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Abstract

26Al is an important radionuclide in astrophysics. Its decay to 26Mg results in the

emission of a 1.8 MeV gamma-ray which is detected and mapped across the galaxy,

providing evidence of ongoing nucleosynthesis in the universe. Its origin is still not

understood, however observations suggest massive stars as a possible main production

site. A post processing network calculation study modelled nucleosynthesis in the

C/Ne convective-shell before the core collapse of a massive star and found that the
23Na(α,p)26Mg reaction is important for the synthesis of 26Al in this environment.

Due to large uncertainties in previous experimental measurements of this reaction,

theoretically calculated Hauser-Feshbach cross sections were used to calculate the
23Na(α,p)26Mg reaction rate for the post processing calculations. This theoretical

rate has large uncertainties as the statistical model used to calculate the cross sections

is not thought to be applicable for the level density of the compound nucleus 27Al.

The 23Na(α,p)26Mg reaction is also found to play an important role in the

nucleosynthesis of several nuclei in type Ia supernovae explosions by several sensitivity

studies. Again these studies used the reaction rate from Hauser-Feshbach statistical

model cross-section calculations.

A measurement has been made of the 23Na(α,p)26Mg reaction cross section in

inverse kinematics using the TUDA scattering chamber at TRIUMF laboratory

in Canada. The cross sections were calculated in the energy range Ec.m. = 1.28 -

3.15 MeV and found to be in reasonable agreement with the Hauser Feshbach model

calculations. A new reaction rate has been calculated providing tight constraints on

the uncertainty in the production of 26Al in the C/Ne convective shell of massive

stars due to the 23Na(α,p)26Mg reaction.
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Chapter 1

Introduction and Motivation

The nuclear processes which occur in stars are responsible for creating the building

blocks for life on earth. Nuclear astrophysics is a field of study concerned with

finding the origin of the chemical elements and understanding the processes which

lead to their creation in the various stellar environments. In order to understand the

origin of the chemical elements we must understand the nuclear processes involved

in their creation. Experimental nuclear astrophysics aims to measure important

nuclear information such as nuclear lifetimes and reaction rates in astrophysical

environments, in order to explain the processes happening inside stellar environments.

This leads to a better understanding of the origin of the nuclei of which we are made.

These measurements, coupled with observational evidence from gamma-ray astron-

omy and measurements of the isotopic abundances of pre-solar grains and meteorites,

allow theoreticians to constrain astrophysical models. This leads to a better under-

standing of how the chemical elements, which make up life on earth, came to be.

Although much progress has been made in measuring reaction cross sections in the

laboratory, there are still many which remain unmeasured, necessitating the use of

theoretical predictions of the cross sections as input for astrophysical models. This

can lead to large uncertainties. The relatively low energy of astrophysical environ-

ments can make cross section measurements in the laboratory difficult. Further, the

nuclei involved in these reactions are often unstable and can be difficult to study in

the laboratory.
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Fig. 1.1 The local Galactic abundance distribution of nuclei and the processes by
which they are created, see text for additional details. Figure taken from reference [1].

Figure 1.1 shows the relative abundance of nuclei in the local Galaxy. Hydrogen

and helium are the most abundant elements and were mainly formed during Big Bang

nucleosynthesis along with deuterium. Some helium is also produced by hydrogen

burning in stellar environments. The abundance of lithium, beryllium and boron

is from cosmic-ray spallation reactions with CNO nuclei, with some of the lithium

being produced in the Big Bang. These nuclei are easily destroyed in fusion reactions

with protons and so an abundance minimum is observed here [2]. Nuclei from carbon

to calcium are from successive stages of stellar burning. The iron peak nuclei are

produced in explosive burning environments in supernovae explosions. These nuclei

are energetically the most stable and so we observe an abundance peak [2].

Beyond the iron peak, nucleosynthesis via charged-particle reactions becomes

unlikely due to the large Coulomb repulsion and so the majority of nuclei after

this are produced by neutron capture reactions. There are two neutron capture

processes, the slow neutron capture process (s-process) and the rapid neutron capture



1.1 26Al Production in the Universe 3

process (r-process). The s-process occurs when neutrons are captured by nuclei

which subsequently undergo beta decay producing nuclei along the valley of stability

up to 209Bi when alpha decay halts the process. Where the neutron-capture reactions

are much faster the r-process occurs. In this case neutron-capture reactions happen

faster than the competing beta-decay processes producing unstable nuclei along

the neutron drip line up to the point where neutron capture reactions are balanced

by photodisintegrations. When the neutron abundance begins to be exhausted the

unstable neutron-rich nuclei produced decay to the valley of stability. The stable

nuclei which are neutron deficient between 74Se and 196Hg cannot be produced by

the s- and r- processes. Instead they are produced by the p-process via (p,γ) and

(γ,n) reactions [2].

1.1 26Al Production in the Universe

26Al is an important radionuclide in nuclear astrophysics. It beta decays to an

excited state in 26Mg with a half-life of ∼7.2×105 years which subsequently decays

to its ground state emitting a 1.8 MeV gamma-ray which was first observed in

1984 [3]. This emission line is one of the most intense gamma-rays observed in

the interstellar medium [4]. The fact that it is currently observed is evidence of

continuing nucleosynthesis in the Galaxy due to its relatively short lifetime compared

to the timescale of Galactic evolution of ∼1010 years [5].

It has also been observed in meteorites via an excess of its decay product 26Mg [6].

The discovery was made in calcium-aluminium rich inclusions (CAIs) which were

some of the first solids to condense in the early Solar System material [7]. This

observation has led to the conclusion that 26Al was present and reasonably widespread

in the early solar system with an abundance ratio of 26Al/27Al ∼ 5×10−5 [8]. The

favoured scenario for its presence is contamination of the proto-solar system by

massive stars [7]. Understanding the origin of the radionuclide 26Al would therefore

give information on the formation of the Solar System.
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26Al has also been observed in pre-solar grains, again via an excess of its decay

product 26Mg. These grains are thought to have been produced in stellar environments

before the formation of the solar system and preserved in meteorites [9]. The isotopic

composition of these grains can therefore provide information about the nuclear

processes occurring in the stellar environment in which they are formed providing

constraints for astrophysical models and complementing astrophysical observations.

Again, this makes information on the astrophysical origin of this radionuclide highly

important in nuclear astrophysics.

The origin of the main production site of 26Al is still under debate. There are

two main characteristics needed by the environment in which it is produced. Firstly,

the stellar environment must be hot enough with T≥108 K and, secondly, there must

be sufficient seed nuclei for its production. As well as this the 26Al must be ejected

into the interstellar medium before it is destroyed in the hot environment in which it

is created [10]. Several sites have been proposed for the production of 26Al. These

sites include Wolf-Rayet stars, which are massive stars with M≥30M⊙ with strong

stellar winds, thought to eject the 26Al into the interstellar medium. Core collapse

supernovae have also been identified as a possible production site [11].

The Compton Gamma-Ray Observatory (CGRO), launched in 1991, used the

COMPTEL instrument to create the first 1.8 MeV mapping of the Galaxy [5]. The

map showed that the emission was clustered asymmetrically along the Galactic

plane, which favoured a massive star hypothesis for the main production site of
26Al since massive stars are known to form in clusters [10]. In conjunction with this

Knödlseder [5] investigated the correlation between the 1.8 MeV gamma-ray line

from the COMPTEL data and the 53 MHz microwave free-free emission. Free-free

emission is produced by the acceleration of electrons in the electrostatic field of

ionised gas and it can be used to map out the distribution of ionised gas in the

Galaxy. Massive stars with M≥20M⊙ are found to substantially contribute to the

ionisation of the interstellar medium. Knödlseder concluded that the close correlation
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between the 1.8 MeV gamma-ray line and the microwave free-free emission suggests

that the origin of 26Al is massive stars with M ≥ 20M⊙ [5].

More recently galactic 26Al maps, which show the distribution of the radioisotipe

in the Galaxy, have been created by the SPI (SPectrometer on Integral) spectrometer.

The SPI spectrometer is on board the INTErnational Gamma-Ray Astrophysics

Laboratory (INTEGRAL) mission [4]. Data from the INTEGRAL SPI showed that
26Al is co-rotating with the Galaxy, supporting a Galaxy-wide origin [12]. Figure 1.2

shows the most recent map produced by the INTEGRAL space mission.

Fig. 1.2 Map of 26Al in the Galactic plane produced by INTEGRAL [4].

26Al is thought to be produced at the same site as 60Fe which is produced in

the final stages of massive star evolution. 60Fe decays to 60Co and 60Ni, emitting

gamma-ray lines of 1.173 and 1.333 MeV. These gamma-rays can also be detected,

however, the radiation is too weak to derive a constraint on the spatial distribution

of 60Fe [4]. Satellites such as the Reuven Ramaty High Energy Solar Spectroscopic

Imager (RHESSI) and SPI have measured the abundance ratio of 60Fe/26Al and the

most recent calculation give the ratio to be 0.14, which agrees with supernova model

predictions [4].

There are several stages in a massive stars lifetime when it may produce 26Al,

firstly in the hydrogen convective core of Wolf-Rayet stars, secondly with explosive
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Ne/C burning during core collapse and, thirdly, in the pre-supernova star during

C/Ne convective shell burning [13]. The focus of this work is the C/Ne convective

shell of the pre-supernova star where T∼1.25 GK and Gamow window EG=1.2-

2.2 MeV. In order to understand the nucleosynthesis leading to its production it is

first necessary to understand the nuclear burning over the lifetime of the star.

1.1.1 Massive Star Evolution

Massive stars are classified as stars with an initial mass M≥11M⊙. They have much

shorter lifetimes than lower mass stars and spend approximately 90% of their time

on the main sequence converting hydrogen to helium via the CNO cycles. At lower

temperatures it is the proton-proton (pp) chains which burn hydrogen into helium.

The reactions involved in the pp chains are shown in Fig. 1.3. Each chain produces

26.73 MeV by converting four protons into one 4He nucleus [2, 14].

5.1 Hydrostatic Hydrogen Burning 379

dently from the details of this transformation, the process releases an energy
(Section 1.5.3) of

Q = 4(M.E.)H − (M.E.)4He = 4 · (7288.97 keV) − (2424.92 keV)

= 26.731 MeV (5.1)

The obvious question arises as to precisely how this fusion process takes place.
Early estimates showed that the probability for the simultaneous interaction
of four protons in the stellar plasma is far too small to account for the observed
luminosity of stars. Instead, sequences of interactions involving two particles
in the entrance channel are much more likely to occur. The two principle ways
by which hydrogen is converted to helium in hydrostatic hydrogen burning
are called the proton–proton chains and the CNO cycles. These processes were
first suggested more than 60 years ago (Atkinson 1936, Bethe and Critchfield
1938, von Weizsäcker 1938, Bethe 1939) and are described in this section. It
is useful for the following discussion to keep in mind that, depending on the
stellar mass and metallicity, typical temperatures in core hydrogen burning
are in the range of T ≈ 8–55 MK, while the hydrogen burning shells in AGB
stars achieve temperatures of T ≈ 45–100 MK. The central temperature of the
Sun, for example, is T = 15.6 MK (Bahcall 1989). On the other hand, far higher
temperatures are attained in explosive hydrogen burning, which will be dis-
cussed in later sections. As will be seen, the details of the nuclear processes
depend sensitively on the temperature.

5.1.1
pp Chains

The following three sequences of nuclear processes are referred to as proton–
proton (or pp) chains:

pp1 chain pp2 chain pp3 chain

p(p,e+ν)d p(p,e+ν)d p(p,e+ν)d
d(p,γ)3He d(p,γ)3He d(p,γ)3He
3He(3He,2p)α 3He(α,γ)7Be 3He(α,γ)7Be

7Be(e−,ν)7Li 7Be(p,γ)8B
7Li(p,α)α 8B(β+ν)8Be

8Be(α)α
T1/2: 8B (770 ms)

The different pp chains are also displayed in Fig. 5.2. Each of these chains
starts from hydrogen and converts four protons to one 4He nucleus (or α-
particle). The first two reactions are the same for each chain. Other nuclear
reactions involving the light nuclei 1H, 2H, 3He, and so on, are less likely to
occur in stars (Parker, Bahcall and Fowler 1964).

Fig. 1.3 The pp chains which burn hydrogen to helium [2].

Figure 1.4 shows how the energy generation rates of the pp1 chain and CNO

cycle vary with temperature. At the higher temperatures achieved in the core of

massive stars it is the CNO cycle which is dominant in energy production during

hydrogen burning [2].

The overall effect of the CNO cycles is that 41H → 4He + 2e+ + 2ν using C,

N, O and F as catalysts. The CNO cycles are shown in Fig. 1.5. The main energy

generation comes from the CNO1 cycle in which the slowest reaction is the 14N(p,γ)

reaction which acts as a bottleneck in the cycle producing a build up of 14N [2].
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Fig. 5.12 Equilibrium energy generation
rates of the pp1 chain and the CNO1 cycle.
The curve for the CNO1 cycle is calculated
for a solar system composition (Lodders
2003). For a different composition, the
CNO1 curve shifts vertically. The rate of

the 14N(p,γ)15O reaction is adopted from
Runkle et al. (2005). The pp1 chain and the
CNO1 cycle dominate for temperatures be-
low and above T = 20 MK, respectively. The
pp1 chain is the primary energy source in
the Sun.

pute the time evolution of CNO abundances numerically. For the numerical
calculations described in this section, the assumption of constant temperature
and density conditions is made. It is important to emphasize that the inter-
nal temperature of a real star is actually changing during its evolution on the
main sequence. However, in hydrostatic burning environments these changes
occur slowly over long time periods. Therefore, the assumption of constant T
and ρ, although not correct for a real star, is quite useful for obtaining physical
insight into the nucleosynthesis and energy production.

We first consider the approach to steady state in the CNO1 cycle. The tem-
perature and density are assumed to be T = 25 MK and ρ = 100 g/cm3. Such
values are typical of CNO burning on the upper main sequence. For the initial
composition we assume X0

H = 0.70, X0
4He = 0.28, and X0

12C = 0.02, that is, only
12C is initially present as a CNO seed nucleus. The reaction network, includ-
ing all four CNO cycles, is solved until hydrogen is exhausted, that is, until the
hydrogen concentration falls below XH = 0.001. The time evolution of abun-
dances is shown in Fig. 5.13a. As expected from the operation of the CNO
cycles, the hydrogen abundance declines from its initial value, while the he-
lium abundance increases. Hydrogen is exhausted after 30 million years. The
initial carbon abundance is steadily depleted and converted to other nuclides.
It can be seen that, for the chosen temperature and density conditions, steady
state in the CNO1 cycle is reached after only 4000 years. From then on until
the end of the calculation, the abundances of 12C, 13C, 14N, and 15N remain
constant. The most abundant CNO isotope in equilibrium is 14N, while the

Fig. 1.4 Equilibrium energy generation rates (ϵe/(ρX2
H)) of the pp1 chain and CNO1

cycle as a function of temperature [2].
398 5 Nuclear Burning Stages and Processes

Fig. 5.8 Representation of the four CNO cycles in the chart of the
nuclides. Stable nuclides are shown as shaded squares. Each reaction
cycle fuses effectively four protons to one 4He nucleus.

Fig. 5.10, showing the reaction rates normalized to the rate of the slowest re-
action, 16O(p,γ)17F.

A few important points need to be stressed before continuing the discus-
sion. First, at relatively low temperatures characteristic of hydrostatic hydro-
gen burning (T ≤ 55 MK), β+-decays of unstable nuclei in the CNO mass
range proceed on much faster time scales compared to the competing proton-
induced reactions. Thus, reactions involving unstable nuclei are unimportant
under such conditions. At temperatures above T = 100 MK, additional reac-
tions not listed above (those involving unstable target nuclei) take place in the
CNOF mass region and the characteristics of the cycles change substantially.
In this section we will concentrate on the temperature range T < 100 MK,
while hydrogen burning in the CNOF mass region at higher temperatures is
discussed in Section 5.2.1. Second, the relative initial abundance of the var-
ious CNOF isotopes is obviously important in order to describe the detailed
operation of the CNO cycles. These seed nuclei are produced at the helium
burning stage in a previous generation of stars. The most abundant nuclides
produced during helium burning (see Section 5.3.2) are 12C, 16O, and, to a
lesser extent, 14N. For example, the solar ratio of these isotopes is 12C:14N:16O
= 10:3:24. Hence, the CNO cycles will most likely operate with 12C and 16O
as seed nuclei. Third, consider now the different fate of these two nuclides.
The 12C nuclei will initiate the CNO1 sequence of reactions. At 15N, there is a
small chance of about 1:1000, according to Fig. 5.9, that catalytic material leaks

412 5 Nuclear Burning Stages and Processes

Fig. 5.15 Nuclear interactions in the mass A ≥ 20 region during hy-
drostatic hydrogen burning. Stable nuclides are shown as shaded
squares. The key relates an arrow to a specific interaction (proton
capture, (p,α) reaction, or β+-decay). The nuclide 26Al can be formed
either in its ground state or in its isomeric state (Ex = 228 keV).

Fig. 5.16 Mean lifetimes of 22Na (solid lines) and 26Alg (dashed lines)
versus temperature. The curves are calculated for the conditions ρ =
100 g/cm3 and XH/MH = 1. The mean lifetimes for the β+-decays,
τβ(22Na) and τβ(26Alg), are independent of temperature and density
for the conditions of hydrostatic hydrogen burning.

displayed in Fig. 5.17 for the branching point nuclei 23Na, 27Al, 31P, and 35Cl.
The solid lines in each panel indicate the upper and lower limits of Bpα/pγ

caused by unobserved narrow resonances in the (p,γ) and (p,α) reactions. Be-
low T = 55 MK, the (p,α) reaction on 23Na dominates over the competing (p,γ)
reaction and hence a NeNa cycle may develop (but only if the cycling time
is shorter than the duration of the hydrogen burning stage). The situation is

Fig. 1.5 Diagram showing the CNO cycles which burn hydrogen into helium. Stable
nuclei are shown in grey boxes [2].

Proton induced reactions on unstable nuclei are of little importance as the

radionuclides beta decay with short lifetimes. Nuclei with A≥20 are unlikely to

be produced in the CNO cycle. However at higher temperatures the 19F(p,γ)20Ne

reaction could provide a breakout to reaction chains involving heavier nuclei via the
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NeNa and MgAl cycles shown in Fig. 1.6. These processes are important to note as
26Al can be produced.412 5 Nuclear Burning Stages and Processes

Fig. 5.15 Nuclear interactions in the mass A ≥ 20 region during hy-
drostatic hydrogen burning. Stable nuclides are shown as shaded
squares. The key relates an arrow to a specific interaction (proton
capture, (p,α) reaction, or β+-decay). The nuclide 26Al can be formed
either in its ground state or in its isomeric state (Ex = 228 keV).

Fig. 5.16 Mean lifetimes of 22Na (solid lines) and 26Alg (dashed lines)
versus temperature. The curves are calculated for the conditions ρ =
100 g/cm3 and XH/MH = 1. The mean lifetimes for the β+-decays,
τβ(22Na) and τβ(26Alg), are independent of temperature and density
for the conditions of hydrostatic hydrogen burning.

displayed in Fig. 5.17 for the branching point nuclei 23Na, 27Al, 31P, and 35Cl.
The solid lines in each panel indicate the upper and lower limits of Bpα/pγ

caused by unobserved narrow resonances in the (p,γ) and (p,α) reactions. Be-
low T = 55 MK, the (p,α) reaction on 23Na dominates over the competing (p,γ)
reaction and hence a NeNa cycle may develop (but only if the cycling time
is shorter than the duration of the hydrogen burning stage). The situation is

Fig. 1.6 The NeNa and MgAl cycles which take place during hydrostatic hydrogen
burning. Stable nuclei are shown in grey boxes [2].

When the hydrogen in the core of the star has been converted to helium the

star begins to contract under gravity and the temperature increases until helium

burning is ignited in the core of the star halting the collapse. Helium burning occurs

at temperatures of T9 ∼ 0.2 and densities of around 103g cm−3. During this phase

radiation pressure causes the outer layers of the star to expand and cool and the

star enters the Red Giant phase of its life. Helium burning proceeds via the triple

alpha process via the reactions

4He +4 He ↔ 8Be (1.1)

8Be +4 He ↔ 12C∗ →12 C + γ (1.2)

8Be is unstable and decays back to two 4He particles with a lifetime of T1/2 =

6.7×10−17s. At the temperature and density relevant for He burning, the production

rate becomes equal to the decay rate and there is a small probability 8Be can capture



1.1 26Al Production in the Universe 9

a further 4He nucleus to produce 12C. This process is made possible by the existence

of the Hoyle state, a 0+ resonance state near the alpha particle threshold in 12C [14]

which can subsequently decay to the ground state of 12C.

As 12C begins to build up 16O is produced via the reaction 12C(α,γ)16O. The

abundance ratio of 12C to 16O of ≈ 0.30 - 0.85 after helium burning suggests that this

reaction is slow and so some 12C remains after the helium burning phase. Subsequent

alpha capture reactions 16O(α,γ)20Ne and 20Ne(α,γ)24Mg occur but do not contribute

to the final abundances, with the final mass fractions of 20Ne and 24Mg, being ≈10−5

and ≈10−11, respectively after helium burning [2].

Once all the helium has been burnt in the core, the star begins to contract under

gravity again. If a star has an initial mass M≥8M⊙ carbon burning will ignite at

T9 ∼ 0.8 and density of ∼105g cm−3. The main reactions involved in the carbon

burning phase are:

12C +12 C → 20Ne +4 He (1.3)

12C +12 C → 23Na + p (1.4)

12C +12 C → 23Mg + n (1.5)

The most abundant nuclei in the core at the end of carbon burning are 16O, which

survives the burning, 20Ne, 24Mg and 23Na [2]. Once carbon burning can no longer

produce enough energy to withstand gravitational collapse the star contracts again

and when the core temperature reaches T9 ∼1.4 and the density reaches ∼107g cm−3

neon burning is ignited in the core. Neon burning proceeds via the primary reaction
20Ne(γ,α)16O which produces α particles allowing the secondary reactions:

20Ne(α, γ)24Mg(α, γ)28Si (1.6)

23Na(α, p)26Mg(α, n)29Si (1.7)
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The main energy producing reactions are 20Ne(γ,α)16O and 20Ne(α,γ)24Mg and

so the neon burning stage of the stars life is characterised by these two reactions. At

the end of the helium burning phase the most abundant nuclei in the core are 16O

and 24Mg. Again the core contracts until it reaches a temperature of T9 ∼2 and a

density of ∼107g cm−3 at which point oxygen burning ignites in the core. There are

many reactions involved in oxygen burning with the primary ones being:

16O +16 O → 31P + p (1.8)

16O +16 O → 30Si + 2p (1.9)

16O +16 O → 28Si +4 He (1.10)

16O +16 O → 24Mg + 24He (1.11)

16O +16 O → 30P + d (1.12)

16O +16 O → 31S + n (1.13)

At the end of oxygen burning the core is 90% 28Si and 32S [14]. Again the core

contracts and when the temperature reaches T9 ∼3.5 and density reaches ∼108g

cm−3 silicon burning begins [14]. Photodisintegration of less tightly bound nuclei

occurs via reactions such as:

28Si + γ → 24Mg + α (1.14)

24Mg + γ → 20Ne + α (1.15)

Alpha, proton and neutron capture of the liberated particles leads to heavier and

heavier elements being produced in a complex chain of reactions leading towards

the Fe peak. When silicon burning comes to an end the star has an onion structure.

After each burning stage ends in the core, burning shells form around the core which

has moved onto the the next stage of burning and so the star ends with a core which
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consists primarily of 56Fe and 52Cr. Figure 1.7 shows this onion-like structure before

core collapse occurs.

Fig. 1.7 Diagram showing the onion structure of a massive star at the end of silicon
burning. The upper left side shows the most abundant nuclei in the shell labelled,
the lower left side shows the burning shells around the core [2].

The core collapses until it becomes electron degenerate at which point the collapse

is halted. However the ashes from the shells burning around the core continue to

add to the mass of the electron degenerate core until it exceeds the Chandrasaker

mass limit of 1.4M⊙. At this point electron degeneracy can no longer counteract

gravity and the core begins to collapse again. As the core collapses, and electron

density increases, electrons are captured by nuclei, reducing the number of electrons

contributing to electron degeneracy pressure and accelerating the collapse. As well

as this, as the temperature increases, iron peak nuclei are photodisintegrated into

lighter nuclei, removing energy that could have contributed to the pressure.

The core continues to collapse until it overshoots the nuclear density of ≈1014 g

cm−3 at which point nuclei begin to feel the short-range nuclear force. The nuclear

force is repulsive at short distances resulting in a rebound of the inner core. The

rebounding inner core collides with the in-falling outer layers of the core, creating a
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shock wave that propagates outwards compressing and heating the outer layers of

the star resulting in explosive burning in the shells. The outer layers of the star are

blown off and the core of the star becomes a neutron star or a black hole.

1.1.2 26Al Production in the C/Ne Convective Shell

In order to predict the abundance of 26Al produced in massive star evolution Iliadis et

al. [13] carried out detailed network calculations for three burning scenarios. Firstly

during hydrogen burning in the core of Wolf-Rayet stars, secondly with explosive

Ne/C burning during core collapse and thirdly in the pre-supernova star during

C/Ne convective shell burning [13].

In the case of the C/Ne convective shell the network calculation uses the

temperature-density-time profile from the stellar evolution code of a 60M⊙ star with

an initial solar metallicity used by Limongi and Chieffi [11]. The time axis of the

profile is compressed by a factor of 60 to reproduce the effects of convection in the

post processing model. Convection brings fresh fuel to the burning region as well as

carrying away fragile nuclei from the burning region which lengthens the timescale

of nuclear burning. Therefore in order to use this profile in a post processing code

they must compress the time axis to prevent the fuel being destroyed faster than in

the stellar evolution model.

Thermal Equilibrium of 26Al

A level scheme for 26Al decaying to 26Mg is shown in Figure 1.8. The ground state of
26Al beta decays to several excited states in 26Mg with a half life of T1/2=7.17×105y.

Some of these excited states decay to the first excited state in 26Mg, which lies at

1.809 MeV, and the consequent decay 26Mg to its ground state results in the observed

gamma-ray line.

The first excited state in 26Al is an isomer, which decays to the ground state

in 26Mg without the emission of the 1.809 MeV gamma-ray, and with a half-life

of T1/2 = 6.34 s. This is due to the large angular momentum difference between
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the 0+ first excited state and the 5+ ground state in 26Al. The ground state and

first excited state in 26Al are therefore linked via thermal excitations to higher

excited states. At temperatures above T∼0.4 GK [15] the ground state, 26Alg and

isomer 26Alm fall into thermal equilibrium. This means their abundance ratio can be

determined from the Boltzmann distribution and the internal equilibrium method

is not important. Therefore they can be treated as one species, 26Alt. At lower

temperatures they fall out of thermal equilibrium and act as two species which decay

with their characteristic half lives.

Fig. 1.8 The level scheme for the decay 26Al to 26Mg [2].

26Al Production in the C/Ne Convective Shell

The temperature and density of the carbon burning shell is not usually enough for a

substantial amount of 26Al to be produced. In becomes possible as the star begins

to contract and heat up and mixing occurs. The burning in the model begins with a

temperature of T9 ∼1.13 and density of 6.3×104 g/cm3 and ends with a temperature

of T9 ∼1.44 and density of 1.1×105 g/cm3. The time for the profile is 5.24×104 s.
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The most abundant nuclei at the beginning of the burning are 16O, 12C and 20Ne.

Burning proceeds primarily through the main carbon burning reactions:

12C +12 C → 20Ne +4 He (1.16)

12C +12 C → 23Na + p (1.17)

These release alpha particles and protons which fuel the secondary reactions,

building up towards 26Al:

16O +4 He → 20Ne + γ (1.18)

23Na + p → 20Ne +4 He (1.19)

26Al is produced mainly by the reaction 25Mg(p,γ)26Alt. 25Mg is produced via the

reactions 22Ne(α,n)25Mg, which is also the main neutron source, and 24Mg(n,γ)25Mg

shown in Fig.1.9. The low neutron abundance means that the main destruction of
26Alt is through its beta decay to 26Mg.

27Al26Al

26Mg25Mg24Mg

23Na 24Na

22Ne 23Ne

Fig. 1.9 The reaction chain for the production and destruction of 26Al in the C/Ne
convective burning shell of massive stars. The arrows indicate the reactions used to
produce and destroy 26Al. Grey boxes represent stable nuclei.
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The main proton producing reaction for the production of 26Al is the 12C(12C,p)23Na,

with the second most important proton production reaction being 23Na(α,p)26Mg.

The Iliadis [2] study varied the reaction rates of 66 forward and reverse reactions, and

Table 1.1 shows the list of most influential reactions found by the study. The other

reactions and the abundance changes listed "..." in the table changed the final amount

of 26Al by less than 20%. It is the fourth most important reaction 23Na(α,p)26Mg

that is the focus of this thesis.

Reaction Rate Multiplied By Uncertainty
10 2 0.5 0.1

23Na(p,α)20Ne 0.15 0.61 1.6 4.2 6%
26Alt(n,p)26Mg 0.16 0.65 1.4 1.9
25Mg(p,γ)26Alt 6.2 2.0 0.46 0.10 5%
23Na(α,p)26Mg 3.0 1.3 ... 0.71
26Mg(α,n)29Si 0.40 0.83 ... 1.3 29%

24Mg(n,γ)25Mg 2.1 1.3 ... 0.70
Table 1.1 The table shows the nuclei and abundance changes produced by varying
the reaction rates assuming a single species of 26Al during convective shell C/Ne
burning. Abundance changes denoted "..." indicate less than 20% change in the final
amount of 26Al [13].

Due to insufficient data a statistical-model cross-section calculation was used to

calculate a reaction rate for the 23Na(α,p)26Mg reaction in the network calculations.

Previous experimental measurements of this reaction will be discussed in the next

chapter. This reaction was therefore highlighted as being of great importance for a

cross section measurement so that better constraints of nucleosynthesis models could

be applied. It is this reaction that forms the core of this thesis.

1.2 Type 1a Supernovae

Type Ia supernovae are important astrophysical objects as the nature of their peak

luminosity curve means that they can be used as standard candles to measure

cosmological distances. They are also important for the chemical evolution of
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galaxies as they are responsible for the production of most of the Fe peak nuclides

and are a key target for gamma-ray astronomy [16]. However, the astrophysical

scenario by which they come about is still not understood, with many models still

being proposed. It is possible that more than one model is needed to explain the

observed SN1a.

Unlike type II supernovae which are powered by core collapse, type I supernovae

are powered by thermonuclear explosions resulting from thermonuclear runaway

reactions. The favoured explosion mechanism which describes the majority of SN1a is

the carbon-oxygen white dwarf in a binary star system with a main sequence star or

Red Giant. A carbon oxygen white dwarf is the end point of a star with initial mass

M<8M⊙. After the helium burning phase the core of the star begins to collapse

and the outer layers are blown off becoming a planetary nebula. Temperatures do

not reach the temperature needed to ignite carbon burning and so the star ends its

life as a degenerate core of carbon and oxygen.
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Fig. 1.7 Binary star system. Each star is surrounded by a hypothetical
surface, called the Roche lobe, that marks its gravitational domain.
The intersection of the equatorial plane with the Roche lobes is shown
as a dashed curve. The location where the two Roche lobes touch is
called the inner Lagrangian point. See the text.

1.5
Masses, Binding Energies, Nuclear Reactions, and Related Topics

1.5.1
Nuclear Mass and Binding Energy

The most fundamental property of the atomic nucleus is its mass. Early mass
measurements showed that the total nuclear mass, mnuc, is less than the sum
of masses of the constituent nucleons. We may write

mnuc = Zmp + Nmn − ∆m (1.1)

According to the Einstein relationship between mass and energy, the mass de-
fect ∆m is equivalent to an energy of ∆E = ∆m · c2. The quantity ∆E is referred
to as nuclear binding energy. It is defined as the energy released in assembling
a given nucleus from its constituent nucleons, or equivalently, the energy re-
quired to separate a given nucleus into its constituent nucleons. We may ex-
press the binding energy as

B(Z, N) =
(
Zmp + Nmn − mnuc

)
c2 (1.2)

A plot of measured binding energies per nucleon, B(Z, N)/A, of the most
stable isotope for each mass number A is shown in Fig. 1.8. Most of these

Fig. 1.10 Binary system of two stars, the point where the two Roche Lobes touch is
called the Lagrangian point [2].

Figure 1.10 shows a diagram of a pair of stars in a binary system. The Roche

Lobe represents the region around a star in which orbiting material is gravitationally

bound to the star. Where the Roche lobes of the two stars touch is the Lagrangian

point. In this system, matter from the periphery of the companion star is accreted
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onto the surface of the white dwarf until a mass near the Chandrasaker mass limit is

reached and carbon burning ignites under degenerate conditions [2]. The degenerate

conditions mean that temperature and pressure are decoupled and so as the star

heats up it does not expand and cool, leading to thermonuclear runaway. There are

two theories as to how the burning flame propagates through the star. The first is a

supersonic detonation where the shock front heats the fuel. The second is subsonic

deflagration whereby hot burning material heats the next layer of material.

At temperatures of ∼5.5×109K and densities of ∼108 g cm−3, nuclear statistical

equilibrium (NSE) is achieved and the the nuclear reactions no longer depend on

reaction rates but on bulk properties of the nucleus such as mass [16]. Freeze-out

occurs when temperatures and densities decrease to where reaction equilibrium is no

longer possible.

The abundance pattern of the ejecta is characterised by five burning regimes [17].

The first regime consists of normal and alpha rich freeze-out reactions from NSE

in the inner regions of the star. Normal freeze-out occurs due to a lack of alpha

particles which are necessary to maintain NSE. In alpha-rich freeze-out the free alpha

particles merge in successive (α,γ) reactions leading to the iron peak [2]. The outer

layers of the star undergo incomplete Si burning, explosive oxygen burning and C/Ne

burning. Figure 1.11 shows the burning zones as the deflagration wave propagates

outwards.

Temperatures increase to reach 109 and 1010K and the explosion and nucleosyn-

thesis lasts only a few seconds. The energy released is enough to unbind the whole

star and it ejects all material into the interstellar medium. The importance of type

Ia supernovae as standard candles in astrophysics has meant that a lot of effort is

put into understanding the mechanism behind the explosion.

Bravo et al. [16] carried out post processing calculations varying 1099 pairs of

reaction rates by factors of 0.1 and 10. The species 14N, 21Ne, 23Na, 29Si, 32P, 33S,
37Cl, 40Ca, 45Sc, 44,47Ti showed an increase by a factor of between 0.12 and 2 for a
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Fig. 1.11 The zones of different explosive burning as a function of Lagrangian mass
coordinate M/M⊙ and temperatures and densities achieved during the outward
propagation of the deflagration burning front for type 1a supernovae. [18].

factor of ten increase in the 23Na(α,p)26Mg reaction rate and the nuclei 26Mg and
43Ca showed a factor of at least 2 increase if the reaction rate is increased by 10.

Parikh et al. also carried out detailed network calculations using several explosion

models, the 23Na(α,p)26Mg reaction was found to influence abundances of several

nuclei. They found that when the reaction rate was increased by a factor of ten the
23Na abundance changed by a factor of 0.47, 24Na changed by a factor of 0.3 and
53Cr changed by a factor of 2.1. In each case, rather than using experimental data,

the Hauser Fesbach statistical model calculations were used to calculate a reaction

rate. As discussed in the next chapter, the applicability of the statistical model is

uncertain for these circumstances. An experimental measurement of the cross-section

is essential.



Chapter 2

Astrophysical Reaction Rates

2.1 Astrophysical Reaction Rate

The aim of this work is to measure cross sections for the reaction 23Na(α,p)26Mg

in order to calculate a reaction rate for temperatures relevant to C/Ne convective

shell burning in massive stars. If we consider two particles in a plasma with number

densities nA and nB particles per unit volume interacting such that:

A + B → C + D. (2.1)

The likelihood of this reaction occurring will depend on the number densities of

A and B, nA and nB, the reaction cross section σ and the relative velocity, v of the

particles A and B [19]. The reaction rate is given by:

RAB = nAnBσv. (2.2)

In general the statistical distribution of velocities for particles inside a stellar

gas can be described by the Maxwell-Boltzmann distribution which describes the

distribution of relative velocities v as [19]:

ϕ(v) = 4πv2
(

µAB

2πkBT

) 3
2

exp

(
−µABv2

2kBT

)
(2.3)
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where kB is the Boltzmann constant, µAB is the reduced mass of particles A and B

and T is temperature. The total reaction rate summed over all velocities is [19]:

RAB = nAnB⟨σv⟩ (2.4)

where ⟨σv⟩ is the average value of the product of σv given by [19]

⟨σv⟩ =
∫ ∞

0
σvϕ(v)dv. (2.5)

Transforming the variable of integration to energy as E = 1
2µv2, the reaction rate

can be written in terms of energy as [19]

⟨σv⟩ =
√

8
πµAB(kBT )3

∫ ∞

0
Eσ(E)exp

(
− E

kBT

)
dE. (2.6)

In low-energy astrophysical environments reaction cross sections drop rapidly

with energy due to Coulomb barrier repulsion. In order to extrapolate to lower

astrophysically relevant energies it can be useful to use the astrophysical S factor

which varies much more slowly with energy [19]. The astrophysical S factor, S(E), is

defined such that

σ(E) = 1
E

exp(−2πη)S(E), (2.7)

where

η = ZAZBe2

4πϵ0ℏv
. (2.8)

Here ZAZBe2 is the product of charges and v is the relative velocity of the incident

particles [19]. The exponential factor represents penetrability through the Coulomb

barrier [19]. The reaction rate can also be rewritten substituting the cross section

for the S factor into equation 2.6 [19] as

⟨σv⟩ =
√

8
πµAB(kBT )3

∫ ∞

0
S(E)exp

− E

kBT
−
√

EG

E

 dE. (2.9)
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The energy constant EG is given by

EG = 4π2η2E = 2µAB

ℏ2 (πZAZBe2)2 (2.10)

The product of the two exponential terms in Equation 2.9 gives a value for the

integral which has a peak at the effective burning energy, this is the Gamow energy

which is the energy where the reaction is most likely to occur [19]. Figure 2.1 shows

the Gamow peak which has an energy E0 given by

E0 =
(

EGk2
BT 2

4

) 1
3

(2.11)

and a width ∆ given by

∆ = 4
3 1

2
(E0kBT ) 1

2 (2.12)

Fig. 2.1 The product of the tunnelling probability and the Maxwell-Boltzmann
probability results in the Gamow peak energy which is the effective burning energy.
Note that here the height of the Gamow peak has been exagerated so that it is
shown clearly with the Maxwell-Boltzmann probability and the tunnelling probablilty
curves. Figure taken from Ref [20].
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The reaction rate derived above is the energy-averaged reaction rate. If a

resonance is present the Breit-Wigner resonance cross section is substituted into

Equation 2.6 [19]. The single level Breit-Wigner cross section for resonance p is given

by

σBW (E) = π

k2 gJtot

ΓpαΓpα′

(E − Ep)2 + Γ2
p

4

, (2.13)

where gJtot is the spin weighting factor given by

gJtot = 2Jtot + 1
(2JA + 1)(2JB + 1) , (2.14)

where k is the wave number equal to p2/ℏ2, Γpα and Γpα′ are the partial width of

the entrance and exit channels respectively and Γp is the total width of the excited

state in compound nucleus. Jtot is the angular momentum of the excited state in the

compound nucleus JA and JB are the angular momentum of particle A and B and

Ep is equal to the energy of the resonance [19].

This gives a resonant reaction rate per particle pair of

⟨σv⟩ =
(

2π

µABkBT

) 3
2

ℏ2gjtot

ΓpαΓpα′

Γp

exp
(

− Ep

kBT

)
. (2.15)

2.2 Hauser-Feshbach Model

In the case of the 23Na(α,p)26Mg reaction, post processing model calculations have

utilised the Hauser-Feshbach theoretical cross section calculations to calculate the

rate. This is the cross section averaged over any resonance structure, the energy

averaged cross section. The equation for the energy averaged Hauser-Feshbach

formula [19] is derived by summing over Breit-Wigner resonances and is given by

⟨σre(α, α′)⟩ = π

k2

∑
Jπ

gJtotWαα′
TαTα′∑
α′′Tα′′

, (2.16)
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where α is the incoming channel and α′ is the outgoing channel. The sum over

α′′ is the sum over all channels that are energetically possible for the decay of the

compound nucleus. Transmission coefficients Tα describe the formation probability of

single-particle levels and are calculated using optical-model potentials which represent

the average nuclear potential [2]. Wαα′ is the width fluctuation factor.

The applicability of this model depends on several factors, firstly, the energy

of the incident nucleus must be sufficiently low that a compound nucleus reaction

will take place. These compound nucleus reactions are lower in energy than direct

reactions which are faster, meaning all nucleons interact and form a compound

nucleus. The compound nucleus processes have less memory about direction than

direct reactions and are usually symmetric around 90o [14]. As well as this, the

level density in the energy range of the reaction in the compound nucleus must be

sufficiently high for a statistical approach to be taken into account. In the case of

the 23Na(α,p)26Mg reaction, in the energy range measured in this work the model is

not expected to be accurate due to the low level density in the compound nucleus

of approximately 5 states per 100 keV [7]. However, since an estimate of reaction

rate was needed for astrophysical models, the calculations were carried out. The

statistical model calculations used in this work were carried out by Thomas Rauscher

using the codes NON-SMOKER [21] and SMARAGD [22].



Chapter 3

Previous Measurements and

Current Status

The cross section of the 23Na(α,p)26Mg reaction has been measured in previous works

by Kuperus [23] and Whitmire and Davids [24]. It has also been measured during

the course of this thesis by Almaraz-Calderon et al. [25] and by Howard et al. [26],

the latter of which published their work at the same time as this thesis data were

published. These measurements are discussed in this chapter.

3.1 Early Experiments

In 1954 Temmer and Heyenburg [27] measured the γ-ray yield from the 23Na(α,p)26Mg∗

reaction in the energy range Ec.m.=1.3 - 3.1 MeV. However, they did not measure

a cross section or resonance strength needed to calculate an astrophysical reaction

rate and so further work was needed [24].

In 1964 Kuperus [23] carried out an experiment using an alpha-particle beam

incident on NaCl targets evaporated onto thick copper backings. Measurements were

made in the energy range Ec.m. = 0.9 - 2.8 MeV and 38 resonances were observed.

However because only protons to the ground state in 26Mg, referred to as p0 protons,

were measured the reaction rate calculated from this work was considered incomplete
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as protons from higher excited states in 26Mg are expected to make a substantial

contribution to the cross section [24].

In a similar setup, Whitmire and Davids [24] carried out an experiment using

copper backed NaCl targets and a 4He beam. Measuring protons from reactions to the

first excited state in 26Mg, referred to as p1 protons, they determined the resonance

strengths for 30 new p1 resonances as well as measuring 9 new p0 resonances from

reactions to the ground state. The measurement was made in the energy range Ec.m.

= 2.0 - 3.1 MeV. During the experiment they noted that the melting temperature

of the NaCl targets is 801◦C which meant that at beam intensities just higher than

those used the targets would evaporate. The targets were therefore monitored for

evaporation by comparing the yield from the same resonance on the same target spot

after 10 to 20 hours of bombardment [24]. The strengths were calculated assuming

a target stoichiometry of 1:1 for the NaCl targets relative to an absolute strength

measurement for the resonance at Elab = 3.051 MeV. A reaction rate was then

calculated and found to be enhanced by a factor of four at T=3 GK and three at

T=2 GK compared to the reaction rate calculated from the work by Kuperus.

Despite this measurement being made the reaction network calculation studies

chose to use the recommended rate calculated using Hauser-Feshbach cross sections.

According to work by Paine et al. [28] at the beam current used during the experiment

by Whitmire and Davids the Na/Cl ratio would change from 1:1 to 5:3 in ∼ 200

seconds [28, 29]. This would mean that the stoichiometry used to calculate the

resonance strengths and therefore the astrophysical reaction rate could have been

calculated using the wrong target stoichiometry. As well as this, the uncertainty

on the resonance energies is ≈10 keV which is relatively large and the energy range

covered does not cover a reliable portion of the Gamow window for C/Ne convective

shell burning at T∼1.25 GK and EG=1.2 - 2.2 MeV. This led to the statistical model

rate being used in astrophysical models.
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3.2 Recent Measurement in Inverse Kinematics

The data for this thesis were taken over three sets of beam time. The first set of

data was measured and analysed followed by a further two sets of measurements.

During the data analysis of the first set of measurements, Almaraz-Calderon et

al. [25] carried out an experiment in inverse kinematics using a 23Na beam on a

cryogenic 4He gas cell target. The entrance and exit windows to the target were

made of titanium foils. The experimental setup is shown in Figure 3.1. The protons

resulting from the 23Na(α,p)26Mg reaction were detected in the silicon detector and

α-particles scattered in the target were stopped in the aluminium foil. The monitor

detector was used to monitor the beam intensity via scattering of the beam from the

gold foil.

Fig. 3.1 The setup for the experiment carried out at Argonne National Laboratory
by Almaraz-Calderon et al. [25]

Cross sections, shown in Fig. 3.2, were extracted for 23Na(α,p0)26Mg at three

energies and an upper limit of the cross section was found for the lowest energy data

point. Cross sections for 23Na(α,p1)26Mg were extracted at the two higher energy

data points. The two lower energy p1 cross sections are found by extrapolating the fit

of the CIGAR Hauser-Feshbach calculation to the data. To calculate the total cross

sections the p0 and p1 cross sections are summed. To calculate an angle integrated

cross section, the angular distributions from the 27Al(α,p)30Si reactions were used.

This reaction has a similar Jπ configuration to the 23Na(α,p)26Mg reaction and so it

was thought the angular distributions would be similar.
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Fig. 3.2 Cross sections calculated by Almaraz-Calderon et al. compared to various
Hauser Feshbach model calculations [25]. See text for details of the Hauser Feshbach
model predictions.

The Gamow window shown in the cross section plot in Fig. 3.2 is the Gamow

window for C/Ne convective shell burning in massive stars. The cross sections are

compared to the HF cross sections calculated by the codes TALYS and CIGAR.

Figure 3.3 shows the reaction rate calculated using the total cross sections

calculated in their work plotted with the JINA REACLIB [21] recommended rate

which is the same as the rate used by Illiadis et al. in the reaction network calculations.

The reaction rate is a factor of 40 higher than the recommended rate. This result

was very significant since a factor of ten increase in the reaction rate changes the

abundance of 26Al produced in the C/Ne convective shell of massive stars by a factor

of 3.

This result was found to not fit the trend by a study by Mohr [30]. He investigated

the cross sections of α-induced reactions on nuclei in the mass range A≈20-50 by

comparing the reduced cross sections of data and calculations by the statistical models.

In order to compare data from different nuclei the reduced energy and reduced cross

section is calculated. The reduced energy takes into account the different heights
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Fig. 3.3 Reaction rate calculated by Almaraz-Calderon et al. compared to the JINA
recommended rate and the rate calculated using the Hauser Feshbach cross sections
calculated using the code CIGAR [25].

of the Coulomb barrier for the different nuclei. The reduced cross section scales

the measured total reaction cross sections according to the geometrical size of the

projectile-plus-target system. In general these reduced cross sections are similar in

value and in trend, however the experimental data for 23Na by Almaraz-Calderon et

al. was one of four nuclei that did not follow the trend.

Figure 3.4 shows the reduced cross sections calculated from the cross sections

published in Almaraz-Calderon et al. compared to the reduced cross section trend of

statistical model calculations. The cross sections from the work by Almaraz-Calderon

et al. are larger when compared to reduced cross sections and the trend is steeper

than expected.

3.3 Measurement in forward kinematics

A further measurement of the 23Na(α,p)26Mg reaction cross section was made in

forward kinematics by Howard et al. [26] in the energy range Ec.m. =1.7 - 2.5 MeV.
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Fig. 57. Same as fig. 5, but for α-induced reactions on 23Na.
The experimental data have been taken from [144,147]. The
lowest data point of Almarez-Calderon et al. [147] represents
an upper limit only. For better visibility the data of Skelton et
al. [143] are omitted. Further discussion see text.

tribution of the (α, p) cross section only in a very lim-
ited angular range. The determination of angle-integrated
cross sections in [147] had to use angular distributions of
the 27Al(α, p)30Si reaction where similar Jπ of the nuclei
under study are found. The resulting cross sections of the
p0 and p1 groups are finally summed to provide the total
23Na(α, p)26Mg cross sections. It can be seen from fig. 56
that the experimental results are dramatically underesti-
mated by the StM calculation. The total reaction cross
section of 23Na is well defined by the 23Na(α, p)26Mg re-
action already below about 6MeV, and below the (α, n)
threshold the total reaction cross section σreac is almost
entirely given by the only open particle channel. The re-
sults for the reduced cross section σred are shown in fig. 57.
It is obvious from fig. 57 that the recent data by Almarez-
Calderon et al. [147] deviate dramatically from the gen-
eral behavior which is otherwise found for nuclei in the
A ≈ 20–50 mass region. The new data lead not only to
significantly higher σred values, but also to a steeper en-
ergy dependence than for other nuclei in the A ≈ 20–50
mass range.

4.31 22Ne

Because of the negative Q-value of the 22Ne(α, p)25Na re-
action (Q = −3.53MeV), at astrophyically relevant ener-
gies the 22Ne(α, n)25Mg reaction dominates the total re-
action cross section of 22Ne. This reaction plays a major
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Fig. 58. Cross section of the 22Ne(α, n)25Mg and
22Ne(α, p)25Na reactions. The experimental data have been
taken from [148,150]. Further discussion see text.

role as neutron source for the astrophysical s-process. It
is included in the NACRE compilation [124] where the
data of Haas et al. [148] and Drotleff et al. [149,150] are
recommended. These data are shown in fig. 58 and com-
pared to a StM calculation. As the cross section is domi-
nated by resonances at low energies, the StM calculation
is only able to reproduce the average properties of the
excitation function. Later data by Jaeger et al. [151] ex-
tend the measurements of Drotleff et al. towards lower
energies. The cross section at these very low energies is
essentially given by resonant contributions, and only an
experimental yield (but not the cross section) is presented
in [151]. Therefore, the data by Jaeger et al. [151] are not
shown in fig. 58 because there is no straightforward con-
version from the experimental yield to the (α, n) reaction
cross section for extended gas target measurements (see,
e.g., [152]).

A full discussion of this reaction and the derived astro-
physical reaction rate NA⟨σv⟩ has to include further indi-
rect information (e.g., properties of levels in the compound
26Mg nucleus). This is beyond the scope of the present
paper. New results for the 22Ne(α, n)25Mg reaction af-
ter publication of the first NACRE compilation [124] are,
e.g., summarized in [153], and further information is given
in [154–156].

No data for the 22Ne(α, p)25Na reaction are listed in
the EXFOR database. Fortunately, this does not affect the
determination of the total reaction cross section σreac of
22Ne because of the dominating 22Ne(α, n)25Mg reaction.
The (α, n) cross section is presented as reduced cross sec-
tion σred in fig. 59. Similar to most nuclei under study in
this work, the σred data for 22Ne do not show a peculiar
behavior.

Fig. 3.4 Reduced cross sections of alpha induced reactions on 23Na. The black solid
lines show the statistical model calculations from left to right for 21Ne, 36Ar and
51V. [30]

A 4He beam was incident on a carbon backed NaCl target. The protons from
23Na(α,p0)26Mg and 23Na(α,p1)26Mg were detected by a silicon detector array. By

simultaneously detecting Rutherford scattered alpha particles they were able remove

the dependencies on properties of the target which caused uncertainty in previous

forward kinematics measurements.

Howard et al. were able to extract angular distributions from their data and

calculated total cross sections at 8 energies. The cross sections are shown in Fig. 3.5

and are compared to the cross sections calculated by Howard et al. It can be seen

that the cross sections are in good agreement with the NON-SMOKER cross sections

and disagree with the cross sections produced by Almaraz-Calderon et al. The work

by Howard et al. was published simultaneously with the work from this thesis [31].
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obtained backwards of θc:m: ¼ 160°. In the narrow angular
range between θc:m: ¼ 165° and 170° where overlapping
differential cross section measurements exist, the absolute
values again differ by at least an order of magnitude. It is
again worth noting that the absolute normalization in the
present work is provided by the Rutherford scattered beam
from the 23Na component of the target itself. Combined
with the relative simplicity of the experimental setup, this
provides an extremely robust method for the determination
of absolute cross sections.
The NON-SMOKER results reproduce the measured cross

sections extremely well in terms of both trend and
magnitude. The only significant deviation is found at
Ec:m: ¼ 2.16 MeV and can be understood in terms of the
strong individual resonance reported in Ref. [5] at
Ec:m: ¼ 2.14 MeV. If the energy dependence of the
NON-SMOKER results is fixed and only the absolute
magnitude is allowed to vary we find that a scaling factor
of 0.96" 0.06 is required to best fit our data.
In conclusion, we have presented cross sections for the

23Naðα; pÞ26Mg reaction in the region Ec:m: ¼ 1.74 to
2.47 MeV. The overall trend and magnitude of the cross
section are in general found to be very well reproduced by
the statistical model code NON-SMOKER. The results are
also largely consistent with the previous measurements of
Whitmire et al. [5] and Kuperus et al. [4], though in general
slightly higher than their results, whereas our measurement
is inconsistent with the recent measurement by Almaraz-
Calderon et al. [6].
As mentioned, the only significant discrepancy between

the NON-SMOKER statistical model and our measurement
is at the energy of the strongest (α; p) resonance at
Ec:m: ¼ 2.14 MeV, a resonance that is particularly strong
in the p1 channel. From the difference between the
observed cross sections around the 2.07 and 2.14 MeV

center of mass energy, we estimate the p1 and p0 resonance
strengths for this resonance to be ωγ1 ¼ 1000ð300Þ eV and
ωγ0 ¼ 42ð13Þ eV, respectively. Based on these resonance
strengths, the corresponding single-resonance contribution
to the reaction rate is shown in Fig. 6 compared to the NON-
SMOKER reaction rate. The contribution from this reso-
nance in itself exhausts up to 50% of the NON-SMOKER

reaction rate (at 2 GK), and could therefore potentially
increase the total reaction rate beyond that of the NON-
SMOKER rate. At the most important temperature 1.4 GK,
the temperature at termination of convective shell C=Ne
burning [3], the single-resonance contribution to the
reaction rate is 35% of the NON-SMOKER reaction rate,
with a reduced contribution below that temperature. Based
on this, we would still recommend usage of the NON-
SMOKER reaction rate for the 23Naðα; pÞ26Mg reaction in
astrophysical scenarios, rather than the reaction rate indi-
cated in Ref. [6]. The error on the reaction rate as evaluated
from our experimental data is significantly reduced to the
level of 30% relative error on the reaction rate, except in the
temperature region around 2 GK where the contribution
from the resonance could increase the reaction rate by up to
50% as shown in Fig. 6, with a corresponding increase in
the upper limit on the reaction rate.
In summary, we therefore conclude that the reaction rate

in the key temperature region, around 1.4 GK, is consistent
with that of the statistical model (NON-SMOKER), to within
approximately 30%. Based on this, the resulting 26Al
production in massive stars as presented in Ref. [3] still
stands. From the results of this sensitivity study, in which a
30% 26Al production increase is found for a rate increase
of a factor of 2, the uncertainty in the 26Al production
corresponding to our reaction-rate uncertainty of 30% is
expected to be at most 10%–20%. This level of precision in
the 23Naðα; pÞ26Mg reaction rate should therefore be
sufficient for detailed comparisons of observed and simu-
lated astrophysical 26Al production.

The authors would like to thank Folmer Lyckegaard for
preparation of the NaCl targets used in this work. We also

FIG. 5 (color online). Cross sections for the 23Naðα; pÞ26Mg
reaction. The energies given are effective energies, corrected
for energy losses within the target. See the text for details. For
comparison cross sections from the statistical model code
NON-SMOKER [14] and the measurement reported in Ref. [6]
are also shown.

FIG. 6 (color online). The single-resonance contribution to the
total rate obtained from NON-SMOKER calculations based upon
the measured strength of the resonance at Ec:m: ¼ 2.14 MeV (see
text for details).
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Fig. 3.5 Cross sections calculated by Howard et al. compared to the statistical model
cross section calculations and the cross sections calculated by Almaraz-Calderon et
al. [26].



Chapter 4

Experimental Setup and

Procedure

Measurements of the 23Na(α,p)26Mg reaction were carried out using the TUDA

(TRIUMF UK Detector Array) Scattering Chamber at the ISAC-I (Isotope Separator

and Accelerator) facility at TRIUMF (TRI University Meson Facility), Canada. The

experiment was carried out in three stages, with two slightly different experimental

setups. The experimental setup for the first stage of data taking was improved upon

based on analysis and so the setup was modified slightly for second two stages of

data taking. This chapter will begin by discussing the 23Na beam production and

acceleration, and will go on to describe the experimental setups inside TUDA and

the experimental methods used.

4.1 23Na Production and Acceleration at ISAC-I

The ISAC-I facility at TRIUMF is a Radioactive Isotope Beam (RIB) facility capable

of the post acceleration of both stable and radioactive beams up to energies of

1.9 MeV/u, where u is one atomic mass unit. Stable beams such as 23Na are

produced with the Offline Ion Source (OLIS) [32]. Figure 4.1 shows the ISAC-I

experimental hall including OLIS and the acceleration stations before the TUDA

scattering chamber.
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Fig. 4.1 OLIS and the ISAC-I hall at TRIUMF. Figure from Reference [33]. See
text for details.

4.1.1 23Na Beam Production OLIS

The OLIS terminal consists of a surface ion source, a microwave ion source and a

hybrid surface-arc discharge ion source. An electrostatic switch allows for any source

to be selected without mechanical intervention [34]. For the first experimental setup,

23Na+ was produced in the surface ion source. For the second experimental setup

the beam was produced by injecting 23Na into the microwave ion source. The 23Na

was then extracted and accelerated in the low energy beam transport (LEBT) to the

first stage of acceleration.

4.1.2 23Na Beam Acceleration and Tuning

The first stage of acceleration is the room temperature Radio Frequency Quadrupole

(RFQ) which can accelerate particles with 3 ≤ A/Q ≤ 30 from 2 keV/u to 150 keV/u [35],

where A is the atomic mass number and Q is the charge of the particle. Before the

beam enters the RFQ it is bunched to improve the beam quality and transmission.

This is done using a three harmonics electrostatic buncher located in the LEBT

which bunches at 11.78 MHz, the third subharmonic of the RFQ resonant frequency

of 35.36 MHz. This gives a time structure to the beam leaving the RFQ characterised

by a main bunch with two satellite bunches separated by 28.3 ns on either side.

Transmission through the RFQ is 75% if the beam is pre-bunched in this way, if the
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beam is not pre-bunched only 25% transmission is achieved [32]. After the RFQ

the beam enters the medium energy beam transport (MEBT). Here an 11.74 MHz

chopper is used to remove the two satellite peaks giving only the main bunches

separated by 84.8 ns [35].

The next stage of acceleration is a Drift Tube Linac (DTL) which has an A/Q

acceptance ratio of 2 ≤ A/Q ≤ 6 [35]. A carbon stripping foil in the MEBT section

upstream of the DTL is used to achieve this and has a stripping efficiency of between

30% and 50% [32]. For the 23Na ions the charge state was increased from a 1+ state

to a 5+ state. The beam is bunched at the foil using a 106.08 MHz MEBT buncher in

order to reduce the longitudinal emittance from the foil and then again just upstream

of the DTL using a 35 MHz spiral buncher. The DTL can accelerate ions from

150 keV/u to 1.9 MeV/u with a transmission of more than 85% [32].

Finally the beam enters the High Energy Beam Transport (HEBT) where two

bunchers, one at 11.98 MHz and one at 35.36 MHz, are used to manipulate the

longitudinal emittance from 4 ns to 1 ns in time or 0.4% to less than 0.1% in

energy [32]. The beam then enters the TUDA scattering chamber.

4.2 The TUDA Scattering Facility
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4.3 The TUDA Scattering Facility

The TRIUMF UK Detector Array (TUDA) at ISAC I is a general purpose and versatile

scattering facility designed for use with radioactive beams. The facility consists of a main

scattering chamber and a dedicated instrumentation shack. The scattering chamber is po-

sitioned coaxially with the beam line and consists of two cylindrical sections separated by

a central rectangular section. Figure 4.3 shows a picture of the scattering chamber.

Figure 4.3: Photograph showing the main TUDA scattering chamber.

The rectangular central section houses the target ladder apparatus and a turbo vacuum

pump. Either solid or gas targets can be mounted within the chamber on one of two

calibrated variable linear drives. Ports on the top of the rectangular section allow electrical

feed through for diagnostic instrumentation such as 4-vane monitors or for PIN diodes

which can be mounted on a target ladder.

The TUDA design allows combinations of charged particle detector arrays to be mounted

perpendicular to the beam at varying distances, both upstream and downstream, of the tar-

get position. Detectors and some of their associated electronics are assembled on four sup-

port rails that are fixed in place at the back flange of the chamber. The back flange itself,

can be withdrawn from the chamber making detector assembly, modification and mainte-

nance relatively easy and convenient. Figure 4.4 shows a picture of detectors mounted on

the support rails, which have been withdrawn from the scattering chamber.

Fig. 4.2 Image of the TUDA Scattering chamber [36]. See text for additional details
about the geometry.
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The TRIUMF-UK Detector Array (TUDA) is a 1.5 m long scattering chamber

which consists of two cylindrical ends attached either side of a central rectangular

section as shown in Fig. 4.2. The chamber sits coaxial to the beam line in the ISAC-I

hall and is designed to house arrays of charged particle detectors which are mounted

on rails that run through the chamber. The central rectangular section houses target

ladder apparatus for up to three target ladders which are operated using calibrated

linear drives on the top of the chamber. Target ladder positions are illustrated in

Figs. 4.3 and 4.4. Targets mounted on these target ladders can be either solid or

gas. A gas handling system for gas cell targets feeds in through the top plate of

the rectangular section to the gas cell target which was positioned on target ladder

1. Ports on the top of the chamber and on the downstream flange of the chamber

allowed for electrical feedthroughs into the chamber for the detector electronics. Four

vane monitors were used for the purpose of tuning the beam to the target position

and anti-scatter collimators were used to prevent beam scattering into the detectors.
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Fig. 4.3 Schematic of the diagnostic setup of TUDA for the first experimental setup.
The symbol � = diameter.

The beam was tuned to be no more than 3mm in diameter at the target position.

In order to achieve this the beam was tuned at each energy. For the first experimental
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run a 10 mm collimator was placed at the target position and the optical settings

were manipulated to achieve >95% transmission through the chamber. This was

then replaced by a 5 mm collimator and the same procedure repeated. Finally a

2 mm collimator was put into the target position and the beam tuned to >90%

transmission through the aperture. For the second experimental run the beam was

initially tuned through a blank space on the target ladder until transmission was

>95%. It was then tuned in the same way through a 6 mm collimator and finally

through a 3 mm collimator until transmission was ∼95 %.
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Fig. 4.4 Schematic of the diagnostic setup of TUDA for the second experimental
setup.

The chamber runs at typical pressures of 1×10−6 mbar and utilises a roughing

pump, a turbo pump and a cryogenic pump attached to the chamber below the

rectangular central section. Firstly the roughing pump is used to reduce the pressure

in the chamber to <330 mbar. The fragile nature of the gas cell target windows and

foils in the chamber meant this had to be done at a rate of <0.5 Torr/s (<0.7 mbar/s).

The valve to the roughing pump is then closed and the turbo pump is turned on.
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Once the chamber reaches ∼1×10−3 mbar the valve to the cryogenic pump can be

opened. The chamber then reduces to ∼1×10−6 mbar.

4.2.1 The Edinburgh Gas Cell Target

The Edinburgh gas cell target was used for this experiment. This is an aluminium

gas cell target with gas inlets on either side for gas to flow in and out. A schematic

of the gas cell target is shown in Fig. 4.5. The target length was 2 cm with a 1 cm

diameter entrance window and a 4 cm diameter exit window. The entrance and

exit windows were made of nickel, the entrance window was 2.5 µm thick and the

exit window 6 µm thick. The beam was stopped in the exit window. At one energy

a 4 µm titanium entrance window was used in order to replicate more closely the

experimental setup of Almaraz-Calderon et al. [25]. The gas cell was filled with

∼110 Torr (∼147 mbar) of 4He.
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Fig. 4.5 Schematic of the Edinburgh gas cell target.

Gas was inserted into the target using a set of valves at a rate of ∼0.1 Torr/s

(∼0.13 mbar/s) and removed from the chamber by bypassing the gas lines into TUDA.

Figure 4.6 shows the positions of the gas inlets and outlets on the gas cell. Leak
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checking was performed on each gas cell prior to its use by inserting 110 Torr of 4He

into the cell and monitoring the pressure for a period of hours. A pressure change

of no more than 2 mbar per hour is considered an acceptable cell. During the first

experimental run the system of pipes used to insert gas into the cell was extensive

and leak checking was time consuming. For the second experimental setup the gas

line system was simplified to cut out all unnecessary pipe work and reduce the risk

of a leak.

Target Ladder

Gas Cell

Gas In Gas Out

Fig. 4.6 Diagram of gas inlets and outlets on the Edinburgh gas cell.

During the first experimental run fusion evaporation of the beam with hydrocar-

bons built up on the entrance window caused a background of protons in the same

energy region as reaction protons from 23Na(α,p)26Mg. This background was seen

with both gas in the target and gas out of the target. A build up of hydrocarbons

could be seen on the outer surface of the entrance window from the first experimental

run, shown in the image in Fig. 4.7.

After the first experimental run the entrance window of the gas cell was tested at

The University of Surrey Ion Beam Centre. Proton beams at energies of 1.74 MeV

and 2.04 MeV were used to irradiate the entrance window material. The lower beam

energy is more sensitive to surface carbon and the higher is more sensitive to back

surface oxygen. The results showed a carbon oxide surface contamination on the

upstream side of the foil and surface oxidation on the back side of the foil which is

predominantly NiO and Al2O3.
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Fig. 4.7 Entrance window side of the gas cell target for the first experimental run.
Beam induced hydrocarbon buildup can be seen as the small black spot on the
entrance window.

In order to try and reduce the hydrocarbon buildup during the second and

third experimental runs a cold finger was used. The cold finger is a liquid nitrogen

cooled copper cone with a hollow copper tube for the beam to pass through. It is

positioned upstream of the target as shown in Fig. 4.8. This provides a place for

the hydrocarbons around the target to condense. The cone is cooled using a liquid

nitrogen reservoir positioned on the side flange of TUDA’s central rectangular section

which was filled once the chamber reached ∼1×10−5 mbar.

4.2.2 Semiconductor Detectors

During the experiment silicon semiconductor detectors were used for the detection

of charged particles. The detectors used are P-N junction type detectors. One side

of the detector is doped using an element that has an extra valence electron (N-type

region) and so has an excess of electrons. The other side is doped with an element

which has one fewer valence electron creating an excess of unfilled holes (P-type

region) [37].

At the boundary between these two types, the P-N junction, there is a charge

discontinuity and so migration of majority carriers occurs across the boundary. This

creates fixed impurity sites, giving a net positive space charge on the N side and a net

negative space charge on the P side of the junction, creating an electric field which
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Fig. 4.8 A schematic of the cold finger position in the chamber. The cold finger is
shown in brown.

prevents further migration. This region of charge imbalance is called the depletion

region. Applying a reverse bias across the detector, with positive voltage applied to

the p side of the junction compared to the n side, can extend the depletion region

out further into each side of the detector. This reverse bias gives the detector better

charge collection and reduces noise [37].

The detectors are biased to give as large a depletion region as possible, however

the depletion region does not extend all the way out to the surface layer of the

detector. This surface layer is referred to as the dead layer of the detector. Ionising

radiation must pass through this dead layer before entering the ‘active’ region of the

detector and so the energy loss of the particle in the dead layer must be accounted

for in calibrations [37].

The two sides of the detector are connected by an external circuit. When an

ionising particle passes through the semiconductor material electron hole pairs are

created as the particle excites electrons into the conduction band. The movement of
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these charges in the electric field induces a current in the external circuit which is

the signal that is measured [37].

S2 Detector Array

The S2-type detector is a double sided silicon strip detector which has 48 annular

strips on the front p-doped side of the detector and 16 radial strips on the back

n-doped side of the detector. An image of a detector’s front and back faces is shown

in Fig. 4.9. The front annular strips are not complete rings. The percentage of the

total ring that each front strip subtends varies between 82% for the outer ring and

100% for the inner-most ring. The front 48 strips have a strip width of 491 µm and

a strip separation of 100 µm. The inner active diameter is 22 mm and the outer

active diameter is 70 mm [38]. The active area of the detector is the area in which

particles are detected.

Fig. 4.9 The S2 detector front 48 annular strips (left) and back 16 radial strips
(right). Figure taken from Reference [36].

For the first experimental setup four S2 detectors were used making up two

telescopes. The first telescope comprised a 65 µm ∆E and a 508 µm E detector and

the second telescope, positioned further downstream was made up of a 74µm ∆E

and a 1051 µm E detector. The thicker E detector was placed further downstream

as reaction kinematics meant that this was where the higher energy protons would

be detected.



4.2 The TUDA Scattering Facility 41

For the second experimental setup the telescope further downstream was removed.

During the first experiment it was found that the downstream telescope did not

provide a sufficient yield due to its small angular coverage. Therefore only one

telescope was used for the second experimental setup which was made up of a

65 µm∆E detector and a 1051 µm E detector. The S2 detectors have a dead layer of

0.25 µm Al plus 0.5 µm Si [39]. The product codes and manufacturer’s description of

the S2 detectors can be found in Appendix A along with information on the angular

coverage of each strip.

LEDA Detector Array

The Louvain-Edinburgh Detector Array (LEDA) is a single sided silicon strip detector

array designed for nuclear physics measurements at Louvain-la-Neuve radioactive

beam facility. They are Micron Semiconductor Ltd (MSL) type YY1 detectors which

can be mounted onto a frame holding eight segments. Each segment has 16 radial

strips which are 49 mm wide separated by 100 µm [40].

During the first experimental run the LEDA detector was used to measure

backscattering of the beam from the entrance window. Four LEDA segments were

used as shown in Fig. 4.10. During the second experimental run LEDA was used

to measure backscattering of the beam from a gold foil placed 0.7 cm upstream of

the entrance window to the gas cell. Seven LEDA segments were used in this case.

The manufacturers detector specifications and angular coverage of each strip can be

found in Appendix A.

Photodiodes

Two Hamamatsu S3590-06 PIN photodiodes with dead layers of ∼0.5 µm Al [39]

were mounted on target ladder one for each experimental setup for beam energy

measurements. During the first experimental run a piece of 2.5 µm Ni foil cut from

the same piece of foil as the entrance window to the gas cell was mounted on a target

ladder at target ladder two position. This allowed for beam energy measurements
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Fig. 4.10 The LEDA detector array in the first experimental setup. Each segment
has 16 strips.

both with and without the entrance foil material. During the second experimental

setup a 10 mm aperture was mounted in front of the photodiode so that half the

surface of the photodiode could be covered with a 2.5 µm Ni foil. This technique

was used as the cold cone in the second setup prevented the use of a second target

ladder.

4.2.3 Detector Positions

A detector position diagram for setup one is shown in Fig. 4.11. The ∆E and E

detectors were separated by 14mm for telescope 1, covering angles of θlab ∼ 14.9◦

- 31.4◦ from the centre of the gas cell target. For telescope two the detectors were

separated by 11 cm and the θlab ∼ 2.8◦ - 8.9◦.

For the second experimental setup several improvements were made. Firstly, a

better tuning procedure was adopted. An iris was installed to protect the detectors
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Fig. 4.11 Detector configuration for experimental setup 1.

during tuning which was mechanically controlled using a linear drive at the target

ladder two position. This meant, unlike during the first experimental setup, the

chamber didn’t need to be opened before and after tuning to install detector shields

and so the chamber was kept under vacuum conditions for most of the experiment.

Secondly, during the first experimental run it was found that due to the thickness

of the Ni entrance window the backscattered beam energies meant a full yield could

not be extracted above the energy threshold of the LEDA detector. This meant other

methods had to be used to calculate a beam intensity. To extract a beam intensity

more easily in the second experimental setup, backscattering of the beam from a

0.252 µm gold foil was measured in the LEDA array. The gold foil was attached to

the gas cell target 7 mm upstream of the entrance window.

For the second experimental setup a single ∆E-E telescope covered angles of

θlab ∼ 10.2◦ - 26.7◦ from the centre of the gas target. A detector configuration is

shown in Fig. 4.12. The second downstream telescope was removed as it measured

insufficient counts for 23Na(α,p)26Mg during the first experimental run. The thicker

E S2 detector from the downstream telescope was used in the single S2 telescope
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for the second setup as during the first experimental run protons were observed

punching through the thinner upstream E detector.
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Numbers are distances in mm.

Fig. 4.12 Detector configuration for experimental setup 2.

4.3 Detector Electronics and Data Acquisition

4.3.1 Preamplifiers and Amplifiers

When an ionising particle passes through the detector the initial stage of signal

processing for the induced current is an RAL 108 charge sensitive preamplifier [41].

The charge sensitive preamplifier produces an output voltage proportional to the

total input charge from the detector which is proportional to the energy of the

ionising particle. In order to minimise noise the preamplifiers are located as close to

the detectors as possible inside TUDA, minimising the capacitance loading on the

preamplifier with the shortest possible cables [37].

The vacuum conditions in the chamber mean that cooling can not occur via

conduction and convection and so a coolant loop is used to cool the preamplifiers

during the experiment. The preamplifiers are mounted onto copper cooling plates
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and the coolant loop set to -10◦C. The preamplifier temperature was monitored

with a thermocouple and remained at 4±1◦C throughout the experiment. The high

voltage power supply for each detector and the pulser input as well as the power

supply for each preamplifier are fed into the chamber through the back flange of

TUDA.

Detectors

Preamplifiers

Amplifiers

ADCs

Pulser Bias supply

Trigger 
Circuit

Analogue output Logic output

Gate

TDCs
Start

Stop

Fig. 4.13 Diagram shows the path of signals from the detectors, though amplifiers
and into the trigger circuit.

Signals from the preamplifiers are fed via 32-way twisted pair cables through the

back flange of TUDA into a module which inverts the signal and splits each input

cable into two 8-way cables. These modules, along with the rest of the trigger circuit

electronics are located in an air conditioned copper shack.

The 8-way cables are fed into the RAL 109 shaping amplifiers which produce

two signals for each channel, one digital, one analogue. The digital trigger pulse is

produced when the input signal is above a set discriminator threshold. This signal

feeds into CAEN V1190A multi hit Time to Digital Converters (TDCs) and a trigger

circuit. The analogue signal produced is read into SILENA 9418/6V Analogue to

Digital Converter (ADC) modules which convert the analogue signal into a digital

signal for processing by the computer. Figure 4.13 shows a diagram of the signal

path from the detectors into the trigger circuit.
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The discriminator threshold for each amplifier can be set using a front panel

screwdriver adjust. The gain of each amplifier can be changed by using different

resistor packs which attach to the motherboard. For the purpose of this the S2

detector amplifiers used 22 Ω resistors, giving 20 MeV full scale range. The full scale

range of the LEDA detectors was ∼40 MeV.

4.3.2 Trigger Circuit

Figure 4.14 shows the trigger circuit. The discriminated logic output from the

Amplifier feeds into logic shaped output modules. Each module takes 3 × 16

channels, if a signal is received in any detector channel by the logic shaped output

module, a signal is sent into a set of Fan In/Fan Out (FI/FO) modules. The FI/FO

modules are arranged such that there is a module for each of the ∆E-E S2 telescopes

and the LEDA detectors. If a signal is received by the FI/FO module a signal is

sent into a Quad Coincidence module with a gate set to ’OR’. The result is that if

any strip in any detector registers a hit above the amplifier discriminator threshold,

a shaped output from a quad coincidence module is sent to the next stage of the

trigger circuit.

The shaped output from the quad coincidence module is sent to a second quad

coincidence module, if this signal coincides with the signal from the delayed beam

pre-buncher, a signal is sent to the Silena 9148 ADC controller (SAC). If the ADCs

are not busy the SAC sends a signal to the ADCs to digitise the analogue signal from

the amplifiers and record the data. This signal is also read out by a visual scaler as

triggers presented to the DAQ and the CAEN V560 scaler module. If the SAC is not

busy, and the ADCs accept the trigger, a signal is sent to a quad coincidence module

to be put into coincidence with the delayed ADC trigger signal. If a coincidence is

registered a signal is sent to the visual scaler as triggers accepted which is also fed

into the scaler module for analysis. The triggers presented and triggers accepted by

the DAQ can then be used to calculate the dead time of the ADCs in the analysis.
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Fig. 4.14 The trigger circuit used to process signals from the detectors before they
are recorded. See text for full details.

The timing information is calculated by the 128 channel TDCs. The clock for

a given detector strip is started by the discriminated logic output signal from the

amplifiers. They are then stopped by the ADC trigger signal from the coincidence

between the TDC ‘start’ signal and the beam pre-buncher coincidence which is

delayed to allow the ADCs to process data and the accepted Control Monitor 2 signal.

For the purpose of this analysis the timing information was not used to identify

particles.

The SILENA 9418/6V ADC modules, CAEN V1190A TDC modules, CAEN

V560 scaler module and the SILENA 9148 SAC module make up the Virtual Machine
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Environment (VME) modules which are configured by the MIDAS (Multi Instance

Data Acquisition System) data acquisition and analysis software. The MIDAS

software was used for both experimental control as well as online data analysis which

is performed as data is taken and offline data analysis, performed on the saved data

files. The scaler channels recorded were triggers presented to the SAC, triggers

accepted by the SAC and a 1 kHz clock. The clock is used to calculate the time for

each run and also to calculate scaler rates.

4.4 Experimental Procedure

The experiment was carried out over three sets of beam time using two different

experimental setups. The experimental setup inside the chamber and the electronic

configuration was set up over a week in the month before the beam time to allow

time for problem solving should any arise. The target ladders and targets were

aligned to the beam line and in the case of the second setup the cold cone was also

aligned. The first set of data were taken over 7 days of beam time in August 2013,

the second set of data were taken over 6 days of beam time in July 2014 and the

third set of data were taken over 4 days of beam time in August 2014.

Before and after each experimental run the S2 and LEDA detectors were cal-

ibrated using a triple alpha source consisting of 239Pu, 241Am and 244Cm and a

Berkley Nucleonics Corporation (BNC) Model PB-5 pulse generator. The photodi-

ode detectors were calibrated using the triple alpha source data taken before the

experiment and the beam data taken during the experimental run.

A 5+ beam of 23Na was used for each of the experimental runs. For the first

experimental run four beam energies were measured. These were chosen such that

the energy range of the beam in the gas target overlaps slightly with adjacent energy

measurements. During the planning stages of the experiment the beam energy

expected at the centre of the gas target was calculated using the The Stopping

Range and Energy Loss (SRIM) software [42] and DEDX energy loss code. DEDX
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is an energy loss code developed by the Nuclear Structure Facility at Daresbury

Laboratory based on the code SPAR [43].

For each of the experimental runs one energy at the centre of the target was

chosen to be repeated to check the reproducibility of the cross section calculated. The

second run focused on a lower energy measurement which resulted in an upper limit

to the cross section being measured. The third experimental run focused on higher

energy data. Table 4.1 shows the beam energies measured during each experimental

run and the time each beam was incident on the gas filled target. Times were

measured to the closest minute in the data.

The energy loss through a piece of 2.5 µm Ni foil cut from the same sheet of

foil as the entrance window to the gas cell was measured at each beam energy.

Before reaction data were taken the attenuated beam was incident directly onto a

photodiode, the target ladder position was then changed so that the beam passed

through the Ni foil before entering the photodiode. The beam energy loss through

the gas cell target was calculated using the SRIM energy loss software [42].

Experimental Run ELab (MeV/u) Time (minutes)
1 1.18 2434

1.21 1128
1.25 466
1.35 62

2 1.19 3090
1.39 106

3 1.39 63
1.43 92
1.46 69
1.49 66
1.52 63
1.55 58
1.58 43
1.61 53
1.64 58
1.67 39
1.7 40

Ti Window 1.39 213
Table 4.1 Beam energies before the target entrance window and gold foil (when
present). Times shown are the total time the beam was incident on the gas filled
target.
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Fig. 4.15 The energy range covered during this thesis work is shown in grey, ∆EG1
is the Gamow window for Ne/C convective shell burning in massive stars and ∆EG2
shows the Gamow window for nucleosynthesis in Type 1a supernovae. The first three
excited states in 26Mg are also shown. Energies are in keV.

Figure 4.15 shows the energy range covered during the experiment. The first

three excited states in 26Mg are shown, although there are further excited states

above those shown here, reactions were only observed to the ground state and first

two excited states during this experiment.

Data were taken with gas in (gas-in data) the target and gas out (gas-out data)

of the target so that a background subtraction could be made during analysis. The

gas-in data is taken in ∼one hour runs before the cell was emptied and gas-out data

were taken for approximately the same amount of time.

The beam intensity was measured and recorded at the beginning and end of

each run (approximately every hour) using the beam dump Faraday cup located on

the downstream flange of TUDA. The beam intensity was also monitored indirectly

during the run using the triggers presented and accepted by the DAQ which are

integrated every second and displayed. The total number of beam particles incident

on the target was calculated using scattering data during analysis.



Chapter 5

Data Analysis

This chapter describes the data analysis techniques used to calculate cross sections

from the data. The data were analysed from two different experimental setups as

described in the previous chapter and analysis techniques varied slightly for each

setup. Where possible the same analysis technique was used. Due to the data

published by Almaraz-Calderon et al., checks were made wherever possible to ensure

the values calculated were correct since there was a large discrepancy between the

results of the first set of data analysed in this work and the results presented in

Reference [25].

5.1 Calibration of Silicon Detectors

Each strip of the S2 and LEDA silicon detectors were calibrated such that the energy

in MeV for a given channel number could be calculated using Formula 5.1.

Energy = Constant × Gain × (Channel − Offset) (5.1)

To calculate the parameters in this equation, firstly, a Berkeley Nucleonics

Corporation (BNC) Model PB-5 pulse generator was used to perform the pulser

walkthrough in order to calculate an offset for each channel. The pulses were increased
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from an amplitude of 10000 to 90000 in increments of 10000 such that the pulse at

90000 corresponded to about 90% of the full scale range of the ADC. An example

of an uncalibrated pulser spectrum for a front strip of an S2 is shown in Figure 5.1.

A linear fit was performed on the peak position verses pulse number (1 to 9) to

calculate the intercept. This intercept was the offset for each detector strip.
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Fig. 5.1 Example of pulser spectrum used to calculate offsets.

A triple-alpha source, consisting of 239Pu, 241Am and 244Cm with peak energies

of 5.16, 5.49 and 5.80 MeV, was used to calculate the gain of each strip. An example

of an uncalibrated alpha particle spectrum is shown in Fig. 5.2. The alpha particle

data were sorted by applying the offsets calculated with the pulser data to each ADC

channel. The energy loss of the alpha particle in the dead layer of the detector was

calculated using the energy loss code DEDX and subtracted from the real energy of

the alpha particles. A linear fit was then performed on the peak position verses the

corrected energy of the alpha particles. The slope of this fit was equal to the gain.

During the second set of data taking the incorrect resistors were used in the

amplifiers for the back strips of the S2 detectors giving a non linear scale in these

ADC channels. In order to correct for this, a third order polynomial fit was made to

the pulser data which created a linear scale before calculating a gain with the alpha

particle spectra.
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Fig. 5.2 An example of an alpha spectrum used to calculate the gains.

Once the offsets and gains had been calculated, the alpha source data were

re-sorted applying these offsets and gains. A constant was then calculated using

Equation 5.2 to calibrate the ADC scale to energy using the central channel of

the 241Am peak and accounting for energy loss in the dead layer of the detector as

explained earlier.

Constant = E241Am

Channel
(5.2)

To calibrate the photodiodes an attenuated 23Na beam at each energy was

impinged directly into the photodiodes. At some energies, these beam data showed

some signs that the beam was clipping an object, most likely the cold finger, before

it reached the photodiode. Overall, transmission through TUDA was found to be

good at over 90% at each beam energy.

During the first experimental run, the photodiodes were calibrated using both

beam and the triple alpha source data. A linear fit was performed on the peak

position versus the energy of the beam and the triple alpha peak energies taking

into account dead layer corrections. This was carried out for two cases: the first



5.2 Beam Energy Calculation 54

being individual energies with the alpha particles, the second being all energies the

photodiode was used for.

For the second and third experimental runs the photodiodes were calibrated in

three ways to check the reproducibility of the calibration. Firstly, the beam was

used to obtain a calibration using a linear fit of peak channel number vs peak energy.

Secondly, both the beam and the alpha particles were used, using several beam points

and the alpha particles. Thirdly, a calibration was performed using the individual

beam energies and the triple alpha source data.

5.2 Beam Energy Calculation

For the first experimental run, the beam entered the gas cell through a 2.5 µm Ni

foil. In order to calculate the energy of the beam after the entrance window, beam

entered the photodiode through a piece of 2.5 µm Ni cut from the same sheet as

the entrance window. The peak energy was calculated using each calibration of the

photodiode and compared. In this case the calibration using the single beam point

and the triple alpha source was used as the final energy calculation.

For the second and third experimental runs the beam entered the gas cell through

a 251 µm gold foil and then the 2.5 µm Ni entrance window. In this case the peak

position of the beam measured in the photodiode after passing through the 2.5 µm foil

was calculated using each calibration method. This energy loss was also calculated

using DEDX and a scaling factor (S.F.) was calculated using equation 5.3.

S.F. = DECalibration

DEDEDX

(5.3)

The energy loss through the gold foil was calculated using DEDX followed by

the energy loss through the 2.5 µm Ni foil. This energy loss through the Ni foil

was then scaled with the scaling factor. Again the energy loss through the 4He in

the gas target was calculated using DEDX with an expected error of ∼20%. The
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energy calculated from the calibration using beam points was used for the final beam

energy. Using the beam to calibrate eliminated any effects of pulse height defect

between alpha particles and 23Na for these points. For the data point with the Ti

window the same method was used. A comparison of the energy difference between

the calibration techniques resulted in an error in the calibration of 0.4 MeV in the

lab frame.

At energies where similar energies were calculated for the calibrations, the
23Na(α,p)26Mg proton energies and scattering data from Rutherford scattering of the
4He target with the 23Na beam were compared. In order to perform a comparison

between experimental setups 1 and 2 a selection of strips covering the same angles was

used. It was found that the point at 1.35 MeV/u and with the Ti foil corresponded

to different beam energies than calculated by their original calibrations.

The cross section for 23Na(α,p)26Mg is larger at the start of the gas target where

the beam energy is higher and so the average energy of the beam in the target must

be weighted with cross section. The energy was scaled using Hauser Feshbach cross

sections calculated by Thomas Rauscher with the code NON-SMOKER [21]. The

effect was minimal at higher energies and only became apparent at lower energies.

The centre of mass energies were calculated using Equation B.1 in Appendix B.

5.3 Yield Extraction

To extract a yield of protons from the 23Na(α,p)26Mg reaction, cuts were applied

to reduce the background as much as possible. However, there were sources of

background that could not be removed with cuts and so data were taken with gas in

and out of the target so that a background subtraction could be performed. The

same cuts were applied to both the gas-in and gas-out data so that the gas-out data

could be scaled to the gas-in data and subtracted. The following section explains

the method used to extract the yield.
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(b) Beam into PD through 2.5µm Ni foil.

Fig. 5.3 Uncalibrated photodiode (PD) spectra for beam energy Ec.m. = 2.14 MeV.
Panel (a) shows the spectrum produced by the beam impinging directly into the PD,
panel (b) shows the beam entering the PD through a 2.5 µm Ni foil.
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5.3.1 Monte Carlo Simulation

A Monte Carlo simulation was used to simulate the kinematics of protons from the

reactions 23Na(α,p) in the gas target region and 23Na(p,p) with protons on the outer

surface of the entrance window. The code was written by Professor Alex Murphy

and modified for this experimental configuration. It modelled the gas cell target, the

gold foil (if present), and the S2 ∆E-E telescopes for each experimental setup.

The initial beam energy is inputted into the code and a random distance into the

gas target for the reaction is selected. In the case of 23Na(p,p) reactions with protons

from water on the entrance window, the outer, upstream side of the entrance window

was fixed as the location of the reaction. The code then calculates the energy loss to

the point of the reaction, taking into account straggling of the beam. The reaction

kinematics were then calculated and the projectile energy loss, through the exit foil

material and dead layers of the detectors, was calculated and energy and angle were

outputted. All energy losses were calculated with the energy loss code SRIM [42].

5.3.2 Sources of Background

There are several sources of background in the data from alpha particles and protons.

The main source of alpha particle background comes from 23Na(α,α) Rutherford

scattering of the beam within the gas target. These alpha particles deposit energy

in the detector from below the threshold energy to ∼9 MeV at the highest beam

energy. This is not energetic enough to punch through the first detector and so they

can easily be cut out by applying a condition that both the ∆E and the E detector

must register a hit.

Secondly, alpha particles from 23Na(p,α) reactions with protons from water

contamination on the entrance window of the gas cell target were detected. This

reaction has a Q-value of 2.38 MeV. These alpha particles were at much higher

energies than those scattered from the gas target and do punch though the ∆E

detector before being stopped in the E detector. They were easily removed from the

data with a particle identification cut as discussed later.
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Background from protons is dominated by 23Na(p,p) scattering of protons from

water contamination on the entrance window. These lie lower in energy than the

protons from reactions to the ground state in 26Mg, 23Na(α,p0), however they cover

the same energy range as protons from reactions to the first excited state in 26Mg,
23Na(α,p1). These background protons were seen in both gas-in and gas-out data

and can therefore be removed using a background subtraction as described later in

this section. The secondary source of background data were protons from fusion

evaporation of the beam with carbon and oxygen on the entrance window.

Figure 5.4a shows a plot of energy vs strip for the reaction protons detected,

compared to an energy vs strip plot produced from the Monte Carlo simulation of

proton data in Fig. 5.4b. In Fig. 5.4a protons from fusion evaporation reactions of

the beam with carbon and oxygen on the entrance window can be seen.

The energy expected for each of these sources of background was calculated

and compared to data. The fusion evaporation calculations were carried out by

Barry Davids using LISE++ [44]. The 23Na(p,α) calculations were carried out using

kin2b, a kinematics code written by Dr. Thomas Davinson [45], and the other

calculations were carried out using kin2b and using the Monte Carlo simulation of

the experimental setup.

5.3.3 Sort Code

Figure 5.5 shows the structure of the sort code used. Numbers in circles represent

when histograms were incremented. The sort code was originally written by Thomas

Davinson and modified throughout the analysis.

The scaler data which includes triggers presented to the DAQ, triggers accepted

by the DAQ and a 1 KHz clock were read in and the rate of triggers presented and

triggers accepted in Hertz were calculated. These rates were then plotted onto a one

dimensional (1D) histogram and used to calculate the detector live time as described

in section 5.11.
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Fig. 5.4 Total energy vs strip proton spectra at Ec.m. = 2.55 MeV. Data from the
experiment with gas in the target are shown in panel (a) and Monte Carlo simulation
output is shown in panel (b). The different proton sources are labelled.
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Fig. 5.5 Block diagram showing the structure of the sort code used to apply cuts to
the data.

The ADC data were read in and calibrated and data less than 0.25 MeV were

rejected. After this, 1D energy histograms were incremented (shown at point two

shown in Fig. 5.5) for each of the S2 and LEDA detector strips. The LEDA energy

spectra were used to calculate beam intensity as described in section 5.7. The

multiplicity is equal to the number of strips that register a hit greater than 0.25 MeV.

This was expected to show a peak at a multiplicity of two because of the double

sided nature of the S2 detectors. 1D multiplicity histograms were incremented to

check that the multiplicity peaked at two.
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The sort code then focused on the S2 detectors. The front-back equal energy cut

stated that for each S2 there must be a hit in a front strip of the detector and a hit

in a back strip of the detector. As well as this, the energy deposited in the front

strip and back strip must be equal to within a window of ±250 keV. This removed

particles hitting the inter strip region of the detector and noise in the front or back

strips of the detector. The strip ordering was then checked using the kinematic locus

in a plot of energy vs strip for each detector. If the strips were out of order due to

cabling the ordering was corrected and the data were resorted.

There was then a good event multiplicity cut for each ∆E-E telescope. This

means there must be a hit in each S2 in the telescope which satisfies the previous

selection rules. This cut removes alpha particles from 23Na(α,α) scattering which

are stopped in the ∆E detector.

Strip Hit Cuts

At point five in Fig. 5.5, histograms were incremented for the front strip hit patterns

and the back strip hit patterns between the two S2 detectors in each ∆E-E telescope.

The hit patterns were calculated as the difference in the back spoke hit (∆ϕ) and

the difference in the front annular strip hit (∆Strip) between the ∆E and E detector

in the telescope. These differences were calculated with the equations:

∆ϕ = Back Spoke ∆E − Back Spoke E + 200, (5.4)

∆Strip = Front Strip ∆E − Front Strip E + 2000. (5.5)

A particle that enters the ∆E detector at a certain radial angle ϕ was expected

to register a hit at the same ϕ in the E detector. An example of a ∆ϕ distribution is

shown in Figure 5.6. A peak in the ∆ϕ plot was expected at 200 and this was the

case for all energies. The number 200 in Eqn. 5.4 is added to shift the peak up the
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spectrum to prevent it from appearing at 0. A ∆ϕ cut was applied to the data such

that 199≤∆ϕ≤201.

DPhi
195 200 205

C
ou
nt
s

310

410

510

Δ

Fig. 5.6 ∆ϕ distribution for Ec.m. = 1.88 MeV.

For ∆Strip, the hit pattern was dependent on how far apart the ∆E and E

detectors were. S2 detector strips are numbered from 0 at the inner radius to 47

at the outer radius. Particles were expected to hit a lower numbered strip in the

∆E detector then, travel radially outwards towards the E detector, hitting a higher

numbered strip. The peak should therefore be below channel number 2000 in the

histogram. The number 2000 is used in Eqn. 5.5 to shift the peak up the spectrum

to prevent it appearing below zero.

Figure 5.7 shows an example of a ∆Strip distribution for the second experimental

setup. Here the ∆E and E detector were closer together and so the distribution

was peaked at a higher channel number than for the second experimental setup. A

∆Strip cut was applied to the data such that ∆Strip≤2001.

These cuts were checked and the data sorted without the cuts to ensure that

important events were not being discarded from the data. It was found that no

important events were being discarded from the data.

During the first experimental run the S2 detectors in the ∆E-E 1 (Upstream)

telescope were separated by 1.4 cm. This large separation resulted in a line of sight
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Fig. 5.7 ∆Strip distribution for Ec.m. = 2.33 MeV.

for particles scattered from the target to hit the inner strips of the E detector without

first passing through the ∆E detector. Random coincidences were therefore observed

in the telescope and a strip hit cut was implemented to remove these random particles.

Any hits in the first 6 strips of the upstream E detector were discounted.

Particle Identification Cuts

The particle identification cut employed the empirical range-energy relationship [46]

formula:

R = aEb (5.6)

where R is the range of the particle in the absorber, a is a constant depending on

the type of particle, E is the incident particle energy and b is a constant equal to

1.73 for Z = 1 and 2 ions [47]. The particle energy can be described by the formula

TM (b−1)Z2 = (E + ∆E)b − (E)b (5.7)
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where T is the thickness of the ∆E detector, M is the atomic mass of the ion and Z

is the atomic number of the ion [39]. In the sort code (E + ∆E)1.73 − (E)1.73 was

calculated and because this function is proportional to Z2, as shown in Eqn. 5.7,

different values for alpha particles and protons are obtained. A 1D gate was applied

in the sort code to remove background alpha particles. An example of this particle

identification plot is shown in Fig. 5.8.
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Fig. 5.8 Energy in ∆E detector vs energy in E detector at Ecm = 1.99 MeV with
gas in the target. Outlined are the different particle types.

After each of these cuts had been applied, the total energy was calculated for each

particle. This is the energy deposited in the ∆E detector plus the energy deposited

in the E detector. The same cuts were applied to both gas-in and gas-out data so

that a background subtraction could be performed.
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5.3.4 Background Subtraction

23Na(α,p0)

The background subtraction was performed on the 1D total energy plot, which is the

energy in the ∆E detector plus the energy in the E detector. Two separate methods

were used to check the reproducibility of the result. Firstly the background protons

from fusion evaporation, which are at energies higher than the background protons

from 23Na(p,p), were fitted with a single Gaussian in the gas-out data as shown

in Fig. 5.9. The fit parameters of this Gaussian were then exported and the same

Gaussian was drawn onto the gas-in data to model the background. The amplitude

of the fit was varied to fit the background using higher energy fusion evaporation

protons. This is shown in Fig. 5.10.

In order to ensure that different background fit methods resulted in a similar

yield the background data were also fitted with a double Gaussian. This Gaussian

included the background peak of protons produced from 23Na(p,p) reaction with

protons from water contamination on the entrance window of the gas cell. Using

different background fit methods did not significantly change the final yield, producing

changes in yield of no more than a third of the error in the yield.

For consistency, a single Gaussian fitted to the protons produced by fusion

evaporation was used as the background at each energy. The proton peak from
23Na(α,p0) in the gas-in data was then fitted with a Gaussian, an example of which

is shown in Fig. 5.11, and the area under this curve was integrated. The same

integration limits were used to integrate the background fit onto the gas-in data, and

this was subtracted from the yield of particles from the fit of the 23Na(α,p0) peak to

calculate a yield.

Errors from this method come from the statistical error in the number of counts.

In order to check that there is not a larger error than this arising from the scaling of

the height of the background fit, the height of the background fit on the gas-in data

was adjusted slightly in both positive and negative directions. The effect of this was

within a third of the statistical error. As well as this the limits of integration for the
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Fig. 5.9 Total energy plot for Ecm = 2.42 MeV with no gas in the target. A single
gaussian is fitted to the background.

proton peak from 23Na(α,p)26Mg were adjusted slightly to the left and right, this

also produced small differences in the yield that were within a third of the statistical

error.

The second method used to extract a yield was direct scaling and subtraction.

The gas-in and gas-out data were overlaid on the same plot and the gas out data

scaled using the higher energy protons from fusion evaporation. An example of this

is shown in Fig. 5.12 where the gas out data has been scaled to the gas in data. The

gas out data were then subtracted from the gas in data and the 23Na(α,p0)26Mg

proton peak integrated. Again the calculated error in this method was statistical.

However to check that there was not a larger error from the scaling method used,

again, the height of the gas-out background data was adjusted slightly in positive

and negative directions and subtracted. These differences were again within a third

of the statistical error. As a check the scaling was also calculated using total beam

intensity and the result was found to be the same.
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Fig. 5.10 Total energy plots for Ecm = 2.42 MeV with gas in the target (blue). The
single gaussian (red) from the background data is fitted to the background.

23Na(α,p1) and 23Na(α,p2)

In order to extract protons from 23Na(α,p1) and 23Na(α,p2) the background fitting

method could not be used as these protons are covered by a background peak from

proton scattered from water on the entrance window. In this case the method of

overlaying the gas-in and gas-out data and scaling as shown in Fig. 5.12 was used.

Some examples of the subtracted data compared to Monte Carlo simulation are

shown in Figs 5.13, 5.14 and 5.15. It should be noted that the Monte Carlo calculates

energies but does not take into account cross section and so the ratio of counts in

each peak has been modified to fit the data.

For the lower energy runs it was not possible to extract protons from reactions to

the first excited state in 26Mg (p1 protons) or protons from reactions to the second

excited state in 26Mg (p2 protons) as the runs were much longer and the amount

of water on the window did not remain constant. This meant that the background

scaling did not remove all of the background protons produced by the beam scattering

protons from water on the entrance window. At higher energies the Monte Carlo

shows that reactions to the third excited state in 26Mg (p3 protons) should be seen
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Fig. 5.11 Total energy plots for Ecm = 2.42 MeV with gas in the target (blue). The
single gaussian (red) is fitted to the 23Na(α,p0) protons.
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Fig. 5.12 Total energy plot for Ecm = 2.42 MeV. The gas-out data (red) have been
scaled to the gas-in data (blue).

in the data as shown in Fig. 5.15. These protons are not seen in the data because

the detector thresholds are very slightly higher than in the simulation.
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Fig. 5.13 Total energy plot for Ecm = 2.42 MeV. The background subtracted data
are shown in blue, Monte Carlo simulation is shown in pink. Proton peaks from the
ground (p0), first excited (p1) and second excited (p2) states in 26Mg are labelled.
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Fig. 5.14 Total energy plot for Ecm = 1.74 MeV. The background subtracted data
are shown in blue, Monte Carlo simulation is shown in pink. Proton peaks from the
ground (p0) state in 26Mg are labeled for both simulation and data, however the first
excited (p1) state in 26Mg could not be resolved from the background subtraction in
the data and is shown only for the Monte Carlo simulation.
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Fig. 5.15 Total energy plot for Ecm = 3.03 MeV. The background subtracted data
are shown in blue, Monte Carlo simulation are shown in pink. Proton peaks from
the ground (p0), first excited (p1) and second excited (p2) states in 26Mg are labelled
for both data and simulation. Protons from reactions to the third excited state in
26Mg (p3) are not seen in the data.

5.4 Target Nuclei Calculation

The number of target atoms per centimetre squared was calculated using Equation 5.8

and Equation 5.9 [2]. In Equation 5.8 N is the number density of target nuclei in

units of atoms per cubic centimetre, v is the number of atoms per molecule, P is

the pressure of the gas target in Torr, T is the temperature of the target in Kelvin

and the Loschmidt constant L = 2.68677 × 1019 cm−3. In Equation 5.9 Nt is the

number of target nuclei in units of target nuclei per squared centimetre, and d is the

thickness of the gas cell target in centimetres, in this case 2 cm.

N = vL
P

760 Torr

273 K

T
(5.8)

Nt = N × d (5.9)

At 1.35 MeV/u initial beam energy the gas cell target pressure was 100 Torr,

giving a target areal density of 6.59 × 1018 cm−2. For all other beam energies the
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target pressure was 110 Torr giving a target areal density of 7.25 × 1018 cm−2. The

temperature was taken as 293 K which was the approximate temperature of the

experimental hall but an error of ±5 K was assumed on this value as the temperature

would vary from day to night. An error also comes from the fact that the pressure

did not remain completely constant and could decrease by ∼1 Torr per hour. As

short runs were used with gas being in the target for no more than 2 hours, an

error of ± 2 Torr is assumed. Combining the error in temperature and the error in

pressure leads to an error of 2.6% at 100 Torr and 2.5% at 110 Torr.

5.5 Solid Angle Calculations

The solid angle of each S2 detector strip was needed to calculate a total cross

section. The solid angle of the annular strips of the S2 detectors was calculated

using equation 5.10 which was found by integrating over the area of the ring in the

detector from 0 to 2π in ϕ. Here θ1 and θ2 are the inner and outer centre of mass

angles of the detector strip. The rings of the S2 detectors are incomplete in ϕ and so

the solid angle calculated was multiplied by the fraction of each strip that actively

detects particles. The angular coverage in ϕ of each detector strip can be found in

Appendix A. Calculations are carried out in the centre of mass reference frame, with

lab to centre of mass angle conversions calculated using Equation B.2.

Σ = 2π(cosθ1 − cosθ2) × Active Area (5.10)

5.6 Efficiency Calculations

The detection efficiency was calculated using Equation 5.11 where εT ot is the total

efficiency and Ω is the solid angle, in the centre of mass frame, of the DE detector

from the centre of the target taking into account dead strips. εT elescope is the fraction

of protons that would hit the E detector after hitting the DE detector taking into

account dead strips in each detector. This fraction was calculated using a Monte Carlo
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simulation modelling the geometry of the detectors. During the second experimental

run the arm of the S2 shield was blocking part of the detector some of the data taken.

This was accounted for by calculating the amount of active area of the detector that

the arm blocked and subtracting it from the total active area of the detector.

εT ot = Ω
4π

× εT elescope × live time (5.11)

The centrality of the beam was checked using alpha particles scattered by the

beam in the gas target into the DE S2 detector. The total number of alpha particles

was integrated for each back spoke of the DE detector. It was found that the beam

was approximately 1 mm off the centre of the beam axis due to the rails that the

detectors were held on dipping at the centre of the chamber. The rails on which the

detectors are mounted are supported by the upstream flange and the downstream

flange and are not supported in the centre of the chamber. The effect of the 1 mm

offset on the solid angle coverage of the detectors was found to be negligable compared

to the large error which results from the 2 cm target length.

The dominant error in the efficiency, and in the cross section came from the solid

angle calculation because of the length of the gas cell target and the proximity of the

∆E-E telescope to it. The error was calculated assuming a 20 mm long gas cell with

an error in the position of the detectors relative to the gas cell of ± 2 mm. The solid

angle coverage of the detectors was calculated for a reaction at the beginning and

end of the target including the error in the length and this was taken as the error on

the solid angle.

The efficiency was also calculated with the Monte Carlo simulation to confirm the

method. The Monte Carlo calculated the number of particles which would register

a ‘good hit’ in the detectors as a fraction of the total number of reactions in the

simulation. Live time was calculated as the ratio of triggers presented to the DAQ

divided by triggers accepted by the DAQ. These data were read in as scaler data.
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5.7 Beam Intensity Calculations

Experimental Run 1

Due to the fact that there was not a gold foil present to measure backscattered beam

during the first experimental setup, the beam intensity was calculated using the

Faraday Cup reading at the beginning of each run and the backscattered 23Na beam

particles from the Ni entrance window detected in LEDA. The beam intensity in

particles per second (pps) was calculated using Equation 5.12 where Nb is the number

of beam particles per second, IF C is the electric current reading on the Faraday Cup

and Qb is the charge state of the beam. The beam was in a charge state of 5+ and

so a reading of 1 enA on the Faraday Cup corresponds to 1.25 × 109 pps.

Nb

t
= IF C

Qb

(5.12)

The data were sorted for the first ten minutes of a run at each energy and

the backscattered beam from the gas cell entrance window was integrated in each

individual strip of LEDA. The counts per minute were taken to correspond to the

beam intensity recorded on the Faraday Cup just before the run. To check that the

beam intensity did not change significantly during these ten minutes the triggers

presented and accepted were checked to be constant. The data for the total run

time was then sorted and the total backscattered beam into each strip of LEDA

was integrated. The average beam current was calculated by taking the ratio of the

counts per minute from the total run to the counts per minute from the first ten

minutes and multiplying by the beam current on FC4 at the beginning of the run.

The Faraday Cup reading is taken from FC4 which was located just upstream

of TUDA. The beam transmission through TUDA was therefore taken into account

in the beam intensity calculation. The error in this method was dominated by the

reading on FC4. This was estimated to be 0.2 nA. The total beam on target was

calculated by multiplying the average beam intensity in particles per second by the
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time in seconds at each energy. The total time each energy was run for is calculated

using the 1 kHz clock scaler data.

Rutherford scattering of the 23Na beam with the 4He target was used as a check

to ensure the beam intensity calculated was correct. To do this a simulation was

written which divided the gas cell target into fifty 0.5 mm steps. This method of

dividing the gas cell target was used because of the large change in angular coverage

of each strip. Beam energy losses through the target were calculated using SRIM

energy loss tables. At each step the Rutherford cross section for each annular strip

in the downstream ∆E S2 detector was calculated by integrating Equation B.4 over

θ for each strip. The yield of scattered alpha particles expected in each strip was

then calculated using the equation:

Y ield = σNBNT ε (5.13)

where σ is the Rutherford cross section integrated over a strip, NB is the number

of beam particles incident on the target, NT is the number of target nuclei in the

target and ε is the efficiency [2]. The yield calculated at each step in the target was

summed over all steps through the gas cell target giving a total yield for each strip.

The energy distribution of alpha particles emitted at the larger angles subtended

by the upstream S2 telescope meant that some of the alpha particles fell below

the energy threshold and so a full yield could not be integrated. Therefore the

downstream ∆E detector was used as the full alpha particle yield could be integrated

above the energy threshold of the detector system. The data were re-sorted so that

any particles that registered a hit in both the ∆E and the E detector were discounted,

and only particles that hit the ∆E detector were plotted and integrated over the

energy range expected for each strip in the downstream telescope. The calculated

alpha particle yield from the simulation and the alpha particle yield extracted from

the LEDA data were then compared on plots shown in Chapter 6.4.
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Experimental Run 2

For the second experimental setup, Rutherford scattering of the 23Na beam on a

gold foil fixed in front of the gas cell target, was used to calculate the total number

of particles incident on the target. The Rutherford scattering cross section was

calculated for each strip of the LEDA detector using Equation B.4. The energy was

taken to be the energy of the beam at the centre of the foil. The cross section varied

by no more than ±5% from this based on the thickness of the foil.
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Fig. 5.16 A strip in the LEDA detector showing backscattered beam from the Au
foil at Ecm = 2.26 MeV.

The total number of beam particles was calculated by re-arranging Equation 5.13

for NB, where the yield is extracted from the LEDA data for each strip, an example

LEDA spectrum is shown in Fig. 5.16. The number of target nuclei were calculated

for the gold foil. The efficiency is the measured dead time of the detector system.

The average total number of beam particles was then calculated by averaging over the

strips of the LEDA array. The error in the beam intensity is the standard deviation

of the number of particles for each strip. Beam intensities and their associated errors

are shown in Chapter 6.4.
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5.8 Angular Distributions

Differential cross sections were calculated using the equation:

dσ

dΩ = Y (Ω)
NBNT εdΩ (5.14)

where Y(Ω) is the yield of reaction products within a solid angle Ω, NB is the total

number of beam particles incident on the target, NT is the number of target nuclei

per cm2, ε is the efficiency and dΩ is the solid angle in the centre of mass frame [2].

The detectors were divided by grouping the front annular strips into groups of

6 or 8, depending on the number of counts and dΩ was calculated for each group

of strips. The number of target particles and beam particles remained the same as

for the total cross section calculations. The yield was extracted for each group of

strips, using the same scaling method as was used for the extraction of a yield for the

whole detector. The efficiency is calculated as εT elescope× live time, where εT elescope

is calculated as previously for each group of strips.

Angular distributions were calculated for both experimental setups, however not

all energies from the second experimental setup were calculated. Due to the proximity

of the detector to the target in each experimental setup the error in angle for each

strip was large, equal to ∼ ±10◦ in the centre of mass frame for the first experimental

setup and ∼ ±5◦ in the centre of mass frame for the second experimental setup. This

meant that it was not possible to fit the angular distributions leading to an isotropic

angular distribution assumption to be made for the total cross section calculations.

5.9 Total Cross Sections

The total cross section in mb was calculated using equation 5.15 [2], where Y is

the yield of reaction products measured, NB is the total number of beam particles
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incident on the target, NT is the number of target nuclei per cm2 and εT ot is the

efficiency. This is the cross section assuming a flat angular distribution.

σ = Y

NBNT εT ot

× 1 × 10−27 (5.15)

Cross sections were calculated for 23Na(α,p0) at all energies. At higher energies

where background subtractions were possible 23Na(α,p1) and 23Na(α,p2) cross sections

were also calculated. In order to calculate an astrophysical reaction rate a total cross

section was needed at each energy. At higher energies the total cross section is the

sum of the cross sections as calculated using Equation 5.16.

σT ot = σp0 + σp1 + σp2 (5.16)

At lower energies where cross sections to excited states could not be extracted

the total cross section was calculated using the SMARAGD Hauser-Feshbach cross

sections. The ratio of σSMARAGDp0/σSMARAGDTot is within error of the ratio calculated

from this data at higher energies. Therefore at lower energies where only the cross

section σp0 is measured from the data, the total cross section is calculated using the

relationship

σT ot = σSMARAGDTot

σSMARAGDp0

× σp0 . (5.17)

5.10 Reaction Rate Calculation

To calculate a reaction rate the code exp2rate.f [48] written by Thomas Rauscher was

used. The code calculates a reaction rate by numerically integrating the equation for

reaction rate per particle pair from the input cross sections. The total cross sections
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were used to calculate a reaction rate. In the case of the lowest energy point, which

is an upper limit, the lower limit to the cross section was 0 mb. In the case of all

other data points upper and lower limits were input as the error bars on each cross

section point. The temperature range is determined from the energy range of the

data.



Chapter 6

Results and Discussion

6.1 Beam Energy Results

The beam energies and their associated errors are shown in Table 6.1, the corrections

to the beam energies are described in this section. The error on the beam energy

accounts for the beam energy through the gas target plus the uncertainty in the

beam energy calculation. At data points where beam energies were similar, the

beam energies were checked by comparing proton data from 23Na(α,p)26Mg and by

comparing Rutherford scattering of the 4He gas target with the 23Na beam. The

result of this check was that two energies were changed from their original calibration.

Firstly, the beam energy at Ebeam =1.35 MeV/u. The beam energy at the centre of the

target was calculated to be Ec.m.=2.42 MeV. This was similar in energy to the data

at Ebeam =1.52 MeV/u which also has a centre of mass energy of Ec.m.=2.42 MeV. A

selection of strips from each of the different setups was chosen such that approximately

the same angles were covered, and the protons from 23Na(α,p0)26Mg were compared.

The distributions of the two sets of data are expected to be slightly different due to

the difference in the proximity of the detector telescope to the gas cell target, however

the total energy seen should be approximately the same for the strips selected. The

result of the comparison between the total energy plot for Ebeam =1.35 MeV/u and

Ebeam =1.52 MeV/u is shown in Fig. 6.1.
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Fig. 6.1 Total energy plot for Ebeam= 1.35 MeV/u (blue) and Ebeam= 1.52 MeV/u
(red) for a selection of strips which cover approximately the same angles. The plot
shows that the energy of the protons from reactions at each beam energy are not
similar.

There is clearly a discrepancy between the energies of the proton energy peak

from the 23Na(α,p0)26Mg reaction in Fig. 6.1. The data for Ebeam= 1.35 MeV/u

was compared to data at other energies. It was found that the energy distribution

was similar to the beam energy at Ebeam= 1.46 MeV/u as shown in Fig. 6.2. A

comparison of the Monte Carlo simulation to data for Ebeam =1.52 MeV/u is shown

in Fig. 5.13 and was shown to match predictions. The centre of mass energy of the

data point for Ebeam= 1.35 MeV/u was therefore changed to Ec.m.=2.26 MeV.

The reason for the data corresponding to a different beam energy to the calibration

is not clear. It was possible that for this calibration run the beam hit a point on

the foil which was thinner. It could also have been that the initial beam energy was

lower than expected. The resistors in the LEDA detectors were changed before the

data at Ebeam =1.35 MeV/u, and so the data for the beam backscattered from the

entrance window and detected in LEDA does not have a calibration as a calibration

run was not performed. It could be possible that the beam energy provided was

incorrect.
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Fig. 6.2 Total energy plot for Ebeam= 1.35 MeV/u (blue) and Ebeam= 1.46 MeV/u
(red) for a selection of strips which cover approximately the same angles. The plot
shows that the energy of the protons from reactions at each beam energy are similar.
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Fig. 6.3 4He particles from Rutherford scattering of the 23Na beam with the 4He
gas target, detected in the ∆E S2 detector, at beam energies of Ebeam= 1.39 MeV/u
with a titanium window (red) and Ebeam= 1.43 MeV/u with a Ni window (blue).

The second energy which was found to differ was for the data taken with the

titanium window during the third experimental run. The Hauser-Feshbach weighted

energy was calculated using the calibration to be Ec.m.=2.32 MeV. The Rutherford

scattering data for a single strip in the ∆E detector were compared at each energy for
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the third experimental run. This comparison showed that the beam energy inside the

gas target was very similar to Ebeam= 1.43 MeV/u with Ec.m. = 2.14 MeV . Figure 6.3

shows an example of Rutherford scattered alpha particle data from the same strip in

the ∆E detector for Ebeam= 1.39 MeV/u with a titanium window (red) and Ebeam=

1.43 MeV/u (blue) with the Ni entrance window.
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Fig. 6.4 Spectrum from a single strip in LEDA showing beam backscattered from
the gold foil upstream of the titanium entrance window at Ebeam= 1.39 MeV/u.

The beam energy before entering the gold foil, for the data taken with the

titanium window, was checked by analysing the LEDA data. The LEDA data showed

the backscattered beam from the gold foil mounted upstream of the entrance window.

An example of a LEDA spectrum for the data taken with a titanium window is shown

in Fg. 6.4. The LEDA data in this strip were expected to have an upper energy limit

of 18.8 MeV which is in good agreement with the data. This agreement confirmed

that the initial beam energy was Ebeam = 1.39 MeV/u. Since the energy of the beam

incident on the gold foil is as expected it is possible that the thickness of the titanium

foil which was mounted in front of the photodiode for calibration purposes was not

equal to the thickness of the titanium entrance window. It is possible that they were

not cut from the same sheet of foil.
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Experiment Ebeam (MeV/u) Ec.m. (MeV)
Start of Target End of Target HF weighted

1 1.18 1.79 1.66 1.74+0.09
−0.12

1.21 1.91 1.78 1.86+0.09
−0.12

1.25 2.05 1.91 1.99+0.10
−0.12

1.35 2.32 2.18 2.26+0.10
−0.12

2 1.19 1.43 1.28 1.38+0.09
−0.14

1.39 2.09 1.95 2.03+0.10
−0.12

3 1.39 2.08 1.94 2.02+0.10
−0.12

1.43 2.2 2.06 2.14+0.10
−0.12

1.46 2.32 2.18 2.26+0.10
−0.12

1.49 2.39 2.25 2.33+0.10
−0.12

1.52 2.48 2.34 2.42+0.10
−0.12

1.55 2.61 2.48 2.55+0.10
−0.11

1.58 2.73 2.6 2.67+0.10
−0.11

1.61 2.84 2.71 2.78+0.10
−0.11

1.64 2.98 2.85 2.92+0.10
−0.11

1.67 3.09 2.97 3.03+0.10
−0.10

1.7 3.15 3.04 3.1+0.09
−0.10

TiWindow 1.39 2.2 2.06 2.14+0.10
−0.12

Table 6.1 The beam energies weighted using Hauser Feshbach cross section calculations
as described in the text. Two beam energies, one at at Ebeam = 1.35 MeV and one
at Ebeam = 1.39 MeV with a Ti entrance window were corrected as described in the
text.

6.2 23Na(α,p)26Mg Yields

The results of two different methods of yield extraction are shown in Table 6.2.

Firstly, the gas-in and gas-out data are overlayed and scaled and the background is

subtracted from the gas-in data. The result of this is shown in the column labelled

‘Yield’. This is the yield used to calculate the final cross sections so as to be consistent

when extracting yields for p1 and p2 protons. The second method was to fit the

background then draw this fit onto the gas-in data and scale the height. In each
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case scaling was done by eye using the higher energy fusion evaporation proton

background.

Experiment Ec.m. (MeV) Yield (counts) Yield - Fitting Method (counts)
1 1.74 551±23 563

1.86 405±20 413
1.99 338 ±18 351
2.26 202 ±14 211

2 1.38 0 ± 0 0
2.03 158±13 162

3 2.02 105± 10 100
2.14 412± 20 427
2.26 305± 17 321
2.33 197± 14 194
2.42 746± 27 751
2.55 953± 31 958
2.67 876±30 921
2.78 1612 ± 40 1659
2.92 2703 ±52 2752
3.03 2592 ± 51 2643
3.1 2138 ±46 2096

Ti Window 2.26 771 ± 28 783
Table 6.2 Results of yield extraction using two different methods for protons from
23Na(α,p0)26Mg.

The fitting method resulted in yields which were within error of the yields used

to calculate cross sections. In order to check that scaling the background by eye to

the higher energy fusion evaporation protons was viable, the background was also

scaled to the total number of beam particles incident on the target. This was done

at two energies, at Ec.m.=2.14 MeV a yield of 441±21 counts was calculated and at

Ec.m.=2.26 MeV a yield of 312±18 was calculated. These are both within error of the

final yield and so confirmed that the scaling method was viable. As well as this, the

limits of integration were changed by ±100 keV which again did not give a change in

yield outside of the error.
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In order to extract yields for p1 and p2 protons the method of scaling using higher

energy fusion evaporation was used. At lower energies, where data collection times

were longer, it was not possible to resolve the p1 and p2 proton peaks beneath the

background produced by protons scattered by the beam from water contamination

on the entrance window. However at higher energies it was possible to resolve the

peaks for p1 and p2 protons. It is possible that at the higher energies, where data

collection times were shorter, the amount of water contamination on the entrance

window remained relatively constant. As well as shorter runs, the chamber had

been continuously pumped out, using the turbo and cryo pumps, throughout the

experiment and so there would be less moisture present in the chamber as the higher

energies were measured later in the experimental run.

The protons measured from reactions to the first excited state in 26Mg are shown

in Table 6.3. The protons measured from reactions to the second excited state in
26Mg are shown in Table 6.4.

Experiment Ec.m. (MeV) Yield (counts) Error
3 2.42 2499 ±50

2.55 2629 ±51
2.67 2963 ±54
2.78 5528 ±74
2.92 6252 ±79
3.03 7714 ±88
3.1 8353 ±91

Table 6.3 Yield of protons from 23Na(α,p1)26Mg

As well as changing the limits of integration the ∆ϕ and ∆Strip cuts were removed

to check that part of the 23Na(α,p)26Mg proton yield was not being lost. The result

was that good counts were not being removed by these cuts, with ∼94% of events

passing the ∆ϕ cut and ∼88% of the events passing the ∆Strip cut.
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Experiment Ec.m. (MeV) Yield (counts) Error
3 2.42 624 ±25

2.55 660 ±26
2.67 1125 ±34
2.78 1624 ±40
2.92 2752 ±52
3.03 2551 ±51
3.1 4684 ±68

Table 6.4 Yield of protons from 23Na(α,p2)26Mg

6.3 Efficiency

Table 6.5 shows the efficiency calculated at each energy. The solid angle and

detector efficiency are dependant on the telescope geometry. During the first and

third experimental runs this was the same at each energy measured for each setup.

However, during the second experimental run, part of the silicon detector telescope

that detected protons was blocked by an aluminium arm on the mount for the iris.

The arm was present for the data taken at Ec.m. = 2.03 MeV and removed part

way through taking data at Ec.m. = 1.38 MeV. The effect of the arm was taken

into account in the solid angle calculation and the εT elescope calculation. Therefore,

although the same setup was used for experimental runs two and three, the calculated

efficiencies differ slightly.

In order to check the efficiency calculation the Monte Carlo code was used to

model the second experimental setup and calculate the value equivalent to the

product of the solid angle multiplied by εT elescope. This value was calculated to be

3.7+0.96
−1.52 from Table 6.5 and in the Monte Carlo it was calculated to be 3.9%. The

result of the Monte Carlo simulation is within error of the calculation for efficiency

used for the cross section caluclation.
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Experiment Ec.m. Live Time Solid Angle (sr) εT elescope εT otal ∆εT otal

(MeV) (%) (%) (%) +(%) - (%)
1 1.74 86 1.05+0.3

−0.46 46.0 3.27 29 44
1.86 91 1.05+0.3

−0.46 46.0 3.57 29 44
1.99 77 1.05+0.3

−0.46 46.0 3.02 29 44
2.26 70 1.05+0.3

−0.46 46.0 2.54 29 44
2 1.38 75 0.533+0.14

−0.22 70.8 22.3 26 41
2.03 68 0.461+0.12

−0.19 69.4 17.3 26 41
3 2.02 64 0.656+0.17

−0.27 71.5 2.39 26 41
2.14 65 0.656+0.17

−0.27 71.5 2.43 26 41
2.26 70 0.656+0.17

−0.27 71.5 2.61 26 41
2.33 78 0.656+0.17

−0.27 71.5 2.91 26 41
2.42 71 0.656+0.17

−0.27 71.5 2.65 26 41
2.55 74 0.656+0.17

−0.27 71.5 2.76 26 41
2.67 79 0.656+0.17

−0.27 71.5 2.95 26 41
2.78 75 0.656+0.17

−0.27 71.5 2.80 26 41
2.92 77 0.656+0.17

−0.27 71.5 2.88 26 41
3.03 81 0.656+0.17

−0.27 71.5 3.02 26 41
3.1 81 0.656+0.17

−0.27 71.5 3.02 26 41
Ti Window 2.26 70 0.656+0.17

−0.27 71.5 2.61 26 41
Table 6.5 Calculated efficiencies and errors.

6.4 Beam Intensity

Table 6.6 shows the total number of beam particles incident with the target calculated

for the second and third experimental runs using Rutherford scattering from a gold

foil. Also shown is the beam current read from FC4, the Faraday cup located just

upstream of the TUDA scattering chamber, before each set of data were taken. The

total number of beam particles was calculated for 83 strips in the LEDA detector.

An average was then taken and the standard deviation is the error.

Table 6.7 shows the beam intensities calculated during the first experimental

run. The average beam current ĪF C , calculated using backscattered beam from the

entrance window, is used to calculate the total number of particles incident with the
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Experiment Ec.m. (MeV) TUDA FC (enA) NB Error (%)
2 1.38 ∼1.5 2.03±0.12×1014 6.11

2.03 0.93 5.27±0.17×1012 3.21
3 2.02 1.02 3.49±0.16×1012 4.56

2.14 1.02 5.51±0.26×1012 3.9
2.26 0.5 3.14±0.43×1012 13.8
2.33 0.9 1.89±0.22×1012 11.8
2.42 0.85 3.25±0.18×1012 5.59
2.55 0.8 2.63±0.27×1012 10.4
2.67 0.77 1.85±0.18×1012 9.91
2.78 0.9 2.77±0.27×1012 9.59
2.92 1.0 2.87±0.41×1012 14.3
3.03 0.78 1.81±0.14×1012 7.9
3.1 0.72 1.78±0.22×1012 12.5

Ti Window 2.26 0.8 1.03±0.12×1013 11.7
Table 6.6 Total number of particles incident with the target calculated from Ruther-
ford scattering on gold foil.

Experiment Ec.m. (MeV) ĪF C (enA) Transmission NB Error (%)
1 1.74 0.69± 0.16 0.95 1.20±0.27×1014 22.7

1.86 0.30 ±0.05 0.97 2.46±0.43×1013 17.5
1.99 0.48 ±0.09 0.95 1.58±0.31×1013 19.6
2.26 0.65± 0.08 0.93 2.81±0.33×1012 11.7

Table 6.7 Total particles incident with the target for the first experimental run.

target, NB. As a check of the method, the yield expected from Rutherford scattered

alpha particles from the target was calculated and compared to the yield extracted

from the data. An example of the comparison of the yields is shown in Fig. 6.5

and Fig. 6.6. Both plots show that the number of counts extracted from the data

decreases compared to the simulation results in the outer strips. This effect is seen

at each of the four energies measured and is due to the upstream ∆E-E telescope

shielding the outer strips of the downstream telescope. There is also an alternating

pattern to the counts in successive strips in the detector. This alternating effect is
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observed in each of the four beam energies measured, however the reason for it is

not clear. It could possibly be an effect of the readout of the strips as each strip is

read out on an alternating side to the previous one.
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Fig. 6.5 Comparison of yield of alpha particles calculated in simulation to alpha
particles detected in each strip of ∆E2 for Ec.m. = 1.88 MeV.

Although the counts from the data were found to be consistently higher at

each energy, the counts predicted by the simulation were within error of the counts

extracted from the data. This confirmed the validity of using the relative yield of

backscattered 23Na beam from the Ni entrance window to calculate beam intensity.

In the case of the beam energy of Ebeam = 1.35 MeV/u the Rutherford scattering

yield for 23Na(α,α) was calculated with a beam energy of Ec.m.=2.26 MeV. The

Rutherford scattering in this case was with the 4He target. However, for the data

point taken at Ebeam = 1.39 MeV/u with a titanium entrance window the original

beam energy of Ebeam = 1.39 MeV/u was used to calculate a total number of beam

particles using Rutherford scattering of the 23Na beam with the Au foil. This

is because although the beam energy inside the gas target was modified, LEDA

data showed that the beam energy incident on the Au foil was equal to Ebeam =

1.39 MeV/u.
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Fig. 6.6 Comparison of yield of alpha particles calculated in simulation to alpha
particles detected in each strip of ∆E2 for Ec.m. = 2.26 MeV.

6.5 Target Particles

The temperature used to calculate the number of target particles in the target was

293 ± 5K which is room temperature. The error of ±5K was assumed since there was

not a temperature sensor in the gas cell target. The number of target particles per

cm2 is shown in Table 6.8 along with the pressure inside the gas cell at each energy.

The combined error was calculated to be 2.6% at 100 Torr and 2.5% at 110 Torr.

6.6 Angular Distributions

Angular distributions were calculated for the four energies from the first experimental

run and at two energies in the third experimental run. An example of some angular

distributions are plotted in Fig. 6.7. Due to the thickness of the gas target and the

proximity of the ∆E-E telescope there is a large error in angle Θc.m. covered by each

group of strips. These large error bars mean that a meaningful fit to the data is not

possible as many fits could be viable.
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Experiment Ec.m. (MeV) Pressure (Torr) NT (cm−2)
1 1.74 110.0 ±2 7.25±0.18× 1018

1.86 110.0 ±2 7.25±0.18× 1018

1.99 110.0 ±2 7.25±0.18× 1018

2.26 100.0±2 6.59±0.17× 1018

2 1.38 110.0±2 7.25±0.18× 1018

2.03 111.7 ±2 7.36±0.18 × 1018

3 2.02 119.6±2 7.90±0.19× 1018

2.14 110.0±2 7.25±0.18 × 1018

2.26 110.0 ±2 7.25±0.18× 1018

2.33 110.0 ±2 7.25±0.18× 1018

2.42 104.5±2 6.89±0.18× 1018

2.55 110.5 ±2 7.28±0.18× 1018

2.67 108.0 ±2 7.12±0.18× 1018

2.78 106.0 ±2 6.99±0.18× 1018

2.92 103.3±2 6.81±0.18× 1018

3.03 110.2 ±2 7.26±0.18× 1018

3.1 110.1 ±2 7.26±0.18× 1018

Ti Window 2.26 110±2 7.25±0.18 × 1018

Table 6.8 Number of target particles per cm2

For each beam energy at which data were taken, a flat angular distribution was

assumed. This flat angular distribution did not disagree with the angular distributions

calculated. However, Howard et al. [26] did produce angular distributions from their

measurements. Their results show that the distribution is not flat [26], and so the

data in this work would be improved if angular distributions for were taken into

account in the total cross section calculation.

6.7 Cross Sections

Cross sections for the 23Na(α,p)26Mg reaction were calculated at 17 energies. The

cross sections are shown in Table 6.9. Where p1 and p2 cross sections were not

extracted from the data the Hauser-Feshbach statistical model was used to scale p0



6.7 Cross Sections 92

pro Fit TR
IAL version

120 140 160 180

0.00

0.01

0.10

1.00

θc.m. (degrees)

dΩ
/d
σ 

(m
b/

sr
)

Untitled Data 1

2.67 MeV p1
2.67 MeV p0
1.99 MeV p0
1.74 MeV p0

Fig. 6.7 The angular distributions for reaction protons to the ground and first excited
states in 26Mg for several beam energies.

cross sections to a total cross section. The ratio of p0 to ptot from the SMARAGD

cross sections is within error of the ratio p0 to ptot calculated in this work.

Figure 6.8 shows these cross sections plotted with the Hauser-Feshbach cross

sections from the codes NON-SMOKER and SMARAGD. Although the statistical

model is not thought to be applicable for the 23Na(α,p)26Mg reaction at the energies

measured here, there is a remarkable agreement between the NON-SMOKER cross

sections and the cross sections calculated in this work. The exception to this

agreement is the lowest energy data point. This upper limit point for 23Na(α,p0)26Mg

is eight times lower than the SMARAGD p0 cross section. As the energy decreases

the difference in cross section between experimental data and Hauser-Feshbach

calculations increases. It is also interesting to see that reactions to the second

excited state in 26Mg make a significant contribution to the cross section, since other

measurements of the reaction by Howard et al. and Almaraz-Calderon et al. have

not accounted for these reactions. The work by Almaraz-Calderon et al. states that

a Hauser-Feshbach calculation showed that at Ec.m. = 2.42 MeV the p2 component
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Ec.m. (MeV) σp0(mb) σp1(mb) σp2(mb) σtot (mb)
1.38+0.09

−0.14 ≤1.04×10−4 ≤2.22×10−4

1.74+0.09
−0.12 0.02+0.01

−0.01 0.05+0.02
−0.02

1.86+0.09
−0.12 0.06+0.02

−0.03 0.19+0.07
−0.09

1.99+0.10
−0.12 0.10+0.03

−0.05 0.30+0.10
−0.15

2.02+0.10
−0.12 0.16+0.05

−0.07 0.51+0.18
−0.24

2.03+0.10
−0.12 0.16+0.04

−0.07 0.51+0.14
−0.21

2.14+0.10
−0.12 0.4+0.11

−0.17 1.3+0.4
−0.6

2.14+0.10
−0.12 0.42+0.12

−0.17 1.3+0.4
−0.6

2.26+0.10
−0.12 0.43+0.14

−0.20 1.5+0.5
−0.7

2.33+0.10
−0.12 0.49+0.15

−0.21 1.8+0.5
−0.7

2.42+0.10
−0.12 1.2+0.3

−0.5 4.0+1.1
−1.7 1.1+0.3

−0.5 6.3+1.2
−1.8

2.55+0.10
−0.11 1.8+0.5

−0.8 5.0+1.39
−2.1 1.3+0.4

−0.6 8.1+1.5
−2.3

2.67+0.10
−0.11 2.3+0.6

−1.0 7.6+2.1
−3.2 3.0+0.9

−1.3 12.9+2.4
−3.6

2.78+0.10
−0.11 2.97+0.8

−1.3 10.2+2.8
−4.3 3.1+0.9

−1.3 16.2+3.1
−4.7

2.92+0.10
−0.11 4.8+1.4

−2.1 11.1+3.3
−4.8 5.1+1.5

−2.2 21.1+3.9
−5.7

3.03+0.10
−0.10 6.5+1.8

−2.7 19.4+5.3
−8.1 6.6+1.8

−2.8 32.6+5.9
−9.0

3.10+0.09
−0.10 5.5+1.6

−2.4 21.4+6.2
−9.2 12.7+3.7

−5.5 39.5+7.3
−10.9

Table 6.9 23Na(α,p)26Mg cross sections calculated in this work.

contributes ∼6% to the cross section with respect to the p1 component. This work

found that at Ec.m. = 2.42 MeV the p2 contribution to the total cross section is ∼17%

and is within error of the value of the p0 cross section at this energy.

The total cross sections calculated at similar energies are within error of one

another and the data point taken using a titanium entrance window is in agreement

with the cross sections calculated using a nickel entrance window. This data point

was taken in an attempt to mirror the data taken by Almaraz-Calderon et al. as

closely as possible with our apparatus since the first set of experimental data taken

showed a disagreement in cross section between our work and theirs. Figure 6.9 shows

the cross sections calculated in this work for 23Na(α,p0)26Mg and the total cross

sections, which were experimentally measured and calculated. They are compared to

the cross sections calculated by the work by Almaraz-Calderon et al. [25].
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Fig. 6.8 23Na(α,p)26Mg cross sections calculated in this work plotted with the
SMARAGD and NON-SMOKER Hauser-Feshbach cross section calculations. The
lowest energy data point is an upper limit.

It is clear that the cross sections calculated in this work are much lower than

those in the work of Almaraz-Calderon et al. [25]. However it should be noted that

although the cross sections are much lower, the ratio σp0/σp1 is similar, implying

that the difference in cross sections could be due to a scaling factor. The re-analysis

of the data during this work found no error in the calculations which would cause an

increase in cross section by a factor of 20. Further, the cross sections calculated in

this work are as expected by the work carried out by Mohr [49], which found that

the result by Almaraz-Calderon et al. did not follow the trend of cross sections in

this mass region [30].

Figure 6.10 shows a plot of the cross sections calculated in this work and the

cross sections calculated in the work by Howard et al. [26]. The cross sections are

mostly in agreement, however there are some points which do not agree. The data
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Fig. 6.9 23Na(α,p)26Mg cross sections calculated in this work plotted with the
SMARAGD and NON-SMOKER Hauser-Feshbach cross section calculations and the
cross sections from the work by Almaraz-Calderon et al. [25]

point at Ec.m. = 1.74 MeV has a p0 cross section of 0.05±0.01 mb. In this work, the

cross section calculated for Ec.m. = 1.74 MeV has a p0 cross section of 0.02±0.01 mb.

Discussion with the authors of Reference [26] found that the angular distribution for

p0 is heavily peaked at θc.m. = 90◦ [50]. If we assume the same angular distribution for

the different energy ranges of the beam in the target, the difference in cross sections

is most likely due to the fact that we have not accounted for angular distributions,

which would increase the cross section by ∼40% [50]. However this is not conclusive

as this work covered a much larger energy range within the target, meaning a larger

range of states in the compound nucleus would contribute to the reaction and the

angular distributions produced in the work by Howard et al. may not be applicable

to this work.

Another point which does not agree between the data sets is for ptot at Ec.m. =

2.14 MeV. This total cross section is larger than the trend of the other total cross

sections calculated in the work of Howard et al. due to a strong (α,p) resonance
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Fig. 6.10 23Na(α,p)26Mg cross sections calculated in this work plotted with the
SMARAGD and NON-SMOKER Hauser-Feshbach cross section calculations and the
cross sections from the work by Howard et al. [26].

at this energy. The p1 and p0 resonance strengths were estimated to be ωγ1 =

1000±300 eV and ωγ1 = 42±13 eV, the strongest contribution comes from the p1

channel [26]. In this work the p1 channel was not measured at this energy and the

total cross section was calculated by scaling with SMARAGD cross sections. A

measurement of the p1 cross section here may have resulted in agreement between

the total cross sections for Ec.m. = 2.14 MeV in this work and the work by Howard

et al.

6.8 Astrophysical Reaction Rate

The astrophysical reaction rate, calculated using the total cross sections from Table 6.9

is shown in Fig. 6.11. Here the rate is compared to the rates calculated in the work of

Almaraz-Calderon et al. [25] and Whitmire and Davids [24]. The work by Whitmire

and Davids underestimated the reaction rate, whereas the work by Almaraz-Calderon
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et al. calculated a rate a factor of 40 higher than the Non-Smoker rate. The rate

calculated in this work largely agrees with the Non-Smoker rate.
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Fig. 6.11 Astrophysical reaction rates calculated for this work compared to the
rates produced by Almaraz-Calderon et al. [25] and Whitmire and Davids [24]. The
Non-Smoker reaction rate is taken from the JINA REACLIB database [21].

Figure 6.12 shows the ratio of the rates calculated in this work to Non-Smoker.

It can be seen that the Non-Smoker rate is within the limits of the reaction rate

calculated by this work at astrophysical energies of interest. However at lower

temperatures the rate decreases due to the lowest energy data point, which is an

upper limit and is lower than it is expected to be with the Non-smoker prediction.

Howard et al conclude that overall their calculated reaction rate is within 30% of the

NON-SMOKER rate.

The temperature of interest for C/Ne convective shell burning in massive stars is

1.4 GK. At this temperature the rate lies within 1.7 and 0.7 times the Non-Smoker

rate. The study by Iliadis et al. [2] concludes that a factor of two increase in the

rate produces a factor of 1.3 increase in the amount of 26Al, whilst a factor of 0.5
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Fig. 6.12 Plot showing the ratio of the rate calculated in this work with the upper
and lower limits as a ratio to the NON-SMOKER rate.

change in the rate causes a change in the amount of 26Al of less than 20%. The

uncertainties in the rate from the present work lie between these values, therefore

the uncertainty in the amount of 26Al produced in the C/Ne convective shell, arising

from the the 23Na(α,p)26Mg reaction now has tighter limits of 0.8 - 1.3 times the

nominal amount based on this new experimental measurement. Since the limits of

the reaction rate lie within the limits which produce these abundance changes, more

detailed post processing calculations are now needed to investigate the effect of the

new limits on the 23Na(α,p)26Mg reaction rate in the production of 26Al.

In the case of nucleosynthesis in type 1a supernovae, only a quarter of the

temperature range of between 2 and 4 GK is covered in these results. The rate is

within ∼0.9 and 1.9 times that of the Non-Smoker rate. Bravo et al. [16] found

that for a factor of ten increase in the 23Na(α,p)26Mg reaction rate, the species 14N,
21Ne, 23Na, 29Si, 32P, 33S, 37Cl, 40Ca, 45Sc, 44,47Ti showed an increase by a factor

of between 0.12 and 2, and the nuclei 26Mg and 43Ca showed a factor of at least 2
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increase. Parikh et al. [17] found that when the reaction rate was increased by a

factor of ten the 23Na abundance changed by a factor of 0.47, 24Na changed by a

factor of 0.3 and 53Cr changed by a factor of 2.1. The new limits to the reaction rate

are well within the reaction rate variations studied in this work and so further post

processing calculations are needed so that the effects of the new limits on the nuclei

produced can be seen.

6.9 Experimental Setup

During the course of the data taking for this experiment the experimental setup

was improved upon. The use of the gas cell targets for the measurement of (α,p)

reactions at astrophysically relevant energy ranges has proved to be successful, not

only in this work but in other measurements also. Margerin et al. [51] measured

the 44Ti(α,p)47V reaction using the Edinburgh Gas Cell. The use of the Iris in the

second experimental setup meant that the chamber did not have to be opened up to

add and remove detector shields for tuning, saving several hours.

Fusion evaporation reactions of the beam with carbon and oxygen on the entrance

window created a background of protons across the energy range of protons from the
23Na(α,p)26Mg reaction. The cold cone was installed in an attempt to reduce this

background, however no evidence was found that it did so. The gold foil mounted in

front of the gas cell window was destroyed before it could be checked for hydrocarbon

buildup and fusion evaporation protons were observed in the data at all energies.

Data were taken with and without the cold cone at the same beam energy, however

time constraints meant that the rate of fusion evaporation protons in each case

was not analysed. This is something that could be done in the future to provide

conclusive evidence as to whether the cold cone reduces the background from fusion

evaporation. The work by Margerin et al. did not observe a background from fusion

evaporation on the entrance window but this may have been due to the lower beam

intensities of 5×105 pps. The cold cone was very difficult to align to the beam line

and for this reason took a lot of time to install. It also had to be brought back up to



6.9 Experimental Setup 100

temperature before opening the chamber and so added considerably to the time taken

to open up the chamber. Based on the fact that fusion evaporation protons were

observed with the cone in operation, and the background from the fusion evaporation

was easily subtracted by taking data with gas in and out of the target, the cone does

not seem to have been effective overall in this case.

The background from 23Na(p,p) scattering of the beam with protons from water on

the entrance window were more difficult to remove. The work by Almaraz-Calderon

et al. [25] used a background subtraction of protons from water contamination on the

window by scaling to beam intensity. A background subtraction for this background

was not possible at all energies in this work, probably because the amount of water

on the entrance window did not remain constant through the longer measurements.

A way to monitor this would allow for a background subtraction, however one was

not found during this analysis.
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Conclusions

In summary, the cross section of the 23Na(α,p)26Mg reaction has been measured

between Ec.m. = 1.38 - 3.1 MeV. At energies above Ec.m.= 1.7 MeV, the cross sections

were found to be in good agreement with the Non-Smoker Hauser-Feshbach cross

section calculations. The lowest energy measured during this work, Ec.m. = 1.38 MeV,

which is an upper limit measurement, shows that as energy decreases the Hauser-

Feshbach model seems to over predict the cross section by a factor of ∼8. This is

consistent with theory in that as the excitation energy in the compound nucleus

decreases individual resonances become more significant and the Hauser-Feshbach

energy averaged cross section does not reproduce the resonant structure of the cross

section [2].

Comparison of the cross sections calculated in this work to previous work shows

that there is a clear disagreement with the work by Almaraz-Calderon et al. [25].

However, the work of Howard et al. [26] is largely in agreement with the work

presented in this thesis. For the data point at Ec.m. = 1.74 MeV the discrepancy

between the p0 cross section calculated in the work by Howard et al. and this work

is thought to be due to the fact that in this work a flat angular distribution was

assumed while calculating the cross section. At this energy, an increase of ∼40% in

the cross section is expected if the angular distribution calculated by Howard et al.

is applied [50], however the energy range of the beam in the target is different for the

two sets of work. In order to improve upon the work in this thesis, measured angular
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distributions should be taken into account when calculating the angle integrated

cross sections.

The experimental technique, which incorporated the use of a gas cell target, was

found to be very successful in the measurement of the (α,p) reaction cross section

and could be used to make similar (α,p) cross section measurements in future. The

improvements in the experimental setup, such as the use of the iris as a detector

shield which eliminated the need to open the chamber between beam energies were

also successful in saving time. Water contamination on the window prevented protons

to excited states in 26Mg being detected where longer data collection times were used

at lower energies. If possible this should be improved upon in future.

In the case of nucleosynthesis in type 1a supernovae, the temperature range

covered in this work amounts to only a quarter of the energy range relevant for

nucleosynthesis in this environment. However between 2 and 2.6 GK the new limits

are within 0.9 and 1.9 times that of the recommended rate used in the nucleosynthesis

model calculations. These models predict abundance changes of between 0.12 and

2 for 14N, 21Ne, 23Na, 29Si, 32P, 33S, 37Cl, 40Ca, 45Sc, 44,47Ti, 2 for 26Mg and 43Ca

for a factor of ten change in the 23Na(α,p),26Mg reaction rate [16] and a change of

0.47 change in the abundance of 23Na, a factor of 0.3 change in 24Na and factor of

2.1 change in53Cr for a factor of ten increase in the reaction rate [17]. New post

processing calculations are needed to calculate the effect of the new much tighter

limits of the 23Na(α,p),26Mg reaction rate on nucleosynthesis in type 1a supernovae.

The result of the current work is that the uncertainty in the 26Al abundance

due to the 23Na(α,p)26Mg reaction is now between 0.8 and 1.3 times the nominal

abundance. These abundance limits are estimated from the reaction rate variations

used by Iliadis et al. [2] which lie outside the new limits calculated in this work. The

uncertainty in this key reaction for understanding 26Al production in massive stars

has therefore been significantly reduced. It is now necessary to carry out further

post processing calculations to measure more accurately the effects of the new limits

on the 23Na(α,p)26Mg reaction rate on the production of 26Al in the C/Ne convective
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burning shell in massive stars. As well as this, experimental data are now needed for

other important reactions such as 26Al(n,p)26Mg by which 26Al is destroyed in the

C/Ne convective shell of massive stars.

After this thesis was submitted for examination Almaraz Calderon et al. issued

an erratum [52] to their paper [25] which shows that their data is now in agreement

with the data presented in this thesis.



Appendix A

Detector Specifications

A.1 Silicon detector specifications

A.1.1 S2 Detectors

Table A.1 lists the MSL type S2 detector specifications.

Wafer technology 4
Junction window 2M
Ohmic window 2M
Active outer diameter 70 mm
Active inner diameter 22 mm
Chip outer hole diameter 76 mm
Chip inner hole diameter 20 mm
Nunmer of junction elements 48 Incomplete Rings
Junction element pitch 491 um
Junction element seperation 100 um
Number of ohmic elements 16
Package PCB

Table A.1 Msl-type S2 detector specifications.

Table A.2 lists the detector thicknesses, product codes and bias used for the S2

detector telescopes in experimental setup 1.



A.1 Silicon detector specifications 105

Detector Thickness (µm) Product Code Bias (V)
∆E 1 65 2410-23 14
E1 508 2623-18 130
∆E2 74 2083-9 20
E2 1051 2951-20 150

Table A.2 S2 detector information for experimental setup 1.

Table A.3 lists the detector thicknesses, product codes and bias used for the S2

detector telescope used in experimental setup 2.

Detector Thickness (µm) Product Code Bias (V)
∆E 65 2410-23 14
E 1051 2951-20 150

Table A.3 S2 detector information for experimental setup 2.

Table A.4 shows the phi coverage of each strip in an S2 detector.
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Strip Number Active Area (%) Strip Number Active Area (%)
0 1.0 24 0.95
1 0.99 25 0.95
2 0.99 26 0.95
3 0.99 27 0.94
4 0.98 28 0.94
5 0.98 29 0.94
6 0.98 30 0.94
7 0.98 31 0.94
8 0.97 32 0.94
9 0.97 33 0.94
10 0.97 34 0.94
11 0.97 35 0.94
12 0.96 36 0.95
13 0.96 37 0.92
14 0.96 38 0.90
15 0.96 39 0.89
16 0.96 40 0.88
17 0.96 41 0.86
18 0.95 42 0.86
19 0.95 43 0.84
20 0.95 44 0.84
21 0.95 45 0.83
22 0.95 46 0.82
23 0.95 47 0.82

Table A.4 S2 detector strip fractional phi coverage.

A.1.2 LEDA Detectors

Table A.5 lists the MSL type YY1 LEDA detector specifications.
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Wafer technology 4
Active inner dimensions 55 mm
Active outer dimensions 130 mm
Number of junction elements 16
Number of ohmic elements 1
Active area 29 cm2

Number of Sectors 8
Sector subtends 45o

Detector edge surround 0.5 mm
Junction pitch 5 mm
Package PCB

Table A.5 MSL-type YY1 detector specifications.

Table A.6 lists the detector thicknesses, product codes and bias used for the

LEDA detector array used in experimental setup 1.

Detector Thickness (µm) Product Code Bias (V)
LEDA 1 289 2376-17 30
LEDA 2 290 2376-18 30
LEDA 3 288 2376-16 30
LEDA 4 286 2376-12 30

Table A.6 LEDA detector information for array used in experimental setup 1.

Table A.7 lists the detector thicknesses, product codes and bias used for the

LEDA detector array used in experimental setup 2.

Detector Thickness (µm) Product Code Bias (V)
LEDA 1 290 1998-3 30
LEDA 2 294 2350-7 30
LEDA 3 297 2350-3 30
LEDA 4 288 2376-16 30
LEDA 5 286 2376-13 30
LEDA 6 290 2376-18 30
LEDA 7 289 2376-17 30

Table A.7 LEDA detector information for array used in experimental setup 2.
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Table A.8 shows the phi coverage of each strip in a LEDA segment.

Strip Number Active Area (%) Strip Number Active Area (%)
0 0.11 8 0.11
1 0.11 9 0.11
2 0.11 10 0.11
3 0.11 11 0.11
4 0.11 12 0.11
5 0.11 13 0.10
6 0.11 14 0.08
7 0.11 15 0.05
Table A.8 LEDA detector strip fractional phi coverage.



Appendix B

Analysis Equations

B.1 Laboratory to Centre of Mass coordinate sys-

tem Convertions

For experimental measurements the observations are made in a reference frame that

is at rest in the laboratory, however it is often more convenient to use a reference

frame in which the centre of mass is stationary called the centre of mass coordinate

system [2]. Figure B.1 shows the kinematics of a reaction A(a,b)B. It should be

noted that the total linear momentum in the centre of mass frame is always zero

and so particles b and B will travel in opposite directions giving one scattering angle

θ’ [2].

Using the conservation of momentum it is possible to arrive at the conclusion

that the total kinetic energy in the centre-of-mass frame, Ec.m., before the collision is

related to the laboratory bombarding energy Ea by

Ec.m. = Ea
mA

ma + mA

(B.1)

By evaluating the components of velocity parallel with and perpendicular to the

beam direction is it also possible to derive the expression relating the angle between



B.1 Laboratory to Centre of Mass coordinate system Convertions 110

Fig. B.1 Diagram showing the kinematics of a reaction in the laboratory frame and
the centre-of-mass coordinate system. The location of the centre of mass is labelled
c. Figure taken from reference [2].

the emitted particle and the beam axis in the laboratory and centre of mass frames

as

cosθ = γ + cosθ′
√

1 + γ2 + 2γcosθ′ (B.2)

where

γ = vc

v′
b

=
√

mambEa

mB(mb + mB)Q + mB(MB + mb − ma)Ea

. (B.3)

where θ is the lab angle of the scattered particle, θ′ is the centre of mass angle,

Q = (ma + mA − mb − mB)c2, ma, mb, mB and mA are the particle masses and Ea

is the laboratory bombarding energy. For a full derivation of these formulae see

Iliadis [2] pages 593 to 597.
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B.2 Rutherford Cross Section

In order to calculate the theoretical Rutherford scattering cross section the following

equation is used [2].

[
dσ(E)

dΩ

]Ruth

θ

= 1.296
(

ZpZt

E

)2 1
sin4(θ/2) (B.4)

Here energy, E, is in units of MeV, Zp is the atomic number of the projectile, Zt is the

atomic number of the target and θ is the scattering angle of the scattered particle in

the lab frame. This expression gives the cross section in units of mb/sr [2].

B.3 Energy Loss of a Charged Particle

The classical Bethe formula describes the specific energy loss of a charged particle in

a medium as:

−dE

dx
= 4πe2z2

m0v2 NB (B.5)

where

B = Z
[
ln
(

2m0v2

I

)
− ln

(
1 − v2

c2

)
− v2

c2

]
. (B.6)

Where e is the electronic charge, m0 is the electron rest mass, z is the charge

of the incident particle, v is the velocity of the incident particle, N is the number

density of target atoms, Z is the atomic number of the absorber atoms, I is the

average excitation and ionisation potential of the absorber. Note Eqn. B.5 is not in

SI units. For non-relativistic incident particles the second two terms in Equation B.6

are insignificant. Energy loss of a particle in a material is therefore dependant on

the charge of the particle and is inversely proportional to its energy [37].
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