heuristics

In deriving the ‘smallest-remaining-domain’ heuristic (FF) as an implementation of the fail-first

principle, (Haralick and Elliott 1980) assume that the probability that the assignment of a value

to a variable fails (in the context of forward checking or maintaining arc consistency, results

3As acknowledged in Section 8.14, Barbara Smith is responsible for the probabilistic analysis of the fail-first
principle presented below.
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in a domain wipeout) is the same for all available values of allunassigned variables. On that

assumption, the probability that the variable chosen will fail(i.e. the probability that every value

will lead to a domain wipeout) is maximised by choosing the variable with smallest domain.

However, it is clear that other factors, such as the number of future variables which each variable

constrains, also affect this probability. The variants ofFF discussed in Section 8.1 take some

account of the future degree of each variable. However, if wewant to follow the fail-first principle,

it would be better to incorporate these other factors when calculating the probability of failure.

We assume that in the originalCSP each variable hasmpossible values. When there is a con-

straint between two variables, the constraint tightness is a constantp2 for all constraints. Suppose

that after a number of successful past assignments, we have a future subproblem consisting of

a setF of unassigned variables, each variablevi 2 F having current domain sizemi . If there is

a constraint between two of these variables,vi andv j , then due to the values which have been

removed from their domains by the past instantiations, the current tightness of this constraint is

pi j , measured by the proportion of the remaining pairs of values which are not allowed.

The fail-first principle says that we should choose next the variable in F which is most likely

to fail, i.e. which maximises the probability that every one of its possible values will result in a

domain wipeout.

If we consider a variablevi 2 F with current domain sizemi ,

Prfevery assignment ofvi failsg= (Prfvi = xi failsg)mi

wherexi is any value in the current domain ofvi .

If there is a constraint betweenv j 2 F andvi and the current tightness of this constraint ispi j ,

Prfvi = xi is consistent with at least one value ofv jg= 1�Prfvi = xi is inconsistent with every value ofv jg= (1� p
mj
i j )

approximately, if we take the current constraint tightnesspi j as applying independently to each

pair of values. If there is no constraint betweenvi andv j thenpi j = 0.

Using the above,

Prfvi = xi failsg= 1� ∏
v j2F; j 6=i

Prfvi = xi is consistent with at least one value ofv jg= 1� ∏
v j2F; j 6=i

(1� p
mj
i j ) (8.1)

Therefore, to choose the variable that is most likely to lead tofailure in the future subproblem,

we should choose the variablevi which maximises(1� ∏
v j2F; j 6=i

(1� p
mj
i j ))mi (8.2)
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Depending on how much we estimate versus how much we accuratelymeasure in the environment

of each variablevi , this gives us a series of heuristics:

First approximation: If we assume, as Haralick and Elliott did, that the term (8.1) isthe same

for every value of every variablevi , then to maximise (8.2) we should minimise the number of

such terms (since they are all< 1) and hence minimisemi . Thus, we choose the variable that has

the smallest current domain, giving theFF heuristic.

Second approximation: We could estimate the current tightness of the constraints betweenvi

and the other future variables by their original tightness (i.e. 0 orp2) and use the initial domain

size,m, as the estimate for the current domain size of each variable. Then, to maximise (8.2), we

maximise: (1� (1� pm
2 )di )mi

wheredi is the degree ofvi in the future subproblem, i.e. the number of future variablesthat it

constrains. This gives a heuristic that, likeBZ andDD, chooses the next variable to instantiate on

the basis of both its domain size and its future degree.

Third approximation: We could use the true current domain size of all future variables, but

estimate the current constraint tightness byp2. Then we want to maximise:(1� ∏
v j2F;vi constrainsv j

(1� p
mj

2 ))mi

If two variables have the same current domain size, this leads us to prefer the one which minimises

∏(1� p
mj

2 ). As well as maximising the number of terms in the product, thismaximisesp
mj

2 and

hence minimisesmj . Thus, we favour variablesadjacent to future variables with small domains.

Fourth approximation: Finally, we can also measure the current tightness of the constraints,

and calculate (8.2) accurately for each variable, selectingthe one that maximises this term. Then

to maximisep
mj
i j we should maximisepi j (as well as minimisingmj ). This chooses a variable

involved in tight constraints, other things being equal.

It is intuitive that if we want to choose a variable such that allof its available values are likely

to cause a domain wipeout in some future variable we should look for a variable which has few

remaining values and which is involved in many tight constraints with future variables which

themselves have few remaining values. The final heuristic uses all these factors in selecting the

next variable.

We term the second, third and fourth heuristicsFF2, FF3 and FF4 respectively, and in later

sections we present experimental evidence on their performance relative toFF.
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8.3.2 Testing the fail-first principle

SinceFF, FF2, FF3 and FF4 are based on increasingly accurate estimates of the probability that

a variable will fail, we should expect, if the fail-first principle is sound, to see this reflected in

decreasing search effort on the part of the forward checking algorithm for CSPs of the type on

which the probabilities are based. The new fail-first heuristics contain a number of attractive

features which might be expected to yield good results:� There are several obvious criteria to consider when choosing the most constrained variable:

a small current domain size; a high degree in the future subproblem; adjacent variables

with small current domains; and involvement in tight constraints. It is not obvious how to

combine these factors, but the theoretical framework shows howit can be done.� The second heuristic,FF2, is almost the Bŕelaz heuristic. However,BZ uses the degree of

each variable only as a tie-breaker. In some circumstances,FF2 might choose a variable

with highest degree in preference to one with smallest domain. This seems to requirepm
2

to be relatively large. For example, ifpm
2 = 0:1 (corresponding approximately top2 = 0:8,

m= 10, say) a variable with domain size 5 and degree 3 is preferableto a variable with

domain size 4 and degree 2. On highly-constrained problems theproposed heuristic might

beatBZ (sincep2 is large, so the above condition may be met.)� We know of no variable ordering heuristic which takes into account the domain size of

adjacent variables. The proposed third heuristic,FF3, provides a relatively cheap way of

doing this. Furthermore there is currently no cheap heuristicbetter than simpleFF available

when the constraint graph is a clique, sinceFFdeg andBZ are the same asFF in such cases.

The new heuristics are, of course, also increasingly expensive toapply (and we have ignored

this cost in the experiments reported below) but we might hopethat FF2 or FF3 provides good

performance without the necessity of recalculating the tightness of every constraint after each

instantiation, as required forFF4, which is particularly time-consuming.

Should the proposed heuristics not perform well on this class ofproblem, this would call into

question the fail-first principle itself. The experiments willtherefore provide more than just a

ranking of the heuristics under investigation, which is the approach criticised by (Hooker 1996).

Instead, they will serve to confirm or refute the predictions that have made about the new fail-first

heuristics, and by extension put the whole fail-first principle to the test.

8.4 The Experimental Environment

Having devised a mathematical interpretation of the fail-first principle, we must now devise a

controlled experimentation environment under which the series of suggested heuristics can be

tested and compared against existing fail-first strategies.

The experiments reported in this chapter useCSPs generated according to a hybrid of the

Model A and Model B methods, specified in Chapter 3. This hybrid generation method treats

constraint tightness,p1, as a fixed proportion (Model B), but treats constraint density, p2, as a
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probability (Model A). Thus, the experimentalCSPs have a specific number of constraints, whose

individual densities may vary according to probability. This is the model used by the analysis in

Section 8.3 to create the new fail-first heuristics, and so is the most appropriate with which to

generate theCSPs to test them.

In all, there are seven dynamic variable ordering heuristics which are studied:FF, FFdeg, BZ,

DD, FF2, FF3 andFF4. The basicCSP search algorithm with which each of the heuristics is used is

initially forward checking (FC), and later maintaining arc consistency (MAC). Algorithm-heuristic

combinations are described using the termsFC-FF, MAC-FF3, etc.

The cost of each search is measured in terms of consistency checks and search nodes visited

by the base algorithm. These measures, discussed in detail in Section 4.4, relate only to the

cost of the base algorithm and ignore the heuristic overhead. The chief aim is not to test the

implementation efficiency of the heuristics, only their effect on the search process, which is why

we do not incorporate their cost into the main analysis.

The results of the empirical studies are presented in the following sections. A study on the

effects of the choice of first variable to instantiate is followed by a broad comparison of each of

the DVO heuristics. The issue of whether theBZ andDD heuristics should base their decisions

on the degrees of variables in the global problem or current subproblem is then considered. The

effects of changing the base algorithm fromFC to MAC and of scaling up problem sizes are also

reported, followed by a brief analysis of how exceptionally hard problem (ehp) behaviour varies

with each heuristic.

8.5 Effect of the Initial Instantiation

The basicFF DVO heuristic offers no tie-breaking strategy if more than onevariable has the

smallest current domain size. In the case ofCSPs where all variables have the same domain sizes,

this makesFF’s initial choice of variable to instantiate effectively random. HeuristicsFFdeg andBZ

do offer tie-breaking strategies, and for aCSP with uniform domain sizes will select the variable

with highest degree as the first to instantiate. These heuristics have been shown to improve search

efficiency overFF (Frost and Dechter 1994; Gentet al. 1996a).

A simple initial test of the fail-first hypothesis can be made by investigating the effects on

search cost of the choice of first variable to instantiate. For therandomCSPs that are used in the

experiments, the tightness of every constraint is initially identical, making the most constrained

variable in every problem that which has the highest degree. This provides an ideal controlled

situation in which the effect of starting search with the most constrained variable can be compared

against starting with a random choice of variable.

We investigate the influence that the initial choice of variable has, in terms of both dynamic

variable ordering strategies and static variable ordering (SVO) strategies.

8.5.1 Effect on static variable ordering

Two phase transition experiments were conducted using theh20;10;0:2i andh20;10;0:5i CSP

classes. The use of these relatively sparsely constrained problems was intended to provide suf-
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Figure 8.1: FC with static variable orderings onh20;10;0:2i andh20;10;0:5i CSPs.

ficient variety in the degrees of variables, in order to make the number of variables with joint

highest degree reasonably low. The size of eachp2 step for both classes is 0:01, and ensembles

of 1,000 problems were generated at everyh20;10; p1; p2i point.

Two versions of theFC algorithm employing a static variable ordering were appliedto each

CSP in the study: one version places the variables in order of decreasing degree; the other uses a

lexical (effectively random) ordering.

Figure 8.1 compares the median consistency checking cost ofFC using degree and lexical

SVO’s on theh20;10;0:2i andh20;10;0:5i problem classes. Cost is plotted against constraint

tightness,p2, and the regions plotted include the phase transitions. For both classes, we see that

using a degree SVO leads to a large saving in search cost compared to using a lexical SVO. In the

case ofh20;10;0:2i the saving at the phase transition is more than an order of magnitude, while

for h20;10;0:5i the improvement is by a factor of six.

8.5.2 Effect on dynamic variable ordering

The same sets ofh20;10;0:2i andh20;10;0:5i problems used above were searched byFC using

the DVO heuristicsFF andFFdeg. Figure 8.2 compares the median consistency checking cost of

FC-FF andFC-FFdeg over the phase transition regions of both problem classes. In the case of these

DVO heuristics, the improvement seen is due entirely to the different choices offirst variable to

instantiate.FC-FFdeg is roughly half as expensive asFC-FF at both phase transition peaks.
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Figure 8.2: FC with dynamic variable orderings onh20;10;0:2i andh20;10;0:5i CSPs.

8.5.3 Summary

Closer inspection of the data produced shows that the use of staticdegree ordering withFC re-

duces the median search cost over lexical ordering by a factor of 34 at theh20;10;0:2i phase

transition peak, and 7:4 at theh20;10;0:5i peak. Equivalent figures forFC-FFdeg overFC-FF are

1:83 and 1:6 These results clearly suggest that choosing the most constrained variable to instanti-

ate is a good idea, at least in the case of the first variable.

8.6 A Simple Beauty Contest

In order to gain some idea of the performance of the eight DVO heuristics under examination,

and create an initial ranking, three phase transition experiments onCSPs of sizeh20;10i were

conducted.h20;10;0:2i, h20;10;0:5i andh20;10;1:0i problems were examined, withp2 varied

in steps of 0:01, and ensembles of 1,000 problems generated at everyh20;10; p1; p2i point. Every

problem was then searched byFC-FF, FC-FF2, FC-FF3, FC-FF4, FC-FFdeg, FC-BZ andFC-DD.

The three values ofp1 were selected in order to test the heuristics on problems where the

constraint graph is a clique (and all variables have the same degree), where the constraint graph

is of medium density, and where the constraint graph is very sparse.

The data from these experiments is presented below, with the heuristics grouped into two sets

to aid the clarity of the plots. A ranking of the heuristics on the problems used is then obtained

and discussed.
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Figure 8.3: Fail-first heuristics onh20;10i CSPs.

8.6.1 New fail-first heuristics

Figure 8.3 plots the median consistency checking cost ofFC-FF, FC-FF2, FC-FF3 andFC-FF4 on

theh20;10;0:2i, h20;10;0:5i andh20;10;1:0i problem classes. Cost is plotted against constraint

tightness,p2, in each case and linear scales are used on both axes. In each plot,the key indicates

the ranking of each heuristic at the phase transition.

In section 8.3, we predicted that we should see successive improvements in performance from

the heuristicsFF2, FF3 andFF4 compared toFF: FF4, which puts the greatest effort into accurately

calculating the probability of failure for each variable should give the greatest improvement in

search cost. The first feature we note from these plots, however, isthe poor performance of the

FF4 heuristic. It is consistently bad on all three classes, which is surprising and somewhat disap-

pointing. In the case of the cliqueh20;10;1:0i class,FC-FF4 is around six times more expensive

at the phase transition than simpleFC-FF. It is worth emphasising that this cost is the search cost,

and does not includeFF4’s expensive probability calculations.

TheFF4 heuristic attempts to ‘literally’ fail first by choosing the variable which has the highest

probability of causing a future domain wipe-out. Its poor performance suggests that unless the

probability model is wrong then the fail-first strategy is a flawed approach to DVO heuristics.

The original heuristic,FF, performs badly, though we observe in Section 8.5 that this can be

attributed to the effectively random choice of starting variable onCSPs with uniform domain

sizes.

FF3 does not perform as well asFF2, despite doing significantly more work. However, on
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Figure 8.4: Four DVO heuristics onh20;10i CSPs.

the cliqueh20;10;1:0i problems,FF3 gives a very slight improvement overFF2 and FF, which

become identical whenp1 = 1. This appears to show us that there may be some value in taking

into account the domain sizes of adjacent future variables, even if only when future degrees are

identical and provide no leads.

The only one of the new heuristics which merits further consideration isFF2. As well as being

the cheapest of them to implement, it is the best of the heuristics shown in Figure 8.3, except

whenp1 = 1. In the following section we compare this heuristic with theothers which take into

account the degrees of variables (FFdeg, BZ andDD).

The plots in Figure 8.3 strongly suggest that putting more effort into choosing the variable

which is most likely to fail does not pay off. This leads us to believe that the fail-first principle is

not one which should be followed in designing variable ordering heuristics, and that the success

of heuristics which are believed to implement this principlemay be due to some other factor. This

conclusion is discussed further in Section 8.11.

8.6.2 Heuristics based on domain size and degree

Figure 8.4 plots the median consistency checking cost ofFC-FFdeg, FC-BZ, FC-DD andFC-FF2 on

theh20;10;0:2i andh20;10;0:5i problem classes, in a similar fashion to Figure 8.3. These four

heuristics use both the domain size and future degree (exceptDD, which uses global degree) in

selecting the next variable. Theh20;10;1:0i class has been omitted since these heuristics are

identical toFF when the constraint graph is complete.

The four heuristics give very similar performance.FF2 is marginally the best whenp2 = 0:2,
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but DD is better whenp2 = 0:5. It is noteworthy that the simplest of these heuristics,FFdeg, which

uses degree information only in selecting the first variable, iscompetitive with the others. From

Section 8.5 we know that this initial choice is a key factor inthis heuristic’s performance.

8.6.3 Failing first against minimising constrainedness

We noted in Section 8.1 that (Gentet al. 1996a) devise a number of new DVO heuristics which

aim to minimise the constrainedness of the future subproblem during search. The effects of these

new heuristics on forward checking searches are compared empirically with those of the fail-first

heuristicsFF andBZ. Since their studies use similar populations ofh20;10i CSPs to those used

here, we can compare both sets of results.

Figure 1 of (Gentet al. 1996a) plots the mean (not median) consistency checking costs of

FC-FF, FC-BZ andFC-kappa, plus two other DVO heuristics which maximise the expected number

of solutions,E(N), and maximise the expected solution density,ρ. Heuristickappa is beaten by

BZ over theh20;10;0:2i andh20;10;0:5i classes, and we have shown above that bothFF2 andDD

in turn out-performBZ on theseCSPs.

On the cliqueh20;10;1:0i problems, however, bothE(N) and kappa are significantly better

thanBZ. They will also be better than all of the heuristics examined here, none of which improve

greatly uponBZ on this type ofCSP.

8.7 Original Degree Versus Future Degree

The empirical study reported in Section 8.6 shows that detailed analysis of the subproblem of

uninstantiated variables does not appear be effective in terms of delivering a good heuristic choice

of variable to instantiate. The fail-first DVO heuristic that performs the most work on the sub-

problem,FF4, is comprehensively outperformed by much more naive heuristic methods.

Perhaps a lesson to be learned from the failure ofFF4 is that it is a mistake to consider sub-

problems in isolation when considering search moves. It may be the case that heuristics should

base some or all of their decisions on theglobal problem structure, and here we conduct a brief

experiment to test this hypothesis.

TheBZ andDD heuristics both perform well on theh20;10i CSPs studied above. WhileBZ con-

siders the degree of variables in the future subproblem when breaking ties,DD uses the global de-

gree of variables in its calculations. We have implemented alternative versions of these heuristics

which use global and subproblem degrees respectively – heuristicsBZg andDDs – and here com-

pare their performance withBZ andDD. These variants have been reported before:BZg by (Frost

and Dechter 1995), who use the termDVO; andDDs by (Bessìere and Ŕegin 1996), who investigate

alternative versions of what they termdom/deg.

The fail-first principle suggests thatBZg andDD should be worse thanBZ andDDs respectively,

on the kind of problems we are considering. Since the constraints are binary, the future subprob-

lem is a self-containedCSP; the effect of the past variables on the future variables has already

been accounted for in their domains, and the past variables have no further bearing on whether or
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Figure 8.5: Variants ofBZ andDD with FC on h20;10i CSPs.

not a future variable will fail. The original degree is therefore less relevant to the probability of

failure than the future degree is.

An experiment to compare the performance of the alternativeversions of theBZ andDD heuris-

tics was conducted, using theh20;10;0:2i andh20;10;0:5i problems used in Section 8.6. Theh20;10;1:0i problems were not used for the obvious reason that the degrees of variables offer no

tie-breaking capability on cliqueCSPs.

Figure 8.5 plots the median consistency checking cost ofFC-BZ, FC-BZg, FC-DD andFC-DDs on

theh20;10;0:2i andh20;10;0:5i problem classes, in a similar fashion to the figures of Section 8.6.

The behaviour that can be seen in these plots is rather surprising: in both cases the consistency

checking cost of the global degree heuristic is better than that of the subproblem version, although

the differences in cost are very small. On theh20;10;0:2i problems,BZg becomes better than both

BZ andDDs, with DD showing the lowest median cost at the phase transition. On theh20;10;0:2i
problems,BZg lies betweenBZ andDDs while DD remains the most effective heuristic.

The level of improvement experienced by using the global degrees of variables rather than the

subproblem degrees is not particularly large in terms of consistency checks. However, the simpli-

fied heuristics remove a significant overhead associated with recalculating subproblem degrees,

doing more useful work for less effort.

These results are consistent with the poor performance of theFF4 DVO heuristic, which looks

in detail at the structure of the subproblem of aCSP at each search move. As a consequence, they

raise further doubts about the wisdom of instantiating the variable that is most likely to lead to

failure in the resultant subproblem.
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Figure 8.6: DVO heuristics withMAC on h20;10i CSPs.

If we considerBZ andBZg, which only refer to the degree information if more than one variable

has the minimum current domain size, this must mean that sometimes it is better not to choose

the variable which constrains the largest number of future variables, but instead one which is

constrained by more past variables. This seems to be inexplicable in terms of the fail-first principle

and appears to provide further evidence that this principleis not a good basis for dynamic variable

ordering.

8.8 Changing Base Algorithm

The experiments of Section 8.6 were repeated, this time usingthe version ofMAC studied in

Chapter 7 as the base algorithm. Due to their lack of competitiveness, heuristicsFF andFF4 were

omitted from experimentation withMAC.

Figure 8.6 plots the median consistency checking cost ofMAC-FFdeg, MAC-FF2, MAC-FF3, MAC-

BZg andMAC-DD on theh20;10;0:2i and h20;10;0:5i problem classes. Cost is plotted against

constraint tightness,p2, in each case and linear scales are used on both axes. Once again, in each

plot the key indicates the ranking of each heuristic at the phase transition. Data forh20;10;1:0i
CSPs is not presented due to the convergence of many of these heuristics on clique problems.

It can be seen that there is almost nothing between the different schemes over theh20;10;0:2i
problems. This is a little misleading, though, as it is known from Chapter 7 thatMAC visits few

nodes on problems of this size and constraint density.

On theh20;10;0:5i problems, the costs of each scheme at the phase transition start to spread
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out more, enabling some ranking. The order of the heuristics isbroadly consistent with that seen

in Section 8.6 usingFC, in thatDD performs better than the new fail-first heuristics, which perform

better than theBZ. Looking more closely, though, we observe thatFF3 now out-performsFFdeg and

FF2.

The results presented here do not add a great deal to our knowledge of the various DVO

heuristics, although equally they do not significantly contradict what we have seen in Section 8.6.

The main points that arise are that the extra look-ahead of theMAC algorithm may reduce the

need for good heuristics, and that a scaling-up of these experiments to larger and harderCSPs is

needed if a more consistent ranking of the heuristics is to be produced. We address the latter issue

in the following section.

8.9 Scaling Behaviour of Heuristics

The empirical studies using theh20;10i CSPs provide a preliminary picture of the relative effec-

tiveness of the DVO heuristics being studied. In order to add weight to these rankings, however,

we must examine the scaling behaviour of these heuristics by testing them on largerCSPs.

Two new phase transition experiments were conducted, using theCSP classesh30;10;0:5i
andh50;10;0:1i. The former was chosen to test the heuristics on larger, medium densityCSPs,

while the latter is the large sparse class that has been studied extensively in Chapters 5 and 7. The

size of eachp2 step for both classes is 0:01, and ensembles of 1,000 problems were generated at

eachhn;10; p1; p2i point. The ensembles were then searched by bothFC andMAC using the four

‘best’ heuristics from the studies onh20;10i problems.

Figure 8.7 plots the median consistency checking cost ofFC on both classes of problem, using

four DVO heuristics. Cost is plotted against constraint tightness,p2, in each case and linear scales

are used on both axes. As before, the key in each plot indicates the ranking of the heuristics at the

phase transition.

This figure can be compared with Figure 8.4, as theh30;10;0:5i problems are broadly similar

in nature toh20;10;0:5i, as are theh50;10;0:1i problems toh20;10;0:2i. In doing so, we observe

that the ranking of the heuristics in both cases change little.The rankings forh30;10;0:5i are the

same as forh20;10;0:5i, with the gap betweenDD and the others showing some growth. The

average cost of searches on theh50;10;0:1i problems has spread out considerably compared

to h20;10;0:2i, with DD the best heuristic by some margin.FC-DD searches are almost half as

expensive as the next best,FC-FF2, and one-third as expensive asFC-FFdeg.

Figure 8.8 plots the median consistency checking cost ofMAC on both classes of problem,

using four DVO heuristics, in a similar fashion to Figure 8.7. Thisfigure can be compared with

Figure 8.6 as above. Once again, the ranking of heuristics is broadly preserved, although on

the large sparse problems,FF3 out-performsFFdeg. On theh30;10;0:5i problems,DD once again

draws clear of the other heuristics, while onh50;10;0:1i there is a broader spread withDD again

the best.

The scaling-up of the empirical comparison of various DVO heuristics makes the overall pic-

ture clearer. HeuristicDD is consistently better than the others studied, on allCSPs except those
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Figure 8.7: DVO heuristics withFC on h30;10;0:5i andh50;10;0:1i CSPs.

h30;10;0:5i

500000

1e+06

1.5e+06

2e+06

2.5e+06

0.25 0.26 0.27 0.28 0.29 0.3 0.31

C
on

si
st

en
cy

 C
he

ck
s

Constraint Tightness (p2)

MAC-FFdeg
MAC-FF3
MAC-FF2
MAC-DD

h50;10;0:1i

20000

40000

60000

80000

100000

120000

0.530.540.550.560.570.580.59 0.6 0.610.62

C
on

si
st

en
cy

 C
he

ck
s

Constraint Tightness (p2)

MAC-FFdeg
MAC-FF3
MAC-FF2
MAC-DD

Figure 8.8: DVO heuristics withMAC on h30;10;0:5i andh50;10;0:1i CSPs.
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that are very densely constrained. Its performance also scales well, and this has implications for

the study ofMAC presented in Chapter 7. Section 7.6.3 shows that the average consistency check-

ing cost ofMAC-FFdeg at the phase transition of theh50;10;0:1i problem class is lower than that

for FC-FFdeg. Using heuristicDD, the opposite becomes the case, and the point at which the cost

of MAC falls below that ofFC must now occur at some larger value ofn, if at all. This exposes

a shortcoming of the previous empirical study ofMAC: the effect of the choice of DVO heuristic

on the relative cost scaling ofFC andMAC was not considered, and it was naive to use only one

heuristic,FFdeg, in the experiments.

8.10 Comparative Ehp Behaviour

The relative incidence of exceptionally hard problem (ehp) behaviour is an important criterion in

assessing the performance of an algorithm-heuristic combination. The studies ofehp behaviour

presented in Chapters 5 and 7 investigate the use of only one DVO heuristic,FFdeg. We briefly

consider whether the different flavours of DVO heuristic that have been examined in this chapter

exhibit noticeably different patterns ofehp behaviour.

Figure 8.9 shows the median and higher percentiles of consistency checking cost forFC-FFdeg,

FC-FF2, FC-BZ andFC-DD on theh50;10;0:1i problem class examined earlier. Our existing knowl-

edge ofehps teaches us to expect only sparsely constrained classes ofCSP to containehp in-

stances when forward checking is combined with dynamic variable ordering. As expected,ehp

behaviour clearly occurs in the easy-soluble region for each DVO. Despite the relatively limited

sample sizes of 1;000 problems, searches which are orders of magnitude more expensive than the

average are found. The most prominentehp in Figure 8.9 is found forFC-DD, the scheme which

shows the best averageFC performance of those we have studied.

Overall, the patterns ofehp behaviour appear similar for all four heuristics. The affected

regions of constraint tightness are identical, and we predictthat with larger sample sizes, the

incidence and magnitude of the most extreme cases would be broadly consistent. Although the

introduction of a DVO heuristic eliminatesehp behaviour forFC on all but the most sparsely

constrained classes ofCSP (Chapter 5), we do not suspect that there is a good choice of ordering

strategy that on its own can eliminate allehps.

8.11 Consequences for the Fail-First Principle

This investigation into the nature of the fail-first principlewas partly inspired by (Hooker and

Vinay 1995), who conducted a similar investigation into branching rules for a well-knownSAT

algorithm, the Davis-Putnam procedure. We noted at the beginning of this chapter that Hooker and

Vinay refuted the simple principle behind this heuristic (branching rules forSAT are analogous

to variable ordering heuristics forCSP algorithms). They took the accepted explanation for one

branching rule, derived a new branching rule which, assuming the explanation was correct, should

have been superior to the original rule in terms of the number of nodes generated, and carried

out an experiment to test this hypothesis. The new rule proved tobe worse than the original,
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Figure 8.9: Relativeehp behaviour of four DVO heuristics onh50;10;0:1i CSPs.
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thus refuting the explanation as the true reason for the successof the original rule. They then

went a stage further than the work presented here on fail-first does, by proposing an alternative

explanation for the rule, making new predictions on the basisof this explanation and showing

that these predictions were borne out by experiment. This provided evidence in favour of the new

explanation, as well as giving a new branching rule which wassuperior to the original.

There are several remaining challenges, if our conclusion is correct that the fail-first principle

is not a good basis for variable ordering. The first is to explainwhy it is not, especially since

heuristics supposedly based on it have been successfully used since 1980. An alternative explana-

tion for the relative performance of variable ordering heuristics is then needed. A sound principle

for variable ordering, which can be used to make reliable predictions about the performance of

proposed heuristics, would provide the means to develop new heuristics without resorting to trial

and error, as is largely the case at present. This might also giveus the basis for developing good

general heuristics for problems with non-binary constraints:‘smallest remaining domain’ is often

not appropriate for such problems4.

8.11.1 Suggested limitations of fail-first

Haralick and Elliott argued that a variable ordering heuristic should try to minimise the expected

branch length in the search tree, and that this would be achieved by trying to choose a variable

whose instantiation will lead to an immediate failure, assuminga search algorithm performing

some form of lookahead. We suggest that the basic premise here is wrong: minimising expected

branch length will not necessarily minimise the cost of searchingthe tree. Conceivably, a tree

with many short branches could take longer to search than one with fewer longer branches.

Moreover, consider a hard insoluble problem in the phase transition, which is the kind of

problem in which an improvement in the performance of variable ordering heuristics would have

the greatest potential benefit. These problems are hard becauseit is not easy to discover that a

set of assignments cannot lead to a solution. The cause of backtracking here is rarely due to the

immediate failure of a variable instantiation; it more commonly follows the complete search of

the subtrees resulting from each assignment. It is not clear, therefore, that there can be much

benefit in maximising the probability of an event which can rarely occur.

We suggest that the reason why the new fail-first heuristics fail may be because they simply

try to terminate the current branch as soon as possible and do notpay enough attention to what

happens next, i.e. to backtracking. TheFC andMAC algorithms backtrack chronologically, and

if the previous variable has nothing to do with the failure, exploring alternative values for it will

be a waste of effort. The previous variable is one of the culprits for the failure if there is a

constraint between the previous and current variables and also the assignment to the previous

variable reduced the domain of the current variable. To some extent the ‘smallest remaining

domain’ heuristic tends to follow a chain of variables, each ofwhich reduces the domain of the

next, because the variable which now has the smallest domain tends to be one whose domain

has just been reduced by the most recent assignment. However, this may not always be true,

4An article discussing variable ordering heuristics forn-ary CSPs can be found online in the Constraints Archive
athttp://www.cirl.uoregon.edu/constraints/links/heuristics.html.
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particularly when the constraints are sparse. We suggest that heuristics which give some weight

to the past degree of each variable in selecting the one to assign will do better when backtracking

than heuristics which only take into account the future degree; if a variable is constrained by many

past variables, the previous variable, or at least one of the recently instantiated variables, is likely

to be one which has reduced the domain of the current variable. This would account for the fact

thatBZg andDD perform slightly better thanBZ andDDs.

However, we make this suggestion tentatively; if the only reason for the failure of the fail-first

principle is that it does not pay enough attention to what happens when the algorithm backtracks,

we should expect that the proposed new heuristics would do well if used with an algorithm which

backtracks more intelligently; in that case, the algorithm itself takes responsibility for backtrack-

ing to one of the culprits for the failure. Further empiricaltests combiningFF, FF2, FF3 andFF4

with FC-CBJ, however, record similar relative performances to those presented in Section 8.6.

8.11.2 An alternative strategy?

Although it is not entirely clear why the fail-first principleis not a sound basis for variable order-

ing, there is already an alternative explanation for the success of the ‘smallest remaining domain’

FF heuristic, in comparison with random ordering. (Nudel 1983) suggested that a good variable

ordering heuristic is one which minimises the number of nodes visited in the search tree. He

developed expressions forNk, the expected number of nodes visited at levelk in the tree when

finding all solutions to aCSP usingFC. It is suggested that the next variable selected should be

the one minimisingN1, the number of nodes at the top level of the new subtree, andN2, etc.,

in the case of ties. SinceN1 is equal to the size of the first variable’s domain, this impliesthat

that at each level in the tree we should next choose the variablewith smallest remaining domain.

Although the expression forN2 is more complex, forhn;m; p1; p2i CSPs to which no values have

yet been assigned, it reduces to a simpler form which implies selection of the first variable as that

with largest degree. This implies theFFdeg heuristic.

It is possible that minimising the expected number of nodes visited will prove to be a more

robust principle for variable ordering than the fail-first principle. However, using this idea to

generate better heuristics thanFFdeg is not straightforward. MinimisingN1 and thenN1+N2 is

only an approximation to minimising the expected total number of nodes visited, but calculating

N1+N2+ ::+Nn can only be done for a specific ordering of all the variables. In theory we should

calculate this quantity for every possible ordering, assign thefirst variable in the best ordering,

repeat the process for the remainingn�1 variables and so on. Clearly this is not practicable, but

we believe that Nudel’s theory could even so be the basis for deriving new heuristics for binary

CSPs. If that enterprise were successful, it might also be possible to use the same principle to

derive heuristics for non-binary problems as well.

8.12 Future Directions for DVO Heuristics

The heuristics which attempt to minimise the constrainedness ofthe future subproblems, proposed

by (Gentet al. 1996a), offer an alternative principle for devising variable ordering heuristics.
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They report thekappa heuristic producingFC searches which are on average over 10% more

efficient than those using fail-first heuristics onh20;10;1:0i CSPs. However, its performance on

the more sparsely constrainedCSPs is somewhat worse than heuristicsBZ andDD, which do not

support minimising constrainedness as a general principle. Moreover, thekappa heuristic, like

FF4, requires the tightness of the constraints between future variables to be updated after each

assignment, and the potentially high cost of doing this was not accounted for. Despite this, its

good performance on the cliqueh20;10;1:0i CSPs, where most available heuristics degenerate to

FF (or, in the case ofFF4, are much worse) makes it noteworthy.

Overall, the development of good new variable ordering heuristics would be considerably

simplified if they could be based on an underlying principle which was:� sound, in that the greater its degree of application, the better the resulting heuristic; and� applicable, in that cheap heuristics which make some level of assumption can be used.

The investigation of heuristics based on fail-first leads us to believe that this principle is unsound.

However, given the array of successful heuristics which have been designed to follow the fail-first

principle, it could be said to be applicable.

8.13 Summary

The major conclusion from this investigation is that the fail-first principle is not a sound basis for

variable ordering heuristics forCSPs. We calculated the probability that a variable will fail when

using a lookahead search algorithm to solve binaryCSPs. According to the fail-first principle,

choosing the variable which maximises this probability will tend to minimise the size of the search

tree explored by the algorithm. A series of new heuristics was derived, based on increasingly

accurate estimates of this probability, and it was predictedthat if the fail-first principle is sound,

the more accurate the estimate the better the performance should be. The new heuristics, among

others, were then studied empirically using both theFC andMAC algorithms on large, diverse

classes ofhn;m; p1; p2i CSPs. These showed that the predictions about the new heuristics were

not borne out.

Further evidence against the fail-first principle is providedby the superiority of theBZg and

DD heuristics, which consider the ‘global’ degrees of variables, over BZ andDDs which calculate

subproblem degrees. Other things being equal, the future degree of a variable should be a better

indication of the likelihood that it will fail than its original degree, so that according to the fail-first

principleBZ andDDs should out-performBZg andDD.

In spite of the poor results for the new fail-first heuristics, an existing heuristic,DD, has been

shown to perform extremely well on many classes ofCSP, except where the constraint graph is

fully connected, in which case in degenerates toFF. The scaling of this heuristic’s effectiveness

on FC andMAC searches is also superior than the other fail-first heuristics examined, including

FFdeg, which has been used in the empirical studies of Chapters 5 and 7. The scaling behaviour

of heuristics rather than algorithms was not considered before, particularly in Chapter 7, whose

results would be affected somewhat by the use of theDD heuristic.
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We tentatively suggest that the reason why trying harder to failfirst does not pay off may be

because taking into account other factors such as the current constraint tightness and the current

domains of adjacent variables may make the ‘improved’ heuristics less likely to choose a variable

whose domain was reduced by the previous variable. This may cause unnecessary work to be

done on backtracking. Three alternative principles for designing variable ordering strategies have

been discussed, although these too suffer from limitations in terms of their practical application.

The current position of designing variable ordering heuristics appears somewhat precarious. If

‘failing-first’ is not in fact a sound principle, designing heuristics based on this principle will only

work by accident, if they also happen to be an implementation of a better principle. Until a reli-

able theory exists, supported by empirical results, which can be used to predict the performance

of different heuristics on different types of problem, progress in the development of improved

heuristics will continue to be made only by trial and error.
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Chapter 9

Conclusions

The major results and contributions of the studies presented inthis thesis are discussed below. A

note on the limitations of these studies is then followed by a summary of the future work that has

been suggested in Chapters 5 to 8.

9.1 Contributions

A basic complete search algorithm for aCSP combines some form of forward and backward

search move. In addition, a preprocessing phase may be added to enforce some level of consis-

tency in the problem before search, and dynamic variable ordering may be used to improve the

efficiency of the search. The choice of a particular search algorithm for a type of problem is

made easier by knowledge of its performance over a wide range of problem types, and its relative

susceptibility to unexpected behaviour. Every one of these aspects relating to complete search

algorithms has been examined in detail through rigourous empirical study.

9.1.1 Experimental methodology

The empirical studies presented throughout have been designedwith the call by (Hooker 1994)

for an ‘empirical science of algorithms’ in mind. The implementation of the search algorithms

was discussed in detail in Chapter 2, and methods of random problem generation were explained

in Chapter 3. A generic framework for the experiments was laid out in Chapter 4, and a consistent

nomenclature for the description of problems and algorithmshas been adopted throughout. The

software used to conduct the empirical studies has also been madeavailable via the World Wide

Web, as detailed in Appendix A.

9.1.2 Exceptionally hard problems

Chapter 5 examined the nature and relative incidence of exceptionally hard problem (ehp) be-

haviour for a number of completeCSP search algorithms. The study looked atehps at both a
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‘macroscopic’ level, considering their incidence over populations of problems, and at a ‘micro-

scopic’ level, examining in detail the search process for many individual instances.

An explanation for the occurrence of these exceptional searches was proposed: that the first

few variable instantiations lead to the creation of a subproblem which is insoluble and causes

the algorithm to thrash. Although it had previously been suggested that these problems are not

inherently difficult, the exact cause ofehp behaviour inCSPs had not been examined in depth

before.

The effect onehp behaviour of more advanced forms of forward and backward search move

were then studied empirically. Maintaining consistency in theset of future variables was shown to

deal withehps resulting from subproblems with lower levels of inconsistency.It was also shown

that intelligent backjumping can be effective in quickly searching subproblems with higher levels

of inconsistency. A significant result was that the use of ‘fail-first’ dynamic variable ordering

appears to eliminateehp behaviour from more densely-constrained classes ofCSP.

9.1.3 Phase transitions in polynomial problems

Chapter 6 demonstrated that phase transition methodology can be applied to the polynomial-

complexity computational tasks of establishing arc and path consistency inCSPs. It was shown

that these tasks exhibit phase transition behaviour very much analogous to that associated with

the NP-complete task of finding solutions to these problems. Thisanalogy had not been made

before.

Arc and path consistency were also considered as preprocessing steps before search. As had

been shown elsewhere, they are generally ineffective in the hard problem regions. However, we

derived an expression for the expected cost of theAC3 arc consistency procedure on problems

in these regions which showed it to be inexpensive. It was also shown that around the AC phase

transition peak, both the average cost and maximum cost ofAC3 grow at a rate that is significantly

slower than the worst-case analysis suggests, supporting previous similar claims.

9.1.4 Positioning of the MAC algorithm

Chapter 7 positioned the behaviour of two algorithms which maintain arc consistency during

search with respect to two which perform a lower level of lookahead. The empirical study in-

volved the search of over five millionCSPs of varying size, topology and expected difficulty by

theMAC, MAC-CBJ, FC andFC-CBJ algorithms.

As had been observed in previous studies, the extra lookahead ofMAC results in smaller search

trees and more frequent instances of backtrack-free search. The consistency checking cost of

MAC was shown to be poor on smaller classes ofCSP, again in agreement with previous studies.

However, by studying the independent effects of altering problem size and topology it was shown

that as problem size increases, the consistency checking cost ofMAC scales at a much more

favourable rate than that forFC, and soMAC becomes significantly cheaper on large sparseCSPs.

Study of the effects of combiningMAC with CBJ showed that little benefit was gained, except for

problems thatMAC found exceptionally hard.MAC-CBJ showed the most stable performance in
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terms ofehp behaviour of all the algorithm that have been studied here, although a few examples

were still observed.

9.1.5 Scrutiny of the fail-first principle

Chapter 8 studied the ‘fail-first’ principle as a basis for the design of dynamic variable ordering

heuristics, and concluded that it is not sound for this purpose. Aprobabilistic model of the

principle (provided by Barbara Smith) was used to derive a series of new heuristics which applied

the principle more accurately and so should have led to more efficient search. Empirical study of

these heuristics, and several others, on large, diverse classes ofCSPs showed that the predictions

about the new heuristics were not borne out. Further evidenceagainst the fail-first principle was

also provided by the apparent superiority of simplified versionsof two existing heuristics which

should have deteriorated search efficiency.

9.2 Limitations of these Studies

The scope of this thesis has been restricted to the study of complete search methods applied to

random binaryCSPs. While the focus on complete methods is an acceptable restriction, the use of

relatively unstructured ensembles of test problems hinders the applicability of the results observed

to ‘real world’ constraint satisfaction problems. We have already suggested that problems with

more structured constraint graphs, varying domain sizes and/orindividual constraint tightnesses

are likely to affect the performance of techniques to establish consistency (Chapter 6), and it is

also expected that they would have an impact on the effectiveness of variable ordering strategies

and backjumping techniques.

A first step towards more structured random problems would be theuse of an extended gener-

ation model for binaryCSPs, such as that considered in Section 3.7. This model, used by (Gent

et al. 1996a), allows for variation of individual constraint tightnesses and domain sizes. As ex-

plained in Section 3.7, these extensions were not used here due to the increase in the complexity

of the empirical studies that would have arisen from introducing two extra degrees of freedom.

Ultimately, the need to expose search techniques to ‘real world’ situations will require the

consideration of non-binaryCSPs. At present, however, a method of generating non-binaryCSPs

with interesting properties in sufficient quantities is not readily available. A move to non-binary

constraints would also require re-implementation of the search algorithms used.

9.3 Future Work

Within the scope of complete search algorithms and binaryCSPs, the studies reported in Chap-

ters 5 to 8 suggest a series of future studies. These are summarised below.

The role of dynamic variable ordering in eliminatingehp behaviour on densely-constrained

CSPs (Chapter 5) needs to be examined in more detail. Why this technique is effective for dense

problems but not for sparse problems is still unclear. Investigation into the existence of a ‘double’

peak in the higher percentiles of search cost forCSPs, similar to that observed by (Hogg and
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Williams 1994) in graph colouring, has been started by (Smithand Grant 1997). This analysis

currently considers only theBT algorithm on cliqueCSPs, but it is expected that this work will

be extended to other algorithms and wider varieties of problem.

The work on phase transition behaviour in arc and path consistency (Chapter 6) has already

been followed up by (Gentet al. 1997b), who introduce the new constrainedness parameter,κac.

The development of a similar parameter to predict the location of the path consistency phase

transition remains an open task. Section 6.8 also suggests that the AC and PC phase transitions

could be useful in the search for aCSP ‘constraint gap’, which might explain the existence of

ehps.

A shortcoming of the study ofMAC (Chapter 7) is that more efficient arc consistency tech-

niques exist, which could produce more efficientMAC searches. Subsequent studies using differ-

ent implementations ofMAC (for instance (Bessière and Ŕegin 1996)) appear to confirm this. The

behaviour of theAC3-basedMAC is still of some interest, however, and further investigation of

the scaling relationship between it andFC on sparseCSPs is desirable. Chapter 8, for instance,

suggests that the choice of DVO heuristic used by the algorithms can affect this relationship.

The examination of heuristics for dynamic variable ordering(Chapter 8) leaves open a chal-

lenge to develop a principle which properly explains the usefulness of techniques assumed to

follow the ‘fail-first’ principle. If a new principle is devised which is both sound and applicable,

then this should lead to the development of improved search heuristics.
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Appendix A

An Online CSP Experimentation

Laboratory

Software capable of reproducing the experiments reported throughout this thesis is available on

the World Wide Web athttp://www.scs.leeds.ac.uk/csps/. The contents of this page in-

clude:� An online copy of this thesis and other publications which have used the software.� A pseudo-random problem generator module, implemented as a C++ class.� A set of binary executable programs incorporating problem generation, search and statisti-

cal collection within a variety of experimental environments. The source language is C++,

and executables are provided for use under a number of popularoperating systems.� Instructions for performing phase transition experiments using this software.� Links to interestingCSP research pages.� Links to otherCSP software repositories.
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