
MATHEMATICAL SOFTWARE FOR

GAS TRANSMISSION NETWORKS

by

TAT-SENG CHUA
...v'

Submitted in fulfilment of the requirements for

the degree of Doctor of Philosophy

The University of Leeds

De?artment of Computer Studies

November, 1982

ABSTRACT

This thesis is concerned with the development of

numerical software for the simulation of gas transmission

networks. This involves developing software for the solution

of a large system of stiff differential/algebraic equations

(DAE) containing frequent severe disturbances. The disturban­

ces arise due to the varying consumer demands and the operat­

ion of network controlling devices such as the compressors.

Special strategies are developed to solve the DAE system

efficiently using a variable-step integrator. Two sets of

strategies are devised; one for the implicit methods such as

the semi-implicit Runge-Kutta method, and the other for the

linearly implicit Rosenbrock-type method. Four integrators,

based on different numerical methods, have been implemented

and the performance of each one is compared with the British

Gas network analysis program PAN, using a number of large,

realistic transmission networks. The results demonstrate that

the variable-step integrators are reliable and efficient.

An efficient sparse matrix decomposition scheme is

developed to solve the large, sparse system of equations that

arise during the integration of the DAE system. The decomposit­

ion scheme fully exploits the special structure of the

coefficient matrix.

Lastly, for certain networks, the existing simulation

programs fail to compute a feasible solution because of the

interactions of the controlling devices in the network. To

overcome this difficulty, the problem is formulated as a

variational inequality model and solved numerically using an

optimization routine from the NAG library (NAGFLIB(l982)).

The reliability of the model is illustrated using three test

networks.

Acknowledgements

I would like to thank Peter Dew for his supervision,

guidance and encouragement throughout this project. I would

also like to thank Susan Nemes for her expert typing.

Special thanks are due to British Gas Corporation for

its financial support, and to A.E. Fincham, N.J. Revel, J.R.

Mallinson and N.H. Goodwin of its London Research Station for

their help and advice during the project.

Finally, I would like to express my thanks to a very

special person, Chew-Lan, for her encouragement and help in

many ways.

CONTENTS

Nomenclature 1

Chapter 1 Introduction 4

Chapter 2 A Survey of Numerical Techniques 13

Chapter 3 The Solution of Linear Equations 36

Chapter 4 The Design of the Variable-step Integrator 60

Chapter 5 The Numerical Testings and Results 82

Chapter 6 The Conflicting Constraints Problem 98

Chapter 7 Conclusions 114

References 117

Appendix A The Test Networks 126

Appendix B The Mathematical Background to the PAN
Program 132

Appendix C Arithmetic Operation Counts 149

Appendix D The Numerical Methods 152

Appendix E The Implementation of the Variable-step
Integrators 157

1

Nomenclature

This thesis covers several different fields of study

including the gas industry, the solution of dif£erential/

algebraic equations, the sparse matrix computation and

numerical optimization. The repeated use of certain symbols

is therefore unavoidable. To avoid complication, the symbols

that appear in the appendices are not included here; they are

explained as and when they occur. Furthermore, those symbols

that are specific to a particular field of study and appear

only in the background sections (for example, sections 3.4

and 6.5) are also excluded.

Latin Characters

A cross-sectional area of the pipe (in section 2.1 only).

A (y)or A - the right-hand matrix of DAE system (1. 3 .1)

A. . - the submatrices of matrix G as defined in eqn. (3.2.1).
1J

A - submatrix corresponds to the machine nodes as defined p

B

C

d

~ (t)

e -n

E

EPS

!(t,y)

K(y)

9:n
9: (t)

in eqn. (3.3.1)

- the known right-hand quantities of the linearised

network equations given in eqns.(6.2.1)-(6.2.2)

- matrix with constant coefficients

- the matrix C defined in eqn. (3.3.2)

- the parameter of the Rosenbrock-type method

- vector containing the demands fnn the network.

- actual local error of the numerical method at

time tn

- the capacity matrix of the DAE system (1.3.1)

- user specified accuracy tolerance

- nonlinear function in t and y

nonlinear algebraiC equations in y

- the global error estimate at time t
n

- any function defined and bounded in some interval

[O,T]

G - the iteration matrix of (1.3.1)

h - the time stepsize

h Ah

H - a functional of g, ~ and Q defined in eqn. (6.4.5)

I - identity matrix

2

J (y) - the matrix a~(y)/ay

k - order of the numerical method

k. - the intermediate solution vector of the Runge-Kutta
-1.

K

K
P

Kr
Il,
-n
L, L

m

P

and Rosenbrock-type method

- the flow incidence matriX
- = L -T L -IK

P P
- machine inlet flow incidence matrix (eqn.(6.2.3»

- local error estimate at time t n
- the Cholesky factors of the symmetric and positive-

definite matrices All and Ap respectively

- number of iterations

IIJ,~,m3 - coefficients of the machine constraint equation

(eqn. (6. 5. 1))

M

n (•)

N

p

p

r

- molecular weight of gas (in section 2.1 only)

- general matrix

- submatrices containing the coefficients of the

machine constraint equations (eqn. (3.2.1»

the machine flow matrix defined in eqn. (3.3.3)

- number of non-zeros of a matrix or a vector

- size of matrix G

- the pressure

- the unknown pressures at free nodes

- the fl~~ through the pipes

- the unknown machine flows

- - Q - Q defined in section 6.~ - -max -'
- rate of convergence of the modified-Newton iteration

- stability polynomial (see eqn. (2.2.4»

- known right-hand vector of the linear equations

£1'£2'£3 - the components of vector E
RA - absolute stability region of a numerical method

t - the independent variable, the time

~n(t) - local solution at time t > tn

w - iteration correction of the modified-Newton iteration
x - distance along the pipe

x - the unknown vector of the linear equation (3.1.1)

- the dependent variable

- computed solution at time t n
the off-diagonal matrix defined in eqn.(3.3.l)

- the submatrices defined in eqn. (6.2.1)-(6.2.2)

3

Greek Characters

B the parameter of a numerical method

e the parameter for the theta-method

A the eigenvalue

Yl'Y2'Y3 - length of vectors f, ~ and Q respectively

0i known right-hand quantity of the machine constraint

equation

p density of gas

€ error estimate at time t -n n
! switching functions for locating the discontinuities

1T unknown pressures at the machine nodes

!(y) the algebraic equations in the DAE system

~ set of pressures at the machine outlet nodes (used

in chapter 6 only)

n set of pressures at free nodes and tie machine inlet

nodes (used in chapter 6 only)

II. II a suitable norm for measuring the size of a matrix

or a vector

(.),<.>,{.}-inner products

4

CHAPTER 1

1. INTRODUCTION

1.1 The Gas Transmission Network - the need
for simulation

1.2 Collaboration with British Gas Corporation

1.3 The Mathematical Background to PAN

1.4 The Scope and Objectives of the Thesis

1.5 The Implementation of Leeds/PAN

1.6 The Survey of Contents

5

CHAPTER 1

1.1 The Gas Transmission Network - the need for simulation

Natural gas has become an important alternative

source of energy which accounts for nearly a fifth of the

European Community's energy needs today (GASEMN(1981)).

Large amounts of gas are consumed everyday to provide heating

and energy for millions of homes and industries. Because

natural gas is often discovered in remote locations far away

from the centres of demand, there is an extensive transmiss­

ion network to transport the gas to places where it is needed.

The transmission network consists of a sequence of pipes

with a number of special devices like compressors (used to

boost the gas pressure so that the gas can be transmitted

over a long distance). Other devices in the network include

regulators and valves which are also used to control the

pressure and flow. It is conventional to refer to devices

that control the gas flow through the network as machines.

Massive pipeline construction in Great Britain

started in the mid 1960s in the wake of discoveries of

natural gas in the North Sea. To date, more than 2,900 miles

of mainly 36 inch diameter steel pipes have been laid.

These pipes are operating at pressures of between 35 to 70

bars. There are thirteen compressor stations in operation.

The compressors are mainly of centrifugal type driven by

gas turbine engines fueled by natural gas taken from the

network. British Gas have plans to extend the network to

about 4,000 miles of pipes and twenty compressor stations.

A map showing the complexity of the British Gas national

transmission network is given in fig. (A.1).

To design cost-effectively and operate such a large

and complex transmission network, it is essential to simulate

the gas transmission network using a computer. The simulation

is used to assist the engineers during the design stage, for

example, to check that a proposed design can cope with the

anticipated demand. It is also used in the control of the

network, for example, to check if a particular operating

policy is feasible in the light of the expected demand

over the next few hours. The operation of the network

invariably involves,large dynamic variations caused by the

time varying consumer demands and the switching on and off

of machines. Furthermore for the high pressure network,

it is also important to know the storage capability of the

network so that it can be exploited in meeting consumer

demands. To understand the behaviour of gas flow in the

network, a thorough knowledge of the dynamic behaviour of

the network is required which means that it is necessary to

develop computer programs that can perform dynamic flow

simulations.

1.2 Collaboration with British Gas CorDor'ation

The research work reported in this thesis has been

carried out in close collaboration with Mr. A.E. Fincham

and the PAN team at the London Research Station of the

British Gas Corporation. The scope and objectives of the

research programme outlined in Section 1.4 arose out of

discussions with British Gas artd regular progress meetings

were held to review the work.

6

Currently British Gas use a network analYSis program

called PAN {~rogram to ~alyse ~etworks) (GOLDWATER(1976))

to carry out the dynamic flow simulations. This program has

two distinct parts. The ·first part handles the I/O which

includes a large number of facilities to assist the engineers

in specifying the network. The second part performs the

actual analysis of the network. It is the second part

which is of interest in this thesis. British Gas are

currently developing a replacement for this p~ram and the

purpose of this thesis is to investigate how the numerical

methods used in PAN can be improved upon.

1.3 The Mathematical Background to PAN

To avoid giving too much detail at this stage, a

full description of the mathematical background to PAN is

given in Appendix B. The basic gas flow madel used in PAN

is the one-dimensional, isothermal parabolic model which

makes the assumptions that the gas flow temperature is

constant and the inertia terms in the gas flow equations

can be ignored (see Appendix B for further details). These

assumptions are valid during the normal operation of the

transmission network but would not be true in places where

there is a large disturbance (say due to a pipe break).

7

The PAN program has been tested extensively using actual

network data during its initial implementation (GOLDWATER(1976»

and has been in general use within British Gas for about 10

years, we can therefore feel confident about the validity of

the model employed. Hence it was decided early on (in

conjunction with British Gas) that study should concentrate

on improving the numerical methods used in PAN.

Applying the method of lines to the gas flow model

over the whole network and adding in the models for the

machines leads to a large system of differential/algebraic

equations (DAE) of the form,

~
E dt = A(y)y ~(t) = !(t,y) (1.3.1)

where y is a vector denoting the unknown pressures at the

nodes of the network and the gas flow through the machines;

~(t) is a vector containing the demands from the network.

The matrix A is nonlinear in y with some of its elements

depending on the operating characteristics of the machines;

the matrix E is singular when there are machines present in

the network. The details of how this system mf DAE is

derived can be found in Appendix B. For a typical national

grid simulation, the resulting DAE system has 158 differential

equations and 20 algebraic equations, however, because there

is very little coupling within the network, the matrices E

and A are very sparse.

An initial steady state solution is used to provide

the initial conditions to the DAE system: this involves

solving the algebraic equations,

8

(1.3.2)

where t is the starting time of the simulation. This
o

ensures that the initial condition is compatible with the

DAE system.

The machines in the network are modelled by a set

of inequality constraints (see Appendix B). For example,

a compressor normally has constraints on the maximum outlet

pressure, maximum horsepower and maximum compression ratio,

where the later two constraints are nonlinear in y. Follow­

ing the model used in PAN, it is assumed that one of the

constraints is actually equal to its extreme value and is

referred to as the operating constraint. This gives rise to

the algebraic equations in (1.3.1). For example, when a

machine has:its operating constraint on the maximum outlet pressure,

the resulting algebraic equation is simply given by

p - p = 0 o max
(1.3.3)

where P is the machine outlet pressure and P is its o max
extreme value. The algebraic equation is only linear in

this case; for machines operating on nonlinear operating

constraints such as the compressor horsepower constraint,

then the resulting algebraic equation will be nonlinear.

The modified-Newton method (see section 2.2) is used to ensure

the convergence of the nonlinear algebraic equations.

During the initial steady-state calculation, an

arbitrary set of operating constraints for the machines is

chosen, where the typical first choice is the maximum outlet

pressure constraint if available. A solution is computed

based on these constraints. The rest of the machine constraints

are then checked; if any is violated, then the constraint which

is violated by the greatest percentage ~ chosen as the new

operating constraint of the machine. A new solution is found

and the process is repeated until there are no violations.

The same procedure is also employed to compute the dynamic

solution at each time step. The switching of machine operating

constraints means that a new matrix A is required and a new

problem is to be solved.

In addition, the demands from the network vary quite

considerably throughout the simulation. These changes in

demands are approximated using a step or linear function

which means that the demand vector, ~(t), is only piecewise

continuous with respect to time. A tyoical demand profile

is given in fig.(5.4).

9

The varying consumer demands generate large disturbances

in the gas flow and cause the machine to switch operating

constraints; these activities result in severe discontinuities

in the derivatives of the solution. A survey of the literature

on the numerical solution of such DAE system using a variable­

step integrator is given in Chapter 2.

In the PAN program, a modification of the Crank-Nicolson

method is used to integrate the differential equations within

the DAE system; the resulting equations are then combined with

the machine algebraic equations to solve for the unknown

variables. The details of this solution scheme is given in

section B.6. It is implemented in a constant step formulation

and uses a block matrix partitioning method (GOLDWATER(l976»

to solve the linear, sparse system of equations at each time

step. Although the resulting solution scheme using the Crank­

Nicolson method is stable for any stepsize, it is well known

that under certain conditions, spurious oscillations in the

solution may occur.

1.4 The Scope and Objectives of the Thesis

A major weakness in the current version of PAN is

that it is based on a constant-step formulation which means

that the user of the program has to provide a suitable time

step. Since the choice of an appropriate time step is often

a very difficult and time consuming task especially for

large and complicated networks, it is obviously desirable to

estimate the time step automatically within the program.

Thus the main purpose of this thesis is to investigate the

incorporation of a variable-step method in PAN. As the

simulation usually involves severe disturbances in the gas

flow due to the varying consumer demands and the operation

of the machines, special techniques are needed to handle

these changes efficiently. A detailed study on the best way

of implementing the variable-step PAN will be carried out.

A new method will also be devised for solving the large

linear sparse system of equations at each time step.

10

For certain networks, PAN fails to find a solution, due

to the difficulty of obtaining a feasible solution which

satisfies all constraints associated with the network. Thus

another aim of the study is to consider the development of

an optimization model to overcome this problem. Such problems

arise due to the interactions of the machines in the network

and are referred to as the "conflicting constra~~ problem".

A more detailed account of this problem and its possible

solution is given in Chapter 6.

1.5 The Implementation of Leeds/PAN

To provide a benchmark to measure the effect of

any changes to the PAN program, it was necessary to implement

the mathematical part of PAN at Leeds. Unfortunately, because

of the portability and interface problems, it was not possible

to mount PAN directly and a completely new version of the

program had to be written.

The new version, referred to as Leeds/PAN, took

about four months of intensive work to implement. It is

written in FORTRAN IV and consists of over 6,000 lines of

code. It contains all the essential features of the

original PAN program except the I/O facilities. Only a

simple I/O routine was used for the study.

In Leeds/PAN, a constant-step theta method is

employed to solve the DAE system (1.3.1). A new block

matrix partitioning method is also used to solve the linear

equations; this resulted in a much simpler solution scheme

than the original implementation. The details of the new

block matrix partitioning method will be given in Chapter 3.

Leeds/PAN has been tested against the original PAN

program on a large number of test networks and similar

results were obtained in each case. This ensured, as far

as it was possible, that the Leeds/PAN program was free of

programming errors and can safely be used as a basis for

testing new implementations. A listing of the Leeds/PAN

program along with some numerical results can be found in

CHUA(1982) •

1.6 The Survey of contents

Briefly, the contents of the thesis are as follows.

In chapter 2, a brief outline of the numerical techniques

11

and computer programs developed during the last decade for

carrying out the dynamic flow simulations is given. The

chapter also surveys the numerical techniques that can be used

to solve the stiff DAE system containing a large number of

discontinuities efficiently.

Chapter 3 discusses the sparse matrix partitioning

scheme developed for solving the linear systems of equations.

The scheme is based on the extension of the block matrix

partitioning method outlined in GEORGE(1974) and AZAR(1975).

Three schemes are proposed; their efficiencies are compared

using three test networks of different sizes and complexities.

The implementation of the variable-step program is

discussed in chapter 4. Special techniques are described to

handle efficiently the severe disturbances caused by the

12

abrupt changes in the gas flow and to solve the DAE system.

The techniques used have wider applicability than ~he gas

transmission systems since they only require that the model

is parabolic in nature. Two sets of strategies are presented

for implementing the variable-step program; one for the

implicit numerical method such as the diagonally implicit

Runge-Kutta methods, and the other for the Rosenbrock-type

method.

Chapter 5 compares the numerical results obtained

from the variable-step program with those obtained from the

Leeds/PAN program. In this way, the accuracy and reliability

of the results of the variable-step program are demonstrated

using a number of large, realistic transmission networks.

In Chapter 6, the optimization model developed for

resolving the "conflicting constraints problem" is discussed

and analysed. The model is based on the dual extremum

principles given in NOBLE (l972) ; it is tested using

three test networks that exhibit the "conflicting constraints

problem" .

Lastly, the concluding remarks and recommendations

for future developments are contained in chapter 7.

CHAPTER 2

2. A SURVEY OF NUMERICAL TECHNIQUES

2.1 Gas Transmission Network Analysis Programs

2.2 Mathematical Background to Stiff Computation

2.2.1 The Outline of a Stiff Variable-step
Code

2.3 A Survey of Stiff Integration methods

2.4 The Handling of Discontinuities -A Survey

2.5 The Solution of DAE System

13

CHAPTER 2

2. A Survey of Numerical Techniques

This chapter surveys the numerical techniques that

can be used for solving the DAE system arising from the

simulation of gas transmission networks. In order to

provide a general background to the solution of this

problem, a brief outline of the numerical methods and

computer programs developed for carrying out the gas

transmission network simulation is also included.

2.1 Gas Transmission Network Analysis Programs

A large number of programs have been developed during

the last decade to carry out the dynamic simulation of a

gas transmission network. The majority of these programs

are based on the isothermal model discussed in Appendix B

(FINCHAM(1980» and have been shown to predict the overall

behaviour of the gas flow accurately under normal operating

conditions. The major difference in the mathematical models

underlying the various programs is the treatment of the
M a M2 () 2

inertia terms, A ff and ~ a- (~), in the momentum equation
A x p

(B.l.2). Some programs use a model which retains both terms

while others neglect one (the second term) or both. By

neglecting both the inertia terms, the model is parabolic

in nature, otherwise it is hyperbolic.

The most popular method for approximating the gas

flow equations is the finite difference technique. In this

approach, the set of PDE's is discretised using the method

14

of lines giving rise to a set of ordinary differential

equations (ODE's) which is then solved using either an explicit

or implicit integration method. Programs developed using

explicit integration method include GOACHER(1970) and

DISTEFANO (l970), while HEATH (1969) , WYLIE (1971) , PAN and the

German network analysis program GANESI (SCHMIDT(l977» use

an implicit method. To illustrate the implicit approach and in

particular, to highlight the techniques used in PAN, a

comparison between PAN and GANESI is carried out. GANESI

has been chosen because it is similar to PAN in that it

uses a constant-step implicit theta-type method to solve

the differential equations and is widely used and well

tested. The major differences between these programs are:

i) GANESI uses a hyperbolic model which includes the

first inertia term, ~ %%i whereas in PAN, a parabolic

model is solved.

ii) PAN uses essentially the Crank-Nicolson method to

solve the differential equations; whereas in CANESI,

the Crank-Nicolson and Backward Euler methods are

used alternately.

15

iii) In GANESI, the modified-Newton iterative method (see

next section for details) is used to solve the non­

linear algebraic equationsi in PAN, however, these

nonlinear equations are linearised and solved directly.

At first glance the most important difference between

the two programs appears to be the basic gas flow model used.

However, from the tests carried out in FINCHAM(1982) on the

difference between PAN and GANESI, it was found that the

inclusion of the inertia term, ~ ff' in GANESI rarely makes

any difference to the solution obtained under normal operating

conditions. We shall therefore consider only the parabolic

model in the rest of this thesis.

GANESI uses a modified-Newton method rather than

simply linearising the equations as is done in PAN. This

might generally be expected to lead to a more accurate solution,

however, the need to perform several iterations per stepsize

means that it is likely to be computationally more expensive.

A more efficient implementation of the modified-Newton method

will be discussed in Chapter 4.

Lastly, the mixed method which consists of Crank­

Nicolson and backward Euler method is used in GANESI in an

attempt to avoid the spurious oscillations that might result

from the application of Crank-Nicolson method alone while

achieving close to 2nd order accuracy. This point will be

taken into consideration in selecting the numerical methods

in chapter 4.

Other techniques employed for numerically solving the

16

gas flow equations include the method of characteristics and

the finite element method. The method of characteristics (MOC)

requires that the model concerned is hyperbolic (LISTER(l960».

It is explicit in nature and has a restriction on the time step

to be less than the pipelength divided by the isothermal speed

of sound. When implementing the MOC, the second inertia term
M2 a 2
-~ ax (~) is usually neglected which means that the charac-

~eristics lines are linear. A program successfully implement­

ing this method is reported in WYLIE(l967). To overcome the

restriction on the time step, STREETER(l970) proposed a method

which combined the MOC with an implicit finite-difference

method while in WYLIE (l974), the MOC is modified using a

"inertia multiplier" technique suggested by YOW(l972).

The finite element method relies on rather more sophis­

ticated functional analysis. The pipe is divided into several

elements and the unknown pressures and flows are approximated

by different polynomials over each element. A program based

on this approach has been developed by RACHFORD (l974) . In

that implementation, both inertia terms are retained as

important.

All the programs reported above are of constant­

step in nature. To our knowledge, no program currently

includes variable time step control though RACHFORD(1974)

proposed it in the discussion following their paper.

2.2 Mathematical Background to Stiff Computation

The remaining part of the chapter is concerned with

the numerical solution of a stiff DAE system which contains

a number of discontinuities. This section provides the

mathematical background to stiff computation and discusses

the general design of a stiff variable-step integrator.

Consider the numerical solution of the system of

differential equations

17

y' (t) = !(t, y(t», t > t ,
o

(2.2.1)

where !(t,y) is assumed to be analytic in the neighbourhood

of y and y' denotes differentiation with respect to t.
o

The system of differential equations (2.2.1) is

said to be stiff in an interval I of t if, for all t € I,

the eigenvalues A. (t) of the Jacobian matrix 3!/ay satisfy
1.

the following conditions (LAMBERT(1973»

i)

ii)

Real A. (t) < 0,
1.

maxi Real A. (t) I »
t 1.

i 1,2, ... ,n;

mi nl Re a 1 A. (t) I •
t 1.

As it is difficult to investigate the behaviour of

a numerical method on a general stiff nonlinear problem,

a linear model problem of the form below is normally

considered

y'(t) = B y(t) (2.2.2)

where the matrix B has constant coefficients and corresponds

to an approximation to the Jacobian matrix of the nonlinear

system (2.2.1) in the neighbourhood of the solution Yo.

It can be shown that it is sufficient to study only the

stability of the simple test equation

y' (t) = A y(t) (2.2.3)

where the parameter A, which can be real or complex, denotes

an eigenvalue of the matrix B.

A one-step method applied to the test equation (2.2.3)

gives the formula (see for example, LAMBERT(l973»,

(2.2.4)

where h = Ahi Y l' yare the computed solution at time
n+ n

t +1 and t respectively with h = t 1 - t and r(h) is a n n n+ n
polynomial or rational function in h. For example, when the

Crank-Nicolson method is employed for solving (2.2.3), r(h)

is given by

18

(l+~h)/(l-~h) (2.2.5)

From eqn. (2.2.4), it can be deduced that if

Ir(h) I <1, then the error (which includes the truncation

as well as round-off error) in the computed solution will

not grow in an unstable manner. This leads to the follow­

ing definition

Def 2.2.1 - A one-step method is said to be absolutely

Stable in a region RA on the hA -complex plane (see fig.(2.2.1))

if

I r (h) I < 1 (2.2.6)

The region R is known as the absolute stability region of
A

the method.

For example, the classical fourth order Runge-Kutta

method has a stability requirement of IAhl < 2.8 when A

is a negative real number. Hence for problem with large real

negative A, the time step must be kept small in order to

ensure the stability of the method. It can be shown, however,

that the Crank-Nicolson method does not have any restriction

on the stepsize. Several definitions, which call for the

method to possess some 'adequate' region of absolute stability,

have been proposed.

DeL (2.2.2) (DAHLQUIST (1963)) A numerical method is said

to be A-stable if its region of absolute stability contains

the whole of the left-hand, half-plane Re hA<O.

As a result of this definition, DAHLQUIST (l963) was

able to prove that the maximum order of an A-stable linear

multistep method is two. Owing to the restrictive nature of

this result, the A-stability requirement is often relaxed,

for example, GEAR(1969) introduces the idea of stiffly-stable

formulae,

19

Def. (2.2.3) - A numerical method is said to be stiffly-stable

if its region of absolute stability contains a region

R = Rl U R2 where (fig. (2.2. 1)) :

Rl {Real (Ah) < D < O}

{D ~ Real(Ah) ~ a, Im(A) $ 8}

Imaginary (lm) axis

8

Rl "

"

,
D

~
a

"

" "-
" -8

~ '" ~ " " '"
Fig. 2.2.1 - Complex hA-phase

Real
axis

In general, A-stable methods which are not damped

maximally as Ah ~ - 00 are unsatisfactory for solving problems

with large negative real eigenvalues, the concept of strongly

A-stability is introduced.

Def. (2.2.4) - A one-step method is called strongly A-stable if

it is A-stable and r(h) ~ 0 (see eqn.(2.2.4)as h -+-00

The stability properties discussed so far are based

on the linear test problem (2.2.3), hence they give only

limited guidance to the numerical behaviour of the method

when it is applied to solve stiff nonlinear problems. In

their work with large systems of stiff nonlinear equations,

PROTHERO(l974) found that A-stability of a method was no

guarantee that it would give stable solutions, and that the

accuracy of the solutions obtained often appeared to be

unrelated to the order of the method used. Their analysis

led to the introduction of a new stability concept.

Def. (2.2.5) - If the characteristics equation

y' =g' + A{y(t) - g(t)} (2.2.7)

is considered where g' (t) is any function defined and

bounded in some interval [O,T]. A one-step method is termed

S-stable if for any real positive constant A , there exists
o

a real positive h such that
o

= C < 1
S

(2.2.8)

provided Yn ~ g (t), for all 0 < h < h where h = t 1 - t , n 0 n+ n
and all complex A with Re(-A) ~ A , and t ,t 1 E [O,T]. o n n+

Def. (2.2.6) - A S-stable one-step method is said to be

strongly stable if C ~ 0 as Ah ~ - 00

s

Other stability properties based on the theory of

contractivity have also been considered for studying the

behaviour of the numerical methods in solving stiff nonlinear

problems. These include the concepts of G-stability

(DAHLQUIST(1975» for the linear multistep methods and

B-stability (BUTCHER(1975» for the implicit Runge-Kutta

methods. In BUTCHER(1981) , these two concepts are combined

20

to give the algebraic stability for general linear methods.

Details of these stability properties can be found, for example,

in DAHLQUIST (1982) .

The numerical methods which possess some of the

properties discussed above are generally referred to as stiff

integration methods and a survey of these methods is given

in Section 2.3.

2.2.1 The Outline of a Stiff Variable-step Code

Modern general purpose stiff integration codes are

usually implemented in the form of a variable-step ~nd

possibly, variable-order) integrator, where the integration

time step is varied automatically within the integrator in

order to ensure that the computed solution satisfies a

certain error criterion. Currently, most integrator control

the local error which is the error introduced at the current

step ignoring the error that propagates from previous steps.

A formal definition of the local error at time t 1 for the n+
differential equations (2.2.1) is given by,

21

£ = Y - u (t) -n+l n+l -n n+l (2.2.9)

where y 1 is the computed solution at time t +1 and u (t) n+ n -n
is the local solution which satisfies the differential

equations

u' (t) -n ! (t, u (t», for t <! t -n n

and u (t) = y -n n n

The global error on the other hand is the actual error

incurred in the computed solution and is defined as

(2.2.10)

.9.n+l = Yn+l - y(tn+l) (2.2.11)

where y(t) is the true solution of eqn. (2.2.1). A diagram

depicting the meanings of the local and global error is

given in Fig. (2.2.2).

tn-I

Eig. 2.2.2 - The Local and Global Errors

Ideally one would like to control the global error,

but because this is computationally very expensive, it is

normal to control it indirectly by ensuring that the local

error is less than some user specified tolerances. A

general outline of a variable-step code with local error

control is given by,

REPEAT

Compute the numerical solution at the new time step.

Estimate the local error.

Accept the step if the local error is less than the

required error tolerance, EPSi otherwise

reduce the stepsize and repeat the above

process.

22

Estimate the new stepsize and increment the time step.

UNTIL the end condition is reached.

Most numerical methods which possess some of the

stability properties discussed in the previous section are

implicit in nature. These methods, with the exception of the

Rosenbrock-type method, require the solution of at least one

system of nonlinear algebraic equations at each time step.

When the method is applied to solve eqn. (2.2.1), the system

of algebraic equations has the form,

~ (y) = y - hB! (y) - fJ. = 0 (2.2.12)

where B is a parameter depending on the particular integrat­

ion method employed and ~ is a combination of known function

values and derivatives. Using the Newton-Raphson method to

solve the above system of equations gives

where

[J (y (m-l))] (m)
w

(m) (m) (m-l)
w = y - y

J (y (m-l» = a~ (y (m-l)) lay

- f (y (m-l)) (2.2.13)

m = 1,2,3, ...

(2.2.14)

As it is both expensive and unnecessary to re-evaluate

the matrix J for each iteration, a variant of the Newton­

Raphson method is normally used. This method is referred

to as the modified-Newton method and it takes the form

(2.2.15)

where G is an evaluation of af(y)/ay at some point (t,y)

which may be any previous iteration or step. The matrix G

23

is only updated when the rate of convergence of the iteration

is slow. A measure of the rate of convergence is given by

r
c

= II ~(m) II / II ~ (m-l) II (2.2.16)

and it is considered unsatisfactory, for example, when

r > 0.5, although the exact choice of r is implementat-
c c

ion dependent.

The iteration is continued unti 1 II ~ (m) II is less

than u-EPS, for 0 < u ~ 1.0. If the iteration appears to

be diverging (i.e. rc > 1) or the rate of convergence is

considered unsatisfactory even after G has been updated,

then the stepsize is also reduced.

At the end of the step, the local error is estimated.

The step is accepted when the local error estimate satisfies

the error tolerance. It is necessary to predict a stepsize

that can be used for the next step and it can be found using

the formula:

hnew r k hOld
1

where r k = (P k ' EPS / II! II) k+T ,

(2.2.17)

o < P
k

< 1;

II !II is the local error estimate measured in a sui table norm

and k is the order of the integration method used.

This formula is based on the assumption that the local error

estimate is of order O(h
k +l

) and it corresponds to an optimal

stepsize for a tolerance of Pk-EPS. Most codes have further

restriction on the size and frequency in which the stepsize

can be increased. A good discussion of the implementation of

a stiff integration method is given in DEW(1978) .

2.3 A Survey of Stiff Integration Methods

The most widely used stiff integration method is

the linear multistep method based on backward differentiat­

ion formulae. It was first proposed and implemented by

GEAR(1971a, 1971b) and is generally referred to as the

Gear's method. The method when applied to (2.2.1) can be

written as:

(2.3.1)

where h = tn+l - tn and Yn+l is the approximate solution

at time tn+li k is the order of the formula employed and

{u.}, B are known constants which depend on the order k
1. 0

(see GEAR(1971b».

The method is A-stable for the first and second

order formulae, but is only stiffly stable for higher order

formulae of up to order 6. It is usually implemented in

the form of a variable-step, variable-order integrator.

24

Most implementations allow formulae of up to order 6 to be

used. The details of the implementation can be found, for

example, in DEW(1978). The usual implementation is to start

the method from order 1 and build-up the order progressively

as more information becomes available. Following GEAR(1971b) ,

the method is often implemented using the Nordsieck vector

of the form,

v -n = [v
..I..n '

hv'
..I.. n ' h 2 "/2' Y • , •• n (2.3.2)

The use of Nordsieck vector enables the changing of step­

size, the prediction of the solution and the local error

estimation to be done easily. The modified-Newton method

is employed to solve the implicit system of equations.

Many good implementations of the method exist, for

example, HINDMARSH(1973) , DEW(1978). The method has been

shown by many authors (for example, ENRIGHT(1975» to be

very efficient and reliable for solving a wide range of

stiff ODE's especially when high accuracy is required.

Most of the classical methods for solving stiff

ODE's are based on single-step methods. The simplest

one is the theta method which is widely used in practice.

The method is defined as

25

v 1 = v + h«l-s)f + Sf +1)
~n+ ~n -n-n (2.3.3)

for 0.5 ~ 8 ~ 1.0

when e = ~, the method is the well known Crank-Nicolson

method which is A-stable and second order. For e > ~, the

method is strongly A-stable, however, it is only first order.

The method is particularly suitable in cases where only low

accuracy solutions (say two to three significant figures)

are required. It is usually implemented in a constant-step

formulation for solving large scale practical problems (for

example, PAN and GANESI). A variable-step version of the

method has been implemented by HOPKINS (1976) for solving

the ODE's arising from the solution of quasilinear PDE's.

A similar version of the program with global error estimation

is employed in PROTHERO(1977) .

The class of semi- and fully-implicit Runge-Kutta

(RK) method discussed in CASH(1982) are also suitable for

this application. A q-stage fully implicit RK formula

for solving eqn. (2.2.1) can be written

q
Y... +1 = y... + h 1:

n n i=l

k. = f(t + c.h,
-1 - n 1

b. k.
1 -1

y... + h n

q
L

j=l
a .. k.),

1J -J

(2.3.4)

1 $ i $ q.

Such formulae can be represented conveniently by

the array

C
q a

qq
b

q

(2.3.5)

26

The fully implicit RK method was introduced by

BUTCHER(1964) where he showed that for all q, there exist

a fully implicit q-stage RK formula of order 2q. EHLE(1969)

has shown that all of these maximal order formulae are

A-stable and hence it is possible to derive A-stable fully

implicit RK formulae of arbitrarily high order. The major

drawback of this class of methods is that it is very

difficult to implement the methods in an efficient manner.

When implemented in the most obvious manner, a system of

S equations using a q-stage method requires the solution of

a simultaneous system of sq nonlinear equations. Although

BUTCHER(1976), BI~(1977) and VARAH(1979), and subsequent

work carried out by BUTCHER(1979) on singly-implicit RK methods,

have reduced this amount of work considerably, the methods

are still not competitive compared with the Gear's method

for solving general stiff problems (CASH(1982».

A semi-implicit RK method is one whose defining

matrix AR (see eqn. (2.3.5» is lower triangular, i.e. a .. =0
1J

for j > i. This class of method was first considered by

N0RSETT (1974) and further studied by CROUZEIX(1975) and

ALEXANDER(1977). The maximum attainable order of a q-stage

semi-implicit RK method is q+l, N0RSETT(1977). These methods

are normally constructed so that the diagonal elements are

all equal, i.e. a .. = a for all i; they were referred to
11

as the diagonally-implicit RK (DIRK) method by ALEXANDER.

The DIRK method has the computational advantage that when the

modified-Newton scheme is employed to solve the k. 's
-1

associated with the method, only one LU decomposition of the

iteration matrix along with the solution of q nonlinear

equations are required. Several strongly S-stable diagonally

implicit Runge-Kutta methods are proposed and implemented

in ALEXANDER(1977); the implementation uses Richardson's

extrapolation to estimate the local error. The results

given in that paper indicate that these methods can be

competitive with Gear's method especially when low precision

is required. In order to provide methods with efficient

error estimation, a class of embedded DIRK methods have been

derived in CASH(1979). These methods have a lower order

method embedded within them so that the error estimate

can be obtained at virtually no extra cost. The numerical

results given in CASH show some improvement over those

given in ALEXANDER.

27

The other sUitable class of methods is the Rosenbrock

methods, first proposed by ROSENBROCK(1963) for solving

autonomous systems of the form

y' (t) = f(y(t» (2.3.6)

This class of method has the major computational advantage

that it is only necessary to solve linear systems of algebraic

equations but has the disadvantage that exact Jacobian matrix

is required at each step. Various modifications to the method

have been proposed by CALAHAN (l968) , CASH(l976) and BUI(l979).

Perhaps the most interesting variant of the method is the

one given in STEIHAUG(1979) which requires only an approximate

Jacobian matrix. These methods can be extended to the non-

autonomous case as indicated in that paper. A q-stage

method of STElHAUG when applied to (2.3.6) gives,

q

Yn+l = Yn + h i:l bi~i

i-I
W. k. = f (y + h ~
~ -~ - n . 1

J=

i-I
a .. k.) + hB ~ d .. k.
~J-J ~J -J j=l

i 1,2, ... ,q

(2.3.7)

where \.,'. = (I - hd .. B) and the matrix B is an approximation
~ ~~

to the Jacobian matrix of (2.3.6). We shall only consider

this variant of the Rosenbrock-type method.

The maximum attainable order of a q-stage Rosenbrock­

type method is q + 1, which is the same as the semi-implicit

RK method.

with d .. =d
~~

to be kept.

For efficiency reasons, the methods are constructed

for all i so that only one matrix (I - hdB) needs

A second order method with embedded error estimate

is given in STE1HAUG along with some numerical results.

Several strongly A-stable Rosenbrock-type methods with "built-

28

in" local error estimate are given in SCRATON(1981).

Although the Rosenbrock-type method proposed above

is of the desired order for any arbitrary matrix B, in

practice, it is still necessary to ensure that B is a "good

enough" approximation to the Jacobian matrix in order to

achieve the required stability characteristics of the method.

This makes the method difficult to implement because there

is no information to measure how good the approximation is.

To overcome this problem, STEIHAUG uses the local error

estimate to provide an indication on when the matrix B is

to be updated; alternatively, SCRATON(1981) updates B after

five steps. This is an area for further research.

For the Rosenbrock-type method (2.3.7), it is

possible to derive a corresponding DIRK method of the form

= + h

i-I

q
L

i=l
b. k.

l. -l.

k. = f (:t, + h L (a.. +d ..) k. + hd k.)
-1 - n . 1 1) 1) -) -1

)=

(2.3.8)

and use the above Rosenbrock-type method to provide an

accurate initial prediction for the modified-Newton iteration.

2.4 The Handling of Discontinuities - A Survey

Discontinuities of various kinds occur frequently

in the simulation of physical systems. In a study on the

handling of discontinuities in an ODE system, ELLISON(1981)

points out that there are two types of events that cause

discontinuities - one is the time event which happens at the

known value of the independent variable t and the other is

the state event which occurs when a given function of the

dependent variables reaches a certain value. Time events

can be handled simply by inspecting the calendar of events

and adjusting the integration time step accordingly. The

handling of state events, however, is not so straight-forward

and it is in this area that much of the research effort is

chanelled.

29

The problems to be considered with the state events

are the detection and l0cation of the events. The detection

is normally done by using switching functions (CARVER(1977))i

one is defined for each state event and the ith event is

assumed to occur when

</>. (t,y)
1.

o (2.4.1)

The occurrence of the e':ent is readily detected if one of

the </>. 's changes sign in the interval h. It is then located
1

by computing a stepsize h'" < h which renders <Pi (t+h lt ,y*) zero.

Several different approaches for locating the state

events have been reported in the literature. In the Runge­

Kutta algorithm developed by HAY(l974), a separate interpolat­

ion algorithm is used for locating the events. HALIN(l976)

uses Lie series methods to expand the variables as power

series for integration, and points out that the switching

functions can also be expanded, thus the discontinuities can

be located by exactly the same method that the integration

algorithm employs. CARVER(l977) transforms the switching

functions into differential equations and appends them onto

the original system. Gear's method is then used to solve

the resulting differential system which means that the stored

Nordsieck vector associated with the switching functions can

be used directly to locate the events, no extra function

evaluations is required in the process. The algorithm of

CARVER(l977) assumes that the number of state events is small

compared with the total number of equations, and hence the

overhead associated with creating additional differential

equations for the switching functions is negligible. To

handle problems with frequent discontinuities, an improved

version of the above algorithm is employed in CARVER(l978).

Here a less comprehensive but simpler approach is used.

Given that </>. (t) and </>. (t +h) have different signs, the
1. n 1. n

solution at time tn+h* is predicted using the stored Nordsieck

vector given in eqn. (2.3.2). The intermediate <p. value is
1.

then computed and the process is repeated until the required
* h has been found. The effectiveness of this technique is

demonstrated using a structural problem containing numerous

discontinuities.

Once the event is located, the integration must

be restarted. The restarting is easily done using a single­

step method. However, it is less efficient on a multistep

method such as the Gear's method because the method has to

be restarted from order 1. In an attempt to overcome this

difficulty, GEAR (l980) develops a Runge-Kutta-starter to

generate enough information for a four-step multistep 'oethod

to continue. This should make the multistep method more

competitive for solving this type of problem especially when

high accuracy solution is needed.

2.5 The Solution of DAE system

30

Many authors (for example GEAR(l971c), BROWN(l973),

DEW(l978) and SINCOVEC(l979» have written codes designed to

handle the DAE system. These codes are based on the techniques

employed in GEAR (l97lc) and do not attempt to control the

error in the components of the solution associated with the

algebraic equations. It was not until recently that the

particular problems associated with the solution of DAE

system are recognised and discussed (GEAR(l981». These

problems include the determination of initial conditions,

error estimation and stepsize selection. An excellent account

on how the DAE system differs from an ODE system is given in

PETZOLD (198l) . This section summarises the work of PETZOLD

and shows how a stiff integration method can be extended to

a DAE system. The results are given for a linear DAE system;

the extension to the nonlinear case will be considered in

chapter 4.

The linear DAE system considered in this section is

Ey' = By + ~(t), (2.5.1)

where matrices E and B can both be singular. The DAE system

(2.5.1) can be transformed into canonical form by using linear

transformation (SINCOVEC(l979». The canonical subsystem

31

for which a unique solution exists can be written as

(2.5.2a)

(2.5.2b)

and matrix E2 has the property that there exists an integer

m such that E
2
m=o, E2ID-110. The value of m is defined to

be the nilpotency of the system. Standard ODE systems have

nilpotency m=o.

PETZOLD points out that although nilpotency is a

very important property of the DAE system, it is very diffi­

cult to determine in practice. Systems with nilpotency m ~ 3

cannot be solved at all by the current ODE methods because

changing the stepsize causes large error in the solution.

Although systems with nilpotency m :5 2 can be solved, extensive

modifications to the error estimate and strategies employed

in the usual ODE code is needed. We shall therefore restrict

our subsequent discussions to the solution of systems with

nilpotency m :5 2.

Consider a simple DAE system with nilpotency m = 2

given by,

Y'2(t) Yl (t) + gl (t) Yl(to) = Yl,o (2.5.3)

0 = Y2(t) + g2 (t) Y2(to) y 2,0

This system has the solution,

Y2(t) = - g2(t)

Yl (t) = - g (t)
1

- g' (t) 2 (2.5.4)

which shows clearly that the solution only depends on gl' g2

and g'2 at the current time, and not on the initial value

or the past history of the g's. Furthermore, the solution

Yl (t) depends on the derivative of g2 (t), which means that

itis discontinuitious whenever g2(t) is differentiable but

not continuously differentiable. Numerical methods have a

great deal of difficulty in dealing with this situation.

To gain further insight into the case when some

derivatives of g(t) is discontinuous, consider the problem

o

Yl (t)

=Y2(t)-g(t)

where g(t) is given by g(t) =

(2.5.5)

tso

t > 0

Suppose Yl :: Y2 :: 0 for t < 0, and that the usual error

estimate which is assumed to be proportional to II y 1 - y II
n+ n

is employed. Now, take one step with the backward Euler

method to advance the solution from t 1 to t , with t 1 <0 n- n n-
and tn > O. Then at time tn we obtain

= g(t)
n ct

n

ct /h n n

where h = t - t 1. Now, as t approaches zero, h is n n n- n n
bounded away from zero as long as t 1 < 0 is fixed. n-
So the error estimate

ct /h
n n

ct
n

approaches zero as t -+ 0 and so for some t > 0, the step is
n n

accepted.

Since the step to tn is accepted, the code will

continue, taking another step to t n +
l

. The computed solution

and the corresponding error estimate are

32

c

Yn+l =

,
£n+l CC

t
c(l - ~)

h
n

These solutions are exactly correct but the first component

of the error estimate is independent of hn +l , so we cannot

make the error estimate as small as we want by reducing

h n+l . Thus, for large enough c, the code will fail in this

step even though the solution is exactly correct.

This example shows the distressing situation that

the usual error estimates which are based on the difference

between the predictor and corrector seem to bear little

resemblance to the actual error incurred in the DAE systems.

Furthermore the step control mechanism based on these

estimates is likely to fail not on the step which spans the

discontinuity, but on the next step afterwards. It is shown

in PETZOLD that these difficulties with the error estimate

are not limited to problems whose solution are discontinuous,

but also to problems with severe changes in the solution.

To gain a better understanding of the source of the

problem, an analysis was carried out in PETZOLD on the solut­

ion of (2.5.1) using the backward Euler method. In that

analysis, it was shown that the actual local error in the

solution at time tn+l for the backward Euler method is,

.§.n+l

h 2
(n+l)

2

For problem (2.5.5), this is given by

hn+l
--2- g"n+l (1)

"
y (P (2.5.6)

~n+l (2.5.7)

o

which shows that the actual local error in the solution can

33

be reduced by reducing hn+l (recall, however, that the

difference between the predictor and corrector is not reduced),

so in principle, if we know how to

error in Yn+l can be controlled by

The actual error, however, is only

adjust the stepsize, the

locally adjusting h n + l .

of order O(hn+l), but
2 not O(h n +l) as assumed in the usual error estimate.

34

It is therefore necessary to derive an error

estimate which would reflect the true magnitude of the error.

In the solution of stiff problems, SACK-DAVIES (l977) noted

that the usual error estimate usually overestimates the true

error and he suggests an error estimate for the second

derivative methods which is asymptotically correct as h -+ 0,

and is reliable and efficient for very stiff problems. The

estimate has the form

.£n+l = II W- l c
n n (2.5.8)

where W is the iteration matrix for the second derivative
n c p

method and cn(Yn+1 - Yn+l) is the usual error estimate.

It is easily seen that (2.5.8) is similar to (2.5.6)

if W is replaced by the iteration matrix for the backward
n

Euler method. This leads to the use of the error estimate

of the form

where G = E - hn+ISB,

c
(Yn+l (2.5.9)

and S depends on the integration method used. Since G is

the iteration matrix of the method, an LU decomposition of

the matrix is always available.

From eqn. (2.5.6), it can be seen that for the

backward Euler method, eqn. (2.5.9) accurately estimates the

actual error. It has been verified in PETZOLD that it also

accurately reflects the behaviour of the error for all back­

ward differentiation formulae. Lastly, it can also be deduced

that this new error estimate is of the right order of magnitude,

i.e. of order O(hk) I where k is the order of the numerical

method employed.

Even with a reliable error estimate, there are

still several practical issues to be considered when

implementing the numerical methods. These issues include

the implementation of the modified-Newton method for solv­

ing the implicit nonlinear systems of equations and the

strategies for step acceptance and stepsize selection. A

detailed discussion of these issues will be given in section

4.4.

35

CHAPTER 3

3. THE SOLUTION OF LINEAR EQUATIONS

3.1 Introduction

3.2 The Partitioning of Matrix G

3.3 The Block Matrix Decomposition Schemes

3.4 The Node Ordering Algorithm

3.5 The Data Structure Set-up

3.6 The Factorization Algorithms

3.7 The Back-substitution and the Storage
Requirement

3.8 Comparison

3.9 Summary and Conclusion

36

37

CHAPTER 3

3.1 Introduction

This chapter discusses the solution of linear systems

of equations arising from the integration of DAE system

(1.3.1). The system has the form,

G x = r (3.1.1)

where r is the known right-hand vector for which the solution

~ is required; and G is an NxN matrix which has the general

form,

G = E - hSA (3.1. 2)

where h is the current stepsize and S is a parameter depending

on the particular integration method used. For example,

when the theta method is used to solve (1.3.1), S is simply

equal to e (see egn. (D.1.3)). In general, the matrix G is

very sparse and a large part of it is symmetric and positive­

definite.

If the modified-Newton method is used to implement

the numerical method for solving the DAE system, then the

matrix G is simply the iteration matrix of the modified­

Newton iteration. In this case, itis more appropriate to

use a direct method for solving (3.1.1) since the same

factorization of matrix G can be used to carry out many back­

substitutions, hence the cost of factorizing matrix G

averaging over all solutions may be negligible; the iterative

methods offer no such advantage (BERESFORD(1980». In

choosing the direct method, it is assumed that there is enough

storage to hold the matrix G in its appropriate factorized

form. Research into the use of iterative methods based on

conjugate gradient is being done in British Gas (GOODWIN(1982»

and shall not be covered here.

Typically, the solution of sparse linear systems of

equations using direct methods can be divided into 3 distinct

stages as follows:

.UNIVERSITY lIBRARY.I:EEDS

38

a) The Analysis Stage - this stage determines the

appropriate partitioning of matrix G if necessary, and finds

the suitable pivotal order in an attempt to minimise the

fill-in and/or the number of arithmetic operations during

the factorization and back-substitution stages;

b) The Factorization Stage - this factorises the matrix

G into the required factors using the pivotal order determined

during the analysis stage;

c) The Back-substitution Stage - it solves for the unknown

vector x from the stored factors of G and the r vector.

The three stages are required successively more

frequently when the modified-Newton method is employed in

the solution process. The same partitioning and pivotal

order determined during an initial analysis stage can be

used throughout the simulation. Also the same factorization

can be used to carry out many back substitutions. Because

the time taken to perform the analysis stage is negligible

compared with the time required for the whole simulation, it

is sensible to choose a node ordering algorithm which would

reduce the factorization and, especially, the back-substitut­

ion times.

The three stages will be considered separately. In

the following section, the appropriate partitioning of matrix

G is described. This is followed by a discussion on the

suitable block matrix decomposition schemes in Section 3.3.

Three decomposition schemes are proposed and the remainder

of the chapter is concerned with the analysis and implementation

of these schemes. Section 3.4 discusses a suitable node

ordering algorithm and Section 3.5 outlines the setting up of

the data structure. Their factorization and back-substitution

processes are described in Sections 3.6 and 3.7 respectively.

These two sections also give the theoretical arithmetic operat­

ion counts as well as the storage requirements for these

processes. The operation counts include only the multiplicat-

i ve operations (the nultiplicatirns am divisirns) since the number

39

of subtractions and additions is about the same for all

three cases. These operation counts are derived based on

the results quoted in Appendix C. The comparison of the

decomposition schemes using actual networks and the conclud­

ing remarks are given at the end of the chapter.

The following notations are used throughout this

chapter. The number of non-zero components in S is denoted

by n(S), where S may either denote a matrix or a vector.

Th .th d .th If' t' M' d t d e 1 rowan 1 co umn 0 a g1ven rna r1X 1S eno e

by M~ and Me. respectively; thus n(M~) gives the number
11th 1 R C

of non-zero components in the i row and En (M i) = En (M i) = n (M).

Lastly, the lower or upper half of a symmetrical, square

matrix M is denoted by MH.

3.2 The Partitioning of Matrix G

A large part of matrix G is symmetric and positive­

definite (SPD), so it is essential to take this into consider­

ation when solving the matrix. The advantage of working with

SPD matrix has been discussed in DUFF(l980b). Generally,

this property means that the diagonal elements of the matrix

can be used as pivots during the factorization process with­

out causing numerical instability (WILKINSON(1965», hence a

relatively simple pivotal selection algorithm which aims only

at preserving the sparsity of the matrix can be used. A

further advantage of dealing with this class of matrix is

that the results of graph theory can be used in both the

analysis and implementation of its factorization process

(PARTER(1961), ROSE(1972». This is particularly advantageous

to network problaPs as there is an equivalence between the

network and the graph associated with the resulting matrix.

The solution of linear equations with the above

structure has been considered by AZAR(1975) in the simulation

of electrical networks. In his approach, the coefficient

matrix is partitioned in such a way that the SPD part of the

matrix is factorized first so that its properties can be fully

exploited. This idea has also been used in GOLDWATER(1976) in

the implementation of the PAN program.

40

For a general gas transmission network with machines,

the unknown variables to be solved are the pressures at the

nodes of the network and the flows through the machines. It

is convenient to refer to the inlet or outlet node of the

machines as machine nodes and the remaining nodes of the

network as free nodes. The symmetric and positive definite

part of matrix G corresponds to the unknown pressures at the

nodes of the network and the asymmetric part of matrix G

corresponds to the unknown machine variables (i.e. the

pressures at machine nodes and the machine flows). Thus

the best way to partition the matrix G is to separate the

variables at the free nodes from the machine variables. This

leads to the following partitioning (see Section B.5 and

eqn. (3. 1. 1))

(3.2.1)

The vector x has been partitioned into:

P a vector of length Yl denoting the pressures at the

free nodes;

IT a vector of length Y2 denoting the pressures at the

machine nodes and

Q a vector of length Y3 denoting the unknown machine flows,
where Yl + Y2 + Y3 = N, the total length of vector x.

The submatrices A .. denote the connections within the
1J

network; the matrix formed by A .. 's is symmetric and positive-
T 1J.

definite with A21 = A 12. The matr1x K is the flow incidence

matrix as defined in eqn. (B.4.4) and submatrices M
l

, M2 contain

the coefficients of the algebraic machine equations. The

submatrices K, Ml and M2 have at most two non-zero elements

per row. For large network, the submatrices are very sparse

and in general Yl » Y2 ~ 2Y 3 which means that the Aij sub­

matrices constitute a significant part of matrix G.

The above partitioning of unknown variables separates

the machine variables from the rest of the variables so that

41

when there is a change in the machine operating constraints,

only the machine part of the solution needs to be resolved.

Furthermore, it results in a much more natural partitioning

of matrix G compared with the one used in GOLDWATER(1976);

a much simpler block matrix decomposition scheme can there­

fore be used to solve for the unknown variables.

3.3 The Block Matrix Decomposition Schemes

Several block matrix decomposition algorithms are

discussed in GEORGE(1974) for the case when the coefficient

matrix is positive-definite. This section extends the ideas

given in that paper and GOLDWATER(1976) to decompose the

matrix G.

For the partitioning of matrix G given in eqn. (3.2.1),

the following block matrix decomposition scheme can be used,

G

where

and let

L

Z

A
P

C

LI*O ---1' - -ZT I 0

001
I

denotes the Cholesky

with LLT = All'
-1

=

L A12
T

A22 - z z

(3.3.1)

factors of submatrix All

(3.3.2)

Here and elsewhere in this thesis, it is understood that

inverses are not computed explicitly; only the appropriate

triangular factors are stored.

The above decomposition scheme is only efficient

when Yl » (Y 2 + Y3) so that the dimension of matrix C is

small compared with N. In this case the full matrix C is

stored and a simple algorithm can be used to solve for the

unknown variables. This decomposition scheme is referred

42

to as decomposition 01 . It has been employed in the

implementation of the Leeds/PAN program (see Section 1.5).

The use of full matrix C, however, does not take into

account the symmetric and positive-definite structure of

submatrix Ap ' and the sparseness of submatrices K, Ml and

M2 • For big networks with a large number of machines, this

could give rise to storage problem and also results in

rather more arithmetic operations than is strictly necessary.

With some added complexities, an alternative block

matrix decomposition scheme (referred to as decomposition O
2

)

can be derived,

(3.3.3)

where L L T = A
P P P

K L -T L -1 K
P p P

and M = M2 - Ml Kp

Here the matrix C is further decomposed to take advantage

of its underlying structure and the Cholesky factorization

method is used to factorize the submatrix A into L LT .
- P P P

Only a full matrix M is kept which has a dimension of

Y3 x Yr
As pOinted out in GEORGE (1974) , if L, A12 are

sufficiently sparse compared with Z, operations could be

saved in the factorization and back-substitution stages by

using Z only implicitly through its definition. That is,
d - T -T-l uring the factorization, we compute Ap as A 12 (L (L A

12
))

rather as ZTZ• During the back-substitution, we compute
T T -T -1

Z !! and Zy as A 12 (L ~) and L (A12 y) respectively. As Z

is denser than A12' we can save storage and perhaps arithmetic

43

operation as well by using Z in this implicit manner.

We shall denote decomposition 02 with Z used only implicitly

as decomposition 03.

The implementation and analysis of these three

decomposition schemes will be considered in the following

sections.

3.4 The Node Ordering Algorithm

3.4.1 The Choice of Node Ordering Algorithm

The decomposition schemes derived in the previous

section require the factorization of submatrix All and,

for decomposition 02 and 03' submatrix Ap using Cholesky

factorization method. These submatrices are very sparse

and are symmetric and positive-definite. When a sparse

matrix is factorized, it usually suffers fill-in and it is

well known that the order in which the matrix is factorized

could affect the amount of fill-in considerably. It is

therefore important that a judicious choice of the ordering

is used in an attempt to minimise the fill-in and/or the

amount of arithmetic required to solve the matrix.

The symmetric and positive-definite part of matrix

G corresponds to the graph of the original network. The

orderings of submatrices All and Ap are equivalent to the

orderings of the free nodes and machine nodes respectively

in the network. Before any discussion on the node ordering

can be carried out, it is helpful to introduce some basic

graph theory terminologies. For our purpose, a graph

G = (X,E) consists of a finite nonempty set X of nodes

together with a prescribed edge set E of unordered pairs of

distinct nodes. Given xeX, the adjacent set of x is defined

as

Adj(x) ={YEX-{X} I {x,Y}EE} (3.4.1)

and the degree of a node x, denoted by Oeg(x), is simply

the number IAdj(x) I, where lsi denotes the number of members

4

in the set S. The deficiency of a node x, denoted by

Def(x), is the set of all distinct pairs of Adj(x) which

are not themselves adjacent, that is

44

Def(x) = {{y,z} I y,z E Adj (x), y'l z, y i Adj(z)} (3.4.2)

To understand the relationship between the factori­

zation of a symmetric positive-definite matrix and the

elimination of its graph, consider a simple ordered graph

as shown in fig. (3.4.1). Its corresponding matrix is given

in fig. (3.4.1a) where the diagonal terms represent the nodes

and the off-diagonal terms the edges.

J ~-

a 12 _ :!! __ + _ 0 all

A
a 21 a 22 0 I 0

= -[----
a 31 0 a 33 ; a 34

-----+--- -
0 0 a 43 i a 44

2

Fig. 3.4.1 Fig.3.4.1a

3 X X X i 0
" "- ,

"- X a l

22 a l

23 0 "-
"- A'
/~l X a 132 a l

33 a l

34 /
...-

...- 0 0 a '43 a '44
2

Fig. 3.4.2 Fig. 3.4.2a

When the first row is eliminated from matrix A

using Gaussian elimination, the resulting matrix AI has

a 123 and a 132 fill-in terms. This is equivalent to per­

forming the following on the original graph,

i) deleting node 1 and its incident edges;

ii) adding edges such that all nodes adjacent to node 1

are pairwise adjacent

as shown in fig. (3. 4.2) .

In general, if y is a node in graph G, the eliminated

graph of G by y, denoted by Gy is the graph (ROSE(1972»

45

G = {X - {y}, E (X - {y}) U Def(y)}
y

(3.4.3)

This shows that when node y is eliminated from a given

symmetric and positive-definite matrix, the number of fill­

ins is equal to Def(y) and the amount of arithmetic required

to eliminate y is proportional to Deg(y). Various node

ordering algorithms which seek to minimize one or both of

these quantities during the factorization process are avail­

able. They are all heuristic in nature and the more widely

used ones are the minimum degree algorithm, the minimum

deficiency algorithm, the nested dissection algorithm and

the variable-band method (see GEORGE(1981».

The minimum degree algorithm (MDA) is also known as

the second strategy of Tinney (TINNEY(1967»; as the name

implies, it chooses, at each stage, the diagonal element

with minimum degree as the node for elimination. Experience

has shown that this algorithm is very efficient in finding

low-fill orderings for a wide class of problems (GEORGE(1980».

The minimum deficiency algorithm (ROSE(1972» selects as a

pivot the node with minimum deficiency. It had been used

extensively in the earlier work on power problems (for example,

SATO(1963), AZAR(1975» and is employed in PAN to reorder the

network nodes. This ordering involves substantially more

work than the lo1DA and experience has shown that it rarely

produced a better ordering than the one produced by the MDA

(GEORGE(1981» •

The nested dissection algorithm was first introduced

by GEORGE(1973) and generalised by LIPTON(1979). Essentially,

it seeks to identify a partitioning of the problem so that

the coefficient matrix has the block matrix form similar to

that of eqn. (3.2.1). Since the zero block in the matrix

remains zero after factorization, the idea can be applied

recursively to exploit the zeros of the matrix. This ordering

produces an asymptotically optimal ordering for problems with

regular grids (GEORGE(1973» and can do better than the minimum

degree algorithm by a substantial margin on these problems

(DUFF(1976». However, its performance on network problem

has been disappointing (BARRY(l978), ERISMAN(1980».

46

The variable-band method permutes the matrix so that

the nonzeros are near to the diagonal. The most successful

algorithm for choosing the ordering of this kind is the

Reverse Cuthill-Mckee algorithm with GIBBS(1976) starting

point. As the fills are limited to within the bands, by

ignoring the zeros within these bands, a very simple variable­

band storage scheme (JENNINGS(1966» can be used. This

ordering and the storage scheme are very well suited for the

parallel machines (DUFF (1980b» . While this technique is

very competitive on problems in structural analysis where

the sparsity pattern is very regular, it performs badly on

the more irregular problem arising in networks (LEWIS(1980».

Other ordering algorithms based on one way dissection

and refined quotient tree (GEORGE(1981» have also been

proposed and applied successfully to structural problems.

They are, however, not competitive on the network problems

from the results quoted in LEWIS(1980).

From the above discussion, we conclude that the minimum

degree algorithm is the most efficient ordering scheme for

the network problems and has therefore been chosen for our

simulation task. A further advantage of using this algorithm

is that a number of efficient and reliable algorithms exist

and hence it can be implemented quite easily.

3.4.2 The Detailed Algorithm

This section discusses the detailed implementation of

the minimum degree algorithm for the ordering of the network

nodes. To facilitate discussions, we shall treat the machine

flow variable as an extra node in the network and refer to

it as a 'flow node'. A simple test network given in fig.(3.4.3)

is used to illustrate the elimination process.

The partitioning of matrix G in eqn. (3.2.1) means

that submatrix All and hence the free nodes are eliminated

first. The sparsity pattern of submatrix All corresponds

to the graph of complete network minus the machine and flow

nodes and their connections. This decomposes the graph

into several components as shown in fig. (3.4.4). (This is

generally true for most networks). Different network

components are ordered independently using minimum degree

algorithm and the resulting matrix is partitioned according

to the components of the graph. The node ordering algorithm

for reordering the free nodes is as follows:

STEP 1 Decompose the network into components by deleting

the machine and flow nodes and their connections

47

from the original network. Let GI , G2 ,··· Gm denote

the sub-graphs representing the remaining m components.

Initialise i = 1.

STEP 2 Let G. = (X., Ei) and initialise the set S = {a},
~ ~

Set DEG(x) = IDeg(x)1 for x £ Xi'

STEP 3 Pick a node y [: X. -S where
~

DEG(y) = min (DEG(x»
xe:X.-S

~

STEP 4 number node y next and update DEG(z) for all z £ Adj (y)

and set S = (S u {y})

STEP 5 if S ~ Xi' go to step 3

STEP 6 set i = i+l

STEP 7 if i = m then stop, otherwise goto step 2 .

• the free nodes

• the machine nodes

• the f low nodes

Fig. 3.4.3 - A Test Network

•
Fig. 3.4.4 - The Graph of Submatrix All

-- ,-<-..• -. - - -

Fig. 3.4.5 - The Graph of Submatrix A
p

From (3.4.3), it can be easily deduced that the graph

which results from the elimination of all free nodes with

the flow nodes deleted is given in fig. (3.4.5). It can

also be shown that the formation of submatrix A by block
(. T -1 P
1.e. Ap = A22 - A12 All A12) in eqn. (3.3.1) is equivalent

to a step by step elimination of the first Yl rows of matrix

G using Gaussian elimination. Hence the graph of submatrix

Ap is the same as the graph shown in fig. (3.4.5). In

practice, this graph can be generated quite easily since

in general, two machine nodes will be connected in this

graph if there exists a path between them through the set of

free nodes without passing through a flow node. The same

node ordering algorithm described above can also be used to

order the machine nodes except in step 1, the network is

decomposed by deleting the flow nodes only.

Finally, the flow nodes are simply numbered in machine

order as their ordering will not affect the method in any

way since the matrix M is stored in full. (Note that for

decomposition Dl , the ordering of machine nodes is also

immaterial) .

48

49

3.5 The Data Structure Set-up

After the network nodes are ordered, the next stage

of the solution is to set up the data structures for storing

the nonzero elements of the submatrices involved in the

numerical computation. It is necessary to set up the data

structure for the final factorized form of these matrices

since it is extremely difficult and inefficient to update

the data structure during the actual numerical computation.

The final factorized form of the matrices can be determined

by the process called symbolic computation. As the name

implies, it is the process of simulating the numerical

computation of the matrices without actually refering to

their numerical values. This can be carried out for the

factorization of submatrices All' Ap and the forming of

submatrices Z and K in order to obtain in the zero/nonzero
p

structures of their resulting matrices. Their corresponding

data structures can then be set up before the actual

computation begins.

The use of sophisticated ordering algorithm such as

the minimum degree algorithm for ordering the matrix has

the effect of scattering the nonzeros throughout the matrix,

a complicated data structure is therefore needed to indicate

the positions of all nonzeros within the matrix. A suitable

data structure that can be used for this purpose is the

'compressed storage scheme' due to SHERMAN(1975). A

detailed description of this storage scheme and a computer

program for implementing it is given in GEORGE (l98l) .

Briefly, this storage scheme requires a set of indexing

locations to indicate the position of the nonzeros (usually

stored in columns) in the matrix. SHERMAN (1975) noted that

it is Common for sets of contiguous columns to have a

similar structure, hence he proposed to store only the index­

ing information for the first column in each set so that it

can be shared among all other similar columns. In this way,

the indexing information is 'compressed' to avoid storing

redundant information.

This storage scheme was originally proposed for

storing the lower Cholesky factors, L, of a square non­

singular matrix. stnce the diagonal elements of L are

non-zeros, they are normally stored in a separate vector

so that only the indexing information for the off-diagonal

elements are needed. In this way, it is necessary to use

up to a maximum of (n(L) + NL) indexing locations, where

NL is the dimension of matrix L. This is because 2NL

column indicators are required in addition to those needed

for the off-diagonal elements. If this storage scheme is

used to hold a general matrix M (not necessarily square)

50

with N columns, then up to a maximum of (n(M) + 2N) indexing c c
locations are required.

The number of indexing locations quoted above is only

the upper limit and it is rarely necessary to use more than

n(L) (or n(M)} locations: for large sparse matrices, only

half of the amount is normally needed (GEORGE (198l) , p.142}

since most of the indexing information can be 'compressed'.

3.6 The Factorization Algorithms

We now provide the algorithms for the factorization

of decomposition schemes 01' 02 and 03 outlined in Section
3.3.

A.

i)

ii)

iii)

iv)

Factorization using decomposition 01

Factor All into LLT using Cholesky method of factor­

ization.

Compute Z by solving LZ = Al2 and overwrite it into

the space occupied by A12 •

Compute Ap = A22 - Z Tz; only the upper half of matrix

A is computed since it is also symmetric and positive-p
definite.

Set up matrix C as defined in eqn. (3.3.2) and factor­

ize it into LCUC using full matrix factorization

routine.

51

B. Factorization using decomposition 02

A more complicated algorithm is needed for decomposit­

ion 02. Stages i) to iii) are identical to that of 01. The

remaining stages are:

iv)

v)

vi)

T
Factori ze Ap into LpL p using Cholesky factorization

method.

Compute Kp
Compute M =
again using

by a)

M2 -
full

T solve for LpH = K; and b) solve Lp~=H.

MlKp and factorize it into LMUM,

matrix factorization routine.

c. Factorization Using decomposition 03

For decomposition 03' we do not wish to retain the

off diagonal block Z. This implies that the matrix Ap has
T """"r"-1

to be computed in the "asymmetric" way by (~2 -A 12 (L (L A 12 »

without explicitly retaining Z. For convenience in counting

the number of arithmetic operations later in this section,

the process can be seen as consisting of 3 stages by:-

a)

b)

c)

compute Z,

Solve for LTZ = Z and
T" compute Ap = A12 Z

Of course in practice, A is computed one row at a time and
p

hence only Y2 temporary storage locations are needed. The

algorithm is essentially the same as that of decomposition

02 except that stage ii) is now discarded and in stage iii),

A is set up in the above asymmetric manner. p

We can now compare the costs of computing the factorizat­

ions for decompositions 01' 02 and 03' where the cost is

defined to be the number of arithmetic operations (the multi­

plications and divisions) required.

Theorem 3.6.1

Let the costs of factorizing the matrix G by decomposit­

ion schemes 01' 02 and 03 be denoted by FI , F2 and F3 respect­

ively. Let the cost of factorizing All be FA' ~he costs of

factoriz~ng the matrix C in 01' and the matrix M in 02 and

°3 be FC and FM respectively. Then from the lemmas given

in appendix C, we have that

Yl C R Yl
Fl = FA + 1: n(L.)n(Z.) + 1: n(Z~) (n(Z~)+1)/2 + FC

i=l 1 1 i=l 1 1
(3.6.1)

(3.6.2)

Y Y Y
1 R 1 C "'R 1 R ,. R

F = F + 1: n(Lc.)n(Z .) + 1: n(L.)n(Z.) + 1: n(A 12 .) (Z.) +1)/2 + FR
3 A i=l 1 1 i=l 1 1 i=l 1 1

where

Y -1 1
FA = 1: (n(LC.)-l) (n(L~)+2)/2 + Y

l
(sqrt)

i=l 1 1

1 3 1
F = -(y) - - Y M 3 3 3 3

(3.6.3)

(3.6.4)

Proof: To illustrate the proof for these results, we shall

only consider F
2

; the other two follow in a similar manner.

In this factorization, we must first factorize All leading

to a contribution of F. The calculations of Z=L- 1A
12 . yA y

~ T 1 C R 1 R R
and A =Z Z require 1: n(L.) n (Z.) and 1: n(Zi)n (z.) +1)/2

p i=l 1 1 i=1 1

arithmetic operations respectively (by Lemmas C-3 and C-5) .

In stage iv), factorizing matrix A into LpLpT requires
Y2-l p

1: (n(Lp
C

)-1) (n(Lp
C) +2)/2 arithmetic operations together

i=l i i
with Y2 square roots by Lemma C-l. The setting up of matrix

52

53

K in two steps in stage v) requires p +

Y2
• E n (L C'p.) n (~p))
~=l ~ i ~

arithmetic operations by Lemma C-3.

Lastly in stage vi), multiply MIKp to give matrix M requires
Y2
E n (Ml~) n (K

R
)

i=l 1 Pi
arithmetic operations by Lemma C-4,

and the cost of factorizing matrix Minto LMUM using full

matrix factorization routine is FM. Collecting the terms

together yields (3.6.2), concluding the proof.

From above, it is obvious that:

(3.6.5)

To say more about the results, it is necessary to

know the actual sparsity patterns of the submatrices. A

more thorough discussion will be given in section 3.8.

3.7 The Back-substitution and the Storage Requirement

For decompositions 01 and 02' the back-substitution

can be carried out as indicated below:

L U
c c

T ~
L :f = r - zn -1

°2
~

LEl = r
-1

£2 = r
-2

T~
LpLp .!:2

.!:3 = .!:3
~

LMUMQ = !,3

n = !2 -
LTp ~

= !.l -

(3.7.1)

- ZTr (3.7.2) -1

.!:2 (3.7.3)

1::1
(3.7.4) - Ml !,2

(3.7.5)

KpQ (3.7.6)

z n (3.7.7)

The back-substitution procedure for 03 is similar to that
-1

of D2 except in steps (3.7.2) and (3.7.7), L A12 is used

in place of matrix Z.

We assume throughout this section that the zeros in

the vectors involved in the back-substitution are not
....

exploited. The intermediate vectors r , r
2

etc are only -,. -
written for convenience, in a computer program the whole

54

operation is executed by overwriting the old vectors into the

new ones.

Theorem 3.7.1

Let the costs of performing the back-substitution for

decomposition schemes 01' 02 and D3 be denoted by Bl , B2

and B3 respectively. From appendix C, we have

(3.7.8)

(3.7.10)

Proof: We shall carry out the proof for (3.7.9) here; the

proofs for (3.7.8) and (3.7.10) can be deduced in a similar

manner. The costs of performing steps (3.7.1), (3.7.2) and

(3.7.7) are 2(n(L)+n(Z)). The cost of performing step (3.7.3)

is 2n(Lp)' and the costs of computing ML!2 ~nd KpQ are

n(Ml)+n(Kp)' Lastly, since the matrix M is stored in

full, the cost of carrying out the back-substitution in step

(3.7.5) is Y 32 . Collecting terms yields (3. 7.9), hence

proving the theorem.

Corollary 3.7.2

B3 < B2~ n(L)+ n(A12) <n(Z) (3.7.12)

The corollary follows immediately from eqns.(3.7.8) to

(3.7.10).

55

The storage requirements for the decomposition schemes

can also be derived directly from the back-substitution

processes. In this section, we consider only the storage

required to store the matrices that appear in eqns. (3.7.1)­

(3.7.7); and in the case of 02 and 03' the additional index­

ing locations needed for the sparse matrices Lp' Ml and Kp.

The result vectors and other auxilliary stores are approx­

imately the same for all three cases and need not be consid­

ered. Main storage locations are required to hold matrices

L, Z and C for decomposition 01; matrices L, Z, Lp ' Kp' Ml

and M for decomposition D2 and matrices L, A12 , Lp' Kp' Ml

and M for decomposition D
3

•

Theorem 3.7.3

Let the amounts of storage required to store the non­

zeros of the submatrices involved in decomposition schemes

01' 02 and 03 be Sl' S2 and S3 respectively; and use Sr

to denote the additional integer indexing locations needed

for decomposition schemes D2 and 03. We have the followings

(3.7.13)

2 S2 = n(L) + n(Z) + n(Lp) + n(Kp) + n(Ml) + Y3 + SI (3.7.14)

2
S3 = n(L) + n(~2) + n(Lp) + n(Kp) + n(Ml) + Y3 + Sr (3.7.15)

where

(3.7.16)

Proof: The expressions for 81' S2 and S3 can be easily

deduced from the proof of theorem 3.7.1, only the expression

for SI is derived here. Since the compressed storage scheme

is used to hold submatrices Land K , up to (n(L)+Y2) plus p p p
(n(Kp)+2y 3) of integer locations are needed. The submatrix

Ml contains at most 2Y3 nonzeros and hence only 2Y
3

row

indicators are required. Collecting all terms together

yields eqn. (3.7.16).

Because of the additional indexing locations, SI'

needed in decomposition schemes 02 and 03' it is difficult

to compare their storage requirements with those of

decompOSition 01 as the comparison is largely dependent on

how the integer locations can be stored on a particular

computer. Instead, a comparison between S2 and 8 3 is

carried out.

Theorem 3.7.4

The storage requirement of decomposition 03 is always

less than or equal to those of decomposition 02.

Proof: By using lemma C-8 and the definitiion of suhmatrix

Z, it follows th~t n(A
12

) ~ n(Z), hence from eqns. (3.7.14)

and (3.7.15), we have the above result.

Lastly, to provide an indication on the effectiveness

of the decomposition schemes in preserving the sparsity of

the matrix, the amount of storage required to hold the

original matrix G (see eqn. (3.2.1)) is also considered.

To represent the matrix G, it is necessary to store at least

the nonzeros of matrices A12 , K, Ml , M2 and the lower or

upper half of All and A22 • This is also the minimum amount

of storage needed for solving (3.1.1) if an iterative method

(see for example, JACOB8(1980)) were to be used.

Theorem 3.7.5

By ignoring the indexing locations needed to represent

the sparsities of the submatrices, the minimum amount of

storage required to hold the matrix G is given by

(3.7.17)

PrOof: The proof is similar to that of Theorem (3.7.3).

56

3.8 The Comparison

This section 90mpares the efficiencies of the

decomposition schemes using actual networks. Three net­

works of varied sizes and complexities are considered.

57

The first is a small network shown in fig. (A.4). This

network consists of 5 machines with the number of machine

nodes greater than the number of free nodes (1. e. Y 2 > Y 1) ;

this is used to investigate the effect of the number of

machines on the performance of the decomposi tion algori thr.ls .

The other two are the large and realistic British Gas

transmission networks given in figs. (A.5) and (A.7). The

second is a regional network consisting of 57 nodes and 15

machines and the third is the large scale national trans­

mission grid with 158 nodes and 20 machines; they are used

to test the efficiencies of the decomposition schemes in

handling large, sparse matrices. The performance profile

of the decomposition schemes on these networks are given in

Table (3.8.1); the arithmetic operation counts and the

storage requirements are evaluated based on the theorems

developed in Sections 3.6 and 3.7 •

. ~ itiorf
Dl D2 D3 Network Dimension Network

F 944 164 +9 sqrt 174 +9 sqrt N - 21

A.4 B 230 117 135 Yl = 7
S 213 86 86 Y2 :::: 9

SI - 64 64 Y = 5
s3 :::: 51

0

F 18534 18CX) + 23 sqrt 1988 + 23 sqrt N =72

A.S B 1686 661 701

~~ : fl s 1665 494 455
SI - 213 213 s; = 168

F 59098 3770 + 36 sqrt 4216 + 36 sqrt N :::: 178
A.7 B 3778 13CX) 1668 Yl = 122

S 3457 918 872 Y2 :::: 36

SI - 277 277 Y3 = 20
S =404
0

Table 3.8.1 - The Performance Profile of the Decomposition
Schemes

Note -

*

N is the size of the matrix to be solved and Yl'Y2'Y
are network information as defined in Section 3.2. 3
F, B, Sf Sr and So are quantities as defined in
Sections 3.6 and 3.7.
only decom~osition Dl has been implemented.

From table (3.8.1), it is clear that decompositions

02 and 03 are very efficient compared with decomposition

01 on all the networks tested. These results clearly show

that the added complexity of decompositions 02 and 03 pay

off handsomely in both reducing the arithmetic operations

58

and storage requirements. For decomposition 03' very little

saving in storage is obtained compared with 02 by storing

matrix Z only implicitly while the arithmetic operations

required in both the factorization and back-substitution

processes are greatly increased. This is because very little

fill-in occurs when forming Z, hence the 'throw-away' strategy

employed in 03 is not suitable for this application.

From the table, it can be seen that the additional

indexing locations, SI' required in decompositions 02 and 03

are very large compared with the total storage requirement,

S. This, however, is misleading since the value given in S
I

is only a grossly overestimated upper limit. In practice,

considerably less than this amount is needed especially for

large networks since the com~ressed storage scheme is used

to store the matrices (see section 3.5). Furthermore, these

integer locations can be packed so very little storage is

required.

A comparison between S2 and So in the above table reveals

that decomposition D2 requires only 2 to 3 times the amount

of storage needed for the original matrix G (this is also the

minimum amount of storage needed for an iterative method) .

Hence the use of decomposition 02 will not result in a large

increase in the storage requirement compared with the iterative

method and can therefore be used efficiently for solving eqn.

(3.1.1) •

3.9 Summary and Conclusions

Three decoIT.nosi tion schemes are described and compared

using actual test nebrorks. out of the three schemes considered,

only decomposition 01 has been implemented and is employed in

the Leeds/PAN and the variable-step PAN; the other two schemes

have not been implemented because of the time factor.

59

From the results quoted in table (3.B.l), it is clear

that decomposition 01 is very inefficient compared with

decompositions 02 and 03 especially for large networks with

many machines. Also, the 'throw-away' strategy employed in

decomposition 03 has not been found to perform as well as

expected compared with decomposition 02 in reducing the storage

requirement. The best scheme arrived from this study is there­

fore decomposition 02; the results from the previous section

indicate that it is a very efficient scheme.

CHAPTER 4

4. THE DESIGN OF THE VARIABLE-STEP INTEGRATOR

4.1 Introduction

4.2 The Restart strategy

4.3 The Selection of Numerical Method and
Local Error Estimate

4.3.1

4.3.2

4.3.3

The Choice of Numerical Method

Local Error Estimates for the
DAE Systems

The Extension of the Rosenbrock­
type Method to the Non-autonomous
Systems

4.4 The Strategies Used in the Integrator

4.4.1 The Normal Phase

4.4.2 The Restart Phase

4.5 Further Enhancements

60

61

CHAPTER 4

4.1 Introduction

This chapter discusses the design of the variable­

step integrator for solving the DAE system arising from the

simulation of gas transmission networks. Although the dis­

cussion aims specifically at the network problem, it relies

only on the assumption that the DAE system arose from the

discretization of a system of parabolic PDE's and that there

are a number of severe discontinuities in the first and higher

derivatives of the solution. The techniques described here

can be employed to solve other similar systems of equations.

The properties of the DAE system (1.3.1) have been

discussed in section 1.3. Briefly, the system contains

frequent severe disturbances due to the varying consumer

demands and the operations of machines in the network; these

disturbances result in rapid changes in the solution. To

solve a system of this kind using a standard variable-step

,integrator is computationally very expensive because extremely

small time steps will be used immediately after a disturbance,

in order to satisfy the required error tolerance. This means

that for a number of applications, it is impractical to use

a standard variable-step code because reliable solutions are

normally required reasonably quickly. The author suspects that

it was partly because of this difficulty that all the currently

available network analysis programs surveyed in FINCHAM(1980)

are constant-step in nature.

The purpose of this chapter is to describe a restart

strategy that can be incorporated into a variable-step

integrator for handling the severe changes in the gas flow

efficiently. Other strategies are also discussed for handling

the algebraic equations in the system. The implementation of

a general variable-step integrator for solving systems of this
kind is described in appendix E.

4.2 The Restart Strategy

To make the variable-step inte'Jration feasible for

the general simulation of gas transmission network, it is

essential to modify the variable-step algorithm so that it

is detailed enough to produce accurate solutions for the

slow dynamics, while not too time consuming for the rapid

transients that result from the severe disturbances in the

gas flow. This means that separate strategies are needed

for handling the slow and rapid changing solutions.

62

In many applications, the simulation engineers are

only interested in modelling the gas flow over a large time

interval (in the gas industry, this is typically 24 hours)

and are not concerned with accurately following the solution

immediately after a severe disturbance in the gas flow. They

do, however, require that after a specified time period, the

effects of the disturbance are accurately modelled. Under

these circumstances, it would be extremely inefficient to

compute an accurate solution in this region, as is done when

a standard variable-step integrator is used.

The strategies employed here is to use normal error

control everywhere except in the region immediately after a

severe disturbance in the gas flow where the error control is

suspended. These regions are referred to as the normal phase

and the restart phase respectively. By suspending the error

control during the restart phase enables a larger time step

to be used in this region than would otherwise be the case.

A constant stepsize is used throughout the restart phase until

the estimate of the global error indicates that it is safe

to return to normal phase. This ensures that the rest of the

solution satisfies the required accuracy tolerance.

The restart strategy relies heavily on the assumption

that all the eigenvalues of the Jacobian matrix of the system

are negative and hence the computed solution will eventually

converge towards the true solution. This assumption is true

for systems that arise from the discretization of parabolic

PDE's. A theoretical analysis for the restart phase based on

a model problem is given below. The detailed strategies

for the restart phase are given in section 4.4.

4.2.1 The Model Problem

63

To illustrate the technique used for the restart phase,

it is helpful to consider a model problem. The simplest one

which reflects the behaviour of the gas transmission network

problem is given by

y' = ->..y + d(t), >.. > 0 (4.2.1)

where d(t) = dO

The function d(t) models the change in demand value and the

parameter >.. corresponds to an eigenvalue of the matrix E-IA

where E is assumed to be non-singular for the purpose of

,this analysis.

As a discontinuity in function d(t) occurs at time to'

a restart phase is initiated at that time. Let the stepsize

chosen for the restart phase be h and denote the computed

solution, the true solution and the local solution after j

steps by Yj' y(tj) and YL(t j) respectively. For simplicity,

we shall assume that the global error at time t is negligible o
compared with the error introduced due to discontinuity,

hence at time to'

= (4.2.2)

This assumption is a reasonable one because the local error

has been controlled up to time to and therefore will be much

smaller than the error in the numerical solution immediately

after the discontinuity.

The simplest method for integrating (4.2.1) is the

theta method (see eqn. (2.3.3». Applying the method to (4.2.1),

it follows after j steps from the start of a restart phase

that

y. = wj y + [I - wjJ dl/A (4.2.3)
J 0

where w = [I - h(I-8)AJ/[1 + h8A] (4.2.4)

and 8 > 0.5.

From assumption (4.2.2), it can be shown that the true and

local solutions at time tj (= to + jh) are given by

(4.2.5)

and

(t) Yo wj - l e- Ah + [1-~-le-Ah]dllA. YL j = (4.2.6)

Hence the local and global error estimates at time t. are
J

R,. = YL (t .) - Y .
J J J

(4.2.7)

and
, 'Ah'

g. = y(t.) - y. = (y -d II..) [e- J -\,IJ]
J J J 0 I

(4.2.8)

respectively (see fig. (4.2.1).

I
I
I
I
I
I
I

~

'}
* 'lg.1 < EPS

J

__ Nonna1 ~I<II!<::--__ _
Phase

64

For e > 0.5, it can be seen that the terms in the

square brackets in eqns. (4.2.7) and (4.2.8) tend to zero

as j tends to inf ini ty . Hence I 9, j I, I g j I -+ 0 as j -+ 00

as required.

This shows that the restart strategy will eventually

terminate for the model problem. Before returning to the

normal phase, it is necessary to ensure that the local

solution is sufficiently close to the true solution so that

it is meaningful to apply local error control. The differ­

ence between the local and true solutions after j steps of

computation is given by

(4.2.9)

Thus, the restart phase is terminated when lDIFFI is less

than the local error tolerance EPS; that is when

65

I g·1 < EPS
J

(4.2.10)

Hence during the restart phase the global error is

estimated after each step and normal error control is resumed

when this estimate is less than the local error control.

Although this analysis has been carried out for the

theta method, it naturally extends to L-stable methods and

in particular, those given in Appendix D.

4.3 The Choice of Numerical Method and Local Error

Estimate

A general outline of a variable-step code with local

error control has been discussed in section 2.2. There are

three aspects of the variable-step code that must be

considered. The first is the selection of a suitable

numerical method together with a formula for estimating the

local error. The second is the design of a suitable strategy

for selecting the stepsize, deciding when to update the

Jacobian matrix associated with the DAE system and deciding

when to accept a particular step. The third is the solution

of linear systems of equations which has been discussed

in Chapter 3.

66

This section discusses the choice of the numerical

method and local error estimate. The design of the strateg­

ies is discussed in the following section.

4.3.1 The Choice of Numerical Method

The choice of the numerical method poses a problem

because of the wide variety of methods that have been
proposed over recent years. It is possible to restrict our

choice to methods designed for stiff ODE's because it is
known that the DAE system (1.3.1) is very stiff when there

are relatively short pipes in the network.

For the gas transmission network problem, typically
only low accuracy solutions of up to two significant figures

are required because the initial data and the machine

characteristics are only known approximately. The occurance

of disturbances due to the changes in consumer demand and

the operations of machines means that there are many restart

phases which imposes a severe restriction on the stepsize.

Hence the numerical method selected should be single step

with low order of accuracy so that restarting can be carried

out easily and efficiently.

Multistep methods (e.g. Gear's method) are inappropriate
because frequent restarting means that these methods are very

inefficient. Although GEAR(1980) has recently proposed to

use a Runge-Kutta-like starter to overcome this difficulty,

this new approach is only useful when a high order formula

(for example order 3 and above) is used, for orders less than
3, a fixed-order single step method is more efficient and

easier to implement than the multistep formula.

Lastly, the numerical method chosen must also conserve

the mass of the gas flow. Methods which do not possess this
property, such as the Hopscotch method (GOURLAY(1970», are
not applicable.

67

Because of the restriction on the stepsize, the

obvious choice of the method to be considered is the theta

method which is widely used in practice. The second method

considered is the 3-stage, second order, strongly S-stable
embedded DIRK method discussed in CASH(1979). This method

has a third order formula with a second order one embedded
in it so that the error estimate can be obtained at virtually

no extra cost; although it is the third order solution that
is normally accepted at the end of the step, the error

estimate is only second order and hence it is a second order

process. The extension of these two methods to the DAE

system is given in Appendix D.

Another class of method to be investigated is the

Rosenbrock-type method, given in eqn. (2.3.7), that have

appeared recently in the literature. This class of method

is interesting because it is only necessary to solve linear
systems of equations at each time step. The methods, however,

are usually derived for the autonomous systems and hence it

is necessary to extend these methods to the non-autonomous

case. A suitable method that can be used for this application

is the 2-stage, second order, strongly A-stable method given

in SCRATON (1981); this formula has a "built-in" local error

estimate. As a result of choosing this method, a second

order, strongly A-stable DIRK method using the above Rosenbrock­

type method as a predictor is also considered. The details

of this pair of methods in their usual autonomous form are
described in appendix D. The extension of these methods to

the non-autonomous DAE system (1.3.1) is given in section
4.3.3.

All numerical methods chosen require the solution of
linear systems of equations (3.1.1) with the coefficient
matrix G given by eqn.(3.1.2). It is convenient to refer to

matrix G as iteration matrix throughout this chapter.

4.3.2 Local Error Estimates for DAE Systems

As the local error estimates for the numerical methods

chosen are normally given for differential equations written

in normal form, it is necessary to extend these estimates

in a DAE system.

A thorough discussion on the difficulties associated

with the Solution of DAE system using ODE methods based on
the work of PETZOLD (1981) is given in section 2.5. The main

results arrived from that discussion, using the backward

Euler method, are:

68

i) the usual local error estimate which is assumed to be

proportional to the difference between the predictor

and corrector usually severely overestimates the actual

local error incurred in the DAE system and

ii) the actual local error is of order O(hk) and not O(hk+l)

as assumed in the usual error estimate, where k is the

order of the numerical method employed.

Analysis carried out in section 2.5 shows that for
the DAE system, the actual local error for the backward Euler

method is given by

2
e = G-IE (~ :i" (t;» (4 • 3 • 1)

wher.e h = tn+l - tn and tn ~ ~ ~ t n+l • Following the suggest­
ion given by SACK-DAVIES (1977) , the local error estimate of

the form below is attempted,

(4.3.2)

where ~ is the local error estimate that is normally used for

an ODE system. It has been verified in PETZOLD(198l) that

this new error estimate is of the right order of magnitude

and that it accurately reflects the behaviour of the error

for all backward differentiation formulae.

As the factorization of matrix G is available, the new

local error estimate involves only an additional post multi­

plication by matrix E and a back-substitution. Extensive

tests on the gas transmission network problem have shown that
the new error estimate is much more accurate than the usual
error estimate, and has been incorporated into the numerical

methods described in appendix D.

4.3.3 The Extension of the Rosenbrock-type Method to the

Non-autonomous Systems

69

This section discusses the extension of the Rosenbrock­

type method and its associated DIRK method to the non-autonom­

ous case, in the similar way as is done for the serni-implicit

Runge-Kutta method. We first consider the extension of the

Rosenbrock-type method (D.3.2) to the DAE system (1.3.1) using

the approach suggested in STEIHAUG(1979). The method is given

by

Yn+l = Yn + h b l kl + h b2 ~2

G kl = f· (t - n' Yn) (4.3.3)

G ~2 = f (t
n

+T 2h, Yn + h a2l k l) + h d2lAk
l

where G = E - hdA, T 2 = a 2l and all coefficients are as defined

in section D.3. It can be shown that this formula is second

order for any matrix A and is strongly A-stable when matrix

A is updated at every step. However, the local error estimate

given in eqn. (D.3.4) no longer predicts the actual local error

of the method as accurately as in the autonomous case (PAINE

(1982». It can be shown that the actual local error of

method (4.3.3), in terms of the 'elementary differentials',

is of the form

(4.3.4)

and the error estimate (D.3.4) differs from the above by the

amount 10.061 h3 G- l ~ iii, which is negligible compared

with the first term in eqn. (4.3.4) if "MII« II ~~II .
The method (4.3.3) with the local error estimate (D.3.4)

has been applied successfully for solving the gas transmission

network problem and, so far, no particular difficulty has

been encountered. The reason is that for the DAE system (1.3.1),

ii is simply equal to ~(t) , where ~(t) is the vector contain­

ing the demands from the network. Since the demands are

approximated by either a step or a linear profile (see the

demand profiles in appendix A), ~~ is either equal to zero
or a constant lsi respectively, where lsi is the slope of

the linear profile and is usually less than 10 in magnitude

(since for lsi> 10, a step profile is normally used by the
engineers). In addition, as the DAE system is known to be

stiff, hence \I :f" is large. Thus in this case, the error
• (Y..

est~mate 0.3.4) can still be used to provide an accurate

prediction of the local error.

70

The DIRK method (D.4.1) using the above Rosenbrock-type

method as a predictor can also be extended to the non-autonom­

ous DAE system (1.3.1) as,

(4.3.5)

where c l = d, c 2 = a
21

+ d21 + d and all other coeffiCients

are as defined in eqn.(D.3.3). The method can again be shown

to be both second order and strongly A-stable. The local

error estimate (D.3.4), although not as accurate as in the

autonomous case, can still be shown to be a reliable one for

the DAE system (1.3.1).

In summary, the Rosenbrock-type method (D.3.2) and

its associated DIRK method can be extended quite naturally

to the non-autonomous case without affecting the order and

stability characteristics of the methods. However, the local
error estimate which was originally derived based on an

autonomous system will not, in general, be an accurate estimate
of the local error of the method; it has been found to be an
accurate one for the DAE system (1.3.1) because the system is

only mildly nonlinear with respect to the independent variable

t. Hence when the method is to be employed for solving a
general non-autonomous system, either a better local error

estimate should be found or the system be transformed into

the autonomous form.

4.4 The Strategies Used in the Integration

In this section, the strategies used in solving the

DAE system (1.3.l) are discussed. The general approach is

to use normal variable-step integration with local error

control (referred to as normal phase) everywhere except in

the region immediately after a disturbance in the gas flow

(restart phase) •

71

A number of the strategies described in this section

have been determined after extensive numerical testing. This

is common in the design of integrators where it is very

difficult to determine and justify the strategies theoretically.

4.4.1 The Normal Phase

Because the strategies for the implicit and Rosenbrock­

type method are rather different, they are treated separately.

, 4.4.1.1 Strategies for the Implicit Methods

An integrator based on implicit method requires the

solution of systems of nonlinear algebraic equations at each

time step. These equations are solved using the modified­

Newton method discussed in section 2.2 with the iteration

matrix G given in eqn.(3.l.2}.

The usual strategy employed in most ODE codes when

the iteration fails to converge satisfactorily is first to

update the Jacobian matrix and if it still fails to converge

satisfactorily,'to reduce the stepsize. This strategy is

successful for the ODE systems in normal form because by

reducing the stepsize, a more accurate initial prediction for
the Newton iteration is obtained and the conditioning of the

iteration matrix is improved (as h ~ 0, the iteration matrix

tends to the identity matriX for an ODE system).

The situation, however, is quite different for a DAE

system. As discussed in section 2.5, convergence of the

72

modified-Newton iteration is not ensured simply by reducing

h. Furthermore, the iteration matrix tends towards the
matrix E as the stepsize is reduced. Since the matrix E is

singular, the iteration matrix will become more and more

poorly conditioned as the stepsize is reduced which can cause
the iteration to diverge. Hence the reduction of stepsize

should only be carried out as a last resort.

In addition, the usual ODE strategy is unsatisfactory
because for highly nonlinear systems, it is likely that after

a few iterations, the solution will have changed so much that
the iteration matrix becomes out-dated. Hence there is

advantage in updating the iteration matrix even when it has

already been updated at the current stepsize. The reduction

of stepsize is considered only when repeated updating of

iteration matrix fails to resolve the problem.

A new strategy is therefore needed which takes into
account the nonlinearity of the problem without updating the

iteration matrix too often. It has been found in practice

that the best compromise is to update the iteration matrix

,for a maximum of three times in anyone step before the step­

size reduction is considered. This simple modification has

been found to be very efficient and robust for solving the

gas transmission network problem.

Numerical experience in solving the gas transmission
network problem has also revealed that the codes are very

sensitive to changes in stepsize. Too frequent or too excess­
ive change in stepsize usually causes the code to fail un­

necessarily and should be avoided. Furthermore, the local
error estimate (4.3.1) is only of order O(hk) and not O(hk+l) ,

where k is the order of the method employed, hence a more

conservative stepsize strategy should be used. For low order
methods, it has been found to be more satisfactory to halve

and double the stepsize rather than using the more formal

formula of the form hnew = hOld (EPS/ II !n+lll)l/k for estimating

the stepsize h.

In the light of the above discussions, two sets of

strategies have been devised for the implicit methods. They

are given by:

73

The strategies for the solution of implicit system of equations

i) Predict the initial estimate for the modified-Newton

iteration using the current stepsize hi
ii) carry out one modified-Newton iteration and compute

the rate of convergence rc(see Section 2.2.1) i

iii) if r > 0.5 c

then if NMAT < 3

then update the iteration matrix and go to step ii)

else halve the stepsize and go to step i);

where NMAT is the number of times the iteration matrix

has been updated using the stepsize h at the current

iteration;

iv) the iteration is terminated when the iteration correct­

ion II !!(m) II is less than the error tolerance; otherwise

repeat step ii).

The strategies for step acceptance and stepsize selection

i) if II !n+lll > EPS, the step is rejected and the stepsize
is halved;

ii) if 0.15*EPS!> 11!n+lll !> EPS, the step is accepted and

the same stepsize is used for next step;

iii) if II.Enrlll < 0.15*EPS, the step is accepted; the step­

size is doubled provided that at least three successful

steps have followed the last change in h;

other stepsize strategies have also been considered and the

one given above was found to be the most efficient for solving
the gas flow problem.

Lastly, the iteration matrix is also updated when there

is a change in stepsize or when the same iteration matrix has
been used for more than 25 steps.

4.4.1.2 The Strategies for the Rosenbrock-type Method

The advantage of a Rosenbrock-type method is that it
is only necessary to solve linear systems of equations at

each time step. However, the method is rather difficult to

implement because it is difficult to decide when to update

74

the iteration matrix G. Since it is inefficient to recompute

the iteration matrix after every time step, a strategy is
required to decide when it is advantageous to update it.

Several strategies have been attempted; the best of which

is described below.

Numerical experience has shown that most of the

iteration matrix updatings for the Rosenbrock-type method
are carried out due to changing stepsize and step failure.

With the discussions in section 4.4.1.1 in mind, a more

conservative stepsize strategy is devised in an attempt to
minimize the number of step failures and iteration matrix

updatings. Th~ same stepsize strategy as the one proposed
in the previous section is used and the iteration matrix is

updated when

a) there is a change in stepsize;
b) the same iteration matrix has been used for more than

15 steps or

c) "!n+l ll > O. 85*EPS

'The above strategy for updating the iteration matrix results

from extensive numerical testing and is based on those employed

in STElHAUG(1979) and SCRATON(198l).

Lastly, since the method is only linearly implicit, it

is sometimes unsatisfactory for handling the nonlinear algebraic
equations that may appear in the DAE system. The nonlinear
algebraic equations arise when the machines are operating on

nonlinear constraints such as the compressor horsepower con­
straint (see eqn.(B.3.2». These equations can be solved

satisfactorily by the method under normal operating condition.

However, when there is a severe disturbance in the gas flow,
then the method has difficulty in handling these equations;
this is because a large number of iterations is normally
needed to ensure the convergence of these equations.

Thus when implementing the method, it is also necessary
to check for the convergence of the nonlinear algebraic equat­
ions at the end of each step. The ith nonlinear algebraic

equation is considered to be converging satisfactorily when,

75

(4.4.1)

where Yi = MAX(l.O,· Iy. I); ~. (y) is the ith nonlinear algebraic
].].

equation in the DAE system and Yi is the corresponding compon-

ent in the solution vector. If any of these equations have

not converged satisfactorily, then the step is repeated using

the implicit method. A suitable method that can be used for

this purpose is the DIRK method (D.4.1). The problem of non­

convergence often occurs during the first step of the restart

phase when the solution is changing rapidly.

The implementation of this method into a variable-step

integrator is discussed in appendix E.

4.4.2 The Restart Phase

The strategies for the restart phase are independent of

the particular numerical method that is used in the integration.

They arise out of the analysis given in section 4.2 and

numerical testing.

4.4.2.1 The Detection and Location of the Disturhance

Before the restart phase can be initiated, the distur­

bance must be located. Any disturbances that occurs due to

the changes in consumer demand

the simulation, hence they can

time events (see section 2.4).

are known at the beginning of

be handled qUite easily as

The switching of machine
operating constraints, however, corresponds to the state events;

they are more difficult to handle and an extension of the

procedure outlined in CARVER(1978) is employed.

Associated with each type of machine is a set of

constraints which defines the operating limits of the machine.

These machines are modelled using the algorithm outlined in

section 1.3. Briefly, the algorithm initially selects an
appropriate set of operating constraints for the machines so

that the rest of the machine constraints are satisfied. During

the simulation, a machine switches its operating constraint if

76

one or more of its other constraints are violated,and the

constraint which is violated by the greatest percentage is

chosen as the new operating constraint for the machine. To

detect and locate when the change in machine operating con­

straint takes place, the constraint functions for the machines

are defined. A suitable constraint function takes the form,

Y m, j (4.4.2)

where Cj (t,~) is the value of constraint j for the machine
m .

m at time t, and oJm is its extreme value. For example, when

machine m has constraints on the maximum outlet pressure and

maximum flow, then the required constraint functions are

given by

= Pmax - Po (the maximum outlet pressure constraint)

= (the maximum flow constraint)

where Po and Qm are the outlet pressure and flow of

machine m respectively, and Pmax ' Qmax are their corresponding
extreme values. In this case, the machine m switches its

operating constraint when one of the ~jm's becomes negative.

At the end of each successful step, the constraint

functions for the machines are computed. Changes in machine

operating constraints are readily detected if one of the ~'s

changes sign over the interval h. Given that

q)m (t, ~n) . q,jm (t+h, l.n+l) < 0, the interval code based on
the bisection method and rational interpolation (BUS(1975»

can be used to compute a new stepsize h* which renders

q,jm (t+h *, ~*) = 0. If more than one such h * exists for

different machines, the smallest one is chosen as this corres­

ponds to the next state event to occur.

To avoid extra function evaluations, only the pre­

dicted solution is used in the location process. This means

that the disturbance is only located approximately. This is
consistent with the idea of suspending the error control during

the restart phase.

77

4.4.2.2 The Detailed Strategies for the Restart Phase

Once a disturbance has been located, the integration

must be restarted with the new machine operating conditions

and demand flows. During the restart phase, the error control

in the solution is suspended; this enables a larger time step

to be used in this phase than if the normal phase were

enforced.

A suitable stepsize must first be computed for the

restart phase. The stepsize chosen must be such that the

error in the numerical solution will decrease at each step.

It is dependent on the severity of the disturbance and the

stiffness of the system at that instance. Following DEW(1978),

an estimate of the stepsize is given by,

= RESC*/EPS/ II ill (4.4.3)

where EPS is the user requested error tolerance, i is the

updated right-hand function of (1.3.1) and RESC is a parameter

depending on the particular numerical method used. Since

,this formula was originally derived for the first order backward

Euler method, it is likely that it underestimates the stepsize

that can be used for the higher order methods. To overcome

this problem, a larger RESC value is used for the higher order

methods. The suitable values of RESC for the numerical methods

chosen are given in Appendix D. These values can be reduced

quite easily if a more detailed solution is required during

the restart phase.

In practice, it is necessary to limit the stepsize

that can be used, i.e.

hR ~ h max (4.4.4)

where hmax is introduced to improve the efficiency of the

restart strategy. It has been found from numerical experiment

that a suitable value of hmax is 0.2 hours for the typical 24-

hour simulation. Again, this value can be reduced if a more

detailed solution is required during the restart phase.

78

A constant step method is used throughout the

restart phase. The same set of strategies (apart from the

stepsize strategies) given in section 4.4.1 is used to

implement the method. The only exception is that a slight

modification to the modified-Newton strategy is made. The

usual modified-Newton strategy is to update the iteration

matrix whenever the rate of convergence is slow (see section

4.4.1.1); this, however, is unsatisfactory for the restart

phase where the solution is changing rapidly. The reason is

that the initial prediction for the modified-Newton iteration

is likely to be unreliable and hence many iterations will be

needed. Thus in order to avoid updating the iteration matrix

too soon or too often during the restart phase, it has been

found to be necessary to perform at least 5 modified-Newton

iterations at the beginning of each step, before the updating

of iteration matrix is considered.

To make the restart phase robust, a check is made to

see if the local error in successive steps have decreased in

magnitude and that the modified-Newton iteration is converging

satisfactorily (i.e. within 3 updatings of the iteration matrix

in a step~ If either of the above is not satisfied, a retry

is carried out from the beginning of the restart phase by

reducing the stepsize by a factor of 5.

The normal local error control is re-commenced when

the global error estimate is less than the required error

tolerance providing a minimum of 2 steps have been taken.

The last condition was found necessary to ensure that the

method is stable and that the transfer from the restart to

normal phase is smooth. Numerical experience on both large

and small networks has shown that the restart phase is normally

terminated in less than 5 steps.

4.5 Further Enhancements

As a result of the experience gained in solving the

DAE system (1.3.1) using a variable-step integrator, two

possible enhancements in this area can be recommended.

A) The Iteration Matrix G for the DAE System

As stated in section 4.4.1, the implementation of a

numerical method for solving the DAE system of the form

(1.3.1) requires the solution of linear systems of equations

of the form

79

G w = r (4.5.1)

where G = E-h8A, (4.5.2)

w contains the required iteration correction vector or the

intermediate solution, and r is the known right-hand side

vector; all other variables have their usual meanings. The

use of matrix G in the above form, however, will lead to the

,problem of ill-conditioning as h tends to zero because the

matrix E is singular for a DAE system.

To overcome this difficulty, a simple modification as

suggested in BERZINS (1981) can be used. By separating the

equations that correspond to the algebraic eauations in the

DAE system from the rest of the equations, the system (4.5.1)

can be partitioned into the form,

Edd - h8Add

-h13A ad

-h8A da

-h13A aa w -a
= (4.5.3)

where subscripts d and a denote the components relating to

the differential and algebraic equations in the DAE system

respectively, and the matrices E and A are correspondingly

partitioned. As the vector ra usually contains a factor h,
we can therefore divide its corresponding equations (i.e.

those equations that correspond to the algebraic equations

in the DAE system) by -hl3, and the resulting matrix G becomes,

-hBA da

80

G = (4.5.4)

A' ad A aa

Thus, the new iteration matrix will not give rise to the

ill-conditioning problem as h tends to zero, providing that

the submatrices Edd and Aaa are well-conditioned. This
modification will be particularly advantageous to the Rosenbrock­

type method as the method is very sensitive to the conditioning

of the matrix G.

B) The Consumer Demands from the Network

The demands from the network are normally approximated

by using a step function as shown in fig. (5.4). The use of a

step fUnction means that the problem is discontinuous and, in

general, a restart strategy is needed to handle these discon­

tinuities efficiently. The use of the restart strategy is

necessary for handling large, severe changes in demand. How­

ever, for a demand profile containing a series of small step

'changes, as shown in part of fig.(4.5.l), the need to restart

the integration at every demand changes will affect the per­

formance of the variable-step integrator considerably.

"

Fig. (4. 5.1) The Demand Profile

The new demand
profile

Time

81

By using the idea employed in some parabolic codes

in smoothing out the initial conditions, we can instead approxi­

mate the step profile by a continuous function by using, for

example, the spline technique. An example of the new demand

profile is shown in the dotted lines in fig.(4.5.l).

By smoothing out the sharp edges of the step profile,

it is hoped that for a series of small demand changes (for

example, between time tl and t2 in fig. (4.5.1», the new profile

will be sufficiently smooth to enable the variable-step integ­

ration to be used throughout without having to initiate a

restart phase. Furthermore, the new profile is a more realistic

representation of the actual demand changes because in practice,

a short time lag is needed before the demand value can be

changed.

· CHAPTER 5

5. THE NUMERICAL TESTINGS AND RESULTS

5.1 Introduction

5.2 The Nl~erical Testings

5.3 The Large Scale British Gas Transmission
Network

82

83

CHAPTER 5

5.1 Introduction

Four integrators have been developed based on the

strategies described in the previous section. The numerical

methods used in these integrators are:

i) the theta method (0.1.1);

ii) the Rosenbrock-type method (4.3.3);

iii) the DIRK method (4.3.5) with the above Rosenbrock­

type method as a predictor and

iv) the second order, strongly S-stable embedded DIRK

method (0.2.1).

The corresponding integrators developed are referred to as

THETA, ROSEN, RDIRK and EDIRK respectively. The details on

the implementation of these integrators together with the

code of integrator ROSEN can be found in appendix E.

A number of test networks supplied by British Gas

·are used to illustrate the reliability and accuracy of the

integrators. The numerical results obtained from these

integrators are compared with those obtained from the Leeds/

PAN program. Leeds/PAN is based on a constant-step theta­

type method as described in section 1.5; it has been tested

against the original PAN program and has been found to be

reliable. A 'multi-running technique' is used to establish

thestepsize to be used for the Leeds/PAN program in order to

obtain a reliable solution. In this technique, a series of

solutions is computed by successively reducing the stepsize

until the solutions obtained from two successive stepsize are

equal to within a specified accuracy tolerance. This technique

is a rather tedious but is normally a safe and reliable mean

of obtaining the accurate solution. The solution obtained from

PAN in this manner can therefore be used as a basis for testing

the variable-step integrators.

A set of simple test networks is first used to test

the ability of each integrator to handle the types of severe

84

disturbances that would normally arise from the simulation

of a gas transmission network, and to ensure that the

numerical methods employed conserve mass. The integrators

are then tested and compared using a number of large and

realistic transmission networks; the results of the compari­

son are given at the end of the chapter.

5.2 The Numerical Testings

In the initial testing, four simple test networks are

chosen. They are used to test the integrators on different

aspects of the simulation. The first network is a simple

network as shown in fig. (A.l); it contains a sudden, severe

step change in the demand profile and is used to test the

ability of each integrator to handle large demand changes.

The second network (see fig. (A.2» contains a compressor

which shuts off at the beginning of the simulation; this tests

the capability of the restart strategy to cope with the dis­

turbance generated by the operation of the machine. The

ability of the integrator to handle frequent and linear changes

in demand are tested using the network given in fig. (A.3).

This network has a varying demand profile as shown in fig. (5.3)

attached to the demand node. For this test, it can also be

seen that the total inflow of gas at source over the l2-hour

period of simulation is equal to the total outflow at the

demand node. Hence by the law of conservation, the total

amount of gas stored in the network (referred to as linepack)

must be conserved and in particular, the linepack should be

the same at the end of the simulation as it was at the beginning.

Thus this test network can also be used to check whether a

numerical method conserves mass. Lastly, to complete the

initial testing, a more complicated network as shown in fig.

(A.4) is also used. This network consists of five machines

which have both linear and nonlinear constraints, and a varying

demand profile at the demand nodes; the machines change operat­

ing constraints many times during the 24-hour period of simulat­

ion. It is used to test the robustness of the integrators in

85

handling nonlinear operating constraints (i.e. nonlinear

algebraic equations) and other important types of disturbances

normally encountered in a large scale gas transmission net­
work.

To facilitate comparison, the results obtained from

the integrators and the Leeds/PAN program are plotted as

shown in figs. (5.1)-(5.4) for networks (Al)-(A4) respectively.

The graphs show the variation of pressure against time over

the whole period of simulation for the node where the largest

changes in pressure takes place; the actual pressure, instead

of the difference in pressure between the programs, is plotted

in order to provide an overall view on how the solution is

changing with the disturbances. Three sets of results at

different stepsizes for the Leeds/PAN program are included

for each test. This demonstrates how the PAN solutions are

converging and provides an indication on the accuracy of the

results obtained from the variable-step integrators. Because

the results obtained using each of the variable-step integrators

differed only by a maximum of 0.5 pSi, in order to avoid

complicating the graphs, only the results of one integrator

are included. The accuracy tolerance of 0.sE-2 is used for

the variable-step integration.

From the graphs, it can be seen that the results

'obtained from the Leeds/PAN program converges to those of

the variable-step integrators as the stepsize is reduced. This

clearly demonstrates that the integrators are both accurate

and reliable. The results of network A4 also indicate that

the integrators are able to handle DAE systems with highly

nonlinear algebraic equations and containing a large number

of disturbances.

Because the test networks considered in this section,

except network (A4), are very small and simple, it would be

unrealistic to compare the relative efficiency of the variable­

step integrators on these networks as the result of the compari­

Son does not necessarily apply to the large scale transmission

networks that we are interested in. Instead, the efficiency of

the integrators are compared in the next section using three

large, realistic transmission networks.

86

1.2 THE DEMAND PROfILE - PROfl

1.0

0.8

0.6

0.4

0.2

0.0 ~------~------~------~------~------~------~------~----~

~.2

11

9

8

7

6

5

4

3

2

a o -...
en
a.

0.5 1.0 1.5 2.0 2.5 3.0 3. 5 4.0

T I ME (HOURS)

PRESSURE VS TIME PLOT
FOR NETVORK-Al AT THE DEMAND NODE

• VAR-STEP NTH (EPS",O. SE··2)

PAN, H::: 0.02

PAN, H::: O. OS

PAN, H= O. 10

•

TIME (HOURS)
L-______ ~ ______ L_ ______ L_------~------~------~------~----~

0.0 0.5 1.0 1.5 2.0 2.5 3. 0 4.0 3. C;

Fig. (5 . 1)

I"Ij
1-"

I.Q

U1

N

8.0

PRESSURE YS TIME PLOT

7.5
FOR NET~ORK A2 AT THE DEMAND NODE

7.0

- "'\ ----·--7.-'
COMPRESSOR --<\-

6.5

6.0

5.5

5. 0 ~

4. 5 ~

4. 0

a o

*
Cf)
a.

UJ
cr
=>
(/)
Cf)
UJ
a:
a.

0.0

SHUTS OFF HERE ,. , -'.
>1\, "-

~'\ ",

~ -.
;-. ,

oA\. '
~ .

~'--
.. '
'\.- -
~. --,

"" ~
~.
~

"'" .. " ,.

'" VAR-STEP MTH (EPS=0.SE-2)

PAN, H= O. 02

PAN, H= 0.05

PAN, H= O. 20

O. 5 1.0 1.5 2. 0

~. ,--.
"\~

-".
-.;;:;- .

..... '"
"'"'

2. 5

'"
-:::::. '" --:;. ...

--..:: :::::..
~ ~-.--~-----

3. 0

-..' -:::::. -..--- --:;. ...
--..:: ...
.--~ ---'"' ... --.-

T I ME (HOURS)

3.5

"'" .

4.0
co
-....)

88

2.0
THE DEMAND PROFILE - PROF3

I. a

1.6

I. "

1.2

1.0 1----./

O. II

0.6

O. 4

0.2

0.0 ~_~ ___ ~ __ ~ __ ~_~ ___ ~ __ 4-____ ~_-4 __ ~ ____ 4-__ ~

-0.2
7 II 9 10 11 12 14 IS 16 17 Ie

-0.4 TIME (HOURS)

so PRESSURE YS TIME PLOT
FOR NETVORK-A3 AT THE DEMAND NODE

45

40

3S

30

25

20

15

• VAR-STEP NTH (EPS=Q 5E-21

10 PAN, H= 0.02

PAN, H= O. 05

5
PAN, H", O. 10

o
7 II 10 11 12 13 14 IS 16 17 Ie

T I ME (HOURS)

Fig. (5.3)

89

2.5
THE DEMAND PROfILE PROf4

2.0

I.S

1.0

o.c;

0.0 ~---4----~----~----~--~~---+----~----+---~~---+----~--~

~. 5

10

9

e

7

6

5

4

3

2

o

u.:
0::
::l
(/")
(/")

u.:
0:: a..

e

e

10 12 14 16 18 20

PRESSURE YS TIME PLOT
fOR NETVORK A4 AT THE NODE 2

.. VAR-STEP MTH (EPS=O. SE·-2l

10

PAN, H= 0.05

PAN, H= 0.10

PAN, H= 0.50

12 14 16 16 20

Fig. (5. 4)

22 24 26 26 :50

T I HE (HOURS)

•
26 28 30

T J ~lE (HOURS)

90

Finally to test the conservation property of the

numerical methods used in the integration, the changes in

linepack (where linepack is the amount of gas stored in the

network) for network A.3 are also considered. They are

listed in Table 5.1 which gives the relative change in line­

pack at the end of the simulation compared with those at the

beginning, for the integrators and the Leeds/PAN program at

different stepsizes. The table again shows that the differ­

ence in linepack computed by the Leeds/PAN program reduces

as the stepsize is reduced, and that the integrators produced

a very small difference in linepack which is well within the

user requested error tolerance of 0.5 E-2. Of all the four

integrators considered, the integrators RDIRK and EDIRK are

found to perform extremely well in linepack conservation and

can be chosen to carry out linepack calculation.

Final Linepack Relative change in

Method (mscf)
I LPf -LP.

LP
f

Linepack = LP. l.

l.

Leeds/PAN -2
h = 0.1 hour

58953 0.117 x 10

Leeds/PAN
x 10-3

h = 0.05 hour
58919 0.594

Leeds/PAN
10- 3

h = 0.02 hour
58898 0.238 x

THETA 58869 0.255 x 10-3

ROSEN 58865 0.323 x 10- 3

RDIRK 58882 0.340 x 10-4

EDIRK 58886 0.340 x 10-4

where the initial linepack LP. = 58884 msef and the error
l.

I

tolerance used in the variable-step integration is 0.5 E-2.

Table 5.1 The Change in Linepack for Network A3.

91

Other tests on linepack conservation have also been

carried out and similar conclusions were obtained. We can

therefore conclude that all numerical methods considered

conserve mass.

5.3 The Large Scale British Gas Transmission Networks

Having established that the integrators work on the

set of simple test networks, it is now necessary to test

the integrators using some larger and more realistic networks.

Three such networks of varied sizes and complexities provided

by British Gas are considered. The first two networks are the

regional networks and the third one is a version of the

National Transmission Network used in British Gas. The sketches

of these networks are given in figs. (A.5)-(A.7) with their

details being summarised in table 5.2. These networks are all

very complicated with varying demands (for example, those

given in figs. (5.3)-(5.4» and machines that change operating

constraints frequently throughout the simulation.

The same test procedures as those carried out in

section 5.2 are used to check the reliability of the integrators

on these networks. For illustration, the graphs of the pressure

against time for the demand node where the solution changes

rapidly are given in figs. (5.5)-(5.7) for networks (A4)-(A7)

respectively; the accuracy tolerance of 0.5E-2 is used in the

integrators to produce the results. The graphs again show

that the results obtained from the variable-step integrators

are both accurate and reliable.

Further tests also carried out on the variable-step

integrators using a higher accuracy tolerance (EPS) of 0.5E-4.

The tests showed that more than three times the amount of CPU­

time was required to compute the numerical solution compared

with the case when EPS=0.5E-2. However, only a slight improve­

ment in the accuracy of the solution of up to 0.5 psi for the

pressure variables was obtained. This is insignificant for

most engineering purposes because the initial data and the

machine characteristics are only known apprOXimately. It

8. 75

8. 70

8.65

8.60

8.55

8.50

t-rj

8.45 f ~
I.Q

VI
8. 40 0-.

111

8.35 L ~
tJ)
UJ
a:

8. 30 I
0-

8. 25

8.20

8.15

8. 10
L

0

PREssuRE YS TIME PLOT
FOR NETWORK-AS AT A DEMAND NOPE

" t" ~ t")':. "I
t .!- t

\. • VAR-STEP MTH (EPS=O.5E-2) I \.
,... PAN, H= 0.10 "

'-" PAN, H= O. 20 fl ,
~}.;"'" PAN, H= O. SO I ,.~.

~,..,I ~~

'" jf i

2 4 6

~. ,:ft'
~" :~

8

~. ~
,. '1

~···"I
,.~.. /

10

~'. ~
"'-'" T· ~. .

~'" ~,
, f'

12

~- --'" --. i
~~...:.

14 16 i8

T! ME (HOURS:

20 22 24 26 28 ,SC,
\D
IV

~
~.

..0

U1

C'I

5.6 PRESSURE VS TIME PLOT
FOR NETVORK-A6 AT A DEMAND NODE

5.4
a
0 -•

5.2 ~ ~

,.. ·"t ..
~ ,.. ,
' ~. " ~ \. I

5.0

4. B

4.6

4. 4

4.2

4. 0

3.8

o

w
a::
=>
CJ')
CJ')
w
a::
a.

! \ !
• r I.. . 1 .~_

1 -
1 '-'-- r

/ \ I ~ 'f I . VAR-STEP MTH (EPS=0.5E-2l \ I
! PAN, H= O. lO '\" of

PAN, H= 0.20 '- d
PAN, H= O. 50 ~.

T I HE (HOURS)

2 4 6 8 ;0 12 14 J6 J8 20 22 24 26 28 30
1.0
W

'"'l
..a

V1

-....J

8. S

8.4 ...

8.3 ...

8. 2 ~

8. 'I ...

8.0 ...

o

"'~
(. \l·

~ \:
.... '~.
r' '.~ ,: ',.
~' .
t '\:.

PRESSURE YS TIME PLOT
FOR NETVORK-A7 AT A DEMANP NODE

t' -{' •
...... --..... ~~~

"" "'''''' " " .. "

--..... "" ,,- "" "" " I

t
l'~
t .,
1'\ :

• VAR-STEP MTH (EPS=0.5E-2)

PAN, H= 0.10

\"

PAN, H= O. 20

PAN, H= 0.50

'-)..
,~

'~''-:~

TIME (HOURS)
i

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
\D

*'"

therefore shows that more stringent accuracy tolerance is

not necessary for the gas transmission network problem.

95

To measure the efficiency of the variable-step

integrators, a summary of the statistics required to compute

the solution using the accuracy tolerance of 0.5 E-2 is given

in Table 5.3. The statistics include four components for

measuring the cost of solving the problem; they are used in

ENRIGHT (1975) for comparing the numerical methods for stiff

ODE's. These components are the number of steps taken to

compute the solution, NSTP; the number of function evaluations,

NFUN; the number of iteration matrix updatings and factorizat­

ions, NMAT and the amount of CPu-time used, CPUT. The test

criteria discussed in ENRIGHT (1975) are used as the basis for

the comparison.

From table 5.3, it can be seen that substantial saving

in computing time can be achieved by using the variable-step

integrators as compared with the Leeds/PAN program. In assess­

ing the efficiency of the integrators, one must also remember

that they return reliable solution to the required accuracy.

The table also shows that the integrators RDIRK and

EDIRK are less efficient than integrators THETA and ROSEN on

all three networks considered. As integrators RDIRK and EDIRK

require to solve 2 and 3 systems of nonlinear algebraic equat­

ions respectively at each time step, considerably more computat­

ional effort are needed for these integrators compared with

THETA and ROSEN at each stage of the solution; however, because

of the severe restriction on the stepsize, a larger time step

cannot be used for these integrators and hence a longer solution

time is needed. This is reflected in table 5.3 by the large

number of function evaluations required by these integrators

compared with THETA and ROSEN. The above observation suggests

that higher order methods (for example order 3 and above) are

not suitable for this application.

The integrator ROSEN generally requires fewer number

of iteration matrix updatings than integrator THETA on the

networks considered, however, more function evaluations are

required. Their performance are very similar in terms of

96

No. of , No. of No. of No. of Pericrl of
Network rxXies machines danands unknown simulation

variables (hours)

Network A5:
the reqional 57 15 40 72 0-30
network

Network A6:
the north-west 103 13 100 116 0-30
super grid

Network A7:
the national 158 20 106 178 0-30 grid -

(sma.ller. t) versJ.on

Table 5.2 Details of the test networks

METHOD Network A5 Network A6 Network A7
NSTP /NFUN,/NMAT/CPUT NSTP /NFUN,/t'Ma';cpur NSTP /NFUN/NMATPur

THETA 119/236/ 48/ 7.5 136/272/ 57/11.4 124/276/ 63/27.0

roSEN 104 /345 / 42 / 7.4 147 /432/ 37/12.5 122/409/ 44/24.9

RDIRK 102/565/ 42/ 9.1 140 /673/ 36/15.5 120/660 / 48 / ~.9

EDIRK 104/650 / 39/10.4 128/635/ 40 /16.9 114/725/ 54/36.3

Leerls/ 291/291/291/24.6 291/291/291/23.4 291/291/291/74.1 PAN*

where NSTP - number of steps attempted;

*

NFUN - number of function evaluations;

NMAT - number of iteration matrix updatings (and
factorizations) and

CPUT - CPU-time used in seconds on the Amdahl V7
computer at the University of Leeds.

The performance profile of Leeds/PAN is obtained by

using the stepsize which gives a solution of comparable

accuracy to those computed by the variable-step integ­

rators (see figs. (5.5) - (5. 7» •

Table 5.3 - The Performance Profile of the Integrators

CPU-time with integrator ROSEN slightly more efficient than

integrator THETA on the National Transmission Network (A7).

We can therefore conclude that the theta method and the

Rosenbrock-type method appear to be equally efficient and

reliable in solving the gas transmission network problem.

97

Since the basic assumption in this work is that the

gas transmission network model is parabolic in nature, it

seems sensible to select a numerical method which reflects

this. Because the stability property of the Rosenbrock-type

method is more appropriate than those of the theta method

for a parabolic problem, the Rosenbrock-type method can be

recommended for general use.

For specific application on the calculation of line­

pack in the network, however, the results in section 5.2

indicate that integrator RDIRK is more suitable.

98

CHAPTER 6

6 THE CONFLICTING CONSTRAINTS PROBLEM

6.1 Introduction

6.2 The Gas Flow Model

6.3 The Dual Extremum Principles

6.4 A Variational Inequality Model

6.5 The Implementation

6.5.1 The Scaling of the Constraint Matrix

6.6 Testing and Results

6.7 Further Enhancements

6.1 Introduction

The simulation of a gas t!.-ansmission network involves

the solution of a large system of nonlinear differential

equations subject to a set of inequality constraints. The

constraints model the operating limits of the machines and

examples of these constraints can be found in appendix B.

99

As it is very difficult to deal with inequality con­

straints, a simple algorithm based on constraint modelling is

used in PAN to model the machines in the network. Essentially,

the algorithm replaces the set of inequality constraints with

a smaller set of algebraic equations by assuming that for each

machine, one of the constraints (referred to as the operating con­

straint) is actually equal to its extreme value. This gives rise

to a set of differential/algebraic equations which can be

solved efficiently using a variable-step integrator. It then

checks for the rest of the machine constraints; if any is

violated, then the corresponding operating constraint of the

machine is changed to the violated one. A new solution is found

and the process is repeated until there are no violations.

This algorithm is very easy to implement and is employed

in many network analysis programs, for example, PAN, GANESI

and WYLIE(1974). However, there are two fundamental drawbacks

to this algorithm. First of all, it only tackles the problem

locally by replacing the operating constraint of the machine

by the violated one, without taking into account the effect of

this on the overall solution of the problem. Secondly, it

requires the machines to operate at one of its constraint

values at all times and thus severely limits the feasible region

of the solution. Because of these difficulties, the algorithm

is not very robust and for certain networks, it fails to obtain

a feasible solution. The problem is referred to as the

"conflicting constraints problem". This problem occurs more

often during the steady state analysis than the time-dependent

solution, because the former has a further restriction on the

solution that the continuity of the flow at the nodes must be
satisfied exactly.

To illustrate the conflicting constraints problem,

consider a simple test network as shown in fig. (G.l.l).

This network consists of two sources, each feeding through a

compressor, supplying to a common demand point. The network

is symmetrical about the demand node.

Scurce 1 Canpressor 1 d = 8O,COO Canpressor 2 Source 2

[>.. jO: l 70' .<]
v V

I \ -v J

100

OP =980 I OP = 1,a:xJ II OP =950 III OP =900
EW = 40,a:xJ FW = 40 ,COO

Note - see appendix A for the meanings of the symbols used.

Fig.{G.l.l) - A Test Network with Conflicting Constraints

Problem

By deleting the machines, the network can be separated

into three components, I, II and III as shown in fig.{G.l.l).

F~r steady state analysis, the pressure must be defined at at

least one node in each network component so that the problem

is well defined. This means that the two sources and at least

one com~ressor must operate on their maximum outlet pressure

constraints. Because of the difference in the compressor out­

let pressure constraints, it can be seen that the gas flow

from the left of the demand node will be greater than the flow

from the right. Thus, in order to meet the demand, source 1

would have to violate its flow constraint. As the source

cannot be switched to operate on flow constraint for this

problem, the simple algorithm would break down and fail to

find a feasible solution.

For this simple network, it can be easily deduced by

symmetry that a feasible solution can be obtained by lowering

the outlet pressure constraint of compressor 1 to 950 psi.

However, for more complicated networks with a large number of

machines, it is not normally possible to adjust the constraints

in this way. In general, a mathematical programming approach

is needed to decide which machine is to operate within its

constraints, rather than on one of them.

British Gas have recently developed an optimization

program based on linear programming (PRATT(1982)) which can

101

be used to overcome the above problem. This chapter considers

an alternative formulation of the gas flow problem into a

variational inequality model for resolving the conflicting

constraints problem; a rigorous mathematical theory based on

the dual extremum principles (NOBLE(1972)) is used in the

formulation.

6.2 The Gas Flow Model

In order to facilitate later discussions and to define

the notations used throughout this chapter, the basic gas

flow equations are summarised here. The derivation of these

equations can be found in appendix B.

The gas flow and pressure along a pipe is modelled by

the momentum and continuity equations in the standard manner

and the resulting partial differential equations are discret­

ised in the spatial variable using finite differences or the

finite element method. This gives rise to a set of stiff

ordinary differential equations (ODE's) of the form given in

eqn.(B.4.4) which can be solved using a stiff integration

method. The nonlinear equations that result from numerically

solving the ODE's are solved by the modified-Newton method

which in turn gives rise to two sets of algebraic equations

of the form (see section B.5) .

+ + = .el (6.2.1)

+ = (6.2.2)

where ~ is a vector containing the unknown pressures at the

machine nodes, Q denotes the set of pressures at the other - -
network nodes and g is a vector containing the unknown machine

flows. The vectors .el and .e2 are the known right-hand side
quantities which include the demands from the network. The

matrices Zij'S denote the connections within the network; the

matrix formed by the Z .. 's
1)

=

is symmetric and positive-definite. The matrix Kr is the

flow incidence matrix of the machine inlet nodes, and is

defined as

102

= 1 if t is the inlet node of machine k (6.2.3)

and = 0 otherwise.

Similar sets of equations can also be obtained for the steady

state analysis.

Eqn. (6.2.2) relates to the machine outlet nodes and

eqn. (6.2.1) corresponds to the other network nodes. Equations

(6.2.1) and (6.2.2) are essentially the same as those given
in eqn. (3.2.1) except that a different partitioning of the

unknown pressures at the nodes is used. This is to facilitate

the derivation and implementation of the optimization model

described below, where the set of machine outlet pressures,

!, will be used as the controllable variables (the set of

variables that can be adjusted during the optimization in

order to obtain an optimal solution) in the optimization

process.

The solution of eqns.(6.2.l) and (6.2.2) must also

satisfy the operating constraints for the machines in the net­

work. These machine constraints are modelled using a set of

inequalities which has the general form (see fig. (6.2.1»,

~i(Qk'¢k,Ok) ~ 0i (6.2.4)

Ok

~ ¢k
--------~~< ~~----------
inlet node outlet ncrle

Fig.(6.2.l) A Two-noded Machine

103

where ~. is usually a nonlinear function of the machine inlet
l.

pressure Qk' the machine outlet pressure ¢k and the machine

flow Qk; and a i is a known right-hand side quantity. The

exact form of ~. and a
i

depends on the type of machine

Examples of the inequality constraints
l.

constraint involved.

can be found in appendix B.

A complete solution is therefore needed which satisfies

eqns. (6.2.1) and (6.2.2) together with the constraints of

the form given by eqn. (6.2.4). We see that the simulation

of the gas transmission network is a complex nonlinear mathe­

matical programming problem.

6.3 The Dual Extremum Principles

This section outlines the important theoretical results

of the dual extremum principles as given in SEWELL(1973).

Further details can be found in that paper and in NOBLE(1972).

Consider two real inner product spaces E, F with

elements denoted by x, u and inner products (,), <,> respect­

ively. Consider a functional H[x,u] defined in the product

space ExF, generating the problem

aH = 0 (a)
ax

(6.3.1)
aH

0 (8) = au

If the functional H is a saddle fUnction concave in

x and convex in u, then the dual extremum principles state

that:

i) any solution of the whole problem (6.3.1) will minimise

the quantity

J(a) = aH
H - (x, ax) (6.3.2)

among all the solutions of the underdetermined subproblem

(6.3.1a) i

104

ii) any solution of the whole oroblem (6.3.1) will maximise

the quantity

K ((3) H aH (6.3.3) = - < u, au >

among all the solutions of the underdetermined sub­

problem (6.3.1(3);

iii) the minimum value of J and the maximum value of K

which are provided by any solution of the whole problem

(6.3.1) are the same and equal to the solution value

of H;

iv} the solution value of u is unique when the convexity

of H with respect to u is strict; the same is true for

x if the concavity of H with respect to x is strict.

Similar properties i)-iv} hold when eqn.(6.3.1a) is

replaced by three conditions

aH
$ 0 (a) ax

x ~ 0 «(3) (6.3.4)

(x, aH) = 0 ax

with eqn.(6.3.1(3) retained; and also when eqn. (6.3.1a)is

retained but eqn. (6.3.1(3) is replaced by

aH
au

~ 0 «(3)

u ~ 0 (a) (6.3.5)

<u, aH > = 0 au

and again when both of eqns. (6.3.1) are replaced by eqns.

(6.3.4) and (6.3.5). A complete proof of the above can be

found in NOBLE(1972) .

In the above example, we have considered two variables

x and u. The idea generalises to n variables providing that

105

they can be divided into two groups of variables for which

the given functional H is jointly convex with respect to one

group and jointly cOhcave with respect to the other. To

illustrate this, consider the addition of a third real inner

product space G with an element denoted by A and inner product

{,}. Consider a given functional H[X,U,A] defined in ExFxG

generating the problem given in eqns. (6.3.1) and an additional

equation

aH TI = 0 (6.3.6)

If H is concave jointly in x and A, and convex in u,

then the appropriate grouping of spaces should be ExG and F.

It follows that the new equation (6.3.6) should be labelled

~; and the associated extremum principles maximise K(S) given

by eqn. (6.3.3) as it stands, and minimise the J(~) obtained by

adding the term -{A,~~} to eqn. (6.3.2).

The same dual extremum principles also apply in the

case when some or all of the eqns. (6.3.1) and (6.3.6) are

replaced by inequalities of the form suggested by eqns. (6.3.4)

and (6.3.5). Lastly, there is no reason why some of the

conditions labelled as (~) cannot be imposed in applying the

K(S) principle (see eqn. (6.3.3», and vice versa, if it is

advantageous (p.147 , SEWELL(1973».

6.4 The Variational Inequality Model

This section describes how the gas flow model can be

cast into a variational inequality framework using the dual

extremum principles described above. The two algebraic equat­

ions (6.2.1) and (6.2.2), and the inequality machine constraints

are used in the formulation. For simplicity, only the linear

constraints are considered; additional constraints can be

incorporated later into the model. The sets of linear con­

straints considered in this section consist of

a) the'maximum flow constraints

(6.4.1)

106

where Q denotes the set of maximum f lows through
--max

the machines;

b) the maximum machine outlet pressure constraints

(6.4.2)

where 2max gives the set of maximum machine outlet

pressures, and

c) the minimum machine inlet pressure constraints

T
K I i4nin (6.4.3)

where n. denotes the set of minimum
~l.n

pressuresat the other network nodes;

allowable

KTI n gives

KI being the set of machine inlet pressures with

defined in eqn. (6.2.3).

We can define a new variable
A

Q = (6.4.4)

and consider a functional HCn,!,Q] given by

(6.4.5)

It can be easily verified that the functional H is

strictly convex jointly in g and! because Zll and Z22 are

both positive-definite, and weakly concave in g since it is
A

only linear in Q. From the definition of H, it follows that

aH
0 (8) (6.4.6) an =

aH
0 (B) (6.4.7) ai =

aH
$; 0 (a) (6.4.8) a6

A

Q ~ 0 «(3) (6.4.9)
A aH) (Q , = 0 (6.4.10)

a~

107

where the (a), (8) labellings are given as a result of the

saddle property of the functional H. Eqns. (6.4.6), (6.4.7)

and (6.4.9) are simply the algebraic equations (6.2.1),

(6.2.2) and the maximum flow constraint (6.4.1) respectively.

Eqn. (6.4.8) is of the form

which is equivalent to imposing both the maximum outlet

pressure constraint (6.4.2) and the minimum inlet pressure

constraint (6.4.3). Lastly, eqn. (6.4.10) is an orthogonality

condition which will automatically be satisfied at the optimal

solution; it takes the form

¢
-max

KT (Q - Q . » = 0
I -ml.n (6.4.11)

For sources with only an outlet node, this condition simply

means that either the outlet pressure or the machine flow is

equal to the maximum. For two-noded machines such as the

compressors, however, it is a lot more complicated and

difficult to satisfy. Numerical experience has revealed

that it is not necessary to satisfy this condition exactly

in order to obtain a solution, and that the condition only

affects the efficiency of the optimization model. As Qmax

is usually not imposed for the machines other than the sources,

its values can be adjusted during each stage of the optimizat-
A

ion to make 2 = O. This will improve the efficiency of the

optimization model as the orthogonality condition will be more

closely satisfied at all times. Further details on how this

can be done will be given in the next section.

From the dual extremum principles, any solution of
eqns. (6.4.6) to (6.4.10) will minimise the quantity.

J(a) =
A aH

H - (2, ~) (6.4.12)

subject to the a-condition (6.4.8); and will maximise the

quantity,

108

aH
K(S) = H - < g, an > { aH} !, a¢ (6.4.13)

subject to the 8-conditions (6.4.6), (6.4.7) and (6.4.9).

Unfortunately, it is very difficult to implement the

model described by eqn. (6.4.13), so in this thesis only the

model given by eqn. (6.4.12) is used. By substituting for H

and simplifying the resulting expression using eqns. (6.2.1)

and (6.2.2), the model (6.4.12) becomes

MINIMIZE

subject to the a-conditions

and

¢ ~ ¢ -max

KTI (g - nmin) ~ 0

(6.4.14)

(6.4.lSa)

(6. 4. lSb)

Other machine constraints such as the maximum compress­

ion ratio or maximum horsepower constraints can also be imposed

together with eqn. (6.4.15) without affecting the nature of

the problem.

6.5 The Implementation of the Model

The NAG library routine, E04UAF, is used to solve the

variational inequality model (6.4.14). The routine is based

on a sequential augmented Lagrangian method and uses the quasi­

Newton method to solve the minimization subproblems involved.

Details on the use of this routine is given in chapter E04 of

the NAG library manual (NAGFLIB(1982» and the theoretical

background can be found, for example, in GILL(l974) •

Since the solution of the whole network can be deter­

mined uniquely from equations (6.2.1) and (6.2.2) by fixing

only the outlet pressures of the machines, !, only this set is

treated as the controllable variables (see the definition in

section 6.2) in the optimization process. This simplifies the

implementation and reduces the amount of computation at each

109

stage of the optimization. Initially, the ¢'s are set to

their maximum outlet pressures. In addition, a set of values

for the maximum machine flows, Q , must also be supplied =max
for evaluating the objective function (6.4.14). As the flows

of the machines other than the sources are usually not con­

strained, it is necessary to select carefully a suitable set

of 0 values as this will improve the performance of the Jffiax
optimization model. As discussed in section 6.4, this can be

done by setting Q to the current machine flow value for max
those machines where a realistic Qmax value is not available.

This ensures that the orthogonality condition (6.4.11) is more

closely satisfied which would speed up the convergence of the

optimization process.

An algorithm that can be used to compute a feasible

solution is given by:

Stage 1 - Initialization

Set all machine outlet pressures to their maximum limits,

i.e. set ¢ = ¢ -max

Stage 2 - Solution of Nonlinear Equations

compute Q and Q using eqns. (6.2.1)-(6.2.2) based on the

set of ¢ values determined. The modified-Newton method is

used to solve the system of nonlinear equations.

Stage 3 - Feasibilit~ Test

Check the feasibility of the solution obtained. If

the solution is feasible, then stop; otherwise goto next stage.

Stage 4 - Setting Up

Set up and factorize the coefficient matrices Zll' Z12

and Z22' of eqns.(6.2.l)-(6.2.2), for use in the NAG library

routine E04UAF. Set Q to the current value of Q for those
max

machines where the flow is not constrained; otherwise set Q
max

to the corresponding maximum flow constraint.

Stage 5 - Optimization

Carry out the optimization using the NAG library routine,

E04UAF, based on the model (6.4.14)-(6.4.15). Other nonlinear

110

constraints such as the compressor horsepower constraints,

which are not used explicitly in the development of the model,

are also included. 'The variables g and 9 are expressed in

terms of ! via eqns. (6.2.1}-(6.2.2) using the coefficient

matrices set up in the previous stage. At the end of the

optimization, goto stage 2.

As it is well known that the performance of the
optimization codes are very sensitive to the scaling of the

variables, some initial scaling of the problem is essential.

We shall follow the recommendation given in NAGFLIB(l982} and

scale the controllable variables, !, so that they are as close

to 1 as possible, and divide the inequality constraints by

their corresponding maximum limits to give a value of less

than unity. However, even with this initial scaling, the

program implemented is still very unreliable in solving networks

with a large number of machines (for example, more than 5

machines). Further scaling is required; this was confirmed by

the fact that during the solution of these networks, a large

conditional number was recorded by the NAG library routine

which shows that the problem is very ill-conditioned.

As very little is known about the proper scaling of the

nonlinear constraints of the problem, it was decided to

linearise all nonlinear constraints (as is done in PAN) into

the general form

(6.5.l)

where ml , m2 , m3 and ok are linearised coefficients depending

on the type of constraints involved. By expressing g and 9
in terms of !, the set of linearised constraints can be written

as

B ¢ (6.5.2)

where B is a linear, rectangular matrix which is referred to

as the constraint matrix of the problem. A wide range of

techniques available for scaling linear programming problems

can be employed to scale the constraint matrix B.

111

6.5.1 The Scaling of the Constraint Matrix

A survey of various methods that can be used for scaling

linear problems is given in TOMLIN (1975) . Briefly, there are

two classes of methods available; the first is the simple

empirical method which is very easy to implement and has been

found to work well in practice; the second is the 'optimal'

method which involves solving a linear programming problem of

at least the same dimension in order to determine the best

scaling factors that can be used. An example of the second

approach can be found in CURTIS (l972) .

As the second approach is very difficult to implement

and is also beyond the scope of this study, only the simple

empirical methods are investigated. They are given by:

i) Equilibration - each row of matrix B is scaled to make

the largest element of order unity, followed by a

similar scaling on the columns.

ii) Geometric Mean - for each row of matrix B, we compute

(maXlbi.l.minlbi.I)~ and divide the row by this number.
j J j J

This is followed by a similar column scaling.

iii) Arithmetic Mean - each row is divided by the arithmetic

mean of the elements in that row. Again this is

followed by a similar treatment on the columns.

Either of the later techniques may be followed by equilibration.

These techniques will be considered in the next section

for scaling the linearised constraint equations.

6.6 Testing and Results

The algorithm outlined in the previous section is used

to solve the variational inequality model (6.4.14) with linear­

ised constraints. Four scaling methods described in the

previous section are considered; they are:

i) the Geometric Mean (GM);

ii) the Arithmetic Mean (AM);

iii) the Geometric Mean followed by equilibration (GM & E) and

iv) the Arithmetic Mean followed by equilibration (AM & E).

112

The method of Equilibration alone is not considered as it

has not been found to perform well in practice; a similar

conclusion was also, found in TOMLIN(1975).

As a preliminary investigation, the model with and

without scaling is applied to the simple conflicting con­

straints network as described in section 6.1 (see fig. (6.1.1».

In all cases, the model was able to return a feasible solution

which confirms that the model formulated is reliable.

To further test the efficiancy and reliability of the

variational inequality model, two larger conflicting constraints

networks of greater complexity are considered. The first

network, given in fig. (A.8), consists of 12 pipes, 2 compressors,

2 sources and a valve. The second network is part of the

British Gas National Transmission Network as shown in fig. (A.9);

it consists of 29 pipes, 4 compressors and 4 sources. Both

networks contain a large number of nonlinear inequality con­

straints. Only the steady state analysis is carried out for

these networks.

The results of the investigation are summarised in

table (6.6.1) for the model using different scaling methods.

The table gives the amount of CPU-time and the number of

evaluations of the objective function (6.4.14) required to

compute a feasible solution (the first feasible solution

encountered) for the networks considered. To illustrate the

effectiveness of the scaling methods employed, the result

obtained from the model without any overall scaling (except

those recommended by NAGFLIB(1982» is also included.

~ Netw::>rk A8 Network A9
Scaling NFNO cpur NENO cpur

Unsealed 1735 3.81 <fail>

G1 907 1.62 1602 4.54
AM 1570 3.70 689 2.35

GM & E 1294 2.43 411 1.56
AM & E 1148 2.23 452 1. 72

where CPUT - the amount of CPU-time used in seconds on the
Amdahl-V7 comouter and

NFNO - the number of-evaluations of the objective function.

Table (6.6.1) - The Performance Profile of the Variational
Inequality Model

113

From table (6.6.1), it can be seen that the scaling

of the constraint matrix, using one of the empirical methods

described above, generally improves the efficiency and

reliability of the model implemented. Furthermore, the

variational inequality model with scaled linearised constraints

is reliable in solving the gas transmission network with the

conflicting constraints problem.

6.7 Further Enhancements

As the aim of this chapter is simply to investigate

the reliability of the model in resolving the conflicting

constraints problem, no attempt has been made to devise an

efficient implementation of the model. Further work is there­

fore needed in the following areas:

a) to develop an efficient algorithm for carrying out the

optimization;

b) to investigate the effects of the 'optimal' scaling

methods on the overall performance of the model with

linearised constraints and

c) to treat the nonlinear constraints in their usual form

instead of linearising them, and explore the suitable

methods that can be used for scaling the nonlinear

problems. An example of such method is described in

LAS DON (l98l) .

Further tests on the model are also needed using the large

scale transmission network.

114

CHAPTER 7

7. Conclusions

The project qescribed in this thesis was concerned

with the development and evaluation of computational techniques

to the simulation of large scale British Gas transmission net­

work problems. One of the difficulties in solving the problem

of this kind is to devise a suitable set of test problems

which can be used to model the behaviour of the actual problem

involved; and in this respect, I am grateful to British Gas,

and J.R. Mallinson in particular, for supplying the test net­

works.

The general simulation of a gas transmission network

involves the solution of a large system of stiff differential/

algebraic equations (DAE) containing frequent severe distur­

bances. The research topics considered in this thesis can be

divided into three main areas - the solution of the DAE system,
the solution of linear equations, and the formulation and

solution of a variational inequality model. Because of the

diverse nature of this thesis, the different areas are discussed

separately below.

A. The Solution of DAE System using a Variable-step

Integrator

The solution of a DAE system using a variable-step

integrator is still a relatively new area of research in which

very little theoretical results is available. The most recent

and comprehensive work in this area was by PETZOLD(19BI) .

From the analysis given in PETZOLD and the extensive numerical

experimentation carried out during the project, it was found

to be necessary to extensively modify the strategies and local

error estimate employed in the usual variable-step ODE codes.

In particular, the new error estimate of the form (4.3.2) was

employed and new sets of strategies (see section 4.4.2» were

developed to implement the numerical methods. Furthermore,

because the system contains frequent severe disturbances, a

restart strategy as described in section 4.4.2 was also developed;

the strategy is independent of the numerical methods that is

115

used in the integration and relies only on the assumption

that the OAE system arises from the discretization of a system

of parabolic POE's. The integrators developed based on the

above strategies, using the numerical methods outlined in

appendix 0, were found to be both robust and efficient in

solving the gas transmission network problem.

As the techniques employed for handling the OAE system

is mainly empirical, further research is still needed to

develop a theoretical framework to support these techniques.

Further enhancements as suggested in section 4.5 for solving

the OAE system can also be attempted.

B. The Solution of Linear Equations

The dynamic simulation of gas transmission network

requires the solution of large systems of linear equations at

each time step. The system is very sparse and a large part of

it is symmetric and positive-definite. In order to take

advantage of its underlying structure, three block matrix

partitioning schemes based on the idea given in GEORGE(l974)

were developed. The details of these schemes together with

the comparison results are given in chapter 3. The results

indicated that the best solution scheme described in chapter

3 is very effective, as it reduces considerably both the storage

requirement and the number of arithmetic operations required.

c. The Variational Inequality Model

A variational inequality model was developed in chapter

6 for resolving the conflicting constraints problem. The model

was formulated using a rigorous mathematical theory based on

the dual extremum principles outlined in NOBLE(l972). As an

initial investigation, the model with scaled linearised con­

straints was implemented using a NAG library routine, E04UAF.

The program implementing the model had been found to be reliable

on three test networks considered. Further work on the model

in the directions as suggested in section 6.7 can be carried out.

116

The above research was carried out in collaboration

with a research team in British Gas Corporation. British

Gas now have plans to incorporate the variable-step control

into the new version of their network analysis program; the

strategies described in chapter 4 will be used in the implemen­

tation.

REFERENCES

ALEXANDER 1977
Alexander, R. - "Diagonally Implicit Runge-Kutta Methods
for Stiff ODE's", SIAM J. Numer. Anal., 14, 1006-1021.

AZAR 1975
Azar, A.R., Nichols, K.G. - "Sparse Matrix Algorithm for
Transient Analysis of Nonlinear Electrical Netowrks",
Proc. IEEE, 122 (8), 791-794.

BARRY 1978
Barry, D.E., Pottle, C., Wirgau, K.A. - "Technology Assess­
ment Study of near term Computer Capabilities and their
Impact on Power Flow and Stability Simulation Programs",
EPRI EL-946. '

BERESFORD 1980
Beresford, P.J. - "Sparse Matrix Techniques in Engineering
Practice", in DUFF (1980a) , 175-190.

BERZINS 1981
Berzins, M. - "Chebyshev polynomial Methods for Parabolic
Equations", Ph.D. Thesis, University of Leeds, England.

BICKART 1977
Bickart, T.A. - "An Efficient Solution Process for Implicit
Runge-Kutta Methods", SIAM J. Numer. Anal., 14, 1022-1027.

BROWN 1973

117

Brown, R.L., Gear, C.W. - "DOCUMENTATION FOR DFASUB--A Program
for the Solution of Simultaneous Implicit Differential and
Nonlinear Equations", UIUCDCS-R-73-575, Uni. of Illinois at
Urbana-Champaign.

BUI 1979
Bui, T.D. - "Some A-stable and L-stable Methods for the
Numerical Integration of Stiff ODE's", J. ACM, 26, 483-493.

BUS 1975
Bus, J.C.P., Dekker, T.J. - "Two Efficient Algorithms with
Guaranteed Convergence for Finding a Zero of a Function",
ACM TOl-1S, 1 (4), 3 30- 3 4 5 .

BUTCHER 1964
Butcher, J.C. - "ImpliCit Runge-Kutta Processes", Maths. Comp.,
18, 50-64.

BUTCHER 1975
Butcher, J.C. - "A Stability Property of Implicit Runge-Kutta
Methods", BIT, 15, 358-361.

BUTCHER 1976
Butcher, J.C. - "On the Implementation of Implicit Runge­

Kutta Methods~, BIT, 16, 237-240.

BUTCHER 1979

118

Butcher, J.C., Burrage, K., Chipman, F., - "An Implementation
of Singly-Implicit Runge-Kutta Methods", Research Report 149,
Uni. of Auckland.

BUTCHER 1981
Butcher, J.C. - "Stability Properties for a General Class of
Methods for ODE's", SIAM J. Numer. Anal., 18 (1), 37-44.

CALAHAN 1968
Calahan, D.A. - "A Stable, Accurate Method of Numerical
Integration for Nonlinear Circuits", Proc. IEEE, 56, 744.

CARVER 1977
Carver, M.B. - "Efficient Integration over Discontinuities
in ODE's", in 'Numerical Methods for Differential Equations
and Simulations', by Bennett, A.W., Vichnevetsky, R. (ed.),
North-Holland Publishing Co., Amsterdam.

CARVER 1978
Carver, M.B., MacEwen, S.R. - "Numerical Analysis of a System
described by Implicitly-defined ODE's containing numerious
Discontinuities", Appl. Math. Modelling, 2, 280-286.

CASH 1976
Cash, J.R. - "Semi-implicit Runge-Kutta Procedures with Error
Estimates for the Numerical Integration of Stiff Systems of
ODE's", J. ACM, 25, 455-460.

CASH 1979
Cash, J.R. - "Diagonally Implicit Runge-Kutta Formulae with
Error Estimates", J. lMA, 24, 293-301.

CASH 1982
Cash, J.R. - "A Survey of Runge-Kutta Methods for the Numerical
Integration of Stiff Differential Systems", Paper presented at
the International Conference on Stiff Computation' held at Park
City, Utah.

CHUA 1982
Chua, T.S. - "Collection of Programs and Numerical Results",
in the Departmental Library, Dept. of Computer Studies, Uni.
of Leeds.

CROUZEIX 1975
Crouzeix, M. - "Sur l'aporoximation des equations different­
ielles operationnalles i!neaires par des methodes de Runge­
Kutta", These presentee a l'Universite Paris VI, Paris.

COVINGTON 1979
Covington, N.T. - "Transient Models Permits Quick Leak
Identification", Pipeline Ind., 51 (2), 71-73.

CURTIS 1972
Curtis, A.R., Reid, J.K. - "On the Automatic Scaling of
Matrices for Gaussian Elimination", JlMA, 10, 118-124.

DAHLQUIST 1963
Dahlquist, G. - "A Special Stability Problem for Linear
Multistep Methods", BIT, 3, 27-43.

DAHLQUIST 1975
Dahlquist, G. - "Error Analysis for a Class of Methods for
Stiff Nonlinear Initial Value Problems", Proceedings of the
Dundee Conf. on Numerical Analysis, Springer-Verlag, Berlin
506, 60-74.

DAHLQUIST 1982

119

Dahlquist, G. - "Some Comments on Stability and Error Analysis
for Stiff Nonlinear Problems", Paper presented at the 'Inter­
national Conf~rence on Stiff Computation' held at Park City,
Utah.

DEW 1978
Dew, P.M., West, M.R. - "A Package for Integrating Stiff
Systems of ODE's based on Gear's Method", Uni. of Leeds,
Dept. of Computer Studies, Report Ill.

DEW 1981
Dew, P.M., Walsh, J.E. - "A set of Library Routines for Solving
Parabolic Equations in One Space Variable", ACM TOMS, 7, 295-
314.

DISTEFANO 1970
Distefano, G.P. - "PIPETRAN, version IV, A Digital Computer
Program for the Simulation of Gas Pipeline Network Dynamics",
Cat. no. L20000, American Gas Association Inc., New York.

DUFF 1976
Duff, I.S., Erisman, A.M., Reid, J.K. - "On George's Nested
Dissection Method", SIAM J. Numer. Anal., 13, 686-695.

DUFF 1980a
Duff, I.S. - (ed.) "Sparse Matrices and Their Uses", Academic
Press, London.

DUFF 1980b
Duff, I.S. - "A Sparse Future", in DUFF (1980a) , 1-30.

EHLE 1969
Ehle, B.L. - "On Pade Approximations to the Exponential Function
and A-stable Methods for the Numerical Solution of Initial
Value Problems", Uni. of Waterloo, Dept. of Applied Analysis
and Computer Science, Report CSRR 2010.

ELLISON 1981
Ellison, O. - "Efficient Automatic Integration of ODE's with
Discontinuities", Math. Compo Simul., 23 (12)

ENRIGHT 1975
Enright, W.H., Hull, T.E., Linberg, B. - "Comparing Numerical
Methods for stiff ODE's", EIT, 15, 10-48.

ERISMAN 1980
Erisman, A.M. - "Sparse Matrix Problems in Electric Power
System Analysis", in DUFF(1980a), 31-56.

FINCHAM 1979
Fincham, A.E. and Goldwater, M.H. - "Simulation Models for
Gas Transmission Networks", Trans. Inst. Measurement and
Control, 1, 3-12.

FINCHAM 1980

120

Fincham, A.E. and Goldwater, M.H. - "Modelling of Gas Supply
Systems", in 'Modelling of Dynamic Systems', Ed. by Nicholson,
Peter Peregrinus Ltd., London.

FINCHAM 1982
Fincham, A.E. - "Private Communication", London Research Station,
British Gas.

GASEMN 1981
"Gas Engineering and Management", 2l,Nov/Dec 1981, 448-450.

GEAR 1969
Gear, C.W. - "The Automatic Integration of Stiff ODE's", in
'Information Processing', 68, ed. by Mornel, A.J.H., North­
Hotland Publishing Co., Amsterdam, 187-193.

GEAR 1971a
Gear, C.W. - "DIFSUB for the Solution of ODE's - Alg 407",
Com. ACM, 14 (3), 185-190.

GEAR 1971b
Gear, C.W. - "Numerical Initial Value Problems in ODE's".
Prentice-Hall, New Jersey.

GEAR 1971c
Gear, C.W. - "Simultaneous Numerical Solution of Differential­
Algebraic Equations", IEEE Trans. on Circuit Theory, CT-18
(1), 89-95.

GEAR 1980
Gear, C.W. - "Runge-Kutta Starter for Multistep Methods",
ACM TOMS, 6 (3), 585-603.

GEAR 1981
Gear, C.W., Hsu, H.H., Petzold, L. - "Differential/Algebraic
Equations Revisited", Proc. Workshop Numerical Method for
Solving Stiff Initial Value Problems, Germany.

GEORGE 1973
George, A. - "Nested Dissection of a Regular Finite Element
Mesh", SIAM J. Numer. Anal., 10, 345-363.

GEORGE 1974
George, A. "On Block Elimination for Sparse Linear Systems",
SIAM J. Numer. Anal., 11, 585-603.

121

GEORGE 1980
George, A. - "Direct Solution of Sparse Positive Definite
Systems: some Basic Ideas and Open Problems", in DUFF (1980a) f

283-306.

GEORGE 1981
George, A. and Liu, J.W. - "Computer Solution of Large Sparse
Positive Definite System", Prentice-Hall, New Jersey.

GIBBS 1976
Gibbs, N.E., Poole, W.G., Stockmeyer, P.K. - "An Algorithm
for reducing Bandwidth and profile of a Sparse Matrix",
SIAM J. Numer. Anal., 13, 236-250.

GILL 1974
Gill, P.E., Murray, W. - (ed.) "Numerical Methods for Con­
strained Minimization", Academic Press.

GOACHER 1970
Goacher, P.S. - "Steady and Transient Analysis of Gas Flows
in Networks", J. Inst. Gas Eng., 10, 242-264.

GOLDWATER 1976
Goldwater, M.H., Rogers, K. and Turnbull, O.K. - "The PAN
Network Analysis Program - Its Development and Use", Inst.
Gas Eng., Communication 1009.

GOODWIN 1982
Goodwin, N. - "Private Communication", London Research Station,
British Gas.

GOURLAY 1970
Gourlay, A.R. - "Hopscotch: a Fast Second-order Partial Differen­
tial Equation Solver", JlMA, 6, 357-390.

HALIN 1976
Halin, H.J. - "Integration of ODE's containing Discontinuities",
Proc. of 'Computer Simulation conf.', Washington D.C.

HAY 1974
Hay, J.L., Crosbie, R.E., Chaplin, R.I. - "Integration Routine
for Systems with Discontinuities", Compo J., 17, 275.

HEATH 1969
Heath, M.J. and Blunt, J.C. - "Dynamics Simulation Applied to
the Design and Control of a Pipeline Network", J. Inst. Gas
Eng., 9, 261-279.

HINDMARSH 1973
Hindrnarsh, A.C. - "GEARB: Numerical Solution of ODE's having
Banded Jacobian", Report UCID-30059, Lawrence Livermore Lab.,
Livermore, California.

HOPKINS 1976
Hopkins, T.R., Wait, R. - "A Comparison of Numerical Methods
for the Solution of Quasilinear Partial Differential Equations",
Compo Methods in App. Mech. and Eng., 9, 181-190.

JENNINGS 1966
Jennings, A. - "A Compact Storage Scheme for the Solution
of Symmetric Linear. Simul tanEDus Equations", Comp. J., 9,
281-285.

JACOBS 1980
Jacobs, D.A.H. - "The Exploitation of Sparsity by Iterative
Methods", in DUFF(1980a), 191-222.

LAMBERT 1973
Lambert, J.D. - "Computational Methods in ODE'S", Wiley,
London.

LASDON 1981
Lasdon, L.S., Beck, P.O. - "Scaling Nonlinear Programs",
O.R. Letters, l(l}, 6-9.

LEWIS 1980
Lewis, J.G., Poole, W.G. - "Ordering Algorithms applied to
Sparse Matrices in Electric Power Problems", in 'Electric
Power Problems: The Mathematical Challenge', ed. by Erisman,
A.M., Neves, K.W., Dwarakamath, M.H., SIAM press.

LIPTON 1979
Lipton, R.J., Rose, D.J., Tarjan, R.E. - "Generalised Nested
Dissection", SIAM J. Numer. Anal., 16, 346-358.

LISTER 1960

122

Lister, M. - "The Numerical Solution of Hyperbolic Partial
Differential Equations by the Method of Characteristics",
in'Mathematica1 Methods for Digital Computers', Ed. by Wilf, A.
and Ralston, H.S., Wiley, New York.

NAGFLIB 1982
"NAG FORTRAN Library Manual", Mark 9, Vol. 3, Chapter E04.

NOBLE 1972
Noble, B., Sewel, M.J. - "On Dual Extremum principles in
Applied Mathematics", J. Inst. Maths Applies., 9, 123-193.

N0RSETT 1974
N.tSrsett, S.P. - "Semi-explicit Runge-Kutta Methods", Maths.
and Compo Report 6/74, Uni. of Trondheim.

N.eJRSETT 1977
N.0rsett, S.P., Wolfbrandt, A. - "Attainable Order of Rational
Approximations to the Exponential Function with only Real
Poles", BIT, 17, 200-208.

PAINE 1982
Paine, J. - "Private Communication", School of Maths., Uni.
of Bristol, England.

PARTER 1961
Parter, S.V. - "The Use of Linear Graphs in Gaussian Eliminat­
ion", SIAM Rev., 3, 119-130.

123

PETZOLD 1981
Petzold, L. - "Differential/algebraic Equations are not ODE's",
Sandia National Lab. - Livermore, Report San8l-8668.

PRATT 1982
Pratt, K.F., Wilson, J.G. - "Optimization of the Operation of
Gas Transmission Systems", to appear in the Trans. Inst. of
Measurement and Control.

PROTHERO 1974
Prothero, A., Robinson, A. - "On the Stability and Accuracy of
One-step Methods for Solving Stiff Systems of ODE's", Math.
Comp., 28 (125), 145-162.

PROTHERO 1977
Prothero, A., Robinson, A. - "Global Error Estimates for
Solution of Stiff Systems of ODE's", Paper presented at the
Numerical Analysis Conf. at Dundee Uni.

RACHFORD 1974
Rachford, H.H. Jr and Dupont, T. - "A Fast Highly Accurate
Means of Modelling Transient Flow in Gas Pipeline Systems by
Variational methods". Soc. Pet. Eng. J., 14, 165-178.

ROSE 1972
Rose, D.J. - "A Graph-theoretic Study of the Numerical Solution
of Sparse Positive Definite Systems of Linear Equations", in
'Graph Theory and Computing', Ed. by Read, R.C., Academic Press,
New York.

ROSENBROCK 1963
Rosenbrock, H.H. - "Some General Implicit Processes for the
Numerical Solution of Differential Equations", Compo J., 5,
329-330.

SACK-DAVIS 1977
Sack-Davis, R. - "Error Estimates for Stiff Differential Equation
Procedure", Math. Comp., 31 (140), 939-953.

SATO 1963
Sato, N., Tinney, W.F. - "Techniques for Exploiting the Sparsity
of the Network Admittance Matrix", IEEE Trans., PAS-82, 944-949.

SCHEEL 1972
Scheel, L.F. - "Gas Machinery", Gulf Publishing Co., Houston,
Texas.

SCHMIDT 1977
Schmidt, G. and Weimann, A. - "Instationare Gasnetzberechnung
mit dem Programming GANESI", GWF-Gas/Erdgas, 118, 53-57.

SCRATON 1981
Scraton, R.E. - "Some L-stable Methods for Stiff Differential
Equations", Intern. J. computer Maths., Section B, 9, 81-87.

124

SENS 1970
Sens, M., Jouve, Ph. and Pelletier, R. - "Detection d'une
Rupture Accidentell~ de Conduite", Paper IGU/C 37-70 presented
at the 11th International Gas Conference, Moscow. (English
Translation: British Gas Internal Report LRS T448) .

SEWELL 1973
Sewell, M.J. - "The Governing Equations and Extremum Principles
of Elasticity and Plasticity Generated from a Single Functional­
Part I and II", J. Struct. Mech., Part 1,2(1),1-32. Part II,
2(2), 135-158.

SHERMAN 1975
Shennan, A.H. - "On the Efficient Solution of Sparse Systems
of Linear and Nonlinear Equations", Report 46, Dept. of
Computer Science, Yale Uni.

SINCOVEC 197~
Sincovec, R.F., Dembart, B., Epton, M.A., Erisman, A.M., Manke,
S.W., Yip, E.L. - "Solvability of Large Scale Descriptor
Systems", Boeing Computer Service Company.

STEIHAUG 1979
Steihaug, T., Wolfbrandt, A. - "An Attempt to avoid Exact
Jacobian and Nonlinear Equations in the Solution of Stiff
Differential Equations", Maths. Comp., 33, 521-534.

STONER 1968
Stoner, M.A. - "Analysis and Control of Unsteady Flows in
Natural Gas Piping Systems", Ph.D. Dissertation, The Uni. of
Michigan, Am Arbor.

STONER 1969
Stoner, M.A. - "Steady State Analysis of Gas Production,
Transmission and Distribution Systems", Paper SPE 2554
presented at SPE-AIME 44th Annual Fall Meeting, Denver,
Colorado.

STREETER 1970
Streeter, V.L. and Wylie, E.B. - "Natural Gas Pipeline Trans­
ients", Soc. Pet. Eng. J., 10, 357-364.

TAYLOR 1978
Taylor, B.A. - "The Flow in Pipelines Following Catastrophic
Failure", British Gas Internal Report, LRS 338.

TINNEY 1967
Tinney, W.F., Walker, J.W. - "Direct Solution of Sparse Net­
work Equations by Optimally Ordered Triangular Factorization",
Proc. IEEE, 55, 1801-1809.

TOMLIN 1975
Tomlin, J.A. - "On Scaling Linear Programming Problems",
Mathematical Programming Study, 4, 146-166.

VARAH 1979
Varah, J.M. - "On the Efficient Implementation of Implicit
Runge-Kutta Methods", Maths Comp, 33, 557-561.

WARD-SMITH 1971
Ward-Smith, A.J. - "Pressure Losses in Ducted Flows",
Butterworths, London.

WEIMANN 1978

125

Weimann, A. - "Modellierung and Simulation der Dynamik von
Gasverteilnetzen im Hinblick auf Gasnetzfuhrung and
Gasnetzuberwachung", Dr. Ing. Thesis, Munich Technical
University. (English Translation: British Gas internal report
LRS T435).

WILKINSON 1965,
Wilkinson, J.H. - "The Algebraic Eigenvalue Problem", Clarendon
Press, Oxford.

WYLIE 1967
Wylie, E.B., Streeter, V.L. - "Hydraulic Transients", McGraw­
Hill, New York, Chapter 15.

WYLIE 1971
Wylie, E.B., Streeter, V.L. and Stoner, M.A. - "Network System
Transient Calculations by Implicit Method", Soc. Pet. Eng.
J., 11, 356-362.

WYLIE 1974
Wylie, E.B., Streeter, V.L. and Stoner, M.A. - "Unsteady-state
Natural Gas Calculations in Complex Pipe Systems", Soc. Pet.
Eng. J., 14, 35-43.

YOW 1972
Yow, W. - "Numerical Error in Natural Gas Transient Calculat­
ions", Trans. ASME, Series 0, J. Basic Eng., 94, 422-428.

APPENDIX A

THE TEST NETWORKS

Symbols used in the network

10/36 ... , Pipe length (rnilcl/diameter (inch)

~ Source

~ Compressor

~ Regulator

- .~. Valve

OP = maximum outlet pressure (psi - pound per square inch)

FW = maximum flow (mscfh - thousands of standard cubic feet

per hour)
HP = maximum horsepower (hp - horsepower)

CR = maximum compression ratio

IP = minimum inlet pressure (psi)

d = demand (mscfh)

PROF = demand profile

126

Note - 1) the demand profiles for the networks are shown in their

respective diagrams containing the results and

2) the units for the variables are as quoted above unless

otherwise stated

Network Al

[>. 10/36 10/36 10/36 10/36 , •
~ OP=l,OOO

d=lOO ,000 x PROF 1

Fig. (h.l)

127

Network A2

[:>~.~~2=0/~3~6~ ___ 2~0~/_36 __ ~.~~~, __ 20_/_3_6 __ ~ ___ 20~/_36 __ ~~

OP = 1,(XX) OP = 1,CXX) d = 60,CXX)

The compressor is shut off after the first hour for the 4-

hour period of simulation.

!i..etwork A3

[>.
OP = 60
FW = 400

where the unit

and the unit

per hour

!'ietwork A4

18.9/36

0P=900
FW=200, (XX)

"

of

of

Fig. A.2

10 km/600 rom
u \ "J '"

~ I
'I

pressure (in OP) is in bar

" \,

~
d = 400 x PROF 3

flow (in FW and d) is in thousands of cubic metre

0P=980

OP=980
HP=10,QCX)
CR=1.4

Fig. A.3

0P=980
HP=10,(XX)
CR=l. 4

9.5/36

9.5/36

9.5/36

Fig. A.4

9.5/24

d=15,(XX)

d= 17 ,500 x ProF 4

18.9/30

d=22 ,500 * POOF 4

d=25,exo

OP = 990

OP = 820
HP =16,000
CR =1.4

FW=5425

Network A5

FW =10850

Fig. (A.51

OP =990
HP = 14,000
CR =1.4

OP =350

128

OP = 975

OP =975
HP = 28,000
CR = 1.4

OP =990
HP =14,000
CR =1.4

FW =5425

12"

1'2'

BRITISH GAS CORPQRA 1/0N
NORTH WEST REGION

TRANSMISSION SYSTEM

,.'

)4'

Fig, (A, 01

" ,Jl

0..'
HO

129

KEY REFERENCE

___ NATIONAL TRANSMISSION PIPE.LINES
OPERATING PRE5S~RE 1000lbt/in'

===_ 301', S,MV.

==== 350 Ibffin%

=== '250/200 Ibf/j,·

==== 100 IDf/inl

la'

12'

SCOTTISH

REGION

.~

r'
I

t··)

("~ MIDLANDS
.,~) REGION

.)

Fig. A.7

--

Netv.;ork A 7 130
BRITISH GAS CORPORATION

NATIONAL GAS
TRANSMISSION SYSTEM

--00 .- CDMt~ ..

~ ~
0 0-'

CJ ... - r.::4 - ~~

0 ,:"

6. -..

.. at: ,.,.,.

~MCIf~.,

L,M.G..., c ~I

"JU1. ~1
LJrtA. ",I'! ... tK* ,..., ,,

L.JiI.A aw.,. _-.n tI n

~"" ... __ Ce"'-"
Pt......," ltQe ~ .. ,~

a_
... '--Iblo ... _0::-_
-

Network AB

OP =980
JiW = 20,CXX)

OJ? =980
JiW = 20,CXX)

Network A9

OP =980
HP =16,a:fJ
CR=1.4

15,<xx>

CP = 975
HP = 10, (X)()

CR = 1.4

6,CX1J

OP =980
HP = 6,CXX)
CR=1.4

Fig. (A.B)

OP =970
HP =14,CX1J
CR=1.4

4,CXX)

10,CXX)

Fig. (A.9)

15,ctYJ

15,ctYJ

~ 10,CXX)

OP =980
HP = 2B,CX1J
CR =1.4

OP =980
HP = 14,CiX)
CR=1.4

131

OP =980
FW = 2,500

OP =980
FW =6,500

132

APPENDIX B

The Mathematical Background to the PAN program

The purpose of this appendix is to give the mathe­

matical background to the British Gas network analysis

program PAN and in particular, show how the system of

differential/algebraic equations (DAE's) considered in

the main body of the thesis can be derived. An example

network is provided to illustrate the structure of the DAE

system.

B.l The Basic Gas Flow Model

The gas flow in a single pipe can be modelled by two

partial differential equations (PDE's) which describe the

conservation of mass and momentum. The derivation of these

equations has been discussed by many authors (for example,

FINCHAM (1979» and need not be repeated here. The equations

are:

i) the conservation of mass

Ale. + M!.9. = 0 at ax (B.l.l)

and ii) the conservation of momentum

(B.1.2)

where the independent variables are the distance, x, and

time, t. The dependent variables are the pressure, Pi the

density, Pi the mass flow rate, q and the shear stress on

the pipewall, T. The constants include the pipe diameter,

di the pipe cross-sectional area, Ai the molecular weight

of gas, M; the acceleration due to gravity, g and the slope

of the pipe inclined upward in the direction of flow at an
angle, e.

These equations are derived under the assumptions that

the pipe is straight with constant, circular cross-section

133

and that the pipe friction can be modelled using the friction

equations derived under steady flow condition. A one­

dimensional flow model is used which has been shown in

WARD-SMITH (1971) to give an adequate representation of the

dynamic gas flow in the network. Furthermore it is also

assumed that the gas flow temperature is constant which means

that the flow process is isothermal; this is true for long

pipelines with slow dynamic changes where the temperature

equalization with the ground outside takes place (WEIMANN

(1978» .

A third equation is needed before eqns. (B.l.l)-(B.l.2)

can be solved. This is the equation of state for an iso­

thermal system:

2
a = zRT

[l _ P dz]
z dP

= (B.l.3)

where a denotes the isothermal speed of sound, T denotes the

gas temperature and R is the real gas constant; Z denotes

a variable compressibility so the gas is treated as non-ideal.

In fully developed steady flow, the shear stress in

eqn. (B.l.2) can be represented by the Fanning friction factor
f,

f = hI
2

~pv
(B.l.4)

where f is a dimensionless quantity and in general is a

function of the Reynolds number of the flow and the relative
roughness of the pipewall.

In the isothermal flow model described above, the

unknown variables to be solved are usually the pressure, P

and the mass flow rate, q or a variant of these variables.

Other formulations based on the isentropic or adiabatic flow
model have also been attempted (STONER(l968), SENS(l970),

TAYLOR(l978) and COVINGTON(l979». In these formulations,

a further set of unknown variables such as the temperature

is usually required to be solved. These formulations require

considerably more computational effort than the isothermal

one and are normally employed to carry out specific

simulation tasks such as the modelling of pipebreaks.

From a perturbation analysis carried out in WEIMANN(l978)

using the isothermal and isentropic models, it was shown

that the former one only exhibits slight error compared

134

with the later for very short pipes under extreme distur­

bances. Furthermore for normal simulation, the isothermal

model has been found by many authors to predict the overall

behaviour of the gas flow accurately. The isothermal assumpt­

ion is therefore a reasonable one under most operating

conditions.

Even with the assumption that the flow is isothermal,

we must still solve a pair of hyperbolic PDE's which are

difficult to solve on a computer. Simplications to the

model are normally made; the usual simplific~tions are

ei ther to neglect both inertia terms, :: -!x< t) and ~~f
in eqn. (B.l.2), or to neglect the first but include the

second. As both inertia terms are very small (less than 1%)

compared with the friction term during normal operation of

the transmission network, it is reasonable to neglect them.

However, when there is a large disturbance in the network

such as a valve opening, a compressor shut down or a pipe­

break, then the inertia terms can be significant in the

neighbourhood of the disturbance. The disturbance, however,

will be localised and will die away very rapidly. If the

main interest is to investigate the overall behaviour of

the network, it is still an acceptable approximation to

neglect them. Only when one is interested in the local

effect of a large disturbance should the inertia terms be

included.

Neglecting both of the inertia terms means that the

model is parabolic in nature which can be solved more readily

on a computer.

B.2 The Derivation of the Network Equations

This section considers the derivation of network

equations without any machines in the network. As PAN is

designed mainly for simulating slow dynamics, the two
M a M2 a q2

inertia terms, A~ and -2---(--)' in the momentum equation
A at p

are neglected as unimportant. The model is now isothermal

and parabolic in nature. By substituting the equation of

state (B.1.3) and the Fanning friction equation (B.l.4)

into eqns. (B. 1 • 1) and (B.1.2), we have

135

~~ + Mlsi. = 0 2 at ax (B.2.l)
a

and

~P M2 2fslsl
ax + -;:;: pd

where q = pAVjM; the term pg sin e
momentum equation for the sake of

of this term is straight-forward

results from its omission.

= 0 (B.2.2)

is also omitted from the

simplicity. The treatment

and no loss of generality

Eqn. (B. 2.2) can be written as

1 ap
q = A ClX (B.2.3)

where

A A(P,q)
M2 2flc.!1 = =
A2 pd (B. 2.4)

and is known as the resistivity of the pipe. Substituting

eqn. (B.2.3) into eqn. (B.2.l), the non-linear parabolic
equation in P can be obtained,

A ap a {l ap}
Ma2 at = ax A ax (B.2.5)

The network can be regarded as consisting of individual

pipes jOining at nodes. It is convenient to take the origin
of the pipes to be at the node being considered. Let the

136

length, cross-sectional area and resistivity of the ith

pipe be 1., A. and A. respectively, and denote the pressure
~ ~ , ~

along the pipe by P. (x.) (see Fig. (B.2.1». By assuming
~ ~

that the resistivity of the pipe, A.,varies sufficiently
~

slowly along the pipe so that it can be approximated by a

constant throughout the pipe, eqn. (B.2.5) can be written as

NcxleJ

P
J

A.A. OP. (x.)
~ ~ ~ ~

~ at
=

2 o P. (x.)
~ ~

Fig. (B.2.1) The ith pipe with nodes J, I

(B.2.6)

It is assumed in PAN that the gas pressure at the

node is the same for all pipes intersecting at that node,

that is

for all i E SJ (B.2.7)

where SJ is the set of pipes joining at node J and P
j

is

the common pressure at that point.

Furthermore, at each node there is also a continuity

equation to be satisfied

q. (0)
~

= -d
J (B.2.8)

where dJ is the offtake at node J; and the flows are taken

to be positive away from the node.

We can now derive the network equation for the ith pipe

joining at node J. By considering the Taylor series

expansion of P. (1.) about the point x.=O; and simplifying
111

the expression using eqns. (B.2.3) and (B.2.6) and re-

arranging, we get

137

P. (t.) - P. (0)
111

t.>".

A. t. 2 dP. (0) 1 dP. (t.) 3
() 1 1 [1 + -3 d~ 1 1 + 0 (Oi) = - qi 0 + 2Ma 2 '3 dt :J $" (B.2.9)

1 1

Summing eqn. (B.2.9) over all pipes joining at node J

and applying the continuity equation gives

(B.2.10)

where PI is the pressure at the other end of the ith pipe

joining at node J; VJI and CJI are the volume and conduct­
ivity of the pipe connecting nodes J, I and are defined as

and 1 CJ I = -:----­A.t.
1 1

(B.2.11)

A system of ordinary differential equations (ODE) can

be obtained by combining eqn. (B.2.l0) over all the nodes
in the network

* dP *
E dt = A (P) P ~ (t) (B.2.l2)

* where the elements of matrix E are defined as

* 2 V

E JJ = '3 E (2.L)
IESJ 2Ma2

*
= {.! (~~) if I , SJ

E JI
if I € SJ

3 a.a

and the elements of matrix A* are defined as

138

* L: CJ1 AJJ = IES
J

{:JI
if I I SJ

AJI * =
if I E SJ

* The elements of matrix A are functions of P because the

conductivities of the pipes, CJ1's, depend on the pipe flows

g,(see the definition of CJI's in eqns.(B.2.4) and (B.2.ll» I

which in turn are expressible in terms of R via eqn. (B.2.2).

Both matrices A* and E* are symmetric and diagonally dominant.

In PAN, the Crank-Nicolson method is used to solve the

linearised differential equations (B.2.l0) i further details of

this will be given in section B.6, after the derivation of the

DAE system.

B.3 The Machine Models

Machines are active components in the network which are

capable of some form of control. They can be used to increase

or reduce the flow or pressure of gas in the network. Four

types of machines are used in PAN. They are compressors,

regulators, sources and valves. Machines are assumed to lie

between two nodes referred to as the inlet and the outlet nodes.

A source simply has an outlet node.

The internal working of these machines are very complex.

Fortunately, because we are only interested in modelling the

effects of the machines on the rest of the network, we do not

need to simulate their behaviour in detail. An adequate

representation of the machine can usually be achieved by using

less than 7 inequalities involving not more than 3 variables.

The variables required are the machine inlet pressure PI' the

machine outlet pressure Po and the flow through the machine Q

(see Fig. (B.3.2». The models are described separately below.

a) The Compressor

The compressor is the most complicated type of machine

and is used to boost the gas pressure in the network. The

simplest model assumes that the outlet pressure or the

compressor flow is controlled to a fixed value. Unfort­

unately this model is not realistic enough for most

applications and further restrictions on the operation of

compressor using a compressor envelope is required. The

compressor envelope defines the safe operating limits of

the compressor; a typical envelope for the centrifugal

compressor is given in Fig. (B.3.1). In addition, the

compressor must satisfy several physical limits on the

maximum horsepower, maximum compressor speed, maximum

compression ratio and maximum flow. Because it is

very difficult to deal with the compressor envelope, only

the phys ical limi ts are cons ide red (PAN, \'lEIMANN (1978) ,

STONER(1969». These limits are modelled using a set of

inequalities. The compressor envelope is sometimes used

merely (for example, PAN) for outputing warning messages
if it is violated.

The b'asic compressor model is given in fig. (B. 3.2) .

The compression ratio, the horsepower and the compressor

speed are non-linear functions of PI' Po and Q . As the
comp

expression for the compressor speed is rather complicated,

only the e~pressions for the compression ratio and horse­
power are given here,

Canpressian ratio (C.R.) = (Po + EO) / (p I - E
I

) (B.3.l)

Horsepower = (c Qcomp ((C. R.) 6_ 1) (B.3.2)

where EO' EI are pressure losses on outlet, inlet side of
compressor; and c, 6 are constants depending on the partic­

ular compressor used. Further details on the working of
the compressor can be found in SCHEEL(1972).

b) The Regulator

The regulator is used to lower the gas pressure. It

must therefore satisfy the operating restrictions that the

outlet pressure is less than the inlet pressure and that the

139

~
II

o
• .-1

operating
region

& Surge Limit

~ en

i --MIN.REVS

Inlet FlaN

Fig. (B.3.l) - Operating envelope for centrifugal
compressor

Constraints

Qcarp

Po

Qocrop

>

Ccrnpressor Ratio s maximum

Horse Pa>Jer

Canpressor Speed

Fig. (B.3.2) - The Compressor

140

• p ,
I

Ccnstraints

°1lliG
>

Fig. (B.3.3) - The Regulator

:>

[> •
Constraints

'maximum

Fig. (B.3.4) - The Source

------------pI~·-~~·p-O-----------

Closed

<lvAL = 0

Fig. (B.3.5) - The Valve

141

gas should not flow backwards through the regulator. A

regulator would usually have its outlet pressure or flow

controlled to a set value.

c) The Source

The source is the gas supply point in the network and

hence its model consists of only an outlet node. It could

be a gas storage field or an off-shore gas supply terminal

or even a point where the gas is transferred from another

network. To model the different types of sources accurately,

different models are normally required. For example, STONER

(1969) used a non-linear equation involving the flow and

142

pressure to describe the operation of a storage field.

Fortunately for most applications, a simpler model which

restricts the pressure to be less than a maximum value and the

flow to vary within a fixed range is usually adequate.

d) The Valve

Valves are important only in dynamic simulations. It

can be considered as a particularly simple type of machine

with only two operating states, open or closed. When open

the flow is unaffected by the valve and when closed, no flow

is allowed to pass.

A summary of the machine models used in this thesis

is outlined in figs. (B.3.2) to (B.3.5). Similar machine

models are also used in WEI~mNN(l978) .

B.4 Solution of Network with Machines

The presence of machines introduces extra unknown

variables (machine flows) and hence additional equations

are needed for the solution. Even by using the simplified

machine model described in the previous section, a set of

inequalities is still needed to be solved for each machine.

Because of difficulties in dealing with inequalities, PAN

assumes that for each machine, one of the constraints actually

143

reaches its extreme value and is used as the controlling

constraint for the machine. This gives rise to an algebraic

equation for each machine. Any nonlinear constraints are

linearised using Newton's method to give a general machine
equation of the form,

= a (B.4.1)

where ml , m2 , m3 and a are coefficients whose values depend

on the controlling constraint of the machine. For example,

consider the simple case when the machine is operating on

outlet pressure constraint, we require a machine equation

of the form,

p = p
o max

and hence the coefficients are simply given by

and a = P
max

where P is the maximum machine outlet pressure. max

(B.4.2)

For the inlet or outlet node of the machine, the net­

work equation (eqn. (B.2.10» must be modified in order to

take into account the flow through the machine. As the

machine flow Q merely acts as an additional supply at the

outlet machine node and as a demand for the inlet machine node,
eqn. (B.2.10) becomes

(B.4.3)

where m refers to either the inlet or the outlet node of

the machine and k = f 1 if m is the machine inlet node;

-1 if m is the machine outlet node.

By collecting the network equations (eqns. (B.2.10) and
(B.4.3» over all the nodes in the network, we get

* E
dP
dt

* = A (~) P - K 9 S! (t) (B.4.4)

where K is the machine flow incidence matrix defined as

K, ,
~J

and

= k as defined in eqn. (B.4.3) if node i is the

inlet or outlet node of machine j

= 0 otherwise

Eqn. (B.4.4) together with the algebraic machine

equations are combined to give a set of DAE of the form,

144

E ~ = A(~) Y - ~(t) (B.4.5)

where y = [R, gJ. The matrix A(y) now contains the

asymmetric m~chine equations and the machine flow incidence
matrix K; and the matrix E is singular.

B.S The Structure of the DAE system

To understand the structures of matrices E and A, it

is necessary to use a test network. Consider a simple
test network given below.

Os Qc d
~ d4 • 1

~~~----------~-4~~~~3----------~2~'-------------4~ 

Fig. (B.S.l) - Test Network 

The network consists of a compressor C, a source S 

together with two demands, dl and d
4

, at nodes 1 and 4 

respectively; the nodes are numbered as shown in Fig. (B.S.l). 

1 Vi' 
Let Eij = 3 (~). From eqn. (B.2.l0), it is clear 

that the network equations at node 1 and 2 are respectively 
given by, 



145 

(B.5.1) 

and 

(B.5.2) 

and from eqn. (B.4.3), the respective network equations at 

the machine nodes 3, 4 and 5 take the form, 

(B.5.3) 

(B.S.4) 

and 

(B.5.5) 

Lastly, the machine equations for the compressor C and 

the source S can also be written, 

c c c ml P4 + m2 P3 + m3 Qc = a 
c (B.5.6) 

and 
s s 

m2 P5 + m3 QS = a s (B.S.7) 

Put ~ = [PI' P2 , P3 , P4 , PS ' Qc ' QsJ, then it can be 
easily shown that eqns. (B.5.1) to (B.S.7) can be written as 

a DAE system of the form given in (B.4.5.). The matrices 

E and A now have the following structures, 



146 

~ 

2E12 E12 
.---.. -~' .. ----

E12 2 (E
12

+E23) E
23 

E= E23 2E23 (B.5.8a) 

2E45 E45 

E45 2E45 

\ 
~ 

I -c 
12 

C12 
, 

, 

C12 -(C12+C23 ) C23 

C23 -C23 +1 

A(y) = -C45 C45 -1 (B. 5. 8b) 

C45 -C45 +1 

c C C 
~ 1l} ItJ 

s s 
112 ItJ "- " 

where the entries in the matrices are assumed to be zero 

unless otherwise stated. From the above, it is therefore 

clear that the matrix E is singular and matrix A is partially 
structured. The symmetric and diagonally dominant part of 

matrices E and A correspond to the unknown pressure at the 

network nodes. The asymmetric part of matrix A corresponds 

only to the unknown machine variables (the pressures at the 

inlet and outlet nodes of the machine, and the machine flow). 



147 

B.6 The Solution Scheme Employed in PAN 

This section briefly outlines the solution scheme 

employed in PAN to solve the DAE system (B.4.5). PAN handles 

the differential and algebraic equations in the DAE system 

separately, where the differential equations are first integ­

rated and then solved together with the algebraic equations 

in the system. The set of linearised differential equations 

considered in PAN is given by (see eqn. (B.4.4» 

E* dp 
dt = A*P Kg - £!(t) (B.6.1) 

where E* and A* are linearised matrices as defined in eqn. 

(B.2.12). These equations are numerically integrated using 

the constant-step Crank-Nicolson method except for -kg, which 

is integrated using the backward Euler method; this gives rise 

to a set of equations of the form 

= r -n (B.6.2) 

and h = tn+l - tn' 

r -n is a vector containing the known quantities at time t 
n' 

are the solutions required at the new time and £n+l' gn+l 
level, t n+ l . 

Equations (B.6.2) can now be combined with the algebraic 

equations in the DAE system, which are given by (see eqn.(B.4.1) 

and section B.5), 

(B.6.3) 

where matrices Ml , M2 contain the coefficients of the linearised 

constraint equations (B.4.1), and £ is a known right-hand vector 

depending on the operating constraints of the machines. 



Equations (B.6.2) and (B.6.3) provide sufficient 

equations to solve for the unknown variables, Pn+l , 9
n

+
1

. 

148 

A block matrix partitioning method described in GOLDWATER{l976) 

is employed to solve the system of linear equations at each 
time step. 



149 

APPENDIX C 

Arithmet'ic Operation Counts 

This appendix states some preliminary results quoted 

in GEORGE(1974) and ROSE(1972) that can be used to count 

arithmetic operations. The term 'arithmetic operation' 

means multiplicative operation (multiplication or division) 

only. The results are derived under the assumption that 

exact numerical cancellation does not occur. They are 

stated without proof as follows. 

LEMMA C-l 

Let M be an NxN symmetric and positive-definite matrix. 

Then provided we avoid operating on zeros, the number of 

operations required to factorize M into its Cholesky factors 
LLT is 

N 
= 1: 

i=l 

C C (n (L. ) -1)( n (L. ) + 2 ) /2 1. 1. 

together with N square roots. 

LEMMA C-2 

(C-l) 

Let L be a nonsingular NxN triangular matrix and x 

be the solution to Lx = b, with x. =0 unless i =q j=l 2 £, - - 1.. j" , ••. 
(£, ~N). Then the number of operat1.ons 8 required to solve 

L 
Lx = b is 

9., C 
e - 1: n(L 

L - i=l qi (C-2) 

From the above Lemma, we can easily deduce the follow­
ing result 



LEMMA C-3 

Let L be an N~N nonsingular triangular matrix with 

LM=M. Then the number of operations required to compute 

M via back-substitution, given Land M, is 

LEMMA C-4 

N 
L 

i=l 

C R n (L .) n (M .) 
~ ~ 

(C-3) 

Let A, Band C be given sparse matrices, with A =BC. 

Then the number of operations required to compute A from 

Band C is 

8BC = NCR 
L n (B .) n (C .) 

~ ~ 
(C-4 ) 

i=l 

where N is the number of columns in B. 

LEMMA C-5 

Let B be a given sparse matrix with A = BTB. Then the 

number of operations required to compute A from B is 

N R R = L n(B.)(n(B.)+l)/2 
i=l ~ ~ 

(C-S) 

since only the upper or lower half of A needs to be computed. 

LEMMA C-6 

Let Band C be given sparse matrices where the product 
A=BTC is known to be symmetric and B .. ~ 0 => C . ~ o. 

~J T iJ T 
Then the number of operations required to compute A from B 

and C satisfies 

N 
e ::; L n (B R.) ( n (C R. ) + 1 ) /2 

BTC i=l ~ ~ (C-6) 

150 



LEMMA C-7 

Let L be an NxN nonsingular triangular matrix, and 

let x be the solution to the system Lx = b. Then 

(C-7 ) 

From the above, it follows that 

LEMMA C-8 

Let L, M and M be as defined in Lemma C-3. Then 

n(M) ~ n(M) (C-8) 

The proof of the above Lemma's can be found in 

GEORGE ( 19 74) • 

151 



152 

APPENDIX D 

The Numerical Methods 

Four methods selected are the first order theta method, 

the second order strongly S-stable embedded diagonally­

implicit Runge-Kutta (DIRK) method, the second order 

Rosenbrock-type method and the second order DIRK method 

using the Rosenbrock-type method as a predictor. These 

methods when applied to a DAE system are described separately 

below. 

D.l The Theta Method 

This simple one stage method when applied to (1.3.1) 

gives 

where 

f = A y... - d ( t ), Y..n = Y.. ( tn ) -n n - n (D.l.l) 

and 

0.0 ::; e ::; 1.0, n = 0, 1, 2, ... 

The method is A-stable for 8=1/2, strongly A-stable 

for 8 > 1/2 and second order only when e = 1/2 . A reasonable 

compromise is to choose e =0.55 as suggested in PROTHERO(1974). 

The modified-Newton method is used to solve the system 

of nonlinear algebraic equations at each step. The express­

ion for the local truncation error is rather complicated and 

shall not be given here, interested readers are referred to 

HOPKINS (1976) for details. For this formula, an estimate 

of the global error (see PROTHERO(1977» at time t is 
n+l 

given by 

.9:n+l (D.1.2) 



153 

where 

G = E - h e A (0.1.3) 

n is the global error estimate at time t 
~n n 

and 1n+l is the local error estimate at time t
n

+l . 

A suitable value of RESC (see eqn. (4.4.3» for this method 

is 5.0. 

0.2 The Embedded Diagonally-Implicit Runge-Kutta Method 

The second order, strongly S-stable, embedded DIRK 

method given in CASH(1979) when applied to (1.3.1) is 

defined as 

(0.2.1) 

the 3
rd 

order solution together with a 2nd order embedded 

solution are given by 

(0.2.2) 

and 

(0.2.3) 

respectively. 

The parameters are defined as 

a. = 0.4358,6652, T2 = 0.7179,3326, 

b 1 = 1.2084,9665, b 2 =-0.6443,6317, 

c l = 0.7726,3013, c
2 = 0.2273,6987. 

This formula required the solution of 3 systems of 
nonlinear algebraic equations at each time step using 

modified-Newton method. The iteration matrix is the same 

for each system of equations and is given by 



154 

G=E-haA (D.2.4) 

From eqns. (D. 2 . 2), (D. 2 . 3) and (4. 3.2.), an es tima te 
of the local error for y (2) is, n+l 

G -lE ( ( 3 ) ( 2 ) 
!n+l = Yn+l - Yn+1 ) (D.2.5) 

and an estimate of the global error (derived using the 

procedure outlined in PROTHERO(1977» is given by 

(0.2.6) 

A suitable value of RESC (see eqn. (4.4.3» for this method 
is 6.0. 

0.3 The Rosenbrock-type Method 

For the autonomous DAB system of the form 

E ~ = A(y) (y) - ~(y) = !(y) (0.3.1) 

the 2-stage, 2nd order'Rosenbrock-type method given in 
SCRATON(198l) is defined as, 

Yn+l = Yn + h bl~l + h b2 ~2 

G kl = f -n (0.3.2) 

G k2 = f* + hd 2l A~l -n 

where 

f = A Yn - ~ (Yn) -n 

f *= ! (Yn + h a 2l k l ) -n 

G = E-hdA 

and the parameters are defined as 



It can 

matrix A and 

every step. 

be computed 

a
21 

= 2/3 (0.3.3) 

d = 1- 1//2, 

be shown that the method is 

is strongly A-stable when A 

An accurate estimate of the 

using 

nd 2 order for any 

is updated at 

local error can 

(0.3.4) 

and an estima.te of the global error can also be derived 

using the procedure of PROTHERO/ 

(D.3.5) 

where 

A suitable value of RESC for this method is 5.5. 

0.4 The DIRK Method using the Rosenbrock-type Method as 

a Predictor 

Associated with the Rosenbrock-type method (0.3.2) is 

a DIRK formula given by 

(0.4.1) 

where the parameters are as defined in eqn. (D.3.3). This 

formula is second order and also strongly A-stable. The 

expressions for the local and global error estimate defined 

in section D.3 can still be used for this formula. The 

155 



formula requires the solution of two systems of nonlinear 

algebraic equations at each time step and are solved 

using the modified-Newton method; the Rosenbrock-type 

method (D.3.2) is used to provide an accurate initial 

prediction for the modified-Newton iteration. A suitable 

value of RESC that can be used for this method is 5.5. 

The extension of the above pair of methods to the 

non-autonomous case is discussed in section 4.3.3. 

156 



APPENDIX E 

The Implementation' of the Variable-step Integrator 

This appendix describes the basic design and 

implementation of the variable-step integrators, based 

157 

on the numerical methods outlined in appendix D, for solv­

ing the DAE system (1.3.1). The strategies discussed in 

Chapter 4 are used in the implementation. As the strateg­

ies employed rely only on the assumption that the DAE 

system arises from the discretization of a system of para­

bolic POE's, the integrators implemented can also be used 

for solving other similar systems. Thus the discussion 

carried out in this appendix will be based on a general DAE 

system of the form given in (1.3.1) and no reference will 

be made to the gas transmission network problem. 

Because the implementation is largely independent 

of the numerical methods used, only one integrator will be 

discussed in detail. The integrator is called ROSEN and 

is based on the Rosenbrock-type method (D.3.2). This 

integrator also includes the diagonally-implicit Runge-Kutta 

(DIRK) method (D.4.1) using the above Rosenbrock-type method 

as a predictor; the DIRK method is used when the nonlinear 

algebraic equations in the DAE system have not converged 

satisfactorily (see section 4.4.1.2). 

The FORTRAN code of the integrator ROSEN is given 

at the end of this appendix. The code is extensively docu­

mented and is programmed to be both readable and efficient. 

It is divided into stages to enhance its readability. 

E.l The Basic Design of the Integrator 

The integrator is deSigned to be a low level routine 

which implements only the normal and restart phases described 

in section 4.4; the location of disturbance is not included 

as this operation is problem dependent. It is written in 



158 

"reverse communication" form as discussed in DEW(1981) so 

that the evaluation of matrix G, the DAE system and the 

solution of the linear equations are all performed in the 

calling program. This removes the need to pass the problem 

specification routines into the integrator which has the 

advantages that it is easier to maintain the integrator and 

that it is easier to incorporate the integrator into a large 

program designed to solve PDE's. The disadvantage of writing 

the code in "reverse communication" form is that it is necess­

ary to carry along a large number of variables, which has to 

be passed through the parameter list; this makes the integrator 

inconvenient to use for the inexperienced users. 

In order to shorten the parameter list while allowing 

flexibility in the use of the integrator, the set of variables 

which will not be needed by the user during the integration 

are placed in the common blocks. This set of variables 

includes the strategic parameters, the coeffiCients of the 

numerical methods, the constants of the machines and the 

error estimates (see the code of ROSEN); they are only required 

to be set up by the user before the integration begins. Only 

the working vectors and those variables that need to be set 

by the user during the computation are included in the para­

meter list. An example on how the integrator is to be used 

is shown in fig. (E. 1). 

To make the integration robust, the following error 
conditions are implemented. 

i) When using the standard error test of the form 11.&.11 sEPS 

for accepting the step, the limiting precision tests discussed 
in DEW(1978) require that, 

a) the tolerance must satisfy 

EPS ~ 20 U II ~ /I (4.5.1) 

b) the stepsize must satisfy 

/hl ~ 4 Ult/ + 0 (4.5.2) 

where U is the relative precision of the machine (the smallest 

number such that l+U~l) and 0 is the smallest positive number 
that can be stored in the machine. 



setting up 

. 
RETRY: CALL ROSEN( .. T,H,Y,DY,DEL,DYY,IND,WT,W, .. 

IF IND(2)=O THEN integration has finished, 

ELSE 

BEGIN 

check IND(l) for possible error 

The action depends on the value of IND(2) ... 

IF IND(2) 

=1 THEN FORM t.he iteration matrix G =E -hd]'l. 

and COMPUTE the LU factors of Gi 

159 

=2 THEN evaluate a new function! (t,:L) in vector DY; 

=3 THEN CARRYOUT a back-substitution for DEL = G-l*r 

where r = E*W ( 7 , .) + DYY 

=4 THEN COMPUTE an iteration correction 
-1 

DEL = G *(E*~' - !(t,:L)) i 

=5 THEN COMPUTE the algebraic equations and 

return the results in vector DEL; 

GOTO RETRY to recall the integrator 

END; 

Note: The meanings of the variables used are explained in 

the coding of integrator ROSEN 

Fig. E.l - Method of using the integrator ROSEN in the call­

ing program. 

The integration is terminated with an error indication if 

either of the above is not satisfied. This often occurs when 

the solution is unstable. It is necessary to relax the 

accuracy tolerance before the integration is continued. 

ii) During the normal phase (see section 4.4.1), the 

stepsize is halved either when more than 3 evaluations of 

matrix G have been carried out or when the estimate of the 



160 

local error fails the error test. If the solution is still 

unsuccessful after 3 such stepsize reductions in a step, 

the integration is terminated. 

iii) In section 4.4.2, it was stated that during the 

restart phase a retry is attempted when the integration is 

unsatisfactory. If more than 5 retries are performed during 

a restart phase, the integration is terminated. 

iv) Theintegration is also terminated if the matrix G 

appears to be singular. 

In all the above cases, it is likely that the 

problem has been incorrectly specified or a discontinuity in 

the solution has not been located correctly, it is necessary 

to check the problem specification carefully. 

E.2 The Detailed Description of ROSEN 

The coding of integrator ROSEN together with a full 

description of the parameters used are given at the end of 

this appendix. In integrator ROSEN, it is assumed that the 

algebraic equations are arranged after the differential equat­

ions in the DAE system. Hence equations (NODE+l) to NEON 

are algebraic. 

Most of the parameters used in ROSEN are straight­

forward and need no further explanation. The key parameters 

are IND, RSTART and DIRK. They are explained below. 

The parameter IND is a vector which serves as 

indicators for ROSEN. It consists of 4 components. The first 

two components, the IND(l) and IND(2), are used by ROSEN to 

communicate with the calling program. The typical use of 

these two components is given in fig. (E.l). The IND(2) as 

well as IND(3) are used as internal indicators within ROSEN. 

Lastly, since ROSEN includes both the Rosenbrock-type method 

(D.3.2) and the implicit DIRK method (D.4.1), the IND(4) is 

used to select the required method to be used for the integrat­

ion. It is set to 1 when method (D.3.2) is to be used and to 



2 when the implicit method is required. This provides two 

distinct methods within the same integrator. 

161 

In order to distinguish between the restart and 

normal phases, a logical parameter RSTART is used. On entry, 

RSTART is set to TRUE whenever a restart phase is required. 

This usually happens when a discontinuity has been detected. 

It is reset to FALSE within the integrator when the restart 

phase is to be terminated. 

DIRK is another logical parameter which is to be 

used in conjunction with the Rosenbrock-type method, i.e. 

when IND(4)=1. It is set to TRUE within the integrator to 

force the ap~lication of the implicit method when the non­

linear algebraic equations in the DAE system have not converged 

satisfactorily (see Section 4.4.1.2). It can also be set by 

the user when the solution in the next step is known to be 

changing rapidly. It is reset to FALSE within the integrator 

at the end of the step. 

The integrator is divided into 7 stages. Stage 1 

sets up the parameters at the beginning of each step of integ­

ration. It first checks for the value of IND(2) and branches 

to the appropriate points in the integrator if IND(2»O. It 

then checks whether the error tolerance is sufficiently large 

for the machine and initiates a restart phase if the parameter 

RSTART has just been set to TRUE; a new stepsize to be used 

for the restart phase is computed using the formula given in 

eqn. (4. 4 . 3) . 

Stage 2 computes the solution using the Rosenbrock­

type method (D.3.2). The solution computed is improved using 

the implicit method (D.4.l) in stage 3 if the parameter DIRK 

is-·set to TRUE; the strategies outlined in section 4.4.1.1 

are used toimplement the modified-Newton method for solving 

the nonlinear systems of equations. 

The reduction of stepsize, the updating of iteration 

matrix and the retry for the restart phase are performed in 

stage 4; the integration is terminated with an error indication 

if any of the error conditions described in section E.l is 

violated. 



Stage 5 estimates the local error which is used 

during the normal phase for the error test; the step is 

rejected and the stepsize is halved if the error estimate 

exceeds the required error tolerance. The global error is 

also estimated in this stage if RSTART is set to TRUE. 

162 

Stage 6 checks for the convergence of the algebraic 

equations in the DAE system when the Rosenbrock-type method 

is used; the criterion given in eqn. (4.4.1) is used for the 

convergence test. The step is repeated using the implicit 

method (D.4.l) if any of the algebraic equations fails the 

convergence test. 

Fin~lly in stage 7, the appropriate parameters are 

updated after the solution is accepted. During the restart 

phase, checks are made to ensure that the local error in 

successive steps of solution is decreasing in magnitude and 

to determine whether the restart phase is to be terminated; 

the normal phase is recommenced when the global error estimate 

is less than the tolerance. During the normal phase, the new 

stepsize to be used for the next step is also estimated before 

returning to the calling program. 

E.3 The Scope and Use of Integrator ROSEN 

Before any discussion on the use of integrator ROSEN 

can be carried out, it is necessary to state the applicability 

of this integrator in solving general non-'autonomous systems. 

From section 4.3.3, it is clear that the Rosenbrock-type method 

and i~associated DIRK method can be extended to the non­

autonomous case in the way as suggested in that section. 

However, the usual local error estimate will not be as accurate 

as in the autonomous case, and it is only reliable when 

1/ a!/atll« II a!/alll for the problem to be solved. The use 

of a less accurate error estimate will affect the performance 

of the integrator considerably. Thus in general, it is advis­

able to transform the problem to be solved into autonomous 
form before using the integrator. 



163 

As the integrator is written as a low level routine, 

a rather sophisticated driver program is needed to use the 

integrator. A typical layout of the driver program is given 

in fig. (E. 2) . 

After each successful step, a check is made to see 

if a discontinuity is to occur during or at the end of the 

step. This is done by checking through the list of pre­

determined times when the discontinuities are known to occur 

or computing the constraint function ~'s which change sign 

over the discontinuity. In the later case, it is necessary 

to locate the disctoninuity using the procedure outlined in 

section 4.4.2.1 and compute an accurate solution up to that 

time before a restart phase is initiated. A restart phase 

is initiated by setting the indicator RSTART to TRUE. 

Because the integrator is written in "reverse 

communication" form, there is no restriction on the number 

or type of routines that must be supplied by the user in 

order to specify the problem. The users are therefore free 

to write their own routines for this purpose. The following 

routines, however, are recommended, although the exact number 

of routines required is dependent on the nature of the 

problem involved: 

i) A routine to estimate the iteration matrix G; 

ii) routines to factorize and solve the matrix G and 

iii) a routine to compute E ~ and !(t,y) of eqn. (1.3.1). 

Because these quantities are usually required separately by 

the integrator, either separate routines should be used or a 

flag should be incorporated in the routine to indicate which 

of these quantities is required. The routine for computing 

!(t,y) must also include an option to compute only the 

algebraic equations in the system which are required for the 

convergence test at the end of each step. 



Fig. (E.2) - The Layout of the Driver Program for ROSEN 

Set up the initial 
conditions for the 

integration 

Carry out one step of 
integration using ROSEN 

- see Fig. (E.l) 

NO 

Accept the step 

Output the results 
if necessary 

NO 

YES 

YES 

Locate the time which 
the discontinuity occur 
and integrate with full 

error control up to 
that time 

Set RSTART = TRUE 

164 



165 

C========================7~=========================== =============== 
C 
C THE INTEGRATOR ROSEN - WRITTEN IN REVERSE COMMUNICATION 
C 
C===================================================== =============== 

SUBROUTINE ROSEN(NEQN,NODE,T,H,Y,DY,DEL,DYY,IND,WT,W,R,EPS, 
* ZNORM,RSTART,DIRK) 

C***************************************************** *************** 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS ROUTINE SOLVES 
EQUATIONS OF THE FORM 

THE SYSTEM OF DIFFERENTIAL/ALGEBRAIC 

E Y' = F(Y) (1) 
USING THE ROSENBROCK-TYPE METHOD, WHERE E IS A SINGULAR MATRIX 
WHEN THERE ARE ALGEBRAIC EQUATIONS PRESENT IN THE SYSTEM. 

THE ITERATION MATRIX IS GIVEN BY: 
G = E_- H*ALPHA*DF/DY 

***** NOTE ***** 
ALTHOUGH THE INTERATOR CAN IN PRINCIPLE BE USED FOR SOLVING ANY 

NON-AUTONOMOUS SYSTEMS, IT IS ADVISABLE TO TRANSFORM THE SYSTEM 
TO BE SOLVED INTO AUTONOMOUS FORM BEFORE USING THE INTEGRATOR. 

C THE VARIABLES USED HAVE THE FOLLOWING MEANINGS: 
C *NEQN--NUMBER OF EQUATIONS TO BE SOLVED. 
C *NODE--NUMBER OF ODE'S IN THE SYSTEM; THEY MUST BE THE FIRST NODE 
C EQUATIONS IN THE SYSTEM. 
C *T --THE INDEPENDENT VARIABLE. ON FIRST CALL IT SHOULD BE SET 
C TO THE INITIAL CONDITION. ON RETURN IT CONTAINS THE VALUE 
C OF T fOR WHICH Y IS THE SOLUTION. 
C *H --PROPOSED STEPSIZE FOR THE STEP. ON FIRST CALL, IT SHOULD 
C CONTAIN THE INITIAL ESTIMATE OF THE STEPSIZE • 
C *y --THE DEPENDENT VAPIABLE. ON FIRST CALL SHOULD BE SET TO 
C THE INITIAL CONDITIONS. ON RETURN IT CONTAINS THE SOLUTION 
C AT T. DIMENSIONED AS Y(NEQN). 
C *DY --AN ARRAY USED TO HOLD THE RIGHT-HAND FUNCTION FCY,T). 
C ON FIRST ENTRy,IT SHOULD CONTAIN THE INITIAL FCY.T) VALUES. 
C DIMENSIONED AS DYCNEQN). 
C *DEL --RETURNS THE NEW ITERATION CORRECTIONS OR THE RESULTS OF A 
C BACK-SUBSTITUTION. 
C DIMENSIONED AS DEL(NEQN>. 
C *DYY --WHEN IND(2)=3, IT CONTAINS ON EXIT PART OF RIGHT-HAND VECTOR 
C FOR WHICH A BACK-SUBSTITUTION IS TO BE CARRIED OUT 
C CSEE W(7,J». DIMENSIONED AS OYY(NEQN>. 
C *IND --ARRAY CONTAINING THE INDICATORS FOR THE METHOD. 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DIMENSIONED AS IND(4). 
WHERE: 

IND(1)-INDICATOR 
ON EXIT 

FOR THE INTEGRATOR 
>0 FOR SUCCESSFUL CALL 
<0 FOR STEP FAILURE. 

ON ENTRY, IT HAS THE FOLLOWING MEANINGS: 
=0 INITIAL STEP. 
=2 TO RE-EVALUATE THE ITERATION MATRIX. 
ON EXIT, IT HAS THE FOLLOWING MEANINGS: 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

166 

= 1 SUCCESSFUL STEP. 
= 2 SUCCESSFUL STEP BUT TO REEVALUATE r. ON NEXT STEP. 
= 3 SAME AS 1 EXCEPT F(Y,T) AT THE NEW TIME LEVEL HAS BEEN 

FOUND AND IS CONTAINED IN VECTOR DY. 
= 4 SAME AS 3 BUT A NEW G IS ALSO NE.EDED. 
=-1 STEP FAILURE BECAUSE THE TOLERANCE WAS TOO SMALL 

FOR THE MACHINE. 
=-2 STEP FAILED BECAUSE STEPSIZE BECAME TOO SMALL FOR THE 

MACHINE. 
=-3 ERROR TOLERANCE WAS NOT SATISFIED AFTER 3 STEP 

REDUCTIONS. 
=-4 STEP FAILURE AFTER S RETRIES DURING THE 

IND(2)-POINTER TO INFORM THE CALLING PROGRAM ABOUT 
PROBLEM_DEPENDENT INFORMATION NEEDED BY THE 

RESTART PHASE. 
THE TYPE OF 
INTEGRATOR. 

ON EXIT ••••• 
= 0 INTEGRATION HAS FINISHED, CHECK IND(1) FOR POSSIBLE 

ERROR. 
= 1 A NEW-ITERATION MATRIX IS REQUIRED. 

THE INFORMATION NEEDED ARE STORED IN VECTOR V & DY. 
= 2 A NEW RIGHT-HAND FUNCTION F(Y,T) IN EQN.(1) IS NEEDED. 

RETURN THE REQUIRED FUNCTION VALUES IN VECTOR DY. 
= 3 TO COMPUTE THE SOLUTION OF G*DEL = R, 

WHERE R = DYV + E * W(7,J) 
= 4 EVALUATE A NEW ITERATION CORRECTION 

CORR = G**(-1) * (E*V' - F(Y,T», 
AND RETURN THE RESULTS IN VECTOR DEL. 

= 5 COMPUTE THE ALGEBRAIC EQUATIONS REQUIRED IN THE 
CONVERGENCE TEST AND RETURN THE RESULTS IN VECTOR DEL 
(IN LOCATIONS NODE+1 TO NEQN). 

IND(3)-INTERNAL INDICATOR TO INFORM THE INTEGRATOR THE EXACT POINT 
TO RETURN TO. 

IND(4)-IHDICATE THE METHOD TO BE USED: 
=1 FOR THE ROSENBROCK METHOD AND 
=2 FOR DIRK METHOD WITH THE ROSENBROCK METHOD AS A 

PREDICTOR. 
*WT --VECTOR OF WEIGHTS FOR ERROR CRITERION. 

DIMENSIONED AS WT(NEQNa> 
C *w 
C 

--ARRAY USED AS WORKSPACE. DIMENSIONED AS W(10,NEQN). 
WHERE: 

HOLDS THE VALUES OF Y AT PREVIOUS TIME LEVEL. IE.Y(N). 
HOLDS THE VALUES OF F(VN). 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C *R 
C 
C 
C 

W(1,J) 
W(2,J) 
W(3,J) 
W(4,J) 
W(S,J) 
W(6,J) 
W(7,J) 

HOLDS K1. 
CONTAINS THE VALUES Of K2. 
WORKSPACE FOR HOLDING f(Y*). 
CONTAINS ON EXIT THE ESTIMATES Of LOCAL ERROR. 
WORKSPACE FOR HOLDING PART OF THE RIGHT-HAND VECTOR 
TO BE PRE-MULTIPLIED BY MATRIX e fOR WHICK A BACK-
SUBSTITUTION IS REQUIRED. THE OTHER PART IS CONTAINED 
IN VECTOR DYY. SEE DESCRIPTION fOR IND(2)=3. 

W(S,J) HOLDS THE ESTIMATES Of THE GLOBAL ERROR. 
W(9,J) STORE THE Y(J) VALUES AT THE TIME WHEN A RESTART 

PHASE IS INITIATED; THIS IS REQUIRED IN CASE A RETRY 
IS NEEDED. 

W(10,J) STORE THE CORRESPONDING DY VALues. 
--ARRAY USED AS WORKSPACE, DIMENSIONED AS RCB). 

R(1) -HOLDS THE NORM (ITERATION CORRECTION) fROM THE 
PREVIOUS ITERATION. 

R(2) -HOLDS THE RATE Of CONVERGENCE Of THE ITERATION. 



167 

C R(3) -ITERATION TEST CONDITION (=EPS). 
C R(4) -HOLDS THE fACTOR Of THE STEPSIZE CHANGES SINCE THE 
C LAST G UPDATING, If R(4)<O.5 THEN A NEW J IS REQD. 
C RCS) -HOLDS THE OLD STEPSIZE. 
C R(6) -HOLDS THE OLD VALUE Of T AT THE PREVIOUS TIME LEVEL. 
C THIS IS REQUIRED FOR RE-SETTING T WHEN THERE IS A 
C CHAGNE IN STEPSIZE H. 
C R(7) -MAXIMUM ALLOWABLE STEPSIZE HMAX. 
e R(8) -HOLDS THE TIME AT WHICH A RESTART PHASE IS INITIATED. 
C *EPS --THE LOCAL ERROR TOLERANCE SPECIFIED BY THE USER. 
C *ZNORM-ROUTINE TO COMPUTE THE ERROR NORM. IT SHOULD BE WRITTEN AS 
C SUBROUTINE ZNORMCNEQN,ERR,WT,E) 
C DOUBLE PRECISION ERR,WT(NEQN),ECNEQN) 
C WHERE E IS THE ERROR VECTOR, WT IS THE WEIGHTS AND ERR 
C RETURNS THE ERROR NORM. 
C *RSTART-LOGICAL PARAMETER WHICH WHEN SET TO TRUE MEANS THAT THE 
C RESTART PHASE IS ENfORCED. 
C *DIRK -LOGICAL PARAMETER. IT IS SET TO TRUE WHEN DIRK METHOD IS 
C TO BE USED. THE DIRK METHOD IS ALSO USED WHEN IND(4)=1 
C CSEE IND(4) FOR DETAILS). 
C 
c==================================================================== 
C 
C NOTE--WHEN THE ROUTINE IS fIRST CALLED, 
C INO(1), IND(2) MUST BE seT TO -1 AND 0 RESPECTIVELY. 
C 
c******************************************************************** 

EXTERNAL ZNORM 
LOGICAL RSTART,DIRK,CONVRG 
DOUBLE PRECISION T,H,EPS,CORC,RESCN,RESCR,FJAC,ALPHA,COEF,ERRL, 

* ERRG,TWOU,FOURU,TENP,ONE,P1EPS,ROUNO,TEMP, 
* RNORM,fAC,RCON,Fl,F2,ERRO,RATIOP,HMAX,SUM, 
* RATIO,CMIN,ZERO 

DOUBLE PRECISION Y(NEQN),DYCNEQN),DEL(NEQN),OYY(NEQN),RC8), 
* WC10,NEQN),WTCNEQN) 

INTEGER INO(4) 
COMMON ISTATSI ISTAT(6),IJAB,NHALF,NRETRY,ITER 
COMMON ISTRATI JSTEP(2),CMIN,CORC,RESCN,RESCR,fJAC,ALPHA,COEf(6) 
COMMON IRSTATI ERRL,ERRG,ERRO,RATIOP,HMAX,NRSTEP,NLESS 
COMMON IMACONI TWOU,fOURU,TENP 
COMMON ITRACEI IOEVO,ITRACE 
COMMON IZZZZ11 NORM 

c******************************************************************** 
c 
C THE COMMON BLOCKS USED ARE: 
C ISTATS/-CONTAINS THE STATISTICS REQUIRED AT THE END OF THE SOLUTION 
C *ISTAT(6)-VECTOR HOLDING THE OVERALL STATISTICS REQUIRED, WHERE 
C (l)-NUMBER OF STEPS ATTEMPTED 
C (2)-NUMBER Of fUNCTIONS CALL 
C (3)-NUMBER Of ITERATION MATRIX UPDATINGS. 
C (4)-NUMBER Of BACK-SUBSTITUTIONS PERfORMED 
C (S)-NUMBER Of STEPS FAILED TO REACH ERROR CRITERION 
C (6)~NUMBeR OF STEPS FAILURE DUE TO POOR CONVERGENCE. 
C *IJAB -CONTAINS THE NO. OF ITERATION MATRIX UPDATINDS IN A 
C STEP. A MAX Of 3 EVALUATIONS IS ALLOWED BEFORE THE 
C STEPSIZE IS REDUCED. 
C *NHALF -COUNTS THE NO. OF STEP REDUCTIONS IN A STEP. ONLY 
C 3 STEP REDUCTIONS IS ALLOWED. 



168 

C *NRETRY-NUMBER OF RETRY DURING A RESTART PHASE. A MAX OF 5 
C RETRIES IS ALLOWED. 
C *ITER -NO. OF I~ERATIONS FOR THE MODIFIED-NEWTON ITERATION. 
C ISTRAT/-DEFINES THE STRATEGY PARAMETERS USED IN THE INTEGRATOR; 
C THEIR VALUES ARE INITIALISED IN BLOCK DATA. 
C *JSTEP -DIMENSIONED AS JSTEP(2). CONTAINS THE INFORMATION ON 
C THE NUMBER OF STEPS TAKEN SINCE THE LAST ITERATION 
C MATRIX UPDATING AND STEPSIZE CHANGES. 
C I. (1)-HOLDS THE NUMBER OF STEPS TAKEN SINCE THE LAST G 
C MATRIX UPDATING. A MAX OF 15 STEPS IS ALLOWED BEFORE 
C G IS TO BE UP-DATEO. 
C •• (Z)-HOLDS THE NUMBER OF STEPS TO BE USED BEFORE STEPSIZE 
C CHANGES IS CONSIDERED. A MIN OF 3 STEPS IS NEEDED 
C SINCE THE LAST CHANGE IN STEPSIZE. 
C *CMIN -CONSTANT TO DECIDE WHETHER THE ITERATION CAN 
C CONTINUE. 
C *CORC -CONSTANT TO DECIDE WHETHER THE RATE OF CONVERGENCE 
C IS-SATISfACTORY (CORC=O.S). 
C *RESCN -FACTOR USED fOR PREDICTING THE INITIAL STEPSIZE FOR 
C THE NORMAL VARIABLE-STEP INTEGRATION. 
C *RESCR -THE CORRESPONDING FACTOR USED FOR THE RESTART PHASE. 
C *fJAC -fACTOR WHICH THE STEPSIZE CAN BE VARIED BEfORE THE 
C ITERATION MATRIX IS CONSIDERED AS OUT-DATED. 
C *ALPHA -PARAMETER OF THE ROSENBROCK-TYPE METHOD. 
C *COEF(6)-HOLDING THE COEfICIENTS DEfINING THE METHOD. 
C IRSTAT/-DEFINES THE PARAMETERS USED IN THE RESTART PHASE. 
C *ERRL -HOLDS THE WEIGHTED LOCAL ERROR NORM. 
C *ERRG -CONTAINS THE WEIGHTED GLOBAL ERROR NORM. 
C *ERRO -HOLDS THE LOCAL ERROR NORM IN THE PREVIOUS STEP. 
C *RATIOP-HOLOS THE RATIO BETWEEN ERRO AND THE LOCAL ERROR 
C NORM AT THE STEP BEFORE. 
C *HMAX -THE MAX. ALLOWABLE STEPSIZE FOR THE RESTART PHASE. 
C *NRSTEP-NUMBER OF STEPS TAKEN OURING THE RESTART PHASE. 
C *NLESS -NUMBER OF STEPS WHERE WHERE ERRG IS LESS THAN EPS. 
C IMACON/-HOLDS THE MACHINE DEPENOENT CONSTANTS - THE MACHINE 
C ROUNDOff AND THE MACHINE UNDERFLOW NUMBERS U AND P. 
C *TWOU = 2*U 
C *FOURU = 4*U 
C *TENP = 10*P 
C /TRACE/-TO TRACE THE INTEGRATOR FOR DEBUGGING PURPOSES: 
C *IDEVO -OUTPUT DEVICE NUMBER. 
C *ITRACE-TRACE LEVEL REQUIRED. 
C =0 FOR NO TRACE 
C =1 TO OUTPUT INTERMEDIATE RESULTS AT APPROPRIATE 
C POINTS. 
C IZZZZ1/-0EFINES THE TYPE Of NORM TO BE COMPUTED, SEE ROUTINE ZNORM. 
C 
C •••• ** •• * •• *********··********·*·*******·*****·*·**·**.* •••• * •• * ••• * 

ONE=1.0D+0 
ZERO=O.OD+O 

C 
C SET UP THE STRATEGY PARAMETERS FOR THE INITIAL STEP 
C 

IF (INO(1).GE.0) GO TO 10 
ALPHA=ONE - ONE/DSQRT(2.OD+0) 
COEF(1)=-4.00+0/3.0D+0*ALPHA 
COEF(Z)=Z.OD+OI3.0D+0 
COEF(3)=0.25D+0 



COEf(4)=0.750+0 
COEfCS)=(ALPHA+ONE)/(ALPHA - ONE/3.00+0) 
COEf(6)=CO.50+0 - AlPHA)/CALPHA*ALPHA) 
R(3)=EPS 
J1=NOOE+1 
DO 1000 J=J1,NEQN 

1000 WC6,J)=O.00+O 
IF (INO(4).EQ.2) OIRK=.TRUE. 

10 CONTINUE 

169 

C 
c******************************************************************** 
C 
C STAGE--1 SETTING UP 
C 
C******************************************************************** 
C 
C 
C 
C 

IF INO(2)#0 JUMP TO THE APPROPRIATE POINTS IN THE INTEGRATOR 
ELSE, IT IS A -FRESH CALL fOR THE PRESENT TIME LEVEL 

K=INO(3) 
I=IND(2)+1 
INO(2)=0 
GO TO (12,20,17,29,35,63), I 

12 CONTINUE 
C 
C CHECK If EPS IS SUFfICIENTLY LARGE 
C 

P1EPS=0.10+0*EPS 
CALL lNORMCNEQN,ROUND,WT,Y) 
ROUN O=RO UNO * TWOU 
IF (P1EPS .GE. ROUNO) GO TO 15 

c 
C ERROR - THE TOLERANCE IS TOO SMALL FOR THE MACHINE 
C 

EPS=10.00+0*CROUNO*(ONE+FOURU) + TENP) 
INO(1)=-1 
RETURN 

15 CONTINUE 
IJAB=O 
NHALF=O 
INO(3)=0 
K=O 
IF (INO(1).LT.0 .OR. INO(1).GE.3) GO TO 17 
ISTAT(2)=ISTAT(2)+1 
INO(Z)=2 
RETURN 

17 CONTINUE 
IF (INO(1).GE.3) INO(1)=INO(1)-2 
IF (K.EQ.2) GO TO 27 

C 
C INITIALISE A RESTART PHASE IF NECESSARY 
C 

IF (.NOT.RSTART .OR. NRSTEP.GT.O) GO TO 19 
C 
C STORE THE CURRENT SOLUTION VALUES IN W WORKSPACE, 
C ANO THE CURRENT TIME IN R(R) 
C 

DO 1005 J=1,NEQN 



W(9,J)=Y(J) 
1005 W(10,J)=OY(J) 

ERRG=ZERO 
R(8)=T 

C 
C ESTIMATE THE STEPSIZE TO BE USED FOR THE RESTART PHASE 
C 

CALL ZNORM(NEQN,SUM,WT,OY) 
H=RESCR*OSQRT(EPS/SUM) 
H=DMINH HMAX,H) 
IF (ITRACE.NE.Z) WRITE(IOEVO,8003) H 

8003 FORMAT(II' === RESTART PHASE ==='/' H = ',012.4) 
INO(1)=Z 
DIRK=.TRUE. 

19 CONTINUE 
C 
C STORE Y & OY IN W(1,J) & W(2,J) RESPECTIVELY 
C 

DO 1010 J=1,NEQN 
W(1,J)= y(J) 

1010 W(2,J)=OY(J) 
C 
C COMPUTE THE ITERATION MATRIX IF IT IS AN INITIAL STEP 
C 

IF (INO(1).LE.0) INO(1)=2 

170 

C******************************************************************** 
C 
C STAGE--Z COMPUTE THE SOLUTION USING ROSENBROCK-TYPE METHOD 
C 
C******************************************************************** 
C 
C PRESERVE THE OLD VALUE OF T IN R(6) 
C 

R(6)=T 
IF (IND(1).EQ.Z) GO TO 45 

20 CONTINUE 
C 
C CHECK IF THE STEPSIZE IS LARGE ENOUGH FOR THE MACHINE 
C 

IF(DABS(H).GE.FOURU*OABS(T)+TENP) GO TO 22 
C 
C ERROR - THE STEPSIZE HAS BECOME TOO SMALL FOR THE MACHINE 
C 

INO(1)=-2 
RETURN 

22 CONTINUE 
IF (K.GT.O) GO TO 33 

C 
C 
C 

1020 
C 
C 
C 
C 

INO(3)=1 

COMPUTE K 1 

00 1020 J=1,NEQN 
o Y Y ( J ) =W ( 2 , J ) 
W(7,J)=ZERO 

EXIT TO COMPUTE K1; IE. THE BACK-SUBSTITUTION 
RETURN TO LABEL 29 



25 
C 
C 
C 
C 
C 

1030 

C 
C 
C 
27 

1040 

29 
C 
C 
C 

30 

1050 
C 
C 
C 
C 

ISTAT(4)=ISTATC4)+1 
INDC 2)=3 
RETURN 
CONTINUE 

COMPUTE K2 IN 2 STAGES 
1 - EVALUATE FUNCTION FCYN + H.A21.K1) 
2 - EVALUATE K2 BY BACK-SUBSTITUTION. 

IND(3)=2 
IJAB=O 
T=R(6) + COEF(2)·H 
DO 1030 J=1,NEQN 

YCJ)=WC1,J) + H.COEF( 2).W(3,J) 
CONTINUE 
ISTAT(2)=ISTAT(2)+1 
IND(2)=2 
RETURN 

RETURN TO LABEL 27 WITH THE REQUIRED FUNCTION IN VECTOR DY 

CONTINUE 
00 1040 J =1, NEQN 

WC5,J)=DYCJ) 
W(7,J)=COEF(1)/ALPHA.W(3,J) 
DYY(J)=DY(J) 

CONTINUE 
ISTAT(4)=ISTAT(4)+1 
IND(Z)=3 
RETURN 
CONTINUE 

RETURN HERE WITH K VALUES IN DEL(J) FOR K=1, 2 

GO TO (30,30,55,56,57), K 
CONTINUE 
DO 1050 J=1,NEQN 

W(K+2,J)=DEL(J) - W(7,J) 

IMPROVE THE SOLUTION USING THE CORRESPONDING DIRK METHOD 
IF THE PARAMETER DIRK IS SET. 

IF (DIRK) GO TO 31 
IF (K.EQ.2) GO TO 50 
GO TO 25 

171 

C 
c •••••• ••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••• 
C 
C STAGE--3 MODIFIED-NEWTON ITERATION FOR THE DIRK METHOD 
C 
C •••• ••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••• 
31 CONTINUE 

IF (K.EQ.1) ITER=O 
R(1)=0.OD+0 

C 
C SET UP THE I N I Tl ALE S TIM ATE S FOR Y ; & K; VEe TOR S 
C 

IF (K.EQ.2) GO TO 32 



F1=H*ALPHA 
T=R(6) + f1 
on 1060 J=1,NEQN 

OY(J)=W(3,J) 
1060 Y (J)=we1,J) + F1*OyeJ) 

GO TO 33 
32 CONTINUE 

f1=H*(COEf(1) + COEF(2» 
f2=H*ALPHA 
T=R(6) + F1 + F2 
00 1061 J=1,NEQN 

DyeJ)=we4,J) 
1061 Y eJ)=we1,J) + F1*we3,J) + F2*DyeJ) 
33 CONTINUE 
C 
C EXIT TO COMPUTE THE ITERATION CORRECTION 
C 

ISTAT(2)=ISTATe2) + 1 
ISTAT(4)=ISTATe4) + 1 
IND(2)=4 
RETURN 

35 CONTINUE 
C 
C RETURN HERE WITH THE ITERATION CORRECTION IN VECTOR DEL 
C 

ITER=ITER+1 
CALL ZNORMeNEQN,RNORM,WT,DEL) 
RNORM=H*RNORM 
RCON=O.OD+O 
IF (R(1).NE.0.OD+0) RCON=RNORM/R(1) 
R(1)=RNORM 
R(2)=RCON 

172 

If (ITRACE.EQ.1) WRITE(IDEVO,8040) ITER,RNORM,RCON,K 
8040 FORMAT(/' ITER=',I2,' RNORM=',D12.4,' RCON=',D12.4,' K=',I2) 

IF (RCON.GE.ONE) GO TO 36 
F1=H*ALPHA 
DO 1062 J=1,NEQN 

DY(J)=OY(J) - DEL(J) 
Y eJ)=Y (J) - F1*DELCJ) 

1062 CONTINUE 
IF CRNORM.LE.R(3» GO TO 39 
IF eRCON.LE.CORC) GO TO 33 

C 
C DURING RESTART PHASE, A MIN OF 5 ITERATIONS IS PERFORMED BEFORE 
C THE ITERATION MATRIX UPDATING IS CONSIDERED 
C 

IF CRSTART.AND.ITER.LE.5) GO TO 33 
36 CONTINUE 
C 
C A NEW ITERATION MATRIX IS REQUIRED 
C 

GO TO 45 
39 CONTINUE 
C 
C ITERATION HAS CONVERGED 
C 

DO 1063 J=1,NEQN 
W(I(+2,J)=DyeJ) 



1063 CONTINUE 
IF (K.EQ.1) GO TO 25 
GO TO 50 

173 

C******************************************************************** 
C 
C 
C 
C 

STAGE--4 STEPSIZE REDUCTION, ITERATION MATRIX UPDATING 
AND RETRY FOR THE RESTART PHASE 

C******************************************************************** 
C 
C 
C 
C 
C 
40 
C 
C 
C 

1065 
C 
C 
C 
C 

IF THE ITERATION CORRECTION IS UNSATISFACTORY OR IF THE 
STEPSIZE HAS BEEN CHANGED BY MORE THAN A FACTOR OF fJAC 
RE-EVALUATE T~E ITERATION MATRIX 

CONTINUE 

RESET Y & DY VECTOR 

IND(3)=0 
DO 1065 J=1,NEQN 

DY(J)=W(2,J) 
Y(J) =W(1,J) 

CONTINUE 

IF THE ITERATION ~ATRIX HAS NOT BEEN UPDATED IN THE LAST TWO 
STEPS UPDATE IT BEFORE REDUCING THE STEPSIZE 

IF (JSTEP(1).GE.2) GO TO 45 
C 
C REDUCE THE STEPSIZE BY HALF 
C 

JSTEP(2)=3 
H=H*0.5D+0 
NHALF=NHALF+1 
IF (NHALF.LE.3) GO TO 45 

C 
C TOO MANY STEP REDUCTIONS 
C 

IND(1)=-3 
RETURN 

45 CONTINUE 
C 
C NEW ITERATION MATRIX IS REQUIRED 
C 

C 

IND(1)=1 
IJAB=IJAB+1 
If (IJAB.LE.3) GO TO 47 
If (RSTART) GO TO 48 

C TOO MANY EVALUATIONS OF MATRIX G, REDUCE THE STEPSIZE 
C 

IJAB=O 
GO TO 40 

47 CONTINUE 
ISTAT(3)=ISTAT(3)+1 
JSTEP(1)=0 
R(4)=ONE 
I TE R =0 



R(1)=0.00+0 
R(2)=0.00+0 
INO(2)=1 
RETURN 

48 CONTINUE 
C 
C THE ITEGRATION IS UNSATISFACTORY DURING THE RESTART PHASE, 
C REDUCE THE STEPSIZE BY A FACTOR OF 5 AND RESTART FROM THE 
C INITIAL TIME (RETRY). 
C 

NRETRY=NRETRY+1 
IF (NRETRY.LE.5) GO TO 49 

C 
C ERROR - MORE THAN 5 RETRIES HAS BEEN DONE 
C 

INO( 1 )=-4 
RETURN 

49 CONTINUE 
H=0.20+0*H 
T=R(S) 
IF (ITRACE.NE.2) WRITE(IOEVO,8111) T 

8111 FORMAT<" RE-START FROM T =' ,015.6) 
00 1067 J=1,NEQN 

Y ( J) =W( 9, J ) 
OY(J)=W(10,J) 

1067 WT(J)=OMAX1(ONE, OABS(Y(J» ) 
ERRG=ZERO 
IHO(1)=4 
OIRK=. TRUE. 
NRSTEP=1 

174 

GO TO 15 
C******************************************************************** 
C 
C STAGE--5 ERROR ESTIMATION 
C 
C******************************************************************** 
50 CONTINUE 
C 
C COMPUTE THE NEW SOLUTION AND ESTIMATE THE LOCAL ERROR 
C 

1070 
C 
C 
C 

DO 1070 J=1 .. NEQN 
Y(J)=W(1,J) + H*<COEF(3)*W(3 .. J) + COEF(4)*W(4 .. J)) 

OYY(J)= -W(2,J) - 3.00+0*W(5 .. J) 

W(7,J)= W(3,J) + 3.00+0*W(4 .. J) 

CONTINUE 

RETURN TO COMPUTE G**(-1 )*OEL 

INO(3)=3 
52 CONTINUE 

ISTAT(4)=ISTAT(4)+1 
INO< 2).3 
RETURN 

55 CONTINUE 
DO 1075 J=1 .. NOOE 

OEL<J)=H*OEL(J)/6.00+0 
1075 W(6.J)=OEL(J) 

CALL ZNORM(NOOE,ERRL,WT,OEL) 



ERRL=ERRL/EPS 
IF (ITRACE.EQ.1) WRITE(IDEVO,9035) ERRL 

9035 FORMAT(' ERRL =' ,015·.6) 
IF (ERRL.LE.ONE .AND •• NOT.RSTART) GO TO 60 
IF (.NOT.RSTART) GO TO 59 

175 

C 
C DURING THE RESTART PHASE -- COMPUTE THE GLOBAL ERROR ESTIMATE 
C 

IF (ERRG.NE.ZERO) GO TO 53 
C 
C FIRST STEP DURING THE RESTART PHASE, ERRG=ERRL 
C 

DO 1078 J=1,NEQN 
1078 W(8,J)=W(6,J) 

ERRG=ERRL 
GO TO 60 

53 CONTINUE 
DO 1080 J=1,NEQN 

OYY(J)=O.OO+O 
1080 W(7,J)=W(8,J) 

IND(3)=4 
GO TO 52 

56 CONTINUE 
DO 1082 J=1,NEQN 

W(7,J)=COEF(6)*DEL(J) + (ONE-COEF(6»*W(8,J) 
DYY(J)=O.OD+O 

1082 CONTINUE 
INO(3)=5 
GO TO 52 

57 CONTINUE 
DO 1086 J=1,NODE 

OEL(J)=OEL(J) + W(6,J) 
1086 W(8,J)=DEL(J) 

CALL ZNORM(NODE,ERRG,WT,DEL) 
ERRG=ERRG/EPS 
IF (ITRACE.EQ.1) WRITE(IDEVO,9037) ERRG 

9037 FORMAT(' ERRG =' ,015.6) 
GO TO 60 

59 CONTINUE 
C 
C LOCAL ERROR DOES NOT SATISFY THE ERROR TOLERANCE 
C REDUCE THE STEPSIZE BY HALF 
C 

ISTAT(5)=ISTAT(5)+1 
GO TO 40 

c******************************************************************** 
C 
C STAGE--6 THE CONVERGENCE TEST 
C 
c******************************************************************** 
60 CONTINUE 

IF (NOOE.EQ.NEQN .OR. DIRK) GO TO 70 
INO(2)=5 
RETURN 

63 CONTINUE 
C 
C RETURN HERE WITH THE VALUES OF THE ALGEBRAIC EQUATIONS IN 
C VECTOR DEL 



c 

1100 
65 
C 
C 
C 

9050 
C 
C 
C 

1110 

CONVRG=.TRUE. 
11=NODE+1 
P1EPS=O.2D+0*EPS 
00 1100 I=I1,NEQN 

IF (DABS(DEL(I)/WT(I».LE.P1EPS) GO TO 1100 
CONVRG=.FALSE. 
GO TO 65 

CONTINUE 
IF (CONVRG) GO TO 70 

NONLINEAR ALGEB~AIC EQUATIONS HAVE NOT CONVERGED 

WRITE(IDEVO,9050) 
FORMAT(/' NONLINEAR ALGEBRAIC EQUATIONS HAVE NOT CONVERGED') 

RESOLVE THE SOLUTION USING DIRK METHOD 

00 1110 1=1,NEQN 
Y(I) =W(1,I> 
D Y( I ) =W( 2 , I) 

T=R(6) 
IND(1)=3 
IND(2)=0 
DIRK=.TRUE. 
GO TO 15 

176 

C******************************************************************** 
C 
C STAGE--7 SUCCESSFUL STEP 
C 
C******************************************************************** 
70 CONTINUE 

R(5)=H 
T=R(6)+H 
ISTAT(1 )=ISTAT<1 )+1 
JSTEP(1 )=JSTEP(1 )+1 
JSTEP(2)=JSTEP(2)-1 

C 
C SET DIRK TO FALSE IF THE ROSENBROCK-TYPE METHOD IS USED 
C 

IF (IND(4).EQ.1) DIRK=.FALSE. 
FAC=ONE 
IF (.NOT.RSTART) GO TO 75 
IF (.NOT.DIRK .AND. JSTEP(1).GE.S) IND(1 )=2 
IF (NRSTEP.EQ.1 .AND. ERRL.LT.0.75D+0 .AND. ERRO.LT.0.75D+0) 

* GO TO 72 
C 
C CHECK IF THE STEPSIZE USED IS SENSIBLE - GO TO LABEL 48 IF THE 
C LOCAL ERROR DIVERGES OR TOO MANY STEPS HAVE BE COMPUTED 
C 

IF (EARG.GT.100.0) GO TO 48 
RATIO=ZERO 
IF (NRSTEP.GT.O) RATIO=ERRL/ERRO 
IF (RATIO.GT.ONE .AND. RATIOP.GT.ONE .AND. ERRL.GT.ONE) GOTO 48 
RATIOP=RATIO 
ERRO=ERRL 
NRSTEP=NRSTEP+1 
NLESS=NLESS+1 



IF C ERRG. GT • ONE) NLE 55=0 
IF (NLES5.GE.1 .AND. NRSTEP.GE.2) GO TO 72 
IF (NRSTEP.GT.15) GO' TO 48 
GO TO 75 

177 

72 CONTINUE 
C 
C TERMINATE THE RESTART PHASE 
C 

RSTART=.fALSE. 
ERRG=ZERO 
NLESS=O 
NRSTEP=O 
NRETRY=O 
JSTEP(1 )=12 
IF (ITRACE.NE.2) WRITECIDEVO,8015} 

8015 FORMATC/' === END OF RESTART PHASE (NEXT STEP) ===') 
75 CONTINUE 

IF (RSTART) RETURN 
IF (H.GE.RC7) .OR. ERRL.GT.0.15D+0 .OR. JSTEP(2).GT.0) GO TO 76 

C 
C DOUBLE THE STEPSIZE TO BE USED NEXT STEP 
C 

76 
C 
C 
C 
C 

* 

78 
79 

9060 
* 

C 
C 
C 
C 
C 

FAC=2.0D+0 
If (H*FAC.GT.R(7» FAC=R(7)/H 
H=H*fAC 
R(4)=R(4 )*fAC 
JSTEP(2)=3 
CONTINUE 

FORCE THE ITERATION MATRIX TO BE RE-EVALUATED NEXT STEP IF THE 
FOLLOWING CONDITIONS ARE SATISFIED 

IF (IND(4).EQ.2) GO TO 78 
IF CR(4).GE.FJAC .OR. JSTEP(1).GE.15 .OR. ERRL.GE.0.85D+0) 

IND(1)=2 
GO TO 79 
IF (R(4).GE.FJAC .OR. JSTEP(1).GE.25 .OR. R(2).GT.CORC) IND(1)=2 
CONTINUE 
IF (ITRACE.EQ.1) WRITE(IDEVO,9060) T,H,FAC,ERRL 
FORMATC/' ROUTINE THETA: T=',D11.5.' H=',D11.5,' FAC='.Dl1.5, 

• ERRL=',D11.5) 
RETURN 

END OF SUBROUTINE STALEC 

END 
BLOCK DATA 

C********************************************************************* 
C 
C THIS PROGRAM INITIALISES THE PROBLEM DEPENDENT DATA HELD IN 
C COMMON BLOCKS ISTRATI, IRSTAT/, IMACONI AND IZZZZ11 
C 
C******************************************************************** 

DOUBLE PRECISION CMIN,CORC,RESCN,RESCR.FJAC.TWOU,fOURU.TENP. 
* HMA X, TEMP 

COMMON ISTRATI JSTEP(2).CMIN,CORC,RESCN,RESCR,fJAC 



COMMON IRSTATI TE~P(4),H~AX,NRSTEP,NLESS 
COMMON IMACONI TWOU~fOURU,TENP 
COMMON 1111111 NORM 

178 

DATA CMIN/1.0D+0/, CORC/0.5D+0/, RESCN/O.1D+0/, RESCR/5.5D+OI, 
* FJAC/2.0D+OI,JSTEP/2*01 

DATA HMAX/2.5D+0/, NRSTEP/OI, NLESS/OI 
DATA TWOU/0.22D-15/, FOURU/0.44D-15/, TENP/O.60D-771 
DATA NORM/11 

C 
C 
C END OF BLOCK DATA SEGMENT 
C 
C 

END 
SUBROUTINE INORM(NEQN,XNORM,WT,Y) 

C******************************************************************** 
C 
C SUBROUTINE INORM. 
C 
C******************************************************************** 

DOUBLE PRECISION XNORM,DNEQN 
DOUBLE PRECISION WT(NEQN),Y(NEQN) 
COMMON IZZZl11 NORM 

C******************************************************************** 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS SUBROUTINE CALCULATES THE NORM (XNORM) OF Y WEIGHTED 
BY WT. 

NORM 
= 1 
= 2 
= 3 

DETERMINES THE TYPE OF NORM TO BE USED. 
THE MAXIMUM NORM IS USED. 
THE L2 NORM IS USED. 
THE AVERAGED L2 NORM IS USED. 

NORM IS SET TO 1 IN THE BLOCK DATA SEGMENT. THIS VALUE 
MAY BE CHANGED AT RUN TIME BY ACCESSING NORM THROUGH THE 
COMMON BLOCK ZIZZ1. 

C******************************************************************** 
XNORM=O.OO+O 

C 
C 

GO TO (100,200,200),NORM 
100 DO 1000 I=1,NEQN 
1000 XNORM=DMAX1(DABS(Y(I)/WT(I»,XNORM) 

RETURN 
200 DO 1010 I=1,NEQN 

1010 XNORM=XNORM+(Y(I)/WT(I»**2 
DNEQN = FLOAT(NEQN) 
IF(NORM.EQ.3)XNORM=XNORM/DNEQN 
XNORM=DSQRT(XNORM) 
RETURN 

C END OF ZNORM 
C 
C 

END 


