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Abstract
This thesis focuses on the statistical analysis of Chromatin immunoprecipitation

sequencing (ChIP-Seq) data produced by Next Generation Sequencing (NGS). ChIP-Seq

is a method to investigate interactions between protein and DNA. Specifically, the method

aims to identify the binding sites of a particular protein of interest, such as a transcription

factor, in the genome. In the context of cancer research, this information is important

to check whether, for example, a particular transcription factor can be considered as a

therapeutic target.

The sequence data produced by ChIP-Seq experiment are in the form of mapped short

sequences, which are called reads. The reads are counted at each single genomic position,

and the read counts are the data to be analysed. There are many problems related to the

analysis of ChIP-Seq data, and in this research we focus on three of them.

First, in the analysis of ChIP-Seq data, the genome is not analysed in its entirety; instead

the intensity of read counts is estimated locally. Estimating the intensity of read counts

usually involves dividing the genome into small regions (windows). If the window size

is small, the noise level (low read counts) would dominate and many empty windows

would be observed. If the window size is large, the windows would have many small read

counts, which would smooth out some important features. The need exists for an approach

that enables researchers to choose an appropriate window size. To address this problem,

an approach was developed to optimise the window size. The approach optimises the

window size based on histogram construction. Note, the developed methodology is

published in [46].

Second, different studies of ChIP-Seq can target different transcription factors and then

give different conclusions, which is expected. However, they are all ChIP-Seq datasets

and many of them are performed on the same genome, for example the human genome.

So is there a pattern for the distribution of the counts? If the answer is yes, is the pattern
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common in all ChIP-Seq data? Answering this question can help in better understanding

the biology behind this experiment. We try to answer this question by investigating

RUNX1/ETO ChIP-Seq data. We try to develop a statistical model that is able to describe

the data. We employ some observed features in ChIP-Seq data to improve the performance

of the model. Although we obtained a model that is able to describe the RUNX1/ETO

data, the model does not provide a good statistical fit to the data.

Third, it is biologically important to know what changes (if any) occur at the binding sites

under some biological conditions, for example in knock-out experiments. Changes in the

binding sites can be either in the location of the sites or in the characteristics of the sites

(for example, the density of the read counts), or sometimes both. Current approaches for

differential binding sites analysis suffer from major drawbacks. First, unclear underlying

models as a result of dependencies between methods used, for example peak finding and

testing methods. Second, lack of accurate control of type-I error. Hence there is a need

for approach(es) to address these drawbacks. To address this problem, we developed three

statistical tests that are able to detect significantly differential regions between two ChIP-

Seq datasets. The tests are evaluated and compared to some current methodologies by

using simulated and real ChIP-Seq datasets. The proposed tests exhibit more power as

well as accuracy compared to current methodologies.
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Chapter 1

Introduction

In this chapter, we introduce the basic biological background that is relevant to our

research. We highlight some biological issues that motivate the work in this thesis. The

objectives of this research are also stated. We give a brief summary of our achievements.

Finally, the structure of the remaining parts of this thesis is outlined.

1.1 Background

Genome

The genome consists of deoxyribonucleic acid (DNA), which carries the genetic

information of an organism [47]. DNA is a chain (sequence) consisting of four

nucleotides, which are adenine (A), thymine (T), guanine (G) and cytosine (C) bases,

which are attached to a sugar phosphate. This chain of DNA constructs a DNA strand

and the DNA strands build what is called a chromosome [42]. The human genome has

24 chromosomes (including the sex chromosomes X and Y) whereas other organisms

have different numbers, for example the mouse genome has 21 chromosomes. Each

chromosome normally has two copies of DNA and each copy has two strands of DNA
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sequence. In normal DNA, the bases in the two strands are paired where A is paired with

T and C with G [47]. For instance, if TACATCGG is a DNA sequence in one strand then

the DNA sequence in the same location in the other strand is ATGTAGCC. The human

genome is about three billion base pairs long [42] (other organisms vary).

Transcription factors

Many biological processes are related to DNA, one of which is the transcription of many

parts of the DNA into RNA and then into proteins. Proteins (or transcription factors, TF)

are type of genes that perform a specific function , for example maintaining structures,

generating movements or other genes’ activities [47, 28]. A TF binds to DNA via a quite

complicated biological process and the DNA defines where the TF begins and ends [47].

The beginning and ending of TFs are known as TF binding sites.

Next-generation Sequencing

Next-generation sequencing (NGS) technologies have transformed genetic research into

a new era. NGS helps to investigate and understand the human genetics (and other

organisms’ genetics) from various aspects. For instance, understanding the relationships

between some TFs and different types of diseases, as many studies have shown that

there are associations between TFs and certain diseases [66, 45, 19, 49]. The recent

development in NGS technologies has accelerated the research process in genetics.

There are different NGS technologies. For instance, Illumina (or Solexa), SOLiD and

454 systems. All technologies produce the same data but they differ in some details.

For example, The length of the fragment, run time, quality and cost. The principle

behind NGS is to isolate and chop DNA (or RNA) into short fragments to construct a

genomic library. Then, these fragments are sequenced and mapped to a reference genome

according to their sequences, which are then called reads (a genetic map can be described



Chapter 1. Introduction 3

as a representation of the gene position on the chromosome [51]). Figure 1.1 shows the

work flow of NGS technologies.

In the mapping step, the reads are signed with either “+” or “–”, referring to which strand

they come from. This is illustrated as follows [30]: Let TTCATCG be a DNA sequence

that needs to be mapped to a reference genome. Mapping software will look for the

same DNA sequence in the reference genome. If the software finds the sequence, then

the sequence will be mapped with a “+” sign. On the other hand, if the software does

not find matching sequence in the reference genome, it will consider the complementary

sequence (which is the paired in the other strand) for TTCATCG, which is AAGTAGC,

and search for a matching sequence in the reference genome. If a match is found for the

complementary sequence, then it will be mapped with a “–” sign. That is, there are two

strands in the genome, and the mapping is done by using one reference, which can be

considered as one strand. A naive way can be to consider two references, so each strand

has a reference. However, this would be time consuming. Hence, it is more efficient to

check the complementary sequence for those that do not match directly. By completing

the mapping of the sequenced DNA (Figure 1.1), we end up with quantitative data, which

is called read counts. The reads are counted at each position.

[53] argued that although NGS has shorter reads compared to the old generation (which

is Sanger sequencing), it has high coverage (sample size), which improves its accuracy.

This argument was raised as a result of mapping accuracy issues. Since NGS technologies

appeared, the process of mapping short reads with enough accuracy has been a big

concern [65, 16]. However, NGS technologies have been developed and have become

able to produce longer reads. Moreover, many mapping programmes provide a filtering

parameter that filters reads that can be mapped to many positions in the genome, and

hence high-quality data are produced [62]. However, the filtering parameter needs to be

chosen by the user, and to obtain data with an acceptable quality it is recommended to

refer to the data producer [62].
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Figure 1.1: NGS work flow, which consists of five main steps. First, isolating target DNA

sites. Second, to fragment the isolated DNA, and third, to construct a genomic library

using the fragments. Fourth, perform sequencing of the fragments. The sequencing can

be done by using the different available NGS methods. Finally, the sequenced fragments

are mapped to a reference genome and the mapped sequences are called reads. The

mapping can be done by using different methods, which can also involve a filtering step.

By completing step five, we end up with a quantitative dataset that is read count per

position across the genome. Note that for “+” stranded reads the starting position is

counted, whereas for “–” stranded reads the ending position is counted (because the “–”

stranded reads are mapped to their complementary sequences in the reference genome).
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ChIP-Seq experiment

The chromatin immunoprecipitation sequencing (ChIP-Seq) experiment is one of the

methodologies that are based on NGS. ChIP-Seq experiments are used to sequence

fragments of target DNA sites bound by a particular TF in living cells [29, 38, 26]. ChIP-

Seq is a direct way to identify TF binding sites in the whole genome [18, 57, 64, 39].

ChIP-Seq experiments are used to study the association of targeted DNA and TFs across

the genome [29]. ChIP-Seq experiments can be done in various protocols for different

targets of association studies. For instance, a knock-out experiment in which two genetic

samples are produced where in one of them a target TF is kept silent (knocked-out or

inactive). This type of experiment aims to study the effect of a specific TF on the genome

regulation.

1.2 Motivation

In genomic studies, for example binding site analysis where the whole genome is

considered, the genome is not analysed in its entirety. For instance, in binding site

analysis, researchers are interested in specific regions across the genome. Moreover, in

ChIP-Seq experiments, most of the genome regions have low read counts because the

experiment targets and chips specific regions. In such genomic studies, the intensities of

the read counts across the genome need be estimated. Usually, estimating the intensity

involves dividing the genome into small regions (windows) in which the regions of

interest are not missed in the analysis. Choosing the window size is critical [24]. If the

window size is small, the noise level (low read counts) would dominate and many empty

windows would be observed. If the window size is large, the windows would have many

small read counts, which would smooth out important features. In the context of copy

number variation (CNV) analysis, [70, 48, 72] have proposed approaches that optimise

the window size based on some underlying assumptions. These approaches are limited
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and rely on certain assumptions. On the other hand, in many studies researchers chose

the window size arbitrarily. There is no approach that enables researches to optimise

the window size for NGS data in general and under any context. The need exists for an

approach that is able to optimise the window size.

As mentioned, NGS technologies accelerate the research process in genetics. This leads

to a large number of genetic datasets for different purposes, and many of these datasets

are publicly available. More specific for ChIP-Seq experiments, Encyclopaedia of DNA

Elements (ENCODE) [12] is a project that provides ChIP-Seq data for public researchers.

ChIP-Seq data are counts that are used to investigate the association between DNA

and TFs across the genome. Different studies target different TFs and give different

conclusions, which is expected. However, they are all ChIP-Seq datasets and many of

them are performed on the same genome, for example the human genome. Hence, they

are count data and targeted regions of the genome are chopped. A question can be asked,

is there a model for the distribution of the counts in given ChIP-Seq data? Furthermore , if

there was a pattern for the counts in a given ChIP-Seq data , would it be a common pattern

for all ChIP-Seq data? Hence, investigating the pattern of ChIP-seq data is needed.

Analysis of TF binding sites by using ChIP-Seq experiments is one of the contexts of

NGS. It is biologically important to know the changes in the binding sites under some

biological conditions. Specifically, in knock-out experiments there are two paired ChIP-

Seq datasets in which a targeted TF is knocked out in one of them. Under these two

biological conditions, the goal is to determine the effect of that TF on other genes or TFs

by analysing their binding sites across the genome. Changes in the binding sites can be in

either the location of the sites in the genome, the characteristics of the sites (for example

the density of the read counts) or both. Some approaches have been proposed to analyse

the binding sites. However, the current approaches suffer from some major drawbacks.

First, the underlying model and assumptions are not very clear. Second, there is a lack

of accurate control of type-I error. Hence, there is a need for an approach that is clear in
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terms of underlying assumptions as well as exhibiting good control for the false positive

rate.

1.3 Objective

There are many problems related to NGS data. In this thesis, we will focus on the three

motivating problems in Section 1.2, which can be summarised as follows.

• Developing an approach that enables researchers to optimise window size in NGS

datasets when optimising the variability of the genome is needed.

• Investigating the pattern of ChIP-Seq counts and whether there is a common pattern

in ChIP-Seq datasets.

• Developing an approach that is able to detect significant differential binding sites

accurately based on a clear underlying model and assumptions.

In this research, we will provide statistical methodologies that will address these problems

as follows:

1.3.1 Optimal window size

From a statistical viewpoint, this problem can be formalised as optimising the bin

size in The histogram of count data, so bin and window have the same concept in

histogram construction. We address this problem by developing a novel approach based

on histogram construction to optimise the window size of NGS datasets. The approach

uses the raw count data to optimise the window size. That means that the approach enables

researches to find an optimal window size before starting to analyse the data. This will

save time and lead to meaningful analysis. The approach will be introduced and discussed

in Chapter 2.
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1.3.2 Pattern of ChIP-Seq counts

This problem is addressed by investigating the distribution of the counts in RUNX1/ETO

ChIP-Seq data. In statistical terms, we try to find a statistical model that is able to describe

the data. There are some clear features in ChIP-Seq data. For instance, non-stationarity

and lengthy gaps of zero counts. We tried several statistical models and we employed

some of the data features in the models. Although we obtained a model that is able to

describe the RUNX1/ETO data, the model does not provide a good statistical fit to the

data. We give some recommendations based on our findings, which might help in further

investigation. This will be presented and discussed in Chapter 3.

1.3.3 Detecting differentially binding sites

This problem can be viewed from a statistical perspective as a task of detecting

statistically significant differences between two paired samples where the samples here

are the windows. We address this problem by developing three statistical tests that

are able to detect significantly different windows. The detected windows can refer to

differences in binding sites of TFs or to differences in genome regulation. The proposed

tests detect only significant differences between two paired samples wherever they exist

across the genome. We evaluate the tests by using simulated and real ChIP-Seq datasets.

The tests show good control of the false positive rate. The tests will be presented in

Chapter 5. Furthermore, we conduct a comparison study between our tests and some

current methodologies for differential binding site analysis. We find that our proposed

tests exhibit more power and accuracy compared to current methodologies.
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1.4 Data

1.4.1 RUNX1/ETO

RUNX1/ETO data is ChIP-Seq data obtained from a knock-out experiment for a target

TF named RUNX1/ETO. RUNX1/ETO is associated with acute myeloid leukaemia.

DNA samples were taken from a patient diagnosed with acute myeloid leukaemia. The

sequencing of the data was done by NGS technology Illumina. The reads length is 36 bp.

A filtering process was considered in the mapping step as well as removal of duplicate

reads. More biological details are given in [37].

The data are two samples of read counts, where in one of them RUNX1 is knocked

out; call it test, and the other one control. The samples are structured in three columns

chromosome, position and read counts. Both samples contain 24 chromosomes. The

sample sizes are different; test contains 26,122,739 reads whereas control has 24,399,638

reads. We provide an exploratory data analysis of RUNX1/ETO in Section 2.3.

1.4.2 ENCODE and simulation data

In this research, we use many ChIP-Seq datasets that are publicly available from the

ENCODE project [12]. We also simulate many datasets, including most ChIP-Seq dataset

characteristics, as well as satisfying some required assumptions of the models under

consideration. Both types of dataset are used for the purpose of evaluation. We use

them to evaluate the performance of our proposed test and some current methodologies in

terms of the false positive rate and power.
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1.5 Outline of thesis

The rest of this thesis is constructed as follows: In Chapter 2, we develop new methods

to optimise the window size for ChIP-Seq data; this is one of the main steps. We also

statistically explore and describe the RUNX1/ETO data. In Chapter 3, we try to model

the RUNX1/ETO data based on its features. In Chapter 4, we consider and evaluate

some of the current methodologies for differential binding site analysis. In Chapter 5, we

introduce and evaluate our proposed methods with our underlying assumption and model.

In Chapter 6, a comparison study is constructed between our methods and some of the

previously proposed methods. In Chapter 7, we summarise our findings and show the

final conclusion. In the same chapter, we also provide some suggestions for further work.
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Chapter 2

Optimal window size and exploratory

data analysis of RUNX1/ETO

2.1 Introduction

In this chapter, we introduce a procedure for choosing an optimal window size for ChIP-

Seq data, which is a critical step in the analysis of Chip-Seq data (or other genetics data).

We also give a descriptive statistic for the RUNX1/ETO ChIP-Seq dataset.

Preparing data for analysis

The genome is not analysed in its entirety as most of the genome regions are not of

interest. In addition, most of the genome regions have low read counts, and hence

variability of the read counts would not be observed properly . A natural question to

ask is whether the window size is important, and if so how should it be selected?
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2.2 Optimal window size

The problem of estimating an optimal window size is not new. Many studies have

considered the problem in the context of NGS data and they concluded that an optimal

window size is critical in inferring any pattern from data [24].

An optimal window size for the read counts of genetic data can be obtained by a method

based on histogram construction [46]. That is, a histogram is usually constructed using

windows of a common size, say h. [50] shows how to obtain the optimal window size

in a histogram by considering the histogram function. The histogram function, f(x), can

be defined as follows: Let x1, . . . , xn be the observed position of reads in the genome,

assumed to be a random sample from a density f(x), where n is the sample size. The

density f(x) represents the underlying true density of reads. Here we consider the issue

of windowing the reads into equally spaced windows. Let Ii(x) be the i-th genomic

window, and ti(x) be the left-hand point of Ii(x), where i = 1, 2, . . . ,m. We denote

h = ti+1 − ti to be the window size.

Let vi(x) be the number of reads falling in the genomic window Ii(x). vi(x) has Binomial

distribution with parameters n and pi(x), Bin(n, pi(x)), where pi(x) is the probability

of reads in the i-th window, Ii(x). [50] assumed that f(x) is a continuous and regular

probability density function, and can be estimated by

f̂(x) =
v(x)

nh
. (2.1)

An optimal window size can be defined by that which minimises the integrated mean

square error [50],

IMSE =

∫
E
{
f̂(x)− f(x)

}2

dx.
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Through some approximations based on the derivative f ′(x) [50] obtained the following

approximation:

IMSE =
1

nh
+
h2

12

∫ ∞
−∞

f ′(x)2dx+O

(
1

n
+ h3

)
. (2.2)

By minimising the first two terms in Equation (2.2), we obtain an approximate optimal

window size

h∗ =

{
6

n
∫
f ′(x)2dx

}1/3

.

The above procedure by [50] is not applicable to ChIP-Seq data. That is because, first,

the true underlying function f(x) is not available in practice. Second, the function f(x)

would not be continuous as the x is a discrete variable (positions). Hence the derivative

f ′(x) cannot be evaluated. To deal with this issue, we propose to estimate the optimal

window size empirically using cross-validation (CV) and, second, Akaike’s information

criterion (AIC). Both CV and AIC are used to evaluate model selection [10].

To proceed, instead of assuming f(x) to be a regular density function, [63] defined f(x)

as a step function

f(x) = ci, x ∈ Ii(x), (2.3)

over a given window Ii(x) where ci is a standardised reads in that window. The likelihood

function is given by

L(c) =
n∏
j=1

f̂(Xj) =
m∏
i=1

c
νi(x)
i . (2.4)

Under c ≥ 0 and
∑

i ci = 1/h, we the maximum likelihood estimate as histogram

ci =
νi(x)

nh
, (2.5)

where it is just the standardised reads in the i-th window.
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2.2.1 Cross-validation

Cross-validation is a general statistical method that can be used for various purposes, such

as re-sampling [56]. Although there are different types of cross-validation, they generally

share a common target, which is improving the accuracy of the suggested model(s) [44].

Leave-one-out cross-validation is one type and we consider it in estimating the optimal

window size based on the log of the likelihood in Equation (2.4). The log of the likelihood

in Equation (2.4) can be written as

logL(c) = log

{
m∏
i=1

c
νi(x)
i

}
=

m∑
i=1

νi(x)∑
s=1

log ci

=
m∑
i=1

νi(x)∑
s=1

log
(
νi(x)
nh

) (2.6)

Where, as previously defined, νi(x) is the number of reads in window i.

For a given window size, a leave-one-out cross-validated (CV) log-likelihood can be

calculated as

logLCV (c) =
m∑
i=1

νi(x)∑
s=1

log

(
ν

(−s)
i (x)

(n− 1)h

)
(2.7)

where (−s) denotes that the s-th read in window i is not considered in the calculation. We

aim to identify the optimal window size that maximizes the CV log-likelihood in Equation

(2.7).

2.2.2 Akaike’s information criterion

Akaike’s information criterion (AIC) was introduced by [3]. AIC is based on the idea

of comparing suggested models by comparing the likelihood value of the models and

penalising them on their number of the parameters [2, 27]. For more than one suggested
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model for a specific problem, AIC can be evaluated as:

AIC = − log(likelihood value of a model) + (number of parameters in a model).

(2.8)

From the suggested models, the model with the minimum AIC value can be described as

the best model [3].

For a given window size, the AIC of the log-likelihood, Equation (2.6), can be calculated

as follows.

AIC = m−
m∑
i=1

log

(
vi(x)

nh

)
(2.9)

where the optimal window size is estimated as the one that minimises the AIC above.

Thus, obtaining the optimal window size for a given ChIP-Seq data or any counts data can

be done in a simple process as follows: First, we consider some suggested window sizes.

Second, for each of the suggested window sizes we apply either CV or AIC, or both of

Them, based on the histogram function, as shown in Equations (2.7) and (2.9). Finally,

the window size that is associated with maximum CV log-likelihood value or minimum

AIC value can be considered as the optimal window size.

2.3 Exploratory data analysis of RUNX1/ETO

Here, we consider in more detail the project data that was introduced above. We start

with a descriptive analysis. Then, we move deep into the data and try to understand its

characteristics. Finally, we use some features of the data and try to find a statistical model

that can work with the data.
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2.3.1 Descriptive statistics

The data are two ChIP-Seq samples from a knock out experiment. We named the samples

test and control, where in test RUNX1 is knocked out. The length of the reads is 36 bp.

The sample sizes are different; the test sample has 26,122,739 reads whereas the control

has 24,399,638 reads. Both samples contain reads covering all 24 chromosomes. Table

2.1 shows the actual length in base pairs, minimum observed base pairs, and sample mean

of observed reads of each chromosome. From the table, it can be seen that the sample

means of the reads in the chromosomes are quite low and do not vary. Although the

actual sizes of the chromosomes are different, the observed sample means do not show

big differences. Moreover, it can be noticed that all chromosomes in the test sample have

slightly larger sample means compared to those in the the control sample.

In Table 2.2, we present the first sight of read counts of chromosome 1. From the table

it can be noticed that there are many zero counts in both samples. In other words, many

base pairs have not been observed in the genome, and this is true in all chromosomes (this

can be spotted in Table 2.1 from the minimum observed positions of the reads column).

By checking the proportion of zero counts, it is found that more than 99% of the counts

are zeros in both samples. It is expected to observe a large proportion of zeros in a ChIP-

Seq experiment. In ChIP-Seq experiments, the whole genome is not sampled, but only

selectively targeted regions. These selected regions are quite few compared to the whole

genome, hence most of the genome’s positions are expected to have zero counts as they

are not sampled.

Table 2.3 shows descriptive statistics for the counts of the whole genome. From the table,

it can be seen that the sample means are affected by the large proportion of zero counts.

The sample means are 0.0093 for test and 0.0086 for control; note the unit is number of

reads per position. Although the test sample has larger sample mean, it has a slightly

larger proportion of zero counts compared to the control sample. As these zero counts
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Actual

length

Test sample Control sample

Chr Min Mean Min Mean

1 249,250,621 44,564 0.0084 41,785 0.0078

2 243,199,373 790 0.0088 200 0.0082

3 198,022,430 36,943 0.0109 35,782 0.0101

4 191,154,276 45 0.0100 230 0.0095

5 180,915,260 64,925 0.0087 64,921 0.0082

6 171,115,067 92,794 0.0097 67,540 0.0090

7 159,138,663 132,549 0.0091 54,400 0.0085

8 146,364,022 11,249 0.0102 11,239 0.0096

9 141,213,431 199 0.0062 274 0.0058

10 135,534,747 85,234 0.0129 53,567 0.0122

11 135,006,516 113,266 0.0092 128,596 0.0085

12 133,851,895 17,239 0.0092 17,335 0.0085

13 115,169,878 1 7,918,673 0.0068 17,920,244 0.0065

14 107,349,549 18,070,203 0.0074 18,070,186 0.0069

15 102,531,392 18,260,967 0.0061 18,260,047 0.0056

16 90,354,753 4,375 0.0061 1,042 0.0057

17 81,195,210 112 0.0090 355 0.0085

18 78,077,248 210 0.0108 691 0.0102

19 59,128,983 42,116 0.0071 41,950 0.0068

20 63,025,520 8,268 0.0083 8,049 0.0078

21 48,129,895 9,720,061 0.0060 9,720,033 0.0058

22 51,304,566 14,434,683 0.0048 14,432,757 0.0047

X 155,270,560 2,709,713 0.0043 2,709,535 0.0039

Y 59,373,566 2,716,169 0.0001 2,746,623 0.0001

Table 2.1: Summary of observed reads in each chromosome from each of the samples.

The columns in order represent the chromosome number, the actual chromosome lengths

in base pair units and the minimum observed positions of the reads and sample means in

reads per base pair unit for the test and control samples. To calculate the sample mean,

we divide the total number of reads of the chromosomes by the actual sizes.
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Test sample Control sample

Position Reads count Reads count

0 0 0

1 0 0

2 0 0
...

...
...

41784 0 0

41785 0 1

41786 0 0
...

...
...

44563 0 0

44564 1 0

44565 0 0
...

...
...

81318 0 0

81319 1 1

81320 0 0
...

...
...

Table 2.2: Chromosome 1 Control and Test samples, sight of the read counts. It can be

seen that most of the positions show no changes between the two samples. In addition,

most of the positions in both samples either have no or low read counts.
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show more than 99% of the positions, the first three quartiles will be zero and that is

shown in the table. Moreover, in the table it can be noticed that the maximum read counts

are quite large. That means that there are some enriched regions.

Sample Min Q1st Median Mean Q3rd Max

Test 0 0 0 0.0093 0 236

Control 0 0 0 0.0087 0 197

Table 2.3: Descriptive statistics for the number of reads at each position in the whole

genome.

In Table 2.4, we show percentages of the observed non-zero counts, which represent less

than 1% of the whole genome. As mentioned, the read counts are generally low in both

samples, and the table confirms that. In the test sample it can be seen about 82% of the

counts are 1 and 2, whereas the same read counts represent 98% of the non-zero counts

in the control. The table shows that test has generally larger percentages for read counts

higher than 1.

Percentage

read counts test control

1 57.48% 88.46%

2 24.15% 10.37%

3 10.91% 1.06%

4 4.59% 0.1%

5 1.8% 0.01%

≥ 6 1% < 0.01%

Table 2.4: Percentages of non-zero counts, which represent less than 1% of the whole

genome in test and control samples.
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2.3.2 Optimal window size

In Figure 2.1, we show histograms of read counts of chromosome 1 in the test and control

samples. By looking at the plots, the first thing that can be spotted is the empty region

in the middle of each histogram. This region of chromosome is called the centromere. It

exists in all chromosomes. The centromere region is the part where the two strands of a

chromosome meet. The centromere region is hard to sequence, and hence it has not been

fully understood. Thus, no reads are mapped to this region, and then it appears empty.

Note, the location of the centromere differs from one chromosome to other and is not

necessarily exactly in the middle.

Furthermore, from Figure 2.1 the large number of read counts around the centromere in

both samples can be observed. Biologically, it is known that regions near to centromere

are regions of multiple repetitive reads. That means that it is likely that many reads can

be mapped to these regions. However, the filtering process reduces the likelihood of

mapping error. To produce the histograms in Figure 2.1, we used a window size of 10 bp.

This window size is chosen for visualising purposes; an optimal window size is discussed

in Section 2.3.2. In addition, it can be seen that the test sample has larger read counts

compared to the control, and this confirms the percentages in Table 2.4.

As mentioned, ChIP-Seq data are not studied and analysed directly. We need to divide the

data into windows, then analyse them. To obtain an optimal window size, we employed

the histogram-based method. which was described in Section 2.2. By finding the optimal

window size in a histogram, we actually find the optimal window size for the data. That

is, by optimising the window size we obtain the optimal visualisation for the variability

in the data. Hence, a window size that shows the best variability of the data is optimal.

To optimise the window size, each of the samples is individually considered. In addition,

within a sample, each of the chromosomes is considered and optimised separately.

Moreover, we mentioned that the centromere region has zero counts only, so we decided
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Figure 2.1: Chromosome 1 from the test (top) and control (bottom) samples.
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to exclude this region from all chromosomes. Hence, each chromosome is divided into

two parts, the first and second parts, which refer to the parts of the chromosome before

and after centromere, respectively. For each part, we have an optimal window size. The

aim is to find a common optimal window size for all chromosomes in both samples.

From the given different window sizes, we used cross-validation and AIC, as shown in

Equations (2.7) and (2.8), with the histogram function in Equation (2.1) to choose an

optimal size. We suggested sizes from 1 bp to 1 Kbp per window. Hence, for each of

the sizes, the log-likelihood functions were calculated and then validated. The optimal

window size is the one that shows maximum cross-validated log-likelihood (CV) value

or minimum AIC value. For the first part of chromosome 1 (before the centromere),

we show the results in Figure 2.2 by using LO-CV and AIC for the test and the control

samples. Note that we considered the left-hand end of the reads in the windowing process.

One could question what would happen if we considered the right-end or the middle,

would this have an effect? We can say that it would not a have significant impact on the

optimisation process because considering different ends can be considered as shifting all

the windows by several base pairs, and this shifting would not have a significant effect,

especially when the window size is much larger than the reads’ length.

In Figure 2.2 it can be seen that panels (a) and (b) show the results of CV for the test and

the control samples, respectively. In the same figure, panels (c) and (d) show the results

by using AIC for the test and control samples, respectively. From (a) and (b) it can be

seen that LO-CV shows different solutions. That is, for the test sample, the maximum

cross-validated log-likelihood value falls in the interval between 200 and 300 bp sizes,

while in the control sample it falls between 300 and 400 bp sizes. On the other hand,

both samples show the same interval, which includes the minimum AIC values, and this

interval is from 200 to 250 bp. By zooming in on the AIC interval from both samples it

can be seen that the AIC values are fluctuating within quite a small range as the window

size changes. Hence, it can be said that any window sizes in the interval from 200 bp
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to 250 bp can be considered optimal in both samples for the first part of chromosome 1.

Furthermore, we optimised the window size for the second part of chromosome 1 as well

as for all other chromosomes and found that the optimal window sizes fall into a common

interval from 200 bp to 250 bp per window.

From a biological point of view, genomic variations can be detected within a genomic

window of size 200 bp or less. Hence, from the optimal interval of window sizes, a

window size of 200 bp is chosen to be the optimal window size for the two samples in all

chromosomes. In Figure 2.3 we present the first 1Mbp of chromosome 1 in the test and

control samples by using the optimal window size.

From Figure 2.3 it can be clearly seen that most of the windows have zero counts. In

addition, in regions which are dense in reads, the variabilities between the read counts in

the windows can be clearly seen by using the optimal window size. Moreover, in regions

that are dense in reads, we can see that the test sample has a higher level of read counts

compared to the control sample.

As mentioned, the optimal window size reflects the optimal window size. That is, the

optimal window size represents a single point for each window, and these points represent

the read counts in the optimal representation. For the optimal window size, we have

windows of width 200 bp. In other words, each window is of width 200 bp. These

windows are optimal to investigate the differences between the two samples as both

samples have the same optimal size. In Figure 2.4, we show a window from chromosome

1 by using the optimal window size. In the figure we show the counts of both samples,

test and control. As mentioned, by using such a window we want to investigate whether

or not there is a significant difference between the test’s and control’s read counts.
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Figure 2.2: Cross-validated log-likelihood and AIC values by using the histogram

function with different window sizes. Panels (a) and (b) show cross-validated log-

likelihood CV (vertical axis) against window sizes (horizontal axis) of the first part of

chromosome 1 from the test and the control samples, respectively. Vertical red lines

indicate the window sizes associated with maximum CV values. Panels (c) and (d) show

AIC (vertical axis) against window sizes (horizontal axis) of the first part of chromosome

1 from the test and the control samples, respectively. Vertical red lines indicate the

window sizes associated with minimum AIC values.
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Figure 2.3: Chromosome 1 from the test (top) and the control (bottom) samples, the first 1

Mbp by using the optimal window size, which is 200 bp per window. Note, it can be seen

that there are many consecutive empty windows; these are the regions where no reads are

observed, hence they show zero read counts.
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Figure 2.4: Read counts of test and control in a single window from chromosome 1 by

using the optimal window size, which is 200 bp.
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2.3.3 Characteristics of the data

Correlation

In the data, it can be seen that there is a weak correlation between the read counts. In

Figure 2.5, we show the auto correlation function (acf ) for the first part of chromosome

1 from the test sample (the control sample shows similar behaviour). From the figure

it can be seen that the test sample shows a weak correlation between the read counts

compared. It is generally known that genetic data are serially correlated, but the amount

of correlation varies. We notice that the read counts show weak correlation if we consider

the whole test sample (the whole genome). On the other hand, by considering small

regions of the genome, the read counts show little correlation.

Although the read counts show weak correlation globally, they show no correlation locally

within small regions. That is, the read counts within windows of sizes 200 bp show no

correlation. For instance, the read counts in Figure 2.5 appear uncorrelated in both the test

and the control samples. One can argue that the read counts show no correlation within

small regions because there are not enough read counts, i.e, the sample size is small so

the correlation between the counts is not significant. We can say that if the interest is

only in the small regions, then considering the whole genome with its all features is not

necessary.

Zero counts

It was mentioned that most of the read counts in the data are zeros at more than 99%. We

mean by zero counts the unobserved base pairs so we observe zero counts in these base

pairs. Hence, the zero counts are worth further investigation. As there are few non-zero

counts, there are many consecutive zero counts. In Table 2.5, we show summary statistics

of the observed lengths of consecutive zero counts. In addition, in Figure 2.6, we show
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Figure 2.5: The top panel shows the acf between the read counts of the first part of

chromosome 1 from the test sample. Note, no windowing is used for the reads (window

size 1 bp). The lower panel shows the acf between read counts of a window from

chromosome 1, which is shown in Figure 2.4, for the test (left) and the control (right)

samples. Note, the vertical axis in all plots ranges from 0 to 1, and here we show the

lower part of it where the correlation exists.
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the observed distribution of lengths of consecutive zero counts. Note that the table and

the figure are produced by using the first part of chromosome 1, and in total there are

616, 638 lengths of consecutive zeros.

Min. 1st Qu. Median Mean 3st Qu. Max.

0 17 49 97.56 118 184900

Table 2.5: Summary statistics of observed lengths of consecutive zero counts in the first

part of chromosome 1.

From Table 2.5, it can be seen that there are quite long gaps of zeros between non-zero

counts. In addition, it can be noticed that the difference between the median and the mean

is about 50, and this is a large difference. On the other hand, the difference between the

median and the third quartile is not as large as that between the mean and the median. In

general, the lengths vary and 75% of them are of lengths less than 120 zeros. In Figure

2.6, we can see that there are some large lengths, but they are not many From the figure in

(c) and (d), it can be seen that the lengths have a clear pattern, more clearly in (d) where

more than 75% of the lengths are represented.

In Figure 2.6 (d), we can see three clear features. First, an exponential decay from 0

until around 20 zeros. Second, a bump from 30 to around 70 zeros, and third, a linear

component after length 70 zeros. These components suggest that the lengths of the zeros

might not follow a single distribution. As a result, the read counts might not follow a

single distribution either. If the read counts followed a Poisson distribution, for instance,

then the lengths of consecutive zeros would follow a geometric distribution, hence the

decay in Figure 2.6 (d) would be linear throughout. In Section 3.3, we will see how these

features can be useful in finding a statistical model for the read counts.
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Figure 2.6: Distribution of lengths of consecutive zero counts in the first part of

chromosome 1. (a) shows raw distribution for consecutive zeros lengths. (b) represents

the frequencies in log scale. (c) shows lengths from 0 to 1000 consecutive zeros with

frequencies in log scale, and (d) shows lengths from 0 to 200 consecutive zeros. Note, we

mean by zero counts the unobserved base pairs so we observe zero counts in these base

pairs.
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Chapter 3

Modelling the distribution of ChIP-Seq

data

3.1 Introduction

In this section, we look for a statistical model that can be fitted to the read counts. For the

read counts, we seek a statistical model that can be used to achieve the objective of the

study, which is to detect regions in the genome that are significantly different.

A model that can be used to describe the read counts is Poisson Distribution. That is, the

Poisson model describes the number of events at a particular location. The number of

events is a non-negative and discrete variable. Hence, the read counts can be considered

as the number of events, and they are associated with positions, which can be considered

as the location. We noticed in RUNX1/ETO, for example, that most of the regions across

the genome have low read counts (or no reads at all). Although we observed a few regions

with quite large read counts, these regions represent a very small fraction of the rest of

the genome (see Table 2.4). This means that the read counts are quite similar across the

genome and the average read count per base pair is low as well. Hence, it can be said that
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there is no difference between the mean and the variance of the data. Thus, the Poisson

distribution can be considered to model the read counts.

Although the filtering process is considered in the read-mapping step, some mis-mapped

reads might exist. Assuming a random model for the read counts like Poisson can handle

. That is, the mis-mapped reads would be considered as a part of the randomness of the

model under consideration. Furthermore, the mis-mapped reads and non-zero reads make

up a very small fraction compared to the zeros in ChIP-Seq data (see Table 2.4).

We observed in the previous chapter that many zeros are observed in RUNX1/ETO data

and in any ChIP-Seq data in general. In many of the ChIP-Seq data studies most of these

zeros are thrown away. However, this common feature is an important part of the nature

of the ChIP-Seq data. Hence considering this common and huge part of the data might

lead to find a common model that can generally describe ChIP-Seq data. Thus, the aim is

to find a model that can handle this common and natural feature of ChIP-Seq data.

It was seen that the read counts are weakly correlated. Hence, it can be said that the

read counts are not independent, which violates a simple Poisson model. Correlation can

exist between variables that are drawn from mixture models [15]. On the other hand,

this correlation can be an issue when a single model is assumed for the whole genome.

However, there is a direction that can be followed to satisfy conditional independence.

That direction is Hidden Markov Models (HMM), which are introduced in the following

section, Section 3.2.

3.2 Hidden Markov Models

It is known that in CHIP-Seq experiments, a few regions of the genome are selectively

targeted, so the zero counts may not be random events. It can be assumed that some of the

zero counts are structural whilst others are stochastic. Given these assumptions, HMM
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can be used to model the read counts. We assume a model with two types of hidden

states. First, a state that produces structural zero counts. Second, states that produce

Poisson random variables. To clarify the idea, let Ct be a hidden state at position t and let

xt be an observed read count at position t (see Figure 3.1).

Figure 3.1: A simple structure of Hidden Markov Models.

HMM provide a property of conditional independence. That is, given the hidden state Ct,

Xt is independent from any other read counts. The property deals with the dependence

issue between the read counts. Markov’s property is held here, which is a hidden state C

at position t that is independent from all states at all previous positions except the hidden

state at position t− 1. This can be shown as follows:

P (Ct|C1:(t−1)) = P (Ct|Ct−1). (3.1)

Let us start with a simple HMM to model the read counts. We assume two hidden states

C = 1 and C = 2, where C = 1 is for structural zero counts, and C = 2 is for a Poisson

model with rate parameter λ, Poi(λ). C = 1 produces only counts, x = 0. C = 2

produces all possible counts from Poi(λ), x = 0, 1, 2, . . .. In term of probabilities, the

model can be formalized as follows:
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P (Xt = x|Ct = 1) =

1 if x = 0

0 otherwise,
(3.2)

P (Xt = x|Ct = 2) = e−λ
λx

x!
, x = 0, 1, 2, . . . and λ > 0. (3.3)

Equations (3.2) and (3.3) are called emission probabilities. The marginal probability

function of X can be written as follows:

P (Xt = x) = P (Ct = 1)× P (Xt = x|Ct = 1) + P (Ct = 2)× P (Xt = x|Ct = 2)

=

P (Ct = 1) + P (Ct = 2)× e−λ if x = 0

P (Ct = 2)× e−λ λx
x!

if x = 1, 2, . . . .

(3.4)

The model requires several parameters, which are:

• probabilities of the hidden states at position 1, u(1) = c(P (C1 = 1), P (C1 = 2)),

where P (C1 = 1) + P (C1 = 2) = 1;

• transition probabilities between the hidden states, γij = P (Ct = j|Ct−1 = i) where

i = 1, 2 and j = 1, 2; note that the transition probabilities are constrained, where

γ11 + γ12 = 1 and γ21 + γ22 = 1;

• rate parameter λ, see Figure 3.2.

By considering the HMM for the read counts, we can obtain the posterior probability

distribution of Ct+1 given the observed read counts x1, x2, . . . , xt. That can be formalised

as follows.

P (Ct+1 = i|x1:T ) =
P (X1:T = x1:T , Ct = i)

P (X1:T = x1:T )
, i = 1, 2; (3.5)
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Figure 3.2: The suggested HMM to model the read counts.

where

P (X1:T = x1:T , Ct = i) = P (Ct = i)P (X1:T = x1:T |Ct = i), (3.6)

P (X1:T = x1:T ) =
2∑
i=1

P (X1:T = x1:T , Ct = i),

and T is the last position. By obtaining the posterior distribution, we obtain a full HMM

for the read counts.

3.2.1 Parameter estimation

There are four parameters that need to be estimated and we seek maximum likelihood

estimates (mle ). In fact, there are seven parameters in the model, but we need to estimate

four owing to the constrains on them. The parameters are the probability of the hidden

state at position t = 1 either P(C1 = 1) or P(C1 = 2), transition probabilities between

the hidden states either γ11 or γ12 and either γ21 or γ22, and the rate parameter λ. The

joint probability function, Equation (3.6), is used to obtain the estimates by maximising

its likelihood function. If the full data are provided x1:T and C1:T where 1 : T are all

possible positions, then the likelihood function L can be written as follows:
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L(.|x1:T , C1:T ) = P (Ct=1)
T∏
t=2

P (Ct|Ct−1)
T∏
t=1

P (xt|Ct).

The log likelihood function, `, can be shown as,

`(.|x1:T , C1:T ) = log (P (Ct=1)) +
T∑
t=2

log (P (Ct|Ct−1)) +
T∑
t=1

log (P (xt|Ct)) . (3.7)

Providing the full data, the above log-likelihood can be written in slightly different

formalisation as follows. Let us define two indicator functions Vi(t) and Wij(t) for

i = 1, 2 and j = 1, 2 as;

Vi(t) =

1 if Ct = i

0 else;

Wij(t) =

1 if Ct−1 = i and Ct = j

0 else.

(3.8)

Then, the log-likelihood function, Equation (3.7), can be rewritten as follows:

`(.|x1:T , C1:T ) =
2∑
i=1

log ui(1)Vi(1)

+
2∑
i=1

2∑
j=1

log γij
T∑
t=2

Wij(t)

+
2∑
i=1

T∑
t=1

logPi(xt)Vi(t);

(3.9)

where ui(1) = P (Ct=1 = i), γij = P (Ct = j|Ct−1 = i), and

Pi(xt) = P (Xt = xt|Ct = i).

As mentioned, Equation (3.9) would be used if the full data were provided. However,

in realty it is hard to provide full data, i.e, full population. What is provided normally

is a sample that is, under ideal conditions, a representation of the population. Hence
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in such cases with HMM, the Baum-Welch algorithm is used to obtain the mle of the

needed parameters. BaumWelch is simply an EM algorithm (Expectation Maximisation)

for HMM. That is, the expected ` is computed given the observed data x1:T and initial

starting parameters θ0, where θ is a vector parameter to be estimated. This expectation

can be shown as:

E[`(x1:T , C1:T |θ)|x1:T , θ0] = E

[
2∑
i=1

log ui(1)Vi(1) +
∑2

i=1

2∑
j=1

log γij
T∑
t=2

Wij(t)

+
2∑
i=1

T∑
t=1

logPi(xt)Vi(t)

∣∣∣∣x1:T , θ0

]
.

(3.10)

In Equation (3.10), it can be seen that the only random parts are the indicator functions.

Hence, the expectation, Equation (3.10), can be rewritten as follows:

E [`(x1:T , C1:T |θ)|x1:T , θ0] =
2∑
i=1

log ui(1)E [Vi(1)|x1:T , θ0]

+
2∑
i=1

2∑
j=1

log γij
T∑
t=2

E [Wij(t)|x1:T , θ0]

+
2∑
i=1

T∑
t=1

logPi(xt)E [Vi(t)|x1:T , θ0] .

(3.11)

Let Ṽi0 = E [Vi(t)|x1:T , θ0] and W̃ij0 = E [Wij(t)|x1:T , θ0]. As Vi and Wij are indicators,

then we have:

Ṽi0(t) = P (Vi(t) = 1|x1:T , θ0) = P (Ct = i|x1:T , θ0), (3.12)

and

W̃ij0(t) = P (Wij(t) = 1|x1:T , θ0) = P (Ct−1 = i, Ct = j|x1:T , θ0). (3.13)

In HMM, there are two components called forward and backward probabilities, α and β,

respectively. These two components are defined as follows.
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αi(t) = P (X1:t = x1:t, Ct = i),

βi(t) = P (X(t+1):T = x(t+1):T |Ct = i).
(3.14)

By using the forward and backward probabilities, Equation (3.14), Equations (5.2) and

(3.13) can be rearranged as;

Ṽi0(t) =
αi0(t)βi0(t)

α0(T )1′
; (3.15)

and

W̃ij0(t) =
αi0γij0Pj0(xt)βj0(t)

α0(T )1′
; (3.16)

where 1 is the identity matrix. In addition, the posterior probability, Equation (3.5), can

be rewritten in terms of forward and backward probabilities as;

P (Ct = i|x1:T ) =
αi(t)βi(t)

P (X1:T = x1:T )
, i = 1, 2. (3.17)

Obtaining Equations (3.15) and (3.16) means achieving the expectation step in the Baum-

Welch algorithm. Hence, still the maximisation step . The expected ` is maximised with

respect to the needed parameters, which are ui(1), γij and λ. These maximisations can be

derived as follows:

ûi(1) =
Ṽi0(1)

2∑
i=1

Ṽi0(1)

= Ṽi0(1), where
2∑
i=1

Ṽi0(1) = 1; (3.18)

γ̂ij =

T∑
t=2

W̃ij0(t)

2∑
j=1

T∑
t=2

W̃ij0(t)

; (3.19)
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λ̂ =

T∑
t=1

xtṼ20(t)

T∑
t=1

Ṽ20(t)

. (3.20)

By achieving the maximisation step, updated estimates for the parameters are obtained.

These estimates are considered as improved estimates compared to the initial estimates.

Hence, these improved parameters are used as initials , θ0, and the two steps of the

Baum-Welch algorithm are applied again. The two steps are repeated recursively until

convergence, and the final estimates are considered to be the mle.

We applied the Baum-Welch algorithm to the read counts for each sample separately. We

started with the initial parameters obtained from the data. That is, λ0 is the average read

counts excluding the zero counts, P (C10 = 1) is the proportion of zero counts excluding

the expected zero counts under Poi(λ0), and a transition matrix Γ0(2 × 2) contains the

probability of moving from zero to non-zero counts and from non-zero to zero counts and

their cumulates . We applied this method for different chromosomes. For instance, in

chromosome 22 from the test sample, we started with the initial parameters as:

λo = 1.61,

uo(1) = (0.97, 0.03),

Γo =

γ11 = 0.97 γ12 = 0.03

γ21 = 0.94 γ22 = 0.06

 .

3.2.2 Results

By applying the proposed HMM with the Baum-Welch algorithm for the read counts, we

faced a problem in the parameter estimation process. That is, in Equation (3.14), it can

be seen that if the sample size T is large, then αi(t) −→ 0 as t −→ ∞, and βi(t) −→ 0

as t −→ 0. In this case, the expectation step, Equations (3.15) and (3.16), cannot be



Chapter 3. Modelling the distribution of ChIP-Seq data 40

achieved. As a result, the parameters cannot be estimated. Unfortunately, this is the case

in the read counts data. For example, in chromosome 1 from the test sample, we can

obtain estimates using a maximum number of around 1000 positions, and by increasing

the number of positions, the estimates cannot be obtained any more (this is discussed

further in Section 3.4).

Although the parameters cannot be estimated, the posterior probabilities, Equation (3.17),

can be estimated. That is, we can estimate the posterior using the possible maximum

number of positions, for example, 1000 positions in chromosome 1 from the test sample.

Then, to calculate the posterior for the next possible number of positions, and next, update

the old posterior using the last one. We carry on updating the posterior until we complete

all positions.

3.3 Mixture Model

It was shown that the read counts are globally weakly correlated. We tried to model the

counts by using HMM to take advantage of the conditional independence property, as

well as to control the huge number of zero counts that we think are structured. However,

we could not estimate the required parameters in the model. On the other hand, we also

tried to model the read counts as a Poisson model with a single rate parameter and two

rate parameters, but the models do not fit the data. Hence, we had to look for a different

way to model the counts.

3.3.1 Mixture of two components

We believe that the zero counts are effectively influencing the distribution of the read

counts. By revisiting Figure 2.6, it can be seen the distribution of the lengths of

consecutive zero counts (or the gaps between non-zero counts) appears as a mixture of



Chapter 3. Modelling the distribution of ChIP-Seq data 41

distributions. It is known that if a random variable follows a Poisson distribution with rate

parameter λ, then the the lengths of consecutive zeros in that variable follow Geometric

distribution. Therefore, if the read counts followed Poisson with a single rate parameter,

the distribution of the consecutive zero lengths in Figure 2.6 (c,d) would appear as a single

component with a linear decay as the lengths get larger. The linear decay starts in the

figure after lengths of around 80, but for lengths lower than that the behaviour is different.

Based on that. we can say the read counts do not follow a single Poisson distribution.

We seek a mixture model that takes into account the zero read counts. We still employ

the Poisson distribution to model the read counts, but not a single Poisson. We started

with a model of two Poisson components with two rate parameters λ1 and λ2. The two

components can describe two types of regions in the data. First, regions that contain few

or no reads. For these regions, we expect the rate to be very low. Second, regions that are

rich in reads. These regions can exist where TF biding sites are located, or where some

other genetic activations exist. Hence, for the second type of region, we expect for the

rate to be higher than the rate of the first type. How can the zero counts be involved in

the model? We let the zero counts determine the weights of the components in the model.

However, we do not mean all zeros . That is, the model is built in a way that keeps a

memory of the number of consecutive zero counts since the last non-zero count has been

observed. This memory is used to calculate the weights. The model can be formulated as

follows:

Let xi be the read count at position i and let ri be the distance since the last non-zero

count has been observed until position i. Then, the probability function can be written as:

Pr(X = x|Ri = r) = δ1(r)e−λ1
λx1
x!

+ δ2(r)e−λ2
λx2
x!
, (3.21)

where x = 0, 1, 2, r = 0, 1, 2, and δ1(r) and δ2(r) are the weights, which are functions of

r, and under the constraint
2∑
j=1

δj(r) = 1.

In the model, denoted by Equation (3.21), we treat the read counts as a type of series
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with respect to consecutive zero counts, where the series keeps a short memory of

the consecutive zero counts until a non-zero count appears, then this memory is reset

immediately after that. As an illustration, at position i = 1, the length of previous

consecutive zeros is zero, r1 = 0. Moreover, if the observed read counts at positions

i = 1, 2, 3 are zeros, then at position i = 4 the lengths of zeros is r4 = 3. Furthermore,

if the observed read counts at positions i = 1, 2, 3 are zeros and at position i = 4 the

observed is a non-zero read count, then at position i = 5 the length of consecutive zeros

is r5 = 0.

The temporary memory determines the weights of each component in the model. The

weight of each component is defined as a function of r, which is the short memory of the

consecutive zero counts. The problem now is how to define the functions δ1 and δ2. First,

one of the weights’ functions needs to be defined, as the second weight can be calculated

by using the constraint
2∑
j=1

δj(r) = 1. Second, we use the information shown in Figure

2.6 to define the function of the weight as follows:

Let the first component of the model, Equation (3.21), represent read counts of low rate,

Poi(λ1). Hence, the second component represents the higher rate of the read counts,

Poi(λ2). The weight of the first component, δ1(r), can be calculated by using the

constraint. Therefore, δ2 only needs to be defined. From Figure 2.6, we can see a bell

shape centred around zeros of length 50. Hence we assume δ2 to be a Normal probability

density function with mean µ and standard deviation σ, δ2 ∼ N(µ, σ). That means that

the weight of the second component, Poi(λ2), increases for lengths of zeros of around

µ and the maximum weight occurs when the length of consecutive zeros is equal to µ,

R = µ. Hence, for a given length of consecutive zeros r, the weight can be calculated:

δ2(R = r) = γ × 1√
2πσ2

e
−1

2σ2 (r−µ)2

(3.22)

where γ is a scaling parameter. For the mixture model Equation (3.21), the expectation,
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the second moment and the variance can be shown as:

E (X|R) = δ1(r)λ1 + δ2(r)λ2,

E (X2|R) = δ1(r) (λ2
1 + λ1) + δ2(r) (λ2

2 + λ2) ,

V (X|R) = E (X2|R)− E (X|R)2

= δ1(r) (λ2
1 + λ1) + δ2(r) (λ2

2 + λ2)− (δ1(r)λ1 + δ2(r)λ2)2 .

(3.23)

Parameter estimation

We built the mixture model in Equation (3.21) based on the consecutive zero lengths r,

which is shown in Figure 2.6. There are four parameters in the model that need to be

estimated, which are λ1, λ2, µ and σ. By obtaining µ̂ and σ̂, we can calculate the second

weight for a given r (δ2(r)), and then compute the first weight by using the constraint

δ1(r) = 1 − δ2(r). We also want to employ the consecutive zero lengths to estimate the

required parameters in the model. Therefore, let us derive the probability zero(s) from the

model, Equation (3.21). The probability of a zero count at position i and for any given r

is:

Pr(X = 0|R = r) = δ1(r)e−λ1 + δ2(r)e−λ2 . (3.24)

From Equation (3.24), the probability of observing a non-zero count at any position i and

for any given length of consecutive zeros r is:

Pr(X > 0|R = r) = 1− Pr(X = 0|R = r)

= 1−
{
δ1(r)e−λ1 + δ2(r)e−λ2

}
.

(3.25)

Now, let us consider the probability of observing a gap of two zeros. The probability can

be derived as follows.

Pr(Xi = 0, Xi+1 = 0, Xi+2 > 0|Ri = 0) = Pr(Xi = 0|Ri = 0)× Pr(Xi+1 = 0|Ri+1 = 1)

×Pr(Xi+2 > 0|Ri+2 = 2)

=
(
δ1(0)e−λ1 + δ2(0)e−λ2

)
×
(
δ1(1)e−λ1 + δ2(1)e−λ2

)(
1−

{
δ1(2)e−λ1 + δ2(2)e−λ2

})
=

(
1−

{
δ1(2)e−λ1 + δ2(2)e−λ2

}) 2−1∏
j=0

(
δ1(j)e−λ1 + δ2(j)e−λ2

)
.

(3.26)
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Similarly, the probability of observing a gap of three consecutive zeros is:

Pr(Xi = 0, Xi+1 = 0, Xi+2 = 0, Xi+3 > 0|Ri = 0) = Pr(Xi = 0|Ri = 0)× Pr(Xi+1 = 0|Ri+1 = 1)

×Pr(Xi+2 = 0|Ri+2 = 2)× Pr(Xi+3 > 0|Ri+3 = 3)

=
(
1−

{
δ1(3)e−λ1 + δ2(3)e−λ2

}) 3−1∏
j=0

(
δ1(j)e−λ1 + δ2(j)e−λ2

)
.

(3.27)

Hence, for any gap of length k, where k > 1, with consecutive zeros starting at position

i, the probability function can be shown as:

Pr(Xi = 0, . . . , Xi+k−1 = 0, Xk+1 > 0|R = 0) =
(
1−

{
δ1(k)e−λ1 + δ2(k)e−λ2

}) k−1∏
j=0

(
δ1(j)e−λ1 + δ2(j)e−λ2

)
.

(3.28)

There are two special cases, which are when k equals 0 or 1. For k = 0 Equation (3.25)

is used, and for k = 1 we use Equation (3.24), which is as follows:

Pr(Xi > 0|R = 0) = 1−
{
δ1(0)e−λ1 + δ2(0)e−λ2

}
. (3.29)

Pr(Xi = 0|R = 0) = δ1(0)e−λ1 + δ2(0)e−λ2 . (3.30)

The probability function of lengths of consecutive zeros was derived and obtained in

Equation (3.28) with its two special cases in Equations (3.29,3.30). A question can

be asked here: is it possible to estimate the parameters by using only the lengths of

consecutive zeros, and not the full data in a Poisson model? The answer is yes, it is

possible, and that can be shown by simulation.

We conducted a simulation study by using a single Poisson model, Poi(λ), to check the

ability to estimate the model’s parameter by using the length of the consecutive zeros in

the observations. Let X be a random variable that follows a Poisson distribution with rate

λ and probability mass function:

Pr(X = x) = e−λ
λx

x!
,
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where λ > 0 and x = 0, 1, 2, . . .. Hence, we have the following probabilities:

Pr(X = 0) = e−λ,

Pr(X > 0) = 1− e−λ,

and by using independence property we have:

Pr(X1 = 0, X2 = 0, X3 = 0, . . . , Xk = 0) = {Pr(X = 0)}k = e−λk.

Let k be the length of consecutive zero observations followed by non-zero observation

Then, the probability mass function of the lengths of consecutive zero variable, K, can be

written as:
Pr(K = k) = {Pr(X = 0)}k Pr(X > 0)

= e−λk
(
1− e−λ

)
, k = 0, 1, 2, . . . .

(3.31)

By using data k, which is a subset of the full data x, we want to obtain the mle of λ.

As only the subset K is used, its probability function, Equation (3.31), is used in the

estimation process. The likelihood function L (λ|k) can be shown as follows.

L (λ|k) =
n∏
i=1

Pr(K = ki)

=
n∏
i=1

e−λki
(
1− e−λ

)
=

(
1− e−λ

)n n∏
i=1

e−λki ,

where n is the total number of observations k. For simplicity, let us consider the log

likelihood function ` (λ|k) = log (L (λ|k)), and then we have,

` (λ|k) = n log
(
1− e−λ

)
− λ

n∑
i=1

ki. (3.32)

To obtain the mle of λ, we differentiate Equation (3.32) with respect to λ, and set the

derivative to zero as follows:

∂`(λ|k)
∂λ

= ne−λ

1−e−λ −
n∑
i=1

ki

0 = ne−λ̂

1−e−λ̂
−

n∑
i=1

ki

λ̂ = − log
(

k̄
1+k̄

)
.

(3.33)
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Hence, by using data k we can obtain the mle of λ directly from Equation (3.33).

Moreover, the mle of λ can also be obtained by using numerical optimisation methods

by maximising the log likelihood in Equation (3.32).

Returning to the real data, which is the read counts, we want to use the observed

consecutive zeros to estimate the mles of the parameters of the model in Equation (3.21),

and by using Equations (3.28, 3.29 and 3.30). Hence, the likelihood function when k > 1,

L (.|k > 1), is,

L (.|k > 1) =

nk>1∏
i=1

{(
1−

{
δ1(ki)e

−λ1 + δ2(ki)e
−λ2
}) ki−1∏

j=0

(
δ1(j)e−λ1 + δ2(j)e−λ2

)}
,

(3.34)

where nk>1 is the number of observations k where k is larger than 1.

Again, for simplicity we consider the log likelihood, ` (.|k > 1), as the following:

` (.|k > 1) = log

[
nk>1∏
i=1

{(
1−

2∑
s=1

δs(ki)e
−λs
)
ki−1∏
j=0

(
2∑
s=1

δs(j)e
−λs
)}]

=
nk>1∑
i=1

log

{(
1−

2∑
s=1

δs(ki)e
−λs
)
ki−1∏
j=0

(
2∑
s=1

δs(j)e
−λs
)}

=
nk>1∑
i=1

[
log

(
1−

2∑
s=1

δs(ki)e
−λs
)

+ log

{
ki−1∏
j=0

(
2∑
s=1

δs(j)e
−λs
)}]

=
nk>1∑
i=1

log

(
1−

2∑
s=1

δs(ki)e
−λs
)

+
nk>1∑
i=1

ki−1∑
j=0

log

(
2∑
s=1

δs(j)e
−λs
)
.

(3.35)

Similarly, when k = 0 and k = 1, Equations (3.29) and (3.30), the log likelihood can be

respectively shown as:

` (.|k = 0) = n0 × log

(
1−

2∑
s=1

δs(0)e−λs

)
, (3.36)

and

` (.|k = 1) = n1 × log

(
2∑
s=1

δs(0)e−λs

)
, (3.37)

where n0 and n1 are the numbers of observation k where k equals 0 and 1, respectively.

Hence, the full log likelihood, `(.|k), is the summation of the three previous log
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likelihoods. That is:

` (.|k) = ` (.|k = 0) + ` (.|k = 1) + ` (.|k > 1) . (3.38)

The mles of the parameters in the mixture model (3.21) can be obtained by obtaining

the values of the parameters that maximise the log likelihood in Equation (3.38) for the

observed length of consecutive zero counts. The parameters that need to be estimated

are λ1, λ2, γ, µ and σ, where the later three parameters are used in the calculation of

the weight δ2. To estimate these parameters, we use numerical iterative methods, for

example Nelder-Mead, to optimise the parameters. In order to use such methods, we need

to remove any constraints on the parameters. In the parameters, we have λ1, λ2, γ and σ

constrained to be larger than zero, whereas µ ranges from −∞ to∞. Hence, to remove

the constraints, re-parameterisations (or transformations) are considered as follows:

η1 = log(λ1),

η2 = log(λ2),

π = log(γ),

ν = log(σ).

By using the above transformations, we need to estimate new unconstrained parameters,

which are η1, η2, π and ν. Then, recovering the original parameters from the new estimates

as:

λ̂1 = eη̂1 ,

λ̂2 = eη̂2 ,

γ̂ = eπ̂1 ,

σ̂ = eν̂ .
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Hence, final equations to be used in the optimisation process are:

` (.|k > 1) =
nk>1∑
i=1

log

(
1−

2∑
s=1

δs(ki)e
−eηs

)
+

nk>1∑
i=1

ki−1∑
j=0

log

(
2∑
s=1

δs(j)e
−eηs

)
,

` (.|k = 0) = n0 × log

(
1−

2∑
s=1

δs(0)e−e
ηs

)
,

` (.|k = 1) = n1 × log

(
2∑
s=1

δs(0)e−e
ηs

)
.

(3.39)

where:
δ1(a) = 1− δ2(a),

δ2(a) = eπ1 × 1√
2πe2ν

e
−1

2e2ν
(a−µ)2

,

and γ is a scaling. The full likelihood is calculated as in Equation (3.38).

Results

After processing the optimisation in Equations (3.39) and (3.38), we found that the values

of the estimated parameters depend on the initial values. That is, for different starting

values for the parameters, we obtained different estimated values for the parameters.

However, for some of the parameters, we observed frequent estimated values. That is,

λ1 was frequently estimated as 0.01, and µ was frequently estimated to be in the range

from 46 to 52. It is expected to have estimates for λ1 and µ around these frequently

observed solutions. On the other hand, the estimated values for parameters λ2, γ and σ

vary for different initial values.

We tried to generate count data from the mixture model in Equation (3.21) by using some

of the optimised solutions, and to see whether or not the generated data simulate the

characteristics of the real data. We tried many of the solutions and found the solution

where λ̂1 = 0.01, λ̂2 = 0.513, γ̂ = 0.95, µ̂ = 51, and σ̂ = 15 is the closet to the real

data between the others in terms of distribution of lengths of consecutive zeros, which is

shown in Figure 3.3. The figure is compared to Figure 2.6, (d). Figure 3.3 shows that

the mixture model in Equation (3.21) can simulate the bell shape around length 50 and
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the linear part after it. However, the first part, which is the sharp exponential decay, does

not appear in the figure. This suggests that the mixture model of two components is not

enough to simulate the data, and hence an additional component may be needed.

3.3.2 Mixture of three components

From the simulation results, we found that a mixture model of two Poisson components is

not able to simulate the characteristics of the real data. It was noticed that the suggested

model is not able to simulate the full observed distribution of lengths of consecutive

zeros, where the sharp exponential decay at the beginning of the distribution is missing.

Hence, we decided to add one component more and have a mixture model of three

Poisson components with three different rate parameters. We expect from the additional

component to simulate the missing part by using two components only, which is the

exponential decaying at the beginning of the distribution of lengths of consecutive zeros,

in Figure 2.6, (d).

In the two-component mixture model, we expected to have two rate parameters

representing low and high read counts in the data. Now, we expect to have the same

two components, low and high rates, and another component with a rate in between the

two. IN addition, to obtain the exponential decay, we set the weight for the additional

component as Exponential probability density function (pdf), with parameter θ, where it

is a function of a given length of consecutive zeros. The new mixture model can be shown

as follows:

Pr(Xi = x|Ri = r) = δ1(r)e−λ1 λ
x
1

x!
+ δ2(r)e−λ2 λ

x
2

x!
+ δ3(r)e−λ3 λ

x
3

x!

=
3∑
s=1

δs(r)e
−λs λxs

x!
,

(3.40)

where δs(r) is the weight of component s, which are functions of r under the constraint
3∑
s=1

δs(r) = 1. For the model (3.40), the expectation, the second moment and the variance
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Figure 3.3: Distribution of lengths of consecutive zeros from simulated counts data by

using one of the optimal solutions for Equation (3.38), where the mles of the parameters

are λ̂1 = 0.017, λ̂2 = 0.513, γ̂ = 0.95, µ̂ = 51 and σ̂ = 15. The vertical axis is the

frequency in log scale, and the horizontal axis is the lengths of consecutive zeros.
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can be shown as:

E (X|R) = δ1(r)λ1 + δ2(r)λ2 + δ3(r)λ3,

E (X2|R) = δ1(r) (λ2
1 + λ1) + δ2(r) (λ2

2 + λ2) + δ3(r) (λ2
3 + λ3) ,

V (X|R) = E (X2|R)− E (X|R)2 .

(3.41)

Given the constraint on the weights, we need to estimate two only and calculate the third

weight from them. Again, a subset of the data is used, which is the observed lengths

of consecutive zeros. In the twocomponent mixture model, Equation (3.21), we set the

weight of the second component, Poi(λ2), as pdf of Normal distribution, N(µ, σ), and

we expected this component to represent the high rate read counts. The same setting

and expectation are still being held for the same component. For the third component,

Poi(λ3), we set the weight to be pdf of Exponential, Exp(θ), and expect this component

to represent read counts of low rate but not as low as the first component, Poi(λ1). Hence,

we expect to have rates λ1 < λ3 < λ2. As the second and the third weights are pdfs and

have parameters that need to be estimated, they were chosen to be estimated, and then by

using the constraint, the first weight, δ̂1(r), is calculated.

As mentioned, the weights δ2 and δ3 are pdf of Normal and Exponential distributions. As

the weights are constrained to be summed up to 1, then the pdfs need to be normalised.

That is, the weights need to be scaled as follows:

δ2(R = r) = γ1 × 1√
2πσ2

e
−1

2σ2 (r−µ)2

,

δ3(R = r) = γ2 × 1
θ
e−

r
θ ,

(3.42)

where γ1 and γ2 are scaling parameters and γ1, γ2 > 0.

Parameter estimation

In the mixture model in Equation (3.40) there are eight parameters to be estimated. These

are λ1, λ2, λ3, µ, σ, θ, γ1 and γ2. We seek mle for the parameters by using a subset of

the data, which is the lengths of consecutive zeros. Similar to the two-component mixture
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model, Equations (3.28, 3.29, 3.30), we need to define the probability of observing k

consecutive zeros starting at position i. By using model (3.40), the probability function

with its two special cases, which are when k = 0 and k = 1, can be shown as:

Pr(Xi = 0, . . . , Xi+k−1 = 0, Xk+1 > 0|R = 0) =

(
1−

3∑
s=1

δs(k)e−λs
)
k−1∏
j=0

(
3∑
s=1

δs(j)e
−λs
)
, where k > 1;

Pr(Xi > 0|R = 0) = 1−
3∑
s=1

δs(0)e−λs , where k = 0;

Pr(Xi = 0|R = 0) =
3∑
s=1

δs(0)e−λs , where k = 1.

(3.43)

To obtain the mle, a likelihood function needs to be provided. For simplicity, we directly

consider the log likelihood function. Hence, for a given k data, the log likelihood function

`(.|k) of Equation (3.43) can be shown as the following (similar to Equations (3.35, 3.36,

3.37, 3.38)):

` (.|k > 1) =
nk>1∑
i=1

log

(
1−

3∑
s=1

δs(ki)e
−λs
)

+
nk>1∑
i=1

ki−1∑
j=0

log

(
3∑
s=1

δs(j)e
−λs
)

;

` (.|k = 0) = n0 × log

(
1−

3∑
s=1

δs(0)e−λs
)

;

` (.|k = 1) = n1 × log

(
3∑
s=1

δs(0)e−λs
)

;

` (.|k) = ` (.|k = 0) + ` (.|k = 1) + ` (.|k > 1) .

(3.44)

The mles of the parameters are those maximising the value of `(.|k) in Equation (3.44).

We follow the same procedure used in the two-component mixture model to obtain the

estimates. That is, we use numerical optimisation methods to optimise the estimates after

removing any existing constraints on the parameters. In model (3.40), there is only one

unconstrained parameter, which is µ. Hence, the constraints need to be removed from

the other seven parameters. Similar to the two-component mixture model, we remove the
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constraints by doing re-parameterisations as follows:

η1 = log(λ1) ⇐⇒ λ1 = eη1 ;

η2 = log(λ2) ⇐⇒ λ2 = eη2 ;

η3 = log(λ3) ⇐⇒ λ3 = eη3 ;

ν = log(σ) ⇐⇒ σ = eν ;

τ = log(θ) ⇐⇒ θ = eτ ;

π1 = log(γ1) ⇐⇒ γ1 = eπ1 ;

π2 = log(γ2) ⇐⇒ γ2 = eπ2 .

Hence, the unconstrained parameters are used in the optimisation process, and then the

original parameters can be recovered as shown above.

Results

After applying the optimisation process and observing the resulting estimates for the

parameters, we noticed the same problem found in the two-component mixture model.

That is, it was noticed that the values of the resulting estimates depend on the initial

values being given. It was observed that some the parameters were frequently having the

same solutions, even if the starting values were different. It was observed in most of the

resulting solutions that λ̂1 ' 0.01, 0.02 ≤ λ̂3 ≤ 0.3, 45 ≤ µ̂ ≤ 52 and 1/6 ≤ θ̂ ≤ 1/12.

On the other hand, the estimated values of λ2, σ, γ1, and γ2 vary depending on the starting

values.

What was expected was observed for some of the parameters. That is, in all optimised

solutions we observed λ̂1 < λ̂3 < λ̂2. In addition, µ̂ and θ̂ were estimated in the range

we expected. Hence, to understand the reasons for not obtaining consistent solutions for

the parameters, we created some likelihood profiles. The purpose of such profiles is to

observe the behaviour of the likelihood function for some given values of the parameters

in the model. We made many profiles for different possible pair combinations of the
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parameters. The process of creating a profile is simple. For a given sequence of values

for a certain parameter, other parameters in the model are optimised at each given value

and the likelihood (or log likelihood) value is recorded, and then the recorded values are

plotted against the given sequence. The result is called a likelihood profile for the given

parameter.

Figure 3.4 shows a likelihood profile for λ2 and σ. From the figure, it can be seen that

the log likelihood function has an irregular spiky surface. This behaviour explains the

unstable estimations for the model’s parameters. That is, for such a surface there are

many local maximums, and then any optimisation method can stick with any of these

maximums and report the estimations as optimal. We created other likelihood profiles for

other parameters and observed the same behaviour pattern.

Figure 3.4: A likelihood profile for parameters λ2 and σ by using log likelihood function,

`(.|k), in equation (3.44). The values of λ2 range from 1 to 10, and of σ from 1 to 100.

The maximum `(.|k) value occurs at λ2 = 1.73 and σ = 84.49.
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We picked some of the optimal solutions and used them to generate counts data to see

whether or not any of the solutions have the same characteristics as the real data. Figure

3.5 shows a close distribution of lengths of consecutive zeros by using one of the optimal

solutions for Equation (3.44). The mle used in this simulation are λ̂1 = 0.01, λ̂2 = 3.1,

λ̂3 = 0.02, µ̂ = 48, σ̂ = 16, θ̂ = 1/11, γ̂1 = 0.9 and γ̂2 = 0.99. This figure is compared to

the distribution of observed lengths of consecutive zeros in the real data (Figure 2.6, (d)).

From the simulation’s result, it can be seen that the distribution of consecutive zero lengths

is quite similar to that of the real data, but not close enough. However, by comparing this

result with the simulation’s result from the two-component mixture model, Figure 3.3, we

can say that the three-component mixture model is much closer to the real data.

Additional parameter α

We noticed in Figure 3.5 that the exponential decaying at the beginning is not as sharp as

the observed one in the real data, Figure 2.6, (d). One way to control the decay is to set

a power on the random variable that has Exponential distribution. That is, an additional

parameter α is added to the weight of the third component to be as follows:

δ3(R = r) = γ2 ×
1

θ
e−

rα

θ , where α > 0. (3.45)

We expect that a larger α leads to faster decaying.

Redundancy issue

The additional parameter α needs to be estimated, which means the total number of

parameters increases by one to be nine. Simply, we remove the constraint from the

parameter by the re-parameterisation and optimise the parameters for log likelihood

function, `(.|k), to obtain the mle. Hence, the optimisation process was done and the

result was different after adding α. We noticed that different sets of estimated parameters
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Figure 3.5: Distribution of lengths of consecutive zeros from simulated counts data by

using one of the optimal solutions for Equation (3.44), where the mles of the parameters

are λ̂1 = 0.01, λ̂2 = 3.1, λ̂3 = 0.02, µ̂ = 48, σ̂ = 16, θ̂ = 1/11, γ̂1 = 0.9 and γ̂2 = 0.99.

The vertical axis is the frequency in log scale, and the horizontal axis is the lengths of

consecutive zeros.
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give the same value for the likelihood function. This finding suggests a redundancy in

the model. That is, the parameters in the model are not independent, and hence these

dependent parameters make the model redundant. We created a likelihood profile for λ2

and λ3 and show the result in Figure 3.6.

Figure 3.6: A likelihood profile for parameters λ2 and λ3 by using log likelihood function,

`(.|k), in equation (3.44) and after adding the parameter α as shown in Equation (3.45).

The likelihood profile of λ2 and λ3 in Figure 3.6 shows a smooth straight surface for the

likelihood function. Hence, we want to find the relationship between the parameters that

leads to this behaviour. We found the following. Let x̄ be the observed sample mean of
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the read counts, then for Equation (3.40) the following is true.

x̄ = δ1(r)λ1 + δ2(r)λ2 + δ3(r)λ3

δ1(r)λ1 = x̄− {δ2(r)λ2 + δ3(r)λ3}

λ1 = x̄−{δ2(r)λ2+δ3(r)λ3}
δ1(r)

.

(3.46)

The above means that given two of the rate parameters with other weight parameters, the

other rate parameter can be calculated from the given ones. Such relation can lead to the

behaviour observed in Figure 3.6. Hence, if we decided to use the above equation by

calculating λ1 from the others, then we would consider an additional constraint, which is:

x̄− {δ2(r)λ2 + δ3(r)λ3} > 0. (3.47)

Given the above constraint, we need to redefine the ranges of λ2 and λ3 as:

0 < λ2 <
x̄−δ3(r)λ3

δ2(r)
,

0 < λ3 <
x̄−δ2(r)λ2

δ3(r)
.

(3.48)

The parameters that need to be estimated are λ2, λ3, γ2, γ3, µ, σ, θ and α, then

parameter λ1 and weight δ1(r) are calculated by using the constraints. Hence, after

doing the optimisation process and considering the relation between the parameters, the

redundancy issue was solved. However, like previous problems, the estimates of the

parameters depend on the initial starting values. We created many likelihood profiles for

many different combinations of the parameters and found that the likelihood function has

irregular behaviour with many local maximums, and this makes the estimation process

difficult. Although we could not obtain the mle, there were values of the estimates that

appeared frequently. From these frequent solutions we could get an idea of the values of

the estimates as follows:
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λ̂1 ' 0.01,

λ̂2 ' 3.07,

λ̂3 ' 1.17,

γ̂2 >> γ̂1, and γ̂1 ∈ (1/3, 1/2), and γ̂2 ∈ (200, 800),

µ̂ ∈ (44.5, 49), and σ̂ ∈ (8, 12)′

θ̂ ∈ (1/50, 1/40),

α̂ ∈ (2, 3.5).

(3.49)

Some of the optimised solutions were chosen and used to simulate counts data. Figure 3.7

shows the closest result to the real data in terms of the observed lengths of consecutive

zeros. In the figure, it can be seen that the distribution of consecutive zeros is quite similar

to that of the real data in Figure 2.6, (d). Three components can be clearly seen, as in the

real data figure .

3.4 Discussion

In RUNX1/ETO data we noticed two such features, which are the high proportion of

zero counts and serial correlation between the read counts across the genome. Based on

these two features we tried to functionally model the data. Having a model can serve the

objective of the study, which is detecting differential regions between the two samples,

by inference. Our aim is to model the data without removing or changing the naturality

of it. Hence, the desired model is that which is able to describe the data with its natural

features.

We tried to model the read counts by using HMM with two hidden states. The states are

for structural zeros and random read counts from the Poisson distribution. This model did

not work with the data because of too many lengthy consecutive zeros in the data, which

stopped the estimation process for the parameters. Hence, we failed to obtain the estimates
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Figure 3.7: Distribution of lengths of consecutive zeros from simulated counts data by

using one of the optimal solutions for Equation (3.44), where the mles of the parameters

are λ̂1 = 0.01, λ̂2 = 3.1, λ̂3 = 1.2, µ̂ = 44.6, σ̂ = 8.1, θ̂ = 1/42, γ̂1 = 0.5, γ̂2 = 200

and α̂ = 2. The vertical axis is the frequency in log scale, and the horizontal axis is the

lengths of consecutive zeros.
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of the parameters of the model. Although HMM can handle the correlation, we thought

that it is not suitable to model the data because of the consecutive zero read counts. Note

that in the estimation process we transformed the probabilities in log transformation but

we failed in estimating the parameters as well.

There are previously proposed methods that are used to analyse ChIP-Seq data for

differential binding sites detection, and some of these methods use HMM with Baum-

Welch. For instance, ODIN [75], which is distinct from peak- finding methods. The main

difference between this method and the HMM we used is the filtering step (which is the

case in most of the analysis methods, whether or not they are peak-finding methods). That

is, ODIN does a filtering step where about 90% of the genome regions are filtered out, and

only dense regions are kept, which are more likely to be peaks. Hence HMM is applied

only on the peaks, and other regions are completely ignored. By doing this filtering,

low read count regions are removed including zero count regions, so the problems of

consecutive and high proportions of zero read counts do not occur. Thus, we believe that

HMM with the Baum-Welch algorithm cannot be used for RUNX1/ETO data. It would

work if we filtered the read counts. We would generalise this conclusion for all ChIP-Seq

data if we applied without filtering HMM with Baum-Welch on some other ChIP-Seq

datasets.

In relevance to HMM, Hidden Semi-Markov Model (HSMM) might work with

RUNX1/ETO data. The main difference between HMM and HSMM is that in HSMM the

hidden state can consider a sequence of observations, whereas the assumption in HMM is

a single observation per state [74]. Hence, HSMM might be a better way to deal with the

consecutive zero counts.

We also tried another model that handles the characteristics of the data, and proposed a

model of mixture Poisson distributions. We attempted to fit this model after checking the

fit of the single Poisson model and found that it does not fit the data (by using the Chi-

squared goodness of fit test). Correlation can exist between data drawn from a mixture
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of random variables and consecutive zeros can be employed in the model. The data were

treated as a type of time series, where a short temporary memory of lengths of consecutive

zeros is kept. This memory determines the weight of the mixture components. We started

with a mixture of two Poisson components and moved to three mixture components as

the two-component mixture did not show a reasonable simulation of the real data in

the simulation’s results. Moreover, the three-component mixture model showed better

simulation of the data compared to the two-component model in terms of distribution

of lengths of consecutive zeros. However, none of the mixture models showed a close

behaviour to the real data in terms of correlation.

In the three-component mixture model and after solving the redundancy problem, we

obtained better simulation results, which have similar the characteristics to the real data

in terms of consecutive zeros and correlation. On the other hand, similar to the two-

component mixture model, we could not reliably obtain the mles of the parameters of

the model. It was found that for different initial starting values, the optimisation process

returned different solutions, and we found that was caused by the surface of the likelihood

function.

By observing RUNX1/ETO data it can be said that a mixture of three Poisson components

would be a good model to describe it. That is, a Poisson component with a very low rate

for the zero and very low read counts; another component with low rate but larger than

the previous component and this would be for the low read counts but larger than zero;

and the third component with a slightly large rate for the larger read counts. A model in

this structure would handle the changes in the variability of the read counts. Furthermore,

we did some comparisons between single-, two- and three-component mixture models to

see which one fits the data better by using the Chi-squared test. We found that none of the

models fit the data. However, by comparing the test statistics of the models, we can say

that the three-component mixture model is better because it has the smallest test statistic

compared to the others. Note that the compared models are those shown in Figures 3.5
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and 3.7, which are the closet simulation results to the real data.

We checked some ENCODE datasets to see whether the characteristics of RUNX1/ETO

data are observed under similar biological conditions. Hence, we chose ChIP-Seq datasets

with knock-out experiment. We found the following. In terms of correlation, we found

a similar pattern to what we observed in RUNX1/ETO data. The read counts are serially

correlated across the genome and the correlation is not significant between the read counts

within the window (similar to Figure 2.5). We found that the proportion of zero counts

is huge compared to the nonzero counts, also similar to the findings for RUNX1/ETO.

However, the distribution of the consecutive zero counts varies. Although we found that

some datasets have similar distributions of consecutive zero counts, we cannot say that

there is common distribution for the consecutive zero counts in ChIP-Seq datasets. So

what is shown in Figure 2.6 is only observed in RUNX1/ETO data. It is logical to observe

different distributions for consecutive zero counts in ChIP-Seq experiment because the

targeted regions to be chopped are different from experiment to other. Hence, the gaps or

non-sequenced regions are different and these regions represent large part of consecutive

zero counts.

Finding a statistical model for the whole data is not an easy task. The model consisting

of mixture of three Poisson variables seems to simulate the characteristics of the data,

although it does not fit it (by using χ2 goodness of fit test). We found that this model is

able to mimic the features of the RUNX1/ETO data. By dividing the data into windows

of 200 bp, the characteristics of these windows are slightly different and easy to model.

The correlation between the read counts is not significant within windows. Moreover, the

single Poisson component model fits more than two thirds of the non-empty windows.

To perform statistical inference on the data, windows can be used individually. The

Poisson model can be assumed for the read counts within windows. Statistical inference

can be applied on the two samples by inferring the differences between the same location

windows in the two samples. There are many available inference methods that can be
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employed (Chapters 4 and 5).
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Chapter 4

Current methods for identifying

differential binding sites

4.1 Introduction

In this chapter, we introduce and discuss some previously developed methods for

transcription factor (TF ) binding site studies. We consider in detail two methods. First,

a combination of MACS, which is a peak-calling method, and MAnorm, which is a

peak-calling-based method. Second, diffReps method, which is independent from peaks-

calling methods. These methods are applied to simulated data as well as the project data

RUNX1/ETO. Finally, we discuss and conclude the findings of these methods.

It is biologically known for TFs to have binding sites located before and after the actual

TF locations. These binding sites are enriched with DNA reads. These dense regions of

the genome are called peaks. Biologically, changes in the densities of the locations of the

binding sites are considered to be signs for changes in the TF. Hence, the binding sites are

analysed to detect changes occurring in the TF under different biological conditions.

Two types of methods have been suggested and developed to analyse TF binding sites.
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First, peak- based methods. For instance, MAnorm [43], DiffBind [60], DESeq [5] and

EdgeR [35], where the last two were proposed initially for gene expression analysis.

Second, non-peak-based methods. For instance, diffReps [14] and ODIN [75].

What are peak-calling methods? Peak-calling methods simply search across the genome

for enrichment regions (peaks) and report them. There are many proposed methods

for calling peaks. For instance, MACS [31], HPeak [73], BayesPeak [34], ZINBA

[61], Qeseq [25], OccuPeak [7] and JAMM [20]. Each of these methods has its own

methodology to declare a region in the genome as a peak. In binding site analysis, peak-

based methods are more commonly used.

From the above previous developed methods, we chose three to be considered in detail

and applied to the RUNX1/ETO data. That is, from the peak-calling methods we chose

MACS. MACS seems to be the most popular peak calling method as it has around 2,000

citations according to google scholar (2015). From peak-based methods, MAnorm was

chosen as it was initially proposed for the analysis of ChIP-Seq data. Also unlike many

other methods, MAnorm does not need biological replicates to perform the analysis.

Finally, from non-peak-based methods we chose diffReps.

The rest of the chapter is constructed as follows. In Section 4.2, we introduce the chosen

methods from the current methods for differential binding sites analysis. In Section 4.3,

the methods are evaluated by using simulated and real data. In Section 4.4, we apply

the methods to RUNX1/ETO data. Finally, in Section 4.5 we discuss and conclude our

findings from these methods.
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4.2 Current methods

4.2.1 MACS peak identification

Model-based analysis of ChIP-Seq (MACS) was proposed in 2008 for the purpose of

detecting ChIP-Seq peaks. Its inputs from ChIP-Seq data are two samples, test and

control. The control can be either a real control sample or an input sample. An input

sample contains the biological background (noise) for the ChIP-Seq experiment that is

used to produce test and control samples. Moreover, the input sample is DNA sequences,

and it can be treated in the same way as test and control samples are treated. In MACS,

both test and control samples are compared to the input, separately, to detect the peaks,

and then the resulting peaks can be analysed.

MACS is based on three components. These components are user’s given information,

biological and statistical components. In the user component, window size and fold-

enrichment need to be given by the user. Fold-enrichment here is a threshold for the ratio

of densities (read counts) of test over input within windows. That is, for a given window

size, MACS divides the genome into windows of the given size. MACS slides a window

of double the given size across the genome searching for windows that satisfy the given

fold-enrichment. Let x and y be the number of reads of test (or control) and input in a

window, respectively; the ratio x/y is compared to the given fold-enrichment. By default,

the window size is 300 bp and this the minimum window size the MACS software can

consider. By default also, the fold-enrichment is the range of ratios from 10 to 30. This

means that any ratios less than 10 and more than 30 are not called. Specifying a maximum

fold-enrichment is to prevent calling peaks (or windows) with outliers.

In the biological component, DNA fragments in ChIP-Seq experiments are equally likely

to be sequenced from both positive and negative ends [31]. That is, for each peak with

a positive strand, it is more likely to have a negative stranded peak located close to it,
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and vice versa, where both peaks have similar density. MACS benefits from this and

uses it as an assumption. MACS introduces a parameter d based on that assumption. d

is defined as the distance between the summits of positive and negative stranded peaks

that are adjacent. Estimating the distance d is done as follows. After detecting all peaks

that satisfy the given fold-enrichment, MACS randomly samples 1, 000 peaks. Then, it

separates the positive from negative stranded peaks, then considers them in pairs where

each pair has positive and negative peaks. In each pair, the distance between the positions

of the summits of the peaks is calculated, say di for pair i where i = 1, 2, . . . , 500. The

distance d is then estimated as the average of all calculated di as:

d =
1

500

500∑
i=1

di.

After obtaining the estimate of d, MACS combines each pair of positive and negative

peaks, which are located next to each other, in a single peak. That is, MACS shifts the

reads of each peak of the pair toward each other by d/2 bp.

In the statistical component, MACS employs Poisson distribution to declare the significant

peaks. It assumes that read counts of genome have Poisson distribution with rate

parameter λBG. The parameter λBG is estimated as the sample mean of the read counts in

the whole genome. MACS uses Poisson as follows. After estimating d and combining

the peaks, MACS slides a window of size 2d across the genome searching for significant

peaks with p-values below a given threshold, which is by default 10−5. A p-value of a

peak is calculated as the probability of observing a read count that is larger than the rate of

the peak (sample mean of the peak). Mathematically, this can be defined as follows. Let

x be the observed read counts, and hence X ∼ Poi(λGB) where λGB is estimated by the

sample mean of the read counts per position by using whole sample, x̄. Let λpeak be the

rate of a detected peak, which is estimated as the sample mean of the read counts within

the peak. The p-value, PGB, of that peak is calculated as
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PGB = Pr(X > λpeak), X ∼ Poi(λGB).

After obtaining these peaks, MACS does a final step to report the final peaks from the

candidates. In addition to the global testing by using Poi(λGB), MACS does local checking

for each peak by using Poisson with rate λlocal, Poi(λlocal), where λlocal is estimated as

follows.

λlocal = max(λGB, λ1k, λ5k, λ10k),

where λ1k, λ5k, and λ10k are rates estimated from 1 kp, 5 kp and 10 kp windows centred at

the location of the peak. By using λlocal, another p-value is calculated for each candidate

peak, say Plocal. The calculation of this p-value is done in the way of calculating PGB

above, but the random variable X follows Poisson with rate parameter λlocal. That is,

Plocal is computed as

Plocal = Pr(X > λpeak), X ∼ Poi(λlocal).

Finally, peaks with p-values Plocal under the threshold by using λlocal are reported by

MACS. Note that the identification of the peaks is done for the test and the control samples

separately with the input sample.

4.2.2 MAnorm

MAnorm is a peak-based method. It uses output of a peak calling method, for example

MACS. It is based on two assumptions. First, most of the called peaks are common

between the two samples. Second, most of the common peaks have the same densities.

These assumptions are practically known, but there is no evidence to say they are true in

any ChIP-Seq experiment. These assumptions are employed in the normalisation step of

MAnorm, which is the first step in the method where it is constructed into two steps. The

second step is the significance checking.
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In the normalisation step, MAnorm normalises the given peaks by using only the

regions of the common peaks. It also employs MA-plot’s idea to normalise the peaks’

regions. MA-plot was proposed to visualise and normalise gene expression data in cDNA

microarray experiments [11]. MA-plot is a two-dimensional plot, with M components in

vertical axis and A components in horizontal axis. These two components, M and A, can

be defined as follows. Let xj and yj be the number of reads of the j-th pair of common

peaks under two different biological conditions, where j = 1, . . . , k and k is the number

of pairs of common peaks. Then, Mj is log2 ratio of read densities and Aj is the average

of the intensity of the densities of the two peaks in log2 transformation. Mathematically,

Mj and Aj can be represented as

Mj = log2

(
xj
yj

)
,

Aj = 1
2
× log2 (xj × yj) .

(4.1)

After defining M and A, which are vectors of length k, a robust linear regression model

is fitted to model the dependence between M and A values as follows.

M = a+ b× A,

where the parameters are estimated by using iterative re-weighted least square with

Bisquare weighting function [36]. By obtaining the estimates of a and b by using the

common peaks, read counts of regions of all called peaks are normalised as follows:

log2 (x∗) = log2 (x) ⇒ x∗ = x

log2 (y∗) = 2×a
2−b + (2 + b)× log2(y)

2−b ⇒ y∗ = 2
2×a
2−b+(2+b)× log2(y)

2−b ,
(4.2)

where x∗ and y∗ are the normalised numbers of reads.

The second step in MAnorm is the significance checking. MAnorm does not assume any

statistical model to declare the significant differential peaks, instead it calculates p-value

numerically for each of the peaks’ regions by using a conditional probability as follows

[6].

Pr (y∗|x∗) =
(x∗ + y∗)!

x∗!y∗!2x∗+y∗+1
. (4.3)
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The above is driven by using Bayes’ theorem. That is, let x∗ and y∗ be the observed and

normalised number of reads within a pair of peaks from test and control samples, where

X∗ and Y ∗ follow the same distribution, which is Poisson distribution with rate parameter

λ where λ > 0, i.e, X∗ ∼ Poi(λ) and Y ∗ ∼ Poi(λ). So the probability of observing y∗

given the rate λ is

P (Y ∗ = y∗|λ) = e−λ
λy
∗

y∗!
.

Audic and Claverie, [6], defined a conditional probability of observing number of reads

y∗ given number of observed reads x∗ in the other peak where x∗ is treated as the rate

parameter λ, i.e, P (Y ∗ = y∗|λ = x∗). They approximate the probability of observing y∗

number of reads by using x∗ as the maximum likelihood estimate for λ. By taking into

account the fact that λ is unknown, an integration over all possible values of λ needs to

be considered as follows.

P (Y ∗ = y∗|λ = x∗) =

∫ ∞
0

P (λ|x∗)P (y∗|λ)dλ.

Through some approximations and by using Bayes’ theorem, [6] arrived to Equation (4.3).

Note that as the samples are normalised, P (Y ∗ = y∗|λ = x∗) = P (X∗ = x∗|λ = y∗) is

hold.

4.2.3 diffReps

diffReps is a statistical method that is independent from peak-calling methods. It applies

a direct testing between two given count samples. It can also be used when there are

biological replicates. diffReps provides two methods of testing difference between two

conditions based on the presence and the absence of the biological replicates. If the

experiment has biological replicates, diffReps applies an exact negative binomial test. If

there are no replicates in the experiment, two tests are provided, Chi-squared test and

G test. The project data RUNX1/ETO does not have replicates, hence an exact negative
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binomial test is not of interest here. Chi-squared test and G test give similar results, but G

test is preferable [58]. The advantage of G test is that it is less restricted on the expected

value compared to Chi-squared. Thus, we decided to consider in detail diffReps with G

test only.

Given two ChIP-Seq samples, window size and shift size, diffReps simply slides a

window with the given size by the given shift size across the genome on both samples

to detect differential regions. In detail, the working process of diffReps consists of three

steps: First, filtering the data. Second, normalising the data. Third, differential testing.

In the data-filtering step, diffReps’ authors claim that most genomic regions do not show

significant enrichment. Hence, diffReps suggests a threshold procedure for the read

counts where any window with read counts less than that threshold is filtered out. The

threshold is constructed of three components, two statistical measures calculated from

the data and a user-given statistic. From the data, diffReps calculates right trimmed

mean, µ, and median absolute deviation, k. To calculate these two statistics, diffReps

samples 100, 000 non-overlapping windows from the given samples, and then calculates

the statistics. The user’s given statistic is a tunable integer, t, which in diffReps’ default

setting is either 2 or 20 for broad and sharp peaks, respectively. Hence, providing the

above three statistics, µ, k, and t, and by using sliding window procedure, diffReps filters

any window that contains read counts less than the threshold,

µ+ t× k.

In the normalisation step, diffReps proposes a twostep process to normalise the read

counts for those windows that pass the threshold. First, calculate a numeric normalising

factor for each of the ChIP-Seq samples. Second, consider the median of each factor to

normalise its sample. That is, let xj and yj be read counts in window j from two ChIP-Seq
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data x and y. A normalising factor for sample x, fxj , is calculated as,

fxj =
xj

geometric-mean(xj ,yj)

=
xj√
xjyj

=
√

xj
yj
.

After calculating fxj for all windows j, the median of fx. is used to normalise sample x.

Similarly, the same process is done for sample y and median(fy.) is used to normalise the

sample.

The third step in diffReps is the testing. G test is applied to the normalised windows

by using the sliding window procedure. In G test, the null assumption is the difference

between the windows’ density in both samples. That is, given total number of read counts

in two windows from the two samples, it is expected to have equal an number of read

counts in each window. Mathematically, let nj be the total read counts in window j from

both samples x and y. Then, under the null of G test, the following is true.

Ej = Exj = Eyj =
1

2
× nj,

where Exj and Eyj are the expected number of read counts in window j from x and y

samples, respectively. For a window j, G test has a test statistic Gj as,

Gj = 2×
{
Oxj ln

(
Oxj
Ej

)
+Oyj ln

(
Oyj
Ej

)}
,

where Oxj and Oyj are the observed read counts in window j from x and y samples,

respectively. Under the null, Gj follows χ2 with a single degree of freedom. Hence,

rejecting the null hypothesis means that read counts in window j show significant

difference, and diffReps reports it.

4.3 Simulation study

In this section, we evaluate the performance of MACS and MAnorm jointly, and diffReps.

The evaluation is made around two points, controlling the false-positive rate and the power
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(sensitivity) of the methods. To do that, we used simulated data and real ChIP-Seq data

from the Encyclopedia of DNA Elements project (ENCODE).

4.3.1 Simulated data

In the simulation study, we want to simulate data that behave like real ChIP-Seq data. In

ChIP-Seq data, it is known most of the genome’s regions have low levels of read counts

and a few regions have quite high levels of read counts. For instance, in RUNX1/ETO

data most of the windows have a rate of read counts of 1 read per window, approximately,

and a few windows have rates larger than 10 reads per window. It was also mentioned that

the read counts can be modelled with a Poisson model. Moreover, the optimal window

for RUNX1/ETO is 200 bp and we seek simulated data with the same structure, hence the

same window size is used in the simulation.

To determine whether or not the methods control the false-positive rate at a given nominal

level, e.g, 5%, we constructed a simulation study as follows:

1. Simulate two samples each of 10, 000 windows (samples) of size 200 bp from

Poi(λ). λ ranges from 0.01 to 0.5 with step 0.02. The simulation is made for

each value in λ. By simulating in this setting, we simulate from the null hypothesis,

which assumes no difference between the two samples.

2. Perform the testing methods, and calculate the proportion of significant windows

out of 10, 000 for each testing method, where any window with p-value < 0.05 is

considered significant.

3. Repeat the above three steps 50 times, and consider the average of them as the final

results of false-positive rate for each of the used methods.

To evaluate the power of the methods, we constructed a simulation study as follows:
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1. Simulate two samples each of 10, 000 windows of size 200 bp from Poi(λ1 = 0.01).

λ1 here represents the low rate read counts, which is most of the genome’s regions.

2. Simulate 2000 windows out of the 10, 000 in both samples at the same locations

with Poi(λ2 = 0.2)

3. Simulate another 1000 windows at the same location in both samples by using

Poisson with fixed rate λ2 = 0.02 and rate λ3 ranges from 0.22 to 1 by step 0.02. To

keep the difference existing after the normalising process of the methods, in the first

sample we simulate the first 500 windows by using λ2 and the second 500 windows

by using λ3, and in the second sample the first 500 from λ3 and the second 500 from

λ2. Note that the choice of λ2 = 0.2 will be discussed in the comparison chapter,

Chapter 6.

4. Perform the testing methods, and calculate the proportion of detected significant

windows out of 1000 windows for each of the testing methods.

5. Repeat the above steps 50 times and consider the average of them as the final results

of the power for each of the used methods.

MACS and MAnorm

As MAnorm is a peak- based method, we used MACS and evaluated the performance of

MACS and MAnorm jointly. MAnorm can be evaluated by itself, if we give it the exact

regions that we simulate as peaks. Although MAnorm is a peak-based method, we did

give MAnorm exact windows to evaluate its individual performance. That is, for false-

positive determination we used MACS and MAnorm jointly, as well as using MAnorm

only by giving it the exact window’s starting and ending points, so MAnorm would do

the significance test for each of the windows. Similarly for the power evaluation, we used

the methods jointly in one run, and MAnorm only by giving it the 1000 windows with
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different rates as the peak’s regions. The results are shown in Figure 4.1 Note, MACS

was used in its default setting.

From Figure 4.1 it can be seen that MACS and MAnorm jointly do not show good control

of the false-positive rate, especially if λ is very low. By investigating the results we

found that MACS cannot detect the peaks when λ is quite low, and then it does not report

any peak to MAnorm. From the figure, we can see the false-positive rate of MACS and

MAnorm starts to recover around λ = 0.1. On the other hand, by considering MAnorm

only it can be seen that the behaviour of the false-positive rate is opposite to the behaviour

of MACS and MAnorm jointly when λ is low. Moreover, we can see that MACS and

MAnorm jointly and MAnorm only show close behaviour when λ > 0.2.

In the power plot, Figure 4.1, it can be seen that MACS and MAnorm jointly do start

detecting significant results from differences of around 0.1, whereas MAnorm only starts

much earlier with differences of around 0.02. In fact, from the results of the false-positive

rate, it is expected from MAnorm only to show higher power compared to MACS and

MAnorm jointly when the rate is low. But in the power simulation we set all the rates to

be larger than or equal to 0.2, and at that level the methods can be considered comparable.

diffReps

diffReps is also evaluated in terms of controlling the false-positive rate and power. In the

diffReps experiment, we used a window size of 200 bp, and the rest of the options as in

the default setting. Note that in diffReps the shift process has to be made, and the shift

size has to be a fraction of the window size; by default the shift size is 100 bp. Hence, we

applied diffReps with its G test and the result is shown in Figure 4.2.

In Figure 4.2 the false-positive rate plot, it can be seen that diffReps shows A quite high

false-positive rate for all used values of rate λ, and the highest associated with low λ’s. It

is assumed that diffReps controls the false positive at 5% level, but the actual level which
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Figure 4.1: Top panel shows the determination of the false-positive rate by using MACS

and MAnorm jointly, and MAnorm only based on simulated data. In that panel, the

horizontal axis represents the λ used in the simulation, and the vertical axis represents the

average of 50 false-positive rates for each of the λ’s. The lower panel shows the power of

MACS and MAnorm jointly, and MAnorm only based on simulated data. In that panel, the

horizontal axis represents the difference in rates between the two simulated data, where

we enrich the windows with different rates, and the vertical axis represents the average

power of 50 simulations for each difference point λ3 − λ2.



Chapter 4. Current methods for identifying differential binding sites 78

Figure 4.2: Top panel shows the determination of the false-positive rate of diffReps based

on the simulated data. In that panel, the horizontal axis represents the λ used in the

simulation and the vertical axis represents the average of 50 false-positive rates for each

of the λs. The lower panel shows the power of diffReps based on simulated data. In that

panel, the horizontal axis represents the difference in rates between the two simulated

datasets, where we enrich the windows with different rates, and the vertical axis represents

the average power of 50 simulations for each difference point λ3 − λ2.
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can be seen from the plot is 0.15 for λ ≥ 0.2. As we deal with simulated data and we know

the underlying assumption, hence we can adjust the p-values of diffReps so it can meet

the assumed level of false-positive rate. By running diffReps on the simulated data with

λ = 0.2 and at many levels of significance lower than 0.05, we found that by assuming the

significance level at 0.012, it is actually controlled at 0.05. Hence, p-values of diffReps

from the simulated data can be adjusted as follows. Let p and p∗ be the observed and

adjusted p-values, respectively. The adjusted p-values can be calculated as:

p∗ = a× pb, (4.4)

where a and b are parameters to be calculated by solving the following two equations.

0.15 = a× (0.05)b,

0.05 = a× (0.012)b.

After few steps of algebra, we found a = 1.51 and b = 0.78. Hence, these two parameters

are used to adjust the resulting p-values from diffReps in the simulation study by using

Equation (4.4). By performing this adjustment, the false-positive rate is controlled at the

assumed level, as shown in Figure 4.2.

From the power plot, Figure 4.2, we can see that diffReps starts to detect the differences

quite early by using its raw p-values. However, we saw that the raw setting returns a high

false-positive rate. Hence, an adjustment procedure is needed here as well. As we fixed

λ2 to be 0.2 in the simulation, we can used the same adjusting values a and b to adjust the

p-values in the power simulation. After the adjustment, it can be seen that the power curve

shifted to the right. Hence, diffReps starts to detect significant results around a difference

of 0.2, as shown in Figure 4.2.

Note that the adjustment parameters a and b would be different from one dataset to

another. In the simulation, we used simulated data with the same rate λ to adjust the

p-values. In the case where we have real data, the adjustment would be made if biological

replicates were provided (see Section 4.3.2). That is, in real data, we expect replicates to

have the same rate, and hence the adjustment can be made.
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4.3.2 ENCODE data

We used simulated data to evaluate the performance of the testing methods. Although

we set the simulation in a way that is close to the observed structure of ChIP-Seq data,

real ChIP-Seq datasets still have their special biological structures. Hence, the testing

methods need to be applied and evaluated on real ChIP-Seq data. From the ENCODE

project, we looked for ChIP-Seq data from knock-out experiments. We downloaded the

following three samples:

1. Cell line Gm12878 with transcription factor ATF2;

2. Cell line Gm12878 with transcription factor BCLAF1;

3. Cell line H1-hESC with transcription factor ATF2.

Note that for each of these three samples, there are two biological replicates. By checking

the average read counts in the samples, we found it to be around 0.02 bp per genomic

position. From the simulated data in the previous section, we know that none of the

testing methods behave well at low rate level. Hence, in order to increase the rate, we

combined the first replicates of the three samples together and the second three replicates

together. After that, we also divided the combined samples into chromosomes, and each

chromosome was divided into two halves before and after the centromere region.

To perform the false-positive evaluation, we used the replicates. Ideally, biological

replicates of the same experiment would not show significant differences. Hence, the

difference testing is performed between the replicates of the same experiment, and the

detected significant differences can be considered as false positives. We used the first half

of chromosomes 1 to 10 to do the false-positive evaluation, therefore 10 values of false-

positive rate for each testing method.

The power evaluation in the simulated data was easy as we can generate differences

between samples and we know where they are located. However, in real data it is not
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a straightforward process. We want to keep the samples with their natural variabilities.

Hence, we adapted a procedure that guarantees no change to the distribution of read

counts as follows. First, to consider only one sample with window size 200 bp. Second,

the second sample to compare with is the first sample, but by shifting one window at a

time. That is, if m is the total number of windows, then windows i = 1, 2, . . . ,m in

the first sample are matched to windows i = 2, 3, . . . ,m, 1 in the second sample. After

each shift, the testing methods are applied. In addition, after each shift, we record the

observed difference in estimated rates and hence we can plot the power as a function

of the observed difference in rates. That is, the power of a difference k is the number

of significant windows with difference k over the total number of observed difference k

across the windows. To do this, we used the first half of chromosome 10.

MACS and MAnorm

MACS and MAnorm jointly and MAnorm only are applied to the ENCODE data. MACS

is used in its default settings in both false-positive and power evaluations. For MAnorm

only, regions of windows are given as peaks in both types of evaluations. The result is

shown in Figure 4.3.

The results in Figure 4.3 show that MACS and MAnorm jointly and MAnorm only both

exhibit high false-positive rates. To control the false-positive rate at the nominal level, an

adjustment is needed. That is, we adjust the p-values that result from MAnorm by using

Equation (4.4). After adjusting the p-values, we can see both testing methods controlling

the false-positive rate at 5%, as shown in the same plot.

The power results, Figure 4.3, show that MACS and MAnorm are jointly start to detect

a significant difference of around 0.4 difference in rates. In addition, their power shows

a slow increase until 0.8 difference, then it starts to increase sharply. On the other hand,

MAnorm only appears quite powerful when all windows are reported to it. It can be
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Figure 4.3: The top panel shows the determination of the false-positive rate by using

MACS and MAnorm jointly, and MAnorm only with their adjustments based on real

ENCODE data. In that panel, the horizontal axis represents the used methods and the

vertical axis is false-positive rates for each of the methods. Each point in the plot

represents the false-positive rate by using a subsample that is a half of a chromosome.

The lower panel shows the power of MACS and MAnorm jointly, and MAnorm only

and their adjustments based on real ENCODE data. In that panel, the horizontal axis

represents the observed difference in rates between the two samples, and the vertical axis

represents the average power by using ENCODE data. More details are provided in the

text.
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seen after adjustment that MAnorm only starts to detect a significant result around a 0.05

difference in rates, and dramatically reaches its full power around a 0.35 difference in

rates, which is even before MACS and MAnorm jointly start their power curve.

diffReps

We also evaluated the controlling of the false-positive rate of diffReps by using the real

data and the results are shown in Figure 4.4. From the figure it can be seen that diffReps

shows quite good control of the false-positive rate compared to the nominal level, which

is 5%.

Unfortunately, we are not able to evaluate the power of diffReps because the settings of

the evaluation do not work with the working process of diffReps. That is, we cannot

compare or record the observed difference in estimated rates with difference in rates of

the significant regions after applying the method. This is because of the shifting process

made by diffReps.
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Figure 4.4: The determination of the false-positive rate by using diffReps based on real

ENCODE data. In the plot, the horizontal axis represents the used methods and the

vertical axis shows the false-positive rates. Each point in the plot represents the false-

positive rate by using a subsample that is a half of a chromosome.
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4.4 Project data RUNX1/ETO

4.4.1 MACS and MAnorm

We applied MACS to the project data. In RUNX1/ETO data, we have three data files for

three samples: test, control and input. We used the test and control data separately, and

used the input data as control for both samples. It was shown that the optimal window

size for RUNX1/ETO data is 200 bp. However, as mentioned, MACS sets a lower bound

for the given window size with a minimum of 300 bp (which is the default). Given that

minimum, the optimal window size of the data cannot be used in MACS. Thus, we used

MACS in its default settings, and the results follow.

By comparing the control to the input, MACS called 3790 peaks. In addition, by

comparing the test to the input, MACS called 8243 peaks. The intersection between the

test and control peaks is 3671 peaks. That means there are 4572 peaks that are uniquely

called in the test, whereas only 119 peaks are uniquely called in the control. Figure 4.5

shows a Venn diagram of the peak numbers and the intersection.

Figure 4.5: Peaks of test and control samples by using MACS in the default settings.

The test and control were compared to the input sample separately, then we verified the

common and unique peaks.

The widths of the called peaks in test range from 287 bp to 19140 bp with average width
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and read counts of 940 bp and 115 bp, respectively. In the control sample, the peaks

range from 60 bp to 7787 bp in terms of the width with a mean of 438 bp and average

read counts of 95 bp per peak. Note that MACS estimates the parameter d as 43 and 148

in the control and test samples, respectively.

The called peaks are given to MAnorm for detecting significant differences. In MAnorm,

the 3671 common peaks are used to normalise the peak’s regions. MAnorm declares that

there are 509 regions showing significant difference.

4.5 Discussion

In this chapter, we present some of the current methods for differential binding site

analysis. The common path to be followed in this analysis is based on peak-calling

methods, as prior step to the analysis. Some proposed analysis methods do perform

the peak-calling step. For instance, ChIPDiff [32] and ODIN [75]. Other proposed

analysis methods, which represent the majority, depend on any peak-calling methods.

This dependency makes, first, evaluating the performance of the analysis methods not

possible. Second, many of the proposed peak-calling methods suffer from subjectivity

and ambiguity of underlying assumptions. Therefore, different peak callers can give

different results for the same data. To remove some of this confusion, PFMS [13] was

proposed. This method combines several peak-calling methods and reports the consensus

peaks only. Moreover, many of the used analysis methods suffer from poor control of the

false-positive rate [59].

We used the most popular peak calling method of MACS. MACS has shown good

performance compared to many other peak-calling methods [68]. We used MAnorm,

which is an analysis method, jointly with MACS to analyse the called peaks. In

MAnorm, it is claimed that the p-value in Equation (4.3) is numerically calculated and

there is no assumption made for the variables in it. However, we can re-write it as
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Pr(y|x) = 1/2×Pr(Y = y) where Y ∼ Bin(n = x + y, p = 1/2). Hence, it is a

scaled point probability, while it should be a tail probability or equivalent. Moreover, it

was mentioned by MAnorm’s authors that it does not behave well when the observed rate

of read counts is low in most of the peaks, and we observed this in our simulated data.

In addition, it requires a substantial number of common peaks to work well as it does the

normalisation based on the common peaks.

diffReps offers two tests when there are no biological replicates, Chi-square and G test,

where it recommends the latter. It was mentioned by its authors that these two tests can

exhibit high false-positive rates. That is true and was observed in the simulation study.

Because of this high rate of false positives, diffReps might not be a reliable analysis

method.

We used an adjustment formula to adjust the p-values of the methods that do not control

the false positive at the targeted level. However, we expect that when the rate parameter is

large, then the values of the parameters a and b will be close to those in the formula. That

is, when the rate is large we expect any method to behave well in terms of controlling the

false positives.

In RUNX1/ETO data, MACS and MAnorm jointly detect 509 regions showing significant

differences. Although diffReps shows unreliable performance, we used it here as well

and it reports 80,163 regions with significant differences. 476 regions from MACS and

MAnorm are intersected with the diffReps’ results. That huge number by diffReps does

not mean that it is powerful, but it is a result of the high rate of false positive error. Note

that this result is obtained after performing FDR correction [8] based on the full human

genome. That is, the human genome is 3× 109 bp, and by using a window size of 200 bp,

the number of windows is (3 × 109)/200, and this is the number to be considered in the

correction process.

Currently available methods for differential binding sites are not efficient. They suffer

from subjectivity, poor controlling for the false positive rate and unclarity of the
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underlying assumptions. The need exists for objective methods with a clear underlying

model that enables control of the false-positive rate.
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Chapter 5

Parametric statistical methods for

differential binding site studies

5.1 Introduction

We showed and discussed in Chapter 4 some of the current proposed methods for

differential binding site studies. It was shown that the methods suffer from poor

controlling for false- positive error and unclear underlying models in some of them. In

this chapter, we address these issues by first defining a clear assumptions and underlying

model for the ChIP-Seq data, which is the read counts. We also employ a hypothesis test

with three parametric tests to infer significant differential binding sites. Moreover, we

evaluate the behaviour of the proposed tests in terms of false-positive rate and power. The

proposed tests show good control of the false-positive error, and a good power as well.

In the rest of this chapter, we introduce parametric statistical tests that can be used in

differential binding site studies. We first introduce the underlying model, which is Poisson

Difference (PD), Section 5.2, including parameter estimation and the challenges. We then

propose three statistical tests to be used based on the underlying model in Section 5.3.
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These tests are Exact, Wald and Likelihood Ratio Tests. We evaluate the proposed tests

by using simulated and real ENCODE data, Section 5.4. Fourth, we apply the tests on

the project data RUNX1/ETO, Section 5.5. Finally, we discuss and conclude the findings,

5.6.

5.2 Poisson Difference

It was mentioned, in Chapter 3, that the read counts of ChIP-Seq data can be modelled

as a Poisson random variable. Clearly, not the whole genome (full sample) is modelled

as Poisson with a single rate parameter, but read counts within windows can be modelled

as Poisson where each of the windows is modelled separately. Modelling each window

separately allows the rate of the read counts to vary between windows across the genome.

Note that all windows across the genome are not overlapping and have the same width

(size).

Many of the previously developed methods for detecting differential binding sites assume

a Negative Binomial (NB) model for the read counts, for example diffReps [14] and

DESeq [5]. NB is able to deal with the changes in the variability of the read counts.

However, it was shown that such methods have high false-positive rates [59]. In

RUNX1/ETO we observed that most of the windows have very low read counts (or none at

all). This observation might indicate the equality of the mean and the variance within the

windows. As a result, the Poisson model with a single rate parameter can be an acceptable

model for the read counts in this case. We fitted the Poisson model in many of them and

found that the model fitted. However, in a few windows where a large number of read

counts exist (enriched), we observed large changes in the variability of the read counts.

This observation might violate the equality of the mean and the variance within windows,

and hence the Poisson model would not be preferable in this case. In such windows we

tried to fit Poisson with a single rate parameter, but it did not fit. Given the above about
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NB and the observation in RUNX1/ETO data, we decided to start by assuming the Poisson

model with a single rate parameter for the read counts within windows. We want to see

how the Poisson model does compared to other methods under different assumptions, for

example NB.

All previous proposed methods for differential binding site studies consider read counts in

different samples as independent. However, that is not true in such studies. That is, a read

count is simply the number of times a specific position is observed, and that position must

be compared with the same position in other samples, but not with any other position. For

instance, the read count at position 100 in sample one is compared to the read count at

position 100 in sample two. This means that the read counts in the two samples are paired.

Hence, assuming independence between the two samples ignores the location relationship

between them.

As explained above, the read counts in two samples are paired, hence studying differential

binding sites can be achieved by studying the difference in read counts between the two

samples. Again, the analysis is done for the difference within windows, but not the

whole genome. The read counts in a window are modelled as Poisson with a single rate

parameter. The difference in read counts in a window between two samples is then the

difference between two Poisson variables with different rate parameters. The difference

between two Poisson variables can be described as the Poisson Difference (PD) random

variable [55].

Let xi and yi be vectors of the observed read counts in the i-th window from the test and

control samples, respectively, where xi = (x1, . . . , xn) and yi = (y1, . . . , yn), and n is

the window size (which is fixed for all windows). Let zi be the difference in read counts

in the i-th window where zi = xi − yi, i.e, zi = z1, . . . , zn. If Xi ∼ Poi(λxi) and Yi ∼

Poi(λyi), then Zi = Xi − Yi would follow the PD distribution with two rate parameters

λxi and λyi, and is denoted as Zi ∼ PD(λxi, λyi).

A PD random variable Zi, where Zi ∼ PD(λxi, λyi), is a discrete random variable
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(integers) that ranges from −∞ to ∞. Furthermore , it has probability mass function

as follows:

P (Zi = z) = e−(λxi+λyi)
(
λxi
λyi

) z
2
Iz
(
2
√
λxiλyi

)
, z ∈ {. . . ,−2,−1, 0, 1, 2 . . .}, λxi, λyi > 0,

(5.1)

where z is an integer, and

Iz (a) =
(a

2

)z ∞∑
k=0

(
a2

4

)k
k!(z + k)!

,

is a modified Bessel function of order z and of the first type, where a > 0. Assuming

independence, the random variable Zi has expectation and variance as:

E (Zi) = λxi − λyi,

V (Zi) = λxi + λyi.
(5.2)

5.2.1 Parameter estimation

To work with any parametric model, it is essential to know how to obtain the estimates of

the model’s parameters, so it can be applied in real problems where the true parameters’

values are unknown. As shown above in Equation (5.1), PD has two rate parameters,

λxi and λyi. Two types of estimations can be obtained for these parameters, which

are maximum likelihood and moment estimates. We consider the maximum likelihood

estimates (mle ), as the moment estimates do not exist under certain conditions (see the

discussion, Section 5.6).

The mle of λxi and λyi are obtained by using the likelihood function L(λxi, λyi; zi) with

the observed difference in read counts zi. Note that each window i has its PD model

with its own parameters. Hence each window i will have its mle of λxi and λyi based

on its observed differences zi. L(λxi, λyi; zi) can be obtained by using Equation (5.1) as

follows:
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L (λxi, λyi|zi) =
n∏
j=1

e−(λxi+λyi)

(
λxi
λyi

) zij
2

Izij

(
2
√
λxiλyi

)
, (5.3)

where n is the window size, and it is fixed for all windows.

For simplicity, in all upcoming equations in this section, Section 5.2.1, we will remove

the window index i from the parameters λxi and λyi and the difference data zi. However,

it is important to keep in mind that the estimation process is made individually for each

of the windows across the genome. Hence, the likelihood function in Equation (5.3) can

be rewritten as:

L (λx, λy; z) =
n∏
j=1

e−(λx+λy)

(
λx
λy

) zj
2

Izj

(
2
√
λxλy

)
. (5.4)

To obtain the mle of λx and λy from Equation (5.4), the equation needs, first, to be

differentiated with respect to (w.r.t) each of the parameters separately. Second, to set the

derivatives to zero and solve them to obtain the mle λ̂x and λ̂y. To make the differentiation

simpler, the log-likelihood function, ` (λx, λy; z), is considered instead of the likelihood

function, Equation (5.4). The log-likelihood function can be shown as follows:

` (λx, λy; z) = log

{
n∏
j=1

e−(λx+λy)
(
λx
λy

) zj
2
Izj
(
2
√
λxλy

)}
= −n(λx + λy) + log(λx)−log(λy)

2

n∑
j=1

zj +
n∑
j=1

log
(
Izj
(
2
√
λxλy

))
.

(5.5)

Next, Equation (5.5) is differentiated w.r.t λx and λy, and the derivatives are set to zero.

Note that the equation contains a Bessel function, and its derivative can be shown as

follows [1]:

∂Iz (a)

∂a
=
z

a
Iz (a) + Iz+1 (a) . (5.6)
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Now, Equation (5.5) is differentiated w.r.t λx as follows:

∂`(λx,λy ;z)

∂λx
= −n+ 1

2λx

n∑
j=1

zj +
√

λy
λx

n∑
j=1

zj

2
√
λxλy

Izj(2
√
λxλy)+Izj+1(2

√
λxλy)

Izj(2
√
λxλy)

= −n+ 1
2λx

n∑
j=1

zj +
√

λy
λx

n∑
j=1

zj

2
√
λxλy

+
Izj+1(2

√
λxλy)

Izj(2
√
λxλy)

= −n+ 1
2λx

n∑
j=1

zj + 1
2λx

n∑
j=1

zj +
√

λy
λx

n∑
j=1

Izj+1(2
√
λxλy)

Izj(2
√
λxλy)

= −n+ 1
λx

n∑
j=1

zj +
√

λy
λx

n∑
j=1

Izj+1(2
√
λxλy)

Izj(2
√
λxλy)

.

(5.7)

Next is to set the derivative, Equation (5.7), to zero as follows:

0 = −n+ 1

λ̂x

n∑
j=1

zj +
√

λ̂y

λ̂x

n∑
j=1

Izj+1

(
2
√
λ̂xλ̂y

)
Izj

(
2
√
λ̂xλ̂y

)
0 = −nλ̂x +

n∑
j=1

zj +
√
λ̂xλ̂y

n∑
j=1

Izj+1

(
2
√
λ̂xλ̂y

)
Izj

(
2
√
λ̂xλ̂y

) (5.8)

Similarly, by differentiating ` (λx, λy; z), Equation (5.5), w.r.t λy and setting the derivative

to zero we obtain the following:

0 = −nλ̂y +

√
λ̂xλ̂y

n∑
j=1

Izj+1

(
2
√
λ̂xλ̂y

)
Izj

(
2
√
λ̂xλ̂y

) . (5.9)

From Equations (5.8) and (5.9), it can be seen that solving for λ̂x and λ̂y is not explicit,

because of the Bessel term. Note that there is a relationship between λ̂x and λ̂y. That is,

by subtracting Equation (5.9) from (5.8) we obtain the following:
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0 = −nλ̂x +
n∑
j=1

zj + nλ̂y

z̄ = λ̂x − λ̂y,
(5.10)

where z̄ is the sample mean of the difference in read counts per position in a window.

This relationship, Equation (5.10), can be employed in the estimation process of the

parameters. That is, one of the parameters, either λx or λy, needs to be estimated by

using the likelihood function, Equation (5.5), and then Equation (5.10) can be used to

calculate the other parameter for a given z̄. From Equation (5.10) we have the following:

λ̂x = z̄ + λ̂y

λ̂y = λ̂x − z̄
(5.11)

Although the relationship reduces the number of parameters in the estimation process,

solving the derivatives w.r.t the estimates is still analytically not easy . For instance, by

substituting λ̂x = z̄ + λ̂y into Equation (5.9), we obtain the following:

0 = −nλ̂y +

√(
z̄ + λ̂y

)
λ̂y

n∑
j=1

Izj+1

(
2

√(
z̄ + λ̂y

)
λ̂y

)
Izj

(
2

√(
z̄ + λ̂y

)
λ̂y

) . (5.12)

If λ̂y can be separated in one side in Equation (5.12), then it can be analytically estimated.

By writing full Bessel terms in Equation (5.12), we can obtain the following:

0 = −nλ̂y +

√
z̄+λ̂y

λ̂y

n∑
j=1

(√
(z̄+λ̂y)λ̂y

)zj+1 ∞∑
k=0

((z̄+λ̂y)λ̂y)k

k!(zj+1+k)!(√
(z̄+λ̂y)λ̂y

)zj ∞∑
k=0

((z̄+λ̂y)λ̂y)k

k!(z+k)!

0 = −nλ̂y +

√
z̄+λ̂y

λ̂y

n∑
j=1

(√(
z̄ + λ̂y

)
λ̂y

) ∞∑
k=0

((z̄+λ̂y)λ̂y)k

k!(zj+1+k)!

∞∑
k=0

((z̄+λ̂y)λ̂y)k

k!(zj+k)!

0 = −nλ̂y +
(
z̄ + λ̂y

) n∑
j=1

∞∑
k=0

((z̄+λ̂y)λ̂y)k

k!(zj+1+k)!

∞∑
k=0

((z̄+λ̂y)λ̂y)k

k!(zj+k)!

.

(5.13)
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From Equation (5.13) it can be seen that solving for λ̂y analytically is not possible, as λ̂y

cannot be separated from z because of the non-linearity of the equation, and it is the same

situation for λ̂x in Equation (5.8). In such cases, numerical optimisation methods can be

used to obtain the required estimates. There are many developed numerical optimisation

methods [40, 52, 17, 33, 9]. For a given function and observations, these optimisation

methods search for values of parameters that minimise the value of the function. In our

situation, we seek the estimates of the λx and λy that maximise the log-likelihood function

in Equation (5.5). Hence, in order to use the optimisation methods we instead consider

the negative log-likelihood function, which can be shown as follows:

−` (λx, λy; z) = n(λx + λy)−
log(λx)− log(λy)

2

n∑
j=1

zj −
n∑
j=1

log
(
Izj

(
2
√
λxλy

))
.

(5.14)

By using the observed difference z in a window, λx and λy can be optimised numerically

for that window by using the negative log likelihood function, Equation (5.14), where

λ̂x and λ̂y minimise the value of −` (λx, λy; z). The values of λ̂x and λ̂y that minimise

−` (λx, λy; z), are in fact the same as those that maximise ` (λx, λy; z), and hence they are

the mle of λx and λy. Moreover, the optimisation can be done for one of the parameters

as they are related, Equation (5.11). Hence, one of the following equations can be used in

the optimisation process to obtain the mle:

−` (λx|z) = n(2λx−z̄)− log(λx)− log (λx − z̄)

2

n∑
j=1

zj−
n∑
j=1

log
(
Izj

(
2
√
λx (λx − z̄)

))
.

(5.15)

−` (λy|z) = n(z̄+2λy)−
log (z̄ + λy)− log(λy)

2

n∑
j=1

zj−
n∑
j=1

log

(
Izj

(
2
√

(z̄ + λy)λy

))
.

(5.16)
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5.3 Hypothesis testing

Hypothesis testing is a statistical tool that is used for inference purposes. In differential

binding site studies, the interest is to infer the differences between two genomic samples

under different biological conditions. In a knock-out experiment, for instance, hypothesis

testing can be employed to infer differential binding sites between test samples, where a

transcription factor is knocked-out, and the control sample.

To use hypothesis testing, underlying assumptions or a model need to be considered. We

described the characteristics of the ChIP-Seq data, which are used for differential binding

site studies. In addition, we assumed a statistical model for them. Hence, in the following

we clearly state and formalise the assumptions and the underlying model that are made

on the ChIP-Seq data.

Assumptions

For clarity purposes we will use a window index i. Let xij and yij be the read counts

in the j-th position within the i-th window for the test and control samples, respectively,

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n, and n is the size of the window and it is fixed

for all windows, and m is the total number of windows, which is equal in both samples.

Let zij be the difference in read counts between the test and control samples in the j-th

position and the i-th window, i.e., zij = xij − yij .

• For the test sample, we assume Xi1, Xi2, . . . , Xin to be independent and identically

distributed (iid) as Poisson distribution with unknown rate parameter λxi where

i = 1, 2, . . . ,m, i.e, Xij
iid∼ Pois(λxi). Similarly, for the control sample we assume

Yi1, Yi2, . . . , Yin to be independent and identically distributed (iid) as Poisson

distribution with unknown rate parameter λyi where i = 1, 2, . . . ,m, i.e Yij
iid∼

Pois(λyi).
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• Given the previous assumptions on Xij and Yij , the random variable

Zi1, Zi2, . . . , Zin, which is the difference in read counts within the i-th window, is

independent and identically distributed as Poisson Difference (PD) with unknown

rate parameters λxi and λyi for i = 1, 2, . . . ,m, i.e., Zij
iid∼ PD(λxi, λyi) where the

values of Zij are integers and Zij ∈ Z.

The above assumptions are the basis of any hypothesis testing we are about to introduce.

More specifically, PD distribution is the underlying model in our hypothesis testing.

Given this, the differential binding sites (or differential genomic regions) can be identified

by testing whether the mean of Zij , which is E(Zij) = λxi− λyi (see Equation (5.2)),

is equal to a pre-specified value c. Specifically, the interest is in testing the following

hypotheses:

H0i : λxi − λyi = c,

H1i : λxi − λyi 6= c.
(5.17)

The value of c depends on the total read counts of the test and control. That is, let Nx and

Ny be the total read counts in the test and control samples, respectively, i.e.,Nx =
∑

i,j xij

and Ny =
∑

i,j yij . If Nx = Ny, then c is equal to zero, otherwise c is equal to the

observed mean of the genome-wide difference z̄, i.e., z̄ = 1
mn

∑m
i=1

∑n
j=1 zij . In simple

words, the value c replaces the normalisation process, which is often required when the

sample sizes are different.

One can argue that the null hypothesis can be rewritten as H0i : λxi = cλyi, where c

is a normalising constant. Therefore, the parameters can be estimated from each sample

separately, then the test can be performed. We can say that this is true analytically but not

in practice. By simulation we observed that under the PD model the sample size needs to

be huge (larger than 1×106) to obtain estimates of parameters that match the estimates of

the parameters of each Poisson sample alone. Hence, we need to use the difference data to

obtain the right estimates, and normalising the read counts by constant c, the differences
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will not be integers any more (at least some of them). Thus, we stick to the hypotheses in

(5.17).

As shown above in the hypotheses of interest (5.17), the testing is performed in each

window i. For a given measure of significance, for example 5%, a window is considered

significantly differential between the two samples if the null hypothesis H0i is rejected,

where i = 1, 2, . . . ,m. In addition, given the hypotheses (5.17) and the underlying model,

PD, we employ three parametric tests to identify differential windows between the two

samples. These tests are Exact Test (ET), Wald Test (WT) and Likelihood Ratio Test

(LRT). In ET, the underlying model PD is used to calculate the test statistic, whereas WT

and LRT are approximate tests and hence approximated distributions are used to calculate

the test statistics (more details in Sections 5.3.1, 5.3.2 and 5.3.3). Note that the tests

formalise the hypotheses of interest (5.17) differently. That is, WT and LRT have the

same formalisation as in (5.17), while in ET the hypotheses are re-formalised to be as

follows (more details in Section 5.3.1):

H0i : nλxi − nλyi = nc,

H1i : nλxi − nλyi 6= nc,

where n is the window size, which is the number of bins (or positions) within a window.

5.3.1 Exact Test (ET)

We mentioned that the PD model is the basis of our testing methods. This underlying

model can be used itself to identify differential windows. In the i-th window, a test

statistic, say Ei, is calculated and a p-value can be computed by using the exact

distribution under the null hypothesis, which is PD , hence it is called an exact test.

In ET, we still assume PD as an underlying model, but with different parameters. That

is, let X∗i =
∑n

j=1 Xij and Y ∗i =
∑n

j=1 Yij be sum of read counts within i-th window in
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test and control samples, respectively. It can be shown that X∗i and Y ∗i follow Poisson

distribution with parameters nλxi and nλyi, respectively, i.e. X∗i ∼ Pois(nλxi) and Y ∗i ∼

Pois(nλyi). Now, let Z∗i = X∗i − Y ∗i be the difference between the sums of read counts

in window i, i = 1, 2, . . . ,m. Then it can be shown that Z∗i follows PD distribution with

rate parameters nλxi and nλiy, i.e., Z∗i ∼ PD(nλxi, nλyi). Given this, the expected value

of Z∗i can be shown as E(Z∗i ) = nλxi − nλiy. In ET, we use Z∗i where Z∗i =
∑n

j=1 Zij .

Hence, the hypotheses of interest (5.17) will be re-formalised as follows:

H0i : nλxi − nλyi = nc,

H1i : nλxi − nλyi 6= nc,
(5.18)

where n is the number of bins (or positions) within a window and c is a pre-specified

value that is equal to z̄. Let z∗i be the observed value of Z∗i . Then, the test statistic, Ei,

can be defined as:

Ei = z∗i =
n∑
j=1

zij i = 1, 2, . . . ,m. (5.19)

Under the null hypothesis H0i, Ei ∼ PD(nλ0
xi, nλ

0
yi) exactly, that where λ0

xi and λ0
xi are

parameters which satisfy the null constraint, i.e., λ0
xi − λ0

xi = z̄.

It was mentioned that PD distribution is not symmetric when its expectation is not equal

to zero. Hence, to compute the p-value, pi, we compute the complement probability of the

non-rejection region. That is, we sum up probabilities of all possible Z∗i , say t, such that

the probabilities are larger than or equal to the probability of the observed test statistic Ei,

then subtract this summation from one. By doing this, we compute the probability of the

rejection region under the null model. This can be formalised as follows:

pi = 1−
∑
t∈Ωi

PH0i
(Z∗i = t) where Ωi = {t : PH0i

(Z∗i = t) ≥ PH0i
(Z∗i = Ei)} .

(5.20)
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If pi is lower than some threshold, the null hypothesis is rejected and window i is

declared to be significantly different between the two samples, otherwise it is not. Note, a

multiplicity correction needs to be used to adjust p-values pi before drawing a conclusion

about the significance.

5.3.2 Wald Test (WT)

For the given hypotheses (5.17) and the underlying model, WT can be employed to

identify differential binding sites in ChIP-Seq data. WT was first introduced by the

Hungarian statistician Abraham Wald [67]. In WT, if θ is a parameter of interest and

θ̂ is the mle of it, and we want to compare that estimate to a specific value θ0, then a test

statistic θ̂−θ0
se(θ̂)

would follow a standard normal distribution asymptotically, where se(θ̂) is

standard error.

We are interested in the mean E(Zi), where E(Zi) = λxi− λyi, and in each window i we

want to test the hypothesis in (5.17),H0i : λxi−λyi = c. Hence in this case, θ = λ̂xi−λ̂yi,

θ0 = c, and se(θ̂) =
√

(λ̂xi + λ̂yi)/n which is an approximation for the standard error,

where λ̂xi and λ̂yi are the mle of λxi and λyi under the constraint λxi − λyi = z̄i, and z̄i

is the sample mean of the difference in read counts in i-th window. Then, a test statistic,

denoted as Wi, can be written as follows:

Wi =

(
λ̂xi − λ̂yi

)
− c√

(λ̂xi + λ̂yi)/n
, i = 1, 2, . . . ,m.

Under the null H0i, Wi is approximated as standard normal, Wi ∼ N(0, 1). However,

we know tha Zij is a discrete random variable, which follows PD distribution. Hence,

as we approximate discrete variable as continuous variable, a continuity correction needs

to be considered [71]. The continuity correction simply is adding ±0.5 to the discrete
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value of interest. But here we are interested in the mean, hence the continuity correction

is ±0.5/n. In this case, the test statistic Wi can be rewritten as,

Wi =

(
λ̂xi − λ̂yi

)
± 0.5

n
− c√

(λ̂xi + λ̂yi)/n
, i = 1, 2, . . . ,m, (5.21)

where c is equal to z̄, which is the observed mean of the genome-wide difference, and

under the null H0i, Wi ∼ N(0, 1) approximately. Given this, p-value, pi, can be computed

directly from the standard normal distribution at each window i by, first, calculating the

probability of observing values larger than or equal to the absolute value of the test statistic

Wi. Second, multiplying this probability by two to get the probabilities of the rejection

regions in both tails of the distribution as it is a symmetric distribution. In mathematical

notations that is:

pi = 2× P (W ≥ |Wi|) where W ∼ N(0, 1). (5.22)

For a given threshold α, H0i would be rejected and window i would be declared

significantly differential, if pi < α after applying the multiplicity correction in pi.

5.3.3 Likelihood Ratio Test (LRT)

Similar to WT, for given hypotheses (5.17) and the underlying model, LRT can be

employed to detect differential binding sites for ChIP-Seq data. LRT was first introduced

by Samuel Wilks, [69], when he found the asymptotic distribution for the observation

testing function, which is the test statistic, by Neyman and Pearson [41]. In LRT,

two likelihood functions under two different models are compared. These models are

considered as the null and the alternative models. That is, we can identify differential

windows by comparing the PD likelihood with parameters λ̂xi and λ̂yi, say L(λxi = λ̂xi,
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λyi = λ̂yi), and the PD likelihood with parameters under the null model λ0
xi and λ0

yi, say

L0(λxi = λ0
xi, λyi = λ0

yi). The hypotheses of interest are shown in (5.17), which are:

H0i : λxi − λyi = c,

H1i : λxi − λyi 6= c.

where c = z̄, which is the sample mean of the genome-wide difference data. The test

statistic of LRT, say Ri, can be computed in each window i as follows:

Ri = −2× log

(
L0(λxi = λ0

xi, λyi = λ0
yi)

L(λxi = λ̂xi, λyi = λ̂yi)

)
, i = 1, 2, . . . ,m. (5.23)

Under the null hypothesis H0i, Ri approximately follows a Chi-squared distribution, χ2.

To calculate the likelihood under the null PD model, L0, we estimate the parameters by

using constraint λ̂0
xi− λ̂0

yi = z̄. On the other hand, the constraint λ̂xi− λ̂yi = z̄i is used

to estimate the parameters of the observed PD model, where z̄i is the sample mean of the

difference data in window i. Note that given these constraints, we need only to estimate

one of the parameters (see Equation (5.11)). In this case and under the null hypothesis,

the test statistic Ri follows χ2 distribution with one degree of freedom, approximately,

owing to the used constraint in the estimation process.

Given the test statistic Ri, the p-value pi can be calculated from χ2
1 as follows:

pi = P (R ≥ Ri) where R ∼ χ2
1. (5.24)

For a given threshold α, the null hypothesis would be rejected and window i would be

declared significantly differential, if pi < α after applying a multiplicity correction in pi.
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5.4 Simulation study

We perform simulation studies to determine several factors. First, to determine the ability

of obtaining mle of λxi and λyi under the PD model by using the difference data. Second,

to determine whether the test statistics behave well with the distributions under the null

hypothesis in ET, WT and LRT. Third, to determine whether ET, WT and LRT control the

false-positive rate at a specified level of significance α. Finally, to determine the power of

ET, WT and LRT in detecting truly differential regions.

To do so, we consider two simulation models. First, a model based on simulated data,

Section 5.4.1. In this simulation model, we determine the four previous factors. Second,

a model based on real data, which is ENCODE project data. In this simulation model, we

only determine the false-positive rate and the power factors; more details can be found in

Section 5.4.2.

5.4.1 Simulated data

Determination of parameter estimation

To determine the ability of obtaining the mle of λxi and λyi, we simulate two Poisson

samples, xi = xi1, xi2, . . . , xin and yi = yi1, yi2, . . . , yin with known rates λxi and λyi,

where i indicates the window number (it can be considered as sample number) and n is

the sample size. Then, we take the difference zi = xi − yi, i.e., zi = zi1, zi2, . . . , zin. By

using observations zi, we want to obtain the mle λ̂xi and λ̂yi. Note that to obtain the mle

of PD, we use either Equation (5.15) or (5.16).

By using the above setting, we run many simulations by using different values of rates,

λxi and λyi, and different sample sizes n. In these simulations, we notice that the mle

of the parameters are quite different from the true values, and from the direct mle from
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each sample, which are λ̂xi = x̄i and λ̂yi = ȳi. For instance, in Figure 5.1 we show a

profile of the likelihood of a single simulation by using the difference data zi where the

true rate parameters are λxi = 0.3 and λyi = 0.2, with sample size n = 20. In the figure,

it can be seen that the behaviour of the likelihood function is regular for the given values

of λxi and λyi with maximum values at λ̂xi = 0.22 and λ̂yi = 0.12. However, the mle

from each of the simulated samples are λ̂xi = 0.31 and λ̂yi = 0.21, which are close to

the true values. On the other hand, the difference between λ̂xi and λ̂yi is the same in both

estimators , either by using zi or xi and yi, owing to the constraint (5.11). To address this

issue of different estimations, we conduct a bias simulation study for the estimators of PD

distribution (more details follow).

Figure 5.1: A profile likelihood for λxi and λyi by using the difference data zi. Horizontal

and vertical axes represent values of parameters λxi and λyi, respectively. The sample size

is n = 20. The intersection between the two red lines indicates the maximum likelihood

value.
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In the bias study, for simplicity we consider the case when the two parameters of PD are

equal [21], say λi, i.e., λi = λxi = λyi. In this case, the probability mass function in

Equation (5.1) can be re-written as follows:

P (Zi = z) = e−2λiIz (2λi) , z ∈ {. . . ,−2,−1, 0, 1, 2 . . .}, λi > 0. (5.25)

In the above probability function, it can be seen that only one parameter needs to be

estimated, which is λi. Hence, to obtain the mle of λi, we use the likelihood function of

(5.25), L(λi|zi), which can be shown as:

L(λi|zi) =
n∏
j=1

e−2λiIzij (2λi) ,

and the log-likelihood, `(λi|zi), as:

`(λi|zi) = −2nλi +
n∑
j=1

log
(
Izij (2λi)

)
.

Again, the mle of λi cannot be derived explicitly, as the derivation includes a Bessel term.

Hence, we use numerical optimisation methods to obtain the mle of λi. The negative

log-likelihood function to be used in the optimisation process is: −`(λi|zi).

The simulation is done as follows. We simulate samples xi and yi from Poisson

distribution with rate parameter λi, Pois(λi), and sample size n. Then, we consider

the difference zi = xi − yi, hence Zi would follow PD(λi, λi). Finally, we estimate

λi by using −`(λi|zi). For the rate parameter, we use λi ranges from 0.01 to 1.

Furthermore, for each rate parameter λi we simulate 10, 000 samples for each xi and

yi, i.e. i = 1, . . . ,m = 10000. Moreover, for each of the rate λi we simulate by using

sample sizes n = 5, 25, 45, . . . , 485. Finally, we compute the bias by subtracting the

true rate λ from the average of the estimates. Mathematically, this can be formalised as

follows. Let λ̂i be the mle of λ by using i-th sample where i = 1, 2, . . . ,m. Then, the

bias of the estimate can be shown as:
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Bias
(
λ̂
)

=
1

m

m∑
i=1

λ̂i − λ. (5.26)

Moreover, for each sample size n we compute the bias. For instance, for λi = 0.01 we

compute the bias for sample size n = 5, n = 25, n = 45 and so forth up to n = 485. We

do the same strategy for other proposed values of λi, which ranges from 0.01 to 1. Hence

for each value λi, we have a number of estimates that is equal to the number of the sample

sizes. In other words, we want to see the bias as a function of the sample size n. In Figure

5.2, we show some of the findings.

In Figure 5.2, it can be seen that the relative bias goes to zero as the sample size and

the rate parameter increase. Furthermore, there is a sharp decay at the beginning of the

figure. Specifically, from n = 5 to n = 25 the bias decreases sharply, and after n = 25

it continues decreasing but slower compared to the first part. The explanation of this

behaviour is simply because sample size n = 5 is very small, and hence it is less likely

to be an accurate. On the other hand, sample sizes n = 25 and more can be considered

large, hence the bias from size to size decreases smoothly as the size increases. Thus, it

appears that the maximum likelihood estimator of PD is asymptotically unbiased.

Determination of test statistic distribution

To determine whether the test statistics behave well with the distributions under the null

hypothesis in ET WT and LRT, we can compare the observed distribution of the test

statistics to the null distributions. That is, in ET the test statistics are compared to

PD, in WT the test statistics are compared to the standard normal, and in LRT the test

statistics are compared to Chi-squared with one degree of freedom. More simply, the

same comparisons can be achieved by analysing the p-values of the test statistics. That

is, we can say the test statistics behave well with the null distribution, if the cumulative

distribution of their p-values is uniform and exhibits a continuous increasing function of

the observed p-values.
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Figure 5.2: Bias of maximum likelihood estimator of PD as a function of sample size.

Horizontal and vertical axes are the sample size and the relative bias, which is Bias(λ̂)/λ,

respectively. Each point in the figure represents an average of 10, 000 bias values by using

a sample size n. Four lines for λ = 0.01, 0.1, 0.5, 1 are shown in the figure.
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To do the above comparisons, we conduct a simulation study as follows. First, we simulate

two Poisson samples xi and yi with the same rate λ = λxi = λyi, which corresponds to

the null hypothesis in (5.17), and sample size n. Second, we consider the difference zi =

xi − yi. Finally, we perform the tests to obtain the test statistics Ei, Wi, and Ri. In the

simulation, we consider values of the rate λ ranging from 0.01 up to 1, and sample size

n = 200. In addition, for each λ we simulate 10, 000 samples from each xi and yi, hence

for each rate λ we end up with 10, 000 values of Ei, Wi, and Ri, i.e. i = 1, 2, . . . , 10000.

These test statistics are compared to PD(nλ, nλ), N(0, 1) and χ2
1 in ET, WT and LRT,

respectively. Moreover, for these test statistics we can compute p-values as shown in

Equations (5.20, 5.22 and 5.24). In addition, we repeat all previous simulations 100 times

and consider an average result for each of the rates λ. The result is shown in Figure 5.3.

In Figure 5.3, we show the empirical CDF of p-values of test statistics E, W , and R, by

using rate λ = 0.01, 0.1, 0.5 and 1. In the figure, it can be seen that none of the tests

behave well when the rate is low. More specifically, by using λ = 0.01, the distributions

of the p-values appears discrete under ET, WT and LRT. From the behaviour of the CDF it

can be said that ET and WT would show a rejection rate for the null hypothesis lower than

expected at nominal significance level 5%, while LRT would show larger (more details

in the following section). However, it is noticed that for rate λ ≥ 0.1, the CDF improved

in all tests. It can be seen that WT and LRT show quite similar behaviour as the rate

increases. ET improves as well by increasing the rate λ, but not as much as WT and LRT.

Determination of false-positive rate and power

To determine the controlling of the false-positive rate and the power in ET, WT and LRT,

we use the same simulated data to evaluate the false-positive rate in diffReps and MACS

with MAnorm methods, Section 4.3.1. We perform the tests on the simulated data and

show the results in Figure 5.4.
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Figure 5.3: Empirical cumulative distribution function (CDF) of p-values of test statistics

of ET, WT and LRT. The left hand column of the figure represents the full CDF, whereas

the right hand column represents zoom plots of the left plot around 5%. Each of the

coloured lines represents an average of 100 lines, each of which contains 10, 000 p-values.

In the simulation we simulate two Poisson samples with the same rate λ.
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In the top panel of Figure 5.4, we can see the tests behave as we expected in the previous

section. That is, for low rate values λ none of the tests show good control for the false-

positive rate at the significance level of 5%. It can be seen that ET and WT seem to be

conservative and show a low false-positive rate associated with low values of λ. On the

other hand, LRT shows a quite high rate of false-positive error associated with a low rate

of λ, lower than 0.1. However, it can be noticed that for values of λ around 0.2 and more,

all tests show quite good control of the false- positive rate.

In the bottom panel of Figure 5.4, we represent the evaluation of the tests’ power. It can

be seen that LRT appears as the most powerful test, and next to it WT then ET. However,

it can be said that the differences between the tests in term of power are not large, and

the tests show similar power in general. It also can be seen that all tests start to detect the

differences around 0.05, and reach maximum power with difference in rates around 0.3.

5.4.2 ENCODE data

In this section, we evaluate the proposed testing methods, ET, WT and LRT by using

ChIP-Seq data from the ENCODE project [12]. Initially, we aim to determine four factors,

parameter estimation, test statistic distribution, false-positive rate and power. However,

by using real data we are only able to evaluate two factors, which are false-positive rate

and power. That is, in real data the true values of the parameters λxi and λyi are unknown.

Hence, in parameter estimation determination we can obtain the mle λ̂xi and λ̂yi, but

we cannot compare them to the actual λxi and λyi because they are unknown. About

test statistics, we can have a single comparison for the test statistics distribution in each

dataset with the null distribution. However, we cannot combine more than one dataset in

a single comparison as the true rate parameters are unknown. Hence, it acceptable for the

checking in specific data, but not enough to draw a conclusion.

To determine the false-positive rate and power of ET, WT and LRT, we use the same
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Figure 5.4: The top panel shows the evaluation of the false-positive rate by using ET,

WT and LRT based on simulated data. In that panel, the horizontal axis represents the

used λ in the simulation and the vertical axis represents the average of 50 false-positive

rates for each of the λs. The lower panel shows the power of ET, WT and LRT based on

simulated data. In that panel, the horizontal axis represents the difference in rates between

the two simulated datasets, where we enrich the windows with different rates, and the y

axis represents the average power of 50 simulations for each difference λ3 − λ2. More

details about the evaluation structure are provided in Section 4.3.1
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ENCODE data in Section 4.3.2, which are used in MACS and MAnorm, and diffReps

methods evaluation. Hence, we performed the tests ET, WT and LRT, and show the results

in Figure 5.5. In the top panel of the figure, we represent the false positive evaluation. We

can see that ET and LRT show good control of the false-positive rate at the 5% level of

significance, whereas WT shows over controlling of it. The figure indicates that ET is the

most accurate test, and in second place is LRT. Furthermore, it indicates that WT is quite

a conservative test.

The lower panel of Figure 5.5 represents the power determination. It can be seen that

the tests show slightly different power, although they all start detecting significant results

with very small differences in rates. That is, the tests start to declare significant results

and continue with a sharp increase at differences in observed rates lower than 0.04, in

order LRT, ET and then WT. However, around differences of 0.1 ET and WT continue

their sharp increasing and become more powerful compared to LRT. ET and WT reach

the maximum power at a difference of around 0.4, whereas LRT reaches it at a difference

of around 0.6.
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Figure 5.5: The top panel shows the determination of the false-positive rate by using ET,

WT and LRT based on real ENCODE data. In that panel, the horizontal axis represents the

used methods and the vertical axis shows the false-positive rates for each of the methods.

Each point in the plot represents the false-positive rate by using a subsample that is a half

of a chromosome. The lower panel shows the power of ET, WT and LRT based on real

ENCODE data. In that panel, the horizontal axis represents the observed difference in

rates between the two samples and the vertical axis represents the average power by using

ENCODE data. More details about the evaluation structure are provided in Section 4.3.2.
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5.5 Project data RUNX1/ETO

We perform the tests ET, WT and LRT for RUNX1/ETO data. We use window size 200

bp, which is optimal, and bin size 1 bp within windows. The result is represented in

a Venn diagram in Figure 5.6. Note that all the following findings were obtained after

applying multiplicity correction FDR [8] based on the human genome-wide (hence total

number of tests is (3× 109)/200, where 200 is the window size).

Figure 5.6: The number of significant regions (either as single windows or a group

of adjacent windows) in RUNX1/ETO data detected by using ET, WT and LRT. As

some windows are adjacent to each other, the numbers within brackets represents the

corresponding number of significant windows of size 200 bp.

In the figure, we can see that ET declares 824 regions corresponding to 1030 significant

windows of size 200 bp. In addition, 1182 regions corresponding to 1490 significant

windows are detected by WT. Moreover, LRT detects 1514 regions corresponding to 1876

significant windows. In total, there are 1521 regions that are declared by either ET, WT

or LRT corresponding to 1887 significant windows. It can be noticed in the figure that all

regions declared by ET are subsets from both WT and LRT. In other words, ET, WT and

LRT all agree on the significance of these 824 regions. In addition, it can be seen that WT

has 7 regions corresponding to 11 windows that are uniquely declared. By checking the

p-values of these 11 windows, it is found that the p-values are all close to the threshold
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5%, and ET and LRT have p-values just above the threshold.

Figure 5.7 presents the highest and lowest significance windows from the union of the

significant results by ET, WT and LRT based on their p-values. In the top panel the

most significance window is shown, and in the lower panel is the lowest significance

window. From the figure it can be said that the proposed tests are able to detect significant

differences either in dense windows or windows with low read counts.

5.6 Discussion and conclusion

In this chapter, we have developed three hypothesis tests that are able to detect significant

differential binding sites (or regions) in ChIP-Seq experiments. Given two ChIP-Seq

samples, test and control, the observed read counts at genomic positions are considered

as paired observations. Hence, the difference in read counts between the test and control

samples is considered and analysed by the proposed tests. The assumption made on the

data is clear, which is the read counts within a genomic window are assumed to follow

Poisson distribution with a single and unknown rate parameter. Hence, the difference

in read counts within a genomic window follows PD distribution with two unknown rate

parameters. An advantage of considering the difference is that the difference observations

become more independent, although the read counts in each sample sometimes show weak

dependence.

To perform the tests, the two parameters of PD need to be estimated. We seek the mle.

Obtaining the mle analytically is not trivial as the derivations involve Bessel terms. Hence,

numerical optimisation methods are used instead to obtain the mle. As the two parameters

are related, one of them is optimised and the other parameter is estimated by using a

constraint. We faced a challenge in the estimation process. That is, in the optimisation

process we usually obtain a positive estimate as we use a transformation that grantees

that. However, estimating the other parameter by using the constraint sometimes yields a
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Figure 5.7: Highest (top panel) and lowest (lower panel) significance windows from the

union of the significant results by ET, WT and LRT based on their p-values. Horizontal

axis represents bins (or positions) and vertical axis represents read counts. The windows

are represented by using window size 200 bp, which is optimal and used in the analysis

process.
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negative estimate. This happens when one of the windows contains no read counts or a

very low number of read counts compared to the other window. To solve this issue, we

just swap the optimised parameter with the other one, i.e. instead of using Equation (5.15)

we use Equation (5.16), and vice-versa.

In PD parameter estimation, we focus on the mle, as they are required in the approximated

tests, WT and LRT. However, a moment estimate can be provided as well. That is, for

difference data z, where Z ∼ PD(λx, λy), the moment estimates of the parameters can be

shown as λ̂x = 1
2
(S2 + z̄) and λ̂y = 1

2
(S2− z̄), where S2 and z̄ are the sample variance and

mean of the difference z. However, the moment estimates do not exist if the absolute value

of the sample mean is larger than the sample variance, i.e. |z̄| > S2. If that happened, then

we would obtain a negative estimate for one of the parameters, which is the same issue we

faced in mle (but we solve it). Some researchers, like [4], suggest considering the negative

estimate zero, and the other one as the absolute value of the sample mean, |z̄|. However,

if we did consider that suggestion, the probability function of PD, Equation (5.1), would

be made redundant. That is, we would not be able to use the function, Equation (5.1),

because it would be either 0 or ∞. More details about PD estimators, properties, and

asymptotic properties and more are given in [4, 22, 23].

The maximum likelihood estimates are asymptotically unbiased estimates for the

parameters of PD. That is, the bias tends to zero as the sample size and the rate parameter

go to infinity. However, we notice that large parameters exhibit larger bias when The

sample is small with convergence to zero slower than small parameters. This may suggest

that we can look for a formula where we can compute the sufficient sample size for a given

rate parameter. However, such a formula would not be useful in practice as the actual rate

parameters are unknown. On the other hand, the bias would not cause any problem in the

testing methods we proposed. That is, the testing we do is all around the expected value

under PD, which is the difference between two rates. Hence, the bias would not have

much effect when we consider the difference.
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The tests we propose involve one exact test (ET) and two approximated tests (WT and

LRT). That is, in ET the same distribution under the null assumption is assumed to be the

test statistic (which is PD), while in WT and LRT approximated distributions are assumed

for the test statistics (which are standard normal and Chi-squared, respectively). In the

evaluation of the observed and assumed distributions for the test statistics, we find that

all three tests show not well fitting when the rate parameters are very small, which is due

to the discreteness. However, the fitting improves quite quickly when the rate parameters

increase.

Furthermore, the evaluation of the proposed tests (ET, WT and LRT) based on simulated

and real data shows that LRT is the most powerful test when the rate parameters are

very small in PD. However, by looking at the false-positive evaluation based on simulated

data, we can say that power can be owing to the high level of false-positive rate associated

with small rate parameters. On the other hand, ET and WT show very low rates of false

positive error evaluation (based on simulated data) associated with low rate parameters,

but do well in the power evaluation.

In the real-data-based evaluation, it can be said that ET is the most accurate test compared

to WT and LRT. Although LRT in the false positive rate evaluation shows good controlling

of the error at 5%, the observed variability in ET is much smaller than the observed

variability in LRT, Figure 5.5 (top panel). Moreover, by looking at WT’s false-positive

rate, we can say that WT is doing well in terms of power in the same figure (lower panel).

To sum up, it can be said that the proposed tests (ET, WT and LRT) are able to detect

differential regions or binding sites based on the assumptions. Based on the false-positive

evaluation at the given level of significance, the tests show reasonable controlling for the

false-positive rate, especially when the rate parameters are not very small. Based on the

power evaluation, the tests show the ability to detect significant differential regions with

quite small observed difference in rate parameters. Based on false-positive and power

evaluations, it can be said that ET seems to be the most accurate test, then WT and LRT
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in order.
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Chapter 6

Comparison study

6.1 Introduction

In this chapter, we perform a comparison study between the methods of differential

binding sites analysis using ChIP-Seq data, which have been discussed in Chapters 4

and 5. These methods are MACS and MAnorm, diffReps, exact test (ET), Wald test (WT)

and likelihood ratio test (LRT).

The rest of this chapter is constructed as follows. In Section 6.2, we perform comparisons

based on simulated data. We perform comparisons based on real ENCODE data in Section

6.3. We perform a comparison based on RUNX1/ETO in Section 6.4. In Section 6.4 we

also perform a comparison based on the gene expression result of RUNX1/ETO. Finally,

in Section 6.5 we discuss the findings.

6.2 Comparison based on simulated data

In this section, two types of comparisons are performed. First, comparing the ability

to control the false-positive rate. Second, comparing the power of the methods under
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consideration. We use the same simulated data to evaluate the false-positive rate and

power of MACS and MAnorm, diffReps, ET, WT and LRT in 4.3.1 and 5.4.1. Hence, we

need to combine the findings and analyse them.

False-positive rate evaluation

Here is a reminder of how we simulate the data that are used in the false-positive rate

evaluation, which is first mentioned in Section 4.3.1.

1. Simulate two samples each of 10, 000 windows (samples) of size 200 bp from

Poi(λ). λ ranges from 0.01 to 0.5 with step 0.02. The simulation is made for

each value in λ. By simulating in this setting, we simulate from the null hypothesis,

which assumes no difference between the two samples.

2. For each proposed method, calculate the proportion of significant windows out of

10, 000 for each method, where any window with p-value < 0.05 is considered

significant.

3. Repeat the above steps 50 times, and consider the average of them as the final results

of the false-positive rate of each method.

In Figure 6.1, we represent the false-positive rate evaluation of MACS and MAnorm

jointly, MAnorm only, diffReps, ET, WT and LRT. It can be seen in the figure that ET,

WT and LRT first start to control the false-positive rate at the 5% level of significance

compared to the other methods. It can also be noticed that all methods seem to be stable

in controlling the false-positive λ > 0.2. Note that diffReps is adjusted in the figure by

using Equation (4.4), hence we have two lines, before and after the adjustment.
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Figure 6.1: The evaluation of the false-positive rate by using MACS and MAnorm jointly,

MAnorm only, diffReps, ET, WT and LRT based on simulated data. In the figure, the

horizontal axis represents the λ used in the simulation and the vertical axis represents the

average of 50 false- positive rates for each of the λ’s.
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Power evaluation

The following is a reminder of how we constructed the simulation to evaluate the power,

which is first mentioned in Section 4.3.1.

1. Simulate two samples each of 10, 000 windows of size 200 bp from Poi(λ1 = 0.01).

λ1 here represents the low rate read counts, which is most of the genome’s regions.

2. Simulate 2000 windows out of the 10, 000 in both samples at the same locations

with Poi(λ2 = 0.2)

3. Simulate another 1000 windows at the same location in each sample by using

Poisson with fixed rate λ2 = 0.02 and rate λ3 ranges from 0.22 to 1 by step 0.02. To

keep the difference existing after the normalising process of the methods, in the first

sample we simulate the first 500 windows by using λ2 and the second 500 windows

by using λ3, and in the second sample the first 500 from λ3 and the second 500 from

λ2.

4. Apply the analysis methods, and calculate the proportion of detected significant

windows out of 1000 windows for each of the analysis methods.

5. Repeat the above steps 50 times, and consider the average of them as the final results

of the power for each of the analysis methods.

Note that the choice of λ2 = 0.2 in the above simulation is based on the false-positive rate

result. That is, to have fair power comparison between the methods, the methods must

behave equally (or at least closely) at the desired level of significance, 5%, in terms of

false-positive rate. If a method exhibited a high false- positive rate, then it would show

higher power compared to methods that control the rate at the right level. On the other

hand, if a method exhibited a low false- positive rate, then it would show less power

compared to other methods that control the rate at the right level. In Figure 6.1, it can
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be seen that for λ2 ≥ 0.2 the methods start to show stable behaviour of controlling the

false-positive rate, and their performances are quite close to each other. Hence, we use

λ2 = 0.2 in the power simulation.

In Figure 6.2, we represent the power of MACS and MAnorm jointly, MAnorm only,

diffReps, ET, WT and LRT based on simulated data, as shown above. In the figure, it can

be seen that MAnorm itself is the first to detect the significant differences. After MAnorm,

we have in order LRT, WT, ET, MACS and MAnorm, and diffReps (after the adjustment).

However, LRT, WT and ET reach maximum power first, then MAnorm, diffReps after

adjustment, and then MACS and MAnorm.

6.3 Comparison based on real data

In this section, we perform two types of comparisons using real ChIP-Seq data from the

ENCODE project. First, comparing the control of the false-positive rate, and second,

comparing the power. We use the same ENCODE data in the evaluation of the false-

positive rate and power in Sections 4.3.2 and 5.4.2. Hence, we need to combine and

analyse the findings of Sections 4.3.2 and 5.4.2.

To perform the evaluations, we have three ChIP-Seq experiments from the ENCODE

project, each of which has two biological replicates. The experiments are:

1. Cell line Gm12878 with transcription factor ATF2;

2. Cell line Gm12878 with transcription factor BCLAF1;

3. Cell line H1-hESC with transcription factor ATF2.

We combine the first replicate from each experiment, as well as the second replicate.

Hence, we end up with one ChIP-Seq sample with two biological replicates. The purpose
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Figure 6.2: The evaluation of the power of MACS and MAnorm jointly, MAnorm only,

diffReps, ET, WT and LRT based on simulated data. In the figure, the horizontal axis

represents the difference in rates between the two simulated data sets, where we enrich

the windows with different rates, and the vertical axis represents the average power of 50

simulations for each difference λ3 − λ2.
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of doing that is to increase the observed read counts rate, and hence we would have better

performance for the analysis methods (full details are given in Section 4.3.2).

False-positive rate evaluation

Here is a reminder of how we evaluate the false-positive rate based on the real data.

We compare the replicates together, where ideally they would not show significant

differences. We use the first part of chromosomes 1 to 10, separately (first part means

the region before the centromere). Therefore, we would have 10 values of false-positive

rate for each of the analysis methods.

In Figure 6.3, we the show the results of false-positive evaluation by using ET, WT, LRT,

MACS and MAnorm, MAnorm only and diffReps. From the figure it can be said that ET

is the best compared to the other methods in terms of controlling the false positive rate. It

can also be seen in the figure that MACS and MAnorm, and MAnorm only exhibit high

false-positive rates, and they are adjusted by using Equation (4.4). Moreover, WT shows

the lowest false-positive rate compared to the others.

Power evaluation

Here is a brief reminder of how we evaluate the power based on real data. We consider

only the first part of chromosome 10. The chromosome is divided into fixed and non-

overlapping windows of size 200 bp. We then consider two copies of that chromosome,

say test and control. Hence, the two copies are identical at the first time. Now, the power

is evaluated by comparing the test to the control sample, but by shifting one window in

the test sample at a time (full details are provided in Section 4.3.2).

Figure 6.4 shows the power evaluation of ET, WT, LRT, MACS and MAnorm, and

MAnorm only by using the first part of chromosome 10 as described above. In the figure,
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Figure 6.3: The evaluation of the false-positive rate by using MACS and MAnorm jointly,

MAnorm only, diffReps, ET, WT and LRT based on real data. In the figure, the horizontal

axis represents the analysis methods and the vertical axis represents the false-positive

rates. Each point in the plot represents the false-positive rate by using a subsample that is

a part of a chromosome, where we use the first part from chromosomes 1 to 10.
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Figure 6.4: The evaluation of the power of ET, WT, LRT, MACS and MAnorm, and

MAnorm only based on real data. In the figure, the horizontal axis represents the observed

difference in rates between the two samples and the vertical axis represents the average

power by using ENCODE data.
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it can be seen that unadjusted MAnorm is the first method that starts to detect differences,

then LRT, ET and WT, in order. However, after adjusting MAnorm (by using Equation

(4.4)), we can see that MAnorm is shifted and shows lower power compared to LRT, ET

and WT. On the other hand, MACS and MAnorm power before and after adjustment is far

away from the others. It can be seen that MACS and MAnorm start detecting differences

around 0.3, whereas other methods start detecting differences lower than 0.1. In addition,

we can see that ET, WT, LRT and MAnorm reach the maximum power at differences

less than 0.6, while MACS and MAnorm reaches its maximum power at a difference of

around 1.

From Figure 6.4 it can be said that ET, WT and LRT perform better than MACS and

MAnorm and MAnorm only. However, it is not easy to declare which of them is the most

powerful method. That is, LRT is the first to start detecting differences compared to ET

and WT. On the other hand, ET and WT are the first and the second, respectively, to reach

full power. However, by recalling the false-positive rate results of ET, WT and LRT, we

may say that ET is the most powerful method, and WT is the second most powerful, then

LRT. That is because LRT shows a higher false-positive rate compared to ET and WT.

Note that diffReps is excluded from the power evaluation as the setting of the evaluation

does not work with the working process of diffReps (full details are provided in Section

4.3.2).

6.4 Comparison based on RUNX1/ETO

In this section, we perform three related comparisons. First, to compare the significant

regions that are identified by ET, WT, LRT, MACS and MAnorm, and diffReps after

analysing RUNX1/ETO data. Second, to find and compare the nearest gene to the

significant regions that are identified by ET, WT, LRT, MACS and MAnorm. Third, to

compare the found gene, which is in the second comparison, with a previous analysis that
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has been done for gene expressions of RUNX1/ETO knockdown experiment by [37].

Significant regions

Recall the setting we use to analyse the data. In RUNX1/ETO data, we find that a window

of size 200 bp is optimal to represent the variability in the data in the test and control

samples. Therefore, we divide the data of RUNX1/ETO into non-overlapping windows

of fixed size of 200 bp. Within windows we consider bins of size 1 bp, i.e., we count the

reads at each genomic position. Then, we analyse the data using ET, WT, LRT, MACS

and MAnorm, and diffReps. In ET, WT, LRT and diffReps, we use the optimal window

size but a shifting process is considered in diffReps with a shift size of 100 bp. In MACS

and MAnorm, the minimum window size in MACS is 300 bp, and hence we use that

minimum window size.

In Figure 6.5 we show four Venn diagrams, which represent the results of analysing

RUNX1/ETO by using ET, WT, LRT, MACS and MAnorm, and diffReps. In the Venn

diagrams, we show the result of each of the methods, as well as the intersections between

them. In panel (a), we represent the results of ET, WT and LRT, which are already shown

in Figure 5.6, in terms of genomic regions that may correspond to more than one window.

In panel (b), we represent the results of ET, WT, LRT, and MACS and MAnorm, and the

intersections between them. In that panel, we can see that most of the regions detected

by MACS and MAnorm are intersecting with the detected regions of ET, WT and LRT.

Specifically, out of the 509 significant regions identified by MACS and MAnorm, there

are 420 significant regions that are overlapped with 371 significant regions identified by

all ET, WT and LRT. It can be seen that most of the overlapping regions are in the regions

detected by ET, which are detected by WT and LRT as well.

In Figure 6.5, panel (c) represents the results of ET, WT, LRT and diffReps, and the

intersections between them. In the panel, it can be seen that there are three regions
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Figure 6.5: Result of RUNX1/ETO analysis by using ET, WT, LRT, MACS and MAnorm,

and diffReps methods. The numbers in the Venn diagrams represent the number of the

significant genomic regions, which may correspond to more than one genomic window.

Panel (a) represents the results of ET, WT and LRT. Panel (b) represents the results of

ET, WT, LRT, and MACS and MAnorm, and the intersections between them. Panel (c)

represents the results of ET, WT, LRT and diffReps, and the intersections between them.

Panel (d) represents the intersections between the union of the proposed tests (ET, WT

and LRT), MACS and MAnorm, and diffReps.
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identified by either ET, WT or LRT that do not overlap with the regions identified by

diffReps. One of these three regions is significant in the three tests (ET, WT and LRT),

whereas two regions are significant in LRT only. In panel (d) of the same figure, we

represent the intersections between the results of the union of the proposed tests (ET, WT

and LRT), MACS and MAnorm, and diffReps. From the panel it can be noticed that most

of the significant regions identified by ET, WT, LRT, or MACS and MAnorm overlap

with significant regions identified by diffReps. It can be seen that there are 56 significant

regions detected by MACS and MAnorm that overlap with diffReps’ regions. These 56

regions by MACS and MAnorm correspond to 99 regions in diffReps’ findings. This

means MACS’s and MAnorm’s regions are wider than diffReps’ regions.

Significant regions and genes

After identifying the significant regions, the next step is to look for the nearest genes

to these regions. We consider the regions that are identified by ET, WT or LRT, and

MACS and MAnorm. We do not consider diffReps’ regions as it detected a huge number

of regions in addition to most of the regions detected by the other methods. Hence,

we consider the other methods’ regions, which can be described as subset of diffReps’

regions, and discard diffReps’ unique regions, as we suspect high false-positive results

from diffReps.

To identify the nearest genes to the detected regions, we can use annotating software.

These software only need information of chromosome and starting and ending positions

of the regions of interest to work. There are many available annotating software packages.

We use Homer software [54]. The regions we want to look at are the union of ET, WT

and LRT, which are 1521 regions. In addition, we want to look at the identified regions by

MACS and MAnorm, which are 509 regions. Hence we use Homer software with these

regions and show the results in Table 6.1.
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ET, WT or LRT MACS and MAnorm Overlaps

Number of genes 1289 406 351

Within 20 kbp 514 174 132

Table 6.1: Number of genes that are mapped closest to the significant regions identified

by ET, WT, LRT, and MACS and MAnorm. The first row describes the number of genes,

and the second row describes the number of genes located within 20,000 bp from the

significant regions.

In Table 6.1 it can be seen that the numbers of genes are much lower than the numbers

of significant regions. That is, the union of ET, WT and LRT is 1, 521 regions, whereas

the number of closest genes is 1, 289. Furthermore, there were 509 regions by MACS and

MAnorm, while the number of closest genes to these regions is 406. The reason is that it

is observed that we have more than one significant region that corresponds to one gene,

which is the closest. Overall, 1, 344 genes are found closest to the identified regions by

either the union of ET, WT and LRT, or MACS and MAnorm. Moreover, out of these

1, 344 genes, there 351 genes that are found by all methods, ET, WT, LRT, and MACS

and MAnorm.

The distances between the significant regions and the closest genes range from 13 bp

to 300 kbp, with median of 19, 950 bp. However, this range of distance is quite wide.

Biologically, a gene would be of interest if it fell within 20 kbp distance of the identified

significant regions. Hence, we count the number of genes that fall within the distance

of 20 kbp, and show the results in Table 6.1 in the second row. It can be noticed that

the number of genes that fall within 20 kbp distance is around part of the full number of

genes. This can be related to the median, as mentioned before. Within 20 kbp distance,

there are 556 genes found that are closest to the identified regions by either ET, WT, LRT,

or MACS and MAnorm. Out of these genes, 132 genes are found by all methods.
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Nearest genes and genes’ expression

Gene expression study has been done for RUNX1/ETO data [37]. In the study, The fold

change of genes is considered, where genes that show more than two-fold changes are

reported. The fold change here is log2(xi/yi), where xi and yi are read counts of gene i

in the test and control samples, respectively. Hence, we compare these reported genes to

the genes we identify closest to the significant regions and show the result in Table 6.2.

ET, WT or LRT MACS and MAnorm Overlaps

Number of genes 124 37 30

Within 20 kbp 68 24 20

Table 6.2: Number of genes from Table 6.1 that show more than two-fold changes in gene

expression.

In Table 6.2 it can be seen that there are 131 genes that show more than two-fold changes

in gene expression by either ET, WT, LRT, or MACS and MAnorm. Out of these 131

genes, there are 30 genes identified by all methods. In addition, out of the 131 genes,

there are 72 genes located within a distance of 20 kbp from the significant regions. From

the 72 genes, ET, WT, LRT, and MACS and MAnorm methods have 20 genes in common.

6.5 Discussion and conclusion

We have seen that the proposed tests (ET, WT and LRT) show good performance

compared to the other methods (MACS and MAnorm, and diffReps). The simulation

study shows that ET, WT and LRT have the ability to control the false-positive rate

accurately at the 5% nominal level. On the other hand, MACS and MAnorm, and

diffReps are not able to accurately control the false-positive rate at the desired level.

The accuracy in controlling the false-positive rate is extremely critical when the whole
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genome is considered, as multiplicity problems occur. Furthermore, the simulation study

shows that ET, WT and LRT are more powerful compared to MACS and MAnorm, and

diffReps. In the evaluation, we use MAnorm only to evaluate its performance by giving

it the exact regions of interest to test. Although MAnorm behaves better without MACS,

in reality what we did cannot be applicable. That is, MAnorm is a peak-finding approach

and would not work if the peak regions were not given as inputs.

The simulation findings are reflected in the analysis of RUNX1/ETO data. That is,

diffReps shows a high false-positive rate in the simulation study, and hence detects many

more significant regions compared to the other methods. However, in the simulation

study we are able to adjust the p-values, but in RUNX1/ETO data we cannot adjust them.

If there was more than one replicate of test and control samples, then we would be able to

adjust the p-values.

Apart from diffReps results, the proposed tests (ET, WT and LRT) detect more significant

regions compared to MACS and MAnorm. Moreover, more than three quarters of the

significant regions detected by MACS and MAnorm are also detected by either ET, WT

or LRT. As a result, the proposed tests identify more genes that are differentially regulated

owing to knocking-down RUNX1/ETO.

In the expression study of RUNX1/ETO data, genes that show signs of significant

differential expression are provided. In other words, no testing is performed to check

the significance of changes in gene expression. The study reported the genes that show

fold changes of more than two. Although these are only observed changes (not tested),

they can be employed as support to the identified differentially regulated genes by the

methods. On the other hand, the identified genes can be used to support the report in

terms of differential expression. However, from a biological point of view the relationship

between gene expression and gene binding sites has not been fully understood.

The identified differentially regulated genes by the proposed tests are overlapped more

with the genes reported from the gene expression study compared to the genes identified
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by MACS and MAnorm. One can say that the ratios of overlapping genes are very close

in the proposed tests and MACS and MAnorm. That is, from the proposed tests there are

124 reported genes out of 1289 identified genes, and this represents 9.6%. With MACS

and MAnorm, there are 37 reported genes out of 406 identified genes, and this represents

9.1%. We say that it is not about the ratio only. It is about, first, the information provided,

so more matching between the two studies, which are gene expression and gene binding

sites, can lead to better understanding of the biology behind. Second, it is about the

accuracy of the performance, so identifying the significant differences at the desired level

of significance, i.e., if it was about the number of identified genes, then diffReps would

stand out. Finally, it is also about the clarity and objectivity of the analysing methods.

In conclusion, it can be said that the proposed tests, which are ET, WT and LRT,

perform better than MACS and MAnorm, and diffReps. The tests show good accuracy in

controlling the false-positive rate, and are more powerful compared to the other methods.

An obvious advantage of the proposed tests is that the tests do not depend on a subjective

definition of peaks, as in MACS and MAnorm, or definition of enrichment regions, as in

diffReps. where it filters out regions with low read counts.
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Chapter 7

Conclusion and further work

7.1 Introduction and summary

In this chapter we, first, summarise the main ideas and findings that have been shown in

the previous chapters. Second, we provide our final conclusion. The rest of the chapter is

introducing some ideas for further work.

Summary

The objective of our research is to establish or develop statistical methods that are able to

detect differential binding sites using high-throughput ChIP-Seq data. There are already

established approaches for differential binding site analysis, and they can be classified into

two classes. First, peak-finding based and, second, non-peak-finding based approaches.

Approaches from both classes suffer from major drawbacks. First, they suffer from a

subjective definition in defining peaks or enrichment regions, which are regions of high

densities of read counts. In peak-finding-based approaches, by using different peak-

finding algorithms, we often end up with different results. Also non-peak- finding based

approaches do initial filtering step to filter out genomic regions with low density (low
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reads counts), and this can be considered as another way of searching for enrichment

regions (peaks). Second, both classes of approach suffer from high false-positive rates.

Third, in peak-finding-based approaches, the underlying assumptions and models are not

clear. This lack of clarity makes the assessment of these approaches problematic.

We address our objective by achieving the following points.

• First, we introduce a novel method based on histogram construction to optimise

the presentation of ChIP-Seq data by optimising the window size of the histogram.

This enables us to visualise ChIP-Seq data and any counts data in their optimal

variabilities. Hence, we are able to see the changes that are occurring in a ChIP-

Seq experiment across the whole genome.

• Second, we start by investigating the pattern of RUNX1/ETO data, which is a ChIP-

Seq dataset. We find some clear features in the data, such as lengthy gaps of zero

counts. This feature is common in ChIP-Seq data, but has different distributions in

different ChIP-Seq datasets. Employing this feature in the proposed models for the

count data improves the models.

• Third, we start to characterise the ChIP-Seq data within windows. The data are

discrete read counts. We assume that read counts within a window are independent

and identically distributed as a Poisson random variable with a single unknown rate

parameter. We also assume that windows are independent within the same data.

These assumptions allow the rate of the read counts to be able to fluctuate between

windows.

• Fourth, for two given ChIP-Seq datasets under different biological conditions, we

can detect differential binding sites, or differential regions, by comparing windows

at the same genomic locations in the two datasets. We assume that the read counts

in the two datasets are paired. Hence, the difference in read counts between the

datasets is considered in the analysis of differential binding sites. The differences
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in read counts within a window are modelled by the Poisson Difference distribution,

as we deal with the difference between two Poisson variables.

• Fifth, by using the difference data, we propose three parametric Tests, which are

the Exact Test (ET), Wald Test (WT) and Likelihood Ratio Test (LRT), to address

our objective, which is to detect differential binding sites.

The proposed tests (ET, WT and LRT) have been evaluated by using simulated and real

data. In addition, the tests have been compared to MAnorm and diffReps, which are peak-

finding-based and non-peak-finding-based methods, respectively. With MAnorm, we use

MACS, which is a peak- finding algorithm. The proposed tests show their ability to

accurately control the false- positive rate compared to the other methods. The evaluation

study also shows that the proposed tests are more powerful compared to MAnorm based

on MACS, and diffReps methods.

7.2 Conclusion

We developed a novel objective method to optimise the window size in genetic data,

as well as in non-genetic data. By using the method, a researcher can divide the data

into windows that show the data in its optimal variation. In addition, we developed

three novel tests to detect differential binding sites of transcription factors between two

ChIP-Seq datasets. A clear assumption is made on the read counts, which is that they

follow the Poisson distribution. Detecting differences between the two datasets is done by

considering the difference in read counts, which follows Poisson Difference distribution.

Based on simulated and real data, the tests are accurate and powerful compared to some

current methods. The proposed tests are not applicable exclusively to detect differential

binding sites in ChIP-Seq data. However, they can be applied to cases where a researcher

wants to investigate differences between counts of two paired datasets.
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7.3 Further work

R package

We have written an R package to perform the proposed testing methods ET, WT and LRT.

For two given ChIP-Seq datasets and window sizes, the package does the analysis and

returns the resulting p-values for each of the windows across the whole genome. The

package can also do all proposed tests or some of them, depending of the user choice.

Mixture model

We have shown that a mixture model of three Poisson components is able to simulate the

observed behaviour of RUNX1/ETO data in terms of lengths of consecutive zeros and

correlation. However, we were not able to obtain the maximum likelihood estimates of

the parameters in the model as the behaviour of the likelihood function was not regular.

An idea is that instead of looking for a mixture model for each of the samples, we could

consider the difference between the samples. Hence, we could look for a mixture model

of Poisson Difference components.

Biological replicates

It is quite common to have several biological replicates for the same ChIP-Seq

experiment. That is, instead of having single samples of test and control, we can have

test-1, test-2, control-1 and control-2, or even more. From a biological point of view,

having biological replicates can help in controlling the systematic variation, which is

caused by machines, and biological variation.
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Currently, the proposed tests are designed for only one replicate of each of the conditions.

To our knowledge, none of the current approaches that are designed to analyse differential

binding sites are designed to consider more than one replicate under each condition. They

instead borrow some algorithms that were originally proposed and designed to analyse

gene expression when the experiment includes biological replicates, except DiffBind

[60]. For instance, DESeq [5] and EdgeR [35], which were originally designed for

gene expression analysis. However, the analysis of differential binding sites is different

from the analysis of gene expression. That is, the data in gene expression is a single

number for each gene, and that single number represents the observed read count of that

gene. This number of that gene is compared to the number of the same gene in the

other sample. On the other hand, the data in differential binding sites analysis is read

counts within windows, and the read counts are compared in the same windows in the

two samples. Hence by using gene expression methods to analyse differential binding

sites, the windows are considered as genes, and then represented as a single number,

which is not correct.

Hence, including biological replicates in the analysis of the proposed tests is still an open

challenge.
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