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ABSTRACT 

This thesis is concerned with the development of 

numerical software for the simulation of gas transmission 

networks. This involves developing software for the solution 

of a large system of stiff differential/algebraic equations 

(DAE) containing frequent severe disturbances. The disturban­

ces arise due to the varying consumer demands and the operat­

ion of network controlling devices such as the compressors. 

Special strategies are developed to solve the DAE system 

efficiently using a variable-step integrator. Two sets of 

strategies are devised; one for the implicit methods such as 

the semi-implicit Runge-Kutta method, and the other for the 

linearly implicit Rosenbrock-type method. Four integrators, 

based on different numerical methods, have been implemented 

and the performance of each one is compared with the British 

Gas network analysis program PAN, using a number of large, 

realistic transmission networks. The results demonstrate that 

the variable-step integrators are reliable and efficient. 

An efficient sparse matrix decomposition scheme is 

developed to solve the large, sparse system of equations that 

arise during the integration of the DAE system. The decomposit­

ion scheme fully exploits the special structure of the 

coefficient matrix. 

Lastly, for certain networks, the existing simulation 

programs fail to compute a feasible solution because of the 

interactions of the controlling devices in the network. To 

overcome this difficulty, the problem is formulated as a 

variational inequality model and solved numerically using an 

optimization routine from the NAG library (NAGFLIB(l982)). 

The reliability of the model is illustrated using three test 

networks. 



Acknowledgements 

I would like to thank Peter Dew for his supervision, 

guidance and encouragement throughout this project. I would 

also like to thank Susan Nemes for her expert typing. 

Special thanks are due to British Gas Corporation for 

its financial support, and to A.E. Fincham, N.J. Revel, J.R. 

Mallinson and N.H. Goodwin of its London Research Station for 

their help and advice during the project. 

Finally, I would like to express my thanks to a very 

special person, Chew-Lan, for her encouragement and help in 

many ways. 



CONTENTS 

Nomenclature 1 

Chapter 1 Introduction 4 

Chapter 2 A Survey of Numerical Techniques 13 

Chapter 3 The Solution of Linear Equations 36 

Chapter 4 The Design of the Variable-step Integrator 60 

Chapter 5 The Numerical Testings and Results 82 

Chapter 6 The Conflicting Constraints Problem 98 

Chapter 7 Conclusions 114 

References 117 

Appendix A The Test Networks 126 

Appendix B The Mathematical Background to the PAN 
Program 132 

Appendix C Arithmetic Operation Counts 149 

Appendix D The Numerical Methods 152 

Appendix E The Implementation of the Variable-step 
Integrators 157 



1 

Nomenclature 

This thesis covers several different fields of study 

including the gas industry, the solution of dif£erential/ 

algebraic equations, the sparse matrix computation and 

numerical optimization. The repeated use of certain symbols 

is therefore unavoidable. To avoid complication, the symbols 

that appear in the appendices are not included here; they are 

explained as and when they occur. Furthermore, those symbols 

that are specific to a particular field of study and appear 

only in the background sections (for example, sections 3.4 

and 6.5) are also excluded. 

Latin Characters 

A cross-sectional area of the pipe (in section 2.1 only). 

A (y)or A - the right-hand matrix of DAE system (1. 3 .1) 

A. . - the submatrices of matrix G as defined in eqn. (3.2.1). 
1J 

A - submatrix corresponds to the machine nodes as defined p 

B 

C 

d 

~ (t) 

e -n 

E 

EPS 

!(t,y) 

K(y) 

9:n 
9: (t) 

in eqn. (3.3.1) 

- the known right-hand quantities of the linearised 

network equations given in eqns.(6.2.1)-(6.2.2) 

- matrix with constant coefficients 

- the matrix C defined in eqn. (3.3.2) 

- the parameter of the Rosenbrock-type method 

- vector containing the demands fnn the network. 

- actual local error of the numerical method at 

time tn 

- the capacity matrix of the DAE system (1.3.1) 

- user specified accuracy tolerance 

- nonlinear function in t and y 

nonlinear algebraiC equations in y 

- the global error estimate at time t 
n 

- any function defined and bounded in some interval 

[O,T] 

G - the iteration matrix of (1.3.1) 

h - the time stepsize 

h Ah 

H - a functional of g, ~ and Q defined in eqn. (6.4.5) 

I - identity matrix 
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J (y) - the matrix a~(y)/ay 

k - order of the numerical method 

k. - the intermediate solution vector of the Runge-Kutta 
-1. 

K 

K 
P 

Kr 
Il, 
-n 
L, L 

m 

P 

and Rosenbrock-type method 

- the flow incidence matriX 
- = L -T L -IK 

P P 
- machine inlet flow incidence matrix (eqn.(6.2.3» 

- local error estimate at time t n 
- the Cholesky factors of the symmetric and positive-

definite matrices All and Ap respectively 

- number of iterations 

IIJ,~,m3 - coefficients of the machine constraint equation 

(eqn. (6. 5. 1) ) 

M 

n ( • ) 

N 

p 

p 

r 

- molecular weight of gas (in section 2.1 only) 

- general matrix 

- submatrices containing the coefficients of the 

machine constraint equations (eqn. (3.2.1» 

the machine flow matrix defined in eqn. (3.3.3) 

- number of non-zeros of a matrix or a vector 

- size of matrix G 

- the pressure 

- the unknown pressures at free nodes 

- the fl~~ through the pipes 

- the unknown machine flows 

- - Q - Q defined in section 6.~ - -max -' 
- rate of convergence of the modified-Newton iteration 

- stability polynomial (see eqn. (2.2.4» 

- known right-hand vector of the linear equations 

£1'£2'£3 - the components of vector E 
RA - absolute stability region of a numerical method 

t - the independent variable, the time 

~n(t) - local solution at time t > tn 

w - iteration correction of the modified-Newton iteration 
x - distance along the pipe 

x - the unknown vector of the linear equation (3.1.1) 

- the dependent variable 

- computed solution at time t n 
the off-diagonal matrix defined in eqn.(3.3.l) 

- the submatrices defined in eqn. (6.2.1)-(6.2.2) 
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Greek Characters 

B the parameter of a numerical method 

e the parameter for the theta-method 

A the eigenvalue 

Yl'Y2'Y3 - length of vectors f, ~ and Q respectively 

0i known right-hand quantity of the machine constraint 

equation 

p density of gas 

€ error estimate at time t -n n 
! switching functions for locating the discontinuities 

1T unknown pressures at the machine nodes 

!(y) the algebraic equations in the DAE system 

~ set of pressures at the machine outlet nodes (used 

in chapter 6 only) 

n set of pressures at free nodes and tie machine inlet 

nodes (used in chapter 6 only) 

II. II a suitable norm for measuring the size of a matrix 

or a vector 

(.),<.>,{.}-inner products 
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CHAPTER 1 

1. INTRODUCTION 

1.1 The Gas Transmission Network - the need 
for simulation 

1.2 Collaboration with British Gas Corporation 

1.3 The Mathematical Background to PAN 

1.4 The Scope and Objectives of the Thesis 

1.5 The Implementation of Leeds/PAN 

1.6 The Survey of Contents 
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CHAPTER 1 

1.1 The Gas Transmission Network - the need for simulation 

Natural gas has become an important alternative 

source of energy which accounts for nearly a fifth of the 

European Community's energy needs today (GASEMN(1981)). 

Large amounts of gas are consumed everyday to provide heating 

and energy for millions of homes and industries. Because 

natural gas is often discovered in remote locations far away 

from the centres of demand, there is an extensive transmiss­

ion network to transport the gas to places where it is needed. 

The transmission network consists of a sequence of pipes 

with a number of special devices like compressors (used to 

boost the gas pressure so that the gas can be transmitted 

over a long distance). Other devices in the network include 

regulators and valves which are also used to control the 

pressure and flow. It is conventional to refer to devices 

that control the gas flow through the network as machines. 

Massive pipeline construction in Great Britain 

started in the mid 1960s in the wake of discoveries of 

natural gas in the North Sea. To date, more than 2,900 miles 

of mainly 36 inch diameter steel pipes have been laid. 

These pipes are operating at pressures of between 35 to 70 

bars. There are thirteen compressor stations in operation. 

The compressors are mainly of centrifugal type driven by 

gas turbine engines fueled by natural gas taken from the 

network. British Gas have plans to extend the network to 

about 4,000 miles of pipes and twenty compressor stations. 

A map showing the complexity of the British Gas national 

transmission network is given in fig. (A.1). 

To design cost-effectively and operate such a large 

and complex transmission network, it is essential to simulate 

the gas transmission network using a computer. The simulation 

is used to assist the engineers during the design stage, for 

example, to check that a proposed design can cope with the 

anticipated demand. It is also used in the control of the 

network, for example, to check if a particular operating 



policy is feasible in the light of the expected demand 

over the next few hours. The operation of the network 

invariably involves,large dynamic variations caused by the 

time varying consumer demands and the switching on and off 

of machines. Furthermore for the high pressure network, 

it is also important to know the storage capability of the 

network so that it can be exploited in meeting consumer 

demands. To understand the behaviour of gas flow in the 

network, a thorough knowledge of the dynamic behaviour of 

the network is required which means that it is necessary to 

develop computer programs that can perform dynamic flow 

simulations. 

1.2 Collaboration with British Gas CorDor'ation 

The research work reported in this thesis has been 

carried out in close collaboration with Mr. A.E. Fincham 

and the PAN team at the London Research Station of the 

British Gas Corporation. The scope and objectives of the 

research programme outlined in Section 1.4 arose out of 

discussions with British Gas artd regular progress meetings 

were held to review the work. 
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Currently British Gas use a network analYSis program 

called PAN {~rogram to ~alyse ~etworks) (GOLDWATER(1976)) 

to carry out the dynamic flow simulations. This program has 

two distinct parts. The ·first part handles the I/O which 

includes a large number of facilities to assist the engineers 

in specifying the network. The second part performs the 

actual analysis of the network. It is the second part 

which is of interest in this thesis. British Gas are 

currently developing a replacement for this p~ram and the 

purpose of this thesis is to investigate how the numerical 

methods used in PAN can be improved upon. 

1.3 The Mathematical Background to PAN 

To avoid giving too much detail at this stage, a 

full description of the mathematical background to PAN is 

given in Appendix B. The basic gas flow madel used in PAN 



is the one-dimensional, isothermal parabolic model which 

makes the assumptions that the gas flow temperature is 

constant and the inertia terms in the gas flow equations 

can be ignored (see Appendix B for further details). These 

assumptions are valid during the normal operation of the 

transmission network but would not be true in places where 

there is a large disturbance (say due to a pipe break). 
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The PAN program has been tested extensively using actual 

network data during its initial implementation (GOLDWATER(1976» 

and has been in general use within British Gas for about 10 

years, we can therefore feel confident about the validity of 

the model employed. Hence it was decided early on (in 

conjunction with British Gas) that study should concentrate 

on improving the numerical methods used in PAN. 

Applying the method of lines to the gas flow model 

over the whole network and adding in the models for the 

machines leads to a large system of differential/algebraic 

equations (DAE) of the form, 

~ 
E dt = A(y)y ~(t) = !(t,y) (1.3.1) 

where y is a vector denoting the unknown pressures at the 

nodes of the network and the gas flow through the machines; 

~(t) is a vector containing the demands from the network. 

The matrix A is nonlinear in y with some of its elements 

depending on the operating characteristics of the machines; 

the matrix E is singular when there are machines present in 

the network. The details of how this system mf DAE is 

derived can be found in Appendix B. For a typical national 

grid simulation, the resulting DAE system has 158 differential 

equations and 20 algebraic equations, however, because there 

is very little coupling within the network, the matrices E 

and A are very sparse. 

An initial steady state solution is used to provide 

the initial conditions to the DAE system: this involves 

solving the algebraic equations, 
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(1.3.2) 

where t is the starting time of the simulation. This 
o 

ensures that the initial condition is compatible with the 

DAE system. 

The machines in the network are modelled by a set 

of inequality constraints (see Appendix B). For example, 

a compressor normally has constraints on the maximum outlet 

pressure, maximum horsepower and maximum compression ratio, 

where the later two constraints are nonlinear in y. Follow­

ing the model used in PAN, it is assumed that one of the 

constraints is actually equal to its extreme value and is 

referred to as the operating constraint. This gives rise to 

the algebraic equations in (1.3.1). For example, when a 

machine has:its operating constraint on the maximum outlet pressure, 

the resulting algebraic equation is simply given by 

p - p = 0 o max 
(1.3.3) 

where P is the machine outlet pressure and P is its o max 
extreme value. The algebraic equation is only linear in 

this case; for machines operating on nonlinear operating 

constraints such as the compressor horsepower constraint, 

then the resulting algebraic equation will be nonlinear. 

The modified-Newton method (see section 2.2) is used to ensure 

the convergence of the nonlinear algebraic equations. 

During the initial steady-state calculation, an 

arbitrary set of operating constraints for the machines is 

chosen, where the typical first choice is the maximum outlet 

pressure constraint if available. A solution is computed 

based on these constraints. The rest of the machine constraints 

are then checked; if any is violated, then the constraint which 

is violated by the greatest percentage ~ chosen as the new 

operating constraint of the machine. A new solution is found 

and the process is repeated until there are no violations. 

The same procedure is also employed to compute the dynamic 

solution at each time step. The switching of machine operating 



constraints means that a new matrix A is required and a new 

problem is to be solved. 

In addition, the demands from the network vary quite 

considerably throughout the simulation. These changes in 

demands are approximated using a step or linear function 

which means that the demand vector, ~(t), is only piecewise 

continuous with respect to time. A tyoical demand profile 

is given in fig.(5.4). 
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The varying consumer demands generate large disturbances 

in the gas flow and cause the machine to switch operating 

constraints; these activities result in severe discontinuities 

in the derivatives of the solution. A survey of the literature 

on the numerical solution of such DAE system using a variable­

step integrator is given in Chapter 2. 

In the PAN program, a modification of the Crank-Nicolson 

method is used to integrate the differential equations within 

the DAE system; the resulting equations are then combined with 

the machine algebraic equations to solve for the unknown 

variables. The details of this solution scheme is given in 

section B.6. It is implemented in a constant step formulation 

and uses a block matrix partitioning method (GOLDWATER(l976» 

to solve the linear, sparse system of equations at each time 

step. Although the resulting solution scheme using the Crank­

Nicolson method is stable for any stepsize, it is well known 

that under certain conditions, spurious oscillations in the 

solution may occur. 



1.4 The Scope and Objectives of the Thesis 

A major weakness in the current version of PAN is 

that it is based on a constant-step formulation which means 

that the user of the program has to provide a suitable time 

step. Since the choice of an appropriate time step is often 

a very difficult and time consuming task especially for 

large and complicated networks, it is obviously desirable to 

estimate the time step automatically within the program. 

Thus the main purpose of this thesis is to investigate the 

incorporation of a variable-step method in PAN. As the 

simulation usually involves severe disturbances in the gas 

flow due to the varying consumer demands and the operation 

of the machines, special techniques are needed to handle 

these changes efficiently. A detailed study on the best way 

of implementing the variable-step PAN will be carried out. 

A new method will also be devised for solving the large 

linear sparse system of equations at each time step. 
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For certain networks, PAN fails to find a solution, due 

to the difficulty of obtaining a feasible solution which 

satisfies all constraints associated with the network. Thus 

another aim of the study is to consider the development of 

an optimization model to overcome this problem. Such problems 

arise due to the interactions of the machines in the network 

and are referred to as the "conflicting constra~~ problem". 

A more detailed account of this problem and its possible 

solution is given in Chapter 6. 

1.5 The Implementation of Leeds/PAN 

To provide a benchmark to measure the effect of 

any changes to the PAN program, it was necessary to implement 

the mathematical part of PAN at Leeds. Unfortunately, because 

of the portability and interface problems, it was not possible 

to mount PAN directly and a completely new version of the 

program had to be written. 

The new version, referred to as Leeds/PAN, took 

about four months of intensive work to implement. It is 



written in FORTRAN IV and consists of over 6,000 lines of 

code. It contains all the essential features of the 

original PAN program except the I/O facilities. Only a 

simple I/O routine was used for the study. 

In Leeds/PAN, a constant-step theta method is 

employed to solve the DAE system (1.3.1). A new block 

matrix partitioning method is also used to solve the linear 

equations; this resulted in a much simpler solution scheme 

than the original implementation. The details of the new 

block matrix partitioning method will be given in Chapter 3. 

Leeds/PAN has been tested against the original PAN 

program on a large number of test networks and similar 

results were obtained in each case. This ensured, as far 

as it was possible, that the Leeds/PAN program was free of 

programming errors and can safely be used as a basis for 

testing new implementations. A listing of the Leeds/PAN 

program along with some numerical results can be found in 

CHUA(1982) • 

1.6 The Survey of contents 

Briefly, the contents of the thesis are as follows. 

In chapter 2, a brief outline of the numerical techniques 
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and computer programs developed during the last decade for 

carrying out the dynamic flow simulations is given. The 

chapter also surveys the numerical techniques that can be used 

to solve the stiff DAE system containing a large number of 

discontinuities efficiently. 

Chapter 3 discusses the sparse matrix partitioning 

scheme developed for solving the linear systems of equations. 

The scheme is based on the extension of the block matrix 

partitioning method outlined in GEORGE(1974) and AZAR(1975). 

Three schemes are proposed; their efficiencies are compared 

using three test networks of different sizes and complexities. 

The implementation of the variable-step program is 

discussed in chapter 4. Special techniques are described to 

handle efficiently the severe disturbances caused by the 
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abrupt changes in the gas flow and to solve the DAE system. 

The techniques used have wider applicability than ~he gas 

transmission systems since they only require that the model 

is parabolic in nature. Two sets of strategies are presented 

for implementing the variable-step program; one for the 

implicit numerical method such as the diagonally implicit 

Runge-Kutta methods, and the other for the Rosenbrock-type 

method. 

Chapter 5 compares the numerical results obtained 

from the variable-step program with those obtained from the 

Leeds/PAN program. In this way, the accuracy and reliability 

of the results of the variable-step program are demonstrated 

using a number of large, realistic transmission networks. 

In Chapter 6, the optimization model developed for 

resolving the "conflicting constraints problem" is discussed 

and analysed. The model is based on the dual extremum 

principles given in NOBLE (l972) ; it is tested using 

three test networks that exhibit the "conflicting constraints 

problem" . 

Lastly, the concluding remarks and recommendations 

for future developments are contained in chapter 7. 



CHAPTER 2 

2. A SURVEY OF NUMERICAL TECHNIQUES 

2.1 Gas Transmission Network Analysis Programs 

2.2 Mathematical Background to Stiff Computation 

2.2.1 The Outline of a Stiff Variable-step 
Code 

2.3 A Survey of Stiff Integration methods 

2.4 The Handling of Discontinuities -A Survey 

2.5 The Solution of DAE System 
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CHAPTER 2 

2. A Survey of Numerical Techniques 

This chapter surveys the numerical techniques that 

can be used for solving the DAE system arising from the 

simulation of gas transmission networks. In order to 

provide a general background to the solution of this 

problem, a brief outline of the numerical methods and 

computer programs developed for carrying out the gas 

transmission network simulation is also included. 

2.1 Gas Transmission Network Analysis Programs 

A large number of programs have been developed during 

the last decade to carry out the dynamic simulation of a 

gas transmission network. The majority of these programs 

are based on the isothermal model discussed in Appendix B 

(FINCHAM(1980» and have been shown to predict the overall 

behaviour of the gas flow accurately under normal operating 

conditions. The major difference in the mathematical models 

underlying the various programs is the treatment of the 
M a M2 () 2 

inertia terms, A ff and ~ a- (~), in the momentum equation 
A x p 

(B.l.2). Some programs use a model which retains both terms 

while others neglect one (the second term) or both. By 

neglecting both the inertia terms, the model is parabolic 

in nature, otherwise it is hyperbolic. 

The most popular method for approximating the gas 

flow equations is the finite difference technique. In this 

approach, the set of PDE's is discretised using the method 
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of lines giving rise to a set of ordinary differential 

equations (ODE's) which is then solved using either an explicit 

or implicit integration method. Programs developed using 

explicit integration method include GOACHER(1970) and 

DISTEFANO (l970), while HEATH (1969) , WYLIE (1971) , PAN and the 

German network analysis program GANESI (SCHMIDT(l977» use 

an implicit method. To illustrate the implicit approach and in 

particular, to highlight the techniques used in PAN, a 



comparison between PAN and GANESI is carried out. GANESI 

has been chosen because it is similar to PAN in that it 

uses a constant-step implicit theta-type method to solve 

the differential equations and is widely used and well 

tested. The major differences between these programs are: 

i) GANESI uses a hyperbolic model which includes the 

first inertia term, ~ %%i whereas in PAN, a parabolic 

model is solved. 

ii) PAN uses essentially the Crank-Nicolson method to 

solve the differential equations; whereas in CANESI, 

the Crank-Nicolson and Backward Euler methods are 

used alternately. 
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iii) In GANESI, the modified-Newton iterative method (see 

next section for details) is used to solve the non­

linear algebraic equationsi in PAN, however, these 

nonlinear equations are linearised and solved directly. 

At first glance the most important difference between 

the two programs appears to be the basic gas flow model used. 

However, from the tests carried out in FINCHAM(1982) on the 

difference between PAN and GANESI, it was found that the 

inclusion of the inertia term, ~ ff' in GANESI rarely makes 

any difference to the solution obtained under normal operating 

conditions. We shall therefore consider only the parabolic 

model in the rest of this thesis. 

GANESI uses a modified-Newton method rather than 

simply linearising the equations as is done in PAN. This 

might generally be expected to lead to a more accurate solution, 

however, the need to perform several iterations per stepsize 

means that it is likely to be computationally more expensive. 

A more efficient implementation of the modified-Newton method 

will be discussed in Chapter 4. 

Lastly, the mixed method which consists of Crank­

Nicolson and backward Euler method is used in GANESI in an 

attempt to avoid the spurious oscillations that might result 

from the application of Crank-Nicolson method alone while 

achieving close to 2nd order accuracy. This point will be 



taken into consideration in selecting the numerical methods 

in chapter 4. 

Other techniques employed for numerically solving the 
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gas flow equations include the method of characteristics and 

the finite element method. The method of characteristics (MOC) 

requires that the model concerned is hyperbolic (LISTER(l960». 

It is explicit in nature and has a restriction on the time step 

to be less than the pipelength divided by the isothermal speed 

of sound. When implementing the MOC, the second inertia term 
M2 a 2 
-~ ax (~) is usually neglected which means that the charac-

~eristics lines are linear. A program successfully implement­

ing this method is reported in WYLIE(l967). To overcome the 

restriction on the time step, STREETER(l970) proposed a method 

which combined the MOC with an implicit finite-difference 

method while in WYLIE (l974), the MOC is modified using a 

"inertia multiplier" technique suggested by YOW(l972). 

The finite element method relies on rather more sophis­

ticated functional analysis. The pipe is divided into several 

elements and the unknown pressures and flows are approximated 

by different polynomials over each element. A program based 

on this approach has been developed by RACHFORD (l974) . In 

that implementation, both inertia terms are retained as 

important. 

All the programs reported above are of constant­

step in nature. To our knowledge, no program currently 

includes variable time step control though RACHFORD(1974) 

proposed it in the discussion following their paper. 

2.2 Mathematical Background to Stiff Computation 

The remaining part of the chapter is concerned with 

the numerical solution of a stiff DAE system which contains 

a number of discontinuities. This section provides the 

mathematical background to stiff computation and discusses 

the general design of a stiff variable-step integrator. 

Consider the numerical solution of the system of 

differential equations 
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y' (t) = !(t, y(t», t > t , 
o 

(2.2.1 ) 

where !(t,y) is assumed to be analytic in the neighbourhood 

of y and y' denotes differentiation with respect to t. 
o 

The system of differential equations (2.2.1) is 

said to be stiff in an interval I of t if, for all t € I, 

the eigenvalues A. (t) of the Jacobian matrix 3!/ay satisfy 
1. 

the following conditions (LAMBERT(1973» 

i) 

ii) 

Real A. (t) < 0, 
1. 

maxi Real A. (t) I » 
t 1. 

i 1,2, ... ,n; 

mi nl Re a 1 A. (t) I • 
t 1. 

As it is difficult to investigate the behaviour of 

a numerical method on a general stiff nonlinear problem, 

a linear model problem of the form below is normally 

considered 

y'(t) = B y(t) (2.2.2) 

where the matrix B has constant coefficients and corresponds 

to an approximation to the Jacobian matrix of the nonlinear 

system (2.2.1) in the neighbourhood of the solution Yo. 

It can be shown that it is sufficient to study only the 

stability of the simple test equation 

y' (t) = A y(t) (2.2.3) 

where the parameter A, which can be real or complex, denotes 

an eigenvalue of the matrix B. 

A one-step method applied to the test equation (2.2.3) 

gives the formula (see for example, LAMBERT(l973», 

(2.2.4) 

where h = Ahi Y l' yare the computed solution at time 
n+ n 

t +1 and t respectively with h = t 1 - t and r(h) is a n n n+ n 
polynomial or rational function in h. For example, when the 

Crank-Nicolson method is employed for solving (2.2.3), r(h) 

is given by 
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(l+~h)/(l-~h) (2.2.5) 

From eqn. (2.2.4), it can be deduced that if 

Ir(h) I <1, then the error (which includes the truncation 

as well as round-off error) in the computed solution will 

not grow in an unstable manner. This leads to the follow­

ing definition 

Def 2.2.1 - A one-step method is said to be absolutely 

Stable in a region RA on the hA -complex plane (see fig.(2.2.1)) 

if 

I r (h) I < 1 (2.2.6) 

The region R is known as the absolute stability region of 
A 

the method. 

For example, the classical fourth order Runge-Kutta 

method has a stability requirement of IAhl < 2.8 when A 

is a negative real number. Hence for problem with large real 

negative A, the time step must be kept small in order to 

ensure the stability of the method. It can be shown, however, 

that the Crank-Nicolson method does not have any restriction 

on the stepsize. Several definitions, which call for the 

method to possess some 'adequate' region of absolute stability, 

have been proposed. 

DeL (2.2.2) (DAHLQUIST (1963)) A numerical method is said 

to be A-stable if its region of absolute stability contains 

the whole of the left-hand, half-plane Re hA<O. 

As a result of this definition, DAHLQUIST (l963) was 

able to prove that the maximum order of an A-stable linear 

multistep method is two. Owing to the restrictive nature of 

this result, the A-stability requirement is often relaxed, 

for example, GEAR(1969) introduces the idea of stiffly-stable 

formulae, 
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Def. (2.2.3) - A numerical method is said to be stiffly-stable 

if its region of absolute stability contains a region 

R = Rl U R2 where (fig. (2.2. 1) ) : 

Rl {Real (Ah) < D < O} 

{D ~ Real(Ah) ~ a, Im(A) $ 8} 

Imaginary (lm) axis 

8 

Rl " 

" 

, 
D 

~ 
a 

" 

" "-
" -8 

~ '" ~ " " '" 
Fig. 2.2.1 - Complex hA-phase 

Real 
axis 

In general, A-stable methods which are not damped 

maximally as Ah ~ - 00 are unsatisfactory for solving problems 

with large negative real eigenvalues, the concept of strongly 

A-stability is introduced. 

Def. (2.2.4) - A one-step method is called strongly A-stable if 

it is A-stable and r(h) ~ 0 (see eqn.(2.2.4)as h -+-00 

The stability properties discussed so far are based 

on the linear test problem (2.2.3), hence they give only 

limited guidance to the numerical behaviour of the method 

when it is applied to solve stiff nonlinear problems. In 

their work with large systems of stiff nonlinear equations, 

PROTHERO(l974) found that A-stability of a method was no 

guarantee that it would give stable solutions, and that the 



accuracy of the solutions obtained often appeared to be 

unrelated to the order of the method used. Their analysis 

led to the introduction of a new stability concept. 

Def. (2.2.5) - If the characteristics equation 

y' =g' + A{y(t) - g(t)} (2.2.7) 

is considered where g' (t) is any function defined and 

bounded in some interval [O,T]. A one-step method is termed 

S-stable if for any real positive constant A , there exists 
o 

a real positive h such that 
o 

= C < 1 
S 

(2.2.8) 

provided Yn ~ g (t ), for all 0 < h < h where h = t 1 - t , n 0 n+ n 
and all complex A with Re(-A) ~ A , and t ,t 1 E [O,T]. o n n+ 

Def. (2.2.6) - A S-stable one-step method is said to be 

strongly stable if C ~ 0 as Ah ~ - 00 

s 

Other stability properties based on the theory of 

contractivity have also been considered for studying the 

behaviour of the numerical methods in solving stiff nonlinear 

problems. These include the concepts of G-stability 

(DAHLQUIST(1975» for the linear multistep methods and 

B-stability (BUTCHER(1975» for the implicit Runge-Kutta 

methods. In BUTCHER(1981) , these two concepts are combined 
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to give the algebraic stability for general linear methods. 

Details of these stability properties can be found, for example, 

in DAHLQUIST (1982) . 

The numerical methods which possess some of the 

properties discussed above are generally referred to as stiff 

integration methods and a survey of these methods is given 

in Section 2.3. 



2.2.1 The Outline of a Stiff Variable-step Code 

Modern general purpose stiff integration codes are 

usually implemented in the form of a variable-step ~nd 

possibly, variable-order) integrator, where the integration 

time step is varied automatically within the integrator in 

order to ensure that the computed solution satisfies a 

certain error criterion. Currently, most integrator control 

the local error which is the error introduced at the current 

step ignoring the error that propagates from previous steps. 

A formal definition of the local error at time t 1 for the n+ 
differential equations (2.2.1) is given by, 
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£ = Y - u (t ) -n+l n+l -n n+l (2.2.9) 

where y 1 is the computed solution at time t +1 and u (t) n+ n -n 
is the local solution which satisfies the differential 

equations 

u' (t) -n ! (t, u (t», for t <! t -n n 

and u (t ) = y -n n n 

The global error on the other hand is the actual error 

incurred in the computed solution and is defined as 

(2.2.10 ) 

.9.n+l = Yn+l - y(tn+l ) (2.2.11) 

where y(t) is the true solution of eqn. (2.2.1). A diagram 

depicting the meanings of the local and global error is 

given in Fig. (2.2.2). 

tn-I 

Eig. 2.2.2 - The Local and Global Errors 



Ideally one would like to control the global error, 

but because this is computationally very expensive, it is 

normal to control it indirectly by ensuring that the local 

error is less than some user specified tolerances. A 

general outline of a variable-step code with local error 

control is given by, 

REPEAT 

Compute the numerical solution at the new time step. 

Estimate the local error. 

Accept the step if the local error is less than the 

required error tolerance, EPSi otherwise 

reduce the stepsize and repeat the above 

process. 
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Estimate the new stepsize and increment the time step. 

UNTIL the end condition is reached. 

Most numerical methods which possess some of the 

stability properties discussed in the previous section are 

implicit in nature. These methods, with the exception of the 

Rosenbrock-type method, require the solution of at least one 

system of nonlinear algebraic equations at each time step. 

When the method is applied to solve eqn. (2.2.1), the system 

of algebraic equations has the form, 

~ (y) = y - hB! (y) - fJ. = 0 (2.2.12) 

where B is a parameter depending on the particular integrat­

ion method employed and ~ is a combination of known function 

values and derivatives. Using the Newton-Raphson method to 

solve the above system of equations gives 

where 

[J (y (m-l) ) ] (m) 
w 

(m) (m) (m-l) 
w = y - y 

J (y (m-l» = a~ (y (m-l) ) lay 

- f (y (m-l) ) (2.2.13) 

m = 1,2,3, ... 

(2.2.14) 



As it is both expensive and unnecessary to re-evaluate 

the matrix J for each iteration, a variant of the Newton­

Raphson method is normally used. This method is referred 

to as the modified-Newton method and it takes the form 

(2.2.15) 

where G is an evaluation of af(y)/ay at some point (t,y) 

which may be any previous iteration or step. The matrix G 
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is only updated when the rate of convergence of the iteration 

is slow. A measure of the rate of convergence is given by 

r 
c 

= II ~(m) II / II ~ (m-l) II (2.2.16) 

and it is considered unsatisfactory, for example, when 

r > 0.5, although the exact choice of r is implementat-
c c 

ion dependent. 

The iteration is continued unti 1 II ~ (m) II is less 

than u-EPS, for 0 < u ~ 1.0. If the iteration appears to 

be diverging (i.e. rc > 1) or the rate of convergence is 

considered unsatisfactory even after G has been updated, 

then the stepsize is also reduced. 

At the end of the step, the local error is estimated. 

The step is accepted when the local error estimate satisfies 

the error tolerance. It is necessary to predict a stepsize 

that can be used for the next step and it can be found using 

the formula: 

hnew r k hOld 
1 

where r k = (P k ' EPS / II! II) k+T , 

(2.2.17) 

o < P
k 

< 1; 

II !II is the local error estimate measured in a sui table norm 

and k is the order of the integration method used. 

This formula is based on the assumption that the local error 

estimate is of order O(h
k +l

) and it corresponds to an optimal 

stepsize for a tolerance of Pk-EPS. Most codes have further 

restriction on the size and frequency in which the stepsize 

can be increased. A good discussion of the implementation of 

a stiff integration method is given in DEW(1978) . 



2.3 A Survey of Stiff Integration Methods 

The most widely used stiff integration method is 

the linear multistep method based on backward differentiat­

ion formulae. It was first proposed and implemented by 

GEAR(1971a, 1971b) and is generally referred to as the 

Gear's method. The method when applied to (2.2.1) can be 

written as: 

(2.3.1) 

where h = tn+l - tn and Yn+l is the approximate solution 

at time tn+li k is the order of the formula employed and 

{u.}, B are known constants which depend on the order k 
1. 0 

(see GEAR(1971b». 

The method is A-stable for the first and second 

order formulae, but is only stiffly stable for higher order 

formulae of up to order 6. It is usually implemented in 

the form of a variable-step, variable-order integrator. 
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Most implementations allow formulae of up to order 6 to be 

used. The details of the implementation can be found, for 

example, in DEW(1978). The usual implementation is to start 

the method from order 1 and build-up the order progressively 

as more information becomes available. Following GEAR(1971b) , 

the method is often implemented using the Nordsieck vector 

of the form, 

v -n = [v 
..I..n ' 

hv' 
..I.. n ' h 2 "/2' Y • , •• n (2.3.2) 

The use of Nordsieck vector enables the changing of step­

size, the prediction of the solution and the local error 

estimation to be done easily. The modified-Newton method 

is employed to solve the implicit system of equations. 

Many good implementations of the method exist, for 

example, HINDMARSH(1973) , DEW(1978). The method has been 

shown by many authors (for example, ENRIGHT(1975» to be 

very efficient and reliable for solving a wide range of 

stiff ODE's especially when high accuracy is required. 



Most of the classical methods for solving stiff 

ODE's are based on single-step methods. The simplest 

one is the theta method which is widely used in practice. 

The method is defined as 
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v 1 = v + h«l-s)f + Sf +1) 
~n+ ~n -n-n (2.3.3) 

for 0.5 ~ 8 ~ 1.0 

when e = ~, the method is the well known Crank-Nicolson 

method which is A-stable and second order. For e > ~, the 

method is strongly A-stable, however, it is only first order. 

The method is particularly suitable in cases where only low 

accuracy solutions (say two to three significant figures) 

are required. It is usually implemented in a constant-step 

formulation for solving large scale practical problems (for 

example, PAN and GANESI). A variable-step version of the 

method has been implemented by HOPKINS (1976) for solving 

the ODE's arising from the solution of quasilinear PDE's. 

A similar version of the program with global error estimation 

is employed in PROTHERO(1977) . 

The class of semi- and fully-implicit Runge-Kutta 

(RK) method discussed in CASH(1982) are also suitable for 

this application. A q-stage fully implicit RK formula 

for solving eqn. (2.2.1) can be written 

q 
Y... +1 = y... + h 1: 

n n i=l 

k. = f(t + c.h, 
-1 - n 1 

b. k. 
1 -1 

y... + h n 

q 
L 

j=l 
a .. k.), 

1J -J 

(2.3.4) 

1 $ i $ q. 

Such formulae can be represented conveniently by 

the array 

C 
q a 

qq 
b 

q 

(2.3.5) 
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The fully implicit RK method was introduced by 

BUTCHER(1964) where he showed that for all q, there exist 

a fully implicit q-stage RK formula of order 2q. EHLE(1969) 

has shown that all of these maximal order formulae are 

A-stable and hence it is possible to derive A-stable fully 

implicit RK formulae of arbitrarily high order. The major 

drawback of this class of methods is that it is very 

difficult to implement the methods in an efficient manner. 

When implemented in the most obvious manner, a system of 

S equations using a q-stage method requires the solution of 

a simultaneous system of sq nonlinear equations. Although 

BUTCHER(1976), BI~(1977) and VARAH(1979), and subsequent 

work carried out by BUTCHER(1979) on singly-implicit RK methods, 

have reduced this amount of work considerably, the methods 

are still not competitive compared with the Gear's method 

for solving general stiff problems (CASH(1982». 

A semi-implicit RK method is one whose defining 

matrix AR (see eqn. (2.3.5» is lower triangular, i.e. a .. =0 
1J 

for j > i. This class of method was first considered by 

N0RSETT (1974) and further studied by CROUZEIX(1975) and 

ALEXANDER(1977). The maximum attainable order of a q-stage 

semi-implicit RK method is q+l, N0RSETT(1977). These methods 

are normally constructed so that the diagonal elements are 

all equal, i.e. a .. = a for all i; they were referred to 
11 

as the diagonally-implicit RK (DIRK) method by ALEXANDER. 

The DIRK method has the computational advantage that when the 

modified-Newton scheme is employed to solve the k. 's 
-1 

associated with the method, only one LU decomposition of the 

iteration matrix along with the solution of q nonlinear 

equations are required. Several strongly S-stable diagonally 

implicit Runge-Kutta methods are proposed and implemented 

in ALEXANDER(1977); the implementation uses Richardson's 

extrapolation to estimate the local error. The results 

given in that paper indicate that these methods can be 

competitive with Gear's method especially when low precision 

is required. In order to provide methods with efficient 

error estimation, a class of embedded DIRK methods have been 



derived in CASH(1979). These methods have a lower order 

method embedded within them so that the error estimate 

can be obtained at virtually no extra cost. The numerical 

results given in CASH show some improvement over those 

given in ALEXANDER. 
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The other sUitable class of methods is the Rosenbrock 

methods, first proposed by ROSENBROCK(1963) for solving 

autonomous systems of the form 

y' (t) = f(y(t» (2.3.6) 

This class of method has the major computational advantage 

that it is only necessary to solve linear systems of algebraic 

equations but has the disadvantage that exact Jacobian matrix 

is required at each step. Various modifications to the method 

have been proposed by CALAHAN (l968) , CASH(l976) and BUI(l979). 

Perhaps the most interesting variant of the method is the 

one given in STEIHAUG(1979) which requires only an approximate 

Jacobian matrix. These methods can be extended to the non-

autonomous case as indicated in that paper. A q-stage 

method of STElHAUG when applied to (2.3.6) gives, 

q 

Yn+l = Yn + h i:l bi~i 

i-I 
W. k. = f (y + h ~ 
~ -~ - n . 1 

J= 

i-I 
a .. k.) + hB ~ d .. k. 
~J-J ~J -J j=l 

i 1,2, ... ,q 

(2.3.7) 

where \.,'. = (I - hd .. B) and the matrix B is an approximation 
~ ~~ 

to the Jacobian matrix of (2.3.6). We shall only consider 

this variant of the Rosenbrock-type method. 

The maximum attainable order of a q-stage Rosenbrock­

type method is q + 1, which is the same as the semi-implicit 

RK method. 

with d .. =d 
~~ 

to be kept. 

For efficiency reasons, the methods are constructed 

for all i so that only one matrix (I - hdB) needs 

A second order method with embedded error estimate 

is given in STE1HAUG along with some numerical results. 

Several strongly A-stable Rosenbrock-type methods with "built-
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in" local error estimate are given in SCRATON(1981). 

Although the Rosenbrock-type method proposed above 

is of the desired order for any arbitrary matrix B, in 

practice, it is still necessary to ensure that B is a "good 

enough" approximation to the Jacobian matrix in order to 

achieve the required stability characteristics of the method. 

This makes the method difficult to implement because there 

is no information to measure how good the approximation is. 

To overcome this problem, STEIHAUG uses the local error 

estimate to provide an indication on when the matrix B is 

to be updated; alternatively, SCRATON(1981) updates B after 

five steps. This is an area for further research. 

For the Rosenbrock-type method (2.3.7), it is 

possible to derive a corresponding DIRK method of the form 

= + h 

i-I 

q 
L 

i=l 
b. k. 

l. -l. 

k. = f (:t, + h L (a.. +d .. ) k. + hd k. ) 
-1 - n . 1 1) 1) -) -1 

)= 

(2.3.8) 

and use the above Rosenbrock-type method to provide an 

accurate initial prediction for the modified-Newton iteration. 

2.4 The Handling of Discontinuities - A Survey 

Discontinuities of various kinds occur frequently 

in the simulation of physical systems. In a study on the 

handling of discontinuities in an ODE system, ELLISON(1981) 

points out that there are two types of events that cause 

discontinuities - one is the time event which happens at the 

known value of the independent variable t and the other is 

the state event which occurs when a given function of the 

dependent variables reaches a certain value. Time events 

can be handled simply by inspecting the calendar of events 

and adjusting the integration time step accordingly. The 

handling of state events, however, is not so straight-forward 

and it is in this area that much of the research effort is 

chanelled. 



29 

The problems to be considered with the state events 

are the detection and l0cation of the events. The detection 

is normally done by using switching functions (CARVER(1977))i 

one is defined for each state event and the ith event is 

assumed to occur when 

</>. (t,y) 
1. 

o (2.4.1) 

The occurrence of the e':ent is readily detected if one of 

the </>. 's changes sign in the interval h. It is then located 
1 

by computing a stepsize h'" < h which renders <Pi (t+h lt ,y*) zero. 

Several different approaches for locating the state 

events have been reported in the literature. In the Runge­

Kutta algorithm developed by HAY(l974), a separate interpolat­

ion algorithm is used for locating the events. HALIN(l976) 

uses Lie series methods to expand the variables as power 

series for integration, and points out that the switching 

functions can also be expanded, thus the discontinuities can 

be located by exactly the same method that the integration 

algorithm employs. CARVER(l977) transforms the switching 

functions into differential equations and appends them onto 

the original system. Gear's method is then used to solve 

the resulting differential system which means that the stored 

Nordsieck vector associated with the switching functions can 

be used directly to locate the events, no extra function 

evaluations is required in the process. The algorithm of 

CARVER(l977) assumes that the number of state events is small 

compared with the total number of equations, and hence the 

overhead associated with creating additional differential 

equations for the switching functions is negligible. To 

handle problems with frequent discontinuities, an improved 

version of the above algorithm is employed in CARVER(l978). 

Here a less comprehensive but simpler approach is used. 

Given that </>. (t ) and </>. (t +h) have different signs, the 
1. n 1. n 

solution at time tn+h* is predicted using the stored Nordsieck 

vector given in eqn. (2.3.2). The intermediate <p. value is 
1. 

then computed and the process is repeated until the required 
* h has been found. The effectiveness of this technique is 



demonstrated using a structural problem containing numerous 

discontinuities. 

Once the event is located, the integration must 

be restarted. The restarting is easily done using a single­

step method. However, it is less efficient on a multistep 

method such as the Gear's method because the method has to 

be restarted from order 1. In an attempt to overcome this 

difficulty, GEAR (l980) develops a Runge-Kutta-starter to 

generate enough information for a four-step multistep 'oethod 

to continue. This should make the multistep method more 

competitive for solving this type of problem especially when 

high accuracy solution is needed. 

2.5 The Solution of DAE system 
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Many authors (for example GEAR(l971c), BROWN(l973), 

DEW(l978) and SINCOVEC(l979» have written codes designed to 

handle the DAE system. These codes are based on the techniques 

employed in GEAR (l97lc) and do not attempt to control the 

error in the components of the solution associated with the 

algebraic equations. It was not until recently that the 

particular problems associated with the solution of DAE 

system are recognised and discussed (GEAR(l981». These 

problems include the determination of initial conditions, 

error estimation and stepsize selection. An excellent account 

on how the DAE system differs from an ODE system is given in 

PETZOLD (198l) . This section summarises the work of PETZOLD 

and shows how a stiff integration method can be extended to 

a DAE system. The results are given for a linear DAE system; 

the extension to the nonlinear case will be considered in 

chapter 4. 

The linear DAE system considered in this section is 

Ey' = By + ~(t), (2.5.1 ) 

where matrices E and B can both be singular. The DAE system 

(2.5.1) can be transformed into canonical form by using linear 

transformation (SINCOVEC(l979». The canonical subsystem 
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for which a unique solution exists can be written as 

(2.5.2a) 

(2.5.2b) 

and matrix E2 has the property that there exists an integer 

m such that E
2
m=o, E2ID-110. The value of m is defined to 

be the nilpotency of the system. Standard ODE systems have 

nilpotency m=o. 

PETZOLD points out that although nilpotency is a 

very important property of the DAE system, it is very diffi­

cult to determine in practice. Systems with nilpotency m ~ 3 

cannot be solved at all by the current ODE methods because 

changing the stepsize causes large error in the solution. 

Although systems with nilpotency m :5 2 can be solved, extensive 

modifications to the error estimate and strategies employed 

in the usual ODE code is needed. We shall therefore restrict 

our subsequent discussions to the solution of systems with 

nilpotency m :5 2. 

Consider a simple DAE system with nilpotency m = 2 

given by, 

Y'2(t) Yl (t) + gl (t) Yl(to ) = Yl,o (2.5.3) 

0 = Y2(t) + g2 (t) Y2(to ) y 2,0 

This system has the solution, 

Y2(t) = - g2(t) 

Yl (t) = - g (t) 
1 

- g' (t) 2 (2.5.4) 

which shows clearly that the solution only depends on gl' g2 

and g'2 at the current time, and not on the initial value 

or the past history of the g's. Furthermore, the solution 

Yl (t) depends on the derivative of g2 (t), which means that 



itis discontinuitious whenever g2(t) is differentiable but 

not continuously differentiable. Numerical methods have a 

great deal of difficulty in dealing with this situation. 

To gain further insight into the case when some 

derivatives of g(t) is discontinuous, consider the problem 

o 

Yl (t) 

=Y2(t)-g(t) 

where g(t) is given by g(t) = 

(2.5.5) 

tso 

t > 0 

Suppose Yl :: Y2 :: 0 for t < 0, and that the usual error 

estimate which is assumed to be proportional to II y 1 - y II 
n+ n 

is employed. Now, take one step with the backward Euler 

method to advance the solution from t 1 to t , with t 1 <0 n- n n-
and tn > O. Then at time tn we obtain 

= g(t ) 
n ct 

n 

ct /h n n 

where h = t - t 1. Now, as t approaches zero, h is n n n- n n 
bounded away from zero as long as t 1 < 0 is fixed. n-
So the error estimate 

ct /h 
n n 

ct 
n 

approaches zero as t -+ 0 and so for some t > 0, the step is 
n n 

accepted. 

Since the step to tn is accepted, the code will 

continue, taking another step to t n +
l

. The computed solution 

and the corresponding error estimate are 
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c 

Yn+l = 

, 
£n+l CC 

t 
c(l - ~) 

h 
n 

These solutions are exactly correct but the first component 

of the error estimate is independent of hn +l , so we cannot 

make the error estimate as small as we want by reducing 

h n+l . Thus, for large enough c, the code will fail in this 

step even though the solution is exactly correct. 

This example shows the distressing situation that 

the usual error estimates which are based on the difference 

between the predictor and corrector seem to bear little 

resemblance to the actual error incurred in the DAE systems. 

Furthermore the step control mechanism based on these 

estimates is likely to fail not on the step which spans the 

discontinuity, but on the next step afterwards. It is shown 

in PETZOLD that these difficulties with the error estimate 

are not limited to problems whose solution are discontinuous, 

but also to problems with severe changes in the solution. 

To gain a better understanding of the source of the 

problem, an analysis was carried out in PETZOLD on the solut­

ion of (2.5.1) using the backward Euler method. In that 

analysis, it was shown that the actual local error in the 

solution at time tn+l for the backward Euler method is, 

.§.n+l 

h 2 
( n+l ) 

2 

For problem (2.5.5), this is given by 

hn+l 
--2- g"n+l (1) 

" 
y (P (2.5.6) 

~n+l (2.5.7) 

o 

which shows that the actual local error in the solution can 
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be reduced by reducing hn+l (recall, however, that the 

difference between the predictor and corrector is not reduced), 



so in principle, if we know how to 

error in Yn+l can be controlled by 

The actual error, however, is only 

adjust the stepsize, the 

locally adjusting h n + l . 

of order O(hn+l ), but 
2 not O(h n +l ) as assumed in the usual error estimate. 
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It is therefore necessary to derive an error 

estimate which would reflect the true magnitude of the error. 

In the solution of stiff problems, SACK-DAVIES (l977) noted 

that the usual error estimate usually overestimates the true 

error and he suggests an error estimate for the second 

derivative methods which is asymptotically correct as h -+ 0, 

and is reliable and efficient for very stiff problems. The 

estimate has the form 

.£n+l = II W- l c 
n n (2.5.8) 

where W is the iteration matrix for the second derivative 
n c p 

method and cn(Yn+1 - Yn+l) is the usual error estimate. 

It is easily seen that (2.5.8) is similar to (2.5.6) 

if W is replaced by the iteration matrix for the backward 
n 

Euler method. This leads to the use of the error estimate 

of the form 

where G = E - hn+ISB, 

c 
(Yn+l (2.5.9) 

and S depends on the integration method used. Since G is 

the iteration matrix of the method, an LU decomposition of 

the matrix is always available. 

From eqn. (2.5.6), it can be seen that for the 

backward Euler method, eqn. (2.5.9) accurately estimates the 

actual error. It has been verified in PETZOLD that it also 

accurately reflects the behaviour of the error for all back­

ward differentiation formulae. Lastly, it can also be deduced 

that this new error estimate is of the right order of magnitude, 

i.e. of order O(hk ) I where k is the order of the numerical 

method employed. 



Even with a reliable error estimate, there are 

still several practical issues to be considered when 

implementing the numerical methods. These issues include 

the implementation of the modified-Newton method for solv­

ing the implicit nonlinear systems of equations and the 

strategies for step acceptance and stepsize selection. A 

detailed discussion of these issues will be given in section 

4.4. 
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CHAPTER 3 

3.1 Introduction 

This chapter discusses the solution of linear systems 

of equations arising from the integration of DAE system 

(1.3.1). The system has the form, 

G x = r (3.1.1) 

where r is the known right-hand vector for which the solution 

~ is required; and G is an NxN matrix which has the general 

form, 

G = E - hSA (3.1. 2) 

where h is the current stepsize and S is a parameter depending 

on the particular integration method used. For example, 

when the theta method is used to solve (1.3.1), S is simply 

equal to e (see egn. (D.1.3)). In general, the matrix G is 

very sparse and a large part of it is symmetric and positive­

definite. 

If the modified-Newton method is used to implement 

the numerical method for solving the DAE system, then the 

matrix G is simply the iteration matrix of the modified­

Newton iteration. In this case, itis more appropriate to 

use a direct method for solving (3.1.1) since the same 

factorization of matrix G can be used to carry out many back­

substitutions, hence the cost of factorizing matrix G 

averaging over all solutions may be negligible; the iterative 

methods offer no such advantage (BERESFORD(1980». In 

choosing the direct method, it is assumed that there is enough 

storage to hold the matrix G in its appropriate factorized 

form. Research into the use of iterative methods based on 

conjugate gradient is being done in British Gas (GOODWIN(1982» 

and shall not be covered here. 

Typically, the solution of sparse linear systems of 

equations using direct methods can be divided into 3 distinct 

stages as follows: 

.UNIVERSITY lIBRARY.I:EEDS 
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a) The Analysis Stage - this stage determines the 

appropriate partitioning of matrix G if necessary, and finds 

the suitable pivotal order in an attempt to minimise the 

fill-in and/or the number of arithmetic operations during 

the factorization and back-substitution stages; 

b) The Factorization Stage - this factorises the matrix 

G into the required factors using the pivotal order determined 

during the analysis stage; 

c) The Back-substitution Stage - it solves for the unknown 

vector x from the stored factors of G and the r vector. 

The three stages are required successively more 

frequently when the modified-Newton method is employed in 

the solution process. The same partitioning and pivotal 

order determined during an initial analysis stage can be 

used throughout the simulation. Also the same factorization 

can be used to carry out many back substitutions. Because 

the time taken to perform the analysis stage is negligible 

compared with the time required for the whole simulation, it 

is sensible to choose a node ordering algorithm which would 

reduce the factorization and, especially, the back-substitut­

ion times. 

The three stages will be considered separately. In 

the following section, the appropriate partitioning of matrix 

G is described. This is followed by a discussion on the 

suitable block matrix decomposition schemes in Section 3.3. 

Three decomposition schemes are proposed and the remainder 

of the chapter is concerned with the analysis and implementation 

of these schemes. Section 3.4 discusses a suitable node 

ordering algorithm and Section 3.5 outlines the setting up of 

the data structure. Their factorization and back-substitution 

processes are described in Sections 3.6 and 3.7 respectively. 

These two sections also give the theoretical arithmetic operat­

ion counts as well as the storage requirements for these 

processes. The operation counts include only the multiplicat-

i ve operations (the nultiplicatirns am divisirns) since the number 
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of subtractions and additions is about the same for all 

three cases. These operation counts are derived based on 

the results quoted in Appendix C. The comparison of the 

decomposition schemes using actual networks and the conclud­

ing remarks are given at the end of the chapter. 

The following notations are used throughout this 

chapter. The number of non-zero components in S is denoted 

by n(S), where S may either denote a matrix or a vector. 

Th .th d .th If' t' M' d t d e 1 rowan 1 co umn 0 a g1ven rna r1X 1S eno e 

by M~ and Me. respectively; thus n(M~) gives the number 
11th 1 R C 

of non-zero components in the i row and En (M i) = En (M i) = n (M). 

Lastly, the lower or upper half of a symmetrical, square 

matrix M is denoted by MH. 

3.2 The Partitioning of Matrix G 

A large part of matrix G is symmetric and positive­

definite (SPD), so it is essential to take this into consider­

ation when solving the matrix. The advantage of working with 

SPD matrix has been discussed in DUFF(l980b). Generally, 

this property means that the diagonal elements of the matrix 

can be used as pivots during the factorization process with­

out causing numerical instability (WILKINSON(1965», hence a 

relatively simple pivotal selection algorithm which aims only 

at preserving the sparsity of the matrix can be used. A 

further advantage of dealing with this class of matrix is 

that the results of graph theory can be used in both the 

analysis and implementation of its factorization process 

(PARTER(1961), ROSE(1972». This is particularly advantageous 

to network problaPs as there is an equivalence between the 

network and the graph associated with the resulting matrix. 

The solution of linear equations with the above 

structure has been considered by AZAR(1975) in the simulation 

of electrical networks. In his approach, the coefficient 

matrix is partitioned in such a way that the SPD part of the 

matrix is factorized first so that its properties can be fully 

exploited. This idea has also been used in GOLDWATER(1976) in 

the implementation of the PAN program. 
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For a general gas transmission network with machines, 

the unknown variables to be solved are the pressures at the 

nodes of the network and the flows through the machines. It 

is convenient to refer to the inlet or outlet node of the 

machines as machine nodes and the remaining nodes of the 

network as free nodes. The symmetric and positive definite 

part of matrix G corresponds to the unknown pressures at the 

nodes of the network and the asymmetric part of matrix G 

corresponds to the unknown machine variables (i.e. the 

pressures at machine nodes and the machine flows). Thus 

the best way to partition the matrix G is to separate the 

variables at the free nodes from the machine variables. This 

leads to the following partitioning (see Section B.5 and 

eqn. (3. 1. 1) ) 

(3.2.1 ) 

The vector x has been partitioned into: 

P a vector of length Yl denoting the pressures at the 

free nodes; 

IT a vector of length Y2 denoting the pressures at the 

machine nodes and 

Q a vector of length Y3 denoting the unknown machine flows, 
where Yl + Y2 + Y3 = N, the total length of vector x. 

The submatrices A .. denote the connections within the 
1J 

network; the matrix formed by A .. 's is symmetric and positive-
T 1J. 

definite with A21 = A 12. The matr1x K is the flow incidence 

matrix as defined in eqn. (B.4.4) and submatrices M
l

, M2 contain 

the coefficients of the algebraic machine equations. The 

submatrices K, Ml and M2 have at most two non-zero elements 

per row. For large network, the submatrices are very sparse 

and in general Yl » Y2 ~ 2Y 3 which means that the Aij sub­

matrices constitute a significant part of matrix G. 

The above partitioning of unknown variables separates 

the machine variables from the rest of the variables so that 
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when there is a change in the machine operating constraints, 

only the machine part of the solution needs to be resolved. 

Furthermore, it results in a much more natural partitioning 

of matrix G compared with the one used in GOLDWATER(1976); 

a much simpler block matrix decomposition scheme can there­

fore be used to solve for the unknown variables. 

3.3 The Block Matrix Decomposition Schemes 

Several block matrix decomposition algorithms are 

discussed in GEORGE(1974) for the case when the coefficient 

matrix is positive-definite. This section extends the ideas 

given in that paper and GOLDWATER(1976) to decompose the 

matrix G. 

For the partitioning of matrix G given in eqn. (3.2.1), 

the following block matrix decomposition scheme can be used, 

G 

where 

and let 

L 

Z 

A 
P 

C 

LI*O ---1' - -ZT I 0 

001 
I 

denotes the Cholesky 

with LLT = All' 
-1 

= 

L A12 
T 

A22 - z z 

(3.3.1) 

factors of submatrix All 

(3.3.2) 

Here and elsewhere in this thesis, it is understood that 

inverses are not computed explicitly; only the appropriate 

triangular factors are stored. 

The above decomposition scheme is only efficient 

when Yl » (Y 2 + Y3) so that the dimension of matrix C is 



small compared with N. In this case the full matrix C is 

stored and a simple algorithm can be used to solve for the 

unknown variables. This decomposition scheme is referred 
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to as decomposition 01 . It has been employed in the 

implementation of the Leeds/PAN program (see Section 1.5). 

The use of full matrix C, however, does not take into 

account the symmetric and positive-definite structure of 

submatrix Ap ' and the sparseness of submatrices K, Ml and 

M2 • For big networks with a large number of machines, this 

could give rise to storage problem and also results in 

rather more arithmetic operations than is strictly necessary. 

With some added complexities, an alternative block 

matrix decomposition scheme (referred to as decomposition O
2

) 

can be derived, 

(3.3.3) 

where L L T = A 
P P P 

K L -T L -1 K 
P p P 

and M = M2 - Ml Kp 

Here the matrix C is further decomposed to take advantage 

of its underlying structure and the Cholesky factorization 

method is used to factorize the submatrix A into L LT . 
- P P P 

Only a full matrix M is kept which has a dimension of 

Y3 x Yr 
As pOinted out in GEORGE (1974) , if L, A12 are 

sufficiently sparse compared with Z, operations could be 

saved in the factorization and back-substitution stages by 

using Z only implicitly through its definition. That is, 
d - T -T-l uring the factorization, we compute Ap as A 12 (L (L A

12
)) 

rather as ZTZ• During the back-substitution, we compute 
T T -T -1 

Z !! and Zy as A 12 (L ~) and L (A12 y) respectively. As Z 

is denser than A12' we can save storage and perhaps arithmetic 
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operation as well by using Z in this implicit manner. 

We shall denote decomposition 02 with Z used only implicitly 

as decomposition 03. 

The implementation and analysis of these three 

decomposition schemes will be considered in the following 

sections. 

3.4 The Node Ordering Algorithm 

3.4.1 The Choice of Node Ordering Algorithm 

The decomposition schemes derived in the previous 

section require the factorization of submatrix All and, 

for decomposition 02 and 03' submatrix Ap using Cholesky 

factorization method. These submatrices are very sparse 

and are symmetric and positive-definite. When a sparse 

matrix is factorized, it usually suffers fill-in and it is 

well known that the order in which the matrix is factorized 

could affect the amount of fill-in considerably. It is 

therefore important that a judicious choice of the ordering 

is used in an attempt to minimise the fill-in and/or the 

amount of arithmetic required to solve the matrix. 

The symmetric and positive-definite part of matrix 

G corresponds to the graph of the original network. The 

orderings of submatrices All and Ap are equivalent to the 

orderings of the free nodes and machine nodes respectively 

in the network. Before any discussion on the node ordering 

can be carried out, it is helpful to introduce some basic 

graph theory terminologies. For our purpose, a graph 

G = (X,E) consists of a finite nonempty set X of nodes 

together with a prescribed edge set E of unordered pairs of 

distinct nodes. Given xeX, the adjacent set of x is defined 

as 

Adj(x) ={YEX-{X} I {x,Y}EE} (3.4.1) 

and the degree of a node x, denoted by Oeg(x), is simply 

the number IAdj(x) I, where lsi denotes the number of members 
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in the set S. The deficiency of a node x, denoted by 

Def(x), is the set of all distinct pairs of Adj(x) which 

are not themselves adjacent, that is 
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Def(x) = {{y,z} I y,z E Adj (x), y'l z, y i Adj(z)} (3.4.2) 

To understand the relationship between the factori­

zation of a symmetric positive-definite matrix and the 

elimination of its graph, consider a simple ordered graph 

as shown in fig. (3.4.1). Its corresponding matrix is given 

in fig. (3.4.1a) where the diagonal terms represent the nodes 

and the off-diagonal terms the edges. 

J ~-

a 12 _ :!! __ + _ 0 all 

A 
a 21 a 22 0 I 0 

= -[----
a 31 0 a 33 ; a 34 

-----+--- -
0 0 a 43 i a 44 

2 

Fig. 3.4.1 Fig.3.4.1a 

3 X X X i 0 
" "- , 

"- X a l

22 a l

23 0 "-
"- A' 
/~l X a 132 a l

33 a l

34 / 
...-

...- 0 0 a '43 a '44 
2 

Fig. 3.4.2 Fig. 3.4.2a 

When the first row is eliminated from matrix A 

using Gaussian elimination, the resulting matrix AI has 

a 123 and a 132 fill-in terms. This is equivalent to per­

forming the following on the original graph, 

i) deleting node 1 and its incident edges; 

ii) adding edges such that all nodes adjacent to node 1 

are pairwise adjacent 

as shown in fig. (3. 4.2) . 



In general, if y is a node in graph G, the eliminated 

graph of G by y, denoted by Gy is the graph (ROSE(1972» 
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G = {X - {y}, E (X - {y}) U Def(y)} 
y 

(3.4.3) 

This shows that when node y is eliminated from a given 

symmetric and positive-definite matrix, the number of fill­

ins is equal to Def(y) and the amount of arithmetic required 

to eliminate y is proportional to Deg(y). Various node 

ordering algorithms which seek to minimize one or both of 

these quantities during the factorization process are avail­

able. They are all heuristic in nature and the more widely 

used ones are the minimum degree algorithm, the minimum 

deficiency algorithm, the nested dissection algorithm and 

the variable-band method (see GEORGE(1981». 

The minimum degree algorithm (MDA) is also known as 

the second strategy of Tinney (TINNEY(1967»; as the name 

implies, it chooses, at each stage, the diagonal element 

with minimum degree as the node for elimination. Experience 

has shown that this algorithm is very efficient in finding 

low-fill orderings for a wide class of problems (GEORGE(1980». 

The minimum deficiency algorithm (ROSE(1972» selects as a 

pivot the node with minimum deficiency. It had been used 

extensively in the earlier work on power problems (for example, 

SATO(1963), AZAR(1975» and is employed in PAN to reorder the 

network nodes. This ordering involves substantially more 

work than the lo1DA and experience has shown that it rarely 

produced a better ordering than the one produced by the MDA 

(GEORGE(1981» • 

The nested dissection algorithm was first introduced 

by GEORGE(1973) and generalised by LIPTON(1979). Essentially, 

it seeks to identify a partitioning of the problem so that 

the coefficient matrix has the block matrix form similar to 

that of eqn. (3.2.1). Since the zero block in the matrix 

remains zero after factorization, the idea can be applied 

recursively to exploit the zeros of the matrix. This ordering 

produces an asymptotically optimal ordering for problems with 

regular grids (GEORGE(1973» and can do better than the minimum 



degree algorithm by a substantial margin on these problems 

(DUFF(1976». However, its performance on network problem 

has been disappointing (BARRY(l978), ERISMAN(1980». 
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The variable-band method permutes the matrix so that 

the nonzeros are near to the diagonal. The most successful 

algorithm for choosing the ordering of this kind is the 

Reverse Cuthill-Mckee algorithm with GIBBS(1976) starting 

point. As the fills are limited to within the bands, by 

ignoring the zeros within these bands, a very simple variable­

band storage scheme (JENNINGS(1966» can be used. This 

ordering and the storage scheme are very well suited for the 

parallel machines (DUFF (1980b» . While this technique is 

very competitive on problems in structural analysis where 

the sparsity pattern is very regular, it performs badly on 

the more irregular problem arising in networks (LEWIS(1980». 

Other ordering algorithms based on one way dissection 

and refined quotient tree (GEORGE(1981» have also been 

proposed and applied successfully to structural problems. 

They are, however, not competitive on the network problems 

from the results quoted in LEWIS(1980). 

From the above discussion, we conclude that the minimum 

degree algorithm is the most efficient ordering scheme for 

the network problems and has therefore been chosen for our 

simulation task. A further advantage of using this algorithm 

is that a number of efficient and reliable algorithms exist 

and hence it can be implemented quite easily. 

3.4.2 The Detailed Algorithm 

This section discusses the detailed implementation of 

the minimum degree algorithm for the ordering of the network 

nodes. To facilitate discussions, we shall treat the machine 

flow variable as an extra node in the network and refer to 

it as a 'flow node'. A simple test network given in fig.(3.4.3) 

is used to illustrate the elimination process. 



The partitioning of matrix G in eqn. (3.2.1) means 

that submatrix All and hence the free nodes are eliminated 

first. The sparsity pattern of submatrix All corresponds 

to the graph of complete network minus the machine and flow 

nodes and their connections. This decomposes the graph 

into several components as shown in fig. (3.4.4). (This is 

generally true for most networks). Different network 

components are ordered independently using minimum degree 

algorithm and the resulting matrix is partitioned according 

to the components of the graph. The node ordering algorithm 

for reordering the free nodes is as follows: 

STEP 1 Decompose the network into components by deleting 

the machine and flow nodes and their connections 
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from the original network. Let GI , G2 ,··· Gm denote 

the sub-graphs representing the remaining m components. 

Initialise i = 1. 

STEP 2 Let G. = (X., Ei ) and initialise the set S = {a}, 
~ ~ 

Set DEG(x) = IDeg(x)1 for x £ Xi' 

STEP 3 Pick a node y [: X. -S where 
~ 

DEG(y) = min (DEG(x» 
xe:X.-S 

~ 

STEP 4 number node y next and update DEG(z) for all z £ Adj (y) 

and set S = (S u {y}) 

STEP 5 if S ~ Xi' go to step 3 

STEP 6 set i = i+l 

STEP 7 if i = m then stop, otherwise goto step 2 . 

• the free nodes 

• the machine nodes 

• the f low nodes 

Fig. 3.4.3 - A Test Network 



• 
Fig. 3.4.4 - The Graph of Submatrix All 

-- ,-<-..• -. - - -

Fig. 3.4.5 - The Graph of Submatrix A 
p 

From (3.4.3), it can be easily deduced that the graph 

which results from the elimination of all free nodes with 

the flow nodes deleted is given in fig. (3.4.5). It can 

also be shown that the formation of submatrix A by block 
( . T -1 P 
1.e. Ap = A22 - A12 All A12 ) in eqn. (3.3.1) is equivalent 

to a step by step elimination of the first Yl rows of matrix 

G using Gaussian elimination. Hence the graph of submatrix 

Ap is the same as the graph shown in fig. (3.4.5). In 

practice, this graph can be generated quite easily since 

in general, two machine nodes will be connected in this 

graph if there exists a path between them through the set of 

free nodes without passing through a flow node. The same 

node ordering algorithm described above can also be used to 

order the machine nodes except in step 1, the network is 

decomposed by deleting the flow nodes only. 

Finally, the flow nodes are simply numbered in machine 

order as their ordering will not affect the method in any 

way since the matrix M is stored in full. (Note that for 

decomposition Dl , the ordering of machine nodes is also 

immaterial) . 
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3.5 The Data Structure Set-up 

After the network nodes are ordered, the next stage 

of the solution is to set up the data structures for storing 

the nonzero elements of the submatrices involved in the 

numerical computation. It is necessary to set up the data 

structure for the final factorized form of these matrices 

since it is extremely difficult and inefficient to update 

the data structure during the actual numerical computation. 

The final factorized form of the matrices can be determined 

by the process called symbolic computation. As the name 

implies, it is the process of simulating the numerical 

computation of the matrices without actually refering to 

their numerical values. This can be carried out for the 

factorization of submatrices All' Ap and the forming of 

submatrices Z and K in order to obtain in the zero/nonzero 
p 

structures of their resulting matrices. Their corresponding 

data structures can then be set up before the actual 

computation begins. 

The use of sophisticated ordering algorithm such as 

the minimum degree algorithm for ordering the matrix has 

the effect of scattering the nonzeros throughout the matrix, 

a complicated data structure is therefore needed to indicate 

the positions of all nonzeros within the matrix. A suitable 

data structure that can be used for this purpose is the 

'compressed storage scheme' due to SHERMAN(1975). A 

detailed description of this storage scheme and a computer 

program for implementing it is given in GEORGE (l98l) . 

Briefly, this storage scheme requires a set of indexing 

locations to indicate the position of the nonzeros (usually 

stored in columns) in the matrix. SHERMAN (1975) noted that 

it is Common for sets of contiguous columns to have a 

similar structure, hence he proposed to store only the index­

ing information for the first column in each set so that it 

can be shared among all other similar columns. In this way, 

the indexing information is 'compressed' to avoid storing 

redundant information. 



This storage scheme was originally proposed for 

storing the lower Cholesky factors, L, of a square non­

singular matrix. stnce the diagonal elements of L are 

non-zeros, they are normally stored in a separate vector 

so that only the indexing information for the off-diagonal 

elements are needed. In this way, it is necessary to use 

up to a maximum of (n(L) + NL) indexing locations, where 

NL is the dimension of matrix L. This is because 2NL 

column indicators are required in addition to those needed 

for the off-diagonal elements. If this storage scheme is 

used to hold a general matrix M (not necessarily square) 
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with N columns, then up to a maximum of (n(M) + 2N ) indexing c c 
locations are required. 

The number of indexing locations quoted above is only 

the upper limit and it is rarely necessary to use more than 

n(L) (or n(M)} locations: for large sparse matrices, only 

half of the amount is normally needed (GEORGE (198l) , p.142} 

since most of the indexing information can be 'compressed'. 

3.6 The Factorization Algorithms 

We now provide the algorithms for the factorization 

of decomposition schemes 01' 02 and 03 outlined in Section 
3.3. 

A. 

i) 

ii) 

iii) 

iv) 

Factorization using decomposition 01 

Factor All into LLT using Cholesky method of factor­

ization. 

Compute Z by solving LZ = Al2 and overwrite it into 

the space occupied by A12 • 

Compute Ap = A22 - Z Tz; only the upper half of matrix 

A is computed since it is also symmetric and positive-p 
definite. 

Set up matrix C as defined in eqn. (3.3.2) and factor­

ize it into LCUC using full matrix factorization 

routine. 
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B. Factorization using decomposition 02 

A more complicated algorithm is needed for decomposit­

ion 02. Stages i) to iii) are identical to that of 01. The 

remaining stages are: 

iv) 

v) 

vi) 

T 
Factori ze Ap into LpL p using Cholesky factorization 

method. 

Compute Kp 
Compute M = 
again using 

by a) 

M2 -
full 

T solve for LpH = K; and b) solve Lp~=H. 

MlKp and factorize it into LMUM, 

matrix factorization routine. 

c. Factorization Using decomposition 03 

For decomposition 03' we do not wish to retain the 

off diagonal block Z. This implies that the matrix Ap has 
T """"r"-1 

to be computed in the "asymmetric" way by (~2 -A 12 (L (L A 12 » 

without explicitly retaining Z. For convenience in counting 

the number of arithmetic operations later in this section, 

the process can be seen as consisting of 3 stages by:-

a) 

b) 

c) 

compute Z, 

Solve for LTZ = Z and 
T" compute Ap = A12 Z 

Of course in practice, A is computed one row at a time and 
p 

hence only Y2 temporary storage locations are needed. The 

algorithm is essentially the same as that of decomposition 

02 except that stage ii) is now discarded and in stage iii), 

A is set up in the above asymmetric manner. p 

We can now compare the costs of computing the factorizat­

ions for decompositions 01' 02 and 03' where the cost is 

defined to be the number of arithmetic operations (the multi­

plications and divisions) required. 

Theorem 3.6.1 

Let the costs of factorizing the matrix G by decomposit­

ion schemes 01' 02 and 03 be denoted by FI , F2 and F3 respect­

ively. Let the cost of factorizing All be FA' ~he costs of 

factoriz~ng the matrix C in 01' and the matrix M in 02 and 

°3 be FC and FM respectively. Then from the lemmas given 

in appendix C, we have that 



Yl C R Yl 
Fl = FA + 1: n(L.)n(Z.) + 1: n(Z~) (n(Z~)+1)/2 + FC 

i=l 1 1 i=l 1 1 
(3.6.1) 

(3.6.2) 

Y Y Y 
1 R 1 C "'R 1 R ,. R 

F = F + 1: n(Lc.)n(Z .) + 1: n(L.)n(Z.) + 1: n(A 12 .) (Z. ) +1)/2 + FR 
3 A i=l 1 1 i=l 1 1 i=l 1 1 

where 

Y -1 1 
FA = 1: (n(LC.)-l) (n(L~)+2)/2 + Y

l 
(sqrt) 

i=l 1 1 

1 3 1 
F = -(y) - - Y M 3 3 3 3 

(3.6.3) 

(3.6.4) 

Proof: To illustrate the proof for these results, we shall 

only consider F
2

; the other two follow in a similar manner. 

In this factorization, we must first factorize All leading 

to a contribution of F. The calculations of Z=L- 1A
12 . yA y 

~ T 1 C R 1 R R 
and A =Z Z require 1: n(L. ) n (Z. ) and 1: n(Zi)n (z. ) +1)/2 

p i=l 1 1 i=1 1 

arithmetic operations respectively (by Lemmas C-3 and C-5) . 

In stage iv), factorizing matrix A into LpLpT requires 
Y2-l p 

1: (n(Lp
C 

)-1) (n(Lp
C ) +2)/2 arithmetic operations together 

i=l i i 
with Y2 square roots by Lemma C-l. The setting up of matrix 
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K in two steps in stage v) requires p + 

Y2 
• E n (L C'p. ) n (~p )) 
~=l ~ i ~ 

arithmetic operations by Lemma C-3. 

Lastly in stage vi), multiply MIKp to give matrix M requires 
Y2 
E n (Ml~ ) n (K

R 
) 

i=l 1 Pi 
arithmetic operations by Lemma C-4, 

and the cost of factorizing matrix Minto LMUM using full 

matrix factorization routine is FM. Collecting the terms 

together yields (3.6.2), concluding the proof. 

From above, it is obvious that: 

(3.6.5) 

To say more about the results, it is necessary to 

know the actual sparsity patterns of the submatrices. A 

more thorough discussion will be given in section 3.8. 

3.7 The Back-substitution and the Storage Requirement 

For decompositions 01 and 02' the back-substitution 

can be carried out as indicated below: 

L U 
c c 

T ~ 
L :f = r - zn -1 

°2 
~ 

LEl = r 
-1 

£2 = r 
-2 

T~ 
LpLp .!:2 

.!:3 = .!:3 
~ 

LMUMQ = !,3 

n = !2 -
LTp ~ 

= !.l -

(3.7.1) 

- ZTr (3.7.2) -1 

.!:2 (3.7.3) 

1::1 
(3.7.4) - Ml !,2 

(3.7.5) 

KpQ (3.7.6) 

z n (3.7.7) 



The back-substitution procedure for 03 is similar to that 
-1 

of D2 except in steps (3.7.2) and (3.7.7), L A12 is used 

in place of matrix Z. 

We assume throughout this section that the zeros in 

the vectors involved in the back-substitution are not 
.... .... 

exploited. The intermediate vectors r , r
2 

etc are only -,. -
written for convenience, in a computer program the whole 

54 

operation is executed by overwriting the old vectors into the 

new ones. 

Theorem 3.7.1 

Let the costs of performing the back-substitution for 

decomposition schemes 01' 02 and D3 be denoted by Bl , B2 

and B3 respectively. From appendix C, we have 

(3.7.8) 

(3.7.10) 

Proof: We shall carry out the proof for (3.7.9) here; the 

proofs for (3.7.8) and (3.7.10) can be deduced in a similar 

manner. The costs of performing steps (3.7.1), (3.7.2) and 

(3.7.7) are 2(n(L)+n(Z)). The cost of performing step (3.7.3) 

is 2n(Lp )' and the costs of computing ML!2 ~nd KpQ are 

n(Ml)+n(Kp )' Lastly, since the matrix M is stored in 

full, the cost of carrying out the back-substitution in step 

(3.7.5) is Y 32 . Collecting terms yields (3. 7.9), hence 

proving the theorem. 

Corollary 3.7.2 

B3 < B2~ n(L)+ n(A12 ) <n(Z) (3.7.12) 



The corollary follows immediately from eqns.(3.7.8) to 

(3.7.10). 
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The storage requirements for the decomposition schemes 

can also be derived directly from the back-substitution 

processes. In this section, we consider only the storage 

required to store the matrices that appear in eqns. (3.7.1)­

(3.7.7); and in the case of 02 and 03' the additional index­

ing locations needed for the sparse matrices Lp' Ml and Kp. 

The result vectors and other auxilliary stores are approx­

imately the same for all three cases and need not be consid­

ered. Main storage locations are required to hold matrices 

L, Z and C for decomposition 01; matrices L, Z, Lp ' Kp' Ml 

and M for decomposition D2 and matrices L, A12 , Lp' Kp' Ml 

and M for decomposition D
3

• 

Theorem 3.7.3 

Let the amounts of storage required to store the non­

zeros of the submatrices involved in decomposition schemes 

01' 02 and 03 be Sl' S2 and S3 respectively; and use Sr 

to denote the additional integer indexing locations needed 

for decomposition schemes D2 and 03. We have the followings 

(3.7.13) 

2 S2 = n(L) + n(Z) + n(Lp ) + n(Kp ) + n(Ml ) + Y3 + SI (3.7.14) 

2 
S3 = n(L) + n(~2) + n(Lp ) + n(Kp ) + n(Ml ) + Y3 + Sr (3.7.15) 

where 

(3.7.16) 

Proof: The expressions for 81' S2 and S3 can be easily 

deduced from the proof of theorem 3.7.1, only the expression 

for SI is derived here. Since the compressed storage scheme 

is used to hold submatrices Land K , up to (n(L )+Y2) plus p p p 
(n(Kp )+2y 3 ) of integer locations are needed. The submatrix 

Ml contains at most 2Y3 nonzeros and hence only 2Y
3 

row 



indicators are required. Collecting all terms together 

yields eqn. (3.7.16). 

Because of the additional indexing locations, SI' 

needed in decomposition schemes 02 and 03' it is difficult 

to compare their storage requirements with those of 

decompOSition 01 as the comparison is largely dependent on 

how the integer locations can be stored on a particular 

computer. Instead, a comparison between S2 and 8 3 is 

carried out. 

Theorem 3.7.4 

The storage requirement of decomposition 03 is always 

less than or equal to those of decomposition 02. 

Proof: By using lemma C-8 and the definitiion of suhmatrix 

Z, it follows th~t n(A
12

) ~ n(Z), hence from eqns. (3.7.14) 

and (3.7.15), we have the above result. 

Lastly, to provide an indication on the effectiveness 

of the decomposition schemes in preserving the sparsity of 

the matrix, the amount of storage required to hold the 

original matrix G (see eqn. (3.2.1)) is also considered. 

To represent the matrix G, it is necessary to store at least 

the nonzeros of matrices A12 , K, Ml , M2 and the lower or 

upper half of All and A22 • This is also the minimum amount 

of storage needed for solving (3.1.1) if an iterative method 

(see for example, JACOB8(1980)) were to be used. 

Theorem 3.7.5 

By ignoring the indexing locations needed to represent 

the sparsities of the submatrices, the minimum amount of 

storage required to hold the matrix G is given by 

(3.7.17) 

PrOof: The proof is similar to that of Theorem (3.7.3). 
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3.8 The Comparison 

This section 90mpares the efficiencies of the 

decomposition schemes using actual networks. Three net­

works of varied sizes and complexities are considered. 
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The first is a small network shown in fig. (A.4). This 

network consists of 5 machines with the number of machine 

nodes greater than the number of free nodes (1. e. Y 2 > Y 1) ; 

this is used to investigate the effect of the number of 

machines on the performance of the decomposi tion algori thr.ls . 

The other two are the large and realistic British Gas 

transmission networks given in figs. (A.5) and (A.7). The 

second is a regional network consisting of 57 nodes and 15 

machines and the third is the large scale national trans­

mission grid with 158 nodes and 20 machines; they are used 

to test the efficiencies of the decomposition schemes in 

handling large, sparse matrices. The performance profile 

of the decomposition schemes on these networks are given in 

Table (3.8.1); the arithmetic operation counts and the 

storage requirements are evaluated based on the theorems 

developed in Sections 3.6 and 3.7 • 

. ~ itiorf 
Dl D2 D3 Network Dimension Network 

F 944 164 +9 sqrt 174 +9 sqrt N - 21 

A.4 B 230 117 135 Yl = 7 
S 213 86 86 Y2 :::: 9 

SI - 64 64 Y = 5 
s3 :::: 51 

0 

F 18534 18CX) + 23 sqrt 1988 + 23 sqrt N =72 

A.S B 1686 661 701 

~~ : fl s 1665 494 455 
SI - 213 213 s; = 168 

F 59098 3770 + 36 sqrt 4216 + 36 sqrt N :::: 178 
A.7 B 3778 13CX) 1668 Yl = 122 

S 3457 918 872 Y2 :::: 36 

SI - 277 277 Y3 = 20 
S =404 
0 

Table 3.8.1 - The Performance Profile of the Decomposition 
Schemes 

Note -

* 

N is the size of the matrix to be solved and Yl'Y2'Y 
are network information as defined in Section 3.2. 3 
F, B, Sf Sr and So are quantities as defined in 
Sections 3.6 and 3.7. 
only decom~osition Dl has been implemented. 



From table (3.8.1), it is clear that decompositions 

02 and 03 are very efficient compared with decomposition 

01 on all the networks tested. These results clearly show 

that the added complexity of decompositions 02 and 03 pay 

off handsomely in both reducing the arithmetic operations 
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and storage requirements. For decomposition 03' very little 

saving in storage is obtained compared with 02 by storing 

matrix Z only implicitly while the arithmetic operations 

required in both the factorization and back-substitution 

processes are greatly increased. This is because very little 

fill-in occurs when forming Z, hence the 'throw-away' strategy 

employed in 03 is not suitable for this application. 

From the table, it can be seen that the additional 

indexing locations, SI' required in decompositions 02 and 03 

are very large compared with the total storage requirement, 

S. This, however, is misleading since the value given in S 
I 

is only a grossly overestimated upper limit. In practice, 

considerably less than this amount is needed especially for 

large networks since the com~ressed storage scheme is used 

to store the matrices (see section 3.5). Furthermore, these 

integer locations can be packed so very little storage is 

required. 

A comparison between S2 and So in the above table reveals 

that decomposition D2 requires only 2 to 3 times the amount 

of storage needed for the original matrix G (this is also the 

minimum amount of storage needed for an iterative method) . 

Hence the use of decomposition 02 will not result in a large 

increase in the storage requirement compared with the iterative 

method and can therefore be used efficiently for solving eqn. 

(3.1.1) • 

3.9 Summary and Conclusions 

Three decoIT.nosi tion schemes are described and compared 

using actual test nebrorks. out of the three schemes considered, 

only decomposition 01 has been implemented and is employed in 

the Leeds/PAN and the variable-step PAN; the other two schemes 

have not been implemented because of the time factor. 
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From the results quoted in table (3.B.l), it is clear 

that decomposition 01 is very inefficient compared with 

decompositions 02 and 03 especially for large networks with 

many machines. Also, the 'throw-away' strategy employed in 

decomposition 03 has not been found to perform as well as 

expected compared with decomposition 02 in reducing the storage 

requirement. The best scheme arrived from this study is there­

fore decomposition 02; the results from the previous section 

indicate that it is a very efficient scheme. 



CHAPTER 4 

4. THE DESIGN OF THE VARIABLE-STEP INTEGRATOR 

4.1 Introduction 

4.2 The Restart strategy 

4.3 The Selection of Numerical Method and 
Local Error Estimate 

4.3.1 

4.3.2 

4.3.3 

The Choice of Numerical Method 

Local Error Estimates for the 
DAE Systems 

The Extension of the Rosenbrock­
type Method to the Non-autonomous 
Systems 

4.4 The Strategies Used in the Integrator 

4.4.1 The Normal Phase 

4.4.2 The Restart Phase 

4.5 Further Enhancements 

60 



61 

CHAPTER 4 

4.1 Introduction 

This chapter discusses the design of the variable­

step integrator for solving the DAE system arising from the 

simulation of gas transmission networks. Although the dis­

cussion aims specifically at the network problem, it relies 

only on the assumption that the DAE system arose from the 

discretization of a system of parabolic PDE's and that there 

are a number of severe discontinuities in the first and higher 

derivatives of the solution. The techniques described here 

can be employed to solve other similar systems of equations. 

The properties of the DAE system (1.3.1) have been 

discussed in section 1.3. Briefly, the system contains 

frequent severe disturbances due to the varying consumer 

demands and the operations of machines in the network; these 

disturbances result in rapid changes in the solution. To 

solve a system of this kind using a standard variable-step 

,integrator is computationally very expensive because extremely 

small time steps will be used immediately after a disturbance, 

in order to satisfy the required error tolerance. This means 

that for a number of applications, it is impractical to use 

a standard variable-step code because reliable solutions are 

normally required reasonably quickly. The author suspects that 

it was partly because of this difficulty that all the currently 

available network analysis programs surveyed in FINCHAM(1980) 

are constant-step in nature. 

The purpose of this chapter is to describe a restart 

strategy that can be incorporated into a variable-step 

integrator for handling the severe changes in the gas flow 

efficiently. Other strategies are also discussed for handling 

the algebraic equations in the system. The implementation of 

a general variable-step integrator for solving systems of this 
kind is described in appendix E. 



4.2 The Restart Strategy 

To make the variable-step inte'Jration feasible for 

the general simulation of gas transmission network, it is 

essential to modify the variable-step algorithm so that it 

is detailed enough to produce accurate solutions for the 

slow dynamics, while not too time consuming for the rapid 

transients that result from the severe disturbances in the 

gas flow. This means that separate strategies are needed 

for handling the slow and rapid changing solutions. 

62 

In many applications, the simulation engineers are 

only interested in modelling the gas flow over a large time 

interval (in the gas industry, this is typically 24 hours) 

and are not concerned with accurately following the solution 

immediately after a severe disturbance in the gas flow. They 

do, however, require that after a specified time period, the 

effects of the disturbance are accurately modelled. Under 

these circumstances, it would be extremely inefficient to 

compute an accurate solution in this region, as is done when 

a standard variable-step integrator is used. 

The strategies employed here is to use normal error 

control everywhere except in the region immediately after a 

severe disturbance in the gas flow where the error control is 

suspended. These regions are referred to as the normal phase 

and the restart phase respectively. By suspending the error 

control during the restart phase enables a larger time step 

to be used in this region than would otherwise be the case. 

A constant stepsize is used throughout the restart phase until 

the estimate of the global error indicates that it is safe 

to return to normal phase. This ensures that the rest of the 

solution satisfies the required accuracy tolerance. 

The restart strategy relies heavily on the assumption 

that all the eigenvalues of the Jacobian matrix of the system 

are negative and hence the computed solution will eventually 

converge towards the true solution. This assumption is true 

for systems that arise from the discretization of parabolic 

PDE's. A theoretical analysis for the restart phase based on 



a model problem is given below. The detailed strategies 

for the restart phase are given in section 4.4. 

4.2.1 The Model Problem 
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To illustrate the technique used for the restart phase, 

it is helpful to consider a model problem. The simplest one 

which reflects the behaviour of the gas transmission network 

problem is given by 

y' = ->..y + d(t), >.. > 0 (4.2.1) 

where d(t) = dO 

The function d(t) models the change in demand value and the 

parameter >.. corresponds to an eigenvalue of the matrix E-IA 

where E is assumed to be non-singular for the purpose of 

,this analysis. 

As a discontinuity in function d(t) occurs at time to' 

a restart phase is initiated at that time. Let the stepsize 

chosen for the restart phase be h and denote the computed 

solution, the true solution and the local solution after j 

steps by Yj' y(tj) and YL(t j ) respectively. For simplicity, 

we shall assume that the global error at time t is negligible o 
compared with the error introduced due to discontinuity, 

hence at time to' 

= (4.2.2) 

This assumption is a reasonable one because the local error 

has been controlled up to time to and therefore will be much 

smaller than the error in the numerical solution immediately 

after the discontinuity. 

The simplest method for integrating (4.2.1) is the 

theta method (see eqn. (2.3.3». Applying the method to (4.2.1), 



it follows after j steps from the start of a restart phase 

that 

y. = wj y + [I - wjJ dl/A (4.2.3) 
J 0 

where w = [I - h(I-8)AJ/[1 + h8A] (4.2.4) 

and 8 > 0.5. 

From assumption (4.2.2), it can be shown that the true and 

local solutions at time tj (= to + jh) are given by 

(4.2.5) 

and 

(t) Yo wj - l e- Ah + [1-~-le-Ah]dllA. YL j = (4.2.6) 

Hence the local and global error estimates at time t. are 
J 

R,. = YL ( t .) - Y . 
J J J 

(4.2.7) 

and 
, 'Ah' 

g. = y(t.) - y. = (y -d II..) [e- J -\,IJ] 
J J J 0 I 

(4.2.8) 

respectively (see fig. (4.2.1). 

I 
I 
I 
I 
I 
I 
I 

~ 

'} 
* 'lg.1 < EPS 

J 

__ Nonna1 ~I<II!<::--__ _ 
Phase 
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For e > 0.5, it can be seen that the terms in the 

square brackets in eqns. (4.2.7) and (4.2.8) tend to zero 

as j tends to inf ini ty . Hence I 9, j I, I g j I -+ 0 as j -+ 00 

as required. 

This shows that the restart strategy will eventually 

terminate for the model problem. Before returning to the 

normal phase, it is necessary to ensure that the local 

solution is sufficiently close to the true solution so that 

it is meaningful to apply local error control. The differ­

ence between the local and true solutions after j steps of 

computation is given by 

(4.2.9) 

Thus, the restart phase is terminated when lDIFFI is less 

than the local error tolerance EPS; that is when 
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I g·1 < EPS 
J 

(4.2.10) 

Hence during the restart phase the global error is 

estimated after each step and normal error control is resumed 

when this estimate is less than the local error control. 

Although this analysis has been carried out for the 

theta method, it naturally extends to L-stable methods and 

in particular, those given in Appendix D. 

4.3 The Choice of Numerical Method and Local Error 

Estimate 

A general outline of a variable-step code with local 

error control has been discussed in section 2.2. There are 

three aspects of the variable-step code that must be 

considered. The first is the selection of a suitable 

numerical method together with a formula for estimating the 

local error. The second is the design of a suitable strategy 

for selecting the stepsize, deciding when to update the 

Jacobian matrix associated with the DAE system and deciding 

when to accept a particular step. The third is the solution 



of linear systems of equations which has been discussed 

in Chapter 3. 
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This section discusses the choice of the numerical 

method and local error estimate. The design of the strateg­

ies is discussed in the following section. 

4.3.1 The Choice of Numerical Method 

The choice of the numerical method poses a problem 

because of the wide variety of methods that have been 
proposed over recent years. It is possible to restrict our 

choice to methods designed for stiff ODE's because it is 
known that the DAE system (1.3.1) is very stiff when there 

are relatively short pipes in the network. 

For the gas transmission network problem, typically 
only low accuracy solutions of up to two significant figures 

are required because the initial data and the machine 

characteristics are only known approximately. The occurance 

of disturbances due to the changes in consumer demand and 

the operations of machines means that there are many restart 

phases which imposes a severe restriction on the stepsize. 

Hence the numerical method selected should be single step 

with low order of accuracy so that restarting can be carried 

out easily and efficiently. 

Multistep methods (e.g. Gear's method) are inappropriate 
because frequent restarting means that these methods are very 

inefficient. Although GEAR(1980) has recently proposed to 

use a Runge-Kutta-like starter to overcome this difficulty, 

this new approach is only useful when a high order formula 

(for example order 3 and above) is used, for orders less than 
3, a fixed-order single step method is more efficient and 

easier to implement than the multistep formula. 

Lastly, the numerical method chosen must also conserve 

the mass of the gas flow. Methods which do not possess this 
property, such as the Hopscotch method (GOURLAY(1970», are 
not applicable. 
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Because of the restriction on the stepsize, the 

obvious choice of the method to be considered is the theta 

method which is widely used in practice. The second method 

considered is the 3-stage, second order, strongly S-stable 
embedded DIRK method discussed in CASH(1979). This method 

has a third order formula with a second order one embedded 
in it so that the error estimate can be obtained at virtually 

no extra cost; although it is the third order solution that 
is normally accepted at the end of the step, the error 

estimate is only second order and hence it is a second order 

process. The extension of these two methods to the DAE 

system is given in Appendix D. 

Another class of method to be investigated is the 

Rosenbrock-type method, given in eqn. (2.3.7), that have 

appeared recently in the literature. This class of method 

is interesting because it is only necessary to solve linear 
systems of equations at each time step. The methods, however, 

are usually derived for the autonomous systems and hence it 

is necessary to extend these methods to the non-autonomous 

case. A suitable method that can be used for this application 

is the 2-stage, second order, strongly A-stable method given 

in SCRATON (1981); this formula has a "built-in" local error 

estimate. As a result of choosing this method, a second 

order, strongly A-stable DIRK method using the above Rosenbrock­

type method as a predictor is also considered. The details 

of this pair of methods in their usual autonomous form are 
described in appendix D. The extension of these methods to 

the non-autonomous DAE system (1.3.1) is given in section 
4.3.3. 

All numerical methods chosen require the solution of 
linear systems of equations (3.1.1) with the coefficient 
matrix G given by eqn.(3.1.2). It is convenient to refer to 

matrix G as iteration matrix throughout this chapter. 

4.3.2 Local Error Estimates for DAE Systems 

As the local error estimates for the numerical methods 

chosen are normally given for differential equations written 



in normal form, it is necessary to extend these estimates 

in a DAE system. 

A thorough discussion on the difficulties associated 

with the Solution of DAE system using ODE methods based on 
the work of PETZOLD (1981) is given in section 2.5. The main 

results arrived from that discussion, using the backward 

Euler method, are: 
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i) the usual local error estimate which is assumed to be 

proportional to the difference between the predictor 

and corrector usually severely overestimates the actual 

local error incurred in the DAE system and 

ii) the actual local error is of order O(hk ) and not O(hk+l ) 

as assumed in the usual error estimate, where k is the 

order of the numerical method employed. 

Analysis carried out in section 2.5 shows that for 
the DAE system, the actual local error for the backward Euler 

method is given by 

2 
e = G-IE (~ :i" (t;» ( 4 • 3 • 1) 

wher.e h = tn+l - tn and tn ~ ~ ~ t n+l • Following the suggest­
ion given by SACK-DAVIES (1977) , the local error estimate of 

the form below is attempted, 

(4.3.2) 

where ~ is the local error estimate that is normally used for 

an ODE system. It has been verified in PETZOLD(198l) that 

this new error estimate is of the right order of magnitude 

and that it accurately reflects the behaviour of the error 

for all backward differentiation formulae. 

As the factorization of matrix G is available, the new 

local error estimate involves only an additional post multi­

plication by matrix E and a back-substitution. Extensive 

tests on the gas transmission network problem have shown that 
the new error estimate is much more accurate than the usual 
error estimate, and has been incorporated into the numerical 

methods described in appendix D. 



4.3.3 The Extension of the Rosenbrock-type Method to the 

Non-autonomous Systems 
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This section discusses the extension of the Rosenbrock­

type method and its associated DIRK method to the non-autonom­

ous case, in the similar way as is done for the serni-implicit 

Runge-Kutta method. We first consider the extension of the 

Rosenbrock-type method (D.3.2) to the DAE system (1.3.1) using 

the approach suggested in STEIHAUG(1979). The method is given 

by 

Yn+l = Yn + h b l kl + h b2 ~2 

G kl = f· (t - n' Yn ) (4.3.3) 

G ~2 = f (t
n

+T 2h, Yn + h a2l k l ) + h d2lAk
l 

where G = E - hdA, T 2 = a 2l and all coefficients are as defined 

in section D.3. It can be shown that this formula is second 

order for any matrix A and is strongly A-stable when matrix 

A is updated at every step. However, the local error estimate 

given in eqn. (D.3.4) no longer predicts the actual local error 

of the method as accurately as in the autonomous case (PAINE 

(1982». It can be shown that the actual local error of 

method (4.3.3), in terms of the 'elementary differentials', 

is of the form 

(4.3.4) 

and the error estimate (D.3.4) differs from the above by the 

amount 10.061 h3 G- l ~ iii, which is negligible compared 

with the first term in eqn. (4.3.4) if "MII« II ~~II . 
The method (4.3.3) with the local error estimate (D.3.4) 

has been applied successfully for solving the gas transmission 

network problem and, so far, no particular difficulty has 

been encountered. The reason is that for the DAE system (1.3.1), 

ii is simply equal to ~(t) , where ~(t) is the vector contain­

ing the demands from the network. Since the demands are 



approximated by either a step or a linear profile (see the 

demand profiles in appendix A), ~~ is either equal to zero 
or a constant lsi respectively, where lsi is the slope of 

the linear profile and is usually less than 10 in magnitude 

(since for lsi> 10, a step profile is normally used by the 
engineers). In addition, as the DAE system is known to be 

stiff, hence \I :f" is large. Thus in this case, the error 
• ( Y.. 

est~mate 0.3.4) can still be used to provide an accurate 

prediction of the local error. 
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The DIRK method (D.4.1) using the above Rosenbrock-type 

method as a predictor can also be extended to the non-autonom­

ous DAE system (1.3.1) as, 

(4.3.5) 

where c l = d, c 2 = a
21 

+ d21 + d and all other coeffiCients 

are as defined in eqn.(D.3.3). The method can again be shown 

to be both second order and strongly A-stable. The local 

error estimate (D.3.4), although not as accurate as in the 

autonomous case, can still be shown to be a reliable one for 

the DAE system (1.3.1). 

In summary, the Rosenbrock-type method (D.3.2) and 

its associated DIRK method can be extended quite naturally 

to the non-autonomous case without affecting the order and 

stability characteristics of the methods. However, the local 
error estimate which was originally derived based on an 

autonomous system will not, in general, be an accurate estimate 
of the local error of the method; it has been found to be an 
accurate one for the DAE system (1.3.1) because the system is 

only mildly nonlinear with respect to the independent variable 

t. Hence when the method is to be employed for solving a 
general non-autonomous system, either a better local error 

estimate should be found or the system be transformed into 

the autonomous form. 



4.4 The Strategies Used in the Integration 

In this section, the strategies used in solving the 

DAE system (1.3.l) are discussed. The general approach is 

to use normal variable-step integration with local error 

control (referred to as normal phase) everywhere except in 

the region immediately after a disturbance in the gas flow 

(restart phase) • 
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A number of the strategies described in this section 

have been determined after extensive numerical testing. This 

is common in the design of integrators where it is very 

difficult to determine and justify the strategies theoretically. 

4.4.1 The Normal Phase 

Because the strategies for the implicit and Rosenbrock­

type method are rather different, they are treated separately. 

, 4.4.1.1 Strategies for the Implicit Methods 

An integrator based on implicit method requires the 

solution of systems of nonlinear algebraic equations at each 

time step. These equations are solved using the modified­

Newton method discussed in section 2.2 with the iteration 

matrix G given in eqn.(3.l.2}. 

The usual strategy employed in most ODE codes when 

the iteration fails to converge satisfactorily is first to 

update the Jacobian matrix and if it still fails to converge 

satisfactorily,'to reduce the stepsize. This strategy is 

successful for the ODE systems in normal form because by 

reducing the stepsize, a more accurate initial prediction for 
the Newton iteration is obtained and the conditioning of the 

iteration matrix is improved (as h ~ 0, the iteration matrix 

tends to the identity matriX for an ODE system). 

The situation, however, is quite different for a DAE 

system. As discussed in section 2.5, convergence of the 
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modified-Newton iteration is not ensured simply by reducing 

h. Furthermore, the iteration matrix tends towards the 
matrix E as the stepsize is reduced. Since the matrix E is 

singular, the iteration matrix will become more and more 

poorly conditioned as the stepsize is reduced which can cause 
the iteration to diverge. Hence the reduction of stepsize 

should only be carried out as a last resort. 

In addition, the usual ODE strategy is unsatisfactory 
because for highly nonlinear systems, it is likely that after 

a few iterations, the solution will have changed so much that 
the iteration matrix becomes out-dated. Hence there is 

advantage in updating the iteration matrix even when it has 

already been updated at the current stepsize. The reduction 

of stepsize is considered only when repeated updating of 

iteration matrix fails to resolve the problem. 

A new strategy is therefore needed which takes into 
account the nonlinearity of the problem without updating the 

iteration matrix too often. It has been found in practice 

that the best compromise is to update the iteration matrix 

,for a maximum of three times in anyone step before the step­

size reduction is considered. This simple modification has 

been found to be very efficient and robust for solving the 

gas transmission network problem. 

Numerical experience in solving the gas transmission 
network problem has also revealed that the codes are very 

sensitive to changes in stepsize. Too frequent or too excess­
ive change in stepsize usually causes the code to fail un­

necessarily and should be avoided. Furthermore, the local 
error estimate (4.3.1) is only of order O(hk ) and not O(hk+l ) , 

where k is the order of the method employed, hence a more 

conservative stepsize strategy should be used. For low order 
methods, it has been found to be more satisfactory to halve 

and double the stepsize rather than using the more formal 

formula of the form hnew = hOld (EPS/ II !n+lll)l/k for estimating 

the stepsize h. 

In the light of the above discussions, two sets of 

strategies have been devised for the implicit methods. They 

are given by: 
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The strategies for the solution of implicit system of equations 

i) Predict the initial estimate for the modified-Newton 

iteration using the current stepsize hi 
ii) carry out one modified-Newton iteration and compute 

the rate of convergence rc(see Section 2.2.1) i 

iii) if r > 0.5 c 

then if NMAT < 3 

then update the iteration matrix and go to step ii) 

else halve the stepsize and go to step i); 

where NMAT is the number of times the iteration matrix 

has been updated using the stepsize h at the current 

iteration; 

iv) the iteration is terminated when the iteration correct­

ion II !!(m) II is less than the error tolerance; otherwise 

repeat step ii). 

The strategies for step acceptance and stepsize selection 

i) if II !n+lll > EPS, the step is rejected and the stepsize 
is halved; 

ii) if 0.15*EPS!> 11!n+lll !> EPS, the step is accepted and 

the same stepsize is used for next step; 

iii) if II.Enrlll < 0.15*EPS, the step is accepted; the step­

size is doubled provided that at least three successful 

steps have followed the last change in h; 

other stepsize strategies have also been considered and the 

one given above was found to be the most efficient for solving 
the gas flow problem. 

Lastly, the iteration matrix is also updated when there 

is a change in stepsize or when the same iteration matrix has 
been used for more than 25 steps. 

4.4.1.2 The Strategies for the Rosenbrock-type Method 

The advantage of a Rosenbrock-type method is that it 
is only necessary to solve linear systems of equations at 

each time step. However, the method is rather difficult to 

implement because it is difficult to decide when to update 
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the iteration matrix G. Since it is inefficient to recompute 

the iteration matrix after every time step, a strategy is 
required to decide when it is advantageous to update it. 

Several strategies have been attempted; the best of which 

is described below. 

Numerical experience has shown that most of the 

iteration matrix updatings for the Rosenbrock-type method 
are carried out due to changing stepsize and step failure. 

With the discussions in section 4.4.1.1 in mind, a more 

conservative stepsize strategy is devised in an attempt to 
minimize the number of step failures and iteration matrix 

updatings. Th~ same stepsize strategy as the one proposed 
in the previous section is used and the iteration matrix is 

updated when 

a) there is a change in stepsize; 
b) the same iteration matrix has been used for more than 

15 steps or 

c) "!n+l ll > O. 85*EPS 

'The above strategy for updating the iteration matrix results 

from extensive numerical testing and is based on those employed 

in STElHAUG(1979) and SCRATON(198l). 

Lastly, since the method is only linearly implicit, it 

is sometimes unsatisfactory for handling the nonlinear algebraic 
equations that may appear in the DAE system. The nonlinear 
algebraic equations arise when the machines are operating on 

nonlinear constraints such as the compressor horsepower con­
straint (see eqn.(B.3.2». These equations can be solved 

satisfactorily by the method under normal operating condition. 

However, when there is a severe disturbance in the gas flow, 
then the method has difficulty in handling these equations; 
this is because a large number of iterations is normally 
needed to ensure the convergence of these equations. 

Thus when implementing the method, it is also necessary 
to check for the convergence of the nonlinear algebraic equat­
ions at the end of each step. The ith nonlinear algebraic 

equation is considered to be converging satisfactorily when, 
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(4.4.1) 

where Yi = MAX(l.O,· Iy. I); ~. (y) is the ith nonlinear algebraic 
]. ]. 

equation in the DAE system and Yi is the corresponding compon-

ent in the solution vector. If any of these equations have 

not converged satisfactorily, then the step is repeated using 

the implicit method. A suitable method that can be used for 

this purpose is the DIRK method (D.4.1). The problem of non­

convergence often occurs during the first step of the restart 

phase when the solution is changing rapidly. 

The implementation of this method into a variable-step 

integrator is discussed in appendix E. 

4.4.2 The Restart Phase 

The strategies for the restart phase are independent of 

the particular numerical method that is used in the integration. 

They arise out of the analysis given in section 4.2 and 

numerical testing. 

4.4.2.1 The Detection and Location of the Disturhance 

Before the restart phase can be initiated, the distur­

bance must be located. Any disturbances that occurs due to 

the changes in consumer demand 

the simulation, hence they can 

time events (see section 2.4). 

are known at the beginning of 

be handled qUite easily as 

The switching of machine 
operating constraints, however, corresponds to the state events; 

they are more difficult to handle and an extension of the 

procedure outlined in CARVER(1978) is employed. 

Associated with each type of machine is a set of 

constraints which defines the operating limits of the machine. 

These machines are modelled using the algorithm outlined in 

section 1.3. Briefly, the algorithm initially selects an 
appropriate set of operating constraints for the machines so 

that the rest of the machine constraints are satisfied. During 

the simulation, a machine switches its operating constraint if 
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one or more of its other constraints are violated,and the 

constraint which is violated by the greatest percentage is 

chosen as the new operating constraint for the machine. To 

detect and locate when the change in machine operating con­

straint takes place, the constraint functions for the machines 

are defined. A suitable constraint function takes the form, 

Y m, j (4.4.2) 

where Cj (t,~) is the value of constraint j for the machine 
m . 

m at time t, and oJm is its extreme value. For example, when 

machine m has constraints on the maximum outlet pressure and 

maximum flow, then the required constraint functions are 

given by 

= Pmax - Po (the maximum outlet pressure constraint) 

= (the maximum flow constraint) 

where Po and Qm are the outlet pressure and flow of 

machine m respectively, and Pmax ' Qmax are their corresponding 
extreme values. In this case, the machine m switches its 

operating constraint when one of the ~jm's becomes negative. 

At the end of each successful step, the constraint 

functions for the machines are computed. Changes in machine 

operating constraints are readily detected if one of the ~'s 

changes sign over the interval h. Given that 

q)m (t, ~n) . q,jm (t+h, l.n+l) < 0, the interval code based on 
the bisection method and rational interpolation (BUS(1975» 

can be used to compute a new stepsize h* which renders 

q,jm ( t+h *, ~*) = 0. If more than one such h * exists for 

different machines, the smallest one is chosen as this corres­

ponds to the next state event to occur. 

To avoid extra function evaluations, only the pre­

dicted solution is used in the location process. This means 

that the disturbance is only located approximately. This is 
consistent with the idea of suspending the error control during 

the restart phase. 
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4.4.2.2 The Detailed Strategies for the Restart Phase 

Once a disturbance has been located, the integration 

must be restarted with the new machine operating conditions 

and demand flows. During the restart phase, the error control 

in the solution is suspended; this enables a larger time step 

to be used in this phase than if the normal phase were 

enforced. 

A suitable stepsize must first be computed for the 

restart phase. The stepsize chosen must be such that the 

error in the numerical solution will decrease at each step. 

It is dependent on the severity of the disturbance and the 

stiffness of the system at that instance. Following DEW(1978), 

an estimate of the stepsize is given by, 

= RESC*/EPS/ II ill (4.4.3) 

where EPS is the user requested error tolerance, i is the 

updated right-hand function of (1.3.1) and RESC is a parameter 

depending on the particular numerical method used. Since 

,this formula was originally derived for the first order backward 

Euler method, it is likely that it underestimates the stepsize 

that can be used for the higher order methods. To overcome 

this problem, a larger RESC value is used for the higher order 

methods. The suitable values of RESC for the numerical methods 

chosen are given in Appendix D. These values can be reduced 

quite easily if a more detailed solution is required during 

the restart phase. 

In practice, it is necessary to limit the stepsize 

that can be used, i.e. 

hR ~ h max (4.4.4) 

where hmax is introduced to improve the efficiency of the 

restart strategy. It has been found from numerical experiment 

that a suitable value of hmax is 0.2 hours for the typical 24-

hour simulation. Again, this value can be reduced if a more 

detailed solution is required during the restart phase. 
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A constant step method is used throughout the 

restart phase. The same set of strategies (apart from the 

stepsize strategies) given in section 4.4.1 is used to 

implement the method. The only exception is that a slight 

modification to the modified-Newton strategy is made. The 

usual modified-Newton strategy is to update the iteration 

matrix whenever the rate of convergence is slow (see section 

4.4.1.1); this, however, is unsatisfactory for the restart 

phase where the solution is changing rapidly. The reason is 

that the initial prediction for the modified-Newton iteration 

is likely to be unreliable and hence many iterations will be 

needed. Thus in order to avoid updating the iteration matrix 

too soon or too often during the restart phase, it has been 

found to be necessary to perform at least 5 modified-Newton 

iterations at the beginning of each step, before the updating 

of iteration matrix is considered. 

To make the restart phase robust, a check is made to 

see if the local error in successive steps have decreased in 

magnitude and that the modified-Newton iteration is converging 

satisfactorily (i.e. within 3 updatings of the iteration matrix 

in a step~ If either of the above is not satisfied, a retry 

is carried out from the beginning of the restart phase by 

reducing the stepsize by a factor of 5. 

The normal local error control is re-commenced when 

the global error estimate is less than the required error 

tolerance providing a minimum of 2 steps have been taken. 

The last condition was found necessary to ensure that the 

method is stable and that the transfer from the restart to 

normal phase is smooth. Numerical experience on both large 

and small networks has shown that the restart phase is normally 

terminated in less than 5 steps. 



4.5 Further Enhancements 

As a result of the experience gained in solving the 

DAE system (1.3.1) using a variable-step integrator, two 

possible enhancements in this area can be recommended. 

A) The Iteration Matrix G for the DAE System 

As stated in section 4.4.1, the implementation of a 

numerical method for solving the DAE system of the form 

(1.3.1) requires the solution of linear systems of equations 

of the form 
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G w = r (4.5.1) 

where G = E-h8A, (4.5.2) 

w contains the required iteration correction vector or the 

intermediate solution, and r is the known right-hand side 

vector; all other variables have their usual meanings. The 

use of matrix G in the above form, however, will lead to the 

,problem of ill-conditioning as h tends to zero because the 

matrix E is singular for a DAE system. 

To overcome this difficulty, a simple modification as 

suggested in BERZINS (1981) can be used. By separating the 

equations that correspond to the algebraic eauations in the 

DAE system from the rest of the equations, the system (4.5.1) 

can be partitioned into the form, 

Edd - h8Add 

-h13A ad 

-h8A da 

-h13A aa w -a 
= (4.5.3) 

where subscripts d and a denote the components relating to 

the differential and algebraic equations in the DAE system 

respectively, and the matrices E and A are correspondingly 

partitioned. As the vector ra usually contains a factor h, 
we can therefore divide its corresponding equations (i.e. 

those equations that correspond to the algebraic equations 

in the DAE system) by -hl3, and the resulting matrix G becomes, 



-hBA da 

80 

G = (4.5.4) 

A' ad A aa 

Thus, the new iteration matrix will not give rise to the 

ill-conditioning problem as h tends to zero, providing that 

the submatrices Edd and Aaa are well-conditioned. This 
modification will be particularly advantageous to the Rosenbrock­

type method as the method is very sensitive to the conditioning 

of the matrix G. 

B) The Consumer Demands from the Network 

The demands from the network are normally approximated 

by using a step function as shown in fig. (5.4). The use of a 

step fUnction means that the problem is discontinuous and, in 

general, a restart strategy is needed to handle these discon­

tinuities efficiently. The use of the restart strategy is 

necessary for handling large, severe changes in demand. How­

ever, for a demand profile containing a series of small step 

'changes, as shown in part of fig.(4.5.l), the need to restart 

the integration at every demand changes will affect the per­

formance of the variable-step integrator considerably. 

" 

Fig. (4. 5.1) The Demand Profile 

The new demand 
profile 

Time 
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By using the idea employed in some parabolic codes 

in smoothing out the initial conditions, we can instead approxi­

mate the step profile by a continuous function by using, for 

example, the spline technique. An example of the new demand 

profile is shown in the dotted lines in fig.(4.5.l). 

By smoothing out the sharp edges of the step profile, 

it is hoped that for a series of small demand changes (for 

example, between time tl and t2 in fig. (4.5.1», the new profile 

will be sufficiently smooth to enable the variable-step integ­

ration to be used throughout without having to initiate a 

restart phase. Furthermore, the new profile is a more realistic 

representation of the actual demand changes because in practice, 

a short time lag is needed before the demand value can be 

changed. 
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CHAPTER 5 

5.1 Introduction 

Four integrators have been developed based on the 

strategies described in the previous section. The numerical 

methods used in these integrators are: 

i) the theta method (0.1.1); 

ii) the Rosenbrock-type method (4.3.3); 

iii) the DIRK method (4.3.5) with the above Rosenbrock­

type method as a predictor and 

iv) the second order, strongly S-stable embedded DIRK 

method (0.2.1). 

The corresponding integrators developed are referred to as 

THETA, ROSEN, RDIRK and EDIRK respectively. The details on 

the implementation of these integrators together with the 

code of integrator ROSEN can be found in appendix E. 

A number of test networks supplied by British Gas 

·are used to illustrate the reliability and accuracy of the 

integrators. The numerical results obtained from these 

integrators are compared with those obtained from the Leeds/ 

PAN program. Leeds/PAN is based on a constant-step theta­

type method as described in section 1.5; it has been tested 

against the original PAN program and has been found to be 

reliable. A 'multi-running technique' is used to establish 

thestepsize to be used for the Leeds/PAN program in order to 

obtain a reliable solution. In this technique, a series of 

solutions is computed by successively reducing the stepsize 

until the solutions obtained from two successive stepsize are 

equal to within a specified accuracy tolerance. This technique 

is a rather tedious but is normally a safe and reliable mean 

of obtaining the accurate solution. The solution obtained from 

PAN in this manner can therefore be used as a basis for testing 

the variable-step integrators. 

A set of simple test networks is first used to test 

the ability of each integrator to handle the types of severe 
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disturbances that would normally arise from the simulation 

of a gas transmission network, and to ensure that the 

numerical methods employed conserve mass. The integrators 

are then tested and compared using a number of large and 

realistic transmission networks; the results of the compari­

son are given at the end of the chapter. 

5.2 The Numerical Testings 

In the initial testing, four simple test networks are 

chosen. They are used to test the integrators on different 

aspects of the simulation. The first network is a simple 

network as shown in fig. (A.l); it contains a sudden, severe 

step change in the demand profile and is used to test the 

ability of each integrator to handle large demand changes. 

The second network (see fig. (A.2» contains a compressor 

which shuts off at the beginning of the simulation; this tests 

the capability of the restart strategy to cope with the dis­

turbance generated by the operation of the machine. The 

ability of the integrator to handle frequent and linear changes 

in demand are tested using the network given in fig. (A.3). 

This network has a varying demand profile as shown in fig. (5.3) 

attached to the demand node. For this test, it can also be 

seen that the total inflow of gas at source over the l2-hour 

period of simulation is equal to the total outflow at the 

demand node. Hence by the law of conservation, the total 

amount of gas stored in the network (referred to as linepack) 

must be conserved and in particular, the linepack should be 

the same at the end of the simulation as it was at the beginning. 

Thus this test network can also be used to check whether a 

numerical method conserves mass. Lastly, to complete the 

initial testing, a more complicated network as shown in fig. 

(A.4) is also used. This network consists of five machines 

which have both linear and nonlinear constraints, and a varying 

demand profile at the demand nodes; the machines change operat­

ing constraints many times during the 24-hour period of simulat­

ion. It is used to test the robustness of the integrators in 
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handling nonlinear operating constraints (i.e. nonlinear 

algebraic equations) and other important types of disturbances 

normally encountered in a large scale gas transmission net­
work. 

To facilitate comparison, the results obtained from 

the integrators and the Leeds/PAN program are plotted as 

shown in figs. (5.1)-(5.4) for networks (Al)-(A4) respectively. 

The graphs show the variation of pressure against time over 

the whole period of simulation for the node where the largest 

changes in pressure takes place; the actual pressure, instead 

of the difference in pressure between the programs, is plotted 

in order to provide an overall view on how the solution is 

changing with the disturbances. Three sets of results at 

different stepsizes for the Leeds/PAN program are included 

for each test. This demonstrates how the PAN solutions are 

converging and provides an indication on the accuracy of the 

results obtained from the variable-step integrators. Because 

the results obtained using each of the variable-step integrators 

differed only by a maximum of 0.5 pSi, in order to avoid 

complicating the graphs, only the results of one integrator 

are included. The accuracy tolerance of 0.sE-2 is used for 

the variable-step integration. 

From the graphs, it can be seen that the results 

'obtained from the Leeds/PAN program converges to those of 

the variable-step integrators as the stepsize is reduced. This 

clearly demonstrates that the integrators are both accurate 

and reliable. The results of network A4 also indicate that 

the integrators are able to handle DAE systems with highly 

nonlinear algebraic equations and containing a large number 

of disturbances. 

Because the test networks considered in this section, 

except network (A4), are very small and simple, it would be 

unrealistic to compare the relative efficiency of the variable­

step integrators on these networks as the result of the compari­

Son does not necessarily apply to the large scale transmission 

networks that we are interested in. Instead, the efficiency of 

the integrators are compared in the next section using three 

large, realistic transmission networks. 
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Finally to test the conservation property of the 

numerical methods used in the integration, the changes in 

linepack (where linepack is the amount of gas stored in the 

network) for network A.3 are also considered. They are 

listed in Table 5.1 which gives the relative change in line­

pack at the end of the simulation compared with those at the 

beginning, for the integrators and the Leeds/PAN program at 

different stepsizes. The table again shows that the differ­

ence in linepack computed by the Leeds/PAN program reduces 

as the stepsize is reduced, and that the integrators produced 

a very small difference in linepack which is well within the 

user requested error tolerance of 0.5 E-2. Of all the four 

integrators considered, the integrators RDIRK and EDIRK are 

found to perform extremely well in linepack conservation and 

can be chosen to carry out linepack calculation. 

Final Linepack Relative change in 

Method (mscf) 
I LPf -LP. 

LP
f 

Linepack = LP. l. 

l. 

Leeds/PAN -2 
h = 0.1 hour 

58953 0.117 x 10 

Leeds/PAN 
x 10-3 

h = 0.05 hour 
58919 0.594 

Leeds/PAN 
10- 3 

h = 0.02 hour 
58898 0.238 x 

THETA 58869 0.255 x 10-3 

ROSEN 58865 0.323 x 10- 3 

RDIRK 58882 0.340 x 10-4 

EDIRK 58886 0.340 x 10-4 

where the initial linepack LP. = 58884 msef and the error 
l. 

I 

tolerance used in the variable-step integration is 0.5 E-2. 

Table 5.1 The Change in Linepack for Network A3. 
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Other tests on linepack conservation have also been 

carried out and similar conclusions were obtained. We can 

therefore conclude that all numerical methods considered 

conserve mass. 

5.3 The Large Scale British Gas Transmission Networks 

Having established that the integrators work on the 

set of simple test networks, it is now necessary to test 

the integrators using some larger and more realistic networks. 

Three such networks of varied sizes and complexities provided 

by British Gas are considered. The first two networks are the 

regional networks and the third one is a version of the 

National Transmission Network used in British Gas. The sketches 

of these networks are given in figs. (A.5)-(A.7) with their 

details being summarised in table 5.2. These networks are all 

very complicated with varying demands (for example, those 

given in figs. (5.3)-(5.4» and machines that change operating 

constraints frequently throughout the simulation. 

The same test procedures as those carried out in 

section 5.2 are used to check the reliability of the integrators 

on these networks. For illustration, the graphs of the pressure 

against time for the demand node where the solution changes 

rapidly are given in figs. (5.5)-(5.7) for networks (A4)-(A7) 

respectively; the accuracy tolerance of 0.5E-2 is used in the 

integrators to produce the results. The graphs again show 

that the results obtained from the variable-step integrators 

are both accurate and reliable. 

Further tests also carried out on the variable-step 

integrators using a higher accuracy tolerance (EPS) of 0.5E-4. 

The tests showed that more than three times the amount of CPU­

time was required to compute the numerical solution compared 

with the case when EPS=0.5E-2. However, only a slight improve­

ment in the accuracy of the solution of up to 0.5 psi for the 

pressure variables was obtained. This is insignificant for 

most engineering purposes because the initial data and the 

machine characteristics are only known apprOXimately. It 
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therefore shows that more stringent accuracy tolerance is 

not necessary for the gas transmission network problem. 
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To measure the efficiency of the variable-step 

integrators, a summary of the statistics required to compute 

the solution using the accuracy tolerance of 0.5 E-2 is given 

in Table 5.3. The statistics include four components for 

measuring the cost of solving the problem; they are used in 

ENRIGHT (1975) for comparing the numerical methods for stiff 

ODE's. These components are the number of steps taken to 

compute the solution, NSTP; the number of function evaluations, 

NFUN; the number of iteration matrix updatings and factorizat­

ions, NMAT and the amount of CPu-time used, CPUT. The test 

criteria discussed in ENRIGHT (1975) are used as the basis for 

the comparison. 

From table 5.3, it can be seen that substantial saving 

in computing time can be achieved by using the variable-step 

integrators as compared with the Leeds/PAN program. In assess­

ing the efficiency of the integrators, one must also remember 

that they return reliable solution to the required accuracy. 

The table also shows that the integrators RDIRK and 

EDIRK are less efficient than integrators THETA and ROSEN on 

all three networks considered. As integrators RDIRK and EDIRK 

require to solve 2 and 3 systems of nonlinear algebraic equat­

ions respectively at each time step, considerably more computat­

ional effort are needed for these integrators compared with 

THETA and ROSEN at each stage of the solution; however, because 

of the severe restriction on the stepsize, a larger time step 

cannot be used for these integrators and hence a longer solution 

time is needed. This is reflected in table 5.3 by the large 

number of function evaluations required by these integrators 

compared with THETA and ROSEN. The above observation suggests 

that higher order methods (for example order 3 and above) are 

not suitable for this application. 

The integrator ROSEN generally requires fewer number 

of iteration matrix updatings than integrator THETA on the 

networks considered, however, more function evaluations are 

required. Their performance are very similar in terms of 
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No. of , No. of No. of No. of Pericrl of 
Network rxXies machines danands unknown simulation 

variables (hours) 

Network A5: 
the reqional 57 15 40 72 0-30 
network 

Network A6: 
the north-west 103 13 100 116 0-30 
super grid 

Network A7: 
the national 158 20 106 178 0-30 grid -

(sma.ller. t) versJ.on 

Table 5.2 Details of the test networks 

METHOD Network A5 Network A6 Network A7 
NSTP /NFUN,/NMAT/CPUT NSTP /NFUN,/t'Ma';cpur NSTP /NFUN/NMATPur 

THETA 119/236/ 48/ 7.5 136/272/ 57/11.4 124/276/ 63/27.0 

roSEN 104 /345 / 42 / 7.4 147 /432/ 37/12.5 122/409/ 44/24.9 

RDIRK 102/565/ 42/ 9.1 140 /673/ 36/15.5 120/660 / 48 / ~.9 

EDIRK 104/650 / 39/10.4 128/635/ 40 /16.9 114/725/ 54/36.3 

Leerls/ 291/291/291/24.6 291/291/291/23.4 291/291/291/74.1 PAN* 

where NSTP - number of steps attempted; 

* 

NFUN - number of function evaluations; 

NMAT - number of iteration matrix updatings (and 
factorizations) and 

CPUT - CPU-time used in seconds on the Amdahl V7 
computer at the University of Leeds. 

The performance profile of Leeds/PAN is obtained by 

using the stepsize which gives a solution of comparable 

accuracy to those computed by the variable-step integ­

rators (see figs. (5.5) - (5. 7» • 

Table 5.3 - The Performance Profile of the Integrators 



CPU-time with integrator ROSEN slightly more efficient than 

integrator THETA on the National Transmission Network (A7). 

We can therefore conclude that the theta method and the 

Rosenbrock-type method appear to be equally efficient and 

reliable in solving the gas transmission network problem. 
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Since the basic assumption in this work is that the 

gas transmission network model is parabolic in nature, it 

seems sensible to select a numerical method which reflects 

this. Because the stability property of the Rosenbrock-type 

method is more appropriate than those of the theta method 

for a parabolic problem, the Rosenbrock-type method can be 

recommended for general use. 

For specific application on the calculation of line­

pack in the network, however, the results in section 5.2 

indicate that integrator RDIRK is more suitable. 
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CHAPTER 6 

6 THE CONFLICTING CONSTRAINTS PROBLEM 

6.1 Introduction 

6.2 The Gas Flow Model 

6.3 The Dual Extremum Principles 

6.4 A Variational Inequality Model 

6.5 The Implementation 

6.5.1 The Scaling of the Constraint Matrix 

6.6 Testing and Results 

6.7 Further Enhancements 



6.1 Introduction 

The simulation of a gas t!.-ansmission network involves 

the solution of a large system of nonlinear differential 

equations subject to a set of inequality constraints. The 

constraints model the operating limits of the machines and 

examples of these constraints can be found in appendix B. 
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As it is very difficult to deal with inequality con­

straints, a simple algorithm based on constraint modelling is 

used in PAN to model the machines in the network. Essentially, 

the algorithm replaces the set of inequality constraints with 

a smaller set of algebraic equations by assuming that for each 

machine, one of the constraints (referred to as the operating con­

straint) is actually equal to its extreme value. This gives rise 

to a set of differential/algebraic equations which can be 

solved efficiently using a variable-step integrator. It then 

checks for the rest of the machine constraints; if any is 

violated, then the corresponding operating constraint of the 

machine is changed to the violated one. A new solution is found 

and the process is repeated until there are no violations. 

This algorithm is very easy to implement and is employed 

in many network analysis programs, for example, PAN, GANESI 

and WYLIE(1974). However, there are two fundamental drawbacks 

to this algorithm. First of all, it only tackles the problem 

locally by replacing the operating constraint of the machine 

by the violated one, without taking into account the effect of 

this on the overall solution of the problem. Secondly, it 

requires the machines to operate at one of its constraint 

values at all times and thus severely limits the feasible region 

of the solution. Because of these difficulties, the algorithm 

is not very robust and for certain networks, it fails to obtain 

a feasible solution. The problem is referred to as the 

"conflicting constraints problem". This problem occurs more 

often during the steady state analysis than the time-dependent 

solution, because the former has a further restriction on the 

solution that the continuity of the flow at the nodes must be 
satisfied exactly. 



To illustrate the conflicting constraints problem, 

consider a simple test network as shown in fig. (G.l.l). 

This network consists of two sources, each feeding through a 

compressor, supplying to a common demand point. The network 

is symmetrical about the demand node. 

Scurce 1 Canpressor 1 d = 8O,COO Canpressor 2 Source 2 

[>.. jO: l 70' .<] 
v V 

I \ -v J 
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OP =980 I OP = 1,a:xJ II OP =950 III OP =900 
EW = 40,a:xJ FW = 40 ,COO 

Note - see appendix A for the meanings of the symbols used. 

Fig.{G.l.l) - A Test Network with Conflicting Constraints 

Problem 

By deleting the machines, the network can be separated 

into three components, I, II and III as shown in fig.{G.l.l). 

F~r steady state analysis, the pressure must be defined at at 

least one node in each network component so that the problem 

is well defined. This means that the two sources and at least 

one com~ressor must operate on their maximum outlet pressure 

constraints. Because of the difference in the compressor out­

let pressure constraints, it can be seen that the gas flow 

from the left of the demand node will be greater than the flow 

from the right. Thus, in order to meet the demand, source 1 

would have to violate its flow constraint. As the source 

cannot be switched to operate on flow constraint for this 

problem, the simple algorithm would break down and fail to 

find a feasible solution. 

For this simple network, it can be easily deduced by 

symmetry that a feasible solution can be obtained by lowering 

the outlet pressure constraint of compressor 1 to 950 psi. 

However, for more complicated networks with a large number of 

machines, it is not normally possible to adjust the constraints 

in this way. In general, a mathematical programming approach 

is needed to decide which machine is to operate within its 

constraints, rather than on one of them. 



British Gas have recently developed an optimization 

program based on linear programming (PRATT(1982)) which can 
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be used to overcome the above problem. This chapter considers 

an alternative formulation of the gas flow problem into a 

variational inequality model for resolving the conflicting 

constraints problem; a rigorous mathematical theory based on 

the dual extremum principles (NOBLE(1972)) is used in the 

formulation. 

6.2 The Gas Flow Model 

In order to facilitate later discussions and to define 

the notations used throughout this chapter, the basic gas 

flow equations are summarised here. The derivation of these 

equations can be found in appendix B. 

The gas flow and pressure along a pipe is modelled by 

the momentum and continuity equations in the standard manner 

and the resulting partial differential equations are discret­

ised in the spatial variable using finite differences or the 

finite element method. This gives rise to a set of stiff 

ordinary differential equations (ODE's) of the form given in 

eqn.(B.4.4) which can be solved using a stiff integration 

method. The nonlinear equations that result from numerically 

solving the ODE's are solved by the modified-Newton method 

which in turn gives rise to two sets of algebraic equations 

of the form (see section B.5) . 

+ + = .el (6.2.1) 

+ = (6.2.2) 

where ~ is a vector containing the unknown pressures at the 

machine nodes, Q denotes the set of pressures at the other - -
network nodes and g is a vector containing the unknown machine 

flows. The vectors .el and .e2 are the known right-hand side 
quantities which include the demands from the network. The 

matrices Zij'S denote the connections within the network; the 

matrix formed by the Z .. 's 
1) 



= 

is symmetric and positive-definite. The matrix Kr is the 

flow incidence matrix of the machine inlet nodes, and is 

defined as 
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= 1 if t is the inlet node of machine k (6.2.3) 

and = 0 otherwise. 

Similar sets of equations can also be obtained for the steady 

state analysis. 

Eqn. (6.2.2) relates to the machine outlet nodes and 

eqn. (6.2.1) corresponds to the other network nodes. Equations 

(6.2.1) and (6.2.2) are essentially the same as those given 
in eqn. (3.2.1) except that a different partitioning of the 

unknown pressures at the nodes is used. This is to facilitate 

the derivation and implementation of the optimization model 

described below, where the set of machine outlet pressures, 

!, will be used as the controllable variables (the set of 

variables that can be adjusted during the optimization in 

order to obtain an optimal solution) in the optimization 

process. 

The solution of eqns.(6.2.l) and (6.2.2) must also 

satisfy the operating constraints for the machines in the net­

work. These machine constraints are modelled using a set of 

inequalities which has the general form (see fig. (6.2.1», 

~i(Qk'¢k,Ok) ~ 0i (6.2.4) 

Ok 

~ ¢k 
--------~~< ~~----------
inlet node outlet ncrle 

Fig.(6.2.l) A Two-noded Machine 
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where ~. is usually a nonlinear function of the machine inlet 
l. 

pressure Qk' the machine outlet pressure ¢k and the machine 

flow Qk; and a i is a known right-hand side quantity. The 

exact form of ~. and a
i 

depends on the type of machine 

Examples of the inequality constraints 
l. 

constraint involved. 

can be found in appendix B. 

A complete solution is therefore needed which satisfies 

eqns. (6.2.1) and (6.2.2) together with the constraints of 

the form given by eqn. (6.2.4). We see that the simulation 

of the gas transmission network is a complex nonlinear mathe­

matical programming problem. 

6.3 The Dual Extremum Principles 

This section outlines the important theoretical results 

of the dual extremum principles as given in SEWELL(1973). 

Further details can be found in that paper and in NOBLE(1972). 

Consider two real inner product spaces E, F with 

elements denoted by x, u and inner products (,), <,> respect­

ively. Consider a functional H[x,u] defined in the product 

space ExF, generating the problem 

aH = 0 ( a ) 
ax 

(6.3.1) 
aH 

0 (8) = au 

If the functional H is a saddle fUnction concave in 

x and convex in u, then the dual extremum principles state 

that: 

i) any solution of the whole problem (6.3.1) will minimise 

the quantity 

J(a) = aH 
H - (x, ax) (6.3.2) 

among all the solutions of the underdetermined subproblem 

(6.3.1a) i 
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ii) any solution of the whole oroblem (6.3.1) will maximise 

the quantity 

K ( (3) H aH (6.3.3) = - < u, au > 

among all the solutions of the underdetermined sub­

problem (6.3.1(3); 

iii) the minimum value of J and the maximum value of K 

which are provided by any solution of the whole problem 

(6.3.1) are the same and equal to the solution value 

of H; 

iv} the solution value of u is unique when the convexity 

of H with respect to u is strict; the same is true for 

x if the concavity of H with respect to x is strict. 

Similar properties i)-iv} hold when eqn.(6.3.1a) is 

replaced by three conditions 

aH 
$ 0 (a) ax 

x ~ 0 «(3) (6.3.4) 

(x, aH) = 0 ax 

with eqn.(6.3.1(3) retained; and also when eqn. (6.3.1a)is 

retained but eqn. (6.3.1(3) is replaced by 

aH 
au 

~ 0 «(3) 

u ~ 0 ( a) (6.3.5) 

<u, aH > = 0 au 

and again when both of eqns. (6.3.1) are replaced by eqns. 

(6.3.4) and (6.3.5). A complete proof of the above can be 

found in NOBLE(1972) . 

In the above example, we have considered two variables 

x and u. The idea generalises to n variables providing that 
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they can be divided into two groups of variables for which 

the given functional H is jointly convex with respect to one 

group and jointly cOhcave with respect to the other. To 

illustrate this, consider the addition of a third real inner 

product space G with an element denoted by A and inner product 

{,}. Consider a given functional H[X,U,A] defined in ExFxG 

generating the problem given in eqns. (6.3.1) and an additional 

equation 

aH TI = 0 (6.3.6) 

If H is concave jointly in x and A, and convex in u, 

then the appropriate grouping of spaces should be ExG and F. 

It follows that the new equation (6.3.6) should be labelled 

~; and the associated extremum principles maximise K(S) given 

by eqn. (6.3.3) as it stands, and minimise the J(~) obtained by 

adding the term -{A,~~} to eqn. (6.3.2). 

The same dual extremum principles also apply in the 

case when some or all of the eqns. (6.3.1) and (6.3.6) are 

replaced by inequalities of the form suggested by eqns. (6.3.4) 

and (6.3.5). Lastly, there is no reason why some of the 

conditions labelled as (~) cannot be imposed in applying the 

K(S) principle (see eqn. (6.3.3», and vice versa, if it is 

advantageous (p.147 , SEWELL(1973». 

6.4 The Variational Inequality Model 

This section describes how the gas flow model can be 

cast into a variational inequality framework using the dual 

extremum principles described above. The two algebraic equat­

ions (6.2.1) and (6.2.2), and the inequality machine constraints 

are used in the formulation. For simplicity, only the linear 

constraints are considered; additional constraints can be 

incorporated later into the model. The sets of linear con­

straints considered in this section consist of 

a) the'maximum flow constraints 

(6.4.1) 
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where Q denotes the set of maximum f lows through 
--max 

the machines; 

b) the maximum machine outlet pressure constraints 

(6.4.2) 

where 2max gives the set of maximum machine outlet 

pressures, and 

c) the minimum machine inlet pressure constraints 

T 
K I i4nin (6.4.3) 

where n. denotes the set of minimum 
~l.n 

pressuresat the other network nodes; 

allowable 

KTI n gives 

KI being the set of machine inlet pressures with 

defined in eqn. (6.2.3). 

We can define a new variable 
A 

Q = (6.4.4) 

and consider a functional HCn,!,Q] given by 

(6.4.5) 

It can be easily verified that the functional H is 

strictly convex jointly in g and! because Zll and Z22 are 

both positive-definite, and weakly concave in g since it is 
A 

only linear in Q. From the definition of H, it follows that 

aH 
0 (8) (6.4.6) an = 

aH 
0 ( B) (6.4.7) ai = 

aH 
$; 0 (a) (6.4.8) a6 

A 

Q ~ 0 «(3) (6.4.9) 
A aH) ( Q , = 0 (6.4.10 ) 

a~ 
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where the (a), (8) labellings are given as a result of the 

saddle property of the functional H. Eqns. (6.4.6), (6.4.7) 

and (6.4.9) are simply the algebraic equations (6.2.1), 

(6.2.2) and the maximum flow constraint (6.4.1) respectively. 

Eqn. (6.4.8) is of the form 

which is equivalent to imposing both the maximum outlet 

pressure constraint (6.4.2) and the minimum inlet pressure 

constraint (6.4.3). Lastly, eqn. (6.4.10) is an orthogonality 

condition which will automatically be satisfied at the optimal 

solution; it takes the form 

¢ 
-max 

KT (Q - Q . » = 0 
I -ml.n (6.4.11) 

For sources with only an outlet node, this condition simply 

means that either the outlet pressure or the machine flow is 

equal to the maximum. For two-noded machines such as the 

compressors, however, it is a lot more complicated and 

difficult to satisfy. Numerical experience has revealed 

that it is not necessary to satisfy this condition exactly 

in order to obtain a solution, and that the condition only 

affects the efficiency of the optimization model. As Qmax 

is usually not imposed for the machines other than the sources, 

its values can be adjusted during each stage of the optimizat-
A 

ion to make 2 = O. This will improve the efficiency of the 

optimization model as the orthogonality condition will be more 

closely satisfied at all times. Further details on how this 

can be done will be given in the next section. 

From the dual extremum principles, any solution of 
eqns. (6.4.6) to (6.4.10) will minimise the quantity. 

J(a) = 
A aH 

H - (2, ~) (6.4.12) 

subject to the a-condition (6.4.8); and will maximise the 

quantity, 
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aH 
K(S) = H - < g, an > { aH} !, a¢ (6.4.13) 

subject to the 8-conditions (6.4.6), (6.4.7) and (6.4.9). 

Unfortunately, it is very difficult to implement the 

model described by eqn. (6.4.13), so in this thesis only the 

model given by eqn. (6.4.12) is used. By substituting for H 

and simplifying the resulting expression using eqns. (6.2.1) 

and (6.2.2), the model (6.4.12) becomes 

MINIMIZE 

subject to the a-conditions 

and 

¢ ~ ¢ -max 

KTI (g - nmin) ~ 0 

(6.4.14) 

(6.4.lSa) 

( 6. 4. lSb) 

Other machine constraints such as the maximum compress­

ion ratio or maximum horsepower constraints can also be imposed 

together with eqn. (6.4.15) without affecting the nature of 

the problem. 

6.5 The Implementation of the Model 

The NAG library routine, E04UAF, is used to solve the 

variational inequality model (6.4.14). The routine is based 

on a sequential augmented Lagrangian method and uses the quasi­

Newton method to solve the minimization subproblems involved. 

Details on the use of this routine is given in chapter E04 of 

the NAG library manual (NAGFLIB(1982» and the theoretical 

background can be found, for example, in GILL(l974) • 

Since the solution of the whole network can be deter­

mined uniquely from equations (6.2.1) and (6.2.2) by fixing 

only the outlet pressures of the machines, !, only this set is 

treated as the controllable variables (see the definition in 

section 6.2) in the optimization process. This simplifies the 

implementation and reduces the amount of computation at each 
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stage of the optimization. Initially, the ¢'s are set to 

their maximum outlet pressures. In addition, a set of values 

for the maximum machine flows, Q , must also be supplied =max 
for evaluating the objective function (6.4.14). As the flows 

of the machines other than the sources are usually not con­

strained, it is necessary to select carefully a suitable set 

of 0 values as this will improve the performance of the Jffiax 
optimization model. As discussed in section 6.4, this can be 

done by setting Q to the current machine flow value for max 
those machines where a realistic Qmax value is not available. 

This ensures that the orthogonality condition (6.4.11) is more 

closely satisfied which would speed up the convergence of the 

optimization process. 

An algorithm that can be used to compute a feasible 

solution is given by: 

Stage 1 - Initialization 

Set all machine outlet pressures to their maximum limits, 

i.e. set ¢ = ¢ -max 

Stage 2 - Solution of Nonlinear Equations 

compute Q and Q using eqns. (6.2.1)-(6.2.2) based on the 

set of ¢ values determined. The modified-Newton method is 

used to solve the system of nonlinear equations. 

Stage 3 - Feasibilit~ Test 

Check the feasibility of the solution obtained. If 

the solution is feasible, then stop; otherwise goto next stage. 

Stage 4 - Setting Up 

Set up and factorize the coefficient matrices Zll' Z12 

and Z22' of eqns.(6.2.l)-(6.2.2), for use in the NAG library 

routine E04UAF. Set Q to the current value of Q for those 
max 

machines where the flow is not constrained; otherwise set Q 
max 

to the corresponding maximum flow constraint. 

Stage 5 - Optimization 

Carry out the optimization using the NAG library routine, 

E04UAF, based on the model (6.4.14)-(6.4.15). Other nonlinear 
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constraints such as the compressor horsepower constraints, 

which are not used explicitly in the development of the model, 

are also included. 'The variables g and 9 are expressed in 

terms of ! via eqns. (6.2.1}-(6.2.2) using the coefficient 

matrices set up in the previous stage. At the end of the 

optimization, goto stage 2. 

As it is well known that the performance of the 
optimization codes are very sensitive to the scaling of the 

variables, some initial scaling of the problem is essential. 

We shall follow the recommendation given in NAGFLIB(l982} and 

scale the controllable variables, !, so that they are as close 

to 1 as possible, and divide the inequality constraints by 

their corresponding maximum limits to give a value of less 

than unity. However, even with this initial scaling, the 

program implemented is still very unreliable in solving networks 

with a large number of machines (for example, more than 5 

machines). Further scaling is required; this was confirmed by 

the fact that during the solution of these networks, a large 

conditional number was recorded by the NAG library routine 

which shows that the problem is very ill-conditioned. 

As very little is known about the proper scaling of the 

nonlinear constraints of the problem, it was decided to 

linearise all nonlinear constraints (as is done in PAN) into 

the general form 

(6.5.l) 

where ml , m2 , m3 and ok are linearised coefficients depending 

on the type of constraints involved. By expressing g and 9 
in terms of !, the set of linearised constraints can be written 

as 

B ¢ (6.5.2) 

where B is a linear, rectangular matrix which is referred to 

as the constraint matrix of the problem. A wide range of 

techniques available for scaling linear programming problems 

can be employed to scale the constraint matrix B. 
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6.5.1 The Scaling of the Constraint Matrix 

A survey of various methods that can be used for scaling 

linear problems is given in TOMLIN (1975) . Briefly, there are 

two classes of methods available; the first is the simple 

empirical method which is very easy to implement and has been 

found to work well in practice; the second is the 'optimal' 

method which involves solving a linear programming problem of 

at least the same dimension in order to determine the best 

scaling factors that can be used. An example of the second 

approach can be found in CURTIS (l972) . 

As the second approach is very difficult to implement 

and is also beyond the scope of this study, only the simple 

empirical methods are investigated. They are given by: 

i) Equilibration - each row of matrix B is scaled to make 

the largest element of order unity, followed by a 

similar scaling on the columns. 

ii) Geometric Mean - for each row of matrix B, we compute 

(maXlbi.l.minlbi.I)~ and divide the row by this number. 
j J j J 

This is followed by a similar column scaling. 

iii) Arithmetic Mean - each row is divided by the arithmetic 

mean of the elements in that row. Again this is 

followed by a similar treatment on the columns. 

Either of the later techniques may be followed by equilibration. 

These techniques will be considered in the next section 

for scaling the linearised constraint equations. 

6.6 Testing and Results 

The algorithm outlined in the previous section is used 

to solve the variational inequality model (6.4.14) with linear­

ised constraints. Four scaling methods described in the 

previous section are considered; they are: 

i) the Geometric Mean (GM); 

ii) the Arithmetic Mean (AM); 

iii) the Geometric Mean followed by equilibration (GM & E) and 

iv) the Arithmetic Mean followed by equilibration (AM & E). 
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The method of Equilibration alone is not considered as it 

has not been found to perform well in practice; a similar 

conclusion was also, found in TOMLIN(1975). 

As a preliminary investigation, the model with and 

without scaling is applied to the simple conflicting con­

straints network as described in section 6.1 (see fig. (6.1.1». 

In all cases, the model was able to return a feasible solution 

which confirms that the model formulated is reliable. 

To further test the efficiancy and reliability of the 

variational inequality model, two larger conflicting constraints 

networks of greater complexity are considered. The first 

network, given in fig. (A.8), consists of 12 pipes, 2 compressors, 

2 sources and a valve. The second network is part of the 

British Gas National Transmission Network as shown in fig. (A.9); 

it consists of 29 pipes, 4 compressors and 4 sources. Both 

networks contain a large number of nonlinear inequality con­

straints. Only the steady state analysis is carried out for 

these networks. 

The results of the investigation are summarised in 

table (6.6.1) for the model using different scaling methods. 

The table gives the amount of CPU-time and the number of 

evaluations of the objective function (6.4.14) required to 

compute a feasible solution (the first feasible solution 

encountered) for the networks considered. To illustrate the 

effectiveness of the scaling methods employed, the result 

obtained from the model without any overall scaling (except 

those recommended by NAGFLIB(1982» is also included. 

~ Netw::>rk A8 Network A9 
Scaling NFNO cpur NENO cpur 

Unsealed 1735 3.81 <fail> 

G1 907 1.62 1602 4.54 
AM 1570 3.70 689 2.35 

GM & E 1294 2.43 411 1.56 
AM & E 1148 2.23 452 1. 72 

where CPUT - the amount of CPU-time used in seconds on the 
Amdahl-V7 comouter and 

NFNO - the number of-evaluations of the objective function. 

Table (6.6.1) - The Performance Profile of the Variational 
Inequality Model 
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From table (6.6.1), it can be seen that the scaling 

of the constraint matrix, using one of the empirical methods 

described above, generally improves the efficiency and 

reliability of the model implemented. Furthermore, the 

variational inequality model with scaled linearised constraints 

is reliable in solving the gas transmission network with the 

conflicting constraints problem. 

6.7 Further Enhancements 

As the aim of this chapter is simply to investigate 

the reliability of the model in resolving the conflicting 

constraints problem, no attempt has been made to devise an 

efficient implementation of the model. Further work is there­

fore needed in the following areas: 

a) to develop an efficient algorithm for carrying out the 

optimization; 

b) to investigate the effects of the 'optimal' scaling 

methods on the overall performance of the model with 

linearised constraints and 

c) to treat the nonlinear constraints in their usual form 

instead of linearising them, and explore the suitable 

methods that can be used for scaling the nonlinear 

problems. An example of such method is described in 

LAS DON (l98l) . 

Further tests on the model are also needed using the large 

scale transmission network. 
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CHAPTER 7 

7. Conclusions 

The project qescribed in this thesis was concerned 

with the development and evaluation of computational techniques 

to the simulation of large scale British Gas transmission net­

work problems. One of the difficulties in solving the problem 

of this kind is to devise a suitable set of test problems 

which can be used to model the behaviour of the actual problem 

involved; and in this respect, I am grateful to British Gas, 

and J.R. Mallinson in particular, for supplying the test net­

works. 

The general simulation of a gas transmission network 

involves the solution of a large system of stiff differential/ 

algebraic equations (DAE) containing frequent severe distur­

bances. The research topics considered in this thesis can be 

divided into three main areas - the solution of the DAE system, 
the solution of linear equations, and the formulation and 

solution of a variational inequality model. Because of the 

diverse nature of this thesis, the different areas are discussed 

separately below. 

A. The Solution of DAE System using a Variable-step 

Integrator 

The solution of a DAE system using a variable-step 

integrator is still a relatively new area of research in which 

very little theoretical results is available. The most recent 

and comprehensive work in this area was by PETZOLD(19BI) . 

From the analysis given in PETZOLD and the extensive numerical 

experimentation carried out during the project, it was found 

to be necessary to extensively modify the strategies and local 

error estimate employed in the usual variable-step ODE codes. 

In particular, the new error estimate of the form (4.3.2) was 

employed and new sets of strategies (see section 4.4.2» were 

developed to implement the numerical methods. Furthermore, 

because the system contains frequent severe disturbances, a 

restart strategy as described in section 4.4.2 was also developed; 

the strategy is independent of the numerical methods that is 
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used in the integration and relies only on the assumption 

that the OAE system arises from the discretization of a system 

of parabolic POE's. The integrators developed based on the 

above strategies, using the numerical methods outlined in 

appendix 0, were found to be both robust and efficient in 

solving the gas transmission network problem. 

As the techniques employed for handling the OAE system 

is mainly empirical, further research is still needed to 

develop a theoretical framework to support these techniques. 

Further enhancements as suggested in section 4.5 for solving 

the OAE system can also be attempted. 

B. The Solution of Linear Equations 

The dynamic simulation of gas transmission network 

requires the solution of large systems of linear equations at 

each time step. The system is very sparse and a large part of 

it is symmetric and positive-definite. In order to take 

advantage of its underlying structure, three block matrix 

partitioning schemes based on the idea given in GEORGE(l974) 

were developed. The details of these schemes together with 

the comparison results are given in chapter 3. The results 

indicated that the best solution scheme described in chapter 

3 is very effective, as it reduces considerably both the storage 

requirement and the number of arithmetic operations required. 

c. The Variational Inequality Model 

A variational inequality model was developed in chapter 

6 for resolving the conflicting constraints problem. The model 

was formulated using a rigorous mathematical theory based on 

the dual extremum principles outlined in NOBLE(l972). As an 

initial investigation, the model with scaled linearised con­

straints was implemented using a NAG library routine, E04UAF. 

The program implementing the model had been found to be reliable 

on three test networks considered. Further work on the model 

in the directions as suggested in section 6.7 can be carried out. 
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The above research was carried out in collaboration 

with a research team in British Gas Corporation. British 

Gas now have plans to incorporate the variable-step control 

into the new version of their network analysis program; the 

strategies described in chapter 4 will be used in the implemen­

tation. 



REFERENCES 

ALEXANDER 1977 
Alexander, R. - "Diagonally Implicit Runge-Kutta Methods 
for Stiff ODE's", SIAM J. Numer. Anal., 14, 1006-1021. 

AZAR 1975 
Azar, A.R., Nichols, K.G. - "Sparse Matrix Algorithm for 
Transient Analysis of Nonlinear Electrical Netowrks", 
Proc. IEEE, 122 (8), 791-794. 

BARRY 1978 
Barry, D.E., Pottle, C., Wirgau, K.A. - "Technology Assess­
ment Study of near term Computer Capabilities and their 
Impact on Power Flow and Stability Simulation Programs", 
EPRI EL-946. ' 

BERESFORD 1980 
Beresford, P.J. - "Sparse Matrix Techniques in Engineering 
Practice", in DUFF (1980a) , 175-190. 

BERZINS 1981 
Berzins, M. - "Chebyshev polynomial Methods for Parabolic 
Equations", Ph.D. Thesis, University of Leeds, England. 

BICKART 1977 
Bickart, T.A. - "An Efficient Solution Process for Implicit 
Runge-Kutta Methods", SIAM J. Numer. Anal., 14, 1022-1027. 

BROWN 1973 

117 

Brown, R.L., Gear, C.W. - "DOCUMENTATION FOR DFASUB--A Program 
for the Solution of Simultaneous Implicit Differential and 
Nonlinear Equations", UIUCDCS-R-73-575, Uni. of Illinois at 
Urbana-Champaign. 

BUI 1979 
Bui, T.D. - "Some A-stable and L-stable Methods for the 
Numerical Integration of Stiff ODE's", J. ACM, 26, 483-493. 

BUS 1975 
Bus, J.C.P., Dekker, T.J. - "Two Efficient Algorithms with 
Guaranteed Convergence for Finding a Zero of a Function", 
ACM TOl-1S, 1 (4), 3 30- 3 4 5 . 

BUTCHER 1964 
Butcher, J.C. - "ImpliCit Runge-Kutta Processes", Maths. Comp., 
18, 50-64. 

BUTCHER 1975 
Butcher, J.C. - "A Stability Property of Implicit Runge-Kutta 
Methods", BIT, 15, 358-361. 



BUTCHER 1976 
Butcher, J.C. - "On the Implementation of Implicit Runge­

Kutta Methods~, BIT, 16, 237-240. 

BUTCHER 1979 

118 

Butcher, J.C., Burrage, K., Chipman, F., - "An Implementation 
of Singly-Implicit Runge-Kutta Methods", Research Report 149, 
Uni. of Auckland. 

BUTCHER 1981 
Butcher, J.C. - "Stability Properties for a General Class of 
Methods for ODE's", SIAM J. Numer. Anal., 18 (1), 37-44. 

CALAHAN 1968 
Calahan, D.A. - "A Stable, Accurate Method of Numerical 
Integration for Nonlinear Circuits", Proc. IEEE, 56, 744. 

CARVER 1977 
Carver, M.B. - "Efficient Integration over Discontinuities 
in ODE's", in 'Numerical Methods for Differential Equations 
and Simulations', by Bennett, A.W., Vichnevetsky, R. (ed.), 
North-Holland Publishing Co., Amsterdam. 

CARVER 1978 
Carver, M.B., MacEwen, S.R. - "Numerical Analysis of a System 
described by Implicitly-defined ODE's containing numerious 
Discontinuities", Appl. Math. Modelling, 2, 280-286. 

CASH 1976 
Cash, J.R. - "Semi-implicit Runge-Kutta Procedures with Error 
Estimates for the Numerical Integration of Stiff Systems of 
ODE's", J. ACM, 25, 455-460. 

CASH 1979 
Cash, J.R. - "Diagonally Implicit Runge-Kutta Formulae with 
Error Estimates", J. lMA, 24, 293-301. 

CASH 1982 
Cash, J.R. - "A Survey of Runge-Kutta Methods for the Numerical 
Integration of Stiff Differential Systems", Paper presented at 
the International Conference on Stiff Computation' held at Park 
City, Utah. 

CHUA 1982 
Chua, T.S. - "Collection of Programs and Numerical Results", 
in the Departmental Library, Dept. of Computer Studies, Uni. 
of Leeds. 

CROUZEIX 1975 
Crouzeix, M. - "Sur l'aporoximation des equations different­
ielles operationnalles i!neaires par des methodes de Runge­
Kutta", These presentee a l'Universite Paris VI, Paris. 

COVINGTON 1979 
Covington, N.T. - "Transient Models Permits Quick Leak 
Identification", Pipeline Ind., 51 (2), 71-73. 



CURTIS 1972 
Curtis, A.R., Reid, J.K. - "On the Automatic Scaling of 
Matrices for Gaussian Elimination", JlMA, 10, 118-124. 

DAHLQUIST 1963 
Dahlquist, G. - "A Special Stability Problem for Linear 
Multistep Methods", BIT, 3, 27-43. 

DAHLQUIST 1975 
Dahlquist, G. - "Error Analysis for a Class of Methods for 
Stiff Nonlinear Initial Value Problems", Proceedings of the 
Dundee Conf. on Numerical Analysis, Springer-Verlag, Berlin 
506, 60-74. 

DAHLQUIST 1982 

119 

Dahlquist, G. - "Some Comments on Stability and Error Analysis 
for Stiff Nonlinear Problems", Paper presented at the 'Inter­
national Conf~rence on Stiff Computation' held at Park City, 
Utah. 

DEW 1978 
Dew, P.M., West, M.R. - "A Package for Integrating Stiff 
Systems of ODE's based on Gear's Method", Uni. of Leeds, 
Dept. of Computer Studies, Report Ill. 

DEW 1981 
Dew, P.M., Walsh, J.E. - "A set of Library Routines for Solving 
Parabolic Equations in One Space Variable", ACM TOMS, 7, 295-
314. 

DISTEFANO 1970 
Distefano, G.P. - "PIPETRAN, version IV, A Digital Computer 
Program for the Simulation of Gas Pipeline Network Dynamics", 
Cat. no. L20000, American Gas Association Inc., New York. 

DUFF 1976 
Duff, I.S., Erisman, A.M., Reid, J.K. - "On George's Nested 
Dissection Method", SIAM J. Numer. Anal., 13, 686-695. 

DUFF 1980a 
Duff, I.S. - (ed.) "Sparse Matrices and Their Uses", Academic 
Press, London. 

DUFF 1980b 
Duff, I.S. - "A Sparse Future", in DUFF (1980a) , 1-30. 

EHLE 1969 
Ehle, B.L. - "On Pade Approximations to the Exponential Function 
and A-stable Methods for the Numerical Solution of Initial 
Value Problems", Uni. of Waterloo, Dept. of Applied Analysis 
and Computer Science, Report CSRR 2010. 

ELLISON 1981 
Ellison, O. - "Efficient Automatic Integration of ODE's with 
Discontinuities", Math. Compo Simul., 23 (12) 



ENRIGHT 1975 
Enright, W.H., Hull, T.E., Linberg, B. - "Comparing Numerical 
Methods for stiff ODE's", EIT, 15, 10-48. 

ERISMAN 1980 
Erisman, A.M. - "Sparse Matrix Problems in Electric Power 
System Analysis", in DUFF(1980a), 31-56. 

FINCHAM 1979 
Fincham, A.E. and Goldwater, M.H. - "Simulation Models for 
Gas Transmission Networks", Trans. Inst. Measurement and 
Control, 1, 3-12. 

FINCHAM 1980 

120 

Fincham, A.E. and Goldwater, M.H. - "Modelling of Gas Supply 
Systems", in 'Modelling of Dynamic Systems', Ed. by Nicholson, 
Peter Peregrinus Ltd., London. 

FINCHAM 1982 
Fincham, A.E. - "Private Communication", London Research Station, 
British Gas. 

GASEMN 1981 
"Gas Engineering and Management", 2l,Nov/Dec 1981, 448-450. 

GEAR 1969 
Gear, C.W. - "The Automatic Integration of Stiff ODE's", in 
'Information Processing', 68, ed. by Mornel, A.J.H., North­
Hotland Publishing Co., Amsterdam, 187-193. 

GEAR 1971a 
Gear, C.W. - "DIFSUB for the Solution of ODE's - Alg 407", 
Com. ACM, 14 (3), 185-190. 

GEAR 1971b 
Gear, C.W. - "Numerical Initial Value Problems in ODE's". 
Prentice-Hall, New Jersey. 

GEAR 1971c 
Gear, C.W. - "Simultaneous Numerical Solution of Differential­
Algebraic Equations", IEEE Trans. on Circuit Theory, CT-18 
(1), 89-95. 

GEAR 1980 
Gear, C.W. - "Runge-Kutta Starter for Multistep Methods", 
ACM TOMS, 6 (3), 585-603. 

GEAR 1981 
Gear, C.W., Hsu, H.H., Petzold, L. - "Differential/Algebraic 
Equations Revisited", Proc. Workshop Numerical Method for 
Solving Stiff Initial Value Problems, Germany. 

GEORGE 1973 
George, A. - "Nested Dissection of a Regular Finite Element 
Mesh", SIAM J. Numer. Anal., 10, 345-363. 

GEORGE 1974 
George, A. "On Block Elimination for Sparse Linear Systems", 
SIAM J. Numer. Anal., 11, 585-603. 



121 

GEORGE 1980 
George, A. - "Direct Solution of Sparse Positive Definite 
Systems: some Basic Ideas and Open Problems", in DUFF (1980a) f 

283-306. 

GEORGE 1981 
George, A. and Liu, J.W. - "Computer Solution of Large Sparse 
Positive Definite System", Prentice-Hall, New Jersey. 

GIBBS 1976 
Gibbs, N.E., Poole, W.G., Stockmeyer, P.K. - "An Algorithm 
for reducing Bandwidth and profile of a Sparse Matrix", 
SIAM J. Numer. Anal., 13, 236-250. 

GILL 1974 
Gill, P.E., Murray, W. - (ed.) "Numerical Methods for Con­
strained Minimization", Academic Press. 

GOACHER 1970 
Goacher, P.S. - "Steady and Transient Analysis of Gas Flows 
in Networks", J. Inst. Gas Eng., 10, 242-264. 

GOLDWATER 1976 
Goldwater, M.H., Rogers, K. and Turnbull, O.K. - "The PAN 
Network Analysis Program - Its Development and Use", Inst. 
Gas Eng., Communication 1009. 

GOODWIN 1982 
Goodwin, N. - "Private Communication", London Research Station, 
British Gas. 

GOURLAY 1970 
Gourlay, A.R. - "Hopscotch: a Fast Second-order Partial Differen­
tial Equation Solver", JlMA, 6, 357-390. 

HALIN 1976 
Halin, H.J. - "Integration of ODE's containing Discontinuities", 
Proc. of 'Computer Simulation conf.', Washington D.C. 

HAY 1974 
Hay, J.L., Crosbie, R.E., Chaplin, R.I. - "Integration Routine 
for Systems with Discontinuities", Compo J., 17, 275. 

HEATH 1969 
Heath, M.J. and Blunt, J.C. - "Dynamics Simulation Applied to 
the Design and Control of a Pipeline Network", J. Inst. Gas 
Eng., 9, 261-279. 

HINDMARSH 1973 
Hindrnarsh, A.C. - "GEARB: Numerical Solution of ODE's having 
Banded Jacobian", Report UCID-30059, Lawrence Livermore Lab., 
Livermore, California. 

HOPKINS 1976 
Hopkins, T.R., Wait, R. - "A Comparison of Numerical Methods 
for the Solution of Quasilinear Partial Differential Equations", 
Compo Methods in App. Mech. and Eng., 9, 181-190. 



JENNINGS 1966 
Jennings, A. - "A Compact Storage Scheme for the Solution 
of Symmetric Linear. Simul tanEDus Equations", Comp. J., 9, 
281-285. 

JACOBS 1980 
Jacobs, D.A.H. - "The Exploitation of Sparsity by Iterative 
Methods", in DUFF(1980a), 191-222. 

LAMBERT 1973 
Lambert, J.D. - "Computational Methods in ODE'S", Wiley, 
London. 

LASDON 1981 
Lasdon, L.S., Beck, P.O. - "Scaling Nonlinear Programs", 
O.R. Letters, l(l}, 6-9. 

LEWIS 1980 
Lewis, J.G., Poole, W.G. - "Ordering Algorithms applied to 
Sparse Matrices in Electric Power Problems", in 'Electric 
Power Problems: The Mathematical Challenge', ed. by Erisman, 
A.M., Neves, K.W., Dwarakamath, M.H., SIAM press. 

LIPTON 1979 
Lipton, R.J., Rose, D.J., Tarjan, R.E. - "Generalised Nested 
Dissection", SIAM J. Numer. Anal., 16, 346-358. 

LISTER 1960 

122 

Lister, M. - "The Numerical Solution of Hyperbolic Partial 
Differential Equations by the Method of Characteristics", 
in'Mathematica1 Methods for Digital Computers', Ed. by Wilf, A. 
and Ralston, H.S., Wiley, New York. 

NAGFLIB 1982 
"NAG FORTRAN Library Manual", Mark 9, Vol. 3, Chapter E04. 

NOBLE 1972 
Noble, B., Sewel, M.J. - "On Dual Extremum principles in 
Applied Mathematics", J. Inst. Maths Applies., 9, 123-193. 

N0RSETT 1974 
N.tSrsett, S.P. - "Semi-explicit Runge-Kutta Methods", Maths. 
and Compo Report 6/74, Uni. of Trondheim. 

N.eJRSETT 1977 
N.0rsett, S.P., Wolfbrandt, A. - "Attainable Order of Rational 
Approximations to the Exponential Function with only Real 
Poles", BIT, 17, 200-208. 

PAINE 1982 
Paine, J. - "Private Communication", School of Maths., Uni. 
of Bristol, England. 

PARTER 1961 
Parter, S.V. - "The Use of Linear Graphs in Gaussian Eliminat­
ion", SIAM Rev., 3, 119-130. 



123 

PETZOLD 1981 
Petzold, L. - "Differential/algebraic Equations are not ODE's", 
Sandia National Lab. - Livermore, Report San8l-8668. 

PRATT 1982 
Pratt, K.F., Wilson, J.G. - "Optimization of the Operation of 
Gas Transmission Systems", to appear in the Trans. Inst. of 
Measurement and Control. 

PROTHERO 1974 
Prothero, A., Robinson, A. - "On the Stability and Accuracy of 
One-step Methods for Solving Stiff Systems of ODE's", Math. 
Comp., 28 (125), 145-162. 

PROTHERO 1977 
Prothero, A., Robinson, A. - "Global Error Estimates for 
Solution of Stiff Systems of ODE's", Paper presented at the 
Numerical Analysis Conf. at Dundee Uni. 

RACHFORD 1974 
Rachford, H.H. Jr and Dupont, T. - "A Fast Highly Accurate 
Means of Modelling Transient Flow in Gas Pipeline Systems by 
Variational methods". Soc. Pet. Eng. J., 14, 165-178. 

ROSE 1972 
Rose, D.J. - "A Graph-theoretic Study of the Numerical Solution 
of Sparse Positive Definite Systems of Linear Equations", in 
'Graph Theory and Computing', Ed. by Read, R.C., Academic Press, 
New York. 

ROSENBROCK 1963 
Rosenbrock, H.H. - "Some General Implicit Processes for the 
Numerical Solution of Differential Equations", Compo J., 5, 
329-330. 

SACK-DAVIS 1977 
Sack-Davis, R. - "Error Estimates for Stiff Differential Equation 
Procedure", Math. Comp., 31 (140), 939-953. 

SATO 1963 
Sato, N., Tinney, W.F. - "Techniques for Exploiting the Sparsity 
of the Network Admittance Matrix", IEEE Trans., PAS-82, 944-949. 

SCHEEL 1972 
Scheel, L.F. - "Gas Machinery", Gulf Publishing Co., Houston, 
Texas. 

SCHMIDT 1977 
Schmidt, G. and Weimann, A. - "Instationare Gasnetzberechnung 
mit dem Programming GANESI", GWF-Gas/Erdgas, 118, 53-57. 

SCRATON 1981 
Scraton, R.E. - "Some L-stable Methods for Stiff Differential 
Equations", Intern. J. computer Maths., Section B, 9, 81-87. 



124 

SENS 1970 
Sens, M., Jouve, Ph. and Pelletier, R. - "Detection d'une 
Rupture Accidentell~ de Conduite", Paper IGU/C 37-70 presented 
at the 11th International Gas Conference, Moscow. (English 
Translation: British Gas Internal Report LRS T448) . 

SEWELL 1973 
Sewell, M.J. - "The Governing Equations and Extremum Principles 
of Elasticity and Plasticity Generated from a Single Functional­
Part I and II", J. Struct. Mech., Part 1,2(1),1-32. Part II, 
2(2), 135-158. 

SHERMAN 1975 
Shennan, A.H. - "On the Efficient Solution of Sparse Systems 
of Linear and Nonlinear Equations", Report 46, Dept. of 
Computer Science, Yale Uni. 

SINCOVEC 197~ 
Sincovec, R.F., Dembart, B., Epton, M.A., Erisman, A.M., Manke, 
S.W., Yip, E.L. - "Solvability of Large Scale Descriptor 
Systems", Boeing Computer Service Company. 

STEIHAUG 1979 
Steihaug, T., Wolfbrandt, A. - "An Attempt to avoid Exact 
Jacobian and Nonlinear Equations in the Solution of Stiff 
Differential Equations", Maths. Comp., 33, 521-534. 

STONER 1968 
Stoner, M.A. - "Analysis and Control of Unsteady Flows in 
Natural Gas Piping Systems", Ph.D. Dissertation, The Uni. of 
Michigan, Am Arbor. 

STONER 1969 
Stoner, M.A. - "Steady State Analysis of Gas Production, 
Transmission and Distribution Systems", Paper SPE 2554 
presented at SPE-AIME 44th Annual Fall Meeting, Denver, 
Colorado. 

STREETER 1970 
Streeter, V.L. and Wylie, E.B. - "Natural Gas Pipeline Trans­
ients", Soc. Pet. Eng. J., 10, 357-364. 

TAYLOR 1978 
Taylor, B.A. - "The Flow in Pipelines Following Catastrophic 
Failure", British Gas Internal Report, LRS 338. 

TINNEY 1967 
Tinney, W.F., Walker, J.W. - "Direct Solution of Sparse Net­
work Equations by Optimally Ordered Triangular Factorization", 
Proc. IEEE, 55, 1801-1809. 

TOMLIN 1975 
Tomlin, J.A. - "On Scaling Linear Programming Problems", 
Mathematical Programming Study, 4, 146-166. 

VARAH 1979 
Varah, J.M. - "On the Efficient Implementation of Implicit 
Runge-Kutta Methods", Maths Comp, 33, 557-561. 



WARD-SMITH 1971 
Ward-Smith, A.J. - "Pressure Losses in Ducted Flows", 
Butterworths, London. 

WEIMANN 1978 

125 

Weimann, A. - "Modellierung and Simulation der Dynamik von 
Gasverteilnetzen im Hinblick auf Gasnetzfuhrung and 
Gasnetzuberwachung", Dr. Ing. Thesis, Munich Technical 
University. (English Translation: British Gas internal report 
LRS T435). 

WILKINSON 1965, 
Wilkinson, J.H. - "The Algebraic Eigenvalue Problem", Clarendon 
Press, Oxford. 

WYLIE 1967 
Wylie, E.B., Streeter, V.L. - "Hydraulic Transients", McGraw­
Hill, New York, Chapter 15. 

WYLIE 1971 
Wylie, E.B., Streeter, V.L. and Stoner, M.A. - "Network System 
Transient Calculations by Implicit Method", Soc. Pet. Eng. 
J., 11, 356-362. 

WYLIE 1974 
Wylie, E.B., Streeter, V.L. and Stoner, M.A. - "Unsteady-state 
Natural Gas Calculations in Complex Pipe Systems", Soc. Pet. 
Eng. J., 14, 35-43. 

YOW 1972 
Yow, W. - "Numerical Error in Natural Gas Transient Calculat­
ions", Trans. ASME, Series 0, J. Basic Eng., 94, 422-428. 



APPENDIX A 

THE TEST NETWORKS 

Symbols used in the network 

10/36 ... , Pipe length (rnilcl/diameter (inch) 

~ Source 

~ Compressor 

~ Regulator 

- .~. Valve 

OP = maximum outlet pressure (psi - pound per square inch) 

FW = maximum flow (mscfh - thousands of standard cubic feet 

per hour) 
HP = maximum horsepower (hp - horsepower) 

CR = maximum compression ratio 

IP = minimum inlet pressure (psi) 

d = demand (mscfh) 

PROF = demand profile 

126 

Note - 1) the demand profiles for the networks are shown in their 

respective diagrams containing the results and 

2) the units for the variables are as quoted above unless 

otherwise stated 

Network Al 

[>. 10/36 10/36 10/36 10/36 , • 
~ OP=l,OOO 

d=lOO ,000 x PROF 1 

Fig. (h.l ) 
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Network A2 

[:>~.~~2=0/~3~6~ ___ 2~0~/_36 __ ~.~~~, __ 20_/_3_6 __ ~ ___ 20~/_36 __ ~~ 

OP = 1,(XX) OP = 1,CXX) d = 60,CXX) 

The compressor is shut off after the first hour for the 4-

hour period of simulation. 

!i..etwork A3 

[>. 
OP = 60 
FW = 400 

where the unit 

and the unit 

per hour 

!'ietwork A4 

18.9/36 

0P=900 
FW=200, (XX) 

" 

of 

of 

Fig. A.2 

10 km/600 rom 
u \ "J '" 

~ I 
'I 

pressure (in OP) is in bar 

" \, 

~ 
d = 400 x PROF 3 

flow (in FW and d) is in thousands of cubic metre 

0P=980 

OP=980 
HP=10,QCX) 
CR=1.4 

Fig. A.3 

0P=980 
HP=10,(XX) 
CR=l. 4 

9.5/36 

9.5/36 

9.5/36 

Fig. A.4 

9.5/24 

d=15,(XX) 

d= 17 ,500 x ProF 4 

18.9/30 

d=22 ,500 * POOF 4 

d=25,exo 



OP = 990 

OP = 820 
HP =16,000 
CR =1.4 

FW=5425 

Network A5 

FW =10850 

Fig. (A.51 

OP =990 
HP = 14,000 
CR =1.4 

OP =350 
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OP = 975 

OP =975 
HP = 28,000 
CR = 1.4 

OP =990 
HP =14,000 
CR =1.4 

FW =5425 
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APPENDIX B 

The Mathematical Background to the PAN program 

The purpose of this appendix is to give the mathe­

matical background to the British Gas network analysis 

program PAN and in particular, show how the system of 

differential/algebraic equations (DAE's) considered in 

the main body of the thesis can be derived. An example 

network is provided to illustrate the structure of the DAE 

system. 

B.l The Basic Gas Flow Model 

The gas flow in a single pipe can be modelled by two 

partial differential equations (PDE's) which describe the 

conservation of mass and momentum. The derivation of these 

equations has been discussed by many authors (for example, 

FINCHAM (1979» and need not be repeated here. The equations 

are: 

i) the conservation of mass 

Ale. + M!.9. = 0 at ax (B.l.l) 

and ii) the conservation of momentum 

(B.1.2) 

where the independent variables are the distance, x, and 

time, t. The dependent variables are the pressure, Pi the 

density, Pi the mass flow rate, q and the shear stress on 

the pipewall, T. The constants include the pipe diameter, 

di the pipe cross-sectional area, Ai the molecular weight 

of gas, M; the acceleration due to gravity, g and the slope 

of the pipe inclined upward in the direction of flow at an 
angle, e. 

These equations are derived under the assumptions that 

the pipe is straight with constant, circular cross-section 
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and that the pipe friction can be modelled using the friction 

equations derived under steady flow condition. A one­

dimensional flow model is used which has been shown in 

WARD-SMITH (1971) to give an adequate representation of the 

dynamic gas flow in the network. Furthermore it is also 

assumed that the gas flow temperature is constant which means 

that the flow process is isothermal; this is true for long 

pipelines with slow dynamic changes where the temperature 

equalization with the ground outside takes place (WEIMANN 

(1978» . 

A third equation is needed before eqns. (B.l.l)-(B.l.2) 

can be solved. This is the equation of state for an iso­

thermal system: 

2 
a = zRT 

[l _ P dz] 
z dP 

= (B.l.3) 

where a denotes the isothermal speed of sound, T denotes the 

gas temperature and R is the real gas constant; Z denotes 

a variable compressibility so the gas is treated as non-ideal. 

In fully developed steady flow, the shear stress in 

eqn. (B.l.2) can be represented by the Fanning friction factor 
f, 

f = hI 
2 

~pv 
(B.l.4) 

where f is a dimensionless quantity and in general is a 

function of the Reynolds number of the flow and the relative 
roughness of the pipewall. 

In the isothermal flow model described above, the 

unknown variables to be solved are usually the pressure, P 

and the mass flow rate, q or a variant of these variables. 

Other formulations based on the isentropic or adiabatic flow 
model have also been attempted (STONER(l968), SENS(l970), 

TAYLOR(l978) and COVINGTON(l979». In these formulations, 

a further set of unknown variables such as the temperature 

is usually required to be solved. These formulations require 



considerably more computational effort than the isothermal 

one and are normally employed to carry out specific 

simulation tasks such as the modelling of pipebreaks. 

From a perturbation analysis carried out in WEIMANN(l978) 

using the isothermal and isentropic models, it was shown 

that the former one only exhibits slight error compared 

134 

with the later for very short pipes under extreme distur­

bances. Furthermore for normal simulation, the isothermal 

model has been found by many authors to predict the overall 

behaviour of the gas flow accurately. The isothermal assumpt­

ion is therefore a reasonable one under most operating 

conditions. 

Even with the assumption that the flow is isothermal, 

we must still solve a pair of hyperbolic PDE's which are 

difficult to solve on a computer. Simplications to the 

model are normally made; the usual simplific~tions are 

ei ther to neglect both inertia terms, :: -!x< t) and ~~f 
in eqn. (B.l.2), or to neglect the first but include the 

second. As both inertia terms are very small (less than 1%) 

compared with the friction term during normal operation of 

the transmission network, it is reasonable to neglect them. 

However, when there is a large disturbance in the network 

such as a valve opening, a compressor shut down or a pipe­

break, then the inertia terms can be significant in the 

neighbourhood of the disturbance. The disturbance, however, 

will be localised and will die away very rapidly. If the 

main interest is to investigate the overall behaviour of 

the network, it is still an acceptable approximation to 

neglect them. Only when one is interested in the local 

effect of a large disturbance should the inertia terms be 

included. 

Neglecting both of the inertia terms means that the 

model is parabolic in nature which can be solved more readily 

on a computer. 



B.2 The Derivation of the Network Equations 

This section considers the derivation of network 

equations without any machines in the network. As PAN is 

designed mainly for simulating slow dynamics, the two 
M a M2 a q2 

inertia terms, A~ and -2---(--)' in the momentum equation 
A at p 

are neglected as unimportant. The model is now isothermal 

and parabolic in nature. By substituting the equation of 

state (B.1.3) and the Fanning friction equation (B.l.4) 

into eqns. (B. 1 • 1 ) and (B.1.2), we have 
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~~ + Mlsi. = 0 2 at ax (B.2.l) 
a 

and 

~P M2 2fslsl 
ax + -;:;: pd 

where q = pAVjM; the term pg sin e 
momentum equation for the sake of 

of this term is straight-forward 

results from its omission. 

= 0 (B.2.2) 

is also omitted from the 

simplicity. The treatment 

and no loss of generality 

Eqn. (B. 2.2) can be written as 

1 ap 
q = A ClX (B.2.3) 

where 

A A(P,q) 
M2 2flc.!1 = = 
A2 pd (B. 2.4) 

and is known as the resistivity of the pipe. Substituting 

eqn. (B.2.3) into eqn. (B.2.l), the non-linear parabolic 
equation in P can be obtained, 

A ap a {l ap} 
Ma2 at = ax A ax (B.2.5) 

The network can be regarded as consisting of individual 

pipes jOining at nodes. It is convenient to take the origin 
of the pipes to be at the node being considered. Let the 
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length, cross-sectional area and resistivity of the ith 

pipe be 1., A. and A. respectively, and denote the pressure 
~ ~ , ~ 

along the pipe by P. (x.) (see Fig. (B.2.1». By assuming 
~ ~ 

that the resistivity of the pipe, A.,varies sufficiently 
~ 

slowly along the pipe so that it can be approximated by a 

constant throughout the pipe, eqn. (B.2.5) can be written as 

NcxleJ 

P
J 

A.A. OP. (x.) 
~ ~ ~ ~ 

~ at 
= 

2 o P. (x.) 
~ ~ 

Fig. (B.2.1) The ith pipe with nodes J, I 

(B.2.6) 

It is assumed in PAN that the gas pressure at the 

node is the same for all pipes intersecting at that node, 

that is 

for all i E SJ (B.2.7) 

where SJ is the set of pipes joining at node J and P
j 

is 

the common pressure at that point. 

Furthermore, at each node there is also a continuity 

equation to be satisfied 

q. (0) 
~ 

= -d 
J (B.2.8) 

where dJ is the offtake at node J; and the flows are taken 

to be positive away from the node. 

We can now derive the network equation for the ith pipe 

joining at node J. By considering the Taylor series 



expansion of P. (1.) about the point x.=O; and simplifying 
111 

the expression using eqns. (B.2.3) and (B.2.6) and re-

arranging, we get 
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P. (t.) - P. (0) 
111 

t.>". 

A. t. 2 dP. (0) 1 dP. (t. ) 3 
( ) 1 1 [ 1 + -3 d~ 1 1 + 0 (Oi ) = - qi 0 + 2Ma 2 '3 dt :J $" (B.2.9) 

1 1 

Summing eqn. (B.2.9) over all pipes joining at node J 

and applying the continuity equation gives 

(B.2.10) 

where PI is the pressure at the other end of the ith pipe 

joining at node J; VJI and CJI are the volume and conduct­
ivity of the pipe connecting nodes J, I and are defined as 

and 1 CJ I = -:----­A.t. 
1 1 

(B.2.11) 

A system of ordinary differential equations (ODE) can 

be obtained by combining eqn. (B.2.l0) over all the nodes 
in the network 

* dP * 
E dt = A (P) P ~ (t) (B.2.l2) 

* where the elements of matrix E are defined as 

* 2 V 

E JJ = '3 E (2.L) 
IESJ 2Ma2 

* 
= {.! (~~) if I , SJ 

E JI 
if I € SJ 

3 a.a 

and the elements of matrix A* are defined as 
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* L: CJ1 AJJ = IES
J 

{:JI 
if I I SJ 

AJI * = 
if I E SJ 

* The elements of matrix A are functions of P because the 

conductivities of the pipes, CJ1's, depend on the pipe flows 

g,(see the definition of CJI's in eqns.(B.2.4) and (B.2.ll» I 

which in turn are expressible in terms of R via eqn. (B.2.2). 

Both matrices A* and E* are symmetric and diagonally dominant. 

In PAN, the Crank-Nicolson method is used to solve the 

linearised differential equations (B.2.l0) i further details of 

this will be given in section B.6, after the derivation of the 

DAE system. 

B.3 The Machine Models 

Machines are active components in the network which are 

capable of some form of control. They can be used to increase 

or reduce the flow or pressure of gas in the network. Four 

types of machines are used in PAN. They are compressors, 

regulators, sources and valves. Machines are assumed to lie 

between two nodes referred to as the inlet and the outlet nodes. 

A source simply has an outlet node. 

The internal working of these machines are very complex. 

Fortunately, because we are only interested in modelling the 

effects of the machines on the rest of the network, we do not 

need to simulate their behaviour in detail. An adequate 

representation of the machine can usually be achieved by using 

less than 7 inequalities involving not more than 3 variables. 

The variables required are the machine inlet pressure PI' the 

machine outlet pressure Po and the flow through the machine Q 

(see Fig. (B.3.2». The models are described separately below. 

a) The Compressor 

The compressor is the most complicated type of machine 

and is used to boost the gas pressure in the network. The 



simplest model assumes that the outlet pressure or the 

compressor flow is controlled to a fixed value. Unfort­

unately this model is not realistic enough for most 

applications and further restrictions on the operation of 

compressor using a compressor envelope is required. The 

compressor envelope defines the safe operating limits of 

the compressor; a typical envelope for the centrifugal 

compressor is given in Fig. (B.3.1). In addition, the 

compressor must satisfy several physical limits on the 

maximum horsepower, maximum compressor speed, maximum 

compression ratio and maximum flow. Because it is 

very difficult to deal with the compressor envelope, only 

the phys ical limi ts are cons ide red (PAN, \'lEIMANN (1978) , 

STONER(1969». These limits are modelled using a set of 

inequalities. The compressor envelope is sometimes used 

merely (for example, PAN) for outputing warning messages 
if it is violated. 

The b'asic compressor model is given in fig. (B. 3.2) . 

The compression ratio, the horsepower and the compressor 

speed are non-linear functions of PI' Po and Q . As the 
comp 

expression for the compressor speed is rather complicated, 

only the e~pressions for the compression ratio and horse­
power are given here, 

Canpressian ratio (C.R.) = (Po + EO) / (p I - E
I

) (B.3.l) 

Horsepower = (c Qcomp ( ( C. R.) 6_ 1) (B.3.2) 

where EO' EI are pressure losses on outlet, inlet side of 
compressor; and c, 6 are constants depending on the partic­

ular compressor used. Further details on the working of 
the compressor can be found in SCHEEL(1972). 

b) The Regulator 

The regulator is used to lower the gas pressure. It 

must therefore satisfy the operating restrictions that the 

outlet pressure is less than the inlet pressure and that the 
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gas should not flow backwards through the regulator. A 

regulator would usually have its outlet pressure or flow 

controlled to a set value. 

c) The Source 

The source is the gas supply point in the network and 

hence its model consists of only an outlet node. It could 

be a gas storage field or an off-shore gas supply terminal 

or even a point where the gas is transferred from another 

network. To model the different types of sources accurately, 

different models are normally required. For example, STONER 

(1969) used a non-linear equation involving the flow and 
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pressure to describe the operation of a storage field. 

Fortunately for most applications, a simpler model which 

restricts the pressure to be less than a maximum value and the 

flow to vary within a fixed range is usually adequate. 

d) The Valve 

Valves are important only in dynamic simulations. It 

can be considered as a particularly simple type of machine 

with only two operating states, open or closed. When open 

the flow is unaffected by the valve and when closed, no flow 

is allowed to pass. 

A summary of the machine models used in this thesis 

is outlined in figs. (B.3.2) to (B.3.5). Similar machine 

models are also used in WEI~mNN(l978) . 

B.4 Solution of Network with Machines 

The presence of machines introduces extra unknown 

variables (machine flows) and hence additional equations 

are needed for the solution. Even by using the simplified 

machine model described in the previous section, a set of 

inequalities is still needed to be solved for each machine. 

Because of difficulties in dealing with inequalities, PAN 

assumes that for each machine, one of the constraints actually 
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reaches its extreme value and is used as the controlling 

constraint for the machine. This gives rise to an algebraic 

equation for each machine. Any nonlinear constraints are 

linearised using Newton's method to give a general machine 
equation of the form, 

= a (B.4.1) 

where ml , m2 , m3 and a are coefficients whose values depend 

on the controlling constraint of the machine. For example, 

consider the simple case when the machine is operating on 

outlet pressure constraint, we require a machine equation 

of the form, 

p = p 
o max 

and hence the coefficients are simply given by 

and a = P 
max 

where P is the maximum machine outlet pressure. max 

(B.4.2) 

For the inlet or outlet node of the machine, the net­

work equation (eqn. (B.2.10» must be modified in order to 

take into account the flow through the machine. As the 

machine flow Q merely acts as an additional supply at the 

outlet machine node and as a demand for the inlet machine node, 
eqn. (B.2.10) becomes 

(B.4.3) 

where m refers to either the inlet or the outlet node of 

the machine and k = f 1 if m is the machine inlet node; 

-1 if m is the machine outlet node. 

By collecting the network equations (eqns. (B.2.10) and 
(B.4.3» over all the nodes in the network, we get 

* E 
dP 
dt 

* = A (~) P - K 9 S! (t) (B.4.4) 



where K is the machine flow incidence matrix defined as 

K, , 
~J 

and 

= k as defined in eqn. (B.4.3) if node i is the 

inlet or outlet node of machine j 

= 0 otherwise 

Eqn. (B.4.4) together with the algebraic machine 

equations are combined to give a set of DAE of the form, 
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E ~ = A(~) Y - ~(t) (B.4.5) 

where y = [R, gJ. The matrix A(y) now contains the 

asymmetric m~chine equations and the machine flow incidence 
matrix K; and the matrix E is singular. 

B.S The Structure of the DAE system 

To understand the structures of matrices E and A, it 

is necessary to use a test network. Consider a simple 
test network given below. 

Os Qc d 
~ d4 • 1 

~~~----------~-4~~~~3----------~2~'-------------4~ 

Fig. (B.S.l) - Test Network 

The network consists of a compressor C, a source S 

together with two demands, dl and d
4

, at nodes 1 and 4 

respectively; the nodes are numbered as shown in Fig. (B.S.l). 

1 Vi' 
Let Eij = 3 (~). From eqn. (B.2.l0), it is clear 

that the network equations at node 1 and 2 are respectively 
given by, 
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(B.5.1) 

and 

(B.5.2) 

and from eqn. (B.4.3), the respective network equations at 

the machine nodes 3, 4 and 5 take the form, 

(B.5.3) 

(B.S.4) 

and 

(B.5.5) 

Lastly, the machine equations for the compressor C and 

the source S can also be written, 

c c c ml P4 + m2 P3 + m3 Qc = a 
c (B.5.6) 

and 
s s 

m2 P5 + m3 QS = a s (B.S.7) 

Put ~ = [PI' P2 , P3 , P4 , PS ' Qc ' QsJ, then it can be 
easily shown that eqns. (B.5.1) to (B.S.7) can be written as 

a DAE system of the form given in (B.4.5.). The matrices 

E and A now have the following structures, 
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~ 

2E12 E12 
.---.. -~' .. ----

E12 2 (E
12

+E23) E
23 

E= E23 2E23 (B.5.8a) 

2E45 E45 

E45 2E45 

\ 
~ 

I -c 
12 

C12 
, 

, 

C12 -(C12+C23 ) C23 

C23 -C23 +1 

A(y) = -C45 C45 -1 (B. 5. 8b) 

C45 -C45 +1 

c C C 
~ 1l} ItJ 

s s 
112 ItJ "- " 

where the entries in the matrices are assumed to be zero 

unless otherwise stated. From the above, it is therefore 

clear that the matrix E is singular and matrix A is partially 
structured. The symmetric and diagonally dominant part of 

matrices E and A correspond to the unknown pressure at the 

network nodes. The asymmetric part of matrix A corresponds 

only to the unknown machine variables (the pressures at the 

inlet and outlet nodes of the machine, and the machine flow). 
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B.6 The Solution Scheme Employed in PAN 

This section briefly outlines the solution scheme 

employed in PAN to solve the DAE system (B.4.5). PAN handles 

the differential and algebraic equations in the DAE system 

separately, where the differential equations are first integ­

rated and then solved together with the algebraic equations 

in the system. The set of linearised differential equations 

considered in PAN is given by (see eqn. (B.4.4» 

E* dp 
dt = A*P Kg - £!(t) (B.6.1) 

where E* and A* are linearised matrices as defined in eqn. 

(B.2.12). These equations are numerically integrated using 

the constant-step Crank-Nicolson method except for -kg, which 

is integrated using the backward Euler method; this gives rise 

to a set of equations of the form 

= r -n (B.6.2) 

and h = tn+l - tn' 

r -n is a vector containing the known quantities at time t 
n' 

are the solutions required at the new time and £n+l' gn+l 
level, t n+ l . 

Equations (B.6.2) can now be combined with the algebraic 

equations in the DAE system, which are given by (see eqn.(B.4.1) 

and section B.5), 

(B.6.3) 

where matrices Ml , M2 contain the coefficients of the linearised 

constraint equations (B.4.1), and £ is a known right-hand vector 

depending on the operating constraints of the machines. 



Equations (B.6.2) and (B.6.3) provide sufficient 

equations to solve for the unknown variables, Pn+l , 9
n

+
1

. 
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A block matrix partitioning method described in GOLDWATER{l976) 

is employed to solve the system of linear equations at each 
time step. 
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APPENDIX C 

Arithmet'ic Operation Counts 

This appendix states some preliminary results quoted 

in GEORGE(1974) and ROSE(1972) that can be used to count 

arithmetic operations. The term 'arithmetic operation' 

means multiplicative operation (multiplication or division) 

only. The results are derived under the assumption that 

exact numerical cancellation does not occur. They are 

stated without proof as follows. 

LEMMA C-l 

Let M be an NxN symmetric and positive-definite matrix. 

Then provided we avoid operating on zeros, the number of 

operations required to factorize M into its Cholesky factors 
LLT is 

N 
= 1: 

i=l 

C C (n (L. ) -1)( n (L. ) + 2 ) /2 1. 1. 

together with N square roots. 

LEMMA C-2 

(C-l) 

Let L be a nonsingular NxN triangular matrix and x 

be the solution to Lx = b, with x. =0 unless i =q j=l 2 £, - - 1.. j" , ••. 
(£, ~N). Then the number of operat1.ons 8 required to solve 

L 
Lx = b is 

9., C 
e - 1: n(L 

L - i=l qi (C-2) 

From the above Lemma, we can easily deduce the follow­
ing result 



LEMMA C-3 

Let L be an N~N nonsingular triangular matrix with 

LM=M. Then the number of operations required to compute 

M via back-substitution, given Land M, is 

LEMMA C-4 

N 
L 

i=l 

C R n (L .) n (M .) 
~ ~ 

(C-3) 

Let A, Band C be given sparse matrices, with A =BC. 

Then the number of operations required to compute A from 

Band C is 

8BC = NCR 
L n (B .) n (C .) 

~ ~ 
(C-4 ) 

i=l 

where N is the number of columns in B. 

LEMMA C-5 

Let B be a given sparse matrix with A = BTB. Then the 

number of operations required to compute A from B is 

N R R = L n(B.)(n(B.)+l)/2 
i=l ~ ~ 

(C-S) 

since only the upper or lower half of A needs to be computed. 

LEMMA C-6 

Let Band C be given sparse matrices where the product 
A=BTC is known to be symmetric and B .. ~ 0 => C . ~ o. 

~J T iJ T 
Then the number of operations required to compute A from B 

and C satisfies 

N 
e ::; L n (B R.) ( n (C R. ) + 1 ) /2 

BTC i=l ~ ~ (C-6) 
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LEMMA C-7 

Let L be an NxN nonsingular triangular matrix, and 

let x be the solution to the system Lx = b. Then 

(C-7 ) 

From the above, it follows that 

LEMMA C-8 

Let L, M and M be as defined in Lemma C-3. Then 

n(M) ~ n(M) (C-8) 

The proof of the above Lemma's can be found in 

GEORGE ( 19 74) • 
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APPENDIX D 

The Numerical Methods 

Four methods selected are the first order theta method, 

the second order strongly S-stable embedded diagonally­

implicit Runge-Kutta (DIRK) method, the second order 

Rosenbrock-type method and the second order DIRK method 

using the Rosenbrock-type method as a predictor. These 

methods when applied to a DAE system are described separately 

below. 

D.l The Theta Method 

This simple one stage method when applied to (1.3.1) 

gives 

where 

f = A y... - d ( t ), Y..n = Y.. ( tn ) -n n - n (D.l.l) 

and 

0.0 ::; e ::; 1.0, n = 0, 1, 2, ... 

The method is A-stable for 8=1/2, strongly A-stable 

for 8 > 1/2 and second order only when e = 1/2 . A reasonable 

compromise is to choose e =0.55 as suggested in PROTHERO(1974). 

The modified-Newton method is used to solve the system 

of nonlinear algebraic equations at each step. The express­

ion for the local truncation error is rather complicated and 

shall not be given here, interested readers are referred to 

HOPKINS (1976) for details. For this formula, an estimate 

of the global error (see PROTHERO(1977» at time t is 
n+l 

given by 

.9:n+l (D.1.2) 
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where 

G = E - h e A (0.1.3) 

n is the global error estimate at time t 
~n n 

and 1n+l is the local error estimate at time t
n

+l . 

A suitable value of RESC (see eqn. (4.4.3» for this method 

is 5.0. 

0.2 The Embedded Diagonally-Implicit Runge-Kutta Method 

The second order, strongly S-stable, embedded DIRK 

method given in CASH(1979) when applied to (1.3.1) is 

defined as 

(0.2.1) 

the 3
rd 

order solution together with a 2nd order embedded 

solution are given by 

(0.2.2) 

and 

(0.2.3) 

respectively. 

The parameters are defined as 

a. = 0.4358,6652, T2 = 0.7179,3326, 

b 1 = 1.2084,9665, b 2 =-0.6443,6317, 

c l = 0.7726,3013, c
2 = 0.2273,6987. 

This formula required the solution of 3 systems of 
nonlinear algebraic equations at each time step using 

modified-Newton method. The iteration matrix is the same 

for each system of equations and is given by 
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G=E-haA (D.2.4) 

From eqns. (D. 2 . 2), (D. 2 . 3) and (4. 3.2.), an es tima te 
of the local error for y (2) is, n+l 

G -lE ( ( 3 ) ( 2 ) 
!n+l = Yn+l - Yn+1 ) (D.2.5) 

and an estimate of the global error (derived using the 

procedure outlined in PROTHERO(1977» is given by 

(0.2.6) 

A suitable value of RESC (see eqn. (4.4.3» for this method 
is 6.0. 

0.3 The Rosenbrock-type Method 

For the autonomous DAB system of the form 

E ~ = A(y) (y) - ~(y) = !(y) (0.3.1) 

the 2-stage, 2nd order'Rosenbrock-type method given in 
SCRATON(198l) is defined as, 

Yn+l = Yn + h bl~l + h b2 ~2 

G kl = f -n (0.3.2) 

G k2 = f* + hd 2l A~l -n 

where 

f = A Yn - ~ (Yn) -n 

f *= ! (Yn + h a 2l k l ) -n 

G = E-hdA 

and the parameters are defined as 



It can 

matrix A and 

every step. 

be computed 

a
21 

= 2/3 (0.3.3) 

d = 1- 1//2, 

be shown that the method is 

is strongly A-stable when A 

An accurate estimate of the 

using 

nd 2 order for any 

is updated at 

local error can 

(0.3.4) 

and an estima.te of the global error can also be derived 

using the procedure of PROTHERO/ 

(D.3.5) 

where 

A suitable value of RESC for this method is 5.5. 

0.4 The DIRK Method using the Rosenbrock-type Method as 

a Predictor 

Associated with the Rosenbrock-type method (0.3.2) is 

a DIRK formula given by 

(0.4.1) 

where the parameters are as defined in eqn. (D.3.3). This 

formula is second order and also strongly A-stable. The 

expressions for the local and global error estimate defined 

in section D.3 can still be used for this formula. The 
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formula requires the solution of two systems of nonlinear 

algebraic equations at each time step and are solved 

using the modified-Newton method; the Rosenbrock-type 

method (D.3.2) is used to provide an accurate initial 

prediction for the modified-Newton iteration. A suitable 

value of RESC that can be used for this method is 5.5. 

The extension of the above pair of methods to the 

non-autonomous case is discussed in section 4.3.3. 
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APPENDIX E 

The Implementation' of the Variable-step Integrator 

This appendix describes the basic design and 

implementation of the variable-step integrators, based 
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on the numerical methods outlined in appendix D, for solv­

ing the DAE system (1.3.1). The strategies discussed in 

Chapter 4 are used in the implementation. As the strateg­

ies employed rely only on the assumption that the DAE 

system arises from the discretization of a system of para­

bolic POE's, the integrators implemented can also be used 

for solving other similar systems. Thus the discussion 

carried out in this appendix will be based on a general DAE 

system of the form given in (1.3.1) and no reference will 

be made to the gas transmission network problem. 

Because the implementation is largely independent 

of the numerical methods used, only one integrator will be 

discussed in detail. The integrator is called ROSEN and 

is based on the Rosenbrock-type method (D.3.2). This 

integrator also includes the diagonally-implicit Runge-Kutta 

(DIRK) method (D.4.1) using the above Rosenbrock-type method 

as a predictor; the DIRK method is used when the nonlinear 

algebraic equations in the DAE system have not converged 

satisfactorily (see section 4.4.1.2). 

The FORTRAN code of the integrator ROSEN is given 

at the end of this appendix. The code is extensively docu­

mented and is programmed to be both readable and efficient. 

It is divided into stages to enhance its readability. 

E.l The Basic Design of the Integrator 

The integrator is deSigned to be a low level routine 

which implements only the normal and restart phases described 

in section 4.4; the location of disturbance is not included 

as this operation is problem dependent. It is written in 
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"reverse communication" form as discussed in DEW(1981) so 

that the evaluation of matrix G, the DAE system and the 

solution of the linear equations are all performed in the 

calling program. This removes the need to pass the problem 

specification routines into the integrator which has the 

advantages that it is easier to maintain the integrator and 

that it is easier to incorporate the integrator into a large 

program designed to solve PDE's. The disadvantage of writing 

the code in "reverse communication" form is that it is necess­

ary to carry along a large number of variables, which has to 

be passed through the parameter list; this makes the integrator 

inconvenient to use for the inexperienced users. 

In order to shorten the parameter list while allowing 

flexibility in the use of the integrator, the set of variables 

which will not be needed by the user during the integration 

are placed in the common blocks. This set of variables 

includes the strategic parameters, the coeffiCients of the 

numerical methods, the constants of the machines and the 

error estimates (see the code of ROSEN); they are only required 

to be set up by the user before the integration begins. Only 

the working vectors and those variables that need to be set 

by the user during the computation are included in the para­

meter list. An example on how the integrator is to be used 

is shown in fig. (E. 1). 

To make the integration robust, the following error 
conditions are implemented. 

i) When using the standard error test of the form 11.&.11 sEPS 

for accepting the step, the limiting precision tests discussed 
in DEW(1978) require that, 

a) the tolerance must satisfy 

EPS ~ 20 U II ~ /I (4.5.1) 

b) the stepsize must satisfy 

/hl ~ 4 Ult/ + 0 (4.5.2) 

where U is the relative precision of the machine (the smallest 

number such that l+U~l) and 0 is the smallest positive number 
that can be stored in the machine. 



setting up 

. 
RETRY: CALL ROSEN( .. T,H,Y,DY,DEL,DYY,IND,WT,W, .. 

IF IND(2)=O THEN integration has finished, 

ELSE 

BEGIN 

check IND(l) for possible error 

The action depends on the value of IND(2) ... 

IF IND(2) 

=1 THEN FORM t.he iteration matrix G =E -hd]'l. 

and COMPUTE the LU factors of Gi 
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=2 THEN evaluate a new function! (t,:L) in vector DY; 

=3 THEN CARRYOUT a back-substitution for DEL = G-l*r 

where r = E*W ( 7 , .) + DYY 

=4 THEN COMPUTE an iteration correction 
-1 

DEL = G *(E*~' - !(t,:L)) i 

=5 THEN COMPUTE the algebraic equations and 

return the results in vector DEL; 

GOTO RETRY to recall the integrator 

END; 

Note: The meanings of the variables used are explained in 

the coding of integrator ROSEN 

Fig. E.l - Method of using the integrator ROSEN in the call­

ing program. 

The integration is terminated with an error indication if 

either of the above is not satisfied. This often occurs when 

the solution is unstable. It is necessary to relax the 

accuracy tolerance before the integration is continued. 

ii) During the normal phase (see section 4.4.1), the 

stepsize is halved either when more than 3 evaluations of 

matrix G have been carried out or when the estimate of the 
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local error fails the error test. If the solution is still 

unsuccessful after 3 such stepsize reductions in a step, 

the integration is terminated. 

iii) In section 4.4.2, it was stated that during the 

restart phase a retry is attempted when the integration is 

unsatisfactory. If more than 5 retries are performed during 

a restart phase, the integration is terminated. 

iv) Theintegration is also terminated if the matrix G 

appears to be singular. 

In all the above cases, it is likely that the 

problem has been incorrectly specified or a discontinuity in 

the solution has not been located correctly, it is necessary 

to check the problem specification carefully. 

E.2 The Detailed Description of ROSEN 

The coding of integrator ROSEN together with a full 

description of the parameters used are given at the end of 

this appendix. In integrator ROSEN, it is assumed that the 

algebraic equations are arranged after the differential equat­

ions in the DAE system. Hence equations (NODE+l) to NEON 

are algebraic. 

Most of the parameters used in ROSEN are straight­

forward and need no further explanation. The key parameters 

are IND, RSTART and DIRK. They are explained below. 

The parameter IND is a vector which serves as 

indicators for ROSEN. It consists of 4 components. The first 

two components, the IND(l) and IND(2), are used by ROSEN to 

communicate with the calling program. The typical use of 

these two components is given in fig. (E.l). The IND(2) as 

well as IND(3) are used as internal indicators within ROSEN. 

Lastly, since ROSEN includes both the Rosenbrock-type method 

(D.3.2) and the implicit DIRK method (D.4.1), the IND(4) is 

used to select the required method to be used for the integrat­

ion. It is set to 1 when method (D.3.2) is to be used and to 



2 when the implicit method is required. This provides two 

distinct methods within the same integrator. 
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In order to distinguish between the restart and 

normal phases, a logical parameter RSTART is used. On entry, 

RSTART is set to TRUE whenever a restart phase is required. 

This usually happens when a discontinuity has been detected. 

It is reset to FALSE within the integrator when the restart 

phase is to be terminated. 

DIRK is another logical parameter which is to be 

used in conjunction with the Rosenbrock-type method, i.e. 

when IND(4)=1. It is set to TRUE within the integrator to 

force the ap~lication of the implicit method when the non­

linear algebraic equations in the DAE system have not converged 

satisfactorily (see Section 4.4.1.2). It can also be set by 

the user when the solution in the next step is known to be 

changing rapidly. It is reset to FALSE within the integrator 

at the end of the step. 

The integrator is divided into 7 stages. Stage 1 

sets up the parameters at the beginning of each step of integ­

ration. It first checks for the value of IND(2) and branches 

to the appropriate points in the integrator if IND(2»O. It 

then checks whether the error tolerance is sufficiently large 

for the machine and initiates a restart phase if the parameter 

RSTART has just been set to TRUE; a new stepsize to be used 

for the restart phase is computed using the formula given in 

eqn. (4. 4 . 3) . 

Stage 2 computes the solution using the Rosenbrock­

type method (D.3.2). The solution computed is improved using 

the implicit method (D.4.l) in stage 3 if the parameter DIRK 

is-·set to TRUE; the strategies outlined in section 4.4.1.1 

are used toimplement the modified-Newton method for solving 

the nonlinear systems of equations. 

The reduction of stepsize, the updating of iteration 

matrix and the retry for the restart phase are performed in 

stage 4; the integration is terminated with an error indication 

if any of the error conditions described in section E.l is 

violated. 



Stage 5 estimates the local error which is used 

during the normal phase for the error test; the step is 

rejected and the stepsize is halved if the error estimate 

exceeds the required error tolerance. The global error is 

also estimated in this stage if RSTART is set to TRUE. 
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Stage 6 checks for the convergence of the algebraic 

equations in the DAE system when the Rosenbrock-type method 

is used; the criterion given in eqn. (4.4.1) is used for the 

convergence test. The step is repeated using the implicit 

method (D.4.l) if any of the algebraic equations fails the 

convergence test. 

Fin~lly in stage 7, the appropriate parameters are 

updated after the solution is accepted. During the restart 

phase, checks are made to ensure that the local error in 

successive steps of solution is decreasing in magnitude and 

to determine whether the restart phase is to be terminated; 

the normal phase is recommenced when the global error estimate 

is less than the tolerance. During the normal phase, the new 

stepsize to be used for the next step is also estimated before 

returning to the calling program. 

E.3 The Scope and Use of Integrator ROSEN 

Before any discussion on the use of integrator ROSEN 

can be carried out, it is necessary to state the applicability 

of this integrator in solving general non-'autonomous systems. 

From section 4.3.3, it is clear that the Rosenbrock-type method 

and i~associated DIRK method can be extended to the non­

autonomous case in the way as suggested in that section. 

However, the usual local error estimate will not be as accurate 

as in the autonomous case, and it is only reliable when 

1/ a!/atll« II a!/alll for the problem to be solved. The use 

of a less accurate error estimate will affect the performance 

of the integrator considerably. Thus in general, it is advis­

able to transform the problem to be solved into autonomous 
form before using the integrator. 
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As the integrator is written as a low level routine, 

a rather sophisticated driver program is needed to use the 

integrator. A typical layout of the driver program is given 

in fig. (E. 2) . 

After each successful step, a check is made to see 

if a discontinuity is to occur during or at the end of the 

step. This is done by checking through the list of pre­

determined times when the discontinuities are known to occur 

or computing the constraint function ~'s which change sign 

over the discontinuity. In the later case, it is necessary 

to locate the disctoninuity using the procedure outlined in 

section 4.4.2.1 and compute an accurate solution up to that 

time before a restart phase is initiated. A restart phase 

is initiated by setting the indicator RSTART to TRUE. 

Because the integrator is written in "reverse 

communication" form, there is no restriction on the number 

or type of routines that must be supplied by the user in 

order to specify the problem. The users are therefore free 

to write their own routines for this purpose. The following 

routines, however, are recommended, although the exact number 

of routines required is dependent on the nature of the 

problem involved: 

i) A routine to estimate the iteration matrix G; 

ii) routines to factorize and solve the matrix G and 

iii) a routine to compute E ~ and !(t,y) of eqn. (1.3.1). 

Because these quantities are usually required separately by 

the integrator, either separate routines should be used or a 

flag should be incorporated in the routine to indicate which 

of these quantities is required. The routine for computing 

!(t,y) must also include an option to compute only the 

algebraic equations in the system which are required for the 

convergence test at the end of each step. 



Fig. (E.2) - The Layout of the Driver Program for ROSEN 

Set up the initial 
conditions for the 

integration 

Carry out one step of 
integration using ROSEN 

- see Fig. (E.l) 

NO 

Accept the step 

Output the results 
if necessary 

NO 

YES 

YES 

Locate the time which 
the discontinuity occur 
and integrate with full 

error control up to 
that time 

Set RSTART = TRUE 
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C========================7~=========================== =============== 
C 
C THE INTEGRATOR ROSEN - WRITTEN IN REVERSE COMMUNICATION 
C 
C===================================================== =============== 

SUBROUTINE ROSEN(NEQN,NODE,T,H,Y,DY,DEL,DYY,IND,WT,W,R,EPS, 
* ZNORM,RSTART,DIRK) 

C***************************************************** *************** 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS ROUTINE SOLVES 
EQUATIONS OF THE FORM 

THE SYSTEM OF DIFFERENTIAL/ALGEBRAIC 

E Y' = F(Y) (1) 
USING THE ROSENBROCK-TYPE METHOD, WHERE E IS A SINGULAR MATRIX 
WHEN THERE ARE ALGEBRAIC EQUATIONS PRESENT IN THE SYSTEM. 

THE ITERATION MATRIX IS GIVEN BY: 
G = E_- H*ALPHA*DF/DY 

***** NOTE ***** 
ALTHOUGH THE INTERATOR CAN IN PRINCIPLE BE USED FOR SOLVING ANY 

NON-AUTONOMOUS SYSTEMS, IT IS ADVISABLE TO TRANSFORM THE SYSTEM 
TO BE SOLVED INTO AUTONOMOUS FORM BEFORE USING THE INTEGRATOR. 

C THE VARIABLES USED HAVE THE FOLLOWING MEANINGS: 
C *NEQN--NUMBER OF EQUATIONS TO BE SOLVED. 
C *NODE--NUMBER OF ODE'S IN THE SYSTEM; THEY MUST BE THE FIRST NODE 
C EQUATIONS IN THE SYSTEM. 
C *T --THE INDEPENDENT VARIABLE. ON FIRST CALL IT SHOULD BE SET 
C TO THE INITIAL CONDITION. ON RETURN IT CONTAINS THE VALUE 
C OF T fOR WHICH Y IS THE SOLUTION. 
C *H --PROPOSED STEPSIZE FOR THE STEP. ON FIRST CALL, IT SHOULD 
C CONTAIN THE INITIAL ESTIMATE OF THE STEPSIZE • 
C *y --THE DEPENDENT VAPIABLE. ON FIRST CALL SHOULD BE SET TO 
C THE INITIAL CONDITIONS. ON RETURN IT CONTAINS THE SOLUTION 
C AT T. DIMENSIONED AS Y(NEQN). 
C *DY --AN ARRAY USED TO HOLD THE RIGHT-HAND FUNCTION FCY,T). 
C ON FIRST ENTRy,IT SHOULD CONTAIN THE INITIAL FCY.T) VALUES. 
C DIMENSIONED AS DYCNEQN). 
C *DEL --RETURNS THE NEW ITERATION CORRECTIONS OR THE RESULTS OF A 
C BACK-SUBSTITUTION. 
C DIMENSIONED AS DEL(NEQN>. 
C *DYY --WHEN IND(2)=3, IT CONTAINS ON EXIT PART OF RIGHT-HAND VECTOR 
C FOR WHICH A BACK-SUBSTITUTION IS TO BE CARRIED OUT 
C CSEE W(7,J». DIMENSIONED AS OYY(NEQN>. 
C *IND --ARRAY CONTAINING THE INDICATORS FOR THE METHOD. 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DIMENSIONED AS IND(4). 
WHERE: 

IND(1)-INDICATOR 
ON EXIT 

FOR THE INTEGRATOR 
>0 FOR SUCCESSFUL CALL 
<0 FOR STEP FAILURE. 

ON ENTRY, IT HAS THE FOLLOWING MEANINGS: 
=0 INITIAL STEP. 
=2 TO RE-EVALUATE THE ITERATION MATRIX. 
ON EXIT, IT HAS THE FOLLOWING MEANINGS: 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

166 

= 1 SUCCESSFUL STEP. 
= 2 SUCCESSFUL STEP BUT TO REEVALUATE r. ON NEXT STEP. 
= 3 SAME AS 1 EXCEPT F(Y,T) AT THE NEW TIME LEVEL HAS BEEN 

FOUND AND IS CONTAINED IN VECTOR DY. 
= 4 SAME AS 3 BUT A NEW G IS ALSO NE.EDED. 
=-1 STEP FAILURE BECAUSE THE TOLERANCE WAS TOO SMALL 

FOR THE MACHINE. 
=-2 STEP FAILED BECAUSE STEPSIZE BECAME TOO SMALL FOR THE 

MACHINE. 
=-3 ERROR TOLERANCE WAS NOT SATISFIED AFTER 3 STEP 

REDUCTIONS. 
=-4 STEP FAILURE AFTER S RETRIES DURING THE 

IND(2)-POINTER TO INFORM THE CALLING PROGRAM ABOUT 
PROBLEM_DEPENDENT INFORMATION NEEDED BY THE 

RESTART PHASE. 
THE TYPE OF 
INTEGRATOR. 

ON EXIT ••••• 
= 0 INTEGRATION HAS FINISHED, CHECK IND(1) FOR POSSIBLE 

ERROR. 
= 1 A NEW-ITERATION MATRIX IS REQUIRED. 

THE INFORMATION NEEDED ARE STORED IN VECTOR V & DY. 
= 2 A NEW RIGHT-HAND FUNCTION F(Y,T) IN EQN.(1) IS NEEDED. 

RETURN THE REQUIRED FUNCTION VALUES IN VECTOR DY. 
= 3 TO COMPUTE THE SOLUTION OF G*DEL = R, 

WHERE R = DYV + E * W(7,J) 
= 4 EVALUATE A NEW ITERATION CORRECTION 

CORR = G**(-1) * (E*V' - F(Y,T», 
AND RETURN THE RESULTS IN VECTOR DEL. 

= 5 COMPUTE THE ALGEBRAIC EQUATIONS REQUIRED IN THE 
CONVERGENCE TEST AND RETURN THE RESULTS IN VECTOR DEL 
(IN LOCATIONS NODE+1 TO NEQN). 

IND(3)-INTERNAL INDICATOR TO INFORM THE INTEGRATOR THE EXACT POINT 
TO RETURN TO. 

IND(4)-IHDICATE THE METHOD TO BE USED: 
=1 FOR THE ROSENBROCK METHOD AND 
=2 FOR DIRK METHOD WITH THE ROSENBROCK METHOD AS A 

PREDICTOR. 
*WT --VECTOR OF WEIGHTS FOR ERROR CRITERION. 

DIMENSIONED AS WT(NEQNa> 
C *w 
C 

--ARRAY USED AS WORKSPACE. DIMENSIONED AS W(10,NEQN). 
WHERE: 

HOLDS THE VALUES OF Y AT PREVIOUS TIME LEVEL. IE.Y(N). 
HOLDS THE VALUES OF F(VN). 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C *R 
C 
C 
C 

W(1,J) 
W(2,J) 
W(3,J) 
W(4,J) 
W(S,J) 
W(6,J) 
W(7,J) 

HOLDS K1. 
CONTAINS THE VALUES Of K2. 
WORKSPACE FOR HOLDING f(Y*). 
CONTAINS ON EXIT THE ESTIMATES Of LOCAL ERROR. 
WORKSPACE FOR HOLDING PART OF THE RIGHT-HAND VECTOR 
TO BE PRE-MULTIPLIED BY MATRIX e fOR WHICK A BACK-
SUBSTITUTION IS REQUIRED. THE OTHER PART IS CONTAINED 
IN VECTOR DYY. SEE DESCRIPTION fOR IND(2)=3. 

W(S,J) HOLDS THE ESTIMATES Of THE GLOBAL ERROR. 
W(9,J) STORE THE Y(J) VALUES AT THE TIME WHEN A RESTART 

PHASE IS INITIATED; THIS IS REQUIRED IN CASE A RETRY 
IS NEEDED. 

W(10,J) STORE THE CORRESPONDING DY VALues. 
--ARRAY USED AS WORKSPACE, DIMENSIONED AS RCB). 

R(1) -HOLDS THE NORM (ITERATION CORRECTION) fROM THE 
PREVIOUS ITERATION. 

R(2) -HOLDS THE RATE Of CONVERGENCE Of THE ITERATION. 
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C R(3) -ITERATION TEST CONDITION (=EPS). 
C R(4) -HOLDS THE fACTOR Of THE STEPSIZE CHANGES SINCE THE 
C LAST G UPDATING, If R(4)<O.5 THEN A NEW J IS REQD. 
C RCS) -HOLDS THE OLD STEPSIZE. 
C R(6) -HOLDS THE OLD VALUE Of T AT THE PREVIOUS TIME LEVEL. 
C THIS IS REQUIRED FOR RE-SETTING T WHEN THERE IS A 
C CHAGNE IN STEPSIZE H. 
C R(7) -MAXIMUM ALLOWABLE STEPSIZE HMAX. 
e R(8) -HOLDS THE TIME AT WHICH A RESTART PHASE IS INITIATED. 
C *EPS --THE LOCAL ERROR TOLERANCE SPECIFIED BY THE USER. 
C *ZNORM-ROUTINE TO COMPUTE THE ERROR NORM. IT SHOULD BE WRITTEN AS 
C SUBROUTINE ZNORMCNEQN,ERR,WT,E) 
C DOUBLE PRECISION ERR,WT(NEQN),ECNEQN) 
C WHERE E IS THE ERROR VECTOR, WT IS THE WEIGHTS AND ERR 
C RETURNS THE ERROR NORM. 
C *RSTART-LOGICAL PARAMETER WHICH WHEN SET TO TRUE MEANS THAT THE 
C RESTART PHASE IS ENfORCED. 
C *DIRK -LOGICAL PARAMETER. IT IS SET TO TRUE WHEN DIRK METHOD IS 
C TO BE USED. THE DIRK METHOD IS ALSO USED WHEN IND(4)=1 
C CSEE IND(4) FOR DETAILS). 
C 
c==================================================================== 
C 
C NOTE--WHEN THE ROUTINE IS fIRST CALLED, 
C INO(1), IND(2) MUST BE seT TO -1 AND 0 RESPECTIVELY. 
C 
c******************************************************************** 

EXTERNAL ZNORM 
LOGICAL RSTART,DIRK,CONVRG 
DOUBLE PRECISION T,H,EPS,CORC,RESCN,RESCR,FJAC,ALPHA,COEF,ERRL, 

* ERRG,TWOU,FOURU,TENP,ONE,P1EPS,ROUNO,TEMP, 
* RNORM,fAC,RCON,Fl,F2,ERRO,RATIOP,HMAX,SUM, 
* RATIO,CMIN,ZERO 

DOUBLE PRECISION Y(NEQN),DYCNEQN),DEL(NEQN),OYY(NEQN),RC8), 
* WC10,NEQN),WTCNEQN) 

INTEGER INO(4) 
COMMON ISTATSI ISTAT(6),IJAB,NHALF,NRETRY,ITER 
COMMON ISTRATI JSTEP(2),CMIN,CORC,RESCN,RESCR,fJAC,ALPHA,COEf(6) 
COMMON IRSTATI ERRL,ERRG,ERRO,RATIOP,HMAX,NRSTEP,NLESS 
COMMON IMACONI TWOU,fOURU,TENP 
COMMON ITRACEI IOEVO,ITRACE 
COMMON IZZZZ11 NORM 

c******************************************************************** 
c 
C THE COMMON BLOCKS USED ARE: 
C ISTATS/-CONTAINS THE STATISTICS REQUIRED AT THE END OF THE SOLUTION 
C *ISTAT(6)-VECTOR HOLDING THE OVERALL STATISTICS REQUIRED, WHERE 
C (l)-NUMBER OF STEPS ATTEMPTED 
C (2)-NUMBER Of fUNCTIONS CALL 
C (3)-NUMBER Of ITERATION MATRIX UPDATINGS. 
C (4)-NUMBER Of BACK-SUBSTITUTIONS PERfORMED 
C (S)-NUMBER Of STEPS FAILED TO REACH ERROR CRITERION 
C (6)~NUMBeR OF STEPS FAILURE DUE TO POOR CONVERGENCE. 
C *IJAB -CONTAINS THE NO. OF ITERATION MATRIX UPDATINDS IN A 
C STEP. A MAX Of 3 EVALUATIONS IS ALLOWED BEFORE THE 
C STEPSIZE IS REDUCED. 
C *NHALF -COUNTS THE NO. OF STEP REDUCTIONS IN A STEP. ONLY 
C 3 STEP REDUCTIONS IS ALLOWED. 
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C *NRETRY-NUMBER OF RETRY DURING A RESTART PHASE. A MAX OF 5 
C RETRIES IS ALLOWED. 
C *ITER -NO. OF I~ERATIONS FOR THE MODIFIED-NEWTON ITERATION. 
C ISTRAT/-DEFINES THE STRATEGY PARAMETERS USED IN THE INTEGRATOR; 
C THEIR VALUES ARE INITIALISED IN BLOCK DATA. 
C *JSTEP -DIMENSIONED AS JSTEP(2). CONTAINS THE INFORMATION ON 
C THE NUMBER OF STEPS TAKEN SINCE THE LAST ITERATION 
C MATRIX UPDATING AND STEPSIZE CHANGES. 
C I. (1)-HOLDS THE NUMBER OF STEPS TAKEN SINCE THE LAST G 
C MATRIX UPDATING. A MAX OF 15 STEPS IS ALLOWED BEFORE 
C G IS TO BE UP-DATEO. 
C •• (Z)-HOLDS THE NUMBER OF STEPS TO BE USED BEFORE STEPSIZE 
C CHANGES IS CONSIDERED. A MIN OF 3 STEPS IS NEEDED 
C SINCE THE LAST CHANGE IN STEPSIZE. 
C *CMIN -CONSTANT TO DECIDE WHETHER THE ITERATION CAN 
C CONTINUE. 
C *CORC -CONSTANT TO DECIDE WHETHER THE RATE OF CONVERGENCE 
C IS-SATISfACTORY (CORC=O.S). 
C *RESCN -FACTOR USED fOR PREDICTING THE INITIAL STEPSIZE FOR 
C THE NORMAL VARIABLE-STEP INTEGRATION. 
C *RESCR -THE CORRESPONDING FACTOR USED FOR THE RESTART PHASE. 
C *fJAC -fACTOR WHICH THE STEPSIZE CAN BE VARIED BEfORE THE 
C ITERATION MATRIX IS CONSIDERED AS OUT-DATED. 
C *ALPHA -PARAMETER OF THE ROSENBROCK-TYPE METHOD. 
C *COEF(6)-HOLDING THE COEfICIENTS DEfINING THE METHOD. 
C IRSTAT/-DEFINES THE PARAMETERS USED IN THE RESTART PHASE. 
C *ERRL -HOLDS THE WEIGHTED LOCAL ERROR NORM. 
C *ERRG -CONTAINS THE WEIGHTED GLOBAL ERROR NORM. 
C *ERRO -HOLDS THE LOCAL ERROR NORM IN THE PREVIOUS STEP. 
C *RATIOP-HOLOS THE RATIO BETWEEN ERRO AND THE LOCAL ERROR 
C NORM AT THE STEP BEFORE. 
C *HMAX -THE MAX. ALLOWABLE STEPSIZE FOR THE RESTART PHASE. 
C *NRSTEP-NUMBER OF STEPS TAKEN OURING THE RESTART PHASE. 
C *NLESS -NUMBER OF STEPS WHERE WHERE ERRG IS LESS THAN EPS. 
C IMACON/-HOLDS THE MACHINE DEPENOENT CONSTANTS - THE MACHINE 
C ROUNDOff AND THE MACHINE UNDERFLOW NUMBERS U AND P. 
C *TWOU = 2*U 
C *FOURU = 4*U 
C *TENP = 10*P 
C /TRACE/-TO TRACE THE INTEGRATOR FOR DEBUGGING PURPOSES: 
C *IDEVO -OUTPUT DEVICE NUMBER. 
C *ITRACE-TRACE LEVEL REQUIRED. 
C =0 FOR NO TRACE 
C =1 TO OUTPUT INTERMEDIATE RESULTS AT APPROPRIATE 
C POINTS. 
C IZZZZ1/-0EFINES THE TYPE Of NORM TO BE COMPUTED, SEE ROUTINE ZNORM. 
C 
C •••• ** •• * •• *********··********·*·*******·*****·*·**·**.* •••• * •• * ••• * 

ONE=1.0D+0 
ZERO=O.OD+O 

C 
C SET UP THE STRATEGY PARAMETERS FOR THE INITIAL STEP 
C 

IF (INO(1).GE.0) GO TO 10 
ALPHA=ONE - ONE/DSQRT(2.OD+0) 
COEF(1)=-4.00+0/3.0D+0*ALPHA 
COEF(Z)=Z.OD+OI3.0D+0 
COEF(3)=0.25D+0 



COEf(4)=0.750+0 
COEfCS)=(ALPHA+ONE)/(ALPHA - ONE/3.00+0) 
COEf(6)=CO.50+0 - AlPHA)/CALPHA*ALPHA) 
R(3)=EPS 
J1=NOOE+1 
DO 1000 J=J1,NEQN 

1000 WC6,J)=O.00+O 
IF (INO(4).EQ.2) OIRK=.TRUE. 

10 CONTINUE 
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C 
c******************************************************************** 
C 
C STAGE--1 SETTING UP 
C 
C******************************************************************** 
C 
C 
C 
C 

IF INO(2)#0 JUMP TO THE APPROPRIATE POINTS IN THE INTEGRATOR 
ELSE, IT IS A -FRESH CALL fOR THE PRESENT TIME LEVEL 

K=INO(3) 
I=IND(2)+1 
INO(2)=0 
GO TO (12,20,17,29,35,63), I 

12 CONTINUE 
C 
C CHECK If EPS IS SUFfICIENTLY LARGE 
C 

P1EPS=0.10+0*EPS 
CALL lNORMCNEQN,ROUND,WT,Y) 
ROUN O=RO UNO * TWOU 
IF (P1EPS .GE. ROUNO) GO TO 15 

c 
C ERROR - THE TOLERANCE IS TOO SMALL FOR THE MACHINE 
C 

EPS=10.00+0*CROUNO*(ONE+FOURU) + TENP) 
INO(1)=-1 
RETURN 

15 CONTINUE 
IJAB=O 
NHALF=O 
INO(3)=0 
K=O 
IF (INO(1).LT.0 .OR. INO(1).GE.3) GO TO 17 
ISTAT(2)=ISTAT(2)+1 
INO(Z)=2 
RETURN 

17 CONTINUE 
IF (INO(1).GE.3) INO(1)=INO(1)-2 
IF (K.EQ.2) GO TO 27 

C 
C INITIALISE A RESTART PHASE IF NECESSARY 
C 

IF (.NOT.RSTART .OR. NRSTEP.GT.O) GO TO 19 
C 
C STORE THE CURRENT SOLUTION VALUES IN W WORKSPACE, 
C ANO THE CURRENT TIME IN R(R) 
C 

DO 1005 J=1,NEQN 



W(9,J)=Y(J) 
1005 W(10,J)=OY(J) 

ERRG=ZERO 
R(8)=T 

C 
C ESTIMATE THE STEPSIZE TO BE USED FOR THE RESTART PHASE 
C 

CALL ZNORM(NEQN,SUM,WT,OY) 
H=RESCR*OSQRT(EPS/SUM) 
H=DMINH HMAX,H) 
IF (ITRACE.NE.Z) WRITE(IOEVO,8003) H 

8003 FORMAT(II' === RESTART PHASE ==='/' H = ',012.4) 
INO(1)=Z 
DIRK=.TRUE. 

19 CONTINUE 
C 
C STORE Y & OY IN W(1,J) & W(2,J) RESPECTIVELY 
C 

DO 1010 J=1,NEQN 
W(1,J)= y(J) 

1010 W(2,J)=OY(J) 
C 
C COMPUTE THE ITERATION MATRIX IF IT IS AN INITIAL STEP 
C 

IF (INO(1).LE.0) INO(1)=2 
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C******************************************************************** 
C 
C STAGE--Z COMPUTE THE SOLUTION USING ROSENBROCK-TYPE METHOD 
C 
C******************************************************************** 
C 
C PRESERVE THE OLD VALUE OF T IN R(6) 
C 

R(6)=T 
IF (IND(1).EQ.Z) GO TO 45 

20 CONTINUE 
C 
C CHECK IF THE STEPSIZE IS LARGE ENOUGH FOR THE MACHINE 
C 

IF(DABS(H).GE.FOURU*OABS(T)+TENP) GO TO 22 
C 
C ERROR - THE STEPSIZE HAS BECOME TOO SMALL FOR THE MACHINE 
C 

INO(1)=-2 
RETURN 

22 CONTINUE 
IF (K.GT.O) GO TO 33 

C 
C 
C 

1020 
C 
C 
C 
C 

INO(3)=1 

COMPUTE K 1 

00 1020 J=1,NEQN 
o Y Y ( J ) =W ( 2 , J ) 
W(7,J)=ZERO 

EXIT TO COMPUTE K1; IE. THE BACK-SUBSTITUTION 
RETURN TO LABEL 29 



25 
C 
C 
C 
C 
C 

1030 

C 
C 
C 
27 

1040 

29 
C 
C 
C 

30 

1050 
C 
C 
C 
C 

ISTAT(4)=ISTATC4)+1 
INDC 2)=3 
RETURN 
CONTINUE 

COMPUTE K2 IN 2 STAGES 
1 - EVALUATE FUNCTION FCYN + H.A21.K1) 
2 - EVALUATE K2 BY BACK-SUBSTITUTION. 

IND(3)=2 
IJAB=O 
T=R(6) + COEF(2)·H 
DO 1030 J=1,NEQN 

YCJ)=WC1,J) + H.COEF( 2).W(3,J) 
CONTINUE 
ISTAT(2)=ISTAT(2)+1 
IND(2)=2 
RETURN 

RETURN TO LABEL 27 WITH THE REQUIRED FUNCTION IN VECTOR DY 

CONTINUE 
00 1040 J =1, NEQN 

WC5,J)=DYCJ) 
W(7,J)=COEF(1)/ALPHA.W(3,J) 
DYY(J)=DY(J) 

CONTINUE 
ISTAT(4)=ISTAT(4)+1 
IND(Z)=3 
RETURN 
CONTINUE 

RETURN HERE WITH K VALUES IN DEL(J) FOR K=1, 2 

GO TO (30,30,55,56,57), K 
CONTINUE 
DO 1050 J=1,NEQN 

W(K+2,J)=DEL(J) - W(7,J) 

IMPROVE THE SOLUTION USING THE CORRESPONDING DIRK METHOD 
IF THE PARAMETER DIRK IS SET. 

IF (DIRK) GO TO 31 
IF (K.EQ.2) GO TO 50 
GO TO 25 
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C 
c •••••• ••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••• 
C 
C STAGE--3 MODIFIED-NEWTON ITERATION FOR THE DIRK METHOD 
C 
C •••• ••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••• 
31 CONTINUE 

IF (K.EQ.1) ITER=O 
R(1)=0.OD+0 

C 
C SET UP THE I N I Tl ALE S TIM ATE S FOR Y ; & K; VEe TOR S 
C 

IF (K.EQ.2) GO TO 32 



F1=H*ALPHA 
T=R(6) + f1 
on 1060 J=1,NEQN 

OY(J)=W(3,J) 
1060 Y (J)=we1,J) + F1*OyeJ) 

GO TO 33 
32 CONTINUE 

f1=H*(COEf(1) + COEF(2» 
f2=H*ALPHA 
T=R(6) + F1 + F2 
00 1061 J=1,NEQN 

DyeJ)=we4,J) 
1061 Y eJ)=we1,J) + F1*we3,J) + F2*DyeJ) 
33 CONTINUE 
C 
C EXIT TO COMPUTE THE ITERATION CORRECTION 
C 

ISTAT(2)=ISTATe2) + 1 
ISTAT(4)=ISTATe4) + 1 
IND(2)=4 
RETURN 

35 CONTINUE 
C 
C RETURN HERE WITH THE ITERATION CORRECTION IN VECTOR DEL 
C 

ITER=ITER+1 
CALL ZNORMeNEQN,RNORM,WT,DEL) 
RNORM=H*RNORM 
RCON=O.OD+O 
IF (R(1).NE.0.OD+0) RCON=RNORM/R(1) 
R(1)=RNORM 
R(2)=RCON 
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If (ITRACE.EQ.1) WRITE(IDEVO,8040) ITER,RNORM,RCON,K 
8040 FORMAT(/' ITER=',I2,' RNORM=',D12.4,' RCON=',D12.4,' K=',I2) 

IF (RCON.GE.ONE) GO TO 36 
F1=H*ALPHA 
DO 1062 J=1,NEQN 

DY(J)=OY(J) - DEL(J) 
Y eJ)=Y (J) - F1*DELCJ) 

1062 CONTINUE 
IF CRNORM.LE.R(3» GO TO 39 
IF eRCON.LE.CORC) GO TO 33 

C 
C DURING RESTART PHASE, A MIN OF 5 ITERATIONS IS PERFORMED BEFORE 
C THE ITERATION MATRIX UPDATING IS CONSIDERED 
C 

IF CRSTART.AND.ITER.LE.5) GO TO 33 
36 CONTINUE 
C 
C A NEW ITERATION MATRIX IS REQUIRED 
C 

GO TO 45 
39 CONTINUE 
C 
C ITERATION HAS CONVERGED 
C 

DO 1063 J=1,NEQN 
W(I(+2,J)=DyeJ) 



1063 CONTINUE 
IF (K.EQ.1) GO TO 25 
GO TO 50 
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C******************************************************************** 
C 
C 
C 
C 

STAGE--4 STEPSIZE REDUCTION, ITERATION MATRIX UPDATING 
AND RETRY FOR THE RESTART PHASE 

C******************************************************************** 
C 
C 
C 
C 
C 
40 
C 
C 
C 

1065 
C 
C 
C 
C 

IF THE ITERATION CORRECTION IS UNSATISFACTORY OR IF THE 
STEPSIZE HAS BEEN CHANGED BY MORE THAN A FACTOR OF fJAC 
RE-EVALUATE T~E ITERATION MATRIX 

CONTINUE 

RESET Y & DY VECTOR 

IND(3)=0 
DO 1065 J=1,NEQN 

DY(J)=W(2,J) 
Y(J) =W(1,J) 

CONTINUE 

IF THE ITERATION ~ATRIX HAS NOT BEEN UPDATED IN THE LAST TWO 
STEPS UPDATE IT BEFORE REDUCING THE STEPSIZE 

IF (JSTEP(1).GE.2) GO TO 45 
C 
C REDUCE THE STEPSIZE BY HALF 
C 

JSTEP(2)=3 
H=H*0.5D+0 
NHALF=NHALF+1 
IF (NHALF.LE.3) GO TO 45 

C 
C TOO MANY STEP REDUCTIONS 
C 

IND(1)=-3 
RETURN 

45 CONTINUE 
C 
C NEW ITERATION MATRIX IS REQUIRED 
C 

C 

IND(1)=1 
IJAB=IJAB+1 
If (IJAB.LE.3) GO TO 47 
If (RSTART) GO TO 48 

C TOO MANY EVALUATIONS OF MATRIX G, REDUCE THE STEPSIZE 
C 

IJAB=O 
GO TO 40 

47 CONTINUE 
ISTAT(3)=ISTAT(3)+1 
JSTEP(1)=0 
R(4)=ONE 
I TE R =0 



R(1)=0.00+0 
R(2)=0.00+0 
INO(2)=1 
RETURN 

48 CONTINUE 
C 
C THE ITEGRATION IS UNSATISFACTORY DURING THE RESTART PHASE, 
C REDUCE THE STEPSIZE BY A FACTOR OF 5 AND RESTART FROM THE 
C INITIAL TIME (RETRY). 
C 

NRETRY=NRETRY+1 
IF (NRETRY.LE.5) GO TO 49 

C 
C ERROR - MORE THAN 5 RETRIES HAS BEEN DONE 
C 

INO( 1 )=-4 
RETURN 

49 CONTINUE 
H=0.20+0*H 
T=R(S) 
IF (ITRACE.NE.2) WRITE(IOEVO,8111) T 

8111 FORMAT<" RE-START FROM T =' ,015.6) 
00 1067 J=1,NEQN 

Y ( J) =W( 9, J ) 
OY(J)=W(10,J) 

1067 WT(J)=OMAX1(ONE, OABS(Y(J» ) 
ERRG=ZERO 
IHO(1)=4 
OIRK=. TRUE. 
NRSTEP=1 
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GO TO 15 
C******************************************************************** 
C 
C STAGE--5 ERROR ESTIMATION 
C 
C******************************************************************** 
50 CONTINUE 
C 
C COMPUTE THE NEW SOLUTION AND ESTIMATE THE LOCAL ERROR 
C 

1070 
C 
C 
C 

DO 1070 J=1 .. NEQN 
Y(J)=W(1,J) + H*<COEF(3)*W(3 .. J) + COEF(4)*W(4 .. J)) 

OYY(J)= -W(2,J) - 3.00+0*W(5 .. J) 

W(7,J)= W(3,J) + 3.00+0*W(4 .. J) 

CONTINUE 

RETURN TO COMPUTE G**(-1 )*OEL 

INO(3)=3 
52 CONTINUE 

ISTAT(4)=ISTAT(4)+1 
INO< 2).3 
RETURN 

55 CONTINUE 
DO 1075 J=1 .. NOOE 

OEL<J)=H*OEL(J)/6.00+0 
1075 W(6.J)=OEL(J) 

CALL ZNORM(NOOE,ERRL,WT,OEL) 



ERRL=ERRL/EPS 
IF (ITRACE.EQ.1) WRITE(IDEVO,9035) ERRL 

9035 FORMAT(' ERRL =' ,015·.6) 
IF (ERRL.LE.ONE .AND •• NOT.RSTART) GO TO 60 
IF (.NOT.RSTART) GO TO 59 
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C 
C DURING THE RESTART PHASE -- COMPUTE THE GLOBAL ERROR ESTIMATE 
C 

IF (ERRG.NE.ZERO) GO TO 53 
C 
C FIRST STEP DURING THE RESTART PHASE, ERRG=ERRL 
C 

DO 1078 J=1,NEQN 
1078 W(8,J)=W(6,J) 

ERRG=ERRL 
GO TO 60 

53 CONTINUE 
DO 1080 J=1,NEQN 

OYY(J)=O.OO+O 
1080 W(7,J)=W(8,J) 

IND(3)=4 
GO TO 52 

56 CONTINUE 
DO 1082 J=1,NEQN 

W(7,J)=COEF(6)*DEL(J) + (ONE-COEF(6»*W(8,J) 
DYY(J)=O.OD+O 

1082 CONTINUE 
INO(3)=5 
GO TO 52 

57 CONTINUE 
DO 1086 J=1,NODE 

OEL(J)=OEL(J) + W(6,J) 
1086 W(8,J)=DEL(J) 

CALL ZNORM(NODE,ERRG,WT,DEL) 
ERRG=ERRG/EPS 
IF (ITRACE.EQ.1) WRITE(IDEVO,9037) ERRG 

9037 FORMAT(' ERRG =' ,015.6) 
GO TO 60 

59 CONTINUE 
C 
C LOCAL ERROR DOES NOT SATISFY THE ERROR TOLERANCE 
C REDUCE THE STEPSIZE BY HALF 
C 

ISTAT(5)=ISTAT(5)+1 
GO TO 40 

c******************************************************************** 
C 
C STAGE--6 THE CONVERGENCE TEST 
C 
c******************************************************************** 
60 CONTINUE 

IF (NOOE.EQ.NEQN .OR. DIRK) GO TO 70 
INO(2)=5 
RETURN 

63 CONTINUE 
C 
C RETURN HERE WITH THE VALUES OF THE ALGEBRAIC EQUATIONS IN 
C VECTOR DEL 



c 

1100 
65 
C 
C 
C 

9050 
C 
C 
C 

1110 

CONVRG=.TRUE. 
11=NODE+1 
P1EPS=O.2D+0*EPS 
00 1100 I=I1,NEQN 

IF (DABS(DEL(I)/WT(I».LE.P1EPS) GO TO 1100 
CONVRG=.FALSE. 
GO TO 65 

CONTINUE 
IF (CONVRG) GO TO 70 

NONLINEAR ALGEB~AIC EQUATIONS HAVE NOT CONVERGED 

WRITE(IDEVO,9050) 
FORMAT(/' NONLINEAR ALGEBRAIC EQUATIONS HAVE NOT CONVERGED') 

RESOLVE THE SOLUTION USING DIRK METHOD 

00 1110 1=1,NEQN 
Y(I) =W(1,I> 
D Y( I ) =W( 2 , I) 

T=R(6) 
IND(1)=3 
IND(2)=0 
DIRK=.TRUE. 
GO TO 15 
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C******************************************************************** 
C 
C STAGE--7 SUCCESSFUL STEP 
C 
C******************************************************************** 
70 CONTINUE 

R(5)=H 
T=R(6)+H 
ISTAT(1 )=ISTAT<1 )+1 
JSTEP(1 )=JSTEP(1 )+1 
JSTEP(2)=JSTEP(2)-1 

C 
C SET DIRK TO FALSE IF THE ROSENBROCK-TYPE METHOD IS USED 
C 

IF (IND(4).EQ.1) DIRK=.FALSE. 
FAC=ONE 
IF (.NOT.RSTART) GO TO 75 
IF (.NOT.DIRK .AND. JSTEP(1).GE.S) IND(1 )=2 
IF (NRSTEP.EQ.1 .AND. ERRL.LT.0.75D+0 .AND. ERRO.LT.0.75D+0) 

* GO TO 72 
C 
C CHECK IF THE STEPSIZE USED IS SENSIBLE - GO TO LABEL 48 IF THE 
C LOCAL ERROR DIVERGES OR TOO MANY STEPS HAVE BE COMPUTED 
C 

IF (EARG.GT.100.0) GO TO 48 
RATIO=ZERO 
IF (NRSTEP.GT.O) RATIO=ERRL/ERRO 
IF (RATIO.GT.ONE .AND. RATIOP.GT.ONE .AND. ERRL.GT.ONE) GOTO 48 
RATIOP=RATIO 
ERRO=ERRL 
NRSTEP=NRSTEP+1 
NLESS=NLESS+1 



IF C ERRG. GT • ONE) NLE 55=0 
IF (NLES5.GE.1 .AND. NRSTEP.GE.2) GO TO 72 
IF (NRSTEP.GT.15) GO' TO 48 
GO TO 75 
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72 CONTINUE 
C 
C TERMINATE THE RESTART PHASE 
C 

RSTART=.fALSE. 
ERRG=ZERO 
NLESS=O 
NRSTEP=O 
NRETRY=O 
JSTEP(1 )=12 
IF (ITRACE.NE.2) WRITECIDEVO,8015} 

8015 FORMATC/' === END OF RESTART PHASE (NEXT STEP) ===') 
75 CONTINUE 

IF (RSTART) RETURN 
IF (H.GE.RC7) .OR. ERRL.GT.0.15D+0 .OR. JSTEP(2).GT.0) GO TO 76 

C 
C DOUBLE THE STEPSIZE TO BE USED NEXT STEP 
C 

76 
C 
C 
C 
C 

* 

78 
79 

9060 
* 

C 
C 
C 
C 
C 

FAC=2.0D+0 
If (H*FAC.GT.R(7» FAC=R(7)/H 
H=H*fAC 
R(4)=R(4 )*fAC 
JSTEP(2)=3 
CONTINUE 

FORCE THE ITERATION MATRIX TO BE RE-EVALUATED NEXT STEP IF THE 
FOLLOWING CONDITIONS ARE SATISFIED 

IF (IND(4).EQ.2) GO TO 78 
IF CR(4).GE.FJAC .OR. JSTEP(1).GE.15 .OR. ERRL.GE.0.85D+0) 

IND(1)=2 
GO TO 79 
IF (R(4).GE.FJAC .OR. JSTEP(1).GE.25 .OR. R(2).GT.CORC) IND(1)=2 
CONTINUE 
IF (ITRACE.EQ.1) WRITE(IDEVO,9060) T,H,FAC,ERRL 
FORMATC/' ROUTINE THETA: T=',D11.5.' H=',D11.5,' FAC='.Dl1.5, 

• ERRL=',D11.5) 
RETURN 

END OF SUBROUTINE STALEC 

END 
BLOCK DATA 

C********************************************************************* 
C 
C THIS PROGRAM INITIALISES THE PROBLEM DEPENDENT DATA HELD IN 
C COMMON BLOCKS ISTRATI, IRSTAT/, IMACONI AND IZZZZ11 
C 
C******************************************************************** 

DOUBLE PRECISION CMIN,CORC,RESCN,RESCR.FJAC.TWOU,fOURU.TENP. 
* HMA X, TEMP 

COMMON ISTRATI JSTEP(2).CMIN,CORC,RESCN,RESCR,fJAC 



COMMON IRSTATI TE~P(4),H~AX,NRSTEP,NLESS 
COMMON IMACONI TWOU~fOURU,TENP 
COMMON 1111111 NORM 
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DATA CMIN/1.0D+0/, CORC/0.5D+0/, RESCN/O.1D+0/, RESCR/5.5D+OI, 
* FJAC/2.0D+OI,JSTEP/2*01 

DATA HMAX/2.5D+0/, NRSTEP/OI, NLESS/OI 
DATA TWOU/0.22D-15/, FOURU/0.44D-15/, TENP/O.60D-771 
DATA NORM/11 

C 
C 
C END OF BLOCK DATA SEGMENT 
C 
C 

END 
SUBROUTINE INORM(NEQN,XNORM,WT,Y) 

C******************************************************************** 
C 
C SUBROUTINE INORM. 
C 
C******************************************************************** 

DOUBLE PRECISION XNORM,DNEQN 
DOUBLE PRECISION WT(NEQN),Y(NEQN) 
COMMON IZZZl11 NORM 

C******************************************************************** 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS SUBROUTINE CALCULATES THE NORM (XNORM) OF Y WEIGHTED 
BY WT. 

NORM 
= 1 
= 2 
= 3 

DETERMINES THE TYPE OF NORM TO BE USED. 
THE MAXIMUM NORM IS USED. 
THE L2 NORM IS USED. 
THE AVERAGED L2 NORM IS USED. 

NORM IS SET TO 1 IN THE BLOCK DATA SEGMENT. THIS VALUE 
MAY BE CHANGED AT RUN TIME BY ACCESSING NORM THROUGH THE 
COMMON BLOCK ZIZZ1. 

C******************************************************************** 
XNORM=O.OO+O 

C 
C 

GO TO (100,200,200),NORM 
100 DO 1000 I=1,NEQN 
1000 XNORM=DMAX1(DABS(Y(I)/WT(I»,XNORM) 

RETURN 
200 DO 1010 I=1,NEQN 

1010 XNORM=XNORM+(Y(I)/WT(I»**2 
DNEQN = FLOAT(NEQN) 
IF(NORM.EQ.3)XNORM=XNORM/DNEQN 
XNORM=DSQRT(XNORM) 
RETURN 

C END OF ZNORM 
C 
C 

END 


