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Abstract

This thesis investigates logical representations for describing and reasoning about spatial situations.
Previously proposed theories of spatial regions are investigated in some detail especially the
Ist-order theory of Randell, Cui and Cohn (1992). The difficulty of achieving effective automated
reasoning with these systems is observed.

A new approach is presented, based on encoding spatial relations in formulae of 0-order (‘pro-
positional’) logics. Tt is proved that entailment, which is valid according to the standard semantics
for these logics, 1s also valid with respect to the spatial interpretation. Consequently, well-known
mechanisms for propositional reasoning can be applied to spatial reasoning. Specific encodings
of topological relations into both the modal logic S4 and the intuitionistic propositional calculus
are given. The complexity of reasoning using the intuitionistic representation is examined and
a procedure is presented which is shown to be of O(n?) complexity in the number of relations
nvolved.

In order to make this kind of representation sufficiently expressive the concepts of model con-
straint and entailment constraint are introduced. By means of this distinction a 0-order formula
may be used either to assert or to deny that a certain spatial constraint holds of some situation. Tt
18 shown how the proof theory of a 0-order logical language can be extended by a simple meta-level
generalisation to accommodate a representation involving these two types of formula.

A number of other topics are dealt with: a decision procedure based on quantifier elimination
18 given for a large class of formulae within a 1st-order topological language; reasoning mechanisms
based on the composition of spatial relations are studied; the non-topological property of converity
is examined both from the point of view of its Tst-order characterisation and its incorporation into
a 0-order spatial logic. Tt 1s suggested that 0-order representations could be employed in a similar

manner to encode other spatial concepts.

There 1s no branch of mathematics, however abstract, that wall not eventually be applied

to the phenomena of the real world.

Lobachevsky, quoted in the American Mathematical Monthly, Feb 1984.
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Chapter 1

Introduction

Although spatial relationships pervade our comprehension of the world, we are almost completely
unaware of how we manipulate spatial information. Our familiarity with spatial properties and
arrangements of everyday objects makes the logical connections between different spatial relation-
ships so transparent that it is extremely difficult to apprehend and make explicit the structure of
this conceptual framework.

Spatial reasoning has a key role to play in a wide variety of computer applications. For example,

it 1s of crucial importance in the following areas:

e geographical information systems (GIS)

e robot control

e computer aided design and manufacturing (CAT/CAM)
e virtual world modelling and animation

e medical analysis and diagnosis systems

In current computer systems representation of spatial information is based almost entirely
on numerical coordinates and parameters. However, to specify the behaviour of the system a
programmer will often need to evaluate high-level, qualitative relationships holding between data
objects (e.g. to test whether one region overlaps another). Such information can be extracted when
needed from numerical data-structures by special purpose algorithms. Writing such algorithmsmay
often be quite straightforward for a competent programmer, but as large systems are developed
problems are likely to emerge. There is potentially infinite variety in the form that spatial data
can take, so a large number of similar algorithms operating on slightly different types of data must
be written.! More seriously, the heterogeneity of data objects means that apparently equivalent
properties of different data-types may diverge in extreme cases and this can lead to coding errors
which are difficult to identify.

The primary cause of these problems is that current programming systems provide no general

"The object-oriented paradigm of computer programming can help overcome this problem but only if great care
is taken in establishing a hierarchical organisation of data-types even then it may be difficult to integrate new,

unforeseen data-types neatly into an existing structure.
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framework for manipulating high-level qualitative spatial information. Tn order to test whether a
particular qualitative relationship holds (e.g. ‘the sensor is in contact with the block’) the pro-
grammer must first know about the details of how objects and their locations are represented and
then formulate some test involving values contained in the relevant data-structures. This test will
generally take the form of an equation or inequality (or perhaps some Boolean combination of
equations and/or inequalities). Such tests determine qualitative (spatial) relationships according
to the intended interpretation of data structures in the database. If a programmer could directly
employ qualitative spatial vocabulary in place of complex test operations, many coding tasks would
be greatly simplified; but providing such a facility is very far from straightforward. Tt requires the
formulation of an adequate theory of spatial relations together with an effective means of computing
inferences according to the theory.

In addition to its application in the context of well established kinds of computer system, spa-
tial reasoning is of crucial importance to the field of Artificial Tntelligence (AT). Tn attempting
to construct computer programs that simulate “intelligent’ behaviour, many researchers have con-
cluded that, as well as needing general purpose reasoning mechanisms, such systems must possess
a large amount of background knowledge and, furthermore, in order to draw consequences from
this information, detailed theories characterising the logical properties of the concepts and rela-
tions involved will be required. Spatial relations clearly form an extremely important conceptual
domain  they are involved in a very high proportion of facts about the real world. Hence, in the
development of this (logicist) approach to AT, theories of spatial relations will play a central role.

AT research into spatial reasoning 1s at the present largely dissociated from related branches
of mathematics  geometry, topology and logic. This is partly because mathematical formalisms
in these areas do not naturally lend themselves to effective automated computation of inferences.
Another factor is the difficulty of assimilating these highly developed and complex disciplines into
the relatively young and, as yet, rather fragmented field of AT. From the standpoint of Al, spatial
reasoning 1s often seen as closely associated with the cognitive processing capabilities of humans
and other animals. Mathematical theories on the other hand give a very abstract characterisation
of reasoning, which is independent from biological or psychological processes. However, consid-
erations of the cognitive plausibility of representations and algorithms employed in a computer
program to provide reasoning capabilities are closely connected to considerations of the computa-
tional complerity of formal deductive systems.

In this thesis T shall adopt a mathematical view of the problem. However we shall see that
certain conceptual frameworks which were in fact motivated by arguments of cognitive plausibility
do lead to formal systems which are computationally manageable. Thus for example the idea
of taking certain sets of relations as being of special significance in the classification of spatial
situations and of taking the composition? of two relations as a primary mode of deduction appears

to be both cognitively plausible and fo lead to formal systems in which many useful inferences can

2Given two relations Ry and Ra, their composition, ‘Ry; Ry’ is the strongest relation such that for any three
objects, a, b, ¢, if Ri(a,b) and Ra(b,c) hold, then Rs(a,c) must hold. The nature and significance of relational

composition will be studied in chapter 9.
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be computed effectively (see for example (Freksa 1992b) and (Herndndez 1994)).

The rest of this introductory chapter will be structured as follows: First T motivate the enterprise
of antomating spatial reasoning by exhibiting some of the more significant of the wide variety of
spatial concepts and suggesting reasoning tasks and applications for which these concepts are
significant. T then give a brief history of spatial reasoning in which T outline the major approaches
to the subject that have been developed by mathematicians and philosophers. This is followed by
a consideration of the relationships between different conceptual frameworks and formal systems
for representing and reasoning about space. T then survey work on spatial reasoning in computer
science, particularly from the perspective of AT. We shall see that (in addition to problems of
adequate formal representation) antomated reasoning about spatial information faces considerable
problems of computational complexity. Finally T give a brief overview of each of the subsequent

chapters of the thesis.

1.1  The Domain of Spatial Reasoning

1.1.1 Spatial Concepts and Information

Spatial information is presented to us by means of two very different modes: sensory perception
and linguistic description. We acquire knowledge of spatial relationships either by some (more
or less unconscious) processing or transformation of states produced in our sensory organs in
response to bombardment by particles from the outside world, or by being told (or reading) about
the spatial arrangement of parts of the world. The former, sensory, kind of information has been
intensively studied by researchers in computer viston and robotics with some success; but it is
the latter, propositional form of spatial information that will be the concern of this thesis. T shall
pursue representations which can express information such as is contained in the following English
sentences:

e Yorkshire 1s part of England.

e The hip bone is connected to the thigh bone.

e The fly is in the bottle.

T shall not, however, be concerned with the particular ways in which a natural language ex-
presses spatial information but with precisely specified formal representations with definite rules
of logical inference. Nevertheless, it will be seen that these formal expressions can be interpreted
in terms of certain natural language expressions and, moreover, that logically valid deductions

correspond to arguments which are intuitively sound under this interpretation.

1.1.2 Geometry of Points and Lines and its Primitive Concepts

The geometry of points and lines is the most ancient branch of spatial reasoning. Here the abstract
dimensionless point is the basic element and all other spatial entities must be constructed out of

points. One of the oldest theories of this mode of geometry 1s that of Euclid, whose axiomatic
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system 1s still used today.

a) b)

©) d)
Figure 1.1: Some significant relations among points

Figure 1.1 presents four diagrams showing simple but very significant relationships which can
hold between points. The figures are of course two dimensional but analogous relations can hold
in 3 (or more) dimensions. Diagram a) shows the betweenness relation holding among three points
(if order is disregarded one has the collinearity relation). b) depicts the equidistance of two pairs
of points. Betweenness and equidistance are the two primitives in Tarski’s (1959) formalisation of
elementary geometry (see appendix A). ¢) shows the relation of equidistance of two points from
a third (a situation easily constructed on paper using a compass). Tn fact, in Euclidean geometry
both the relations a) and b) (and hence all relations of elementary Euclidean geometry) can he
defined in terms of relation ¢). The ternary relation of equilaterality, d), can also serve as the sole
primitive for Euclidean geometry of three or more dimensions (Tarski and Beth 1956).

If a coordinate frame and metric are specified for a Fuclidean space algebraic methods can
be applied to geometrical problems. Points, lines and surfaces are then represented by means
of equations and inequalities relating the coordinates of points. This analytic geometry is the
most widely used representation for spatial information; it forms the basis of almost all spatial

representation and reasoning mechanisms employed in current computer systems.

1.1.3 Topology

Topology may be regarded as a sub-field of geometry but it 1s far more abstract than the geometry of
points and lines. The topological properties of a spatial object are those that do not vary depending
on scale or orientation. A good illustration of such invariance is provided by considering a drawing
on a rubber sheet: the topological properties of the drawing are those which are preserved while
the sheet is arbitrarily stretched and deformed.?

Figure 1.2 illustrates 8 particularly significant topological relations which can hold between two

regions (although the diagram shows 2D regions, analogues of these relations apply to 1, 3 or higher

3By virtue of the very abstract way in which the theory of topology has been developed, ‘topological’ concepts

have also been applied to areas of mathematics which are very far removed from this rubber-sheet interpretation.
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dimensional regions). All of these relations are definable in the RCC (for Randell, Cohn and Cui
or alternatively Region Connection Calculus) theory of spatial regions (Randell, Cui and Cohn
1992) which will be investigated in detail in chapter 2. Essentially, the same set of relations has
been independently identified as significant in the context of Geographical Information Systems
(Egenhofer and Franzosa 1991, Egenhofer 1991, Clementini, Sharma and Egenhofer 1994).

The 8 relations form a jointly exhaustive and pairwise disjoint (JEPD) set, which means that,
any two regions stand to each other in exactly one of these relations. (JEPD sets are important,
in the composition-based approach to reasoning about binary relations, which will be explored in
chapter 9.) This classification can be refined to introduce additional distinctions between relations.
For instance amongst pairs of EC (externally connected) regions we could distinguish those con-
nected at a boundary segment from those connected at a single point. Many such relations are
also definable in the RCC theory.

Topological relationships are of a very general character and can be used to give a high-level
description of all manner of spatial situations. For example, useful geographical information con-
cerning countries, provinces and counties and the relationships between them can be expressed in
terms of these relations. Non-spatial information can also often be represented metaphorically in
terms of topological properties  e.g. the range of application of colour terms might be described

in terms of regions in a ‘colour space’.

(a)
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DC(a,b) EC(a,b) TPP(a,b) TPPi(a,b)

e @ @©
PO(a,b) EQ(a,b) NTPP(a,b) NTPPi(a,b)

Figure 1.2: Basic relations in the RCC theory

Representation and effective automated reasoning about topological relations will be the main
concern of this thesis. However, we shall see that representations and algorithms developed primar-
ily for efficient topological reasoning can be extended to handle other aspects of spatial information.
Formal characterisation of topological relationships has traditionally been carried out by axiomat-
ising certain properties of sets of points. However, such an axiomatisation assumes a theory of sets.
The resulting theory is extremely complex and consequently impractical as a basis for an antomated
reasoning system. An alternative approach to formalising topological notions is that of algebraic

topology, in which the objects of the theory are n-dimensional polygons and polyhedra. This may
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Figure 1.3: Shapes distinguished by Gotts using the RCC theory

prove to be more suitable for computational reasoning than the point-set representation but in its
present form it is also far too complex. Tn view of the importance of topological concepts and
the difficulty of carrying out automated reasoning using standard mathematical notations, much
of this thesis will be concerned with the development of alternative representations for topological

relationships.

1.1.4 Shape

Characterising the shape of objects or regions seems to involve a wide spectrum of spatial concepts.
Although the shape of a region may be regarded as independent of its size and orientation, the
relative proportions and positions of the parts of a region are essential to 1ts shape, so size and
orientation are in this way aspects of shape. In fact, if in describing any spatial situation we are
only interested in distinguishing occupied regions from free space and are not concerned with the
overall scale, then this can be accomplished by characterising the shape of the occupied (or free)
space. Thus representing and reasoning about arbitrary shapes encompasses a very large part
if not the whole  of the domain of spatial reasoning.

Nevertheless a number of formalisms for describing shape have been developed. These can be
divided into two broad classes: firstly there are the constructive representations in which complex
shapes are described by structured combinations of primitive components; and secondly, there

are approaches which might be called constraining, since shapes are characterised in terms of
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properties holding of a region and these properties are constrained to conform to some theory.

A well-known form of the constructive approach which is based on numerical/vector repres-
entations of ohjects is Constructive Solid Geometry (Requicha and Tilove 1978, Requicha 1980).
More abstract examples of the approach include the many kinds of shape grammar that have been
developed. A rather different method of shape construction is described by Leyton (1988). He spe-
cifies a process grammar, which generates shapes by means of a series of deformations starting from
an initial disc shape. Constraining approaches to shape include those based on axiomatic theories
such as the Ist-order RCC theory (Randell, Cui and Cohn 1992). Gotts (1994) has shown how
many topologyically distinct ‘shapes’ can be distinguished in terms of this theory (see figure 1.3).
Another approach to shape definition using RCC is described in (Cohn 1995).

1.1.5 Convexity and Containment

A limited but significant sub-domain of properties concerning shape comprises those concepts
related to the notion of convexity: An object may be convex or may have a certain number of
concavities. Even such a seemingly meagre range of distinctions can serve to discriminate between
many different kinds of spatial region (Cohn 1995, Davis, Gotts and Cohn 1997).

In describing convexity-related properties it is useful not only to be able to say that a region is
convex but also to be able to identify the smallest convex region which contains any given region.
This is the convex-hull of the region. The (extended) RCC theory employs a convex-hull operator
whose interpretation is the function from regions to their convex-hulls. Tn the present work T shall
only be concerned with those notions of convexity and containment which are definable in terms
of the convex-hull operator. Thus not only will many aspects of shape be overlooked but also the
treatment of convexity will be limited.*

Several useful relationships concerning the ‘containment’ of one region within another may be
defined in terms of convex-hulls. For instance, if a region a does not overlap b but is a part of
the convex-hull of b, we may say that b contains a. This give a precise although arguably
unnatural specification of a containment relation in terms of convex-hull together with some

simple topological relations. Convexity and containment will be considered in detail in chapter 8.

1.1.6 Position and Orientation

Position and orientation are very important kinds of spatial information, which can be precisely
represented by means of numerical coordinates. However, there are also a wide range of qualitative
relationships involving these concepts. Figure 1.4 illustrates an analysis of qualitative orientation
due to Freksa (1992b). 1.4a depicts a situation in which an observer, o, is heading towards a
landmark, /, and sees a house, h, which 1s further away than and to the right of the landmark.
Figure 1.4b is a qualitative representation of the relative position of the house with respect to the

observer (at the lower intersection in the grid) and landmark (the upper intersection). 15 qualitat-

4 A detailed examination of many subtle difficulties that arise when one tries to precisely characterise different

kinds of cavity can be found in (Casati and Varzi 1994).
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ively different relative locations can be distinguished by means of this representation, as indicated
in 1.4c. Qualitative representations of orientation have also been investigated by Hernandez (1994).
Whilst position and orientation are clearly very important for many modes of spatial reasoning,

further consideration of these aspects of spatial information is beyond the scope of this thesis.
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Figure 1.4: Qualitative orientation in a relative coordinate system

1.2 A Brief History of Spatial Reasoning

T shall now describe some of the more successful approaches to the characterisation of correct
reasoning about spafial relationships. The ideas presented here predate or are independent from
the use of electronic computers. More recent approaches to spatial reasoning taken by researchers

in computer science (especially in the field of AT) will be reviewed later (in section 1.4).

1.2.1 Origins

T shall give only brief account of the early history of spatial reasoning: further details can be found
in any good history of mathematics, such as that of Boyer (1968).

Geometry (literally earth/land measurement) dates back to the Egyptians. Egyptian mathem-
atics was of a largely practical kind, concerned with simple calculations, very often of a spatial
character (e.g. determining the area of a piece of land). The relations between lengths, areas and
volumes were studied because of their value in commercial and architectural applications. The idea
that all geometrical reasoning might be based on the application of a small number of fundamental
principles appears to have originated in the ancient Greek civilisation. The almost mythical charac-
ter Thales (who lived around 600 B.C.) is often credited with being the first person to demonstrate
general principles of mathematical (and particularly geometrical) reasoning.

The 1dea of characterising valid reasoning in terms of logical modes of inference was taken up by
many Greek thinkers and developed surprisingly rapidly, so that within a century Pythagoras (~540
B.C.) and his followers had constructed very rigorous proofs of many theorems in number theory
and geometry. Laws of valid argument were also studied independently of any particular subject
matter. Early philosophers such as Plato (427 347 B.C.) realised that sequences of sentences that,
followed certain patterns always seemed to constitute a convincing argument. This is the basis

of formal logic. Many principles of reason such as modus ponens and the law of the excluded
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middle were identified. Aristotle (384 322 B.C.) analysed syllogisms, which make up a significant,
fragment of quantificational logic.

At this time there was intense investigation of how principles of rigorous logical inference
should be applied to reasoning about spatial relationships. Geometers strove to elicit the elements
of geometry  that is, a set of fundamental definitions and postulates from which all geometrical
truths could be logically derived. Many attempts were made to specify these elements until finally a
system was discovered which seemed to yield all that was required. Euclid’s Flements was written
round about 300 B.C., while Fuclid was a teacher in the Museum at Alexandria (an institution
established by Ptolemy T). Despite a certain amount of quibbling about a postulate concerning

parallel lines, Fuclid’s axiomatic geometry has been in use right up to the present day.

1.2.2 Development

For almost two millennia geometry was extensively developed; but it did not really go beyond the
potentialities of its Fuclidean foundation until it was investigated by Descartes (1596 1650). Tn
La Geometrie, an appendix to his Discours de la Méthode (1637), Descartes introduced the idea
of a coordinate system, in which points are identified with pairs (in 2D) or triples (in 3D) of real
numbers. This interpretation provides the foundation for what is now known as analytic geometry in
which lines, surfaces and volumes are represented by means of algebraic equations and inequalities
involving the Cartesian coordinates of points. The uniformity of algebraic representation facilitates
general and very effective methods for solving large classes of geometrical problems.

The 19th century saw a dramatic revolution in geometry. Euclid’s fifth postulate (which states
that for any point and any line there exists a unique line passing through the point and parallel to
the first line) had long been the subject of investigation because it had long been hoped that it could
be derived from the other (much simpler) postulates of the theory. The formal apparatus involved
in representing and reasoning about FKuclidean geometry had by this time become very precise
and the general properties of formal systems had also become clearer. In particular the notions
of logical equivalence, independence and consistency of axiom sets were now well understood. Tt
was finally established that Fuclid’s fifth postulate (concerning the existence of unique parallels)
was independent of the other simpler postulates so that consistent systems could be constructed in
which it did not hold. Tobachevsky (1829) took the bold step of proposing a system of (hyperbolic)
geometry, which explicitly contradicts the fifth postulate.®

The end of the 19th century also saw the birth of a radically new approach to the mathematical
description of spatial relationships. The field of point-set topology was originated by Cantor (1845-
1918) as an application of set theory to the study of Euclidean space. Tnvestigations in topology (by
Hausdorff (1914), Kuratowski (1933) and many others) lead to the clarification of many concepts

6

in analysis (e.g. limits of infinite sequences).® The applications of modern topology are, for the

5The significance of non-Fuclidean geometry is clearly explained in (Trudeau 1987), which also gives an illumin-

ating view of the status of geometrical theories.

6 A thorough introduction to basic topology can be found in (Kuratowski 1972).
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most part, far-removed from spatial relationships in the physical world but are concerned with
abstract mathematical structures. The complexity of point-set topology means that, although it is
a powerful tool for the mathematician, it has not (as yet) yielded effective general purpose methods
for reasoning about spatial relationships.

An alternative approach to characterising topological properties known as algebraic topology
was created by Henri Poincaré in the last years of the 19th century. Tt was initially developed
more or less independently of point-set topology although in the 1930s some unification of the
approaches was attained (Alexandroff and Hopf 1935). The basis of the approach to topology is
to use an algebraic object (often some kind of group) to describe the structure of a topological
space. This formalism is in many respects more amenable to computational manipulation than
the point-set approach and it 1s very likely that algebraic methods can provide a powerful tool
for the development of spatial reasoning algorithms (see e.g. (Pigot 1992, Bertolotto, Floriani and
Marzano 1995)). However, further consideration of the theory of algebraic topology is beyond the

scope of this thesis.

1.2.3 New Foundations

During the early part of the 20th century the methods of logical analysis reached a state of extreme
precision and were applied to many branches of mathematical and (to a lesser extent) physical
science. Russell and Whitehead were both keen that the methods of logic should be applied not
only to well established, objective physical theories but also to the development of phenomenological
theories, describing the world as it is perceived through sense data. How such theories should be
constructed was (and is still) far from clear. One idea, expounded by Whitehead in his book The
Concept of Nature (Whitehead 1920), is that in a theory of the world of sensory experience, the
basic entities of the logical representation should correspond directly to ‘phenomena’, these being
objects of consciousness which are perceived wvia diverse sense-data but are conceived as integral
objects or events e.g. a cloud or the flight of a bird across the sky.

Treating such things as basic entities is at odds with the theoretical systems which have been
developed to formalise classical science. In these systems the basic entities are typically points
of space, instants of time and numerical quantities such as mass and velocity (in fact, points
and instants are generally also identified with numerical coordinates). The spatial relationships
between points are characterised by well-known geometrical theories and mathematical structures.
Moreover, this analysis allows specification of physical laws in terms of differential equations, which
form the axioms of nearly all physical theories. But the analysis also means that formal objects
corresponding to physical bodies or events must be built up set-theoretically in terms of these basic
entities. A complex and irregular region (e.g. that occupied by a cloud) then becomes an infinite
set, of points which may be extremely difficult or even impossible to characterise.

Under the alternative, phenomenological approach, objects and events become the basic entities
of a theory. Geometry is now concerned with relationships between the regions occupied by bodies

and dynamical laws must be formulated in terms of causal relationships between events: differential
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equations are replaced by qualitative relationships. Attempts to construct theories of this kind have
been made by many philosophers and logicians as well as, more recently, by computer scientists;
but this project has met with severe difficulties. Tn fact, T think it 1s fair to say that there is no
widely accepted physical theory based on this type of ontology. This is perhaps not surprising,
given firstly the relatively recent conception of the idea and secondly the difficulty in finding uses
for such theories that would make their construction more than just a philosophical exercise.

An application which promises to motivate development, of phenomenon-based theories is Al.
Not only does this ontology appear to be closer to that, employed in human reasoning (as evidenced
by the structure of our ordinary language) but it also seems that, it may be more appropriate as
a vehicle for automated reasoning about real world situations, which if described in the terms of
classical physics would be unmanageably complex. Nevertheless, despite considerable effort from
AT researchers, the qualitative theories embedded in AT systems do not appear to have a power
and generality comparable to classical theories of, for example, dynamics or electromagnetics.

One explanation for the lack of progress may be that researchers have assumed that, given
the right formal framework, specifying theories of real world phenomena will be straightforward:
much work has been directed towards providing general-purpose formal systems that are amenable
to computation; but comparatively little has been concerned with providing theories of specific
conceptual domains. However, in recent years, interest in such domain-specific theories has grown
rapidly. By analogy with the role of point based geometry in classical physical theories, it is to
be expected that characterisation of the geometrical relationships that may hold between extended
objects will be of fundamental importance to many of these conceptual theories. Construction of
general theories of these relationships 1s one of the primary goals of the sub-field of AT known as
Qualitative Spatial Reasoning (henceforth QSR).

A detailed account of formal theories of spatial regions will be given in the next chapter.

1.3 Conceptual and Formal Frameworks

Let us now examine the plurality of possible frameworks for representing and reasoning about
spatial information and the relationships between these frameworks.

The history of spatial reasoning shows that formalisation of its modes of inference can be carried
out from a variety of different perspectives. (Given our modern understanding of logical systems
it 1s obvious that for any axiomatic theory there are infinitely many syntactically distinct but
logically equivalent axiomatisations of the theory. In the context of geometry this is well illustrated
by Fuclid’s fifth postulate which (when taken together with his other four postulates) has been
proved logically equivalent to a host, of other possible axioms (e.g. that the angles of a triangle add
up to 180°).

At a more fundamental level there are also many different concepts or sets of concepts that
could be taken as primitives in a formal system. (Given two sets of primitives, A and B, it may
happen that each concept of B can be defined (by means of purely logical equivalences) in terms

of the concepts of A; in this case the sett A is at least as expressive as B. Moreover two sets of
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concepts may be equal in expressive power and so could serve as alternative sets of primitives for
(essentially) the same theory.”

Analysis of Euclid’s geometry led to several equivalent systems employing different primitive
relations between points equidistance of two pairs of points, equidistance of two points from a
third, mutual equidistance of three points, the relation between five points which lie on the surface
of the same sphere. However in all these formulations one primitive notion remains constant
that of point. Commitment to the notion of ‘point’ 1s easily overlooked in most axiomatic systems
of geometry because it is often assumed that, the domain of (Tst-order) quantification coincides with
the totality of points so there is no need to actually employ a predicate ‘point(x)’. Nevertheless, as
we shall see in the next chapter, a number of axiom systems have been proposed in which regions
rather than points make up the domain of quantification. So, in formulating a theory of spatial
relationships (or any other theory), we have a large degree of freedom, not, only in how we state
its axioms and which primitive predicates we employ, but also in choosing the type of objects that
make up the domain of elementary individuals of the theory.

Nicod’s doctoral thesis Geometry in the Sensible World (1924) opens with a penetrating analysis
of the relationship between alternative systems of geometry based on different primitive notions.
Here he introduces the ideas of intrinsic and exirinsic complexity of formal systems. The former
resides in the structure of the system itself whereas the latter depends on how simply the elements
and concepts of the formal theory can be matched to objects and properties in the domain of
application of the theory. Thus, for specifying a theory of physical processes, a formal system in
which points are the basic elements may be internally simple; but, because abstract points cannot
be perceived directly or precisely located in the physical world, it would be deemed externally

complex.

1.3.1 Basic Elements in a Spatial Theory

Five of the most promising candidates to serve as basic elements in a theory of spatial relationships

are given in the following table:

Objects Fxistential Character Proponents

Points abstract Fuclid, Descartes (1637)

Regions spatial Clarke (1981), Randell, Cui and Cohn (1992)

Bodies physical Sneed (1971)

Things linguistic/metaphysical Whitehead (1929), Simons (1987)
Sense-data Sensory Whitehead (1929), Nicod (1924)

The most established ontological foundation for spatial reasoning is to construe points as the
basic elements out of which more complex spatial objects are in some sense composed. Points are
usually regarded as abstract theoretical entities because they have no physical extension nor mass.

The 1dea of developing a geometry based upon sense-data was pursued by Whitehead and Nicod

7A number of important theorems concerning the definability of concepts and the completeness of conceptual

frameworks are given in (Tarski 1956b).



CHAPTER 1. INTRODUCTION 21

under the influence of Russell’s epistemological theories, according to which the basic elements of
reason must be correlated with simple sense data such as colour patches in the visual field (Russell
1912). Within such an ontology, points  if they are to exist at all ~ must be somehow constructed
in terms of sense-data.

Taking regions as basic may be seen as a compromise between point-based and sense-data-
based ontologies in that, although regions are strictly abstract partitions of a space, they seem to
be much closer to sense-data than are points. (A given region may possess a certain property
‘greenness’ say and this will be perceived as a green patch.) Although Whitehead and Nicod
saw sense-data as primary, they also gave axiomatisations whose objects are (abstract) regions;
the correspondence between these regions and actual sense-data would then have to be given by
an auxiliary definitional theory (c.f. the chapter “The geometry of perspectives’ in Nicod’s thesis).
Laguna and Tarski also developed theories of regions (which they, slightly misleadingly, called
‘solids’) but, did not appear to be so concerned with the epistemological status of regions. Their
theories are presented more as alternative abstract systems of geometry, in which the status of
point and region is inverted with respect to set-theoretic construction.

Region-based formalisms have often been presented as relating to arbitrary ‘solids’ (de Laguna
1922, Tarski 1929). This might suggest that the objects of these theories are physical bodies
for ‘solidity’ is surely a physical property, which could not apply to an abstract region. However,
a theory of physical bodies would have to take into account the material structure and properties
of such objects rather than treating them as abstract volumes. Such formalisations of physical
objects are at a relatively undeveloped stage, although a number of formal theories of Newtonian
mechanics have heen proposed (e.g. (Montague 1962)). A discussion of the problems involved in
specifying physical theories in a fully formal framework can be found in (Sneed 1971).

A final existential perspective on the objects of spatial reason 1s given to us by our linguistic
descriptions of objects in space. Such objects are generally individuated by means of count nouns
(e.g. table, cup, saucer), each of which carries its own criteria for identification. These linguistic
classifications and their associated criteria of recognition derive from the practical significance of
certain types of physical entity conditioned to some extent by more or less arbitrary linguistic
conventions. The utility of this classification is to a large extent determined by the physical nature
of the world: the material properties of the world give rise to ‘natural’” ways of classifying it and
breaking it into chunks. However, 1t may be argued these physical circumstances give rise to
a framework of metaphysical categories which must underly any linguistic description of spatial

entities.

1.83.2 Modes of Formalism

At a still more fundamental level, the very boundary between a logical representation language and
a theory expressed in that language may be shifted. Three kinds of representation together with

their apparatus for information manipulation are summarised in the following table:
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axiomatic theorem proving
algebraic (analytic) coordinates and equations
purely logical spatial logic and proof procedures

Applying the axiomatic method to spatial reasoning involves formulating a spatial theory in
some general-purpose logical language (such as lIst-order logic) and then proving theorems in
that system. Tt has been found that theorem-proving in all but the simplest logical languages is
intractable. The algebraic approach is the one that 1s most commonly adopted. Information is
coded in polynomial equations and/or inequalities. Disjunctive and quantificational constructs are
avoided so that the expressive power of the system is limited. Effective methods for manipulating
and extracting information from equations and inequalities are well-known. The possibility of a

purely logical approach is not widely appreciated. Tt will be discussed in the next section.

1.3.3 Logical Theories of Space and Spatial Logics

The vocabulary of a formal language can be divided into two categories of atomic expression,
which may be called logical and non-logical. Tn 1st-order logic the logical symbols are the truth-
functional connectives and quantifiers, and the non-logical vocabulary consists of constants and
predicates. (Variables may be regarded as notational devices associated with quantifiers as a
means of indicating their scope.) We have seen how in representing a theory in a formal language
there may be many possible sets of non-logical primitives in terms of which the theory could be
specified. However, there is also a more radical kind of alternative formulation: concepts of the
theory may be encoded directly into logical symbols (or complex logical structures) of the formal
language. In doing this we arrive at a true spatial logic, rather than merely a theory of spatial
relations specified in a general-purpose logical language.

In chapter 4 we shall investigate this possibility at some length. The most novel and substantial
results of this thesis concern the representation of spatial relationships in terms of non-classical
0-order logics. One advantage of such encodings is that one often immediately obtains a decision

procedure for the spatial theory.

1.4 Spatial Reasoning in Computer Science

In most existing computer programs, representation and manipulation of spatial data is very largely
numerical. Objects and regions are represented by sets of coordinates and information is extracted
from this data by means of arithmetic and trigonometric computations.

Numerical representation may be well suited for some purposes, in particular where the spatial
information precisely describes some definite situation and where the output required from the
system 1s itself primarily numerical. However, in many cases, useful spatial information does not
describe a unique physical situation but qualitatively characterises a situation as being of a par-

ticular type. Extracting information from such data requires logical reasoning about the concepts
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involved in describing a situation; and hence requires a rigorous (formal) theory of qualitative
spatial relationships.

From a computational point of view, qualitative theories of spatial relations are relatively un-
developed. Nevertheless some significant work has been done. Randell and Cohn (1989) and
Randell, Cui and Cohn (1992) specify a lIst-order theory of spatial regions based on a primitive
relation of connectedness, C(x,y), together with a number of (quasi-Boolean) functions. Despite
containing very few non-logical primitives this theory has been found to be quite expressive: indeed
a large number of significant spatial relations can be defined exclusively in terms of the relation,
C (Gotts 1994). Egenhofer (1991) presents a much more limited framework in which a number of
topological relations can be represented. He also shows how some simple inference rules can be
used to generate the composition of any pair of these relations (see chapter 9 for a full discussion

of composition-based reasoning).

1.4.1 Commonsense Knowledge

Many influential AT researchers have argued that representation of so-called ‘commonsense’ know-
ledge is of key importance in developing ‘intelligent’ computer systems; and a fair proportion
of these researchers have employed formal representations and axiomatic theories as a means of
encoding this knowledge (see e.g. (Hayes 1979, Hayes 1985b, Guha and Tenat 1990)). Qualitat-
ive spatial concepts are pervasive in everyday descriptions of the world so axiomatic theories of
commonsense knowledge will have to incorporate many axioms governing the logical behaviour of
spatial properties and relations.

A very large number of theories have been constructed, so detailed descriptions cannot be given
here. Many of the papers which shaped this field of AT are contained in the collections (Hobbs,
Blenko, Croft, Hager, Kautz, Kube and Shoham 1985) and (Hobbs and Moore 1985). A more

recent reference on formal representations of commonsense knowledge is (Davis 1990).

1.4.2 Reasoning about Physical Systems

Another domain of knowledge representation that has received considerable attention is that of
physical systems. Reasoning about physical systems may be treated as a type of commonsense
reasoning or alternatively one may attempt to formalise the kind of reasoning employed by phys-
icists, which involves manipulation of mathematical equations as well as the use of commonsense
principles. Although spatial properties are of fundamental importance to the characterisation of
physical systems, work in this area has tended to focus on their dynamical behaviour rather than

their static properties. Key papers in this area can be found in (Weld and De Kleer 1990).

1.4.3 Spatial Reasoning in Robotics

Spatial reasoning is clearly of key importance in the field of robotics. But, becanse of the complexity
of the domain, the use of formal representations has been limited. Most robot control systems rely

on algorithms which are (from a logical point of view) rather ad hoc.
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However, certain methods for classical robot path planning do make use of logical representa-
tions. A general representation for physical objects can be given in terms of semi-algebraic sets.
These are sets of points defined by Tst-order formulae whose atoms are polynomial equalities or
inequalities. The consistency of sets of such expressions can be determined by the decision pro-
cedure for algebra and geometry given by Tarski (1948), who showed how quantifiers could he
eliminated from these formulae. The use of this decision procedure for computing collision free
paths for a robot in an arbitrary workspace characterised in terms of semi-algebraic sets is de-
scribed by Tatombe (1991). Other uses of quantifier elimination methods in geometrical reasoning
are discussed by Arnon (1988).

Tt 1s likely that spatial reasoning formalisms akin to those developed in this thesis will ultimately
play an important role in robotic control systems. But before this can be done it will be necessary
to develop representations with which one can express and reason about both spatial and dynamical

aspects of physical systems. This is beyond the scope of the present research.

1.4.4 Spatial Reasoning and Computer Vision

The field of computer vision is an extremely active area of AT research and has produced systems
which are actually used in applications. Vision is clearly very closely related to spatial reasoning.
Nevertheless very little of the research done in this area is of direct relevance to the concerns of
this thesis.

Computer vision is concerned primarily with ertracting information from sensor data. The
sensor data would typically take the form of two-dimensional pixel images. Various types of
information may be extracted but the most common tasks would be to construct some kind of
three-dimensional model of the scene or to locate types of object or region in the scene. Spatial
reasoning on the other hand 1s concerned with manipulating spatial information and in particular
in finding consequences holding among spatial propositions.

Although the concerns of vision and spatial reasoning are rather different, there is some inter-
action between the problems of the two fields. For instance, in extracting 3D information from a
2D scene, the ability to draw inferences from, and to test the consistency of, 3D spatial informa-
tion may be very useful in narrowing down the range of possible interpretations of a scene. This
technique would be akin to that used by Waltz (1975) for finding 3D descriptions of shaded 2D

drawings.

1.4.5 Temporal Reasoning

Temporal reasoning is a distinct and very active area of research. Nevertheless space and time are
often considered to be very closely related aspects of reality, so it is useful to consider similarities
between spatial and temporal formalisms.

Temporal reasoning has been developed in a number of different ways.®# Originating with the

work of Prior (1955, 1967), tense logics have been developed in which temporal relationships

8 A survey of temporal logics and their applications can be found in (Galton 1987).



CHAPTER 1. INTRODUCTION 25

between states of affairs are modelled 1n terms of propositional operators. This analysis of tense
18 much the same as that given by modal logics in respect of concepts such as necessity and belief,
which are likewise represented in terms of propositional operators. Galton (1984) further analyses
the structure of temporal operators by means of a language in which propositions and events are
distinct types of expression.

Until recently languages such as tense logic, where temporality is modelled by special categor-
ies of logical operator, have not been widely employed by AT researchers. Theories of actions and
change have rather heen represented in more standard notation (1st-order logic or some variant),
with semantic properties being specified by axioms or captured by special purpose inference rules.
The best known work in this area is that of Allen. Allen identified a set of thirteen JEPD relations
which can hold between two temporal intervals and studied reasoning procedures based on the
composition of these relations (Allen 1981, Allen 1983). A lst-order theory describing these tem-
poral intervals and their relationship to actions and events was also developed (Allen 1984, Allen
and Hayes 1985).

Whilst 1st-order theories may be very useful in establishing a sound theoretical framework for
representing information in some domains, requirements of computational tractability mean that
for most practical purposes it has been found that less expressive, more domain-specific languages
must be used. These come in two basic varieties: on the one hand we have constraint languages
capable of representing and reasoning with relational facts involving a fixed set of temporal relations
(e.g. the 13 Allen relations  or perhaps some tractable subset of disjunctions of these relations);
on the other hand we have languages containing temporal operators but less expressive than 1st-
order logic (e.g. propositional or Horn clause languages). Formalisms of both these kinds are now
(1997) extremely widespread and well-known in AT.

The content of this thesis reflects many parallels between the possible approaches which can
be taken to representing spatial information and approaches which have been applied to temporal
information. Construction of the RCC theory of spatial regions was greatly influenced by the
works of Allen and Hayes (Allen and Hayes 1985, Hayes 1979, Hayes 1985a, Hayes 1985b) and
consequently its development followed a similar pattern: a lst-order theory was presented and
investigated; then to provide a reasoning mechanism useful constraint languages were 1dentified
within which composition based reasoning could be conducted. The most original part of this
thesis develops an alternative route to spatial reasoning wia 0-order logical languages with spatial
operators. Hence, spatial as well as temporal reasoning can be carried out within the broad
framework of modal logic.?

T envisage that as the field of spatial reasoning is developed 1t will become increasingly linked
to temporal reasoning. In order to represent and reason about changing situations a combined

(spatio-temporal) formalism is clearly needed. Reasoning about action and change has very often

?Tn fact, it is perhaps more revealing to realise that what is common between all these modes of reasoning is that
they are all representable in the very general framework of Boolean algebras with additional (monadic) operators.
Togical languages whose semantics can be specified in terms of such algebras form a very natural class of formal
systems whose expressive power is greater than that of propositional logic but which are still in many cases decidable.

The use of such languages in spatial reasoning will be investigated in chapters 4,5 and 6.
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been presented in formalisms in which there is a basic category of expression referring to events.
In providing semantics for such formalisms events have very often been identified with temporal
intervals. However, the temporal extent of an event is only one dimension of its existence. T believe
that events (or at least most kinds of event) are spatial just as much as temporal entities and that,
an adequate semantics for events must take into account this spatial character.

The modal representation of spatial relations developed in chapter 4 is in many respects similar
to propositional tense logics. Tf propositions in a tense logic are regarded as 1-dimensional regions
on a ‘time line’ it is clear that temporal operators are closely related to spatial relationships. The
main difference between tense logics and the spatial logics that T shall present is that a tense logical

formula is evaluated to be true or false at a particular time.

1.5 Automating Spatial Reasoning

Automated reasoning has attracted a great deal of attention from computer scientists from the
sixties onwards. Significant advances have been made in developing proof methods which are
well-suited to computation.’®

Despite this progress, fundamental problems remain. Most researchers in this area have focused
on general-purpose lst-order theorem proving. However, it 1s known that reasoning with this
formalism is undecidable. This means that, although proof algorithms for 1st-order logic can be
specified which are guaranteed to generate a proof of any theorem in finite time, there can be no
algorithm that can determine whether any arbitrary 1st-order formula is a theorem in finite time.
This is because, whatever proof procedure is used, there will always be a class of non-theorems for
which the algorithm does not terminate. Unless this difficulty can somehow be circumvented it is
unlikely that general-purpose 1st-order theorem provers will ever be used in practical applications.

There are essentially two ways of avoiding the undecidability problem: one is to use a general-
purpose logical language which is less expressive than lst-order logic; the other is to use some
special purpose representation designed for reasoning in a particular conceptual domain. This
thesis combines both these approaches: T focus on representing information in the restricted domain
of spatial relationships but in order to reason about these relations T show (in chapter 4) that they

can be encoded in a formalism which is normally regarded as a general purpose 0-order language.

1.5.1 Complexity of Mathematical Theories

As we have seen, spafial reasoning has long been a concern of mathematicians. Indeed the fields
of geometry and topology are extremely well developed and are of direct relevance to antomated
reasoning about spatial situations. But the problem with nearly all mathematical theories is that
they are too complex to reason with effectively. Topology is built upon a large amount of set
theory, so any naive reasoning algorithm based on standard formulations of topology will have as 1ts

search space virtually all of mathematics. Whilst rather more succinet, (1st-order) axiomatisations

10General texts on Automated Reasoning which describe these methods include (Bibel 1993) and (Duffy 1991).
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of elementary geometry exist (e.g. (Tarski 1959)), these are still far too complex to be tackled by
existing theorem proving techniques.

The need to employ such axiom systems can be avoided by employing the methods of analytic
geometry. Tines and regions can then be represented in terms of formulae comprising polynomial
equations and inequalities relating the Cartesian coordinates of points. If such an approach is to
be effective the logical form of these formulae must be severely restricted: normally one simply has
a set of equations/inequalities which is implicitly taken as a conjunction in which all variables are
universally quantified. Under these restrictions disjunctive information cannot be represented, nor
18 1t possible to specify relationships involving more subtle quantificational structure. Surprisingly,
if one introduces Boolean operators and arbitrary quantification, the resulting language (known as
the Tarski language) does actually remain decidable by means of a quantifier elimination method
(Tarski 1948). Algorithms for quantifier elimination in the Tarski language have been the subject
of considerable investigation (Collins 1975, Arnon 1988, Caviness and Johnson 1995, Mishra 1996)
and, although the general problem is intractable, procedures have been found which are effective

for large classes of formulae.

1.5.2 Tractability and Decidability

The major problem in developing a useful formalism for reasoning about spatial information (indeed
for any domain) is the trade-off between expressive power and computational tractability. Whilst
Egenhofer’s representation does allow for certain inferences to be computed effectively, the scope
of the theory 1s limited. On the other hand, although the formalism presented in Randell, Cui and
Cohn (1992) is very expressive, since it is presented in Ist-order logic, reasoning in the calculus is
extremely difficult (however the use of pre-calculated composition tables for relations definable in
the theory does enable certain kinds of inference to be computed efficiently).

Tt is common in computer science to equate tractability with polynomial-time computability.
But to a logician this will probably seem an overly harsh restriction, since proof procedures in
nearly all interesting logics are at least exponentially hard. In this thesis T shall be primarily
concerned with finding decidable representations for spatial information but we shall see in chapter 6
that by restricting the range of spatial relations which may be represented (to a class including all

the RCC-8 relations illustrated in fig 1.2) a polynomial-time reasoning algorithm can be obtained.

1.6 The Content of this Thesis

The principal aim of this thesis is fo investigate frameworks for representing spatial information
that are both expressive enough to be useful for solving real problems and are in some sense
tractable. T focus on topological relationships, which T consider to be the most fundamental of
spatial concepts; but T also examine the non-topological property of convexity. The rest of the

thesis 1s organised into the following chapters:
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2: Axiomatic Theories of Spatial Regions

In the next chapter T survey previously proposed theories of spatial regions. T first give a brief
description of classical point-set topology in which regions are treated as sets of points. T then
consider theories in which regions are taken as basic entities. The earliest of these are the systems
of Lesniewski and of Whitehead, put forward at the beginning of this (the 20th) century. Also
covered are the theories of Tarski (1929) and Clarke (1981). T go on to describe in some detail the
more recent theory of Randell, Cui and Cohn (1992) (the RCC theory), which is a modification of

Clarke’s calculus and was formulated with computational applications specifically in mind.

3: Analysis of the RCC Theory

The RCC theory is now investigated in some detail. T examine the axiom set and suggest certain
modifications which seem to be required. Models of the theory in terms of classical point-set
topology are given and the possibility of constructing a complete theory is considered. T observe
that no adequate Tst-order theory can be either complete or decidable. T suggest a new theory

constructed so as to avoid certain technical problems arising in the original RCC theory.

4: A 0-Order Representation

Since Tst-order theories such as RCC are undecidable they cannot be used as a basis for effective
reasoning. Thus the representation language (or languages) used in a spatial reasoning system
must be more restricted in their expressive power. (0-order logical calculi are normally regarded as
propositional logics; but as we shall see, a spatial interpretation of expressions of these formalisms
can be given, in which the non-logical constants refer to spatial regions rather than propositions.
This idea 1s introduced using the classical propositional logic, which can be interpreted as a Boolean
calculus of spatial regions. The formalism of classical logic 1s then augmented to provide a language
CT, which is capable of expressing a considerably larger class of spatial facts. T give a decision
procedure for this language obtained by adding simple meta-level reasoning to the basic proof

theory of classical O-order logic.

5: A Modal Representation

Further, extending the framework proposed in chapter 4, T show how modal operators can be
interpreted so as to correspond with further operations on spatial regions which are needed to
capture more subtle differences between different spatial relationships. Specifically we shall see
how the operator of the modal logic S4 can be interpreted as a topological interior operator. T
then give an encoding for a large class of topological relations (also expressible in RCC) into an
aungmented form of the S4 language which T call S4%. This provides a decision procedure for a

quite expressive spatial language.
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6: An Intuitionistic Representation and its Complexity

Whilst the modal logic representation of spatial reasoning exemplifies a general methodology for
using 0-order languages in knowledge representation, its use for any practical application would
require an efficient theorem prover for S4. Tn this chapter T describe the implementation of a spatial
reasoning system using a representation in terms of O-order intuitionistic formulae. The core of
the system is a (zentzen-style sequent calculus, which is a restriction of a well known rules system
for the full 0-order intuitionistic calculus. The intrinsic complexity of reasoning algorithms using
this intuitionistic representation has been studied by Nebel (1995a). Nebel looked at reasoning
using a tableau method and has shown that the inferences needed for reasoning with the fragment
of the logic needed to represent a large class of spatial relations (including in particular the 8 bhasic

relations considered in chapter 2) can be computed with a polynomial time algorithm.

7: Quantifier Elimination

In this short chapter T present a partial decision procedure for 1st-order theories of the connection
relation. This is based on the method of quantifier elimination. This technique can be used as a
preprocessing step applied to a restricted class of 1st-order spatial formulae prior to translation

into the S4 or intuitionistic encodings.

8: Convexity and Containment

The main results of the thesis apply primarily to the significant but by no-means comprehensive
range of spatial relations definable from the primitive relation of connectedness. However, similar
methods can be applied to other aspects of spatial reasoning (and probably to other areas of know-
ledge representation). Tn this chapter T explain how the techniques of 0-order representation can
be extended to handle non-topological information concerning the convexity of regions. This illus-
trates methods by which the techniques given for effective reasoning with topological relationships

can be extended to handle non-topological information.

9: Composition-Based Reasoning

In this chapter T look at spatial reasoning based on the notion of relational composition. T examine
the use of composition tables to compute inferences and their relation to Tst-order theories. T also
present a relation algebra formalism for topological relations in which the role of the composition

operation is much more prominent than in l1st-order representations.

10: Further Work and Conclusions

In the concluding chapter T evaluate the usefulness of the logical representations and reasoning
systems presented in this thesis. T assess the prospects for development of more expressive repres-
entations for spatial reasoning which are computationally viable and look at how spatial reasoning

might be incorporated into more general reasoning systems. Potential applications areas includ-
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ing Geographical Tnformation Systems (GIS), Robot Motion Planning and Computer Vision are

considered; and T describe a prototype IS with a limited qualitative spatial reasoning capability.

1.6.1 Assumed Background and Notations Employed

In this thesis T assume a knowledge of classical logic and set theory. T also make use of established
work in the areas of algebra, model theory, modal logic, and intuitionistic logic, so acquaintance
with these fields will be useful. Standard formal notations of logic and set theory are employed.

Other notations will be introduced and explained when required.



Chapter 2

Axiomatic Theories

of Spatial Regions

This chapter surveys, in some detail, a number of formal theories of spatial regions. First |
briefly explain classical point-set topology, in which regions are characterised as sets of points.
The rest of the chapter is concerned with theories in which extended regions are treated as
basic (0-order) entities. Although, some very eminent logicians have proposed and investigated
region-based formalisms, they are still far less well understood than point-based theories. The
following systems will be described in some detail: T.edniewski’s Mereology, Tarski’s (Geometry
of Solhds, Clarke’s theory of the Connection relation, and the Region Connection Calculus

(RCC). Several other formalisms will also be considered.

2.1 Point-Set Topology

Classical point-set topology is based on set theory. The basic (0-order) elements of the theory are
points. Regions are identified with sets of points. In developing the theory, the principle mathem-
atical objects considered are topological spaces. These are sets of elements (points) associated with
an auxiliary structure determining the topological properties of the space. A topological space can
be formally defined in a number of ways. Perhaps the simplest is as a set of sets, which includes
the empty set and 1s closed under arbitrary unions and finite intersections. This is the set of open
sets of the space. The largest open set (which is the same as the union of all open sets) is called
the universe of the topology. A topology can thus be represented by a structure T = (U, O), where
{J 18 the universe and O is the set of open sets.

Tn a topological space T = (U, O), given an arbitrary subset S of U, the interior of S is the
largest member of O that is a subset of S. The interior function, 4, on a topology (U, O) maps
every subset of U to its interior (a member of O). Because of the conditions on the set of open
sets, 7 must satisfy the axioms PSTi1-4 given below. Tn PSTi3, i is a meta symbol referring

to whatever is the universal set of the topological space under consideration i.e. for topology
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T =(U,0) we have U = U." X and Y are any subsets of the universe.
PSTil) #(X)UX =X

PSTi2) i(i(X)) = i(X)

PSTi3) i(U)=U

PSTi4) (X NY)=i(X)Ni(Y)

Given a set U/, any function ¢ that maps subsets of I/ to subsets of I/ and obeys the above
axioms determines a unique topology (U, O): the elements of O are simply those subsets .S of U
such that i(S) = S. Hence, any topology (U, Q) can be alternatively characterised by a structure
(U, i), where i is an interior function.

A set is called closed iff it is the complement of some open set. The closure of a set is the
smallest closed set of which 1t 1s a subset. The closure function, ¢, mapping arbitrary subsets of
a space to their closures must satisfy the equations PSTc1-4 given below. The set of closed sefs
of a space or the closure function, ¢, can each be used as further alternative ways of specifying

the topology of a space. Tnterior and closure functions are inter-definable: ¢(X) = i( X' ) and

i(X) = ¢( X ). Here, and throughout the sequel, X is the complement of X w.r.t. the universe.
PSTcl) X Uce(X) =c¢(X)

PSTc2) c(e(X)) = ¢(X)

PSTe3) ¢(0) =10

PSTc4) (X UY)=¢(X)Uc(Y)

As was mentioned in section 1.5, the language of set theory, in which point-set topology and
many other mathematical theories are formulated, is highly intractable. Hence, this formalism is
not. well suited to computational applications. Nevertheless, it may be possible to find useful sub-
languages of set theory for which effective reasoning procedures can be constructed. In section 5.3
T shall describe a purely algebraic sub-language of the formalism of point-set topology, which is
both decidable and quite expressive.

Being built directly on set theory, point-set topology has an unambiguous set-theoretic se-
mantics. This makes 1t a useful tool for studying the model theory of other spatial languages. Tn
the rest of this chapter and the following chapter T shall consider several theories whose semantics
are not so well defined. Tf it is possible to interpret such a language in point-set-theoretic terms, this
immediately gives it a precise (though indirect) semantics. Hence such an interpretation can form
the basis for soundness and completeness proofs. The methods of topological reasoning described

in chapters b and 6 are both justified in this way.

'Tn considering a single topological space the symbol U is not really necessary since we can always refer directly

to the universal set. However, in chapters 4, 5 and 6, T shall often use U to make statements about classes of algebras.
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2.2 The Origins of Region-Based Theories

The early years of the 20th century saw intense activity in attempting to apply the methods of formal
logic and set theory to mathematics and physics. Russell’s epistemology and ideas about logical
primitives were very influential at that time and Whitehead’s book Concept of Nature (Whitehead
1920) proposed a view of physics and geometry which is a radical revision of traditional conceptions:
he sought to found these disciplines on sense data, which according to Russell (1912) can be the
only referents of truly primitive terms. To describe the spatial aspects of sense data, Whitehead
proposed the construction of a geometry in which spatial regions rather than points would be the
basic entities. Sense data could then be said to occupy spatial regions, whereas points would be
abstract entities derived theoretically from regions.

Tn his book Process and Reality (1929) Whitehead suggested that a general theory of objects
events and processes could be developed based on the primitive relation of connectedness; and
he specified a large number of logical properties of this primitive. Since the only well-developed
physical theories are formulated in terms of variables ranging over points in space (and time),
Whitehead proposes the method of extensive abstraction (introduced in the earlier work (White-
head 1920)) as a means of constructing points from regions of space (or space-time). The idea is
to define a point in terms of certain infinitely nested sets of regions (a similar approach to char-
acterising points in terms of regions has been followed by Clarke (1985) and is described bhelow in
section 2.5.3).

Nicod’s doctoral thesis Geometry in the Sensible World (1924) developed Whitehead’s approach
in a number of directions.? Nicod adopted and modified Whitehead’s method of ‘extensive abstrac-
tion’ for the construction of points from regions. He also proposed some highly original approaches
to constructing geometrical systems from a phenomenological standpoint. One of these is a char-
acterisation of geometry from the point of view of a being equipped only with a kinaesthetic sense
of 1ts own movement in space. Another takes into account the viewpoint and perspective of an
observer in describing geometrical entities. Tt 1s also interesting to note that the chapter of the
thesis on “Temporal Relations and the Hypothesis of Durations’ contains a discussion of temporal
relationships between intervals and proposes a classification which is essentially the same as that
adopted much later by Allen (1981). Another logician influenced by Whitehead was Theodore de
Laguna who gave a theory of the ‘geometry of solids’. This will be briefly described in section 2.7.1.

Contemporary with the investigations of Whitehead and his followers, the Polish logician and
philosopher Stanislav Lesniewski was conducting an extensive enquiry into ontology and logical
representations. He was particularly concerned with characterising the part-whole relation between
objects and was critical of the set-theoretic treatment of this relationship. His theory was intended
to describe entities of any kind; but in this chapter T shall only be concerned with its application

to spatial regions.

?Russell regarded Nicod as potentially one of the greatest logicians of the 20th century and looked to him in
particular to carry forward the project of founding logical theories of the physical world on the basis of sense-data.

Tragically, Nicod died prematurely soon after the publication of his doctoral thesis.



CHAPTER 2. AXIOMATIC THEORIES OF SPATIAL REGIONS 34

2.3 Lesniewski’s Mereology

Mereology, a formal theory of the part-whole relation was originally presented by Lesniewski (1927-
1931) in his own logical calculus, which he called Ontology. This calculus is based on principles
which are rather different from those of the standard predicate calculus. The principal distinctive
features of Ontology are: firstly, that terms do not necessarily denote a single object (they may refer
to nothing, a unique individual or any number of distinct individuals); and secondly, quantification
is not associated with existential commitment (it has a more substitutional flavour). For certain
purposes Lesniewski’s Ontology has distinct advantages over standard logic. For example, in the
spatial domain one may wish to employ a function ‘the region of intersection of # and ¥’ but this is
a partial function, since if # and y are disjoint no such region exists. In standard logic terms always
denote a unique individual, so partial functions are not legitimate; but in Ontology such functions
present no problem.? A full description of Lesniewski’s Ontology 1s beyond the scope of this thesis
(see (Simons 1987) for a detailed account). However, the content of the theory of Mereology is not
bound fo the form in which it was initially stated. Hence T now present a formulation of Mereology,
due to Tarski (1929), stated in standard classical logic.

Mereology is built on the single primitive relation P(x,y), whose interpretation is that z is a
part of y. Tn terms of this, the relations of ‘proper part’ (PP) and ‘disjointness’ (DJ) are defined,
as well as SUM, which is a relation between a set of individuals and an individual. T shall use small
Roman letters for variables ranging over individuals and small Greek letters for variables ranging

over sets of individuals. The definitions can then be given formally as:

Mdefl) PP(z,y) =.., (P(z,y) A =(z = y))
Mdef2) DJ(z,y) =.., —3z[P(z,2) A P(z,y)]

Mdef3) SUM(«o,2) =,.; Yyly € o — P(y, z)]
A —3z[P(z,2) A Vyly € @« — DI(y, 2)]]

In addition to the usual principles of classical logic and the theory of sets, the system is required

to satisfy the following specifically mereological postulates:
Mpostl) VaVyVz[P(z,y) A Py, z) — P(z, 2)]

Mpost2) Veo[Te[z € o] — 32[SUM(a, 2)]]

These ensure firstly that the part relation is transitive and secondly (and rather controversially)
that for any non-empty set of individuals there is a unique individual which is the sum of that set.
Proofs of a number of theorems derivable from these axioms (e.g. that P is reflexive) can be found
in (Woodger 1937, Appendix E). A short-coming of the theory of mereology, based as it is on
the part relation, is that no distinction can be made between the relations of connectedness and

overlapping: if two regions do not overlap they are simply discrete.

3 Alternative formalisms in which partial functions can be handled are sorted classical logic (see e.g. (Cohn 1987))

and free logic (Bencivenga 1986).
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2.3.1 Other Mereological Systems

A number of theories have been developed which contain mereological primitives equivalent or
similar to Lesneiwski’s. Woodger’s The Aziomatic Method in Biology (1937) uses the theory
exactly as given above. Leonard and Goodman (Leonard and Goodman 1940) devised a formalism
which they called the “calculus of individuals”, based upon a predicate which holds when two
individuals are discrete. This system is essentially the same as Lesneiwski’s but uses different
notation and contains many additional definitions. The theory is applied to a number of problems
involving relations between individuals, groups and ensembles that cannot be handled by ordinary
quantification. This formalism also appears in (Goodman’s book The Structure of Appearance
(1951) which proposes an approach to formal description of the world based on principles of

logical nominalism (a reluctance to admit the existence of abstract entities such as sets).

2.4 Tarski’s Geometry of Solids

Building on Tesneiwski’s mereology by introducing a new sphere primitive, Tarski (1929) gave a
theory of the ‘geometry of solids’,* which is embedded, by means of definitions, into an axiomat-
isation of elementary Euclidean geometry (such as that given in (Tarski 1959)).

Tarski starts by postulating a domain of spheres (T use the predicate SPH(2) to mean z is
a sphere), over which he defines the relations of external tangency (ET), internal tangency (1T),
external diametricity (ED), internal diametricity (ID) and concentricity (CONC). ED(a, b, ¢) holds
when a and b are externally tangent to ¢ and touch diametrically opposite points on ¢’s boundary.

These relations are defined as follows:

SGdefl) FET(a,b) =u.; (SPH(a) A SPH(b) A DJ(a,b) A

VaVy[(P(a, #) A Pla,y) A DI(b,z) A DI(b,y)) = (P(z,y) Vv Py, 7))])
SGdef2) IT(a,b) =a.; (SPH(a) A SPH(b) A PP(a,b) A

Vady[(P(a,#) A P(a,y) A P(x,b) A Py, b)) — (P(z,y) V Py, ))])
SGdef3) ED(a,b,c) =u.; (SPH(a) A SPH(b) A ET(a,c) A ET(b,c) A

Vavy[(DI(z,c) A DI(y,c) A P(a,z) A P(b,y)) — DI(z,y)])
SGdef4) ID(a,b,c) =a.; (SPH(a) A SPH(b) A SPH(c) A IT(a,c) A IT(h,c) A

Vavy[(DI(z,c) A DI(y,¢) A ET(a,x) A ET(b,y)) = DI(z,y)])
SGdefs) CONC(a,b) =..; (SPH(a) A SPH(b) A ((a =b) V

(PP(a,b) A YaVy[(ED(z,y, a) A IT(x,b) A 1T(y,b))

— ID(z,y,b)]) Vv
(PP(b,a) AVzVY[(ED(z,y,b) AT (5,a) AT (y, a))

— ID(z, y,a)])))

The next step 1n Tarski’s formulation is to constrain the theory to be compatible with Euclidean

geometry. To do this he defines the notions of point and equidistance, which can serve as the only

4 As mentioned in section 1.3.1, this is perhaps better thought of as a theory of ‘volumes’, since the entities of the
theory are allowed to inter-penetrate each other and the property of solidity is not considered. The same applies to

de T.aguna’s theory which will be described in section 2.7.1.
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primitives in such a theory of geometry.® Both these concepts can be defined in terms of the

relations defined above.

SGdef6) A point is defined as the set of all spheres concentric with a given sphere:

POINT(x) =,., Jz[x € m A Vy[y € 7 + CONC(z, y)]]

SGdef7) Equidistance of two points from a third, ab = be, is defined as follows:

ab="be =,,, xfreb A -Tyl[lycaVyece)A (Ply,z) Vv DIy, 2))]]

Identification with the corresponding notions in Fuclidean geometry is then achieved by the

following postulate:

SGpostl)  The notions of point and of equidistance of two points from a third satisfy all the

postulates of ordinary Euclidean geometry of three dimensions.

Having fixed the structure of the set of points we still need to specify how ‘solids’ are related

to this structure.
SGdef8) A solid is an arbitrary sum of spheres:®

SOLID(z) =,., IX[SUM(X,z) A Vyly € X — SPH(»)]]

SGdef9) The point 7 is interior to the solid a:

INTER(m, a) =,., Jz[z € 7 A P(2,a)]

We now correlate the set of interior points of a solid with the geometrically definable concept
of a reqular open set of points. To do this T define interior (int) and closure (cl) functions on sets
of points (capital Greek letters). The definitions use the relation ‘zy < yz’, which is definable from
‘ry = yz’ (see appendix A). Tn the usual topology of Euclidean space the interior points of a set
are those that can be surrounded by an ‘open ball’ all of whose points are within the set. This is

the basis of the following definitions:
SGdef10) int(Th) =0 =,., Ve[r €0 & Jyly # 2 A Vz[za < 2y — z € TT]]
SGdefll) (=0 =,,, Ve[r €0 & Vyly # 2 — Jz[zz <ay Az €]

SGdefl2) ROPEN(TT) =,., int(cl(TT)) =TI

The next two postulates stipulate that the interior points of solids are to be identified with

regular open sets of points.

5Tarski’s own formulation of elementary geometry, which is given in appendix A, employs equidistance and
betweenness as primitive relations; but betweenness can in fact be defined in terms of equidistance, so with the

addition of such a definition, that axiom set could be used.

8Tn fact in Tarski’s theory all O-order entities are ‘solids’ so this predicate definition could be replaced with a

universal axiom.
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SGpost2) TIf 2 is a solid, then the class TT of all interior points of 2 is a non-empty regular open
set:

VaVTI[(SOLID(x) A TT = {x | INTER(r, 2)}) — (ROPEN(TT) A TT % §)]

SGpost3) TIf a class TT of points is a non-empty regular open set, there exists a solid z, such

that TT is the class of all its interior points:

VIT[(ROPEN(TT) A TT # 0) — 32[SOLID(x) A TT = {7 | INTER(r, )}]]

These two postulates ensure a one-to-one correspondence between solids and non-empty regular
open sets of points. Thus the categorical axioms of elementary geometry which fix the structure of
the domain of points are used to determine the structure of the domain of solids.

Finally the mereological part relation, P, must be fixed in terms of point geometry by identifying

it with set inclusion among the sets of interior points associated with solids:

SGpost4) TIf a and b are solids, and all the interior points of a are at the same time interior to

b, then a is part of b:

Va[INTER(r, a) — INTER(r, b)] ¢ P(a, b)

As a logical foundation for a conceptual scheme, Tarski’s theory has the great merit of being
categorical, which means that all 1ts models are isomorphic. Hence the theory can be regarded as
completely fixing the meanings of all the concepts covered by 1ts vocabulary. However, the theory is
only made categorical by indirect means: firstly the notions of point, equidistance and betweenness
are introduced by a series of definitions; then it is stipulated that these defined concepts obey the

axioms of Euclidean geometry (Tarski 1959). He admits that the resulting system is not ideal:

The postulate system given above is far from simple and elegant; it seems very likely that this
postulate system can be essentially simplified by using intrinsic properties of the geometry of

solids. (Tarski 1929)

What makes Tarski’s system so unwieldy as a tool for actually reasoning about spatial regions,
18 the hidden complexity involved in SGdef6 and SGpostl. These bring in the whole of Fuclidean
geometry as a means of fixing the structure of the space of regions. Reasoning with the axioms
of elementary geometry is in itself very hard (although it is known to be decidable, no effective
general reasoning method is known for this system?) but in this context the complexity is far worse
becanse the ‘points’ constrained by the Fuclidean geometrical axioms correspond to sets of spheres
in the solid geometry. Thus, if points were eliminated from the system by unpacking the Fuclidean
axioms in terms of the definition of point, the resulting formalism would be an enormously complex

2nd-order theory.

7Reasoningin elementary geometry can be carried out by translating geometric relations into algebraic polynomial
equations and inequalities constraining the Cartesian coordinates of points. Consistency of such equations can be

tested using a decision procedure also due to Tarski (1948).
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‘ Relation ‘ Interpretation ‘ Definition of R(x,y)
DC(x,y) x 1s disconnected from y -C(xz,y)
P(x,y) x is a part of y Vz[C(z,2) — C(z,y)]
PP(x,y) x is a proper part of y P(a,y) A =Py, z)
O(x,y) x overlaps y 3z[P(z,2) A P(z,y)]
DR(x,y) x 1s discrete from y -0O(xz,y)
EC(2,y) x is externally connected to y | C(z,y) A =O(x, y)
TP(z,y) x 1s a tangential part of y P(a,y) A Fz[EC(z,2) A EC(z,y)]
NTP(x,y) | « is a nontangential part of y | P(x,y) A =3z[EC(z, 2) A EC(z, y)]

Table 2.1: Defined relations in Clarke’s theory

2.5 Clarke’s Theory

The formalism developed by Clarke (1981, 1985) is an attempt to construct a system more ex-
pressive than that of Leonard and Goodman (1940) and simpler than that of Tarski (1929), based
on the primitive relation of connectedness used by Whitehead (1929). The domain of the theory
is spatial or spatio-temporal regions and the C primitive is constrained to obey the following two

Caxl) Va[C(x,z) A Vy[C(z,y) — Cly, 2)]]
Cax2) VaVy[Vz[C(z,2) < Clz,y)] — = =]

The first, of these ensures the relation is reflexive and symmetric, whilst the second is an axiom of
ertensionality, which states that if two regions are connected to exactly the same other regions then
they must be the same. From the C relation Clarke defines several other useful spatial relations.

These are given in table 2.1

2.5.1 Fusions and Quasi-Boolean Operators

A fusion operator, f, is then defined as follows:
Cdefl) 2= f(X) =., YW[C(y,z) & Fz[z € X A ((y, 2)]]

This means that the fusion of a set of regions is that region which 1s connected to all and only
those regions that are connected to at least one region in the set. (The intended interpretation of
f(e) = & may be regarded as the same as Lesniewski’s SUM(«, 2), although the latter is defined
in terms of P rather than C.)

The theory also contains an axiom ensuring that for every non-empty set of regions a fusion

region exists:

Cax3) VX[~(X =0) — Jz[z = f(X)]]
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This axiom would be very odd in a completely standard 1st-order theory, since in such a theory it
is normally assumed that all well formed terms denote an (existing) individual, all functions being
unique and total. Clarke, however, introduces a slight modification into the logical interpretation
of quantification in his theory. Specifically, the rule of universal instantiation, which normally
allows one to replace a universally quantified variable by any ground term, is restricted so that one
can only replace the variable by either an individual constant or a complex term 7 for which it is
provable that Jz[z = 7].8

Clarke then defines functions similar to Boolean operators as follows:
Cdef2) sum(x,y) =.., f({z| (P(z,#) V P(z,9))})
Cdef3)  prod(z,y) =.., f({z | (P(z,2) AP(z,9))})
Cdef4)  compl(x) =.., f({y | ~Cly,=)})
The definition of compl entails that every region is disconnected from 1ts own complement:

Va[-~C(2, compl(x))] (—Ccompl)

The principle =Ccompl is consistent, with an interpretation of regions as arbitrary point-sets, compl
as set complement, and C(x, y) as true when 2 and y share a point. However, if one is interested in
establishing a naturalistic theory of regions, one might prefer the complement function to be such

that regions always connect with (but do not. overlap) their complements.

2.5.2 Topological Functions

Clarke 1s now able to define the topological operators of interior, closure and exterior as functions

from regions to regions:

Cdef5) i(x) =.., f({y | NTP(y,z)})

Cdef6) c(z) =.; f({y | —~C(y,i(compl(x)))})

Cdef7?) ex(x) =,., f({y]| NTP(y,compl(z))})

An additional axiom is concerning these topological functions is given by Clarke as follows:

Cax4) Va[3z[NTP(z,2)] A
Vyvz[(C(z, ) — O(z,2)) A (C(2,y) — O(z,9)) — (C(z, prod(z, y)) — O(z, prod(z, y)))]]

Tt is provable that the condition Vz[C(x,2z) — C(y, z) is equivalent to NTP(z,y) and also that
NTP(z,2) « (2 = i(2)). Thus, this axiom asserts firstly that every region has a non-tangential

part and secondly that the product of two open regions is itself open.

8 This restriction may be regarded as enforcing a rudimentary sort theory: quantifiers range over a sort region
and all individual constants refer to entities of this sort. However, functions (such as f) may have as their value

either a region or an entity § whose sort (which we may call null) is disjoint from region.
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2.5.3 Points

Clarke (1985) subsequently extended his original theory of spatial regions by the introduction of
points. These are not basic entities of the system but are identified with certain sets of regions.
This 1s essentially the method of extensive abstraction first proposed by Whitehead and taken up
by Nicod and de TLaguna. Clarke stipulates that a set of regions 7 is a point, which we note as

PT (), iff it satisfies the following conditions:
Cpointl) VaVy[(z e 7 Ay e ) — Clz,y)]
Cpoint2) VaVy[(zr e Ayex A O(z,y)) — prod(z,y) € 7]
Cpoint3) VaVy[(z € 7 A P(2,y)) — y € 7
Cpoint4) VaVy[sum(z,y) € m = (z€m V y € 7))
He further requires that any pair of connected regions must share at least one point:
Cpoint5) VaVy[C(z,y) — In[PT(x) Ae € Ay € 7]

The notion of a point’s being incident in a region is defined simply as:
IN(m, 2) =,., (PT(x) Az em)

so that point is identified with the set of regions in which it is incident.

A number of problems arise from Clarke’s treatment of points. One is that Cpoint2 is intuit-
ively false: if a point is incident in two overlapping regions, this does not necessarily imply that it
s incident in their product  the regions might be externally connected at one or more points that
are not incident in the region of overlap. A further problem (noted by Biacino and Gerla (1991)),
is that this treatment of points leads to a collapse of Cto O because every pair of connected regions

must also overlap. The proof (which does not depend on the discredited Cpoint2) is as follows:

proof: Suppose C(a,b) then from Cpoint5 we have Ir[a € 7 A b € 7]. Now consider
the region r = sum(compl(a),compl(h)). Suppose r is equal to the universe. From
Cpoint3 we can derive that every point (incident in some region) is incident in the
universe® | so the point 7 must be incident in sum(compl(a), compl(a)). By Cpoint4
this means that either compl(a) € = or compl(h) € 7, so since a € T A b € 7 we
have either a € m A compl(a) € m or b € m A compl(h) € m. Cpointl then requires
that either C(a,compl(a)) or C(h,compl(h)) and both these alternatives contradict the
=Ccompl principle. Thus z cannot equal the universe. This means that there exists a
region w, such that w = compl(r) = compl(sum(compl(a), compl(h))). w must be part

of both a and b. So we can conclude that O(a, b).

Thus, Clarke’s introduction of points has the unintended consequence that connection is simply

equivalent to overlap. The domain of the theory 1s then essentially a Boolean algebra with the null

?The possibility of an empty point not incident in any region does not appear to be ruled out by Cpoint1-4.
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element removed and the topology of regions is discrete. Tt is apparent that the =Ccompl principle
18 instrumental in the collapse and this must cast further doubt on the definition of compl. One

way to avoid these problems would be to use the following alternative definition of complement

compl(z) =..; f({y | —O(y,=)}) .

However, this would render incorrect the definitions of the topological functions; and 1t 1s doubtful
whether such functions could be reintroduced even by modified definitions. The theory would then
become more like the RCC theory described in the next section. In the RCC theory distinctions

between open and closed regions are not, expressible.

2.6 The Region Connection Calulus (RCC)

With the intention of providing a logical framework for the incorporation of spatial reasoning into
AT systems, Clarke’s formalism was investigated and modified in the works (Randell and Cohn
1989) and (Randell 1991). A more radical re-working of the theory was presented in Randell,
Cui and Cohn (1992) and it is this version which is described here. The new theory is known as
the Region Connection Calculus (RCC). The research reported in this thesis has been very much
influenced by this theory.

Like Clarke’s theory, RCC is based on a primitive ‘connectedness’ relation, C(x,y) and the
universe of quantification is intended to be a domain of spatial regions. The relation C(z,y) is

reflexive and symmetric, which is ensured by the following two axioms:

RCC1) Va(C(z, ) (Cref)

RCC2) Vay[C(x,y) — Cly,z)] (Csym)

‘ Relation ‘ Interpretation ‘ Definition of R(x,y) ‘
DC(x,y) x 1s disconnected from y -C(xz,y)
P(x,y) x is a part of y Vz[C(z,2) — C(z,y)]
PP(x,y) x 1s a proper part of y P(a,y) A =Py, z)
EQ(z,y) x is identical with y P(a,y) APy, )
O(z,y) x overlaps y 3z[P(z,2) A P(z,y)]
DR(xz,y) x 1s discrete from y -0O(xz,y)
PO(x,y) x partially overlaps y O(z,y) A =P(z,y) A =P(y, z)
EC(2,y) x 1s externally connected to y C(z,y) A —=O(2,y)
TPP(x,y) x 1s a tangential proper part of y PP(x,y) A 32[EC(z, 2) A EC(z,y)]
NTPP(x,y) | = is a nontangential proper part of y | PP(2,y) A =32[EC(z, 2) A EC(z, y)]

Table 2.2: Defined relations in the RCC theory
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Using C(x,y), further dyadic relations are defined as shown in table 2.2. The relations: P,
PP, TPPand NTPP, being non-symmetrical, support inverses. For the inverses the notation ®i
is used, where ® € {P PP TPP.NTPP}. These relations are defined by definitions of the form
Bi(x,y) Zder P(y,x). Of the defined relations, DC, EC, PO, EQ, TPP, NTPP, TPPi and NTPPi
have been proven to form a JEPD'® set (Randell, Cohn and Cui 1992a). This set is known as
RCC-8. As the set is JEPD, any two regions stand in exactly one of these eight relations.

Tt can be seen that the RCC definitions are almost the same as those of Clarke. The new relations
PO, TPP and NTPP have been introduced in order to partition all possible binary relations into a
JEPD set. (The relation TP includes EQ as a special case and the universal region is both equal
to and an NTP of itself.) Also, the defined relation EQ takes the place of the logical equality =

used by Clarke. Consequences of this change will be examined in section 3.2 in the next chapter.

2.6.1 Functional Extension of the Basic Theory

RCC also incorporates a number of functions on regions as well as a constant denoting ‘the universal
region’. The functions are called quasi-Boolean, since they are intended to generate an algebra
very similar to a standard Boolean algebra but. with no least element (i.e. no ‘null” region). The

functions are specified as follows:

u =4 ylVz[C(z, y)]]

) =aer 12[Vw[C(z,w) & [Clw,2) V Clw, y)]]]

compl(z) =,., wlVz[(C(z,y) > “NTPP(z,2)) A (O(z,y) <+ =P(z, z))]]
) =aer 12[Vu[Clu, 2) & Fo[P(v,2) A P(v,y) A Clu, v)]]]
) =aer 1w[Vz[C(z,w) & C(z, prod(x, compl(y)))]]

where (%) =,., y[®(y,T)] means VE[®(a(T),T)]. More will be said about these functions and

this form of ‘definition” in section 3.3.

2.6.2 The Sorted Logic LLAMA

Tt is important to note that all the quasi-Boolean functions except for sum are partial with respect
to the domain of regions. This gives rise to a technical problem in that the standard proof-theory
(and semantics) of Ist-order logic is based on an assumption that all function symbols correspond to
total functions. To avoid this difficulty Randell, Cui and Cohn (1992) employ the sorted 1st-order
logic, LLAMA " as described by Cohn (1987).

The sorted logic allows the domain of discourse to be partitioned into a number of (base) sorts,
each consisting of a (non-empty) set of entities of a particular kind. For each relation symbol in
the vocabulary of a theory, certain combinations of argument sorts are specified. When the relation

18 combined with arguments whose sorts accord with one of these combinations, the resulting

10See section 1.1.3.

Togic Lacking A Meaningful Acronym.



CHAPTER 2. AXIOMATIC THEORIES OF SPATIAL REGIONS 43

proposition is said to be well-sorted; if the argument sorts do not agree with the specification the
proposition is ill-sorted. Tikewise it is specified that application of function to a tuple of arguments
will give a well-sorted term only for certain sort combinations of these arguments. Every function
application will also have a result sort which is the sort of the entity denoted by the term formed
by that application. Tn general the result sort will be an arbitrary (extensional) function of the
sorts of the arguments given to a function. A Boolean combination of propositions is well sorted
iff all its constituents are well sorted. This gives us a general notion of a well-sorted quantifier-free
formula.'?

In the LLAMA formalism, quantifiers and variables are not themselves associated with any
sort restriction; rather, the range of any particular quantification is determined by the context of
variables as arguments of sorted functions and relations. Suppose a predicate is formed by replacing
one or more terms in a formula with a (new) variable symbol. Tf a quantifier is then applied to the
predicate, the quantifier ranges over all entities in the domain which are such that, if a constant
denoting that entity were substituted in the predicate in place of each occurrence of the quantified
variable, the resulting formula would be well-sorted. Tf the domain of possible well-sorted values is
empty then the entire formula s 11l sorted and considered not to be a well-formed formula of the
language.

In the case where multiple quantifiers occur in a formula, the situation is more complex. Here,
the interpretation cannot be analysed in terms of successive applications of a single quantification
operation; rather, multiple quantifiers serve to quantify over all sequences of individuals such that
the formula, when instantiated with this sequence, is a well-sorted ground formula. Thus, in a
formula VaVy[® (2, y)] quantification can be regarded as being over all pairs of entities {(a, b) such
that the formula ®(a,b) is well-sorted. This treatment of quantification applies directly only to
prener formulae, with all quantifiers at the front, but any formula can be transformed into an
equivalent prenex formula and the ranges of quantification determined from this.

A further feature of LLAMA | which makes it particularly expressive, is that for each sort there
18 a sortal predicate. These predicates can be used to specify explicit sortal restrictions on variables

in a formula in addition to those determined from the sorts of the ordinary relations and functions.

2.6.3 Sorts in the RCC Theory

In considering the purely spatial aspects of the RCC theory, we may assume that there are just
two disjoint (and non-empty) base sorts: REGION and NULL, plus the top sort ‘T’ (this is the join
of REGION and NULL all entities are of this sort) and the bottom sort ‘L’ (no entity is of this
sort)."™> We now declare that the arguments of all relations in the RCC theory are of sortt REGION

?Note that this characterisation gives us a sorted logic which is polymorphic. This means that the permitted
sorts of argument places are not individually restricted but may depend on other arguments (e.g. a predicate
SPOUSE(x, y) might be allowed to have arguments of sorts (male, female) or ( female, male) but not (male, male)

or {female, female)). Likewise, the result sort of a function can vary depending on its arguments.

137t is intended that the theory be embedded in a more comprehensive formalism incorporating temporal intervals

and physical objects as well as spatial regions. This theory would make use of a much richer sort structure.



CHAPTER 2. AXIOMATIC THEORIES OF SPATIAL REGIONS 44

and the arguments and return values of all the quasi-Boolean functions are of sort T.

2.6.4 Two Additional Axioms

Making use of the sorted framework a further axiom is given which links the quasi-Boolean functions
to the relational part of the theory. The axiom states that the product of two regions is null, if and

only if the two regions are discrete (i.e. non-overlapping):
VaVy[NULL (prod(z,y)) + DR(z,y)] .
Finally an existential axiom ensures that every region has a non-tangential proper part:

VaIy[NTPP(y, x)] (NTPP)

The NTPP axiom rules out the possibility of atomic models of the theory, in which there is
a class of regions (atoms) which have no proper parts. Several possibilities are considered for

modifying the theory so as to allow the existence of atoms. These will be considered in section 3.4.

2.6.5 Further Development of RCC

As well as modifying certain axioms of Clarke’s theory, Randell, Cui and Cohn (1992) develop their
new theory so as to cover further non-topological information. They introduce a new conver-hull
function, which enables properties involving convexity and containment to be represented. T shall
examine this operator in chapter 8. The theory is also extended so as to describe possible modes of
‘continuous’ change which can occur in spatial configurations. This is done by identifying possible
transitions which can occur amongst the topological relations holding between the regions occupied

by bodies during some continuous process. I shall comment on this in section 10.3.2.

2.7 Other Relevant Work on Region-Based Theories

T conclude this chapter by briefly mentioning a number of other works which are relevant to the

study of region-based theories of space.

2.7.1 de Laguna’s Theory

Tn section 2.2 T referred to de TLaguna’s (1922) ‘geometry of solids’. This theory is based on the
primitive relation ‘@ can connect y and 2’ (T shall write this as CC(x,y, z). This relation is true
if it would be possible by displacement. and/or rotation to bring = in to such a position that
it connects (i.e. touches or overlaps) both y and z. The CC primitive is extremely expressive
since it allows definitions of hboth connectedness: C(a,y) =..; Yz[CC(z, 2, y)]; and relative length:
Longer(z,y) =.., VzVw[CC(y, z,w) = CC(x, z,w)]. Unfortunately this theory does not seem to

have been explored or developed by any subsequent researcher in the field.
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2.7.2 Grzegorczyk’s Undecidability Results

Grzegorezyk’s 1951 paper Undecidability of some Topological Theories (Grzegorezyk 1951) contains
several important and very general results about the undecidability of certain kinds of spatial
theory. This quite technical paper seems to be rarely cited by later researchers and came to
my attention at a very late stage of my work on this thesis.’™ Although framed in terms of
somewhat different formal apparatus from that found in the other spatial theories surveyed in this
chapter, Grzegorezyk’s undecidability results appear to apply (assuming appropriate notational
modifications) to a very wide range of possible spatial theories. The nature and ramifications of

these results will be considered in section 3.6.

2.7.3 Some Recent Research in the Field

The formalism of Bochman (1990) is a significant departure from all the others mentioned. A
principal feature 1s that two types of basic mereological element are postulated ‘objects” and
‘connections’. The part relation is primitive. Objects can have other objects and/or connections
as parts, whereas connections are atomic, having only themselves as parts. A connection relation
18 then defined by saying that objects a and b are connected just in case there exists a connection
% such that every object of which & i1s a part also shares a part with ¢ and a part with b.

A survey by Gerla (1995) covers most of the formalisms described in this chapter but. considers
them from a rather different perspective, focusing on their correspondence to certain kinds of
classical topological space.

A modification and development of Clarke’s theory is proposed by Asher and Vien (1995), who
give an axiom set based on the C primitive, which is proved to be sound and complete with respect
to a class of models based on point-set topology. A novel property of this theory is the definability
of a relation of ‘weak contact’, which is supposed to hold when two bodies touch each other but
are not physically joined.

Borgo, Guarino and Masolo (1996) give a theory of spatial regions based on three primitive
concepts: the part relation, the property of being a (topologically) ‘simple’ region and the binary
relation of congruence. This theory combines aspects of the connection-based theories derived from
Clarke with the approach taken in Tarski’s Geometry of Solids, whereby the logic of regions can
be tied by means of definitions to the (classical, Euclidean) geometry of points.

Results of Pratt and Schoop (1997) concerning a complete axiomatic theory of the 2D Fuclidean
plane are of direct relevance to this thesis (particularly the next chapter) but their paper was
published too recently to be fully considered in the present work. However, T shall make some
comments in section 10.2.1.

Antother recent paper by Stell and Worboys (1979) considers the structure of sets of regions
in terms of Heyting algebras. This work 1s closely related to the approach T shall describe in
chapters 4, 5 and especially 6, where T use the intuitionistic logic, 7, to represent topological

relations. 7 can also be interpreted in terms of Heyting algebras.

"4 Thanks to Nick Gotts.



Chapter 3

Analysis of the RCC Theory

In this chapter T examine in more detail the T1st-order RCC theory described in section 2.6. 1
start. with a critique of its axioms. The consequences of Tst-order axioms are often far from
obvious, so some new meta-level notations are developed to facilitate analysis of the theory.
Using these tools T investigate the structures of possible models of the axioms. T go on to
suggest an alternative axiom system which is in several respects easier to manipulate than the
original theory. At the end of the chapter T specify a partial decision procedure for the revised

theory based on the method of quantifier elimination.

3.1 RCC in Relation to this Thesis

Although the RCC theory was intended as a language for both representing and reasoning about
spatial information, in its initial development representation was the primary focus. Tt was soon
realised that, whilst the theory i1s very expressive, reasoning with RCC 1s extremely difficult. My
research has been directed towards addressing this problem. Quite early in my investigation of
the RCC reasoning problem T discovered a computationally feasible method for reasoning about
certain spatial relationships. This does not make any use of the actual RCC axiom system but
uses a radically different formalism to represent and reason about a large class of spatial relations,
all of which are also definable in the RCC system. The representation, based on a topological
interpretation of intuitionistic logic, s described in detail in chapter 6.

My intuitionistic encoding partly solved the RCC reasoning problem; but was only capable of
handling a small (albeit significant) subset of the spatial relationships expressible in RCC. Thus the
possibility of finding a much more comprehensive reasoning algorithm  possibly one that would
cover everything expressible in RCC still remained. Furthermore, many puzzles concerning
the RCC formalism became apparent. Tt was clear that the axioms did not characterise a single
unique model. The intended model was to accord with our intuitive (naive) ideas about ‘regions’
(of fixed dimension) existing in a topologically simple space. However, the dimensionality and
global topology of the space was not fixed by the axioms. Moreover the existential import of the

theory appeared to be too weak to determine exactly which configurations of regions are possible.

46
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The question arose as to whether RCC could be extended to yield an syntactically complete
theory (see section 3.6) with a unique denumerable model (i.e. an Rg-categorical theory). As well
as remedying the representational shortcomings of RCC, such a theory would be a very significant
step towards solving the reasoning problem. This is because any syntactically complete 1st-order
theory must be decidable.

Recent discoveries by Nicholas Gotts and myself strongly suggest that this goal cannot be
obtained. Specifically, there can be no complete 1st-order characterisation of the intended domain.
This can be demonstrated by showing that if such a formalisation were given it would provide
a complete theory and decision procedure for 1st-order arithmetic, which is known to be both
undecidable and not characterisable by any axiomatic theory (Godel 1931). The demonstration
involves showing that the concepts of arithmetic can be defined in terms of spatial properties which
are also definable in RCC. Details of the proof are beyond the scope of the present thesis.

Given that RCC is undecidable and a complete Tst-order characterisation of spatial regions is
impossible, further enquiry into RCC can proceed in two directions. Firstly, it 1s almost certain that
a complete characterisation of the intended domain can be given by adding one or more 2nd-order
axioms (and perhaps also further Ist-order axioms) to the theory. Secondly, since a comprehensive
reasoning algorithm for the domain of RCC is impossible, 1t will be important to 1dentify more
restricted languages for expressing spatial information, for which effective algorithms  or at least
decision procedures can be constructed.

The RCC theory provides a very expressive language for specifying spatial information.
However, there are certain features that are problematic. In this chapter T attempt to clarify a
number of aspects of the theory and suggest some modifications to its formalisation. Specifically, T
consider: extensionality and identity conditions; the status of the quasi-Boolean functions; the sort
theory and the ‘null’ region; the NTPP axiom; and models of the theory. T then present a revised
axiom set constructed so as to avoid some of the main problems brought to light by the analysis.

In chapter 7 T shall give a partial decision procedure for the new theory.

3.2 Identity and Extensionality

In contrast with the theory of Clarke, the RCC theory contains no ‘axiom of extensionality’. In
this section T consider whether or not such an axiom ought to be added to the theory.

Axiomatic theories (particularly those which seek to characterise a single primitive relation),
often contain some kind of ariom of ertensionality. This is an axiom which asserts that the identity
of any two objects follows from their indiscernibility with respect to some property. Thus in set
theory we have:

VaVylVz[z €2 & 2 € y] = (v = y)]

Such axioms can be regarded as strengthened forms of Leibniz’ principle of the identity of in-

discernibles. This principle i1s the left-to-right component of a second order axiom which can be
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regarded as defining identity:
VaVy[ VI (2) & T(y)] & z=y]

Rather than requiring objects to be indiscernible with respect to all properties, we may require
only that they cannot be distinguished in terms of a family of properties formed by (partially)
instantiating some relation (over the universe of objects). The idea behind this specialisation of the
axiom is that this family of properties 1s regarded as fixing all properties expressible in the theory.

In the RCC calculus of regions the obvious axiom of extensionality would be:
VaVy[Vz[C(x, z) & Cly, 2)] = (2 = y)] (Cext)

This states that if two regions # and y cannot be distinguished by some instance of C(...,z2)
(i.e. we cannot find any region z such that C(x,z) does not have the same truth-value as C(y, 2))
they must be the same region. The force of this axiom is to claim that C is the defining relation
for regions: regions can only be distinct if they differ with respect to their connectedness with
other regions. Whether this is reasonable depends on what we take to be the domain of regions.
If regions are made up of discrete atoms then configurations can easily arise where two distinct
regions are indiscriminable in terms of the regions they are connected to. But, if every region has
a non-tangential proper part and for every pair of non-identical regions there 1s some region which
is part of one but not the other, then Cext must hold.

In the RCC theory we can derive something very similar to the axiom of extensionality. From

the definitions of EQ(#, y) and P(z,y) given above we can very easily show that:
VaVy[Vz[C(x, z) & Cly, 2)] & EQ(2,y)] (CEQ)

However, since the ‘EQ’ symbol is introduced by definition, this derived formulae does not have
the force of the axiom of extensionality because ‘EQ’ need not necessarily have the properties of
logical equality. Hence, the derivation does not show that an axiom of extensionality is redundant

in the RCC calculus. What it shows rather is that if we take the equivalence

Vavyl(x =y) < (P(e,y) A Ply,2))] (P =)

as an axiom rather than a definition and assume that the symbol ‘=’

18 to have its usual logical
properties, then this formulais equivalent to Cext and can thus serve as an axiom of extensionality

for the RCC theory.

3.3 The Quasi-Boolean Functions

Most of the complexity of the RCC theory arises from the quasi-Boolean functions. In this section
T examine the role of these functions in the theory and suggest how they could be handled in a

more precise and economical way.



CHAPTER 3. ANALYSIS OF THE RCC THEORY 49

3.3.1 The Status of the Function Definitions

Tn Randell, Cui and Cohn (1992) the functions are introduced by means of a (non-standard) form

of definite description operator. For example a ‘sum’ function is characterised as:
sm(e,9) =y 12MClw, 2) & [Clw, ) v Clu, )]
where the iota notation is to be interpreted as follows:
0(F) Zuy W®(,T)]  means  Vad(o(z),T)]
Thus the sum ‘definition’ can be rewritten as:
VaVy¥[Cm, sum(z, ) < (C(w, 2) v Cw, y)]

Tt should be noted that this formula is not purely definitional since, because all functions must
have a value, the use of the sum function carries existential commitment. Tn general a formula
which introduces a new function symbol into a theory cannot be regarded as a definition unless
entities with appropriate properties to be values of the function are already guaranteed to exist as
a consequence of the axioms of the theory.!

Tt is also important to note that the formula characterises the sum function only in the context

of the C predicate. Tt can be contrasted with the following explicit characterisation:
VaeVyVz[z = sum(z, y) & Yw[Clw, z) & (Clw,z) V Clw, y))]]

This formula imposes a stronger condition on the domain of the C relation: namely that, given
any two regions x and y, there is exactly one region that is connected to just the regions that
are connected either to & or to y. Tt is quite easy to see that the contextual sum definition is
logically equivalent to the left-to-right direction of the explicit sum definition. However the right-
to-left direction does not follow. To get the right-to-left implication we also need the axiom of
extensionality, Cext, given in the last section. Alternatively, one could replace the contextual sum
axiom with the explicit one. Tf this is done and we also stipulate that sum(2, #) = 2, then the axiom

of extensionality 1s immediately derivable.

3.3.2 RCC without Functions or Sorts

There are two reasons for the use of sort theory in formulating the RCC theory. Firstly, to accom-
modate functions which are partial with respect to the domain of regions; and secondly, because
by casting a theory 1n sorted logic and using a proof procedure designed to treat sortal information
in an efficient way, the effectiveness of automated theorem proving can often be greatly increased
(Cohn 1987). However, the apparatus of functions and sorts does result in a formal language which

is rather complex, both in its syntax and semantics. Tf we are primarily interested in investigating

"This applies whether or not we employ a sorted logic. However, if we use a sorted logic, we can allow that the
values of functions need not be regions; so the existential commitment need not affect the theory with regard to the

properties of regions.
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the content and consequences of the RCC axioms, it is perhaps better to cast the theory in a
simpler language. RCC can easily be modified so as to give a function-free unsorted version of the
theory. The axioms introducing the quasi-Boolean functions are replaced by existential statements.
Where the function is partial, the existential statement is nested within an implication. Thus the

axioms introducing u, sum, compl and prod can respectively be replaced by the following:2
FaVy[C(x, y)]

VaeVyAlzVw[Cw, z) « (Clw, z) V C(w, y))]
Val3y[~Clr, )] & VI, 9) © ~NTPP(=,2) A (O(=,5) ¢ ~P(=, )]

VaVy[O(z,y) + NzVw[Cw, z) « Fv[P(v,2) A P(v,y) A Clv, w)]]]

3.3.3 The Complement Function

Of all the axioms in the RCC theory, the one that introduces the complement function is the most

complex and 1ts consequences the hardest to fathom. Tn its original form the axiom is
compl(x) =,.; wy[Vz[(C(z,y) « “NTPP(z,2)) A (O(z,y) + —P(z, 2))]] (complDef)
and 1f we assume Cext this is equivalent to:
VaVy[ y = compl(x) < (Vz[C(z,y) «> =NTPP(z,2)] AVz[O(z,y) <> =P(z,2)])] (complDef2)
From this it can readily be proved that
Va[EC(x, compl(2))] .

The definition of compl seems to be rather more complex than i1s desirable. The condition
y = compl(2) is asserted to be equivalent to two separate universal constraints on x and y.
Moreover, the first of these specifies exactly what 1s connected to y, the complement of x, in
terms of the NTPPs of . Tf the theory is extensional with respect to C then this specification alone
should determine all the properties of any region’s complement.

However, the second constraint specifying that the things that overlap the complement of = are
exactly the things that are not part of # also appears to be true in the intended interpretation,
and even seems to completely specify the complementation function. One might hope that the two
conditions could be proved equivalent as a consequence of the definitions of the relations involved
and the other functions. But despite considerable effort and extensive use of the OTTER theorem
prover (McCune 1990), T have not heen able to demonstrate this. Thus, the compl axiom seems
to contain not only existential commitment but also to indirectly assert a universal equivalence
between two ways of describing certain properties of regions.

In view of these observations T suggest that 1t 1s more perspicuous to replace the compl axiom

by the following two axioms whose conjunction is equivalent to the original:

VaIyVz[C(z,y) +» —-NTPP(z, 2)]

2Here, Iz [®(x)] means there is a unique entity satisfying ®(...) ie. Az[d(x) A Vy[P(y) — v = 7]].
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Vz[(C(z,2) <> =NTPP(z,4))] & Vz[(O(z,2) < =P(z,9))]

A further worry concerning the compl axiom is that T was unable (again despite considerable
effort) to show that complementation is a symmetrical operation (i.e. that 2 = compl(y) < y =

compl(z)). This may mean that RCC 1s lacking the following clearly desirable theorem:
pl(=)) y g g y
VaVy[(Vz[C(z,2) « =NTPP(z,y)] = Vz[C(z,y) + =NTPP(z,2)])] .

This could also be derived if we adopted the simple formula Va:[compl(compl(z)) = ] as an axiom.

3.3.4 Relation to Orthodox Boolean Algebras

Boolean algebras are a very well understood class of mathematical structures. Since T will be
making much use of these algebras (especially in the next chapter) it will be as well to give them
a formal definition:

A Boolean algebra is a structure A4 = (S, +, L), where S is a set of all the elements of the
algebra, ‘+’ 1s a function from S x S to S and ‘1’ is a function from S to S.> These operations
must satisfy the equations given in table 3.1, in which the ‘x -y’ operation is defined as equivalent to
‘L(La+ Ly) and the null and unit elements are defined by 0 =,., L(z+Llz)and 1 =, 2+ La.
These equations are taken (with some modification of the presentation) from Kuratowski (1972)

p-34.

(z+y) = (y+=) (z-y) =(y- =)
(r+@+2)=((r+y)+2) (v-(y-2)=((x-y) 2)
rt(r-y) == ro(rty) ==
r+0==x r-1==x
((z-Ly) +y) = (z +y) (- Ly)-y)=0

(#-(y+2)=((x-y) + (x-2))

Table 3.1: An equational theory of Boolean algebras

Tt will be recalled that in the RCC theory there is no null region, which would correspond to
the least element ‘0” in an orthodox Boolean algebra; and this is why the RCC functions are called
‘quasi-Boolean’. But, there seems no reason why the functions in the RCC theory should not
be regarded as genuine Boolean operators over the domain REGION U NULL. This would fix the
properties of these operators by reference to a well understood structure. However, if we regard the
RCC functions in this way we still have the problem of axiomatically linking the Boolean algebra

to the relational part of the theory. This problem is complicated by the sort theory.

3T shall usually write the complementation operation as a prefix function ‘—(...)’; but, where the algebra is a

Boolean algebra of sets, T shall often write X to mean the complement of the set X.
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3.3.5 A Single Generator for Boolean Functions

A standard Boolean algebra has the property that all operators are definable in terms of a single
primitive function. In fact there are two possible primitives that can be used: in the terminology
of electronic circuitry they are NAND and NOR. In a Boolean algebra of regions these operations
correspond to ‘complement of product’ and ‘complement of sum’. Thus, using the first alternative,
starting with a function cp(xz,y), the more familiar Boolean operations (together with null and

universal constants) can be defined as follows:
o compl(z) =, plr.7)
o sum(a) =, cp(cp(x,7),cp(y, 1)
e prod(z,y) =..; cp(cp(x,y),cp(r,y))
e 0 =..; prod(x,compl(x))
o u =, sum(x,compl(s))

This means of introducing the Boolean functions by pure definitions from a single function has
the great advantage that in axiomatising the theory we need only be concerned with fixing the
meaning of cp and its relationship with C  all properties of the other functions and constants will

be consequences of their definitions.

3.3.6 Introduction of a Null Region

If we allow the null entity to be a bona fide region then the technical problems associated with the
Boolean functions disappear. The functions become total rather than partial and hence there is no
need to use a sorted logic in order to employ these functions in a Ist-order formalism.*
Introduction of a null region requires some revision of the fundamental RCC axioms. An
intuitive consideration of the notion of connection suggests that the null-region should not be

considered as connected to any other region. Thus we have the new axiom
Val~C (s, 0)]

Consequently, the reflexivity of the connection relation must be restricted so as only to hold for

non-null regions. Thus the Csym axiom must be replaced with the weaker formula

VaVy[Clz,y) — Clx, )] .

3.4 Atoms and the NTPP Axiom

Randell, Cui and Cohn (1992) give an informal proof of the impossibility of having ‘atomic’ regions
in a model of the axioms. These putative atoms would be regions having no proper parts. (Here

we assume a theory without the NTPP axiom, which of course explicitly rules out such models.)

40Of course we may still wish to employ a sorted logic for the purpose of increasing the efficiency of automated

deduction.
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Suppose a region r has no proper parts. It therefore has no non-tangential proper parts; and
thus, because of the compl axiom, it follows that every region is connected to the complement of r.
Thus (assuming the Cext axiom) compl(r) must be the universal region, u. We can further conclude
that P(r,compl(r)) and then from the definition of O we see that O(r, compl(r)). However, as men-
tioned above, from complDef and Cext one can derive Y2[EC(2, compl(x)]. Thus EC(r, compl(r)).
But, from the definition of EC, we must have —=O(r, compl(r)) a contradiction.

It has been suggested that there is a consistent atomic model of the RCC axioms in which only
one (non-null) region exists.

Thus the NTPP axiom is derivable from the other axioms of the theory. Randell, Cui and Cohn
suggest, that the difficulty arises because the definition of the part relation 1s incompatible with the
existence of atoms. Three possible solutions are given.

The first is to divide the domain of regions into three disjoint sorts: PROPER-REGIONS,
ATOMs and PARTICILEs. All of these kinds of region must have NTPPs in accordance with
the NTPP axiom. However, the proper parts of ATOMs are PARTICLEs and not PROPER-
REGITONs. Tt is further required by additional axioms that: 1) if two ATOMs overlap they must
be equal; and 2) every PROPER-REGION has a part which is an ATOM. Whilst this proposal
may have some attractions as a conceptual scheme, 1t is far from clear whether it can really be made
into a consistent theory and the added complexity of the sort structure would make the language
far more unwieldy than the basic RCC theory.

The two further alternative treatments of atoms given by Randell, Cui and Cohn (1992) involve
even more radical departures from the basic theory. One of them requires the function sum as well
as the sort ATOM to be taken as primitives in addition to the original C. The other requires a new
sort of POINTSs to be added to the domain and is based on a new primitive relation, IN(p,r), of
incidence, holding between points and regions  Cis then introduced as a defined relation. These
alternative theories are too far from the original to be considered in the present work.

In summary it must be said that the origin of the non-atomicity of regions in the RCC theory
is not fully understood. TFach of the alternatives proposed by Randell, Cui and Cohn (1992)
seem more complex than is desirable and have not been worked out in detail. Another plausible
suggestion made 1n that paper is that the problem lies with the definition of P; but a revised

definition was not given.

3.5 Models of the RCC Theory

The RCC theory was initially developed through a methodology of specifying intuitively correct
axioms rather than by considering mathematical models of space. However, in order to establish
important meta-theoretic results such as completeness and categoricity (discussed further helow)
some kind of formal semantics 1s needed. Being formulated in Tst-order logic, the general purpose
set-theoretic interpretation of that language may of course be employed; but consideration of the

particular nature of the RCC theory suggests that other kinds of model may be more appropriate.
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3.5.1 Graph Models of the C relation

Models of the C relation can be represented by symmetric, reflexive digraphs or more simply by
non-directed graphs, in which each node is implicitly taken as being connected to itself. Tf we only
require C to be reflexive and symmetric, then all such graphs will correspond to possible models
of the theory. As we add further axioms we place constraints on admissible structures for the C
relation. For examining these models 1t will be helpful to be able to refer to the set of all regions

connected to some region, . Thus C'(z), which may be called the C-set® of «, is defined as

In terms of C-sets, symmetry and reflexivity correspond respectively to the facts
reC(x) and 2eC(y) & yel(x);

and the extensionality axiom Cext can be expressed by

Other logical properties of RCC, such as those stemming from the quasi-Boolean function axioms,
would correspond to more subtle constraints on the domain of C-sets.

Models based on connection graphs and/or C-sets are very straightforwardly related to the
relational vocabulary of the RCC theory and the ontological commitments embodied in such models
do not go beyond what is implicit in the theory. However, they have a number of shortcomings.
Graph models are very general and can be given for any theory based on a binary relation, so they
do not characterise any properties which are particular to the spatial domain. Consequently they
do not accord well with our perception of real situations. (Tn fact, as a means of building a mental
picture of a situation described by some RCC formulae, graph models are worse than useless: 1f
we visualise two connected regions as two blobs joined by an arc, we thereby picture the regions
as disconnected!) A further problem for the researcher is that the graph models cannot readily be

related to classical models of geometry and topology.

3.5.2 Models in Point-Set Topology

In contrast with graphs of the C relation, the topological spaces of classical point-set topology
provide a well-understood class of mathematical structures, which despite some subtleties

seem to accord much better with our perceptions of spatial situations. Whilst associating physical
bodies with sets of points 1s an abstraction which requires a certain amount of imagination, spatial
relationships between point-sets can be pictured in much the same way as relationships between
physical bodies. One difference 1s that in the point-set model we can distinguish between open and
closed sets, whereas physical bodies do not come in open and closed varieties. However, as we soon
shall see, it is possible to give a point-set interpretation of ‘region’ under which no open/closed

distinction arises.

5These sets are also employed in the analyses of Biacino and Gerla (1991) and Gerla (1995).
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Advocates of the ‘naive’ approach to knowledge representations may object to the use of topo-
logical models on the grounds that the mathematical content of these models goes far beyond the
understanding of space enjoyed by the average person. Dogmatic adherents of the region-based
approach may also object to the appearance of points in the models of a theory which is supposed
to avoid commitment to the existence of points. Whilst T acknowledge the motivations for these
objections, T take what T regard as a more pragmatic approach to the examination of region-based
theories and am prepared to employ any mathematical apparatus that seems to be useful. T do
think that one reason why region-based formalisms may be useful is that they are close to natural
ways of describing space; but T do not think this means that in developing and investigating a

formal theory of regions one should be restricted to employing only ‘naive’ concepts.

3.5.3 Interpreting RCC in Point-Set Topology

To characterise the meaning of the non-logical vocabulary of RCC in terms of point-set topology
we need to specify precisely how the individuals of the theory (i.e. regions) and the connection
relation are to be interpreted by reference to a topological space. One possible specification is as

follows:

e Regions are identified with non-empty open sets of points.

e Regions are connected if their closures share at least one point.

This interpretation is that suggested for the RCC theory in (Randell, Cui and Cohn 1992).

If we require that the theory should satisfy the extensionality principle, Cext, this immediately
leads to a restriction on the class of open sets that can be considered regions: no two distinct
regions can be identified with (open) sets that have the same closure. The most obvious way to
ensure this is to specify that regions correspond only to regular open sets i.e. those which are
equal to interiors of their closures.

From the topological characterisation of C we ought to be able to derive interpretations in
terms of point set-topology of all relations definable in RCC. Given the 1st-order definition of P
(P(z,y) =.., Vz[C(z,2) — C(z,y)]) and the fact that for regular (open) sets ¢(X) C (V) iff
X CY, it is clear that the parthood relation between regions corresponds to the subset relation in
the point-set interpretation.

The intersection of two (regular) open sets is always a (regular) open set; so two open sets
share a point just in case they share a non-empty (regular) open subset. Tf we assume that every
non-empty regular open set of points corresponds to some region, we can say that two regions
overlap 1f they share a point and this will accord with the Tst-order definition of overlap in terms
of the C relation (O(z,y) =.., 3z[P(z,2) A P(z,9)]).

Formally the C, P and O relations can be defined as:

Cle,y) =4 In[mr € c(X) A€ (V)]

P(r,y) =4y X CVY
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O(z,y) =.., In[r €i(X) Amei(Y)]

These definitions give us a rigorous formal specification of the RCC connection and overlap
relations in terms of point-set topology. But they make use of a highly expressive set-theoretic
language, including both quantification and the element relation, and hence are not very useful
for automated reasoning. In the next chapter we shall see how essentially the same topological

interpretation can be expressed algebraically, without the use of set-theory and quantification.

3.5.4 The Boolean Algebra of Regular Open Point-Sets

In the last section we saw that the RCC regions can be identified with non-empty reqular open
sets in a topological space. If this interpretation i1s to be adequate for the full theory equipped
with quasi-Boolean functions, we need to be able to interpret these as functions operating on
(non-empty) regular open sets. If we were simply to use the elementary Boolean set functions
(complement, union, intersection) to model Boolean functions on regions we would immediately
run into difficulties. The problem is that if we apply these operations to regular open sets, the
resulting set 18 not necessarily regular open: the complement of a regular open set is regular closed;
and the sum of two regular open sets 1s open but need not be regular.

This problem can be avoided by identifying Boolean functions on regions with the operators in
the regular open (Boolean) algebra of a topological space. Given a topological space (U, O), the
elements of this algebra are the regular open sets. The Boolean constants and functions are then
defined as follows:

0 =..; 0 1 =.; U
LX) =y (T
Ty =ap XNY T4y =. i(c(XUY))

Thus the regular complement is defined as the interior of the ordinary set complement and the
regular sum is obtained by taking the interior of the closure of the set union. Product is simply
defined as intersection. Tt can easily be verified that, given regular open sets as operands, the

results of these operations are also regular open sets.

3.5.5 A Dual Topological Interpretation

There is also a dual interpretation under which regions are identified with closed sets these
are connected if they share a point and overlap if their interiors share a point. As before the
requirements of the theory mean that the closed sets corresponding to regions must be non-empty
and regular (a regular closed set is a set X such that X = ¢(i(X))). The regularity condition

ensures that sets corresponding to regions must have a non-empty interior.
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3.6 Completeness and Categoricity

Tn section 2.7.2, T mentioned that some results of Grzegorezyk (1951) have important consequences
regarding the properties of spatial theories. This paper considers 1st (and higher) order theories of
Boolean algebras supplemented with additional spatial functions and/or relations. The Tst-order
theory of Boolean algebra is decidable but Grzegorczyk shows that the introduction of either a
closure operation or an external connection relation, satisfying in each case a small set of algebraic
conditions, results in a structure whose Tst-order theory i1s undecidable.

The assumed conditions on the closure operation are just those given in section 2.1 and the

conditions on the external connection relation are as follows:
e EC(x,y) = (prod(z,y) = 0)
o (prod(x,y) = 0) A (sum(a’, z) = &) A (sum(y’,y) = y) A EC(",y) — EC(z,y)
o EC(sum(x,y),2) A ~EC(2,z) — EC(y, 2)

These conditions are quite weak and one would expect them to be satisfied in any plausible theory
of connection. This means that any lIst-order language containing Boolean (or quasi-Boolean)
functions and a connection relation must be undecidable.

The question of what levels of expressiveness lead to undecidable languages is of crucial im-
portance for automated reasoning. In the following chapters we shall see that i1t is possible to
specify quite expressive representations for spatial information, which are decidable. The strategy
18 to find ways of expressing spatial relationships without the need for a full 1st-order language.
One approach is to use a Ist-order language with limited forms of quantification. Tn chapter 7
T shall show that in a lst-order theory based on the C relation it is in many cases possible to
eliminate quantifiers by replacing quantified clauses with equivalent quantifier free formulae. An-
other approach is to use a 0-order representation language which is more expressive than classical
propositional logic. Although angmenting a Boolean algebra with additional operators (such as a
closure function) may lead to an undecidable 1st-order theory, it can also greatly extend the range
of information which can be expressed in the form of algebraic equations without quantification.
Tn chapter 4 we shall see how a 0-order (modal) logical language can be used to reason about such
constraints.

An important corollary of the undecidability result is that no finitary® 1st-order theory of spatial
regions (possessing a certain minimal expressivity) can be complete. A theory © is complete with
respect to a language L iff for every formula ¢ expressed in the language £, either © — ¢ or
0 — —¢ is logically valid.” Tf a (finitary) Ist-order theory is complete, it is also decidable. This
follows from the semi-decidability of (finitary) Ist-order logic: any logically valid 1st-order formula

18 provable in finite fime; so to decide whether ¢ follows from © one can attempt to prove in parallel

More will be said in section 10.2.1 about the restriction of this result to finitary systems.

"Note that, if this is the case, £ can contain only a fixed finite vocabulary of non-logical expressions constrained

by the theory. If it contained arbitrary relations, functions or constants it could not be complete.
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(or by alternating from one proof to the other) both the sentences ©® — ¢ and © — —¢$. A proof
of one of these formulae can always be obtained in finite time.

Any theory in which one can define a relation of external connection satisfying certain conditions
must be undecidable. Moreover, since any complete 1st-order theory is decidable, any Tst-order
theory in which this relation is definable must be incomplete. This means that there are purely the-
oretical RCC formulae (i.e. formulae not involving any arbitrary constants), which are contingent
with respect to the RCC axioms  and indeed with respect to any sensible set of 1st-order axioms.
Hence, RCC is not categorical ~ there must be multiple non-isomorphic models of the theory
and cannot be made categorical without adding some 2nd-order axiom. Because of this lack of
categoricity, the entailments provable in the RCC theory are only those that hold in a very large
class of possible models, many of which will have a very different structure to what is intended.

In fact, 1t is readily apparent that there is no single model of the axioms. For instance, the
dimensionality of regions 1s not fixed: one can interpret them as being of two, three or even higher
dimension. Moreover, spatial configurations which are impossible in (say) 21 may become possible
in 3 or more dimensions. | have devoted considerable effort to the problem of finding a categorical
version of the RCC theory and have shown how by adding extra axioms many unwanted models can
be ruled out. T have concentrated specifically on characterising the dimensionality of RCC regions
and on eliciting a complete set of existential axioms (this work is reported in (Bennett 1996a)).
However, it was only towards the end of my PhD. research that T realised that categoricity could
not be achieved by means of a (finite) 1st-order theory.

The undecidability of RCC and similar theories means that the problem of incorporating qual-
itative spatial information into AT systems divides into two parts: i) the foundational problem of
providing a sufficiently rich theory of spatial concepts with a precise formal semantics; and ii) the
problem of constructing inference algorithms for reasoning in terms of useful but less expressive

representation languages.

3.7 A Revised Version of the RCC Theory

I now present an axiom set for an unsorted Ist-order theory of regions. The theory differs from
Clarkes’s and the RCC theory in that a null element is treated as a first-class region. This means
that the Boolean component of the theory can be axiomatised much more straightforwardly than in
the earlier theories. Apart from this the theory 1s intended to be much the same as RCC. Following
RCC rather than Clarke, every non-null region is connected to its complement and no distinction
can be made between open and closed regions.

Tt must be stressed that, although my revised axiom set avoids many of the problems with the
RCC theory that were noted earlier in this chapter, a great deal of further work remains to be done
on this theory. This is beyond the scope of the present work. Tn the remainder of the thesis T shall

focus on alternatives to 1st-order theories, that are better suited to automated reasoning.
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Preliminary Definitions

To make the axioms easier to state we need the following definitions:
D1) P(z,y) =.., Vz[C(z,2) = C(z,y)]
D2) O(z,y) =.., 32[C(z,2) A P(z,2) A P(z,y)]

D3) NTP(z,y) =..; Vz[C(z,2) — O(z,y)]

Fundamental Axioms

A set of fundamental axioms can now be stated as follows:
A1) VaWy[C(z,y) — Clz, )]

A2)  Vavy[C(r,y) = Cly, »)]

A3)  VavylVe[C(z, 2) & Cly,2)] — (& = y)]

A4)  VaVydavu[C(z, u) & (SNTP(u, ) V =NTP(u, ))]
A5)  Vx[C(r,z) — Fy[C(y, y) A NTP(y, z)]]

Axiom 1 1s the new restricted reflexivity axiom, which allows only the null region to be discon-
nected from itself. 2 1s the unchanged symmetry axiom and 3 is the extensionality axiom.

The fourth axiom guarantees that for any two regions, # and y, there is a region, z which is
connected to every region which is not a non-tangential part of both 2 and y (and, hecause of the
extensionality axiom, there can only be one such region). Under the intended interpretation, z is
the complement of the product of 2 and y. A complement of product function, ep(z,y) can now

be defined as:
D4) (ep(z,y) = 2) =4 Yu[Clu,z) & (ANTP(u,2) V =NTP(u, y))]

Unlike the function specifications in the original RCC theory, this is purely definitional because
the existential import and uniqueness of the function are already entailed by the other axioms. As
was explained in section 3.3.5 the Boolean functions and universal and null constants can all be
easily defined in terms of the cp function. Moreover, because in the new theory the null entity is
accepted as a true region, these will be proper rather than ‘quasi’ Boolean functions.

Finally, axiom b is a new version of the NTPP axiom modified to take account of null regions

and using the simpler NTP in place of NTPP.

Additional Axioms

The system should also satisfy the theorems given below. At present T take these as additional
axioms. However, it is likely that they are not all independent of each other and of the fundamental
axioms, in which case they could be omitted from the axiom set. On the other hand, the observa-

tions made in section 3.6 mean that even with axioms A A1-4 the system (being strictly Ist-order)
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cannot be complete, so one may wish to add still more axioms, to obtain a stronger theory with a

more restricted set of models.
AA1)  Vz[(C(z,2) & =NTP(z,y))] & Vz[(O(z,2) + —P(z,9))]
AA2)  VaVy[Vz[C(z,2) & —NTP(z,y)] = Vz[C(z,y) « =NTP(z, 2)]]

AA3) The structure (R,sum, compl) is a Boolean algebra, where R is the domain of regions

and sum and compl are defined from cp as specified in section 3.3.5.

AA4)  VaVy[P(x,y) < sum(z,y) =y

A A1 and AA2 were discussed in section 3.3.3 and relate to desired properties of the compl
function. A A3 is stated as a meta-level property but could be replaced by a set of Ist-order
formulae characterising a Boolean algebra in terms of the Boolean functions of the object language.
One could use equational formulae based on the theory given in table 3.1. Tt is clear that many
(and perhaps all) of these formulae would be derivable from the other axioms of the theory. AA4
ensures that the part relation coincides with the usual partial ordering on the elements of the

Boolean algebra.

Models of the Revised Theory

Possible models of the revised theory include topological models which are much the same as those
given above for the RCC theory (section 3.5), except that the domain of individuals contains the
empty set. Thus, in an open set interpretation the regions will correspond to arbitrary regular open
sets of a topological space T'; and C(x, y) will hold just in case the closures of the sets corresponding
to 2 and y share at least one point. The value of the function cp(2,y) would then be given by the
interior of the complement of the product of the sets corresponding to # and y; and the Boolean
algebra generated by cp would be the regular open Boolean algebra over T.
Tt 1s clear that axioms A1 3 hold in such models. A4 must also hold since it can be shown
that
VaVyVu[Clep(z,y),u) & (ANTP(u, 2) V =NTP(u, y))]

holds under the specified interpretation of cp.

Axiom A5 imposes an additional density condition on the space T. Specifically, that every
non-empty regular open set of T' (i.e. every set corresponding to a non-null region) includes a
non-empty regular closed subset. (The interior of this subset corresponds to a non-empty NTP of

the region.)



Chapter 4

A 0-Order Representation

As in other areas of knowledge representation, constructing a formalism for representing
spatial information involves a trade-off between expressive capability and the tractability of
computing semantic relations (such as entailment) between expressions. In chapter 2 several
very expressive theories of spatial regions were described. All of these addressed the problem of
representing spatial information by employing logical languages of 1st (or higher) order  i.e.
languages including quantifiers. But (as discussed in section 1.5.2) reasoning in 1st-order logic
is not, only intractable but undecidable; so, unless some special purpose reasoning algorithm is
known, such a representation does not provide a practical mechanism for computing inferences.
In this chapter T demonstrate how a 0-order (quantifier free) representation, which is an
extension of the ordinary classical propositional calculus, can be used to represent a significant
class of spatial relationships. This representation also yields a decision procedure for reasoning

about this information.

4.1 Spatial Interpretation of 0-Order Calculi

The most familiar interpretations of 0-order logical calculi are as propositional logics: the non-
logical constants are regarded as denoting propositions and the connectives as operating on their
(propositional) arguments to form more complex propositions. Within such a conception, the
classical connectives are interpreted as expressing truth-functional combinations of their arguments.
However, taking non-logical constants as denoting propositions is not the only way that these calculi
can be interpreted, which is why T describe them as ‘0-order’ rather than ‘propositional’. Tn this
chapter T explain how the classical propositional logic (which T refer to as C) can be employed as a
language for spatial reasoning. Under this interpretation, the non-logical constants denote regions
and the connectives correspond to operations forming new regions from their arguments.

This interpretation is compatible with well-known model-theoretic accounts of 0-order calculi,
in which propositions are associated with sets rather than with truth-values. These sets are often
thought of as sets of possible worlds in which a proposition is true but they can also be regarded
as sets of points (or perhaps atoms) making up a spatial region. Such interpretations are generally

employed as models of modal logics rather than the simple classical calculus (whose semantics is

61
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adequately captured by the simpler truth-functional semantics). Tn the next chapter we shall see
that the non-truth functional operators of modal logics can also be given a spatial interpretation.
The possibility of representing spatial relations in classical propositional logic arises because
the logic of spatial regions includes a Boolean algebra as a sub-structure. This has been known for
a long time it forms the basis of Venn diagrams (Venn 1881). By generalising the principles of
Boolean reasoning, the rest of the chapter develops a rather more elaborate system in which it is
possible to represent and reason about a much larger class of spatial relations. The generalisation
involves a meta-level addition to the basic syntax and proof theory of a 0-order logic, which is
needed to increase the expressive power of the representation: specifically it enables negative as
well as positive constraints to be represented. This method of representing negative constraints in
a 0-order logic is as far as I know completely original. Tt 1s also quite general and in subsequent

chapters will be applied to modal and intuitionistic logical representations.

4.2 Set Semantics for the Classical Calculus

The 0-order classical caleulus (henceforth C) can be given a semantical interpretation in which the
constants denote arbitrary subsets of some universe [/ and the logical connectives correspond to
elementary set-theoretic operations. Specifically, a model for the logic C is a structure, (U, K, d),
where U/ is a non-empty set, K is a denumerably infinite set of constants, and J is a denotation
function, which assigns to each constant, p, in K a subset, P, of /. The domain of § is extended

to all formulae formed from the constants by stipulating that:'

1. d[=¢] = d(¢)
2. 8[¢ A ¢] = d[e] N d[Y]
3. 8[¢ v ¢l = d[e] Ud[y]
where for any set S, S is the set of all elements of I/ that are not. elements of S. (For example, if

d(a) = A, 6(b) = B and é(¢) = C, then §(—=(a A (b V ¢))) = AN (BUC).) Under this interpreta-

tion 1t can be shown that:

Classical Set-Semantics Theorem (CSST)
A formula, ¢, is a theorem of C if and only if
for every model (U, K, §), the equation d§(¢) = U is satisfied.

The denotation function induces a correspondence between formulae and terms formed from
constants denoting sets and elementary set operations (henceforth set-terms). Tt will be useful to

define some notation to describe the relationship between these types of expression:

e For every propositional constant p; there is a corresponding set constant P;.

"With semantic and other meta-level functions such as § T enclose the arguments in square rather than round
brackets. The small Greek letters ¢ and 1y are employed as schematic variables standing for arbitrary propositional

expressions.
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o T write ST[¢] as a means of expressing the set-term obtained from the formula ¢ by replacing
0-order constants, p;, by set constants, P; and the connectives =, A and V respectively
by L, N and U. (Note that ST[.. ] is a meta-level syntactic operation and not an ordinary

(extensional) function.)

e The converse (meta-level) function from a set-term 7 to a classical (propositional) formula
will be written CF[r]. Tf the empty set. symbol, ‘@, occurs in 7 it will be replaced by the
falsity constant L (its negation =L will be written as T).

e It will also be convenient to use the relational notation, ¢ ~p =57 7, to refer to the
mapping between classical formulae and corresponding set-terms; thus we can write e.g.

(pV =q9) op="" (PUQ). (Again this is a meta-level relation between expressions.)

The set semantics may be regarded as a generalisation of the usual truth-functional semantics
for C: if U is taken to be a singleton set, {1}, then all formulae are assigned one of two values:
) or {1}. Hence for any truth-value assignment f : K — {t f} to the (-order constants, there is
a set assignment d; : K — {{1}, 0}, such that d;[p] = {1} if f[p] = t and &;[p] = 0 if f[p] = .
Moreover, the values of the truth-functions on truth-values are mirrored by corresponding values
of the set, operations on the two possible set values. So, if the domain of d¢ is extended to complex
formulae according to the specification for the § function given above, then d¢[¢] = {1} iff ¢ is
given the value t under the truth-functional assignment f; and d;[¢] = 0 iff ¢ is assigned f by f.

Proof of CSST: Tf ¢ is converted to conjunctive normal form (CNF), then each
conjunct will contain a pair of complementary literals (I and —l) if and only if ¢ is a
tautology. The set term 7 = ST[¢] can also be converted to an analogous normal form,
intersection normal form (INF): by means of simple re-write rules any set-term can be
expressed as an intersection of unions of set-constants and their complements. Thus 7

can be expressed in the form
(ri U Um; UTim U UT5) NN (Ta U Ume U UL UT)

If a set-term corresponds to a tautological proposition then when expressed in INF
each union in the expression must contain some pair, 7 and 7, of a set constant and its
complement. So, whatever the assignment to the set constants, each union, and hence
the intersection of these unions, will denote the universal region.

On the other hand suppose ¢ is not a tautology; then there is a truth-value assign-
ment, f(p;), to the atomic propositions in ¢ such that ¢ is false according to truth-
functional semantics. Hence, from the derived set assignment d¢ over the universe, {1},
(as described above) we can construct a model ({1}, K,d¢), in which ¢ does not, denote

the universe. M

If we are only interested in the pure classical calculus, set-semantics may be considered a

redundant generalisation of truth functional semantics, since CSST shows that a Boolean term
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has the value 1 in all assignments to its constants over any domain if and only if it takes the value
1 in all assignments over the domain {1}. Hence, consideration of a 2-element, algebra is sufficient
to determine validity of any entailment in C. Tt is only when (as in the next chapter) we introduce
additional operators corresponding to non-Boolean functions that we need to consider assignments

over larger domains.

4.2.1 An Entailment Correspondence

The correlation between classical theorems and Boolean terms which are universal in any model is
a special case of a more general correspondence between the entailment relation in classical logic
and entailments among Boolean equations. These entailment relations will be represented with the

following notation:

e ¢1,...,0n ¢ ¢o means that in the calculus, C, the formula ¢q is entailed by the set of
formulae, {¢1,...,¢n}. (Thus =¢ ¢ means that ¢ is a theorem of C.)

o &1,...,& Es &), where &, ... &, are set-equations, means that in any model (i.e. assign-
ment of sets to the constants occurring in the equations) for which the equations &, ..., &,

hold, the equation &; also holds. (=g & means that £ holds in every model.)

The set-equations we shall be most often concerned with are universal  i.e of the form r = U,
where U 1s the universe of whatever model is under question. This presents a slight notational
difficulty if we want to say that a universal equation holds in all of some class of models, because
the universal set will not generally be the same set in each model. For this purpose T employ the
special symbol U. We can regard this either as a special logical symbol equivalent to f or as a
meta-variable standing for whatever set 1s the universe under consideration.?

Using these notations, the following theorem can now be stated:

Classical Entailment Correspondence Theorem (CECT)
¢17---7¢n ':C¢0 ]fandon]y]f T1:u7"'77—n:u 'ZS T():u

where ¢; CP:ST ; for each 1.

Proof of CECT: Tf¢y,...,¢, Ec éo then the formula (¢1 A ... A ¢,,) — do must

be a tautology; hence the equation 7y N ... N7, U 79= U must hold in every model.

But in any model satisfying 7 = U,..., 7, = U one must have 7y N ... 01, = 0.
Therefore Ty = U.

On the other hand suppose ¢1,...,¢n Ec ¢o; this means that there is some truth-
functional assignment, f, under which ¢, ..., ¢, are all true whilst ¢q is false. We then

use the derived assignment d; over the domain {1} as an assignment to corresponding
set-constants occurring in the terms 7;. Under this assignment we shall have m =

U, ....tp=Uand 7y =0. Sor =U,....1n=U s a=U. N

2Note that, if a term 7 contains U, then in CF[7] this will be replaced by T.
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4.2.2 Reasoning with Non-Universal Equations

The correspondence theorem, CECT, allows us to use classical propositional formulae to reason
about universal set-equations and the formula CF[r] can be regarded as representing the equation

7= U . Moreover, because of the equivalence

X=Y if and only if (Xuy)n(xuY)=u,
any set equation can be put into the universal form r= U .

In order that we may use 0-order formulae to reason about arbitrary Boolean set equations
it will be useful to define a transform CFe[r; = m], which gives a formula representative of
any equation 7 = 7». Such a representative is provided by the formula CF[r], where 7= U s
equivalent to 1 = 1. For a universal equation CFe[r = U] will just be equal to CF[r]. For an

arbitrary non-universal equation 7 = 7 we could use the definition
CFe[r =] =,., CF[(TUm)N(r UT)] = (-CF[ry] V CF[r]) A (CF[r] V =CF[r])
but since (—¢ V ) A (¢ V —1b) = (¢ ¢ 1), it is more convenient, to define CFe by
CFe[r; = 7] =,.;, CF[n1] & CF[ry] .

In terms of CFe we can state the following corollary of CECT which characterises entailment

between arbitrary Boolean set-term equations:

&, o0& Fs o if and only if ~ CFe[(], ..., CFe[{i] [ CFe[g] .

In fact we shall almost always deal with equations which are in the universal form; but even
in these cases the CFe operator is still a useful notation for translating from Boolean equations to

their representative formulae.

4.3 Representing Topological Relationships in C

Table 4.1 shows how four spatial relations can be characterised by constraints stated in terms of the
classical propositional calculus, C. The first column of the table specifies a spatial relation using
the formal vocabulary of the RCC theory. The second column gives an informal description of the
relation. The third column again describes the same relation in terms of an elementary set-term
equation (all the equations are given in universal form). This characterisation is in accord with the
interpretation of RCC regions as (non-empty regular open) subsets of a topological space given in
section 3.5.2. The final column gives a formula of C that may be considered as representing the
spatial relation. This formula is given by CFe[¢], where & is the set equation of the third column.

The theorem CECT tells us that entailments among elementary set equations are faithfully
mirrored by entailments among corresponding C formulae. Thus, in order to reason with spatial
information expressible in terms of such set equations one can transform the equations into formulae

of C and then test inferences using some method of propositional theorem proving.
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‘ Relation ‘ Description Set Equation ‘ C formula ‘
DR(x,y) | # and y are discrete xXny=u —(x A y)
P(x,y) x is part of y XUuy=Uu r =y
Pi(x, y) y is part of Xuvy=Uu y—
EQ(x,y) | » and y are equal (Xuy)n(xuv)=u xSy

Table 4.1: Definitions of four topological relations in C

For example, the inference
DR(a,b), P(c,a) F DR(a,e¢)

depends on the following entailment between set equations:

ANB=U, CUA=U E CNB=U
and this can be shown to be valid because in C we have
—(aAb), ce—=a | —(cAb).

Hence, even with this very simple encoding into C, some significant spatial inferences can be
determined.

Apart from the four relations given in table 4.1 a large class of other relations can also be
represented including: « is the universe (z); @ is null (—2); 2 is the complement of y (=(2 < y));
the sum of # and y is the universe (2 V y); and 2 is the sum of y and z (z & (y V 2)).

The correspondence between binary topological relations among regions and the set equations
or C formulae which can be used to represent them are illustrated in figure 4.1. The figure contains
five sub-diagrams showing each of five JEPD relations that can hold between two regions. This
classification does not distinguish between connection and overlapping or between tangential and
non-tangential parts. Of the five relations only DR and EQ can be uniquely specified by a C formula.

Tt 1s not surprising that the distinction between connection and overlapping cannot be specified
in terms of the purely Boolean formulae of C. Tn the point-set interpretation of RCC this distinction
depends on the topological closure operation; but in the simple language of Boolean set equations
no such operation is available. To capture the distinction we shall need to use the more expressive
representation described in the next chapter. However, it is more disappointing that the relation
of partial overlap cannot be directly represented by any formula of C; and even though the part
relation corresponds directly to ‘implication’, the proper part relation cannot be uniquely specified:
although we can easily say that one region is part of another, we cannot rule out the possibility

that the two regions are equal.
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anb=U —(a A D)
or or
(Ub) 2
PO(a, b)
e ™
P(a,b) b a (b) Pi(a,b)
aUb=U< pp(, ) PPi(a.h) [~ CYI=U
-a Vb aV —b
or or
a—=b o -/ b—a

EQ(a,b)
(@ub)N(aUd) =U
a<b

Figure 4.1: Topological relations representable in C

4.4 Model and Entailment Constraints

As it stands, our representation is very limited: many simple spatial relations cannot be defined
solely by means of universal set-equations. For example, we have observed that the relation
PP(x,y), x is a proper part of y, cannot bhe so expressed. Nevertheless, informally this rela-
tion can be defined quite straightforwardly as that relation which holds whenever P(z,y) is true
but not EQ(z, y). So it would seem that we can characterise the proper part relation if we can find
a way to represent the absence of a relation which we can already define.

We must now ask how the negations of set-equation constraints should be represented. Take for

example =P (2, y) (2 is not, part of y). Suppose we simply negate the classical formula representing

P(x,y); we would then get =(x — y). But this formula corresponds to the set equation X UY = U
or equivalently XNY = ¥ ; and this will only hold when both X = I{ and Y = ). So we see that the
negation of a formula does not correspond to the absence of the relation enforced by that constraint.
Tn terms of sets, what we really wanted to represent was X UY # U which is the direct negation
of the set equation for P(2,y). But negating the formula in the propositional representation does
not give us this because such a negation is interpreted as a complement operation on the set-term
rather than a negation of the whole equation. This means that the absence of the relations defined
so far cannot be represented directly as C formulae.

We need to increase the expressive capabilities of our representation language so we can rep-
resent situations in which we specify not only that a number of universal set-equations hold but

also that certain such equations do not hold. Thus, we shall employ the more general constraint
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language of universal set-equations and their negations and use this to describe spatial situations.
In order to use classical formulae to logically encode these constraints we need some way of indic-
ating whether the formula i1s to be interpreted as an equality or an inequality. Thus a collection
of constraints will be represented by a pair (M, &) where M is a set of formulae corresponding
to equalities and & 1s a set of formulae corresponding to inequalities. The formulae in M are
called model constraints because they correspond to equational constraints on possible models.
The formulae in & are called entailment constraints for reasons which will be made clear in the

next section. The language consisting of pairs of sets of C formulae will be called Ct.

4.5 Consistency of C* Situation Descriptions

What we now need is a method of determining from a pair of formula sets, (M, &), whether
the corresponding spatial/algebraic constraints are consistent. (M, &) represents a set, O, of
constraints of the form {my =U,....m; = U, e1 £U,... e; #U}. Clearly, © is inconsistent if

and only if the following entailment holds:
TYMZU,...,m]':u ':5 er=UVN ...V e, =U (DF])

Here, the r.h.s. is a disjunction of set-equations and as such cannot be translated into a union at
the level of set-terms (just as negating a set equation is not equivalent to applying the complement,
operation to its set term). The correspondence theorem CECT does not tell us how to interpret
disjunctions of set equations in C. However, it can be established that in the domain of sets,
entailments of this kind are conver in the sense of (Oppen 1980).% A class of entailments is convex

in this sense iff
whenever T ¢ V...V ¢, then T [Eé,;, forsomeie {1...n}.

The following theorem asserts the convexity of entailments of the form of DF:

Convexity of Disjunctive Boolean-Algebraic Entailments (BEconv)
mp=U, . pm=U s e =UN ..V e, = U
iff
i =U, . pm =U s i =U forsomeie {1, ...n}

Proof of BEconv: Consider a disjunctive entailment of the form of DF and let S
be the set of set-constants which it contains. Suppose none of the disjuncts on the
r.h.s. are entailed by the equations on the 1.h.s.. This means that for each disjunct
e; = U there is an assignment, a; : S — 27+ of subsets of some universe, U, to the
constants in S such that e; = U 1s false, whilst the equations m; = U are all true. We

can assume, without loss of generality, that the universes in each of these assignments

3Note that later in this thesis T shall use the term conver with its ordinary sense, as a property of the surface of

a region. Hopefully this will not cause too much confusion.
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are disjoint. We now construct a new assignment, o, : S — 2V~ such that U, = U, Ui
and . (X) = |, 0:(X). The U;’s thus form discrete subspaces of U.. Clearly, this
assignment, must make all the 1.h.s. equations true and each of the disjuncts on the
r.h.s. false. Thus the r.h.s. will be entailed if and only if at least one of its disjuncts is
individually entailed by the 1.h.s.. This means that the class of entailments of the form

of DFE 1s convex. B

In fact BEconv may be regarded as an immediate consequence of a general consistency prop-
erty of equational literals, which T shall call ELcons. By an equational literal T mean a positive or
negative equality relation, which may contain constants, function symbols and variables. Variables

are assumed to be implicitly universally quantified. The property is as follows:

Consistency of Equational Literals (ELcons)
=vr o =V, (e =71), (e =)
iff
1= V1, = VUm | oi =1 forsomeie {1,...n}

ELcons can be established by considering possible proofs of inconsistency in some proof system
for Tst-order logic with equality, which is known to be refutation complete. One such system, is
that where the only proof rules are binary resolution, paramodulation and factoring (Duffy 1991).
Since we are dealing with sets of literals (i.e. only unit clauses), factoring is not required and a
simplified version of paramodulation can be employed. The details of the rules that are used do
not matter, since ELcons can be demonstrated from quite general observations. The proof is as

follows:

Proof of ELcons: Suppose we refute a set of equational literals by means of binary
resolution and paramodulation. Once an application of binary resolution can be made,
inconsistency is proved immediately; so any successful refutation must consist of a
series of paramodulations followed by a single binary resolution. Note also that each
paramodulation either involves two positive literals and generates a new positive literal
or it involves a positive and a negative literal and generates a new negative literal.
These observations enable us to show that any refutation makes essential use of exactly
one negative literal. The key points are that the derivation of a positive literal cannot
involve any negative literals and that no rule operates on more than one negative literal.

Consider the final step in the refutation; this is a resolution between a positive and
a negative literal. The positive literal 1s either in the original set of literals or has been
derived by a sequence of paramodulations involving only positive literals. The negative
literal is either in the original set or has been generated from a positive and a negative
literal. Tn the latter case, the positive literal must have been derived from only positive
literals and the negative literal is either in the original set or is in turn derived from
a positive and negative literal. However long this sequence continues, it is clear that

exactly one negative literal from the original set is involved in the proof. B
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The negative literals in the left hand condition of ELcons may be moved over to the right to

give an equivalent entailment,
H1 = Vel = VUm, = o= Voo Vo, =Ty (ELconv)

From ELcons it immediately follows that entailments of the form of ELconv are convex. ELconv
has the same syntactic form as DF; but, whereas ELconv specifies a purely logical entailment
between equations, the entailment relation |=g occurring in DF specifies that the entailment holds
if the terms are interpreted in accordance with elementary set theory. Tn general if the |= in
ELconv is replaced by a more specific entailment relation, =g, the convexity property may no
longer hold. However, if © can be expressed as a purely equational theory, entailments w.r.t.
© can be expressed as purely logical equational entailments of the form of ELconv. Hence the
convexity result will still hold for such theories. Tn particular, it holds for the relation =g, where
S is elementary set theory (which is just an interpretation of Boolean algebra), since S can be
specified purely in terms of equations. This gives us an alternative proof of BEconv.

If we combine BEconv with our interpretation of Ct expressions and then apply CECT we

immediately get the following theorem characterising the consistency of C* expressions.

C* Consistency Theorem (C+CT)
A C* expression (M, E) is consistent if and only if
there is no formula ¢ € & such that M |=¢ ¢.

This should make it clear why the formulae in the set £ are called entailment constraints.

4.6 Representing RCC Relations

We can now give Ct representations for a significant sub-class of the RCC relations. Let us first
look at how the situation type “x is a proper part of y” is represented. We can say that PP(xz,y)
holds when z is part of y but the two regions are not equal. This gives us the equality X UY = U
and the inequality (X UY) N (X UY) # U. Equalities are encoded as model constraints and
inequalities as entailment constraints so our propositional representation for the relation PP(x, y)

is the pair

({r =y} {r & y}) .

4.6.1 Non-Null Constraints

Recall that in discussing topological interpretations of RCC relations (section 3.5.2) T observed that,
point-sets corresponding to proper (non-null) RCC regions must be non-empty. An important use
of entailment constraints is to ensure that regions involved in a situation description are non-null.
Tf null regions are allowed they have properties which may seem counter-intuitive (for example the
null region is both part of and disconnected from any other region) and many useful and apparently

sound inferences may not hold if it is allowed that some of the regions involved may be null. The
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requirement, that a region is non-null is expressed by the inequality X # U, which corresponds to

the entailment constraint =z in the CT representation.

4.6.2 Representations of the RCC-5 Relations

The Ct representation allows us to represent each of the five topological relations shown in fig-
ure 4.1. These comprise a jointly exhaustive and pairwise disjoint, (JEPD) set known as RCC-5.
The model and entailment constraints (including non-null constraints) of the C* representation for

each of these relations are shown 1n table 4.2.

‘ Relation ‘ Model Constraint ‘ Entailment Constraints
DR(x,y) —(z A y) —x, DY
PO(x,y) VY, =y, Yy & E, x, Yy
PP(x,y) r =y Yy — x, ow, oy
PPi(z, y) y— r—=y, 7w, Ty
EQ(z,y) Ty —x, Y

Table 4.2: The C* encoding of some RCC relations

The model constraint associated with a relation is the strongest formula which holds in all
models in which the relation holds. The entailment constraints serve to exclude models which,
although consistent with the model constraint, are incompatible with the relation. Thus the en-
taillment constraints associated with a relation in a JEPD set will normally correspond to model
constraints of other relations in that set (plus the non-null constraints). The relation PO has no
model constraint and is defined by excluding all of the other relations.

Certain entailment constraints which one might expect to be required can be eliminated or
weakened because they are indirectly captured by other constraints. For example, in table 4.2
the entailment constraint x < y, which occurred in the representation of PP worked out above, is
replaced by the weaker formula y — =z, since in the presence of the model constraint x — y, y — =

would immediately entail z < y.

4.7 Reasoning with C*

By making use of the results obtained so far one can use a classical propositional theorem prover as
the basis of an effective antomated spatial reasoning system. For clarity T concisely summarise the
consistency checking algorithm for CT. Given a spatial description consisting of a set of relations
of the form R(a, 8), where R is one of the relations characterisable in C* and o and 3 are constants
denoting regions, the following simple algorithm will decide whether the description describes a

possible situation:



CHAPTER 4. A 0-ORDER REPRESENTATION 72

For each relation R;(«;, 5;) in the situation description find the corresponding propositional

representation (M;, &;).

o Construct the overall Ct representation U; Mi, U; &)

For each formula ¢ € | J; & use a classical propositional theorem prover to determine whether

the entailment. | J, M; ¢ ¢ holds.

If any of the entailments determined in the last step does hold then the situation is impossible.

For example we may want to know whether the following situation is possible: x is a proper
part of y; y is disjoint with z; and z is a proper part of z. The Ct representations of the three

spatial relations are respectively:

({r = b dy = = - —yh), (= A 2) b {oy, -2 and (o= 2} {2 = @ —e, o2

So the overall CT representation is
{x =y, ~(yNz2), 2= z2b, {y—= 2, 2 = x, —x, oy, -2
We determine that this situation is impossible since

r—=y ~(yAz), =z Fo .

4.7.1 Determining Entailments

Computing inconsistency of Ct expressions is a special case of determining entailments between
situation descriptions characterisable in CT. To refer to such an entailment, I shall use the notation
(M, EY Ec+ (M’ E"). Wecan express the meaning of this as an enfailment between sef-equations

as Tollows:

mi=UN ... Amp=U Ner ZFU N ... Ne; FU
s

my=UN. ... Ami=UNe\ FUN ... Nep, #U

If we then bring the r.h.s. over to the left and move the resulting negation inwards we get:

mi=UN...Amp=UNey ZU N ... Ne; U A

(my 2U V..Vl U N S =U V.. Ve =U) s

To show the validity of this we must show that whichever of the equations in the disjunction is

chosen the resulting equation set is inconsistent. This is equivalent to showing that:
for all p € M’ we have (M, EU{p}) Ec+ and forall ¢ € £ we have (MU {q},&) Ec+

Another equivalent way of expressing these which is more convenient from the point of view of

actually calculating the entailments is the following:
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C* Entailment Theorem (C+ET)
(M, E) Ee+ (M E) iff
either (M, &) s or (forall g € M’ : (M, {o}) Fex
and for all p € &' : (MU {¥},E) Ec+ )

Tnformally, this means that a sequent is valid iff: either (M, &) is itself inconsistent; or, each
of the model constraints in M’ is entailed by the model constraints M and also each of the entail-
ment constraints in £’ in conjunction with the model constraints M entails one of the entailment
constraints in £. Determining the validity of a C* entailment has thus been reduced to determ-
ining the inconsistency of certain CT expressions and we already know that such an expression is

inconsistent, iff one of its entailment constraints 1s entailed by its model constraints.

4.7.2 Complexity of the Reasoning Algorithm

Consistency checking for sets of spatial relations representable in C* is clearly NP-hard and essen-
tially the same as the consistency checking problem for C. The meta-level extension for handling
the entailment constraints reduces each Ct consistency problem to n consistency problems of sets
of C formulae, where n is the number of entailment constraints. Note that all these n problems
could in principle be solved in parallel.

Another factor which can significantly limit the complexity of spatial reasoning using this en-
coding i1s that, in representing the five RCC relations given in table 4.2, only formulae containing at
most two variables are employed. This means that the complexity of reasoning with these relations
18 that of ‘2-SAT’, the satisfiability problem for binary clauses. This problem is computationally
easy: it can be solved in time proportional to n?, where n is the number of clanses involved. More
specifically this problem is in the class NC of problems which can be solved in polylogarithmic
time by using polynomially many parallel processors.

A detailed consideration of computational complexity is beyond the scope of this thesis. A

survey of complexity classes can be found in (Johnson 1990).



Chapter 5

A Modal Representation

Using principles introduced in the last chapter, this chapter develops a more expressive
representation for spatial relationships based on the 0-order modal logic S4. T explain how
the Boolean set semantics for classical logics can be generalised to take account of additional
non-truth functional operators. We shall see how the topological interior function can also be
modelled in this way. In fact, considered in this way, the ‘0’ operator of S4 obeys exactly
the same constraints as an interior operator. This correspondence allows one to use deduction
in S4 as a means for reasoning about equations between terms involving Boolean functions
and an interior function. We shall see that these equations can express a large class of spatial
relations. T go on to introduce the language S4% which extends the expressive power of S4
in exactly the same way as CT extends the C representation. The S4% representation allows

many RCC relations to be expressed including all the RCC-8 relations.

5.1 The Spatial Interpretation of Modal Logics

In this chapter T develop a 0-order representation for spatial information which i1s considerably
more expressive than that given in the previous chapter. The principles upon which 1t is based
are much the same as those employed in formulating Ct but, rather than using the simple classical
logic to encode spatial information, T shall use modal logics whose language contains additional
unary operators.

Modal operators are usually regarded as non-truth-functional operators on propositions. Many
kinds of propositional modality have been studied: alethic modalities (necessity, possibility, contin-
gency); propositional attitudes (knowledge, belief, certainty, etc.); deontic modalities (obligation,
permission). However, in the context of a set-semantics under which 0-order constants are
interpreted as sets and Boolean operators as elementary set operation modal operators can be
regarded as mappings between subsets of some universe of elements. By thinking of these as sets
of points within a space, we immediately get a spatial interpretation.

To specify the spatial interpretation of a modal operator in a more concrete way we can regard
the universe of points as having the structure of a topological space. As we saw in section 2.1 the

structure of a topological space determines (and is determined by) certain functions on subsets of
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the space, such as the interior and closure functions. We shall see that the modal ‘0" operator of
the logic S4 can be interpreted as an interior operator on a topological space. This correspondence
allows one to use deduction in S4 as a means for reasoning about equations between terms involving
Boolean functions and an interior function. These can be regarded as topological constraints and
can be used to express a large class of spatial relations. The connection between topological spaces
and the logic S4 has been known since the work of Tarski and McKinsey (1948) but as far as T

know has never been used as a vehicle for automated spatial reasoning.

5.1.1 Overview of the Approach Taken

In the next section T look at the semantics of modal logics and specifically at algebraic models
based on modal algebras. T prove a correspondence between the deducibility relation of a modal
logic and entailment among modal algebraic equations.

In section 5.3 T consider the algebraic interpretation of a topological space as a closure algebra,
and show how many topological relationships can be expressed in terms of closure algebraic equa-
tions and the negations of such equations. T then observe (in section 5.4) that the modal algebras
associated with the logic S4 are essentially the same as closure algebras. This means that 54 can
be used to reason about equational closure algebra constraints.

Generalising the framework previously described in sections 4.4 and 4.5 of the last chapter,
section 5.5 specifies the extension of a modal language I. to a more expressive language, IL*. 1
prove a useful entailment convexity result for these languages. T then show (in section 5.6) how all
the RCC-8 relations and many more topological relations can be encoded in the extended modal
language S4F. This provides a decision procedure for a significant class of topological relations.

Finally, in section 5.7, T explain how, in principle, modal representations allow us to replace the
meta-level expressions of Ct and S4% by object level expressions in a modal logic incorporating

an additional SH operator.

5.2 Semantics for 0-Order (Modal) Logics

To generalise the spatial interpretation of C to (-order languages with additional operators it is
necessary to know some details of modal logics and their semantics. My presentation is very concise
so the reader will need some prior knowledge of the subject. Two very good text books on modal

logic are (Hughes and Cresswell 1968) and (Chellas 1980).

5.2.1 Modal Logics

A (propositional) modal language is obtained by adding to the language of classical propositional
logic a monadic operator, ‘T1°." The inference rules of the modal logic consist of all the rules

of classical propositional logic plus some additional rules concerning the modal operator. Many

' For some purposes one may wish to add several distinct modal operators to the language. The resulting system

is called a multi-modal logic.
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different sets of rules have been proposed capturing different intended meanings and properties of
the operator. These give rise to a wide range of distinct modal logics. A rule common to most
logics that have been called ‘modal’ is the rule of necessitation (RIN): this states that if any formula,
¢, 18 a logical theorem then so is the formula 0 ¢.

Further logical properties of the modal operator are usually presented in terms of axiom
schemata. A schema specifies that all formulae exhibiting a certain logical form have the status
of axioms. Thus if the proof system of the underlying classical propositional logic is presented in
axiomatic style (i.e. as a set of axiom schema and the rule of modus ponens) then the proof system

of a modal logic, I, is obtained by simply adding further axiom schemata and the rule RIN. T write

1,00 1 P0

to mean that the formula ¢q is deducible from the set of formulae {¢1,..., ¢, } in the logic I.
For every modal [J operator there is a dual operator, {, defined by ¢ ¢ <> =[O —¢. Consequently
(since negation obeys the usual classical principles), it is easily proved that O ¢ <> = —¢; so one

can equally well take ¢ as the primary modal operator and introduce [J by definition.

5.2.2 The Logic 54

S4 is one of the simpler and better known modal logics. Tt may also be called KT'4 since it is
obtained from classical propositional logic by adding the the rule of necessitation and the following
axiom schemas:

K. O(¢ = ¢) = (O0¢ = OY)

T.O¢ — ¢

4. O0¢ — O0O¢

A modal logic which satisfies the schema K, as well as obeying the rule of necessitation, is

known as normal.

5.2.3 Kripke Semantics

Currently the best known interpretations of modal logics are those in terms of Kripke semantics.
In a Kripke semantics a model consists of a set of possible worlds together with an accessibility
relation  a binary relation between worlds  associated with each modal operator. Propositions
denote sets of possible worlds (the set of worlds in which they are true). A Kripke model, M, is
thus a structure (W, R, P, d), where W is a set of worlds, R is the accessibility relation, P is a set,
of constants, {p; }, and d is a function mapping elements of P to subsets of W.

Such a model determines the truth of each modal formula at each possible world. Classical

formulae are interpreted as follows:

e Atomic formulae, p; are true in exactly the worlds in the set d(p;).

e Conjunctions, ¢ A 1, are true in worlds where both ¢ and i are true.
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e Disjunctions, ¢ V 1, are true in worlds where either ¢ or ¢ (or hoth) is true.

e Negations, —¢, are true in worlds where ¢ is not true.

We write =M ¢ to mean that formula ¢ is true at world a in model M. A modal operator, [, is

then interpreted as follows: in a model M = (W, R, P, d)
M Oe it M ¢ forall g€ W st R(a,f)

A frame 1s a set of all Kripke models satisfying some specification of the properties of the
accessibility relation, R. For example, the set of all Kripke models in which R is reflexive and
symmetric constitutes a frame. Finally we say that a formula is valid in some frame, I, if it is
true at every world in every model in F.

The logic 54 1s characterised by the frame, Fgq4, consisting of all Kripke models whose access-
ibility relations are reflerive and fransitive (R is a quasi-ordering on W). Every theorem provable
according to the proof system for S4 specified above is valid in Fg4; and conversely every formula
valid in Fg4 is provable in the proof system.

A vast spectrum of different modal operators can be specified by placing more or less general
restrictions on the corresponding accessibility relation.?2 Furthermore, Kripke semantics allows
one to specify operators whose logic seems to correspond well with intuitive properties of modal
concepts employed in natural language. Indeed, a number of logics proposed for natural language
modalities, which were originally specified proof theoretically (by axiom schemata intended to
capture intuitive properties of modal concepts) can be captured very easily within the Kripke
paradigm by quite simple restrictions on the accessibility relation.

Whilst the Kripke approach certainly provides a very flexible approach to modal semantics,
its generality is often overstated. Consequently, many researchers in both AT and philosophical
logic tend to think of possible worlds semantics as essentially based upon accessibility relations.
However, although Kripke models may be appropriate for certain types of modal operator, in other
cases 1t may be more natural to suppose a quite different structuring of possible worlds or even a

semantics that 1s not based on possible worlds at all.

5.2.4 Modal Algebras

A modal algebra s a mathematical structure that provides a semantics for modal logics which 1s
more general than a Kripke model. Just as the formulae of classical propositional logic can be
interpreted as referring to elements of a Boolean algebra, modal formulae can be interpreted as
elements of a Boolean algebra supplemented with an additional unary operation obeying certain
constraints. This is a modal algebra. Boolean algebras with additional operators were first studied
in detail by Jénsson and Tarski (1951). Their connection to modal logics was investigated by

Lemmon (1966a, 1966b). A clear account of the essential properties of modal algebras and their

20ften such restrictions are thought of as defining a logic rather than an operator but this is misleading since the

possible worlds semantics allows any number of different operators to be encompassed in a single logical language.
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relation to Kripke semantics is given by Hughes and Cresswell (1968, Chapter 17) and a much
more detailed examination can be found in (Goldblatt 1976).
A modal algebra can be represented by a structure M = (S, +, L %), where (5,4, L) is a

Boolean algebra and, for all elements x and y of the algebra, the operator “x” satisfies the equation
#(7 +y) = *xx + *y (add)

Operators obeying this equation are known as additive.® A direct consequence of additivity is the

following monotonicity property (which will be useful later):*
if r <y then xx < xy (mon)

Further equational restrictions may be placed on the “x’ operator. Of particular importance are

x < *x (i.e. &4+ = *x) (epis)
*0=10 (norm)
(x(2) = +(2) (idem)

5.2.5 Algebraic Models

We can now define an algebraic model for a modal language® as a structure (S, 4+, L, %, P,d), where
(5,4, L, %) is a modal algebra, P is the set of constants of the language and § is a function mapping
modal formulae to elements of S. For each constant p € P, d[p] may be any element of S. This
assignment o the constants determines the value d[¢] of all complex formulae according to the

following recursive specification:®
e o v 8] = dlo] + 4[8]
o d0] = 14[o]
o 80 0] = +(d[0])

Note that under this interpretation the *x operation of the algebra is associated with the modal ¢
rather than 0. This is because of the additivity of the algebraic x operator: the algebraic equation
characterising additivity corresponds to the modal schema {(¢ V ) < (O ¢ vV O 1) which is true
in every normal modal logic.

We say that a formula, ¢, is universal in a model (S,U, L , P, d) iff §[¢] = 1 i.e. if the

model assigns to the formula the unit (universal) element of the modal algebra (S,U, L x). An

3Tt is additive operators which are the primary focus of the investigations of Jénsson and Tarski (1951).
4Proof: (z<y) 2 (r+y=y) > (xy=*x(z+y)) = (xy = =z + xy) = (xx < xy) QFED.

5T am assuming here that the language has only one modal operator. For a multi-modal language the model

would have several functions x; one for each modality.

6 Specifications for the connectives A, — , ¢ and [0 can easily be derived from their definitions in terms of

=, vV and .



CHAPTER 5. A MODAIL REPRESENTATION 79

algebraic frame, Fg, is a set of all algebraic models whose algebras satisfy some set of equations, F,
constraining the “x” operator. Finally we say that a formula is valid with respect to some algebraic
frame, Fg, 1f it 1s universal in every model in Fg.

In order that algebraic models provide a semantics for some modal logic, 1., we must find a set
of characteristic equations, Ey, such that a formula ¢ is valid in the frame Fg, if and only if it
18 a theorem of 7.. For brevity T shall denote the frame associated with the logic . by Fr,, rather
than Fg, . For instance, the frame Fgy is the set of all models satisfying the equations add, epis,
norm, and idem. Tt is known that a formula is valid with respect to Fg4 1T it is a theorem of the
logic S4 (Hughes and Cresswell 1968, Chapter 17).

Note that, if ¢ <> 9 is a theorem of some logic I, then ¢ and ¥ must have the same denotation
in every algebra in F7. Thus, since { and [ are interpreted as extensional algebraic functions,
O¢ > Ot and O¢ < Oy must also be theorems of .. Hence, any modal logic which can be
given an algebraic semantics of this kind will be closed under the rule of equivalence: if - ¢ < ¢

then F O ¢ < O, which T shall refer to as RE.

5.2.6 Power-Set Algebras

According to Stone’s representation theorem (Stone 1936)7 every Boolean algebra is isomorphic
to a Boolean algebra whose elements are sets and whose operators are identified with the usual
union, intersection and complementation operations of elementary set theory. Moreover, such an
algebra can always be embedded in a Boolean algebra whose elements are all the subsets of some
(universal) set .

Jonsson and Tarski (1951) showed that a similar theorem holds for Boolean algebras with ad-
ditional additive operators. This means that every modal algebra can be isomorphically embedded
in a modal algebra whose elements are all members of the power set, 2% of some set, W. One
may think of the elements of W as possible worlds; and since each proposition, p, of the modal
language is interpreted as an element, o, in the modal algebra, o may be regarded as the set of
worlds in which pis true.

Where an algebraic model is based on a power-set algebra, T shall represent it by a structure
(U, U, L, %, P,4), where the sum operator is ‘U’ to indicate that the Boolean operators correspond
to the operators of elementary set theory. As in the previous chapter, T use the meta-symbol U
to denote the universal set in whatever algebra i1s being considered. The power-set algebras are
representative of the whole class of modal algebras in the sense that an equation which is true in all
power-set, algebras is true in every modal algebra (because every modal algebra can he embedded
in a power-set algebra). This means that in characterising validity in terms of algebraic frames we
can restrict the frames to contain only models based on power-set algebras. In the sequel T shall
assume that we always consider only models based on power-sets and T shall refer to the resulting
semantics as algebraic set semantics. A modal operator, x, in a power-set algebra, maps every

subset, X, of the universe to another subset *(X).

7A comprehensive study of this theorem can be found in (Johnstone 1982).
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5.2.7 Mapping Between Algebraic and Logical Expressions

As with the classical set-semantics it will be useful to introduce meta-level notation for referring
to the mapping between modal formulae and modal algebraic terms. T assume that these terms are
interpreted as sets in a power-set algebra. Thus MAT[¢] is the modal algebraic term obtained
from the formulae ¢ by replacing the connectives =, V | A and { by the operators 1, U, N and
*x and the 0-order constants, p;, by set constants, P;. Since the [ operator 1s equivalent to = —
this is replaced by the algebraic operator L x L(...). The function MF is the inverse of MAT so
that MF[7] is the formulae ¢ such that MAT[¢] = 7. T shall write ¢ p="AT 7 to refer to the
mapping in the form of a relation.

T also define (by analogy with CFe introduced in section 4.2.2) the transform MFe[¢], such
that MFe[r= U ]| = MF|r] for universal equations and MFe[r; = 7] = MF[r] & MF[r], for
non-universal equations. The expression MFe[¢] refers to a modal formula which (because of
the correspondence theorem, Mcorr, which will be given in section 5.2.9) may be regarded as
representative of the modal algebraic equation £. However, because of the form of the entailment
correspondence theorem, S4ECT, also proved in section 5.2.9, one might say that an equation &
constraining an S4 modal algebra is better represented by 0 MFe[¢] rather than MFe[¢].

Equations characterising a class of algebraic structures (a frame) will in general contain free
variables which are taken as implicitly universally quantified  the equations hold for all elements
of the algebra. Thus, an equation with free variables will correspond to a class of modal formulae,
which can be represented as a formula schema. Becanse of this, it 1s convenient to generalise MF
so as to operate on terms with free variables. In such a case the resulting expression will be a
modal schema rather than a formula and schematic logical variables will take the place of the free
variables in the algebraic term. Accordingly, MFe can also be allowed to operate on equations
containing free variables  again the result will be a schema rather than a formula.

By means of MFe, a set of algebraic equations defining a frame F7, can be translated directly
into a set of modal schemas which specify the proof system of the corresponding logic .. To ensure
the proof system is complete it will also be necessary to add the inference rule RE which is intrinsic

to algebraic semantics (as explained at the end of section 5.2.5).

5.2.8 Entailment among Modal Algebraic Equations

Tf some entities of interest (in our case these will be spatial regions) are identified with elements in
an algebra, then equations between algebraic terms can be used to specify relationships between
these entities. One can then reason about these relations in terms of entailments among algebraic
equations. Since set algebras are representative of the class of modal algebras the notion of entail-
ment among modal algebraic equations can be defined in terms of possible set assignments to a

language of modal algebraic terms:

e A set assignment to a language of algebraic terms is a structure ¥ = (S, U, o, m), where S is
a set of constants, {7 is a universal set, o : S — 2V assigns a subset of [/ to each constant in

S and m : 2V — 2V gpecifies the modal operator * as a set function. Tf 7 is a term built from



CHAPTER 5. A MODAIL REPRESENTATION 81

the constants in S by means of Boolean and modal operators, then X[r] is the set assigned
to 7 by ¥. This is determined by o, m and the usual interpretation of Boolean operations

on sets. If X.[m] = X[m] we say that ¥ satisfies the equation 7 = 7.
FEntailment relations among modal-algebraic equations can now be specified as follows:

e T =W, ..., Ty = Uy ':MA 79 = vy means that, for every assignment ¥ = (S, U, o, m)
I

(where S includes all the constants occurring in the terms 7 and v;) satisfying the equations

associated with the frame F, if 3 satisfies the equations 4 = vy, ..., 7, = v, 1t also satisfies

the equation 7y = vq.

5.2.9 Relating 54 Modal-Algebraic Entailment to Deducibility

If a modal logic I is characterised by a modal algebraic frame Fy, there is a correspondence between
deduction in the logic and entailment between algebraic equations in the algebras in Fy,. Because
of this we can use modal logics to reason about algebraic equations.

From the definition of an algebraic frame for the logic I. we have the following correspondence

between universal set equations and logical theorems:
':MA, T=U iff Fr oo, where ¢ yp=""" 1 (Mcorr)

In the last chapter we saw how classical propositional formulae can be used to reason about
spatial properties that can be stated as equations of the form 7= U . The correctness of reasoning
using this encoding was justified by the Classical Entailment Correspondence Theorem, CECT.
Later in this chapter (sections 5.5.2 and 5.6) we shall see how, by using a similar correspondence
theorem, modal formulae can be used to reason about a much wider range of spatial properties.
To generalise the classical case to arbitrary modal logics we would need to establish the validity of

a conjecture such as the following:

General Modal Entailment Correspondence Conjecture (GMECC)

n=U o m= U gy =U T G d Fr o

where ¢; yp=""T 7;

Note that GMECC proposes a correspondence between an entailment relation and a deducib-
ility relation, rather than between two entailment relations, as was the case for the theorem CECT
of the last chapter. CECT relates entailments between Boolean set-term equations to 0-order
entailments under the standard truth-functional semantics for C. Tn using CECT to justify the
use of classical theorem provers for spatial reasoning we took for granted the fact that any sound
and complete proof system for classical 0-order logic is faithful to the truth-functional semantics.
In attempting to establish GMECC, one is attempting to generalise Mcorr, which relates modal
algebraic identities directly to modal theoremhood, and there is prima facie no need to to introduce

another semantics.
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An even more important thing to note about GMECC is that it is not true:®* for many
modal logics there are cases where an entailment between modal algebraic equations holds but
the corresponding logical entailment between modal formulae is invalid. For example, in an S4
modal algebra P= U entails Lx L(P)= U ; but p s Op. Nevertheless, as we would expect, 54
does respect Mcorr: applying the deduction theorem to the sequent p F Op, yields F p — Op,
which corresponds to a modal algebraic equation (f U ﬁ) = U ; and this is not generally true
for algebras in the frame Fg4. The problem arises becanse all algebras in the frame Fgy must obey
the identity *0 = 0, or equivalently | x [U = U . Indeed, this identity 1s satisfied by all algebras
in any frame, Fr,, where the logic I obeys the rule of necessitation.

Although S4 does not obey the GMECC conjecture, the following correspondence between the

entailment relation among universal set equations constraining algebras in Fg4 and the deducibility

relation of S4 can be proved:

5S4 Entailment Correspondence Theorem (S4ECT)

T]:LI,...,THZU ':MAS4 T():u ]]CF D¢17---7D¢n|_54¢0

where ¢; MF:MAT T

Proof of S4ECT: Since S4 is an extension of classical logic it obeys the deduction
theorem: 61, 6 Fsa do if Fsu (01 A - A 6) = 0. By combining this with

Mecorr we get the more general correspondence

O1,...,¢n Fsa ¢o iff Fuas, (MNNm)Un=U .

Hence

D¢)17...7|:|¢n|_p;4¢)0 iff ':MAs“(L*LT]Q...QL*LTH)UT()IU.

From elementary set theory and the additivity of % it can easily be shown that the
equation on the r.h.s. is equivalent to L x L(m N...N7,) C m, so we can establish

S4ECT by showing that
':MAML*L(ﬁﬂ...ﬂTn)gTO i n=U, .., T,=U ':MA,<4 n=U .
The r.h.s. can then be re-written to give
|:MAS4L*L(T10...QTW,)QTO iff (mn...Nnn,)=U |:MAS4 n=U
and this equivalence can be more succinctly expressed as

':MAWL*L(?))QT() iff v=U ':MAq4 o= U (1) -

8Despite the existence of simple counter-examples, for a long time T believed GMECC and T even published a
faulty proof in (Bennett 1996b). Fortunately, the slightly weaker theorem S4ECT, which is provable, is sufficient
to serve the purpose to which T originally put GMECC.



CHAPTER 5. A MODAIL REPRESENTATION

Tt is quite straightforward to show that the left to right direction of () holds for any
normal modal algebra (and hence any algebra in Fg4). Recall that a modal algebra is
normal iff 1t obeys the equation norm, %) = 0. This means that | x LU = U . Thus,
if L x 1(v) C 7 in accordance with the Lh.s., then it is clear that any normal algebra
satisfying v = U also satisfies 7 = U , which is what the r.h.s. says.

The right to left direction of (i) is considerably harder to show. T prove it by proving

the contrapositive  1.e.:
if I#MAW Lxl(v)Cm then v=U I#MAW o= U (1)

Let S be the set of all constants occurring in the terms v and ;. Tf the antecedent of
(t7) is true, there must be some assignment ¥ = (S, U, o, m) satisfying the equational
constraints of the frame Fg4 and such that X[L x L(v)] € X[ry]. From ¥ we can
construct an assignment, X', which verifies the consequent, of (1) i.e. ¥'[v]= U but
YNl £ U :

Tet U = X[Lx L(v)]. Wedefine X' = (S, U’, o', m’) by stipulating that:

o o'[k] = o[sk] N U, for all constants, k € S,

o m'(X)=U' L (U Lm(U LU LX))), for all sets X CU’.

The specification of the modal function m’ looks rather complicated; however, it is just
the consequence of requiring that for any X C U’ the value of Lm’ L (X) according
to ¥’ should be equal to Lm L (X) under ¥. To specify this precisely T define I to
be the dual of m ie. I(X) = Lm L (X). From this definition it is easy to see
that m(X) = LI L (X). The interpretation of ‘L’ as set complement is dependent,
on the specific value of the universal region, U. To make this dependence explicit
m(X) can be expressed as U LI(U L X); and conversely I[(X) = U L m(U L X).
Similarly, ' (X) = U’ LI'(U’ LX), where I’ is the dual of m’. Tf we now stipulate that
I'(X) =1(X) we find that

m' (X)=U' LU LX)=U" LU0 LX)=0U" LU Lm(U LU LX) .

By specifying m/ in this way, T ensure that the operator L x L(...) is interpreted as the
same function in ¥’ as in ¥ (except that the domain of m’ is limited to subsets of U’).

Tt can then be shown that for any term, 7 (made up of constants in S), ¥'[r] =
Y[r]NU’. We know this identity holds for atomic terms becanuse of the definition of o,
so to show 1t inductively for all terms we need to show that, if it holds for o and 3, 1t
must hold for &, a U 3, aN G and x«a. For the Boolean operators the required identities

are demonstrated by the following sequences of equations:
Yal=U' LY o] =U" L (Z[]nU) =U" LY[e] = (U LE[e)NU = X[a]nl’

Yaug] = Ye]uX[F] = (Zla]nUYUEEINT) = (B[JuX[BhNT’ = Slaugnl’

Yang] = Y e]nY 8] = (Zla]nU)NX[ENU") = (B[a]nI[B)NU = Blangnl’

83
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(Tn the first of these the identity U’ L X[a] = (U L X[e]) N U’ depends on the fact that
U cu.)

For the case of o we have S/[+a] = S'[L Lx L la] = U LS/[L# L(La)]. We
can now interpret the ‘L x |’ operation as I, which has been defined so as to coincide
with [: thus U L ¥ [Lx L(Le)] = U LI'(¥[La]) = U LI(X[La]). But T have
already shown that ©'[La] = X[La] N T, so U LI(X[La]) = U LI(E[La]nT).
Now, since m is addifive, its dual I distributes over N giving U’ L (I(X[ L) N1({T")).
Because U’ = X[L x L(v)] and all algebras in Fgy satisfy idem it is easy to show that
I(U") = U'? Now, since U' C U, it immediately follows that U’ L (I(X[Le])NTU’) =
(U LI(E[La]))NU’. Finally this expression can be rewritten to give the desired result:
(U LIS[La))NU' = (U LS[Ls L(La))AU" = S[L(Lx L(La)]NT’ = S[xalnl".

We must verify that the algebra specified by ¥/ is a member of Fgy. T have estab-
lished that for every term (built from constants in S) ¥'[r] = E[r] N U’. This means
that. every equation, 7y — 7, satisfied by ¥ will also be satisfied by ¥’. Since, by
hypothesis, ¥ must satisfy all the frame equations of Fg4, 3’ must also satisfy these
frame equations.

To complete the proof T must show that ¥ verifies the r.h.s. of (71). Since the
algebra generated by ¥/ isin Fg4, it. must satisfy epis, which means that for any term,
7, ¥'[r] C ¥'[*7] and consequently ¥'[7] D ¥'[Lx L7]. We know that ¥'[ L« Lv] = U’,
so X'[v] D U’'; but ¥'[v] = B[v]NU’, so X'[v] = U’. Recall that ¥ was chosen to verify
the antecedent of (1) because L[ L x L(v)] € E[r]. Thus, U’ € ¥[r]; and from this it
follows that X[r] N U’ ; U’. Hence we have ¥'[rg] ; Uv.n

As with the classical case, an arbitrary modal set equation can be directly transformed into
universal form and the formula MFe[¢] can be regarded as representing the equational constraint
&. The modal logic S4 can thus be used to reason about arbitrary equations constraining algebras

in the frame Fg4 according to the following generalisation of S4ECT:

SRR 3 ':]\/[A‘<4 &o iff DMF@[€1]77DMFP[€1] Fsa MF(—“‘[E:()] :

The form of S4ECT is a bit awkward in that in the S4 deduction corresponding to an entailment
between equations, we need to add an extra [J operator to the formulae on the left of Fg4 but not
to the formula on the right. This means that the question “What is the S4 representation of
the equation £17 does not have a simple answer. However, it is easily shown that a sequent
¢, ..., 0¢n Fsa ¢gisin fact valid if and only if O ¢q, ..., O0¢, Fsa O dg. Thus, for the purpose

of testing entailments, it can be said that the representation of an equation & is [ MFe[£].

?Tf the algebra specified by ¥ satisfies idem, *(*(2)) = *(2), then m(m (X)) = m(X). Thus [(U") = —m — (U') =
—m — (E[-*x—()]) = —m — —m — (Z[v]) = —mm — (E[0]) = —m — (E[v]) = Z[— x —(v)] = U’. The requirement
that (V') = U’ is of particular significance in that it is the reason why we need to have O ¢1,...,0én g4 ¢o on
the r.h.s. of S4ECT, rather than the simpler (but stronger) condition ¢1,...,¢n Fg4 ¢o.
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5.3 Topological Closure Algebras

The purpose of my examining the algebraic semantics of modal logics, culminating in the demon-
stration of the theorem S4ECT, was that, just as CECT enabled us to use classical 0-order logics
to reason about those spatial relationships which are essentially Boolean in character, S4ECT will
enable us to reason about a wider range of relationships by means of deduction in the logic S4.
This will enable us to reason in terms of certain topological properties which were not expressible
in the classical representation. The key link is that modal algebras of the frame Fg, are essentially

the same as closure algebras, which give an algebraic characterisation of topological spaces.

5.3.1 Closure and Interior Algebras

The theory of topological spaces is traditionally stated in the language of set theory. But, if we are
concerned only with the structure of a topological space with respect to the Boolean operations and
the interior and closure operations, we can do without the full language of set theory and give a
purely algebraic account of the space, which does not involve any use of the elementhood relation,
‘€’. This abstraction results in a Boolean algebra with an additional operator obeying appropriate
conditions for either an interior or a closure function. In the first comprehensive treatment of these
algebras (McKinsey and Tarski 1944) the closure operator was taken as primitive and the resulting
algebra called a closure algebra. A closure algebra is a structure (S U, L ¢), where (S;U, L)
18 a Boolean Algebra and the operator ‘¢’ satisfies the equations for a closure function given in
section 2.1. These include in particular the equation ¢(X UY) = ¢(X) U ¢(Y), which means that ¢
is an additive function. Tn other words (S, U, L, ¢) is a modal algebra.

An interior algebra is a structure (S, U, L ), where (S,U, L) is a Boolean Algebra and i satisfies
the equations characterising an interior operator. An interior can be interpreted in terms of a modal
algebra but with i corresponding to the algebraic operation L x L(...).

Closure (or interior) algebraic equations provide a simple constraint language for describing
topological relationships between arbitrary sets of points in a topological space. Some of the more

significant constraints which can be expressed are given in table 5.1

‘ Constraint ‘ Meaning

X =¢(X) X is closed

X=1lel(X) X is open

X =1lele(X) X is regular open
XuyYy =Y X is part of YV

a(X)uy =Y The closure of X is part of Y
XNy =140 X and Y are disjoint
e(X)ne(Y) The closures of X and YV are disjoint
X=Yu/rz X 1is the union of Y and 7

Table 5.1: Some constraints expressible as closure algebra equations.
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5.3.2 RCC Relations Representable in Interior Algebra

T now consider how RCC relations can be represented in interior algebra. To do this T employ the
topological interpretation of the RCC theory which was given in section 3.5.2. Recall that, under
this interpretation, regions are identified with non-empty reqular open sets. Two regions overlap 1f
their corresponding sets share a point and are connected if the closures of these sets share a point.

Thus the relations can be formally defined in terms of topology by:
O(z,y) =4.; Ar[re X AT €Y

Cle,y) =4 In[mr € c(X) A€ (V)]

These definitions give us a rigorous formal specification of the RCC connection and overlap
relations in terms of point-set topology. But they make use of a highly expressive set-theoretic
language, including both quantification and the element relation. Given that these relations are
intuitively very simple, one may wonder whether it 1s possible to give an alternative characterisation
of C and O in the much less expressive language of interior algebraic equations.

As 1t happens the negations of each of these relations can be quite easily defined as follows:
DC(#,y) = (X )UI(Y)=U

DR(x,y) =,., XNY=U

But C and O cannot themselves be defined as interior algebraic equations. This follows from
the general observation that purely equational constraints are always consistent with any purely
equational theory (there must always be af least a trivial one-element model, in which all constants
denote the same individual). Thus if the negation of some constraint can be expressed as an
equation; then the constraint itself cannot, be equationally expressible (otherwise that constraint
would be consistent with its own negation).

To define C and O we would need a language containing both interior algebraic equations and
the negations of such equations. This extended language will be considered later; but for now
T shall consider only those topological relations definable with equations alone. Table 5.7 gives
definitions of seven binary relations: DC, DR, P, Pi, NTP, NTPi and EQ. This set, which will be
called RCC-7, is of particular significance because, as will be shown in the next section, each of
the RCC-8 relations can be expressed as a conjunction of positive and negative RCC-T relations.
Note that RCC-7 is neither jointly exhaustive nor pairwise disjoint: if two regions partially overlap,
they stand in none of the seven relations; and DR (being the disjunction of DC and EC) can hold
of two regions which are also DC. A number of other binary RCC relations are expressible by

means of interior/closure algebra equations.’ For example, EQ(sum(z, y), u) can be expressed by

Xuy=1Uu.

0However, it appears that RCC-7 is the complete set of binary RCC relations expressible in interior/closure
algebra, which are essentially binary in that they are not reducible to any monadic condition and specification of
the relation in RCC does not involve reference to a third region such as u. Verifying this would require further

examination of the class of interior algebraic equations.
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‘ RCC Relation ‘ Interior Algebra Fquation ‘

DC(x,y) (X )Ui(Y)=U
DR(x,y) XNy =u
P(z,y) XUy =U
Pi(x,y) Xuy=Uu
NTP(x,y) (X)YUY =U
NTPi(2,y) Xui(V)y=Uu
EQ(x,y) (XUuY)n(XuyY) =U

Table 5.2: Seven relations defined by interior algebra equations

Note that equations in table 5.2 assume that the regions are open. To make this explicit in
an interior algebraic representation of RCC relations, one ought to include an equation of the
form X = i(X) for each region # occurring in the set of equations. Tn fact, in section 3.5.2 T
argued that for a strictly correct point-set interpretation of RCC relations, one should require that
regions should be reqular open. This requirement is also easily enforced by equations of the form
X=ilil(X).

One could equally well employ the interior algebra framework to specify RCC relations in
terms of the dual set-theoretic interpretation of RCC mentioned in section 3.5.5. Under that
interpretation, regions are taken as non-empty regular closed sets, which connect 1ff they share a
point and overlap iff they share an interior point. The RCC-T relations would then be specified as
given in table 5.3. This encoding which is arguably simpler than that of table 5.2, was presented by
me in (Bennett 1996b) and is the basis of subsequent analysis by Renz and Nebel (1997). However,
in the next chapter, where I present an intuitionistic interpretation of interior algebraic constraints,

we shall see that the open set, interpretation is much more convenient.

‘ RCC Relation ‘ Interior Algebra Fquation ‘

DC(x,y) Xny=Uu
DR(z,y) W(X)ni(Y) =U
P(z,y) XUy =U

Pi(z, y) XuUY=Uu
NTP(x,y) XUiY) =U
NTPi(2,y) I(X)UY =U
EQ(x,y) (XUuY)n(XuyY) =U

Table 5.3: Alternative definitions for closed regions
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5.3.3 Using Inequalities to Extend Expressive Power

T now consider a more expressive constraint language based on interior algebras, in which one
can specify both interior algebraic equalities and negations of such equalities. Since each of the
RCC-T relations corresponds to an equation in interior algebra, the extended language allows

straightforward representation of all those relations which can be expressed in the form
Ri(z,y) A ... ARj(2,y) A =Rjpa(2,y) A ... A=Ri(x,y), (RCCTconj)

where each of the relations R; is a member of RCC-T7.

T have investigated the complete set. of relations representable in this way by means of a simple
Prolog program the code (including inlined documentation) is given in appendix C.1. Since
the RCC-7 relations are not logically independent many combinations of the form of RCC7conj
are equivalent. Tt is easy to specify all the entailments and incompatibilities among pairs of
RCC-T relations and negated RCC-T7 relations which are asserted of the same two objects. Any
combination which contains an incompatibility is equivalent to the impossible relation and any
combination which contains two relations, one of which is entailed by the other, is equivalent to
the combination resulting from removing the entailed relation. FEvery combination, containing no
incompatible pair and no relation that is entailed by another, specifies a distinct relation in its
most simple form and can be regarded as its canonical representation. The Prolog program first
generates every relation specification of the form of RCC7conj and identifies which of these are
canonical.

We have seen that whether certain combinations of relations are regarded as possible depends
upon whether we allow regions to be null (the null region is both part of and disconnected from every
other region; but no two non-null regions can stand in both these two relations). Tf we allow that,
the regions involved may possibly be null we find that 171 distinct relations can be represented.
The complete list of these relations is given in appendix C.1.1. Tf we require that both regions
involved 1n a relation must be non-null then 115 of these relations are possible. These include

each of the RCC-8 relations. Table 5.4 shows how each of the RCC-8 relations can be expressed

RCC Rel. Equivalent RCC-7 Conjunction Algebraic Constraint(s)

DC(x,y) DC(x, y) (i(F)Vi(y) =U)

EC(x,y) DR(z,y) A =DC(x, y) (x0y=U) A (I(F)Ui(y) #U)

PO(z, y) —DR(z,y) A =P(z,y) A =Pi(z,y) FNyAUANT Uy LUA (UG £ U)
TPP(x,y) P(a,y) A =EQ(x,y) A =NTPP(x,y) FUy=U)AN(z#y) AN[I(T)Uy#U)
TPPi(z,y) | Pi(x,y) A =EQ(z,y) A =NTPPi(z,y) | (zUFT=U) A (z # y) A (2 Ui(7) #U)
NTPP(x,y) | NTPP(x,y) (((F) Uy =U)

NTPPi(z,y) | NTPPi(z, y) (zUi(y) =U)

EQ(#,y) EQ(#,y) (v =y)

Table 5.4: The RCC-8 relations represented as interior algebra constraints
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as a conjunction of RCC-T relations and their negations and also gives the corresponding interior
algebraic constraints.

The relations of the form RCCT7conj form a semi-lattice with respect to the conjunction oper-
ation. This just means that conjunction is associative, symmetrical and idempotent. Clearly, the
sub-structure comprising only those relations including the non-null constraints on both argument
regions also forms a semi-lattice. Tt 1s fairly easy to show by inspection that the RCC-8 relations
constitute a set of minimal elements (i.e. atoms) of this semi-lattice. One needs to check that
the result of conjoining any RCC-8 relations with an additional RCC-7 constraint is either the
impossible relation (corresponding to the L element of the lattice) or is equivalent to the original
RCC-8 relation.

Fach RCC-T relation is equivalent to some disjunction of RCC-8 relations; and, because RCC-8
is JEPD (jointly exhaustive and pairwise disjoint), the negations of RCC-7 relations also correspond
to disjunctions of RCC-8 relations (provided that non-null constraints on the arguments are in
force). This means that each of the 115 relations representable in this way is also a disjunction of
RCC-8 relations. Hence, the language of interior algebraic equations and their negations provides
a representation for almost half of the 2% = 256 spatial relations which are disjunctions of the
RCC-8 relations. Tn particular all of the RCC-8 relations can be expressed as well as the primitive

C relation.

5.4 FEncoding Closure Algebraic Constraints in S4

Tt was established by Tarski and McKinsey (1948) that the S4 box operator can he modelled
algebraically by an interior operator. We have seen that, in the set algebra interpretation of a 0-
order logical calculus, operators are identified with maps from subsets to subsets of some universe:
the classical connectives are associated with Boolean functions and modal operators are associated
with additive functions, which may be constrained by further equational constraints. A closure
algebra 1s a Boolean algebra with an additive closure operator and is thus a modal algebra. ¢ 1s the
modal operator, which T have hitherto denoted by *. Hence ¢ can be taken as the interpretation of
a logical modal operator, ‘[7°. T now show that the defining equations of the ¢ operator mean that
this is an 54 modal operator.

By making use of the meta-level notation relating modal algebraic equations and correspond-
ing modal formulae it is easy to state precisely the relationship between closure/modal algebraic
equations and modal formulae. The representation of a closure/modal algebraic equation £ in
modal logic is the formula MFe[¢]. Because the equations specifying properties of the closure
operation contain free variables they will be mapped to modal schemata rather than formulae. The

characteristic equations of a closure algebra and corresponding modal schemata are as follows:
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‘ Closure Axioms ‘ Modal Schemata
X Ue(X) = ¢(X) (Vv 0d) < 09
e(e(X)) = e(X) O0O¢ < 0o
c(0)=10 OLl=1
AXUY)=¢(X)Uc(Y) | O(¢ V) & (0 V O)

Table 5.5: Closure Axioms and Corresponding Modal Schemata

As modal formalisms are more often specified in terms of the [J operator, the transformation

based on the dual correspondence between then interior operator and [J yields more familiar

schemata:
‘ Interior Arioms ‘ Modal Schemata ‘
I(X)UX =X (O¢ V)« ¢ (T7)
i(i(X)) = i(X) O00¢ < O¢ (4+)
i)y =0 oT (N)

=i(X)ni(Y) | O A¥) « (DA OY) (R)

Table 5.6: Interior Axioms and Corresponding Modal Schemata

Clearly T’ is equivalent to the schema T, O ¢ — ¢ (see section 5.2.2), and, given that T holds,
4+ can be weakened to [J¢ — [0 ¢, which is the schema 4. Furthermore it is well known that
the schemata N and R.in conjunction with the rule RE are equivalent to the combination of schema
K and the rule of necessitation, RN. Thus specifying that N, R and RE hold is an alternative way
of specifying that a modal logic is normal (see (Chellas 1980, chapter 4)). Recall that RE holds
in any algebraic semantics for a modal operator. Hence, the modal logic derived from an interior
or closure algebra by transforming equational algebraic constraints into modal schemata is exactly
the logic S4. Consequently, in virtue of the correspondence theorem S4ECT, deduction in 54 can

be used to reason about closure algebraic equations such as those given in tables 5.1, 5.2 and 5.3.

5.4.1 RCC Relations Representable in 5S4

Since the S4 modality can be interpreted as an interior function over a topological space, we can use
this interpretation to encode topological relations as S4 formulae. The basis of this representation
18 exactly the same as for the C representation but by use of the additional modal operator 1t is
possible to make a distinction between connection and overlapping which cannot be expressed in C.
Table 5.7 shows the S4 formula corresponding to each of the RCC-7 relations. The middle column
shows the algebraic set-equation associated with the relation. We see that, if the interior operator
7 18 1dentified with the corresponding modal algebra operator L * 1, then the inferior algebraic

equation &, is represented by the S4 formula 00 MFe[£].
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RCC Relation ‘ Interior Algebra Fquation (£) ‘ S4 formula (O MFe[]) ‘

DC(x,y) (X )Ui(Y)=U (00— vV O0-y)
DR(x,y) Xny =Uu O-(x A y)
P(x,y) Xuy=U O(—z V y)
Pi(x,y) XuyY=U Oz V —y)
NTP(z,y) (X )UY =U O(@O—r V y)
NTPi(z, y) Xui(Y)y=U O(z vV O-y)
EQ(x,y) (XUY)N(XUX) =U O((—2 Vy) A (z V —y))

Table 5.7: Seven relations defined by interior algebra equations and corresponding 54 formulae

I now illustrate how the correspondence theorem S4ECT, enables deduction in S4 to be used

to reason about entailment among certain RCC relations. Consider the following argument:
NTP(a,b) A DR(b,¢) E DC(a,c)
This corresponds to the following entailment between interior algebraic equations:
(AYUB=U, BNC=U, A=i(A), B=i(B), C=iC) E i(A)ui(C)=1U .

Here the equations of the form « = i(a) constrain the regions to correspond to open sets.!' By

appealing to S4ECT this can be shown to be valid because we have
OO —ae Vb), O-(bAc), O+ Oa), OB < Ob), Olc & Oc) Fga OO —aV O-e) .

The 5S4 representation is quite expressive but does have serious limitations. For instance,
although both disconnection, DC(x, y), and discreteness, DR(x, y), can be represented it is still not,
possible to specify the relation of external connection, EC(x, y). We have also seen that (although
their negations can he represented) the fundamental relations C and O cannot be represented. Tn
order to overcome these deficiencies we need a language in which one can express closure-algebraic

inequalities as well as equalities.

5.5 Extended Modal Logics, L+

In order to increase the expressive power of S4, so that we can represent both positive and negative
algebraic constraints, T use the same method that was applied to C in the last chapter. Given a (-
order modal logic, I,, we can define an augmented representation language, 1.7, whose expressions
are pairs (M, &), where M and &£ are formulae of . and are called respectively model and entailment
constraints. We stipulate that an ¥ expression (M, &) is consistent if and only if no formula in

& is entailed by the set M, according to the logic L.

Tn general, to be faithful to RCC, one should ensure that regions are regular open by adding the stronger

constraint o = 1 — 1 — (a); but the inference in this example is valid for any open regions.
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This kind of angmentation could in principle be applied to any logical language whatsoever.
However, if it is to be useful, one must have some definite interpretation of the meanings of T
expressions (or af least some of these expressions). Just as CT expressions may be interpreted
as sets of positive and negative equational constraints on Boolean algebras, .7 expressions can
be interpreted as sets of positive and negative equational constraints on modal algebras. Defining
such an interpretation requires a syntactic mapping between modal formulas and equations. A
straightforward transform is given by MFe[¢] and its inverse; but we shall see that for reasoning
about most modal algebras slightly more complex mappings must be employed. To use LT to test
consistency of arbitrary positive and negative equational constraints, every set of such constraints
must be representable in 7. However, it is not necessary that every It expression be interpretable
as a set of constraints: this interpretation may be applicable only to a sub-language of I.*. (For
instance, we shall see that, in the case of S4F, only those expressions where all model constraints
have O as the primary operator can be coherently interpreted as constraints on S4 algebras.)

To show that an interpretation of this kind is satisfactory one must show that (for all L7 ex-
pressions that are interpretable as sets of algebraic constraints) the stipulated consistency checking
method for 1,7 expressions is sound and complete with respect to consistency of the corresponding
constraints on modal algebras. As in the case of C, this task can be divided into two parts: estab-
lishing a convexity result for entailment among modal algebraic constraints; and then exploiting
an appropriate correspondence theorem relating entailments in the modal logic and entailments
between modal algebraic equations. We shall see that because of the failure of GMECC for most
modal logics, the second step does not seem to be achievable in a uniform way: a correspondence

theorem if one exists  must be established separately for each given modal logic.'?

5.5.1 Convexity of Modal Algebras

In section 4.5 we saw that the theory of equational constraints on Boolean algebras 1s convex in the
sense that a conjunction of equational constraints can only entail a disjunction of such constraints
if 1t entails at least one disjunct of that disjunction. Consequently a set of positive and negative
equational constraints is consistent if and only if the contrary of one of the negative constraints is
entailed by the conjunction of the positive constraints. The same result can be proved for modal
algebras  1.e. Boolean algebras supplemented with additional additive operators. Since all modal

algebraic equations can be put in the form 7= U this is guaranteed by the following theorem:

Convexity of Disjunctive Modal-Algebraic Entailments (MEconv)
H :u,...,/,tm,:u ':MAI &1 =UvVv ...V En, =U
iff

mi=U, = U ':MAL g, =U forsomeie {1, ...n}

Iike BEconv, MEconv is closely related to ELcons. By appealing to ELconv and the

"2However, in section 5.7 T shall give an alternative method of extending modal logics by adding an extra operator.

This method does yield a general correspondence theorem for the extended languages.
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fact that modal algebras can be specified by purely equational theories, we can deduce that any
modal algebra is convex w.r.t. entailments of the form of DFE. Tn appendix B T give an alternative,
model-theoretic proof of MEconv, which may prove helpful to further study of the properties of
entailments among modal-algebraic constraints. This proof relies only on the additivity of the
modal operator and does not require that 1ts algebraic properties be specifiable just in terms of
equations. Nevertheless, because modal schemata correspond directly to universal equations in
the algebraic semantics, any modal operator whose logical properties are specifiable in terms of

schemata will correspond to an algebraic function which is equationally specifiable.

5.5.2 A Correspondence Theorem for S4%

The convexity theorem MEconv means that checking consistency of sets of positive and negative
modal algebraic constraints reduces to the problem of determining entailments among positive
constraints. Thus if consistency of L1 expressions is to be faithful to consistency of the associated
algebraic constraints we only need to show that entailments between positive algebraic constraints
hold just in case the corresponding entailments in I, are valid. This requires a correspondence
theorem such as S4ECT.

By combining MEconv with S4ECT a correspondence between the consistency of modal
algebraic equations and inequalities and consistency of certain S4% expressions is immediately
obtained. Also, becanse of the interpretation of interior algebras as S4 modal algebras, S4% can be
used to test consistency of topological constraints. These results are encapsulated in the following

theorem which ties together the main correspondence theorems of this chapter:

S4% Correspondence Theorem (S4+CT)

The following three conditions are equivalent:

1. The set {1 = v1,...,u5 = vj, o1 # 7, ...,06 # T of S4 modal algebraic
equations and inequalities is consistent, i.e. 1s satisfied by some algebra in

the frame Fgg4.

2. The corresponding set of interior algebraic equations and inequalities, resulting
from replacing in the set of constraints given in 1. all occurrences of [0 by 1,

s consistent, i.e. 1s satisfied by some topological space.

3. The S4F expression (M, E) given by
{OMFe[pu = v1],...,0MFe[u; = v;]}, {MFeloy = 1], ..., MFe[o), = 73] })
is consistent i.e. there is no formula ¢ € £ such that M kg4 ¢.

S44CT enables one to test the consistency of sets of spatial relationships, representable in
terms of interior algebra equations and inequalities, by carrying out a series of proof checks in

the logic S4. The definition of consistency for S41 expressions also yields criteria for determining
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entailment between 54+ expressions which is exactly analogous to that given for C* in section 4.7.1:

S4*% Entailment Theorem (S4+ET)
(M) Foe (M) if
either (M, &) Fga+r  or (forallg e M1 (M, {6}) FEsa+
and for all ¢ € &' : (MU{¢},E) Ega+r )

This enables a simple generalisation of S44CT to give a correspondence between entailments
between sets of modal or topological algebraic constraints and entailments between S4%F expres-
sions. One set of constraints entails another iff the entailment holds between the corresponding

pair of §41 expressions.

5.6 Representing RCC Relations in S47

Since S47 can represent both equations and inequalities between terms made up of Boolean opera-
tions and an interior operator, it can express a very large class of spatial relationships. In particular,
it can represent, all those RCC relations which can be expressed in the form RCCT7conj ie.

as a conjunction of positive and negative ROC-T relations (see section 5.3.3 above). In the S4+F

representation the positive relations (Ry,..., R;) will correspond to model constraints and the
negated relations (R;41, ..., Rg) will correspond to entailment constraints.
‘ Relation ‘ Model Constraint ‘ Entailment Constraints
DC(x,y) (01— V [1-y) -, Ty
EC(2,y) O-(xz A y) O-x V Oy, -2, 7y
PO(z,y) —(x Ay), 2 =y, y—x, ox Yy
TPP(x,y) Oz — y) O-xVy y—x —x "y
TPPi(z,y) Oy — =) O-y Ve z—y —x, -y
NTPP(z,y) O(0-= V y) Yy —x, —r, Ty
NTPPi(x, y) O(0-y V ) r =y, e, Y
EQ(x,y) O(x < v) —E, Y
Clz,y) O-xV O~y ~x, 7y
EQ(z,sum(y, z)) | O(r « O-0O~(y V 2)) —r, Y

Table 5.8: The S4% encoding of some RCC relations

The representations of the RCC-8 relations are given in table 5.8. The way they are obtained can
be summarised as follows: express the RCC-8 relations in terms of RCC-7 relations and interpret
these as equational constraints on interior algebras as given in table 5.4. Then translate these
constraints into S4 according to table 5.7. The formulae corresponding to positive RCC-7 relations

become model constraints in the S4% representation and those corresponding to negated RCC-7
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relations become entailment constraints. (Note that the S4% correspondence theorem requires
that model constraints have an extra initial 0 added to the result of applying MFe to the modal
algebraic equation but this is not required in the entailment constraints. This asymmetry stems
from S4ECT.)

Let us now consider how the S4% representation can be used to test the consistency of a simple

set of spatial relations. Take for example the following conjunction of RCC-8 relations:
TPP(a,b) A DC(b,¢) A PO(a,c) .
Translating into S47 according to table 5.8 we get the following representation:
{0O(a = b), O(@—-bv O-¢)}, {O-aVb b—a, —(aAc), a—=c, ¢c—a, na, =b, —c})

This is an ordered pair consisting of two sets of S4 formulae, the first set being model constraints
and the second entailment constraints. Appealing to part 3 of S44CT we determine that the

relations are inconsistent because
O(a — b), O@O-bV O-¢) Fga —(a A e)

i.e. one of the entailment constraints is entailed by the model constraints.™

As mentioned in section 5.3.2 one can also represent RCC relations in interior algebra in terms
of the dual, closed set interpretation of RCC (see section 3.5.5). The result of encoding this in
S4% is given in table 5.9.

‘ Relation ‘ Model Constraint ‘ Entailment Constraints
DC(x,y) O-(z Ay) Ty
EC(z,y) OOz A Oy) —(x Ay), —w, oy
PO(z,y) -0z A Oy), * =y, y—x, -1, "y
TPP(z,y) Oz — ) r— Oy, y = x, 22, 7Y
TPPi(z,y) Oy — =) y— Oz, 2 =y, -z, Y
NTPP(z,y) O(r — Ovy) y =, o, oy
NTPPi(z,y) O(y — Ox) r =y, e, Y
EQ(x,y) O(x < y) —E, Y
Clz,y) =(r Ay), -7,y
EQ(r, sum(y,2)) | O(x ¢ (y V 2)) 2,

Table 5.9: S4F encoding based on the closed set interpretation of RCC

5.6.1 Regularity and Boolean Combination of Regions

In the topological interpretation of RCC given in section 3.5.2 it was argued that regions of the

RCC theory should be identified only with (non-empty) regular open subsets of a topological space.

138trictly speaking one should add extra model constraints of the form & [0 — [0 =« for each region o involved

in the description (see the following section). However, these additional formulae are not relevant to the example.
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(Recall that a region, x, is regular open iff i(c(z)) = 2.) Tf our modal encoding is to be faithful
to the intended meaning of RCC relations we need to enforce this regularity condition. Happily,

regularity can easily be expressed in S4 as follows:
O—-O-p<p or equivalently OCp & p

Tt must be noted that this condition is not a general schema such that every instance must be true.
Tt is rather an additional model constraint that should be imposed on all the atomic constants used
in describing a situation, because these are intended to be identified with regular sets.

The regularity of RCC regions is also relevant to the encoding of Boolean functions of regions.
In section 3.5.4 T explained how, if the regions of the RCC theory are to be interpreted as regular
open sets, then the Boolean operations (sum, prod and compl) of the theory correspond to operations
within a regular open algebra rather than to the elementary Boolean set operators. In this algebra
intersection corresponds to ordinary set intersection but the (regular open) complement of a set, is
the interior of its ordinary set complement and the (regular open) sum of two sets is the interior of
the closure of their union. These operations can easily be represented in S4 and S4%: prod(z, y)

is translated as & A y, compl(z) as O -2 and sum(2,y) as O-~0O—(z V y).

5.7 Eliminating Entailment Constraints

The procedures for consistency checking and determining entailments for a logic LT of the kind
described above rely on the use of simple meta-level reasoning. In this section T explain how,
by introducing a further additional modal operator into the underlying logic 7., reasoning can be
conducted at the ohject level of this enriched language, which will be designated 7.®

In reasoning with an extended (-order language LT the meanings of the two types of constraint
are handled at the meta-level: determining entailments in these languages involves checking a
number of different object-level entailments in the logic .. A set of algebraic constraints encoded in
an LT expression {M, &) is consistent if and only if none of its entailment constraints in £ is entailed
by the set of all model constraints in M. A natural question regarding these representations is
whether 1t might be possible to extend the calculi involved so that the semantics of the two types
of constraint was built directly into the object language. This would mean that computation of
entailments could be carried out entirely at the object level.

In terms of algebraic semantics 1t 1s quite easy to introduce a new modal operator X by means
of which the model/entailment constraint distinction can be made at the object level. Tf §(¢) is
the algebraic denotation of a formula ¢, we define X by:

o I(Xp)=U T 6(¢)=U .

o §(Xg) =0 iff 5(¢) #U.

This operator is an SH modal operator'*, since a formula K¢ is true in a model iff the formula

1485 is the modal logic obtained by adding the schema =0 — ¢ — O ¢ to the schematic specification of S4. Tn
terms of Kripke semantics S5 is characterised by the frame of all Kripke models whose accessibility relations are

equivalence relations. See e.g. (Chellas 1980) for further information on S5.
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¢ 1s true at every point/world in the model. T shall call it a strong-Sh operator because it does not
allow the possibility, arising in the slightly weaker Kripke characterisation of S5, that there are
worlds/points which are not relevant to evaluating the K at a particular world (because the set of
worlds is partitioned into clusters which are not accessible to each other).’s Given the definition of
X, we have =X¢ = U iff ¢ # U. Thus, negations of universal set equations (and hence all equations)
can be converted into positive equations. This obviates the need for entailment constraints, since
a model constraint = X ¢ has the same meaning as ¢ taken as an entailment constraint. More

specifically, the translation of an .7 expression

o1 o v v })

into L% is the formula
Koy Ao ARGy ARy A Lo ARy

Consequently any expression of LT can be represented by a simple object level formula in the

multi-modal language 7%,

5.7.1 An Example of an Entailment Encoded in C¥

Let us look at a simple example of spatial reasoning carried out in C¥ i.e. the classical 0-
order calculus supplemented with a strong-S5 box operator. (Exactly the same principles apply to
reasoning in S4® but using C® makes for a simpler and clearer example.) We shall consider the

transitivity of the proper part relation, PP:
PP(a,b) A PP(b,¢) E PP(a,¢).

PP(x,y) holds when ZUy= U but Uz # U. We also require that 2 and y are non-null.
Non-null constraints on regions can now be expressed as =X —a for any region X. Thus the modal

representation of PP(a,b) is:
Na = b)) A-Kb—=a) AN -K-aA-K-b

Hence the transitivity of PP corresponds to the entailment:

Na = b) A=K —=a), Ab—=>ec)A-KR(e—=b), "R-a, =K —b, =K e

E XNao—=e)A-Ke—=a) A-KR-aA-K-e

In testing the validity of this entailment it is natural to proceed as follows. Since the r.h.s. s
a conjunction, the sequent is valid iff each of the four sequents with the same l.h.s. but just one
conjunct on the r.h.s. is valid. Of these four sequents, the two with =X —a and =X —¢ on the r.h.s.

are trivially valid because these formulae also occur on the 1.h.s.. To prove the validity of the other

15Tn most circumstances the strong and weak S5 operators cannot be distinguished at the object level. But the
difference may sometimes be significant. For example a multi-modal logic may contain several distinct weak-S55

modalities but only one strong-S5 operator.
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two, 1t 18 convenient to move all conjuncts on the 1.h.s. which have an initial negation over to the

right. We shall then have the following two sequents:

Ra—=b)ARb=ae)ERa—=e)VERObD—=a)V Re—=b)V RoaV R=bvV K-e

Ra—=b)AKRb=a>)ARe—=a)ERbD—=a)V Re—=b)V KoaVv K=bvV K-e

We can verify these proof-theoretically by the application of just one modal rule (together with

ordinary classical reasoning). This is the rule RK which holds in any normal modal logic:

(p1 A . ANdy) = ¢
(Bp1 A ..o A Rg,) = Ro

[RK]

This rule together with the deduction theorem means that

if ¢17---7¢n 'Z ¢ then Ig¢17"'7lg¢n |:|X¢
Application of this principle validates both of our sequents, since

a—=b b—=sckEa—c and a—=b b—=ec,c—oakEb—a.

5.7.2 The Utility of I.® as Compared with .+

Introduction of the new box operator to enable positive and negative constraints to be distinguished
gives us a more uniform representation. Whereas previously the meaning of an expression was
tied up essentially with the reasoning methods employed, in the new language expressions have a
clear algebraic interpretation. We need no longer concern ourselves with the distinction between
model and entailment constraints but can now describe spatial situations simply by a set, of modal
formulae; and can reason about consistency and entailment directly 1in this object language.

On the other hand it is not clear that this enriched language is more desirable from the com-
putational point of view. Introduction of the new operator makes the language far more expressive
and consequently much harder to reason with. However, we have seen that as long as the new modal
operator is only used to express what was previously expressed by means of the model /entailment,
constraint distinction, then all K operators will only occur either up front or negated up front in
the set of formulae describing a situation; and it seems likely that the optimal approach to reas-
oning with such formula sets is to mimic the S4F consistency checking algorithm described above.
Specifically this means rewriting the sequents (according to simple classical principles) to obtain
sets of sequents 1n which all formulae have a single K at the front: the 1.h.s.is a conjunction and the
r.h.s. a disjunction of such formulae. Once the sequents are in this form, it is easy to see that the
sequents which correspond to entailments verifiable by the extended 0-order reasoning algorithm
can all be proved using only the modal rule RK together with classical reasoning.

Since we know that the consistency checking method for S4F is correct we can conclude that
only the rule RK is needed to prove all entailments in I® involving formulae in which the K occurs

either up-front or negated up-front. Since the logic of S4 obeys RK it follows that, if 4% is used
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only to express the model and entailment constraints of S41, one can in fact treat X as if it were
just another S4 [ operator. Nevertheless the more intuitive interpretation of the modal operator
in this context is as the strong-Sh operator. In section 8.5 T shall use a modal representation in
which strong-S5H operators are employed within complex formulae. In such contexts K cannot be

treated as an S4 [ operator.



Chapter 6

An Intuitionistic Representation

and its Complexity

In the last chapter T showed how spatial interpretation of the modal logic S4 enables a wide
range of spatial relationships to be encoded. This means that entailments among these relations
can be determined by means of an S4 theorem-prover. In this chapter T give an alternative
encoding of spatial relations into the O-order intuitionistic calculus. T also examine examine the
complexity of reasoning using the intuitionistic representation. We shall see that the problem

of determining entailments is in the polynomial complexity class known as NC'.

6.1 The Topological Interpretation of 7

One of the most significant early applications of semantic methods to the investigation of logical
systems is the topological interpretation of the intuitionistic calculus." Tarski (1938) gave a se-
mantics for 0-order intuitionistic logic (henceforth T), which (like that just given for S4) makes use
of an interior operator. Under Tarski’s semantics, a model for T is a structure (U, 4, P,8) where
d now assigns to each constant p; € P an open subset of U (a set X such that i(X) = X). The

domain of § is then extended to all Z formulae as follows:

1.3(~¢)=i(5(¢))

2. 6(¢ A 1Y) = 8(0) NE(1)

3. 6(¢ V ¥) = 8(0) U(1)

4.8(p =) =i(5(0)US(¥))

This denotation function is such that all intuitionistic theorems denote IV under any assignment of

El

open sets to non-logical constants.?2 Note that T use different symbols, ‘~” and ‘=", for negation

"Mostowski (1966, Lecture 1) gives an interesting account of the early work in this area.

2Tn fact, a more uniform presentation could be obtained by simply putting the set-definition of the classical
connectives within the scope of an interior operator; but in the case of the conjunction and disjunction connectives

the extra 7 operation would be redundant (since the unions or intersection of two open sets is always open).

100
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and implication in 7 from those used in C; but for conjunction and disjunction T use the same
symbols, since their interpretations are the same in both systems. The topological interpretation of
7 means that each formula ¢ of 7 can be correlated with an interior algebraic term, which T shall
refer to by the meta-notation TAT[¢]. This term is obtained from ¢ by replacing propositional
constants by set constants, * A “by ‘0", ¢V by ‘U, ‘~’ by %(...) and *...=.. by %(...U...)".

The algebraic semantics for the intuitionistic calculus suggests a quite straightforward spatial
interpretation which enables one to understand clearly why certain theorems that are classically
valid do not hold intuitionistically. Consider the infamous law of the excluded middle, p V ~p.
The constant p will be identified with an open set, which we can think of as the set of interior
points of some bounded region. Intuitionistic negation is associated with the operation of taking
the interior of the complement of a region in other words, where p is identified with the points
within a boundary, ~ p is identified with the points outside the boundary. The set associated with
p V ~pis the union of the sets associated with p and with ~ p. Clearly this contains all points
within our imagined boundary and all points outside the boundary, but does not contain any of
the points lying on the boundary. Hence, the set associated with p V ~p does not necessarily
contain all points in the universe, so formulae of this form are not in general theorems (in fact a
formula of the form p V ~ p is an intuitionistic theorem if and only if either p or ~ p is a theorem).
So, although it may be argued that such topological interpretations are not really in the spirit of
intuitionism the spatial interpretation can serve to demystify and give a clearer understanding of
the intuitionistic calculus.

One drawback of this representation is that no logical operator corresponding to the interior
function appears explicitly in the language: the function occurs in the interpretations of intu-
itionistic negation and implication and 1s only referred to indirectly in logical formulae used to
represent, spatial constraints. Because of this, the 7 representations of spatial relations are less
perspicuous than those of the 54 encoding, where the modal operator corresponds directly to the

interior function.

6.1.1 Relation between Z and 5S4

In order to understand the relationship between spatial representation in terms of 7 and the rep-
resentation in terms of S4 developed in the last chapter, it will be useful to know something about
how these two logical languages are themselves related. Tt has long been known (see Fitting (1969))
that formulae of the intuitionistic propositional calculus can be translated into modal formulae in
such a way that an intuitionistic formula is a theorem if and only if the resulting modal formula is

valid in the logic S4. The translation can be specified in terms of a recursive meta-level function,
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trans[.. ], as follows:

trans[p;] = Op; (where p; is a constant)
trans[~ ¢| = [ -trans[¢]

trans[¢ V ¢] = trans[¢] V trans[¢]

trans[¢ A Y] = trans[¢] A trans[¢]

trans[¢ = ¢] = O(trans[¢] — trans[y])

Algebraic set semantics brings out very clearly the affinity between 7 and S4. 7 can be regarded
as a sub-language of S4 because the algebraic terms associated with Z formulae form a subclass
of the terms associated with S4 formulae. Actually this is not quite true because whereas atomic
formulae in S4 may denote arbitrary subsets of a (topologically structured) universe, those of 7
denote only open subsets of the space. Thus in expressing an 7 formulae in 54, every atom, p, must
be replaced by the formulae Op  since [ corresponds to the interior function [ p will now denote
an (arbitrary) open set. So intuitionistic formulae correspond only to (a subset of) necessary S4
formulae. An intuitionistic negation, ~(...) is semantically equivalent to the S4 operation O —(. . .)
and (...= __)is equivalent to O(—... V ___) or O(... — ). Conjunction and disjunction have
the same interpretation in the semantics of both logics and so are unchanged in the translation

to S4.

6.1.2 Correspondence Theorem for 7

Tarski’s “Second Principal Theorem” in the paper Sentential Calculus and Topology (Tarski 1938)
establishes that a propositional formula is a theorem of 7 if and only if the corresponding set-
term denotes the universe in any topological space under any assignment of open sets to the set
constants occurring in the term. The proof of this is fairly involved and 1s not reconstructed here.
T use the notation ‘F7’ to denote entailment in 7 and ‘=7’ to denote topological entailment 1.e.
entailment between set-equations which may contain the interior operator, 7. Tarski’s theorem can

then be written formally as:?

Intuitionistic Correspondence Theorem (Icorr)

Fz ¢ if and only if Fr TAT[¢] = U

In using 7 to represent spatial relations we shall exploit very similar correspondence relations
to those holding for C and S4. Tn order to secure the correspondence between entailment in Z and
entailment between setf equations in the topological algebra of sets, we need to generalise Tarski’s

result to a correspondence between entailments:

3This theorem holds for any topology whatsoever. Adding conditions to the topology would mean the corres-

ponding logic would be stronger. The limiting case is the discrete topology corresponding to classical logic.
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Intuitionistic Entailment Correspondence Theorem (IECT)
G1,..-, 00 F1 90
if and only if
m=U, . ...tn=U Er mo= U
where m; = TAT[¢;].

Proof of TECT: The positive half is simple: an 7 entailment p1,...,p, Fz po holds
iff =z (p1 A ... A pn) = po, so by Icorr we have =p i(m N .. Nm, Umy)= U . But
if a set has U as its interior then it must be equal to U. Consequently, the equation
(m . Nm, Umy)= U must hold in every model. Thus, whenever m; = U for i =
1...n we must also have mp = U inother words m=U ..., mm=U 7 m=U.

Suppose on the other hand py,...,pn 2 po. Because of Icorr this means that
Eri(m 0. 0w, Ury) =U, so there is some model, M = (U, i, P,d), in which there
is at least one element of my N ... N @, which is not an element, of m5. On the basis
of this model we now construct a model M’ = (U’ ', P,§") whose universe, U’, is the
set denoted by m N ...Nm, in M. We set #/(X) = i(X) for all X C U’ and for all
propositional constants p; we set &'(p;) = d(p;) N U’. Tt is easy to see that if (I/4) is a
topological space then so is (U, i) (see section 2.1).

T now show that the new assignment is such that for any formula ¢, §'(¢) = 6(¢)NU".
This condition is clearly satisfied by atomic formulae so it can be proved by induction
for all formulae if we can show that whenever formulae v and 3 satisfy the condition, it is

also satisfied by a A 3, o V B, ~a and a = 3. The first two cases are straightforward:
§'(a A B) = §'(0)N8'(8) = (8()NT)N(BBAT)) = (6(a)NS(B) D7 = 6o A AN
5(a v B) = 8 (a)U8'(8) = (8()NT)U(B(BNT)) = (6(a)US(B) D" = (o v ANT
The case of ~ « is slightly harder to show:

§(~a) = i(l7 L&' (a)) = i(l L (6(a)NU")) =i(l' Lé(a))

Then, since U’ C U, we have i(U’ L §(e)) = i((U Ld(e)) NT’) and i distributes over
N giving i(U L d(a)) Ni(U’"). But U’ is an intersection of the sets m;, which are the
denotations of formulae ¢;. So, since all formulae denote open sets, /7 must also be

open. Hence, i(I/') = . So we have
(U Lé(a))ni(U’) =i(U Ld(a))NU =§(~a)NU".
Now consider o = 3:
§la=8) = (U La'(a) US(B)) = i( (U L (3(a) N 1) U (B(8) NT"))
Since /' C U, it is easy to show that this last term is equivalent to

(7 L)) Us(@)n’)
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and because i distributes over intersections and i(U') = U’ this is equivalent to
(U Ld(a)ud(@)ni’ .

Finally we have

(U L) udB)NU =8(a=8)NnT’

Thus, §'(¢) = 6(¢) N U’ for any formula, ¢. So, in particular, for each i = 1...n,
3 (¢;) = d(d;) NU" = mNU" = U'; i.e. in the new model all antecedent formulae
denote the universe. We also have §'(¢q) = §(éo) NU' = mp N U'. Furthermore, we
know that there is at least one element of U’ which is not an element of my. This means

that §’(¢0) # U'; so M’ provides a counter-example to the entailment. This concludes
the proof of TECT. B

6.2 Intuitionistic Representation of RCC Relations

The topological interpretation of 7 enables one to use intuitionistic logic in much the same way
as S4 to reason about spatial relationships. Paralleling the approach of the previous chapter, T
characterise RCC relations as equational constraints in interior algebra and then rely on the cor-
respondence theorem to reason about these constraints using a theorem prover for the intuitionistic
logic. As noted above, the correspondence between terms in an interior algebra and formulae of 7 is
more indirect than the correspondence with S4 formulae because in the interpretation of Z (unlike
that of S4) no logical connective corresponds either to the interior or to the complement operator of
the algebra. However, the encoding of many topological relations is still straightforward. Table 6.1

shows encodings into Z of each of the RCC-T7 relations (introduced in section 5.4.1).

‘ RCC ‘ Set Equation ‘ 7 formula ‘
DC(x,y) iW(Z)Vi(y) =U ~zV ~y
DR(xz,y) rNy =U ~(z A y)
P(x,y) TUy=U r=y
Pi(x, y) rUy=U y=zx
NTP(x,y) i(T)Uy =U ~r\Vy
NTPi(2,y) rUi(y)=U xV ~y
EQ(z,y) | @FUyn(@Uy) =U| =&y

Table 6.1: Representation of the RCC-7 relations in 7

In virtue of the theorem IECT an entailment among RCC-7 relations holds if and only if the

corresponding intuitionistic entailment holds. Thus we can determine that the argument

NTP(a,b) A DR(b,¢) E DC(a,c)
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18 valid because 1t corresponds to the following intuitionistically valid sequent:

~aVb ~bAec) Fz ~aV ~e¢

6.2.1 The 7T Encoding

The language ZT extends the expressive power of Z in just the same way that Ct and S4% augment
the languages C and S4. Thus it enables the specification of negative as well as positive equational
constraints on interior algebras. Table 6.2 shows how each of the RCC-8 relations can be represen-
ted by sets of model and entailment constraints specified by means of T formulae. As with $4F the
representations can be obtained by first analysing the RCC-8 relations into conjunctions of RCC-7
relations and their negations. The 7 formulae corresponding to the positive RCC-7 conjuncts then
become model constraints and those corresponding to negative conjuncts become entailment con-
straints in the S4F representation. The table also shows how the fundamental relation, C, of the

RCC theory can be represented as well as the quasi-Boolean function sum (see section 6.2.2 below).

‘ Relation ‘ Model Constraint ‘ Entailment Constraints ‘
DC(x,y) ~xrV o~y ~ET, Y
EC(2,y) ~(z A y) ~e NV o~y e Yy
PO(z,y) ~rANy), vy, y=>, ~r, ~y
TPP(2,y) r=y ~re Ny, Yy=x,~re, Ny
TPPi(z,y) y=>a ~yNVae r=y, e~y
NTPP(z,y) ~r\Vy Yy=mx,~r,~y
NTPPi(xz,y) ~yVzx rT=Y, ~ET, Y
EQ(x,y) rsy ~E, Y
Clz,y) ~E NV o~y Ty
EQ(x, sum(y, 2)) re(yVz) ~E Y,

Table 6.2: Some RCC relations defined in ZF (including the RCC-8 relations)

et us consider, for example, the representations of the relations DC(z,y) and EC(2, y). Tf two
regions share no points they cannot overlap (although they may be connected). Tn such a case
the equation i( X NY )= U must hold; this can be represented by the 7 formula ~(z A y). ITn 7
(unlike €) this formula is not equivalent to ~a V ~y. The latter corresponds to the set-equation
i( X )Ui( Y )= U, which says that the union of the exteriors of two regions exhaust the space. If
the regions touch at one or more points, then these points of contact will not be in the exterior of
either region so this equation will not hold. Hence the second (stronger) formula can be employed
as a model constraint to describe the relation DC(2,y). Tf the relation EC(2,y) holds then the
weaker constraint ~(2 A y) holds but ~2 V ~y must not hold, so this stronger formula is an

entallment constraint.

Consistency of ZT expressions is determined analogously to Ct and S4% expressions: an Z¥
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expression (M, &) is inconsistent iff there is some ¢ € £ such that M Fz ¢. Again, the fact that
each of the negafive constraints can be considered separately 1s due to a convexity property of the
class of constraints which are represented by this formalism. Since the theory of the topological
interior operator is purely equational and the constraints corresponding to the model and entail-
ment constraints are themselves also equations, this convexity property is a direct consequence of
ELcons (which was proved in section 4.5).

Tn section 5.6 T explained how the inconsistency of the description TPP(a,b) A DC(b,¢) A
PO(a,¢) could be demonstrated by means of the S4F representation. The corresponding T+

representation (according to table 6.2) is:*
{a=b, ~bV ~ct, {~aVb b=a a=ec, c=>a, ~aAhc), ~a, ~b ~c}).
This ZT expression is inconsistent because
a=b ~bV~c k7 ~(aAc)

i.e. one of the entailment constraints in entailed by the model constraints.

6.2.2 The Regularity Constraint and Boolean Functions Coded in 7

In section 5.6.1 T explained how regions could be constrained to be regular by means of an 54

model constraint. Tn 7 this constraint can be enforced by the model constraint formula
~ o~ p :> p R

Tn the topological semantics this corresponds to the condition ¢ L (i L (P)) C P or equivalently
i(c¢(P)) C P. The condition P C i(e(P)) need not be explicitly added becanse p= ~ ~ p is already
a theorem of 7. Tt is interesting to note that the intuitionistic formulae assigned regular sets by
the topological semantics are those for which the classical law of double negation holds.

As argued in section 3.5.2, the most coherent topological interpretation of the RCC theory is
to identify the RCC regions with regular open sets (or alternatively regular closed sets). This
means that in employing Z1 to represent RCC relations, as well as adding model constraints
ensuring regularity of the regions explicitly mentioned, one should also ensure that all Boolean
combinations of these regions also correspond to regular sets. To ensure this, these operations can
be represented in 7 as follows: prod(xz,y) is translated as 2 A y, compl(2) as ~2 and sum(z,y) as
~~(z V y). Given the topological interpretations of the connectives involved, it is easy to see that,

if its argument regions are regular, the regions denoted by any Boolean function will be regular.

4For full generality one ought to add extra model constraints constraining the regions to be regular, as explained

in section 6.2.2. Note that (unlike S4+) in % all regions are automatically constrained to be open.
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6.3 Efficient Topological Reasoning Using 77

The implementation of the spatial reasoning algorithm described in (Bennett 1994b) used a sequent,
calculus proof system for intuitionistic logic, which contained certain optimisations making it more
efficient in testing the sequents required by the topological reasoning algorithm (and rendering it
incomplete for the full intuitionistic logic). Following the complexity analysis of Nebel (1995a) it
became apparent that a far more effective special-purpose proof procedure could be constructed.
This section examines the the proof-theory of the restricted class of sequents that need to be tested

and shows how this analysis yields an efficient, clearly polynomial, proof method.

6.3.1 Sequent Calculus for 7

To formalise the proof theory T use a Gentzen-style (Gentzen 1955) sequent calculus for Z, which
is essentially the same as that given by Dummett (1977). The proof rules of the calculus can he

specified as follows:3

Axioms: PpT P f, T + C
Re-write ~P =,; P=>f
P,Q T FC P and T F
S RN Sy
Rules: PAQ@, T F C r+-PAQ
P, T F C and re ¢ r+r r +
: and @, v ] or Q - V]
Pv@ T FC r+- PvaQ
P=Q, T F P and Q, T F C r,PFrQ
[=H] — [F=]
P=Q, T+ C N+ P=qQ

When applied in the top to bottom direction the rules preserve provability and generate all
valid sequents. When used to prove a sequent, the rules are applied bottom to top in an attempt
to show that the sequent is derivable from axioms. However, not all rules preserve provability
when applied upwards, so the proof search 1s non-deterministic. Rules which preserve provability
in both directions are called invertible. All the rules are invertible except F V and =F.

From the computational point of view, the most serious defect of this rule set 1s that, in applying
the =k rule, proving a sequent is reduced to proving two sequents, one of which may be more
complex than the nitial sequent. Tn a depth-first search for a proof, this may lead to infinite
loops, whose detection is computationally expensive; on the other hand, a breadth first search is

extremely expensive in terms of space.

5Roman capital letters denote arbitrary formulae, Roman small letters denote atomic formulae and Greek capitals
denote arbitrary sets of formulae. The left hand side of a sequent is regarded as a set of formulae rather than a

sequence, so the order of formulae on the left does not matter.
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Theorem proving in the 7 sequent calculus is more complex than that of C: in C all connectives
can be eliminated deterministically because the rules produce Boolean combinations of sequents
which are logically equivalent to the original sequent (so all rules are invertible). Thus, whereas
theorem proving in C is NP-complete (so  assuming P # NP requires time which is exponential
in the size of formula to be tested), checking Z theorems is probably even more difficult: it is

believed that it requires O(nlogn) space as well as exponential time (Hudelmaier 1993).

6.3.2 Hudelmaier’s =F Rules

The problem arising from the = rule has recently been solved by Hudelmaier (1993). The idea is
to replace the rule by four more specific rules, the applicability of which depends on the structure

of the antecedent of the = formula. Hudelmaier’s rules are:

a, P, T + C P=(Q@=R), T + C
[MP=H] [A =H]
a,a=P, T F C (PAQ)=R, T F C
P=>R Q=R T F C Q=R T F P=>Q and R T F C
[V =H] [==H]
(PVQ)=R T + C (P=>Q)=R T F C

Fach of these except ==k is invertible. As indicated by the use of the small ‘a’, the modus
ponens rule MP=F need only be applied when the antecedent of the implication is atomic. In
upwards application of each of these rules, the resulting sequents can be shown to decrease in

complexity according to a (specially constructed) measure of sequent complexity.

6.3.3 Spatial Reasoning Using Hudelmaier’s Rules

We have seen that consistency of spatial relations which are instances of the RCC-8 set can be
determined by testing the validity of certain 7 sequents. Moreover, if we are dealing only with the

RCC-8 relations these sequents only contain formulae of the forms shown in table 6.2:
~a, (a=b), ~(aAb), (~aVvb), (~aV ~b)

In the remainder of this section T shall show how, given the limited range of formulae and the
completeness of the Hudelmaier sequent rules, an effective consistency checking procedure for sets
of RCC-8 relations can be constructed.

The sequent rules assume that negation is handled by replacing each negated formula ~ ¢ by the
equivalent formula ¢ = f. This can be implemented as a simple deterministic re-write rule. After
eliminating negations in this way another simplification can be made by applying Hudelmaier’s
A= rule. This means that formulae of the form ~(a A b) are re-written first to (a A b) =1 and

then to (@ = (b= f)). The resulting sequents will contain only formulae of the forms:
(a=1), (a=b), (a=h=1), (a=>f)Vd), ((a=1f)V (b=>1)) (Iforms)

Note that, amongst these formulae, the antecedents of all implications are atomic so (using the

Hudelmaier rule set) the only rule applicable to implicationsis MP=F. Apart from implications, the
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only other types of formulae are atomic propositions and two forms of disjunction. The disjunctions
can be handled by the normal V F and F V rules. Both these rules give rise to a branch in the
search space; and, because there may be any number of disjunctions amongst the premisses, the
search space is exponential. Nevertheless, because the non-deterministic = F rule is not needed,
this proof procedure can be used to test consistency of quite large sequents in reasonable time.
The Prolog program given in appendix .2 1s based on the method just described. A slight
difference is that, rather than re-writing formulae of the form (a A b) =) to a= (b=1) and then

applying the normal MP rule, T implemented the following variation of MP:

a, b, P, T' - C

[MP2=H]
a, by (aANb)=P T F C

T also added a ‘pruning’ rule to delete redundant implications whose conclusion was already
amongst the premisses. Small optimisations such as this, which are logically trivial, can often yield
a marked improvement in the performance of an automated theorem prover. In the next section
we shall see that pruning rules play a key part in the specification of a polynomial time proof

procedure for these sequents.

6.3.4 Further Optimisation

In section 6.3.7 T shall present the model theoretic analysis given by Bernhard Nebel of the 7
sequents arising from the RCC-8 encoding. This analysis enabled Nebel to show that consistency
checking of sets of RCC-8 relations can be performed in polynomial time. Inspired by this result T
investigated how sequent calculus proofs of the relevant sequents could be optimised. As expected,
proofs in the sequent calculus can also be carried out in polynomial time. Tn the rest of this section
I present a series of sequent re-writing rules which achieves this end. T assume that all formulae

in the sequents have been reduced to the forms Iforms as explained in the previous section.

Eliminating Disjunctions without Branching

Disjunctions would normally be eliminated by applying the rules V F and F V. These create a
branch in the proof: we attempt to verify each of the sequents obtained by replacing the disjunction
by one of its disjuncts. Clearly this procedure leads to a search space which is exponential in the
number of digjunctions (which is approximately proportional to the number of topological relations
whose consistency is being tested). This situation is made worse because the F V rule must
be applied non-deterministically. However, given the limited class of formulae appearing in the
sequents, rather than carrying out this split we can work out the potential effects without actually

applying a branching rule.
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The plan will be first to take account of the disjunctive content of premisses and conclusion by
applying certain ‘pruning’ rules, the simplest of which take the following forms®
Q, T+ P Q, TF(PVR)

[Prv] [PrV]
(Pv@),TEP (PV@Q),T F (PVR)

After carrying out all possible applications of these rules, we will have an equivalent sequent in
which none of the disjunctive premisses have a disjunct which is the same as the conclusion or a
disjunct of the conclusion. Such disjuncts will be called “un-prunable’.

Another kind of pruning rule can be applied to implicative premisses:

(P=1), T F @

[Pr=]
(P=Q), T F Q@

We notice that this rule, applicable where the consequent of an implication is the same as the
conclusion, does not generalise to the case of a disjunctive conclusion: it is not sound to reduce a
proof of (p=4¢), T F (¢ Vr)tothat of (p=1f), T F (¢ V r); and this is precisely the respect
in which an intuitionistic implication (P = @) is logically weaker than the disjunction (~ P V @).

Although, when the consequent of an implication 1s a disjunct of the conclusion, we cannot prune
the implication itself, it may be that this circumstance justifies the pruning of some disjunctive

premiss in accordance with the following rule (which has two variants?):

P, (g=r), (m=ra), ..., (tho1=>m), (rm=5), T F (SVT)
(PVyq), (g=rm), (m=rs), ..., (rho1=>m), (r,=5), T F (SVvT)

[PrV =]

This generalises PrV by taking account of chains of implication leading from a disjunct of a
premiss to a disjunct of the conclusion.

In implementing this pruning rule it is more convenient first to compute the transitive closure of
all formulae of the form (p= @) occurring in the sequent. Once this is done, chains of implication
need not be considered so the pruning rule is simply applied to sequents of the form (P V ¢), (9=
S, T F (SvT).

Reducing Disjunctions to Implications

I now show that in the sequents in question, the pruning rules fully take account of the extent
to which the inferential power of disjunctions exceeds that of corresponding implications. Be-
cause of this, after applying the pruning rules, we can replace disjunctions with implications and
deterministically apply the F V rule. Hence, testing validity is reduced to a ‘Horn-like’” problem.
Let us consider the inferential potential of the remaining un-prunable disjunctive premisses.
The only rule that can directly be applied to these is the V F rule. However, this rule cannot

directly yield the conclusion (or a disjunct of it) because otherwise one of the disjuncts would have

6Trivial variants of these rules must also be applied. These are obtained by replacing (P vV Q) by (Q Vv P)
and/or replacing (P vV R) by (R Vv P) in the rules given above.

7(5’ v T) may be replaced by (T Vv S).
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been prunable. This means that if the sequent is valid at least one of the disjuncts must be capable
of taking part in a subsequent MP= I rule application. Because of the limited range of formulae
in the sequents we can anticipate all the forms of potential modus ponens applications and give
rules which yield the same consequences but bypass the V F rules. Moreover all these rules are
invertible.

We have three rules where the implication of the MP is derived from a disjunction:

rr C
b9 IMPV1]
p, ((p=f) Vg, F C
(g=f). T F C p=f). T F C
p (4 =1) [MPV24] 7. p=1) [MPV25]
p, ((p=f)Vig=1), T F C ¢, (p=f)v(g=1), T F C

and three more rules where it is the antecedent that comes from the disjunction:

(p=1), (9=1), T - C
(p=1), ((4=F)vp), ' - C

[MPV3]

(r=f)Vvp), (p=q), (r=f) Ve, I+ C

[MPV4]
(r=f)Vvp), (p=>q), T+ C

(p=f) V), (9= (r=1), (p=>f) VvV (r=1), T F C
(p=f) Vg, (¢=(r=1), T F C

[MPV5]

Finally we have a number of rules such as the following, in which both the implication and 1ts

antecedent are derived from disjunctions.

(p=f)Vva), ((¢g=f)Vvr), (p=f)vr), ' - C
(p=f) V), (g=fH)vr), T F C

[MPV6a]

Tt can now be seen that the proof possibilities afforded by these rules are retained when formulae
of the form ((p = 1) V ¢) are replaced by (p = ¢) and formulae of the form ((p = f) vV (¢ = f) by
the two formulae (p = (¢ = 1)) and (¢ = (p=1)):

The result of applying rules MPV1, MPV2 and MPV3 can equally be achieved by applying
MP=F after this replacement.

Rules MPV4, MPV5H and MPV6 all produce new disjunctions; but prior application of the prun-
ing rules ensures that these cannot contain as a disjunct either the conclusion or a disjunct of the
conclusion. Hence these new disjuncts can only participate in a proof by means of further applic-
ation of one of the MPV rules. Moreover, if a chain of such applications is useful in constructing a
proof it must eventually lead to an application of one of the rules MPV1, MPV2 or MPV3, which

yield a new non-disjunctive formula. Examination of the MPV rules will reveal that if disjunctions
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are replaced by implications (as specified above) the result of any such sequence of rules can be
derived by a corresponding sequence of MP=| rules.

(Given that this translation of disjunctions to implications preserves provability and noting that
the formulae (¢ = (p=1)) and (p= (¢ = 1)) are logically equivalent, it follows that provability is
also preserved if formulae ((p = f) V (¢ = ) are replaced by the single formula (p = (¢ = f)).

Completion of the Proof Procedure

Having eliminated all disjunctive premisses, we are left with a sequent containing, on the left hand
side, only atomic propositions and implications (with atomic antecedents), and on the right hand
side a formula of one of the forms p=f p=q¢, p=(¢g=1), (p=>f) Vgand (p=1) VvV (¢ =1).
We proceed as follows:

Case a) For the non-disjunctive conclusions we can immediately apply the F= rule (twice in
the case of a conclusion of the form p= (¢ = 1)) so that the conclusion is reduced to a single atom.
In the resulting sequent the only possible further rule applications are of Modus Ponens. This rule
is applied until either the (atomic) conclusion is derived, in which case the sequent is valid, or else
no possible applications remain, in which case the sequent is invalid.

Case b) Tf the conclusion is a disjunction we first make all possible applications of Modus
Ponens and attempt to derive a disjunct of the conclusion. If this fails we then apply the F V rule

splitting the proof into two branches. For each branch we proceed as for case a).

6.3.5 Complexity of the Improved Algorithm

The number of formulae of a given type occurring in a sequent generated by the RCC-8 reasoning
algorithm is bounded by the size, n of the set, of topological relations to be tested. Checking
for applications of the Prv and Pr= rules is clearly linear in n. Determining applications of the
PrV = rule involves determining the closure of the transitive relation of implication. This can be
computed in order n? time. Once this closure has been computed application of all possible Prv =
inferences becomes n? (since it involves checking pairs of formulae from the Lh.s. of the sequent).

The other non-trivial part of the proof algorithm is the application of Modus Ponens rules.
Since the rule involves two formulae, one ‘pass’ of MP applications is order n%. Because the
transitive closure of implications has already been computed® and because the maximum number
of antecedents in a formula i1s two, a maximum of two passes are required to exhaust all possible
MP applications.

So, the proof method described provides an order n? (time) algorithm for checking consistency
of those T sequents which arise in the topological consistency checking algorithm (as compared
with Hudelmaier’s O(n logn)-space algorithm for arbitrary sequents). The number of such sequents

which must be checked to determine the consistency of a set of RCC relations is equal to the number

#This will also have to be re-computed after disjunctions are replaced by implications; alternatively, as in the
current implementation, all the implications derived from disjunctions can be added at the beginning of the decision

procedure.
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of entailment constraints in the 7 representation of the relations, which 1s itself approximately
proportional to the number of relations. This means, that in terms of the number of topological

relations whose consistency is to be checked, the new algorithm is of order n?.

6.3.6 Implementation and Performance Results

The improved algorithm has been concisely prototyped in (STCStus) Prolog. The code is given
in appendix (.3. Preliminary tests indicate that the algorithm can determine consistency of very
large sets of topological relations in an acceptable time. The procedure performs particularly well
if a database 1s accumulated incrementally so that at each stage computation of the closure of

implications is linear in the number of implicative formulae already stored.

Spatial Logic Query System

Situati dr{[p,i,d]1}

File: /athomefcsunb_aifstaffhrandon/Prologi Toplog/norther] drilp.i,el}
[y dr {Lp,p,d1}

ntpplheadingly, leeds) . d{lp.p,e1)
a]a] gy, dr{[p,o,d1}

ecileeds,bradford) . dr{lp,o,e1}

dr{[o,i,d1}
dclleeds,sheffield). dr{[o,i,el}
dr{[o,p,d1}
tpplyorkshire,uk). dr{[o,p,el}

dr{[o,0,d]1}
eclyorkshire,lancashire) . dr{[o,0,el}
ntpp dr ([i,i,a]}
ntppl | [ drili,p,0l} |
equal | [ dr{li,o,al} |
dr{li,i,dly | drilp,i,ely |
dr {[i,i, el} l dr {[p,p,al) ]
dr{li,p,d1} | dr{lp,0,01} |

I )

I )

| )

plleeds,yorkshire] .

pibolton,lancashire) .

dr{[i.p,el} dr{[o,i,al}
dr {[i,o0,d]} dr{[o,p,al}
dr{[i,0,e1} dr{[o,0,0]1}

P headingly] ~[bolton |

5] Query? 1 Check § | Add to Sitmation §

<o %
Load ...

Save As ... northern-geog| Save

|Inconsistent with situation |

Figure 6.1: A spatial reasoner implemented in Prolog using 7+

To test the effectiveness of the algorithm, a consistent database of n topological relations holding
amongst r regions was randomly generated. The relations were generated by picking pairs of regions
at random and a random relation from the RCC-8 relation set (with all regions required to be non-
null). Tf the randomly generated relation was consistent with the database, it was added; otherwise
it was rejected. This was repeated until n consistent relations had been added. The random

database was then used to test query response time: random RCC-8 relations were generated and
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the ZT reasoner, exploiting the improved algorithm, was used to determine whether these relations
were necessary, inconsistent or contingent with respect to the database.

The incremental addition of 300 consistent relations holding among 100 regions took on average
595 seconds and during this construction 53.7 (on average) inconsistent relations were rejected.
The average query time for the resulting database was 2.6 seconds. Further analysis and revision
of the program will be necessary in order to enhance its performance. This is beyond the scope of
the present work but it seems very likely that an order of magnitude speed-up could be obtained

quite easily.?

6.3.7 Nebel’s Complexity Analysis

T conclude this chapter with a look at Bernhard Nebel’s model theoretic analysis of the sequents
arising from the 7 encoding of the RCC-8 relations. This analysis leads to an alternative proof
that consistency of RCC-8 relations can be determined in polynomial time. Tt also reformulates
the problem within the framework of classical constraints, which has received much attention
from computer scientists (Mackworth 1977). To understand this section fully it will probably be
necessary to refer to (Nebel 1995a) and to have some knowledge of intuitionistic model theory and
proof theory (see e.g. (Kripke 1965) and (Nerode 1990)). By examining the intuitionistic sequents
which are needed to reason with my ZF encoding of the RCC-8 relations, Nebel (1995a) has shown
that the consistency of sets of RCC-8 relations can be computed in polynomial time.

Nebel’s results are obtained by analysing a tableau-based proof procedure for intuitionistic logic

as described by Nerode (1990) when it 1s applied to the restricted range of formula types
used 1n encoding the RCC-8 relations. He showed that the consistency problem for these sequents
can 1n fact be described in terms of a fairly simple set of classical constraints. This 1s because,
for any invalid sequent involving only the formulae required to represent the RCC-8 relations, it 1s
always possible to construct a Kripke model (Kripke 1965), containing exactly three worlds (which
will be called v, wy and wy), that provides a counter-example to the entailment. Nebel’s encoding
simply describes these models in classical predicate logic, by means of a binary relation F(w, a),
which asserts that the (atomic) formula a is ‘forced’ (i.e. true) at the world w.

More, specifically, each world of the Kripke model is identified with a set of constants which
are forced at that world. The worlds are (partially) ordered by the subset ordering on these sets.
Whether a complex formulae is forced at a world w depends on whether 1ts constituents are forced
at w and also (in the case of negation and implication) whether they are forced at any ‘larger’
world:

e o A Fis forced at w iff both a and 3 are forced at w

e oV [Fis forced at w iff either o or § 1s forced at w

?One of the fundamental operations used in the Prolog program, the assert predicate, is known to be extremely
slow and profile analysis of the program’s run-time showed that over 80% of the execution time was spent carrying
out this operation. By redesigning the data structures used by the algorithm, the use of assert could be avoided
and the performance greatly enhanced. A lower level implementation e.g.in C would clearly be much faster

still.
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e ~« is forced at w iff & 1s not forced at w nor at any world larger than w

e o= [ 1s forced at w iff at w, and at any larger world, wherever o 1s forced so 1s 3

The counter-models identified by Nebel always satisfy the ordering conditions v C wy and
v C woy so every formula forced by v is forced by wi and ws. In these counter models the
world v is constrained so as to demonstrate the invalidity of a sequent: v forces all the premiss
formulae of the sequent but not its conclusion. The conditions under which a binary formula of
7 1is forced at v in Nebel’s counter-models can be specified classically as given in table 6.3. To
test if a sequent is valid we consider a set of constraints consisting of the forcing constraint for
each premiss formula, the negation of the forcing constraint of the conclusion formula and also all
instances of F(v,2) — (F(wq,2) A F(ws, 2)) (where z is a any constant occurring in the sequent),
which arise from the ordering conditions on the worlds. This set of classical formulae is consistent

if and only if the original intuitionistic sequent 1s invalid.'®

‘ Formula ‘ Forcing constraint

~x =F(wq,2) A =F(wy, x)

~aVo~y | (2F(wr, ) A SF(ws,2)) V(=F(wr, y) A =F(ws,y)

~r A ) | ~(Fr ) A For)) A —(Flum2) A F(,y))

~rVy | (R, ) A ~F(ws,2) V (F(n,9)

r =y (F(v,z) = F(v,y)) A (F(wn, 2) = Fwr,y)) A (F(ws, ) = Fws, y))

Table 6.3: Classical description of intuitionistic binary clause entailment

Remarkably, all the formulae in Nebel’s classical encoding of the restricted 7 entailment problem
are reducible to 20NF form,'" which means that the problem can be reduced to a 2-SAT problem.
Thus the consistency sets of RCC-8 relations can be computed in polynomial time. More precisely,
2-SAT problems lie in the class NC, which means that they can be computed in polylogarithmic
time on polynomially many processors, so parallel processing can be effectively exploited to speed
up computation. This complexity result applies also to the larger class of relations expressible
in terms of conjunctions of the RCC-7 relations and their negations; all such relations can be
represented using the 7 formulae covered by Nebel’s analysis. This includes almost half those
relations that are disjunctions over the RCC-8 relations (the full set is given in appendix C.1.1).
Tt is evident that applying parallelisation can improve the performance of almost any algorithm
that exploits my ZT encoding. This is becanse each test of whether an entailment constraint is
derivable from the model constraints can be carried out independently: so all these tests could be
conducted simultaneously.

The forcing constraint analysis can also be used to identify classes of digjunctive relations over

10Note that Nebel’s analysis does not cover the regularity condition on regions. Whether this can be represented

within a tractable system is a matter for further research.

A 2CNF formulais a conjunction, each of whose conjuncts is either a positive or negative literal or a disjunction

of two positive or negative literals.



CHAPTER 6. AN INTUITIONISTIC REPRESENTATION AND ITS COMPLEXITY 116

RCC-8 for which consistency checking of constraint networks is tractable. Clearly the complete-
ness of compositional inference applies to any conjunction of RCC-T7 relations and their negations
and many disjunctions of RCC-8 relations are expressible in this way. In a network containing
disjunctive relations 1t is possible to derive new information by composition without immediately
getting a contradiction. So showing inconsistency may require repeated application of composition.
Nevertheless, this procedure still leads to an algorithm which is polynomial in the number of nodes
of the network (Nebel 1995a). Tn recent work by Renz and Nebel (1997) an analysis very similar
to the forcing constraint interpretation of 7 is applied to the S4 encoding of RCC relations given
in chapter 5. This enables a maximal tractable class of 148 disjunctive RCC-8 relations to be

1dentified.



Chapter 7

Quantifier Elimination

This chapter explores the possibility of applying Quantifier Elimination transformations to
RCC formulae. Such transformations provide a decision procedure for a large class of formulae

in the Tst-order RCC language.

7.1 Quantifier Elimination Procedures

The undecidability of a logical system is very often associated with quantification. General 1st-order
logic is only semi-decidable but, by restricting the forms of quantification permitted in formulae,
a variety of decidable sub-languages can be found (Dreben and Goldfarb 1979, Borger, Gridel
and Gurevich 1997). Most of the better known 0-order (i.e. quantifier free) logical formalisms are
also decidable' These decidability results provide the basis for the method of constructing decision
procedures by means of quantifier elimination. Suppose we have a lIst-order language which is in
some way restricted it may have restricted syntax or a limited vocabulary constrained to obey
axioms of some theory. If we can show that every formula of this language can be converted wvia
a series of transformations to a formula in a decidable language, which is consistent just in case
the original formula were consistent, then we have a decision procedure for the original language.
Typically the target language of such a conversion will be one with no (or limited) quantification,
so the effect of transformation will be to eliminate quantifiers.

The method of quantifier elimination has been used to remarkable effect by Tarski (1948) to
provide a decision procedure for Tst-order formulae composed by applying the Boolean connectives
and quantification to propositions which are arbitrary polynomial equations and inequalities over

the real numbers.?

T A notable exception is general Relation Algebra, which will be discussed in chapter 9.3.

2i.e. the non-logical vocabulary consists of the constants 0 and 1, the binary functions +, —, and x, and the

relations = and >. The quantifiers range over the real numbers.

17
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7.2 Quantifier Elimination in RCC

In this section T prove certain equivalences between RCC formulae which can be used to eliminate
quantifiers in many contexts. In fact the proofs of theorems used in the quantifier theorem will
be given in a way which is theory independent: T simply state every non-logical assumption which
is used in the proofs. This means that the elimination is valid in any system in which these
assumptions are theorems. All these assumptions are T believe provable from the RCC theory.
However the treatment of Boolean functions assumes a complete Boolean algebra (with a null
element) so their form might have to be altered to fit in with the sort structure of the RCC theory.
All the assumptions are also theorems of my revised theory (given in section 3.7) and, since this
theory incorporates a null region, assumptions involved in the treatment of the Boolean operations
can be expressed directly in the theory.

Consider the definition of the part relation in terms of C:
Pla,y) =.., ¥z[C(z,2) — C(z,y)] (Pdef)

If this definition 1s taken as a rewrite rule applied from right to left, it can be seen to achieve a
quantifier elimination: a universally quantified expression involving Cis replaced by an unquantified
expression in terms of P.

This elimination can be generalised to remove a universal quantifier operating on an arbit-
rary truth-functional combination of C relations. First the truth-functional matrix is converted to
clausal normal form so that we have a conjunction of disjunctions of C literals. Since the universal
quantifier distributes over conjunction it can be moved inwards to obtain a conjunction of univer-
sally quantified clauses. The quantifier can then be eliminated from each clause in virtue of the

following equivalence:

C-clause Quantifier Elimination Theorem (CQE)
Ve[(Clz,ar) A ... AC(z,am)) = (Clz,by) V...V C(z,b,))]
& (P(ay,sum{by,....b,}) V...V P(ag,,sum{by, ... b,}))

The left-hand (quantified) formula states that if any region 2 is connected to each of the regions
ay, ..., a,, then & must also be connected to one of the regions by,...,b,. CQE states that this

is equivalent to the condition that one of a1, ..., am, is part of sum{by, ... b,}.?

Proof of CQE: The equivalence of CQE is demonstrated by the following series of

formula transformations:
1. Ve[(Cle,ar) A ..o AC(2,am)) = (Cle,by) V..oV Clx, by,))]
2. Ve [(Clz,a) A oo A Cla,am)) — Clo,sum{by, ... b,})]

3. = 3x[Clz,a0) A .o A Clx,am) A —Cla,sum{by, ... b, })]

3T write sum{b1,...,bn} as an abbreviation for a term of the form sum(by,sum(bs,...sum(b,_1,55))).
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4. =(F2[Cx, a1) A =C(a, sum{by, ., by D] Ao A F2[Ce, am) A =Cla, sum{by, ., b, 1})])
5. —=3x[Clay, ) A =Cla,sum{by, ., b, )] V...V =32 [Clay,, 2) A ~C(x,sum{by, . b,})]
6. P(ay,sum{by,... b, 1)) V...V P(ay,sum{by, ... b,})
The equivalence between 1 and 2 depends only on the definition of sum and that between
5 and 6 only on the definition of P. Steps 2 3 and 4 5 are purely logical equivalences
and the entailment of 3 by 4 is also purely logical. That 3 entails 4 is shown by the

following deduction sequence, by means of which (if we substitute sum{bq,... b,} for

the arbitrary term 7), the negation of 3 can be derived from the negation of 4:
1. 32[Cla,a1) A =Cla, 7)] A .. A F2[Cla, am) A =C(a, )]
2. Clkr,a1) A =C(k1,7) A - A Clhm, am) A =Ckyp, 7)
3. Clsum{ky, .k} ar) A .. A Clsum{ky, . kot am) A =C(sum{ky, .. k), 7)
4. x[Cle,ar) A oo A Clx,am) A =C(x, 7))

Special cases of the reduction apply when either the left or right side of the quantified C-clause
18 empty. If the r.h.s. 1s empty then the clause 1s inconsistent since at least the universal region
must connect with all of any set of regions. If the 1.h.s. 1s empty, then the clause simply states that
the sum of all the regions mentioned on the r.h.s. 13 equal to the universe. In terms of P, this can be
written as P(u,sum({b1,... b,}). We can thus eliminate the innermost universal quantifier(s) of
any pure C-formula* and in doing so end up with a formula containing only P and C relations (the
remaining C-relations are those not originally within the scope of one of the innermost. quantifiers)

and the sum operator.

7.2.1 Extending the Procedure

To continue the procedure we would like to eliminate the innermost quantifiers of the resulting
transformed formulae. Unfortunately, these formulae are no longer pure (they may contain other
non-logical symbols apart. from C) so the general case of further reduction is more complicated

than CQE. The additional complexity takes the following forms.
1. The quantified variable may occur within the scope of a sum operator.
2. The P predicate 1s not symmetric so can act on a variable in two logically distinct ways.

3. Both P and C relations may be present.

4An RCC formulais a pure C-formula iff C is the only non-logical symbol occurring in it. Other symbols may
always be eliminated by means of their definitions. The existential import of the functions must then be taken care

of by suitable additional axioms for C.
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Quantifier Elimination for P Clauses

My extension of the quantifier elimination procedure only addresses the first two of the problems
just mentioned. T give a procedure which eliminates quantifiers from a clause containing only
P-lTiterals; the arguments of these literals may be arbitrary Boolean functions and the quantified
variable can occur anywhere within these complex arguments. Such clauses will be called P-clauses.
The decidability of P-clauses is an intuitive consequence of the decidability of the 1st-order theory of
Boolean algebras (which is well known): the P relation can be correlated with the usual ordering on
Boolean terms, so that P(7, 7) can be identified with the Boolean equation 7 + 1 = 7. However,
it will be nstructive to demonstrate the decidability of P-clauses by quantification elimination,
within the language of RCC. This will expose exactly which mereological principles are essential
to a decision procedure.

In the RCC language, the redundancy of quantification over truth-functions of P relations is
in many cases obvious. For instance, Va[P(x,a) — P(x,b)] < P(a,b) follows immediately from
reflexivity and transitivity of P. However, for a general quantifier elimination procedure we shall
need to eliminate quantifiers from all forms of P-clause. To simplify this problem T first convert
arbitrary P-clauses into a more restricted normal form. In virtue of axioms AA3 and AA4, any
P-literal, P(¢(2), ¥ (x)), involving some variable 2z, where ¢ and ¢ are any quasi-Boolean functions
of constants and/or variables, can he regarded as a Boolean inequality of the form ¢(2) C ().
By applying appropriate and well known Boolean identities, such an inequality can always either
be shown to be necessarily true or otherwise be transformed into a conjunction of inequalities of
the forms # C 7 and p C x, where x appears alone and only on one side of the ‘C’ symbol. Thus,
any P-literal involving x 1s either necessarily true or equivalent to a conjunction of P-literals of the
form:

(P(x,m) A .. AP(e,m) AP(pr,2) A ... AP(pj,2)) .

After applying this normalisation, quantifiers can be eliminated from an arbitrary clanse made

up of P literals in virtue of the following equivalence:

P-clause Quantifier Elimination Theorem (PQE)
Va[(P(z,a1) A ... AP(x,a;) AP(br,z) A ... A P(b;, 1))
— (P(x,e1) V...V Pz, ex) V P(dy,x) V...V P(dy, 2))]
—
(~P(sum{by....,b;}, prod{ar,...,a;})
V P(prod{ar, ... ai},e1) V...V P(prod{ar, ... a;}, ex)

V P(dy sum{by, ..., b0;}) V...V P(dy,sum{by,....b;}) )

Proof of PQE: To see why this equivalence holds, first note that the left hand side is
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equivalent to

Va[P(x, prod{as,...,a;}) A P(sum{bi,... b;}, =)
= (P(z,e1) V...V P(2,e5) V P(dy,2) V...V P(d;, 2))]

To make the proof more concise T henceforth refer to prod{as,... ,a;} by = and
sum{by,...,b;} by o. PQE then becomes:
Ve[(P(z,m) A P(a,2)) — (P(z,e1) V...V Pz, eg) vV P(dy,2) V...V P(d;, 2))]
& (2P(o, m) VP(m,e1) V...V P(r,er) VP(dy,0) V...V P(d;, o))

Because the universal condition 1s hard to visualise T now transform it into an

existential. If we negate both sides of this and then move the negations inwards we get

[Pz, ) A Plo,2) A =P(z,e1) A .0 A =Pz, e) A =P(dy,2) A ... A =P(dy, 2)]
& (Plo, m) A =P(m,e)) A .. A=P(m, ex) A =P(dy, o)A ... A=P(d;, o)) (PQE2)

The left to right direction is relatively straightforward to demonstrate. Tt can easily

be derived by making use of the following three principles describing properties of the

P relation.
A[P(a,2) A P(r,8)] & P, ) (Pprin1)
A[P(r,0) A =P(x, )] & ~P(a, ) (Pprin2)
A[P(a,2) A =P(B.2)] & ~P(a, ) (Pprin3)

The right to left direction is more difficult. We must show that, if the conditions
on the right are safisfied, there must be some region satisfying all the conditions of
the existentially quantified predicate on the left. Tt is clear that o itself satisfies the
conditions P(z, ) and P(o, ) as well as all the conditions =P(d,,, ). However, it does
not necessarily satisfy the conditions =P(z,¢,). To construct a region satisfying all
these conditions we need to add extra bits to ¢ in such a way that the resulting region
cannot be part of any of the ¢’s and we must furthermore ensure that after this addition
it still does not, contain any of the d’s as a part.

By applying the principle
=P(a, 8) & F2[P(x, ) A =O(z, 8)] (POprin)

to the literal =P(m ¢1) we get Jx[P(x,7) A =O(x,¢1)]. We let ey be some region
satisfying this condition. ey is disjoint from ¢ so clearly if we add it to o then
—P(sum(er,e,),e1). But we must construct a region that cannot violate any of the

conditions =P (d,, ). sum(er, e,) would violate one of these conditions if e; contained
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that part of d,, not contained in & i.e. if P(diff(d,,, o), eq). Thus, rather than just

adding ey to o, we add a part of ey derived by means of the following principle:
VaVydz[P(z,2) A =P(y, 2) , (Pprin4)

which says that given any two regions there is always some region which is part of
the first and does not contain the second as a part. If we instantiate this with e; and
diff(dy, o) we get: z[P(z,e1) A =P(diff(dy, 7), 2)].

Let e] denote a region which is an instance of this existential statement. e] is

clearly disjoint from ¢; since it is part of e;. Moreover, sum(, e]) cannot contain dj.
However, it could still be the case that sum(e, e]) contains one of the other d’s. Thus,
we recursively apply Pprind to e] to get a part of e] which does not, contain diff(ds, )
as a part. This will be called ¢?. Continuing this process we finally end up with ¢}
and we can be sure that if this is added to & the resulting region will not include any
of the d’s. Also, since ¢} must be disjoint from ¢; the result will not be a part of ¢;.
We let oy = sum(a, e}).

o1 1s part of m, does not contain any of the d’s and 1s not part of ¢;. To complete the
proof we need to successively extend oy to derive a region which is definitely not part
of any of the ¢’s and also does not contain any of the d’s. Thus to construct oo we first
identify a region eq which is part of © but not part of ¢o; we then form the sequence of
regions cb, ..., ¢, where ¢, is disjoint from ¢5 and does not contain any of the regions
diff(d,,, o1). o4 is then equal to sum(a,€,). After repeating this process for each of the
¢’s we finally reach o; and this region satisfies all the literals in the existential formula
on the left of PQE2, so this formula is proved. Hence, the equivalent formula PQE is

also a theorem. A

7.3 Limitations and Uses of the Procedure

We would like to iterate quantifier elimination transforms to obtain a quantifier-free formula; but
a problem arises when we encounter, in the course of the reduction, a matrix containing both C
and P relations, since we have no way of eliminating a quantifier from a mixed clause of this kind.
Indeed, the undecidability of RCC means that no general quantifier elimination procedure could
exist. T have studied possible ways of eliminating quantifiers in various restricted forms of mixed
clause. Tn some cases the elimination 1s straightforward but in other cases there seems to be no way
to get an equivalent quantifier free formula, except by introducing additional relational vocabulary.
This is not in itself a problem but it means that, for successive iterations of quantifier elimination,
clanses containing an increasingly extended vocabulary of relations must be considered.

Despite 1ts limitations, the partial quantifier elimination procedure described in this chapter
can be used to extend the range of formulae that can be handled by a decision procedure which
employs one of the 0-order encoding techniques described in chapters 5 and 6. Specifically, one can

provide a decision procedure for a language which, as well as allowing one to specify the wide range
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of spatial relationships that can be encoded directly into S4% or 1, also allows the assertion of
certain kinds of quantified clause, whose quantifiers can be eliminated by applying the equivalences

CQE and PQE as re-write rules, prior to translating into the 0-order encoding.



Chapter 8

Convexity

In this chapter T investigate how the representations described so far may be extended to
handle concepts related to convexity. | first present a l1st-order axiomatisation of a convez-
hull operator. T then consider how the logical properties of the operator can be encoded into

intuitionistic and modal representations.

8.1 Beyond Topology

Hitherto, T have considered only properties of regions that are purely topological in nature ie.
properties that are invariant under continuous deformations. Whilst these properties are funda-
mental, they cannot provide the basis for a fully comprehensive spatial description language. A
fully expressive spatial language would be capable of expressing metrical information, at least of a
relative kind  if we introduce an absolute metric unit, we then have a language with the expressive
power of arithmetic and which is not completely axiomatisable.! The language of elementary point
geometry with a relative (but not an absolute) metric is completely axiomatisable (See e.g. (Tarski
1959) and appendix A);? but computing inferences within this language is highly intractable.

The value of a representation language for AT depends on its expressive power and its tractab-
ility. We saw in chapter 6 that it is possible to reason effectively with certain topological relations.
An obvious question is whether one can find a more expressive language which is still tractable; and,
more specifically, whether one can find a tractable language capable of expressing non-topological
spatial concepts. Such a language would contain one or more primitive concepts that are not
topological in character.

Tntermediate in expressive power between topology and metrical geometries (such as Fuclidean
geometry) is affine geometry. An affine geometry articulates the concept of betweenness but cannot,
express orthogonality or say anything about angular relationships between objects. In this chapter

T consider affine geometry from the point of view of reasoning in a region-based theory.

TTarski (1956b) demonstrates that a formal geometrical language containing a congruence relation and a unit

element as primitives is, in some sense, marimally expressive.

2Tn fact, several distinct complete geometries can be formulated (see e.g. (Trudean 1987)).

124



CHAPTER 8. CONVEXITY 125

Figure 8.1: TMustration of convex-hulls in 2 dimensions

8.2 The Convex-Hull Operator, conv

The relation of betweenness is intimately connected with converity: a region is convex if it is closed
with respect to betweenness  1.e. if every point lying between two points in the region is itself in
the region. This thesis 1s primarily concerned with expressing spatial properties of regions, rather
than points® and in a region-based theory it can be argued that convexity is a more primitive notion
than betweenness: to decide whether one region ‘lies between’ two others, one must choose between
a variety of stronger or weaker notions of betweenness (can the regions overlapT’ must all points
of the inner region he hetween the outer regionsT); but the property of a region’s being convex is
not so ambiguous. Of course a rigorous semantical definition of convexity requires regions to be
considered as subspaces of some affine space, so the class of convex regions will be dependent on
the properties of this space. Tn the purely region based analysis of convexity carried out in this
chapter T assume that the axiomatised property of convexity is intended to be consistent with an
interpretation in Euclidean space.

Following Randell, Cui and Cohn (1992) T take the conver-hull operator, conv, as a primitive
function mapping regions to their convex-hulls. By the convex-hull of a region is meant the smallest
convex region of which it is a part. If one were to stretch an elastic membrane round a region then
the convex-hull would be the whole of the region enclosed.* Figure 8.1 shows convex-hulls of two
regions in 2 dimensions (region B is a two piece region).

The conv function and a predicate, CONV, true of convex regions, are inter-definable:

CONV(z) =,.,; (x = conv(x))
(conv(z) = y) =.., CONV(y) A Vz[(CONV(z) A P(z,z2)) — P(y, 2)]

There are many possible ways in which a ternary relation Between(z,y, z), read ‘y is between =
and 27, could be defined in terms of conv. These capture different precise senses of the, somewhat
ambiguous, natural concept of betweenness. Most of the ambiguity of ‘betweenness’ arises in

connection with its application to extended bodies rather than points.® A very weak definition of

3For an axiomatic and algebraic analysis of computing convex-hulls of sets of points see (Knuth 1992).

4One might say the term is slightly inappropriate, since ‘hull’ normally refers to an outer shell, rather than a

volume or area.

5The intuitive meaning of the betweenness relation on points leaves little scope for ambiguity, except that we
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betweenness is the following:
W_Between(2,y,z) =,., P(y,conv(sum(z,2))) .
W_Between could itself be taken as primitive and CONV could then be defined by

CONV(z) =,.; Yy[FvIw[(P(v,2) A P(w,z) A W_Between(v, y, w))] — P(y,z)] .

W_Between does not really capture the intuitive notion of betweenness because it allows cases
such as where y is in a cavity of x which 1s on the opposite side of x to that facing z. Tt also allows
y to overlap or even be part of either = or z. Before giving a better definition we need to be clear
about the main aspects of ambiguity in the concept. One source of ambiguity concerns whether
the regions involved may overlap. Probably the most natural way to settle this is to require that
y cannot overlap either x or z but allow that # and z may possibly overlap. A second source of
ambiguity is whether y must be completely between # and z or may be only partly between them.
Both senses are easy to define but it seems most straightforward to define partial betweenness

first:
P_Between(z,y,z) =,., —=O(x,y) A =0(z,y) A

A’ [P(2’, 2) A P(2,2) A CONV(z') A CONV(2') A O(y, conv(sum(z’, 2')))] .

We can then say that y is (completely) between 2 and z, if every part of y is partially between
them:

Between (v, 4, 2) =..; YY'[P(y,y) = P_Between(z,y, 2)] .

Interestingly, CONV can be defined from Between in exactly the same way that it is defined from
W_Between.

8.2.1 Containment Relations Definable with conv

A large number of new binary relations can be defined in terms of the conv together with other
RCC relations. For example Randell, Cui and Cohn (1992) give the following definitions of three

possible containment relations which form a disjoint and exhaustive partition of the DR relation:®
o INSIDE(#,y) =45 DR(2,y) A P(2, conv(y))
o P-INSIDE(%, y) =4er DR(x,y) A PO(z, conv(y))

o OUTSIDE(x,y) =45 DR(x, conv(y))

may wish to distinguish between strict betweenness, where y may not be equal to z or z, and the weaker version

(used in Tarski’s Flementary Geometry see appendix A), which does allow this possibility.

6Tt may be argued that, for many purposes, relations involving convex-hulls are most informative when we are
considering non-overlapping regions. Such regions can correspond to discrete physical bodies, regarding which we
will often be interested in spatial properties that are much more complex than simply whether or not the regions

touch.
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OUTSIDE INSIDEi_| INSIDE OUTSIDEi_EC

OUTSIDE OUTSIDEI_| P- INSIDE P-INSIDEi_| INSIDE_INSIDEi_EC
OUTSIDE P-INSIDEi_EC P-INSIDE_OUTSIDEiI_EC ‘\
P INSIDE_INSIDEi_EC INSIDE_P-INSIDEi_EC

Figure 8.2: Nine refinements of EC

Randell, Cui and Cohn (1992) use these relations to differentiate a set of 24 relations which
can hold among any two regions. The relationship between overlapping regions is simply described
in terms of one of six possible RCC-8 relations. For EC and DC regions we additionally specify
the two containment relations R(z,y) and R'(y, z), where R, R’ € {INSIDE, P-INSIDE, OUTSIDE}.
For DR regions each of the resulting nine combinations of R and R’ is possible  the EC cases are
illustrated in figure 8.2. This yields a set consisting of 6 + 9 + 9 = 24 JEPD relations. However,
if two regions are finite and mutually INSIDE each other, then because of axiom 8.3 they cannot
be DC; so, in the case where the regions are required to be finite, only 23 of these relations are
possible. This set is known as RCC-23.

Following (Randell, Cui and Cohn 1992) T represent the RCC-23 relations that are specialisa-
tions of EC and DC by expressions of the form [0, 04, 7](2,y), where oy is either ‘I’ ‘P’ or ‘O’
according as either INSIDE(z, y), P-INSIDE(z, y) or OUTSIDE(x, y); o5 refers to the corresponding
inverse relation (i.e. one of these 3 relations but with the arguments reversed); and 7 is either ‘D’
or ‘E’ according to whether the regions are completely disconnected or externally connected. Thus,
for example, [P, I, E](2, y) means that P-INSIDE(z,y), INSIDE(y, 22) and EC(z, y).

More generally by combining basic RCC-8 relations with the conv operator we can specify a

large number of relations by means of expressions of the form
Ri(x,y) A Ro(z,conv(y)) A Ra(conv(z),y) A Ra(conv(z),conv(y)) .

Although there are 8 = 4096 different, expressions of this form, the logical properties of convexity
mean that many of these are equivalent, indeed, many are equivalent to the empty/impossible
relation, L(2,y). The number of distinct relations expressible in this way has not yet been de-

termined; but, despite the equivalences, 1t is clearly quite large.

8.3 1st-Order axioms for conv

In order to construct a logical language in which the operation of forming the convex-hull of a region
s incorporated into the vocabulary, it 1s necessary to understand and formalise the logical properties
of the new operator. An obvious starting point is to specify fundamental properties of the convex-
hull operator in Tst-order logic. T give seven axioms specifying important properties of conv.”

For readability T make use of the CONV predicate defined above (section 8.2). T also introduce a

"Farlier versions of the axioms can be found in (Randell, Cui and Cohn 1992, Bennett 1994b, Cohn 1995).
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predicate Fin(z) to assert that z is finite. This is needed to express a property of convexity that
only holds for finite regions.® T shall not assume any specific set-theoretic interpretation of regions.
My intention is that the axioms should be compatible with any of the possible interpretations of

RCC described in section 3.5.

V[ TP(x, conv()) V (2 = u)] (8.1)
Vavy[P(x,y) — P(conv(z),conv(y))] (8.2)
Va¥y[(Fin(z) A (conv(z) = conv(y))) — C(x,y)] (8.3)
Va¥ylconv(x + conv(y)) = conv(z + y)] (8.4)
V¥y[CONV (conv (i) * conv(y))] (8.5)
Yay[DC(x, y) — ~CONV(z + y)] (8.6)
Vavy[(NTPP(z,y) A =(conv(z) = u)) — =CONV(y L z)] (8.7)

Axiom 8.1 states the obvious fact that a region must be a tangential part of its convex hull. An
exception to this requirement is the universal region, u: if u is convex then 1t will be equal to its
own convex-hull; but. TP(u, u) is false (at least under the definition of TP given by Randell, Cui
and Cohn (1992)). Tf u is not convex then conv cannot be a total function. Axiom 8.2 expresses a
monotonicity property: taking convex-hulls preserves parthood relationships. Axiom 8.3 ensures
that any two finite regions having the same convex hull must be connected.® The next three axioms
connect the properties of convexity to the Boolean functions. Axiom 8.4 says that if we take the
convex hull of a sum, then any convex-hull operators on the summands are redundant. Axiom 8.5
asserts that the intersection of any two convex regions must itself be convex. Axiom 8.6 expresses
the obvious fact that the sum of two DC regions cannot. be convex. Axiom 8.7 expresses a similar
property: that shapes with interior holes cannot, be convex. The condition —(conv(2) = u)) rules
out anomalous counter-examples, where the complement of a convex region is subtracted from uto
yield a convex region.

This list is not guaranteed to be a complete axiomatisation of the conv operator. Tt i1s very
difficult to be sure that a set of axioms fully captures a concept unless we have a formal model
(or set of models) within which the concept is defined and show that the axioms are sound and
complete with respect to that model (those models). Tnvestigating such models is the subject of
ongoing work. Short of proving completeness, we can gain confidence in our axiom set by showing

that expected properties of convexity can be derived from our axiom set. For instance the following

STntroduction of the Fin predicate is methodologically dubious, since finitude is not 1st-order axiomatisable.
Nevertheless, for present purposes it is convenient to assume Fin as primitive, in order to state one of the properties

required of the convex-hull function under its intended interpretation.

?Tt might be imagined that certain finite, but infinitely complex, regions could have the same convex-hull and
yet not be connected. However, T have not been able to find a reasonable set-theoretic interpretation in which this

can occur.
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theorems are quite easy to prove:'?

Va[conv(conv(z)) = conv(z)]  (from 8.5) (8.8)

VaVy[P((conv(z) + conv(y),conv(z + y))]  (from 8.2)" (8.9)

The first of these expresses the simple fact that applying the convex hull operator a second time

in succession is redundant and the second asserts the distributivity of conv and + with respect to
P. Since these properties are very simple, we originally included them in our axiom set. Tt may
still be the case that one or more of our current axioms is derivable from the rest.

Apart from the implicit existential import of the conv function itself, all the conv axioms given
so far are universal in nature. However, one might expect there to be other existential axioms
involving convexity. Indeed, since the domain of regions in the RCC theory 1s atomless, 1t seems
reasonable to require that every region has both convex non-tangential proper parts and convex

tangential proper parts:

VaIy[NTPP(y, 2) A CONV(y)] and Va3y[TPP(y,2) A CONV(y)]

8.4 Encoding conv(z) in 77

Tn (Bennett 1994b) T described a method of reasoning about convexity by means of a meta-level
extension of the intuitionistic encoding described in chapter 6. The language 77, is extended to a
language Tdony, in which, as well as having ordinary constant symbols ¢; denoting regions, one can
also employ terms conv(e;) to refer to the convex hull of the region ¢;. Here, conv is to be regarded
as a meta-level syntactic device rather than a real function symbol: the Z% reasoning algorithm
simply treats conv(c;) as an atomic constant. The meaning of conv is then characterised by an
additional meta-level reasoning mechanism which enforces constraints associated with convexity.

The constraints enforced in my original system correspond to the following axiom set:

—_

. Va[conv(conv(z)) = conv(x)]
. Va[TP(z, conv(z))]
. VaVy[P(z,y) — P(conv(x),conv(y))]

W N

. VaVy[(conv(z) = conv(y)) — C(=z,y)]

This set amended and slightly extended a previous axiom set that had been given in (Randell, Cui
and Cohn 1992); however, as we saw in section 8.3, it is now clear that further axioms are needed
to adequately characterise conv. Tt is also known that the last of these axioms only applies to finite
regions. Nevertheless, it 18 worth describing how the limited axiom system can be enforced and
considering how this approach could be extended to take account of additional properties of conv.

Observe that none of the axioms contains any Boolean operators and also that in our exten-

ded Z% the conv pseudo-operator can only be applied to an atomic constant. Consequently the

10 Thanks to Stephano Borgo.

" Conversely, 8.2 can be derived from 8.9. T prefer to take the former as an axiom, since it does not involve any

Boolean operators.
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relationships possible between Boolean combinations of region constants and/or their convex hulls
are not in any way constrained by the limited axiom set.'> Moreover, since all the axioms are
universal (apart from the implicit existential import of the conv function) they are equivalent to
the sets of all their ground instances. In determining whether a set of spatial facts stated in T, p,
s consistent. with the axioms, the only instances of the axioms which can be relevant are those
where the variables are replaced by constants occurring in the facts. We thus treat the Ist-order
axioms as schemas and instantiate them 1n all possible ways using the region constants occurring
in the spatial facts under consideration. This will result in a finite number of ground constraints.

We must now consider how to test whether the facts are consistent with the additional convexity
constraints. Axiom 1 can have no effect on consistency since expressions of the form conv(conv(x))
do not occur in TF,,, indeed the axiom tells us that there is no reason why we should need to
employ such expressions. The constraints arising from axiom 2 can immediately be translated into
I+ formulae, just as any other TP relation. Instances of axioms 3 and 4 are of most interest and
illustrate a general method by which Z1 could be extended. We see that each of these is a simple
Boolean combination of topological constraints (P, = and C) that can be directly represented in Z+.

These Boolean combinations of Z1 expressible constraints can be interpreted at the meta-level
in terms of Boolean combinations of 71 consistency problems. For example if we have a set of
facts ® expressible in ZT and add to these a fact v, such that 1) = ¢ V ¢2, where both ¢; and
¢ are expressible in ZF | then the set of facts {®, 1} is consistent if and only if either {®, ¢} is
consistent or {®, ¢-} is consistent. However, it is clear that the number of ZF consistency checks
required to test consistency of a spatial situation description, involving Boolean combinations of
I+ expressible conditions, is exponential in the number of disjunctions occurring in these Boolean
combinations. Moreover, since enforcing axioms such as the conv axioms requires one to consider
all possible instantiations over the regions mentioned in the situation description, the number of
disjunctive constraints may be quite large.

Treatment of axioms 3. and 4. is encompassed by a general procedure which enables enforcement

of all axioms of the form:

Vm17---7:’777,[4)(:’717---7:’777,) — \Tf(]?],...,]?n,)],

where ®(x1,...,2,) and ¥z, ..., x,) specify sitnations which can be described by means of T+.
To test whether a given Z7 situation description satisfies such an axiom an iterative fixed-point

method can be used:
1. Test the Zt description for consistency. If it is inconsistent, stop.

2. Check whether any instance of the antecedent is entailed by the Z+ description. This involves
translating ®(...) into Z% and substituting all combinations of constants occurring in the
description for the free variables. If any such instance is entailed, add the corresponding Z+

representation of W(...), under the same substitution, to the description.

2Th a more complete set we would have axioms such as 8.4, which relates conv to the Boolean sum operator.
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3. Check whether any instance of the consequent is inconsistent with the Z% description
i.e. translate W(...) into ZT and substitute all combinations of constants occurring in the
description for the free variables. Tf any such W(...) is inconsistent, add the corresponding

T+ representation of the negation of ®(...), under the same substitution, to the description.

4. Tf no new information was added by steps 2 and 3, stop: the situation is consistent with the

axiom. Qtherwise, go to 1 to test the new extended Zt description.

This process must terminate; and if the final situation description is still consistent then the
axiom is satisfiable, since for all substitutions either the antecedent is not entailed by the description
or the consequent has been explicitly added; and the consequent is either consistent with the
description or the negation of the antecedent has been added. Clearly the convex-hull axioms 3.
and 4. are of the form which can be captured in this manner. In fact, since their antecedents are
simple, they can be enforced quite efficiently.

In section 9.2.3 T shall present a table of compositions of the RCC-23 relations, which was
computed using the TF reasoning algorithm given in chapter 6, augmented with the meta-level
reasoning for conv which has just been described. A full discussion of relational composition can

be found in the next chapter.

8.5 Modal Representation of Convexity

We have seen how the topological interior function corresponds to the 54 modal box operator.
Such a correspondence may suggest that other useful functions of spatial regions can be captured
by modal operators in a 0-order calculus. In the remainder of this chapter T specify a multi-modal
language with a convex hull operator.' This language contains usual classical connectives (which

will be interpreted algebraically in accordance with section 4.2) plus three modal operators:

I an interior operator, constrained to behave exactly as the S4 modality,
X the strong-Sh operator,

O the convexity operator, whose properties are to be specified.

To fix the meaning of the new operator, we need to find 0-order axiom schemata (or rule schemata)
to enforce the desired properties of O. These schemata will correspond to the Tst-order axioms
given above. T do not know of a general method for performing this kind of transformation and
it seems unlikely that such a method exists. However, in each case we can see that under the
algebraic interpretations of the logical operators the schemata are equivalent to the axioms.

The schema corresponding to axiom 1 is very simple:

0OX & OX (Schl)

¥ This material is a slight revision of what T presented in (Bennett 1996b).
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Axiom 2 is a little harder to represent as a modal schema. TP(X,Y) means that X is a
tangential part of X. This holds if either X 1s a tangential proper part of Y or X 1s equal to Y.
Thus to represent this we use the encoding for TPP(X V) given in table 5.8 but drop the second
entailment constraint Y — X which would ensure that X and Y are non equal. Hence, using the
strong-Sh [ rather than the model /entailment-constraint distinction, axiom 2 can be represented

by the schema,

KX - OX) A =R(X = I0X), (Seh2)

which says that all regions are part of their convex-hull but not part of the interior of their convex-
hull. We may note that the initial K in the first conjunct is redundant, since it is implicit in modal
axiom schemata that they are true in all possible worlds  or, in the context of algebraic semantics,
that their denotation is U.

Axiom 3, which states that if X is part of ¥ then O X is part of OY can be represented by

KX —=>VY)—=> (0OX - OY). (Sch3)

This requires some explanation. In general, where we have a 1st-order axiom of the form p — ¢,
this will be translated by Kr(p) — 7(¢) (where 7(a) is the representation of a), which ensures that,
if 7(p)= U then 1(¢) = U . Note that we do not need Xr(p) — K 7(¢) because the antecedent,
must either denote @, in which case the schema is trivially satisfied, or it denotes &/, in which the
consequent must also denote U. Tf we were to write simply 7(p) — 7(q) this would represent the
stronger requirement that 7(p) is always a subset of 7(q) whether or not, 7(p) = U.

Using a similar transformation axiom 4 can be straightforwardly represented by:

HOX & 0Y) - =H—(X AY) (Seh4)

=X —=(X AY) corresponds to the entailment constraint representing C(X, V) and asserts that X
and Y share at least one point.

Finally axiom 5 can be straightforwardly captured by:
O(OX A OY) e (OX A QOY) (Schb)

Tt should be noted that the strong-55h operator, X, is not needed if we specify the logic by means

of rule schemata rather than only ariom schemata. For example, Sch3 becomes:

FX Y

——— [0 Mon]
FOX = OY

which tells us that O is monotonic with respect to the part relation (i.e. — ).

The second conjunct of Seh2 would correspond to the rule:

FX > IOX

=) [OTP]
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and Schy to the rule:
FOX & OYV)A(X AY)
L

[+ O (]

8.5.1 Practicality of the Modal Representation

The possibility of specifying convex-hull as a modal operator illustrates the potential expressive
power of multi-modal formalisms as representations for spatial information. However, whether
such logics could actually be used as vehicles for effective reasoning remains debatable. As in the
case of the simpler S47 and ZT representations of purely topological relations, it is likely that,
by limiting the range of formulae that can be employed to simple syntactic forms, one might be
able to construct effective decision procedures for some sub-language of this multi-modal language
of convexity. The crucial question is whether useful expressive power can be provided within a

tractable representation.



Chapter 9

Composition Based Reasoning

Originating in Allen’s analysis of temporal relations, the use of Composition Tables has become
a key technique in providing an efficient inference mechanism for a wide class of theories. In
this chapter T examine compositional reasoning in general and its use in spatial reasoning. |
present composition tables for several important sets of RCC relations including the RCC-
23 relations (introduced in section 8.2.1). This table was computed using the intuitionistic
encoding described in chapter 1 together with the meta-level encoding of convexity axioms
specified in section 8.4. Finally 1 look at the formalism of Relation Algebra and show how
it allows algebraic definition of the RCC-8 relations in terms of the primitive connectedness

relation.

9.1 Composition Tables

A compositional inference is a deduction, from two relational facts of the forms R(a, b) and S(b, ¢),
of a relational fact of the form T'(a,¢), involving only a and ¢. Such inferences may be useful in
their own right or may be employed as part of a larger inference mechanism, such as a consistency
checking procedure for sets of relational facts. Tn either case, one will normally want to deduce the
strongest relation T'(a, ¢) that is entailed by R(a,b) A S(b,¢) and which is expressible in whatever
formalism 1s being employed.

In many cases the validity of a compositional inference does not depend on the particular
constants involved but only on logical properties of the relations R, S and T. Where this is so it
makes sense, from a computational point of view, to record the compositions of pairs of relations,
so that the result of a compositional inference can simply be looked up when required. This
technique 1s particularly appropriate where we are dealing with relational information involving a
fixed set of relations. One can then store the result of composing any pair from a set of n relations
in an n x n composition table. The simplicity of this idea makes it very attractive as a potential
means of achieving effective capabilities for reasoning about any domain within which significant

information can be represented by a limited set of binary relations. Since their introduction by

134
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Allen (1983) composition tables' have received considerable attention from researchers in AT and
related disciplines (Vilain and Kautz 1986, Egenhofer and Franzosa 1991, Freksa 1992a, Randell,
Cohn and Cui 1992a, Rohrig 1994, Cohn, Gooday and Bennett, 1994, Schlieder 1995).

(Given a set Rels of binary relations a composition table can be identified with a mapping
CT : Rels x Rels — 2Rels i.e. if Ry and Rs are elements of Rels, then the value of CT(Ry, Rs)
is a subset, of Rels, which is the composition table entry for the pair (R, Rs). The set Rels will
be called the basis set of C'T. Clearly, if there are n relations in Rels then the composition table
for Rels can be represented by an n x n array or table. In fact, because of the nature of relational
composition, such an array is a very inefficient way to store this information. T described the
redundancy inherent in composition tables in (Bennett 1994a) and an abbreviated version of this
material is included as appendix D of this thesis.

For many purposes a composition table entry is associated with a disjunctive relation. Because
of this 1t is convenient to be able to write a set of relation names as if it were the name of a

disjunctive relation. Thus
{R1,...Ry}{(a,b) means Azy[Ri(z,y) V...V Ry(2,y)](a,b) .

Tt 1s usual to assume that the elements of Rels form a JEPD partition of the possible relations which
can hold between pairs of objects in the domain under consideration (i.e. every pair of objects in
the domain is related by exactly one of the members of Rels). Under these conditions any Boolean
combination of relations is equivalent to a disjunction of members of Rels.

The precise meaning of a composition table depends to some extent on the context in which it
18 employed. Sometimes it is a record of certain kinds of consequence of some underlying theory
which may already be fully or partially formalised. Alternatively, the specification of a composition
table may precede the development of a formal theory of the relations involved and is an initial
step in specifying the theory of some set of intuitively understood relations. Tn either case, the
fundamental mode of reasoning encoded in a composition table is to test consistency of triads of
relations of the forms R(a,b), S(b,¢), T(a,c), where R, S, T € Rels: such a triad is consistent if
and only if T'e CT(R, S).

Compositional reasoning can be generalised to the case where one composes relations which
are themselves disjunctions. Here it is usually assumed that the composition of two disjunctive
relations R(a,b) and S(b,¢) is simply the disjunction of all possible compositions R;(a,b) and
S;(b,e), where R; and S; are respectively disgjuncts of R and S. Thus, the domain of the function

C'T' can be extended to disjunctive relations as follows:
CT(Rv S) “def U CT(R“ Si) :
i
Tf R(a,b), S(b,¢) and T'(a,c) are disjunctive relations then by computing the generalised com-

position of R and S it may be found that some of the disjuncts of 7" are not possible. Eliminating

Tn fact Allen called his table a ‘transitivity table’ but ‘composition table’ is arguably more appropriate and it

seems that this is becoming the standard term.
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such disjuncts can be regarded as a generalisation of the simple triad consistency checking proced-
ure for non-disjunctive relations. The more general composition rule for disjunctive relations can

be formally specified by the following inference rule schema:

Ra,b) A S(b,e) A Tla,c)
(CT(R,S)YNT)(a,c)

[Comp]

If T C CT(R,S) no new information is generated, otherwise T'(a,¢) is replaced by the stronger
relation (CT(R,S) N T)(a,c). T CT(R,S) is disjoint from T then an inconsistency has been
detected.

Repeated application of the inference rule Comp is known as ‘compositional constraint propaga-
tion’. Tt is clear that, given any set of instances of the disjunctive relations over Rels, after repeated
application of Comp, one will either generate an inconsistency or reach a state where no new in-
formation can be generated by Comp. If an inconsistency has been detected we can say that the

relation set 1s inconsistent with respect to C'T', otherwise it is consistent with respect to C'7T'.

9.1.1 Soundness and Completeness of a Composition Table

The issue of the conditions under which a composition table can provide a complete consistency
checking procedure for relational facts was raised and discussed by Bennett, Tsli and Cohn (1997).
The notions of soundness and completeness of a composition table appeal to some underlying theory
or intuition of the meanings of the relations involved. To say that a composition table is sound is
to say that, whenever a set, of relations 1s determined by that composition table to be inconsistent,
then that set of relations 1s indeed inconsistent with the underlying theory or intuition. Likewise, a
composition table is complete (perhaps one should say ‘refutation complete’) if, whenever a set of
relations is inconsistent with the background theory/intuitions, this can be detected by reference
to the composition table.

These ideas need to be made more precise. T stipulate that:

e A composition table C'T for a relation set Rels is sound w.r.t. some (possibly unformalised)
theory © if, whenever we find among some set. of instances of Rels a triad R(a,b), S(b,¢),

T(a,c), such that T & CT(R,S), then this set of instances is inconsistent with ©.

To make the completeness property fully precise we first need the following definition: a set of
relation instances is total if every pair of constants occurring in these instances occur together in

exactly one instance i.e. every pair of constants are uniquely related.? T then say that:

e A composition table C'T for a relation set Rels is (refutation) complete w.r.t. some (possibly
unformalised) theory © if, whenever some total set § of instances of Rels is inconsistent with

0, we can find relations R(a,b), S(b,¢), T(a,c) € S, st. T ¢ CT(R,S).

2Tf a set of relation instances is not total this means that some pair of constants are not constrained by any
relation. Any pair of unconstrained constants are implicitly related by the universal relation (T(x,y)). When we
are dealing with a JEPD relation set Rels, the universal relation is just the disjunction of all relations in Rels. This
means that a non-complete set of relation instances contains implicit disjunctive relations. The requirement that

the relation set is total, can then be seen as part of the requirement that the relation set is non-disjunctive.
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Suppose a composition table is sound and complete with respect to © for non-disjunctive
relations; does this mean that by employing compositional constraint propagation (i.e. repeated
application of Comp) we get a consistency checking procedure which is sound and complete (w.r.t.
0) for disjunctive relationsT Tt is quite easy to show that compositional constraint propagation
must be sound if triad consistency checking for non-disjunctive relations is sound. This is because,
given any relations R(a,b), S(b,¢) and T(a,c), the rule Comp only eliminates those disjuncts
of T' that are inconsistent with any possible non-disjunctive strengthening of R and S. However,
compositional constraint propagation is not, in general complete. The problem is that although each
triad of disjunctive relations between three constants may be consistent, there may be no single
non-disjunctive specialisation of all the disjunctive relations such that every triad is consistent.

On the other hand if a composition table is complete for non-disjunctive relations, this does
always yield a complete refutation procedure for disjunctive relations by use of a back-tracking
search algorithm. Clearly a set of disjunctive relation instances is consistent just in case there is
some non-disjunctive strengthening of these instances which is itself consistent. This can always
be found by exhaustive search of all possible combinations of non-disjunctive specialisations of
the disjunctive relations. Computationally, this method requires time which 1s exponential in the
number of disjunctions, whereas the application of compositional constraint propagation requires
only O(n?) time, where n is the number of constants occurring in the set of relations to be tested.
Consequently there has been much interest in discovering specific sets of disjunctive relations for
which the compositional constraint propagation method is indeed complete (Vilain and Kautz
1986, Nebel 1995a, Nebel 1995b, Renz and Nebel 1997). Tn the rest of this chapter T shall not be
much concerned with the tractability of reasoning with disjunctive relation sets; so my attention

will be largely confined to total sets of non-disjunctive relations.

9.1.2 Formal Theories and Composition Tables

In the previous section, the properties of soundness and completeness of a composition table were
defined on the assumption that one has some method of testing consistency of sets of ground
relations. If the basis relations are defined 1n some formal theory then this can be tested by means
of some refutation proof procedure for the logical language in which the theory is formulated. T
shall now look in more detail at how a composition table can be computed from a formal theory
and what the table means in terms of the theory. We shall see that the possibility of specifying a
sound and complete composition table for a set of relations, with respect to some theory, depends
upon certain properties of that theory.

Although the definitions of composition table soundness and completeness in terms of consist-
ency seem aft first sight to be very straightforward, when we try to describe exactly how composition
table entries should be logically deduced from a formal theory, certain difficulties arise. At the
heart of these problems is the way in which the compositional properties of relations should be
abstracted from properties of ground instances of these relations. Whilst compositional reason-

ing and its soundness and completeness are characterised in terms of ground instances, the table
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itself contains only relation names. Because of this, if a composition table is to be coherent, the
logic of relational composition must be in some sense homogeneous with respect to the domain of
individuals.

Let us assume that the essential characteristic of a composition table is its ability to discriminate
between consistent and inconsistent triads of relations. This leads to the following stipulation for

the composition function:

e CTdef: Given a theory © in which a set Rels of base relations i1s defined, the composition,
CT(R,S) (where R,S € Rels), is the set of all relations T; € Rels, for which the formula
FeFy3z[R(x,y) A S(y, z) A Ti(x, z)] is consistent, with ©.

Here T have used existential quantification to indicate that, if the combination R(x,y) A
S(y, z) A Ti(z,2) is possible for any three individuals in the domain, then T; must be included
in the composition of R and S. This ensures soundness of the composition table since only triads
that are impossible under any instantiation are ruled out by the composition table.

However, 1t is not at all clear that this definition gives rise to a complete composition table.
One possible problem occurs if we consider a language containing constants denoting entities with
special logical properties (e.g. the universal region, denoted by u in the RCC theory): if the facts
R(xz,y) and S(z,y) involve one of these constants, certain possibilities for the relation T'(z, z)
might in this case be impossible; and, in such special cases, the compositional inference justified
by the composition table would be too weak to ensure completeness. FEven if our language does
not contain special constants, it s still by no means obvious that compositional reasoning provides
a complete refutation procedure. Tt may be that there are theories and relation sets for which one
may have a total network of relation instances which 1s inconsistent even though every triad of
these instances 1s consistent with the theory.

Nevertheless, COMP def must surely be the correct definition of the C'T function: any stronger
definition would be unsound because 1t would tell us that some triad of relations is impossible when
in fact there is at least one instantiation for which it is possible. Consequently we must identify
conditions under which COMPdef yields a composition table which 1s complete with respect to ©.
To this end Tintroduce the concept of k-compaciness applicable to a relation set relative to a theory,

within which the relations are defined.?

A relation set Rels 1s k-compact w.r.t. a theory © iff: for any total network of instances
of Rels, the network 1s inconsistent with © iff 1t includes a sub-network of size k or less,

which 1s inconsistent with ©.

For some sets of relations we may find that there can be arbitrarily large inconsistent (total)
networks all of whose sub-networks are consistent. We say that these are not finitely compact. Tf
there can be an infinite inconsistent network with no finite inconsistent sub-network the relation

set 1s not compact at all.*

3This concept was first introduced in (Bennett et al. 1997).

My notion of compactness is directly analogous to that which is applied to logical languages: such a language

is compact if every inconsistent set of formulae has a finite inconsistent subset.
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From the definition of k-compactness it immediately follows that a composition table for a set
of relations Rels can be complete only if Rels is 3-compact with respect to ©. Furthermore, if we are
concerned with a language in which all individual constants are arbitrary (i.e. we have no constants
referring to particular individuals with special properties), then, if Rels is 3-compact with respect
to O, the composition table for Rels constructed according to COMPdef must be complete with
respect to O.

Not all relation sets are 3-compact: consider a theory in which individuals have the properties
of equal sized discs in the plain and a set of relations including the relation of external connection.
The theory requires that any given circle can be externally connected to a maximum of six other
circles (this could be specified directly as an axiom of the theory or could be a consequence of
the axiom set). Hence, a situation in which seven regions are all mutually externally connected is
inconsistent; but this cannot be detected by checking any triad of relations between three regions.®
Hence, no set of relations including a relation of external connection can be 3-compact with respect

to this theory.

9.1.3 The Extensional Definition of Composition

The notion of 3-compactness yields a precise specification of what relationship is necessary between
a set of relations and a theory in order that one might construct a complete composition table for
that relation set. However, being stated in terms of the relationship between local and overall con-
sistency, this specification 1s essentially meta-theoretic. Establishing 3-compactness will typically
involve first. showing that some class of models is canonical for the theory (i.e. every consistent
set of relational constraints has a model in this class which is consistent with the theory); and
then demonstrating (by reasoning about these models) that, if there is a model which is locally
consistent with every triad of relational constraints, there must also be a model which is consistent
with the whole set of constraints. Such proofs are often difficult and very much dependent on
the specific relational theory under consideration. Hence, it would be very desirable to have some
general criteria for 3-compactness that could be stated in terms of the theory in question. Tt seems
plausible that one might be able to demonstrate that, given a set of relations and a theory, the
relations are 3-compact with respect the theory just in case certain formulae are theorems of that
theory.

A promising approach to this problem is to try to cast the requirements of 3-compactness (and
hence composition table completeness) in terms of the operation of extensional composition, which
18 definable within any 1st-order theory. This operation is based on the following definition of the

composition of two relations which is standard in set theory:

e EXCOMPdef: et Ry be a relation from A to B and Rs be a relation from B to C' (i.e.
A, B and C are sets, Ry C A x B and Ry C B x (). Then the composition of Ry with Rs,
(Rq1; Ro) is the set of all ordered pairs, {(a,¢) € A x | such that, for some b € B, {(a,b) € Ry
and (b, ¢) € Rs.

5This example is described in (Cui, Cohn and Randell 1993).
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In Tst-order logic the extensional composition operator can be defined by:
YaVy[(R; S)(z,y) < Fz[R(x,z) A S(z,v)]] (ExComp)

This definition is strictly stronger than the consistency-based definition: not only does it ensure
that whenever R(a,b) and S(b,¢) hold (R; S)(a, ) must also hold; it also requires that, whenever
(R; S)(a,c) holds, there must exist some region, say b, s.t. R(a,b) and S(b,¢). Tn fact the infer-
ence from R(a,b) and S(b,¢) to (R; S)(a, c) must be the strongest, compositional inference that is
valid for any arbitrary constants a, b and ¢. Since b is arbitrary our premisses are equivalent to
3z[R(a, z) A S(z,¢)] and we can instantiate ExComp to get (R;S)(a,¢) < Fz[R(a,z) A S(z,¢)].
Hence, the conclusion (R; S)(a, ) is logically equivalent to the premisses and any inference to a
stronger relation T'(a, ¢) would be unsound.

If a composition table C'T satisfies the consistency-based definition of composition CTdef, it
is easy to show that the extensional composition (R;.S) always denotes a relation whose extension
is a subset of that of CT(R,S). This means that for each composition table entry the following
formula is provable:

VaVyl(R; S) (2, y) = CT(R, S) (=, y)]

Unlike CT(R, S), the relation (R;S) need not necessarily be equivalent, to some disjunction of a
fixed set of base relations. Tf not then C'T'(R, S) must be strictly weaker than (R;S). Nevertheless,
for a particular theory and set of relations, it may be that consistency-based composition coincides

with the extensional definition 1.e.

Since OT(R, S) is always simply a disjunction of relations taken from Rels, this formula can only
be true if the set of disjunctive relations over Rels is closed under the extensional composition
operator.

Tn (Bennett et al. 1997) it was suggested that if C'T is not, extensional (i.e. CT(R,S) is weaker
than (R;S) for certain relations) then this must mean that information is lost, when (consistency-
based) compositions are computed via C'T; and consequently that if consistency of a network
18 tested solely by propagation of constraints imposed by a non-extensional composition table
we may find that it seems to be consistent when it 1s actually inconsistent. This conjecture is
supported by the fact that (R;S) gives the strongest possible compositional inference that is sound
for arbitrary arguments. However, the conditions under which extensional composition provides a
refutation-complete proof procedure have themselves not been established:;® nor 1s 1t certain that
there cannot be sets of relations for which a weaker form of compositional inference might be
refutation-complete. Until these issues have been resolved, the connection between extensional
composition and composition table completeness is not clear.

To clarify the preceding remarks it may be helpful to consider the case of the Allen relations.

Tn his original presentation of a composition table for temporal relations Allen (1983) appears

% That the basic relations are JEPD and that they include equality are conditions that seem likely to be important.
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to employ a consistency based interpretation of composition table entries. However, a Tst-order
theory of temporal intervals was later given by Allen and Hayes (1985) and this theory justifies
extensional interpretation of the Allen composition table. (TLadkin 1987) showed that these axioms
are also faithful to the intended interpretation, in that their models are (isomorphic to) structures of
intervals over an unbounded linear order. The 3-compactness can then be established by analysing
these models in the light of Helly’s theorem.” What is not clear is whether there is a connection
between the fact that the Allen relations are 3-compact and the fact that the disjunctive Allen

relations are closed under extensional composition.

9.1.4 Composition Tables and CSPs

A framework for problem solving that has received a great deal of attention from AT researchers is
that of Constraint Satisfaction Problems (CSPs) (Mackworth 1977, Tsang 1993). A CSP consists
of a set of variables and a set of constraints on possible values of these variables. These constraints
can be regarded as a set of tuples of possible assignments (perhaps not explicitly given but checked
on demand by some procedure) or as specified by some theory. The type of reasoning involved
in solving a CSP has much in common with that employed in consistency checking by means of
compositional reasoning. Although constraints of time and space permit only a very brief look
at CSPs to be included in the current thesis, they may prove to be a powerful tool for spatial
reasoning.

There are two ways in which the notion of a composition table can be assimilated into the
framework of CSPs. Omne is to treat the composition table as a set of ternary constraints on
variables ranging over relation names (see e.g. (Grigni, Papadias and Papadimitriou 1995)). Thus,
for each (ordered) pair of objects, (x,y), the CSP has one variable, v(z, y), whose domain is the
set Rels. A composition table C'T" is then interpreted as a set of constraints which can be specified

as all instances of formulae of the form
(v(z,y) =R A wv(y,z) =S5) = v(x,z) € OT(R,S) .

This approach is applicable to any composition table and does not tell us anything about the
relations involved.

A more illuminating approach 1s to regard the relations in a basis set Rels as themselves con-
stituting the constraints of a CSP. This requires further analysis of the logical structure of the
relations involved. Tn the case of the Allen relations, a natural interpretation i1s to identify the
relations with order constraints on the end-points of temporal intervals and to take these end-
points as elements of an ordered linear field such as the real or rational numbers (Vilain and Kautz
1986, Nebel 1995b). Tn sections 5.3.1 and 5.6 we saw how many topological RCC relations can be

represented by equational (and disequational) constraints over interior algebras.

"Helly’s theorem states that: the intersection of a set of convex subspaces of a space of dimension n has a
non-empty intersection just in case every n + 2 members of that set have a non-empty intersection. Thus a set
of linear intervals has a common intersection iff every subset of three intervals has a non-empty intersection. By
characterising the Allen relations in terms of non-emptiness conditions one can then show that a total network of

these relations is consistent iff every triad is consistent.
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9.2 Composition Tables for RCC Relations

T now present composition tables for three of the most significant sets of RCC relations. These
tables are constructed in accordance with the consistency-based specification of composition given
by CTdef. Later, in section 9.2.5, T shall consider the possibility of an extensional interpretation

of the RCC-8 table.

9.2.1 RCC-5

Recall that RCC-5 is the relation set, {DR, PO, EQ, PP, PPi} resulting from ignoring the differences
between connection and overlapping and between tangential and non-tangential parts, which are
made by the RCC-8 relations. As we saw in chapter 4 each RCC-5 relation can be described by
means of positive and negative Boolean equations and consequently RCC reasoning can be encoded
in terms of classical model and entailment constraints within the 0-order language C*. Tn fact,
given the limited expressive power of Ct, T have not implemented a purely classical reasoner but
have concentrated on reasoners for the more expressive language Z1, which can express the more
discriminating RCC-8 relation set. Hence, table 9.1 was actually obtained by merging entries in the
RCC-8 composition table given in the next section. Note that the symbol T refers to the universal

relation, which means that no base relation is excluded.

R(b, )
Ria, ) DR PO EQ PP PPi
DR T DR,PO,PP | DR | DR,PO,PP DR
PO DR, PO, PPi T PO PO,PP | DR,PO,PPi
EQ DR PO EQ PP PPi
PP DR DR,PO,PP | PP PP T
PPi DR,PO,PPi | PO,PPi PPi 0 PPi

Table 9.1: Composition table for the RCC-5 Relations

9.2.2 RCC-8

The RCC-8 composition table was generated using the T+ encoding of the relations, by means of
my first implementation of an optimised 7 theorem prover. The code is given in appendix C.2. The
entry for relations Ry and Ry was computed by testing the consistency of the spatial configuration
Ri(a,b) A Ro(b,¢) A Ri(a,c), where R; is each of the RCC-8 relations. Running on a Sparcl
workstation the program generated the full composition table for RCC-8 in under 244 seconds.?
In section 9.2.4 T shall show that the RCC-8 relations are 3-compact with respect to their
interpretation in the theory of interior algebras. This means that the composition table provides a

refutation-complete proof procedure for sets of RCC-8 relational facts.

8By exploiting the results of appendix I concerning redundancy in composition tables, the table could have been

computed in approximately one sixth of this time.
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H2(b:c)
Ri(ah nC FC PO TPP NTPP TPPi NTPPi FQ
DC T DR,PO,PP DR,PO,PP |DR,PO,PP DR,PO,PP |DC DC DC
EC DR,PO,PPi DR.PO DR,PO,PP |EC,PO,PP PO,PP DR DC EC
1 v ! TPP,TPI v v v v v

. . T . DR,PO

PO DR,PO,PPi DR,PO,PPi PO,PP PO,PP DR,PO,PPi PP PO
DR,PO DR,PO

TPP DC DR DR,PO,PP |PP NTPP TPP.TPi PP TPP
NTPP DC DC DR,PO,PP |NTPP NTPP DR,PO,PP T NTPP
TPPi DR,PO,PPi FC,PO,PPi PO,PPi PO, TPP,TPi PO,PP PPi NTPPi TPPi
NTPPi DR,PO,PPi PO,PPi PO PPi PO,PPi o NTPPi NTPPi NTPPi
EQ DC EC PO TPP NTPP TPPi NTPPi EQ

Table 9.2: Composition table for the RCC-8 relations

9.2.3 RCC-23

In section 8.2.1 we saw how various containment relations can be defined by means of the exten-
ded RCC theory with a convex-hull operator. Tn particular, the JEPD relation set RCC-23 was
introduced in which the EC and DC relations of RCC-8 are further analysed in order to specify
the relation holding between each region and the convex hull of the other. Table 9.3 gives the
full composition table for the RCC-23 relations. Tf Ry (a,b) and Ra(b, ¢), where Ry is the relation
specified in the left hand column and Rs is specified along the top, the corresponding table entry
encodes the possible values of the relation Rs(a,c).

Because each table entry 1s some subset of 23 possible base relations, there 1s not enough space
to give the actual relation names. Hence, in order to present the table on a single page a specially
concise notation was employed. Each of the 23 relations is represented by one of the two symbols
‘x” and ‘o’ at a certain position in a 3 x 4 matrix. These representations are shown in the second
column. Table entries are constructed by superimposing the representations for each of the possible
relations. Where ‘%" and ‘o’ should both be present in the same position, the symbol ‘e’ is used.

The table was generated using the meta-level enforcement of the conv axioms in the 71 repres-
entation, as described in section 8.4. Using an angmented version of the ZF reasoning program
given in appendix .2, the table was produced in 3h 31m on a SPARC10 workstation. Tt was sub-
sequently published in (Bennett. 1994b). The task of generating this table had been proposed two
years earlier as a challenge for composition in (Randell, Cohn and Cui 1992a). (Cohn, Randell,
Cui and Bennett, 1993) contains a similar table constructed using a model building approach but
it has subsequently been found that the table given there is too strict in that it rules out certain
configurations, which are in fact possible for 3D spatial regions. My table has not been found to
contain any false entries.

Tt 1s interesting to note that generation of this table was in fact one of the very first results on
spatial reasoning that T obtained during my PhD research. The idea of the program was inspired
by an account of Tarski’s topological interpretation of Z given by Mostowski (1966). After a period

of intensive coding and experimentation, T found myself with a program that seemed to generate
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Table 9.3:

Composition table for the RCC-23 relations
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the correct composition table. Much of the rest of the work done during my PhD research was

concerned with discovering exactly how this program worked.

9.2.4 3-Compactness of RCC-8

By analysing Nebel’s classical encoding of the RCC-8 relations (described in section 6.3.7), T
shall now show that the RCC-8 relations are 3-compact with respect to the consistency checking
procedure provided by the ZT representation. Because of Tarski’s topological interpretation of 7,
it follows that the RCC-8 relations are 3-compact with respect to the general theory of topological
spaces, within which these relations are characterised as specified in table 5.4.

Under the forcing constraint interpretation, each constant/region a is identified with three
classical literals: F(v,a), F(wy,a) and F(ws, a); and each RCC-8 relation R(a,b) is specified by
a set of binary clauses involving the literals associated with a and b (Amongst these clauses T
include those arising from the ordering condition on the worlds as well as directly from the model
and entailment constraints.) For this representation it is clear that binary resolution provides a
refutation complete proof procedure.

The forcing constraint clauses are consistent if and only if the 7 constraints from which they
are derived are consistent; and these in turn are consistent if and only if the corresponding interior
algebraic constraints are satisfiable in some topological space.” Thus inferences among RCC-8
relations are mirrored by logical derivations among the corresponding classical forcing constraints.
Specifically, the forcing constraint clauses corresponding to the composition of two RCC-8 relations
Ri(a,b) and Ro(b, ) are all those resolvents involving only a and ¢ literals generated by applying
binary resolution to the combined sets of forcing constraint clauses associated with the two relations.
This set contains all derivable forcing constraints on a and c¢. Thus, an RCC-8 composition
18 associated with a set of binary resolutions among 2CNF clauses. Conversely, every binary
resolution among forcing constraint clauses is correlated with the composition of a pair of RCC-8
relations. Because binary resolution is refutation-complete for classical clauses, it follows that an
RCC-8 network can be shown to be inconsistent by means of compositional inference if and only
if 1t 18 inconsistent with respect to the theory of interior algebras.

What T have just shown is not quite sufficient to conclude that the RCC-8 relation set is 3-
compact with respect to the theory of interior algebras. Tt could be that showing inconsistency by
compositional inference might require a chain of several such inferences, whereas if a relation set
18 3-compact then any inconsistent network contains an inconsistent triad of relational facts, which
can be detected by a single compositional inference. Happily, as T shall now show, it turns out that
inconsistency of a total network of RCC-8 relations (as interpreted in interior algebra) can always
be detected by a single compositional inference.

In the 7 encoding, the detection of an inconsistent triad corresponds to the discovery of two

? An intriguing question regarding this correspondence is whether there is an intuitive topological interpretation

of the forcing constraints and the three ‘worlds’ associated with each region.
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‘ HNy\/Nz‘N(y/\z)‘Ny\/z‘ ~zVy ‘ y=z ‘ 2=y ‘
~xV ~y T T T ~xVz T ~x NV ~z
~(x A y) T T T ~rV ~z T ~(x A 2)
~xrVuy ~xV ~z | ~xVz |~zVz T ~xVz T
~y\Va T T T ~z\Va T ~z\Vzx
r=y ~pV o~z |~ Az) | ~e Vo2 T r=z T
y=>x T T T ~z\Va T z2=x

Table 9.4: Compositional inferences among Z formulae

model constraint formulae ¢ (2, y) and ¢2(y, z) that entail some entailment constraint ¢ (x, z).1°
¢1(x,y) and @2(y, z) can each take one of seven possible forms. Table 9.4 gives, for each such
combination, the strongest entailed formula involving only # and z. Where the entry is T, this
means that the only derivable formulae involving just # and z are theorems of Z. This can be
verified by noting that for each of these combinations, either by supposing that y 1s a theorem of
T or by supposing that y is inconsistent, one can derive both ¢ (z,y) and ¢2(y, z), for arbitrary
instantiations of @ and z. Thus, asserting ¢1(x,y) and ¢2(y, z) does not logically constrain the
values of # and z. Tn all other table entries we see that the strongest derivable formula is itself
one of the seven model constraints. So, binary composition of model constraint formulae either
produces no new information or a new model constraint formula.

If one then considers the model and entailment constraints associated with each of the RCC-8
relations, one finds that each relation is ‘saturated’ with respect to to model constraint formulae,
in the sense that each of the seven possible model constraints is either entailed by the model
constraint associated with the relation or entails one of the entailment constraints associated with
that relation. This means that if we add a new model constraint formula to the 7 representation
of a total RCC-8 network it is either redundant or makes the network inconsistent. Tt follows that
whenever a total RCC-8 network can be shown to be inconsistent by binary composition of 7 model
constraints, this can be shown by a single application of this type of inference. Moreover, since
compositional inference has been shown to be complete for testing inconsistency with respect to
the interpretation in the theory of interior algebras, it must also follow that the RCC-8 relations
are 3-compact with respect to this theory.

The 3-compactness of RCC-8 with respect to interior algebra can be contrasted with a result
of (Grigni et al. 1995) concerning the realisability of a set of RCC-8 relational facts by a set of
simply-connected planar regions. Drawing on results of Kratochvil (1991) about the recognition of
realisable string graphs Grigni et al. (1995) conclude that testing whether a set of such facts has a
model, in which the constants refer to regions in the plane that are bounded by Jordan curves, is
NP-hard. This means that the RCC-8 relations cannot be finitely compact with respect to a theory
which constrains the regions in this way. Consequently, no composition table can be complete for

testing consistency of RCC-8 relations in this restricted planar domain.

10 A non-null entailment constraint ~ x is equivalent to ~(x A x) and can be treated as being of the form ~(z A y).



CHAPTER 9. COMPOSITION BASED REASONING 147

9.2.5 Existential Import in RCC-8 Compositions

Examination of the composition table for RCC-8 (table 9.2.2) reveals that an extensional interpret-
ation is not compatible with the 1st-order RCC theory. Consider the entry for CT(DC, DC), which

18 given as the universal relation T. Interpreted extensionally this would mean that
VaVy[Az[DC(x, 2) A DC(z,y)] < T(2,y)],

which is equivalent to

VaVy3z[DC(x, 2z) A DC(z,y)] .

This says that given any two regions, x and y, there is a region z disconnected from both of them.
But this contradicts the RCC theory, which allows that the sum of # and y may be the universe,
in which case no region would be disconnected from both these regions.

Another, slightly more complex, example is provided by the composition of EC and TPP, which
is given as {EC, PO, TPP,NTPP}, corresponding to an extensional composition described by

VaVy[ 32[EC(x, 2) A TPP(z,y)] «
(EC(2,y) V PO(x,y) vV TPP(2,y) vV NTPP(x,y))] .

This says that whenever regions a, b are related by either of EC,PO, TPP or NTPP, there must be a
third region ¢ such that EC(a, ¢) A TPP(e, b). Situations satisfying these conditions are illustrated
in Figure 9.1. As long as b is an ordinary bounded region, a region ¢ satisfying the appropriate
conditions can always be found. However, if a is an ordinary region and b = u, then NTPP(a,b)

but no region ¢ can be found which is a TPP of b (the universe has no tangential proper parts).

EC(a,b) PO(a,b) TPP(a,b) NTPP(a,b)
Figure 9.1: Composition of EC and TPP is not fully extensional

There are a number of ways that one might be able to avoid such problems and hence construct
an extensional composition table. The most obvious is to remove the universal region u from the
domain of possible referents of the region constants. All the exceptions to extensional composition
that T am aware of involve u; so it seems that an extensional interpretation could be achieved with
respect to a modified theory without a universal region. The domain of this new theory would then
be more homogeneous and more similar to that of the Allen relations, where intervals are always
bounded. Alternatively, it might be possible to retain u by refining the set of relations so as to
differentiate relations involving u from those among ordinary regions. Tt seems plausible that by
adding this additional expressive power to the base relations one could arrive at an extensional
composition table. Of course the basis of the table would consist of considerably more than eight

relations.
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9.3 Relation Algebras

A formalism that has been valuable in the analysis of composition based reasoning algorithms for
temporal relations (Ladkin and Maddux 1994) is Relation Algebra, in which relations are considered
as elements of a Boolean algebra augmented with composition and converse operators obeying
axioms first specified by Tarski (1941) and later investigated in great detail in (Tarski and Givant
1987). Although T have so far obtained only preliminary results concerning the characterisation of
RCC relations within this formalism, T think it is appropriate to include these here. T believe that
Relation Algebra may turn out to provide a very powerful language for automated reasoning.

A Relation Algebra is a Boolean algebra which has in addition to the usual sum (4), product
(.) and complement (L), two additional operators: a binary composition operator, ‘;’, and a unary
converse operator, <~ . Tt also has constants 1’ denoting the identity relation, and 1 the universal
relation (this is not. essential since it is definable by 1 = 1/ 4+ L1’). The objects of a Relation
Algebra are intended to be binary relations conceived of as sets of pairs. (However, it turns out
that this standard interpretation is not possible for every Relation Algebra.)

Under the intended interpretation ;, ~ and 1’ represent those operators which in a Ist-order

theory of relations could be schematically defined as follows:
R;S(x,y) =.., 3Jz[R(z,z) A S(z,y)]

RV(T, U) =aes R(Uv T)

V(a,y) =ap (2=1y)

But in a Relation Algebra relations are basic entities and the operators are given an algebraic
characterisation so that they can be studied in a 0-order framework. Hence a Relation Algebra
must obey (in addition to some axiom set characterising a Boolean algebra) the identities given in

table 9.5 which fix the meanings of <’ and 1”.

o (3y)i2 = 3 (y; 2) 5. (r4y) =x 4y
2. (r4yhz=(r2)+(y2) 6. (ry) =y ;2

3. =l —==x 7. oz L(my)+ ly= 1y
4. (z7) ==z

Table 9.5: Equational axioms for a Relation Algebra

It is known that, in general, reasoning in a Relation Algebra is undecidable and this counts
against the potential usefulness of these algebras in automated reasoning. However for many
specific algebras, consistency checking is decidable and may even be polynomial.’" Tndeed if an
extensionally interpreted composition table can be given for a vocabulary of basic relations in a

Relation Algebra, this can be used to eliminate the composition operation from complex algebraic

"1Some complexity results for reasoning with relation algebras are given by Ladkin and Maddux (1994).
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terms and this will lead directly to a decision procedure. T believe that the viability of Relation

Algebra as a formalism for automated reasoning deserves further exploration.

9.3.1 Defining Spatial Relations

The Relation Algebra formalism can be used to specify a spatial Relation Algebra which describes
the same domain as the RCC theory. As in the 1st-order RCC theory, T start with a connectedness
relation, which is axiomatised to be symmetric and reflexive. T now denote relations by the same
letters as their RCC counterparts, but in lower case. Being symmetric and reflexive, ¢ must obey

the axioms

~—

e =c¢  (symmetry) and c+1 =c¢ (reflexivity) .

In terms of ¢ one can easily define some of the more significant relations found in the RCC
theory:
P =aes LlesLe) 0 =as P3P
PP =aey p- LV tp =ap p-(c; Lo)
In fact, making use of the relations just defined, we can go on to define all the RCC-8 relations as

follows:

de =, Le ntpp =a.; pp- Lip
ec =, c- Lo tppi = tpp
Po =a; 0 lp-L(p7) ntppi =,., nipp
tpp =ac; PP 1D €4 =aer 1

Tt appears that many (if not all) relations definable in the RCC theory can be defined as
relation algebraic expressions formed from the single primitive relation ¢. The resulting algebra
can be obtained by factoring, with respect to the symmetry and reflexivity identities, the free
relation algebra generated by a single relation. However, it 1s likely that additional axioms would
be needed to capture adequately the existential properties of the domain of spatial regions. For
example, if there 1s a universal region which connects with every region in the domain then the

identity ¢; e = 1 must hold.



Chapter 10

Further Work and Conclusions

In this final chapter | summarise the main results of the thesis and point to areas that would
benefit from further work. T also look at how logical spatial reasoning techniques fit into the

wider context of AT and computer science in general.

10.1 What has been Achieved

In the course of this thesis a large number of possible spatial representations have been considered.
The introductory chapter gave an overview of the origins and developments of various approaches
to reasoning with spatial information. Chapter 2 surveyed some of the more important axiomatic
theories of spatial regions, including point-set topology, Lesniewski’s Mereology, Tarski’s Geometry
of solids, Clarke’s theory of spatial regions and the RCC theory. Tn chapter 3 the RCC theory of
spatial regions was examined in some detail and a number of modifications were suggested. The key
meta-theoretic properties of completeness, categoricity, decidability were also considered. Chapters
4 6 developed a new approach to qualitative reasoning based on encodings of spatial concepts
into O-order logics. Because they are decidable, these representations are much better suited to
computational applications than 1st-order formalisms. The next two chapters described different
ways in which the expressive power of the 0-order representations might be extended: in chapter 7,
T examined the use of quantifier elimination in RCC-like Tst-order spatial theories and showed that
there are many classes of quantified expression whose quantifiers can be eliminated by syntactic
transformation to logically equivalent quantifier-free forms; chapter 8 was concerned with extending
the expressive power of (O-order representations beyond purely topological properties. Finally, in
chapter 9, T examined the application of compositional reasoning to spatial relationships.

T hope that, from amongst the plethora of representational formalisms and the variety of reason-
ing methods that have been considered, certain general principles have emerged. Primary among
these is the trade-off between expressive power and tractability, which confronts the attempt to
turn theory into practice in all areas of AT. Whilst the intractability of reasoning within a given
formal language is essentially indefeasible, T think that the findings of this thesis illustrate fruitful

ways in which it can be circumvented. The key observation is that a language I within which a
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set, of concepts ' are easily expressed is not necessarily a good language for reasoning about those
concepts. Indeed if 1. is highly expressive then it will be able to express logical connections in all
manner of conceptual domains; but this generality means that I, is over-expressive with respect to
the problem of reasoning about the concepts in (. To achieve computational tractability, what we
must look for 1s the minimally complex language capable of expressing the concepts of ' 1.e. I
should have just enough expressive power and no more. Consequently, the encoding of the logic of
the concepts (' into a tractable language 1. may be complex and indirect: capturing these concepts
stretches the language to its limits.

In applying this principle of minimality, a wide variety of possible logical representations should
be considered. In traditional logic and also in knowledge representation within the field of AT a
fairly limited range of formalisms have been employed. Specifically, the range of available languages
has often been seen as being restricted to 0-order propositional logic, 1st-order predicate logic
(possibly with some limitations on the syntactic forms which can be employed) and higher-order
logics. Since propositional logic 1s extremely limited in expressive power and logics of 2nd or higher
order do not have complete proof procedures, some form of 1st-order logic has been the favourite
language for representing factual information and expressing logical connections between concepts.
The use of more expressive forms of 0-order logic has generally been confined to the characterisation
of propositional modifiers (such as necessity and belief) by means of modal operators. Perhaps the
most novel aspect of the work reported in this thesis is the use of these more expressive 0-order
formalisms to capture the logic of purely extensional relational expressions. The use of modal
and mtuitionistic logic for representing spatial relations illustrates new potential uses in knowledge
representation of logics whose expressive power is intermediate between the simple Boolean 0-order
logic and quantificational logics. These angmented 0-order logics may prove to be applicable in
many other conceptual domains.

The encoding of topological relations into 7 provides further support for the idea that, if effective
reasoning 1s to be achieved, expressive power should be limited as much as possible, even at the
expense of making the representation less natural. As T explained in section 6.1.1, the logic 7
can be regarded as an alternative syntax for a certain sub-language of S4. While the restricted
expressivity of 7 means that more indirect encoding of topological constraints is required than

with S4, this is compensated by 7 being better suited to automated reasoning.

10.2 Further Work

This study has sought to identify advantages and disadvantages of different possible representations
of spatial information and to clarify the relationships between these different formalisms. However,
many aspects of these theories still remain unclear. In this section T highlight a number of areas
which T believe are particularly deserving of further research. Some of these are important because
they concern the foundations of spatial reasoning, whilst others are areas which may lead to the

further development of the theory in new directions.
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10.2.1 Complete Spatial Theories

In section 3.6 T considered the possibility of constructing a complete and categorical theory having
the same vocabulary as RCC. We saw that the undecidability of Grzegorezyk (1951) means that,
no complete finitary Tst-order theory of this kind can be specified. Nevertheless, for the sake of
providing a theoretical foundation for spatial reasoning, a complete RCC-like theory is certainly
desirable, even if formulated in a system such as 2nd-order or infinitary Ist-order logic for which
a complete proof system cannot be specified.

As T was coming to the end of my work on this thesis a complete region-based spatial theory
was indeed established by Pratt and Schoop (1997) using an infinitary extension of lIst-order
logic. This theory is called ‘%’ and is formulated for a language containing a monadic predicate
of connectedness together with Boolean operations. $ consists of a set of Tst-order axioms and an
infinitary inference rule' and 1s shown to be complete with respect to an interpretation in which
the domain of regions consists of all those regular open regions of the Cartesian plane (%) that
can be bounded by some finite number of linear edges. The restriction to linear bounded regions
18 inessential, since every configuration of regular open planar regions is topologically equivalent
to some configuration in which all the edges are linear.

The vocabularies of RCC and $ are inter-definable, so the § axiom set could be used to specify
a version of RCC which is complete with respect to a natural interpretation in 2D space. However,
the infinitary nature of $ means that it cannot be used as a practical tool for carrying out spatial
inferences. The question also remains as to what axioms are needed to specify a theory which is

complete with respect to a 3D interpretation.

10.2.2 Effective Modal and Intuitionistic Reasoning

Whilst modal representations of spatial relations can be shown to have a theoretical advantage over
Ist-order representations (namely that decision procedures are known for the modal languages),
nevertheless doubts may remain as to whether the modal representations could ever be of practical
use. After all a decision procedure does not necessarily provide us with an effective means of
computation. Tdeally we would like to have polynomial algorithms for spatial reasoning. Recently,
a lot of research has been directed towards the need for more efficient modal reasoning systems
(Wallen 1990, Auffray, Enjalbert. and Herbrard 1990, Catach 1991, Demri 1994, Giunchiglia and
Sebastiani 1996, Nonnengart 1996, Balbiani and Demri 1997, Montanari and Policriti 1997, Hustadt
and Schmidt 1997). Tf the modal approach to qualitative reasoning is to be of practical use it will
be necessary to demonstrate that the modal representations can be effectively manipulated. One
way to do this would be to identify tractable sub-languages of modal calculi which are capable of

representing significant sets of spatial relations.

UThis rule states that, if it can be shown for all n that every region which is a sum of n connected components

has the property ¢, then one can infer Vz[¢(x)].
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10.2.3 Extending Expressive Power

Another important direction for further work 1s to investigate how the expressive power of decidable
spatial representations such as Z7 can be extended. The main focus of my work has been on
topological relations; but a fully expressive language for qualitative spatial information would be
able to describe a wide range of non-topological properties and relations. For many purposes one
would wish to characterise the relative position and orientation of regions or points (Freksa 1992b).
Tt would also be very useful (e.g. for the task of object recognition) to have a richer vocabulary for
distinguishing different shapes.

In chapter 8 T showed how the expressive power of the RCC language can be greatly increased
by means of an additional conv function, giving the convex-hull of any region. This enables many
useful relations concerning containment to be defined. Cohn (1995) has shown that, within this
angmented RCC theory, a large class of shapes can be specified by defining shape concepts in
a hierarchical manner; and the expressiveness and complexity of the language consisting of the
RCC-8 relations and a convexity predicate is explored in detail in (Davis et al. 1997). However,
properties involving orientation cannot be expressed within such a language. A logical treatment of
orientation, convexity and related properties, in terms of points, has been given by Knuth (1992).
This is based on a primitive ternary relation asserting that three points lie in an anti-clockwise
orientation in the plane. There seems no reason why a similar predicate operating on regions could
not be introduced into RCC. Appropriate axioms determining the logical properties of the new
primitive would then have to be specified.

In section 8.5 T showed how properties of the convex-hull operator can be captured by means of
modal schemata. Tt is possible that a similar technique could be applied to other spatial concepts.
Tndeed, Balbiani, Farinas del Cerro, Tinchev and Vakarelov (1997) have shown that modal logics
can be interpreted as specifying configurations in incidence geometry. My method of specifying
properties of spatially interpreted modalities in terms of axiom schemata is somewhat ad hoc and
does not provide a direct interpretation of the operator, in terms of model structures. To do
this we would need richer mathematical structures as models. An obvious choice would be to use
metrical Cartesian spaces. These are canonical models for Euclidean geometry and so provide an
interpretation for any figure or property describable in this geometry. Having metrical spaces as
models for qualitative languages also facilitates easy integration with quantitative information, as
will be discussed in section 10.3.4.

Although the combination of topological concepts and convexity provides a very powerful spa-
tial description language, the effective reasoning procedures that T have so far constructed only
cover a small fragment of the properties and relations that can be expressed in terms of these con-
cepts. Hence, the most useful further work will perhaps be directed towards expanding the range
of information that can be handled by effective decision procedures, rather than the expressive
power of spatial representations. (After all, highly expressive but intractable mathematical nota-
tions already exist.) Specifically, it is probable that there are effective algorithms for Z reasoning

that can deal with much larger classes of formulae than the restricted class needed to represent
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the RCC-8 relations. For instance, it would be useful to specify topological constraints involving
Boolean combinations of regions, such as DC(z, prod(y, 2)), corresponding to the ZT model con-
straint, ~ a2 V ~(z A z). An alternative means of increasing the expressive power of decidable
systems 1s by means of quantifier elimination procedures such as the one given in chapter 7, which
18 by no means as general as it could be.

The next two sections focus on two aspects of extending expressive power that T consider to be

of particular importance.

10.2.4 Reasoning with One-Piece and other Simplicity Constraints

An extremely important topological property of regions is that of being self-connected or in one

piece. This property can be quite easily defined within the RCC theory as follows.
OP(2) =,.; VYy¥z[z =sum(y, z) = C(y, 2)]

This property is particularly significant because the region occupied by what we think of as a
‘physical body’ 1s almost always in one piece; accordingly, in natural language descriptions of
physical situations, implicit one-piece constraints are ubiquitous. In fact the objects of natural
discourse are typically further constrained to be regular (i.e. of uniform dimension) and “firmly’
self-connected (a three dimensional physical object cannot be divided into two parts that are
connected only at a point or along a line).

A serious deficiency with the reasoning systems described in this thesis 1s that T have not
provided any means for reasoning under constraints specifying that certain regions are in one piece
(let alone more subtle simplicity constraints). Handling such properties is an important goal for
future research. Tt might be possible to apply a technique similar to that used to enforce the
convexity of regions. In this case, if region a is supposed to be one-piece, we would check all pairs,
b, e, of regions involved in the situation to see if a = sum(b, ¢) could be proved. Tf so the further
condition C(b, ¢) must be added to the situation description. Whatever approach is taken, it is
likely (contrary to what some might suppose) that the presence of simplicity constraints will make

reasoning intrinsically more difficult (more will be said about this at the end of the next section).

10.2.5 Points and Dimensionality

In this thesis T have been primarily concerned with spatial relationships that can hold between
regions. This restriction was motivated in the introduction by the observation that most ‘natural’
forms of description make reference to objects which occupy three-dimensional volumes (or, less
commonly, two-dimensional areas). One can then argue that, although higher-dimensional objects
can be constructed set-theoretically from points, it is much preferable from a computational point
of view to formulate theories in which regions are basic entities (i.e. constitute a domain over which
one can apply strictly Tst-order quantification) rather than to employ the highly complex language

of set theory. Nevertheless, there is also strong evidence that many natural forms of expression do



CHAPTER 10. FURTHER WORK AND CONCLUSIONS 155

refer to point-like or linear entities; and 1t is clear that we also distinguish between two-dimensional
regions on a surface and three dimensional volumes.

In chapter 2 we saw how Tarski and Clarke took regions as the basic entities of their theories but
then introduced points set-theoretically as corresponding to certain sets of regions. For Tarski this
was a means of rendering his theory categorical by constraining it to obey the axioms of elementary
point geometry. Clarke’s intention 1in introducing points 1s to show that his theory can encompass
classical geometrical and topological concepts by the use of second order definitions. Neither of
these treatments of points addresses the issue of how to construct a naturalistic logical formalism
capable of expressing information about spatial entities of different dimensions. Preferably one
would like to have a system which allowed this information to be represented without the use of
second-order operators. This is particularly important for computational applications, since higher
order formalisms are typically intractable and often not completely axiomatisable.

The RCC formalism does not place constraints on the dimensionality of regions except that
(because of the existence of a non-tangential proper part of every region) all the regions in the
domain must have the same dimensionality. For certain applications this will constitute a severe
limitation in expressive power. A formalism having much in common with RCC but capable of
expressing relations between entities of different dimensions has been given in (Gotts 1996). This
‘INCH’ caleulus is based on the primitive INCH(x, y) read as ‘@ includes a chunk of y’, meaning
that the region x overlaps with some part of y which is of the maximum dimension of any part of
y. In terms of just this primitive, predicates identifying regions of any finite dimensionality can be
defined.

Handling properties involving dimensionality also presents major problems for antomating spa-
tial inferences. The reasoning algorithms described by me in chapters 4 6 only enforce entailments
which hold in a very large class of topological spaces; and the same is true of reasoning using
composition tables, as described in chapter 9. T mentioned at the end of section 9.2.4 that if we
restrict the domain of regions involved in a set RCC-8 relational facts to planar regions bounded
by Jordan curves, then testing consistency of these facts becomes NP-hard (Grigni et al. 1995).
Solving this problem also involves enforcing the simplicity constraints mentioned in the previous

section.

10.2.6 The Relation Between Logic and Algebra

The investigation carried out in this thesis was conducted primarily from the point of view of
logical analysis. That is, my principal interest was in entailment relationships and inference rules
involving formal expressions. However, in carrying out this analysis, algebraic structures have
played a key role. ITn my encodings of spatial relationships into 0-order logics, equational algebraic
theories acted as an intermediary between relational formalisms and 0-order formulae, and hence
enabled me to show the correctness of these encodings. An alternative approach would be to start
by adopting equational reasoning as a framework for computational inference and then look at

what spatial theories could be expressed equationally.
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FEquational reasoning 1s a large research area in itself and its methods cannot be covered here.
A collection of papers on many aspects of the area can be found in (Ait-Kaci and Nivat 1989),
in which one chapter (Fearnley-Sander 1989) describes an interesting equational representation of
spatial information based on vector spaces (this is very different. to my closure algebraic treatment).
The primary difference between equation-centred approaches and mine is in the formalism that is
actually used for reasoning. T have suggested that 0-order logics should be used; but there may
also be good reasons why it would be better to use equational reasoning.

Another issue concerning the relation between logic and algebra is that of notation. Although
algebraic structures often occur as models for logical languages, there does not seem to be any
standard way of stating correspondences between logical and algebraic properties; and T found
considerable difficulty in arriving at a way of expressing the correlation theorems needed to jus-
tify my O-order encodings. The general framework of cateqory theory is well suited to describing
relationships between different mathematical structures and may prove useful for this; but for fur-
ther study of the connection between algebraic constraints and logical entailment, more specialised

notation would be desirable.

10.2.7 Compositional Reasoning and Relation Algebra

In the last chapter T looked at the use of composition tables for consistency checking of sets of
binary relations. We saw that compositional constraint propagation using such a table provides
a consistency checking procedure that runs in O(n?) time, for a set of relational facts containing
n constants. However, whether this procedure is complete depends on the particular relation set
and the background theory with respect to which they are interpreted. (Given the effectiveness
of compositional reasoning, determining the conditions under which a composition table can be
complete with respect to a theory (in the sense specified in section 9.1.1) is likely to be a fruitful
area for further enquiry.

The formalism of Relation Algebra (briefly investigated in section 9.3) also deserves further
study and may prove to be well suited to antomated reasoning. Relation Algebra provides an
extremely expressive alternative to Ist-order logic (it has almost the same expressive power (Tarski
and Givant 1987)), particularly in formalising theories where binary relations play an important

role.

10.3 Spatial Reasoning in a More General Framework

In this thesis T have treated spatial relationships as an isolated domain of information. However,
if one wishes to develop a more general reasoning system, capable of processing the diverse kinds
of information that humans routinely deal with, one must find some means by which purely spa-
tial concepts and reasoning mechanisms can be interfaced or combined with representations and

reasoning mechanisms for non-spatial concepts.
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10.3.1 A General Theory of the Physical World

A tenet of AT research into Knowledge Representation is that, if an artificial agent is to act in
an intelligent, way to accomplish goals in the real world (or in some virtual simulation of the real
world), it must have both factual knowledge about the actual state of the world and theoretical
knowledge concerning possible states of the world and possible ways that one state can succeed
another (Hayes 1979, Hayes 1985b, Guha and Tenat 1990). From the point of view of so-called
‘symbolic” AT these laws of possibility and causality will constitute a formal theory of physical
processes. This theory might be akin to those that have been established by physicists, except that,
whereas the physicist is primarily concerned with the descriptive power and predictive accuracy of
his theory, the computer scientist must also consider computational properties of the theory, such
as the kinds of inference that can be effectively computed.

Tt has been suggested that, for the purposes of AT, what i1s needed 1s not a fully scientific theory
of the physical world, but rather a naive theory of those physical concepts which are relevant
to ‘commonsense’ reasoning about the world (Hayes 1979, Hayes 1985a, Hayes 1985b, Randell,
Cohn and Cui 1992b, Egenhofer and Mark 1995). But it is clear that, whatever style of theory
18 required, 1t must contain a sub-theory of spatial concepts. Just as a spatio-temporal geometry
describes the underlying theory of coordinate systems upon which mathematical theories of physical
processes are built, representations of spatial and temporal concepts must be fundamental to any
formal description of these processes, which might be employed in Al. Formalisms for temporal
reasoning have received a huge amount of attention from the AT community (see e.g. (Galton 1987))
and representations of spatial concepts are increasingly being studied. However, establishing a
foundation for the specification of physical theories will require integrated representations and
reasoning mechanisms capable of handling integrated spatial and temporal information and the
construction of a suitable combined spatio-temporal theory poses formidable problems. Some of
the more concrete proposals can be found in (Randell and Cohn 1989), (Randell, Cui and Cohn
1992), (Galton 1993) and (Galton 1997). T shall give some details of these proposals in the next
section.

A suitable spatio-temporal theory ought to provide a framework within which theories of matter,
kinematics and dynamics can be developed in such a way that these theories can be used to
reason about descriptions of physical processes in a way which is amenable to effective automated
reasoning. The theory of matter, whilst one of the principal focusses of physicists, has received
comparatively little attention from logicians and AT researchers (a notable exception is Hayes’
(1985a) analysis of the ontology of liquids). For instance, in formalising problems of robot motion
planning it has generally been assumed that space can be neatly divided into two partitions:
occupied space and empty space. This is clearly a very coarse approximation to the real nature
and distribution of matter in the universe.

Quite a large body of work exists on qualitative kinematics and dynamics for AT (see e.g. (Weld
and De Kleer 1990)). Nearly all this work is based upon some kind of abstraction of the spatio-

temporal behaviour of a system into a sequence of transitions within a discrete space of possible
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states (state transitions among RCC relations will be considered in the next section). Given
that a sufficiently expressive and computationally tractable representation for spatial-temporal
information has not yet been discovered, this approach is certainly well justified. An alternative
approach has been to develop formal theories in which actions, events or processes are proper
entities constrained by temporal relationships (e.g. (Allen 1984)). Tn both these approaches the
structure of space itself seems to all but disappear once phenomena are formally analysed. This
lack of expressiveness in respect of spatial relationships seems to me to be an inherent weakness

of most existing formalisms for describing physical processes.

10.3.2 Spatial Information and Change

One way of building a dynamical theory on top of a spatial theory i1s by specifying possible trans-
itions among relations holding between the regions occupied by two bodies when the bodies un-
dergo continuous displacement and/or deformation. Figure 10.1, taken from (Randell, Cui and
Cohn 1992), shows a graph of possible transitions among the RCC-8 relations resulting from either
continuous displacements or deformations of the regions involved. Transitions between qualitative
spatial states have been studied in a number of papers by Antony Galton (1995, 1997).

Connected sub-graphs of a transition network are known as conceptual neighbourhoods, a term
that was introduced in Freksa’s (1992a) analysis of the Allen relations. Freksa noticed that all the
entries in the composition table for the Allen relations correspond to conceptual neighbourhoods.
The relationship between conceptual neighbourhoods and relational composition was also studied
by me in (Bennett 1994a), where T showed that the correlation observed by Freksa does not apply
to all sets of spatial relations.

An alternative method of accommodating change into a spatial representation is to introduce
time as an extra dimension. 4-dimensional regions would then correspond to the space-time exten-
sions of 3-dimensional objects throughout their history. This approach was adopted in (Randell
and Cohn 1989) in which a theory of topological relations between spatio-temporal regions was
angmented with a relation B(x, y) asserting that the spatio-temporal region 2 (wholly) temporally

precedes region .
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Figure 10.1: Transition network for eight topological relations
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10.3.3 Vague and Uncertain Information

In real applications of reasoning systems, situations will often arise where information is vague or
has some degree of uncertainty.? Tdeally we would like a computer system to ‘do its best’ (whatever
that means) even with vague or uncertain information. Tt is likely that an understanding of spatial
vagueness will be very important in the development of many applications. Qualitative representa-
tions, such as the RCC language, have an intrinsic advantage over numerical representations when
it comes to dealing with vague or uncertain facts: relevant qualitative distinctions can be made
without any commitment to the precise details of a situation. For example, we may not know the
exact geometry of a room, nor the exact size and position of a table situated somewhere in the
room; however we can be certain that the table does not overlap the walls of the room. Using RCC
we could simply assert something like ‘~O(table, walls)’, whereas, in terms of numerical coordinates,
stating this fact would require a complex and clumsy set of inequalities.

Although certain aspects of vagueness and uncertainty can be straightforwardly captured by
the generality encapsulated in qualitative concepts, other aspects are not so easily represented.
Certain types of region (e.g. a swamp or a cloud) have inherently vague boundaries and hence a
sharp distinction between the topological relations holding among such regions cannot be made.
An axiomatic theory which generalises RCC to take account of regions with vague boundaries has
been developed in (Cohn and Gotts 1994a, Cohn and Gotts 1994b, Gotts and Cohn 1995, Cohn
and Gotts 1996).

10.3.4 Relating Qualitative and Metric Representations

There has been a tendency among some researchers in the field of QSR to eschew metrical data,
in the belief that significant AT tasks can be performed using only qualitative information. While
in certain cases this may be possible, T believe that, in the majority of practical applications, one
will want to combine both quantitative and qualitative information; and consequently, the interface
between the two types of data will be increasingly studied.

Purely qualitative spatial reasoning systems provide an inference mechanism for determining
whether a given qualitative fact follows from some set of such facts. Such systems can be used to
answer queries relative to a qualitative database. However, a qualitative spatial reasoning system
need not be employed in isolation from coordinate-based geometrical information and other kinds of
numerical data. Indeed it is clear that for many useful functions, numerical information is essential.
For instance, we may want to pose a query using qualitative concepts but requiring a quantitative
answer (e.g. ‘What is the area of the largest desert that lies entirely within the borders of one
countryl”). Moreover, the combination of qualitative and quantitative representations promises to
be a powerful tool in system design and to enable novel program functionality. Tn the rest of this
section I shall sketch a number of ways in which qualitative and metrical data could be combined.

In the introduction to this thesis T observed that current computer systems represent spatial

2 Although vagueness and uncertainty have some logical properties in common, it is important to recognise them

as very different phenomena. However, in the present brief discussion the differences are not important.
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information almost entirely in terms of numerical coordinates. However, a high proportion of tests
made on this data (e.g. in conditional statements of the form ‘if test then command’), although
formulated in numerical terms, are actually designed to test qualitative relations between data
objects. For example, we may wish to test whether two line segments cross. This 1s a qualitative
relationship between the segments. To determine whether a qualitative relationship such as this
holds between entities an algorithm is needed which will operate on numerical data-structures so
as to extract the required information. In many cases including the case of the crossing line
segments  this can be achieved by formulating the relationship in terms of a Boolean combination
of equalities and inequalities involving the coordinates of points; in other cases more complex
iterative routines will be required.

Whilst it may be possible, on a case-by-case basis to devise an algorithm to extract specific
qualitative information, when needed, from quantitative data-structures, it would be far preferable
to have a general purpose method of testing all qualitative relationships which one may encounter.
A qualitative representation, whose interpretation 1s linked in a precise way to the content of quant-
itative data-structures can go some way towards providing this capability. The idea 1s to associate
the primitives of the qualitative representation with appropriate algorithmic operations on quant-
itative data. (ziven this interpretation of the primitives, any complex expression in the qualitative
language would then be evaluated by combining these primitive operations in accordance with the
semantics of logical operators in the representation. Constructing this evaluation mechanism may
be very difficult (or even impossible) depending on the nature of the primitives and the logical
operations involved; but once achieved it provides a general purpose procedure for evaluating a
large (probably infinite) class of qualitative expressions. The qualitative representation can thus
function directly as a query language as well as being used internally for program control.

A limited version of this approach 1s already found in nearly all computer programs. Whenever
one defines some basic qualitative tests (as functions returning Boolean values) and then uses
Boolean combinations of these tests in conditional statements, a simple qualitative language is in
operation. To move from this limited capability to the use of a fully-fledged qualitative repres-
entation, one must identify a vocabulary of primitives and logical operators sufficient to represent
any qualitative fact in some particular conceptual domain. The problem for the programmer then,
rather than being ‘how can T code an algorithm to test whether this relationship holdsl”, becomes
‘how can T express this relationship in terms of my qualitative languagel”. This architecture has the
advantage that the evaluation of qualitative tests is independent of the particular data structures
used to store quantitative data in the system, except in so far as operations corresponding to the
primitives must be coded.

The main obstacle to achieving this kind of qualitative/quantitative interface is that, as we have
seen, even modest logical vocabulary can give rise to a language which is highly intractable. Tn
particular, a language which allows quantification over some potentially infinite domain of entities
(i.e. a lIst-order langunage) will be undecidable unless, by taking account of the meanings of the
specific vocabulary of the language, some special-purpose decision procedure can be devised. The

0-order representations of spatial relations developed in this thesis go some way towards solving
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this problem by providing quantifier representations capable of expressing a significant vocabulary
of spatial relations.

Even where a decision procedure can be found it may be that the time taken to evaluate a
qualitative test increases exponentially with the amount of information which has to be taken
into account. This will make the language unsuitable for representing large amounts of data.
However, in many cases it may be safe to assume that although, the database of quantitative spatial
information may be very large, the qualitative tests/queries that the system will be required to
evaluate will be comparatively concise. The time taken to evaluate a qualitative query will be a
function of both the amount of quantitative information stored and the complexity of the query.
Retrieving information from the quantitative database will typically take time which increases only
polynomially in the size of the database (in most cases retrieval times will increase linearly or as
some small power of the database size). Thus, even if the query-answer-time increases exponentially
with query complexity this may be acceptable as long as all queries have complexity below a certain
level. Also, on receiving a qualitative query it would be possible for the system to estimate the
maximum time required to return an answer.

A useful generalisation of the capability of answering qualitative queries with respect to a
metrical database, is the ability to generate a qualitative description from such a database. A
simple example 1s that one may have a database consisting of a set of polygons, each corresponding
to some geographical region, and from this one might wish to extract a complete description of
the relationships between these regions in terms of the RCC-8 relation set.  i.e. generate a set of
facts in which each pair of regions is related by one of the RCC-8 relations. Having extracted a
qualitative description from a quantitative database one could then combine this with additional
purely qualitative information. Based on this idea a sophisticated and flexible architecture can be
envisaged, in which quantitative data can be transparently combined when required with qualitative
data in order to allow queries to be addressed to a hybrid information source containing both
quantitative and qualitative data.

Yet another useful capability would be to generate numerical coordinate data satisfying a given
set of spatial constraints. Thus, for example, one might wish to generate a possible quantitative
specification for a mechanical component having certain prescribed qualitative properties. Perhaps,
this could be done by means of some model-building automated theorem prover. An obvious
difficulty is that there is usually no unique quantitative state satisfying given qualitative constraints;
many solutions may be unnecessarily complex or deviate in subtle ways from what was really
wanted, so it may be hard to pick a ‘sensible’ solution.

In section 10.2.3 T suggested that interpreting qualitative languages in terms of metrical models
might be a way to develop more expressive languages. Clearly this would also be very useful for
integrating qualitative and metrical information. The field of QSR has tended to eschew metrical
models on the naive assumption that such models are only appropriate for quantitative represent-
ations. But this is to misunderstand the relationship between a logical language and its models.
Formal languages cannot ordinarily fully describe their own models: the fact that a model satisfies

a given formal sentence is a matter of meta-logic. Nor does the ontological commitment of a formal
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language depend upon its models; but rather on its resources for asserting what exists and what
does not (e.g. existential quantification) and the concomitant existential import of its theorems.
Hence, there is no reason why qualitative languages should not have metrical models. Indeed, ca-
nonical metrical models arise naturally when the axioms of a theory enforce seemingly qualitative
constraints which impose order on the domain of individuals (this is illustrated by the theory of
Allen’s interval relations (Allen and Hayes 1985, Ladkin 1987) see the end of section 9.1.3
and the spatial theory of Pratt, and Schoop (1997)  see section 10.2.1).

10.4 Applications

Although this thesis has focused on devising spatial reasoning algorithms that can be effectively
implemented, concrete applications have not been considered. In the introduction T observed that
spatial information was of key importance to many areas of computer science, including such central
fields of AT as computer vision and robotics. However, logical reasoning with formal languages has
not become an established technique in any of these areas. Tt is therefore incumbent upon those
developing QSR algorithms to indicate how these might be exploited to solve problems in the more
pragmatic branches of computer science which are concerned with processing spatial data.

T shall first consider the possibility of applying QSR to robotics. The classical approach to robot
control a robot is to compute precise movement instructions to achieve a desired goal (Schwartz and
Sharir 1990, Latombe 1991). Whilst these instructions are predominantly metrical, the goal itself
will typically correspond to a high-level qualitative prescription of an action (e.g. ‘Put the box into
the skip’). Computing the metrical instructions to achieve this goal can be seen as a generalisation
of the problem of finding a spatial region satisfying given qualitative spafial constraints, which was
mentioned at the end of the last section. But, in the case of a robotic goal, the constraints may not
be purely spatial and one must generate a spatio-temporal movement path rather than simply a
spatial region. One approach to this problem is to translate constraints into a numerical form and
then use purely numerical constraint solving techniques (Schwartz and Sharir 1983, Arnon 1988).
This can only be done effectively for fairly simple motions, so where more complex motions are
required, planning techniques are often used to find a sequence of simpler subgoals which achieves
the desired ultimate goal (Tozano-Pérez 1987, Schwartz, Sharir and Hopcroft 1987, del Pobil and
Serna 1995).

Computing motion-plans is perhaps the aspect of robotics that is most likely to benefit from
QSR techniques. Given a qualitative representation of initial and goal states, and a background
theory of possible state changes, a qualitative movement plan can in principle be computed by
abductive inference (Eshghi 1988, Shanahan 1991, Denecker, Missiaen and Bruynooghe 1992).
Spatial concepts will play a very significant role in both the state descriptions and the background
theory. However, adequate specification of robot states and goals will also require concepts for
describing temporal relationships, material properties and perhaps abstract entities such as actions.
Thus the reasoning problem is far from purely spatial. One might hope to be able to solve the

problem in a much more general theory of physical situations and processes, as envisaged in



CHAPTER 10. FURTHER WORK AND CONCLUSIONS 163

section 10.3.1. However, it is doubtful whether a sufficiently general theory, which is also tractable,
can be developed in the near future. In order to make use of purely spatial inference mechanisms
one would have to factor out spatial aspects of the reasoning problem and show how these can be
handled as a modular component of motion-planning computations. In my view, this is a much
more realistic approach.

Applications to reasoning about physical systems face many of the same problems as arise in
robotics. Tn fact, a robot can be seen as a rather simple example of a physical system, with
a limited number of degrees of freedom. As noted above (section 10.3.1) adequate theories of
physical processes will probably need to incorporate a very rich conceptual vocabulary. Hence, if
qualitative spatial inferences are to be exploited the need for modularisation of reasoning problems
is even more acute.

A task which is part of robot motion planning but is also useful for many other applications
(e.g. route-finding aids for motor-vehicle drivers) is navigation. Here we are not concerned with
the detailed mechanics of movement but with somewhat more abstract problems, such as finding
a viable path between two spatial locations; for this purpose, the moving object can normally be
considered to be a point rather than an extended body; and the required path can be represented by
a line rather than a sequence of complex movements. Navigation problems are more purely spatial
than robotic automation and consequently spatial reasoning techniques are easier to apply. A
number of concrete proposals have been made for the use of qualitative representations in automated
navigation systems (Kuipers and TLevitt 1988, Schlieder 1993).

A very promising application for QSR. is to IS, which are increasingly in demand as a tool
for business planning and land management. The need for qualitative spatial query languages
to interact with these systems is clear (Egenhofer and Franzosa 1991, Egenhofer and Herring
1991, Egenhofer and Al-Taha 1992, Clementini et al. 1994, Egenhofer and Mark 1995). High-
level queries of a naive IS user correspond to natural language questions and these typically
involve qualitative concepts. In section 10.4.1 below T shall describe a prototype GIS that exploits
topological reasoning.

Interpreting query languages 1s a special case of the more general problem of interpreting
spatial expressions occurring in natural language, which tend to be predominantly qualitative
rather than quantitative (consider prepositions such as ‘in’; ‘on” and ‘through’) (Vien 1991). But
in applying QSR to natural language one faces the problem that spatial expressions are enmeshed
in an unformalised and massively complex conceptual structure. By contrast, the limited spatial
vocabulary employed in visual computer programming languages is much more amenable to formal
description and a number of recent works have used qualitative representations to specify the syntax
and semantics of visual programming languages® such as Pictorial Janus (Haarslev 1995, Gooday
and Cohn 1995, Gooday and Cohn 1996).

Another branch of AT which may be well suited to exploit QSR techniques is computer vision.

3These are languages in which programs are created by editing pictures within a graphical environment. Program
execution can also be visualised by means of animations of these graphical representations. This is intended to

facilitate debugging and understanding of how a program works.
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A computer vision system typically employs a fairly long series of transformation procedures
culminating in a geometrical model of objects in the scene. Within this kind of architecture
it 18 very easy to insert a procedure which exploits spatial reasoning. Indeed the use of semantic
techniques, both for image segmentation and object recognition, has long been recognised (Winston
1975). Qualitative reasoning based on a set of orientation relations has been successfully applied
to the analysis of traffic flow from video images (Fernyhough, Cohn and Hogg 1996, Fernyhough,
Cohn and Hogg 1997).

In all areas involving spatial information it 1s easy to give hand-waving accounts of how QSR
can be used to great advantage. However, the obstacles to attaining practical results cannot be
overestimated. The results reported in this thesis indicate that achieving effective reasoning even
with a very limited vocabulary of spatial concepts may require complex logical apparatus and
reasoning algorithms, specifically tailored to handling that particular range of concepts. How these
limited representations can be put to work on real problems is far from obvious.

Tt 1s tempting to suppose that once a sufficiently expressive representation has been devised,
the manner in which it can be exploited will become obvious. But, without a hugely radical
advance in computer hardware or software technology, it seems likely that the conflict between
expressive power and tractability will always be a strong constraint on the use of AT techniques
in computer systems. Thus, to find a practical application of QSR, one will have to show how
some concrete task can be reduced to manipulating a small number of spatial concepts, or at least
how the role of different, types of spatial information in carrying out this task, can be isolated and
handled in a modular fashion. This problem is especially acute if one attempts to work within an
architecture in which all information and reasoning is handled by means of a purely qualitative
representation; one cannot then rely on any of the well-understood mechanisms for quantitative
data manipulation that have been developed over the years. Tn my opinion, the interface with
quantitative information (discussed in the last section) is the key to opening up the path towards real
applications. Embedding qualitative reasoning modules within a more conventional architecture
enables one to explore the strengths of using qualitative representations without exposing all their
weaknesses.

As my main results are about reasoning with topological relations and (to a much lesser extent)
convexity, I ought to suggest applications for this limited form of spatial reasoning. Topological
relations are fundamental and pervasive in all spatial information, so one might expect the useful-
ness of topological reasoning to be equally general. But, what specific computational tasks can be
reduced to topological reasoningl’

T have observed that, in many potential application areas, adequate qualitative description of
tasks requires not only non-topological concepts but also many non-spatial concepts. In such cases
a modular analysis of relevant reasoning capabilities will be necessary in order to isolate useful
topological inference procedures; and this is a research topic in itself. However, T believe that

significant semantic constraints relevant to object recognition can be specified in terms of purely

4 (Fernyhough 1997) provides a good example of what can be achieved using this kind of architecture.
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topological conditions and this may well lead to practical uses within the field of computer vision.
The application for which purely topological reasoning has the most obvious uses 1s GIS. Tt easy
to envisage situations in which a GIS user wants to pose a query that 1s essentially topological in
nature. For example, in siting a factory one might wish to find an area of undeveloped land, which
is adjacent (i.e. externally connected) to a water source, such as a lake, and is part of a particular
urban district. What is not so obvious is how significant these topological queries are to the overall

functionality of a GGIS, which typically provides access to a vast amount of metrical information.

10.4.1 Topological Inference in a GIS Prototype

T shall conclude the discussion of applications with a description of a prototype ‘spatial AT’ system
being developed as part of EPSRC project GR/K65041 on ‘T.ogical Theories and Decision Proced-
ures for Reasoning about Physical Systems’. This incorporates the (O(n?)) topological reasoning
algorithm based on my Z% encoding, which was described in section 6.3 (program code is given in
appendix C.3). The system maintains a database of geographical information in the form of geo-
metrical polygon data and also handles qualitative data in the form of topological relations between
named regions. Some of these named regions are identified directly with polygons in the geomet-
rical database, whereas for others the geometry is not precisely known but only constrained by the
qualitative topological relations. The topological relationships determined by the the quantitative
geometrical data can also be rapidly computed and accessed by the topological reasoning mech-
anism, allowing queries to be addressed to the combined qualitative and quantitative database.
This capability is (as far as we know) not available in any other system. Work is also underway to
demonstrate the use of topological reasoning in the control of artificial agents operating in a virtual
world constituted by geographical data.

Figure 10.2 shows a screen-dump of the current prototype system. Most of the code 1s written
in (STCStus) Prolog but a Tel/Tk sub-process is used to create the GUT. The window at the top
left shows a simple cartographical display, whose geometry is determined by a database giving the
coordinates and terrain type of a number of triangular regions. This data is shown in the bottom
left window. The top right window presents a database of qualitative relations between regions.
In the middle on the right is the Prolog top-level query window. All functions of the system can
be accessed by typing commands and queries at. the Prolog prompt (although common operations
are more conveniently accessed via the GUT). The figure shows the Prolog interpreter being used
for querying the qualitative database. Such queries are answered by means of the spatial reasoning
algorithm described in chapter 6, which determines whether a relation given as a query is consistent
with, inconsistent with or a necessary consequence of the database. (The bottom right window is

one of a number of information screens which can be displayed via the system’s ‘help’ function.)
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Figure 10.2: A prototype geographical information system

10.5 Conclusion

T shall conclude this thesis by making some general remarks about the prospects for antomated

reasoning based on insights T gained during my research.

When T started work on spatial reasoning, T was under the naive impression that 1st-order logic,

or something like 1t, could provide an ideal formalism for knowledge representation and reasoning

in this and almost any conceptual domain. Although T was aware of the theoretical undecidability

and intractability of 1st-order reasoning, T did not realise the seriousness of the difficulties that

these properties pose for automated reasoning. Timagined that, with a powerful enough computer,

it would be feasible to compute entailments between relations as determined by a simple axiomatic

theory. However after attempting to compute RCC inferences using the OTTER theorem prover

(McCune 1990) it soon became apparent that this is completely impractical. Even seemingly simple

deductions would very often exhaust the available computational resources.

My experience of theorem proving probably has much in common with that of many others who

have entered this field. Tt is now widely recognised that effective antomated reasoning with logical

representations cannot be achieved by general purpose proof systems but requires the construction

of specialised reasoning algorithms. FEven so, it seems to me surprising that a tractable proof
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procedure for spatial relations should be so far removed from one’s intuitive picture of the problem.
An interesting question 1s whether this is typical of effective solutions to reasoning problems.
That this may be so was suggested by Alan Robinson (1979), who, having discovered the very
powerful but extremely unnatural hyper-resolution inference rule, proposed that there may be a
difference in kind between the style of reasoning intelligible to humans and the type of reasoning
mechanisms which can be efficiently implemented in computer programs. This is also evidenced by
the prodigious number-crunching abilities but poor conversational skills of computers. Though it
does not give any reason for the divergence between styles of reasoning of humans and computers,
Robinson’s proposal does seem to concur with much of what has been discovered in the study of
automated reasoning.

From another point of view, the use of modal and intuitionistic logics for spatial reasoning may
not be so perverse as it first seems. Tt may just be that this use of these logics is unfamiliar.
Although modal logics were originally intended to capture propositional modifiers and intuition-
istic logic to specify an ontologically parsimonious form of mathematical reasoning, the structural
manipulations embodied in the inference rules of these logics are of a very general nature. Hence,
it 1s only to be expected that alternative interpretations can be given.

The success of the 7 and S4 encodings of spatial relations may also shed some light on why
1st-order reasoning is so intractable. In 1st-order predicate logic, the sub-structure of atomic
propositions has no logical content. By this T mean that, although we may analyse an atomic
proposition in terms of a relation between a number of functional terms, these components are ar-
bitrary, having no special logical properties, except insofar as they may be constrained by axioms.
Hence, the meanings of these symbols are not captured directly by rules of inference but only
indirectly through axioms taking part in inference. Moreover, these axioms often take the form of
quite complex quantificational formulae. Tt is these theoretical formulae that make 1st-order reas-
oning so computationally intensive, even when employed to compute seemly obvious consequences
of simple factual information.

As an exception to this treatment of the meaning of predicates, the meaning of the equality
relation is usually specified in terms of inference rules rather than axioms. One could treat equality
as a non-logical symbol constrained by axioms® but it is easier to capture the logical properties
of ‘=" by means of inference rules than in axioms. Axiomatic treatment of equality adds a large
number of formulae to the specification of a 1st-order theory, which greatly increases the search
space that an automated theorem prover has to deal with. Although adding inference rules for
equality also increases the search space, it has been found that this method 1s in most cases much
more conducive to automated reasoning (Wos 1988, Duffy 1991). When one reasons with a theory

of equality in axiomatic form, a proof may involve a considerable amount of reasoning about the

5The equality relation can be characterised either by the 2nd-order axiom (7 = y) & VO[O(x) & P(y)]

or by a set lIst-order axioms ensuring that ‘=’

is an equivalence relation and specifying all possible ways
that an equality justifies substitution into the arguments of relations and function. The substitution axioms
take the forms VaVyVzviu[((z = y) A ¢(Z,7,w)) = ¢(Z,y,w)], where ¢ is a relation symbol of the theory, and
VrvyVevul((z = y) — (p(Z,7,w) = p(Z,y,w))], where p is a function symbol. Z and 7 represent (possibly empty)

sequences of variables filling any additional argument places of ¢ and p.
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concept of equality itself, as well as reasoning about other concepts; whereas, if equality 1s handled
by an inference rule (such as paramodulation), then the theory of equality is encapsulated within
this rule so the ramifying effect on the search space 1s greatly reduced.

Associating inferential meaning to other predicate and function symbols within a proposition can
obviate the need for auxiliary axioms; and the findings concerning equality suggest that this may be
extremely advantageous for automated reasoning. One example of this is the use of sorted logic (see
e.g. (Cohn 1987) and section 2.6.2 of this thesis), where reasoning concerning the sorts of predicates
and functions is built into inference rules.® Another example is the use of demodulation rules (see
e.g. (Duffy 1991)) to rewrite and simplify terms in accordance with known identities. These
rules must be tailored to the specific properties of a given theory but they have proved extremely
effective in many domains (Wos 1988). A typical use of demodulation is to reduce Boolean and
other algebraic terms to normal form, to avoid proliferation of equivalent but syntactically distinct
terms. Algebraic terms are very common in mathematical theories but generally do not play a
major role in theories of commonsense concepts. However, the analysis of ROC relations in ferms
of interior algebraic equations (see section 5.3) shows that, an algebraic specification of such concepts
may be possible, even where it is not immediately obvious. Tt 1s this analysis of the RCC relations
that enables their meanings to be captured by means of inference rules rather than axioms.

Algebraic analysis may expose sub-structure in the meanings of relational concepts but in
itself this 1s probably not helpful to automated reasoning. If we simply axiomatised the algebraic
operators, the resulting theory might be even more complex than a direct axiomatisation of the
concepts. To gain computational advantage we need a proof system that takes direct account
of the inferential significance of the algebraic operators and hence encapsulates the meaning of
the concepts within its inference rules. Tt 1s well-known that classical propositional logic can be
interpreted as a Boolean algebra and that modal operators can also be identified with algebraic
operators. Hence it should not be surprising that proof systems designed to compute inferences in
these propositional languages can also be exploited to reason about algebraic equations. However,
the detailed working-out of how this can be done is probably the most novel aspect of the work in
this thesis.

Because they exceed the expressive power of simple Boolean algebra but avoid the intractability
of Tst-order logic, T believe that decidable constraint languages based on Boolean algebras with
additional operators are very well suited to computational manipulation. These encompass the
modal algebras (which T explored in chapter 5) and also relation algebras (discussed in section 9.3).
As well as providing a vehicle for effective automation of spatial reasoning, representations based

on algebraic structures of this kind may be useful in many other areas of knowledge representation.

6 Resolution-based inference rules are particularly well suited to incorporating sortal reasoning.



Appendix A

Elementary (Geometry

A.1 Tarski’s Axiom System

Tarski (1959) has given the following axiomatisation of elementary geometry in terms of the two
primitives, betweenness and equidistance. Here B(x,y, z) means that point y is between points
and z. This relation is taken as true if z is equal to either x or z. xy = zw means that the distance

between points x and y is equal to the distance between points y and z.

B1 [IDENTITY AXTOM FOR BETWERENNESS]
Vry[B(z,y, 7)) = (v = y)

B2 [TRANSITIVITY AXTOM FOR BRETWERENNESS]
Vayzul(B(,y, 1) A By, 1)) = B(r,y,2)]

B3 [CONNRCTIVITY AXTOM FOR BETWERENNESS]
Vayzu[(B(w,y,2) A B(w,y,u) A (2 # 1)) = (B(z,z,u) v B(z,u,2))]
B4 [REFLEXIVITY AXIOM FOR EQUIDISTANCE]
Vaylry = yo]
B5 [IDENTITY AXTOM FOR FQUIDISTANCE]
Vryzlry = zz — (v =y)
B6 [TRANSITIVITY AXTOM FOR FEQUIDISTANCE]

Vroyzuvw[(ry = zu A 3y = vw) = zu = vw)

B7 [PascH’s AxioMm]
ViryzuIu[(B(x,t,u) A B(y,u,z)) = (B(z,v,y) A B(z,t,v))]

B8 [FEucnin’s AX1OM]
ViryzuIvw[(B(z,u,,t) A By,u,z) A (z # y))
— (B(m,z,v) A B(z,y,w) A B(u,t,w))]
B9 [FIVE-SEGMENT AXIOM]
me'yylz‘z'uu'[(my = m'y' N yz = y'z' Azu=az'v A yu = y'u'
A B(z,y,2) A B(z',y',2') AMz # 1y)) = zu = 2'v/]
B10 [AX10M OF SEGMENT CONSTRUCTION]

Vroyuvdz[B(x,y, 2) A yz = u]

B11 [LoWRER DIMENSION AXTOM]

Aryz[-B(x,y,2) A =B(y,z,2) A =B(z,7,y)]
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B12 [UpPER DIMENSION AXIOM]
mezuv[(my =xuv AN yu =yuv N zu = zu A (71, + 7}))
— (B(m,y,z) \Y B(y,z,m) \Y B(Z,m,y))]

B13 [ELEMENTARY CONTINUITY AXTOMS]

All sentences of the form:
Vow ... [AzVey[d A Y — B(z,7,y)] = JuVry[d A Y — B(z,u,y)]]

where ¢ stands for any formula in which the variables x, y, w, ..., but neither y nor z nor u, occur free,

and similarly for ), with = and y interchanged.

B13’ [WEAK CONTINUITY AXIOM]
Voyer' 2 uy' [(ur = us’ A uz = uz’ A B(u,z,2) A B(z,y,2))
— (uy = uy’ A B(2',¢,2'))]

A.2 Primitive Geometrical Concepts

The sequence of definitions given below shows how starting from the fundamental ternary relation
xy = yz, which is true when two points, # and z, are equidistant from a third point, y, many other
simple geometrical relations can be introduced. Tn these definitions, the juxtaposition zy of two

variables » and y is intended to refer to the distance between these two points. Thus xy < yz 1s a

predicate which holds in case y is closer to  than to z. The other relations are: B(x,y, 2) yis
between 2 and z (including the case where y is identical with either 2 or 2); L(z,y,2z) =, y and
z are collinear; and M (x,y, 2) y is the mid-point between = and z.

The relation zy = yz is of great geometrical significance as it relates the centre point (y) of
a sphere to any pair of surface points (z and z). For a 2-dimensional figure, the truth of this
relation for any three points can be determined by means of a compass. The relations B(x,y, z)
and xy = zw are taken as primitives in Tarski’s elementary geometry. A proof that the quaternary
relation 2y = zw is definable in terms of the ternary 2y = yz is originally due to Pieri (1899). The
following definitions showing how this can be done (together with further discussion of primitive

notions in geometry) can be found in (Royden 1959).

vy <yz = Ywlyw = wz — Juleu = uy A uy = yw]]
Blr,9.2) Zay Vul(uwr <oy A wz < 25) — w =1

L(x,y,2) =4, B(z,y,2) V Bly,2,z) V B(x,z,y)
M (,5,2) e Yul(F,7,9) A2y = y) & (= 2V w0 = )]

wr =yz =, uI[M(w,u,y) A M(z,u,v) A vy = yz]



Appendix B

An Alternative Proof of MEconv

In this appendix T give an alternative proof of the theorem BEconv, which was demonstrated in

section H.5.1. The statement of BEconv is as follows:

Convexity of Disjunctive Modal-Algebraic Entailments (MEconv)
w=U,. .y, =U ':MA,, e1=UVN ... N e, =U
iff
o =U,. . o =U ':MAL g, =U forsomeie {1, ...n}

The alternative proof relies only on the additivity of the modal operator and does not require
that its algebraic properties be specifiable just in terms of equations. The basis of the proof is
that given counter-models satisfying the premisses of the sequent and individually falsifying each
disjunct of 1ts conclusion, the additive nature of the operator allows one to construct a counter-

model satisfying the premisses and falsifying the conclusion as a whole.

Proof of MEconv: Tet S be the set of set-constants occurring in a disjunctive
entailment, DF, of the form given in the theorem. Suppose none of the disjuncts on
the r.h.s. is entailed by the equations on the 1.h.s.. This means that for each disjunct
g; = U there is an assignment, ¥; = (S, U;, o3, m;) satisfying all the equations p; = U
but such that ¥;[e;] # U. We can assume, without loss of generality, that the universes,
U; in each of the assignments are disjoint. From these assignments we can construct a
new assignment, Xy, again satisfying all the equations y; = U and such that Xole;] # U
for each g;:

Let o = (S, Ug, 00, mg), where Uy = |J,U;, g is defined by oq(x) = U, i(x)
for each constant x € S and myq is defined by mg(X) = |J, m;(X N U;) for every set
X C Uy (in each case the subscript i ranges from 1 to n).

We note that, because we are dealing with modal algebras; each of the functions m;

must be additive (m; (X UY) = m;(X) Um;(Y)). This means that my is also additive:

mo(X UY) = m((Xuy)nim) = m((X nU)u (Y niy) =

13 13

171
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UJmi(x n iy umi (v 0 0)) = J(mi (X n0:)) U (mi (Y 0 T3)) = mo(X) Umg(Y)

T now show that Xg[r] = |, ¥;[r] for any term 7 i.e. the denotation of any term
under X 18 just the union of its denotations under the assignments ¥;. If 7 is a constant
this is ensured directly by the specification of ¥/, so we can prove it inductively for all
terms by showing that if it holds for any terms a and 3, it must also hold for the terms

a, aUpB, angand xa. For L and U we have:
Yola] = Uy L Sola UU LUE UU EIA| Uz

So[orU B8] = Sglo] U B[4 Uz UUE UEi[auﬁ]

Whence Sola N ] = J; Ei[ar N 8] must hold, since aN B = L(@U J).

The proof for the case of the modal * operator is rather more involved. Since we are
assuming Yola] = |, Bi[o] we have Xg[xa] = mq(Zole]) = mo (U; Zi[e]) and since mg
is additive this equals |, (mo(Z;[])). Tf we now replace mq by its definition in terms
of the functions m; we get the expression |, (U7 m; (Si[e] N T; )) (where i and j both
range from 1 to n). Notice that X;[«] is always a subset of U;; so, because the U;’s are
disjoint, X;[a] N U; must equal X;[a] if i = j and @ otherwise. This means that the
expression can be reduced to |, m; (X;[a]), which is equivalent to |, X;[*a].

Since Eg[r] = U, Ei[7] for any term 7 and the ranges of the assignments ¥; are
disjoint, it follows that an equation is satisfied by ¥q if and only if it is satisfied by all
of the ¥;’s. This ensures that ¥, satisfies all the frame equations of the logic 1. Tt also
means that Y, must satisfy all the equations on the 1.h.s. of the DFE and none of the
equations in the disjunction on the r.h.s. of DF.

Hence, the constructed assignment Yy demonstrates that, if none of the disjuncts on
the r.h.s. of DF is individually entailed by the equations on the 1.h.s., their disjunction
cannot be entailed. So the class of entailments of modal algebraic equations of the form

of DFE 1s convex. B



Appendix C

Prolog Code

C.1  Generating all Conjunctions of RCC-7 Relations

The following program generates all logically distinct relations which can be specified as a con-
junction of RCC-T relations and their negations. The code includes documentation of how 1t works.
Further explanation can be found in section 5.3.3 in the main thesis and also in the section following

the program listing, where T present and explain the program’s output.

%% rccTcons.pl

% This program generates the complete set of logically distinct
% relations, which can be specified as conjunctions of +ve and

% —-ve literals taken from the RCC-7 relation set.

% The set can be generated with or without non-null constraints

% on the regions involved.

% For the sake of generality, non-null constraints are represented
% by adding the relations x0 and yO to the set of RCC-7 relations.
% x0 is true just in case the 1st argument of the relation is null

% and yO if the second argument is null.
%% top-level calls

% Generate all combinations of RCC-7 relations and null relations
% There are 171 (including the impossible relation).
generate_rcc7_cons :-
setof( X, (rcc7con(X), complete(X)), Set),
showlist(Set),

length(Set,L), write(length(L)).

173
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% Generate all combinations of RCC-7 relations for which the
% arguments are non-null.
% There are 115 (including the impossible relation).
generate_rcc7nn_cons :-—
setof( X, (rcc7nncon(X), complete(X)), Set),
showlist(Set),
length(Set,L), write(length(L)).

% Find the most specific relations specifiable between non-null regions

% (excluding the impossible relation).

% This generates the RCC-8 relations.

generate_nnrcc7_base_rels :-
setof ( X, (rcc7nncon(X), complete(X)), Set),
setof (B, (member(B,Set),\+( (member(C,Set), proper_subset(B,C) ))),Base),
showlist (Base),

length(Base,LB), write(base_length(LB)).

%% Subsidiary Predicates

rcc7con(CONJ) :- pick_conjunction([dc,dr,p,pi,ntpp,ntppi,eq,x0,y0], CONJ)
; CONJ = impossible.

rcc7nncon( [not(x0), not(y0) | Rest] ) :-
pick_conjunction([dc,dr,p,pi,ntpp,ntppi,eql, Rest).

rcc7nncon( impossible ).

%% A set of relations is complete iff it is closed under implications.
complete(Set) :- \+( (member(R,Set), implies(R,S),
\+(member(S,Set)) )
),
\+( (member(R1,Set),member(R2,Set),
implies(and(R1,R2),S2),
\+(member(S2,Set)) )

%% Implications holding between rcc7 relations

implies(dc,dr).
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implies(ntpp, p).
implies(ntppi, pi).
implies(eq, p).
implies(eq, pi).
implies(x0, ntpp).
implies(y0, ntppi).
implies(x0, dc).
implies(y0, dc).

implies( and(p,pi), eq ).
implies( and(dr,p), x0 ).
implies( and(dr,pi), yO ).
implies( and(ntpp,ntppi), x0).
implies( and(ntpp,ntppi), yO).
implies( and(ntpp,eq), x0).
implies( and(ntpp,eq), y0).
implies( and(ntppi,eq), x0).
implies( and(ntppi,eq), y0).

implies( not(R), not(S) ):- implies(S,R), \+(S = and(_,_)).
implies( and(R,not(S)), not(T) ) :- implies(and(R,T), S).

%% Additional simple predicates

proper_subset(X, Y) :— \+(X=Y), \+( (member(E,X),\+(member(E,Y))) ).

%% write a list one element per line
showlist([]).
showlist([HIT]) :- write(H),nl,showlist(T).

% pick a conjunction of +ve or -ve literals from a list
pick_conjunction([1,[]).

pick_conjunction([_IT], PT) :- pick_conjunction(T,PT).
pick_conjunction([HIT], [H | PT]) :- pick_conjunction(T,PT).
pick_conjunction([HIT], [not(H) | PT]) :- pick_conjunction(T,PT).

%% minimise/2 can be used to remove redundant rels from RCC7 conjunctions

%% (this is not actually used by the predicates defined above)
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%% Minimising a set is removing all implied relations
minimise(Set,M) :— extract( R, Set, Rest ),

member( S, Rest ),

implies( S, R ), !,

minimise( Rest, M), !.

minimise(Set,M) :— extract( R, Set, Rest ),
extract( S, Rest, Rest2 ),
member( T, Rest2 ),
implies( and(S,T), R ), !,
minimise( Rest, M), !.

minimise(S,S).

%% extract an element from a list (non-deterministically)
extract(X,List,Rest) :- append( Front, [X | End], List ),

append( Front, End, Rest ).

C.1.1 171 Conjunctions of the RCC-7 Relations and their Negations

Here is the set of 171 logically distinct conjunctions of the RCC-7 relations and their negations
generated by the program given in the last section. The relations are given in the form of a list of
conjuncts, with negated conjuncts given as not (R). Relations are denoted by their usual mnitials
but in small letters (because of the syntax of Prolog). The empty list corresponds to the universal,
holding between any two regions. Any conjunction containing a literal and its negation is equivalent
to the impossible relation.

The fact that one or other of the regions involved in a relation is null is specified by the special
pseudo-relations x0 and y0, meaning respectively that the 1st or 2nd argument is null. Tn the RCC
theory all regions are non-null. Thus, only those conjunctions including the conjuncts not (x0)
and not (y0) correspond to legitimate RCC relations. There are 115 such relations (including the
impossible relation which implicitly includes both non-null constraints).

The conjunction sets generated by the program are closed under implication and this ensures
that they are all genuinely logically distinct. Tt also means that there is a lot of redundancy in the
resulting specification of the relations. For instance, every conjunction which has dc as a conjunct
also includes the weaker relation dr as a conjunct. This redundancy could be eliminated by post-
processing the sets to remove implied conjuncts; however, there is not always a unique way to

simplify a conjunction so T have not done this.

| ?- generate_rcc7_cons.
N
impossible

[dc,dr]
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[dc,dr,p,ntpp,x0]

[dc,dr,p,pi,ntpp,ntppi,eq,x0,y0]
[dc,dr,p,not(pi),ntpp,not(ntppi),not(eq),x0,not(y0)]
[dc,dr,pi,ntppi,y0]

[dc,dr,pi,ntppi,not(eq),y0]

[dc,dr,not(eq)]
[dc,dr,not(p),pi,not(ntpp),ntppi,not(eq),not(x0),y0]
[dc,dr,not(p),not(ntpp),not(eq),not(x0)]
[dc,dr,not(p),not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[dc,dr,not(pi),not(ntppi),not(eq),not(y0)]

[dr]

[dr,not(eq)]

[dr,not(p),not(ntpp),not(eq),not(x0)]
[dr,not(p),not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[dr,not(pi),not(ntppi),not(eq),not(y0)]

[p]

[p,ntpp]

[p,pi,eq]

[p,pi,eq,not(x0)]

[p,pi,eq,not(x0),not(y0)]

[p,pi,eq,not(y0)]

[p,pi,not(ntpp),eq,not(x0)]
[p,pi,not(ntpp),eq,not(x0),not(y0)]
[p,pi,not(ntpp),not(ntppi),eq,not(x0),not(y0)]
[p,pi,not(ntppi),eq,not(x0),not(y0)]
[p,pi,not(ntppi),eq,not(y0)]
[p,not(ntpp),not(ntppi),not(x0),not(y0)]
[p,not(ntpp),not(x0)]

[p,not(ntpp),not(x0),not(y0)]
[p,not(ntppi),not(x0),not(y0)]
[p,not(ntppi),not(y0)]
[p,not(pi),ntpp,not(ntppi),not(eq),not(x0),not(y0)]
[p,not(pi),ntpp,not(ntppi),not(eq),not(y0)]
[p,not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[p,not(pi),not(ntppi),not(eq),not(x0),not(y0)]
[p,not(pi),not(ntppi),not(eq),not(y0)]

[p,not(x0)]

[p,not(x0),not(y0)]

[p,not(y0)]

[pil
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[pi,ntppil

[pi,ntppi,not(eq)]

[pi,ntppi,not(eq),not(x0)]
[pi,ntppi,not(eq),not(x0),not(y0)]
[pi,ntppi,not(eq),not(y0)]

[pi,not(eq)]

[pi,not(eq),not(x0)]

[pi,not(eq),not(x0),not(y0)]

[pi,not(eq),not(y0)]
[pi,not(ntpp),ntppi,not(eq),not(x0)]
[pi,not(ntpp),ntppi,not(eq),not(x0),not(y0)]
[pi,not(ntpp),not(eq),not(x0)]
[pi,not(ntpp),not(eq),not(x0),not(y0)]
[pi,not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[pi,not(ntpp),not(ntppi),not(x0),not(y0)]
[pi,not(ntpp),not(x0)]

[pi,not(ntpp),not(x0),not(y0)]
[pi,not(ntppi),not(eq),not(x0),not(y0)]
[pi,not(ntppi),not(eq),not(y0)]
[pi,not(ntppi),not(x0),not(y0)]
[pi,not(ntppi),not(y0)]

[pi,not(x0)]

[pi,not(x0),not(y0)]

[pi,not(y0)]
[not(dc),dr,not(p),not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),p,pi,eq,not(x0),not(y0)]
[not(dc),p,pi,not(ntpp),eq,not(x0),not(y0)]
[not(dc),p,pi,not(ntpp),not(ntppi),eq,not(x0),not(y0)]
[not(dc),p,pi,not(ntppi),eq,not(x0),not(y0)]
[not(dc),p,not(ntpp),not(ntppi),not(x0),not(y0)]
[not(dc),p,not(ntpp),not(x0),not(y0)]
[not(dc),p,not(ntppi),not(x0),not(y0)]
[not(dc),p,not(pi),ntpp,not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),p,not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),p,not(pi),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),p,not(x0),not(y0)]
[not(dc),pi,ntppi,not(eq),not(x0),not(y0)]
[not(dc),pi,not(eq),not(x0),not(y0)]
[not(dc),pi,not(ntpp),ntppi,not(eq),not(x0),not(y0)]
[not(dc),pi,not(ntpp),not(eq),not(x0),not(y0)]
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[not(dc),pi,not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),pi,not(ntpp),not(ntppi),not(x0),not(y0)]
[not(dc),pi,not(ntpp),not(x0),not(y0)]
[not(dc),pi,not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),pi,not(ntppi),not(x0),not(y0)]
[not(dc),pi,not(x0),not(y0)]
[not(dc),not(dr),p,pi,eq,not(x0),not(y0)]
[not(dc),not(dr),p,pi,not(ntpp),eq,not(x0),not(y0)]
[not(dc),not(dr),p,pi,not(ntpp),not(ntppi),eq,not(x0),not(y0)]
[not(dc),not(dr),p,pi,not(ntppi),eq,not(x0),not(y0)]
[not(dc),not(dr),p,not(ntpp),not(ntppi),not(x0),not(y0)]
[not(dc),not(dr),p,not(ntpp),not(x0),not(y0)]
[not(dc),not(dr),p,not(ntppi),not(x0),not(y0)]
[not(dc),not(dr),p,not(pi),ntpp,not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),p,not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),p,not(pi),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),p,not(x0),not(y0)]
[not(dc),not(dr),pi,ntppi,not(eq),not(x0),not(y0)]
[not(dc),not(dr),pi,not(eq),not(x0),not(y0)]
[not(dc),not(dr),pi,not(ntpp),ntppi,not(eq),not(x0),not(y0)]
[not(dc),not(dr),pi,not(ntpp),not(eq),not(x0),not(y0)]
[not(dc),not(dr),pi,not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),pi,not(ntpp),not(ntppi),not(x0),not(y0)]
[not(dc),not(dr),pi,not(ntpp),not(x0),not(y0)]
[not(dc),not(dr),pi,not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),pi,not(ntppi),not(x0),not(y0)]
[not(dc),not(dr),pi,not(x0),not(y0)]

[not(dc) ,not(dr),not(eq),not(x0),not(y0)]
[not(dc),not(dr),not(ntpp),not(eq),not(x0),not(y0)]

[not(dc) ,not(dr),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),not(ntpp),not(ntppi),not(x0),not(y0)]
[not(dc),not(dr),not(ntpp),not(x0),not(y0)]
[not(dc),not(dr),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),not(ntppi),not(x0),not(y0)]
[not(dc),not(dr),not(p),pi,not(ntpp),ntppi,not(eq),not(x0),not(y0)]
[not(dc),not(dr),not(p),pi,not(ntpp),not(eq),not(x0),not(y0)]
[not(dc),not(dr),not(p),pi,not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),not(p),not(ntpp),not(eq),not(x0),not(y0)]
[not(dc),not(dr),not(p),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]

[not(dc),not(dr),not(p),not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
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[not(dc),not(dr),not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),not(pi),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(dr),not(x0),not(y0)]
[not(dc),not(eq),not(x0),not(y0)]

[not(dc) ,not(ntpp),not(eq),not(x0),not(y0)]

[not(dc) ,not(ntpp),not(ntppi),not(eq) ,not(x0),not(y0)]
[not(dc) ,not(ntpp),not(ntppi),not(x0),not(y0)]

[not(dc) ,not(ntpp),not(x0),not(y0)]

[not(dc) ,not(ntppi),not(eq),not(x0),not(y0)]

[not(dc) ,not(ntppi),not(x0),not(y0)]
[not(dc),not(p),pi,not(ntpp),ntppi,not(eq),not(x0),not(y0)]
[not(dc),not(p),pi,not(ntpp),notleq),not(x0),not(y0)]
[not(dc),not(p),pi,not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(p),not(ntpp),not(eq),not(x0),not(y0)]
[not(dc),not(p),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc) ,not(p),not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc) ,not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(dc),not(pi),not(ntppi),not(eq),not(x0),not(y0)]

[not(dc) ,not(x0),not(y0)]

[not(eq)]

[not(eq) ,not(x0)]

[not(eq) ,not(x0),not(y0)]

[not(eq) ,not(y0)]

[not(ntpp) ,not(eq),not(x0)]
[not(ntpp),not(eq),not(x0),not(y0)]

[not(ntpp) ,not(ntppi),not(eq),not(x0),not(y0)]

[not(ntpp) ,not(ntppi),not(x0),not(y0)]

[not(ntpp) ,not(x0)]

[not(ntpp) ,not(x0),not(y0)]
[not(ntppi),not(eq),not(x0),not(y0)]
[not(ntppi),not(eq),not(y0)]

[not(ntppi),not(x0),not(y0)]

[not(ntppi),not(y0)]
[not(p),pi,not(ntpp),ntppi,not(eq),not(x0)]
[not(p),pi,not(ntpp),ntppi,not(eq),not(x0),not(y0)]
[not(p),pi,not(ntpp),not(eq),not(x0)]
[not(p),pi,not(ntpp),not(eq),not(x0),not(y0)]
[not(p),pi,not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(p),not(ntpp),not(eq),not(x0)]
[not(p),not(ntpp),not(eq),not(x0),not(y0)]
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[not(p),not(ntpp),not(ntppi),notleq),not(x0),not(y0)]
[not(p),not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(pi),not(ntpp),not(ntppi),not(eq),not(x0),not(y0)]
[not(pi),not(ntppi),not(eq),not(x0),not(y0)]
[not(pi),not(ntppi),not(eq),not(y0)]

[not(x0)]

[not(x0),not(y0)]

[not(y0)]

length(171)

yes

| 7-

181
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C.2 An 7 Theorem Prover for Spatial Sequents

The following code implements an intuitionistic theorem prover based on a (Gentzen sequent calcu-
lus. The prover is optimised to perform better with the class of sequents generated by the encoding
of RCC-8 reasoning in Z. This means that the prover is not complete for arbitrary 7 sequents.
The main simplification of the calculus is that the rule for eliminating implications on the left of
the sequent is replaced by modus ponens. Another variant of modus ponens in added to handle

the case of an implication with a conjunction as its antecedent see section 6.3.3.

% Gentzen system for propositional intuitionistic logic
% Restricted to give better performance on sets of spatial

% constraint formulae (as given in KR94).

%% set prooftrace to “on’ to see trace or use  prooftr’
%% command (below) to toggle mode.
:— dynamic prooftrace/1.

prooftrace(off).

% Output current goal if in tracing mode
entail (Prems,Conc) :- prooftrace(on),

format('trying to prove “p |- “p “n", [Prems, Concl),

fail.

i
%% SEQUENT RULES FOR I
i

%% Terminating conditions

entail(Prems, Conc) :— member(Conc, Prems), ',

entailtrace("Proven (conc is prem)~2n", []1).

entail (Prems, _) :— member(absurd, Prems), ',

entailtrace("Proven (absurd prem)~2n", []).

%% Simple sequent re-writes

%h |- equiv
entail (Prems, equiv(P,Q)) :- !,
setadd(P, Prems, P_Prems), !,

entail(P_Prems, Q), !,



APPENDIX C. PROLOG CODE 183

setadd(Q, Prems, Q_Prems), !,
entail(Q_Prems, P), !.

%% equiv |-

entail (Prems, Conc) :—
extract(equiv(P,Q),Prems, Rest), !,
setadd2(if(P,Q), if(Q,P), Rest, NewPrems),

entail (NewPrems, Conc), !.

%% and |-

entail (Prems, Conc) :—
extract(and(P,Q) ,Prems,Rest), !,
setadd2(P, Q, Rest, P_Q_Prems), !,

entail( P_Q_Prems, Conc), !.

%h o= if
entail(Prems, if(P,Q)) :— !,
setadd(P, Prems, P_Prems), !,

entail( P_Prems, Q), !.

%% |- not
entail(Prems, not(P)) :— !,
setadd(P, Prems, P_Prems), !,

entail (P_Prems, absurd), !.

%% Conjunctive Splitting Rules (deterministic)

%% |- and

entail(Prems, and(P,Q)) :- !,
entail(Prems, P), !,
entail(Prems, Q), !.

%h or |-

entail (Prems, Conc) :—
extract(or(P,Q), Prems, Rest), !,
setadd(P, Rest, P_Prems),
entail(P_Prems, Conc), !,
setadd(Q, Rest, Q_Prems), !,

entail(Q_Prems, Conc), !.



APPENDIX C. PROLOG CODE 184

%% Pruning Rules

%% Not necessary for completeness but save a lot of search.

%% Implications are redundant if you have the conclusion
entail (Prems, Conc) :—
extract(if(_,Q), Prems, Rest),
member(Q, Rest), !,

entail( Rest, Conc ), !.

%% More such rules could be added for greater efficiency

A .—_—_-H e
%% Non-deterministic Rules

%% Application of these rules reduces sequent to a logically
%% stronger form: so must backtrack for completeness.

%% (rules xentail(..) are not used for the spatial reasoner

%% but would be needed for complete intuitionistic reasoning.)

%hoif |-
%% The if rule is not used for the spatial constraints
%% It is replaced by modus ponens and another similar rule.
%% see below.
disabled_entail(Prems, Conc) :-—
extract (if(P,Q), Prems, Rest),
entail(Rest, P), !,
setadd( Q, Rest, Q_Prems),

entail( Q_Prems, Conc ), !.

%% mnot |-

%% re—write not(X) to if( X, absurd )

entail(Prems, Conc) :- extract(not(P),Prems, Rest), !,
setadd( if (P, absurd), Rest, NewPrems),

entail( NewPrems, Conc), !.

%% Using modus ponens for “if |- is not complete for I in
%% general; but it is complete for the topological constraints
%% if used together with the similar rule following.

entail (Prems, Conc) :—
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extract (if(P,Q), Prems, Rest),
member (P, Rest),
setadd(Q, Rest, Q_Prems),

entail( Q_Prems, Conc ).

%% Rule for constraint “not(and(X,Y))  on left
%% a Modus Ponens variant
entail (Prems, Conc) :—
extract(if(and(X,Y),Q), Prems, Rest),
member (X, Rest),
member (Y, Rest),
setadd(Q, Rest, Q_Prems),

entail( Q_Prems, Conc ).

%% We still have non-determinism for disjunctive conclsions.
%% This could also be eliminated by adding more prunig rules.
hho |- or
entail(Prems, or(P,Q)) :—

( entail(Prems, P)

entail(Prems, Q)

%% Conclusion may also be given as singleton list
%% (for compatibility with other sequent progs)

entail(Prems, [Conc]) :— !, entail(Prems, Conc).

WAt FAIL %%%
% If no rule applicable fail current entail goal
entail(_,_) :- entailtrace("Failed~2n'", [1),

fail.

% alternative top-level call for single premiss sequents

entails(P,Q):- entail([P], Q).
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% Simple predicates used above

% extract(X,List,Rest) —— X occurs in List, remainder is Rest
% the definition is now kept in ~/prolog/lib/mylib.pl

% extract(X, List, Rest) :- append(A, [X | B], List),

% append(A, B, Rest).

% add an element to a set
setadd( Elt, Set, Set) :— member(Elt, Set), !.

setadd( Elt, Set, [Elt | Setl).

% add two elts to a set

setadd2( E1t1, E1t2, SetIn, SetOut ) :-
setadd( Elt1l, SetIn, SetOutl ),
setadd( E1t2, SetOutl, SetOut).

% Tracing the prover

% output with “format’ if prooftrace is on
entailtrace(Str,Args) :- ( prooftrace(on) ->
format(Str, Args)

; true

% Toggle proof tracing
prooftr :- (prooftrace(on) ->
( retractall(prooftrace(_)),
assert(prooftrace(off)),

write(prooftrace(off))

( retractall(prooftrace(_)),
assert(prooftrace(on)),

write(prooftrace(on))

% Some example test problems
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check(emi)
check(dn1)
check(dn?2)

check(test)

hard_test:-

:— entail([1, [or(p, not(p))]).
:— entails( p, not(not(p))).

:— entails( not(not(p)), p).

entail([not(and(c,con(a))),not(and(b,con(c))),
if(c,con(b)),or(not(c),not(b)),
not(and(a,con(c))),if(c,con(a)),
or(not(c),not(a))],

not(and(c,con(b)))).

% Not so hard with restriced rules

entail([not(and(a,b)), not(and(b,a)),
or(not(b),not(a)),not(and(b,c)),
if(c,con(b)),or(not(c),not(b)),
not(and(a,c)), not(and(c,a)),
or(not(c),not(a)),if(b,con(b)),
if(a,con(a)),if(c,con(c)),

not(and(con(b),con(a)))).

187
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C.3 A Special Purpose O(n?) Algorithm for Spatial Sequents

The following code implements the 7 reasoning algorithm based on the optimised sequent calculus
rules given in section 6.3.4. As with the program given in appendix .2, this means that the proof
system 1s only complete for sequents arising from the 7 encoding of RCC-8 consistency problems
and not for arbitrary sequents of 7. For this restricted class of sequents it can be shown that the
worst case Tun-time is of O(n?) in the number formulae on the 1.h.s. of the sequent. This number
18 of the order of the number of RCC-8 relations which are to be tested for consistency; however,
checking consistency of n relations requires O(n) separate T sequents to bhe tested. Thus checking
consistency of n RCC-8 relations requires O(n?) time. This result applies more generally to any

set of relations which can be represented as a conjunction of RCC-7 relations and their negations.

%% n3top.pl

%% A decision procedure for spatial entailments encoded into sequents

%% of the binary fragment of intuitionistic propositional logic.

%% Declare dynamic predicates to store model and entailment constraints.
%% The last argument is a status flag used to keep track of formulae

%% which are asserted temporarily in the course of testing an entailment.

%% There are four kinds of model constraint:

:— dynamic mcon_or/3.

:~ dynamic mcon_if/3.

:— dynamic mcon_nand/3.

%% Atoms are stored as mcon( AtomName, Status ).

:— dynamic mcon_atom/2.

%% Entailment constraints are stored as “econ( Formula, Status )~ .

:— dynamic econ/2.

%% Three status flags are used

%% db  -— formula is part of a consistent database encoding spatial facts
%% test —-— formula is associated with a putative spatial fact whose

Wh consistency is to be tested.

%% pr -- formula is asserted temporarily while testing particular sequent.

%% The flags ought to be further parameterised by some database id
%% (ie we would have: db(id), test(id) and pr(id).

%% Then we could use multiple databases.
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Wy

%% Predicates for adding to the database

%% add_mcon( Formula, Status )

%% Add a model constraint formula to the database

%% also add extra implications entailed by disjunctions
%% and add closure of all implications

%% A1l added formulae have status S

add_mcon( if(X,Y), S ) :-
add_imp_and_close( if(X,Y), S ).
add_mcon( or(if(X,f),Y), S ) :—
% add the entailed implication if(X,Y)
add_imp_and_close( if(X,Y), S ),
assert_if_new( mcon_or( if(X,f), Y, S ) ).
add_mcon( or(if(X,f), if(Y,f)), S ) :-
add_imp_and_close( if(X,if(Y,f)), S ),
assert_if_new( mcon_or( if(X,f), if(Y,f), S ) ).

add_mcon(A, S) :— atom(A4),

assert_if_new( mcon_atom( A, S ) ).

add_mcon_1list([1, _).
add_mcon_1list([HIT], S) :— add_mcon(H, S),
add_mcon_1ist(T, S).

add_econ_1list([1, _).
add_econ_list([HIT], S) :- assert( econ(H, S) ),
add_econ_1ist(T, S).

il =
%% add_imp_and_close( Implication, Status )
%% Add an implication to the database together with all its consequences

%% Status flag S also added, which allows temporary formulae to be removed.

% if already there do nothing
add_imp_and_close( if(X,Y), _ ) :- mcon_if(X,Y, _), !.

% if subsumed do nothing

add_imp_and_close( if (X,if(Y,f)), _ ) :-
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( mcon_nand(X,Y, _);
mcon_nand(Y,X, _);
mcon_if(X,f, _);
mcon_if(Y,f, _ )

), ).

%% add if(X,if(Y,f)) and consequences
add_imp_and_close( if(X,if(Y,f)), S ) :- !,
sweep( ( mcon_if(A,X, _),

assert_if_new( mcon_nand(4,Y, S) )

)’
sweep( ( mcon_if(B,Y, _),

assert_if_new( mcon_nand(X,B, S) )

)’

assert( mcon_nand(X,Y, S) ).

%% add simple if(X,Y) and consequences
add_imp_and_close( if(X,Y), S ) :-
sweep( ( mcon_if(Y,Z, _),

assert_if_new( mcon_if(X,Z, S) )

)’
sweep( ( mcon_if(Z,X, _),

assert_if_new( mcon_if(Z,Y, S) )

)’

assert( mcon_if(X,Y, S) ).

N —
%% prove( Formula )
%% This is true if Formula is a consequence of the model constraints

%% stored in the database.

prove( if(X,f) ) :- !,
prune_ors_wrt( if(X,f) ),
assert_if_new( mcon_atom(X, pr) ),

derive_by_modus_ponens(f).
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prove( if(X,Y) ) :- assert( mcon_atom(X, pr) ),

derive_by_modus_ponens(Y).

prove( if(X,if(¥,f)) ) :- assert( mcon_atom(X, pr) ),
assert( mcon_atom(Y, pr) ),

derive_by_modus_ponens(f).

prove( or(if(X,f), if(Y,f)) ) :— 1!,
prune_ors_wrt( if(X,f) ),
prune_ors_wrt( if(Y,f) ),
assert( mcon_atom(X, pr) ),
( derive_by_modus_ponens(f)
( clean(pr),
assert_if_new( mcon_atom(Y, pr)),

derive_by_modus_ponens(f)

prove( or(if(X,f),Y) ) :— !,
prune_ors_wrt( if(X,f) ),
prune_ors_wrt( Y ),
assert( mcon_atom(X, pr) ),
( derive_by_modus_ponens(f)
( clean(pr),

derive_by_modus_ponens(Y)

%% Specification of the PROOF RULES

%% Add all consequences of the pruning rule for disjunctions

prune_ors_wrt( F ) :-

sweep( ( mcon_or(X,F, _), add_mcon( X, pr ) ) ),
sweep( ( mcon_or(F,X, _), add_mcon( X, pr ) ) ).

191
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derive_by_modus_ponens( Conc ) :-—
%% probably wont terminate as soon as Conc found
% First sweep over all MP applications
sweep( ( mcon_atom(A, _),
\+( mcon_atom(f, _) ), %stop if inconsistent
\+( mcon_atom(Conc, _) ), %stop if proved
( ( mcon_if( A, B, _ ),
assert_if_new( mcon_atom(B, pr) )
)
( mcon_nand( A, B, _ ),
assert_if_new( mcon_if(B,f, pr) )
)
( mcon_nand( C, &, _ ),
assert_if_new( mcon_if(C,f, pr) )
)
% Could also subsume if(X,A) clauses
% But must replace them if using an incremental DB

)

)’
% Then test whether Conc or f has been derived

(mcon_atom(Conc, _) ; mcon_atom(f, _)).

%% ** Top-level predicate for testing intuitionistic sequents
test_sequent(Prems, Conc ) :-—

clean,

add_mcon_list(Prems, test),

prove(Conc),

clean(test).

%% query database
%% Use check_new_cons_wrt_db to check consistency
%% Necessary if all query lMcons also entailed by db lMcons

%h and all query Econs entailed by db Econs

%% This version only checks consistency
query_db( Rel, Ans ) :-—

rcc8i( Rel, Mcons, Econs ),
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(check_new_cons_wrt_db( Mcons, Econs )
—-> Ans = consistent
; Ans = inconsistent
),

clean(test), clean(pr).

check_new_cons_wrt_db(Mcons, Econs) :-—
add_mcon_1list( Mcons, test ),
add_econ_list( Econs, test ),

all_econs_consistent.

all_econs_consistent :-
\+( ( econ( F, _ ),
clean(pr),

prove( F )

%% Time random queries wrt a fixed database.

time_random_queries(No, Regs, T, AvT) :-
statistics(runtime, [_,_1),
do_n_random_queries(20, Regs),
statistics(runtime,[_,T]),

AvT is T/No.

do_n_random_queries(0, _) :- !.
do_n_random_queries(N, RegNo) :- !,
random_rel( RegNo, RR ),
gen_out( testing rel(RR) ),
query_db( RR, _ ),
NextN is N-1,

do_n_random_queries(NextN, RegNo), !.

generate_random_db( _, 0, 0).
generate_random_db( RegNo, RelNo, RelsTried ) :- !,
random_rel( RegNo, RR ),
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gen_out( testing rel(RR) ),
rcc8i( RR, Mcons, Econs),
( add_if_consistent( Mcons, Econs )
-> (
MoreRels is RelNo -1,
gen_out( Consistent: more rels to add “(MoreRels)),
generate_random_db( RegNo, MoreRels, MoreTries),
RelsTried is MoreTries +1
)

;  ( gen_out(’Inconsistent wrt DB’),

generate_random_db( RegNo, RelNo, MoreTries),

RelsTried is MoreTries +1

), !

add_if_consistent( Mcons, Econs ) :—
check_new_cons_wrt_db(Mcons, Econs),
clean(pr),

change_status(test,db), !.

add_if_consistent(_,_) :-

clean(pr), clean(test), fail.

time_random_db(Regs, Rels, Tried, T) :-
clean,
statistics(runtime, [_,_1),
generate_random_db(Regs,Rels, Tried),
statistics(runtime,[_,T]),
nl, write(regions(Regs)),
nl, write(relations(Rels)),
nl, write(tried(Tried)),

nl, write(time(T)), nl, ttyflush.

e

%% Predicates for adding removing and changing status of formulae

%% in the database

%% Add mcon unless already present

%% Note that the existing fact need not have same status
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assert_if new/(

assert_if new/(

assert_if new/(

assert_if new/(

( mcon_atom(X,_) ; assert(mcon_atom(X,S)) ), !.

% clean(S) -- remove from the database all dynamic facts with status S
clean(S) :- retractall( mcon_or(_,_,S) ),

retractall( mcon_if(_,_,S) ),

retractall( mcon_nand(_,_,S) ),

retractall( mcon_atom(_,S) ),

retractall( econ(_,S) ).
% clean

mcon_if(X,Y,S) ) :-

( mcon_if(X,Y,_) ; assert(mcon_if(X,Y,S)) ), !.

mcon_nand(X,Y,S) )

( mcon_nand(X,Y,_) ; assert(mcon_nand(X,Y,S)) ),

mcon_or(X,Y,S) ) :-—

( mcon_or(X,Y,_) ; assert(mcon_or(X,Y,S)) ), !.

mcon_atom(X,S) ) :—

% remove all dynamic facts from the database

clean :- clean( ).

% Change status of all mcons with status S1 to S2.

change_status(S1,52) :-

he
he
he
he

he

sweep( ( (retract(

assert(mcon_

mcon_or(X,Y,S1) ),

or(X,Y,S2)) );

(retract( mcon_if(X,Y,S1) ),

assert(mcon_

if(X,Y,S2)) );

(retract( mcon_nand(X,Y,S1) ),

assert(mcon_

nand(X,Y,S2)) );

(retract( mcon_atom(X,S1) ),

assert(mcon_

atom(X,Y,S2)) )

rcc8i

This predicate specifies the mapping from RCC8 relations

to intuitionistic model and entailment constraint formulae

RCC rel

Model Constraints

Entailment Constraints

195
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rce8i( de(X,Y), Lor(if(X,f), if(Y,f))], [if(X,f), if(Y,£)] ).
rce8i( ec(X,Y), [if (X,if(Y,£))], [or(if(X,f), if(Y,f)),
if(X,f), if(Y,£)]1).
rce8i( po(X,Y), 0, [if (X,if(Y,£)), if(X,Y),
if(Y,X), if(X,f), if(Y,£)]).
rce8i( tpp(X,Y), [if (x,¥)], [or(if (X,£f),Y),
if(X,f), if(Y,£)]1).
rce8i( tppi(X,Y), [if(Y,X)], Lor(if (Y,£),X),
if(X,f), if(Y,£)]1).

rce8i( ntpp(X,Y), [or(if(X,f),¥Y)], [if(X,£f), if(Y,£)]1 ).
rce8i( ntppi(X,Y), [or(if(Y,f),X)1, [if(X,f), if(Y,£)]1 ).
rce8i( eq(X,Y), [if(X,Y), if(Y,X)1, [if(X,f), if(Y,£)] ).

% Auxilliary Minor Predicates

gen_out_flag(on).
gen_out(_) :- gen_out_flag(off), !.

gen_out(0) :- write(0), nl, ttyflush, !.

:— use_module(library(random)) .

random_rel( RegNo, Rel ) :-
random_elt([dc,ec,po,tpp,tppi,ntpp,ntppi,eql, R),
random(0,RegNo, R1),
random(0,RegNo, R2),
Rel =.. [R, r(R1), r(R2)].

random_elt(L,E) :- length(L,Len),
Lim is Len +1,
random(1,Lim,R),

nth(R,L,E).



Appendix D

Redundancy in Composition Tables

This appendix summarises the main results that were published in (Bennett 1994a) concerning the
redundancy of information in composition tables.

If a basis set contains n relations, then there will be n? table entries and if computing each
entry requires making n consistency checks then the total number of consistency checks required
to construct the table will be n®. However, a consideration of the structure of a composition table
will reveal that it contains a large amount of redundant information. Hence much of the work
done in consistency checking to compute such a table is also redundant. One sort of redundancy
occurs because, if we compute each cell of a composition table separately, we end up checking the
consistency of identical sets of relations several times. Further redundancy is introduced by the
fact that any relation can be written in two ways: by inverting the relation and swapping the order
of the arguments.

Clearly a composition table can be constructed very easily once we know the set of consistent
triangular configurations of relations drawn from the basis set under consideration. Furthermore,
once we have determined whether a triangle is consistent, we have already determined the con-
sistency of the essentially equivalent triangles obtained by rotating the original or inverting each
of 1ts relations. The exact number of triangles equivalent to a given triangle depends upon the
distribution of symmetric and asymmetric relations and whether it contains duplicate relations.

The question T now address is: how many essentially distinct triangles can be formed from
s symmetric and a asymmetric relationsI’ Consider an arbitrary set of relations consisting of s
symmetric relations, a asymmetric relations and a further asymmetric relations which are their
converses. Figure D.1 shows all possible configurations of symmetric and asymmetric relations
in a triangle, modulo rotation and flipping. The capital letters S and A stand for ‘symmetric’
and ‘asymmetric’ and indicate the numbers of each type of relation present in the triangle. The
small letters ‘c’, ‘d” and 17, stand for ‘converging’, ‘diverging’ and “following’, which describe the
different ways in which two asymmetric relations can be arranged. ‘r’ and ‘n’ denote rotating and
not rotating configurations of three asymmetric relations.

To calculate the total number of essentially different triangles, the numbers of possible instan-

tiations of each of these configurations were calculated case by case. After some manipulation, the
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ANVA
VANWAN

AAAr AAAN

Figure D.1: Possible configurations of symmetric and asymmetric relations

following polynomial giving the total number, T of essentially distinct triangles in terms of s and

a was arrived at:

1 1
T = g(eg 1357 4 2s) + s2a 4+ 3(20,2 +a)+ 5(4(13 + 2a)

We also know that the total number n of relations in a theory 1s equal to s+ 2a, s0 s = n 1 2a. By
substituting n L 2a for s in the polynomial we end up with a simpler equation primarily involving
n:

1
T = g(n3+3n2—|—2n) 1 na

As the number of relations increases, the n? terms of the (second) equation will dominate. Thus
for large n the number of distinct triangles will approach n?/6.

The following table shows values of 5, @, n?, and T for a number of theories for which com-
position tables have been constructed. RCC-8 1s the basis of eight topological relations defined in
Randell, Cui and Cohn (1992). RCC-23 is a basis of spatial relations involving containment whose
definition is discussed in Cohn et al. (1993) (the complete composition table is given in Bennett
(1994b)). TC-13 is Allen’s (1983) temporal interval calculus; and T.OS-14 is Galton’s (1994) TLine

of Sight calculus. The final column gives T as a percentage of n?.

n

Basis Sef ‘ ‘ a ‘ n? ‘ T ‘ %

RCC-8 2 512 104 | 20.3
RCC-23 8 | 21167 | 2116 | 17.4
1C-13 116 2197 | 377 | 16.8
1.OS-14 216 2744 | 476 | 17.3

-

Table D.1: Composition table redundancy figures for four relation sefs

Hence, by looking at relational compositions as being charaterised by a set of consistent tri-

angles rather than by a table and by taking advantage of rotational and mirror symmetry exhibited
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by these triangles, the computational work needed to determine the compositions of a set of re-
lations can be reduced to approximately one sixth of what would be required using the naive,
table-based approach. Moreover, rather than storing a composition table, it is sufficient to store
just the consistent, triangles (or the inconsistent ones, if there are less of those). Tt is easy to see
that from this information, composition table entries can be computed by a constant time bounded

algorithm.
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