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Abstract

Inverse problems have become more and more important in various fields of
science and technology, and have certainly been one of the fastest growing areas
in applied mathematics over the last three decades. However, as inverse prob-
lems typically lead to mathematical models which are ill-posed, their solutions
are unstable under data perturbations and classical numerical techniques fail to
provide accurate and stable solutions.

The work in thesis focuses on inverse force problems for the wave equation
which consists of determining an unknown space/time-dependent force function
acting on a vibrating structure from Cauchy boundary, final time displacement
or integral data. The novel contribution of this thesis involves the development of
efficient numerical algorithms for these inverse but ill-posed problems. We have
used the boundary element method (BEM) to discretise the wave equation with
a constant wave speed, and the finite difference method (FDM) for non-constant
wave speed and/or inhomogenous wave propagating medium.

Imposing the available boundary and additional conditions, upon discreti-
sation the inverse and ill-posed problem is recast into one of solving an ill-
conditioned system of equations.

The accuracy and convergence of the numerical results are investigated for
various test force functions. The stability of the numerical solutions is investigated
by introducing random noise into the input data which yields unstable results
if no regularisation is used. The Tikhonov regularization method is employed
in order to reduce the influence of the measurement errors on the numerical
results. The choice of the regularization parameter is based on trial and error or
on the L-curve criterion. Iterative regularizing methods such as the Landweber
and conjugate gradient methods are also employed in one chapter. The inverse
numerical solutions are compared with their known analytical solutions, where
available, and with the corresponding direct numerical solutions otherwise.
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Chapter 1

Introduction

1.1 Motivation and outline of thesis

The wave equation governs many physical problems such as the vibrations of a
spring or membrane, acoustic scattering, etc.

When it comes to mathematical modeling probably the most investigated are
inverse acoustic scattering problems in which one aims to determine an unknown
obstacle from the far field measurement of the scattered wave (at different direc-
tions and/or various frequencies), see (Colton and Kress, 2013).

Another inverse problem for the wave equation concerns the determination of
the speed of propagation from lateral Cauchy boundary conditions, see (Isakov,
1998, Sect. 8.1).

On the other hand, inverse force problems have been less investigated and in
this thesis we consider the problem of force identification from measured data for
the hyperbolic wave equation. This inverse formulation is significant to modelling
several practical applications related to unknown force loads and control.

For example, external force identification of applied loadings from output
measurements of system responses can be experienced in many engineering ap-
plications dealing with wave, wind, seismic, explosion, or noise excitations.

In (Huang, 2001), the determination of the time-dependent external forces
in a non-linear damped vibration system from the knowledge of the measured
displacement and velocity at different times has been investigated.
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1.2 Direct problems

Another important application of this inverse problem is to distinguish be-
tween various types of seismic events such as implosion, explosion or earthquake,
which generate waves that propagate through the Earth and can be recorded using
seismometers. In (Sjogreen and Petersson, 2014) a seismic source modelled as a
point moment tensor forcing in the elastic wave equation for the displacement was
estimated by minimizing the gap between the time-dependent measured/recorded
and computed wave forms, see (Tarantola, 1984).

A final application that is mentioned here is represented by inverse problems
in ocean acoustics concerned with the identification of the acoustic parameters
of the ocean, the elastic parameters of the seafloor or an acoustic source, see
(Collins and Kuperman, 1994). In these inverse problems the acoustic pressure
satisfying the wave equation is measured on an array of hydrophones and the
time-dependent intensity and space location of a point force/source and/or the
speed of sound in the ocean are to be determined from these measurements.

Because part of the cause of the physical phenomenon is unknown one has
to compensate for this lack of information by measuring an appropriate part
of the effect. What quantity to measure is the delicate choice/constraint when
formulating inverse problems, but a proper formulation would be able to ensure
that the unknown force can be uniquely retrieved from the proposed additional
measurements. However, stability can in general not be restored.

1.2 Direct problems

To define various classes of inverse problems, we should first define a direct (for
ward) problem. Indeed, something "inverse" must be the opposite of something
"direct". For example, consider problems of mathematical physics.

In mathematical physics, a direct problem is usually a problem of modelling
some physical fields, processes, or phenomena (electromagnetic, acoustic, seismic,
heat, etc.). The purpose of solving a direct problem is to find a function that
describes a physical field or process at any point of a given domain at any instant
of time (if the field is non-stationary). The formulation of a direct problem
includes:
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1.3 Inverse problems

• the domain in which the process is studied;

• the equation that describes the process;

• the initial condition (if the process is non-stationary);

• the conditions on the boundary of the domain.

Direct problems are in general well-posed. According to (Hadamard, 1923), a
problem is well-posed if it satisfies the following properties:

• The solution exists for all data.

• The solution is unique for all data.

• The solution depends continuously on the data (stability), i.e. small errors
in the input data cause only small errors in the output solution.

If one or more of the above properties is violated this leads to an ill-posed problem.
Direct problems for the full wave equation in the time-domain of the reduced

Helmholtz equation in the frequency-domain have been extensively studied in the
literature, see for example (Niwa, Kobayashi and Kitahura, 1982). However, in
many engineering problems certain quantities in the list above are not directly
specified or measured and this leads to inverse problem formulations which are
discussed in the next subsection.

1.3 Inverse problems

In our everyday life we are constantly dealing with inverse and ill-posed prob-
lems, e.g. inverse scattering for determining an obstacle from the knowledge of
the far field pattern, electrocardiography for estimating epicardial potential dis-
tribution from that on the body surface, etc. Usually, the inverse problem implies
identification of causes from known desirable or observable effects. This usually
leads to an ill-posed problem which either has no solution in the desired class,
or has many (two or more) solutions, or the solution procedure is unstable (i.e.
arbitrarily small errors in the measurement data may lead to indefinitely large
errors in the solutions). Most difficulties in solving ill-posed problems are caused
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1.4 Numerical methods for discretising partial differential equations

by the solution instability. Therefore, the term "ill-posed problems" is often used
for unstable problems.

Inverse problems of mathematical physics can be classified into groups depend-
ing on which functions are unknown and some other criteria, see (Kabanikhin,
2008),

1. The inverse problem is called a boundary/initial problem, if it is required
to determine a boundary/initial condition.

2. The inverse problem is called a source/force problem, if it is required to
determine the source/force.

3. The inverse problem is called a coefficient inverse problem (or medium prob-
lem), if it is required to reconstruct coefficients present in the governing
equation or in the boundary conditions.

It should be noted that this classification is still incomplete. There are cases
where both initial and boundary conditions are unknown, and cases where the
domain (or a part of its boundary) is unknown.

The unknown conditions are to be determined with the assistance of an over
specified condition. Noise becomes an important concern in the solution of most
inverse problems, as the over specified condition is usually provided by using
experimental field data.

1.4 Numerical methods for discretising partial dif-
ferential equations

1.4.1 Boundary Element Method (BEM)

The boundary element method (BEM) attempts to use the given boundary condi-
tions to fit boundary values into an integral equation, rather than values through-
out the space defined by a partial differential equation. Once this is done, in the
post-processing stage, the integral equation can then be used again to calculate
numerically the solution directly at any desired point in the interior of the solu-
tion domain. The BEM has been applied in many areas of engineering and science

4



1.4 Numerical methods for discretising partial differential equations

including fluid mechanics, acoustics, electromagnetics and fracture mechanics, see
(Wrobel, 2002) and (Aliabadi, 2002).

However, the BEM can only be applicable to problems for which the funda-
mental solution of the governing equation is available explicitly. These usually
involve fields in linear homogeneous media. This places considerable restrictions
on the range and generality of problems to which boundary elements can usefully
be applied. Nonlinearities can be included in the formulation, although they will
generally introduce volume integrals which then require the volume to be dis-
cretised before solution can be attempted, removing one of the most often cited
advantages of BEM.

The theoretical treatment of the BEM in terms of order and convergence is
rather sophisticated and it usually employs the Galerkin method of approxima-
tion, see e.g. (Schatz, Thomee and Wendland, 1990).

1.4.2 Finite Difference Method (FDM)

The FDM is a numerical method for approximating the solutions to differen-
tial equations using finite difference equations to approximate derivatives, see
(Thomee, 2001). These derivative approximations are based on Taylor’s series
expansions hence their order of convergence can easily be obtained. One possi-
ble drawback of the FDM is that it cannot easily be applied on curved grids in
irregular and arbitrary shaped domains.

1.4.3 Finite Element Method (FEM)

Nowadays, the FEM has become one of the most frequently used method for
solving partial differential equations, see (Dhatt, Touzot and Lefrancois, 2012;
Thomee, 2001). In the FEM, the solution domain is discretised by dividing it
into non-overlapping elements of arbitrary shape and size. Within each element
a certain number of nodes are defined at which the unknown nodal values are to
be determined. These nodal values are used to approximate the exact solution
by a finite linear combination of local basis functions.

Advantages: The computation is divided into discrete elements which may
have complex shapes. Very flexible for complex geometries. Works well for even
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order differential equations. Has optimal order convergence for the wave equation,
(Rauch, 1985).

Disadvantages: Programming is more complicated than the FDM.

1.4.4 Error estimates and order of convergence

Error estimates give a measure of the accuracy of a given numerical method by
quantifying haw fast the error between the numerical and exact solution decreases,
in some norm ‖ · ‖, as we decrease the mesh size h > 0. They typically state that
the accuracy error ‖u− uh‖ is of order O(hα), i.e. ‖u− uh‖ ≈ Chα, where C > 0

is some constant and α > 0 is the order of convergence, or the convergence rate.
From this estimate, one can obtain the rate α =

ln(‖u−uh2‖/‖u−uh1‖)
ln(h2/h1)

from two mesh
sizes h1 > h2.

In the FDM, the order of convergence can easily be obtained from Taylor’s
series expansion and an example of such a derivation is provided in the Appendix
A. Typically, forward and backward finite differences are of order 1, whilst central
finite differences are of order 2.

In contrast to the FDM, the FEM (and BEM) uses a weak formulation based
on integration rather than differentiation. Moreover, piecewise polynomial ap-
proximations of order p ∈ N are made for the unknown primary and secondary
variables appearing in the resulting integrands. For elliptic operators, in general
one has that the order of convergence of the FEM (and BEM) is α = p + 1,
see (Juhl, 1998; Wendland, 1983; Zinkiewicz, Taylor and Zhu, 2005). Thus, for
example, for the Helmholtz equation, for a piecewise constant approximation
one has that the order of the FEM (or BEM) is 1, whilst for a piecewise linear
approximation the order is 2.

For the hyperbolic equations, a space-time FEM was introduced in (French,
1993) to solve the Dirichlet direct and well-posed problem for the wave equation
and the main theoretical result obtained was that, for piecewise linear inter-
polants, the asymptotic rate of convergence of the error ‖u−uh‖ in the H1-norm
consisting of space- and time-derivatives is O(h1/2), i.e. the order is 1/2.

As for as the BEM is concerned, for hyperbolic equations convergence results
and error estimates are less known and various aspects are further discussed in

6



1.5 Regularization methods

(Costabel, 2004; Ha-Duong, 2003).

1.5 Regularization methods

The solution of an inverse problem is usually recast as the minimization of an
appropriate cost functional. However, inverse problems are in general ill-posed
and this generates instability. Regularization methods are commonly used for
restoring the stability of ill-posed problems. Some regularization methods are
given by:

• A simple form of regularization, generally termed Tikhonov regularization
after academician Andrey Nikolayevich Tikhonov, is essentially a trade-off
between fitting the data and reducing a norm of the solution. For example,
the Tikhonov regularised solution of the system of linear algebraic equations
Ax = b is given by, see (Alifanov, Artyukhin and Rumyantsev, 1995),

minx∈Rn{‖Ax− b‖2 + λ‖Dkx‖2}, (1.1)

gives

xλ = (ATA+ λDT
kDk)

−1AT b, (1.2)

where Dk is the regularization derivative operator of order k = 0, 1, 2, ...,

and λ > 0 is the regularization parameter. The order k of the regularization
matrix Dk is related to the Ck-smoothness of the solution which may (or
may not) be a priori known or assumed, (Philips, 1962; Twomey, 1963).
Thus, the order k penalises the kth-order derivative, i.e. continuity class
C0 (allows wiggles) for k = 0, first-order smoothness class C1 (penalises
gradient) for k = 1, second-order smoothness class C2 (penalises curvature)
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1.5 Regularization methods

for k = 2, etc. In particular,

D0 =


1 0 0 0 ... 0
0 1 0 0 ... 0
... ... ... ... ... ...
0 0 ... 0 0 1

 , D1 =


1 −1 0 0 ... 0
0 1 −1 0 ... 0
... ... ... ... ... ...
0 0 ... 0 1 −1

 ,

D2 =


1 −2 1 0 0 ... 0
0 1 −2 1 0 ... 0
... ... ... ... ... ... ...
0 0 ... 0 1 −2 1

 . (1.3)

In Chapters 2 and 3, we will use the Tikhonov regularization method of
zeroth-, first- and second-order for solving linear inverse problems and in
Chapter 6 for non-linear inverse problems.

• Truncated Singular value decomposition (TSVD) solution of the system of
linear algebraic equations Ax = b is, see (Hansen and O’Leary, 1993),

x =
nt∑
i=1

uTi b

σi
vi, (1.4)

where the singular vectors ui and vi are orthonormal and the singular values
σi are non-negative non-increasing numbers, i.e. σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.
Moreover, we have truncated the sum in (1.4) at a threshold level nt ≤ n, in
order to avoid division with small singular values in (1.4) and thus prevent
solution becoming unstable.

• Landweber and the conjugate gradient methods (CGM), see (Engl, Hanke
and Neubauer, 2000), are iterative regularization methods which will be
applied to solving the inverse force problem in Chapter 5.

All the above regularization methods require selecting proper regularization pa-
rameters for achieving accurate and stable numerical results. The choice of reg-
ularization parameters can be made according to certain criteria, e.g.,

• The discrepancy principle criterion, see (Alifanov, Artyukhin and Rumyant-
sev, 1995).
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1.6 Outline of the thesis

• The generalized cross-validation (GSV) criterion, see (Golub, Heath and
Wahba, 1979).

• The L-curve criterion, see (Hansen, 2001). The L-curve is one of the most
convenient tool for the analysis of discrete ill-posed problems and it will
be used quite a lot in the thesis. The method is actually a plot for many
positive regularization parameters of the norm ‖xλ‖ of the regularised solu-
tion versus the corresponding residual norm ‖Axλ− b‖. If such a curve has
an L-shape then one can pick the regularization parameter at the corner
of it (or more rigorously, at the point of maximum curvature). Generally
speaking, the right of the curve corresponds to large values of λ which over-
smooth the solution whilst the left of the curve corresponds to low values
of λ which undersmooth the solution. Then, as a compromise, one can pick
the value of λ at the corner where these two regions meet. It is also worth
mentioning that there are counterexamples for which the L-curve fails to
provide a clearly defined corner or no corner at all, see for more details
(Hanke, 1996; Hansen, 2001; Vogel, 1996).

1.6 Outline of the thesis

The determination of an unknown spacewise dependent force function acting
on a vibrating string from over-specified Cauchy boundary data is investigated
numerically using the BEM combined with a regularized method of separating
variables in Chapter 2.

Next, in Chapters 3 and 4 we consider inverse force problems for the wave
equation which consists of determining the unknown space or time-dependent
force function from additional data, respectively. In the spacewise dependent
case the additional data is Cauchy boundary data, whilst in the time-dependent
case the additional data is represented by a time-dependent measurement of an
integral space average of the displacement. The problems are linear, but ill-posed.
The solution may exist and is unique, but it does not depend continuously on
the input measurement data which is subject to noise. Numerically, the FDM

9



1.6 Outline of the thesis

combined with the Tikhonov regularization are employed in order to obtain a
stable solution.

The FDM combined with iterative regularization is further applied in Chap-
ter 5 to determine the displacement and the space-dependent force acting on a
vibrating structure from measured final or time-average displacement in the wave
equation. As in previous chapters, the problems are linear, but they are still ill-
posed since small errors in the input data cause large errors in the output force.
The stability is restored by stopping the iterations according to the discrepancy
principle criterion once the residual becomes close to the amount of noise.

In Chapter 6, nonlinear inverse problems in which the unknown force depends
on the displacement are investigated. They consist of nonlinear identifications of
the space-dependent potential and/or damping coefficients in the wave equation
from Cauchy boundary data. The FDM combined with the nonlinear Tikhonov
regularization method is employed. The minimization is performed using the
Matlab toolbox routine lsqnonlin.

Finally, in Chapter 7, general conclusions and suggestions for possible future
work are given.

10



Chapter 2

Determination of a space-dependent
force function from Cauchy data

2.1 Introduction

When it comes to mathematical modelling of wave phenomena probably the
most investigated are the direct and inverse acoustic scattering problems, see
e.g. (Colton and Kress, 2013).

On the other hand, inverse source/force problems for the wave equation have
been less investigated. It is the objective of this chapter to investigate such an
inverse force problem for the hyperbolic wave equation. The initial attempt is
performed for the case of a one-dimensional vibrating string, but we have in mind
extensions to higher dimensions in an immediate future work. The forcing func-
tion is assumed to depend only upon the single space variable in order to ensure
uniqueness of the solution. The theoretical basis for our numerical investigation
is given in (Cannon and Dunninger, 1970) where the uniqueness of solution of the
inverse spacewise dependent force function for the one-dimensional wave equation
has been established. In (Cannon and Dunninger, 1970) conditions to be satisfied
by the force function in order to ensure continuous dependence upon the data
were also given and furthermore, two methods based on linear programming and
the least-squares method were proposed. However, no numerical results were pre-
sented and it is the main purpose of our study to develop an efficient numerical
solution for this inverse linear, but ill-posed problem.
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2.2 Mathematical formulation

Because the wave speed is assumed constant, the most suitable numerical
method for discretising the wave equation in this case is the boundary element
method (BEM), see (Benmansour, Ouazar and Brebbia, 1988; Benmansour, 1993;
Benmansour, Ouazar and Wrobel, 1997). Moreover, because an inhomogeneous
source/force term is present in the governing equation, it is convenient to exploit
the linearity of the problem by applying the principle of superposition. This
recasts into splitting the original problem into a direct problem with no force,
and an inverse problem with force, but with homogeneous boundary and initial
conditions. This is explained in Section 2.2 where the mathematical formulation
of the inverse problem under investigation is also given. Whilst the former prob-
lem requires a numerical solution such as the BEM, as described in Section 2.3,
the latter problem is amenable to a separation of variables series solution with
unknown coefficients. Upon truncating this series, the problem recasts as an ordi-
nary linear least-squares problem which has to be regularized since the resulting
system of linear equations is ill-conditioned, the original problem being ill-posed.
The choice of the regularization parameter introduced by this technique is im-
portant for the stability of the numerical solution and in our study this is based
on the L-curve criterion, (Hansen, 2001). All this latter analysis is described in
detail in Section 2.4. Numerical results are illustrated and discussed in Sections
2.5 and 2.6 and conclusions are provided in Section 2.7.

2.2 Mathematical formulation

The governing equation for a vibrating string of length L > 0 acted upon by a
space-dependent force f(x) is given by the one-dimensional wave equation

utt = c2uxx + f(x), x ∈ (0, L)× (0,∞), (2.1)

where u represents the displacement and c > 0 is the speed of sound.
Equation (2.1) has to be solved subject to the initial conditions

u(x, 0) = ϕ(x), x ∈ [0, L], (2.2)

ut(x, 0) = ψ(x), x ∈ [0, L], (2.3)

12



2.2 Mathematical formulation

where ϕ and ψ represent the initial displacement and velocity, respectively, and
to the Dirichlet boundary conditions

u(0, t) = P0(t), t ∈ [0,∞), (2.4)

µu(L, t) + (1− µ)ux(L, t) = PL(t), t ∈ [0,∞), (2.5)

where µ ∈ {0, 1} with µ = 1 for the Dirichlet boundary condition and µ = 0

for the Neumann boundary condition. In (2.4) and (2.5), P0 and PL are given
functions satisfying the compatibility conditions

P0(0) = ϕ(0), PL(0) = µϕ(L) + (1− µ)ϕ′(L). (2.6)

If the force f is given, then equations (2.1)-(2.6) form a direct well-posed prob-
lem for the displacement u(x, t) which can be solved using the BEM for example,
(Benmansour, 1993). However, if the force function f is unknown then clearly the
above equations are not sufficient to determine the pair solution (u(x, t), f(x)).
Then, as suggested in (Cannon and Dunninger, 1970), we supply the above sys-
tem of equations with the measurement of the flux tension of the string at the
end x = 0, namely

ux(0, t) = q0(t), t ∈ [0, T ], (2.7)

where q0 is a given function over a time of interest T > 0. Then the inverse
problem under investigation requires determining the pair solution (u(x, t), f(x))

satisfying equations (2.1)-(2.7). Remark that we have to restrict f to depend on
x only since otherwise, if f depends on both x and t, we can always add to u(x, t)

any function of the form t2x2(x−L)2U(x, t) with arbitrary U ∈ C2,1([0, L]×[0,∞))

and still obtain another solution satisfying (2.1)-(2.7). Note that the unknown
force f(x) depends on the space variable x, whilst the additional measurement
(2.7) of the flux q0(t) depends on the time variable t. It is worth nothing that
a corresponding inverse spacewise-dependent source identification problem given
by equations (2.2), (2.4)-(2.7) also arises for the heat equation ut = uxx + f(x),
see (Cannon, 1968).

It has been shown in (Cannon and Dunninger, 1970) that the problem (2.1)-
(2.7) has at most one solution, i.e. the uniqueness holds.
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2.3 The boundary element method (BEM) for solving the direct
problem (2.9)-(2.13)

Due to the linearity of the inverse problem (2.1)-(2.7) it is convenient to split
it into the form, (Cannon and Dunninger, 1970),

u = v + w, (2.8)

where v satisfies the well-posed direct problem

vtt = c2vxx, (x, t) ∈ (0, L)× (0,∞), (2.9)

v(x, 0) = ϕ(x), x ∈ [0, L], (2.10)

vt(x, 0) = ψ(x), x ∈ [0, L], (2.11)

v(0, t) = P0(t), t ∈ [0,∞), (2.12)

µv(L, t) + (1− µ)vx(L, t) = PL(t), t ∈ [0,∞). (2.13)

and (w, f) satisfies the ill-posed inverse problem

wtt = c2wxx + f(x), (x, t) ∈ (0, L)× (0,∞), (2.14)

w(x, 0) = wt(x, 0) = 0, x ∈ [0, L], (2.15)

w(0, t) = 0, t ∈ [0,∞), (2.16)

µw(L, t) + (1− µ)wx(L, t) = 0, t ∈ [0,∞), (2.17)

wx(0, t) = q0(t)− vx(0, t), t ∈ [0, T ]. (2.18)

Observe that we could also control the Dirichlet data (2.4) instead of the
Neumann data (2.7) and this will also be addressed in Subsection 2.6. We remark
that the solution of the direct and well-posed problem (2.9)-(2.13) has to be found
numerically, say using the BEM, as described in the next section.

2.3 The boundary element method (BEM) for solv-
ing the direct problem (2.9)-(2.13)

The development of the BEM for the one-dimensional wave equation (2.9) is
based on multiplying it with the fundamental solution, (Morse and Feshbach,
1953, p.893),

u∗(x, t; ξ, τ) = − 1

2c
H(c(t− τ)− |x− ξ|), (2.19)
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2.3 The boundary element method (BEM) for solving the direct
problem (2.9)-(2.13)

where H is the Heaviside function and integrate the resulting equation over the
solution domain. Afterwards, using integration by parts twice (with respect to
both x and t) we transfer the space and time partial derivatives from the function
u to the fundamental solution u∗. Finally, using that the fundamental solution
(2.19) satisfies

u∗tt − c2u∗xx = −δ(x− ξ)δ(t− τ), (2.20)

and the properties of the Dirac delta function δ we obtain the boundary integral
equation, (Benmansour, 1993, Sect. 3.4.2),

2v(ξ, t) = v(ξ − ct, 0) + v(ξ + ct, 0) +
1

c

∫ ξ+ct

ξ−ct
vt(x, 0)dx

+v(L, t− (L− ξ)/c) + c

∫ t−(L−ξ)/c

0

vx(L, τ)dτ + v(0, t− ξ/c)

−c
∫ t−ξ/c

0

vx(0, τ)dτ, (ξ, t) ∈ (0, L)× (0,∞). (2.21)

Equation (2.21) is valid if

v(0, 0) = v(L, 0) = 0, i.e. ϕ(0) = ϕ(L) = 0. (2.22)

Otherwise, if this condition is not satisfied then we can work with the modified
function

ṽ(x, t) = v(x, t)− ϕ(L)− ϕ(0)

L
x− ϕ(0) (2.23)

which satisfies the wave equation (2.9) and ṽ(0, 0) = ṽ(L, 0) = 0. Alternatively,
if (2.22) is not satisfied, then equation (2.21) is only valid for ξ − ct 6= 0 and
ξ + ct 6= L, as singularities will occur when the peak of the Dirac delta function
coincides with one of the limits of the integrals involved, i.e. when ξ = ct or
ξ = L − ct. However, these singular integrals may be evaluated analytically as
described in (Benmansour, 1993, Sect. 3.4.2).

It is very important to remark that in expression (2.21) the time and space
coordinates must be within the domain [0, L] × [0,∞) and the integrals must
have their lower limit of integration smaller than the upper one. If any of these
conditions are not satisfied the integrals are taken to be zero.

Equation (2.21) yields the interior solution v(ξ, t) for (ξ, t) ∈ (0, L) × (0,∞)

of the wave equation (2.9) in terms of the initial and boundary data. In general,
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2.3 The boundary element method (BEM) for solving the direct
problem (2.9)-(2.13)

at a boundary point only one Dirichlet, Neumann or Robin boundary condition
is imposed and the first step of the BEM methodology requires the evaluation of
the missing (unspecified) boundary data. For this, we need first to evaluate the
boundary integral equation (2.21) at the end points ξ ∈ {0, L}. A careful limiting
process yields, (Benmansour, 1993),

v(0, t) = v(ct, 0) +
1

c

∫ ct

0

vt(x, 0)dx+ v(L, t− L/c)

+c

[ ∫ t−L/c

0

vx(L, τ)dτ −
∫ t

0

vx(0, τ)dτ

]
, t ∈ (0,∞), (2.24)

v(L, t) = v(0, t− L/c) + v(L− ct, 0) +
1

c

∫ L

L−ct
vt(x, 0)dx

+c

[ ∫ t

0

vx(L, τ)dτ −
∫ t−L/c

0

vx(0, τ)dτ

]
, t ∈ (0,∞). (2.25)

These equations also hold under the assumption (2.22).
Since we want to calculate vx(0, t) only for t ∈ [0, T ], let us restrict the

boundary integral equations (2.24) and (2.25) to the time interval [0, T ].
For the numerical discretisation of the boundary integral equations (2.24) and

(2.25) we divide the time interval [0, T ] into a series of N small boundary elements
[tj−1, tj] for j = 1, N , where for a uniform discretisation tj = jT/N for j = 0, N .
Similarly, we divide the space interval [0, L] into a series ofM small cells [xi−1, xi]

for i = 1,M , where for a uniform discretisation xi = iL/M for i = 0,M . We
then approximate the boundary and initial values as

v(0, τ) =
N∑
j=1

φj(τ)v0
j , v(L, τ) =

N∑
j=1

φj(τ)vLj , τ ∈ [0, T ], (2.26)

vx(0, τ) =
N∑
j=1

θj(τ)v′0j , vx(L, τ) =
N∑
j=1

θj(τ)v′Lj , τ ∈ [0, T ], (2.27)

v(x, 0) =
M∑
i=1

ψi(x)ui0, vt(x, 0) =
M∑
i=1

ψi(x)vi0, x ∈ [0, L], (2.28)

where

v0
j := v(0, tj), vLj := v(L, tj), v′0j := vx(0, tj), v′Lj := vx(L, tj), j = 1, N, (2.29)

ui0 := v(xi, 0), vi0 := vt(xi, 0), i = 1,M. (2.30)
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2.3 The boundary element method (BEM) for solving the direct
problem (2.9)-(2.13)

The functions φj, θj and ψi are interpolant, e.g. piecewise polynomial, functions
chosen such that φj(tn) = θj(tn) = δjn for j, n = 1, N , ψi(xm) = δim for i,m =

1,M , where δjn is the Kronecker delta symbol. For example, if θj(τ) is a piecewise
constant function then

θj(τ) = χ(tj−1,tj ](τ) =

{
1 if t ∈ (tj−1, tj],

0 otherwise,
(2.31)

where χ(tj−1,tj ] represents the characteristic function of the interval (tj−1, tj]. Thus
vx(0, τ) = v′0j for τ ∈ (tj−1, tj], etc. We also have that

∫ tn
0
θj(τ)dτ = tj− tj−1 for

j = 1, n.
Observe that the above numerical BEM discretisation of the space-time bound-

ary integral equations (2.24) and (2.25) is global in time, i.e. the solution is
computed in one step for the entire time interval (0, T ]. Various aspects of the
BEM for time-dependent hyperbolic problems are further discussed in (Costa-
bel, 2004). For the scalar wave equation in one or higher-dimension, where the
boundary integrals are given in terms retarded potentials their analysis in terms
of convergence and stability is based on variational methods, (Ha-Duong, 2003).
However, for our particular numerical BEM described above (which is similar to
the one developed in the PhD thesis of (Benmansour, 1993)) this sophisticated
theoretical framework does not seem immediately applicable. As such, there are
no theoretical estimates in terms ofM and N yet available but, nevertheless, this
investigation would be of interest to be addressed in a future work.

Using the approximations (2.26)-(2.30) into the equations (2.24) and (2.25)
we obtain, for n = 1, N ,

v0
n + cv′0n

∫ tn

0

θn(τ)dτ − φn(tn − L/c)vLn − cv′Ln
∫ tn−L/c

0

θn(τ)dτ

=
n−1∑
j=1

φj(tn − L/c)vLj +
M∑
i=1

ψi(ctn)ui0 + c
n−1∑
j=1

v′Lj

∫ tn−L/c

0

θj(τ)dτ

−c
n−1∑
j=1

v′0j

∫ tn

0

θj(τ)dτ +
1

c

M∑
i=1

vi0

∫ ctn

0

ψi(x)dx =: F (2.32)
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2.3 The boundary element method (BEM) for solving the direct
problem (2.9)-(2.13)

and

vLn − cv′Ln
∫ tn

0

θn(τ)dτ − φn(tn − L/c)v0
n + cv′0n

∫ tn−L/c

0

θn(τ)dτ

=
n−1∑
j=1

φj(tn − L/c)v0
j +

M∑
i=1

ψi(L− ctn)ui0 + c

n−1∑
j=1

v′Lj

∫ tn

0

θj(τ)dτ

−c
n−1∑
j=1

v′0j

∫ tn−L/c

0

θj(τ)dτ +
1

c

M∑
i=1

vi0

∫ L

L−ctn
ψi(x)dx =: G. (2.33)

Denoting

A = c

∫ tn

0

θn(τ)dτ, B = φn(tn − L/c), D = c

∫ tn−L/c

0

θn(τ)dτ, (2.34)

equations (2.32) and (2.33) can be rewritten as

v0
n + Av′0n −BvLn −Dv′Ln = F, (2.35)

vLn − Av′Ln −Bv0
n +Dv′0n = G. (2.36)

At each time tn for n = 1, N , the system of equations (2.35) and (2.36)
represents a time marching BEM technique in which the values of F and G are
expressed in terms of the previous values of the solution at the times t1, ..., tn−1.
Note that upon the imposition of the initial conditions (2.10) and (2.11) we know

ui0 = v(xi, 0) = ϕ(xi), vi0 = vt(xi, 0) = ψ(xi), i = 1,M. (2.37)

The system of equations (2.35) and (2.36) contains 2 equations with 4 un-
knowns. Two more equations are known from the boundary conditions (2.12)
and (2.13), namely

v0
n = v(0, tn) = P0(tn) =: P n

0 , n = 1, N, (2.38)

µvLn + (1− µ)v′Ln = µv(L, tn) + (1− µ)vx(L, tn) = PL(tn) =: P n
L , n = 1, N.(2.39)

The solution of the system of equations (2.35), (2.36), (2.38) and (2.39) can
be expressed explicitly at each time step tn for n = 1, N and is given by:
(a) For µ = 1, i.e. the Dirichlet problem (2.9)-(2.13) in which equation (2.13) is
given by

v(L, t) = PL(t), t ∈ [0,∞), (2.40)

18



2.3 The boundary element method (BEM) for solving the direct
problem (2.9)-(2.13)

and equation (2.39) yields

vLn = P n
L , n = 1, N, (2.41)

the unspecified boundary values are the Neumann flux values. Introduction of
(2.38) and (2.41) into (2.35) and (2.36) yields the simplified system of two equa-
tions with two unknowns given by

Av′0n −Dv′Ln = F − P n
0 +BP n

L =: F̃ , (2.42)

Dv′0n − Av′Ln = G− P n
L +BP n

0 =: G̃. (2.43)

Application of Cramer’s rule immediately yields the solution

v′0n =
DG̃− AF̃
D2 − A2

, v′Ln =
AG̃−DF̃
D2 − A2

. (2.44)

(b) For µ = 0, i.e. the mixed problem (2.9)-(2.13) in which equation (2.13) is
given by

vx(L, t) = PL, t ∈ [0,∞) (2.45)

and equation (2.39) yields

v′Ln = P n
L , n = 1, N, (2.46)

the unspecified boundary values are the Neumann data at x = 0 and the Dirichlet
data at x = L. Introduction of (2.38) and (2.46) into (2.35) and (2.36) yields

Av′0n −BvLn = F − P n
0 +DP n

L =:
˜̃
F , (2.47)

Dv′0n + vLn = G+BP n
0 + AP n

L =:
˜̃
G. (2.48)

This yields the solution

v′0n =
˜̃
F +B

˜̃
G

A+DB
, vLn =

A
˜̃
G−D ˜̃F
A+DB

. (2.49)

Alternatively, instead of employing a time-marching BEM it is also possible
to employ a global BEM by assembling (2.32) and (2.33) as a full system of 2N
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2.3 The boundary element method (BEM) for solving the direct
problem (2.9)-(2.13)

linear equations with 4N unknown v0
j , v

L
j , v

′0
j , v

′L
j for j = 1, N , namely,

n∑
j=1

[
cv′0j

∫ tn

0

θj(τ)dτ − cv′Lj
∫ tn−L/c

0

θj(τ)dτ − φj(tn − L/c)vLj
]

=
M∑
i=1

[
ψi(ctn)ui0 +

1

c
vi0

∫ ctn

0

ψi(x)dx

]
− v0

n, n = 1, N, (2.50)

and
n∑
j=1

[
cv′Lj

∫ tn

0

θj(τ)dτ − cv′0j
∫ tn−L/c

0

θj(τ)dτ + φj(tn − L/c)v0
j

]

= −
M∑
i=1

[
ψi(L− ctn)ui0 +

1

c
vi0

∫ L

L−ctn
ψi(x)dx

]
+ vLn n = 1, N. (2.51)

The other 2N equations are given by (2.38) and (2.39). Introduction of (2.38)
and (2.39) into (2.50) and (2.51) finally results in a linear system of 2N algebraic
equations with 2N unknowns which can be solved using a Gaussian elimination
procedure.

Once all the boundary values have been determined accurately, the interior
solution can be obtained explicitly using equation (2.21). This gives

2v(ξ, tn) =
n∑
j=1

[
φj(tn − (L− ξ)/c)vLj + φj(tn − ξ/c)v0

j

]

+c
n∑
j=1

[
v′Lj

∫ tn−(L−ξ)/c

0

θj(τ)dτ − v′0j
∫ tn−ξ/c

0

θj(τ)dτ

]
+

M∑
i=1

[
ψi(ξ − ctn)

+ψi(ξ + ctn)

]
ui0 +

1

c

M∑
i=1

vi0

∫ ξ+ctn

ξ−ctn
ψi(x)dx, n = 1, N, ξ ∈ (0, 1). (2.52)

In (2.52), for the piecewise constant interpolation (2.31),∫ tn−ξ/c

0

θj(τ)dτ = H(tn − tj−1 − ξ/c)(tj − tj−1),∫ tn−(L−ξ)/c

0

θj(τ)dτ = H(tn − tj−1 − (L− ξ)/c)(tj − tj−1).

The flux vx(0, t) obtained numerically using the BEM is then introduced into
(2.18) and the inverse problem (2.14)-(2.18) for the pair solution (w(x, t), f(x))

is solved using the method described in the next section.
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2.4 Method for solving the inverse problem (2.14)-(2.18)

2.4 Method for solving the inverse problem (2.14)-
(2.18)

Due to the simple form of equation (2.14) with constant c, inhomogeneous force
term f(x) independent of t, and homogeneous initial and boundary conditions
(2.15)-(2.17), for solving the inverse problem (2.14)-(2.18) it is convenient to
use the method of separation of variables, (Tikhonov and Samarskii, 1963, pp.
97-99), which yields an approximate solution explicitly given by, (Cannon and
Dunninger, 1970),

wK(x, t; b) =

√
2

c2

K∑
k=1

bk
λ2
k

(1− cos(cλkt)) sin(λkx), (x, t) ∈ [0, L]× [0,∞), (2.53)

fK(x) =
√

2
K∑
k=1

bk sin(λkx), x ∈ (0, L), (2.54)

where K is a truncation number and

λk =


kπ
L

if µ = 1,

(k− 1
2

)π

L
if µ = 0.

(2.55)

The coefficients b = (bk)k=1,K are to be determined by imposing the additional
boundary condition (2.18). This results in

q0(t)− vx(0, t) =: g(t) =
∂wk
∂x

(0, t; b) =

√
2

c2

K∑
k=1

bk
λk

(1− cos(cλkt)),

t ∈ [0, T ]. (2.56)

In practice, the additional observation (2.7) comes from measurement which
is inherently contaminated with errors. We therefore model this by replacing the
exact data q0(t) by the noisy data

qε0(tn) = q0(tn) + ε, n = 1, N, (2.57)
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where ε are N random noisy variables generated (using the Fortran NAG routine
G05DDF) from a Gaussian normal distribution with mean zero and standard
deviation σ given by

σ = p%×maxt∈[0,T ] |q0(t)| , (2.58)

where p% represents the percentage of noise. The noisy data (2.57) also induces
noise in g as given by

gε(tn) = qε0(tn)− vx(0, tn) = g(tn) + ε, n = 1, N. (2.59)

Then we apply the condition (2.56) with g replaced by gε in a least-squares
penalised sense by minimizing the Tikhonov functional

J(b) :=
N∑
n=1

[√
2

c2

K∑
k=1

bk
λk

(1− cos(cλktn))− gε(tn)

]2

+ λ
K∑
k=1

b2
k, (2.60)

where λ ≥ 0 is a regularization parameter to be prescribed according to some
criterion, e.g. the L-curve criterion, (Hansen, 2001).

Denoting

gε = (gε(tn))n=1,N , Qnk =

√
2(1− cos(cλktn))

c2λk
, n = 1, N, k = 1, K, (2.61)

we can recast (2.60) in a compact form as

J(b) =‖ Qb− gε ‖2 +λ ‖ b ‖2 . (2.62)

In general, N ≥ K and the minimization of (2.62) then yields the zeroth-order
Tikhonov regularization solution

bλ = (QtrQ+ λI)−1Qtrgε. (2.63)

Once b has been found, the spacewise dependent force function is obtained
using (2.54). Also, the displacement solution u(x, t) is obtained using (2.8) and
(2.53).
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2.5 Numerical results and discussion

In this section, we illustrate and discuss the numerical results obtained using the
combined BEM+Tikhonov regularization described in Sections 2.3 and 2.4.

For simplicity, we take c = L = T = µ = 1 and in the BEM we use constant
time and space interpolation functions. We consider an analytical solution given
by

u(x, t) = sin(πx) + t+
t2

2
, (x, t) ∈ [0, 1]× [0,∞), (2.64)

f(x) = 1 + π2 sin(πx) x ∈ [0, 1]. (2.65)

This generates the input data (2.2)-(2.5) and (2.7) given by

u(x, 0) = ϕ(x) = sin(πx), ut(x, 0) = ψ(x) = 1, x ∈ [0, 1], (2.66)

u(0, t) = P0(t) = t+
t2

2
, u(1, t) = PL(t) = t+

t2

2
, t ∈ [0,∞), (2.67)

ux(0, t) = q0(t) = π, t ∈ [0, 1]. (2.68)

First we investigate the performance of the BEM described in Section 2.3 to
solve the direct well-posed problem (2.9)-(2.13) for the function v(x, t). Remark
that condition (2.22) is satisfied by the initial displacement ϕ(x) in (2.66) hence,
there is no need to employ the modified function (2.23). Also note that the direct
problem for v(x, t) satisfying equation (2.9) (with c = 1) subject to the initial
conditions (2.66) and the Dirichlet boundary conditions (2.67) does not have a
closed form analytical solution available.

Figure 2.1 shows the numerical results for vx(0, t), as a function of t, obtained
using the BEM with variousM = N ∈ {20, 40, 80}. From this figure a convergent
numerical solution, independent of the mesh, is apparently obtained with the `2-
error between subsequent discretisations (20 and 40) and (40 and 80) being very
small and decreasing from 0.0986 to 0.0697, respectively.

The numerical solution for vx(0, t) obtained at the points (tn)n=1,N is then
input into equation (2.56) to determine the values for g(tn) and its noisy coun-
terpart gε(tn) given by (2.59) for n = 1, N .
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Figure 2.1: The numerical results for vx(0, t) obtained using the BEM with M =

N ∈ {20, 40, 80}.

We turn now our attention to the pair solution (2.53) and (2.54) of the inverse
problem (2.14)-(2.18). Since this problem is ill-posed we expect that the matrix
Q in (2.61) having the entries

Qnk =

√
2(1− cos(kπn

N
))

kπ
, n = 1, N, k = 1, K, (2.69)

will be ill-conditioned having singular values, i.e. the square roots of the eigenval-
ues of QtrQ, rapidly decaying to nearly zero. This behaviour is shown in Figure
2.2 which presents the normalised singular values sv(k)/sv(1) for k = 1, K, for
N = 80 and K = 20. The singular values have been calculated in MATLAB using
the command svd(Q). We can also calculate the condition number of the matrix
Q defined as the ratio between the largest to the smallest singular values, using
the MATLAB command cond(Q)= sv(1)/sv(K). Table 2.1 shows the condition
number of the matrix Q for various N ∈ {20, 40, 80} and K ∈ {5, 10, 20}. We
remark that the condition number is not affected by the increase in the number
of measurements N , but it increases rapidly as the number K of basis functions
increases.
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Figure 2.2: Normalised singular values sv(k)/sv(1) for k = 1, K, for N = 80 and
K = 20.

Table 2.1: Condition number of the matrix Q given by equation (2.69).

K N = 20 N = 40 N = 80

5 82.62 82.25 82.28

10 371.6 367.0 365.7

20 1.42E + 3 1.55E + 3 1.54E + 3

Let us fix N = 80 and now proceed to solving the inverse problem (2.14)-
(2.18) which based on the method of Section 2.4 has been reduced to solving the
linear, but ill-conditioned system of equations

Qb = gε. (2.70)

Using the Tikhonov regularization method one obtains a stable solution given
explicitly by equation (2.63) provided that the regularization parameter λ is suit-
ably chosen.

2.5.1 Exact data

We first consider the case of exact data, i.e. p = 0 and hence ε = 0 in (2.57) and
(2.59). Then gε = g and the system of equations (2.70) becomes

Qb = g. (2.71)
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We remark that although we have no random noise added to the data q0, we still
have some numerical noise in the data g in (2.56). This is given by the small
discrepancy between the unavailable exact solution vx(0, t) of the direct problem
and its numerical BEM solution obtained with M = N = 80 plotted in Figure
2.1. However, the rapid convergent behaviour shown is Figure 2.1 indicates that
this numerical noise is small (at least in comparison with the large amount of
random noise ε that we will be including in the data q0 in Section 2.5.2).

Figure 2.3 shows the retrieved coefficient vector b = (bk)k=1,K for K = 20

obtained using no regularization, i.e. λ = 0, in which case (2.63) produces the
least-squares solution

b = (QtrQ)−1Qtrg (2.72)

of the system of equations (2.70).
Note that the analytical values for the sine Fourier series coefficients are given

by

bk =
√

2

∫ 1

0

f(x) sin(kπx)dx =
√

2

∫ 1

0

(1 + π2 sin(πx)) sin(kπx)dx

which gives

bk =


2
√

2
π

+ π2
√

2
' 7.8791 if k = 1,

0 if k = even,
2
√

2
kπ

if k = odd ≥ 3.

(2.73)

By inspecting Figure 2.3 it appears that the leading term b1 is the most
significant in the series expansions (2.53) and (2.54). These expansions give the
solutions f(x) and u(x, t) (via (2.8)) which are plotted in Figures 2.4 and 2.5,
respectively. From these figures it can be seen that accurate numerical solutions
are obtained.

26



2.5 Numerical results and discussion

Figure 2.3: The numerical solution (...) for (bk)k=1,K for K = 20, N = 80,
obtained with no regularization, i.e. λ = 0, for exact data, in comparison with
the exact solution (2.73) (—–).

Figure 2.4: The exact solution (2.65) for f(x) in comparison with the numerical
solution (2.54) for various K ∈ {5, 10, 20}, no regularization, for exact data.
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Figure 2.5: The numerical solution (− − −) for u(x, t) obtained with various
K ∈ {5, 10, 20}, no regularization, for exact data, in comparison with the exact
solution (2.64) (—–).

2.5.2 Noisy data

In order to investigate the stability of the numerical solution we include some
(p% = 1%) noise into the input data (2.7), as given by equation (2.57). The nu-
merical solutions for f(x) and u(x, t) obtained for various values ofK ∈ {5, 10, 20}
and no regularization are plotted in Figures 2.6 and 2.7, respectively. First, by
inspecting Figures 2.5 and 2.7 it can be observed that there is little difference
between the results for u(x, t) obtained with and without noise and that there is
very good agreement with the exact solution (2.64). It also means that the nu-
merical solution for the displacement u(x, t) is stable with respect to noise added
in the input data (2.7). In contrast, in Figure 2.6 the unregularized numerical
solution for f(x) manifests instabilities as K increases. For K (small) the nu-
merically retrieved solution is quite stable showing that taking a small number of
basis functions in the series expansion (2.54) has a regularization effect. However,
as K increases to 10 or 20 it can be clearly seen that oscillations start to appear.
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Eventually, these oscillations will become highly unbounded, as K increases
even further. In order to deal with this instability we employ the Tikhonov
regularization which yields the solution (2.63). We fix K = 20 and we wish
to alleviate the instability of the numerical solution for f(x) shown by (-4-)
in Figure 2.6 obtained with no regularization, i.e. λ = 0, for p% = 1% noisy
data. Including regularization we obtain the solution (2.63) whose accuracy error,
as a function of λ, is plotted in Figure 2.8. This error has been calculated as

||fnumerical − fexact|| =
√∑N

n=1(fnumerical(tn)− fexact(tn))2. From Figure 2.8 it
can be seen that the minimum of the error occurs around λ = 10−1. Clearly, this
argument cannot be used as a suitable choice for the regularization parameter λ
in the absence of an analytical (exact) solution (2.65) being available. However,
one possible criterion for choosing λ is given by the L-curve method, (Hansen,
2001), which plots the residual norm ||Qbλ − gε|| versus the solution norm ||bλ||
for various values of λ. This is shown in Figure 2.9 for various values of

λ ∈ {10−3, 5×10−2, 10−2, 8×10−2, 6×10−2, 4×10−2, 2×10−2, 10−1, 0.2, 0.3, ..., 1}.

The portion to the right of the curve corresponds to large values of λ which make
the solution oversmooth, whilst the portion to the left of the curve corresponds
to small values of λ which make the solution undersmooth. The compromise is
then achieved around the corner region of the L-curve where the aforementioned
portions meet. Figure 2.9 shows that this corner region includes the values around
λ = 10−1 which was previously found to be optimal from Figure 2.8.

Finally, Figure 2.10 shows the regularized numerical solution for f(x) obtained
with various values of the regularization parameter λ ∈ {10−2, 10−1, 100} for
p% = 1% noisy data. From this figure it can be seen that the value of the
regularization parameter λ can also be chosen by trial and error. By plotting
the numerical solution for various values of λ we can infer when the instability
starts to kick off. For example, in Figure 2.10, the value of λ = 100 is too large
and the solution is oversmooth, whilst the value of λ = 10−2 is too small and
the solution is unstable. We could therefore inspect the value of λ = 10−1 and
conclude that this is a reasonable choice of the regularization parameter which
balances the smoothness with the instability of the solution.
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Figure 2.6: The exact solution (2.65) for f(x) in comparison with the numerical
solution (2.54) for various K ∈ {5, 10, 20}, no regularization, for p% = 1% noisy
data.

Figure 2.7: The numerical solution (− − −) for u(x, t) obtained with various
K ∈ {5, 10, 20}, no regularization, for p% = 1% noisy data, in comparison with
the exact solution (2.64) (—–).
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Figure 2.8: The accuracy error ||fnumerical−fexact||, as a function of λ, for K = 20

and p% = 1% noise.

Figure 2.9: The L-curve for the Tikhonov regularization (2.62), for K = 20 and
p% = 1% noise.
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Figure 2.10: The exact solution (2.65) for f(x) in comparison with the numerical
solution (2.54), for K = 20, p% = 1% noise, and regularization parameters
λ ∈ {10−2, 10−1, 100}.

2.6 Alternative control

For completeness, we describe the previously remarked, after equation (2.18),
alternative control namely, that we can replace equation (2.12) by

vx(0, t) = q0(t), t ∈ [0,∞) (2.74)

and equation (2.18) by

w(0, t) = P0(t)− v(0, t), t ∈ [0, T ]. (2.75)

Then we can solve the well-posed direct problem (2.9)-(2.11), (2.13) and (2.74)
to obtain first v(0, t). For the same test example, as in the previous section,
Figure 2.11 shows the numerical results for v(0, t) obtained using the BEM with
M = N ∈ {20, 40, 80}. From this figure a convergent numerical solution, inde-
pendent of the mesh, is apparently achieved with the `2-error between subsequent
discretisations (20 and 40) and (40 and 80) being very small and decreasing from
0.0555 to 0.0388, respectively.

The value of v(0, t) is then introduced into (2.75) to generate the Dirichlet
data at x = 0 for the inverse problem given by equation (2.14)-(2.17) and (2.75).
We solve this inverse problem, as described in Section 2.4, with the obvious
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modifications to obtain the separation of variables solution

wK(x, t; b) =

√
2

c2

K∑
k=1

bk
λ2
k

(1− cos(cλkt)) cos(λkx), (x, t) ∈ [0, L]× [0,∞), (2.76)

fK(x) =
√

2
K∑
k=1

bk cos(λkx), x ∈ (0, L), (2.77)

where λk = (k − 1
2
)π/L for k = 1, K. The coefficient b = (bk)k=1,K is determined

by imposing the additional condition (2.75),

P0(t)− v(0, t) =: h(t) =

√
2

c2

K∑
k=1

bk
λ2
k

(1− cos(cλkt)), t ∈ [0, T ], (2.78)

in the Tikhonov regularized sense (2.60), namely, as minimizing the functional

J(b) :=
N∑
n=1

[√
2

c2

K∑
k=1

bk
λ2
k

(1− cos(cλktn))− hε(tn)

]2

+ λ
K∑
k=1

b2
k. (2.79)

Denoting

hε = (hε(tn))n=1,N , Qnk =

√
2(1− cos(cλktn))

c2λ2
k

, n = 1, N, k = 1, K, (2.80)

we can recast (2.79) in the compact form (2.61).
The condition numbers of the matrix Q, defined in equation (2.80), are given

in Table 2.2 for various N ∈ {20, 40, 80} and K ∈ {5, 10, 20}. From this table it
can be seen that ill-conditioning increases significantly, as K increases.

Figure 2.11: The numerical results for v(0, t) obtained using the BEM with M =

N ∈ {20, 40, 80}.
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Table 2.2: Condition number of the matrix Q given by equation (2.80).

K N = 20 N = 40 N = 80

5 3.55E + 3 3.62E + 3 3.68E + 3

10 6.81E + 4 6.84E + 4 6.96E + 4

20 1.21E + 6 1.17E + 6 1.18E + 6

2.6.1 Exact data

In the case of exact data, as in Section 2.5.1, Figure 2.12 shows the retrieved
coefficients (bk)k=1,K for K = 20 obtained with no regularization, i.e. λ = 0, in
comparison with the exact cosine Fourier series coefficients given by

bk =
√

2

∫ 1

0

f(x) cos

((
k − 1

2

)
πx

)
dx

which, for f(x) given by (2.65), gives

bk =


2
√

2(2π2+3)
3π

' 6.8242 if k = 1,

−2
√

2(2π2(2k−1)+(−1)k(4k2−4k−3))
π(8k3−12k2−2k+3)

if k > 1.

(2.81)

Good agreement between the exact and numerical values can be observed. With
these value of b = (bk)k=1,K , the solution (2.77) for the force function yields the
numerical results illustrated in Figure 2.13. From this figure it can be seen that
accurate numerical results are obtained.

Figure 2.12: The numerical solution (...) for (bk)k=1,K for K = 20, N = 80,
obtained with no regularization, i.e. λ = 0, for exact data, in comparison with
the exact solution (2.81) (—–).
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Figure 2.13: The exact solution (2.65) for f(x) in comparison with the numerical
solution (2.77) for various K ∈ {5, 10, 20}, no regularization, for exact data.

2.6.2 Noisy data

In the case of noisy data, as in Section 2.5.2, Figure 2.14 shows the regularized
numerical solution for f(x) obtained with various λ ∈ {10−4, 10−3, 10−2} for p% =

1% noisy data added to P0(t) as

P ε
0(tn) = P0(tn) + ε, n = 1, N, (2.82)

where ε are N random noisy variables generated from a Gaussian normal distri-
bution with mean zero and standard deviation σ given by

σ = p%×maxt∈[0,T ] |p0(t)| . (2.83)

From this figure it can be seen that the numerical results obtained with λ between
10−3 and 10−2 are reasonably stable and accurate.
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Figure 2.14: The exact solution (2.65) for f(x) in comparison with the numerical
solution (2.77) for K = 20, p% = 1% noise, and regularization parameters λ ∈
{10−4, 10−3, 10−2}.

2.7 Conclusions

An inverse force problem for the one-dimensional wave equation has been inves-
tigated. The unknown forcing term was assumed to depend on the space variable
only and the additional measurement which ensures a unique retrieval was the
flux at one end of the string. This inverse problem is uniquely solvable, but is still
ill-posed since small errors in the input flux cause large errors in the output force.
The problem was split into a direct well-posed problem for the linear wave equa-
tion, which is solved numerically using the BEM, and an inverse ill-posed problem
whose unstable solution was expressed as a separation of variables truncated se-
ries. In order to stabilise the solution, the Tikhonov regularization method has
been employed. The choice of the regularization parameter was based on the
L-curve criterion. Numerical results show that accurate and stable solutions are
obtained.

Of course, these techniques are well-known in the inverse problems litera-
ture but they have never been applied in this form for solving the inverse force
problem for the wave equation of this chapter. One finds more literature on the
corresponding inverse problem of determining a space-dependent heat source in
the parabolic heat equation from Cauchy data, both theoretically (Cannon, 1968;
Engl, Scherzer and Yamamoto, 1994; Hao, Chapter 4.3.1, 1998; Trong, Quan and
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Dinh Alain, 2006; Yamamoto, 1993) as well as numerically see (Ewing and Lin,
1989), who used hyperbolic regularization, (Coles and Murio, 2001), who used
mollification, and (Hasanov, 2011), who used iterative regularization. Neverthe-
less, the techniques employed in this chapter are easily applicable to this inverse
heat source problem as well.

In the inverse formulation of this chapter, boundary data is used to infer a
domain quantity. In situations where this is not feasible it might be more practical
to measure the displacement u(x, t) for x in the space domain at a specified time
t = T , as will be described in Chapter 5.
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Chapter 3

Determination of forcing functions
in the wave equation. Part I: the
space-dependent case

3.1 Introduction

In the previous chapter we have used the BEM to numerically discretise the wave
equation with a constant wave speed based on the available fundamental solution
(2.19). Furthermore, by assuming that the force function f(x) appears as a free
term in the wave equation, the method of separating variables was applicable
and regularization was used to stabilise the resulting system of linear algebraic
equations. However, if the wave speed is not constant or, if the force appears in
a non-free term as f(x)h(x, t), the above methods are not applicable. Therefore,
in order to extend this range of applicability, from now on in this chapter and,
in fact, in the remaining of the thesis, the numerical method employed for dis-
cretising the wave equation is the finite difference method (FDM). The resulting
system of linear equations is ill-conditioned, the original problem being ill-posed.
Consequently, we apply the Tikhonov regularization for its solution. The choice
of the regularization parameter introduced by this technique is important for the
stability of the numerical solution and in this chapter this is based on the L-curve
criterion, (Hansen, 2001).
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The structure of the chapter is as follows. In Section 3.2, we briefly describe
inverse force problems for the hyperbolic wave equation recalling the uniqueness
theorems of (Engl, Scherzer and Yamamoto, 1994; Klibanov, 1992; Yamamoto,
1995). In Sections 3.3 and 3.4, we introduce the FDM, as applied to direct and
inverse problems, respectively. Numerical results are illustrated and discussed in
Sections 3.5 and an extension of the study is presented in Section 3.6. Conclusions
are provided in Section 3.7.

3.2 Mathematical formulation

The governing equation for a vibrating bounded structure Ω ⊂ Rn, n = 1, 2, 3,
acted upon by a force F (x, t) is given by the wave equation

utt(x, t) = c2∇2u(x, t) + F (x, t), (x, t) ∈ Ω× (0, T ), (3.1)

where T > 0 is a given time, u(x, t) represents the displacement and c > 0

is the wave speed of propagation. For simplicity, we have assumed that c is a
constant, but we can also let c be a function depending on the space variable x.
For example, in n = 1-dimension, where Ω represents the interval (0, L), L > 0,
occupied by a vibrating inhomogeneous string, its small transversal vibrations
are governed by the wave equation

ω(x)utt(x, t) = uxx(x, t) + F (x, t), (x, t) ∈ (0, L)× (0, T ), (3.2)

where ω(x) = c−2(x) represents the mass density of the string, which is stretched
by a force.

Equation (3.1) has to be solved subject to the initial conditions

u(x, 0) = ϕ(x), x ∈ Ω, (3.3)

ut(x, 0) = ψ(x), x ∈ Ω, (3.4)

where ϕ and ψ represent the initial displacement and velocity, respectively. On
the boundary of the structure ∂Ω we can prescribe Dirichlet, Neumann, Robin
or mixed boundary conditions. In one-dimension, the physical interpretation of
these boundary conditions for the transverse vibrations of a string on the interval

39



3.2 Mathematical formulation

(0, L) can be briefly summarised, as follows, see e.g. (Tikhonov and Samarskii,
1963). The Dirichlet value u(0, t) represents the transverse position of the string
at x = 0 and, if homogeneous, i.e. u(0, t) = 0, it means that the end x = 0 of the
string is fixed or clamped. The Neumann value ux(0, t) represents the vertical
component of the tension and, if homogeneous, i.e. ux(0, t) = 0, it means that no
external transverse force acts on the end x = 0. Finally, the homogeneous Robin
boundary condition −ux(0, t) + σ0u(0, t) = 0 with σ0 ≥ 0, comes from Newton’s
law modelling that a linearly transverse force is applied at the end x = 0 of the
string.

Let us consider, for the sake of simplicity, Dirichlet boundary conditions being
prescribed, namely,

u(x, t) = P (x, t), (x, t) ∈ ∂Ω× (0, T ), (3.5)

where P is a prescribed boundary displacement.
If the force F (x, t) is given, then equations (3.1), (3.3)-(3.5) form a direct

well-posed problem. However, if the force function F (x, t) cannot be directly
observed it hence becomes unknown and then clearly, the above set of equations
is not sufficient to determine uniquely the pair solution (u(x, t), F (x, t)). Then,
we consider the additional measurement of the flux tension of the structure on a
(positive measure) portion Γ ⊂ ∂Ω, namely,

∂u

∂ν
(x, t) = q(x, t), (x, t) ∈ Γ× (0, T ), (3.6)

where ν is the outward unit normal to ∂Ω and q is a given function. Other
additional information, such as the ’upper-base’ final displacement measurement
u(x, T ) for x ∈ Ω, will be investigated in Chapter 5.

Also, note that if instead of the Dirichlet boundary condition (3.5) we would
have supplied a Neumann boundary condition then, the quantities u and ∂u/∂ν
would have had to be reversed in (3.5) and (3.6). In order to ensure a unique
solution we further assume that

F (x, t) = f(x)h(x, t), (x, t) ∈ Ω× (0, T ), (3.7)

where h(x, t) is a known function and f(x) represents the unknown space-dependent
forcing function to be determined. This restriction is necessary because otherwise,
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3.2 Mathematical formulation

we can always add to u(x, t) any function of the form t2U(x) with U ∈ C2(Ω) arbi-
trary with compact support in Ω, and still obtain another solution satisfying (3.1),
(3.3)-(3.6). Physically, the choice (3.7) is useful in applications where the tran-
sient intensity of the force is known and it is only its spatial location/distribution
that is unknown and has to be determined from the overprescribed boundary
data (3.5) and (3.6).

Note that the unknown force f(x) is an interior quantity and it depends on
the space variable x ∈ Ω ⊂ Rn, whilst the additional measurement (3.6) of the
flux q(x, t) is a boundary quantity and it depends on (x, t) ∈ Γ × (0, T ). It is
worth noting that a corresponding inverse spacewise-dependent source identifica-
tion problem given by equations (3.3), (3.5)-(3.7) also arises for the heat equation
ut = ∇2u+ f(x)h(x, t), see (Engl, Scherzer and Yamamoto, 1994).

In the next subsection, we analyse more closely the uniqueness of solution
of the inverse problem which requires finding the pair solution (u(x, t), f(x))

satisfying equations (3.1), (3.3)-(3.7).

3.2.1 Mathematical analysis

To start with, from (3.7), and taking for simplicity c = 1, equation (3.1) recasts
as

utt(x, t) = ∇2u(x, t) + f(x)h(x, t), (x, t) ∈ Ω× (0, T ). (3.8)

We note that in the one-dimensional case, n = 1, and for c = h = 1 and
other compatibility conditions satisfied by the data (3.3)-(3.6), (Cannon and Dun-
ninger, 1970), based on the method of Fourier series, established the uniqueness
of a classical solution of the inverse problem. We also have the following more
general uniqueness result, see Theorem 9 of (Engl, Scherzer and Yamamoto, 1994).

Theorem 1. Assume that Ω ⊂ Rn is a bounded star-shaped domain with suf-
ficiently smooth boundary such that T > diam(Ω). Let h ∈ H2(0, T ;L∞(Ω)) be
such that h(., 0) ∈ L∞(Ω), ht(., 0) ∈ L∞(Ω) and

H :=
||htt||L2(0,T ;L∞(Ω))

infx∈Ω |h(x, 0)|
is sufficiently small. (3.9)
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3.2 Mathematical formulation

If Γ = ∂Ω, then the inverse problem (3.3)-(3.6) and (3.8) has at most one solution
(u(x, t), f(x)) in the class of functions

u ∈ L2(0, T ;H1(Ω)), ut ∈ L2(0, T ;L2(Ω)), utt ∈ L2(0, T ; (H1(Ω))′),

f ∈ L2(Ω), (3.10)

where (H1(Ω))′ is the dual space of H1(Ω), defined as the space of continuous
linear functionals on H1(Ω).

The function spaces involved in this theorem are given by, see (Lions, 1971),
L2(Ω)= space of functions square integrable in Ω={u;

∫
Ω
|u|2dx < ∞}, L∞(Ω)=

{u; supx∈Ω |u| < ∞}, H1(Ω)={u;u ∈ L2(Ω),∇u ∈ (L2(Ω))n}, L2(0, T ;X)=

{u(x, t);
∫ T

0
||u(x, t)||Xdt <∞}, where X ∈ {L∞(Ω), L2(Ω), H1(Ω)},

H2(0, T ;L∞(Ω))={u(x, t);u(x, t), ut(x, t), utt(x, t) ∈ L∞(Ω) for t ∈ (0, T )}.
One can remark that the previously stated uniqueness Theorem 1 requires

that the Neumann observation (3.6) is over the complete boundary Γ = ∂Ω. In
the incomplete case that Γ ⊂ ∂Ω is only a part of ∂Ω then, the uniqueness Theo-
rem 1 holds under the assumption that h is independent of x, (Yamamoto, 1995),
as follows.

Theorem 2. Assume that Ω ⊂ Rn is a bounded star-shaped domain with smooth
boundary such that T > diam(Ω). Let h ∈ C1[0, T ] be independent of x such that
equation (3.8) becomes

utt(x, t) = ∇2u(x, t) + f(x)h(t), (x, t) ∈ Ω× (0, T ), (3.11)

and assume further that h(0) 6= 0. Then the inverse problem (3.3)-(3.6) and
(3.11) has at most one solution in the class of functions

u ∈ C1([0, T ];H1(Ω)) ∩ C2([0, T ];L2(Ω)), f ∈ L2(Ω). (3.12)

In (3.12), Cm([0, T ];X), where m ∈ {1, 2} and X ∈ {H1(Ω), L2(Ω)}, denotes
the space of m-times continuously differentiable functions defined on [0, T ] with
values in X.

In Section 3.4, we shall consider the numerical determination of the space-
dependent forcing function f(x). But before we do that, in the next section we
explain the FDM adopted for the numerical discretisation of the direct problem.

42



3.3 Numerical solution of the direct problem

3.3 Numerical solution of the direct problem

In this section, we consider the direct initial Dirichlet boundary value problem
(3.1), (3.3)-(3.5) for simplicity, in one-dimension, i.e. n = 1 and Ω = (0, L) with
L > 0, when the force F (x, t) is known and the displacement u(x, t) is to be
determined, namely,

utt(x, t) = c2uxx(x, t) + F (x, t), (x, t) ∈ (0, L)× (0, T ], (3.13)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ [0, L], (3.14)

u(0, t) = P (0, t) =: P0(t), t ∈ (0, T ], (3.15)

u(L, t) = P (L, t) =: PL(t), t ∈ (0, T ]. (3.16)

The discrete form of this problem is as follows. We divide the solution domain
(0, L)× (0, T ) into M and N subintervals of equal space length ∆x and time step
∆t, where ∆x = L/M and ∆t = T/N . We denote by ui,j := u(xi, tj), where
xi = i∆x, tj = j∆t, and Fi,j := F (xi, tj) for i = 0,M , j = 0, N . Then, a central-
difference approximation to equations (3.13)-(3.16) at the mesh points (xi, tj) =

(i∆x, j∆t) of the rectangular mesh covering the solution domain (0, L) × (0, T )

is, see (Smith, 1985) and Appendix A,

ui,j+1 = r2ui+1,j + 2(1− r2)ui,j + r2ui−1,j − ui,j−1 + (∆t)2Fi,j, (3.17)

i = 1, (M − 1), j = 1, (N − 1),

ui,0 = ϕ(xi), i = 0,M,
ui,1 − ui,−1

2∆t
= ψ(xi), i = 1, (M − 1), (3.18)

u0,j = P0(tj), uM,j = PL(tj), j = 0, N, (3.19)

where the Courant number r = c∆t/∆x. Equation (3.17) represents an explicit
FDM which is second-order accurate in both space and time, and stable if r ≤ 1,
giving approximate values for the solution at mesh points along t = 2∆t, 3∆t, ...,
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3.4 Numerical solution of the inverse problem

as soon as the solution at the mesh points along t = ∆t has been determined by
allowing j = 0 in equation (3.17) and using (3.18), to obtain

ui,1 =
1

2
r2ϕ(xi+1) + (1− r2)ϕ(xi) +

1

2
r2ϕ(xi−1) + (∆t)ψ(xi)

+
1

2
(∆t)2Fi,0, i = 1, (M − 1). (3.20)

The normal derivatives ∂u
∂ν

(0, t) and ∂u
∂ν

(L, t) are calculated using the finite-difference
approximations, see Appendix A,

−∂u
∂x

(0, tj) = −4u1,j − u2,j − 3u0,j

2∆x
,

∂u

∂x
(L, tj) =

3uM,j − 4uM−1,j + uM−2,j

2∆x
, j = 1, N. (3.21)

3.4 Numerical solution of the inverse problem

We now consider the inverse initial boundary value problem (3.3)-(3.6) and (3.8)
in one-dimension, i.e. n = 1 and Ω = (0, L), when both the force f(x) and
the displacement u(x, t) are to be determined, from the governing equation (take
c = 1 for simplicity)

utt(x, t) = uxx(x, t) + f(x)h(x, t), (x, t) ∈ (0, L)× (0, T ], (3.22)

subject to the initial and boundary conditions (3.14)-(3.16) and the overspecified
flux tension condition (3.6) at one end of the string, say at x = 0, namely

−∂u
∂x

(0, t) = q(0, t) =: q0(t), t ∈ (0, T ]. (3.23)

In the case that h is independent of x, according to Theorem 2, the inverse
source problem (3.14)-(3.16), (3.22) and (3.23) has at most one solution in the
class of functions (3.12) provided that h ∈ C1[0, T ], h(0) 6= 0 and T > L.

In discretised finite-difference form equations (3.14)-(3.16) and (3.22) recast
as equations (3.18), (3.19),

ui,j+1 − (∆t)2fihi,j = r2ui+1,j + 2(1− r2)ui,j + r2ui−1,j − ui,j−1,

i = 1, (M − 1), j = 1, (N − 1), (3.24)
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3.4 Numerical solution of the inverse problem

and

ui,1 −
1

2
(∆t)2fihi,0 =

1

2
r2ϕ(xi+1) + (1− r2)ϕ(xi) +

1

2
r2ϕ(xi−1)

+ (∆t)ψ(xi), i = 1, (M − 1), (3.25)

where fi := f(xi) and hi,j := h(xi, tj).
Discretizing (3.23) using (3.21) we also have

q0(tj) = −∂u
∂x

(0, tj) = −4u1,j − u2,j − 3u0,j

2∆x
, j = 1, N. (3.26)

In practice, the additional observation (3.26) comes from measurement which
is inherently contaminated with errors. We therefore model this by replacing the
exact data q0(t) by the noisy data

qε0(tj) = q0(tj) + εj, j = 1, N, (3.27)

where (εj)j=1,N are N random noisy variables generated using the MATLAB rou-
tine ’normrd’ from a Gaussian normal distribution with mean zero and standard
deviation σ = p×maxt∈[0,T ] |q0(t)|, where p represents the percentage of noise.

Assembling (3.24)-(3.26) and using (3.18) and (3.19), the discretised inverse
problem reduces to solving a global linear system of (M − 1)×N +N equations
with (M−1)×N+(M−1) unknowns. Since this system is linear we can eliminate
the unknowns ui,j for i = 1, (M − 1), j = 1, N , to reduce the problem to solving
an ill-conditioned system of N equations with (M − 1) unknowns of the generic
form

Af = bε, (3.28)

where the right-hand side vector bε incorporates the noisy measurement (3.27).
For a unique solution we require N ≥M −1. The method of least squares can be
used to find an approximate solution to overdetermined systems. For the system
of equations (3.28), the least squares solution is given by f = (ATA)−1ATbε,
where the superscript T denotes the transpose.

For the Examples 1-4 that will be considered in the next section, the condition
numbers of the matrix A in (3.28) given in Table 3.1 are between O(104) to
O(108) for M = N = 80. These large condition numbers indicate that the
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3.4 Numerical solution of the inverse problem

system of equations (3.28) is ill-conditioned. The ill-conditioning nature of the
matrix A can also be revealed by plotting its normalised singular values σk/σ1

for k = 1, (M − 1), in Figure 3.1.

Table 3.1: Condition number of matrix A for Examples 1-4.

Example 1 Example 2 Example 3 Example 4
N = M h(x, t) = 1 h(x, t) = 1 + t h(x, t) = 1 + x+ t h(x, t) = t2

10 28.55 39.53 33.73 3394.55

20 110.98 152.38 131.29 53232.36

40 437.93 596.91 518.51 826827.12

80 1740.25 2361.22 2061.53 12956244.4
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Figure 3.1: Normalised singular values σk/σ1 for k = 1, (M − 1), for (a) Example
1, (b) Example 2, (c) Example 3, and (d) Example 4.
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3.5 Numerical results and discussion

In all examples in this section we take, for simplicity, c = L = T = 1. Although
the geometrical condition 1 = T > diam(Ω) = L = 1 is slightly violated, it is
expected that the uniqueness Theorems 1 and 2 still hold, especially in n = 1-
dimension and when the inverse problems are numerically discretised.

3.5.1 Example 1 (h(x, t) = 1)

This is an example in which we take h(x, t) = 1 a constant function and consider
first the direct problem (3.13)-(3.16) with the input data (2.66), (2.67) and

F (x, t) = f(x) = 1 + π2 sin(πx), x ∈ (0, 1). (3.29)

The exact solution is given by (2.64).
The numerical and exact solutions for u(x, t) at interior points are shown in

Figure 3.2 and one can observe that an excellent agreement is obtained. Table 3.2
also gives the exact and numerical solutions for the flux tension (3.23). From this
table it can be seen that the numerical results are convergent, as the mesh size
decreases, and they are in very good agreement with the exact solution (3.30).
Moreover, the `2-error between the exact and the numerical solutions of Table
3.2 are {0.1306, 0.0331, 0.0083, 0.0020} for N = M ∈ {10, 20, 40, 80}, respectively,
showing that, as expected from the theory of central finite differences, the error
reduces by a factor of 4 as N = M are doubled. Although not illustrated, it is
reported that the same excellent agreement has also been obtained between the
exact and numerical solutions for the flux tension at x = 1.
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3.5 Numerical results and discussion

Figure 3.2: Exact and numerical solutions for the displacement u(x, t) and the
absolute error between them for the direct problem, obtained with N = M = 80,
for Example 1.

Table 3.2: Exact and numerical solutions for the flux tension at x = 0, for the
direct problem of Example 1.

t 0.1 0.2 ... 0.8 0.9 1

N = M = 10 −3.2427 −3.2465 ... −3.2899 −3.2937 −3.295

N = M = 20 −3.1675 −3.1685 ... −3.1790 −3.1799 −3.1802

N = M = 40 −3.1481 −3.1483 ... −3.1510 −3.1512 −3.1513

N = M = 80 −3.1432 −3.1433 ... −3.1439 −3.1440 −3.1440

exact −3.1416 −3.1416 ... −3.1416 −3.1416 −3.1416

The inverse problem given by equations (3.22) with h(x, t) = 1, (2.66), (2.67)
and

−∂u
∂x

(0, t) = q0(t) = −π, t ∈ (0, 1], (3.30)

is considered next. Since h(0) = 1 6= 0, Theorem 2 ensures the uniqueness of the
solution in the class of functions (3.12).

In fact, the exact solution (f(x), u(x, t)) of this inverse problem is given by
equations (2.65) and (2.64), respectively. Numerically, we employ the FDM for
discretising the inverse problem, as described in Section 3.4. Note that this is
exactly the same example problem as the one solved in Section 2.5 using a different
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3.5 Numerical results and discussion

technique. So, where appropriate, we shall compare and discuss the performance
of the techniques of Chapters 2 and 3 in terms of their accuracy and stability.

3.5.1.1 Exact data

We first consider the case of exact data, i.e. p = 0 and hence ε = 0 in (3.27). The
numerical results corresponding to f(x) and u(x, t) are plotted in Figures 3.3 and
3.4, respectively. From these figures it can be seen that convergent and accurate
numerical solutions are obtained.
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Figure 3.3: The exact (—) solution (2.65) for the force f(x) in comparison with
the numerical solution (· · ·) for various N = M = (a) 10, (b) 20, (c) 40, and (d)
80, and no regularization, for exact data, for the inverse problem of Example 1.

By comparing Figures 2.4 and 3.3 it can be seen that both the BEM of Chapter
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2 and the FDM of Chapter 3 provide very accurate numerical solutions for the
source function (2.65) for exact data.
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Figure 3.4: The absolute errors between the exact and numerical displacement
u(x, t) obtained with N = M ∈ {10, 20, 40, 80} and no regularization, for exact
data, for the inverse problem of Example 1.

3.5.1.2 Noisy data

In order to investigate the stability of the numerical solution we include some
(p = 1%) noise into the input data (3.26), as given by equation (3.27). The
numerical solution for f(x) obtained with N = M = 80 and no regularization is
plotted in Figure 3.5. It can be clearly seen that very high oscillations appear.
This clearly shows that the inverse force problem (3.14)-(3.16), (3.22) and (3.23) is
ill-posed. In the previous chapter, we have dealt with this instability by truncating
the infinite series (2.54) at a finite thresholdK, see Figure 2.6 where for low values
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of K ≤ 10 stable reconstructions can be obtained. In this chapter, in order to
deal with this instability we employ the (zeroth-order) Tikhonov regularization
which yields the solution

f
λ

= (ATA+ λI)−1ATbε, (3.31)

where I is the identity matrix and λ > 0 is a regularization parameter to be pre-
scribed. Including regularization we obtain the numerical solution (3.31) whose
accuracy error, as a function of λ, is plotted in Figure 3.6. From this figure it
can be seen that the minimum of the error occurs around λ = 10−6. Clearly,
this argument cannot be used as a suitable choice for the regularization param-
eter λ in the absence of an analytical (exact) solution (2.65) being available.
However, one possible criterion for choosing λ is given by the L-curve method,
(Hansen, 2001), which plots the residual norm ||Af

λ
− bε|| versus the solution

norm ||f
λ
|| for various values of λ. This is shown in Figure 3.7 for various val-

ues of λ ∈ {10−9, 5 × 10−9, 10−8, ..., 10−2}. The portion to the right of the curve
corresponds to large values of λ which make the solution oversmooth, whilst the
portion to the left of the curve corresponds to small values of λ which make the
solution undersmooth. The compromise is then achieved around the corner re-
gion of the L-curve where the aforementioned portions meet. Figure 3.7 shows
that this corner region includes the values around λ = 10−6, which is a good
prediction of the optimal value demonstrated in Figure 3.6.
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Figure 3.5: The exact solution (2.65) for the force f(x) in comparison with the
numerical solution (− • −) for N = M = 80, with no regularization, for p = 1%

noisy data, for the inverse problem of Example 1.
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Finally, Figure 3.8 shows the regularized numerical solution for f(x) obtained
with various values of the regularization parameter λ ∈ {10−7, 10−6, 10−5} for p =

1% noisy data. From this figure it can be seen that the value of the regularization
parameter λ can also be chosen by trial and error. By plotting the numerical
solution for various values of λ we can infer when the instability starts to kick off.
For example, in Figure 3.8, the value of λ = 10−5 is too large and the solution is
oversmooth, whilst the value of λ = 10−7 is too small and the solution becomes
unstable. We could therefore inspect the value of λ = 10−6 and conclude that
this is a reasonable choice of the regularization parameter which balances the
smoothness with the instability of the solution.
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||, as a function of λ, forN = M = 80

and p = 1% noise, for the inverse problem of Example 1.

Finally, similar features for the errors, L-curves and force reconstructions are
revealed when comparing Figures 2.8 - 2.10 with Figures 3.6 - 3.8, respectively.
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Figure 3.7: The L-curve for the Tikhonov regularization, for N = M = 80 and
p = 1% noise, for the inverse problem of Example 1.
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Figure 3.8: The exact solution (2.65) for the force f(x) in comparison with the
numerical solution (3.31), for N = M = 80, p = 1% noise, and regularization
parameters λ ∈ {10−7, 10−6, 10−5}, for the inverse problem of Example 1.

3.5.2 Example 2 (h(x, t) = 1 + t)

This is an example in which we take h(x, t) = 1 + t a linear function of t and
independent of x and consider first the direct problem (3.14)-(3.16) and (3.22)
with the input data

u(x, 0) = ϕ(x) = 0, ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (3.32)
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u(0, t) = P0(t) = 0, u(1, t) = PL(t) = 0, t ∈ (0, 1], (3.33)

f(x) =

{
x if 0 ≤ x ≤ 1

2
,

1− x if 1
2
< x ≤ 1.

(3.34)

As in Example 1, since h(0) = 1 6= 0, Theorem 2 ensures the uniqueness of the
solution in the class of the functions (3.12). Also, remark that in this example,
the force (3.34) has a triangular shape, being continuous but non-differentiable
at the peak x = 1/2. This example also does not possess an explicit analytical
solution readily available for the displacement u(x, t).

The numerical solutions for the displacement u(x, t) at interior points are
shown in Figure 3.9. The flux tension (3.23) is presented in Table 3.3 and Figure
3.10. From these figures and table it can be seen that convergent numerical
solutions for both u(x, t) and q0(t) are obtained, as N = M increases.
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Figure 3.9: Numerical solutions for the displacement u(x, t) obtained using the
direct problem with various N = M ∈ {10, 20, 40, 80} in (a)-(d), respectively, for
Example 2.

Table 3.3: The numerical solutions for the flux tension at x = 0, for the direct
problem of Example 2.

t 0.1 0.2 ... 0.8 0.9 1

N = M = 10 −0.00500 −0.02100 ... −0.31900 −0.35900 −0.39000

N = M = 20 −0.00512 −0.02125 ... −0.3095 −0.34862 −0.37875

N = M = 40 −0.00515 −0.02131 ... −0.30712 −0.34603 −0.37593

N = M = 80 −0.00516 −0.02132 ... −0.30653 −0.34538 −0.37523
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Figure 3.10: Numerical solution for the flux tension at x = 0, for various N =

M ∈ {5, 10, 20, 80}, for the direct problem of Example 2.

Consider now the inverse problem given by equations (3.22) with h(x, t) =

1 + t, (3.32), (3.33) and (3.23) with q0(t) numerically simulated and given in
Figure 3.10 for N = M = 80. We perturb further this flux by adding to it some
p ∈ {1, 3, 5}% noise, as given by equation (3.27). The numerical solution for
f(x) obtained with N = M = 80 and no regularization has been found highly
oscillatory and unstable similar to that obtained in Figure 3.5 and therefore is not
presented. In order to deal with this instability we employ and test the Tikhonov
regularization of various orders such as zero, first and second, which yields the
solution, (Twomey, 1963),

f
λ

= (ATA+ λDT
kDk)

−1ATbε, (3.35)

where Dk is the regularization derivative operator of order k ∈ {0, 1, 2}, defined
in (1.3). Observe that for k = 0, equation (3.35) becomes the zeroth-order regu-
larized solution (3.31) which was previously employed in Example 1 in order to
obtain a stable solution.

Including regularization we obtain the solution (3.35) whose accuracy error,
as a function of λ, is plotted in Figure 3.11 for various orders of regularization k ∈
{0, 1, 2}. From this figure it can be seen that there are wide ranges for choosing
the regularization parameters in the valleys of minima of the plotted error curves.
The minimum points λopt and the corresponding accuracy errors are listed in
Table 3.4. The L-curve criterion for choosing λ in the zeroth-order regularization
is shown in Figure 3.12 for various values of λ ∈ {10−9, 10−8, ..., 10−2} and for
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3.5 Numerical results and discussion

p ∈ {1, 3, 5}% noisy data. This figure shows that the L-corner region includes
indeed values around the optimal ones of λ = 10−6 for p = 1%, λ = 10−5 for
p = 3%, and λ = 10−5 for p = 5% derived previously from Figure 3.11 and
included in Table 3.4. Similar L-curves, which plot the penalised solution norm
||Dkfλ|| versus the residual norm ||Af

λ
− bε||, have been obtained for the first

and second-order regularizations and therefore, they are not illustrated.
Figure 3.13 shows the regularized numerical solutions (3.35) for f(x) obtained

for various orders of regularization methods k ∈ {0, 1, 2}, with the values of the
regularization parameter λopt given in Table 3.4 for p ∈ {1, 3, 5}% noisy data.
First, from this figure it can be seen how the order of regularization acts on the
regularity of solution, e.g. k = 0-order allows wiggles, k = 1-order penalises
gradient and k = 2-order penalises curvature. Second, it can be seen that the
numerical results are stable and they become more accurate as the amount of
noise p decreases.
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Figure 3.11: The accuracy error ||f
num
−f

exact
||, as a function of λ, forM = N =

80, p ∈ {1, 3, 5}% noise, obtained using (a) zeroth, (b) first, and (c) second-order
regularization, for the inverse problem of Example 2.
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Figure 3.12: The L-curve for the zeroth-order Tikhonov regularization, for N =

M = 80 and p ∈ {1, 3, 5}% noise, for the inverse problem of Example 2.

Table 3.4: The accuracy error ||f
num
− f

exact
|| for various order regularization

methods and percentages of noise p, for the inverse problem of Example 2. The
values of λopt are also included.

Regularization p = 1% p = 3% p = 5%

zeroth λopt = 10−6 λopt = 10−5 λopt = 10−5

0.2987 0.5389 0.6259

first λopt = 10−4 λopt = 10−4 λopt = 10−3

0.1433 0.3112 0.4494

second λopt = 10−3 λopt = 10−1 λopt = 10−1

0.1264 0.2876 0.3576
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Figure 3.13: The exact solution (3.34) for the force f(x) in comparison with the
numerical regularized solution (3.35), for N = M = 80, p ∈ {1, 3, 5}% noise, and
various order regularization methods, for the inverse problem of Example 2.

3.5.3 Example 3 (h(x, t) = 1 + x+ t)

All the data and details of the numerical implementation are the same as those
for Example 2, except that in the present example h(x, t) = 1 + x+ t in equation
(3.22). Since in this case h depends also on x we cannot apply Theorem 2, but we
can apply instead Theorem 1, because H = 0 in (3.9) is sufficiently small. This
then ensures the uniqueness of the solution in the class of functions (3.10).

Figure 3.14 shows the regularized numerical solution for f(x) obtained with
various values of the regularization parameters listed in Table 3.5 for p ∈ {1, 3, 5}%
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noisy data. From this figure it can be seen that stable numerical solutions are
obtained and that similar conclusions maintain as those obtained for Example 2.
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Figure 3.14: The exact solution (3.34) for the force f(x) in comparison with the
regularized numerical solution (3.35), for N = M = 80, p ∈ {1, 3, 5}% noise, and
various order regularization methods, for the inverse problem of Example 3.
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Table 3.5: The accuracy error ||f
num
− f

exact
|| for various order regularization

methods and percentages of noise p, for the inverse problem of Example 3. The
values of λopt are also included.

Regularization p = 1% p = 3% p = 5%

zeroth λopt = 10−5 λopt = 10−5 λopt = 10−5

0.35490 0.49093 0.65283

first λopt = 10−4 λopt = 10−3 λopt = 10−3

0.14821 0.35679 0.45932

second λopt = 10−3 λopt = 10−1 λopt = 10−1

0.13326 0.27424 0.39021

3.5.4 Example 4 (h(x, t) = t2)

All the details are the same as those of Example 2, except that in the present
example h(x, t) = t2 in equation (3.22) is independent of x, but is a nonlinear
function of t. Furthermore, one can see that h(0) = 0 and also, condition (3.9)
is violated. Hence, we cannot apply the uniqueness Theorems 1 or 2 and, in this
case, we expect a more severe situation than in the previous examples to occur.
This is reflected in the very large condition numbers of the matrix A reported
in Table 3.1 for Example 4 in comparison with the milder condition numbers for
Examples 1-3.

The numerical solution for the flux tension (3.23) obtained by solving the
direct problem given by equation (3.22) with h(x, t) = t2 and equations (3.32)-
(3.34) is illustrated in Figure 3.15 for various mesh sizes. From this figure it
can be seen that a rapidly convergent numerical solution is achieved. As in
Example 2, we add noise to the numerical flux q0(t) obtained with the finer mesh
N = M = 80.
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Figure 3.15: Numerical solution for the flux tension at x = 0, for various N =

M ∈ {5, 10, 20, 80}, for the direct problem of Example 4.

Figure 3.16 shows the regularized numerical solution for f(x) obtained with
various regularization parameters listed in Table 3.6 for p ∈ {1, 3, 5}% noisy
data. As in all the previous examples, stable numerical solutions are obtained.
However, in contrast to Examples 2 and 3, the first-order regularization seems
to perform better than the second-order regularization, with the latter one also
presenting some unexpected behaviour of increase in accuracy when p increases
from 1% to 3%. These conclusions may be attributed to the severe ill-posedness
of the Example 4 which, as discussed above, in addition to ill-conditioning it fails
to satisfy the conditions for uniqueness of solution of Theorems 1 or 2.
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Figure 3.16: The exact solution (3.34) for the force f(x) in comparison with the
regularized numerical solution (3.35), for N = M = 80 and p ∈ {1, 3, 5}% noise,
and various order regularization methods, for the inverse problem of Example 4.
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3.6 Extension to multiple sources

Table 3.6: The accuracy error ||f
num
− f

exact
|| for various order regularization

methods and percentages of noise p, for the inverse problem of Example 4. The
values of λopt are also included.

Regularization p = 1% p = 3% p = 5%

zeroth λopt = 10−8 λopt = 10−8 λopt = 10−8

0.5947 0.8082 1.0863

first λopt = 10−6 λopt = 10−6 λopt = 10−5

0.1826 0.2668 0.4053

second λopt = 10−5 λopt = 10−4 λopt = 10−4

0.4313 0.2178 0.6912

3.6 Extension to multiple sources

In this section, we consider an extension of the inverse space-dependent problem,
in the situation when

F (x, t) = f(x)h(x, t) + g(x)θ(x, t), (x, t) ∈ Ω× (0, T ]. (3.36)

where h(x, t) and θ(x, t) are given functions and f(x) and g(x) are space-dependent
unknown force components to be determined. Under the assumption (3.36), equa-
tion (3.1) (take c = 1 for simplicity) in one-dimension, i.e. n = 1 and Ω = (0, L),
becomes

utt(x, t) = uxx(x, t) + f(x)h(x, t) + g(x)θ(x, t), (x, t) ∈ (0, L)× (0, T ]. (3.37)

This has to be solved subject to the initial and boundary conditions (3.14)-(3.16)
and the overspecified flux tensions at both ends of the string, namely, (3.23) and

∂u

∂x
(L, t) = q(L, t) =: qL(t), t ∈ (0, T ]. (3.38)

The uniqueness of solution still holds in the case h(x, t) = 1, θ(x, t) = t, see
Theorem 8 of (Engl, Scherzer and Yamamoto, 1994), but for more general cases,
e.g. h(x, t) = 1, θ(x, t) = t2, the solution (f(x), g(x), u(x, t)) is not unique, see
the counterexample to uniqueness given in (Engl, Scherzer and Yamamoto, 1994).
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3.6 Extension to multiple sources

In discretised finite-difference form equations (3.14)-(3.16) and (3.37) recast
as equations (3.18), (3.19),

ui,j+1 − (∆t)2fihi,j − (∆t)2giθi,j = r2ui+1,j + 2(1− r2)ui,j + r2ui−1,j

−ui,j−1, i = 1, (M − 1), j = 1, (N − 1), (3.39)

and

ui,1 −
1

2
(∆t)2fihi,0 −

1

2
(∆t)2giθi,0 =

1

2
r2ϕ(xi+1) + (1− r2)ϕ(xi)

+
1

2
r2ϕ(xi−1) + (∆t)ψ(xi), i = 1, (M − 1). (3.40)

where gi := g(xi) and θi,j := θ(xi, tj).
Discretizing (3.23) and (3.38), using (3.21), we also have (3.26) and

qL(tj) =
∂u

∂x
(L, tj) =

3uM,j − 4uM−1,j + uM−2,j

2∆x
, j = 1, N. (3.41)

In practice, the additional observations (3.26) and (3.41) come from measure-
ment which is inherently contaminated with errors. We therefore model this by
replacing the exact data q0(t) and qL(t) by the noisy data (3.27) and

qεL(tj) = qL(tj) + ε̃j, j = 1, N, (3.42)

where (ε̃j)j=1,N and N random noisy variables generated from a Gaussian normal
distribution with mean zero and standard deviation σ̃ = p×maxt∈[0,T ] |qL(t)|.

Assembling (3.26), (3.39)-(3.41), and using (3.18) and (3.19), the discretised
inverse problem reduces to solving a global linear system of (M−1)×N+(N+N)

equations with (M−1)×N+((M−1)+(M−1)) unknowns. Since this system is
linear we can eliminate the unknowns ui,j for i = 1, (M − 1), j = 1, N , to reduce
the problem to solving an ill-conditioned system of 2N equations with 2(M − 1)

unknowns of the form

A(f, g) = bε. (3.43)

This system is solved using the Tikonov regularization method, as described in
the previous section.
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3.6.1 Example 5

This is an example in which we take c = L = T = 1, h(x, t) = 1 and θ(x, t) = t

and the input data

u(x, 0) = ϕ(x) = sin(πx), ut(x, 0) = ψ(x) = x2 + 1, x ∈ [0, 1], (3.44)

u(0, t) = P0(t) = t+
t2

2
, u(1, t) = PL(t) = 2t+

t2

2
, t ∈ (0, 1], (3.45)

−∂u
∂x

(0, t) = q0(t) = −π, ∂u

∂x
(1, t) = qL(t) = 2t− π, t ∈ (0, 1]. (3.46)

The exact solution is given by

f(x) = 1 + π2 sin(πx), g(x) = −2, u(x, t) = x2t+ sin(πx) + t+
t2

2
,

(x, t) ∈ [0, 1]× [0, 1]. (3.47)

We first consider the case of exact data, i.e. p = 0 and hence ε = ε̃ = 0

in (3.27) and (3.42). The numerical results corresponding to f(x) and g(x) are
plotted in Figure 3.17. From this figure it can be seen that convergent and
accurate numerical solutions are obtained especially, for f(x), although for g(x)

there are some inaccuracies manifested near the end points x ∈ {0, 1}.
We include some (p = 1%) noise into the input data (3.26) and (3.41), as

given by equations (3.27) and (3.42). Figure 3.18 shows the regularized numerical
solutions for f(x) and g(x) obtained with various regularizations and one can
observe that reasonably stable numerical solutions are obtained, especially by
the first- and second-order regularizations.
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Figure 3.17: The exact (—) solutions (3.47) for the force components f(x)

and g(x) in comparison with the numerical solutions for various N = M ∈
{10, 20, 40, 80}, and no regularization, for exact data, for the inverse problem
of Example 5.
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Figure 3.18: The exact (—) solutions (3.47) for the force components f(x) and
g(x) in comparison with the numerical solutions, for N = M = 80, p = 1% noise
and various order regularization methods, for the inverse problem of Example 5.

3.7 Conclusions

In this chapter, the determination of space-dependent forces from boundary
Cauchy data in the wave equation has been investigated. The solution of this
linear inverse problem is unique, but is still ill-posed since small errors in the
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input measured flux tension cause large errors in the output force. The same
problem has been considered in Chapter 2 using the BEM, the separation of
variables and a truncation or a regularization method. However, in this chapter
the problem is discretised numerically using the FDM, and in order to stabilise
the solution, the Tikhonov regularization method has been employed. This ap-
proach is more general as it is applicable to non-homogeneous materials which
are not feasible to be approached by the methods of Chapter 2. The choice of
the regularization parameter was based on the L-curve criterion. Numerical ex-
amples indicate that the method can accurately and stably recover the unknown
space-dependent force.

As previously discussed in subsection 2.7 of the previous chapter, there is
much more literature on the corresponding inverse space-dependent heat source
identification from Cauchy data for the parabolic heat equation, see (Cannon,
1968; Coles and Murio, 2001; Engl, Scherzer and Yamamoto, 1994; Hasanov, 2011;
Yamamoto, 1995). In addition to these, one can also mention the case of retrieving
point sources for the heat equation, see e.g. (El Badia, Ha-Duong and Hamdi,
2005), and it would be interesting in the future to address the identification of
point forces for the wave equation, see (El Badia and Ha-Duong, 2001) or even
for the Euler-Bernoulli beam equation, see (Hasanov and Kawano, 2016).

The corresponding time-dependent force identification for the wave equation
will be investigated in the next chapter.
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Chapter 4

Determination of forcing functions
in the wave equation. Part II: the
time-dependent case

4.1 Introduction

In the previous two chapters the unknown force function in the wave equation was
sought as a function of the space variable. In this chapter, it is assumed to depend
on the time variable only. The theoretical basis for our numerical investigation is
given in (Prilepko, Orlovsky and Vasin, 2000, Sect. 9.2), where the existence and
uniqueness of solution of the inverse time-dependent force function for the wave
equation have been established. However, no numerical results were presented and
it is the main purpose of this chapter to develop an efficient numerical solution
for this linear, but ill-posed inverse problem.

The mathematical formulation of the inverse problem under investigation is
given in Section 4.2. No a priori information is assumed available on the func-
tional form of the unknown external force. The numerical discretisation of both
the direct and inverse problems based on the FDM are described in one-dimension
in Sections 4.3 and 4.4, respectively. Both these problems are linear, but the di-
rect problem is well-posed, whilst the inverse problem is ill-posed. Consequently,
upon the numerical FDM discretisation the resulting systems of linear algebraic
equations are well-, respectively, ill-conditioned. The ill-conditioning is dealt with

70



4.2 Mathematical formulation

by employing the Tikhonov regularization method, (Philips, 1962). The choice
of the regularization parameter introduced by this technique is important for the
stability of the numerical solution and in this chapter this is based on the L-curve
criterion, (Hansen, 2001). The accuracy and stability of the inverse problem so-
lution is analysed by using exact and numerically simulated noisy measurements.
Numerical results are illustrated and discussed in Sections 4.5, and conclusions
are provided in Section 4.6.

4.2 Mathematical formulation

The governing equation for a vibrating bounded structure Ω ⊂ Rn, n = 1, 2, 3,
acted upon by a force F (x, t) is given by the wave equation (3.1). For simplicity,
we assume that c is a constant, but we can also let c be a positive smooth function
depending on the space variable x. Equation (3.1) has to be solved subject to
the initial conditions (3.3) and (3.4).

On the boundary of the structure ∂Ω we can prescribe Dirichlet, Neumann
or Robin boundary conditions. Due to the linearity of equation (3.1) and of
the direct and inverse force problems which are investigated we can assume, for
simplicity, that these boundary conditions are homogeneous. We can therefore
take

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (4.1)

or,
∂u

∂ν
+ σ(x)u = 0, (x, t) ∈ ∂Ω× [0, T ], (4.2)

where σ is a sufficiently smooth function. Equation (4.2) includes the Neumann
boundary condition which is obtained for σ ≡ 0.

If the force F (x, t) is given, then the equations above form a direct well-posed
problem for the displacement u(x, t). However, if the force function F (x, t) cannot
be directly observed it hence becomes unknown and then clearly, the above set of
equations is not sufficient to determine the pair solution (u(x, t), F (x, t)). Then,
we can consider the additional integral measurement∫

Ω

ω(x)u(x, t)dx = Λ(t), t ∈ [0, T ], (4.3)
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4.2 Mathematical formulation

where ω is a given weight function, and further assume that

F (x, t) = f1(x, t)h(t) + f2(x, t), (x, t) ∈ Ω× [0, T ], (4.4)

where f1(x, t) and f2(x, t) represent known forcing function components and h(t)

is an unknown time-dependent coefficient that is sought. Physically, the expres-
sion (4.3) represents a space average measurement of the displacement. Also, if
one takes the weight function ω to mimic an approximation to the Dirac delta
distribution δ(x − x0), where x0 ∈ Ω is fixed, then (4.3) becomes a pointwise
measurement of the displacement, namely, u(x0, t) = Λ(t) for t ∈ [0, T ]. Also,
physically, (4.4) expresses that any unknown feature of the force F acting on the
structure is confined to the time variation only while any space dependency is as-
sumed known. The assumption (4.4) is also needed in order to ensure the unique
solvability of the inverse force problem under investigation, see Chapter 9 of the
book by (Prilepko, Orlovsky and Vasin, 2000). In that book theorems that estab-
lish the existence and uniqueness of solution of the inverse force problems (3.1),
(3.3), (3.4), (4.1), (4.3), (4.4) and (3.1), (3.3), (3.4), (4.2)-(4.4), respectively, are
provided. Although these theorems ensure that a unique solution exists, the fol-
lowing example shows that this solution does not depend continuously upon the
input data.

Example of instability. Consider the one-dimensional case, i.e. n = 1 and
Ω = (0, π), and the inverse problem given by equations (3.1), (3.3), (3.4), (4.1),
(4.3) and (4.4) in the form

utt(x, t) = uxx(x, t) + f1(x, t)h(t) + f2(x, t), (x, t) ∈ (0, π)× (0, T ), (4.5)

u(x, 0) = ϕ(x) = 0, ut(x, 0) = ψ(x) =
x(x− π)

n1/2
, x ∈ (0, π), (4.6)

u(0, t) = u(π, t) = 0, t ∈ [0, T ], (4.7)

Λ(t) =

∫ π

0

ω(x)u(x, t)dx =
π5 sin(nt)

30n3/2
, t ∈ [0, T ], (4.8)
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4.3 Numerical solution of the direct problem

where n ∈ N∗ and

ω(x) = x(x− π), f1(x, t) = −x(x− π), f2(x, t) = −2 sin(nt)

n3/2
.

One can observe that the analytical solution of the inverse problem (4.5)-(4.8) is
given by

u(x, t) =
sin(nt)x(x− π)

n3/2
, (4.9)

h(t) = n1/2 sin(nt). (4.10)

Then, one can easily see that, as n → ∞ all the input data (4.6)-(4.8) tend to
zero, but the output time-dependent component (4.10) becomes unbounded and
oscillatory. This shows that the inverse problem under investigation is ill-posed
by violating the stability condition with respect to errors in the data (4.8).

The next Sections 4.3 and 4.4 describe the actual numerical reconstruction of
the solution of the direct and inverse problems, respectively.

4.3 Numerical solution of the direct problem

In this section, we consider the direct initial boundary value problem (3.1), (3.3),
(3.4) and (4.1), for simplicity, in one-dimension, i.e. n = 1 and Ω = (0, L) with
L > 0, when the force F (x, t) is known and the displacement u(x, t) is to be
determined. That is, we have to solve the wave equation (3.13) subject to the
initial conditions (3.14) and the homogeneous Dirichlet boundary conditions.

u(0, t) = u(L, t) = 0, t ∈ [0, T ]. (4.11)

The discrete form of this problem is as in subsection 3.3 given by equations (3.17),
(3.18), (3.20) and

u0,j = 0, uM,j = 0, j = 0, N. (4.12)

The desired output (4.3) is calculated using the trapezium rule

Λ(tj) =
∆x

2

(
ω0u0,j + 2

M−1∑
i=1

ωiui,j + ωMuM,j

)
= ∆x

M−1∑
i=1

ωiui,j, j = 1, N, (4.13)
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4.4 Numerical solution of the inverse problem

where ωi = ω(xi) for i = 0,M , and use has been made of (4.12).
The normal derivative at the boundary is calculated using the second-order

finite-difference approximations (3.21), namely,

−∂u
∂x

(0, tj) = −4u1,j − u2,j − 3u0,j

2∆x
=
u2,j − 4u1,j

2∆x
,

∂u

∂x
(L, tj) =

3uM,j − 4uM−1,j + uM−2,j

2∆x
=
uM−2,j − 4uM−1,j

2∆x
, j = 1, N,(4.14)

where again use has been made of (4.12). This is also consistent with the general
second-order finite-difference scheme used.

4.4 Numerical solution of the inverse problem

We now consider the inverse initial boundary value problem (3.3), (3.4), (4.1),
(4.3) and (4.4), in one-dimension, i.e. n = 1 and Ω = (0, L), when both the
force h(t) and the displacement u(x, t) are to be determined, from the governing
equation

utt(x, t) = c2uxx(x, t) + f1(x, t)h(t) + f2(x, t), (x, t) ∈ (0, L)× [0, T ], (4.15)

subject to the initial and boundary conditions (3.14) and (4.11), and the mea-
surement (4.3).

In discretised finite-difference form equations (3.14), (4.11) and (4.15) recast
as equations (3.18), (4.12), and

ui,j+1 − (∆t)2f1i,jhj = r2ui+1,j + 2(1− r2)ui,j + r2ui−1,j − ui,j−1

+ (∆t)2f2i,j, i = 1, (M − 1), j = 1, (N − 1), (4.16)

where f1i,j := f1(xi, tj), hj := h(tj) and f2i,j := f2(xi, tj). Putting j = 0 in
equation (4.16) and using (3.18), we obtain

ui,1 −
1

2
(∆t)2f1i,0h0 =

1

2
r2ϕ(xi+1) + (1− r2)ϕ(xi) +

1

2
r2ϕ(xi−1)

+ (∆t)ψ(xi) +
1

2
(∆t)2f2i,0, i = 1, (M − 1). (4.17)
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4.4 Numerical solution of the inverse problem

In practice, the additional observation (4.13) comes from measurement which
is inherently contaminated with errors. We therefore model this by replacing the
exact data Λ(tj) with the noisy data

Λε(tj) = Λ(tj) + εj, j = 1, N, (4.18)

where (εj)j=1,N are N random noisy variables generated (using the MATLAB rou-
tine ’normrd’) from a Gaussian normal distribution with mean zero and standard
deviation σ̃ given by

σ̃ = p× max
t∈[0,T ]

|Λ(t)| , (4.19)

where p represents the percentage of noise.
Assembling equations (4.13), (4.16) and (4.17), and using (3.18) and (4.12),

the discretised inverse problem reduces to solving a global linear, but ill-conditioned
system of (M−1)×N+N equations with (M−1)×N+N unknowns. Since this
system is linear we can eliminate the unknowns ui,j for i = 1, (M − 1), j = 1, N ,
to reduce the problem to solving an ill-conditioned system of N equations with
N unknowns of the generic form

Ah = bε, (4.20)

where the right-hand side bε includes the noisy data (4.18).
For the examples that will be considered in the next section, the condition

numbers of the matrix A in (4.20) given in Table 4.1 are of O(102) to O(104) for
M = N ∈ {10, 20, 40, 80}, respectively. These large condition numbers indicate
that the system of equations (4.20) is ill-conditioned. On can finally remark that
the condition number cond(A) increases like O(N2) for Examples 1 and 3.

The ill-conditioning nature of the matrix A can also be revealed by plotting
its normalised singular values σk/σ1 for k = 1,M , in Figure 4.1.

Table 4.1: Condition number of the matrix A.

N = M Example 1 Example 2 Example 3
10 57.8 73.9 78.3

20 234.5 309.9 313.8

40 939.5 1273.7 1251.7

80 3755.7 5172.4 4993.9

75



4.5 Numerical results and discussion

(a)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

k

σ
k
/
σ
1

 

 

Ex1, N = M = 10

N = M = 20

N = M = 40

N = M = 80

(b)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

k

σ
k
/
σ
1

 

 

Ex2, N = M = 10

N = M = 20

N = M = 40

N = M = 80

(c)

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

k

σ
k
/
σ
1

 

 

Ex3, N = M = 10

N = M = 20

N = M = 40

N = M = 80

Figure 4.1: Normalised singular values σk/σ1 for k = 1,M , for Examples 1-3.

4.5 Numerical results and discussion

In all examples we take, for simplicity, c = L = T = 1.

4.5.1 Example 1

As a typical test example, consider first the direct problem (3.13), (3.14) and
(4.11) with the input data

u(x, 0) = ϕ(x) = x(x− 1), ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (4.21)

u(0, t) = 0, u(1, t) = 0, t ∈ [0, 1], (4.22)
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4.5 Numerical results and discussion

F (x, t) = 6tx(x− 1)− 2(t3 + 1), (x, t) ∈ (0, 1)× [0, 1]. (4.23)

The exact solution of this direct problem is given by

u(x, t) = x(x− 1)(t3 + 1), (x, t) ∈ [0, 1]× [0, 1]. (4.24)

For the weight function

ω(x) = x(x− 1), x ∈ (0, 1), (4.25)

the desired output (4.3) is given by

Λ(t) =

∫ 1

0

ω(x)u(x, t)dx =
1

30
(t3 + 1), t ∈ [0, 1]. (4.26)

The absolute errors between the numerical and exact solutions for u(x, t) at
interior points are shown in Figure 4.2 and one can observe that an excellent
agreement is obtained. From this figure it can also be observed that the errors
are reduced by a factor of 4(= 22), when N is doubled, which confirms that
the numerical results are correct, and accurate up to second-order, due to the
second-order FDM used. Figure 4.3 also gives the corresponding absolute errors
for Λ(t). From this figure it can be seen that the numerical results are in very
good agreement with the exact solution (4.26), and that convergence is rapidly
achieved as N = M increases.

The inverse problem given by equations (4.15) with f1(x, t) = 6x(x− 1) and
f2(x, t) = −2(t3 + 1), (4.21), (4.22) and (4.26) is considered next. One can easily
check that conditions in (Prilepko, Orlovsky and Vasin, 2000) are satisfied and
hence the existence of a unique solution is ensured. In fact, the exact solution
(u(x, t), h(t)) of the inverse problem is given by equation (4.24) for u(x, t) and
h(t) = t.
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Figure 4.2: The absolute errors between the exact (4.24) and numerical displace-
ment u(x, t) obtained by solving the direct problem with N = M = (a) 10, (b)
20, (c) 40, and (d) 80, for Example 1.
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Figure 4.3: The absolute error between the exact (4.26) and numerical Λ(t) ob-
tained by solving the direct problem with N = M ∈ {10, 20, 40, 80}, for Example
1.

4.5.1.1 Exact data

We first consider the case of exact data, i.e. p = 0 and hence ε = 0 in (4.18). The
numerical results corresponding to h(t) and u(x, t) are plotted in Figures 4.4 and
4.6, respectively. From these figures it can be seen that convergent and accurate
numerical solutions are obtained and the accuracy in obtaining the internal dis-
placement u(x, t) is higher than that in the time-dependent coefficient h(t) of the
force. In fact, as previously illustrated at the end of section 4.2, expressions (4.9)
and (4.10) show that the inverse force problem is ill-posed in the component h(t)

but not in the component u(x, t) of the pair solution (h(t), u(x, t)).
The `2-errors between the analytical and numerical h, plotted in Figure 4.4, as

functions of N , have been obtained to be E = 0.0116, 0.0039, 0.0013 and 0.0004
for (M =)N = 10, 20, 40 and 80, respectively. These values of the error show
that the numerical solution is indeed convergent to the exact solution for h(t),
as M = N increases, with the order of convergence being approximately 1.6, see
Figure 4.5(a).
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Figure 4.4: The exact (—) solution for h(t) in comparison with the numerical
solution (—∆—) for various N = M = (a) 10, (b) 20, (c) 40, and (d) 80, and no
regularization, for exact data, for the inverse problem of Example 1.
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Figure 4.5: The log-log plot of the `2-errors between the analytical and numerical
(a) h(t) and (b) u(x, t), as functions of N , for Example 1.

On the other hand, the `2-errors between the analytical and numerical u(x, t),
plotted in Figure 4.6, as functions of N , have been obtained to be E = 2.2E − 5,
1.4E − 6, 9.0E − 8 and 5.6E − 9 for (M =)N = 10, 20, 40 and 80, respectively.
These values of the error show that the numerical solution is indeed convergent
to the exact solution u(x, t) as M = N increases, with the order of convergence
being approximately 4, see Figures 4.5(b). This order is greater than the order 2
of convergence obtained in Figure 4.2 when solving the direct problem probably
because in the inverse problem more information on u contained in the condition
(4.13) is in addition imposed. Nevertheless, more research on predicting the order
of convergence of FDM schemes for solving inverse and ill-posed problems should
be undertaken in a future work.
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Figure 4.6: The absolute errors between the exact (4.24) and numerical displace-
ment u(x, t) obtained with N = M = (a) 10, (b) 20, (c) 40, and (d) 80, and no
regularization, for exact data, for the inverse problem of Example 1.

4.5.1.2 Noisy data

In order to investigate the stability of the numerical solution we include some
p ∈ {1, 3, 5}% noise into the input data (4.13), as given by equation (4.18). The
numerical solution for h(t) obtained with N = M = 80 and no regularization has
been found highly oscillatory and unstable, as shown in Figure 4.7. In order to
deal with this instability we employ the Tikhonov regularization which gives the
regularized solution, (Philips, 1962),

hλ = (ATA+ λDT
kDk)

−1ATbε. (4.27)
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Figure 4.7: The exact (—) solution for h(t) in comparison with the numerical
solution (—∆—) for N = M = 80, p = 1% noise, and no regularization, for the
inverse problem of Example 1.

Including regularization we obtain the solution (4.27) whose accuracy error,
as a function of λ, is plotted in Figure 4.8. The minimum points λopt and the
minimal errors are listed in Table 4.2. From Figure 4.8 and Table 4.2 it can be
seen that the error decreases as the amount of noise p decrease and that the 2nd-
order regularization produces much smaller errors than the zeroth and 1st-order
regularizations. However, these arguments and conclusions cannot be used for
choosing the regularization parameter λ in the absence of an analytical (exact)
solution being available. Then, one possible criterion for choosing λ is given by
the L-curve method, (Hansen, 2001), which plots the residual norm ||Ahλ − bε||
versus the solution norm ||Dkhλ|| for various values of λ. This is shown in Figure
4.9 for various values of λ ∈ {10−8, 10−7, ..., 103} and for p ∈ {1, 3, 5}% noisy
data. The portion to the right of the curve corresponds to large values of λ
which make the solution oversmooth, whilst the portion to the left of the curve
corresponds to small values of λ which make the solution undersmooth. The
compromise is then achieved around the corner region of the L-curve where the
aforementioned portions meet. Figure 4.9 shows that this corner region includes
the values around {λ0th = 10−6, λ1st = 10−5, λ2nd = 2.5} for p = 1%, {λ0th =

10−5, λ1st = 10−3, λ2nd = 2.5} for p = 3%, and {λ0th = 10−5, λ1st = 10−3, λ2nd =

2.5} for p = 5%, which were previously obtained from Figure 4.8.
Figure 4.10 shows the regularized numerical solution for h(t) obtained with
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λopt given in Table 4.2 for p ∈ {1, 3, 5}% noise and zeroth, first and second-order
Tikhonov regularizations. From this figure it can be seen that the 2nd-order
regularization produces the most stable and accurate numerical solution. This is
expected since the desired solution h(t) = t for Example 1 is very smooth and
hence stronger regularization will produce smoother solutions.
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Figure 4.8: The accuracy error ||hnum − hexact||, as a function of λ, for M = N =

80, p ∈ {1, 3, 5}% noise, obtained using (a) zeroth, (b) first, and (c) second-order
regularization, for the inverse problem of Example 1.
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Figure 4.9: The L-curves for N = M = 80, p ∈ {1, 3, 5}% noise, and (a) zeroth,
(b) first and (c) second-order regularizations, for the inverse problem of Example
1.
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Figure 4.10: The exact (—) solution for h(t) in comparison with the regularized
numerical solution (4.27), for N = M = 80, p ∈ {1, 3, 5}% noise, for the inverse
problem of Example 1.
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Table 4.2: The error norms ||hnum−hexact|| for various order regularization meth-
ods and percentages of noise p, for the inverse problem of Example 1.

Regularization p = 1% p = 3% p = 5%

zeroth λopt = 10−6 λopt = 10−5 λopt = 10−5

2.4756 3.1978 3.5291

first λopt = 10−5 λopt = 10−3 λopt = 10−3

2.19566 2.70695 2.8813

second λopt = 2.5 λopt = 2.5 λopt = 2.5

0.0597 0.1781 0.2965

4.5.2 Example 2

As another example, consider first the direct problem (3.14), (4.11) and (4.15)
with the input data (4.22),

u(x, 0) = ϕ(x) = 0, ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (4.28)

f1(x, t) = x2 + t2, f2(x, t) = 0, x ∈ [0, 1], t ∈ [0, 1], (4.29)

and

h(t) =

{
t if 0 ≤ t ≤ 1

2
,

1− t if 1
2
< t ≤ 1.

(4.30)

Remark that in this example, the expression (4.30) has a triangular shape, being
continuous but non-differentiable at the peak t = 1/2. Furthermore, an explicit
analytical solution for the displacement u(x, t) does not seem readily available.

The numerical FDM solutions for the displacement u(x, t) at interior points
are shown in Figure 4.11, whilst the desired output (4.3) for ω given by (4.25) is
presented in Figure 4.12.
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Figure 4.11: Numerical solutions for the displacement u(x, t) obtained by solving
the direct problem with various N = M = (a) 10, (b) 20, (c) 40, and (d) 80, for
Example 2.
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Figure 4.12: Numerical solution for the integral (4.3), obtained by solving the
direct problem with various N = M ∈ {5, 10, 20, 40, 80}, for Example 2.

The inverse problem given by equations (4.15), (4.22), (4.28), (4.29) and (4.3)
with Λ numerically simulated by solving the direct problem using the FDM with
N = M = 160 is considered next. Remark that from (4.25) and (4.29) it follows
that the identifiability condition is satisfied. The solution of the inverse problem
is given exactly for h(t) by equation (4.30) and numerically for u(x, t) illustrated
for sufficiently large N = M such as 80, in Figure 4.11(d).

4.5.2.1 Exact data

We first consider the case of exact data, i.e. p = 0 and hence ε = 0 in (4.18). The
numerical results for h(t) are shown in Figure 4.13 and very good agreement with
the exact solution (4.30) can be observed. The numerical solution is convergent
as N = M increase from 20 to 40, but some slight instabilities start to manifest
as N = M further increases to 80, see Figure 4.13(d) and the condition number
of the matrix A given in Table 4.1 for Example 2.
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Figure 4.13: The exact (—) solution (4.30) for h(t) in comparison with the nu-
merical solution (—∆—) for various N = M = (a) 10, (b) 20, (c) 40, and (d) 80,
and no regularization, for exact data, for the inverse problem of Example 2.

4.5.2.2 Noisy data

In order to investigate the stability of the numerical solution we include some
p ∈ {1, 3, 5}% noise into the input data (4.13), as given by equation (4.18). The
numerical solution for h(t) obtained with N = M = 80 and no regularization has
been found highly oscillatory and unstable similar to that obtained in Figure 4.7
and therefore is not presented. In order to deal with this instability we employ
the Tikhonov regularization which gives the stable solution (4.27) provided that
an appropriate regularization parameter λ is chosen. The accuracy error of this
regularized solution, as a function of λ, is plotted in Figure 4.14. The minimum
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points λopt and the minimal errors are listed in Table 4.3. The L-curve criterion for
choosing λ produces an L-corner, as it also happened in Example 1. This is shown
in Figure 4.15 for various values of λ ∈ {10−9, 10−8, ..., 10} and for p ∈ {1, 3, 5}%
noisy data. Figure 4.15 shows that this corner region includes the values around
{λ0th = 10−6, λ1st = 10−6, λ2nd = 10−5} for p = 1%, λ0th,1st,2nd = 10−4 for p = 3%,
and λ0th,1st,2nd = 10−2 for p = 5%, which were previously obtained from Figure
4.14.

Figure 4.16 shows the regularized numerical solution for h(t) obtained λopt

given in Table 4.3 for p ∈ {1, 3, 5}% noisy data, in the zeroth, first and second-
order Tikhonov regularization. As in this example the desired solution (4.30) is
less smooth than the solution h(t) = t of Example 1, from Figure 4.16 it can
be seen that the zeroth and first-order regularizations produce more accurate re-
sults than the second-order regularization which imposes additional but unwanted
smoothness on the sought solution.
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Figure 4.14: The accuracy error ||hnum−hexact||, as a function of λ, for M = N =

80, p ∈ {1, 3, 5}% noise, obtained using (a) zeroth, (b) first, and (c) second-order
regularization, for the inverse problem of Example 2.
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Figure 4.15: The L-curves for N = M = 80, p ∈ {1, 3, 5}% noise, and (a) zeroth,
(b) first and (c) second-order regularization, for the inverse problem of Example
2.
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Figure 4.16: The exact solution (4.30) for h(t) in comparison with the regularized
numerical solution (4.27), for N = M = 80, p ∈ {1, 3, 5}% noise, for the inverse
problem of Example 2.
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Table 4.3: The error norms ||hnum−hexact|| for various order regularization meth-
ods and percentages of noise p, for the inverse problem of Example 2.

Regularization p = 1% p = 3% p = 5%

zeroth λopt = 10−6 λopt = 10−6 λopt = 10−5

0.2008 0.3388 0.3925

first λopt = 10−4 λopt = 10−4 λopt = 10−4

0.1909 0.2365 0.3125

second λopt = 10−2 λopt = 10−2 λopt = 10−2

0.2475 0.3641 0.4980

4.5.3 Example 3

We finally consider the Robin boundary condition (4.2). Let the initial conditions
(3.14) be given by

u(x, 0) = ϕ(x) = sin

(
3π

4
x+

π

8

)
, ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (4.31)

and the Robin boundary conditions (4.2) be given by

−∂u
∂x

(0, t) +
3π

4
cot
(π

8

)
u(0, t) = 0,

∂u

∂x
(1, t)− 3π

4
cot

(
7π

8

)
u(1, t) = 0,

t ∈ [0, 1]. (4.32)

We also take in (4.15),

f1(x, t) = sin

(
3π

4
x+

π

8

)
, f2(x, t) =

9π2

16
sin

(
3π

4
x+

π

8

)
,

x ∈ (0, 1), (4.33)

h(t) = 6t+
9π2

16
t3, t ∈ [0, 1]. (4.34)

Then, the exact solution of the direct problem (4.15), (4.31) and (4.32) is given
by

u(x, t) = (t3 + 1) sin

(
3π

4
x+

π

8

)
, (x, t) ∈ [0, 1]× [0, 1]. (4.35)
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For the weight function (4.25), the desired output (4.3) is given by

Λ(t) =

∫ 1

0

ω(x)u(x, t)dx =
32

27π3

(
3π sin

(π
8

)
− 8 cos

(π
8

))
(t3 + 1),

t ∈ [0, 1]. (4.36)

The FDM requires slight modifications from the Dirichlet boundary condition
(4.22) when implementing the Robin boundary conditions (4.32), but this poses
no difficulty, (Smith, 1985). We simply approximate the x-derivatives at x = 0

and 1 using central finite differences by introducing fictitious points outside the
space domain [0, 1] and apply the general FDM scheme (3.17) for j = 0 and N ,
as well.

The absolute errors between the numerical and exact solutions for u(x, t) at
interior points are shown in Figure 4.17 and one can observe that an excellent
agreement is obtained. Figure 4.18 also gives the absolute error between the
exact (4.36) and numerical desired output integral (4.3). From this figure it can
be seen that the numerical results converge to the exact solution (4.36), asN = M

increases.
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Figure 4.17: The absolute errors between the exact (4.35) and numerical displace-
ment u(x, t) obtained by solving the direct problem with N = M = (a) 10, (b)
20, (c) 40, and (d) 80, for Example 3.
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Figure 4.18: The absolute error between the exact (4.36) and numerical Λ(t) ob-
tained by solving the direct problem with N = M ∈ {10, 20, 40, 80}, for Example
3.

The inverse problem given by equations (4.15), (4.31), (4.32) and (4.36) is
considered next. The exact solution is given by equations (4.34) and (4.35).

The discretised inverse problem reduces to solving a global linear, but ill-
conditioned system of (M+1)×N+N equations with (M+1)×N+N unknowns.
Since this system is linear we can eliminate the unknowns ui,j for i = 0,M ,
j = 1, N , as in (4.20), to reduce the problem to solving an ill-conditioned system
of N equations with N unknowns.

4.5.3.1 Exact data

We first consider the case of exact data, i.e. p = 0 and hence ε = 0 in (4.18).
The numerical results corresponding to h(t) and u(x, t) are plotted in Figures
4.19 and 4.21, respectively. From these figures it can be seen that convergent and
accurate numerical solutions are obtained. The same comments to those made
in subsection 4.5.1.1 for Example 1 apply to Example 3 with the mention that
the `2-errors between the analytical and numerical h, plotted in Figure 4.19, as
functions of N , have been obtained to be E = 0.3703, 0.2406, 0.1629 and 0.1127
for (M =)N = 10, 20, 40 and 80, respectively. Also, the order of convergence in
h(t) is approximatively 0.5, see Figure 4.20(a), which is lower than 1.6 previously
obtained for Example 1 in Figure 4.5(a). This shows that the Robin inverse
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problem considered in Example 3 is more severe than the Dirichlet inverse problem
of Example 1, see also Table 4.1 for the comparison of the condition numbers of
the matrices of Examples 1 and 3.

As for as Figure 4.21 is concerned, the errors decrease as N increases, the `2-
errors between the analytical and numerical u(x, t) are E = 5.4E − 3, 1.3E − 3,
3.3E − 4 and 8.3E − 5 for (M =)N = 10, 20, 40, and 80, respectively, and
the order of convergence is approximatively 2, see Figure 4.20(b). The errors in
u(x, t) in Figure 4.21 are lower than those of Figure 4.17 for the direct problem
but this difference is not as prominent as that observed previously by comparing
Figures 4.6 and 4.2 of Example 1.
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Figure 4.19: The exact (—) solution (4.34) for h(t) in comparison with the nu-
merical solution (—∆—) for various N = M = (a) 10, (b) 20, (c) 40, and (d) 80,
no regularization, for exact data, for the inverse problem of Example 3.
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Figure 4.20: The log-log plot of the `2-errors between the analytical and numerical
(a) h(t) and (b) u(x, t), as functions of N , for Example 3.
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Figure 4.21: The absolute errors between the exact (4.35) and numerical displace-
ment u(x, t) obtained with N = M = (a) 10, (b) 20, (c) 40, and (d) 80, and no
regularization, for exact data, for the inverse problem of Example 3.

4.5.3.2 Noisy data

In order to investigate the stability of the numerical solution we include some
p ∈ {1, 3, 5}% noise into the input data (4.13), as given by equation (4.18). The
numerical solution for h(t) obtained with N = M = 80 and no regularization has
been found highly oscillatory and unstable similar to that obtained in Figure 4.7
and therefore is not presented. In order to deal with this instability we employ
the zeroth order, first-order and second-order Tikhonov regularization, similar
to Section 4.5.1.2 for Example 1. The accuracy error of the regularized solution
(4.27), as a function of λ, is plotted in Figure 4.22. The minimum points λopt
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and the minimal errors are listed in Table 4.4. The L-curve criterion for choosing
λ produces an L-corner, as it also happened in Example 1. This is shown in
Figure 4.23 for various values of λ ∈ {10−8, 10−7, ..., 10} and for p ∈ {1, 3, 5}%
noisy data. Figure 4.23 shows that this corner region includes the values around
{λ0th = 10−7, λ1st = 5 × 10−5, λ2nd = 5 × 10−2} for p = 1%, {λ0th = 10−6, λ1st =

10−4, λ2nd = 10−1} for p = 3%, and {λ0th = 10−5, λ1st = 10−4, λ2nd = 10−1} for
p = 5%, as previously predicted from Figure 4.22.

Figure 4.24 shows the regularized numerical solution for h(t) obtained with
λopt given in Table 4.4 for p ∈ {1, 3, 5}% noisy data, in the zeroth, first and
second-order Tikhonov regularization. As in Example 1, one can see that the
second-order regularization method produces the most stable and accurate nu-
merical results. As in Example 1, this is expected since the desired solution
(4.34) for Example 3 is very smooth and hence stronger regularization will pro-
duce smoother solutions.
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Figure 4.22: The accuracy error ||hnum−hexact||, as a function of λ, for M = N =

80, p ∈ {1, 3, 5}% noise, obtained using (a) zeroth, (b) first, and (c) second-order
regularization, for the inverse problem of Example 3.
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Figure 4.23: The L-curves for N = M = 80, p ∈ {1, 3, 5}% noise, and (a) zeroth,
(b) first and (c) second-order regularizations, for the inverse problem of Example
3.
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Figure 4.24: The exact solution (4.34) for h(t) in comparison with the numerical
regularized solution (4.27), for N = M = 80, p ∈ {1, 3, 5}% noise, for the inverse
problem of Example 3.
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Table 4.4: The error norms ||hnum−hexact|| for various order regularization meth-
ods and percentages of noise p, for the inverse problem of Example 3.

Regularization p = 1% p = 3% p = 5%

zeroth λopt = 10−7 λopt = 10−6 λopt = 10−5

24.4962 29.5028 33.5244

first λopt = 5× 10−5 λopt = 10−4 λopt = 10−4

23.0137 24.4016 26.1625

second λopt = 5× 10−2 λopt = 10−1 λopt = 10−1

1.5648 2.1300 3.3874

4.6 Conclusions

In this chapter, the determination of a time-dependent force from the space av-
erage integral of the displacement in the wave equation has been investigated.
This linear inverse problem is uniquely solvable, but is still ill-posed since small
errors in the input data cause large errors in the output force. The problem was
discretised numerically using the FDM, and in order to stabilise the solution, the
Tikhonov regularization method of various orders has been employed. The choice
of the regularization parameter was based on the L-curve criterion. Numerical
simulations for a wide range of external forces have been performed in order
to test the validity of the present investigation. The obtained results indicate
that the method can accurately and stably recover the unknown force. Although
the numerical method and results have been presented for the one-dimensional
time-dependent wave equation a similar FDM can easily be extended to higher
dimensions.

In closure, we note that a similar time-dependent heat source problem but for
the parabolic heat equation has recently been investigated in (Hazanee Ismailov
Lesnic and Kerimov, 2013) using the same technique based on the Tikhonov reg-
ularization method of various orders, (though discretised with the BEM instead
of FDM) and similar conclusions have been obtained. In the absence of an a
priori knowledge of the regularity class of the coefficient h(t) it would be difficult
to state which order one should choose and one may pick the zeroth-order as it is
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the largest class. One way to deal with this situation is to employ the methods
of iterative regularization, as is described in the next chapter.
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Chapter 5

Inverse space-dependent force
problem for the wave equation

5.1 Introduction

As mentioned at the end of Chapter 2, in this chapter we investigate the retrieval
of a space-dependent force function from internal displacement measurements at
a fixed time. Prior to this study, the reconstruction of a space-dependent force
in the wave equation from Cauchy data measurements of both displacement and
its normal derivative on the boundary has been attempted in several studies, e.g.
(Cannon and Dunninger, 1970; Hussein and Lesnic, 2014, 2016). Although the
uniqueness of solution still holds, (Engl, Scherzer and Yamamoto, 1994; Klibanov,
1992; Yamamoto, 1995), this inverse formulation is, as expected, improperly posed
because the unknown output force f(x) depends on x in the domain Ω, whilst the
known input data, say u and ∂nu, depend on (x, t) on the boundary ∂Ω× (0, T ).
Therefore, it seems more natural to measure instead information about the dis-
placement u(x, t) for x ∈ Ω and time t = T , or the time-averaged displacement∫ T

0
u(x, t)dt for x ∈ Ω. This way, the output-input mapping satisfies the meta-

theorem that the overposed data and the unknown force function lie in the same
direction, (Pilant and Rundell, 1990). This spacewise-dependent force f(x) iden-
tification from the upper-base spacewise dependent displacement measurement
u(x, T ) has been investigated theoretically in Section 8.2 of (Prilepko, Orlovsky
and Vasin, 2000), where the uniqueness of a solution was proved. For other wave
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5.2 Problem formulation

related force identification studies which use the final time displacement data we
refer to (Hasanov, 2008) which employs a weak solution approach for a relatively
general inverse problem with a highly non-unique solution, and to (Slodicka, 2014)
which nicely introduces a quasi-nonlinearity in the governing wave equation to re-
solve the non-uniqueness of solution. The other inverse problem generated by the
measurement of the time-averaged displacement

∫ T
0
u(x, t)dt which we investigate

in our study is new. Essentially, the same inverse problem with unknown space-
wise dependent right-hand side source in the governing equation arises also for
the parabolic heat equation in the thermal field, see (Erdem, Lesnic and Hasanov,
2013; Johansson and Lesnic, 2007b).

The plan of the chapter is as follows. Section 5.2 introduces the inverse prob-
lem formulations, whilst Section 5.2.1 highlights several issues related to the ex-
istence, uniqueness and stability of a solution to the direct and inverse problems,
respectively. Section 5.3 presents the variational formulations of the inverse prob-
lems under investigation and derives explicitly the expressions for the gradients of
the least-squares functionals which are minimized. Section 5.4 describes the itera-
tive Landweber method accommodated and applied in order to obtain regularized
stable solutions, whilst Section 5.5 illustrates and discusses extensive numerical
results in one dimension, for the recovery of smooth as well as non-smooth force
functions. Furthermore, the conjugate gradient method (CGM) is also described
and employed in one of the examples. A numerical extension to two-dimensions
is presented in Section 5.6 and finally, conclusions are presented in Section 5.7.

5.2 Problem formulation

Assume that we have a medium, denoted by Ω, occupying a bounded sufficiently
smooth domain in Rn, where n ≥ 1. The boundary of Ω is denoted by ∂Ω, and
we define the space-time cylinder QT = Ω× (0, T ), where T > 0. We wish to find
the displacement u(x, t) and the force f(x) in the hyperbolic wave equation

utt −∇2u = f(x)g(x, t) + χ(x, t) in QT , (5.1)

where g and χ are given functions. For inhomogeneous media, we can have
Lu = c(x)∇2u, or ∇ · (K(x)∇u), where c and K are given positive material
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5.2 Problem formulation

properties, (Chow and Zou, 2015), replacing the Laplace operator in (5.1)
Equation (5.1) has to be solved subject to prescribed initial conditions (3.3)

and (3.4), prescribed homogeneous Dirichlet boundary conditions (4.1), and the
additional final displacement measurement

u(x, T ) = uT (x), x ∈ Ω, (5.2)

or, the time-average displacement measurement∫ T

0

u(x, t)dt = UT (x), x ∈ Ω. (5.3)

5.2.1 Inverse problem

Consider first, for simplicity, the one-dimensional case, i.e. n = 1, and take
Ω = (0, L). Let us also take χ(x, t) = 0, and g(x, t) = 1. Then, in (Cannon and
Dunninger, 1970) it was remarked that the inverse force problem (5.1)-(5.2) has
a unique solution if and only if T/L /∈ Q, i.e. T/L is an irrational number. This
follows immediately from separation of variables, whereas for ϕ = ψ = 0 and
g = 1 the solution of the inverse problem

utt − uxx = f(x), (x, t) ∈ (0, L)× (0, T ), (5.4)

u(x, 0) = ut(x, 0) = 0, x ∈ (0, L), (5.5)

u(0, t) = u(L, t) = 0, t ∈ (0, T ), (5.6)

u(x, T ) = 0, x ∈ (0, L), (5.7)

is given by

u(x, t) =

√
2

π2

∞∑
k=1

ck
k2

(
1− cos

(
kπt

L

))
sin

(
kπx

L

)
, (5.8)

f(x) =
∞∑
k=1

ck sin

(
kπx

L

)
, (5.9)
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where

ck =

√
2

L

∫ L

0

f(x) sin

(
kπx

L

)
dx, k ≥ 1. (5.10)

Now, in order to impose (5.7) we apply (5.8) at t = T to obtain

0 =

√
2

π2

∞∑
k=1

ck
k2

(
1− cos

(
kπT

L

))
sin

(
kπx

L

)
, x ∈ (0, L). (5.11)

One can easily observe that ck = 0 for all k ≥ 1, and hence from (5.8) and (5.9),
u = f = 0, if and only if T/L /∈ Q. Moreover, this condition cannot be removed
even if one additionally prescribe ut(x, T ), as can be easily seen by differentiating
(5.8) with respect to t.

However, if we consider the additional time-average displacement measure-
ment (5.3) instead of (5.2), by integrating (5.8) with respect to t and make it
zero, we obtain

0 =

√
2

π2

∞∑
k=1

ck
k2

(
T − L

kπ
sin

(
kπT

L

))
sin

(
kπx

L

)
, x ∈ (0, L). (5.12)

Since kπT
L

> sin
(
kπT
L

)
for all k ∈ N∗, we then obtain that ck = 0 for every k ∈ N∗

and hence, from (5.8) and (5.9), that u = f = 0. Thus, the inverse problem
(5.4)-(5.6) together with the integral condition∫ T

0

u(x, t)dt = 0, x ∈ (0, L), (5.13)

has only the trivial solution, which in turn implies that the solution of the in-
verse problem given by equations (5.4)-(5.6) and the time-average displacement
measurement ∫ T

0

u(x, t)dt = UT (x), x ∈ (0, L), (5.14)

is unique, with no restriction on the ratio T/L being irrational number or not.
Even if one has proved that the solution exists and is unique, both inverse

problems (5.1)-(5.2) and (5.1), (3.3), (3.4), (4.1), (5.3) are still ill-posed since the
continuous dependence upon the input data (5.2) or (5.3) is violated. This can
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easily be seen from the following example of instability.

Example of instability
Let Ω = (0, L = π) and, for n ∈ N∗ take

un(x, t) =
(1− cos(nt)) sin(nx)

n3/2
, (x, t) ∈ (0, π)× (0, T ),

which satisfies the wave equation (un)tt = (un)xx+fn(x) with homogeneous initial
and Dirichlet boundary conditions, and

unT (x) = un(x, T ) =
(1− cos(nT )) sin(nx)

n3/2
, x ∈ (0, π),

UnT (x) =

∫ T

0

un(x, t)dt =
sin(nx)

n3/2

(
T − sin(nT )

n

)
, x ∈ (0, π),

with the force

fn(x) = n1/2 sin(nx), x ∈ (0, π).

One can observe that whilst all the input data tends to zero, the force fn(x)

becomes oscillatory and unbounded, as n→∞.

5.3 Variational formulation of the inverse prob-
lems

For the solution of the inverse problem (5.1)-(5.2), define the operatorA : L2(Ω)→
L2(Ω) by

Af = uf (·, T ), (5.15)

where uf (x, t) is the unique solution of the direct problem (5.1), (3.3), (3.4) and
(4.1) corresponding to the given force f (the other term g in the force is known
and fixed and we also take χ = 0). By A0 we denote the similar linear operator
defined for ϕ = ψ = 0. The inverse problem (5.1)-(5.2) recasts as

Af = uT . (5.16)
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Since in practice uT is contaminated with random noisy errors it is convenient to
minimize the least-squares cost functional J : L2(Ω)→ R+ defined by

J(f) =
1

2
||Af − uT ||2L2(Ω). (5.17)

In (Lesnic, Hussein and Johansson, accepted), we have shown that the gradient
of this functional is given by

J ′(f) = −
∫ T

0

g(x, t)v1(x, t)dt, (5.18)

where v1 solves the adjoint problem

(v1)tt −∇2v1 = 0, in QT , (5.19)

v1(x, T ) = 0, (v1)t(x, T ) = uf (x, T )− uT (x), x ∈ Ω, (5.20)

v1(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ). (5.21)

Similarly, for the solution of the inverse problem (5.1), (3.3), (3.4), (4.1), (5.3),
we define the operator Ã : L2(Ω)→ L2(Ω) by

Ãf =

∫ T

0

uf (., t)dt, (5.22)

and Ã0 denotes its linear part. Then the inverse problem (5.1), (3.3), (3.4), (4.1),
(5.3) recasts as

Ãf = UT . (5.23)

As in the previous case, since the right-hand side is in general contaminated
with noise, we seek a quasi-solution to (5.23) in the form of minimizing the cost
functional J̃ : L2(Ω)→ R+ defined by

J̃(f) :=
1

2
||Ãf − UT ||2L2(Ω). (5.24)

Its gradient is given by, see (Lesnic, Hussein and Johansson, accepted),

J̃ ′(f) = −
∫ T

0

(∫ t

0

g(x, s)ds

)
ṽ1(x, t)dt, (5.25)
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where ṽ1 solves the adjoint problem

(ṽ1)tt −∇2ṽ1 = 0, in QT , (5.26)

ṽ1(x, T ) = 0, (ṽ1)t(x, T ) =

∫ T

0

uf (x, t)dt− UT (x), x ∈ Ω, (5.27)

ṽ1(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ). (5.28)

5.4 An iterative procedure for the inverse problem

In much of the previous chapters where the non-iterative Tikhonov regularization
method was used there could be some difficulty in choosing the order of the
regularization if no a priori knowledge on the smoothness of solution is available.
In such a situation, one could resort to iterative methods of regularization which
do not involve choosing any order of regularization. One such popular method is
the Landweber method, which is commonly used for solving ill-posed problems,
see (Landweber, 1951), and has been previously employed by (Johansson and
Lesnic, 2007b) for solving the inverse related source problem for the heat equation.

Once the gradient of the functional J (or J̃) has been explicitly derived, as
described in the previous section, we apply the iterative Landweber method for
minimising the functionals (5.17) (or (5.24)) using the recurrence (5.31) below.
This has a reqularization character producing a stable solution if the iteration
process is stopped according to (5.34) below, see for more details (Engl, Hanke
and Neubauer, 2000), as follows:

(i) Choose an arbitrary function f0 ∈ L2(Ω). Let u0 be the solution of the
direct problem (5.1), (3.3), (3.4), (4.1) with f = f0.

(ii) Assume that fk and uk have been constructed. For the inverse problem
(5.1) and (5.2), let vk solve the adjoint problem (5.18)-(5.21) and calculate
the gradient (5.18) given by

zk(x) = −
∫ T

0

g(x, t)vk(x, t)dt, x ∈ Ω. (5.29)
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For the inverse problem (5.1), (3.3), (3.4), (4.1) and (5.3) let ṽk solve the
adjoint problem (5.25)-(5.28) and calculate the gradient (5.25) given by

zk(x) = −
∫ T

0

(∫ t

0

g(x, s)ds

)
ṽk(x, t)dt, x ∈ Ω. (5.30)

(iii) Construct the new iterate for the force given by

fk+1(x) = fk(x)− γzk(x), x ∈ Ω, (5.31)

where 0 < γ is sufficiently small.

Let uk+1 be the solution of the direct problem (5.1), (3.3), (3.4), (4.1) with
f = fk+1.

(iv) Repeat steps (ii) and (iii) until convergence is achieved in the case of exact
data uT (or UT ). In the case of noisy data

||uT − uεT ||L2(Ω) ≤ ε, or ||UT − U ε
T ||L2(Ω) ≤ ε (5.32)

we can use the Morozov discrepancy principle, see e.g. (Elfving and Nikazad,
2007; Engl, Hanke and Neubauer, 2000), to terminate the iterations. This
suggests choosing the stopping index k = k(ε) as the smallest k for which

||uεk(., T )− uεT ||L2(Ω) ≤ τε, or

∥∥∥∥∥
∫ T

0

uεk(., t)dt− U ε
T

∥∥∥∥∥
L2(Ω)

≤ τε, (5.33)

where τ > 1 is some constant to be prescribed. According to (5.17) and
(5.24), criterion (5.33) can be rewritten as

J(fk) ≤ τ 2 ε
2

2
, or J̃(fk) ≤ τ 2 ε

2

2
. (5.34)

5.5 Numerical results and discussion

In all examples in this section we take, for simplicity, T = 1 and χ = 0. The
examples are one-dimensional, i.e. n = 1 and Ω = (0, L) with L = 1 for simplicity.
The extension of the analysis to higher dimensions, e.g. n = 2-dimensions, is
illustrated separately in Section 5.6. We take the initial guess arbitrary such as
f0 ≡ 0. Also, except for Example 5, where we investigate the influence of the
relaxation parameter γ on the speed of convergence, in all other examples we take
γ = 1.
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5.5.1 Example 1

Consider first the direct problem (5.1), (3.3), (3.4) and (4.1) given by wave equa-
tion

utt − uxx = f(x)g(x, t), (x, t) ∈ (0, 1)× (0, 1), (5.35)

and the input data

u(x, 0) = ϕ(x) = 2 sin(πx), ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (5.36)

u(0, t) = u(1, t) = 0, t ∈ (0, 1], (5.37)

g(x, t) = 1, (x, t) ∈ (0, 1)× (0, 1). (5.38)

f(x) = π2 sin(πx), x ∈ (0, 1). (5.39)

The exact solution of this problem is given by

u(x, t) = sin(πx)(cos(πt) + 1), (x, t) ∈ [0, 1]× [0, 1]. (5.40)

We will illustrate the numerical results for obtaining the final displacement

u(x, T ) = u(x, 1) = uT (x) = 0, x ∈ [0, 1], (5.41)

and the time-average displacement∫ T

0

u(x, t)dt =

∫ 1

0

u(x, t)dt = UT (x) = sin(πx), x ∈ [0, 1], (5.42)

as this will become the input data in the inverse problem later on.
The discrete finite-difference form of the problem (5.35)-(5.37) is as follows.

We divide the solution domain (0, L)× (0, T ) into M and N subintervals of equal
space length ∆x and time-step ∆t, where ∆x = L/M and ∆t = T/N . We put
ui,j := u(xi, tj), where xi = i∆x, tj = j∆t, fi := f(xi) and gi,j := g(xi, tj) for
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5.5 Numerical results and discussion

i = 0,M , j = 0, N . Then, a central-difference approximation to equations (5.35)-
(5.37) at the mesh points (xi, tj) = (i∆x, j∆t) of the rectangular mesh covering
the solution domain (0, L)× (0, T ) is,

ui,j+1 = r2ui+1,j + 2(1− r2)ui,j + r2ui−1,j − ui,j−1 + (∆t)2figi,j, (5.43)

i = 1, (M − 1), j = 1, (N − 1),

ui,0 = ϕ(xi), i = 0,M,
ui,1 − ui,−1

2∆t
= ψ(xi), i = 1, (M − 1), (5.44)

u0,j = 0, uM,j = 0, j = 1, N, (5.45)

where r = ∆t/∆x. Remark that (5.44) is the same as (3.18) but it has been
rewritten here again in order to stress that (5.43) initiates from these initial
values. Equation (5.43) represents an explicit FDM which is stable if r ≤ 1,
giving approximate values for the solution at mesh points along t = 2∆t, 3∆t, ...,

as soon as the solution at the mesh points along t = ∆t has been determined by
allowing j = 0 in equation (5.43) and using (5.44), to obtain

ui,1 =
1

2
r2ϕ(xi+1) + (1− r2)ϕ(xi) +

1

2
r2ϕ(xi−1) + (∆t)ψ(xi) +

1

2
(∆t)2figi,0,

i = 1, (M − 1). (5.46)

For finding the numerical solution to (5.41), we put j = N − 1 in (5.43). And for
(5.42) we use the trapezoidal rule approximation∫ T

0

u(xi, t)dt =
∆t

2

(
ϕ(xi) + 2

N−1∑
j=1

u(xi, tj) + u(xi, tN)

)
, i = 1,M − 1. (5.47)

The absolute errors between the exact solution (5.41) and the numerical solution
for uT , and also between (5.42) and (5.47) for UT , are shown in Figure 5.1 and
Table 5.1. From this figure and table, it can be seen that the numerical solutions
for uT and UT converge to the exact solutions (5.41) and (5.42), respectively, as
the FDM mesh size decreases, and this convergence is of second order.
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Figure 5.1: The absolute errors between exact and numerical solutions for (a)
uT (x) and (b) UT (x), for N = M ∈ {10, 20, 40, 80} for the direct problem of
Example 1.

Table 5.1: The `2-errors between exact and numerical solutions for uT (x) and
UT (x), for N = M ∈ {10, 20, 40, 80} for the direct problem of Example 1.

M = N 10 20 40 80

`2 − error in uT 0.0123 0.0029 0.0007 0.0001

`2 − error in UT 0.0062 0.0015 0.0004 9.1E − 5

In all inverse numerical simulations in Section 5.5 we fix N = M = 80.

5.5.1.1 Inverse problem

Since from (5.38) we have g ≡ 1, and also since T/L = 1 ∈ Q we do not have
the uniqueness of a solution of the inverse problem (5.35)-(5.37) when measuring
the final displacement (5.41). Therefore, for Example 1 we only consider the
inverse problem (5.35)-(5.37) with the time-average displacement measurement
(5.42) which, according to the discussion in Section 5.2.1, has a unique solution
given by equations (5.39) and (5.40).

The objective function (5.24) discretised and given by

J̃(fk) =
1

2
||ξk||2 =

1

2

M−1∑
i=1

ξ2
k(xi), (5.48)
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where

ξk =

∫ T

0

uk(x, t)dt− UT (x), x ∈ Ω, (5.49)

is plotted in Figure 5.2(a), as a function of the number of iterations k. From this
figure it can be seen that convergence of J̃ is achieved after about 3000 iterations.
Figure 5.2(b) shows the error between the exact solution f and numerical solution
fk, defined by

E(fk) = ||fexact − fk|| =

√√√√M−1∑
i=1

(f(xi)− fk(xi))2, (5.50)

as a function of the number of iterations. From this figure it can be seen a
monotonic decreasing convergence to zero of the error (5.50). In fact, we obtain
that E(f500) = 0.366 which is small compared to the maximum value of f which,
from (5.39), is about 10.
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Figure 5.2: (a) The objective function J̃(fk) and (b) the accuracy error E(fk),
versus the number of iterations k = 1, 5000, no noise for the inverse problem of
Example 1.

Figure 5.3 shows the numerical solution fk at various iteration numbers k.
From this figure a monotonic increasing convergence of the numerical solution fk
towards the exact solution (5.39) can be clearly observed.
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Figure 5.3: The numerical solution fk at various iteration numbers k, in compar-
ison with the exact solution (5.39), no noise for the inverse problem of Example
1.

In practice, the additional observation (5.3) comes from measurement which
is inherently contaminated with errors. We therefore model this by replacing the
exact data UT by the noisy data

U ε
T (xi) = UT (xi) + εi, i = 1, (M − 1), (5.51)

where (εi)i=1,M−1 are random variables generated (using the MATLAB routine
’normrd’) from a Gaussian normal distribution with mean zero and standard
deviation σ = p×maxx∈[0,L] |UT (x)|, where p represents the percentage of noise.
The total amount of noise introduced in the objective functional (5.24) is then
given by

1

2
ε2 =

1

2

M−1∑
i=1

ε2i . (5.52)

In order to investigate the stability of the numerical solution we include some
p ∈ {10, 30, 50}% noise into the input data (5.42), as given by equation (5.51).
The objective functional J̃(fk) and the errors E(fk) are shown in Figure 5.4 for
k = 1, 500 iterations. In Figure 5.4(a) the threshold τ 2 ε2

2
(with τ = 1.15) in the

stopping criterion (5.34) is included and indicated by a horizontal line. Intersect-
ing the horizontal line y = τ 2 ε2

2
with the graph of the objective functional J̃(fk)

yields the stopping iteration number kdiscr given by the discrepancy principle cri-
terion (5.34). On the other hand, the minimum of the curve E(fk) in Figure
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5.5 Numerical results and discussion

5.4(b) yields the optimal iteration number kopt. For various percentages of noise
p, the values of kdiscr and kopt together with the corresponding accuracy errors
(5.50) are given in Table 5.2 for better illustrative purposes. From Figures 5.4(a),
5.4(b) and Table 5.2 it can be seen that there is not much difference between kopt
and kdiscr for all percentages of noise p considered and this adds to the robustness
of the numerical iterative method employed.
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Figure 5.4: (a) The objective function J̃(fk) and (b) the accuracy error E(fk),
versus the number of iterations k = 1, 500, for p = 10% (—), p = 30% (- - -) and
p = 50% (· · ·) noise for the inverse problem of Example 1. The horizontal lines
in (a) represent the threshold τ 2ε2/2 with τ = 1.15.

Table 5.2: The stopping iteration number kdiscr chosen according to the discrep-
ancy principle criterion (5.34) (with τ = 1.15), as illustrated in Figure 5.4(a),
and the optimal iteration number kopt chosen according to the minimum of the
accuracy error function (5.50) in Figure 5.4(b) for various percentages of noise
p ∈ {10, 30, 50}% for Example 1. The corresponding accuracy errors E(fkdiscr)

and E(fkopt) are also included.

p 10% 30% 50%

kopt 373 276 232

E(fkopt) 1.8471 4.2181 6.0124

kdiscr 300 245 205

E(fkdiscr) 2.5213 4.5269 6.4347
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Figures 5.5(a) and 5.5(b) show the regularized numerical solution for f(x)

obtained with various values of the iteration numbers listed in Table 5.2, namely,
kopt ∈{373, 276, 232} and kdiscr ∈{240, 225, 220}, respectively, for p ∈{10, 30, 50}%
noisy data. From these figures it can be seen that there is not much difference
obtained between the corresponding curves in Figures 5.5(a) and 5.5(b), except
perhaps slightly for p = 10%. Moreover, the numerical results illustrated in
Figure 5.5(b) reveal that stable numerical solutions are obtained if one stops
the iteration process according to the discrepancy principle (5.34). Stability is
further maintained even for large percentages of noise such as p = 50%. Further-
more, as expected, numerical results in Figure 5.5(b) become more accurate as
the percentage of noise p decreases.
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Figure 5.5: The exact solution f in comparison with the numerical solution fk for
(a) kopt ∈ {373, 276, 232} and (b) kdiscr ∈ {300, 245, 205}, for p ∈ {10, 30, 50}%
noise, for the inverse problem of Example 1.

5.5.2 Example 2

Consider the inverse problem given by the wave equation (5.35) with the input
data (5.37),

u(x, 0) = ϕ(x) = sin(πx), ut(x, 0) = ψ(x) = sin(πx), x ∈ [0, 1], (5.53)

g(x, t) = et(π2 + 1), (x, t) ∈ (0, 1)× (0, 1), (5.54)
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and the diplacement measurement at the final time t = T = 1

u(x, t) = u(x, 1) = uT (x) = sin(πx)e, x ∈ [0, 1], (5.55)

or the time-average displacement∫ T

0

u(x, t)dt =

∫ 1

0

u(x, t)dt = UT (x) = sin(πx)(e− 1), x ∈ [0, 1]. (5.56)

One can easily observe that the function (5.54) satisfies g(x, t) ≥ 0, gt(x, t) >

0, for every (x, t) ∈ QT and hence, according to (Lesnic, Hussein and Johansson,
accepted), both the inverse problems (5.35), (5.37), (5.53), (5.55), and (5.35),
(5.37), (5.53), (5.56) have unique solutions. In fact, it can readily be checked by
direct substitution that the analytical solution of both problems is given by

u(x, t) = sin(πx)et, (x, t) ∈ [0, 1]× [0, 1], (5.57)

f(x) = sin(πx), x ∈ (0, 1). (5.58)
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Figure 5.6: (a) The objective function J(fk) and (b) the corresponding accuracy
error E(fk) for the inverse problem of Example 2 with the displacement mea-
surement (5.55), and (c) the objective function J̃(fk) and (d) the corresponding
accuracy error E(fk) for the inverse problem of Example 2 with the time-average
displace measurement (5.56). All curves are as functions of the number of itera-
tions k = 1, 50, for no noise.

For exact data, i.e. no noise in (5.55) and (5.56), Figures 5.6 and 5.7 are
analogous to Figures 5.2 and 5.3 of Example 1 and similar conclusions can be
drawn. Remark that the errors in Figure 5.6(b) are ten times smaller than in
Figure 5.2(b) because the force function (5.58) is about π2 ≈ 10 time smaller
than the force function (5.39). Furthermore, by inspecting Figures 5.6 and 5.7 it
can be seen that for Example 2 the convergence is much faster when using the
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5.5 Numerical results and discussion

displacement measurement (5.55) than when using the time-average displacement
measurement (5.56). This illustrates the fact that the pointwise measurement
(5.55) contains stronger information than the local average measurement (5.56).
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Figure 5.7: The numerical solution fk at various iteration numbers k, in compar-
ison with the exact solution (5.58), no noise for the inverse problem of Example
2 with (a) the displacement measurement (5.55), and (b) the time-average dis-
placement measurement (5.56).

In order to investigate the stability of the numerical solutions we include
some p ∈ {1, 3, 5}% noise into the input data (5.55) (or (5.56)), as given by
a similar expression to (5.51). For this noisy data, Figures 5.8, 5.9 and Table
5.3 are analogous to Figures 5.4, 5.5 and Table 5.2 of Example 1 and similar
conclusions can be drawn. Stability is achieved if the iterations are stopped at
the index kdiscr which is much closer to kopt for Example 2 than for Example 1
because the amount of noise is much smaller (10 times) in the former case. For
the same reason, the agreement between the numerical and analytical solutions
is much better in Figure 5.9 than in Figure 5.5. The final thing to remark is that
from Figures 5.8(b) and 5.8(d) (and also previously from Figure 5.4(b)) one can
observe the semi-convergence phenomenon which is commonly encountered with
iterative regularization techniques for solving ill-posed problems, see for more
detail (Elfving, Nikazad and Hansen, 2010).
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Figure 5.8: (a) The objective function J(fk) and (b) the corresponding accuracy
error E(fk) for the inverse problem of Example 2 with the displacement mea-
surement (5.55), and (c) the objective function J̃(fk) and (d) the corresponding
accuracy error E(fk) for the inverse problem of Example 2 with the time-average
displace measurement (5.56). All curves are as functions of the number of iter-
ations k = 1, 50, for p = 1% (—), p = 3% (- - -) and p = 5% (· · ·) noise. The
horizontal lines in (a) and (c) represent the threshold τ 2ε2/2 with τ = 1.15 and
τ = 1.25, respectively.
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Table 5.3: The stopping iteration number kdiscr chosen according to the discrep-
ancy principle criterion (5.34), as illustrated in Figures 5.8(a) and 5.8(c), and
the optimal iteration number kopt chosen according to the minimum of the accu-
racy error function (5.50) in Figures 5.8(b) and 5.8(d), for various percentages
of noise p ∈ {1, 3, 5}% for Example 2 with the displacement measurement (5.55)
and τ = 1.15 (upper part of the table) and with the time-average displacement
measurement (5.56) and τ = 1.25 (lower part of the table). The corresponding
accuracy errors E(fkdiscr) and E(fkopt) are also included.

p 1% 3% 5%

kopt 7 6 6

E(fkopt) 0.0102 0.0286 0.0464

kdiscr 6 5 4

E(fkdiscr) 0.0107 0.0313 0.0632

kopt 36 30 27

E(fkopt) 0.0286 0.0725 0.1102

kdiscr 33 27 24

E(fkdiscr) 0.0310 0.0778 0.1200

So far, we have tested successfully examples for which analytical solutions for
the displacement and force are available, as given by equations (5.39) and (5.40)
for Example 1, and (5.57) and (5.58) for Example 2. The next three examples that
we test concern relatively arbitrary input data for which an analytical solution
for the displacement u(x, t) is not readily available.
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Figure 5.9: The numerical solution fk at various iteration numbers k, in compari-
son with the exact solution (5.58), for p ∈ {1, 3, 5}% noise for the inverse problem
of Example 2 with the displacement measurement (5.55) for (a) kopt ∈ {7, 6, 6},
(b) kdiscr ∈ {6, 5, 4}, and with the time-average displacement measurement (5.56)
for (c) kopt ∈ {36, 30, 27}, (d) kdiscr ∈ {33, 27, 24}.

5.5.3 Example 3

Consider first the direct problem given by the wave equation (5.35) with the input
data (5.37),

u(x, 0) = ϕ(x) = sin(πx), ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (5.59)

g(x, t) = 1 + t, t ∈ [0, 1], (5.60)
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f(x) =
1

σ̃
√

2π
exp

(
−(x− µ)2

2σ̃2

)
, (5.61)

where σ̃ = 0.1 and µ = 0.5. Note that for this example, the force (5.61) is a
Gaussian normal function with mean µ and standard deviation σ̃. As σ̃ → 0,
expression (5.61) mimics the Dirac delta distribution ∆(x− µ).

Unlike in the previous two examples, for the above direct problem an explicit
analytical solution for the displacement u(x, t) is not readily available and there-
fore, the values (5.2) and (5.3) of u(x, 1) and

∫ 1

0
u(x, t)dt, illustrated in Figures

5.10(a) and 5.10(b), respectively, have been obtained numerically using the FDM,
as described in subsection 5.5.1. From these figures, a rapid convergence of the
numerical results can be observed.

We next solve the inverse problems using the numerically simulated data with
N = M = 80 from Figure 5.10. In the numerical solutions of the direct and
adjoint problems of the iterative procedure described in Section 5.4 we also take
N = M = 80 and γ = 1. We deliberately use the same mesh discretisation
N = M = 80 in order to check for exact data the numerical convergence of the
Landweber method proposed in the absence of any numerical discretisation error,
the only noise present being of the O(10−16) double precision computer round-off
errors. Note that we do not commit an inverse crime since the initial guess is
arbitrary, we also add random noise to the input data and the inverse iterative
procedure is different than the direct problem solver.
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Figure 5.10: Numerical solution for (a) u(x, 1) and (b)
∫ 1

0
u(x, t)dt, for various

N = M ∈ {5, 10, 20, 80}, for the direct problem of Example 3.

5.5.3.1 Inverse problems

As in Example 2, the function (5.60) satisfies g(x, t) ≥ 0, gt(x, t) > 0, for every
(x, t) ∈ QT and hence, see (Lesnic, Hussein and Johansson, accepted), both the
inverse problems (5.35), (5.37), (5.59) with the input (5.2) or (5.3) represented
in Figure 5.10(a) or 5.10(b), respectively, have unique solutions.

First consider the case without noise, i.e. p = 0. Figure 5.11 shows the
objective functions (5.17) and (5.24), and the corresponding accuracy error (5.50),
versus the number of iterations. Also, Figure 5.12 shows the convergence of the
corresponding numerical solutions, as the number of iterations increases. From
both figures it can be seen that the number of iterations needed to achieve a
high level of accuracy is large of O(105). It is much larger than in the previous
Examples 1 and 2 because the force function (5.61) to be retrieved has a small
standard deviation σ̃ and therefore a sharper peak centred at the mean value
µ = 0.5 than the trigonometric functions (5.39) and (5.58). By comparing the
results in Figures 5.11 and 5.12 one can also observe that the convergence for
the inverse problem with the displacement measurement (5.2) is much faster
(and for most number of iterations more accurate) than that with time-average
displacement measurement (5.14).
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Figure 5.11: (a) The objective functions J(fk), J̃(fk) and (b) the accuracy error
E(fk), versus the number of iterations k = 1, 105, no noise for the inverse problem
of Example 3 with the displacement measurement (5.2) (- - -) and with the time-
average displacement measurement (5.14) (—).
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Figure 5.12: The numerical solution fk at various iteration numbers k, in compar-
ison with the exact solution (5.61), no noise for the inverse problem of Example 3
with (a) the displacement measurement (5.2), and (b) the time-average displace-
ment measurement (5.14).

Next we add some p ∈ {1, 3, 5}% noise in the input data with N = M = 80

of Figure 5.10. Figures 5.13, 5.14 and Table 5.4 are analogous to Figures 5.8, 5.9
and Table 5.3 of Example 2 and similar quantitative conclusions can be drawn
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in terms of comparing the inverse problems with either the displacement mea-
surement (5.2) numerically simulated in Figure 5.10(a) or with the time-average
measurement (5.14) numerically simulated in Figure 5.10(b). Of course, since
more iterations are required for Example 3 than for Example 2, the thresholds
kdiscr and kopt are much higher (and also more different between themselves) in
Table 5.4 than in Table 5.3. Furthermore, the accuracy of the numerical results
in Figure 5.9 for Example 2 is much higher than that in Figure 5.14 for Example
3, as expected since the trigonometric source (5.58) is less complicated than the
Gaussian normal bell-shaped function (5.61).
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Figure 5.13: (a) The objective function J(fk) and (b) the corresponding accuracy
error E(fk) for the inverse problem of Example 3 with the displacement measure-
ment from Figure 5.10(a) with N = M = 80, and (c) the objective function
J̃(fk) and (d) the corresponding accuracy error E(fk) for the inverse problem of
Example 3 with the time-average displace measurement of Figure 5.10(b) with
N = M = 80. All curves are functions of the number of iterations k = 1, 105, for
p = 1% (—), p = 3% (- - -) and p = 5% (· · ·) noise. The horizontal lines in (a)
and (c) represent the threshold τ 2ε2/2 with τ = 1.2 and τ = 1.1, respectively.
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Table 5.4: The stopping iteration number kdiscr chosen according to the discrep-
ancy principle criterion (5.34), as illustrated in Figures 5.13(a), 5.13(c), and the
optimal iteration number kopt chosen according to the minimum of the accuracy
error function (5.50) in Figures 5.13(b), 5.13(d), for various percentages of noise
p ∈ {1, 3, 5}% for Example 3 with the displacement measurement from Figure
5.10(a) with N = M = 80 and τ = 1.2 (upper part of the table) and with the
time-average displacement measurement from Figure 5.10(b) with N = M = 80

and τ = 1.1 (lower part of the table). The corresponding accuracy errors E(fkdiscr)

and E(fkopt) are also included.

p 1% 3% 5%

kopt 34080 20363 15577

E(fkopt) 0.5899 1.3122 1.9840

kdiscr 17712 7949 7012

E(fkdiscr) 0.9448 2.0762 2.5206

kopt 95908 49208 26760

E(fkopt) 1.1314 2.6532 3.8913

kdiscr 64996 35905 14998

E(fkdiscr) 1.2761 2.7219 4.1004
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Figure 5.14: The numerical solution fk at various iteration numbers k, in
comparison with the exact solution (5.61), for p ∈ {1, 3, 5}% noise for the
inverse problem of Example 3 with the displacement measurement from Fig-
ure 5.10(a) with N = M = 80 for (a) kopt ∈ {34080, 20363, 15577}, (b)
kdiscr ∈ {17712, 7949, 7012}, and with the time-average displacement measure-
ment from Figure 5.10(b) with N = M = 80 for (c) kopt ∈ {95908, 49208, 26760},
(d) kdiscr ∈ {64996, 35905, 14998}.

5.5.4 Example 4

Consider first the direct problem given by the wave equation (5.35) with the input
data (5.37),

u(x, 0) = ϕ(x) = 0, ut(x, 0) = ψ(x) = 0, x ∈ [0, 1], (5.62)
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g(x, t) = 1 + t, t ∈ [0, 1], (5.63)

f(x) =

{
x if 0 ≤ x ≤ 1

2
,

1− x if 1
2
< x ≤ 1.

(5.64)

Note that for this example, the force (5.64) has a triangular shape, being con-
tinuous but non-differentiable at the peak x = 1/2. This example also does not
possess an explicit analytical solution for the displacement u(x, t) being readily
available.
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Figure 5.15: Numerical solution for u(x, 1), for various N = M ∈ {5, 10, 20, 80},
for the direct problem of Example 4.

Figure 5.15 shows the rapid convergence of the FDM numerical solution u(x, 1)

of the direct problem (5.35), (5.37) and (5.62), as N = M increases. The nu-
merically simulated u(x, 1) with N = M = 80 is used as input data (5.2) in the
inverse problem (5.35), (5.37), (5.62).

It was observed in Example 3 and elsewhere that the convergence of the
Landweber iterative method described in Section 5.4 can become prohibitely slow.
One way to increase the rate of convergence is to increase the value of the re-
laxation parameter γ in (5.31) and we shall investigate this effect in the next
Example 5. Alternatively, one can speed up the convergence of the minimization
of the least-squares functional (5.17) or (5.24) by employing the convergent and
regularizing conjugate gradient method (CGM), see (Engl, Hanke and Neubauer,
2000), based on the recurrence (5.68) below. In addition, the CGM does not
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require any choice of a relaxation parameter γ, as the Landweber method does
in order to iterate in formula (5.31). Similarly, as described in (Erdem, Lesnic
and Hasanov, 2013; Johansson and Lesnic, 2007a) for the heat equation, this
algorithm runs as follows:

Let steps (i) and (ii) be the same as in the algorithm of Section 5.4. The next
steps are as follows:

(iii) Calculate

dk(x) = −zk(x) + βk−1dk−1(x), (5.65)

with the convention that β−1 = 0 and

βk−1 =
||zk||2L2(Ω)

||zk−1||2L2(Ω)

, k ≥ 1. (5.66)

(iv) Solve the direct problem (5.1), (3.3), (3.4), (4.1) with ϕ = ψ = 0 and
f = dk to determine A0dk or Ã0dk, where the operators A0 and Ã0 have
been defined in Section 5.3. Set the direction search

αk =
||zk||2L2(Ω)

||A0dk||2L2(Ω)

, or αk =
||zk||2L2(Ω)

||Ã0dk||2L2(Ω)

, k ≥ 0, (5.67)

and pass to the new iteration by letting

fk+1(x) = fk(x) + αkdk(x). (5.68)

(v) Let uk+1 solve the direct problem (5.1), (3.3), (3.4), (4.1) with f = fk+1

and go back (repeat) steps (ii)-(iv) until the discrepancy principle stopping
criterion (5.34) is satisfied.

Note that for Ω = (0, L) the L2(0, L) integrals in (5.66) and (5.67) are calculated
using the trapezoidal rule which, for the homogeneous Dirichlet boundary data
(5.37), is given by

||zk||2L2(0,L) = (∆x)
M−1∑
i=1

z2
k(xi), (5.69)
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and a similar expression exists for ||A0dk||2L2(0,L).
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Figure 5.16: (a) The objective function J(fk) and (b) the accuracy error E(fk),
versus the number of iterations k = 1, 105, obtained using the Landweber method
(—) and the CGM (- - -), no noise for the inverse problem of Example 4.
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Figure 5.17: Numerical solution fk for various iteration numbers k∈{101,103,105},
in comparison with the exact solution (5.64), obtained using (a) the Landweber
method and (b) the CGM, no noise for the inverse problem of Example 4.

The objective function (5.17), the accuracy error (5.50) and the numerical
solution for the force at various iteration numbers obtained using the Landweber
method and the CGM are plotted in Figures 5.16(a), 5.16(b) and 5.17, respec-
tively. From these figures it can be seen that it takes a large number of iterations
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of O(105) to converge with a good accuracy to the exact solution (5.64), similarly
to what happened for Example 3, when the Landweber method is employed. In
comparison to the previous Examples 1 and 2 this is to be expected because the
force function (5.64) to be retrieved is non-smooth possessing a sharp corner at
the peak x = 1/2. Moreover, the behaviour of the convergence is similar to that
of Example 3 for which the Gaussian normal force function (5.61) to be retrieved,
although smooth, it possesses also a sharp peak at x = 1/2. On the other hand,
the convergence is much faster when the CGM is employed.

When we add some p ∈ {1, 3, 5}% noise in the input data (5.2), the conclusions
are similar to those drawn from Example 3 if one compares Figures 5.18, 5.19 and
Table 5.5 with Figures 5.13, 5.14 and the upper part of Table 5.4. Furthermore,
the numerical details included in Table 5.5 show that the CGM is much faster
than the Landweber method in obtaining the thresholds kopt and kdiscr.
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Figure 5.18: (a) and (c) The objective function J(fk), and (b) and (d) the accu-
racy error E(fk), versus the number of iterations k = 1, 105, obtained using the
Landweber method and the CGM, respectively, for p = 1% (—), p = 3% (- - -)
and p = 5% (· · ·) noise for the inverse problem of Example 4. The horizontal
lines represents the threshold τ 2 ε2

2
with τ = 1.15.
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Table 5.5: The stopping iteration numbers kdiscr chosen according to the discrep-
ancy principle criterion (5.34) (with τ = 1.15), as illustrated in Figures 5.18(a)
and 5.18(c), and the optimal iteration numbers kopt chosen according to the min-
imum of the accuracy error function (5.50) in Figures 5.18(b) and 5.18(d), for
various percentages of noise p ∈ {1, 3, 5}% for Example 4. The corresponding
accuracy errors E(fkdiscr) and E(fkopt) are also included. The CGM results are
included in brackets.

p 1% 3% 5%

kopt 10171 3429 68

(2908) (295) (12)

E(fkopt) 0.1202 0.3009 0.3198

(0.1090) (0.2943) (0.3167)

kdiscr 2995 95 70

(130) (21) (11)

E(fkdiscr) 0.1507 0.3105 0.3199

(0.2341) (0.3108) (0.3168)
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Figure 5.19: The exact solution f in comparison with numerical solution fk for
(a) and (c) kopt ∈ {10171, 3429, 68} and kopt ∈ {2908, 295, 12}, and (b) and (d)
kdiscr ∈ {2995, 95, 70} and kdiscr ∈ {130, 21, 11}, obtained using the Landweber
method and the CGM, respectively, for p ∈ {1, 3, 5}% noise for the inverse prob-
lem of Example 4.

We finally note that similar results have been obtained for the inverse problem
given by equations (5.35), (5.37), (5.62) with the integral measurement (5.14) and
therefore, they are not presented.

5.5.5 Example 5

The previous example investigated a severe test given by the non-smooth trian-
gular shape force function (5.64). In this subsection, we consider an even more
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severe test example given by the discontinuous force

f(x) =


0 if 0 ≤ x < 1

3
,

1 if 1
3
≤ x ≤ 2

3
,

0 if 2
3
< x ≤ 1.

(5.70)

We take the same input data (5.62) and (5.63), as in Example 4. Then, on solving
the direct problem given by equations (5.35), (5.37), (5.62) with the forcing term
given by the product of the functions in (5.63) and (5.70), we obtain the numerical
results for the time-average displacement

∫ 1

0
u(x, t)dt illustrated in Figure 5.20.

From this figure it can be seen that a convergent FDM numerical solution is
achieved.

For brevity, in what follows we only illustrate the numerical results obtained
for the inverse problem (5.1), (3.3), (3.4), (4.1), (5.14), noting that similar results
have been obtained for the inverse problem (5.1)-(5.2).
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Figure 5.20: Numerical solution for
∫ 1

0
u(x, t)dt, for various N=M∈{5,10,20,80},

for the direct problem of Example 5.

The numerically simulated data for
∫ 1

0
u(x, t)dt obtained with N = M = 80 is

used as input (5.3) in the inverse problem given by equations (5.35), (5.37) and
(5.62).

As expected, for exact data a very slow convergence of the objective func-
tion (5.24) is encountered by the Landweber iteration method because the force
function (5.70) to be retrieved is discontinuous at the points x ∈ {1/3, 2/3}. In
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fact, we had to increase the value of the relaxation factor γ in order to achieve
convergence in a reasonable number of iterations.

Figure 5.21 shows the objective function (5.24) and the accuracy error (5.50),
versus the number of iterations k = 1, 105, for various values of the relaxation pa-
rameter γ ∈ {1, 5, 15}. From this figure it can be seen that the rate of convergence
increases as we increase γ from 1 to 5 and then to 15. The corresponding numer-
ical solutions for the force fk(x) are shown in Figure 5.22 for various numbers of
iterations k ∈ {101, 103, 105}, and again more accurate results are obtained as we
increase k and/or γ.
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Figure 5.21: (a) The objective function J̃(fk) and (b) the accuracy error E(fk),
versus the number of iterations k = 1, 105, for various γ = 1 (—), γ = 5 (- - -)
and γ = 15 (− • −), no noise for the inverse problem of Example 5.

144



5.5 Numerical results and discussion

(a)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

f
k

 

 

fexact
fk=101

fk=103

fk=105

(b)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

f
k

 

 

fexact
fk=101

fk=103

fk=105

(c)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

f
k

 

 

fexact
fk=101

fk=103

fk=105

Figure 5.22: Numerical solution fk for various iteration numbers k∈{101,103,105},
in comparison with the exact solution (5.70), for (a) γ=1, (b) γ=5 and (c) γ=15,
no noise for the inverse problem of Example 5.

In order to investigate the stability of the numerical solution we include some
p ∈ {1, 3, 5}% noise into the input data, as given by equation (5.51), and the
numerical results obtained with γ = 15 are presented in Figures 5.23, 5.24 and
Table 5.6. As in the previous examples, Figure 5.23 and Table 5.6 justify the
choice of the stopping iteration number kdiscr and furthermore, the numerical
solutions illustrated in Figure 5.24 show that stable and reasonably accurate
results are obtained for recovering the severely discontinuous force function (5.70).
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Figure 5.23: (a) The objective function J̃(fk) and (b) the accuracy error E(fk),
versus the number of iterations k = 1, 105, for p = 1% (—), p = 3% (- - -) and
p = 5% (· · ·) noise for the inverse problem of Example 5 obtained with γ = 15.
The horizontal lines represents the threshold τ 2 ε2

2
with τ = 1.1.

Table 5.6: The stopping iteration number kdiscr chosen according to the discrep-
ancy principle criterion (5.34) (with τ = 1.1), as illustrated in Figure 5.23(a),
and the optimal iteration number kopt chosen according to the minimum of the
accuracy error function (5.50) in Figure 5.23(b), for various percentages of noise
p ∈ {1, 3, 5}% for Example 5 obtained with γ = 15. The corresponding accuracy
errors E(fkdiscr) and E(fkopt) are also included.

p 1% 3% 5%

kopt 14823 2275 1523

E(fkopt) 1.5342 1.8471 2.0906

kdiscr 9599 2000 1000

E(fkdiscr) 1.5466 1.8488 2.1319

In the next section we present a numerical extension to two-dimensions.
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Figure 5.24: The exact solution (5.70) for f in comparison with the numerical
solution fk for (a) kopt ∈ {14823, 2275, 1523} and (b) kdiscr ∈ {9599, 2000, 1000},
for p ∈ {1, 3, 5}% noise for the inverse problem of Example 5 obtained with
γ = 15.

5.6 Two-dimensions

The theoretical results obtained for the inverse problems together with the reg-
ularizing methods are not limited to one spatial dimension. In principle, the
numerical examples and observations can be carried forward to two and three-
dimensional solution domains and similar results and conclusion are expected.
However, recovering sources with complicated behaviour in higher dimensions
would require delicate numerical considerations that would expand the present
work too much. To at least show that the proposed methods are practical also in
higher dimensions, we therefore consider a two-dimensional example being analo-
gous to Example 1 in terms of level of complication of the source to be retrieved.

We consider the initial boundary value problem (5.1), (3.3), (3.4), (4.1) in
two-dimensions, i.e. n = 2 and Ω = (0, L)× (0, L) with L > 0, given by

utt(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + f(x, y)g(x, y, t),

(x, y, t) ∈ (0, L)× (0, L)× (0, T ], (5.71)

u(x, y, 0) = ϕ(x, y), ut(x, y, 0) = ψ(x, y), (x, y) ∈ (0, L)× (0, L), (5.72)
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u(x, y, t) = 0, (x, y) ∈ ∂Ω× (0, T ). (5.73)

The discrete form of this direct problem is as follows. We divide the solution
domain (0, L) × (0, L) × (0, T ) into M , N and K subintervals of equal space
lengths ∆x, ∆y and time step ∆t, where ∆x = L/M , ∆y = L/N and ∆t =

T/K. We denote ui,j,k = u(xi, yj, tk), where xi = i∆x, yj = j∆y, tk = k∆t,
fi,j := f(xi, yj) and gi,j,k := g(xi, yj, tk) for i = 0,M , j = 0, N , k = 0, K. Then,
a central-difference approximation to equations (5.71)-(5.73) at the mesh points
(xi, yj, tk) = (i∆x, j∆y, k∆t) is

ui,j,k+1 = rx(ui+1,j,k + ui−1,j,k) + ry(ui,j+1,k + ui,j−1,k) + 2rxy1ui,j,k − ui,j,k−1

+(∆t)2fi,jgi,j,k, i = 1, (M − 1), j = 1, (N − 1), k = 1, (K − 1), (5.74)

ui,j,0 = ϕ(xi, yj), i = 0,M, j = 0, N,
ui,j,1 − ui,j,−1

2∆t
= ψ(xi, yj), i = 1, (M − 1), j = 1, N − 1, (5.75)

u0,j,k = uM,j,k = ui,0,k = ui,N,k = 0,

i = 1, (M − 1), j = 1, (N − 1), k = 1, K, (5.76)

where rx = (∆t)2

(∆x)2
, ry = (∆t)2

(∆y)2
, and rxy1 = 1− rx − ry. This is an explicit formula

which is stable if 4(∆t)2

(∆x)2+(∆y)2
≤ 1, giving approximation values for the solution at

mesh points along t = 2∆t, 3∆t, ..., as soon as the mesh values along t = ∆t have
been determined by allowing j = 0 in equation (5.74) and using (5.75), to obtain

ui,j,1 =
rx
2

(ϕ(xi+1, yj) + ϕ(xi−1, yj)) +
ry
2

(ϕ(xi, yj+1) + ϕ(xi, yj−1))

+rxy1ϕ(xi, yj) + (∆t)ψ(xi, yj) +
1

2
(∆t)2fi,jgi,j,0,

i = 1, (M − 1), j = 1, N − 1. (5.77)

5.6.1 Example 6

Consider first the direct problem given by the two-dimensional wave equation
(5.71) with L = T = 1, the initial conditions (5.72) given by

u(x, y, 0) = ϕ(x, y) = 2 sin(πx) sin(πy), ut(x, y, 0) = ψ(x, y) = 0,

x ∈ [0, 1], y ∈ [0, 1], (5.78)
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and the homogeneous Dirichlet boundary conditions (5.73) given by

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0, x ∈ (0, 1), y ∈ (0, 1),

t ∈ (0, 1), (5.79)

when

g(x, y, t) = 2 + cos(πt), (x, y, t) ∈ (0, 1)× (0, 1)× (0, 1), (5.80)

and

f(x, y) = π2 sin(πx) sin(πy), (x, y) ∈ (0, 1)× (0, 1). (5.81)

The exact solution is given by

u(x, y, t) = sin(πx) sin(πy) (1 + cos(πt)) , (x, y, t) ∈ [0, 1]× [0, 1]× [0, 1]. (5.82)

We consider the time-average displacement given by

UT (x, y) =

∫ 1

0

u(x, y, t)dt = sin(πx) sin(πy), (x, y) ∈ (0, 1)× (0, 1), (5.83)

which will be used as additional measurement information in the inverse problem
of the next subsection.

This example is similar in behaviour to the one-dimensional Example 1. The
absolute errors between (5.83) and the numerical values obtained using the trape-
zoidal rule approximation∫ 1

0

u(xi, yj, t)dt =
∆t

2

(
ϕ(xi, yj) + 2

K−1∑
k=1

u(xi, yj, tk) + u(xi, yj, tK)

)
,

i = 1,M − 1, j = 1, N − 1 (5.84)

are shown in Figure 5.25, and one can observe that an excellent agreement and
convergence are obtained.
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Figure 5.25: The absolute errors between the exact (5.83) and numerical solutions
(5.84) for

∫ 1

0
u(x, y, t)dt for various N = M ∈ {10, 20, 40, 80} and K = 2N ∈

{20, 40, 80, 160} in (a)-(d), respectively, for the direct problem of Example 6.

5.6.1.1 Inverse problem

In this subsection, we consider solving the inverse problem given by the wave
equation (5.71) with g given by (5.80), subject to the initial conditions (5.78),
the homogeneous Dirichlet boundary conditions (5.79) and the additional time-
average displacement measurement (5.83) using the FDM with N = M = 80,
K = 160 and the iterative Landweber method described in Section 5.4 with the
relaxation parameter γ = 1 and the initial guess f0 ≡ 0. The analytical solution
of the above inverse problem of Example 6 is given by equations (5.81) and (5.82).
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5.6 Two-dimensions

The objective function (5.24)

J̃(fk) =
1

2
||ξk||2 =

1

2

M−1∑
i=1

N−1∑
j=1

ξ2
k(xi, yj), (5.85)

where ξk is given by (5.49), is plotted in Figure 5.26(a), as a function of the
number of iterations k. Whilst Figure 5.26(b) shows the accuracy error

E(fk) = ||fexact − fk|| =

√√√√M−1∑
i=1

N−1∑
j=1

(f(xi, yj)− fk(xi, yj))2. (5.86)

From these figures it can be seen that convergence of both functions (5.85) and
(5.86) is achieved in about 300 to 500 iterations.
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Figure 5.26: (a) The objective function (5.85) and (b) the accuracy error (5.86),
versus the number of iterations k = 1, 500, no noise for the inverse problem of
Example 6.

Figure 5.27 shows the numerical force solution fk at various iteration numbers
k and a monotonic increasing convergence to the exact solution (5.81) can be
clearly observed.

151



5.6 Two-dimensions

(a)

0

0.5

1

0

0.5

1

0

2

4

6

8

10

xy

f
e
x
a
c
t

(b)

0

0.5

1

0

0.5

1

0

0.1

0.2

0.3

0.4

xy

f
k
=
5

(c)

0

0.5

1

0

0.5

1

0

1

2

3

4

xy

f
k
=
5
0

(d)

0

0.5

1

0

0.5

1

0

2

4

6

8

10

xy

f
k
=
5
0
0

Figure 5.27: The numerical solution fk for k ∈ {5, 50, 500}, in comparison with
the exact solution (5.81), no noise for the inverse problem of Example 6.

In practice, the additional observation (5.83) comes from measurement which
is inherently contaminated with errors. We therefore model this by replacing the
exact data UT by the noisy data

U ε
T (xi, yj) = UT (xi, yj) + εi,j, i = 1, (M − 1), j = 1, (N − 1), (5.87)

where (εi,j)i=1,M−1,j=1,N−1 are random noisy variables generated (using the MAT-
LAB routine ’normrd’) from a Gaussian normal distribution with mean zero and
standard deviation σ = p×maxx,y∈[0,L] |UT (x, y)|, where p represents the percent-
age of noise. The total amount of noise introduced in the cost functional (5.24)
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is then given by

1

2
ε2 =

1

2

M−1∑
i=1

N−1∑
j=1

ε2i,j. (5.88)

In order to investigate the stability of the numerical solution we include some
p ∈ {1, 3, 5}% noise into the input data (5.83), as given by equation (5.87).
The objective function (5.85) and the accuracy error (5.86) are shown in Figures
5.28(a) and 5.28(b), respectively, for k = 1, 1000 and p ∈ {1, 3, 5}% noisy data.
These figures yield the values of the stopping iteration numbers kdiscr and kopt,
as given in Table 5.7.
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Figure 5.28: (a) The objective function (5.85) and (b) the accuracy error (5.86),
versus the number of iterations k = 1, 1000, for p = 1% (—), p = 3% (- - -) and
p = 5% (· · ·) noise for the inverse problem of Example 6. The horizontal lines
represents the threshold τ 2 ε2

2
with τ = 1.05.
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5.6 Two-dimensions

Table 5.7: The stopping iteration number kdiscr chosen according to the discrep-
ancy principle criterion (5.34) (with τ = 1.05), as illustrated in Figure 5.28(a),
and the optimal iteration number kopt chosen according to the minimum of the
accuracy error function (5.86) in Figure 5.28(b), for various percentages of noise
p ∈ {1, 3, 5}% for Example 6. The corresponding accuracy errors E(fkdiscr) and
E(fkopt) are also included.

p 1% 3% 5%

kopt 906 769 711

E(fkopt) 0.3285 0.8425 1.3057

kdiscr 796 599 597

E(fkdiscr) 0.4013 1.7573 1.8598

Finally, Figure 5.29 shows the analytical solution (5.81) for the force f(x, y) in
comparison with the numerical force fkdiscr(x, y) for various percentages of noise
p ∈ {1, 3, 5}%. From this figure accurate and stable numerical predictions of the
force can be observed.
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Figure 5.29: The exact solution (5.81) for f in comparison with the numerical
solution fk for kdiscr ∈ {796, 599, 597} for p ∈ {1, 3, 5}% noise, respectively, for
the inverse problem of Example 6.

5.7 Conclusions

In this chapter, the determination of the displacement and the space-dependent
force acting on a vibrating structure from measured final or time-average displace-
ment in the wave equation has been investigated. These linear inverse problems
are uniquely solvable, but they are still ill-posed since small errors in the input
data cause large errors in the output force. The problems have been discretised
numerically using the FDM, and the Landweber method and CGM have been
presented and discussed illustrating the convergence of the iterative procedures
for exact input data and their stability for noisy data. These iterative methods for
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5.7 Conclusions

minimizing the least-squares functionals (5.17) or (5.24) have a regularizing char-
acter (providing they are stopped according to the discrepancy principle (5.33)).
Moreover, unlike the classical non-iterative Tikhonov regularization method, em-
ployed in previous chapters and elsewhere for the heat equation, see (Yang and Fu,
2010), these iterative methods do not require employing or choosing a smoothing
regularization matrix Dk in (1.1).

The Landweber method is simple to implement but it can be slowly convergent
because a uniform search magnitude γ is adopted at each iteration in (5.31). On
the other hand, the CGM is more sophisticated but it is more rapidly convergent
than the Landweber method because a variable search magnitude αk is adopted
at various iterations in (5.68).

For the similar inverse source analyses for the parabolic heat equation using
the Landweber and CGM methods we refer to (Johansson and Lesnic, 2007a,b),
respectively, where similar conclusions were derived.

Numerical results have been presented for both smooth and non-smooth exam-
ples. As expected, smoother examples require less numbers of iterations to achieve
convergence for exact data. Furthermore, an extension to a two-dimensional
example has also been illustrated and qualitatively the results obtained pos-
sessed the same features in terms of good accuracy and stability as in the one-
dimensional case, but for the increase in computational time.

Future work will consist in investigating the nonlinear inverse problem in
which the unknown force depends on the displacement.
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Chapter 6

Reconstruction of space-dependent
potential and/or damping
coefficients in the wave equation

6.1 Introduction

So far, all problems investigated in Chapters 2-5 have been linear and therefore,
the minimization of the Tikhonov functional (1.1) was possible to have been per-
formed exactly yielding the explicit solution (1.2). In this chapter, we investigate
nonlinear inverse force problems which lend themselves to more difficult nonlin-
ear minimizations. In particular, nonlinear identifications of the space-dependent
potential and/or damping coefficients in the wave equation from Cauchy data
boundary measurements of the deflection and the flux tension are investigated.
Physically, this would correspond to the case when the unknown force func-
tion depends on the displacement u and velocity ut in the form f(x, u, ut) =

Q0(x)u+Q1(x)ut, where Q0(x) and Q1(x) are the potential and damping coeffi-
cients, respectively.

Previous theoretical studies, (Baudouin and Ervedoza, 2013; Bukhgeim, Cheng,
Isakov and Yamamoto, 2001; Imanuvilov and Yamamoto, 2001) have established
the uniqueness of solution, but no numerical reconstruction has been performed.
Therefore, it is the purpose of this chapter to attempt such as a numerical reali-
sation.
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6.2 Mathematical formulation

Although uniqueness of solution holds, the inverse coefficient identification
problems under investigation are still ill-posed since small random errors in the
input data cause large errors in the output solution. In order to stabilise the
solution we employ the nonlinear Tikhonov regularization method. Numerical
results are presented and discussed.

6.2 Mathematical formulation

Assume that we have a medium, denoted by Ω, occupying a bounded domain
in Rn, n ≥ 1, with a sufficiently smooth boundary ∂Ω, e.g. of class C2. The
boundary of Ω is denoted by ∂Ω, and we define the space-time cylinder QT =

Ω × (0, T ), where T > 0. We wish to find the displacement u(x, t) and the
spacewise dependent coefficients Q0(x) and/or Q1(x) of the lower-order terms in
the hyperbolic wave equation

utt = ∇2u+Q0(x)u+Q1(x)ut in QT . (6.1)

The initial conditions are given by (3.3) and (3.4). On the boundary we can
prescribe Dirichlet, Neumann, Robin or mixed boundary conditions.

Let us consider, Neumann boundary conditions being prescribed, namely,

∂u

∂ν
(x, t) = q(x, t), (x, t) ∈ ∂Ω× (0, T ), (6.2)

where q is a given function.
If the functions Q0 and Q1 are given, then equations (6.1)-(6.2) form a direct

well-posed problem. However, if some of the functions Q0 and/or Q1 cannot be
directly observed they hence become unknown and then clearly, the above set of
equations is not sufficient to determine uniquely the solution of the so-generated
inverse coefficient identification problem (ICIP). In order to compensate for this
non-uniqueness, we consider the additional measurement given by the Dirichlet
boundary data,

u(x, t) = P (x, t), (x, t) ∈ ∂Ω× (0, T ), (6.3)
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where P is a prescribed boundary displacement. We can also consider the case
when the boundary displacement Dirichlet data (6.3) is being prescribed and it
is the flux tension Neumann data (6.2) which is being measured.

Note that the unknowns Q0(x) and Q1(x) are interior quantities depending
on the space variable x ∈ Ω ⊂ Rn, whilst the additional measurement (6.3) is a
boundary quantity depending on (x, t) ∈ ∂Ω× (0, T ). It is also worth noting that
a corresponding inverse spacewise-dependent coefficient identification problem
given by equations (3.3), (6.2), (6.3) also arises for the bio-heat equation ut =

∇2u+Q0(x)u, see (Ramm, 2001; Trucu, Ingham and Lesnic, 2010).
The uniqueness of solution of the ICIPs associated to equations (6.1)-(6.3) has

been established elsewhere in various forms, see (Baudouin and Ervedoza, 2013;
Bukhgeim, Cheng, Isakov and Yamamoto, 2001; Imanuvilov and Yamamoto,
2001).

6.3 Numerical solutions of the direct and inverse
problems

6.3.1 Direct problem

In this section, we consider the direct initial Neumann boundary value problem
(6.1)-(6.2) for simplicity, in one-dimension, i.e. n = 1 and Ω = (0, L) with L > 0,
when the coefficients Q0(x), Q1(x) and Q2(x) are known and the displacement
u(x, t) is to be determined, namely,

utt(x, t) = uxx(x, t) +Q0(x)u+Q1(x)ut +Q2(x)ux, (x, t) ∈ (0, L)× (0, T ], (6.4)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ [0, L], (6.5)

−∂u
∂x

(0, t) = q(0, t) =: q0(t),
∂u

∂x
(L, t) = q(L, t) =: qL(t), t ∈ (0, T ]. (6.6)

In the direct problem (6.4)-(6.6) of interest is to determine the Dirichlet boundary
data (6.3) at x = 0 and x = L, namely

u(0, t) = P (0, t) =: P0(t), u(L, t) = P (L, t) =: PL(t), t ∈ (0, T ]. (6.7)
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6.3 Numerical solutions of the direct and inverse problems

The discrete form of the problem (6.1)-(6.2) is as follows. We divide the
solution domain (0, L)×(0, T ) intoM andN subintervals of equal space length ∆x

and time step ∆t, where ∆x = L/M and ∆t = T/N . We denote ui,j := u(xi, tj),
where xi = i∆x, tj = j∆t, Q0i := Q0(xi), Q1i := Q1(xi) and Qi2 := Q2(xi) for
i = 0,M , j = 0, N . Then, a central-difference approximation to equations (6.4)-
(6.6) at the mesh points (xi, tj) = (i∆x, j∆t) of the rectangular mesh covering
the solution domain (0, L)× (0, T ) is, see e.g. (Smith, 1985),

ui,j+1 =
r + r0Q2i

1− r1Q1i

ui+1,j +
2− 2r + (∆t)2Q0i

1− r1Q1i

ui,j

+
r − r0Q2i

1− r1Q1i

ui−1,j −
1 + r1Q1i

1− r1Q1i

ui,j−1, i = 1, (M − 1), j = 1, (N − 1), (6.8)

ui,0 = ϕ(xi), i = 0,M,
ui,1 − ui,−1

2∆t
= ψ(xi), i = 1, (M − 1), (6.9)

−∂u
∂x

(0, tj) = −4u1,j − u2,j − 3u0,j

2∆x
= q0(tj),

∂u

∂x
(L, tj) =

3uM,j − 4uM−1,j + uM−2,j

2∆x
= qL(tj), j = 1, N, (6.10)

where r = (∆t)2/(∆x)2, r0 = (∆t)2/(2∆x) and r1 = ∆t/2. Equation (6.8)
represents an explicit finite-difference method (FDM) which is stable if r ≤ 1,
giving approximate values for the solution at mesh points along t = 2∆t, 3∆t, ...,

as soon as the solution at the mesh points along t = ∆t has been determined by
allowing j = 0 in equation (6.8) and using (6.9), to obtain

ui,1 =
r + r0Q2i

2
ϕ(xi+1) +

2− 2r + (∆t)2Q0i

2
ϕ(xi)

+
r − r0Q2i

2
ϕ(xi−1) + ∆t(1 + r1Q1i)ψ(xi) i = 1, (M − 1). (6.11)

The time-marching FDM procedure described above provides the displacement u
throughout the solution domain and in particular the Dirichlet data (6.7) given
by

u0,j = P0(tj), uM,j = PL(tj), j = 1, N. (6.12)
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6.3.2 Inverse problems

In the inverse problems stated in Section 6.2, we wish to determine the solution of
unknown (u(x, t), Q0(x), Q1(x)) by minimizing the nonlinear objective function

F(Q0, Q1) = ‖u(x, t;Q0, Q1)− P (x, t)‖2
L2(∂Ω×(0,T )). (6.13)

This minimisation is accomplished using the MATLAB optimisation toolbox rou-
tine lsqnonlin which attempts to find a minimum of a sum of squares, starting from
an arbitrary initial guess, subject to constraints. In MATLAB, this routine al-
lows to choose the trust-region-reffective algorithm based on the interior-reflective
Newton method described in (Coleman and Li, 1994).

In practice, the additional observation (6.3) comes from measurement which
is inherently contaminated with errors,

P ε(x, t) = P (x, t) + ε, (x, t) ∈ ∂Ω× (0, T ), (6.14)

where ε stands for the amount of noise. In this case, we replace in the objective
functional (6.13) the exact data P (x, t) by the noisy data P ε(x, t).

6.4 Numerical results and discussion

In this section, the discussion is divided into three subsections 6.4.1-6.4.3 with
respect to the three inverse problems generated when Q0(x), or Q1(x), or Q0(x)

and Q1(x) is/are unknown, respectively. In all examples in this section we take,
for simplicity, L = T = 1.

6.4.1 Example 1 (determination of Q0(x) when Q1(x)

is known)

Consider the inverse initial boundary value problem (3.3), (3.4), (6.2), (6.3) and
(6.4) in one-dimension, i.e. n = 1 and Ω = (0, L), when both the potential Q0(x)

and the displacement u(x, t) are to be determined (assuming that Q1(x) is known
and taken for simplicity to be zero), from the governing equation

utt = uxx +Q0(x)u, (x, t) ∈ (0, 1)× (0, 1), (6.15)
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6.4 Numerical results and discussion

with the input data

u(x, 0) = ϕ(x) = 2 + cos(πx), ut(x, 0) = ψ(x) = 2 + cos(πx), x ∈ [0, 1], (6.16)

−∂u
∂x

(0, t) = q0(t) = 0,
∂u

∂x
(1, t) = qL(t) = 0, t ∈ (0, 1], (6.17)

u(0, t) = P0(t) = 3et, u(1, t) = P1(t) = et, t ∈ [0, 1]. (6.18)

The inverse problem (6.15)-(6.18) is uniquely solvable and, in fact, it can easily
be checked that its exact solution is given by

u(x, t) = et(cos(πx) + 2), (x, t) ∈ [0, 1]× [0, 1]. (6.19)

Q0(x) =
2 + (1 + π2) cos(πx)

2 + cos(πx)
, x ∈ [0, 1]. (6.20)

First, before we attempt the inversion, it is worth to assess the convergence
and accuracy of the FDM direct solver described in Section 6.3. Therefore, solving
the direct problem (6.15)-(6.17) whenQ0 is assumed known and given by (6.20) we
obtain the numerical results for the boundary Dirichlet data presented in Figures
6.1 for various N = M ∈ {5, 10, 20} in comparison with the exact solutions
(6.18). From this figure a rapid monotonically increasing convergence of the
numerical solutions to their exact targets (6.18) and excellent accuracy can be
observed (in fact the numerical results obtained with N = M = 10 and 20 are
undistinguishable) In fact, the `2-errors between the analytical and numerical
solutions in Figures 6.1(a) and 6.1(b) were obtained to be 0.1429, 0.0107 and
0.0005, and 0.0974, 0.0047 and 0.0009, for M = N ∈ {5, 10, 20}, respectively.
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Figure 6.1: The exact solutions (a) u(0, t) = 3et, (b) u(1, t) = et in comparison
with the numerical solutions for various N = M ∈ {5, 10, 20}, for the direct
problem of Example 1.

Next, we attempt solving numerically the inverse problem (6.15)-(6.18) by
minimizing the least-squares objective function

F(Q
0
) :=

N∑
j=1

(u(0, tj;Q0
)− P0(tj))

2 +
N∑
j=1

(u(1, tj;Q0
)− P1(tj))

2, (6.21)

using the routine lsqnonlin described in Section 6.3.2 starting with the initial
guess zero. Remark that when both Dirichlet data in (6.18) are measured this
corresponds to the full data measurement (6.3) and minimizing (6.21) imposes
2N constraints in M unknowns. In this subsection, we also investigate the case
when we only measure partially the data in (6.18) in which case we minimize the
partial least-squares objective function

Fpartial(Q0
) :=

N∑
j=1

(u(0, tj;Q0
)− P0(tj))

2. (6.22)

In this case, minimizing (6.22) imposes N constraints in M unknowns.
For exact data, the results are depicted in Figure 6.2. From this figure it

can be seen that the numerical solution for Q0(x) converges to the exact solution
(6.20), as the FDM mesh size decreases, and there is not much difference in the
excellently obtained accuracy when using both data in (6.18) or, when using the
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6.4 Numerical results and discussion

partial data in (6.18) alone. This is true for exact data, but for noisy data which
we consider next the accuracy of the solution changes significantly, as described
below.

We consider therefore solving the inverse problem with fixed N = M = 20 but
with noise included in the Dirichlet boundary measured data (6.18), as described
in (6.14). This is numerically simulated by

P ε
i (tj) = Pi(tj) + εij, j = 1, N, i = 0, 1, (6.23)

where (εij)j=1,N are N random noisy variables generated using the MATLAB
command ’normrd’ from a Gaussian normal distribution with mean zero and
standard deviation σi = p×maxt∈[0,T ] |Pi(t)| for i = 0, 1, where p represents the
percentage of noise.
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Figure 6.2: (a) The objective function (6.21), as a function of the number of
iterations, and (b) the exact solution (6.20) for the coefficientQ0(x) in comparison
with the numerical solutions, for various N = M ∈ {5, 10, 20}, no noise for the
inverse problem of Example 1. Figures (c) and (d) represent the same quantities
as (a) and (b), but obtained by minimizing the partial objective function (6.22)
instead of (6.21).

In order to investigate the stability of the numerical solution we include
p ∈ {1, 3, 5}% noise into the input data (6.18), as described in (6.14). In this case
the perturbed noisy data (6.14) replaces the exact data in (6.21). The numerical
solutions for Q0(x) obtained by minimizing (6.21) or (6.22) with no regularization
are plotted in Figure 6.3. It can be clearly seen that very high and unbounded
oscillations appear. This clearly shows that the ICIPS under investigation are
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ill-posed. In order to deal with this instability we employ the Tikhonov regular-
ization which minimizes the penalised least-squares functional

Fλ(Q0
) := F(Q

0
) + λ

M∑
i=1

Q2
0i, (6.24)

or, its partial version

Fpartial,λ(Q0
) := Fpartial(Q0

) + λ

M∑
i=1

Q2
0i, (6.25)

where λ > 0 is a regularization parameter to be prescribed. Including regulariza-
tion we obtain the numerical solutions presented in Figure 6.5, whose accuracy
errors

E0 :=

√√√√ 1

M

M∑
i=1

(Q0exact(xi)−Q0app(xi))2, (6.26)

as functions of λ, are plotted in Figure 6.4. From Figure 6.4 it can be seen that
the minimum of the error occurs around λ = 0.05 for p = 1% and λ = 0.1 for
p ∈ {3, 5}%. The value of the regularization parameter λ can be chosen by trial
and error. By plotting the numerical solution for various values of λ we can infer
when the instability starts to kick off.
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Figure 6.3: The exact solution (6.20) for the coefficient Q0(x) in comparison with
the numerical solutions obtained by minimizing (6.21) (- - -) or (6.22) (· · ·), with
no regularization, for p = 1% noisy data for the inverse problem of Example 1.
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Figure 6.4: The accuracy error E0, as a function of λ, for p ∈ {1, 3, 5}% noise,
for the inverse problem of Example 1, obtained by minimizing: (a) the functional
(6.24) and (b) the partial functional (6.25).

Figure 6.5 shows the regularized numerical solution for Q0(x) obtained with
various values of the regularization parameter λ ∈ {0.05, 0.1} for p ∈ {1, 3, 5}%
noisy data. From this figure it can be seen that the numerical results are stable
and they become more accurate as the amount of noise p decreases.
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Figure 6.5: (a) The regularized objective function (6.24), as a function of the
number of iterations, and (b) the exact solution (6.20) for the coefficient Q0(x) in
comparison with the numerical solutions, for p ∈ {1, 3, 5}% noise and regulariza-
tion parameters λ ∈ {0.05, 0.1}, for the inverse problem of Example 1. Figures (c)
and (d) represent the same quantities as (a) and (b), but obtained by minimizing
the partial regularized objective function (6.25) instead of (6.24).

6.4.2 Example 2 (determination of Q1(x) when Q0(x)

is known)

Consider the inverse initial boundary value problem (3.3), (3.4), (6.2), (6.3) and
(6.4) in one-dimension, i.e. n = 1 and Ω = (0, L), when both the damping term
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Q1(x) and the displacement u(x, t) are to be determined (assuming that Q0(x) is
known and taken for simplicity to be zero), from the governing equation

utt = uxx +Q1(x)ut, (x, t) ∈ (0, 1)× (0, 1), (6.27)

with the same input data (6.16)-(6.18). One can easily check that the solution
(u(x, t), Q1(x)) is given by equation (6.19) for u(x, t), whilst for Q1(x) has the
same expression as that of equation (6.20), namely,

Q1(x) =
2 + (1 + π2) cos(πx)

2 + cos(πx)
, x ∈ [0, 1]. (6.28)

As for Example 1, the convergence and accuracy of the FDM direct solver de-
scribed in Section 6.3 have first been assessed by solving the direct problem (6.16),
(6.17) and (6.27) when Q1 is assumed known and given by (6.28). Similar graphs
to those presented in Figure 6.1 have been obtained and therefore they are not
further illustrated herein.

Next, we attempt solving numerically the inverse problem (6.16)-(6.18) and
(6.27) by minimizing the least-squares objective function

F(Q
1
) :=

N∑
j=1

(u(0, tj;Q1
)− P0(tj))

2 +
N∑
j=1

(u(1, tj;Q1
)− P1(tj))

2, (6.29)

using the routine lsqnonlin described in Section 6.3.2 starting with the initial
guess zero.

For exact data, the results are depicted in Figure 6.6 and similar convergent
results as those obtained in Figure 6.2 for Example 1 can be observed.
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Figure 6.6: (a) The objective function (6.29), as a function of the number of
iterations, and (b) the exact solution (6.28) for the coefficientQ1(x) in comparison
with the numerical solutions, for various N = M ∈ {5, 10, 20}, no noise for the
inverse problem of Example 2.

Next, we fix M = N = 20 and add p = 1% noise in the Dirichlet bound-
ary data (6.23). As shown in Figure 6.7, the unregularized numerical solution
obtained by minimizing (6.29) is seen to be highly unstable. This is similar to
the unstable behaviour of the numerical results shown with dashed line (- - -) in
Figure 6.3 for Example 1, though the amplitude of the oscillations in Figure 6.7
for Example 2 is about 3 times lower than that for Example 1.
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Figure 6.7: The exact solution (6.28) for the coefficient Q1(x) in comparison with
the numerical solution (- - -), with no regularization, for p = 1% noisy data for
the inverse problem of Example 2.

As for Example 1, in order to stabilise the solution the functional (6.29) is
regularized and this recasts into minimizing the penalised least-squares functional

Fλ(Q1
) := F(Q

1
) + λ

M∑
i=1

Q2
1i. (6.30)

The accuracy error defined as

E1 :=

√√√√ 1

M

M∑
i=1

(Q1exact(xi)−Q1app(xi))2, (6.31)

as a function of λ, is plotted in Figure 6.8 for p ∈ {1, 3, 5}% noise and similar
behaviour to that illustrated in Figure 6.4 for Example 1 can be observed.
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Figure 6.8: The accuracy error E1, as a function of λ, for p ∈ {1, 3, 5}% noise,
for the inverse problem of Example 2.

Stable numerical results are obtained as illustrated in Figure 6.9.
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Figure 6.9: (a) The regularized objective function (6.30), as a function of the
number of iterations, and (b) the exact solution (6.28) for the coefficient Q1(x)

in comparison with the numerical solutions, for p ∈ {1, 3, 5}% noise and regular-
ization parameters λ ∈ {0.05, 0.1}, for the inverse problem of Example 2.

6.4.3 Example 3 (determination of Q0(x) and Q1(x))

We consider the inverse initial boundary value problem (3.3), (3.4) and (6.1)-
(6.3) in one-dimension, i.e. n = 1 and Ω = (0, L), when the potential Q0(x), the
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damping term Q1(x) and the displacement u(x, t) are to be determined from the
governing equation

utt = uxx + +Q0(x)u+Q1(x)ut, (x, t) ∈ (0, 1)× (0, 1), (6.32)

with the homogeneous flux data (6.17) and

u(x, 0) = ϕ(x) = 0, ut(x, 0) = ψ(x) = 2 + cos(πx), x ∈ [0, 1], (6.33)

u(0, t) = P0(t) = 3(et − 1), u(1, t) = P1(t) = et − 1, t ∈ [0, 1]. (6.34)

One can easily check that the triplet solution (u(x, t), Q0(x), Q1(x)) is given by

u(x, t) = (et − 1)(cos(πx) + 2), (x, t) ∈ [0, 1]× [0, 1]. (6.35)

Q0(x) =
π2 cos(πx)

2 + cos(πx)
, x ∈ [0, 1]. (6.36)

Q1(x) = 1, x ∈ [0, 1]. (6.37)

As for Examples 1 and 2, the convergence and accuracy of the FDM direct solver
described in Section 6.3 have first been assessed by solving the direct problem
(6.33), (6.17) and (6.32) when Q0 and Q1 are assumed known and given by (6.36)
and (6.37). Although not illustrated, it is reported that an excellent accuracy
has been obtained.

We attempt solving numerically the inverse problem (6.17), (6.32)-(6.34), by
minimizing the least-squares objective function

F(Q
0
;Q

1
) :=

N∑
j=1

(u(0, tj;Q0
;Q

1
)− P0(tj))

2 +
N∑
j=1

(u(1, tj;Q1
;Q

1
)− P1(tj))

2,

(6.38)

using the routine lsqnonlin described in Section 6.3.2 starting with the initial
guess zero.

For exact data, the results are depicted in Figure 6.10. From this figure it can
be seen that the numerical solution for Q0(x) and Q1(x) converges to the exact
solution (6.36) and (6.37), respectively, as the FDM mesh size decreases.
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Figure 6.10: (a) The objective function (6.38), as a function of the number of
iterations, (b) the exact solution (6.36) for Q0(x) and (c) the exact solution
(6.37) for Q1(x) in comparison with the numerical solutions, for various N =

M ∈ {10, 20, 40}, no noise for the inverse problem of Example 3.

Next we consider solving the inverse problem with fixed N = M = 40 but with
p = 1% noise included in the Dirichlet boundary measured data, as described in
(6.23). As shown in Figure 6.11, the unregularized numerical solutions for both
Q0(x) and Q1(x) obtained by minimizing (6.38) is seen to be highly unstable.
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Figure 6.11: The exact solutions given by (a) equation (6.36) and (b) equation
(6.37) for the coefficients Q0(x) and Q1(x), respectively, in comparison with the
numerical solutions, with no regularization, for p = 1% noisy data for the inverse
problem of Example 3.

In order to stabilise the solution, the functional (6.38) is regularized and this
recasts into minimizing the penalised least-squares functional

Fλ(Q0
;Q

1
) := F(Q

0
;Q

1
) + λ

M∑
i=1

Q2
0i + λ

M∑
i=1

Q2
1i. (6.39)

The numerically obtained results for p = 1% noise and λ = 0.01 are illustrated
in Figure 6.12. By comparing Figures 6.11 and 6.12 the benefit of regularization
can be clearly observed.
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Figure 6.12: The exact solutions given by (a) equation (6.36) and (b) equation
(6.37) for the coefficients Q0(x) and Q1(x), respectively, in comparison with the
numerical solutions, with regularization, for p = 1% noisy data for the inverse
problem of Example 3.

6.5 Conclusions

In this chapter, nonlinear identifications of the space-dependent potential and/or
damping coefficients in the wave equation have been investigated.

As illustrated in Figures 6.3, 6.7 and 6.11, these inverse coefficient identifi-
cation problems are ill-posed since small random errors in the input data cause
large errors in the output solution. In order to stabilise the solution, the nonlinear
Tikhonov regularization method has been employed. The minimization has been
performed numerically using the MATLAB toolbox optimization routine lsqnon-
lin. Numerical results presented and discussed for various examples concerned
with the inverse reconstruction of the coefficient Q0(x), or Q1(x), or both Q0(x)

and Q1(x).
We mention that the techniques of this chapter (FDM plus lsqnonlin mini-

mization of the Tikhonov functional) have recently been applied successfully in
(Hussein and Lesnic, 2016), for solving a similar coefficient identification problem
for the heat equation.

The case of partial Cauchy data has also been considered in subsection 6.4.1
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for the inverse problem of retrieving the potential Q0(x). By comparing Figures
6.2(b) and 6.2(d) one has observed that in the case of exact data accurate numeri-
cal solutions have been obtained in both cases of full or partial Cauchy data being
considered. However, for noisy data by comparing Figures 6.5(b) and 6.5(d) one
has observed that, as expected, the full Cauchy data provide more (significant)
information than the partial Cauchy data.

Another comparison was made by observing Figures 6.5(b) and 6.9(b) corre-
sponding to the identification of the potential Q0(x) and the damping coefficient
Q1(x), respectively. From these figures it has been seen that there was no major
difference between the two regularized solutions in terms of stability and accuracy.

A final inverse problem consisted in simultaneously identifying both Q0(x)

and Q1(x), as performed in subsection 6.4.3. As expected, this is a more difficult
problem than the separate single identification of the coefficient Q0(x) or Q1(x),
as performed in subsections 6.4.1 and 6.4.2, respectively. For exact data, Figures
6.10(b) and 6.10(c) have showed that both coefficients can be retrieved accurately,
but for noisy data, Figures 6.12(a) and 6.12(b) have showed that the accuracy and
stability deteriorate. On the other hand, comparison of Figures 6.11 and 6.12 have
showed that the use of regularization significantly alleviates the highly unbounded
and oscillatory numerical reconstructions obtained when no regularization was
employed.

Nevertheless, one could try to improve on the numerical results of Figure 6.12
by employing more sophisticated iterative regularization methods such as the
CGM, but this is deferred to a future work. Future work will also be concerned
with the reconstruction of the vectorial function Q

2
(x) in the wave equation

utt = ∇2u+Q0(x)u+Q1(x)ut +Q
2
(x) · ∇u.
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Chapter 7

General conclusions and future
work

7.1 Conclusions

Prior to this study, much work has been performed for solving both theoreti-
cally and numerically inverse source problems for the parabolic heat equation,
but the literature is much scarcer on inverse force problems for the hyperbolic
wave equation. Therefore, the objective of this thesis was to investigate, develop
and apply numerical methods for solving several inverse force problems for the
wave equation which have important applications in various fields ranging from
acoustics and geophysics to medicine.

Throughout the thesis numerical results have been compared with their an-
alytical solutions, where available, or with the numerical solution of the corre-
sponding direct problem otherwise. In all the inverse force problems considered
in this thesis, the convergence and the stability of the combined BEM/FDM plus
regularization was thoroughly investigated for various orders of regularization and
various levels of noise added into the input data.

As opposed to the direct problem formulation (in which the force is known
and the displacement is to be determined), the main difficulty with inverse force
problems is the fact that they are ill-posed, i.e. either the existence, uniqueness
or continuous dependence upon the input data are violated.
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In this thesis, the uniqueness issue has been resolved by assuming that the
force depends only on a single variable, i.e. either of space (Chapters 2, 3 and
5) or time (Chapter 4). Moreover, it is clear that the lack of knowledge of the
force requires some extra information being prescribed and with respect to what
additional information we supply we have distinguished various inverse formu-
lations in Chapters 2 and 5 for example. Various forms of the unknown force
function have been sought to be retrieved from various types of additional infor-
mation/measurement. This may involve non-destructive, i.e. only boundary data
are over prescribed, as in Chapter 2, 3 and 6, or intrusive pointwise displacement
or average displacement measurements, as in Chapters 4 and 5.

Chapters 2 and 3 have considered solving the inverse space-dependent force
identification problem using completely different methods. In Chapter 2, we have
employed a split into a direct and an inverse problem, and BEM has been used.
Whereas in Chapter 3 the same problem was solved without split and discre-
tised numerically using the FDM. The results obtained by these two different
approaches have been compared in terms of accuracy and stability for one typ-
ical example in Section 3.5.1. Both methods produced similar good results but
although the former approach is faster in terms of computational time it is more
restrictive in terms of the generality of application than the latter approach.

The numerical work presented in this thesis extends the range of applications
of the BEM (Chapter 2) and the FDM (Chapters 3-6) for discretising inverse force
problems for the wave equation. Whilst obviously the BEM has many advantages
over domain discretisation methods such as the FDM or the FEM, it is restricted
to partial differential operators which possess an explicit fundamental solution
being available. This was the case of the inverse force problem investigated in
Chapter 2, but as in subsequent chapters the aim was to allow for solving wave
propagation problems in inhomogeneous materials, the FDM was the preferred
numerical discretisation method in the subsequent chapters. Moreover, even for
homogeneous media the BEM loses some of its ’boundary only’ character when
force terms are present and generate volume integrals to deal with.

In practice, the additional information supplied in inverse problems has to
come from measurements and therefore it is usually contaminated with random
noise. Due to the ill-posed nature of the inverse problems, this random noise is
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drastically magnified if standard solution procedures are used, as in direct prob-
lems, hence highly oscillatory and unbounded behaviour occurs in the solution.
As a consequence, classical numerical methods are not capable of handling such
inverse problems without being augmented by some stabilising techniques. This
means that special corrective techniques, such as the Tikhonov regularization
method or iterative regularization employed throughout the thesis, are required
to achieve an accurate and stable solution.

In Chapter 2, the BEM and in Chapters 3-6, the FDM have been applied to
solve inverse force problems for the wave equation. The inverse force problems
then have been reduced to ill-conditioned systems of linear/nonlinear equations
which have been solved, expect for Chapter 5, by the Tikhonov regularization
method. This method modifies the least-squares approach by adding smoothing
factors which are dependent upon regularization parameters in order to reduce
the influence of the measurement errors on the numerical results. Meanwhile, in
Chapters 3 and 4 we have employed and tested the Tikhonov regularization of
various orders such as zero, first and second. The choice of the order of regular-
ization depends on the smoothness of the desired solution. One possible selection
of the regularization parameter is based on the L-curve method. The L-curve is
one of the simplest and most popular methods for selecting a single regularization
parameter. This method plots the size of the solution (measured in appropriate
norm) against the corresponding residual for many positive regularization pa-
rameters and picks the regularization parameter at the corner of the resulting
L-curve. We have shown that, when plotted in a log-log scale, L-curves indeed
have a characteristic L-shaped appearance and that the corner corresponds to a
good choice of the regularization parameter. Numerically obtained results clearly
illustrate the usefulness of the L-curve criterion for choosing the regularization
parameter.

Although popular and simple to implement the Tikhonov regularization method
has the drawback that it involves a delicate choice of the regularization parameter,
as well as of the order of the regularization matrix. For example, the latter choice
is often based on the a priori knowledge of the smothness of solution and this
information may not be available in certain applications. As a possible alterna-
tive and remedy to this, iteration regularization methods such as the Landweber
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and the conjugate gradient methods have been developed in Chapter 5 in order to
solve an inverse space-dependent force problem. The regularization is still needed
and is represented by the number of iterations at which the process should be
ceased in order to prevent the instability setting in. The numerical results pre-
sented in Section 5.5 show that stability was restored by stopping the iterations
according to the discrepancy principle criterion once the residual becomes smaller
than the amount of noise which which the input data has been contaminated.

All problems investigated in Chapters 2-5 were linear problems and the pur-
pose of the final computational Chapter 6 was to investigate the more difficult
nonlinear inverse force problems. This resulted in the need to minimize and regu-
larize nonlinear least squares problems which may have multiple local minima and
the numerical results may depend on the initial guess. Of course, one is recom-
mended to use the most of the available information expected from the solution,
but in the absence of any such physical insight for the initial guess one can rely
on the estimates provided by other less rigorous methods of search minimization,
e.g. genetic algorithms, simulated annealing, swarm optimization, etc.

In the remaining of this section we summarize in more detail the conclusions
that we have drawn from the inverse force problems analysed in each chapter.

In Chapter 1, a general introduction to direct and inverse problems has been
presented, with the difficulties associated with the latter ones highlighted and a
review of the previous work on this subject summarised. Upon a suitable numeri-
cal method, e.g. BEM or FDM in our thesis, for discretising the governing partial
differential equation, a well-conditioned system of linear algebraic equations can
be solved using the Gaussian elimination method, whilst a highly ill-conditioned
system of equations can be solved using a regularised least-squares method in or-
der to achieve a stable and accurate solution. In this thesis, mainly the Tikhonov
regularization method has been considered which is the most known stabilising
technique. In this method, the influence of the measurement errors on the stability
of results is reduced by adding smoothing terms in the least-squares functional.
Also, the Landweber iteration for solving ill-posed linear inverse problems has
been employed. In this method, stability is achieved by stopping the iterations
at an appropriate threshold.
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In Chapter 2, the determination of an unknown spacewice dependent force
function acting on a vibrating string from over-specified Cauchy boundary data
has been investigated numerically using the BEM combined with a regularized
method of separating variables. The problem is split into a direct well-posed prob-
lem for the linear wave equation, which is solved numerically using the BEM, and
an inverse ill-posed problem whose unstable solution is expressed as a separation
of variables truncated series. When the input data was contaminated with noise
we have used the Tikhonov regularization method in order to obtain a stable
solution. The choice of the regularization parameter was based on the L-curve
method. Numerical results showed that accurate and stable solutions have been
achieved.

In Chapter 3, the inverse problem for the wave equation which consists of
determining an unknown space-dependent force function acting on a vibrating
structure from Cauchy boundary data has been investigated. However, in con-
trast to the problem in Chapter 2 the space-dependent source term is multiplied
with a known space and time dependent function. This prevents the previous
splitting technique being applicable. Numerically, the FDM was used and the re-
sulting ill-conditioned system of linear equations was solved using the Tikhonov
regularization. In a similar way to Chapter 2, the L-curve method has been
employed for the choice of the regularization parameter.

In Chapter 4, the determination of an unknown time-dependent force function
in the wave equation has been investigated. In other words, the forcing function
was assumed to depend only upon the single time variable. This was a natural
continuation of Chapter 3, where the space-dependent force identification has
been considered. The additional data was given by a space integral average
measurement of the displacement. As in Chapter 3, this linear inverse problem
has a unique solution, but it is still ill-posed since small errors in the input data
cause large errors in the output solution. Therefore, when the input data was
contaminated with noise we have used the Tikhonov regularization method in
order to obtain a stable solution. The choice of the regularization parameter was
based on the L-curve method.

In Chapter 5, the determination of the space-dependent force acting on a vi-
brating structure from measured final or time-average displacement observation

182



7.1 Conclusions

has been thoroughly investigated. In this chapter, the variational formulations
of the inverse problems under investigation have been presented and expressions
for the gradients of the least-squares functionals which were minimized have been
explicitly provided. The problems have been discretised numerically using the
FDM in one- and two dimensions, and the Landweber and the conjugate gradi-
ent iterative methods have been applied. For noisy data, the semi-convergence
phenomenon appears, as expected, and stability was restored by stopping the
iterations according to the discrepancy criterion once the residual becomes close
to the amount of noise. Numerical results in one- and two-dimensions, for the
recovery of smooth as well as non-smooth force functions have been illustrated
and discussed.

In Chapter 6, nonlinear identifications of the space-dependent potential and/or
damping coefficients in the wave equation from Cauchy data boundary measure-
ments of the deflection and the flux tension have investigated. The problems have
been discretised numerically using the FDM and in order to stabilise the solution
the nonlinear Tikhonov regularization method has been employed. Numerically,
the nonlinear constrained minimization problem has been solved iteratively using
the Matlab toolbox routine lsqnonlin. By plotting the numerical solution for var-
ious values of regularization parameter we can infer when the instability starts to
kick off and then decide on its appropriate selection.

Overall, the results obtained by the methods proposed in this thesis, i.e. BEM
or FDM combined with Tikhonov’s regularization or Landweber/Conjugate gra-
dient methods, showed that accurate and stable numerical solutions can be ob-
tained for solving inverse force problems for the wave equation. The methods
were found to be convergent with respect to increasing the number of boundary
elements in the BEM or decreasing the mesh size in the FDM and stable with re-
spect to decreasing the level of noise added into the input data. Of course, much
work remains to be done in the future and some possible avenues are proposed
in the next section.
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7.2 Future work

The work presented in this thesis concerning inverse force problems for the wave
equation can be developed as well for inverse boundary value problems, inverse
initial value problems or coefficient identification problems. Practical applications
can also be envisaged. Some possible future work may consist of:

• Extending and developing the BEM to deal with the inverse force problems
for the wave equations of Chapters 3-5. This will involve discretising a
time-domain integral, as explained in (Benmansour, 1993).

• A natural extension will concern the numerical implementation in higher
dimensions. This is straightforward for the FDM in rectangular, cuboid,
annular or spherical geometries, but for the BEM the extensions to two-
and three-dimensions require extra skills and care, (Mansur and Brebbia,
1982a,b).

• Identification of a nonlinear force f(u) entering the wave equation utt =

∇2u + f(u), (Cannon and DuChateau, 1983), will be of interest. In this
case, both the direct and inverse problems are nonlinear.

• Extending the work of Chapter 6 to the wave equation utt = ∇2u+Q0(x)u+

Q1(x)ut + Q
2
(x) · ∇u and investigate the reconstruction of the vectorial

function Q
2
(x), (Liu and Triggiani, 2011).
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Chapter 8

Appendix A

In this appendix we first derive the finite-difference formula (3.17) for approxi-
mating the wave equation (3.13). In doing this, assume U is a function of the
independent variable x, then by using Taylor’s series

Ui+1 = U(xi+1) = U(xi + ∆x) = Ui + (∆x)U ′i +
(∆x)2

2!
U ′′i +

(∆x)3

3!
U ′′′i

+O((∆x)4), (8.1)

Ui−1 = U(xi−1) = U(xi −∆x) = Ui − (∆x)U ′i +
(∆x)2

2!
U ′′i −

(∆x)3

3!
U ′′′i

+O((∆x)4), (8.2)

where ∆x = xi+1 − xi and U ′i = U ′(xi), U ′′i = U ′′(xi) and U ′′′i = U ′′′(xi).
From (8.1) and (8.2) we obtain the approximations for the derivatives, as

follows:

• First order forward difference:[
Ui+1 = Ui + (∆x)U ′i +O((∆x)2)

]
÷∆x,

Ui+1 − Ui
∆x

= U ′i +O(∆x).

• First order backward difference:[
Ui−1 = Ui − (∆x)U ′i +O((∆x)2)

]
÷∆x,

Ui − Ui−1

∆x
= U ′i +O(∆x).
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• Second order central difference for first derivative: subtracting (8.2) from
(8.1) leads to[

Ui+1 − Ui−1 = 2(∆x)U ′i +O((∆x)3)
]
÷ 2∆x,

Ui+1 − Ui−1

2∆x
= U ′i +O((∆x)2).

• Second order central difference for second derivative: adding (8.1) and (8.2)
leads to[

Ui+1 + Ui−1 = 2Ui + 2
(∆x)2

2!
U ′′i +O((∆x)4)

]
÷ (∆x)2,

Ui+1 + Ui−1 − 2Ui
(∆x)2

= U ′′i +O((∆x)2).

Then, we use the same idea for u(x, t) (i.e. u is a function of the independent
variables x and t). Equations (8.1) and (8.2) for space partial derivatives become

ui+1,j = ui,j + ∆x(ux)i,j +
(∆x)2

2!
(uxx)i,j +

(∆x)3

3!
(uxxx)i,j +O((∆x)4),

ui−1,j = ui,j −∆x(ux)i,j +
(∆x)2

2!
(uxx)i,j −

(∆x)3

3!
(uxxx)i,j +O((∆x)4),

and for time partial derivatives

ui,j+1 = ui,j + ∆t(ut)i,j +
(∆t)2

2!
(utt)i,j +

(∆t)3

3!
(uttt)i,j +O((∆t)4),

ui,j−1 = ui,j −∆t(ut)i,j +
(∆t)2

2!
(utt)i,j −

(∆t)3

3!
(uttt)i,j +O((∆t)4).

Thus we approximate the time and space second-order derivatives utt and uxx as

utt(xi, tj) =
ui,j+1 − 2ui,j + ui,j−1

(∆t)2
+O((∆t)2),

uxx(xi, tj) =
ui+1,j − 2ui,j + ui−1,j

(∆x)2
+O((∆x)2),
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with leading errors of orders (∆t)2 and (∆x)2, respectively. Similarly, for the
time and space first-order derivatives ut and ux we have

ut(xi, tj) =
ui,j+1 − ui,j−1

2∆t
+O((∆t)2),

and

ux(xi, tj) =
ui+1,j − ui−1,j

2∆x
+O((∆x)2),

which are of order (∆t)2 and (∆x)2, respectively. Introducing these expressions
in (3.13) and re-arranging terms we obtain (3.17).

Secondly, we derive the approximation (3.21) for the flux derivative using
Taylor’s series, as follows:

u(∆x, t) = u(0, t) + (∆x)ux(0, t) +
(∆x)2

2
uxx(0, t) +O((∆x)3),

u(2∆x, t) = u(0, t) + 2(∆x)ux(0, t) +
(2∆x)2

2
uxx(0, t) +O((∆x)3).

Multiplying the first equation by 4 and subtracting from the second one we obtain
the first approximation for the derivative ux(0, t) in (3.21) (which is order (∆x)2

forward finite difference approximation for ux(0, t)).
Similarly, for approximating the derivative ux(L, t) in (3.21) (which is order

(∆x)2 backward finite difference approximation for ux(L, t)) we employ the Tay-
lor’s series expansions

u(L−∆x, t) = u(L, t)− (∆x)ux(L, t) +
(∆x)2

2
uxx(L, t) +O((∆x)3),

u(L− 2∆x, t) = u(L, t)− 2(∆x)ux(L, t) +
(2∆x)2

2
uxx(L, t) +O((∆x)3).
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