
Reconstruction of Extended Environments
from Image Sequences

by

Stuart Butterfield

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Computer Studies

May 1997

The candidate confirms that the work submitted is his own and that appropriate credit has been

given where reference has been made to the work of others.

ii

Stuart Butterfield

School of Computer Studies

University of Leeds

Doctor of Philosophy

May 1997

Reconstruction of Extended Environments
from Image Sequences

Abstract

The automatic recovery of the three-dimensional structure of a scene from a sequence of
two-dimensional images has been the subject of considerable research in the field of machine vi-
sion, with applications as wide-ranging as object recognition, virtual reality and robot navigation.
Traditional attempts to solve this structure from motion (SFM) problem rely on calibrated cameras
and involve the detection and tracking of features through successive images in the sequence.

When considering long image sequences, taken with an ordinary hand-held video camera,
the problem is significantly harder, since both camera calibration parameters and matched feature
information are difficult to obtain accurately. An additional complication is that small errors in the
recovered structure will accumulate over long sequences, possibly resulting in a reconstruction
which is internally inconsistent. To date, there has been no discussion in the SFM literature of
attempts to tackle this important issue.

Recently, a number of different techniques have been developed for scene reconstruction
using uncalibrated cameras. In such cases the recovered structure is correct up to a projective
transformation of the real structure. In this thesis, an original, incremental reconstruction system
is described, based on this uncalibrated approach. A novel implementation for computing the
fundamental matrix from a pair of images is presented, from which a projective reconstruction is
obtained. For the first image pair in the sequence, a small number of ground truth points are used
to upgrade from projective to Euclidean structure. This structure is propagated through succes-
sive frames to obtain a complete Euclidean reconstruction for the entire scene. The inconsistency
problem is addressed by attempting to detect when previously viewed sections of the scene are
re-encountered. A solution method using the geometric hashing model-based object recognition
paradigm is proposed.

iii

Acknowledgements

First of all, I would like to thank Professor David Hogg for his encouragement, guidance and
patience throughout the duration of my research.

Too numerous to mention are all those staff and students in the School of Computer Studies,
who have helped make my time here so enjoyable. Particular, thanks must go to my colleagues
in the Vision Group, both past and present, who created such a friendly atmosphere to work, and
play, in. From demonstration classes to doughnuts, from research seminars to football, it’s been
a pleasure.

A special thank-you to Andy Bulpitt, proof-reader, agony uncle and a great friend. I know
I wouldn’t have reached this point without him.

My eternal gratitude goes to my parents and sister for their incredible support, especially
during this last year, and thanks to Sarah, for everything, but especially for putting up with me for
so long.

I gratefully acknowledge the financial support of the University of Leeds, for the first three
years of this research, and thank the School of Computer Studies for keeping me gainfully em-
ployed whilst writing up.

Finally, for her unwavering belief, to Elizabeth, the usual.

Contents

1 Introduction 1

1.1 Approach Taken : 3

1.2 Overview of the Thesis : 4

1.3 Notation : 5

2 Background 6

2.1 Introduction : 6

2.2 The Fundamental Matrix : 8

2.2.1 Fundamental v. Essential Matrix : 8

2.2.2 Calculating the Fundamental Matrix : : : : : : : : : : : : : : : : : : : 9

2.3 Uncalibrated Reconstruction : 11

2.3.1 Other Applications of the Fundamental Matrix : : : : : : : : : : : : : : 13

2.4 Sequence-Based SFM : 14

2.5 Model Based Recognition : 18

3 Acquiring the Fundamental Matrix 23

3.1 Introduction : 23

3.2 An Overview of Epipolar Geometry : 25

3.3 Derivation of the Linear Criterion : 27

3.4 Other Properties of F : 28

3.5 Implementing the 8-Point Algorithm : 29

iv

CONTENTS v

3.5.1 Solution Via Singular Value Decomposition - SVD : : : : : : : : : : : 30

3.5.2 Solution Via Eigenvector - EIG : 31

3.5.3 Enforcing the Rank Constraint : 32

3.5.4 Normalisation : 33

3.5.5 Quantifying Success : 35

3.6 Results and Conclusions : 36

3.6.1 Initial Experiments : 36

3.6.2 Synthetic Data : 37

3.6.3 Real Data: Corridor Images : 38

3.6.4 Real Data: House Images : 40

3.7 Initial Conclusions : 43

3.7.1 Further Experiments : 45

3.7.2 Further Results : 48

3.8 Conclusions : 49

4 Reconstruction 50

4.1 Introduction : 50

4.2 Outline of the method : 51

4.3 Image Sequence Processing : 52

4.4 Constructing Camera Matrices : 56

4.5 Factorising F : 58

4.6 Projective Reconstruction : 60

4.7 Upgrading to Euclidean Structure : 64

4.7.1 Method 1: A Direct Solution : 64

4.7.2 Method 2: An Indirect Solution : 65

4.7.3 Initial Experiments : 66

4.8 Incremental Reconstruction : 72

CONTENTS vi

4.8.1 A RANSAC Approach : 73

4.8.2 Results : 74

5 Structure Recognition and Matching 77

5.1 Introduction : 77

5.2 An Overview of Geometric Hashing : 79

5.2.1 2D Affine Invariance : 81

5.2.2 Model Representation : 83

5.2.3 Matching : 84

5.3 Hashing Euclidean Structure : 85

5.3.1 Computing Euclidean Invariants : 86

5.3.2 Symmetry Considerations : 88

5.4 Geometric Hashing and Image Sequences : 91

5.4.1 Partitioning the Hash Table : 92

5.4.2 Algorithm Outline : 93

5.5 Results : 94

5.5.1 Synthetic Data: Simple Models : 94

5.5.2 Real Data: Recovered Structure : 98

5.6 Conclusions : 101

6 Conclusions 102

6.1 Summary : 102

6.2 Future Work : 104

6.3 Closing Comments : 105

A Essential Projective Geometry 106

A.1 Homogeneous Coordinates : 106

A.2 Some Simple Constructions : 108

CONTENTS vii

A.2.1 Computing The Line Through Two Points : : : : : : : : : : : : : : : : 108

A.2.2 The Intersection of Two Lines : 109

A.2.3 Normalising Homogeneous Coordinates : : : : : : : : : : : : : : : : : 109

A.2.4 The Perpendicular Distance of a Point from a Line : : : : : : : : : : : : 110

A.3 Projective Transformations : 110

A.3.1 P3 to P3 : 110

A.3.2 P3 to P2 : 111

B RANSAC 113

C The Quadrangle Image Sequence 118

List of Figures

1.1 Sample images : 2

2.1 Transfer : 13

2.2 Example reconstruction using VSDF : 15

2.3 Example data from the VANGUARD project : : : : : : : : : : : : : : : : : : 17

3.1 Epipolar geometry : 25

3.2 Pencil of epipolar planes and lines : 26

3.3 Graphs of S against � using perfect synthetic data : : : : : : : : : : : : : : : : 37

3.4 Graphs of S against QF using perfect synthetic data : : : : : : : : : : : : : : : 37

3.5 Graphs of S against � for the corridor image pair : : : : : : : : : : : : : : : : 39

3.6 Graphs of S against QF for the corridor image pair : : : : : : : : : : : : : : : 39

3.7 Sample epipolar lines for the corridor image pair. : : : : : : : : : : : : : : : : 41

3.8 Results of the INRIA matching algorithm for the house image pair : : : : : : : 42

3.9 Graphs of S against � for the house image pair : : : : : : : : : : : : : : : : : 42

3.10 Graphs of S against QF for the house image pair : : : : : : : : : : : : : : : : 42

3.11 Sample epipolar lines for the house image pair. : : : : : : : : : : : : : : : : : 44

3.12 Instability of the SVDNORM method : 45

3.13 Example Lowest QF Values : 46

4.1 Overview of Euclidean Reconstruction : 52

4.2 Poor performance of a local matching algorithm. : : : : : : : : : : : : : : : : : 54

viii

LIST OF FIGURES ix

4.3 Effects of false matches on epipolar geometry : : : : : : : : : : : : : : : : : : 55

4.4 Our manual feature detection and matching user interface. : : : : : : : : : : : : 57

4.5 Example of projective reconstruction. : 62

4.6 Comparison of direct/indirect projectivity calculations : : : : : : : : : : : : : : 67

4.7 (a) Front view of the reconstructed points : 68

4.8 (a) Side view of the reconstructed points : 69

4.9 (a) Top view of the reconstructed points : 70

4.10 Another top-down view of the reconstruction : : : : : : : : : : : : : : : : : : 71

4.11 Plan view of the recovered quadrangle scene after 10 image pairs : : : : : : : : 75

4.12 Failed reconstruction of part of the quadrangle scene : : : : : : : : : : : : : : : 76

5.1 Example of internally inconsistent structure : : : : : : : : : : : : : : : : : : : 78

5.2 The general scheme of the geometric hashing algorithm : : : : : : : : : : : : : 80

5.3 Representing p using the affine basis triplet a00a01a10 : : : : : : : : : : : : : : 82

5.4 Hash table organisation : 84

5.5 Constructing 3D Euclidean invariants : 86

5.6 Effect of basis point ordering on coordinate axes. : : : : : : : : : : : : : : : : 89

5.7 Effect of basis point ordering on invariants : 90

5.8 Test models for the geometric hashing system : : : : : : : : : : : : : : : : : : 95

5.9 Distributions of invariants : 99

B.1 Effect of an outlier on the accuracy of least-squares : : : : : : : : : : : : : : : 114

C.1 Quadrangle Sequence: Images 0 to 11 : 118

C.2 Quadrangle Sequence: Images 12 to 35 : 119

C.3 Quadrangle Sequence: Images 36 to 59 : 120

C.4 Quadrangle Sequence: Images 60 to 83 : 121

C.5 Quadrangle Sequence: Images 84 to 104 : 122

List of Tables

3.1 Comparison of the BEST-F and RANSAC� algorithms : : : : : : : : : : : : : 48

3.2 Comparing RANSAC� with more complicated algorithms : : : : : : : : : : : : 49

4.1 Reprojecting projective structure : 63

5.1 Effect of basis ordering on invariant coordinates : : : : : : : : : : : : : : : : : 90

5.2 Results of geometric hashing using perfect synthetic data : : : : : : : : : : : : 96

5.3 Results of geometric hashing using noisy synthetic data : : : : : : : : : : : : : 97

5.4 Grouping of features into structure patches : 98

5.5 Results of geometric hashing using real data : : : : : : : : : : : : : : : : : : : 100

x

Chapter 1

Introduction

The work described in this thesis is motivated by a seemingly simple task - to determine the struc-

ture of a scene as viewed in a segment of video footage, typically obtained using an ordinary hand-

held video camera. Our particular concern is with ‘extended environments’, for which a small part

of the scene is visible in each frame. Reconstruction of such environments introduces associated

problems in ensuring the internal consistency of the recovered structure. In particular, structures

that are seen more than once during the image sequence must be correctly identified with each

other.

In terms of machine vision, the task is a combination of the fundamental problems of struc-

ture from motion (SFM) and structure matching, which have, and continue to be, extensively re-

searched. The aim of this work is to bring together ideas and techniques from these two areas in

an attempt to solve the overall task at hand. A successful system would have many, varied uses,

for example in constructing a virtual reality ‘walk-through’ of a real building, navigating a mov-

ing robot, automatic acquisition of CAD models etc. Ideally, it should not be dependent on the

type of camera motion, or the nature of the scene being viewed. Sample images from the kinds

of sequences such a system might be expected to deal with are shown in figure 1.1.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Sample images.

CHAPTER 1. INTRODUCTION 3

1.1 Approach Taken

The choice of approach is dependent on the nature of the input image sequence. In our case the

large disparity between successive images called for the use of feature-based SFM, rather than

optical flow [1]. A manual corner detection and matching system is used, to avoid the additional

difficulties caused by poor localisation and false matches inherent in automatic methods.

Even if all the images in the sequence are taken with the same camera (which is likely, but

not certain), there is no guarantee that the internal camera parameters do not change during the

course of the sequence, for example due to zooming. Thus it is necessary to employ an uncali-

brated reconstruction technique. Note that even camera self-calibration [13] is not possible, since

this depends on unchanging intrinsic parameters. The procedure is based around the calculation

of the fundamental matrix, which embodies the epipolar geometry of a pair of images. The calcu-

lation is performed via a novel combination of the well-known 8-point algorithm [39], a recently

developed normalisation technique [26] and the RANSAC parameter estimation paradigm [15].

The fundamental matrix is factorised to obtain a representation for the camera matrices,

and the structure of the scene in the two images is recovered by back-projection. The reconstruc-

tion so obtained is only correct up to a projective transform of the real structure. Knowledge of

a small number of ground truth points in the first image pair is used to compute a projectivity,

which transforms the projective structure to Euclidean. For subsequent image pairs, the projec-

tivity calculation is performed using previously estimated Euclidean structure instead of ground

truth. Thus, as the sequence is processed, a complete reconstruction of the scene is incrementally

acquired.

The second major part of this work is motivated by the acceptance of the fact that the re-

construction system will not produce perfect results, and as the sequence is processed, errors in

the recovered structure will accumulate. If part of the scene is re-encountered, it will have two

Euclidean structure estimates, at some displacement and orientation in the world coordinate sys-

tem. In order to be able to update the structure so that it is internally consistent, it is necessary to

obtain the mapping between the points in the two structure estimates. This, in turn, depends upon

the ability of the system to recognise when structure that has been seen previously has come back

CHAPTER 1. INTRODUCTION 4

into view.

These two problems are addressed by incorporating a model-based object recognition sys-

tem into the reconstruction process. A variation of the standard geometric hashing algorithm is

employed, whereby model acquisition and recognition are performed concurrently, the usual off-

line preprocessing step being omitted. At each step of the reconstruction process, a new segment

of structure is recovered. This is combined with other recently acquired structure to obtain a local

structure patch. The hash table is updated using Euclidean invariants computed from this set of

3D points. Thus, recognition should occur if any of these patches of structure are re-encountered

later in the sequence. In this case the information stored in the hash table permits the mapping

between old and new scene structure to be immediately obtained.

1.2 Overview of the Thesis

The remainder of the thesis is organised as follows:

Chapter 2: A review of the relevant background material and related research.

Chapter 3: A description of a novel method used to estimate the fundamental matrix, based on

a normalised version of the 8-point algorithm.

Chapter 4: A description of an original incremental reconstruction system for recovering the Eu-

clidean structure of a scene from a long image sequence.

Chapter 5: A description of a version of the geometric hashing algorithm which has been incor-

porated into the reconstruction system in an attempt to allow previously encountered scene

structure to be recognised.

Chapter 6: Conclusions and a discussion of future work.

Appendix A: An overview of some of the essential principles of projective geometry.

Appendix B: A detailed description of the RANSAC parameter estimation paradigm.

Appendix C: The quadrangle image sequence, which is used in experiments throughout this work.

CHAPTER 1. INTRODUCTION 5

1.3 Notation

We will use boldface letters to denote vectors and matrices e.g. M. The notationMij denotes the

element at the i’th row and j’th column of matrix M. Transposition of vectors and matrices is

indicated by T , e.g. MT , the inverse of a matrix M by M�1 and the inverse transpose by M�T .

The determinant of a matrix is denoted det(M). The cross product of two 3D vectors, x and y is

represented byx�y. Given some vector t =(tx; ty; tz), it is useful to consider the anti-symmetric

matrix [t]� = 0BBBB@ 0 �tz tytz 0 �tx�ty tx 0 1CCCCA (1.1)

This is the matrix representation of the cross product. For any vectors s and t,sT [t]� = s� t (1.2)

and [t]�s = t � s (1.3)

On a related note, given the square matrix M, we use the notation M� to represent the

matrix of cofactors of M, that is, the matrix defined by M�ij = (�1)i+j det(M(ij)) where M(ij)
is the matrix derived from M by removing the i’th row and j’th column. If M is non-singular

then M� = det(M):(M�T). In other words M� � M�T , where � indicates equality up to a

scale factor. If a and b are 3�1 vectors and M a 3�3 matrix then Ma�Mb �M�(a � b).
Uppercase letters will be used to denote 3D points and lines, whereas lowercase letters in-

dicate 2D features. We differentiate between the geometric objects themselves and their represen-

tations. For example, a point in the image plane would be denoted by p, whereas its coordinate

vector would be p. The line between two points P1 and P2 is represented by hP1; P2i.

Chapter 2

Background

2.1 Introduction

The recovery of the three-dimensional information lost when projecting a scene onto an image

plane is a central problem in machine vision. At least two images are required, either taken by a

pair of cameras in a stereo configuration, or a single moving camera. Reconstruction via the latter

of these is termed structure from motion (SFM). An early structure from motion theorem, due to

Ullman [66], states that:

Given three distinct orthographic projections of four non-coplanar points in a rigid

configuration, the structure and motion compatible with the three views are uniquely

determined, up to a reflection about the image plane.

Over the years there have been innumerable structure from motion algorithms described in

the vision literature. Due to the assumption of orthographic projection1, which is not an accurate

model of the real image formation process, a general purpose structure recovery system based on

this theorem is impractical. However, it does serve to illustrate a number of the ways in which

structure from motion algorithms can be characterised.1Where rays are projected from an object point along a direction parallel to the camera’s optical axis, so that they

strike the image plane orthogonally.

6

CHAPTER 2. BACKGROUND 7

First of all, there is the question of how many projections (images) are required for the

algorithm to function. Some systems work with just two or three images, others have these as

a minimum number for structure recovery, but are able to deal with long sequences of images.

With image sequences, there is the additional consideration of whether the images are actually

processed sequentially or as a batch. The number and type of image features used are also varied.

Possibly the two most important characteristics are the projection model and whether or not

the camera is calibrated. The most general method of projection from 3D space onto a 2D image is

perspective projection (see Appendix A). Other methods approximate this under certain imaging

conditions, for example scaled orthographic (weak perspective), paraperspective [48] and affine

[47]. A description of the most appropriate camera model for a given situation is provided in [69],

along with a method for switching models during processing to ensure the best model is used at

all times. In our case, we make no assumptions about the nature of the scenes being viewed and

so use the full perspective model.

If camera calibration2 is known, scene structure can be recovered up to a scale factor [11].

However, the calibration process usually relies upon accurately measuring calibration objects and

is very sensitive to errors [64]. Secondly, calibration has to be recomputed if the internal param-

eters change, for example, the camera zooms. These difficulties have led to the development of

the projective approach to reconstruction, also known as uncalibrated stereo [52]. This method

models the geometric relationship between the cameras, matched points and corresponding 3D

positions, which is encapsulated in the fundamental matrix. The non-metric nature of this projec-

tive approach means there is no dependency on camera parameters, but recovered structure differs

from the real structure by a projective transformation.

The acquisition of the fundamental matrix and a projective reconstruction technique form

a significant part of this work. These are fully detailed in Chapters 3 and 4. We continue in this

chapter with a more general background description of the two subjects. This is followed by a

review of current research on reconstruction from image sequences, most relevant to this thesis.

The chapter concludes with an overview of some of the techniques of model-based recognition

and background material on the method we use: geometric hashing.2Focal length, aspect ratio and principle point.

CHAPTER 2. BACKGROUND 8

This section opened with Ullman’s structure from motion theorem. In truth, the theorem

was originally due to Kruppa, sixty-four years earlier, and rediscovered by Ullman. This is just

one of several cases in which results that have only recently been obtained in the vision com-

munity, have been known for many years by photogrammetrists. A fascinating potted history of

photogrammetry, from a projective geometry viewpoint, is given in [9], whilst [27] explores the

relationship between photogrammetry and machine vision.

2.2 The Fundamental Matrix

In 1981 Longuet-Higgins published a seminal paper [39], in which he described a method for the

recovery of the structure of a scene from eight point correspondences. By establishing constraints

on the relationship between the two sets of image coordinates, their corresponding 3D points, and

the optical centres of the cameras, a 3�3 matrix is defined, the essential matrix E, which con-

veniently encapsulates the epipolar geometry (see section 3.2) of the imaging arrangement. Us-

ing homogeneous coordinates (see Appendix A) the essential matrix and a pair of corresponding

points p and p0 in the two images are related as follows:p0TEp = 0 (2.1)

This equation, known as the linear criterion or the Longuet-Higgins relation, is linear and

homogeneous in the elements of E. Thus, given a set of at least eight point correspondences

(hence the name), the essential matrix can be solved for, up to a scale factor. In the original paper,

it is shown how E can be factorised to obtain a pair of camera matrices, and hence the structure

of the scene recovered. There is the implicit assumption in Longuet-Higgins’ description that the

cameras are calibrated - at least the focal length and principal point are known.

2.2.1 Fundamental v. Essential Matrix

There appears to have been some confusion amongst researchers about the distinction between

the essential and fundamental matrices. The 8-point algorithm can be used to compute either of

CHAPTER 2. BACKGROUND 9

them, and equation 2.1 applies equally to essential and fundamental matrices i.e. if F is a 3�3

fundamental matrix, then p0TFp = 0 (2.2)

The question is therefore: when does the 8-point algorithm produce an essential matrix and

when does it produce a fundamental matrix? The answer to this question lies in the camera cali-

bration. If the images are formed by projection onto the unit sphere, then the matrix is the product

of an orthogonal matrix and an anti-symmetric matrix and it is therefore an essential matrix [13].

In the case of general projection, the matrix A of intrinsic camera parameters transforms the im-

age into the image that which would have been produced by projection onto the unit sphere. This

gives the relation: F = A�1TEA�1 (2.3)

Thus, when we are dealing with uncalibrated images, the 8-point algorithm is used to re-

cover the fundamental matrix. The essential matrix can be obtained if the images are taken with

a calibrated camera. The two matrices can also be characterised as follows: the essential matrix

has zero determinant and its two non-zero singular values are equal, thus it depends on five inde-

pendent parameters. The fundamental matrix is singular and has rank two. As such, it depends

on seven independent parameters. Other properties of the essential matrix have been investigated

in [31] and [42].

2.2.2 Calculating the Fundamental Matrix

The main attraction of the 8-point algorithm is its conceptual and numerical simplicity, the fun-

damental matrix being obtained from a simple set of linear equations. Unfortunately, the 8-point

algorithm is susceptible to noise in the matched feature data; poor localisation and false matches

causing the algorithm to fail. Until recently, it was generally held that this problem rendered the

8-point algorithm useless for any practical application, and research has concentrated on devel-

CHAPTER 2. BACKGROUND 10

oping other alternatives of computing the fundamental matrix, all of them more complex than the

8-point method.

However, in [26] a normalising technique was presented, that claimed to improve the per-

formance of the 8-point algorithm to a level as good as, and even surpassing, that of these alterna-

tives. The rationale was that the poor performance of the eight-point algorithm is wholly due to

implementations which do not take account of the numerical considerations involved, particularly

the conditioning of the set of linear equations being solved. The proposed solution to this problem

is a simple normalisation (scale and translation) of the matched point coordinates prior to process-

ing. Numerical analysis demonstrates that this transformation leads to a significant improvement

in the conditioningof the system [26]. A detailed description of the normalisation method is given

in Chapter 3. Here we give a brief overview of some of the alternative methods that have been

proposed.

Implementations of the 8-point algorithm attempt to minimise minFPi(p0Ti Fpi), which

is based on the linear criterion. Typically this is solved either using a closed form solution, setting

one of the coefficients of F to 1, or via a least-eigenvector method, both described in section 3.5.

In [40] these linear methods are compared against a number of non-linear criteria, for example

minimising the distance of a point from its corresponding epipolar line.

In [62] it is shown that the fundamental matrix can be estimated from the image correspon-

dences of only seven 3D points in general position. First, the correspondences are used to obtain

a non-unique solution to the standard system of equations formed from the linear criterion. A

further solution of a cubic equation is then necessary to determine the fundamental matrix that

corresponds to the given point configuration. The idea here is to use the least possible number of

points in determining the fundamental matrix, to reduce the likelihood of including outliers.

An in-depth discussion of the application of robust parameter estimators to calculate the

fundamental matrix, is given in [60]. Methods considered here include, RANSAC (see appendix

B), the Hough transform [33] and M-estimators. Standard least squares attempts to minimise the

sum of the squares of the residuals
P r2 i.e. the difference between the observed and fitted data.

M-estimators replace r2 by other functions of the residuals minP�(ri), where � is a symmetric

positive-definite function.

CHAPTER 2. BACKGROUND 11

In [8] Boufama describes a completely new approach for computing the fundamental ma-

trix based on virtual parallax. This method still requires at least eight point matches, but instead

of computing the fundamental matrix directly, it relies on estimating the position of an epipole and

a 2D homography. One advantage is that this method implicitly constructs a fundamental matrix

that is of rank 2.

Unfortunately, errors in feature localisation and matching are not the only possible causes

of problems in fundamental matrix calculations. In the original paper on the 8-point algorithm

[39], it is remarked that certain configurations of the eight points will cause the algorithm to fail,

due to linear dependencies entering the computation. Examples of such configurations are; four

of the points being in a straight line, seven points in a plane, or eight points at the vertices of

a cube. A more complete analysis of the problem of degeneracy is given in [62]. Torr defines

degenerate configurations of 3D points as those whose resulting image correspondences fail to

define a unique epipolar transform (section 3.2). Thus there exist two or more linearly indepen-

dent fundamental matrices which encapsulate the epipolar geometry, and scene structure cannot

be recovered unambiguously. An algorithm for detecting such degenerate configurations, which

is robust to the presence of outliers, is described.

A complete review of the issues involved in fundamental matrix theory was recently pub-

lished in [41].

2.3 Uncalibrated Reconstruction

In 1992 Faugeras published a ground-breaking paper [12] that proposed a technique for recov-

ering projective structure of a scene, from a set of matched points in a pair of uncalibrated im-

ages. The idea is to constrain the form of the two camera matrices. This is achieved by fixing the

coordinates of five of the 3D points to be the standard projective basis, and making appropriate

coordinate assignments for their corresponding image points. As a result the camera matrices can

be represented as functions of just two arbitrary parameters.

The exact determination of these parameters requires the coordinates of the epipoles and

hence, computation of the fundamental matrix. With this done, the camera matrices are fully spec-

CHAPTER 2. BACKGROUND 12

ified and the locations of the 3D points can be recovered, relative to the coordinate system defined

by the five points. Thus the reconstruction is correct up to a projective transform of the real struc-

ture. The problem with this method is in the reliance on the accuracy of the chosen basis features.

Mismatched or poorly localised basis features will impair the quality of the projective reconstruc-

tion.

Just one month later, Hartley published his paper [23], which achieved the same results,

in a different manner and without the reliance on basis points. In this case, the projective recon-

struction is achieved through the analysis of the fundamental matrix. Just as the essential ma-

trix can be factorised to obtain camera matrices, so too can the fundamental matrix. In the latter

case however, it is shown that the factorisation is not unique, and that the camera matrices can be

transformed by an arbitrary projectivity and still be a valid factorisation. Hence, once again, the

recovered structure and camera locations differ from the real ones by a projective transform. The

projective reconstruction method employed in Chapter 4, is based around this technique.

The standard basis method above is one of several projective reconstruction techniques

compared in a recent paper by Rothwell [52]. Rothwell places the basis method in a group of

what he calls explicit reconstruction algorithms. The goal for each of these is to compute a pair of

camera matrices from a set of image correspondences. Two other explicit methods are described.

One estimates structure by computing the intersection of camera rays on which the 3D points must

lie. Another uses singular value decomposition to obtain estimates for the camera matrices which

are consistent with the epipolar geometry. Two implicit techniques are described, which compute

structure using three-dimensional invariants of the camera configuration and point sets. All the

methods described in this paper assume knowledge of the weak calibration between the two cam-

eras; i.e. the fundamental matrix. Rothwell concludes that the most reliable reconstructions are

obtained using camera matrices derived via singular value decomposition, which is the method

we use in Chapter 4.

CHAPTER 2. BACKGROUND 13

P

p1 p2

p3

image 3

image 1 image 2

C1

epipolar line for P
from image 2

epipolar line for P
from image 1 l

C2

C3

13 l23

Figure 2.1: Transfer.

2.3.1 Other Applications of the Fundamental Matrix

Transfer

One simple application which follows naturally from the definition of the fundamental matrix is

in the area of automatic feature matching. The fundamental matrix maps a point in one image

to its corresponding epipolar line in the other. This constraint can be used to reduce the search

space for the matching point. This idea extends to three images. The observation of the point P
in image 1 can be used to generate an epipolar line l13 for P in image 3; similarly, observation ofP in image 2 can be used to generate a second epipolar line l23 for P in image 3. As shown in

figure 2.1 the intersection of the epipolar lines l13 and l23 uniquely defines where P must appear

in image 3. This concept is known as transfer.

CHAPTER 2. BACKGROUND 14

Self-Calibration

A new approach to calibrating cameras, called self-calibration was presented by Faugeras et al in

[13]. In contrast to existing techniques, which rely on calibration objects [64], all that is required

is a set of point matches tracked over three or more camera displacements. The displacements are

used to calculate the fundamental matrix, using the non-linear minimisation of the image plane

distance of a point from its corresponding epipolar line, mentioned earlier. The epipolar transform

(section 3.2) is derived from the fundamental matrix and used to solve for the coefficients of the

absolute conic, from which the camera intrinsic parameters are obtained[9].

The original authors [13] note that the precision of feature localisation required to obtain

reasonable calibration results is at the limit of even the best feature detectors. Nevertheless, the

method has been used in attempts to calibrate cameras automatically, and thus to recover Eu-

clidean structure [25, 2].

2.4 Sequence-Based SFM

In this section we present a brief review of some current related research into reconstruction from

image sequences.

The VSDF

The Variable State-Dimension Filter (VSDF) is not really a reconstruction system. Rather, it is a

recursive estimation algorithm which has been applied to the problem of structure from motion

[43]. In fact, one of the benefits of the VSDF is that it can be applied to any problem that can be

formulated as a suitable measurement equation, for example [44].

The algorithm was designed specifically for real-time applications. Having computed op-

timal estimates for the structure and motion over a small number of initial images, the recursive

part of the algorithm takes over and recomputes sub-optimal estimates, using new image data. An

CHAPTER 2. BACKGROUND 15

example reconstruction3 is shown in figure 2.2.

Figure 2.2: Example reconstruction using VSDF.

Vanguard

Vanguard[4] is a project being developed by a European Union consortium, including the Robotics

Research Group at Oxford University. The goal is automatic 3D model building from long uncal-

ibrated monocular image sequences, and the use of these models for rendering scenes in telepres-

ence applications. This entails extracting both geometry and surface descriptions (reflectance) at

a level suitable for high quality graphical rendering.

The system uses a robust tracking algorithm for corner and line segment features, based

on the trifocal tensor [61]. The trifocal tensor performs a similar role for three views as the fun-

damental matrix does for two: it encapsulates all geometric constraints between the three views,

that are independent of scene structure. Given point correspondences in two images, the trifocal3This reconstruction was obtained using software kindly supplied by the VSDF author, Phil McLauchlan.

CHAPTER 2. BACKGROUND 16

tensor determines the position of the point in the third. This is similar to transfer, described earlier

in this chapter, but more robust.

The trifocal tensor is computed from an initial set of feature matches in three images but

for future images does all the matching itself. Camera matrices are generated from the tensor

for these images, and used to instantiate 3D point and line structure. As each new image is pro-

cessed, matches between it and the previous image provide a correspondence between existing

3D structure and new features, enabling a camera matrix for the new image to be obtained, thus

determining the new camera position relative to the existing world coordinate system. Existing

structure estimates are updated using an Extended Kalman Filter. Figure 2.3 shows some sample

data and results obtained [59].

The Factorisation Method

The factorisation method, originally due to Tomasi and Kanade [58], is a batch method for recov-

ering the structure and motion of an object from an image sequence. Point features are tracked

through the sequence and used to construct a measurement matrix. Structure and motion are ob-

tained by factorising the measurement matrix, using singular value decomposition [50]. It is im-

plicitly assumed that camera intrinsic parameters are known.

The method has been through many stages of development, starting with simple planar mo-

tion, then moving on to arbitrary motion in 3D with 2D images obtained under the orthographic

camera model. The orthographic model was too simplistic to be of any practical use, being unable

to model even the effect of distance on image size, the scaling effect. Further updates followed

through the scaled orthographic and paraperspective models [49] to the projective model [48].

While still in batch form the algorithm was unsuitable for use in real-time applications, and as a

result a sequential version was developed [46], but this needed most of the feature points to be

visible in each frame, which is not feasible in an extended environment.

The latest addition to the factorisation approach was in a recent paper by Held [28], which

described an incremental windowed factorisation method. At each step Held applies a version

of Morita’s sequential factorisation algorithm, to obtain a new shape matrix. This is then related

CHAPTER 2. BACKGROUND 17

Sample Image Recovered Structure

Two novel rendered views.

Figure 2.3: Example data from the VANGUARD project.

CHAPTER 2. BACKGROUND 18

to the shape matrix at the previous step by computing an affine transform between their shared

shape points, then applying it to the points which have just been lost. Thus the scene structure is

recovered incrementally as the ‘factorisation window’ moves through the image sequence.

The major differences between our method and Held’s are that he has gone back to using

the orthographic projection model, whereas we use full perspective, and he makes no attempt to

register between structure recovered at different times.

2.5 Model Based Recognition

The structure matching required within our framework is most closely analogous to model-based

approaches to object recognition. As background to our choice of matching strategy, this final

part of the chapter reviews the major approaches in this area.

Object recognition is one of the most fundamental of all problems studied in machine vi-

sion. The aims of an object recognition system are twofold: to detect the presence of a given

object, and to establish its location and orientation. The latter of these is known as pose determi-

nation. The pose of an object can be expressed in terms of the rigid transformation required to

rotate and translate to the object position from the origin of the given coordinate system.

The most predominantly used approach to object recognition is model-based, which relies

upon the construction of explicit representations (models) of the geometric shape of the objects

which are to be recognised. In this section we provide a brief overview of a number of different

model-based recognition schemes, finishing with the geometric hashing paradigm, which is the

method used in this work. For more detail the reader is referred to the general surveys on model-

based recognition in [5] and [10].

In general, model-based recognition is a two-step process: hypothesis generation and ver-

ification, for example [51]. In the first stage, a number of likely candidate objects and poses are

singled out for further investigation. These are examined more closely in the second stage and

incorrect candidates are eliminated. Hypothesis generation involves matching subsets of model

and scene features, for example corner points and edges. Verification requires the computation

CHAPTER 2. BACKGROUND 19

of the transformation between the model and scene, in an attempt to induce more feature cor-

respondences and thus accept or reject the candidate match. In model-based recognition, pose

determination involves computing the transformation between the model and the scene.

Note that we use the terms model and scene without referring to their dimensionality, or

the nature of the transformation between them. For example, the model and scene could both be

image features, related by a 2D transform [37]. Equally, they could both be sets of structure points,

related by a 3D transform, for example this work and [14]. The model and scene could even be

of different dimensionality, as in the case of recognising 3D objects from 2D images [16, 6].

Alignment

In an alignment scheme [32], candidate poses are hypothesised, based on the correspondence of a

minimal number of model and scene features. Each minimal set of correspondences is just enough

to determine a unique pose, which is then verified.

Pose Clustering (Hough Transform)

Pose clustering is similar to alignment but uses a more intelligent, rather than exhaustive, ap-

proach to selecting candidate poses for verification. The idea is each pairing of model/scene fea-

tures tallies a vote for the pose they determine. Correct poses should be voted for many times by

different pairings of features and only high-scoring poses are considered for verification. In prac-

tice, things are not quite as simple as that, since correct feature pairings will generally determine

poses that are similar, but not identical, due, for example, to measurement error.

The solution is to look for clusters of poses (hence the name). The usual way of doing

this is by creating a parameterised pose space in which to tally the votes. For example, a 2D

affine transform can be represented by by six independent parameters. Thus voting is performed

in a six-dimensional pose space, represented by a multi-dimensional array, with all elements, or

bins, initially zero. Although each parameter may take on continuous values, each dimension of

the pose space is quantised, resulting in a set of six-dimensional volumes of admissible poses.

The parameters of each candidate pose are calculated and used to increment the vote count at

CHAPTER 2. BACKGROUND 20

the corresponding bin. When all votes have been cast, the pose clusters correspond to those bins

containing more than some given number of votes. A pose at the centre of each cluster is passed

on to the verification stage.

Pose clustering methods are generalisations of the Hough transform [3], which was origi-

nally used for the detection of straight lines in images [30]. A survey of the Hough transform is

given in [33].

Interpretation Tree Search

Alignment and pose clustering techniques produce candidate poses from correspondences be-

tween model and scene features, eliminating incorrect candidates by direct verification. In con-

trast to this, interpretation tree search methods [21, 19] attempt to assign model features to all

scene features, in all feasible combinations. Such assignments are called interpretations and the

method involves performing a tree search to generate all of the combinations of interpretations as

required.

Nodes in the first level of the tree contain assignments for the first scene feature. Those

at the second level contain explicit assignments for the second scene feature, and an implicit as-

signment for the first, and so on for each level of the tree. Likewise, each branch corresponds to a

different model feature. Each node in the tree represents a partial match between model and scene

features and the path to the node from the root of the tree gives all the correspondences in the par-

tial match. Finally, each leaf node defines a complete candidate match (interpretation) between

the model and the scene.

As described, the method is infeasible, since there is a vast number of interpretations for

even a moderately complex model. The idea is to eliminate the need to verify many false matches

by pruning the tree. This is possible because false matches can be identified without needing to

assign all the pairings. Each time a new node is to be added to the tree a set of fast consistency

checks are performed against all nodes on the path back to the tree root. For example, if attempting

to match a set of planar surface patches against a model in 3D, the angle between the surface patch

normals could be examined to ensure it falls between some range of values, this range having been

CHAPTER 2. BACKGROUND 21

obtained by preprocessing the model before the search begins. Thus, the tree is pruned below any

partial interpretation that is found to be inconsistent.

Indexing and Geometric Hashing

An alternative model-based recognition paradigm has been proposed, known as indexing. All

indexing schemes share a common approach to the recognition problem. They compute invariants

[47] from scene features and use them to index a look-up table containing references to model

objects. The look-up table returns a weighted set of candidate matches, for verification. Whereas

the methods described previously must be applied separately for each of the models they should

recognise, indexing schemes attempt to recognise all models simultaneously. This has obvious

efficiency benefits when the size of the model database is large.

Indexing techniques have been applied to a number of problems. For example, in [45] Mo-

han describes a method for recognising 3D objects from a 2D image sequence, assuming the weak

perspective camera model. Object models are acquired automatically from the image sequence

by tracking features through at least three frames, and extracting Euclidean (similarity) invariants

[68]. In [54, 56, 55] Rothwell et al. describe the development of a complete model-based recogni-

tion system (LEWIS). Their system also acquires its models directly from images, this time using

projective invariants to index the look-up table.

Perhaps the best-known indexing method is geometric hashing, originally developed for

the task of recognising flat rigid objects [35, 34, 36] from images, using an affine approximation

to the full perspective camera. However, the same approach can be used for many recognition

problems involving a variety of transformations in two and three dimensions [37]. A full descrip-

tion of the method is given in Chapter 5, where it has been applied to the problem of recognising

familiar segments of 3D structure, as they are recovered by the reconstruction system. Geomet-

ric hashing has an additional property which makes it ideal for our purposes; the nature of the

information stored in the hash table means that the pose of an object is known as soon as it is

recognised.

There has been some discussion about the susceptibility of geometric hashing to sensor

CHAPTER 2. BACKGROUND 22

error [20]. A simple technique for taking errors into account is shown in [70], which involves

tallying votes in a region of the hash table, rather than at a single, indexed location. Other addi-

tions to the original geometric hashing method have been developed. For example, in [63] Tsai

presents a system which uses invariants computed from line features, under the assumption that

these can be acquired from images with greater accuracy then points.

In [14] an interesting application of geometric hashing is described, that of matching pro-

tein molecules. The system uses a two-atom basis and indexes the hash table using the lengths of

the sides of the triangle the basis forms with each of the remaining atoms. This approach reduces

the complexity of the process from O(n4) to O(n3) at the expense of a non-unique representa-

tion of the atoms4. Constraints on the allowable lengths of the triangle sides mean that not all

basis/atom pairs need to be considered.

Finally, a new technique has recently been proposed, called enhanced geometric hashing

[38]. This extends the basic method in two ways. First of all, the use of quasi-invariants [7]

extracted from connected segments, reduces the number of invariants that have to be computed.

Secondly, the voting scheme is augmented through the use of pose clustering. Each candidate

pose, obtained via the normal voting procedure, defines a geometric transform, which is param-

eterised and used to vote in the pose space, as described above. Clusters form around coherent

poses and the matched model is taken to be the one whose pose space contains the highest density

cluster.

4Where n is the number of points used to define a basis for the transformation being considered.

Chapter 3

Acquiring the Fundamental Matrix

3.1 Introduction

Since the pioneering work of Faugeras [12] and Hartley [24], there has been a great deal of re-

search into developing methods for recovering the structure of a scene from images taken with

uncalibrated cameras. A recurring theme in this work, and in the method we describe in the next

chapter, is the requirement for the accurate estimation of the fundamental matrix. The fundamen-

tal matrix is of vital importance in the the analysis of pairs of uncalibrated images, because it

encapsulates all the information about camera motion, camera parameters and epipolar geometry

that can be obtained from a set of point correspondences. The most simple method of computing

the fundamental matrix is the 8-point algorithm, due to Longuet-Higgins [39]. This involves the

solution of a set of linear equations derived from the linear criterion, which relates the fundamen-

tal matrix, image points and corresponding epipolar lines.

A common criticism of the 8-point algorithm is that it is very sensitive to noise in the mea-

sured image features. In fact, the prevailing view is that this flaw renders the 8-point algorithm

useless for any practical application [40]. This has led to the development of a number of alter-

native methods of solution, as discussed in Chapter 2. These are, without exception, more com-

plicated than the 8-point algorithm, involving iterative schemes [25] or non-linear minimisation

[13, 40]. However, in a recent paper [26], Hartley described a novel normalisation technique,

23

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 24

which claimed to improve the performance of the 8-point algorithm to a level as good as (and

even surpassing) that of the more complex methods.

This technique was based on numerical analysis of a particular method of implementing the

8-point algorithm. One of the aims of this chapter is to determine what effect, if any, the normali-

sation process has when a different implementation method is used. Hartley described a series of

experiments, in which the fundamental matrix was computed using different sized subsets of the

matched image points. For each subset size, several trials were performed, each time randomly

selecting the points used in the calculation. Given a measure of the accuracy of a fundamental ma-

trix, results were presented in terms of subset size versus the median accuracy value obtained over

all the trials. We have carried out similar experiments, but in contrast, our results show the effects

of normalisation and subset size on the best accuracy values. There is the additional problem of

determining the best subset of matched points to use to estimate the fundamental matrix. Rather

than simply choosing the one that gives highest accuracy value over all the trials, we employ a

more efficient, elegant solution based on the RANSAC parameter estimation paradigm [15].

This chapter describes our implementation and experiences in using the normalised 8-point

algorithm to compute the fundamental matrix. We begin with an overview of epipolar geometry

and derive the linear criterion on which the 8-point algorithm is based. This is followed by a

brief description of some of the important properties of the fundamental matrix. Next we describe

two different methods of solving the linear criterion equations. We then outline the normalisation

process itself and explain how it can help improve the accuracy of the solution of these equations.

Finally, we present the results of a series of experiments to compute the fundamental matrix, using

a variety of real and synthetic data, and show how we can embed the normalised 8-point algorithm

into the RANSAC paradigm.

Appendices A and B provide essential background material on projective geometry and the

RANSAC paradigm, respectively.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 25

P

p

l’

e e’

l

C

L L’

p’

C’

Figure 3.1: Epipolar Geometry: Two images of a point P are taken by a moving camera, whose

optical centre is at positionsC andC 0. The plane throughCPC 0 is the epipolar plane for P . This

plane intersects the images along the two epipolar lines l and l0.
3.2 An Overview of Epipolar Geometry

Figure 3.1 illustrates the epipolar geometry. Suppose we have a pair of images of a scene, taken

with either a single moving camera or a stereo pair. The 3D locations of the camera optical centres

are at C and C 0. The 3D scene point P is projected along rays L and L0 onto the image planes atp and p0, respectively. Projection of C along the line joining the two optical centres, gives a pointe0 in the second image, known as the epipole. Similarly, projecting C 0 gives the epipole e in the

first image. Note that, for reasons of clarity, the imaging arrangement we have shown results in

the epipoles lying within the bounds of the two images. In practice this is not necessarily the case,

indeed the line between the two optical centres may only intersect the image planes at infinity.

The 3D pointP and the two optical centres define the epipolar plane for P . This intersects

the image planes along the epipolar lines l and l0. It can be seen that l is the projection of the rayL0 onto the first image and l0 is the projection of the ray L onto the second image. This property

has important implications when attempting to match points in the two images. If the 3D pointP has been observed at position p in the first image, then P must lie somewhere on the ray L.

This, in turn, constrains the position of p0: it must lie somewhere along the projection of L in the

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 26

second image i.e. on the epipolar line l0. Consequently, given a mechanism for calculating the

epipolar line corresponding to a point in one image, the search space for the matching point can

be dramatically reduced from the whole image to just a line. The fundamental matrix provides

such a mechanism.

C2

C1

Image

Epipole

Epipolar Lines

Figure 3.2: Each 3D point defines a plane with the camera optical centres. These planes intersect

the images, forming two pencils of epipolar lines, with intersections at the epipoles

Consider figure 3.2 and imagine a set of 3D points at general positions in the scene. Each

point forms a different epipolar plane with the optical centres. As we have seen, each plane forms

an epipolar line at its intersection with the image planes, thus multiple planes lead to the formation

of a pencil of lines, which intersect at the epipole in either image.

Let � be any such plane, then � projects to an epipolar line l in the first image and l0 in

the second. The correspondences ��̂l and ��̂l0 are homographies between the two pencils of

epipolar lines and the pencil of planes through the optical centres. 1 It follows that the correspon-

dence l �̂l0 is also a homography. This homography is the epipolar transform. It is determined by

the coordinates of the two epipoles and three l �̂l0 correspondences. It follows that the epipolar

transform depends on seven independent parameters. In fact, it can be shown ([13, 41]) that the

epipolar transform determines, and is itself determined by, the fundamental matrix.1We use the symbol �̂ to denote homographic correspondence.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 27

3.3 Derivation of the Linear Criterion

In this section we describe an alternative derivation of the linear criterion, due to Hartley [24].

This projective geometry version fits better with the uncalibrated/projective nature of the fun-

damental matrix than the calibrated/Cartesian method used by Longuet-Higgins in the original

paper.

Given the same imaging arrangement as in figure 3.1, we fix the first camera position, C,

at the origin of our object space coordinate system. The second camera, C 0, is located at some

displacement from this. We can represent the two cameras by the 3�4 transformation matrices

they use to project from 3D object space coordinates to the 2D image planes (see Appendix A).

We can assign the two camera matrices as follows:C = (Ij0) and C0 = (Rj �Rt) (3.1)

where we have partitioned the 3�4 matrices into a 3�3 left sub-matrix and a 3�1 column vector,I is the identity matrix, R is a 3D rotation matrix and t = (tx; ty ; tz) is a 3D translation matrix.

These two cameras matrices project a 3D image point P = (X; Y; Z; 1)T as follows:p = CP, (u; v; w)T = (IjO)(X; Y; Z; 1)T (3.2)

and p0 = C0P, (u0; v0; w0)T = (Rj �Rt)(X; Y; Z; 1)T (3.3)

Now, as we saw in the previous section, given a point p in the first image, the corresponding

point, p0 in the second image is constrained to lie on the epipolar line, l0, which is the projection ofL by C 0. Another way of looking at L is as the set of all 3D points which project onto p under C.

We now choose two points from this set; the camera origin (0; 0; 0; 1)T and the point at infinity(u; v; w; 0)T . The coordinates of the projections of these points in the second image are �Rt
andR(u; v; w)T respectively. The homogeneous equation of the epipolar line, l0, passing through

these two points can now be recovered using the cross product:(a; b; c)T = Rt�R(u; v; w)T = R(t � (u; v; w)T) (3.4)

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 28

where l0 = (a; b; c) represents the line au + bv + cw = 0. If we now define the anti-symmetric

matrix S = [t]� as: 0BBBB@ 0 �tz tytz 0 �tx�ty tx 0 1CCCCA (3.5)

the properties of the cross product allow us to rewrite equation 3.4 as:(a; b; c)T = RS(u; v; w)T (3.6)

We set F = RS, giving F as the 3�3 fundamental matrix and can now write:l0 = Fp (3.7)

Thus, given a point in one image, the fundamental matrix allows us to compute the cor-

responding epipolar line in the other. It is also clear that, since, by definition, the corresponding

image point, p0 belongs to epipolar line l0, we obtain the linear criterion:0 = p0TFp (3.8)

It is worth noting that by reversing the roles of the two images in this derivation, the fun-

damental matrix is switched to its transpose. That is, the following relations also hold:l = FTp0 and 0 = pTFTp0 (3.9)

3.4 Other Properties of F

It has already been mentioned that F determines and is determined by the epipolar transform,

which has only seven independent parameters. Although the fundamental matrix has nine ele-

ments, it too has only seven independent parameters. We can account for one of the degrees of

freedom by noting that F is only defined up to a scale factor. That is, applying an arbitrary scale

to F will have no effect on the results of equations 3.7and 3.8.

The other degree of freedom is taken care of by the fact that the fundamental matrix must

have rank 2. To see why this is so it may be necessary to consider figure 3.1 once again. As we

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 29

know, application of the fundamental matrix to a point in one image, yields the corresponding

epipolar line in the other, but what if the point in question is one of the epipoles? For example,Fe = le. Geometrically, le is the projection of the ray hC; ei onto the second image, but by con-

struction this line is reduced to a point, the corresponding epipole e0. Thus, we have the following

property: Fe = FTe0 = 0 (3.10)

Consequently,F is singular, has zero determinant and its rank must be less than or equal to

2. In general it is of rank 2. It is not possible for the rank to be 1, since this implies that the line

between the optical centres belongs to the intersection of the image planes [41].

3.5 Implementing the 8-Point Algorithm

Equation 3.8 is linear and homogeneous in the nine unknown coefficients of the fundamental ma-

trix. Thus, in general, given a set of eight point matches pi $ pi0 in the two images, we will

be able to obtain a unique solution for F, up to a scale factor. Taking one such pair of pointsp = (u; v; 1), p0 = (u0; v0; 1) and labelling the coefficients of F, gives an expanded linear crite-

rion equation: (u0; v0; 1)T 0BBBB@ f11 f12 f13f21 f22 f23f31 f32 f33 1CCCCA (u; v; 1) = 0 (3.11)

Multiplying out and rearranging in terms of the known coordinates of p and p0 gives:uu0f11 + vu0f12 + u0f13 + uv0f21 + vv0f22 + v0f23 + uf31 + vf32 + f33 = 0 (3.12)

Each pair of matched points gives one such equation. With more matches, we can build up

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 30

a set of homogeneous linear equationsAf = 0:0BBBBBBBBBBB@ uu0 vu0 u0 uv0 vv0 v0 u v 1: :: :: :: 1CCCCCCCCCCCA
0BBBBBBBBBBBBBBBBBBBBBBBB@

f11f12f13f21f22f23f31f32f33
1CCCCCCCCCCCCCCCCCCCCCCCCA = 0BBBBBBBBBBB@ 0� � �� � �� � �� � � 1CCCCCCCCCCCA (3.13)

The process of generating and solving the above system of equations is the 8-point algo-

rithm. In practice, we are given many more than just eight matches, resulting in an over-determined

set of equations.

In order for there to exist a non-trivial solution to Af = 0, the matrix A must be rank-

deficient, that is, although A has nine columns, its rank will be at most eight. This is generally

true if we are dealing with perfect data, but in practice inaccuracies in the matched points lead toA having full rank. In this case we seek a least-squares solution to the linear criterion equations.

We will now look at two different methods of obtaining this solution.

3.5.1 Solution Via Singular Value Decomposition - SVD

Since F is only defined up to a scale factor, we can fix one of its coefficients to a known value

and then compute a closed-form solution to the linear criterion equations. Numerical analysis of

non-linear solutions has shown that the choice of this normalising coefficient is not arbitrary: it

should be one of the first six [40]. By setting f13 = 1 we obtain the following modified system

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 31

of linear equations Âf̂ = �u0:0BBBBBBBBBBB@ uu0 vu0 uv0 vv0 v0 u v 1: :: :: :: 1CCCCCCCCCCCA
0BBBBBBBBBBBBBBBBBBBBB@

f11f12f21f22f23f31f32f33
1CCCCCCCCCCCCCCCCCCCCCA = 0BBBBBBBBBBB@ �u0� � �� � �� � �� � � 1CCCCCCCCCCCA (3.14)

This system can then be solved, using Singular Value Decomposition [50], which is known

to give the best estimate for the remaining coefficients of F, in a least-squares sense. This is per-

haps the simplest method for computing the fundamental matrix, and possibly the one which is

most prone to the effects of noise and outliers in the matched features. Although the normalisa-

tion transform, discussed in the next section, was not designed specifically with this approach in

mind, it will be interesting to see what effects it has. In the sequel we will refer to this method of

solution as SVD.

3.5.2 Solution Via Eigenvector - EIG

Another, more popular, method of computing the fundamental matrix is to formulate the linear

criterion equations as a classic minimisation problem and seek the vector f which minimises:minf kAfk subject to kfk = 1 (3.15)

where k:k indicates the Frobenius norm 2. It is well known that the solution to this problem is the

unit norm eigenvector ofATA, corresponding to the smallest eigenvalue. In our implementation

we solve this problem by first reducing ATA to tri-diagonal form, via the Householder method.

The eigenvalues and eigenvectors can then be recovered using the QL algorithm. See [50] for the

details. From now on we will refer to this solution method as EIG.2The square root of the sum of squares of the coefficients. For a vector, the Frobenius norm is equivalent to the two

norm.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 32

3.5.3 Enforcing the Rank Constraint

As noted in section 3.4, important properties of the fundamental matrix are that it is singular, has

rank 2 and det(F) = 0. In fact, most applications of F, depend on this singularity or rank con-

straint. However, in general, the fundamental matrix obtained using the methods based on the

linear criterion will not have these properties, or, to put it another way, the linear criterion cannot

express the rank constraint. To see the effect this has, consider a fundamental matrix, F, com-

puted via a linear criterion method, a point p = (u; v; 1) in the first image and its corresponding

epipolar line l0. Furthermore, we denote the coordinate vector of the epipole in the first image bye = (eu; ev; 1) and fix the horizontal and vertical offsets of p from e as x and y, respectively. We

can now express p as: p =0BBBB@ uv1 1CCCCA = 0BBBB@ eu � xev � y1 1CCCCA (3.16)

Now, applying the fundamental matrix, gives:l0 = Fp = F0BBBB@ eu � xev � y1 1CCCCA= Fe�F0BBBB@ xy0 1CCCCA| {z }loffset (3.17)

IfF is singular,Fe = 0, exactly, and the right hand side of the equation simplifies to lo�set,
which is an epipolar line, as required. However, whenF is non-singular, l0 is the sum of a constant

residual vector r = Fe and the vector lo�set, whose norm is bounded by
px2 + y2kFk. It can be

seen that as p ! e so (x; y) ! (0; 0) and thus l0 ! r, which is inconsistent with the principles

of epipolar geometry. In fact, the closer p gets to the epipole, the greater will be the error in its

corresponding epipolar line. Thus, if the epipole lies within the bounds of the image, then the

epipolar geometry encompassed in a fundamental matrix obtained using the linear criterion will

be inaccurate.

Fortunately, this problem is not insurmountable. The solution is to correct the estimated

fundamental matrix to ensure it has the required rank. To do this we employ a technique developed

by Tsai and Huang [65], whereby F is replaced by the matrix F̂ that minimises:

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 33kF� F̂k subject to det(F̂) = 0 (3.18)

This is achieved by first computing the singular value decomposition,F = UDVT , whereD is a diagonal matrix D =diag(r; s; t) such that r � s � t. Setting F̂ = Udiag(r; s; 0)VT has

been shown to give F̂ as the closest singular matrix to F under Frobenius norm.

3.5.4 Normalisation

Here we give a brief description of a recently developed technique [26] for improving the accu-

racy of the fundamental matrix computed using the 8-point algorithm. This approach is based

on numerical analysis of the EIG method of solving the linear criterion equations. It is theorised

that the poor performance of the 8-point algorithm can be attributed to methods of implementa-

tion that do not take sufficient account of the conditioning of the set of equations being solved.

The condition number, � of a matrix M is given by� = kMk:kM�1k (3.19)

It plays an important role in the analysis of linear problems. When � is large, a small change in

the data can lead to large variations in the computed solution. Thus, we aim to make � as small

as possible, improving the conditioning of the system of equations and leading to a more stable

and accurate solution.

The EIG method of solvingAf = 0 requires the computation of the unit norm eigenvector

ofATA. As such, the result of Hartley’s analysis was the development of a normalising transform

to reduce the condition number of the ATAmatrix, allowing us to obtain a better estimate for F.

However, as we will show, the beneficial effect of normalisation is not just limited to the EIG

implementation, it also improves the results of the SVD method.

The normalisation process is straightforward. Prior to generating the linear constraint equa-

tions, the coordinates of the matched image points undergo a combined translation and scale trans-

formation such that the centroid of the points is at the origin and the average distance of a point

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 34

from the origin is
p2.

The effect of the translation is intuitively obvious. Consider a set of points in a 200�200

image, whose u-coordinates are 101; 102; 103. Translating by 100 results in 1; 2; 3. Thus in the

untranslated coordinates, the important values are not found until the third significant figure, be-

ing obscured by the offset of 100. This has a detrimental effect on the conditioning of ATA.

However, this problem can be solved by a simple translation which promotes the coordinates’

significant figures.

The theory behind the scaling effect is quite complex and we will not discuss it in any great

depth here. In essence, a lower bound for the condition number of theATA is derived, based on

the interlacing property3 for the eigenvalues of a symmetric matrix and their relationship with

the values of the diagonal elements of ATA. Clearly, the magnitudes of these diagonal elements

are themselves related to the coefficients in equation 3.12, which, in turn, are determined by the

matched point coordinates. Thus, it can be shown that scaling so that the average homogeneous

point coordinate is unity will improve the conditioning of ATA.

Note that the translation and scale transforms are computed separately for each image. Each

pair of transforms is then combined to give a single transformation matrix T andT0, for the first

and second image respectively. Thus two matched image coordinates p and p0 are replaced by

their normalised versions as follows:p̂ = Tp and p̂0 = T0p0 (3.20)

thus T�1p̂ = p and p̂0TT0�T = p0T (3.21)

which, by the linear criterion (3.8), gives:p̂0TT0�TFT�1p̂ = 0 (3.22)3If Ar denotes the leading r� r principal sub-matrix of an n� n symmetric matrix A, and �i(A) represents thei-th largest eigenvalue of A, then for r = 1; 2; : : : ; n� 1 the following interlacing property holds [18]:�r+1(Ar+1) � �r(Ar) � �r(Ar+1) � : : : � �2(Ar+1) � �1(Ar) � �1(Ar+1)

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 35

This implies that F̂, the fundamental matrix for the normalised point correspondences is:F̂ = T0�TFT�1 (3.23)

and we can recover F by: F = T0TF̂T (3.24)

Thus we can outline the normalised 8-point algorithm as follows:

1. Given a set of pairs of matched image points pi $ p0i, apply the normalising transforma-

tionsT and T0 to obtain p̂i = Tpi and p̂0i = T0p0i.
2. Compute the fundamental matrix F̂ corresponding to these normalised points.

3. Recover the fundamental matrixF corresponding to the ‘un-normalised’ pointsasF = T0TF̂T.

In the sequel we will refer to the normalised implementationsas SVDNORM and EIGNORM.

3.5.5 Quantifying Success

Our overall aim is to obtain the best possible estimate for the fundamental matrix, based on the

linear criterion, for later use in our structure recovery system. In doing so, we can evaluate which

combination of normalisation and method of solution (SVD/EIG) provides the best results. The

question is, how to quantify ‘best’?

The measure we use is based upon the relationship between matched points and their epipo-

lar lines. Specifically, given l0 = Fp, we know that p0 should lie somewhere on l0. In fact, this is

only exactly true when the computed F is perfect and in practice the point will actually lie some

distance from its epipolar line. We can use this as a measure of the quality of F. Formally, we

define the quality of a fundamental matrix, denoted by QF , to be the average perpendicular dis-

tance of each point from its corresponding epipolar line. Thus we would like QF to be as low

as possible. A method for computing the perpendicular distance of a homogeneous point from a

homogeneous line is given in Appendix A.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 36

The aim of the normalisation process is to obtain a better estimate for F by improving the

conditioning of a linear system. In this respect, its success or failure is easy to quantify. For the

SVD method we keep track of the condition number, �, of the matrix Â in Âf̂ = �u0 (section

3.5.1). For the EIG method of solution, we are interested in the condition number of matrixATA
in Af = 0 (section 3.5.2).

3.6 Results and Conclusions

3.6.1 Initial Experiments

In this section we describe the results of our experiments to determine the effects of the normal-

ising transform on our two implementations of the 8-point algorithm. Experiments were per-

formed on a variety of synthetic data and real images, using manual and automatic feature de-

tection/matching methods. Here we give a representative sample of the results obtained.

In order to be able to make a valid comparison, our experiments follow along similar lines

to those carried out in Hartley’s original paper on normalisation [26], in that we show the effect of

varying the number of matched points used in the computation of the fundamental matrix. Thus,

given a dataset containing M matched points, we begin by selecting a random 8-point subset,S, which is used to obtain an estimate for F. The condition number, �, of the solved system of

equations is recorded, as is the quality measure, QF . This process is repeated for a number of

trials, each time selecting a different random subset of matched points. Once all these trials are

completed, we then do exactly the same thing using 9-point subsets, then 10-point subsets, etc.,

until we have computed F using all subset sizes S 2 [8 : : :M].
For each dataset we plot graphs which show how � andQF change as S is varied. Here we

use the median values obtained over all the trials for each size subset. Note that, regardless of the

subset size, all M matches are used in the determination of QF . In addition, we vary the number

of trials used per subset as a fraction of the total number of S-point subsets in M . A pseudo-code

overview of the experiments is as follows:

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 37

Given an M-point dataset:

for subset size S = 8 to M

{

for some variable number of trials T

{

randomly select an S-point subset from M

compute F using this subset and each of the 4 methods

enforce the rank constraint

record the kappa and Qf values for this particular subset

}

record the median and best kappa/Qf values for this size subset

}

3.6.2 Synthetic Data

1

1e+10

1e+20

1e+30

0 10 20 30 40 50 60

M
ed

ia
n

C
on

di
tio

n
N

um
be

r
K

Number of matched points used to compute F

EIG
EIGNORM

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

0 10 20 30 40 50 60

M
ed

ia
n

C
on

di
tio

n
N

um
be

r
K

Number of matched points used to compute F

SVD
SVDNORM

(a) (b)

Figure 3.3: Graphs of S against � using perfect synthetic data

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

M
ed

ia
n

Q
f (

pi
xe

ls
)

Number of matched points used to compute F

EIG
EIGNORM

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

M
ed

ia
n

Q
f (

pi
xe

ls
)

Number of matched points used to compute F

SVD
SVDNORM

(a) (b)

Figure 3.4: Graphs of S against QF using perfect synthetic data

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 38

We begin by applying the algorithms to a perfect dataset. The idea was to obtain a frame of refer-

ence for future experiments and to see whether any differences could be detected when the algo-

rithms were used under ideal conditions. We simulated a scene consisting of 60 randomly gener-

ated points within a constrained 3D volume. Two arbitrarily placed cameras project the 3D scene

points into the perfect 2D matched data. Figures 3.3 and 3.4 show how varying the number of

points used in the fundamental matrix calculation affects QF and �.

Looking at the graphs of �, two things are immediately obvious. Firstly, it is clear that nor-

malisation has resulted in a dramatic reduction in the condition number for both the SVDNORM

and EIGNORM methods, the improvement being of the order of 106 and 103 respectively. Sec-

ondly, it would seem that as the subset size increases, so � is reduced. It is also particularly no-

ticeable that the EIG implementation, in both its basic and normalised forms, is extremely ill-

conditioned when 8-point subsets are used to compute F.

As one would expect for this kind of dataset, the values of QF are very low, on the whole

to sub-pixel accuracy. However, it does look as though the EIG method is producing marginally

more accurate results. One thing that is also worth mentioning at this point is that for any given

8-point subset, both methods determine an exact solution for the elements of the fundamental ma-

trix. Thus they generate F matrices that are the same, to within a scale factor, and hence, give

identical values for QF .

3.6.3 Real Data: Corridor Images

The two images used here are part of a larger, widely-used sequence of a corridor. 4 Feature

detection and matching was done by hand, to produce 40 matched point pairs.

Figure 3.5 shows that, as with perfect data, normalisation leads to a reduction in the condi-

tion number of the system, for both methods of solution, but, again, we note the high � values for

EIG and EIGNORM when using exactly eight matched points. However, overall the improve-

ments were of the order of 108 for EIGNORM and 103 for SVDNORM.

The impact this has on QF is easier to see than with the previous dataset (figure 3.6). Both4This sequence was provided by the Robotics Research Group at the University of Oxford.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 39

1

1e+10

1e+20

1e+30

5 10 15 20 25 30 35 40

M
ed

ia
n

C
on

di
tio

n
N

um
be

r
K

Number of matched points used to compute F

Standard EIG
Normalised EIG

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

5 10 15 20 25 30 35 40

M
ed

ia
n

C
on

di
tio

n
N

um
be

r
K

Number of matched points used to compute F

Standard SVD
Normalised SVD

(a) (b)

Figure 3.5: Graphs of S against � for the corridor image pair

0.5

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25 30 35 40

M
ed

ia
n

Q
f (

pi
xe

ls
)

Number of matched points used to compute F

Standard EIG
Normalised EIG

0.5

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25 30 35 40

M
ed

ia
n

Q
f (

pi
xe

ls
)

Number of matched points used to compute F

Standard SVD
Normalised SVD

(a) (b)

Figure 3.6: Graphs of S against QF for the corridor image pair

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 40

normalised methods result in a small, but consistent, decrease in perpendicular pixel error, relative

to their basic counterparts. The sub-pixel accuracy can be attributed to the fact that this manually

generated dataset contains only small errors in localisation and no false matches.

Overall, EIGNORM is the best performer, but there is very little to choose between any of

the four methods. This is emphasised by figure 3.7, which shows the image pair overlaid by epipo-

lar lines generated by the best5 fundamental matrices, obtained using each of the four methods.

As can be seen, the locations of the epipoles and lowest QF values are very similar.

3.6.4 Real Data: House Images

These images of a toy house were obtained from the VASC image database6. They are part of

a large image sequence (over 180 images) which has been used extensively for machine vision

research, particularly structure from motion, for example [48]. The images were processed using

the INRIA epipolar geometry server7, which in this case found a set of 116, rather noisy, point

matches (see figure 3.8).

Figure 3.9 shows that, once again, the normalisation process has the desired effect of im-

proving the conditioning of the systems, a reduction in � of the order of 1010 for EIGNORM and106 for SVDNORM. As before, this leads to a decrease in the median values of QF , as shown in

figure 3.10. For this noisy dataset, the beneficial effect is more dramatic than we have seen previ-

ously, reducingQF by more than 3 pixels, when the computation involves large subsets. It is also

noticeable that, for the basic EIG and SVD methods,QF begins to increase as the subset size ap-

proaches the total number of matched points. This is another feature of our noisy dataset. When

large numbers of points are used, there is a greater likelihood that the subset will include false

point matches, thus degrading the least-squares solution. However, the monotonically decreas-5The fundamental matrix with the lowest QF over all trials and all subset sizes.6Available on the World Wide Web at http://www.ius.cs.cmu.edu/IUS/ppt usr0/yx/idbm/image html7This enables users to have a pair of their own images processed remotely on the INRIA computer, via the World

Wide Web. Matched point correspondences are obtained [71] and fed into an algorithm which computes the epipolar

geometry [8]. All resulting information is available, for example detected/matched features, the fundamental matrix,

images overlaid with matches, epipolar lines etc. This provided an alternative method of obtaining point matches and

a useful check on the accuracy of our own results. The URL is: http://www.inria.fr/robotvis/demo/f-http/html/

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 41

(a) EIG QF = 0:54
(b) EIGNORM QF = 0:54

(c) SVD QF = 0:56
(d) SVDNORM QF = 0:55

Figure 3.7: Sample epipolar lines using the four best F matrices from the corridor image pair.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 42

Figure 3.8: Results of the INRIA matching algorithm for the house image pair.

1

1e+10

1e+20

1e+30

0 20 40 60 80 100 120

M
ed

ia
n

C
on

di
tio

n
N

um
be

r
K

Number of matched points used to compute F

EIG
EIGNORM

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

0 20 40 60 80 100 120

M
ed

ia
n

C
on

di
tio

n
N

um
be

r
K

Number of matched points used to compute F

SVD
SVDNORM

(a) (b)

Figure 3.9: Graphs of S against � for the house image pair

2

3

4

5

6

7

8

9

10

11

0 20 40 60 80 100 120

M
ed

ia
n

Q
f (

pi
xe

ls
)

Number of matched points used to compute F

EIG
EIGNORM

2

3

4

5

6

7

8

9

10

11

0 20 40 60 80 100 120

M
ed

ia
n

Q
f (

pi
xe

ls
)

Number of matched points used to compute F

SVD
SVDNORM

(a) (b)

Figure 3.10: Graphs of S against QF for the house image pair

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 43

ing curves for the EIGNORM and SVDNORM methods suggest that the normalisation process

goes some way towards counteracting this effect.

The two normalised methods are clearly the best performers on this dataset, with EIGNORM

doing slightly better than SVDNORM. Although the basic methods give relatively poor results

for medianQF values, figure 3.11 shows that the best fundamental matrices obtained over all their

trials are very similar to those of their normalised counterparts.

3.7 Initial Conclusions

In every experiment we performed, the normalisation process had the desired effect of improving

the conditioning of the system of linear equations. For the least eigenvector method, the reduction

in �was of the same order of magnitude as reported by Hartley, at approximately 108. The theory

behind normalisation is specifically linked to this method of solutionand one of the things we were

interested in was whether it could also be used to enhance the conditioning of the SVD method.

Indications are that this is the case, with our results showing a reduction of about 104. The mag-

nitude of the improvement is clearly dependent on the quality of the dataset, the most beneficial

effects occurring with noisy data, containing may false matches and localisation errors. The same

applies with respect to the perpendicular pixel error; normalisation gave the biggest decreases inQF on the noisiest datasets.

In every one of our EIGNORM experiments the enhanced conditioning resulted in lower

values for QF . In the vast majority of cases, SVDNORM gave only slightly poorer results, but

occasionally it was unstable (see figure 3.12).

Here, in spite of the lower condition number, SVDNORM actually gives worse results forQF than basic SVD. While the SVD method itself gives quite erratic values, it at least shows the

familiar decreasing curve as the subset size increases, which is not the case for SVDNORM. One

possible cause of these anomalies could be the composition of the dataset, which in this case con-

tained a large proportion of projections of planar 3D points. Hence, many of the random matched

point subsets would have contained degenerate configurations [62]. We have not yet carried out a

more in depth investigation of this phenomenon, since we are primarily interested in a high-level

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 44

(a) EIG QF = 1:83
(b) EIGNORM QF = 1:81

(c) SVD QF = 1:82
(d) SVDNORM QF = 1:82

Figure 3.11: Sample epipolar lines using the four best F matrices from the house image pair.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 45

0

0.5

1

1.5

2

2.5

3

3.5

4

5 10 15 20 25 30 35 40 45

M
ed

ia
n

Q
f (

pi
xe

ls
)

Number of matched points used to compute F

SVD
SVDNORM

EIG
EIGNORM

1

1e+10

1e+20

1e+30

5 10 15 20 25 30 35 40 45

M
ed

ia
n

C
on

di
tio

n
N

um
be

r
K

Number of matched points used to compute F

SVD
SVDNORM

EIG
EIGNORM

Figure 3.12: Instability of the SVDNORM method

comparison of the methods of solution. Here we merely note its, albeit infrequent, occurrence and

the fact that the EIG and EIGNORM methods seem unaffected.

In short, for this series of tests, the EIGNORM method produced consistently lower per-

pendicular pixel errors and better estimates for the coordinates of the epipoles. The algorithm

copes very well with noisy data, and its performance degrades gracefully as the level of noise is in-

creased. Therefore, we have concluded that of the various implementations tested, the normalised

eigensystem method is the clear winner, and from now on this is the method of implementation

we have used.

3.7.1 Further Experiments

The experiments we have performed so far have confirmed Hartley’s findings, that the normal-

isation process does lead to more accurate estimation of the fundamental matrix via the 8-point

algorithm. However, the way these experiments were carried out is not a very practicable solution

to the problem. Rather than doing a laborious series of trials for different sized subsets we would

prefer a more efficient way of finding the best fundamental matrix for a given dataset. Looking at

the graphs of subset size against perpendicular pixel error that we have presented, one might con-

clude that the best way to calculate F would be to use the largest possible subset size. However,

it must be remembered that these graphs plot the median values of QF . Consider instead, figure

3.13. This is an example plot of the lowest values of QF for each subset size, obtained during

the experiment on the house images described previously, but it is typical of the results for other

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 46

datasets.

1.8

1.85

1.9

1.95

2

2.05

0 20 40 60 80 100 120

Lo
w

es
t Q

f (
pi

xe
ls

)

Number of matched points used to compute F

EIGNORM

Figure 3.13: Example Lowest QF Values.

Looked at in isolation, without the swamping effect of being compared with the high error,

basic method, it is clear that the EIGNORM performance also degrades as the subset size ap-

proaches the total number of matches. As has already been mentioned, this is due to the fact that

large subsets are more likely to include outliers in the data; false matches which taint the least-

squares result. The use of large subsets when computingF causes other problems. Clearly, as the

size of our subset approaches that of the complete matched point set (S ! M), the number of

permutations of points in that subset increases exponentially, as does the number of trials required

to find the best S-point subset. In addition larger subsets incur a computational overhead, because

they lead to bigger systems of equations which take longer to solve.

However, it is equally apparent from this, and many other experiments on real data, that the

answer is not to do the computation using the smallest possible (8-point) subset. It may well be the

case that a fundamental matrix estimated from an 8-point subset is very accurate in terms of those

8 points, but is not so good when applied to all the matched points. It seems that the optimum

subset size i.e. the one that gives the lowest QF , can be anywhere except at the extremes of the

range S 2 [8 : : :M]. The question is, how to find it? A brute force and ignorance solution, which

we will refer to as BEST-F, is simply to choose the best F matrix over all trials and subset sizes.

However, we would prefer a more intelligent and efficient approach.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 47

The solutionwe employ is a variant of the RANSAC parameter estimation paradigm, which

we denote by RANSAC�.8 As before a series of trials are performed using randomly selected sub-

sets of the total number of matched points, but here 8-point subsets are chosen. At each trial, we

take the computed F and find all the point matches whose perpendicular pixel error is beneath

some threshold value. These matches form the consensus set. The (� 8) points in the consensus

set are then used to compute another estimate for F for which we calculateQF , in the usual man-

ner. The old consensus set is replaced if the new consensus set is of equal or larger size and has

a lower QF . The process terminates either once all trials have been completed or the consensus

set size or QF reach a specified target. In detail, the RANSAC� version of our experiments is as

follows:

Given a dataset, M , of point matches, then for some fixed number of trials:

1. Randomly select an 8-point subset from M .

2. Compute F for this subset using EIGNORM.

3. Enforce the rank constraint.

4. Determine the consensus set C of matches whose perpendicular pixel error is within some

threshold.

5. Compute a new F0 based on C.

6. Calculate QF for F0.
7. Replace the old consensus set if C is the same size or bigger, and has lower QF value.

8. Terminate if the size of C or QF reach specified targets.

At the end of this procedure, we hope to have obtained a fundamental matrix, based on

many of the matched points, with a lowQF value, and to have done so in a relatively small number

of trials.8For a full description, refer to appendix B.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 48

3.7.2 Further Results

There is little point in attempting to quantify the increase in speed of RANSAC� relative to the

BEST-F approach, since, by altering the number of trials per subset size in the latter case, we could

come up with whatever figures we liked. Instead, we note that for a given dataset, however many

trials per subset size are needed in order to obtain a good estimate for F using BEST-F, invariably,

RANSAC� requires fewer trials to give a fundamental matrix which is almost as accurate. Some

example results on different datasets9 are given in table 3.1.

Dataset Matched BEST-F RANSAC�
Points QF Subset Size Trials QF Consensus Size Trials

Perfect 60 0.30 52 4413 0.31 45 2340

Corridor 40 0.54 31 23674 0.62 23 6166

Quadrangle 43 0.43 23 32842 0.55 32 4570

House 116 1.81 50 42839 1.90 43 5666

Table 3.1: Comparison of results of obtaining F using the BEST-F and RANSAC� algorithms

The RANSAC� method results in slightly inferior QF values than can be obtained using

BEST-F. However, this small decrease in accuracy is outweighed by big improvements in effi-

ciency. To put the performance of RANSAC� into perspective, table 3.2 shows how it compares

against some of the more complicated alternative methods for estimating the fundamental matrix.

NONLIN is a non-linear least-squares method, LMEDS is the least median of squares and

M-EST uses the M-estimators technique, as discussed in Chapter 2. Clearly, there is very little to

choose between the various implementations. With perfect data, as one would expect, they all give

virtually the same results, especially when applied to our noisiest dataset, the house images. There

is more of a differential when using hand-matched data, containing only small localisation errors,

but we are still only talking in terms of a few hundredths of a pixel accuracy. The performance

of RANSAC� is even more impressive with our automatically processed house dataset, which9We have already seen the perfect dataset and the corridor and house images. The quadrangle dataset is a pair

of hand-matched images from an outdoor image sequence of part of the Leeds University campus. The entire image

sequence is shown in Appendix C.

CHAPTER 3. ACQUIRING THE FUNDAMENTAL MATRIX 49

Dataset QF
RANSAC� NONLIN LMEDS M-EST

Perfect 0.31 0.31 0.31 0.31

Corridor 0.62 0.56 0.56 0.55

Quadrangle 0.55 0.49 0.47 0.45

House 1.90 1.92 1.84 1.90

Table 3.2: Comparing RANSAC� with more complicated algorithms

includes many mismatches. Here it is only bettered by the least-median of squares algorithm.

3.8 Conclusions

In this chapter we have investigated Hartley’s normalisation technique for improving the perfor-

mance of the 8-point algorithm. Although this technique is based on numerical analysis of one

particular method of solution (EIG), we have shown that its beneficial effects are quite general in

that its application to another solution method (SVD) also leads to more accurate results.

We have demonstrated that, when using the normalised 8-point algorithm (EIGNORM)

to estimate the fundamental matrix, the size of the matched point subset used in the computation

is of great importance. We can obtain an excellent solution simply by carrying out thousands

of trials for each possible subset size and then picking the best solution overall, however, this

is very time-consuming. To this end, we have embedded EIGNORM within a RANSAC-style

procedure which attempts to obtain a quick, accurate estimate for the fundamental matrix, based

on a medium-sized point subset (RANSAC�). We do not claim that this will produce an optimum

solution, but have shown that results of our simple, linear method are similar to those obtained

with other, more complex alternatives. In the next chapter we will use the fundamental matrices

acquired using RANSAC�, as the starting point for our 3D scene reconstruction.

Chapter 4

Reconstruction

4.1 Introduction

In his seminal paper [12] Faugeras showed that it is possible to obtain the projective structure of a

scene, given just a set of matched points in a pair of images taken with uncalibrated cameras. This

generated a great deal of interest in the development of algorithms for performing uncalibrated

stereo, that is, recovering the three-dimensional structure of a scene, without explicit knowledge

of the intrinsic or extrinsic camera parameters. Descriptions of some of these algorithms have

been given in Chapter 2. In the absence of any other information or simplifying assumptions, the

reconstruction will be correct up to a projective ambiguity i.e. it will differ from the real Euclidean

structure by a projective transformation.

Projective structure can be very useful in its own right, for example, objects may be recog-

nised via projective invariants [56]. However, although geometrically related, it is unlikely that

the projective and Euclidean structures will look anything like each other. If the intention is to

use the recovered structure for graphical reconstruction and subsequent viewing by a person, this

clearly poses a problem.

A method of converting from a projective to Euclidean reconstruction was presented in

[25]. This uses the constraint of unchanging intrinsic camera parameters, which is the basis of

camera self-calibration theory[13], requiring at least three views of the scene, taken with the same

50

CHAPTER 4. RECONSTRUCTION 51

camera. The method is highly complex and relies heavily on the Levenberg-Marquardt iterative

parameter estimation algorithm [50]. Although it appears to give good results using synthetic

data, the method’s performance on images of real scenes is less impressive. For this reason, we

have adopted a simpler approach, using ground truth points. If the Euclidean positions of five or

more of the points in the projective structure are known, it is possible to compute the projectivity

that maps between them. This can then be applied to all the projective points to achieve a full

Euclidean reconstruction.

In this chapter we describe our implementation of a Euclidean reconstructionmethod, based

on the properties of the fundamental matrix. Rather than restricting ourselves to a single pair of

images, we present a novel incremental version of the basic algorithm which allows us to recover

the Euclidean structure of an extended environment viewed over a long image sequence.

4.2 Outline of the method

Before embarking on a detailed description of each of the stages in our implementation, we first

provide a brief overview of the entire system. A diagrammatic representation is given in figure

4.1.

We begin by estimating the fundamental matrix for the first pair of images in the sequence,

using the algorithm described in the previous chapter. This is then factorised in a manner which

allows us to construct estimates for the pair of camera matrices used in the formation of the two

images. Next, we recover the projective structure of each of the matched points by computing

the intersection of the two rays, projecting back from the two cameras through the corresponding

image features.

For the first image pair only, we transform our projective structure into a Euclidean frame,

using a projectivity derived from a small number of user-supplied ground truth points. With sub-

sequent images, we proceed in a similar manner. A new fundamental matrix is estimated, using

matched points in the current and previous images. As before, this is factorised to obtain a pair

of camera matrices and hence, another batch of projective structure. Once again, we upgrade the

projective structure using a projective transform, but here, the ground truth information is not

CHAPTER 4. RECONSTRUCTION 52

Real

Correspondences
Point

and

Euclidean
Structure

World
Image

PairsScene

R

EP

F

Transformation
Upgrade

Structure P

and [e] x

M

M’

P

Fundamental
Matrix

Calculation
Factorisation

Feature
Camera

& Matching
Detection

Camera
Matrix

Construction

Projective

Reconstruction

Figure 4.1: Overview of the system

supplied directly by the user. Instead, we use common points from our previously computed Eu-

clidean structure.

The entire process is repeated, generating new Euclidean structure as we step through each

pair of images in the sequence. Note that, as the sequence is processed, old points will disappear

and new ones come into view: there is no requirement for points to be visible in all the images.

4.3 Image Sequence Processing

Before embarking on a description of the reconstruction algorithm we first consider some of the

inherent problems of image sequence processing and the effects these have on the overall design

of our system.

Any system which involves the processing of long image sequences must address a number

of issues. First of all, unless the system is capable of processing live video directly from a camera,

or some other input source such as a VCR, then the sequence must be digitised onto disk, and thus

CHAPTER 4. RECONSTRUCTION 53

we need to look at the space requirements. Take, for example, our quadrangle sequence. In this

case, six and a half minutes of original video footage, digitised at full frame rate (25 frames per

second), took up over a gigabyte of disk space! We simply did not have enough resources to keep

this amount of data on our system for any length of time, so had to find a way to reduce the size.

One obvious solutionwas simply to reduce the digitisingframe rate. When attempting to do

so, it was important to remember that each pair of images in the resulting sequence must contain

enough overlap to allow us to obtain a set of matched features, for use in our fundamental matrix

algorithm. Now, our footage was filmed by walking around with an ordinary palm-corder and the

route we followed involved a number of twists and turns, some of them quite sharp. As such, it

was extremely difficult to keep the camera moving at a steady pace and so some parts of the scene

passed in and out of view much more quickly than others. Where this was so, it was essential to

digitise at full frame rate, to ensure enough inter-frame overlap, but elsewhere this resulted in lots

of almost identical, redundant frames.

Ideally, we would have liked to have been able to vary the digitisation rate, based on the

speed of camera motion. Without this facility, the best solution we could manage was to digitise at

full frame rate and then manually extract representative frames, discarding the rest. This process

reduced over 10000 digitised frames to 104, resulting in the image sequence shown in Appendix

C, which only takes up 10 megabytes of disk space.

Unfortunately, this space saving comes at a cost. Suppose we have processed a pair of im-

ages from our sequence, with a corner detector, for example [22, 57, 67]. The next task is to solve

the correspondence problem i.e. find the set of matching corners between the two images. The

fact that there is such a relatively large baseline between our images, causes problems for local

strategies, such as nearest-neighbour, which search for a match in the area of the second image

corresponding to the location of the other corner in the first. For example, consider figure 4.2.

This shows the result of applying a simple local matching algorithm, based on cross-correlation,

to a set of corner features, found via the Plessey detector [22], in a pair of the corridor sequence

images. The usual match search area parameter of about ten pixels is of no use for this image

pair, as the disparity is much greater than that. However, it can be seen that using a larger value is

not the answer. The image on the right is overlaid with matched corners, in red, and yellow lines

CHAPTER 4. RECONSTRUCTION 54

Figure 4.2: Poor performance of a local matching algorithm.

indicating the corner trajectories. Clearly the matching process has not been very successful.

In order to have a chance of finding the correct match, the search area must be increased.

However, this not only increases the computational cost of the process, it also makes it more prone

to false matches. This is particularly so for scenes containing repeated structure (windows etc),

where it is easy to match one instance incorrectly against another.

The effect of false matches can be seen in Figure 4.3. Figure 4.3(a) shows the results of

processing the first pair of quadrangle images with the INRIA point detection and matching algo-

rithm [71]. Evidently, a significant number of false matches have been detected. The fundamental

matrix estimated from these noisy matches does not encapsulate the correct epipolar geometry for

this pair of images. This can be seen by comparing the epipolar lines in figure 4.3(a), with those

in 4.3(c), which were generated by a fundamental matrix computed from hand-matched data.

We have already mentioned one possible solution in the previous chapter. The fundamental

matrix constrains the location of a matched point to lie on a given epipolar line, which can reduce

the search space dramatically. Unfortunately, this is like the ‘chicken and the egg’ situation, in that

we need to find at least eight point matches in order to compute the fundamental matrix! However,

if an initial set of matches is obtained, by some other means, the fundamental matrix approach can

then be used to discard false matches in the set, as described in [71]. A variation on this theme is

CHAPTER 4. RECONSTRUCTION 55

(a) Noisy matched data.

(b) Epipolar lines from noisy matches.

(c) Epipolar lines from hand-matched data..

Figure 4.3: Effects of false matches on epipolar geometry

CHAPTER 4. RECONSTRUCTION 56

discussed in [4], which matches over three images using the trifocal tensor.

It was not the objective of this work to investigate automatic feature matching, which is a

research topic in itself. For this reason, a simple, manual feature detection and matching system

was developed, using an X11-based graphical user interface (see figure 4.4). The user can pro-

cess each image of the sequence in turn, matching existing features or specifying new ones, by

clicking the mouse button at the desired image location. Matched features are highlighted in red,

unmatched features are either old (yellow) or new (orange).

4.4 Constructing Camera Matrices

In the previous chapter a method was described for estimating the fundamental matrix, F, from a

pair of views of a scene, taken with an uncalibrated camera. AcquiringF is the key to recovering

the projective structure of the scene, since it encapsulates all the geometric information relating

the scene and the cameras that can be extracted from a set of matched image features. In particular,

knowing F allows us to construct camera matrices for our two cameras.

The reason for this is directly related to the derivation of the linear criterion in section 3.3.

There it was shown that, by choosing C = (Ij0) and C0 = (Rj �Rt) as our partitioned camera

matrices, the fundamental matrix could be factorised as F = RS, where S = [t]�. Now consider

the more general case, where the two camera matrices are C = (Rj�Rt) andC0 = (R0j�R0t0).
As before, it is possible to determine the epipolar line corresponding to a point (u; v; w)T in the

first image. Two points which must lie on this line are the images under C0 of the first camera’s

optical centre and the point at infinity, given by0B@ t1 1CA and

0B@ R�1(u; v; w)0 1CA (4.1)

These project to R0(t � t0) and R0R�1(u; v; w) in the second image. The epipolar line, l0 =(q; r; s), through these points is given by the cross product(q; r; s) = R0(t � t0)�R0R�1(u; v; w) (4.2)

C
H

A
PT

E
R

4.
R

E
C

O
N

ST
R

U
C

T
IO

N
57

Figure 4.4: Our manual feature detection and matching user interface.

CHAPTER 4. RECONSTRUCTION 58

Which, by the properties of cofactor matrices, can be rewritten(q; r; s) = R0�((t� t0)�R�1(u; v; w)) (4.3)

and (q; r; s) = R0�[t� t0]�R�1| {z }F (u; v; w) (4.4)

and thus we obtain an expression for F in terms of the components of our camera matrices.F = R0�[t� t0]�R�1 (4.5)

It has been shown [23] that this relationship does not determine the two camera matrices

uniquely. In particular, if C1 and C01 are two camera transforms satisfying equation 4.5, then

so are C2 = HC1 and C02 = HC01, where the matrix H is a 4�4 projectivity. Consequently,

the 3D structure of a scene derived from any such pair of camera matrices is defined only up to

an arbitrary projective transformation. The task now is to construct a pair of camera matrices

for which equation 4.5 holds. A number of different ways of doing this have been proposed, for

example [23, 24, 4, 53]. A hybrid of some of these methods is described, which we believe leads

to a more intuitive solution.

4.5 FactorisingF
We follow convention and choose the origin of the world coordinate system as the optical centre

of the first camera, its axes aligned with the camera axes. The second camera is displaced from

the first by some translation and rotation, giving the two familiar camera matrices, C = (Ij0) andC0 = (Rj �R0t0). Substituting into equation 4.5 gives:F = R0�[�t0]� (4.6)

The problem now is to find a way to factorise F in the above form.

The first step is to compute the singular value decomposition F = UDVT , where U andVT are orthogonal matrices and D is the diagonal matrix (r; s; 0). 1 Note that one of the singular1Some swapping of matrix rows and columns may be necessary so that r > s > 0.

CHAPTER 4. RECONSTRUCTION 59

values will always be zero, due to the enforcement of the rank constraint, discussed in section

3.5.3. Defining the two matrices:E = 0BBBB@ 0:0 �1:0 0:01:0 0:0 0:00:0 0:0 1:0 1CCCCA and Z = 0BBBB@ 0:0 �1:0 0:01:0 0:0 0:00:0 0:0 0:0 1CCCCA (4.7)

The fundamental matrix can now be factorised as:F =M�[e]� (4.8)

where M� =Udiag(r; s;)EVT (4.9)

with any non-zero number, best chosen to lie between r and s, to make M as well-conditioned

as possible2, and [e]� = VZVT (4.10)

where e is the coordinate vector for the epipole in the first image.

This works because the process of singular value decomposition explicitly constructs or-

thonormal bases for the nullspace and range of a matrix. Specifically, the rows of VT (denotedVTi for i = 1; 2; 3) whose corresponding singular values are zero are an orthonormal basis for

the nullspace. Given the ordering of the singular values and the fact that Fe = 0, it is clear thatVT1 �VT2 = VT3 = e, which accounts for [e]� = VZVT . Furthermore, since F = M�[e]�, it

follows that eTMTF � eTMTM�[e]� = eT [e]� = 0. Hence, FT (Me) = 0 and so Me � e0.
The end result of this factorisation, is the following pair of camera matricesC = (Ij0) and C0 = (Mjp0) (4.11)

Once again, it must be stressed that these are in no way intended to be the true camera matrices,

but they are related to them by a projective transformation, which is enough to allow us to recover

projective structure.

One final point of note with which to end this section: the matrixM� is the epipolar trans-

form discussed in section 3.2. It provides the mapping between epipolar lines in the two images.2We set = (r+ s)=2.

CHAPTER 4. RECONSTRUCTION 60

To see this, let p be a point in the first image and let l0 be the corresponding epipolar line in the

second image, hence l0 = Fp. The epipolar line through p in the first image is l = p�e = [e]�p.

Hence, M�l =M�[e]�p = Fp = l0, as required. Thus the matrix M maps epipoles to epipoles

and the matrix M� maps epipolar lines to epipolar lines.

4.6 Projective Reconstruction

Suppose C and C0 are camera matrices, consistent with the fundamental matrix obtained from a

set of point matches in a pair of images. Armed with this information, it is a relatively straightfor-

ward process to recover the corresponding projective structure of the scene. Consider one such

point match p = (u; v; 1), p0 = (u0; v0; 1). The pointPP = (X; Y; Z; T) in P3 that projects

onto p and p0 is located at the intersection of the two rays which originate from the optical centres

of the cameras and pass through the matched points. This places constraints on PP , based on the

standard perspective projection equations:0BBBB@ �u�v� 1CCCCA = 0BBBB@ C11 C12 C13 C14C21 C22 C23 C24C31 C32 C33 C34 1CCCCA0BBBBBBB@ XYZT 1CCCCCCCA (4.12)

and 0BBBB@ �u0�v0� 1CCCCA = 0BBBB@ C011 C012 C013 C 014C021 C022 C023 C 024C031 C032 C033 C 034 1CCCCA0BBBBBBB@ XYZT 1CCCCCCCA (4.13)

Multiplying out we get �u = C11X + C12Y + C13Z + C14T�v = C21X + C22Y + C23Z + C24T� = C31X + C32Y + C33Z + C34T (4.14)

CHAPTER 4. RECONSTRUCTION 61

and �u0 = C 011X + C 012Y + C 013Z + C 014T�v0 = C 021X + C 022Y + C 023Z + C 024T� = C 031X + C 032Y + C 033Z + C 034T (4.15)

All the various camera matrix elements are known, as are u; v and u0; v0, so, cancelling out the

scale factors, � and �, then rearranging, gives a set of four linear equations in the four unknownsX; Y , Z and T .0BBBBBBB@ C11 � uC31 C12 � uC32 C13 � uC33 C14 � uC34C21 � vC31 C22 � vC32 C23 � vC33 C24 � vC34C011 � u0C031 C 012 � u0C 032 C 013 � u0C 033 C014 � u0C034C021 � v0C 031 C022 � v0C032 C023 � v0C033 C 024 � v0C034 1CCCCCCCA0BBBBBBB@ XYZT 1CCCCCCCA = 0BBBBBBB@ 0000 1CCCCCCCA (4.16)

With perfect data, the solution to this homogeneous system of equations is PP , the point of inter-

section of the two rays. In practice, measurement errors mean the rays will not intersect and we

solve for the point of their closest approach. We generate and solve such a system for each pair

of matched points to build a complete projective reconstruction.

A variation on the above is to constrain the form of the points in P3 toPP = (X; Y; Z; 1).
This leads to a system of four linear equations in three unknowns, which can be solved by stan-

dard least-squares techniques. However, it has been pointed out [52] that this formulation makes

the, possibly invalid, assumption that the projective points do not lie on the ideal plane. As such,

some choices of camera matrices may give poor results. The two methods produce identical pro-

jective structure estimates, so although none of our experiments have reproduced the aforemen-

tioned problem, we will stay with the original formulation.

In fact, our efforts to compare the two variations raised an interesting question: how to

check the correctness of the resulting structure? A visual inspection of projective structure is of

little use, a point made clear in figure 4.5. This shows the first pair of images from our quadrangle

sequence, along with two views of the projective structure recovered by our system. It is quite ob-

vious that the projective structure bears no resemblance whatsoever to the real scene. In general,

this will be the case for any projective reconstruction.

In the absence of any other information there is no way to quantify the accuracy of the

projective structure. The best we can hope for is to show that it is consistent, i.e. that it is actually a

CHAPTER 4. RECONSTRUCTION 62

Figure 4.5: The first pair of images in the quadrangle sequence and two views of their projective

reconstruction.

CHAPTER 4. RECONSTRUCTION 63

correct solution to the reconstruction problem. The simplest way to do this is to compute residuals

for each system of linear equations. In other words, use the two camera matrices to reproject the

3D points and compare their reprojected image coordinates with those of the original matched

features. We compute the ratio of the ratios of the original and reprojected x and y coordinates

for each point pair. Ideally these values should all be 1, which provides an easy way to tell, at

a glance, if the projective structure is correct. Also measured is the overall average distance, in

pixels, between the original and reprojected image points, which one would hope to be close to

zero.

Image 1 Image 2

Feature Original Reprojected Original Reprojected

Label x y x0 y0 Ratio x y x0 y0 Ratio

0 159 236 159.0 235.5 0.998 246 256 246.0 256.0 1.000

8 218 167 218.0 167.4 1.002 307 184 307.0 184.0 1.000

16 32 135 32.0 134.8 0.998 108 155 108.0 155.0 1.000

24 100 226 100.0 226.1 1.000 174 247 174.0 247.0 1.000

34 77 139 77.0 139.0 1.000 132 159 132.0 159.0 1.000

60 255 60 255.0 59.9 0.999 343 71 343.0 71.0 1.000

76 142 61 142.1 62.1 1.018 222 77 221.0 77.0 1.000

85 70 78 70.0 78.3 1.004 146 96 145.0 96.0 1.000

95 46 5 46.0 5.1 1.025 117 22 116.0 22.0 1.000

109 17 74 17.0 73.7 0.997 90 93 90.0 93.0 1.000
...

...
...

...
...

...
...

...
...

...
...

Average Absolute Image Coordinate Differences

0.02 0.37 0.00 0.00

Table 4.1: Results of reprojecting projective structure

Table 4.1 shows some example results of these computations for the image pair and pro-

jective structure of figure 4.5, using a representative sample of matched points having a range of

coordinate values. The original, manually-detected, image points are shown to the nearest pixel,

while the reprojected coordinates are rounded to the nearest tenth of a pixel. The reason for this

CHAPTER 4. RECONSTRUCTION 64

sub-pixel accuracy is to illustrate that the original and reprojected coordinates are not necessarily

identical. The ratio of ratios of the coordinates is given to three decimal places. Again, this is

primarily to indicate that the ratio is not always exactly 1, but it also serves to show that the ratio

of ratios is furthest from 1 when the x-coordinate is significantly larger than the y-coordinate, as

with feature 95.

As can be seen, in this case all the coordinate ratios are equal, or very close, to 1, and the

overall average coordinate differences are extremely small. Thus we can conclude that, regardless

of what it looks like, the projective structure recovered by our system is indeed consistent with

the given point matches and fundamental matrix. It is interesting to note the relative inaccuracy

of the Image 1 reprojections. A possible explanation for this is that while the Image 2 camera was

explicitly computed, the Image 1 camera matrix was fixed to C = (Ij0). Further investigation

would be required to determine why the average Image 1 x and y-coordinates differences vary by

more than a factor of ten.

4.7 Upgrading to Euclidean Structure

4.7.1 Method 1: A Direct Solution

The recovered projective structure is related to the real scene structure by a 3D projective trans-

form. So, in order to obtain a full Euclidean reconstruction we need to determine the 4�4 trans-

formation matrix, H, which maps the set of projective points PPi to their Euclidean counterpartsPEi. For one such pair of corresponding structure points, the mapping is0BBBBBBB@ �XE�YE�ZE� 1CCCCCCCA = 0BBBBBBB@ H11 H12 H13 H14H21 H22 H23 H24H31 H32 H33 H34H41 H42 H43 H44 1CCCCCCCA0BBBBBBB@ XPYPZPTP 1CCCCCCCA (4.17)

Multiplying out, cancelling the scale factor, �i, and rearranging, gives the following set of

three linear equations in the sixteen unknown elements of H:

CHAPTER 4. RECONSTRUCTION 650BB@�XP �YP �ZP �TP 0 0 0 0 0 0 0 0 XEXP XEYP XEZP XETP0 0 0 0 �XP �YP �ZP �TP 0 0 0 0 YEXP YEYP YEZP YETP0 0 0 0 0 0 0 0 �XP �YP �ZP �TP ZEXP ZEYP ZEZP ZETP 1CCA0BBBBBB@H11
...
...H331CCCCCCA = 0

(4.18)

The projectivityH is only defined up to a scale factor (see Appendix A), and therefore has

just fifteen degrees of freedom. Since each correspondence PPi , PEi gives rise to three such

equations, we only need five ground truth points to solve for the elements ofH. This transforma-

tion can then be applied to all the projective points to obtain Euclidean structure.

4.7.2 Method 2: An Indirect Solution

An alternative method for obtaining the projectivity has been suggested which does not rely di-

rectly on the projective structure [23]. Just as H maps from projective to Euclidean structure, its

inverse can be used to perform the reverse transformation i.e. PPi = H�1PEi. Thus we can for-

mulate a set of constraints on the elements ofH�1, based on the perspective projection equations0BBBB@ �iui�ivi�i 1CCCCA = CH�10BBBBBBB@ XEiYEiZEiTEi 1CCCCCCCA (4.19)

and 0BBBB@ �iu0i�iv0i�i 1CCCCA = C0H�10BBBBBBB@ XEiYEiZEiTEi 1CCCCCCCA (4.20)

Multiplying out, cancelling the scale factors, �i and �i, then rearranging, gives a set of

four, rather involved, linear equations for each combination of point matches and corresponding

ground truth. However, only three of these are linearly independent, so we need at least five such

CHAPTER 4. RECONSTRUCTION 66

combinations to solve for H , up to a scale factor. We can then invert, to obtain H and upgrade

our projective structure as before.

4.7.3 Initial Experiments

In order to compare the performance of the two methods, described above, we carried out a series

of simple experiments. Although only five ground truth points are actually needed to solve forH,

it helps to have more available, to be able to measure the accuracy of the projectivity with respect

to how it transforms points which were not used in its computation. For these experiments a set

of twelve3 ground truth points PEi was used, corresponding to matched points in the quadrangle

images, and chosen to give a good distribution in the 3D world space.

First of all, a random subset of five of the ground truth points was selected. This was used

to estimate projective transform matrices, H1 andH2, for each of the two methods. Next, the pro-

jectivities were applied to all4 of the projective points, to obtain new estimates for their Euclidean

locations H1PPi = P̂E1i and H2PPi = P̂E2i . Finally, measures of the quality of the projec-

tivities,QH1 andQH2 , were computed as the average Euclidean distance between the twelve esti-

mated Euclidean points and the corresponding ground truth dist(P̂E1i ;PEi) anddist(P̂E2i ;PEi).
The experiment described above was performed 10000 times and the QH values for the

two methods were examined. There was little correlation between the two sets of values. That

is, a subset of correspondences that generated an accurate projective transform using the direct

method would not necessarily do so for the indirect method. We have not performed a full statis-

tical analysis of these results and so can only state that, on a trial for trial basis, the direct method

outperformed the indirect method on approximately 68% of occasions.

The sets of QH values were sorted and Figure 4.6 shows a graph of the 100 lowest values

obtained for each method. The ground truth points for this pair of images were spread over a

world space volume of approximately 50�10�50 metres, so both methods exhibit good best-case3This is in fact just a subset of over a hundred ground truth points for the initial images of the quadrangle sequence.

These were obtained by the author, with the aid of a trusty tape-measure, one cold, dark, miserable Sunday evening,

when the campus was, thankfully, deserted!4In these experiments a total of 43 projective/Euclidean correspondences were available.

CHAPTER 4. RECONSTRUCTION 67

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100

E
uc

lid
ea

n
S

tr
uc

tu
re

 E
rr

or
 Q

H
 (

cm
)

Sorted Results of the 100 Best Trials

Method 1: Direct Solution
Method 2: Indirect Solution

Figure 4.6: Comparison of the accuracy of the direct and indirect methods for computing the trans-

form from projective to Euclidean structure.

performances, getting the average Euclidean distance error down to well under a metre. However,

it is clear that, on average, the direct method gives the most accurate results. In the sequel, all our

discussions and experiments will be based on this method of solving for the projective transform.

Figures 4.7–4.10 show the Euclidean structure recovered by this method, using the trial

above which had the lowestQH value, for the lecture theatre building in the image pair of figure

4.5. As it is rather difficult to portray three-dimensional structure on a two-dimensional page,

especially using just point features, several different views of the reconstruction are shown. A

partial triangulation of some of the points into 3D facets is performed, and subsequent texture-

mapping5 makes it easier to see the relationship between the real and recovered structure. These

results demonstrate that it is possible to obtain a good estimate for the Euclidean structure of a

projective scene, if just five ground truth points are known.5The texture-mapping process is very basic, simply interpolating the pixel values from the original image between

the triangle vertices. Since camera calibration is unknown, there is no attempt to correct for camera motion, and thus

the texture-mapping only looks realistic when the structure is viewed from close to the original camera position.

C
H

A
PT

E
R

4.
R

E
C

O
N

ST
R

U
C

T
IO

N
68

(b) Partial triangulation with texture-mapping

(c) Texture triangles in the original image
This view of the reconstruction is from a position close to the original camera location,

looking directly towards the lecture theatre building. The ’staircase’ of points in the

top half of (a) corresponds to the corners of windows on the front face of the building,

while the 12 points at the bottom right belong to the middle and right supporting pil-

lars. In (b), the front face of the building has been modelled using 3 texture-mapped

triangles. The original image locations of these triangles are shown in (c). The thin

triangles at the extreme left and bottom of (b) correspond to the left side of the build-

ing and the ground plane, respectively. These are easier to see in figures 4.8 and 4.9,

which show the reconstruction from different viewpoints.

Figure 4.7: (a) Front view of the reconstructed points

C
H

A
PT

E
R

4.
R

E
C

O
N

ST
R

U
C

T
IO

N
69

(b) Partial triangulation with texture-mapping

(c) Texture triangles in the original image
This view of the recovered structure is from a position at the right-hand

side of the lecture theatre building, looking directly along the plane of

its front wall. The features on this wall (corners of windows etc.) form a

vertical band of points in (a), while features on or near the ground plane

form a perpendicular group. The triangular facet in (b) is part of the left-

hand wall of the building, but the texture-mapping is not consistent with

the viewpoint due to the significant change in camera position. The orig-

inal image location of the texture triangle is shown in (c).

Figure 4.8: (a) Side view of the reconstructed points

C
H

A
PT

E
R

4.
R

E
C

O
N

ST
R

U
C

T
IO

N
70

(b) Partial triangulation with texture-mapping

(c) Texture triangles in the original image

This is a top-down view of the recovered structure of the lec-

ture theatre. The vertical band of points in (a) represents fea-

tures on the front wall of the building, while the group of points

at the top-right belongs to the pillars and bollards at the left side

of the building. Clearly visible in (b) is the right-angled struc-

ture formed by the triangulations of some of these points (as

shown in figures 4.7 and 4.8). The kite-shaped polygon, con-

sisting of two triangles, depicts the ground plane. The original

image locations of the texture triangles are shown in (c).

Figure 4.9: (a) Top view of the reconstructed points

CHAPTER 4. RECONSTRUCTION 71

Figure 4.10: This is another top-down view of the lecture theatre reconstruction. The viewpoint

is slightly different to that in figure 4.9 to show more of the texture-mapping on the sides of the

building and give a better sense of the recovered structure.

CHAPTER 4. RECONSTRUCTION 72

4.8 Incremental Reconstruction

Once a Euclidean structure estimate has been acquired for the scene in the first image pair, it can

be extended incrementally by processing each remaining image in the sequence. The initial steps

of this processing are identical to the ones used for the first image pair i.e.

1. Load the next image in the sequence and call it the current image.

2. Obtain a set of matched features in the current and previous images.

3. Use the matched features to estimate a fundamental matrix.

4. Factorise the fundamental matrix to obtain a pair of camera matrices.

5. Use the camera matrices to determine a projective reconstruction for the matched points.

At this point we calculate the projective transform to upgrade to Euclidean structure, as

before. However, there is a difference: we no longer rely upon the user to supply the system

with ground truth data. If the newly-computed projective structure includes at least five points

for which there exist previously estimated Euclidean coordinates, then these correspondences are

used to obtain a projective transform. This is then be applied to the remaining6 projective structure

to map it into the existing Euclidean frame. The whole process is repeated for each subsequent

image in the sequence, at each step ‘stitching’ new and old structure together via the projectivi-

ties. Thus a Euclidean model of the entire scene is gradually built, from a basis of as few as five

ground truth points.

This algorithm places some restrictions on the visibility of features between images in the

sequence. Our incremental Euclidean reconstructionprocess requires five or more projective points

which have already been assigned Euclidean 3D coordinates. In order for this to be true, these

points must previously have taken part in the process of fundamental matrix calculation, projec-

tive reconstruction and upgrade to Euclidean structure. Hence, at some point they must have been

included in a set of eight or more matches between two successive images. Thus, each extension6Those points without Euclidean correspondences.

CHAPTER 4. RECONSTRUCTION 73

to our overall Euclidean structure requires five points which have been viewed in at least three im-

ages. These constraints have been built into our GUI-based feature detection/matching system, so

at each step the user knows exactly how many image matches or 3D correspondences are required

to proceed.

There is one other implementation detail we have not yet discussed. So far, we have been

happy to assume that the projectivity calculation could be performed simply by choosing the best

result from a small number of trials. This approach is perfectly valid for the first pair of images in

the sequence, when we know the correspondences between projective points and accurate ground

truth data. This accuracy also means that there is little to be gained from using more than five of the

ground truth points. However, when processing the remainder of the sequence, the projectivity is

computed using a set of previously estimated Euclidean points. Obviously, some of these will be

more accurate than others and, hopefully, there will be many more than five correspondences. We

would like to devise an efficient way to choose the best subset of these with which to calculate the

projective transform. The is reminiscent of the problem faced in section 3.7.1, when attempting

to estimate the fundamental matrix from a noisy set of matched image points. Here, we employ

a similar solution.

4.8.1 A RANSAC Approach

We have embedded the direct method of computing the projective transformation matrix, H, into

a RANSAC� algorithm. Given a set of five or more correspondences between projective and ex-

isting Euclidean structure, we perform a series of trials. In each trial, the first step is to select, at

random, a 5-element subset, from all the correspondences. This is used to compute the projectivity

which is then applied to all the projective points to obtain new estimates for their Euclidean posi-

tions. We then compute the distance between each newly estimated and existing Euclidean points.

Those correspondences for which this distance is below a given threshold form the consensus set.

The (� 5) correspondences in the consensus set are then used to calculate another projectivity, for

which we compute the average Euclidean distance error, over all correspondences, as in section

4.7.3. The old consensus set is replaced if the new one is of equal or larger size and has a lowerQH value. We then move on to the next trial and the process continues until either all the trials

CHAPTER 4. RECONSTRUCTION 74

have been completed or the consensus set size or QH value reach a specified target. In detail, the

RANSAC� projectivity calculation is as follows:

Given five or more projective,Euclidean structure correspondences fPPi ; PEig, then for

some fixed number of trials:

1. Randomly select a subset of 5 correspondences, P5C � fPPi ; P̂Eig.

2. Use P5C to compute the projectivityH.

3. ApplyH to obtain new Euclidean structure estimates HPPi = P̂Ei .
4. Determine the consensus setC of correspondences whose Euclidean distance error is below

some threshold.

5. Calculate a new projectivity,H0, based on C.

6. Compute QH for H0.
7. Replace the old consensus set if C is the same size or larger, and has a lower QH .

8. Terminate if the size of C or QH reach specified targets.

At the end of this procedure, we hope to have obtained a projective transform, based on

many of the correspondences, with a low QH value, and to have done so in a relatively small

number of trials.

4.8.2 Results

Figure 4.11 shows the results of the reconstruction algorithm after processing the initial ten frames

of the quadrangle sequence. Although the two-dimensional constraints of the page make it diffi-

cult to get a feel for the recovered three-dimensional structure, this plan view indicates how the

structure has been extended from that shown in figure 4.9. Clearly visible at the middle right of

the diagram, is the right-angled corner of the building, which is in view over the first few frames.

The set of points leading away from this, to the south, corresponds to a series of bollards, while

the long straight, east-west configuration represents the struts of a continuousconcrete bench. The

CHAPTER 4. RECONSTRUCTION 75

set of points at the very top of the figure consists of features on the vertical surface of a distant

building. The remaining points in the centre of the plan belong to various prominent scene fea-

tures. Although these do not provide much in terms of readily identifiable scene structure, they

are a valuable source of extra data for satisfying the constraints of section 4.8.

Figure 4.11: Plan view of the recovered quadrangle scene after 10 image pairs.

Although the algorithm performs well at recovering the structure of objects which are close

to the camera, objects at long range cause problems. The reason for this is the image resolution,

which is too low to allow feature points on distant objects to be detected and matched with suffi-

cient accuracy. Take, for example, the point at the top left of figure 4.11, which is approximately

fifty metres from the camera. Changing the coordinates of one of its corresponding image points

by just a single pixel resulted in a seven metre shift in its recovered Euclidean structure. These

erroneous structure points can have a detrimental effect on the overall reconstruction, if they are

used in the calculation of the projective transform at later steps. For example, figure 4.12 shows a

plan view of another reconstruction of the same section of the quadrangle scene, which has failed

CHAPTER 4. RECONSTRUCTION 76

for this reason; the points at the upper left of the figure being completely wrong. At the moment,

this problem is avoided by only considering foreground structure when performing manual fea-

ture detection and matching.

Figure 4.12: Failed reconstruction of part of the quadrangle scene

Results indicate that at each step in the reconstruction process, the error in the recovered

Euclidean structure increases, even that of objects which are close to the camera. This is to be

expected, due to the knock-on effect of calculating the projective transform at each step using

previously estimated Euclidean structure. In the case of a long image sequence, the accumulated

error could become very large, leading to inconsistencies in the recovered structure. In the next

chapter we will describe our attempts to deal with this problem.

Chapter 5

Structure Recognition and Matching

5.1 Introduction

Our experiments of the previous chapter have shown that errors in the recovered Euclidean struc-

ture can accumulate rapidly, over the course of a few frames, and even when the reconstruction

process is initialised with ground truth data. We must consider the effect this would have on a

long sequence of images, especially one in which the camera eventually returns to view a part of

the scene that has been seen previously. For example, figure 5.1 shows a simple diagrammatic

representation of such an occurrence: a complete walk-around of a rectangular building.

In this example, the reconstruction process starts by recovering structure for the front of the

building. With our reconstruction system, this structure is extended incrementally as the viewer

walks clockwise around the building, until eventually, the camera returns to somewhere close to

its starting position. At this point it will be viewing the front of the building for the second time

and thus we will have obtained two different sets of Euclidean structure for this section of the

building. The errors in the structure recovery process will mean that the two structure segments

are not aligned correctly in the world coordinate frame. If our reconstruction system is to be of

any practical use, we need to find a way to turn this initial incorrect structure into one which is

internally consistent.

In order to do this, two problems must be solved. First of all, we must be able to recognise

77

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 78

S
T
A
R
T

F
I
N
I
S
H

Figure 5.1: Errors in the reconstruction process can lead to internally inconsistent structure.

when two recovered structure segments actually correspond to the same part of the real-world

scene. Once this has been accomplished, it is necessary to find the transformation which brings

the two structure segments into alignment. In terms of model-based recognition, these are the

problems of indexing and matching. The task is further complicated by the fact that occlusion

and/or a change of viewpoint could mean that the two segments do not contain exactly the same

points. We show that these problems can be solved using the geometric hashing paradigm, a gen-

eral method for model-based object recognition. It was originally developed for the task of identi-

fying flat rigid objects [35, 34] from images, using an affine approximation to the full perspective

camera, but the same approach can be used for many recognition problems involving a variety of

transformations in two and three dimensions [37].

Classical geometric hashing is a two-stage process, object representation and matching.

Briefly, the first stage, which is usually done off-line, involves the construction of a hash table, to

provide an invariant representation for each of a series of model objects that are to be recognised.

In the second stage, features extracted from images of the scene are used to compute invariants,

with which to index the hash table and tally votes for candidate models i.e. those that could feasi-

bly be present in the scene. A high vote count not only indicates the likely presence of an instance

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 79

of a particular model object in a view of the scene, but the corresponding invariants determine the

model!view transformation.

The same basic algorithm can be used to solve our problem of matching two segments of

Euclidean structure, with one important difference. Rather than having a priori knowledge of a set

of model objects to be recognised, our hash table starts off completely empty. As the incremental

reconstruction system recovers new estimated Euclidean points, these are hashed into the table. In

a sense, the system ’learns’ its own models of segments of scene structure as it goes along. Later

in the image sequence, if we come across the same structure segment again, the geometric hash-

ing system should recognise this, and provide the transform between the old and new segments,

thus solving both our indexing and matching problems. As with all indexing techniques, geo-

metric hashing allows for the recognition of many models simultaneously. This is important for

our application, in which an extended environment could be represented by hundreds of structure

segment models.

We begin this chapter with an overview of the original geometric hashing paradigm, fol-

lowed by a discussion of the details of our implementation. We describe our method for represent-

ing 3D structure in a form which is invariant to Euclidean transformations, and present a simple,

symmetry-based approach for improving the efficiency of the hashing process. Finally, we de-

scribe the way we have embedded the geometric hashing algorithm into our structure recovery

system and discuss the initial results of experiments on real image sequences.

5.2 An Overview of Geometric Hashing

In this section we review the geometric hashing paradigm in the context of its original applica-

tion: the recognition of flat objects under the affine transformation (rotation, translation, scale and

shear). This allows for a very simple explanation of the algorithm’s main concepts and will help

us to show, later in the chapter, how our implementation differs from that of the standard method.

The general scheme of the geometric hashing paradigm is shown in figure 5.2.

When viewing flat objects which are relatively distant from the camera, orthographic pro-

jection (with a scale factor), provides a good approximation to the full perspective camera [29].

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 80

P
R
E
P
R
O
C
E
S
S
I
N
G

R
E
C
O
G
N
I
T
I
O
N

Interest Feature Extraction

Model Acquisition

HASH TABLE

h(coordinate) = (Model,Basis)

VOTE

(Model,Basis)

(Model,Basis)

Find Best

Least-Squares Match

Against Scene

PROCEED

YES

SCENE

NO

GOOD

BAD

Interest Feature

Extraction

Basis Choice

Transformation Invariant

Coordinate System

With High Vote?

Pairs

For

In Given Basis
Coordinates

Computation of
Interest Feature

Eliminate Model

Verify Object

Figure 5.2: The general scheme of the geometric hashing algorithm

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 81

Under this assumption, two different images of the same flat object are related by a 2D affine trans-

formationT. In other words, there exist a non-singular 2�2 matrix A and 2D vector b, such that

a non-homogeneous point p in the first image is transformed to the corresponding point Ap+ b
in the second. The transformation has six degrees of freedom and can thus be fully determined

by three point correspondences. Assuming that sets of interest points have been extracted from

images of the model objects and the scene, the problem becomes that of determining if some trans-

formed subset of scene points matches a subset of any of the model point-sets. The key to this lies

in representing the point sets in a manner which is invariant to the affine transform.

5.2.1 2D Affine Invariance

Suppose we have extracted a set of m points from an image of one of our model objects. We

can pick any ordered, non-collinear triplet of points from this set and use them to represent all the

other points. Consider figure 5.3. Let a00, a10 and a01 be three, non-collinear points in the image.

The vectors i = (a10 � a00) and j = (a01 � a00) are linearly independent, hence they are a 2D

linear basis. Any point p in the image can be represented as a linear combination of these two

basis vectors. In other words, there is a pair of scalars (�,�) such that:p = �i + �j+ a00 = �(a10 � a00) + �(a01 � a00) + a00 (5.1)

Application of the linear affine transform T to this representation for p givesTp = �(Ta10 �Ta00) + �(Ta01 �Ta00) +Ta00 (5.2)

Hence the transformed pointTp has the same coordinates (�,�) with respect to the affine

basis Ta00Ta10Ta01 as has p with respect to a00a10a01. For example. suppose we make the

following coordinate assignments for the points in figure 5.3: a00 = (5; 1), a10 = (10; 1), a01 =(7; 5) and p = (24; 9). Writing these in terms of equation 5.1 gives:0B@ 249 1CA = �0B@ 50 1CA| {z }i +�0B@ 24 1CA| {z }j +0B@ 51 1CA (5.3)

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 82

p

αa i1000

β j

j

i

a01

a

Figure 5.3: Representing p using the affine basis triplet a00a01a10.

which means, by inspection � = 3 and � = 2. Now, suppose we have an affine transform T =Ax+ b where A = 0B@ 1 22 1 1CA and b = 0B@ 34 1CA (5.4)

Applying this to our four points gives: Ta00 = (10; 15),Ta10 = (15; 25),Ta01 = (20; 23) andTp = (45; 61). Once again, in terms of equation 5.1 we have:0B@ 4561 1CA = �0B@ 510 1CA| {z }i +�0B@ 108 1CA| {z }j +0B@ 1015 1CA (5.5)

Clearly � = 3 and � = 2 is a solution to this simple pair of linear equations. Thus we have

obtained a representation for the point p which is invariant to the affine transformT. Armed with

the mechanism for computing such invariants, we proceed with a description of the two steps that

make up the geometric hashing method: model representation and matching.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 83

5.2.2 Model Representation

Classical geometric hashing usually begins with a preprocessing step, to generate a hash table con-

taining invariant descriptions of the model objects that the system needs to be able to recognise.

In the 2D affine case, this implies we have a database of images of our model objects, and that

from each of these we have extracted sets of interest points corresponding to model features. The

model representation is constructed by considering every possible three point subset of interest

points as an affine basis and, in each case, hashing the invariants computed for all the remaining

points. The outline for this preprocessing stage is as follows:

For each model:

1. Extract a set of m interest points.

2. For each ordered, non-collinear triplet of interest points (affine basis):� Compute the invariant coordinates of the remaining m�3 interest points in the affine

frame defined by the basis triplet.� Pass each set of invariant coordinates to a hash function which generates indices into

the hash table.� At each given hash table location, known as a bucket, store a record of the model

and affine basis from which the invariants were obtained. Note that the finite size of

the hash table will often lead to collisions, whereby more than one (model,basis) pair

needs to be stored in each bucket. In such cases the bucket holds a list of these pairs

(see figure 5.4).

The preparation of the hash table can be looked upon as a kind of learning process, in which

various different representations of the models are memorised. Since it requires no knowledge

about the scenes in which the models are to be recognised, it is usually performed off-line. Once

preprocessing is completed, the geometric hashing system is ready for the matching stage.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 84

B
U
C
K
E
T
S

List Of Elements In Each Bucket

0

Hash Table

1

B-1

Figure 5.4: Hash table organisation

5.2.3 Matching

In geometric hashing the object representation and matching stages follow along very similar

lines. When matching, we are presented with an image of a scene, and wish to determine which,

if any, of our model objects are currently in view. To do this we:

1. Extract a set of n interest points from the image.

2. Choose an arbitrary ordered triplet of non-collinear points and use them as a basis with

which to compute the affine invariant coordinates of the remaining n� 3 points.

3. Pass each set of invariant coordinates to the hash function which generates indices into the

hash table.

4. Check each indexed hash table bucket and tally a vote for every (model,basis) pair stored

there.

5. Look for a (model,basis) pair which scores a high number of votes. Each such pair implies

that an instance of the given model is present in the scene. Furthermore the uniquely defined

affine transformation between the candidate model and image basis triplets is assumed to

be the transformation that maps between the model and the scene.

6. Apply the transformation obtained in step 5 to all the image points that voted for the candi-

date model to induce additional model-image point correspondences. Find the best trans-

formation between all the correspondences, in a least-squares sense.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 85

7. Transform the entire low-level representation of the model (which may include additional

information, such as edge features, colours etc.) via the affine transformation obtained in

step 6 and verify it against the scene. If the verification confirms the existence and orienta-

tion of the model, the matching process is complete. If this candidate solution is rejected,

another one from step 5 is examined. If there are no more candidate solutions, go back to

step 2.

It should be noted that, in general, the voting scheme will not result in just one candidate

solution. In fact, that is not really the aim. Rather, the intention is to reduce significantly the

number of candidates which make it through to the verification step. Also, since votes are cast

for all models simultaneously, the complexity of the recognition process is independent of the

size of the model database.

One of the nice features of geometric hashing is its ability to recognise partially occluded

objects. This is made possible by the preprocessing stage, which constructs model representa-

tions using all the basis triplets from the points of interest. Thus, for matching to succeed it is

enough to pick three points in the scene which belong to some model, in which case the appro-

priate (model,basis) pair will score highly in the voting procedure.

5.3 Hashing Euclidean Structure

The description of geometric hashing in the previous sections was based around the problem of

recognising models and scenes related by a 2D affine transform. As we have seen, computing in-

variants under such a transform requires a three-point basis. Other transformations have different

basis requirements. For example, recognition of objects which have undergone a 2D or 3D trans-

lation needs only a one-point basis, and a four-point basis for a projectivity between two planes

[37]. A projectivity from P3 toP3 requires a five-point basis [12]. In our case, we wish to match

two sets of 3D Euclidean structure, which differ by some rigid transformation. It will be shown

that this problem can be solved using a three-point1 basis.1In fact, this is also the case for the 3D similarity transform, so we can solve for this more general problem with no

additional complexity.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 86

In passing, we note that given a set of nmodel/scene interest points and a k-point basis, the

worst case complexity of the geometric hashing algorithm is O(nk+1) [37]. Thus, by upgrading

from projective to Euclidean structure as part of the reconstruction process, the complexity of the

recognition task has been reduced from O(n6) to O(n4).
5.3.1 Computing Euclidean Invariants

Suppose we have a set of four 3D Euclidean structure points. Three of these can be used to define

a new coordinate system (basis) in which the position of the fourth point is invariant to a 3D rigid

or similarity transform. Consider figure 5.5. The three points, E1, E2 and E3, define the unit

length and the xy-plane of our new coordinate system, XEYEZE , with XE as the origin. The

normal to this plane defines the new z-axis. The task is to compute the positionP with respect to

this new coordinate frame.

X

E

E

Y

Z

E

P

1

3

X

VP
Z

V3

E

E

EY

2

Figure 5.5: Points E1, E2 and E3 define a 3-point basis for computing the new coordinates of P ,

which are invariant under 3D rigid and similarity transformations.

We begin by constructing orthogonal vectors corresponding to the direction of each of our

new coordinate axes, as follows:

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 87

1. The new x-axis vector is simply XE = E2 � E1.

2. To compute the new z-axis vector we first need to define the vector V3 = E3 � E1. To-

gether, the vectorsXE andV3 define our new xy-plane. We can now obtain our new z-axis

as the normal to this plane, given by the cross-product ZE = XE �V3.

3. Finally, our new y-axis vector is given by the cross-product YE = ZE �XE.

The invariant coordinates of the point P , denotedPinv = (�; �;), are obtained by calcu-

lating the component of the vector VP = P�E1, in the direction of each of our new coordinate

axis vectors, and dividing by the unit length, as follows:

1. � = (VP �XE=jXEj)=jXEj
2. � = (VP �YE=jYEj)=jXEj
3. = (VP � ZE=jZEj)=jXEj

As a quick check that this method actually works, consider computing invariant coordinates

from a set of four 3D points under some simple transformations. In each case, the first three points

are used to compute the invariant coordinates of the fourth. Firstly, the results for the original four

points. P1 = 0BBBB@ 101010 1CCCCA ;P2 = 0BBBB@ 201212 1CCCCA ;P3 = 0BBBB@ 142015 1CCCCA ;P4 = 0BBBB@ 151125 1CCCCA (5.6)

These points give the invariant coordinates of P4 as (�; �;) = (0:76; 0:51; 1:22) and a unit

length of 10:39.

After scaling the points by a factor of two:P1 = 0BBBB@ 202020 1CCCCA ;P2 = 0BBBB@ 402424 1CCCCA ;P3 = 0BBBB@ 284030 1CCCCA ;P4 = 0BBBB@ 302250 1CCCCA (5.7)

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 88

As one would expect, this time the unit length has increased to 20:78, but the invariant coordinates

of P4 remain as (0:76; 0:51; 1:22).
This time a translation of (5; 10; 20)T , followed by the same scaling as above, transforms

the points to: P1 = 0BBBB@ 304060 1CCCCA ;P2 = 0BBBB@ 504464 1CCCCA ;P3 = 0BBBB@ 386070 1CCCCA ;P4 = 0BBBB@ 404290 1CCCCA (5.8)

Which gives identical results to the previous test of unit length 20:78 and invariant coordinates(0:76; 0:51; 1:22).
For one quick final test, the points were transformed by a rotation of 180 degrees about thez-axis, followed by a rotation of 90 degrees about the x-axis, giving:P1 = 0BBBB@ �10�1010 1CCCCA ;P2 = 0BBBB@ �20�1212 1CCCCA ;P3 = 0BBBB@ �14�1520 1CCCCA ;P4 = 0BBBB@ �15�2511 1CCCCA (5.9)

Once again, these give the invariant coordinates of P4 as (0:76; 0:51; 1:22) and a unit length of10:39.

5.3.2 Symmetry Considerations

For any given set of three points, A, B and C, there are six different ways of ordering them to

construct a Euclidean basis: ABC, ACB, BAC, BCA, CAB and CBA. Each of these bases

can be used to compute the invariant coordinates of a fourth point D = (�i; �i; i), where i =1 : : :6. An interesting question is whether or not one would expect to obtain different invariant

coordinates with each basis, or if it is possible to extrapolate the result of one computation from

another and thus speed up the hashing process.

Let A1=B1 and A2=B2 be two different labellings for the points A and B corresponding

to the normal ordering of points (ABC) and when the positions of A and B have been swapped

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 89

C

Z1

1U

A1 B2

B1 A2

Z2

2Y

2UY1

X1 X2

Figure 5.6: Effect of basis point ordering on coordinate axes.

(BAC), respectively. Figure 5.6 shows the two bases A1B1C and B2A2C. As described in sec-

tion 5.3.1, the first stage in the computation of invariant coordinates is the construction of a new set

of coordinate axes. The x-axis vectors for the two bases are X1 = B1�A1 andX2 = B2�A2,

which differ only in their signs. The next step is to compute the vectors U1 = C � A1 andU2 = C � A2. Due to the change of point ordering, these two vectors will be different. Thez-axes are computed as the cross-products Z1 = X1�U1 and Z2 = X2�U2. Thus Z1 and Z2
are both normal to the plane ABC, but have different signs. It follows, that the y-axes, which are

computed as the cross-products of the x and z-axes vectors, will be the same for both bases. 2
Now, consider figure 5.7 and the addition of a fourth point D. The invariant coordinates

of D are obtained by projecting the V1 and V2 vectors onto the coordinates axes defined by the

two bases. First of all, it can be seen that the two vectors V1 and V2 are related as follows:V1 �V2 = X1 (5.10)

Thus, projecting in the direction of the X1 , gives a relation between the invariant �-coordinates

for the point D in the two bases: �1 + �2 = 1 (5.11)2Since i� j = k �! �i��j = k.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 90

D

Z1

Y1

1V
2Y

V2

Z2

X1 X2

Figure 5.7: Effect of basis point ordering on invariants.

The y-axis vectors for both bases are identical, therefore the invariant �-coordinates are

identical. Similarly, the z-axis vectors differ by only by their signs, therefore so do the invariant coordinates. As a result, if the three invariant coordinates are computed for one of these bases,

then the invariants for the other are trivially defined.

This result holds for the basis pairsABC=BAC, ACB=BCA andCAB=CBA. Thus, out

of a possible total of eighteen different invariant coordinates3, there are only nine independent

values, which can be obtained from just three of the basis orderings. Table 5.1 summarises the

relationships between the ordering of the basis points and the invariant coordinates.

ABC �1 �1 1
BAC 1� �1 �1 �1
ACB �2 �2 2
BCA 1� �2 �2 �2
CAB �3 �3 3
CBA 1� �3 �3 �3

Table 5.1: Effect of basis ordering on invariant coordinates.3Three for each of the six different bases.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 91

This symmetry property can be used to reduce the computation time of the hashing process,

since only half of all the possible basis choices for a given point set need to be considered.

The important point is that, in each of the related basis pairs, only the positions of the A
and B points have been swapped and therefore only the signs of the x-axis vectors differ. Other

positional changes have different effects. For example, consider the two bases ABC and ACB,

for which the positions of points B and C have been exchanged. This effectively swaps the x-

axis vector X and the U vector, and changes the unit length. The z-axis vector, obtained as the

cross-product of these, only changes sign4, but the y-axis vector, which is the cross-product of

the x and z-axes vectors, will be different. As a result, projecting the point vectorV onto each of

these axes and dividing by the unit length, will give different invariant coordinates for D in the

two bases.

5.4 Geometric Hashing and Image Sequences

A geometric hashing system has been developed, based on the Euclidean invariants discussed in

the previous section. In this section we describe how it has been incorporated into our incremental

reconstruction system.

The most important difference between our method and that of standard geometric hashing,

is that we do not perform a preprocessing step, at least, not in the usual sense. The reason for this

is simple: there is nothing to preprocess, no predefined database of models to be recognised, no

a priori knowledge of the scene. Rather, the intention is that the system should acquire its own

models automatically and do so concurrently with the matching stage.

Each step of the reconstruction system processes the next pair of images in the sequence

and, starting with a set of matched points, eventually recovers a 3D Euclidean structure segment

for the part of the scene currently being viewed. These segments are stitched together, incremen-

tally, to build up a reconstruction for the entire scene.4In fact, since no matter which ordering of points is chosen, the resultant X andU vectors always lie in the plane,ABC , the z-axis vector is the same (up to a change of sign) for all these basis permutations.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 92

The model acquisition part of the geometric hashing system follows along the same lines.

As the reconstruction system generates new structure segments, their 3D points are used to com-

pute Euclidean invariants (section 5.3.1) with which to index and update the, initially empty, hash

table (section 5.2.2). Thus, a complete hash table representation for the entire scene is gradually

obtained.

Similarly, in the recognition stage, recovered structure segments are used to compute in-

variants with which to index the hash table and tally votes (section 5.2.3). Hence, if a structure

segment containing points that have previously been hashed comes back into view later in the se-

quence, the system should recognise this fact, in addition to providing the transformation between

the corresponding points.

5.4.1 Partitioning the Hash Table

One approach to updating the hash table with new structure information would be to hash the new

3D points together with all of the old ones, which have previously been estimated. This would

create one large model of the scene viewed over the whole image sequence, but it would be a

highly redundant representation, since the majority of combinations of points used in computing

the invariants could never actually be viewed together in the scene.

The hashing strategy actually used in the implementation of this scheme is based around a

simple observation: both the model acquisition and recognition stages depend entirely upon the

recovered structure segments which contain only local information. In other words, for a long

image sequence, each image only gives a view of a small section of the entire scene. Thus, a

more efficient approach to updating the hash table would be to compute invariants using only the

currently viewed structure segment. In fact, the method used is to compute invariants based on

points in the current and previous d structure segments5. This creates some overlap in the hash

table, but allows for recognition from a wider range of viewpoints.

In essence, when a segment of scene structure is viewed for the first time in the image se-

quence, it is used, along with neighbouring segments, to construct an invariant representation for5Where d is determined by the disparity between pairs of images in the sequence.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 93

the local patch of structure. Thus, when updating the hash table, the information recorded is not

(basis,model), but (basis,patch).

5.4.2 Algorithm Outline

Each step in the reconstruction algorithm results in a structure segment containing a set of newly

estimated Euclidean points. At the same time, a set of previously estimated old structure points

will have just gone out of view. The old points are used to update the hash table, while the new

ones are used for recognition. The benefit of this approach is to ensure that the new points are not

used for model representation and matching at the same step.

Suppose, at some step i of the reconstruction process, a structure segment has been recov-

ered and sets of old and new points, denoted SOLDi and SNEWi , have been determined. Model

acquisition and matching proceed as follows:

Model Acquisition

Combine the points in SOLDi with those obtained at d previous stages (SOLDi�1 : : :SOLDi�d),

to obtain a local structure patch. Let this patch contain a total of m points. For each ordered,

non-collinear triplet of these points: (Euclidean basis):

1. Compute the invariant coordinates (�; �;) of the remaining m � 3 points points in the

Euclidean coordinate frame defined by the basis triplet.

2. Use the invariants to generate indices into a 3D hash table.

3. At each given hash table location, store a record of the patch and Euclidean basis from

which the invariants were obtained.

Matching

1. Suppose SNEWi contains a total of n points.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 94

2. Choose an arbitrary ordered triplet of non-collinear points as a Euclidean basis and compute

the invariant coordinates of the remaining n � 3 points.

3. Use the invariants to generate indices into a 3D hash table.

4. Check each indexed hash table bucket and tally a vote for every (patch,basis) pair stored

there.

5. Look for a (patch,basis) pair which scores a high number of votes. Each such pair implies

that at least part of the given patch is present in the scene. The uniquely defined Euclidean

transformation between the candidate patch and scene segment bases is assumed to be the

transformation that maps between the patch and the scene.

6. Apply the transformation obtained in step 5 to all the SNEWi points that voted for the can-

didate patch, to induce additional point correspondences. Find the best transformation be-

tween all the correspondences, in a least-squares sense.

7. Compute the average Euclidean distance between the candidate patch points and those ob-

tained by applying the above transform to SNEWi .
8. If the transformation results in a low average Euclidean distance between points in SNEWi

and the candidate patch, then the existence and orientation of the patch has been verified

and matching is complete. If not, this candidate solution is rejected and another one from

step 5 is examined. If there are no more candidate solutions, go back to step 2.

5.5 Results

5.5.1 Synthetic Data: Simple Models

We begin with a very basic test of the geometric hashing system, to ensure that the implementation

is algorithmically correct and bug-free.

Figure 5.8 shows a set of simple 3D models, the first five of these are quite distinct, while the

sixth is a slightly skewed (noisy) version of the first. The corner points of models 1–5 were used

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 95

1

3

5

2

4

6

Figure 5.8: The set of simple models used in initial tests on the geometric hashing system. Models

1–5 are structure segments used to build the hash table structure. Model 6 is a skewed version of

model 1, used to see if the system copes with noisy data.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 96

as structure patches, with which to initialise the hash table, as described in the previous section.

Subsets of the same points were then fed into the matching process, to see if the system could

recognise each of the models using perfect data. For this test, an exhaustive6 series of trials were

performed, with the best match taken to be the model which received the most votes in any single

trial. Results are shown in Table 5.2.

Subset Matched Most

Model Model Votes Trial

1 1 5 1

2 2 5 1

3 3 2 1

4 4 3 1

5 5 1 1

Table 5.2: Results of geometric hashing using perfect synthetic data.

As one would expect, the system had no difficulty matching the point data to the original

models. In every case the correct match, with the highest number of votes, was achieved with the

first choice of basis points. It is worth noting that each of the ‘Most Votes’ values is actually the

maximum number of votes possible, since an n-point structure patch will cast n � 3 votes per

basis7.

We mention, in passing, that exactly the same results as above were obtained from a sup-

plementary test, which attempted to match using model points that had undergone arbitrary Eu-

clidean transformations. This is additional confirmation of the invariance property discussed in

section 5.3.1.

The next test of the system was an attempt matching with imperfect data. The sensitivity of

the geometric hashing paradigm to such errors was discussed in [20], while methods for dealing

with noisy data were presented in [70] and [16]. The suggested approach is to modify the voting

part of the matching scheme. Rather than just indexing a single hash table bucket and tallying a6Using all possible basis/point combinations.7Assuming, as in this case, an even distribution of basis/model pairs over the hash table, such that no pair appears

more than once in a given bucket.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 97

vote for each of the elements it contains, all buckets within a region of interest around the indexed

location take part in the voting process. The implementation of this idea required only a minor

extension to our 3D geometric hashing system, whereby votes are cast in a spherical region around

the indexed location.

The imperfect data we hoped to match was based on the sixth model of figure 5.8. In fact,

several variations of this model were created by adding different levels of random noise 8 to the

original model 1. Results from a series of trials, as before, are shown in Table 5.3.

% Matched Most % Max

Noise Model Votes Correct

0 1 5 100

5 1 4 100

10 1 4 100

15 1 3 100

20 1 2 90

30 1 1 66

40 3 1 46

Table 5.3: Results of geometric hashing using noisy synthetic data

The first thing to note from the table is that up to and including the 30% noise level the

geometric hashing system successfully matched the input data with model 1. However, as the

noise level increased, so the largest number of votes scored in any single trial decreased. The final

column of the table gives the percentage of the trials with the highest vote count that proposed the

correct match. In the 10–15% noise range this was all of them. At the 20% noise level this dropped

to 90%, and with 30% noise only 66% of trials with the given highest vote count (1) matched

correctly. This means that although the matching process was successful eventually, many more

candidate matches had to go through the verification procedure. Unsurprisingly, with 40% noise

the matching system proposed the wrong match the majority of the time.8The noise level was calculated as a percentage of the size of the original model. Model 1 was a cube of 10�10�10

units, so, for example, a noise level of 10% means a random coordinate shift of�1 unit.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 98

5.5.2 Real Data: Recovered Structure

For this series of tests we attempted to match the structure recovered from the first pair of quadran-

gle images, against the original ground truth. The structure correspondences were grouped into

five models/patches according to 3D location, as shown in Table 5.4.

Model Number of Description

Number Points of features

1 8 Supporting pillars at the front of the lecture theatre

2 9 Supporting pillars at the side of the lecture theatre

3 6 Features on the distant building

4 14 Windows on the left of the lecture theatre

5 13 Windows on the right of the lecture theatre

Table 5.4: Grouping of features into structure patches

Each of the recovered structure patches was used as input to the matching process. Initial

experiments with this data highlighteda problem. The system was proposing (incorrect) candidate

matches with a ‘Most Votes’ value that was three or four times the expected maximum. This was

caused by an uneven distribution of invariant coordinate values, as shown in Figure 5.9. As a

result, a given basis/model pair could be stored many times in the same hash table bucket. Thus,

each time that bucket was indexed for voting, multiple votes were cast for that pair. We attempted

to solve this problem using a logarithm-based hash function.

The results of subsequent experiments are shown in Table 5.5. Unfortunately, none of the

recovered structure patches were successfully matched against the corresponding ground truth

data. The ‘Most Votes’ column still shows a larger number of votes for the proposed match which

is bigger than the maximum we would expect from an evenly distributed hash table, but there has

been a marked improvement. The final column gives the largest number of votes cast in a single

trial for the correct model. Only the trials with patches 4 and 5 result in a high number of votes

for the correct model. In the other trials the proposed best match seems almost arbitrary.

This is not really surprising if we take a closer look at the data the geometric hashing system

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 99

0

100

200

300

400

500

600

700

-10 -8 -6 -4 -2 0 2 4 6 8 10

O
cc

ur
en

ce
s

Invariant Coordinate

Ground Truth Alpha

0

5

10

15

20

-10 -8 -6 -4 -2 0 2 4 6 8 10

O
cc

ur
en

ce
s

Invariant Coordinate

Reconstructed Alpha

0

100

200

300

400

500

600

700

-10 -8 -6 -4 -2 0 2 4 6 8 10

O
cc

ur
en

ce
s

Invariant Coordinate

Ground Truth Beta

0

0.5

1

1.5

2

2.5

3

-10 -8 -6 -4 -2 0 2 4 6 8 10

O
cc

ur
en

ce
s

Invariant Coordinate

Reconstructed Beta

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-10 -8 -6 -4 -2 0 2 4 6 8 10

O
cc

ur
en

ce
s

Invariant Coordinate

Ground Truth Gamma

0

0.5

1

1.5

2

2.5

3

-10 -8 -6 -4 -2 0 2 4 6 8 10

O
cc

ur
en

ce
s

Invariant Coordinate

Reconstructed Gamma

Figure 5.9: Distributions of invariants. The left column of graphs shows the distribution of �,� and invariants for ground truth data. The right hand column shows the distributions for the

corresponding recovered structure. The ground truth graph for has had the zero entries removed,

as they were swamping the other values. This was caused by many of the basis/point pairs being

coplanar.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 100

Recovered Matched Most Correct

Patch Model Votes Votes

1 4 12 0

2 5 13 7

3 4 5 0

4 1 17 14

5 4 16 15

Table 5.5: Results of geometric hashing using real data.

has to work with. For example, four points chosen at random from set of correspondences number

2. The ground truth values for these points are:P1 = 0BBBB@ 20:0039:00�350:00 1CCCCA ;P2 = 0BBBB@ 0:0039:00�743:00 1CCCCA ;P3 = 0BBBB@ �662:00108:00244:00 1CCCCA ;P4 = 0BBBB@ �587:00328:001050:00 1CCCCA
(5.12)

The invariant coordinates of P4 are (�; �;) = (�3:47;�1:78; 0:56), using the first three points

as a basis. If we now examine the corresponding recovered structure points:P1 = 0BBBB@ �33:4626:53�304:85 1CCCCA ;P2 = 0BBBB@ �75:7928:32�688:49 1CCCCA ;P3 = 0BBBB@ �731:6399:23331:68 1CCCCA ;P4 = 0BBBB@ �535:36325:74935:04 1CCCCA
(5.13)

These give the invariant coordinates of P4 as (�; �;) = (�3:05;�1:71; 0:62). The � and
values are quite similar, but in the context of the overall range, the � value has changed quite dra-

matically. Such differences between the computed invariants cause the wrong hash table location

to be indexed, resulting in spurious votes being cast and incorrect candidate matches.

CHAPTER 5. STRUCTURE RECOGNITION AND MATCHING 101

5.6 Conclusions

Although the results of experiments with synthetic data have been encouraging, so far we have

been unable to get the geometric hashing system to recognise real structure patches successfully.

It is apparent that the cause of this problem is not the geometric hashing system itself, but rather,

inaccuracies in the recovered Euclidean structure, which forms the input to the system.

A common approach to dealing with such noisy data is to use a region-based voting al-

gorithm, but this has also proved inadequate. The difficulty lies in determining the size of the

region of interest. Too small a region achieves nothing, but if it is too large then many candidate

matches are found, which defeats the object of performing geometric hashing in the first place. So

far we have been unable to develop a sensible value for the size of the voting region which is large

enough to allow recognition to take place but small enough to generate a manageable number of

candidate matches.

It may be that performance can be improved slightlyby careful choice of parameters such as

the size of the voting region or modifying the hash function, but, in conclusion, it would seem that

unless a way can be found to produce more accurate structure estimates, the geometric hashing

method of matching will not be successful.

Chapter 6

Conclusions

6.1 Summary

The work presented in this thesis addresses the problem of automatically reconstructing a model

of an extended environment, from a long image sequence taken with an ordinary hand-held video

camera. An uncalibrated approach to structure recovery has been taken, based on the calculation

of the epipolar geometry of successive pairs of images in the sequence. Knowledge of ground

truth data, for the first image pair only, is used to propagate an estimate for the Euclidean structure

of the entire scene. Over a long image sequence, it is anticipated that errors will accrue, and as a

result, the recovered structure will be internally inconsistent. A method which attempts to detect

such anomalies has been developed, using the geometric hashing paradigm.

In Chapter 3 a method is described for acquiring the fundamental matrix from a set of

matched points in a pair of uncalibrated images. It is based on a novel implementation of the well-

known 8-point algorithm, which combines a recently developed normalisation technique with a

variation on the RANSAC parameter estimation algorithm. This linear method is simple, yet ef-

ficient, and experiments on a range of real and synthetic data show that it produces quantifiably

accurate results. A direct comparison demonstrates that the method generates fundamental matrix

estimates of similar quality to those of more complicated alternatives.

The fundamental matrix is the input to the reconstruction system presented in Chapter 4.

102

CHAPTER 6. CONCLUSIONS 103

We use Hartley’s method for factorising a fundamental matrix, to construct a pair of camera matri-

ces for the corresponding images. These are used to obtain an estimate for the projective structure

of the current view, via back-projection. For the first pair of images in the sequence, five or more

ground truth points are required, in order to compute a projective transform matrix with which to

upgrade from projective to Euclidean structure. The problem of calculating the projectivity which

best fits the data is again formulated and solved using the RANSAC scheme.

An original feature of the reconstruction system is the way in which remaining image se-

quence pairs are processed. Each is used to obtain a segment of projective structure, as outlined

above, but the upgrade to Euclidean is performed, not with ground truth data, but rather, using

previously estimated Euclidean structure. Thus a complete reconstruction for the scene is incre-

mentally obtained, by stitching together the segments of Euclidean structure acquired at each step.

Results show that the reconstruction system performs well when recovering the structure of ob-

jects which are close to the camera, but copes poorly with distant objects. In the latter case, the

image resolution is insufficient to be able to detect and match point features accurately, even by

hand. As a result of this, very small changes in the image coordinates of a point can lead to large

changes in the recovered structure. This is a problem faced by any image feature-based recon-

struction system and is not due to the specific method used here.

At each step of the reconstruction system, new structure is acquired using old structure that

was itself estimated. As successive image pairs are processed the error in the recovered structure

will accumulate. In a long image sequence there is the possibility that previously viewed parts

of the scene will be re-encountered. In this event there will be two structure estimates for the

scene segment; the current one and the one obtained the first time it was in view. It is required

that a match between these two segments is found and their relative orientation obtained, in order

that globally consistent structure can be maintained. Chapter 5 describes an method to tackle this

problem, using geometric hashing.

The geometric hashing system has been developed to work in tandem with the reconstruc-

tion process. Unlike conventional geometric hashing, there is no off-line preprocessing stage.

Rather, the models to be recognised are memorised while the system is running, and this is done

concurrently with the matching stage. The models in question are patches of recovered Euclidean

CHAPTER 6. CONCLUSIONS 104

structure. At each step in the reconstruction, an additional patch of structure is used to update the

hash table. The system is based around 3D Euclidean invariants and a method for obtaining these

is described. Also presented is a symmetry-based technique for improving the efficiency of the

hashing process.

The goal of the geometric hashing system is not to produce a unique match between the

scene structure and that which is stored in the hash table. Instead, it aims to obtain a manageable

number of candidate matches, which can be examined more closely. Unfortunately, this aim has

not yet been achieved, as the system either produces large numbers of candidate matches, or not at

all. This failure is not due to the geometric hashing implementation, but rather, the data it works

with. The problem is caused by the fact that errors in the recovered Euclidean structure accumu-

late more quickly than expected. For the geometric hashing system to function as intended, the

accuracy of the reconstruction must be improved.

6.2 Future Work

The calculation of the projective transform between projective and Euclidean structure is the key

to the reconstruction process. The elements of the transform matrix are obtained via the solution

of a set of homogeneous linear equations, using the least eigenvector method. This is the same

approach taken when computing the fundamental matrix in Chapter 3, and it would be worth in-

vestigating the possibility of improving the result of this calculation by developing a normalising

transform, based on the analysis in [26].

Another extension to the existing method might be to assign a measure of accuracy to each

reconstructed point, and only use the most accurate points in the projectivity calculation. The

measure might be based on the distance of the point from the camera, or recursively, on the accu-

racy of the points used when its structure was recovered.

A possible cause of structure recovery problems is the initial reliance on ground truth data.

Any measurement error in these points would have an adverse effect on the whole reconstruc-

tion. An alternative approach would be to estimate the Euclidean structure directly, using a self-

calibration, as in [25].

CHAPTER 6. CONCLUSIONS 105

In its present form the geometric hashing system is is based on invariants of a 3D similarity

or rigid transform. However, since we are dealing with rigid structures it is possible to obtain

more discriminatory information, for example the size of the triangle formed by the three basis

points. This shape signature can be used to ensure that only appropriate bases receive votes and

thus reduce the number of candidate matches [70].

Also, at present, there is no indicationof when the recognition process should take place. Of

course, it is possible to attempt recognition after every reconstruction step and hash table update,

but this would be wasteful, since it is expected that previously viewed structure will only rarely

be re-encountered. The reconstruction process can provide an estimate for the pose of the camera

at each step and this odometry information could be used to trigger recognition when approaching

structure that has been seen before.

In addition, once a match has been found, there is still the question of how best to update

the structure, so that it internally consistent. This is of particular importance if the reconstruction

is to be of practical use, for example a virtual reality application, and is certain to be the subject

of future research.

6.3 Closing Comments

The problem we have tackled is an exceptionally difficult one, and the proposed solution brings

together elements from a number of areas of machine vision. To date, we have been unable to

demonstrate successful resolution of inconsistencies in the reconstructed model, for reasons dis-

cussed in Chapter 5. However, the overall approach proposed remains plausible and it is hoped

that future work, including some of the suggestions above, will succeed in producing internally

consistent models.

Appendix A

Essential Projective Geometry

In this appendix we review some of the most important concepts of projective geometry, which

we have used elsewhere in the thesis. For a more thorough introduction, the reader is referred to

[11] or the appendix of [47], which provide excellent discussions of the subject, from a machine

vision standpoint.

A.1 Homogeneous Coordinates

In projective geometry manipulation of points, lines, planes etc. is carried out using homogeneous

coordinates. Projective transformations are linear in homogeneous coordinates, and some prob-

lems can be greatly simplified by expressing them in this manner. Consider the case of perspective

projection from 3D to 2D, which is important in machine vision as it represents the formation of an

image by a camera. Using Cartesian coordinates this transformation is non-linear, but it is linear

in homogeneous coordinates [11].

In two dimensions, the Cartesian coordinates of a point are a 2-vector (x; y)T . The same

point in projective two-space, P2, can be represented in homogeneous coordinates by some 3-

vector (u; v; w)T . The simplest way to obtain the values of these three elements is to set u =x; v = y and w = 1, thus:

106

APPENDIX A. ESSENTIAL PROJECTIVE GEOMETRY 107(x; y)T ! (x; y; 1)T (A.1)

However, an important property of projective geometry is that only the ratios of the ele-

ments of the homogeneous coordinates are important. Hence two homogeneous vectors represent

the same homogeneous point if one is a multiple of the other. That is:(x; y; 1)T � (�x; �y; �)T (A.2)

where � is some non-zero scalar. For example, (12; 10; 2)T ; (30; 25; 5)T and (�6;�5;�1)T all

represent the same homogeneous point.

Converting from homogeneous back to Cartesian coordinates is equally straightforward.

Simply divide through the homogeneous vector by its third element and then remove the third

element (which will of course be 1),(�x; �y; �)T ! ��x� ; �y� ; ���T ! (x; y; 1)T = (x; y)T (A.3)

Or, without the explicit scale factor, (u; v; w)T ! (u=w; v=w)T . Thus, in our example

above, the three homogeneous vectors all correspond to the Cartesian point (6; 5)T .

An additional benefit of homogeneous coordinates is that they make it possible to represent

points located at infinity on the image plane. There is no such representation in Cartesian coordi-

nates. In homogeneous coordinates a point at infinity, called an ideal point has its third element

equal to zero i.e. it is of the form (u; v; 0)T. Ideal points are treated in exactly the same way as

any other points in the image plane. The set of all ideal and non-ideal points in projective 2-space

is called the projective plane and is denoted P2.

The equation of a line in two dimensions can be expressed in Cartesian coordinates asax + by + c = 0 (A.4)

which can be rewritten in terms of homogeneous coordinates as

APPENDIX A. ESSENTIAL PROJECTIVE GEOMETRY 108a uw + b vw + c = 0$ au+ bv + cw = 0 (A.5)

or, using the vector dot product l:p = 0 (A.6)

where l = (a; b; c)T is the homogeneous 3-vector representation of the line. As with points, only

the ratios of the three elements are important, as we can see that multiplying equation A.5 by a

scalar has no effect.

A.2 Some Simple Constructions

A.2.1 Computing The Line Through Two Points

From equation A.5 we can see that for a line l = (a; b; c)T to pass through the two points p =(pu; pv; pw)T and q = (qu; qv; qw)T , the following relations must be satisfiedapu + bpv + cpw = 0 and aqu + bqv + cqw = 0 (A.7)

The solution to these equations can be obtained from the cross productl = p� q (A.8)

We can see that this is so by noting that if a point p lies on a line l, the dot product of their

two coordinate vectors is zero (equation A.5). From the properties of the vector triple product we

get p:l = p:(p� q) = 0, and we obtain the result above1 .1Since p:(p� q) = (p� p):q and p� p = 0.

APPENDIX A. ESSENTIAL PROJECTIVE GEOMETRY 109

A.2.2 The Intersection of Two Lines

This is the dual of the previous problem and we obtain similar constraints in that the point of

intersection p = (u; v; w)T of the two lines l = (la; lb; lc)T and m = (ma; mb; mc)T , must

satisfy lau+ lbv + lcw = 0 and mau+mqv +mqw = 0 (A.9)

This similarity highlights the so-called principle of duality, which states that for any ma-

nipulation involving projective points and lines, each point can be exchanged for a line and each

line can be exchanged for a point, the result being the dual manipulation to the original. Thus, the

solution to this problem can be expressed simply asp = l �m (A.10)

A.2.3 Normalising Homogeneous Coordinates

When carrying out lots of projective geometry calculations, the homogeneous coordinates of points

and lines may become very small or large. Therefore, it is a good idea to normalise the homoge-

neous coordinates at each stage in the computation, to avoid numerical error. As a homogeneous

vector can be multiplied by any scalar and still represent the same point or line, normalisation can

be done quite simply. For a point p = (u; v; w), we use the following normalisation:(u; v; w)T ! � uw; vw; 1�T (A.11)

and for the line l = (a; b; c)(a; b; c)T ! ap(a2 + b2) ; bp(a2 + b2) ; cp(a2 + b2)!T (A.12)

APPENDIX A. ESSENTIAL PROJECTIVE GEOMETRY 110

A.2.4 The Perpendicular Distance of a Point from a Line

The normalisation of points and lines described above, leads to a very simple method for com-

puting this quantity. Specifically, the perpendicular distance d of a point p from a line l is given

by the dot product: d = p:l (A.13)

So in the case where the point and line are incident we get the anticipated result:p:l = 0 (A.14)

A.3 Projective Transformations

Transformations within and between projective spaces are called projectivities. In mathematical

studies of projective geometry there is no emphasis on projective space of any particular dimen-

sion, but in computer vision, some cases are more interesting than others.

The previous sections have concentrated on the manipulation of points and lines in P2,

which have been widely used in our work on the fundamental matrix (chapter 3). Projective 3-

space,P3, is a generalisation of the projective plane, followingfrom the definition ofP2 in section

A.1. Again, homogeneous coordinates are used, here with all their dimensions increased by one.

That is, a point inP3 is represented by the homogeneous 4-vector (X; Y; Z; T)T . In the remainder

of this section we will briefly discuss two projective transformations of P3.

A.3.1 P3 to P3
A projectivity from P3 to P3 acts on and generates a homogeneous 4-vector. It is can therefore

be represented by the (non-singular) 4�4 matrix H

APPENDIX A. ESSENTIAL PROJECTIVE GEOMETRY 111�0BBBBBBB@ X 0Y 0Z 01 1CCCCCCCA = 0BBBBBBB@ h11 h12 h13 h14h21 h22 h23 h24h31 h32 h33 h34h41 h42 h43 h44 1CCCCCCCA| {z }H 0BBBBBBB@ XYZ1 1CCCCCCCA (A.15)

Note that the only effect of multiplyingH by some non-zero scalar, is to change the value

of the scale factor � on the left-hand side. However, as we have seen, all values of � still refer to

the same homogeneous point. ThusH is defined only up to a scale factor and has only 15 degrees

of freedom.

Multiplying out and eliminating the unknown scale factor, �, leaves three equations in the

elements of H. Thus given five corresponding points in P3, a system of linear equations can be

formed and solved for the unknown elements of H. If more than five point matches are known,

a least-squares solution can be obtained.

A.3.2 P3 to P2
Projection from a projective space to one of lower dimensionality can be achieved by simply elim-

inating one of the coordinates of the transformed projective space. For example, projection fromP3 to P2 can be performed by the 3�4 matrix M as follows:�0BBBB@ uv1 1CCCCA = 0BBBBBBB@ m11 m12 h13 m14m21 m22 h23 m24m31 m32 h33 m34m41 m42 h43 m44 1CCCCCCCA| {z }M 0BBBBBBB@ XYZ1 1CCCCCCCA (A.16)

Once again, the overall scale of the matrix M is unimportant. Hence, this transformation

has 11 essential parameters. Multiplying out and eliminating the scale factor, as before, leads to

a pair of equations in the unknowns. Thus, six or more 3D reference points, together with their

corresponding image points are sufficient to construct and solve a system of linear equations for

APPENDIX A. ESSENTIAL PROJECTIVE GEOMETRY 112

the elements of M.

The general projective projection matrix M can account for many of the geometric aspects

of image formation, including the case of viewing the projection of a projection, for example, a

picture of a picture or the shape of a shadow in an image. Constraints can be applied to the form

of the matrix to account for the standard case of projection from 3D space onto an image plane

from a single point i.e. perspective projection. In this case, the perspective camera matrixM can

be decomposed as: M = K(Rj �Rt) (A.17)

where K is an upper triangular matrix, R is a 3D Euclidean rotation matrix and t is a translation

vector. K represents the intrinsic parameters, which define the optical characteristics of the cam-

era. R and t encode the extrinsic parameters, which define the transformation between the world

and camera coordinate systems. This factorisation of M can be computed by QR-factorisation

[18].

Appendix B

RANSAC

RANSAC (RANdom SAmple Consensus) is a paradigm for fitting a model to experimental data.

It was introduced into the vision literature in 1981 by Fischler and Bolles [15], who described

one possible application in the field of automated cartography. Here RANSAC was used to deter-

mine camera location from a set of 3D ground truth points and their corresponding image points.

However, the general RANSAC algorithm can be applied to an unlimited number of parameter

estimation and model-fitting problems.

The beauty of RANSAC lies in its ability to interpret/smooth data containing a significant

proportion of large errors, thus making it ideally suited to vision and image processing applica-

tions, which often rely on noisy data provided by error prone feature detectors, matchers etc. Clas-

sical parameter estimation techniques, such as least-squares, optimise the fit of a model based on

all the presented data. They are averaging techniques which rely on the smoothing assumption,

that the maximum error in any given data item is a function of the total size of the dataset. Hence

there will always be enough accurate data items to smooth out the errors.

In many practical applications, this assumption does not hold; i.e., the dataset contains un-

compensated gross errors (outliers). A common heuristic for dealing with this is firstly to use all

the data to compute the model parameters, then find the data item with the highest deviation from

the model fit, delete it, assuming it is an outlier, then recompute the model. This process is iter-

ated until either the maximum deviation is less than some given threshold or there is insufficient

113

APPENDIX B. RANSAC 114

data to continue. However, it can be seen that the presence of just one outlier can cause such a

heuristic to fail.

For example, consider the case of fitting a line to a set of seven 2D points. At each iteration,

we compute the equation of the line and discard the point with the largest perpendicular distance

to the line. Termination occurs when all remaining points lie within 1.2 units of the line. Figure

B.1 shows the data sets and best fit lines computed at each of the necessary four iterations. Also

shown on each graph is the ideal best fit which would be obtained if the outlier (the rightmost data

point) was ignored.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Y

X

Ideal Fit
Fit at iteration 1

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Y

X

Ideal Fit
Fit at iteration 2

(a) (b)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Y

X

Ideal Fit
Fit at iteration 3

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Y

X

Ideal Fit
Fit at iteration 4

(c) (d)

Figure B.1: Effect of an outlier on the accuracy of fitting a line to a set of points using least-squares

The tables below show which data points were used in each iteration, the parameters of the

fit line and the perpendicular distance of each data point from that line.

APPENDIX B. RANSAC 115

Least Squares Approximations

Iteration Data Set Fitting Line

1 0, 1, 2, 3, 4, 5, 6 0.50x + 3.00

2 0, 1, 2, 3, 5, 6 0.39x + 2.81

3 0, 1, 2, 5, 6 0.38x + 2.35

4 1, 2, 5, 6 0.17x + 3.72

Perpendicular Distances

Point X Y Iteration 1 Iteration 2 Iteration 3 Iteration 4

0 1 1 2.23 2.05 1.61 –

1 2 3 0.89 0.56 0.10 1.05

2 3 5 0.44 0.92 1.40 0.74

3 4 7 1.78 2.41 – –

4 5 9 3.13 – – –

5 4 5 0.00 0.55 1.04 0.57

6 9 5 2.23 1.27 0.73 0.27

The RANSAC procedure is the complete opposite to such traditional smoothing techniques.

Instead of using as much of the dataset as possible to form an initial solution, then gradually

eliminating outliers, RANSAC starts off with the smallest feasible dataset and then enlarges this

with consistent data when possible. Fischler and Bolles describe the simple example of using

RANSAC for fitting a circle to a set of 2D data points. Start with a three point subset, since three

points are needed to define a circle. Compute the centre and radius of the candidate circle and

count the number of points close enough to the circumference to suggest they belong to the cir-

cle. If there are enough such points, RANSAC would then employ a smoothing technique, such

as least-squares, to obtain an improved estimate for the parameters of the circle, based on the the

set of mutually consistent points.

More formally, the RANSAC paradigm can be stated as follows:

Given a model that requires a minimum of n data points to compute its free parameters and

a set of data points P such that P contains more than n elements:

APPENDIX B. RANSAC 116

1. Randomly select an n-point subset S from P and use those points to instantiate the modelM .

2. Obtain the subsetC containing those points inP that are within some error tolerance of M .

This is called the consensus set.

3. If C contains a number of points greater than some threshold t, which is a function of the

number of outliers in P , then useC to compute (possibly using least-squares) a new modelM 0. Otherwise, randomly select another subset S and repeat the above process.

4. If, after some predetermined number of trials, no consensus set with t or more elements has

been found, either terminate with an error or solve for the model using the largest consensus

set that has been found.

5. Additional iterative steps can now be performed, if required. Once a new model M 0 has

been computed from the consensus set, if any additional points from P are consistent withM 0, add them to C and recompute the model.

The original authors go on to give guidelinesabout the choice of the three variable RANSAC

parameters: the error tolerance when deciding on a point’s consistency, the threshold t and the

number of subsets to try. Clearly, the value of these parameters will vary depending on the par-

ticular RANSAC application.

In fact, some applications will require modifications to the algorithm outlined above. For

example, the termination condition in step 3 is dependent on a threshold value, which implies a

priori knowledge about the number of outliers in the dataset. This is often unavailable, as in our

estimation of the fundamental matrix in Chapter 3 and again in Chapter 4, when computing the

transform between projective and Euclidean 3D structure. In such cases one simple solution is to

abandon the threshold check and use the largest consensus set obtained after some fixed number

of trials. This is the method used by Gee for a RANSAC-driven pose estimation system [17]. An-

other alternative for avoiding the direct dependency on the threshold value is used by Torr in [62],

in a RANSAC algorithm for eliminating outliers from a set of matched points. He uses predeter-

mined estimates for the percentage of outliers present, to calculate the number of trials required

to obtain an optimum solution.

APPENDIX B. RANSAC 117

In both our RANSAC applications we have a way of obtaining a measure of the accuracy

of the model instantiations. Thus an an alternative formulation of step 3, is as follows:

3. If C contains a number of points greater than or equal to the previous best consensus set

then� Use C to compute a new model M 0.� Obtain a measure1 of the accuracy of M 0.� If M 0 is more accurate than the best previously model, record the details of M 0 andC then continue.

Otherwise, randomly select another subset S and repeat the above process.

Using this approach gives monotonically increasing consensus set sizes, each of which gen-

erates a more accurate model than the previous one. In addition, it provides a termination con-

dition based on the accuracy of the computed models, not on the size of the consensus set. In

the main text, we denote this variation on the scheme as RANSAC�, to differentiate it from the

standard method.

1Exactly how this is obtained is dependent on the nature of the model being computed.

Appendix C

The Quadrangle Image Sequence

This is an image sequence of a part of the campus at Leeds University, known as the quadrangle.

The original video footage was digitised into around 10000 separate frames. A number of frames

were selected, by hand, such that there was sufficient inter-frame overlap to be useful in our scene

reconstruction system. This resulted in a sequence of just 104 images of 384�288 pixels, whose

thumbnails are shown on the following pages.

Figure C.1: Images 0 to 11

118

APPENDIX C. THE QUADRANGLE IMAGE SEQUENCE 119

Figure C.2: Images 12 to 35

APPENDIX C. THE QUADRANGLE IMAGE SEQUENCE 120

Figure C.3: Images 36 to 59

APPENDIX C. THE QUADRANGLE IMAGE SEQUENCE 121

Figure C.4: Images 60 to 83

APPENDIX C. THE QUADRANGLE IMAGE SEQUENCE 122

Figure C.5: Images 84 to 104

References

[1] G. Adiv. Determining three-dimensional motion and structure from optical flow generated

by several moving objects. IEEE Trans. PAMI, 7(4):383–401, 1985.

[2] M. Armstrong, A. Zisserman, and P. Beardsley. Euclidean structure from uncalibrated im-

ages. In Edwin Hancock, editor, British Machine Vision Conference 1994, volume 2, pages

509–518, University of York, September 1994. BMVA Press.

[3] D.H. Ballard. Generalising the Hough transform to detect arbitrary shapes. Pattern Recog-

nition, 13(2):111–122, 1981.

[4] P. Beardsley, P. Torr, and A. Zisserman. 3D model acquisition from extended image se-

quences. In B. Buxton and R. Cipolla, editors, Computer Vision - ECCV96, volume 2 of Lec-

ture Notes in Computer Science (1065), pages 683–695, Cambridge, UK, 1996. Springer-

Verlag.

[5] P.J. Besl and R.C. Jain. Three-dimensional object recognition. ACM Computing Surveys,

17(1):75–145, 1985.

[6] J.R. Beveridge and E.M. Riseman. Optimal geometric model matching under full 3D per-

spective. Computer Vision and Image Understanding, 61(3):351–364, May 1995.

[7] T.O. Binford and T.S. Levitt. Quasi-invariants: Theory and exploitation. In Proc. DARPA

Image Understanding Workshop, pages 819–829, 1993.

[8] B. Boufama and R. Mohr. Epipole and fundamental matrix estimation using virtual parallax.

In 5th International Conference on Computer Vision, pages 1030–1036, MIT, Cambridge,

Massachusetts, June 1995. IEEE Comp. Soc. Press.

123

REFERENCES 124

[9] T. Buchanan. Photogrammetry and projective geometry - an historical survey. In Integrat-

ing Photogrammetric Techniques With Scene Analysis and Machine Vision, volume 1944 of

SPIE, pages 82–91. SPIE, 1993.

[10] R.T. Chen and C.R. Dyer. Model-based recognition in computer vision. ACM Computing

Surveys, 18(1):67–108, March 1986.

[11] O. Faugeras. Three-dimensional computer vision: a geometric viewpoint. MIT Press, 1993.

[12] O.D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In

G. Sandini, editor, Computer Vision - ECCV92, volume 588 of Lecture Notes in Computer

Science, pages 563–578, Santa Margherita Ligure, Italy, May 1992. Springer-Verlag.

[13] O.D. Faugeras, Q.-T. Luong, and S.J. Maybank. Camera self-calibration: Theory and ex-

periments. In G. Sandini, editor, Computer Vision - ECCV92, volume 588 of Lecture Notes

in Computer Science, pages 321–334, Santa Margherita Ligure, Italy, May 1992. Springer-

Verlag.

[14] D. Fischer, R. Nussinov, and H.J. Wolfson. 3D substructure matching in protein molecules.

In Lecture Notes in Computer Science, volume 644, pages 136–150. Springer-Verlag, 1992.

[15] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model fitting

with applications to image analysis and automated cartography. Communications of the

ACM, 24(6):381–395, 1981.

[16] D.M. Gavrila and F. C.A. Groen. 3D object recognition from 2D images using geometric

hashing. Pattern Recognition Letters, 13(4):263–278, April 1992.

[17] A.H. Gee and R. Cipolla. Fast visual tracking by temporal consensus. Technical Report

CUED/F-INFENG/TR 207, University of Cambridge, Dept. of Engineering, February 1995.

[18] G.H. Golub and C.F. Van Loan. Matrix Computations. The John Hopkins University Press,

1983.

[19] W.E.L. Grimson. Object recognition by computer: the role of geometric constraints. MIT

Press, 1990.

REFERENCES 125

[20] W.E.L. Grimson. On the sensitivity of geometric hashing. In 3rd International Conference

on Computer Vision, pages 334–338. Computer Society Press, 1990.

[21] W.E.L. Grimson and T. Lozano-Perez. Model-based recognition and localisation from

sparse range or tactile data. International Journal of Robotics Research, 3(3):3–35, 1984.

[22] Chris Harris and Mike Stephens. A combined corner and edge detector. In Proc. of

the Fourth Alvey Vision Conference (Manchester University, 31st August–2nd September),

pages 147–152. The University of Sheffield Printing Unit, 1988.

[23] R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Proc. CVPR92,

pages 761–764, 1992.

[24] R.I. Hartley. Estimation of relative camera positions for uncalibrated cameras. In Computer

Vision - ECCV92, pages 579–587. Springer-Verlag, 1992.

[25] R.I. Hartley. Euclidean reconstruction from uncalibrated views. In Joseph L. Mundy, An-

drew Zisserman, and David Forsyth, editors, Applicationsof Invariance in Computer Vision,

volume 825 of Lecture Notes in Computer Science, pages 239–256. Springer-Velag, Second

Joint European-US Workshop, Ponta Delgada, Azores, Portugal, October 1993.

[26] R.I. Hartley. In defence of the 8-point algorithm. In 5th International Conference on Com-

puter Vision, pages 1064–1070, MIT, Cambridge, Massachusetts, June 1995. IEEE Comp.

Soc. Press.

[27] R.I. Hartley and J.L. Mundy. The relationship between photogrammetry and machine vi-

sion. In Integrating Photogrammetric Techniques With Scene Analysis and Machine Vision,

volume 1944 of SPIE, pages 92–105. SPIE, 1993.

[28] A. Held. Piecewise shape reconstruction by incremental factorisation. In British Machine

Vision Conference 1996, pages 333–342, 1996.

[29] B.K.P. Horn. Robot Vision. MIT Press, 1986.

[30] P.V.C. Hough. Method and means for recognising complex patterns. US Patent 3,069,654,

1962.

REFERENCES 126

[31] T.S. Huang and O. Faugeras. Some properties of the e matrix in two view motion estimation.

In IEEE Trans. Patt. Anal. Mach. Intel., volume 11, pages 1310–1312, 1989.

[32] D.P. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with an image.

Int. Journal of Computer Vision, 5(2):195–212, 1990.

[33] J. Illingworth and J. Kittler. A survey of the Hough transform. Computer Vision, Graphics

and Image Processing, (44):87–116, 1988.

[34] Y. Lamdan, J.T. Schwartz, and H.J. Wolfson. Object recognition by affine invariant match-

ing. In Proc. CVPR88, pages 335–344, 1988.

[35] Y. Lamdan, J.T. Schwartz, and H.J. Wolfson. On recognition of 3-d objects from 2-d images.

In Proc. ICRA, pages 1407–1413, April 1988.

[36] Y. Lamdan, J.T. Schwartz, and H.J. Wolfson. Affine invariant model-based object recogni-

tion. IEEE Transactions on Robotics and Automation, 6(5):578–, October 1990.

[37] Y. Lamdan and H.J. Wolfson. Geometric hashing: A general and efficient model-based

recognition scheme. In 2nd International Conference on Computer Vision, pages 238–249,

Tampa, Fl. USA, September 1988. Computer Society Press.

[38] B. Lamiroy and P. Gros. Rapid object indexing and recognition using enhanced geometric

hashing. In B. Buxton and R. Cipolla, editors, Computer Vision - ECCV96, volume 2 of

Lecture Notes in Computer Science (1065), pages 59–70, Cambridge, UK, 1996. Springer-

Verlag.

[39] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projec-

tions. Nature, 293:133–135, September 1981.

[40] Q-T. Luong, R. Deriche, O. Faugeras, and T. Papadopoulo. On determining the fundamental

matrix: Analysis of different methods and experimental results. Technical Report 1894,

INRIA, Sophia-Antipolis, April 1993.

[41] Q-T. Luong and O. Faugeras. The fundamental matrix: Theory, algorithms and stability

analysis. International Journal of Computer Vision, (17):43–75, 1996.

REFERENCES 127

[42] S.J. Maybank. Properties of essential matrices. International Journal of Imaging Systems

and Technology, 2:380–384, 1990.

[43] P.F. McLauchlan and D.W. Murray. A unifying framework for structure and motion recovery

from image sequences. In 5th International Conference on Computer Vision, pages 314–

322, MIT, Cambridge, Massachusetts, June 1995. IEEE Comp. Soc. Press.

[44] P.M. McLauchlan and D.W. Murray. A unifying framework for structure and motion recov-

ery from image sequences. Technical report, Robotics Research Group, Dept. of Engineer-

ing Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK, 1994.

[45] R. Mohan, D. Weinshall, and R.R. Sarukkai. 3D object recognition by indexing structural

invariants from multiple views. In 4th International Conference on Computer Vision, pages

264–268, May 1993.

[46] T. Morita and T. Kanade. A sequential factorization method for recovering shape and mo-

tion from image streams. Technical Report CMU-CS-94-158, School of Computer Science,

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890, June 1994.

[47] J.L. Mundy and A.P. Zisserman. Geometric invariance in computer vision. MIT Press, 1992.

[48] C.J. Poelman. The Paraperspective and Projective Factorization Methods for Recovering

Shape and Motion. PhD thesis, School of Computer Science, Carnegie Mellon University,

1995. CMU-CS-95-173.

[49] C.J. Poelman and T. Kanade. A paraperspective factorization method for shape and motion

recovery. In Jan-Olof Eklundh, editor, Computer Vision - ECCV94, volume 801 of Lecture

Notes in Computer Science, pages 97–108, Stockholm, 1994. Springer-Verlag.

[50] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes: The

Art of Scientific Computing. Cambridge University Press, 1986.

[51] L.G. Roberts. Machine perception of three-dimensional solids. In J.T. Tippett et al., editor,

Optical and electro-optical information processing, pages 159–197. The MIT Press, 1965.

REFERENCES 128

[52] C. Rothwell, G. Csurka, and O. Faugeras. A comparison of projective reconstruction meth-

ods for pairs of views. In 5th International Conference on Computer Vision, pages 932–937,

MIT, Cambridge, Massachusetts, June 1995. IEEE Comp. Soc. Press.

[53] C. Rothwell, G. Csurka, and O. Faugeras. A comparison of projective reconstruction meth-

ods for pairs of views. Technical Report 2538, INRIA, April 1995.

[54] C.A. Rothwell, A. Zisserman, D.A. Forsyth, and J.L. Mundy. Using projective invariants for

constant time library indexing on model based vision. In British Machine Vision Conference

1991, pages 62–70, 1991.

[55] C.A. Rothwell, A. Zisserman, D.A. Forsyth, and J.L. Mundy. Planar object recognition us-

ing projective shape representation. International Journal of Computer Vision, (16):57–99,

1995.

[56] C.A. Rothwell, A. Zisserman, J.L. Mundy, and D.A. Forsyth. Efficient model library access

by projectively invariant indexing functions. In Proc. CVPR92, pages 109–114, 1992.

[57] S.M. Smith. A new class of corner finder. In British Machine Vision Conference 1992, pages

139–148, 1992.

[58] C. Tomasi and T. Kanade. Shape and motion from image streams: a factorization method

- full report on the orthographic case. Technical Report CMU-CS-92-104, School of Com-

puter Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-3890, March

1991.

[59] P.H.S. Torr. Oxford: Vanguard project home page. http://www.robots.ox.ac.uk:5000/ van-

guard/index.html.

[60] P.H.S. Torr and D.W. Murray. A review of robust methods to estimate the fundamental ma-

trix. Technical report, Robotics Research Group, Department of Engineering Sceience, Ox-

ford University, 1996.

[61] P.H.S. Torr and A. Zisserman. Robust parameterisation and computation of the trifocal ten-

sor. In British Machine Vision Conference 1996, pages 655–665, 1996.

REFERENCES 129

[62] P.H.S. Torr, A. Zisserman, and S.J. Maybank. Robust detection of degenerate configurations

for the fundamental matrix. In 5th International Conference on Computer Vision, pages

1037–1042, MIT, Cambridge, Massachusetts, June 1995. IEEE Comp. Soc. Press.

[63] F.C.D. Tsai. Geometric hashing with line features. Pattern Recognition, 27(3):377–389,

1994.

[64] R.Y. Tsai. Synopsis of recent progress on camera calibration for 3D machine vision. In The

Robotics Review. MIT Press, 1989.

[65] R.Y. Tsai and T.S. Huang. Uniqueness and estimation of three-dimensional motion parame-

ters of rigid objects with curved surfaces. In IEEE Trans. Patt. Anal. Mach. Intel., volume 6,

pages 13–27, 1984.

[66] S. Ullman. The interpretation of visual motion. The MIT Press, 1979.

[67] H. Wang and M. Brady. Corner detection for 3D vision using array processors. In Proc.

BARNAIMAGE-91, Barcelona, 1991. Springer-Verlag.

[68] D. Weinshall and C. Tomasi. Linear and incremental acquisition of invariant shape model

from image sequences. In 4th International Conference on Computer Vision, pages 675–

682, May 1993.

[69] C. Wiles and M. Brady. On the appropriateness of camera models. In B. Buxton and

R. Cipolla, editors, Computer Vision - ECCV96, volume 2 of Lecture Notes in Computer

Science (1065), pages 228–237, Cambridge, UK, 1996. Springer-Verlag.

[70] H.J. Wolfson. Model-based object recognition by geometric hashing. In O. Faugeras, edi-

tor, Computer Vision - ECCV90, Lecture Notes in Computer Science (427), pages 526–536,

Antibes, France, 1990. Springer-Verlag.

[71] Z. Zhang, R. Deriche, O. Faugeras, and Q-T. Luong. A robust technique for matching two

uncalibrated images through the recovery of the unknown epipolar geometry. Technical Re-

port 2273, INRIA, May 1994.

