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Abstract 

In this study, activated carbons (ACs) were synthesized and tested as 

CO2 sorbents. In-house ACs were prepared starting both from a traditional 

biomass (i.e. oak wood) and from an unconventional macroalgal seaweed (i.e. 

Laminaria hyperborea). In addition to this, a biomass-derived commercial AC 

was studied as a sorbent on which polyethylenimine (PEI) was impregnated. 

Biochars were produced both by pyrolysis at 800 °C and by hydrothermal 

carbonization (HTC) at 250 °C. Pyrolysis chars generally had higher fixed 

carbon and lower volatile content compared to hydrochars. Moreover, seaweed-

derived chars exhibited significantly larger ash content than that measured for 

oak wood-based chars. Pyrolyzed and HTC-treated biomass were then 

activated either by physical (CO2) or chemical (KOH) treatment. Limited texture 

development of the biochars was observed after CO2 activation, yet this 

treatment proved to be more suitable for the creation of narrower micropores. 

By contrast, KOH activation, followed by HCl washing, led to a more dramatic 

texture enhancement (but to lower narrow micropore volumes) and higher purity 

of the ACs due to a significant demineralization of the chars. The morphology of 

all materials was examined by Scanning Electron Microscopy (SEM) which 

revealed the creation of larger pores after KOH activation, whereas chars and 

CO2-ACs generally showed an undeveloped porous matrix along with particles 

anchored onto the carbon structure. Furthermore, Energy-Dispersive X-ray 

spectroscopy (EDX) analyses corresponding to the SEM micrographs proved 

that these particles were inorganic. In particular, Ca compounds predominated 

in oak wood-based samples. For macroalgae-derived materials, a significant 

proportion of alkali (i.e. Na, K), alkaline-earth (i.e. Ca, Mg) metal ions and Cl 

was detected, along with high levels of Cl. Conversely, reduced or negligible 

levels of inorganic fractions were detected for all KOH-ACs, which confirmed 

that demineralization occurred upon HCl washing. The identity of inorganic 

species was revealed by X-Ray Diffraction (XRD) patterns. In particular, calcium 

oxalate and Ca(OH)2 were identified in oak wood chars, whereas CO2-activated 

derivatives had CaCO3 as their main crystalline phase. For macroalgae-based 

materials, KCl and NaCl were found to be the dominant crystalline phases. In 

addition, MgO was also identified in pyrolyzed seaweed and in its CO2-activated 

counterpart. By contrast, a partial or total lack of crystalline phases was found 

for all KOH-ACs, thus offering further evidence of the loss of inorganic species 

after HCl rinsing. The intrinsic alkalinity of biomass-derived chars and CO2-ACs 

was corroborated by the great amount of basic surface groups, whose number 

was lower for KOH-ACs. 

CO2 sorptions by chars and ACs were initially measured at T=35 °C, 

PCO2=1 bar, and Ptot=1 bar by using Thermogravimetric Analysis (TGA). 

Sorbents showing promising behaviour were then tested for capture of CO2 

under simulated post-combustion conditions (T=53 °C, PCO2=0.15 bar, and 

Ptot=1 bar). Unmodified ACs showed relatively high sorption capacity (up to 70 
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mg CO2∙g-1) at higher partial pressure and lower temperature. Nonetheless, the 

ACs’ sorption capability dramatically decreased at lower partial pressure and 

higher temperature. However, the biomass feedstocks included in this work 

proved to be advantageous precursors for sustainable synthesis of CO2-

selective sorbents under post-combustion conditions. In particular, Ca(OH)2 and 

MgO intrinsically incorporated within the raw materials enabled production of 

highly basic “CO2-philic” sorbents without applying any chemical modifications. 

The best virgin ACs also exhibited fast adsorption kinetics, excellent 

regeneration capacity and good durability over ten Rapid Temperature Swing 

Adsorption (RTSA) cycles. On the other hand, the CO2 uptake of optimally-PEI 

modified commercial AC was up to 4 times higher than that achieved by the 

best performing unmodified AC. PEI impregnation was optimized to maximize 

post-combustion uptakes. In particular, the influence of various parameters (i.e. 

PEI loading, stirring time of the PEI/solvent/AC mixture, solvent type and 

sorption temperature) on the post-combustion capture capacity of the PEI-

modified ACs was assessed. Interestingly, longer agitation engendered efficient 

dispersion of the polymer through the porous network. Additionally, a more 

environmentally friendly (i.e. aqueous) impregnation enabled uptakes nearly as 

large as those attained when the impregnation solvent was methanol, despite 

using lower amounts of polymer and shorter impregnation runs. In addition, 

when measuring uptakes under simulated post-combustion conditions but at 77 

°C, optimization of aqueous PEI impregnation led to a sorption capacity larger 

than those achieved by the best performing PEI-loaded ACs impregnated using 

methanol as solvent. The use of an oak wood-derived carbon support or 

monoethanoloamine (MEA) as impregnating agent did not lead to any 

significant improvement of the CO2 sorption capacity. On the other hand, 

tetraethylenepentamine (TEPA)-impregnated AC slightly outperformed the 

optimally-PEI loaded sorbent, but the use of PEI was preferred because of its 

thermal stability. The addition of glycerol to the PEI/solvent/AC blend resulted in 

lower CO2 uptakes but moderately faster adsorption/desorption kinetics along 

with comparable “amine efficiency”. In addition, PEI-loaded AC showed larger 

CO2 uptakes and faster kinetics than those attained, for comparison purposes, 

by Zeolite-13X (Z13X). Furthermore, amine-containing ACs were found to be 

durable and easy to regenerate by RTSA at 120 °C. This CO2 desorption 

required ca. one third of the energy needed to regenerate a 30% MEA solution 

(i.e. the state of the art capture technique), thus potentially implying a lower 

energy penalty for the PEI-based technology in post-combustion power plant. 

Overall, at higher partial pressure of carbon dioxide, textural properties 

were the dominant parameter governing CO2 capture, especially at lower 

temperatures. This CO2 physisorption appeared to be governed by a 

combination of narrow microporosity and surface area. In contrast, at increased 

temperature and lower partial pressure, basic (alkali metal or amine-containing) 

functionalities were the key factor for promoting selective chemisorption of CO2.  
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1 Introduction and overall context 

1.1 Thesis framework 

The present thesis consists of seven chapters. The current chapter 

(Chapter 1) attempts to put the entire work into context. Chapter 1 includes a 

brief introduction of the problem to be addressed (i.e. reduction of CO2 

emission), and gives information concerning the current status of the existing 

technologies which can potentially tackle this issue, with a particular focus on 

the route pursued in this work, i.e. sorption onto solid materials.  

Chapter 2 provides the scientific background related to the fabrication of 

the selected sorbents (i.e. biomass-derived activated carbons (ACs)) and their 

previous application for CO2 capture. In addition to this, the primary objectives 

of the study are also outlined. 

Details related to the materials used and the methods applied for their 

synthesis and characterizations are given in Chapter 3.  

Results obtained and relevant discussion are grouped in three chapters (4 

to 6), referring to the performance of CO2 sorbents derived from oak wood, 

Laminaria hyperborea and to the chemical modification of commercial carbon 

respectively. 

Overall conclusions along with directions for future works are summarized 

in Chapter 7. 

 

1.2 Chapter outline 

The environmental impact caused by greenhouse and the relevant 

legislation are briefly discussed in section 1.3.  

Following, a comprehensive description of the carbon capture and storage 

(CCS) chain is given in section 1.4, with specific emphasis on the capture 

stage. 

Section 1.5 focuses on the application of solid sorbents for CO2 capture 

under post-combustion conditions as alternative to the state of the art 

technology (chemical absorption onto liquid amines-based solvents). 
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1.3 Problem overview 

1.3.1 Greenhouse effect and global warming 

To date, the greenhouse effect is a well-recognized phenomenon that 

concerns the entire community. This problem is mostly caused by increasing 

emissions of greenhouse gases (GHGs), such carbon dioxide, methane and 

other minor compounds. Quadrelli and Peterson [1] not only underlined the 

dominant role of the energy production at increasing GHGs emissions, but also 

that carbon dioxide represents the greater portion of these gases. The CO2 

footprints are mainly due to the use of unrenewable energy sources (fossil 

fuels) such as coal, employed in stationary power plants for electricity 

generation, and oil, whose derivatives are used for motor transport [1].  

The CO2 molecule has been proven very harmful to the ecosystem, due 

to its long lifetime in the atmosphere, as it is estimated to live around 30 - 95 

years [2].  

As quantified by the International Energy Agency (IEA) [3], coal was the 

predominant fossil source at determining the increase of the CO2 emissions in 

the recent years (1971-2012, see Figure 1-1), and coal combustion was found 

to generate the largest share of CO2 emissions in 2012. According to the data 

reported by the World Resources Institute (WRI) Climate Analysis Indicators 

Tool (CAIT) [4], the global CO2 footprint has been increasing over the last 150 

years at an exponential rate (see Figure 1-2), reaching over 30 Gt in 2012. 

 

 

Figure 1-1 CO2 emissions shares by fossil fuel (1971-2012) [3] 
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Figure 1-2 Total CO2 Emissions Excluding Land-Use Change and Forestry 
between 1850 and 2012 [4]. 

 

This progressive increase in the CO2 level affecting the atmosphere 

appears to be strongly linked to the global climate change. Because of the 

greenhouse effect, the global surface temperature has already increased by 0.8 

°C in the 20th Century, and is expected to rise further by 1.4-5.8 °C during the 

21st Century [5]. 

According to the most recent (2014) synthetic report published by the 

Intergovernmental Panel on Climate Change (IPCC) [6], the higher 

concentration of carbon dioxide in the atmosphere seems to be the main driver 

for the climate change. This was inferred based upon a series of climate change 

indicators (e.g. increase of the temperature of atmosphere, surface and ocean, 

reduction of snow and ice with consequent rise of sea levels, change in the 

global water cycle and extreme events, ocean acidification, etc.). This report 

clearly correlated human influence to the drastic change in climate system. In 

particular, the continuous increase of anthropogenic emissions since the 

industrial revolution (see also Figure 1-1) led to unprecedentedly high levels of 

greenhouse gases (i.e. carbon dioxide, methane and nitrous oxide) in the 

atmosphere. This is believed to be the predominant cause of the global 

warming phenomenon. One of the most visible impacts of the climate change 

was reflected in the increased frequency of extreme weather events (heat 

waves, heavy precipitations, cyclones) over a wider proportion of land regions, 

which has been detected since 1950. The same report forecasted increasing 

trends in GHGs emissions, which will probably amplify the magnitude of all the 

aforementioned impacts on the global climate. In particular, the variation of the 

global surface temperature by the end of the 21st century is likely to exceed 1.5 

°C compared to that measured between 1850 and 1900 for all GHGs emission 

scenarios except the lowest considered. 
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1.3.2 Policies and Regulations 

In order to mitigate the risks involved by global warming, increasingly 

strict measures have been imposed to the major developed nations in terms of 

anthropogenic emissions. Regulations in matter of carbon footprint were 

introduced for the first time by the Kyoto Protocol in 1997 [7], and after this, with 

the Copenhagen Accord in 2009 [8]. These were both established by the United 

Nations Framework Convention on Climate Change (UNFCCC).  

The first international agreement imposed to all the ratifying countries to 

match specific targets in terms of CO2 concentrations emitted, which should 

have been met within 2012 by all the parties involved. In attempt to reduce the 

carbon dioxide emissions level, three different approaches were suggested, in 

particular Emissions Trading, Joint Implementation and the Clean Development 

Mechanism. These aimed to encourage green investment (i.e. use of renewable 

resources) and lead governments to conform to their emission targets in a cost-

effective way. 

Negotiations following the ratification of the Kyoto protocol led to a 

second accord, which was drafted during the 15th Conference of Parties (COP). 

This included the participation of US and developing states (such as China, 

India, Brazil, and South Africa), which had a significant role in the ratification of 

the Copenhagen Accord. The latter pledged to limit greenhouse gas 

concentrations in the atmosphere as to alleviate the negative impacts to the 

global climate. In other words, the emissions amount should have been 

restrained to an extent involving a rise of the global temperature below 2 °C. In 

addition, developed states committed to gather economic aids for the 

developing countries with the purpose to enable them to exercise mitigation 

actions against the climatic changes. The greater part of the financial support 

was supposed to be provided through the Copenhagen Green Climate Fund [8]. 

Nevertheless, according to the analysis of Lau et al. [9], the Copenhagen 

Accord was considered not as binding as the Kyoto Protocol, and funding 

supplied by the Copenhagen Green Climate Fund is believed to be limited. 

Moreover, the same study stated that, although the goal defined by the Kyoto 

protocol is presumed to be achievable, it would probably not suffice to arrest 

increasing emissions trend. The same applies to the Copenhagen Accord. 

Therefore, it is clear that a more stringent target and a full commitment from all 

parties are needed for a substantial reduction of the CO2 footprint. 

Recently, the European Council endorsed a target of 40% reduction of 

greenhouse gas emissions to be achieved by 2030 [10]. A more extensive 

exploitation of renewable energies and increasing investments in CCS systems 

were indicated as the main countermeasures to be taken in order to meet this 

ambitious target.  
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Indeed, although renewable energy technologies (RETs) and biofuels 

utilization have been significantly developed over the last decades, their use on 

a larger scale in the short-term is hindered by a number of issues, mostly 

represented by higher costs compared to use of fossil fuels and a low level of 

readiness [11]. In addition to that, the inherent intermittent nature of some 

renewables (e.g. wind, solar, tides) and the limited availability of land for the 

cultivation of biomass specifically intended for biofuels production dictate the 

integration of RETs with complementary technologies, such as nuclear and/or 

CCS chain [11]. The latter consists of three main steps: capture, transport and 

storage, which were thoroughly discussed in the following sections. 

 

1.4 The CCS chain 

1.4.1 CO2 Capture 

CO2 capture approaches can be divided into four main categories [12]: 

oxy-fuel processes (oxy-firing or oxy-combustion), chemical-looping combustion 

(CLC), pre-combustion (gasification or reforming) and post-combustion 

processes. These configurations are briefly described below.  

 

1.4.1.1 Pre-combustion 

Pre-combustion strategy involves the capture of CO2 prior to energy 

production. This approach is typically applied to integrated gasification 

combined cycle (IGCC) power plants [12]. An elementary block diagram of the 

process is reported by [13]. First, the fuel (coal, natural gas, crude oil, etc.) 

reacts with steam (solid fuels) or oxygen (liquid or gaseous fuels) at elevated 

temperature (1400 °C) and pressure (34–55 bar). This reaction yields the 

synthesis gas (syngas), which mainly consists of CO and H2 [14]. Following, the 

carbon monoxide contained within the syngas is converted to CO2 and 

additional H2 in a catalytic reactor (shift converter) by means of a water-gas shift 

(WGS) reaction [15], which increases the partial pressure of CO2 in the gas 

stream. The latter will then be a CO2/H2 mixture, and is normally characterized 

by high pressure (ca. 15-40 bar) and intermediate CO2-concentration (15-40%) 

[12]. Under these conditions, the preferred solution for separating CO2 from 

hydrogen was reported to be physical absorption onto solvents (e.g. Selexol, 

Rectisol, etc.). 

Physical solvents do not involve any chemical reaction but rely on the 

solubility of CO2 into the liquid phase [12]. Regeneration technique depends on 

the type of solvent. This is normally performed by flash desorption or stripping. 

Both systems refer to the application of a drastic pressure reduction to release 

CO2 from the solvent. However, stripping implies a further purification of the 

solvent by using an inert (N2) gas flow. After the separation stage, the CO2 is 
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recompressed prior to be transported to storage site, whereas the H2 

concentrated syngas is fed to the combustion chamber for energy conversion. 

Chemical solvents could also be used for pre-combustion capture of CO2 

[16], but these offer better performance at lower pressure (post-combustion 

conditions, see also section 1.4.1.2) and imply high penalty for the efficiency of 

the power plant. 

Cryogenic distillation was also applied for syngas separation [17], but this 

system is more suitable for a highly CO2 concentrated gas stream (like that 

produced by oxy-fuel combustion, see 1.4.1.3) and needs a substantial amount 

of energy for refrigeration. 

However, emerging approaches have been also developed. For 

instance, as described in the review of Scholes et al. [18], different types of CO2 

or H2-selective membranes were tested for separation of gas stream produced 

in an IGCC process, which showed interesting prospective for pre-combustion 

capture of CO2. In spite of this, the cost-effectiveness of the process is still 

limited by a series of disadvantages. 

In addition to this, adsorption onto solid adsorbents (e.g. AC [19, 20], 

zeolite [21]) was also considered as potential pre-combustion application. The 

most efficient regeneration strategy for solid sorbents would be a pressure 

swing adsorption (PSA), as this gives a trade-off between the CO2 recovery and 

the CO2 purity [22]. Optimization of PSA process was reported by [23], where 

an activated carbon was used as adsorbent because of its low-cost and good 

cycling performance. Nonetheless, as suggested by [19], using temperature 

swing adsorption (TSA) route for the regeneration of the activated carbons 

could be potentially more convenient. Indeed, an efficient desorption of CO2 

was reported when increasing the temperature up to 170 °C. Moreover, the use 

of a TSA configuration would allow preserving a high-pressure condition for the 

CO2 enriched gas stream, thereby avoiding the energy penalty associated with 

the re-compression of the CO2 captured. 

The major advantage of the pre-combustion approach over the post-

combustion route is the higher CO2 partial pressure in the initial flue gas, which 

implies an easier and more efficient capture of the gas [24]. On the other way, 

IGCC plants involve high investments and operational costs [25], whereas a 

technology retrofitting to existing plants would be more expensive and complex 

compared to the post-combustion configuration [12]. 

 

1.4.1.2 Post-combustion 

Post-combustion technology currently has a higher level of readiness 

among all available capture approaches, as it can retrofit to existing power 

plants [26]. 
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A basic representation of the post-combustion route can be found 

elsewhere [13]. In a typical coal-fired power plant, post-combustion capture of 

CO2 is accomplished once combustion has occurred. Particularly, CO2 

separation unit would be normally placed after flue gas desulfurization (FGD) 

unit. At this stage, the low pressure (1 bar) gas stream is normally cooled down 

at ca. 50 °C, and features low carbon dioxide concentration (10-14%) [27]. 

At present, absorption of CO2 onto liquid amines (wet scrubbing [28]) 

appears to be the most viable capture technique. In particular, 

monoethanoloamine (MEA) is typically used owing to its fast CO2 absorption 

rate and high capture capacity, enabling use of shorter absorption columns [29]. 

Absorption mechanism requires an intimate contact between the gas (i.e. 

carbon dioxide) and the absorbent or solvent (i.e. 30% MEA liquid solution [30]). 

CO2 molecules are then trapped within the liquid solvent. A schematic flow 

diagram related to the post-combustion capture of CO2 through chemical 

absorption was illustrated by [12]. Once CO2 is captured, the loaded amine 

solution is sent to a stripping column for regeneration. This is accomplished by 

feeding a steam flow pre-heated at 100-200 °C in countercurrent to the 

desorber unit [31]. Heating process allows decomposing the intermediate 

compounds (i.e. carbamate or bicarbonate) formed after reaction of CO2 with 

MEA [31]. Water vapor is then condensed and a highly concentrated (over 99%) 

CO2 stream is obtained, which is pressurized to be ready for transport until 

storage site, whereas the CO2 lean solvent is recycled back to the absorber. 

Nonetheless, the use of amine aqueous solutions poses several 

drawbacks that hinder its industrial implementation. Firstly, the large volumes of 

liquid solvent require a great amount of heat for full regeneration and this 

decreases the energy efficiency of the power plant [32]. Moreover, amines tend 

to degrade over time [33], leading to a drop in their capture capacity and 

harmful emissions into the environment. Furthermore, the SO2 concentration 

needs to be limited to ca. 10 ppm [34], as it reacts with amines to form heat-

stable salts, thus reducing the absorption capacity of the solvent. Finally, the 

corrosive nature of the amines damages the capture unit [35]. 

Novel liquid solvents and process developments have been recently 

investigated in an attempt to tackle these issues, with specific emphasis on the 

reduction of regeneration energy [26, 32, 36]. However, the competitiveness of 

other techniques has been also examined. In particular, adsorption onto solid 

sorbents appeared to be the most promising scenario (see section 1.5). 

 

1.4.1.3 Oxy-fuel combustion 

The oxy-firing technique entails combusting the fuel under an 

oxygen/carbon dioxide mixture rather than under air. A simplified sketch of the 

oxy-fuel combustion system can be found elsewhere [13].  
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The presence of an upstream unit (i.e. air separation unit (ASU) [12]) 

allows separating nitrogen and oxygen. The main advantage of using an ASU is 

the significant reduction (50%) of NOx emissions compared to those implied by 

combustion in air [37]. However, among the possible separation techniques, 

only cryogenic distillation seems to be an economically viable option to be 

applied in fossil fuel burning power plants [14, 38]. In addition to this, ASU is 

believed to cause an energy penalty of 15% for the power plant [24]. 

After N2/O2 separation, pure oxygen is combined with recycled flue gas 

rich in CO2 prior to be sent to the combustion chamber where fuel is supplied. 

The addition of carbon dioxide permits the reduction of the furnace temperature 

to values typical of combustion chambers used in fossil-fueled power plants. 

Combustion then gives rise to a flue gas composed of CO2 (75-80%), H2O, and 

other trace impurities (mainly SO2, and minimal levels of particulate and NOx). 

Nevertheless, oxy-firing exhaust gas needs to go through sequential purification 

steps. These include: an electrostatic precipitator (ESP) for removal of 

particulate matter, an FGD unit to eliminate SO2, and a final condensation stage 

in order to reduce water vapor down to 50 - 100 ppm. It was reported that the 

purification treatment required by flue gas produced after oxy-combustion is the 

most expensive out of all existing CO2 capture technologies [39]. Once 

impurities are removed, CO2 can reach a concentration of up to 90%. Exhaust 

gas rich in carbon dioxide is then dried, compressed, and further purified before 

transport and storage [14, 39]. 

The near absence of N2 in the oxy-combustion process allows producing 

an outlet flue gas having high concentration of CO2, thereby implying an easier 

capture step with efficiency close to 100% [14]. Despite this, oxy-fuel approach 

is still not mature as it has a number of shortcomings. First, technology 

retrofitting is hindered by the high combustion temperatures. Secondly, the 

large volume of oxygen needed for the process implies a high capital cost for 

the ASU equipment and high energy required during its operations [12]. This 

would then imply an overall cost as high as that of the post-combustion 

treatment [40]. 

 

1.4.1.4 Chemical Looping Combustion 

Unlike the aforementioned techniques, this emerging process avoids 

direct contact between the fuel and the oxidizing agent (air or pure oxygen). An 

explanatory scheme of the CLC strategy was outlined by Ryden and Lyngfelt 

[41]. Essentially, an oxidized metal (such as Fe2O3, NiO, CuO or Mn2O3) is 

normally used as carrier for transferring O2 from a first reactor (containing air) to 

the second unit (containing fuel) [12, 40]. This system prevents the formation of 

NOx (usually produced by fuel combustion in air) in the flue gas. In fact, the 

reaction of the oxygen carrier (i.e. MeO) with the fuel gives rise to a gas mixture 

only composed by CO2, H2O and the reduced form of the metal oxide (i.e. Me) 
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[42]. Accordingly, the reduced metal oxide is recycled to the air rig to be 

reoxidized, whereas CO2 can be easily recovered from the flue gas by 

condensation [43]. After water removal, the residual CO2 is converted into the 

liquid phase by compression, and a final purity of at least 99% v/v can be 

obtained [44]. The metal oxidation in the air reactor generates an exhaust gas 

mostly composed of N2 and any excess of air, whereas the carrier (MeO) is 

cycled back to the fuel chamber to ignite combustion. This loop is repeated as 

long as the oxygen carrier is functional. 

CLC is a promising approach as it poses a series of benefits [12, 40] 

compared to traditional combustion, such as no energy penalty associated with 

the capture process [45], a higher purity of flue gas and consequent easier CO2 

separation, much lower or no NOx emissions (as well as oxy-fuel process), and 

high flexibility in terms of fuel application [46]. 

In spite of this, this technology also implies several disadvantages [12], 

like a complex operation of the fluidized bed reactors and a decrease of the 

efficiency of the metal oxide reduction after the first cycle [47]. Furthermore, 

residual carbon particles, which do not combust, might lay on the metal oxide 

surface, thus reducing its effectiveness [46]. The commercial development of 

CLC is still very limited, especially because the possible integration and/or 

retrofitting of this technology to existing plants has not been investigated [46]. 

Nevertheless, significant advancements on CLC technology for different 

applications (CO2 separation, fuel combustion and novel energy development) 

have been achieved over the recent years [42, 43, 46]. 

 

1.4.2 Post-capture steps 

Although beyond the scope of this study, the current section briefly 

describes the post-capture stages (transport, storage and utilization), which are 

key features for a successful implementation of the CCS technology. 

 

1.4.2.1 CO2 transport 

As concerns CO2 transport, the use of carbon steel pipelines is normally 

the most convenient solution, unless CO2 would need to be carried over very 

long distances (>1000 km) or over large bodies of water, where transport by 

ship may result more economical [48]. 

Transport efficiency by pipelines is maximized when CO2 is held above 

its critical point (i.e. 31.1 °C and 74 bar), implying a stable single phase through 

the pipeline [48]. Accordingly, as temperature is more difficult to control, it is 

essential to place intermediate pumping stations along the pipelines in order to 

compensate pressure drops due to the hydraulic head loss. This will avoid 

giving rise to a two-phase (gas-liquid) which would reduce the CO2 flow. 
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However, the stability of a single phase can also be negatively affected by the 

presence of impurities having lower critical temperature and pressure than 

those featured by CO2, such as H2, N2, CH4, O2, CO and Ar [49]. These shift the 

pressure range wherein CO2 is in a supercritical state, and accordingly a higher 

minimum operating pressure would be required to avoid two-phase flows [48]. 

Contaminations are also responsible for density reduction of the CO2 

flow [49]. As a result, the operating pressure required for carrying a given 

amount of CO2 will increase with increasing concentration of impurities. This will 

cause a rise of the pipeline cost, as thicker tubes will need to be used. 

Additional issues are involved by the presence of water within the CO2 

flow. For instance, moisture levels higher than 50 ppm may lead to the 

formation of carbonic acid, thus causing corrosion of carbon steel pipelines [50]. 

The presence of water vapours in the flow composition also accounts for gas 

hydrate and ice formation, thereby blocking pipelines and compressors. 

Nevertheless, their production is negligible if the water concentration is 

maintained below standard levels [51]. 

 

1.4.2.2 CO2 storage and utilization 

As mentioned in section 1.4.2.1, the type of carrier used to transport CO2 

will depend upon the distance between the capture and the storage site. The 

latter will need to be identified at an earlier stage and has to accommodate and 

retain CO2 over time. 

The most common practice for CO2 storage is to inject the gas at high 

pressures into geological formations [48]. CO2 is usually injected into saline 

aquifers, having a high storage capacity, or in oil fields, for enhanced oil 

recovery (EOR), which has been largely applied, especially in US, and could 

potentially represent the main driver for increasing the CO2 utilization market 

[52]. 

As reported by [48], EOR has a predominant role within carbon dioxide 

re-use (CDR) technologies, whereas the second most extensive application of 

CO2 is urea production [53]. Furthermore, CO2 can be also potentially converted 

into plastics or fuels [48]. Other minor uses of CO2 comprise: food and 

beverage industry (carbonation, refrigeration), pH solution control, fire 

extinguishers, etc.. CO2 recycle through CDR technologies is believed to be an 

alternative solution to gas storage, yet the limited demand of carbon dioxide 

would not satisfy the substantially larger supply of CO2. 

CO2 storage involves a high level of uncertainty in terms of secure 

confinement of the gas inside the underground sites. Indeed, geological and 

hydrogeological characterizations of the probable sites must be conducted prior 

to injection in order to verify its suitability for safe storage. Moreover, the 
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injection process has to be monitored in order to control overpressure buildup, 

which might cause rock failure and consequent gas escape towards the surface 

[48]. Although the risk of gas leakage decreases with time (i.e. overpressure 

due to injection dissipates, thus reducing the CO2 mobility), further monitoring 

over the migration of the CO2 plume needs to be carried out to ensure a long-

term safe storage of the gas within the site. 

A different option in terms of storage would be the sequestration of CO2 

through ex situ carbonation of alkali metals-containing materials (e.g. CaO, 

MgO) [48]. The fixation of CO2 onto minerals would give rise to a permanent 

and safer storage, without requiring any subsequent monitoring [54]. 

Furthermore, this approach would avoid injecting CO2 into deep underground. 

On the other hand, MgO and CaO are naturally found as silicates and their 

carbonation kinetics at room temperature is very slow [55]. Moreover, the 

provision of a large quantity of this type of feedstock to be used on an industrial 

scale would require a high amount of energy [48]. 

Nevertheless, as concerns the CO2 injection into the underground, 

carbon dioxide can be potentially retained according to four trapping 

mechanisms, including physical confinement underneath an impermeable or 

low-permeability caprock (e.g. shale), dissolution (brine formation), precipitation 

(reaction with minerals to form stable carbonates), and capillarity (adhesion of 

CO2 bubbles to the pore walls of the porous substrate) [56]. 

The research efforts in the storage field has mostly focused on the study 

of the aforementioned trapping mechanisms, on the migration of CO2 plume, 

and on the enhancement of the fail-safe storage for a wide variety of sites [48]. 

However, despite several potentially secure storage volumes were identified 

worldwide, further work is required for the procedure standardization related to 

the assessment of the storage sites. 

 

1.5 Post-combustion CO2 capture onto solid sorbents 

As earlier discussed in section 1.4.1.2, among CCS technologies, post-

combustion approach is the most ready-to-use, and for this reason, it was 

considered in the present study. 

Although chemical absorption onto liquid amines seems to be the leading 

option for post-combustion capture of CO2, its scale-up is hindered by a variety 

of shortcoming. This has encouraged researchers to direct their attention 

towards alternative post-combustion approaches for CO2 capture. 

In particular, adsorption onto solid sorbents has been a focus of this 

research. Mangano et al. [57] tested various types of materials (e.g. activated 

carbons, silica, metal organic frameworks (MOFs), etc.) for carbon dioxide 
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sorption, comparing their performances with that of zeolite Z-13X (Z13X), which 

is the current benchmark for CO2 adsorption. They showed that MOFs, 

especially those containing Mg, can offer CO2 sorption capacities larger than 

that of the commercial reference. 

Solid sorbents can be grouped in two broad categories, i.e. physisorbents 

and chemisorbents [58]. Physisorption mechanism relies on weak physical 

interactions between the carbon dioxide molecule and the adsorbent surface, 

such as Van der Waals forces [59], or other types of electrostatic forces (i.e. 

pole-ion and pole-pole interactions). These are caused by the interaction 

between the permanent quadrupole moment of CO2 and the ionic and/or polar 

surface sites featured by solid adsorbents [60]. Conversely, a chemisorption 

process implies the formation of a covalent bond between the solid sorbent and 

the carbon dioxide molecule. Accordingly, physisorption is normally 

accompanied by a lower heat of reaction than chemisorption (less than and 

higher than 50 kJ·mol-1 respectively [58]). 

The most extensively used CO2 solid sorbents are described in the 

following sections. 

 

1.5.1 Physisorbents 

The most interesting CO2 physisorbents for post-combustion applications 

include: zeolites, MOFs, and ACs [12]. 

 

1.5.1.1 Zeolites 

Zeolites naturally occur as aluminosilicate minerals, but they are also 

artificially synthesized. The typical structure of zeolite can be described as a 

three-dimensional tetrahedral network in which each center (atom) can either be 

silica or aluminium, and whose vertices are oxygen atoms bridging adjacent 

tetrahedral structures [61]. In particular, aluminium atom typically exists in the 

3+-oxidation state (Al3+), so that aluminium-oxygen tetrahedra form centres that 

are electrically deficient one electron. Consequently, zeolite frameworks are 

typically anionic and charge is compensated with exchangeable (often alkali 

metal) cations in the pore space. This gives zeolite an excellent ionic exchange 

capacity. 

Zeolite is characterized by small and uniform pores in the range of 0.5 

nm to 1.2 nm [62], thus implying shape-selective catalysis [63] and molecular 

sieving properties. The latter allow selective adsorption of gas pollutants such 

as ammonia [64]. 

Moreover, Z13X was found to show outstanding CO2 sorption potential 

[65-68]. The great affinity towards CO2 exhibited by Z13X was ascribed to the 

interaction between the permanent quadrupole moment of carbon dioxide and 
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the electric field induced by the cations present within the zeolite network [69]. 

This electrostatic force outweighs Van der waals interactions [59] typical of 

activated carbons. One of the main advantages associated with the use of 

these molecular sieves in adsorbing carbon dioxide, consists of achieving quite 

high adsorption capacity at mild operating conditions (0-100 °C, 0.1-1 bar), 

therefore being suitable for post combustion gas streams. On the other hand, 

the presence of impurities (NOx, SOx, and H2O) significantly inhibits the zeolites’ 

sorption performance [12]. For instance, zeolites are more hydrophilic than 

carbons. Accordingly, the presence of moisture in the post-combustion flue gas 

hinders zeolites‘ CO2 capture potential as water competes with carbon dioxide 

for sorption sites [70]. 

 

1.5.1.2 Metal organic frameworks 

MOFs are microporous crystalline solids having a 2D or 3D porous 

network. The latter is formed by metal-based nodes (Al3+, Cr3+, Cu2+, Zn2+, etc.) 

which are joined together through organic bridging ligands (e.g., carboxylate, 

pyridyl, etc.) [71]. MOFs have a uniform porous structure with pore diameters 

typically ranging between 3 and 20 Å. 

A reticular synthesis [72] has been adopted to produce a great variety of 

MOFs. This methodology entailed combining different metals ions and organic 

moieties through the formation of strong bonds. The flexible and modular 

synthesis of MOFs allows an ample control over their pore geometry and the 

chemical features of their surface, thus leading to high selectivity and sorption 

potential [58, 73]. MOFs’ surface areas reported in the literature range from 

1000 to 10,000 m2∙g-1 [73]. 

The measurement of CO2 adsorption isotherms for the Mg-based MOF-

74 showed uptakes of 37 wt% at 298 K and 1 bar [74], and of 23.6 wt% at 296 

K and 0.1 bar [75]. The excellent CO2 capture performance of this sorbent was 

explained through the great affinity between the oxygen lone pair orbitals of 

carbon dioxide and the metal cations present within the structure of the MOF-74 

[76]. Nevertheless, the abovementioned studies did not report any data referring 

to the CO2/N2 selectivity of the MOF-74, which is a crucial parameter under 

post-combustion conditions. In addition, the CO2 sorption capacity of MOFs was 

found to be lower at temperature higher than 298 K [12]. This would imply 

cooling the flue gas down to room temperature prior to capturing CO2 when 

using MOFs. Moreover, although MOFs exhibit large sorption capacity when 

flue gas is pressurized (i.e. pre-combustion application), their performance is 

poorer compared to that of other solid sorbents (i.e. zeolite, activated carbons) 

at atmospheric pressure (post-combustion case) [12, 58, 73]. Furthermore, the 

application of MOFs as CO2 sorbents on an industrial scale is limited by 

additional drawbacks [73]. For instance, MOFs’ synthesis is often costly and 

complex, and their sorption performance declines over time. In addition to that, 
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MOFs are negatively affected by moisture, whose absorption causes structural 

defects to the crystal lattice, thereby implying a reduction of their mechanical 

strength [12, 73]. Finally, further tests on the cyclic performance and the 

suitability of regeneration strategies (PSA, TSA) for these materials need to be 

conducted [12]. 

 

1.5.1.3 Virgin ACs 

Activated carbons are well-known adsorbent materials, and, unlike 

zeolite and MOFs, present an amorphous structure [77, 78]. This can be seen 

as a disordered form of graphite (i.e. non-graphitizing carbon), wherein 

graphite-like sheets run parallel rather than being orientated as in the typical 

crystalline structure [79]. As also stated by [80], the ACs’ structure can be 

envisaged as a twisted network of defective graphitic layers cross-linked by 

aliphatic bridging groups. The space between graphite layers (<2nm) 

constitutes the slit-shaped micropores of carbons [81], which mostly account for 

their exceptional surface area and adsorption properties, especially for non-

polar adsorbates. 

Amorphous carbons usually have different types of hybridized carbon 

atoms (sp3, sp2 and sp1 in some cases) within their framework, which might also 

include hetero-atoms such as hydrogen, oxygen, nitrogen or boron [82]. In 

particular, as explained in the review of Boehm [83], a number of oxygen 

surface functionalities can be bound to the edges of the carbon layers. ACs 

always contain both acidic (e.g. Lactone, Carboxyl, Carbonyl, etc.) and basic 

(chromene and γ-pyrone-like structures) O-based functionalities. The proportion 

of surface oxides will vary based on the treatments applied to produce the 

carbons. Moreover, inorganic fractions (ash) are also present within the carbon 

matrix. Ash amount and composition will be obviously affected by the nature of 

the precursor used for developing the carbons, and by the synthetic process 

(e.g. demineralization after activation). Both oxygen groups and inorganic 

fractions might enhance the sorption of polar adsorbates onto the carbons 

surface [84]. 

ACs can be produced in different forms, including powder, granules or 

pellets [85]. Pelletized carbons having regular shape are generally preferred to 

irregular granules for gas treatment because the former materials experience a 

lower pressure drop [86] and have higher mechanical strength.  

Activated carbons have been extensively used for environmental 

applications, such as water treatment (e.g. removal of heavy metals [87] or 

organic matter [88]) and air purification (e.g. NOx sorption [89, 90]). This class of 

solid sorbents has gained increasingly interest for CO2 capture due to a number 

of benefits over the adsorbents earlier described. For instance, ACs are less 

sensitive than zeolite and MOFs to water [58], thereby implying a less dramatic 
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impact of moisture when capturing CO2 from post-combustion gas stream. 

Additionally, the carbon fabrication process is more facile than that of zeolite or 

MOFs, and can lead to an exceptional microporous structure, with surface 

areas of up to 3000 m2·g-1 [91] or even larger [92]. This ensures high sorption 

capacity, especially at high partial pressure and low temperature (i.e. pre-

combustion scenario). For instance, Sevilla et al. [93] prepared efficient CO2 

sorbents from the KOH activation of hydrothermally-carbonized chars derived 

from sawdust. They reported the highest uptake ever measured (ca. 212 mg 

CO2∙g-1) for ACs at room temperature and under pure CO2. This excellent 

performance was mainly attributed to the remarkable textural properties of the 

carbons, with specific regard to the ultramicropore (d<0.7 nm) volume (0.52 

cm3·g-1). 

Importantly, carbons normally exhibit high thermal stability and fast CO2 

sorption kinetics, which imply their potential application in rapid temperature 

swing adsorption (RTSA). In particular, Plaza et al. [94] successfully 

regenerated a commercial AC by simulating faster TSA cycles 

(adsorption/desorption cycle time of 14 min) as opposed to the conventional 

systems (regeneration time of hours [12]) for the capture of CO2 under post-

combustion conditions. Rapid TSA is considered a promising technology for the 

capture of CO2 under post-combustion conditions, as it could offer some 

advantages over the conventional systems (e.g. PSA or TSA) [95, 96]. For 

instance, in contrast to PSA, RTSA does not require the pressurization of the 

flue gas, which hinders the economic feasibility of the pressure swing 

adsorption approach, especially when large amounts of gas feed need to be 

treated [96]. In addition to this, in comparison to traditional TSA, a faster 

temperature swing allows performing more frequent cycles, thus reducing the 

adsorption unit size (i.e. smaller amounts of sorbent would be required) and 

therefore its cost [95]. However, a detailed discussion on the possible 

adsorption/desorption configurations for post-combustion capture of CO2 can be 

found elsewhere [12, 96]. 

In addition, the raw materials used as AC precursor (e.g. biomass [92, 

97-99] or waste [100, 101]) have low-cost and are widely available. In this 

regard, the current study considered the use of biomass feedstock (in particular, 

oak wood and Laminaria hyperborea) for a low-cost synthesis of the activated 

carbons. 

Further types of carbonaceous materials (i.e. activated carbon fibre, 

graphene, carbon nanotubes) have been recently developed and could be 

potentially tested for CO2 capture [12, 58, 73]. However, the inclusion of these 

materials for comparison purposes was outside the scope of this work. 

Nevertheless, the CO2 sorption performance of virgin activated carbons 

is adversely affected by higher temperature [102] and lower gas partial pressure 

[58], as physisorption normally becomes ineffective under these conditions. In 
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addition to this, the relatively low CO2 partial pressure in the flue gas dictates 

the need for high selectivity in the capture process. Accordingly, the porous 

structure of the carbon assumes a secondary role when looking at competitive 

CO2 capture capacities under post-combustion conditions (ca. 50 °C, PCO2=0.15 

bar [103]). By contrast, the effect of an increased basicity of the carbons 

becomes fundamental to offset the lack of physisorption performance, as it 

ensures a selective sorption of CO2. Indeed, this can be achieved by exploiting 

the interactions between basic species (electron donor) and the acidic molecule 

of CO2 (electron acceptor). 

 

1.5.2 Chemisorbents 

As highlighted above, the greater part of the solid physisorbents fails at 

capturing CO2 under post-combustion conditions (i.e. low CO2 partial pressure 

(0.15 bar), low total pressure (1 bar), and temperature higher than ambient (ca. 

50 °C)). Thus, researchers have focused on the chemical modification of porous 

solid supports with the aim of introducing basic sites. The latter incorporation 

implies a base-like behaviour of the solid materials, thereby enhancing the 

affinity with the acidic CO2 molecule. The main modifying agents used for the 

fabrication of basic solid sorbents are N-containing (e.g. N-rich biomass, NH3, 

amines, etc.) and alkali-based (i.e. oxide, carbonates) compounds, and the 

relevant modification procedures are following described. 

 

1.5.2.1 N-doped sorbents 

Successful attempts at increasing the basicity of physisorbents were 

achieved by applying different nitrogenation methods [104]. As concerns ACs, 

nitrogen-based functional groups can be incorporated into the structure of the 

support materials through two main approaches, such as “In-situ doping” or 

“Post-doping” [105]. 

 

1.5.2.1.1 In situ-doping 

The first route, which might be also referred as “pre-doping” (with respect 

to the activation stage), involves the preparation of basic solid sorbents directly 

from feedstock naturally containing N-based functionalities. 

Particular attention was directed toward the hydrothermal carbonization 

(HTC) of N-rich biomass (in particular algae) as first step in the generation of 

ACs intended for CO2 capture [106, 107]. HTC is a novel and sustainable 

carbonization technique, and biomass-based feedstock are greener and less 

expensive compared to other precursors (poly(aniline), melamine, etc.) [105]. In 

addition, co-HTC of N-rich precursors and carbohydrates (e.g. glucose) was 
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reported to give rise to the formation of stable aromatic N-containing 

compounds via Maillard reaction [108]. 

Nonetheless, N-modified ACs generated through the “In situ doping” 

method showed relatively high sorption capacity at high CO2 partial pressure 

and low temperature [106], but low uptakes under post-combustion conditions 

[107]. Additionally, aforementioned works showed no clear correlation between 

CO2 sorption capacity and N groups. By contrast, CO2 uptake process 

appeared to be entirely due to the textural properties of the carbons. This might 

be because some of the N functionalities were inevitably removed after 

chemical (KOH) activation, whereas the more stable N moieties (e.g. pyridine, 

pyrrole, etc.) retained within the structure of the final activated carbons (i.e. after 

activation treatment) have a lower basicity in comparison with amines [106]. 

 

1.5.2.1.2 Post-doping 

“Post-doping” methodology consists of modifying the conventionally 

synthesized carbons with N-containing reagents. 

For instance, ACs have been extensively modified either by impregnation 

with liquid ammonia solution [109, 110] or by heat-treatment under NH3 

atmosphere at high temperature. The latter process is also known as amination, 

and further details regarding its mechanism and previous applications can be 

found in the review of Shafeeyan et al. [111]. Briefly, during the amination 

process NH3 molecule decomposes to free radicals such as NH2, NH, atomic 

hydrogen and nitrogen. These species then attack the carbon structure, thereby 

leading to the incorporation of N within the carbon framework. 

Interestingly, the same group showed that, when performing a 

preliminary oxidation of the carbon support prior to the amination process, the 

CO2 capture capacity increased [112]. Apparently, the oxygen surface groups, 

created during the first oxidative step, decompose when heat-treated at high 

temperature under ammonia atmosphere (amination), thus leading to the 

formation of oxygenated anchoring sites. These are then attacked by the free 

radicals arisen from the NH3 breakdown, thus enhancing the development of N-

based functionalities. This amination variant, referred as ammoxidation, was 

also applied by Plaza et al. [113], who reported that ammoxidized carbons 

exhibited larger CO2 uptake compared to that of the parent material at 100 °C.  

However, although the aforementioned reports revealed that N groups 

seemed to play a key role in retaining CO2 with increasing temperature, the 

sorption capacity of the unmodified carbons was not significantly increased. In 

addition to this, CO2 sorption was measured at high partial pressure (i.e. pure 

CO2 flow and atmospheric pressure of the system), which is not representative 

of the realistic post-combustion flue gas. On the other hand, another study of 

Plaza et al. [114] showed that the effect of the N moieties incorporated through 
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amination process became more determining under simulated post-combustion 

conditions (i.e. T=40 °C, PCO2=0.15 bar, and Ptot=1 bar). Nevertheless, the CO2 

uptakes attained by the aminated samples were relatively low, probably 

because the majority of the N-based groups  introduced by amination process 

(i.e. amides, imides, imines and pyridine or pyrrole-like functionalities [111]) are 

not as effective (basic) as amines. Moreover, it is worth pointing out that 

treatment conditions (ammonia atmosphere, high temperature) inherent to 

amination and/or ammoxidation processes inevitably imply high costs and are 

unsafe. 

Consequently, most of the research contributions have devoted their 

attention over the use of carbons as a substrate for amines impregnation [115, 

116]. In fact, in spite of pore blockage of the solid support [117, 118] and amine 

leaching during cyclic regeneration [119], this nitrogenation route normally leads 

to dramatically larger CO2 capacity under post-combustion conditions compared 

to those attained by applying the abovementioned treatments.  

It is worth mentioning that the use of silica-based supports was found to 

outperform amine-modified carbons in terms of CO2 capture capacity [30, 120-

123]. This could be ascribed to the higher amine loading that it is possible to 

accommodate within mesoporous silica supports. Nevertheless, the synthesis of 

ACs is easier and potentially more convenient than that of silica-based 

materials, especially when starting from low-cost precursors (i.e. widely 

available biomass or waste materials). Furthermore, mesoporous silica exhibits 

lower thermal stability at high temperature and under moist conditions, whereas 

carbons are usually more thermally stable and hydrophobic [58]. 

In contrast to the simple physical impregnation, amines can also be 

immobilized through grafting methods [58]. In particular, the conventional 

grafting procedure (“grafting-to” [30]) entails anchoring (i.e. by covalent 

tethering) an aminosilane to a solid support through the use of oxides as 

ligands. This is achieved through a two-steps modification including a 

preliminary oxidation prior to amine fixation [124]. However, according to results 

reported in the review of Samanta et al. [58], amine-grafted mesoporous silica 

generally attain lower CO2 sorption capacity than those achieved through 

physically-impregnated analogues. Conversely, the “grafting-from” approach 

implies the in situ synthesis (polymeration) of amine-containing polymers. As 

shown by [30], this technique led to unprecedentedly higher CO2 sorption 

capacity (around 12 mmol CO2·g-1) under simulated flue gas conditions, and 

grafted samples exhibited durability over multiple working cycles. This was 

mostly attributed to the higher stability of the amines introduced onto the solid 

support through the grafting technique, which minimized the amine leaching. On 

the other way, as reported by [125], amine-grafted mesoporous silica require a 

more energy demanding regeneration (i.e. higher enthalpy of desorption) 

compared to that exhibited by physically-impregnated materials. In addition, 

grafting procedures are more complex and time consuming than physical 



19 

 

 

impregnation, thus involving a longer and costly production process of the CO2 

chemisorbents. 

Therefore, a post-doping approach, with particular regard to the physical 

impregnation of amines, was chosen for the nitrogenation of the virgin ACs 

synthesized in this work. 

 

1.5.2.2 Alkali-based sorbents 

1.5.2.2.1 Regenerable alkali-metal carbonates 

CO2 can be chemisorbed by using alkali-metals (in particular, Na and K) 

carbonates at relatively low temperature (60-110 °C) and in presence of 

moisture [58]. The chemisorption mechanism follows the carbonation reaction 

(1.1) [58], thereby leading to the formation of alkali-metal bicarbonates, which 

are easily regenerated through a mild temperature swing at 100-200 °C. 

Bicarbonates breakdown gives rise to a gas stream composed of CO2 and 

water vapor (decarbonation, see (1.2) [58]). Thus, CO2 can be easily obtained 

following to moisture condensation. 

 𝑴𝟐𝑪𝑶𝟑 + 𝑯𝟐𝑶 + 𝑪𝑶𝟐 = 𝟐𝑴𝑯𝑪𝑶𝟑 (1.1) 

where, M stands for metal (i.e. Na or K) 

 𝟐𝑴𝑯𝑪𝑶𝟑 = 𝑴𝟐𝑪𝑶𝟑 + 𝑯𝟐𝑶 + 𝑪𝑶𝟐 (1.2) 

The high theoretical capacities of Na2CO3 and K2CO3 (9.43 mmol CO2·g-

1 and 7.23 mmol CO2·g-1 respectively [58]) and the relatively low enthalpy (ΔH) 

associated with the CO2 sorption process (135 kJ·mol-1 for Na-based 

carbonates and 141 kJ·mol-1 for K-based carbonates [73]), make these 

materials particularly attractive as CO2 captors in post-combustion applications. 

The first review on the application of regenerable alkali metal-based 

materials as CO2 sorbent for post-combustion capture was reported by Zhao et 

al. [126]. Na and K-based carbonates are usually embedded within various solid 

supports (ACs, alumina (Al2O3), silica (SiO2), TiO2, MgO, and zeolites). In 

particular, K2CO3/AC and K2CO3/Al2O3 exhibited the largest CO2 capture 

capacities and the fastest carbonation kinetics out of all materials studied. The 

use of activated carbons as support was found to be more suitable for cyclic 

fixed-bed operations for the recovery of CO2 under moist conditions, whereas 

the incorporation of potassium carbonated onto alumina appeared to give better 

performance in a fluidized-bed configuration. 

The comprehensive overview of Zhao et al. [126] also highlighted the 

great interest of a variety of research institutions from all over the world in the 

improvement of the sorbents performance. Indeed, thanks to the moderate 
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operating temperature of the process and the relatively low-cost synthesis, this 

technique is believed to be potentially more cost-effective than the state of the 

art technology (30% MEA solution) for post-combustion capture of CO2. 

Nevertheless, prior to achieving the implementation of this route for the 

capture of CO2 from coal-fired flue gas, a series of challenges need to be 

solved. These mostly refer to the influence of the process conditions 

(temperature, pressure, gas composition) on the CO2 sorption capacity of the 

materials. Additional issues concern the continuous operation and the economic 

feasibility of the process. All these aspects are thoroughly discussed by [126], 

and ongoing research is focusing on their optimization. 

 

1.5.2.2.2 Metal oxide carbonates 

Metal oxides like CaO ([127, 128]) and MgO [129, 130] are well known to 

give rise to reversible chemisorption of CO2 through carbonation/calcination 

cycles. Carbonation reaction normally occurs at moderate (150-400 °C for MgO 

[129]) or high temperature (550-650 °C for CaO [128]) and produces stable 

carbonates, which are then reconverted to the oxide phase through temperature 

swing (calcination). The calcination temperatures of CaCO3 and MgCO3 are ca. 

750 °C and ca. 385 °C respectively [128]. 

Interestingly, Bhagiyalakshmi et al. [131] tested the CO2 capacity of a 

MgO-based mesoporous carbon under post-combustion conditions. In 

particular, these authors incorporated MgO particles both within the carbon 

framework and within the pores of the support. Sorbents showed excellent 

recyclability and were fully regenerated at low temperature (200 °C). The 

reconversion of MgCO3 at low temperature was explained through the weak 

intensity of the chemisorption of CO2 attained by the MgO present in the non-

framework of material. Nevertheless, the capture capacity of the MgO-

containing carbon was relatively low (63 mg CO2·g-1) under conditions typical of 

post-combustion flue gas (50 °C and PCO2=0.15 bar). This was probably 

because at low temperature a limited conversion of CO2 was achieved.  
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2 Scientific background 

2.1 Outline 

The current chapter aims to review the literature relative to the materials 

and the methodologies used in this work. 

In particular, section 2.2 briefly describes the most commonly used 

feedstock for the production of activated carbons (ACs).  

After this, the background related to carbonization (dry pyrolysis and 

hydrothermal synthesis) of biomass and activation (physical and chemical 

processes) of biomass-derived chars (biochars) is given in section 2.3 and 2.4 

respectively. 

Following, section 2.5 and 2.6 report previous contributions concerning the 

fabrication of activated carbons starting from the precursors selected in this 

study, i.e. oak wood and Laminaria hyperborea correspondingly.  

In addition to this, section 2.7 focuses on the application of biomass-

derived carbons as CO2 sorbents, with specific emphasis on those prepared 

starting from similar feedstock to those tested in the present work. 

Furthermore, section 2.8 gives insights on the application of amine-

modified solid adsorbents for CO2 capture, directing particular attention to the 

wet impregnation of polyethyleneimine (PEI) onto activated carbons. 

Finally, the main objectives of this thesis were defined in section 2.9. 

 

2.2 Precursors for activated carbons production 

The choice of a good candidate for conversion to activated carbon should be 

made by considering the following criteria [132]: 

Prospective in generating a valuable activated carbon (e.g. high carbon 

content); 

(Minimal) Proportion of inorganics (ash); 

(Large) Available amount and (low) cost; 

(Long) Lifetime once stored; 

(High) Easiness of activation. 

Among the conventional feedstocks used for manufacturing ACs on an 

industrial scale, wood has been the most largely applied (see Figure 2-1). In 

particular, pine-derived wood accounted for more than half of the total 

production [132]. 

 



22 

 

 

 

Figure 2-1 Commercial use of various precursors for ACs production 

 

The intrinsic properties of a given raw material affect the characteristics 

of the resulting carbon and its applications [132]. For instance, the low density 

and high fraction of volatiles present within wood and lignin imply the production 

of light powdered carbons having large pore volume. These characteristics 

make the final carbons particularly suitable for removal of pollutants present 

within aqueous phases. By contrast, despite having a high proportion of 

volatiles, vegetable-derived wastes (e.g. nutshells, fruit stones) also have a high 

density. As a result, these kinds of raw materials normally give rise to hard 

granular carbons featuring high micropore volume. Granular AC are usually apt 

to both liquid and vapour phase applications. Similar carbons can be produced 

by using semihard and hard coal, and are specifically used for gas adsorption. 

Nevertheless, in alternative to the use of traditional feedstocks, much 

attention has been given to the exploitation of waste materials because of its 

low cost and wide availability. In addition to this, the recycle of by-products 

implies a more environmentally friendly production of carbons, as it would also 

contribute to the disposal of waste in excess. Indeed, the increasing amount of 

landfilled solid waste poses a series of environmental drawbacks, such as water 

and soil contamination, along with localized air pollution [100]. Therefore, in an 

attempt to reduce waste landfilling, research has focused on alternative 

disposal solutions, like the reuse of by-products for the preparation of valuable 

materials, such as activated carbons. As reported in the review of Olivares-

Marin and Maroto-Valer [100], a number of waste materials have been 

converted into activated carbon, which were then applied for CO2 capture. 

These include: waste derived from coal utilization, wastewater treatment by-

products (i.e. sludge), household residues, and biomass waste. The latter 

category mostly comprises agricultural residues (i.e. lignocellulosic materials), 

which showed great potential as precursor for the production of ACs, thanks to 

their low cost, large availability and relatively high carbon content [101]. 

On the other hand, the use of N-rich and/or alkali metals-containing 

precursors is highly attractive for the preparation of basic carbons suitable for 
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post-combustion capture of CO2 [58, 73, 104]. For instance, compared to 

terrestrial biomass, macroalgae (kelp or seaweed) intrinsically contain high 

levels of nitrogen [133] and alkali metals [134]. In addition to this, unlike 

agricultural crops, cultivation of aquatic biomass (i.e. macroalgae) does not 

require any land. Additionally, seaweed abundantly grows in brackish and salt 

water. For these reasons, an extensive use of macroalgae would not imply any 

competition for land and fresh water, which are already utilized for food 

production [135]. 

Furthermore, seaweed species are fast growing marine and freshwater 

plants, and are both wildly harvested and cultivated at farm sites, thereby 

implying quick and wide availability along with easy access [134]. Therefore, the 

use of naturally grown and abundantly available biomass would allow a 

sustainable synthesis of carbon materials, especially on an industrial scale 

when large amount of precursor are required [106]. In particular, the 

macroalgae considered in this study is Laminaria hyperborea (Curvie), which 

belongs to the family of brown algae, and was collected from the beds found 

along the west coast of Scotland. 

Macroalgae have been largely used for food and colloid production [136]. 

Moreover, the generation of macroalgae-derived bio-fuels (e.g. biogas [137], 

bio-oil [138]) has already been reported. In addition, investigations on the 

macroalgae potential for activated carbons fabrication have recently intensified 

[107, 133, 139-142], with few reports concerning the application of macroalgae-

derived carbons as CO2 sorbents [107, 141]. However, according to the 

author’s best knowledge, no reports related to Laminaria hyperborea-derived 

activated carbons have been found in the available literature. 

Hence, in light of this, along with a conventional biomass (i.e. oak wood), 

this study has devoted its attention to the utilization of macroalgae (i.e. 

Laminaria hyperborea) for the synthesis of carbon materials. 

 

2.3 Carbonization of biomass 

2.3.1 Dry pyrolysis 

As defined by Maschio et al. [143], the pyrolysis of biomass refers to its 

thermal treatment in the absence of oxygen, and gives rise to three phases: 

solid (charcoal), liquid (tar and an aqueous solution of organics) and gaseous 

products.  

Pyrolysis processes can be classified into three subcategories based 

upon the operating conditions: conventional (slow) pyrolysis, fast pyrolysis and 

flash pyrolysis. Process conditions (i.e. heating rate (HR), temperature, 

residence time, composition of feedstock, particle size) significantly affect the 
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product distribution obtained at the end of the treatment [143-145]. In particular, 

high heating rates (1000-10000 °C·s-1 for flash pyrolysis), coupled with 

moderate temperatures (<650 °C) and short residence times maximize the 

production of liquid fractions at the expense of the solid product (char). By 

contrast, low temperatures, slow heating rates and longer dwell times favour 

char formation. In addition, high temperature (>650 °C) along with fast heating 

rates and longer residence times boost the gasification of biomass (i.e. volatiles 

production). 

Fast and flash-pyrolysis processes are very attractive for the production 

of biofuels, as pyrolysis oil has a high calorific value along with typical 

advantages associated with liquid fuels (i.e. easy handling and storage) [144, 

145]. In addition to this, pyrolysis oil fraction would imply higher energy 

efficiency compared to that of fossil fuelled technologies when considering 

smaller operational scales associated with bioenergy systems [144]. 

Nevertheless, as one of this study’s foci was to maximize char production, low 

heating rate and residence time were applied (i.e. conventional pyrolysis).  

As shown by Maschio et al. [143], the conventional pyrolysis of biomass 

occurs through three sequential stages. The first stage (pre-pyrolysis), taking 

place between 120 and 200°C, is associated with the rearrangement of the 

internal structure of the material mostly due to moisture evaporation, bond 

cleavage and formation of functional groups (carbonyl, carboxyl and 

hydroperoxide). Along with water vapour, CO and CO2 are also present within 

gas fraction produced. The second stage represents the main pyrolysis 

process, which is characterized by a high reactivity, especially between 300 and 

600 °C. The last stage concerns the material decomposition according to a very 

slow rate. During this final stage, biomass is continuously devolatilized due to 

removal of heteroatoms (mostly O and H, along with minor contributions from N 

and S [146]) after further breaking of chemical bonds with C. H and O-based 

species are removed as volatiles, and consequently the final product (i.e. char) 

enriches its carbon fraction. The latter results to be composed by stacks of 

defective (including non-hexagonal aromatic rings) graphitic layers which are 

randomly arranged, and the space left between them (pores) is filled by residual 

tar and disorganized carbon formed during pyrolysis [146]. Therefore, the 

porosity of the char needs to be developed (activated) through further 

treatments [84] (see section 2.4). 

 

2.3.2 Hydrothermal carbonization (HTC) 

Hydrothermal processes usually include liquefaction, catalytic 

gasification, and high-temperature gasification [147]. These occur depending 

upon the temperature and the pressure of the system, which affect both the 

state of the water (see Figure 2-2) during the reaction and the product 

distribution.  
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Figure 2-2 Pressure - temperature phase diagram of water with associated 
hydrothermal processes [147] 

 

Specifically, liquefaction normally arises between ca. 200 and 370 °C, 

with pressures between ca. 4 and 20 MPa. Under these conditions, biomass is 

mostly converted in liquid hydrocarbons and water is in a liquid phase. 

However, at milder temperature (below 250 °C [148]) and relevant autogenous 

pressure, corresponding to the lower region of liquefaction process (subcritical 

water), solid fraction (char) formation is enhanced [147-149]. These operating 

conditions refer to the hydrothermal carbonization or also called wet pyrolysis 

[148, 149]. 

Beyond its critical point (ca. 374 °C and ca. 22 MPa) water behaves as 

supercritical fluid. In the supercritical region, for temperatures below 500 °C 

gasification occurs with the aid of a catalyst and gives rise to an H2-rich product, 

whereas for temperature higher than 500 °C gasification does not require any 

catalytic enhancement and leads to a methane-rich gas phase [147]. 

This work has focused its attention on the application of HTC in 

subcritical water (i.e. 250 °C and relevant autogenous pressure up to ca. 40 

bar) in an attempt to enhance the conversion of biomass into hydrochar (i.e. 

solid fraction). This was done in order to investigate the HTC potential as first 

step of the ACs fabrication in comparison with dry pyrolysis. 

Carbonization of wet biomass (wet animal manures, municipal solid 

waste (MSW), algae) through HTC is particularly promising, as it can potentially 

lead to char yields similar to those obtained after dry pyrolysis without requiring 

energy-intensive drying process [149]. 
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2.4 Activation of biochars 

The activation procedure aims to develop porosity within the carbon 

structure of the biochars.  

Depending upon the nature of the activating agent, active sites (pores) can 

be formed by pursuing either a physical or a chemical methodology. Note that, 

although activation with CO2 or steam is considered as a chemical treatment, 

this methodology will be referred as physical activation throughout this chapter 

(and in the rest of the thesis) for convenient comparison with chemical (e.g. 

KOH) activation. 

In addition to that, activated carbons can be produced by adopting two 

different configurations, namely a single step or a two steps process [84]. 

Regarding the first approach, carbonization and activation stages are performed 

at the same time. This is normally apt for chemical activation procedure, as 

compounds typically used favor biomass dehydration during carbonization, thus 

increasing the proportion of carbon at the expense of tar [84, 150]. In a typical 

synthesis, the raw biomass is first impregnated with a solution of the chemical 

agent (see section 2.4.2) prior to heat-treatment (i.e. carbonization and 

activation occurs simultaneously) at relatively lower temperatures (<800 °C [91]) 

compared to those required by physical activation [150, 151]. By contrast, the 

second route (two steps) entails applying the activation treatment (second step) 

following to the carbonization (pyrolysis or HTC, first step) of the initial precursor 

(i.e. biomass). This is more suitable for a physical route, as a preliminary 

removal of organic matter (i.e. evaporation of volatiles during carbonization) is 

needed in order to obtain a significant development of porosity through the 

activation stage [91, 150]. 

Despite the single-step approach involves more simple operations and 

lower temperatures when performing chemical activation, the two-steps method 

was adopted in this study for both physical and chemical route in an attempt to 

make a direct comparison of the activation products. 

 

2.4.1 Physical treatment 

2.4.1.1 Mechanism of physical activation 

Physical activation, also called partial gasification [146], is generally 

performed by exposing carbonized materials (chars) to steam or carbon dioxide 

[84, 152]. Accordingly, the carbon fraction of the chars is gradually removed 

(burned off as carbon monoxide, and hydrogen in presence of water vapour), 

thus creating porous sites. Simplified reactions related to the mechanism of 

physical activation are reported as follows: 
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 𝑪 +  𝑪𝑶𝟐 = 𝟐𝑪𝑶 (2.1) 

 

 𝑪 +  𝑯𝟐𝑶 = 𝑪𝑶 +  𝑯𝟐 (2.2) 

Reactions (2.1) and (2.2) are both endothermic, with enthalpies of +117 

KJ mol-1 and +159 KJ mol-1 respectively. This signifies that activation requires 

heat to occur. Indeed, this process is usually accomplished at high temperature 

(800-1000 °C [84]).  

When using steam as activating agent, water vapour further reacts with 

CO previously formed through reaction (2.2), according to an exothermic 

reaction (see reaction (2.3), water gas shift reaction) which is in equilibrium and 

has an enthalpy of -41 KJ mol-1 [84, 146]. 

 𝑪𝑶 +  𝑯𝟐𝑶 ↔ 𝑪𝑶𝟐 + 𝑯𝟐 (2.3) 

The physical activation with CO2 and steam also gives rise to the 

chemisorption of oxygen and hydrogen functionalities onto the carbon surface 

(see reactions (2.4) and respectively (2.5)), whose chemistry mostly depends 

on the temperature of formation [84]. 

 𝑪 +  𝑪𝑶𝟐 = 𝑪𝑶 + 𝑪(𝑶) (2.4) 

where, C(O) represents a generic surface oxygen complex. 

 𝟐𝑪 + 𝑯𝟐 = 𝟐𝑪(𝑯) (2.5) 

where, C(H) represents a generic surface hydrogen complex. 

The formation of oxygen and hydrogen functionalities is an intermediate 

step during the activation process. O and H complexes compete with CO2 and 

H2O for carbon surface sites, thus decreasing the reaction kinetic. Activation 

mechanism is also inhibited by the amount of reaction products (CO and H2) 

[84]. 

Overall, activation process occurs through two main stages [132]. First, 

tar and disorganized carbon are burnt off, thus unblocking the pores of the char. 

After this, activation proceeds by attacking the aromatic carbon rings, thereby 

causing the formation of additional pores and the widening of existing 

interstices. 

Literature data concerning the influence of the main parameters (i.e. 

activating agent, activation temperature and reaction dwell time) affecting the 

physical activation of chars are reported in the following sections. 
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2.4.1.2 Effect of activating agent 

Previous reports [152, 153] found that, for a similar temperature, 

activation kinetic with steam (see reaction (2.2)) was faster than that achieved 

when using CO2. This would suggest that steam activation might require the 

application of a lower intensity of activation (i.e. lower temperature/shorter 

durations) in order to achieve the same efficiency. This was confirmed by 

results reported by [154]. As stated by Wigmans [146], the higher reactivity of 

steam was ascribed to the smaller dimension of the H2O molecule compared to 

that of carbon dioxide, whose diffusion through the carbon porous structure is 

slower [155] and limited to larger pores (i.e. restricted access to micropores) 

[156]. The lack of diffusion of carbon dioxide within the smaller pores was 

corroborated by experimental results reported by Wigmans [146], who 

measured a moderately higher development of mesopores when activating 

carbonized peat with CO2 compared to that attained through activation with 

steam.  

As reported by Kuhl et al. [157], the influence of the activating agent 

(CO2 or steam) on the porosity of coke-derived carbons appeared to be affected 

by the type of pre-treatment of the precursors.  

The influence of the activating agents on the porosity evolution of olive 

stone-derived chars was investigated by Rodriguez and Molina [152]. These 

authors compared activated carbons obtained through activation with carbon 

dioxide and steam. Activation with water vapour was performed under different 

conditions, by varying the temperature and/or the concentration of the activating 

agent. Essentially, Rodriguez and Molina found higher activation rates when 

using steam, but higher proportion of micropore volume for the CO2-activated 

carbons, which is in contrast to the expected behaviour proposed by Wigmans 

[146]. In particular, for a common carbon burn-off, the use of water vapour 

generally implied a widening of the entire fraction of microporosity since the 

beginning of the process, whereas CO2 caused a first opening of the 

ultramicropores (d<0.7 nm), which were following widen to form 

supermicropores (d<0.7 nm). In addition to that, carbons activated with CO2 

exhibited larger microporosity than that of steam-activated carbons, especially 

when using a pure water vapour atmosphere and lower activation temperature. 

Furthermore, steam-activated carbons presented a broader pore size 

distribution with more marked contributions from meso and macropores, 

whereas CO2-ACs mostly contained micropores.  

Rodriguez and Molina [152] attempted to interpret their observations by 

proposing two different explanations. First, the easier and faster access of the 

water molecule (smaller than carbon dioxide) to the narrower micropores of the 

carbonized material might cause their widening at the earliest stage of the 

process. On the other hand, another possible theory is related to the fact that 

CO2 activation leads to the creation of a higher amount of oxygen surface 
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functionalities compared to those attained by steam. Specifically, O-based 

groups chemisorbed onto the carbon surface at the beginning of activation 

process (i.e. when burn-off is low and pores are small) tend to shrink the 

accessible pore width, thus promoting a selective enhancement of the narrow 

microporosity. The second assumption was validated by a subsequent study of 

Molina et al. [153], wherein a similarity between porosity and surface 

functionalities (assayed by measuring CO concentration) evolution was 

highlighted. In particular, a higher amount of functional groups was measured 

for the CO2-activated carbon, which had the largest volume of micropores. This 

was explained through the fact that the greater part of the carbon surface 

groups are usually chemisorbed onto the walls of the active sites (micropores). 

A larger narrow microporosity for CO2-activated carbons was also 

measured by Pastor-Villegas and Durán-Valle [158] when activating rockrose-

based chars, especially at low temperature (700-800 °C). By contrast, 

microporosity was found to be independent of the activating agent at higher 

temperature because of an increased kinetic reaction. 

On the other hand, controversial results concerning the effect of the 

activating agent on the porosity development of the chars were reported in the 

literature [91, 154, 158, 159]. However, most of these studies did not include a 

systematic comparison between steam and CO2-activated carbons in terms of 

porosity distribution. Therefore, based on the more reliable analysis carried out 

by [152, 153], carbon dioxide was selected as oxidizing agent for the physical 

activation of the biochars tested in an attempt to maximize the narrow 

microporosity. Hence, literature review regarding the effect of activation 

temperature (section 2.4.1.3) and duration (section 2.4.1.4) focuses on the CO2 

activation treatment. 

 

2.4.1.3 Effect of CO2 activation temperature 

Higher temperatures normally correspond to increased intensities of the 

activation treatment. Sánchez et al. [160], who CO2-activated oak wood-derived 

chars at 800, 840 and 880 °C, plotted the carbon yield versus the activation 

time for each temperature series. Results showed that, for a given dwell time, 

the higher the activation temperature, the lower is the carbon yield. In addition 

to this, the decreasing rate (slope) exhibited by the carbon yield was 

proportional to the activation temperature. This was corroborated by the 

gasification rate (defined as the carbon burn-off in the given residence time, i.e. 

wt%·h-1) which was plotted against the normalized time (i.e. residence time 

divided by the longest time interval studied). In particular, for each value of 

dwell time, gasification rate appeared to increase with activation temperature. 

This signifies that, for the same activation duration, a higher temperature 

condition allows having a faster degree of carbon removal. The effect of the 

temperature on the porosity development of the oak wood chars was not 
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directly assessed. Nevertheless, 840 °C was found to be optimal in terms of 

surface area and micropore volume (these parameters seemed to be directly 

related). On the other hand, 800 °C was found to be optimal in terms of 

ultramicropore volume (d<0.7 nm), whose maximum value was achieved at the 

lowest intensities of activation (i.e. highest activation yields (>60 wt%)). 

Zhang et al. [161] applied the CO2 activation method to chars derived 

from agricultural and forest residues (i.e. oak wood waste, corn hulls, and corn 

stover). Chars were activated both at 700 and at 800 °C. Overall, the largest 

surface area and micropore volume were found at the highest temperature 

studied. These findings agreed with those obtained by Lua and Guo [162], who 

performed CO2 activation of oil-palm shell-derived chars and reported an 

optimal temperature of 900 °C in terms of surface area. Moreover, Zhang et al. 

[161] noticed that the effect of the activation temperature on the microporosity 

(i.e. ratio of micropore volume to total pore volume) of the carbons depended 

upon the type of precursor used for their production. Specifically, for a given 

activation duration, micropore fraction increased with increasing temperature for 

corn hulls-based carbons, whereas decreased for the other samples, thus 

indicating micropore widening at higher temperature. 

González et al. [154] activated tyres-based chars with CO2 at three 

different temperatures (750, 800 and 850 °C). Surface area and microporosity 

generally increased with increasing temperature, which agreed with above-

mentioned contributions 

 

2.4.1.4 Effect of CO2 activation dwell time 

Most of the studies mentioned in section 2.4.1.3 also assessed the effect 

of the dwell time on the CO2 activation process. For instance, for each 

temperature investigated, Sánchez et al. [160] varied the severity of the 

activation treatment (i.e. carbon yield ranging between 18 and 85 wt%) by 

changing the residence time (from 45 to 300 min). At the same temperature, the 

overall gasification rate (i.e. carbon yield) linearly decreased with increasing 

holding time, as activation degree (carbon burn-off) was found to be 

proportional to the duration of the treatment. Similar trends were also reported 

by González et al. [154], suggesting a constant rate of reaction between chars 

and CO2 throughout the process. In spite of this, at the lowest temperatures 

(800 and 840 °C), Sánchez et al. [160] found a different trend when plotting the 

normalized gasification rate (divided by the relevant residence time) against the 

normalized dwell time (divided by the highest holding time considered). In fact, 

the decay of the carbon conversion rate appeared to be higher for lower dwell 

times (up to 60% of the highest duration studied), whereas a less appreciable 

drop was observed afterwards. This led to infer that at the lowest temperatures, 

further increase of duration did not significantly increase the carbon burn-off. 

This behaviour was emphasized when normalizing the gasification rate by the 
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exposed Brunauer–Emmett–Teller (BET) surface area (i.e. the surface including 

available sites for reaction with CO2). The decrease of reactivity with increasing 

dwell time was associated with the retarding effect due to the formation of 

surface carbon/oxygen complexes during the early stage of the CO2 activation 

process [84]. These tend to deactivate (occupy) a significant portion of reaction 

sites, thereby impeding access of CO2 and then delaying the activation 

mechanism.  

Sánchez et al. [160] also showed that, for any activation temperature, 

microporosity generally increased with increasing residence time (i.e. 

decreasing carbon yield). Conversely, mesoporosity continuously increased 

with increasing activation time only at the highest temperatures (840 and 880 

°C), whereas at the lowest temperature (800 °C) showed a decreasing trend at 

the highest intensities of activation (carbon yield<50 wt%). Nevertheless, at 840 

°C (i.e. optimal temperature, see section 2.4.1.3), an holding time of ca. 2 h 

(corresponding to a carbon burn-off of ca. 68.3 wt%) maximized surface area 

and microporosity development of the chars. This result was fairly consistent 

with that found by González et al. [154], reporting an optimal dwell time of 3 h 

(at 850 °C). Moreover, for each given temperature, the narrow micropore:total 

micropore volume ratio decreased with increasing activation yield (i.e. longer 

holding time), as ultramicropores were enlarged to form supermicropores (d>0.7 

nm) at the highest degrees of activation (longest activation durations). 

As shown by Zhang et al. [161], the influence of the activation dwell time 

on the porosity of CO2-activated carbons resulted to be sample-dependent. In 

particular, regarding oak wood chars, porosity remained constant (at 700 °C) or 

increased (at 800 °C) with increasing activation duration. In contrast, a longer 

residence time had a deleterious effect on the texture of the activation carbons 

derived from the other precursors tested (i.e. corn-based chars). This might 

have occurred because, with increasing degree of activation (i.e. treatment 

duration), the rate of porosity widening/collapsing outweighed that of porosity 

development. 

 

2.4.2 Chemical treatment 

Among the great variety of chemicals that can be potentially used for 

chemical activation, ZnCl2, H3PO4 and KOH are the most largely applied on an 

industrial scale [84]. Molina-Sabio and Rodrıǵuez-Reinoso [163] compared the 

effect of these three chemicals on the one-step activation of lignocellulosic 

materials (i.e. olive and peach stones). When loading was optimal, these 

authors reported an outstanding enhancement of microporosity, which was 

independent of the type of reagent used. On the other hand, at high intensity of 

treatment (i.e. high chemical loading) the development of porosity resulted to be 

affected by the type of activating agent. This was mostly ascribed to the 

different activation mechanism involved by each chemical. However, it worth 
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mentioning that the use of the first two reagents (ZnCl2 and H3PO4) is less 

environmentally friendly due to eutrophication issues involved by Zn and P [84, 

164]. 

In addition to the aforementioned activating agents, alkali-metals-based 

compounds other than KOH (i.e. K2CO3 [141], NaOH [165], Na2CO3 [166]) were 

effectively used for the production of chemically-activated carbons. On the other 

hand, reviewing literature revealed potassium hydroxide as one of the most 

effective activating agents out of the alkali metals-based compounds [150, 167-

169]. In addition, KOH was successfully applied for the chemical activation of 

precursors similar to those examined in this work (wood, algae) [93, 106, 141, 

142, 169-171].  

Under these premises, KOH was chosen for the preparation of 

chemically-activated carbons produced in this study. In addition to this, results 

published by Fierro et al. [172] supported the decision of applying a two-steps 

process also for the chemical activation procedure. In fact, these authors 

reported that the two-steps KOH activation of biomass (rice straw) led to higher 

carbon yield and larger surface areas of the resulting ACs compared to those 

achieved through a 1-step route.  

Following subsections attempt to give further information concerning the 

mechanism of reaction with KOH and the influence of the main parameters  

affecting the KOH activation procedure (i.e. activation temperature and 

chemical ratio [150]). 

 

2.4.2.1 Mechanism of chemical activation with KOH 

According to the standard chemical activation process, biomass (single 

step) or char (two steps) is first impregnated with an aqueous solution of the 

activating agent prior to heat-treatment under nitrogen. However, this would 

imply a preliminary drying step in air. This, as clearly demonstrated by 

Illingworth [168], leads to a preliminary carbonation of KOH according to 

reaction (2.6): 

 𝟐𝑲𝑶𝑯 +  𝑪𝑶𝟐  →  𝑲𝟐𝑪𝑶𝟑  +  𝑯𝟐𝑶 (2.6) 

As a result, part of the potassium hydroxide will not be available for reaction 

with the carbon matrix of biomass (single step) or char (two steps) during the 

actual activation process (i.e. heat-treatment under N2), therefore leading to a 

less dramatic improvement of texture. In particular, Illingworth [168] found larger 

porosity development for a KOH-impregnated carbon dried under vacuum 

compared to that measured for the same sample air dried for longer time.  

By contrast, an alternative procedure was followed by Fierro et al. [169], 

who ground and physically mixed KOH lentils with raw lignin prior to heat-
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treatment. Although these authors did not compare the adopted methodology 

(i.e. dry physical mixing) to the conventional technique (wet impregnation), final 

carbons with outstanding surface areas (up to 3000 m2 g-1) were obtained, thus 

demonstrating the efficiency of the former procedure. 

Nevertheless, regardless of the chemical addition process, during heat-

treatment under N2 potassium hydroxide attacks the carbon structure that is 

then oxidized to potassium carbonate (see reaction (2.6)). Additionally, as 

explained by the global reaction (2.7) proposed by Lillo-Rodenas et al. [167, 

173], other products such as potassium metal and hydrogen are formed. 

 𝟔𝑲𝑶𝑯 +  𝟐𝑪 ↔  𝟐𝑲 + 𝟑𝑯𝟐 + 𝟐𝑲𝟐𝑪𝑶𝟑  (2.7) 

Moreover, it is worth mentioning that a secondary activation contribution might 

arise from the potassium carbonate produced during heat-treatment. In 

particular, as described in the review of McKee [174], alkali carbonates have a 

catalytic effect on the gasification reaction occurring between carbon and 

oxidizing agents (e.g. oxygen, steam or CO2) formed at the early stage of the 

heat-treatment. Further details regarding the mechanism of activation with 

potassium hydroxide are given in the work of Illingworth [168] and reference 

therein. 

 

2.4.2.2 Effect of KOH activation temperature 

Experimental tests conducted by Evans et al. [175] revealed that an 

activation temperature of 400 °C (just above the KOH melting point (i.e. 360 

°C)) was insufficient to develop any increase of the surface area of a sucrose-

derived char. This was attributed to the fact that, although already melted and 

penetrated through the char, KOH had not started to react with carbon at such 

low temperature. In contrast, Evans et al. observed that the KOH/char mixture 

began to release some gaseous products when heated at 540 °C, which could 

be considered as the onset temperature for chemical activation with KOH. This 

was largely consistent with results reported by Illingworth [168], who observed 

most of the porosity development between 450 (onset temperature) and 650 °C 

when activating pyrolyzed flax fibre with KOH. Illingworth [168] also highlighted 

that, at the lowest activation temperatures (450-650 °C), micropore 

development was the main feature of the process, whereas, at higher 

temperatures (over 700 °C), an enlargement of micropores previously formed at 

lower temperature occurred. This was ascribed to an increase of severity in the 

gasification reaction of carbon (i.e. micropore walls) with increasing 

temperature. 

Correlation between porosity evolution and activation temperature found 

by Illingworth generally agreed with that showed in other studies. For instance, 

Carvalho et al. [176], who chemically-activated cork waste with KOH, reported 



34 

 

 

that mostly narrow micropores were created between 500 and 700 °C, yet these 

were widened to form supermicropores at higher temperatures. A decrease of 

narrow microporosity with increasing activation temperature was also observed 

by Sevilla et al. [93], who KOH-activated some sawdust-based hydrochars. In 

this study, the authors showed that the knee of the samples’ isotherms became 

broader as activation temperature increased, especially between 700 and 800 

°C. Sevilla et al. also highlighted a shift in the mode of the samples’ pore size 

distributions with increasing temperature, thus enlightening porosity widening. In 

another work, the same group [106] measured an increase of average pore 

width along with a broadening of the pore size distributions with increasing 

activation temperature when chemically activating microalgae/glucose-derived 

hydrochars with KOH. On the other hand, for a common chemical ratio of 4, 

microporosity (and surface area) continuously increased with increasing 

temperature (from 650 to 750 °C), while ultramicroporosity declined in favour of 

supermicroporosity. 

Oh and Park [177] KOH-activated rice-straws by applying either a one 

stage or a two stages process and activation temperatures between 500 and 

900 °C. As concerns carbons obtained through a two steps route, these authors 

showed a type I-isotherm when activation temperature was 600 °C, indicating 

mostly micropores in the porous structure of the carbon. On the other hand, 

when increasing temperature from 600 to 900 °C, the opening of the isotherms’ 

knee and the appearance of hysteresis loop was observed, thereby suggesting 

the formation of mesoporosity at the expense of micropores. N2 adsorption data 

agreed with those reported by Sevilla et al. [93]. 

The same range of activation temperatures (500-900 °C) was applied by 

Guo and Lua [178], who obtained chemically-ACs by impregnating palm shell 

with KOH solutions at different stages. Regardless of the impregnation 

technique, carbon yield continuously declined with increasing temperature, 

whereas surface area increased up to 800 °C. The decrease of surface area 

between 800 and 900 °C was ascribed to the micropore walls burn-off, which 

led to the formation of meso and macropores. 

 

2.4.2.3 Effect of KOH:solid ratio 

Similar to the influence of a higher activation temperature (see section 

2.4.2.2), a larger chemical (KOH) addition normally involves a more severe 

activation treatment. Lozano-Castello et al. [167] KOH-activated anthracite-

based chars by mixing these with different amount of chemical (KOH:char ratios 

of 1 to 5). Surface area and microporosity significantly increased with increasing 

chemical ratio up to a value of 4. On the other hand, a further increase of 

chemical ratio from 4 to 5 caused a moderate detrimental effect on the textural 

parameters. In the same study, the authors also noticed a visible broadening of 
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the knee of the type I isotherms exhibited by all samples with increasing 

KOH:char ratio. This was attributed to the enlargement of micropores.  

Results showed by Lozano-Castello et al. were largely consistent with a 

number of other contributions found in the literature [78, 93, 106, 176]. In 

particular, Sevilla et al [93] used a KOH:char of 2 (defined as mild activation) or 

4 (defined as severe activation) for the chemical activation of sawdust-derived 

hydrochars. Essentially, for a given temperature, mild activation (i.e. lower 

chemical addition), gave rise to lower surface areas but higher 

ultramicroporosity. By contrast, severe treatment (higher KOH:char ratio) 

maximized the surface area but led to a broader pore size distribution, including 

larger contributions from meso and macropores. The same group drew similar 

conclusions in another study [106], wherein the authors activated 

microalgae/glucose-derived hydrochars using KOH:char ratios of 1, 2 or 4. It is 

worth noticing that, when considering a temperature of 700 °C, the 

ultramicropore volume remained constant as chemical ratio increased from 1 to 

2. This was probably due to the mild condition of activation. On the other hand, 

a decrease of narrow micropore volume (widened to form supermicropores) 

was recorded when further increasing KOH:char ratio from 2 to 4. 

In general, a higher KOH:precursor ratio leads to greater overall porosity 

and surface areas, but to a more heterogeneous pore size distribution. In 

contrast, lower KOH:solid ratios tend to maximize microporosity, with particular 

regard to its ultramicroporous fraction. 

 

2.5 Preparation of activated carbon from oak wood 

2.5.1 Carbonization of oak wood 

2.5.1.1 Pyrolysis of oak wood 

Traditional pyrolysis of wood was extensively applied. However, only the 

most relevant contributions concerning pyrolyzed oak are following reported 

[160, 161, 179, 180]. Specifically, Sanchez et al. [160] carbonized Quercus 

agrifolia wood waste at different temperature (450, 800, 840 and 880 °C) for 2 h 

in a steel furnace. In this study, the authors reported a decrease of the 

carbonization yield with increasing temperature. In particular, at 800 °C, a 

product yield of 26 wt% was measured. 

Zhang et al. [161] performed a fast pyrolysis of oak wood at ca. 500 °C 

into a fluidized sand-bed reactor. The wood-based residue was fed to the 

reactor at a rate of 7 kg·h-1. Despite the mild carbonization, a very low product 

yield (10 wt%) was recorded for oak wood char. This might be ascribed to the 

rapid heating process, which may have adversely affected the carbonization 

yield [181].  
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Holm and Pyrenean oak were pyrolyzed at 600 °C by Lopez et al. [180] 

in a pilot scale rig. These authors stated that lignin fraction mostly affected the 

char formation, which was ca. 30 wt% for oak-derived products. It is worth 

mentioning that pyrolysis was performed in presence of oxygen, which might 

have contributed to lessen the product yield.  

Moreover, Jindo et al. [179] carbonized oak tree (i.e. Quercus serrata 

Murray) at different temperatures (from 400 to 800 °C) at a heating rate of 10 

°C·min−1 in a ceramic tube furnace. Final temperature was held for 10 h. As 

expected, this study reported decreasing char yield with increasing pyrolysis 

temperature. In particular, the product yield after carbonization of raw oak 

declined from 35.8 wt% (400 °C) to 19.1 wt% (800 °C). In addition to that, the 

volatile matter was also found to decrease with increasing intensity (i.e. 

temperature) of carbonization. 

It is worth pointing out that all of the abovementioned works, except 

[179], were finalized to the production of activated carbons. 

 

2.5.1.2 HTC of oak wood 

The use of wood-derived biomass (sawdust) for the production of 

hydrochars was reported in a series of contributions [93, 182, 183]. In addition, 

hydrothermal carbonization of wood meal (i.e. consisting of a mixture of lignin, 

cellulose, and hemicellulose), and other types of lignocellulosic feedstock was 

also performed [184-186]. Temperature and dwell time applied in these studies 

ranged between 180 and 295 °C, and between 5 and 120 min respectively. In 

particular, Hoekman et al. [185] studied the influence of temperature and dwell 

time on the hydrochar compositions and on the product yields. In particular, 

gaseous phase and water production were found to increase with increasing 

severity of the process (i.e. higher temperature, longer holding time), whereas 

the solid fraction declined. Furthermore, HTC (200-260 °C) of pine wood was 

applied by Reza et al. [187] as pre-treatment for the preparation of biochars 

pellets. 

However, as concerns oak, few investigations on the application of HTC 

treatment emerged from the literature survey [188-191]. For instance, Konara 

oak wood was hydrothermally-treated by Inoue et al. [188], who reported an 

increase of energy density of 11-73% for the hydrochars compared to that of the 

raw feedstock. Hydrochar energy density generally increases with increasing 

intensity of the treatment (i.e. more severe temperature, longer residence time), 

as a result of the increase of the C/O ratio [185]. 

HTC of oak material was frequently applied as pre-treatment. 

Specifically, Ishibashi et al. [189] examined the influence of the preliminary 

hydrothermal treatment on the carbonization behaviour of sawtooth oak. 

Apparently, HTC was found to affect the shrinkage and the formation of carbon 
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crystallites during the subsequent carbonization step of the woody biomass. 

The use of HTC as pre-treatment was also pursued by Carrasco et al. [190], 

where oak wood was heat-treated at 230 °C for 4 min. In this case, the 

preliminary HTC was referred as steam explosion and was applied in an 

attempt to increase the decomposition (i.e. hydrolysis by dilute acid) kinetic of 

the cellulose present within raw oak wood. Moreover, a similar application was 

reported in the study of Szczodrak et al. [191], who tried to exploit the effect of 

HTC to enhance the enzymatic hydrolysis of cellulosic fraction contained within 

raw oak sawdust. The latter was heat-treated at 200 °C for 10 min. 

Note that none of the aforementioned studies referred to the application 

of HTC of oak as first step of the preparation of activated carbons. On the other 

hand, it is worth mentioning that, as reported by Salvador et al. [192], high-

temperature (525-775 °C) HTC (i.e. gasification with supercritical water (SCW)) 

of pyrolyzed oak wood was successfully applied as activation method, giving 

rise to carbons featuring an heterogeneous distribution of micropores and a 

minor presence of mesopores. 

 

2.5.2 Activation of oak wood-derived chars 

2.5.2.1 CO2 activation of oak wood-derived chars 

Previous studies related to the optimization of CO2 activation of 

pyrolyzed wood were reported. In particular, Sanchez et al. [160] heat-treated 

pyrolyzed wood waste under a CO2 flow rate of 500 cm3·min-1. As already 

discussed in detail in section 2.4.1.3 and 2.4.1.4, these authors studied the 

effect of the activation temperature (800, 840 or 880 ºC) and of the residence 

time (between 45 and 300 min). Optimal conditions were found to be 840 °C 

and ca. 2 h, corresponding to a burn-off of 68.3 wt%. These conditions led to 

maximum values of surface area and micropore volume of ca. 1200 m2·g-1 and 

ca. 0.5 cm3·g-1 respectively.  

In addition to this, oak wood waste was pyrolyzed and CO2-activated by 

Zhang et al. [161]. In this study, char was heat-treated at 700 or 800 °C for 1 or 

2 h. In this case, BET surface area of up to 985 m2·g-1 and micropore volume of 

up to ca. 0.38 cm3·g-1 were achieved at activation temperature of 800 °C and 

dwell time of 2 h, corresponding to a burn-off of 51.4 wt%. 

Two different types of oak wood (Pyrenean and Holm) were physically 

activated by using CO2 (flow rate of 74 cm3 min−1) at 800 °C for 6.5 h by López 

et al. [180] after conventional pyrolysis at 600 °C. Surface areas measured for 

activated derivatives were 722 and 557 m2·g-1 respectively.  

Oak-derived cork (i.e. Quercus suber L.) was also used as feedstock for 

the preparation of CO2-activated carbons [193]. Specifically, after pyrolysis at 

750 °C, Mourao et al. [193] heat-treated the cork-based char at 750 °C under 
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CO2. The activation temperature was held for two different dwell times 

corresponding to burn-offs of 23 and 48 wt%. The highest carbon burn-off gave 

rise to the largest surface area (ca. 957 m2·g-1). 

The textural development of the CO2-activated oak obviously depended 

upon the different activation conditions (temperature and dwell time) applied, 

which imply various degree of burn-off. In general, temperatures between 750 

and 840 °C appeared to be suitable for the heat-treatment of pyrolyzed oak 

under CO2. 

However, according to the author’s best knowledge, the CO2 activation of 

hydrothermally-carbonized oak has not been investigated yet. In spite of this, it 

worth pointing out that Ishibashi et al. [194] recently applied hydrothermal 

carbonization of two different kinds of oak wood (i.e. Quercus acutissima 

Carruth. and Quercus serrata Thunb.) as pre-treatment prior to performing dry 

pyrolysis and carbon dioxide activation. Interestingly, these authors showed that 

HTC favoured the formation of mesoporosity in the final CO2-activated carbons. 

Therefore, the application of CO2 activation directly on oak wood-derived 

hydrochars (i.e. without applying any pyrolysis step) has been performed in this 

research for the first time (see Chapter 4). In addition, this work has also 

contributed on the influence of the main parameters (temperature and holding 

time) on the textural properties of the physically-activated hydrochars. 

 

2.5.2.2 KOH activation of oak wood-derived chars 

Different oak derivatives were used as precursor for the preparation of 

KOH-activated carbons [195-197]. In particular, Zyzlila Figueroa-Torres [195] 

physically mixed Quercus agrifolia-based char with KOH powder (KOH:char of 

4) prior to heat-treatment under N2 at 760 °C in a rotary batch. The influence of 

the N2 flow rate was also investigated. A flow rate of 250 cm3·min-1 appeared to 

maximize all textural parameters of the final carbons, except the mesopore 

volume. 

In addition to this, cork powder (i.e. oak wood residue) was chemically 

activated with KOH in the study of Cardoso et al. [196]. Raw cork was first 

demineralized with a 10% aqueous solution of H2SO4 in order to reduce the ash 

content of the material. After this, pre-treated cork powder was impregnated 

with an aqueous solution of KOH (25% (w/w)) according to KOH:solid ratios of 

0.25, 0.5, and 1. KOH/cork mixture was then heat-treated under nitrogen flow (2 

cm3·s-1) according to a determined temperature programme. Activation 

temperatures (500, 600, 700, and 800 °C) were hold for 2 h. Following to 

chemical activation, samples were washed with water until measuring a pH of 7. 

Largest values of surface area (1300 m2·g-1) and micropore volume (0.56 cm3·g-

1) were attained when using the highest chemical ratio (1) and temperature (800 

°C). 
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Moreover, the use of cork oak (Quercus suber L.) waste for the 

production of KOH-activated carbons was tested by Mourao et al. [197]. In 

particular, these authors blended the raw oak residue with solid potassium 

hydroxide according to a KOH:cork mass ratio of 2. The KOH:precursor mixture 

was then pyrolyzed under nitrogen (flow rate 85 cm3·min-1) at 700 °C for 2 h. 

After heat-treatment, chemically-activated carbons were washed until complete 

removal of potassium hydroxide in excess. Chemically-activated cork had a 

surface area of 1616 m2·g-1 and a micropore volume of 0.61 cm3·g-1. 

However, all of the aforementioned studies referred to the chemical 

activation of raw oak (1 stage) or its pyrolyzed counterpart (2 stages). By 

contrast, to the best knowledge of the author, no study on the KOH activation of 

hydrothermally oak has been reported in the open literature. In light of this, the 

potential of the oak-derived hydrochars for the production of KOH-activated 

carbons has been first investigated in this work (see Chapter 4). 

 

2.6 Synthesis of activated carbons from Laminaria hyperborea 

2.6.1 Carbonization of macroalgae 

2.6.1.1 Pyrolysis of macroalgae 

The pyrolysis behaviour of Laminaria hyperborea was previously studied 

with the aim of characterizing the composition of macroalgae [198, 199]. In 

particular, Ross et al. [198] pyrolyzed Laminaria hyperborea before and after 

demineralization using the pyrolysis-Gas Chromatography/Mass Spectrometry 

(GC/MS) technique. Flash pyrolysis of raw and pre-treated (demineralized) 

seaweed was performed at 500 °C at a heating rate of 20 °C·ms-1. The final 

temperature was held for a dwell time of 20 s. The analysis of the pyrograms 

indicated the presence of a series of compounds within the raw macroalgae, 

such as ketones, pentosans, phenols, and N-containing species. In addition to 

this, the solid fraction (char) decreased after demineralization, thus confirming 

the beneficial effect of inorganics at increasing char formation [134, 181, 200, 

201]. A similar study was conducted by another group [199], that identified the 

four main carbohydrates present within Laminaria hyperborea (i.e. alginic acid, 

fucoidan, laminarin and mannitol) using pyrolysis products as markers. 

The carbonization of other types of Laminaria was also reported in the 

literature [138, 202]. For instance, Bae et al. [138] carbonized Laminaria 

japonica at temperature ranging from 300 to 600 °C for 1h in a packed tube 

reactor. The char yield was found to decrease with increasing temperature from 

values in excess of 50 wt% (300 °C) to ca. 40 wt% (600 °C). However, the 

objective of Bae’s study was to produce macroalgae-derived bio-oil.  



40 

 

 

A far lower char formation was recorded by Stratford et al. [202] when 

pyrolyzing Laminaria digitata (oarweed) at 800 °C in a muffle furnace. Yet, in 

this case, the product yield was determined considering the solid residue 

following to pyrolysis and acid washing. The latter likely caused the removal of 

inorganic matter. Interestingly, macroalgae experienced a significant 

development of porosity after pyrolysis, leading to seaweed-based chars with 

very high surface area (up to ca. 1500 m2·g-1). This result suggested that further 

activation treatment of the char could be avoided. In the same report, Stratford 

et al. showed an approximate correlation between the textural properties of the 

seaweed-derived chars and the overall inorganic content of raw macroalgae, 

thereby suggesting that ash (with specific regard to K) seemed to act as 

activating agent. In addition to this, Song et al. [133] successfully applied 

pyrolysis as 1-step production (no subsequent activation) of porous carbons 

starting from macroalgae (i.e. Undaria pinnatifida). These authors pyrolyzed 

seaweed at temperature ranging from 800 to 1100 °C for 5 h, and pyrolyzed 

products were acid (HCl) washed (demineralization). The maximum surface 

area (in excess of 1200 m2·g-1) was attained when pyrolysis temperature was 

1000 °C. 

Additionally, Ferrera-Lorenzo et al. [203] performed the pyrolysis of a 

macroalgae (Gelidium sesquipedale)-derived solid waste to produce a biochar 

as precursor for activated carbon preparation. In particular, these authors 

pyrolyzed seaweed in a horizontal tubular furnace at 750 °C for 1 h, using a 

heating ramp of 5 °C·min−1. Pyrolysis conditions were considered optimal for 

the production of char (yield of ca. 30 wt%) to be subjected to following 

activation. Indeed, the same group reported the application of this macroalgae-

derived char for the production of chemically-activated carbons in further 

studies [141, 142] (see section 2.6.2). The two-steps synthesis (i.e. including 

activation) led to a far higher surface area (up to 2118 m2·g-1) than those 

obtained after pyrolysis of other kinds of macroalgae. 

Nevertheless, the literature search revealed that there is a gap in 

knowledge regarding the pyrolysis of Laminaria hyperborea as first step for 

activated carbon production. Therefore, further investigation on this aspect is 

presented in this work (see Chapter 5). 

 

2.6.1.2 HTC of macroalgae 

Only one study related to the hydrothermal treatement of Laminaria 

hyperborea was found in the literature [204]. However, in this study Cherad et 

al. carried out HTC under supercritical water conditions (i.e. 600 °C and 35 

MPa), corresponding to a gasification regime. Indeed, the scope of their work 

was to assess the influence of a set of parameters on the gasification behaviour 

of Laminaria hyperborea. 
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On the other hand, hydrothermal carbonization of macroalgae (other than 

Laminaria hyperborea) was reported in a series of contributions [107, 205-208]. 

For instance, Xu et al. [207] performed HTC for a mixture of seaweed 

(Sargassum horneri) and citric acid (used as catalyst) at temperatures ranging 

from 180 to 210 °C and dwell times of 2 to 16 h. These authors examined the 

effect of different reaction parameters on the physiochemical characteristics of 

the macroalgae-derived hydrochars.  

Moreover, Anastasakis and Ross [206] heat-treated Laminaria 

saccharina at 250 °C for 15 min, with a solid fraction (hydrochar) yield of ca. 25 

wt%. Yet, this group was mostly interested in the bio-oil production, and 

therefore their attention was directed to reaction conditions typical of 

liquefaction regime (250-370 °C). An analogous approach was followed by Xu 

et al. [208], who hydrothermally carbonized another type of macroalgae (i.e. 

Enteromorpha prolifera) at temperature ranging from 250 to 390 °C. In this 

case, under conditions relevant to the hydrothermal carbonization process (250 

°C and 60 min), a hydrochar yield of 15 wt% was measured. The lower solid 

fraction compared to that reported by Anastasakis and Ross after HTC of 

Laminaria saccharina was probably due to the longer residence time. On the 

other way, comparable hydrochar yields (below 20 wt%) to those reported by 

Xu et al were measured by Zhou et al. [205] when hydrothermally-treating 

Enteromorpha prolifera at temperatures of 240 or 260 °C held for 30 min. 

However, according to the review of the open literature, the use of 

macroalgae-derived hydrochars as precursors for activated carbon preparation 

has only been reported by Zhang et al. [107]. Specifically, these authors 

hydrothermally treated Enteromorpha prolifera at 180 °C for 24 h prior to 

chemical activation with KOH. The seaweed-derived carbon was then tested for 

CO2 capture. Nonetheless, it is worth emphasizing the lack of works related to 

the application of hydrothermal carbonization of macroalgae emerging from 

literature review, with particular regard to the fabrication of CO2 solid sorbents. 

In addition, according to the best knowledge of the author, hydrothermal 

carbonization of Laminaria hyperborea has been reported in this study for the 

first time (see Chapter 5). 

 

2.6.2 Activation of macroalgae-based chars 

As already highlighted in sections 2.6.1.1 and 2.6.1.2, literature survey 

has not revealed any previous study concerning the use of raw Laminaria 

hyperborea and its carbonized counterparts as precursors for the manufacture 

of activated carbons. Therefore, general information related to the activation 

methods applied for other types of macroalgae are following given. 

Reviewing the available literature, no studies regarding the CO2 

activation of any kind of macroalgae were found. By contrast, a number of 
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investigations related to the KOH activation of pyrolyzed seaweed have been 

recently performed [141, 142, 170, 209]. In particular, Cho et al. [170] 

chemically-activated a char derived from the fast pyrolysis of Undaria 

pinnatifida. The pyrolyzed macroalgae was impregnated with a 1 M KOH 

solution using a mass ratio of 1:1. The mixture was then stirred on a hot plate 

for 4 h in order to remove water but no heat-treatment under N2 was performed. 

After this, the dried KOH:char blend was washed with 5 M HCl and H2O. The 

final carbon had a surface area of 1287 m2·g-1. In addition to this, as already 

mentioned in section 2.6.1.1, Ferrera-Lorenzo et al. applied KOH activation of 

Gelidium sesquipedale-based precursors [141, 142]. In particular, these authors 

assessed the effect of a series of parameters on the chemical activation 

process, including the kind of precursor (i.e. raw macroalgae waste or its 

pyrolyzed counterpart), the type of heat-treatment (conventional furnace or 

microwave), the activation temperature and the KOH:precursor ratio [142]. 

Results showed that the carbon having the highest surface area (2118 m2·g-1) 

and pore volume (1.14 cm3·g-1) was obtained through conventional activation of 

raw macroalgae-based waste (1 step activation) carried out at 900 °C and using 

a KOH:precursor ratio of 0.5:1. 

On the other hand, only one study referring to the KOH activation of 

hydrothermally carbonized macroalgae was found in the open literature [107]. 

Specifically, Zhang et al. activated Enteromorpha prolifera-derived hydrochars 

with KOH. Macroalgae-derived hydrochar was impregnated with a 0.9 M KOH 

solution. The impregnated hydrochar was first heated to 60 °C for 1.5 h prior to 

drying at 100 °C for 24 h. The dried KOH:hydrochar blend was then heat-

treated under N2 (heating rate of 2 °C·min-1) up to 600 °C. The final temperature 

was held for 4 h. Chemically-activated macroalgae was sequentially washed 

with water, 10 wt% HF and then water again. The KOH-activated carbon 

exhibited a relatively low surface area (418 m2·g-1) compared to the 

macroalgae-derived carbons reported in other studies. This could be probably 

attributed to the partial KOH carbonation during the drying stage [168]. 

 

2.7 Use of biomass-derived ACs as CO2 sorbents 

As earlier discussed in section 2.2, the use of widely available biomass 

precursors for the fabrication of activated carbons has become a preferential 

practice over the last years. In addition to this, the application of biomass-

derived ACs as CO2 sorbents has gained great interest. Indeed, the conversion 

of such low-cost feedstock into a CO2 captor would imply a more sustainable 

and less costly synthetic process. 

A variety of biomass-based materials (i.e. corncob [98], hemp (Cannabis 

sativa L.) stem [92], agricultural waste (palm kernel shell) [210], sugarcane 

bagasse [211] and further waste biomass [97]) were successfully upgraded into 
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effective CO2 sorbents. However, this section aims to give further details 

concerning the CO2 capture performance of ACs derived from feedstock similar 

to those used in this work, such as wood [93, 212, 213] and algae-based [106, 

107, 141] materials. 

As concerns wood-based biomass, Sevilla et al. [93] produced CO2 

sorbents through a two-steps synthesis (i.e. hydrothermal carbonization and 

chemical activation with KOH) starting from Eucalyptus sawdust. In this study, 

the authors measured the highest CO2 uptake ever reported (ca. 212 mg CO2∙g-

1) for ACs at 25 °C and under pure CO2 (1 bar). This outstanding CO2 sorption 

capacity was mostly attributed to the high ultramicropore volume (up to 0.52 

cm3·g-1) of the best performing carbon, which was attained after mild chemical 

activation (KOH:hydrochar ratio of 2). 

Furthermore, highly microporous carbons were prepared from chemical 

activation (H3PO4, ZnCl2, KOH) of Eucalyptus camaldulensis wood by Heidari et 

al. [212]. These authors measured CO2 uptakes up to 4.10 mmol CO2·g-1 at 30 

°C and 1 bar, which was slightly lower than that reported by Sevilla et al.. Yet, in 

this case, the uptake of CO2 was measured at moderately higher temperature, 

which normally has a negative effect on the physisorption capacity of the 

activated carbons [102]. Nonetheless, the largest CO2 capacity was achieved 

when using KOH as activating agent, as this implied the development of the 

highest surface area (2594 m2·g-1) and the largest microporosity (ca. 98%) out 

of all the chemically-activated carbons produced. 

Additionally, Zhu et al. [213] synthesized activated carbons through one-

step KOH activation of Paulownia sawdust. Interestingly, the largest CO2 uptake 

measured at 1 bar was significantly higher (8.0 mmol CO2·g-1) than that 

recorded by Sevilla et al. [93], but it was attained at a lower temperature (0 °C), 

which usually favors CO2 physisorption onto activated carbons [102]. However, 

the maximum CO2 uptake was attained when using a KOH:precursor of 4, an 

activation temperature of 700 °C and a dwell time of 1 h. These conditions led 

to the highest micropore volume, which was mostly responsible for CO2 

adsorption. 

Regarding to the use of algae, Sevilla et al. [106] synthesized effective 

CO2 sorbents at high partial pressure (1 bar) starting from a mixture of Spirulina 

platensis (microalgae) and glucose. The algae-based precursor was subjected 

to HTC followed by KOH activation. The highest CO2 uptake was obtained 

when using a KOH:hydrochar ratio of 2 and an activation temperature of 700 

°C. As expected, the CO2 sorption capacity of the optimally-activated carbon 

was negatively affected by the temperature, decreasing from 7.4 mmol CO2·g-1 

(at 0 °C) to 2.8 mmol CO2·g-1 (at 50 °C). The relatively large CO2 sorption 

capacity was exclusively attributed to the high narrow microporosity of the 

carbons rather than to the larger porosity or to the nitrogen functionalities 

incorporated. 
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Only two studies relating to the production of macroalgae-derived CO2 

sorbents were found in the open literature [107, 141]. In particular, Ferrera-

Lorenzo et al. [141] prepared CO2 sorbents using a residue (macroalgae meal 

waste) generated from industrial processing of Gelidium sesquipedale. These 

authors showed that, under simulated pre-combustion conditions (3 MPa, room 

temperature), macroalgae-derived sorbents exhibited higher selectivity towards 

CO2 than towards hydrogen or methane. This suggested a high potential of the 

materials for pre-combustion capture (CO2/H2 separation) through pressure 

swing adsorption (PSA), or CO2/CH4 separation in order to increase the purity of 

the natural gas, which can be used as fossil fuel.  

In addition to this, Enteromorpha prolifera was used as a precursor by 

Zhang et al. [107] to produce N-doped carbons. In this report, the authors 

applied a two-steps route (i.e. hydrothermal carbonization and KOH activation) 

for the synthesis of the seaweed-derived sorbents. The latter were tested for 

CO2 sorption at 25 °C, a CO2 partial pressure of 0.15 bar and a total pressure of 

1 bar (i.e. simulated post-combustion conditions), attaining a sorption capability 

of up to 61.4 mg CO2·g-1. 

However, except for [107], CO2 sorption capacities reported by 

aforementioned studies were measured at high CO2 partial pressure (1 bar). 

Moreover, based on the author’s best knowledge, literature survey did not show 

any application of CO2 sorbents specifically derived from oak wood or Laminaria 

hypeborea, which have been first presented in the current study (see Chapter 4 

and 5). 

 

2.8 CO2 capture through amine-modified solid sorbents  

2.8.1 Mechanism of CO2 chemisorption onto amines under dry or 

wet conditions 

The mechanism of CO2 chemisorption onto primary or secondary amines 

occurs according to a two-steps reaction [214, 215]. A reaction scheme for 

primary amines was reported by Li et al. [215] (see supporting information) and 

here readapted for secondary amines. 

In particular, during the first step (see reaction (1.1)), 1 mol of CO2 reacts 

with 1 mol of amine, giving rise to a zwitterionic intermediate. Following, the 

latter is deprotonated by a Brönsted base (proton acceptor). Note that, under 

dry conditions, the proton acceptor is another mol of amine, which enables the 

conversion of the zwitterionic intermediate to carbamate in the second step (see 

reaction (2.9)). Therefore, according to the overall reaction (2.10) [116, 216-

218], 2 moles of amines are necessary to adsorb 1 mole of CO2 in absence of 

water. 
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 𝑪𝑶𝟐 + 𝑹𝟐𝑵𝑯 = 𝑹𝟐𝑵+𝑯𝑪𝑶𝑶− (2.8) 

 

 𝑹𝟐𝑵+𝑯𝑪𝑶𝑶− + 𝑹𝟐𝑵𝑯 = 𝑹𝟐𝑵𝑪𝑶𝑶− + 𝑹𝟐𝑵+𝑯𝟐 (2.9) 

 

 𝑪𝑶𝟐 + 𝟐𝑹𝟐𝑵𝑯 = 𝑹𝟐𝑵𝑪𝑶𝑶− + 𝑹𝟐𝑵+𝑯𝟐 (2.10) 

Conversely, under wet conditions (e.g. post-combustion flue gas), H2O 

molecule acts as a proton acceptor, and carbamate ion, previously formed by 

reaction (2.10), further reacts with water and carbon dioxide to form 

bicarbonates (see reaction (2.11) [217, 218]). 

 𝑹𝟐𝑵𝑪𝑶𝑶− + 𝟐𝑯𝟐𝑶 + 𝑪𝑶𝟐 = 𝑹𝟐𝑵+𝑯𝟐 + 𝟐𝑯𝑪𝑶𝑶𝑶−  (2.11) 

Therefore, it follows that the presence of moisture promotes the 

consumption of an additional mole of CO2 (conversion into bicarbonates), thus 

increasing the moles of CO2 chemisorbed:moles of amino groups utilized ratio 

from 1:2 (only reaction (2.10) occurs) to 1:1 (both reaction (2.10) and reaction 

(2.11) occur).  

Similar to water vapour, hydroxyl groups (OH-) can also function as a 

free base to deprotonate the zwitterionic intermediate. Therefore, in presence of 

OH-containing species, formation of carbamate is believed to occur according 

to the reaction (2.12) [216]. 

On this premise, the effect of hydroxyl groups can be considered analogous to 

that caused by the presence of water vapour, as involves a more favorable CO2 

to N stoichiometry (i.e. conversion of 1 mol of CO2 requires just 1 mol of amine). 

However, the influence of hydroxyl groups on the CO2 chemisorption 

mechanism onto amines is currently not fully understood. 

 

2.8.2 The CO2 sorption performance of PEI-modified sorbents 

Many types of amines have been impregnated onto solid supports. Of 

these, the most largely used were reported in the review of Samanta et al. [58]. 

However, literature survey suggested PEI as one of the most promising 

candidate for improving the CO2 sorption capacity of the virgin activated 

carbons. This is mostly due to its high nitrogen density [12] and low vapour 

pressure [219], which allows minimizing the amine loss over time.  

 𝑪𝑶𝟐 + 𝑹𝟐𝑵𝑯 +  𝑹𝑶𝑯 = 𝑹𝑶+𝑯𝟐 + 𝑹𝟐𝑵𝑪𝑶𝑶− (2.12) 
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Polyethyleneimine was first deployed by Satyapal et al. [218], who 

anchored PEI onto a polymeric support. The PEI-modified solid sorbent was 

used for removing CO2 from space shuttles. 

However, Xu et al. [120] optimized the application of the amine-containing 

polymer through the synthesis of the so-called “molecular basket”. These 

authors performed a wet impregnation method by dissolving PEI in methanol 

and then dispersing the polymer onto highly mesoporous silica. They measured 

a CO2 capacity of up to 127 mg CO2 · g-1 at 75 °C and 1 bar (pure CO2 flow). 

The same group systematically evaluated the effect a series of parameters on 

the CO2 sorption performance of the PEI-modified silica in a further work [123] 

(see following sections). 

Several authors [115, 116, 217, 220, 221] successfully used activated 

carbons as alternative solid support to silica for PEI impregnation. According to 

the review of Samanta et al. [58], the highest pure CO2 (i.e. 1 bar) uptake (ca. 

94 mg CO2∙g-1, i.e. ca. 2 mmol CO2·g-1) ever measured in the literature for PEI-

modified carbons was attained by Maroto-Valer et al. [220] at 75 °C. However, a 

high CO2 sorption performance of PEI-impregnated ACs was also reported by 

other authors at the same temperature but under lower CO2 partial pressure 

(1.4 mmol CO2·g-1 at 0.1 bar [116], or 4.82 mmol CO2·g-1 at 0.15 bar [115]), 

which is more representative of a post-combustion capture scenario. 

Previous studies concerning the effect of a number of variables on the 

CO2 sorption performance of the PEI-supported sorbents are reviewed below. 

 

2.8.2.1 The influence of PEI loading and sorption temperature 

The PEI loading is probably the most important variable in order to 

optimize the CO2 capture capacity of the polymer-coated porous support. The 

effect of this parameter was first analysed by Xu et al. [123], who loaded PEI 

onto mesoporous silica (pore volume of ca. 1 cm3·g-1) through a wet 

impregnation procedure. In particular, with increasing PEI loading, the textural 

properties of the solid support decreased due to pore blocking, whereas CO2 

sorption capacity continuously increased. The largest CO2 uptake (133 mg 

CO2∙g-1) was attained at the highest polymer loading considered (i.e. 75 wt%). 

On the other hand, the polymer loading was found to affect the synergetic effect 

between the solid support and PEI. This effect was observed for polymer 

loading larger than 30 wt% (i.e. when mesopores filling began) and was 

maximized when polymer loading was 50 wt% (i.e. when saturation of 

mesopore volume of silica occurred). As polymer loading was further increased 

(from 50 to 75 wt%), the amount of CO2 per unit of mass of PEI declined. As 

explained by Xu et al., when PEI loading was higher (i.e. 75 wt%) than the 

maximum amount of polymer which could be accommodated within the 

substrate pores (i.e. 50 wt%, considering a PEI density of 1 g·cm-3), PEI was 
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coated onto the external surface of the support. Therefore, they speculated that 

the outer layer of polymer was less effective than the fraction loaded inside the 

mesopores of the solid support in terms of CO2 capture. 

As concerns carbon-based supports, the influence of the PEI loading (10, 

20, 40 and 60 wt%) on the pure CO2 sorption capacity measured at 75 °C was 

evaluated by Arenillas et al. [217]. These authors observed a dramatic reduction 

of the surface area of the support (i.e. fly ash-derived activated carbon) after 

impregnation of PEI, which was already used up when polymer loading was 40 

wt%. CO2 sorption capacity continuously increased with increasing PEI loading, 

yet its maximum value was relatively low (up to 45 mg CO2∙g-1 at 75 °C and 1 

bar). In addition to this, the sorption speed progressively decreased with 

increasing amount of polymer loaded onto the carbon, likely because of 

diffusional limitations. This result was probably due to the very low porosity 

(surface area of ca. 88 m2 g-1) of the carbon support used, which could not 

easily accommodate a large amount of polymer. 

In contrast, much greater CO2 capture capacity (4.82 mmol CO2·g-1) was 

achieved by Wang et al. [115] at 75 °C and 0.15 bar, who PEI-impregnated a 

highly mesoporous carbon (total pore volume of 3.61 cm3·g-1). The superior 

performance exhibited by the PEI-coated mesoporous carbon was likely due to 

the far larger available (meso)porosity. The latter enabled admitting a high 

amount of polymer (optimal loading of 65 wt%) without hindering the CO2 

diffusion through the porous network of the support. On the other hand, 

excessive pore blocking for loading higher than 65 wt% implied transport 

limitations of carbon dioxide, with consequent difficult access to the CO2-

capturing sites. 

Therefore, as highlighted by the aforementioned studies, the optimal 

polymer loading will strongly vary depending upon the pore volume/structure of 

the type of support used. This was corroborated by the work of Wang et al. 

[222], who studied the influence of PEI loading on different solid supports (silica 

and carbon-based substrates) featuring diverse porous networks. In particular, 

these authors suggested that solid supports having large mesoporosity and 3-D 

porous structure are ideal for an efficient loading of a high amount of PEI, and 

maximize both the CO2 capture capacity and the sorption kinetics.  

However, Wang et al. revealed that optimal PEI loading also depends 

upon the sorption temperature. In particular, they observed that, when loading a 

low amount of polymer (i.e. 30 wt%), the CO2 sorption capacity did not 

significantly improve or decrease with increasing temperature from 30 to 75 °C. 

This was ascribed to the fact that at lower PEI loadings thermodynamics effect 

(sorption) is still predominant and its contribution is penalized at higher 

temperature. In contrast, the same increase of temperature substantially 

enhanced the CO2 sorption capacity when a higher PEI loading (65 wt%) was 

coated onto the solid supports. This was attributed to the beneficial effect of an 
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increased temperature when CO2 uptake is diffusion-controlled (i.e. higher 

degree of pore filling). 

Xu et al. [120] investigated the effect of the sorption temperature (50, 75 

or 100 °C) on the CO2 perfomance of PEI-impregnated silica. Specifically, for a 

polymer loading of 50 wt%, these authors found 75 °C as optimal condition. 

This finding was generally consistent with those reported by other groups for 

PEI/silica [223], PEI or tetraethylenepentamine (TEPA)/silica monolith [224] and 

TEPA/mesoporous silica [225]. Apparently, when CO2 uptake is measured at 75 

°C, a trade-off between thermodynamics (sorption) and diffusion contributions 

occurs [225]. However, when temperature was further increased from 75 to 100 

°C, CO2 desorption became a dominant feature of the process, thus 

outweighing the diffusion enhancement [226]. 

On the other hand, it is worth saying that review of the open literature did 

not reveal any investigations on the effect of the sorption temperature on the 

CO2 capture capacity of PEI-modified materials when using water as solvent. 

 

2.8.2.2 The influence of solvent amount and type 

The effect of the support/solvent ratio on the CO2 sorption performance 

of PEI-coated mesoporous silica was investigated by Xu et al. [123]. In this 

study, the authors used methanol as carrier and a fixed amount of polymer, 

whereas solvent:solid support mass ratio was varied (2, 4 or 8). CO2 uptakes 

were found to increase with increasing weight ratio. 

Moreover, the influence of the same parameter was studied by Arenillas 

et al. [217] when using activated carbons as solid support and methanol as 

solvent. The optimal value of methanol:carbon ratio agreed with that already 

reported by Xu et al. [123] for silica-based substrates (i.e. 8). In light of this, a 

solvent:carbon ratio of 8 was used for all impregnation runs carried out in this 

study. 

Xu et al. [123] also studied the effect of the solvent type (methanol vs 

water) on the PEI impregnation of mesoporous silica. These authors used a 

value of solvent:solid support ratio of 4 and a PEI loading of 50 wt%. However, 

the kind of solvent appeared not to significantly affect the sorption capacity of 

the PEI-modified silica.  

In addition to this, Egbebi et al. [227] used two different solvents (i.e. 

methanol or a methanol-hexane mixture) to impregnate PEI onto a silica-based 

support. However, even in this case, the type of solvent did not change the CO2 

capture capacity of the final impregnated sorbents. 

Furthermore, Marques et al. [228] deposited PEI within the pores of 

carbon aerogels by using either an aqueous or a methanolic solution. They 

stated that PEI loading and thermal stability were not affected by the type of 
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solvent used. On the other way, no information relative to the influence of the 

solvent type on the CO2 capture performance of the PEI-modified materials was 

available. 

Therefore, to the author’s best knowledge, the study of the effect of the 

type of solvent on the CO2 sorption performance of PEI-impregnated activated 

carbons is unprecedented. 

 

2.8.2.3 The influence of other preparation conditions 

In addition to the influence of the abovementioned factors, the effect of 

other parameters on the CO2 capture performance of PEI-impregnated 

materials was also reported.  

In particular, Xu et al. showed that the wet impregnation method [120] 

allowed synthesizing more efficient CO2 sorbents than those obtained through a 

mechanical mixing method [123]. The same group observed that silica 

impregnated through a one-step method (i.e. entire amount of PEI loaded in just 

a single step) exhibited a higher CO2 uptake than that attained by sorbents 

prepared using a two-steps impregnation route. The latter entailed loading the 

first half of the amount of PEI in the first step, while the remaining fraction of 

polymer was loaded in a second step prior to drying under vacuum at 70 °C. 

Furthermore, Arenillas et al. [217] studied the effect of the mixing method 

(i.e. either stirring or shaking) on the CO2 sorption performance of PEI-

impregnated carbons. Yet, these authors stated that this factor did not affect the 

outcome of the impregnation procedure. Nonetheless, to the best knowledge of 

the author, no reports have been published yet regarding the effect of the 

mixing time on the CO2 capture performance of PEI-supported sorbents. 

Moreover, as alternative to the wet impregnation applied by Xu et al. 

[120], a (post-spinning) infusion method was carried out by Labreche et al. [229] 

for the incorporation of PEI onto silica fibers. In particular, these authors studied 

the effect of the infusion time, showing that the highest CO2 adsorption capacity 

was attained at low immersion durations [214, 229]. However, this route 

appears to be more complex than the wet impregnation, and is probably more 

appropriate when silica fibers are used as solid support. 

In this perspective, a one-step wet impregnation was adopted for the 

synthesis of the PEI-impregnated carbons. Stirring was selected as mixing 

method and the effect of the agitation time on the CO2 sorption capacity of the 

final impregnated AC was assessed.  
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2.8.2.4 The influence of water on the CO2 capture performances of PEI-

modified sorbents 

2.8.2.4.1 The effect of moisture in the simulated post-combustion flue gas 

Prior contributions revealed an increase of CO2 sorption capacity for PEI-

loaded sorbents when exposed to a wet gas feed [214, 230, 231]. For instance, 

Xu et al. [230] measured the CO2 capture performance of PEI-loaded silica (PEI 

loading of 50 wt%) under a dry or moist (closer to the real scenario) simulated 

post-combustion flue gas at 75 °C. These authors observed that, after doping 

the gas composition with water vapour (ca. 10% by volume), the CO2 sorption 

capacity of the chemisorbents was improved. This result was ascribed to the 

enhancement of the mechanism of CO2 chemisorption onto amines occurring in 

presence of water (see section 2.8.1). In the same study, the effect of the 

moisture concentration (0-16%) in the flue gas on the CO2 capture behaviour of 

the PEI-coated silica was also assessed. Specifically, the CO2 sorption capacity 

continuously increased with increasing moisture concentration. However, the 

highest increase rate was attained when moisture and carbon dioxide contents 

were comparable. These findings are in agreement with those reported in other 

works for PEI-loaded silica [214, 231]. 

Moreover, similar observations were reported by Wang et al. [115] when 

measuring the CO2 sorption capacity of PEI-coated mesoporous AC under 

anhydrous or moist gas feed simulating post-combustion flue gas. In particular, 

CO2 uptakes increased from 4.82 mmol CO2·g-1 (feed gas containing moisture) 

to 5.36 mmol CO2·g-1 (feed gas without moisture). 

 

2.8.2.4.2 The effect of the addition of OH-containing species to PEI-modified 

sorbents 

The introduction of hydroxyl-containing guests within amine-impregnated 

sorbents was previously found to promote the interaction between CO2 and 

amines [123, 214, 216-218, 232]. For instance, Xu et al. [123] studied the effect 

of the addition of polyethylene glycol (PEG) to the PEI/solvent solution prior to 

adding the solid support (silica). Assuming a theoretical maximum loading of the 

overall guest of 50 wt%, the amounts of PEI and PEG were fixed to 30 and 20 

wt% respectively. The PEG-containing sample not only attained a higher pure 

CO2 uptake (1 bar) at 75 °C, but also exhibited faster adsorption and desorption 

kinetics. This behaviour was attributed to the change in the chemisorption 

reaction between amines and CO2 (see section 2.8.1) due to the presence of 

hydroxyl groups contained within PEG [218].  

As concerns activated carbons, similar observations were reported by 

Arenillas et al. [217]. In this case, the same amount of PEG (20 wt%) was 

added to a series of PEI-impregnated carbons having different polymer loadings 

(20, 40 and 60 wt%). Results were consistent with those reported by Xu et al. 
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[123]. Indeed, when measuring CO2 uptakes at 1 bar and 75 °C and for any PEI 

loading, the additional presence of PEG led to larger CO2 uptakes and 

accelerated the adsorption/desorption speed. Arenillas et al. [217] also loaded 

the two guests (PEI and PEG) in either one or two steps, but the authors found 

no difference in the CO2 sorption performance of the two final products. 

Alternatively to the use of PEG, Labreche et al. [214] proposed the 

addition of glycerol as OH moieties source. This sugar alcohol was chosen as it 

has a greater number of hydroxyl groups per carbon atom compared to PEG, 

and because of its higher thermal stability (boiling point of 290 °C), which is a 

key factor when performing rapid temperature swing adsorption (RTSA) cycles. 

It was shown that the presence of glycerol as additional guest within the PEI-

impregnated silica led to a CO2 capture capacity at 35 °C nearly twice as large 

as that attained by the glycerol-free sample. In addition to the increase of the 

moles of CO2 chemisorbed:moles of amines ratio, Labreche et al. ventured that 

glycerol plasticized the rigid PEI chain, thus allowing a faster diffusion of CO2 

through the polymer gel. 

The favourable effect of glycerol addition on the enhancement of amine 

efficiency (CO2/N molar ratio) was also reported by Yue et al. [216] when the 

sugar alcohol was added to TEPA-coated silica. On the other hand, the same 

authors achieved greater adsorption capacities when using diethanolamine 

(DEA) as OH group’s guest. These results were consistent with those reported 

by Dao et al. [233], showing that the impregnation of a TEPA/DEA mixture on 

mesoporous silica outweighed the CO2 adsorption performance obtained when 

loading TEPA/PEG or TEPA/Glycerol blends. This was attributed to the CO2 

sorption contribution ensured by the amino group contained within DEA 

molecule amino [233]. Nonetheless, the use of glycerol as additional guest 

(three OH groups per number of C atoms) allowed achieving a larger CO2 

adsorption capacity than that attained when using PEG (two OH groups per 

number of C atoms) as additive, thus indicating a beneficial effect of the density 

of hydroxyl groups. 

Nevertheless, to the author’s best knowledge, the influence of DEA or 

glycerol addition on the CO2 sorption performance of PEI-impregnated AC has 

not been reported yet. In addition to this, glycerol is more environmentally 

friendly and has a higher thermal stability than DEA, which plays a key role 

when applying RTSA cycles. For these reasons, in this study the addition of 

glycerol as OH groups guest was preferred to the use of DEA. 

 

2.8.2.5 Regeneration strategy 

As already discussed in Chapter 1, RTSA cycling is considered as one of 

the most promising regeneration approach for post-combustion capture of CO2. 
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The application of RTSA cycles for the regeneration of PEI-modified silica [234] 

or hollow polymeric fibers [229] has been reported in the literature.  

However, to the author’s best knowledge, the regeneration of PEI-modified 

carbons through rapid TSA cycles has been reported only by Wang et al. [235]. 

On the other hand, these authors regenerated the PEI-loaded carbon by 

applying a relatively intense temperature swing (25-110 °C) and under nitrogen 

flow, which tends to facilitate the desorption process (i.e. PSA simulation). 

Moreover, CO2 was fully desorbed by holding the regeneration temperature for 

at least 34 min, which still represents a long desorption step. 

 

2.9 Main objectives 

In relation to the literature review reported in the present chapter and to the 

overall context outlined in Chapter 1, this work has attempted to achieve the 

following aims: 

 Prepare ACs starting from low-cost raw materials, making a comparison 

between products obtained from a traditional biomass, i.e. oak wood, and 

those derived from an unconventional and novel feedstock, i.e. Laminaria 

hyperborea.  

 Exploit the inherent chemical nature (i.e. alkalinity) and high availability of 

seaweed for a sustainable synthesis of alkali-metal based sorbents. 

 Study the influence of the carbonization process (conventional pyrolysis 

vs innovative HTC) of biomass on the two steps manufacture of ACs. 

 Compare the effect of the activation route (physical (CO2) vs chemical 

(KOH)) on the properties of the activated biochars. 

 Apply a chemical modification (i.e. amine impregnation) of virgin ACs in 

an attempt to improve their CO2 sorption capacity under simulated post-

combustion conditions (T=ca. 53 °C, PCO2=0.15 bar, Ptot=1 bar). 

 Investigate on the CO2 sorption mechanism (physisorption vs 

chemisorption) occurring onto the solid sorbents examined. 

 Evaluate the effect of texture and basicity on the CO2 sorption capacity of 

physisorbents and chemisorbents tested. 

 Examine the influence of the presence of hydroxyl groups (provided by 

glycerol) on the CO2 chemisorption mechanism occurring onto PEI-

loaded ACs. 
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3 Experimental 

3.1 Outline 

In the current chapter, the materials examined and the experimental 

methodologies adopted are described in detail. 

Details about the materials used are given in section 3.2, while section 3.3 

describes the synthesis of biomass-derived chars.  

Procedures related to the activation of biochars are reported in section 

3.4, whereas section 3.5 is concerned with the chemical modification of a 

commercial carbon. 

Characterization techniques conducted on the samples were grouped in 

three areas. In particular, section 3.6 refers to porosity measurements achieved 

through gas (i.e. N2 and CO2) adsorption. Further analyses related to the 

chemistry, morphology and structure of the samples are included in section 3.7.  

Finally, routines applied for the measurement of the CO2 sorption 

performance are explained in section 3.8. 

3.2 Materials 

3.2.1 Biomass feedstock 

Raw materials used for the preparation of the carbons were oak wood  

and Laminaria hyperborea (see Figure 3-1). These were designed as OW and 

LH_S respectively. Oak wood was obtained from Andalucia, Spain and used as 

received. The brown macroalgae (Laminaria hyperborea) was harvested off 

Scottish coast of Clachan Sound in the summer season (July). Raw seaweed 

was ground prior to further treatment. 

 
 

Figure 3-1 (a) Raw oak wood (OW) and (b) Laminaria hyperborea summer 
(LH_S) used as precursor for activated carbons (ACs) preparation  

(a) (b) 
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3.2.2 Commercial carbons 

Commercial carbons were included in this work and used as reference 

materials. In particular, a coconut-shell derived carbon, denoted as GAC, was 

offered by Eurocarb. This was compared with oak wood-derived carbons in 

Chapter 4. In addition to this, another carbon, referred to as AR, was provided 

by Chemviron Carbon. The latter sample was employed for the chemical 

modification procedure following described in section 3.5, and relevant results 

are reported in Chapter 6. 

 

3.3 Synthesis of biochars 

3.3.1 Dry pyrolysis 

Conventional pyrolysis of biomass was carried out by using two different 

types of reactors, in particular a horizontal ceramic tube furnace, and a stainless 

steel vertical furnace. 

 

3.3.1.1 Horizontal ceramic tube furnace 

A known weight of virgin biomass was placed in a ceramic boat. The 

crucible was then inserted inside the furnace. A metallic rod was used to place 

the boat within the heating zone (reactor core), thus ensuring that the whole 

charge was exposed to the same temperature. Afterwards, both ends of the 

furnace tube were tightly fastened in order to prevent air infiltration. The right 

hand side (see Figure 3-2(b)) was provided with inlet connections in order to 

feed the inert gas (nitrogen). Nitrogen was used for an initial purging (5 to 10 

min) which allowed excluding oxygen from the internal atmosphere, thereby 

preventing undesired material burn off. In addition to that, the inert gas flowed at 

a flow rate of 100 ml·min-1 during heating and cooling steps in order to sweep 

the evolved gases from the reaction zone.  

The other side of the rig (see Figure 3-2(a)) was connected to an exhaust 

system. This consisted firstly of an “anti-suck back” trap and oil bubbler (where 

tars (oil) and condensable liquids tended to collect). Following this, the outlet 

gas flowed through tubing which worked as an exhaust fume chimney to pull out 

volatile organic compounds (VOCs) released during heating.  
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Figure 3-2 Dry pyrolysis of biomass - setup 1 (ceramic horizontal tube 
furnace): a) exhaust system on the left hand side, b) gas feed connection 
on the right hand side, and c) furnace controller. 

 

A schematic representation of the reactor setup is provided in Figure 3-3. 

 

Figure 3-3 Dry pyrolysis of biomass - setup 1 – schematic representation  
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Carbonization took place by heating the feedstock at a heating rate (HR) 

determined by the furnace (i.e. average HR of ca. 13 °C·min-1), to a final 

temperature of 800 ºC, which was set by a dedicated controller (see Figure 

3-2(c)) and held for 1 h. On completion, furnace was allowed to cool down 

under nitrogen. Once the sample had reached ambient temperature, the char 

was then collected and weighed in order to measure the carbonization yield as 

equation (3.1). 

 𝑪𝒂𝒓𝒃𝒐𝒏 𝒚𝒊𝒆𝒍𝒅 (𝑪𝒀) = (𝑾𝒄𝒉𝒂𝒓 𝑾𝒓𝒂𝒘 𝒎𝒂𝒕𝒆𝒓𝒊𝒂𝒍⁄ ) ∙ 𝟏𝟎𝟎 (3.1) 

where, Wchar and Wraw material are the weights of char and raw material on a dry 

basis respectively. 

 

3.3.1.2 Stainless steel vertical furnace 

A determined amount of raw feedstock was loaded into a basket, which 

was then inserted within a stainless steel vertical furnace (see Figure 3-4(a) and 

Figure 3-5). Prior to entering the material into the furnace, a thermocouple was 

introduced inside the basket such that it was in direct contact with the sample 

(see Figure 3-5). After this, the basket was anchored on the top ring of the rig 

by using some chains (see Figure 3-5). The presence of the thermocouple 

allowed monitoring the sample temperature during the process. The top ring 

was then sealed through a series of screws, and the top ring fitting was 

connected to the inlet pipelines allowing the purging gas (N2) to flow in (flow 

rate of 1.5 l·min-1). 

 

 

 

 

Figure 3-4 Dry pyrolysis of biomass - setup 1 (Stainless steel rig): a) 

vertical furnace, b) traps for collection of HCl and further volatiles, and c) 

furnace controller.  
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As shown in Figure 3-4(a) and Figure 3-5, the outlet fitting at the bottom 

of the rig was connected to a first condenser to collect condensable oils and 

vapours. This was maintained at ca. 5 °C by using a chiller. Afterwards, the 

outlet gas went through two more traps (see Figure 3-4(b) and Figure 3-5). The 

second trap, containing NaOH, was designed to neutralize any HCl release, 

especially when pyrolyzing Laminaria hyperborea, which normally contains high 

concentration of Cl (see also results in Chapter 5). Finally, the last trap was 

used to collect any further volatiles prior to reaching the exhaust. 

A schematic representation of the reactor setup is provided in Figure 3-5. 

 

 

Figure 3-5 Dry pyrolysis of biomass - setup 2 – schematic representation 

 

The reactor was initially purged with N2 for 10 min. After this, controller 

(see Figure 3-4(c)) was switched and desired temperature (i.e. 800 °C) was set. 

Feedstock was then heated up according to a heating rate determined by the 

furnace. It is worth pointing out that heating ramp was observed to be slower 

than that implied by the ceramic furnace (i.e. average HR of ca. 8 °C·min-1). As 

usual, the final temperature was held for 1 h. After cooling down to room 

temperature, the char was recovered in order to determine the carbonization 

yield according to equation (3.1).  
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3.3.2 Hydrothermal carbonization 

Hydrothermal synthesis entailed loading 24 g of pristine material along 

with 220 ml of distilled water in a stainless steel autoclave (see Figure 3-6(a)). 

Solid and liquid phases were thoroughly mixed and reactor was sealed. The 

autoclave was then transferred inside a heater, which was attached to a 

temperature controller (see Figure 3-6(b)). The slurry was then heated at a 

heating rate (ca. 4 °C·min-1) determined by the reactor up to 250 °C, and held at 

this final temperature for 1 h.  

 

 

 

Figure 3-6 HTC of biomass: a) reactor setup, and b) temperature controller 

 

Once the set point was reached, the equilibrium between liquid and 

gaseous phases (volatiles) was established, and a pressure of 35 to 40 bar was 

reached inside reactor. This was measured by a pressure gauge connected to 

the top ring of the hydrothermal rig (see Figure 3-6(a)). At the end of the 

process, the sample was allowed to cool down to room temperature, and the 

solid residue was recovered by filtration. The hydrochar obtained was then air-

dried and weighed in order to determine the carbonization yield (see equation 

(3.1)). In addition, a mass balance of the HTC water process was applied to 

calculate the amount of water lost during the hydrothermal process as given in 

equation.  
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 𝒎𝒍𝒐𝒔𝒕 = 𝒎𝒊𝒏𝒊𝒕𝒊𝒂𝒍 − 𝒎𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒆𝒅 (3.2) 

where, minitial is the mass of water initially added to HTC rig, mrecovered is the 

mass of water recovered after HTC process, and mlost is the mass of water lost 

after HTC process. 

 

3.3.3 Repeatability of carbonization process 

The repeatability [236] of carbonization processes for the feedstock 

chosen is assessed in Chapters 4 and 5 respectively. In order to do this, three 

runs under the same conditions were carried out. As suggested by Illingworth 

[168], the accuracy of the repeatability was then estimated using the equation 

(3.3): 

 𝑺𝑫 (% 𝑴𝒆𝒂𝒏) = (𝑺𝑫 𝑴𝒆𝒂𝒏⁄ ) ∙ 𝟏𝟎𝟎 (3.3) 

where, SD is the standard deviation of the three measurements. 

The repeatability of the solid yield (see equation (3.1)) was determined for 

both carbonization processes. In addition, the variability of the HTC water 

balance (see equation (3.2)) was also assessed. 

 

3.4 Activation step 

Chars were activated via two different methods. A heat-treatment step 

either under CO2 (physical activation) or N2 (chemical activation) was performed 

in a ceramic horizontal tube furnace with a setup similar to that already shown 

in Figure 3-2, with the exception of using a tube with smaller diameter. In 

addition to this, the smaller furnace used in this case allowed a greater flexibility 

in terms of control settings. In fact, the furnace controller enabled pre-defined 

multi-steps programmes, by manually selecting the heating rate, the set point 

and the dwell time for each stage. 

 

3.4.1 CO2 activation 

A fixed mass of each char was placed in an alumina crucible. This was 

centred within a horizontal tube furnace. After closing tightly both ends of the 

reactor, the system was initially purged with N2 for ca. 15 min to exclude any 

presence of oxygen inside the furnace. The sample was heated at a heating 

rate of 10 °C·min-1, up to the chosen activation temperature. The char was then 

isothermally held for a certain holding time. CO2 (flow rate of 0.6 l·min-1) flowed 

throughout the heating treatment. At the end of the temperature programme, the 

furnace elements were switched off and allowed to cool down to room 
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temperature. The resultant activated carbon was then weighed to determine its 

burn-off according to equation (3.4) and then stored in a desiccator for further 

characterization experiments.  

 𝑩𝒖𝒓𝒏 − 𝒐𝒇𝒇 (𝑩𝑶) =
𝑾𝒄𝒉𝒂𝒓 − 𝑾𝑨𝑪

𝑾𝒄𝒉𝒂𝒓
∙ 𝟏𝟎𝟎 (3.4) 

where, Wchar is the mass of the char used for physical activation, and WAC is the 

mass of carbon following to CO2 activation. Masses were reported on a dry 

basis. 

 

3.4.2 KOH activation 

Chemical activation was carried out according to the procedure reported by 

Fierro et al. [169]. This entailed grinding some KOH pellets (Sigma Aldrich, 

P1767) and physically mixing these with a certain amount of char in a mortar 

according to a desired ratio. This methodology was preferred to the wet 

impregnation route because it does not require any drying step prior to the heat-

treatment under N2, thereby avoiding the preliminary carbonation of KOH in air 

[168] (see also Chapter 2). 

Therefore, the procedure adopted in the present study entailed heating the solid 

dry blend KOH/char up to the determined temperature immediately after 

physical mixing. The maximum temperature was held for a dwell time of 1 h.  

Following heat-treatment under N2, the recovered material was washed 

through a filter in an attempt to remove the residual potassium compounds 

taking up the pore space. Illingworth [168] highlighted the crucial role of the 

washing treatment in order to ensure the effectiveness of the KOH activation. In 

particular, the author used either water or highly concentrated (5 M) 

hydrochloric acid as washing agents. In the current work, three different 

washing procedures were applied: 

No washing; 

1 step - aqueous rinsing with distilled water until constant filtrate pH (ca. 7.0); 

2 steps - sequential washing 

 1 M HCl (VWR International, 20252.420) until constant filtrate pH (ca. 

2.0) 

 Aqueous rinsing with distilled water until constant filtrate pH (ca. 7.0). 

Use of high concentrated acid was avoided, as this would be less economical if 

washing treatment was to be applied on an industrial scale. 

The final activation yield was then calculated as equation (3.5). 

 𝑨𝒄𝒕𝒊𝒗𝒂𝒕𝒊𝒐𝒏 𝒚𝒊𝒆𝒍𝒅 (𝑨𝒀) = (𝑾𝑨𝑪 𝑾𝒄𝒉𝒂𝒓⁄ ) ∙ 𝟏𝟎𝟎 (3.5) 
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where, Wchar is the dry mass of the char mixed with KOH prior to heat-treatment 

under N2, and WAC is the dry mass of carbon following activation and washing 

treatments. 

 

3.5 Amine wet impregnation of activated carbons: procedure 

optimization 

3.5.1 Primary optimization 

A commercial carbon, designed as AR and provided by Chemviron 

Carbon, was chemically modified by wet impregnation. The main impregnating 

agent used was a branched polyethileneimine (PEI), which was purchased from 

Sigma Aldrich (product number 408719).  

PEI was chosen for its high amine concentration (ca. 33% N by weight) 

[12], due to the numerous primary, secondary and tertiary amines present within 

its polymeric chain (see Table 3-2). Moreover, its high molecular weight (see 

Table 3-2) implies a good thermal stability [237], which allows minimizing the 

loss of amines after regeneration when using rapid temperature swing 

adsorption (RTSA). This would ensure durable performances over time and 

avoid the release of toxic substances in the environment. 

PEI impregnation was carried out initially using the conditions reported 

by Xu et al. [120]. This entailed dissolving the desired amount of polymer in 

methanol and stirring for 15 min. After this, mesoporous silica was added as 

solid support and the mixture stirred for a further 30 min. The amount of solid 

support was determined in order to have a support/solvent ratio of 1:8. 

The aforementioned methodology was adapted to the use of the 

commercial carbon (AR) as solid support. As summarized in Table 3-1, either 

0.4, 0.6, 0.8 or 1 g of pure polymer were added to the desired amount of solvent 

according to the optimal ratio reported by Xu [123] and stirred for 15 min. 

Afterwards, 1 g of carbon was added and the final mixture was further stirred for 

0.5, 2, 4, 6 or 8 h. 

The final slurry was recovered by filtration and air dried until constant 

weight in order to determine the actual amount of PEI loaded onto the support 

by mass balance (see equation (3.6). Oven drying was avoided in order to 

prevent any amine degradation. 

 𝑨𝒄𝒕𝒖𝒂𝒍 𝑳𝒐𝒂𝒅𝒊𝒏𝒈 (𝑨𝑳) = (𝑾𝑰𝑪−𝑾𝑪 𝑾𝑰𝑪⁄ ) ∙ 𝟏𝟎𝟎 (3.6) 

where, WIC is the mass of impregnated carbon air-dried until constant weight, 

and WC is the dry mass of carbon before impregnation. 
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Table 3-1 Primary optimization - PEI impregnation of commercial carbon 
(AR) - NL stands for Nominal Loading, as % calculated from g of PEI/(g of 
PEI + g of carbon). “Me” and “W” represent the solvent used and stand for 
Methanol and Water respectively 

 
NL 

wt. 

carbon 

wt. 

PEI 

Stirring 

time 

Sample ID wt% g g h 

AR_PEI_29%_Me_0.5h 29 1 0.4 0.5 

AR_PEI_38%_Me_0.5h 38 1 0.6 0.5 

AR_PEI_44%_Me_0.5h 44 1 0.8 0.5 

AR_PEI_50%_Me_0.5h 50 1 1 0.5 

AR_PEI_44%_Me_2h 44 1 0.8 2 

AR_PEI_44%_Me_4h 44 1 0.8 4 

AR_PEI_44%_Me_6h 44 1 0.8 6 

AR_PEI_44%_Me_8h 44 1 0.8 8 

AR_PEI_44%_W_8h 44 1 0.8 8 

 

Note that details included in Table 3-1 refer to the main optimization of the 

PEI wet impregnation. This consisted of three main steps, and entailed 

assessing the influence of the following parameters on the CO2 sorption 

capacity of the impregnated carbons measured under post-combustion 

conditions (see results reported in Chapter 6): 

The nominal loading of polymer with a stirring time of 0.5 h and solvent was 

methanol; 

The stirring time of the mixture PEI/solvent/carbon when the PEI loading was 

optimal (i.e. 44 wt%, see Table 3-1) and solvent was methanol; 

The type of solvent (using water rather than methanol) when the PEI loading 

and the stirring time were optimal (44 wt% and 8 h respectively). The effect 

of the solvent type was examined at two different temperatures, i.e. 53 or 77 

°C (see Chapter 6 for further discussion). 

In addition to the aforementioned steps, the influence of stirring time was 

also studied for polymer loadings other than the optimal value (i.e. 38 and 50 

wt%). Moreover, the use of aqueous impregnation was further optimized by 

varying the polymer loading and the stirring time independently. 

 

3.5.2 Influence of additional factors 

Starting from optimal conditions of PEI loading, stirring time and solvent 

type, which were determined for maximum CO2 uptake at 53 °C, the influence 
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of additional factors on the CO2 sorption capacity of PEI-loaded carbons was 

then assessed. 

 

3.5.2.1 Use of a different carbon substrate 

An alternative carbon support was selected for carrying out the PEI 

impregnation. OW800CA was chosen as best candidate, as this represented a 

reasonable trade-off between available pore volume and activation yield (see 

Chapter 4). The alternative carbon substrate was obtained from the KOH 

activation of pyrolyzed wood. 

 

3.5.2.2 Use of alternative N-containing compounds 

The main solid support used, i.e. AR, was impregnated with other types 

of amines having different characteristics to PEI (see Table 3-2). This was done 

in an attempt to study the effect of the incorporation of diverse N-based 

moieties. monoethanolamine (MEA) was chosen because of its smaller size and 

lower molecular weight. In addition to this, a 30% aqueous solution of this type 

of amine is the state of the art technology for post-combustion capture of CO2. 

Another compound, in particular tetraethylenepentamine (TEPA), was 

selected because, according to previous studies [121, 122, 224, 237, 238], 

TEPA-modified supports were found to outperform PEI-impregnated sorbents in 

terms of CO2 sorption capacity. This was mostly attributed to the higher amine 

density [237] or lower viscosity [121] (see also Table 3-2) of the TEPA molecule 

as compared to PEI. In particular, the less viscous TEPA implies an improved 

diffusion of CO2 through the amine coating/porous channels of the solid 

support. 
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Table 3-2 Physical properties and amine types for impregnating agents used - I, II, and III stand for primary, secondary and 
tertiary amines respectively. 

Impregnating  

agent 

Product  

number 

Density  

at 25 °C 

Molecular  

weight  

Dynamic Viscosity  

at 20 °C 

Amine  

type 

Molecular structure 

- - g·ml-1 g·mol-1 cP - - 

PEI 408719 1.050 600.00 800 - 5000 I, II, III 

 

MEA E9508 1.012 61.08 24.1 [239] I 
 

TEPA T11509 0.998 189.30 23.4 [240] I, II 
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3.5.2.3 Addition of glycerol 

The addition of an OH-containing compound (i.e. glycerol) to the 

PEI/methanol mixture was studied. As already reported in Chapter 2, it had 

already been proved that the presence of hydroxyl groups enhanced the 

chemisorption mechanism of CO2 onto amines [115, 216, 217, 232]. 

Glycerol was chosen because it is a natural, non-toxic compound, and 

has a higher number of OH groups per number of C atoms (see Figure 3-7) 

than other compounds previously used such as Polyethylene glycol (PEG) 

[214]. Furthermore, its higher boiling point (ca. 290 °C) ensures a higher 

thermal stability. Moreover, according to the author’s best knowledge, the 

influence of glycerol addition on the PEI impregnation of ACs has been 

examined for the first time in this work. 

 

 

Figure 3-7 Glycerol molecule 

 

Details about impregnation including glycerol addition are given in Table 

3-3. In particular, 1 g of carbon was impregnated using the optimal conditions of 

PEI loading, stirring time and solvent type determined in Chapter 6. The 

PEI/glycerol ratio was varied from 4:1 to 1:1. 

 

Table 3-3 Impregnation conditions when adding glycerol (Gly) 

g AC g PEI g Gly PEI:Gly ratio 

1 0.8 0.2 4:1 

1 0.8 0.4 2:1 

1 0.8 0.8 1:1 

 

3.6 Gas adsorption (porosity and surface area measurements) 

3.6.1 Sample degassing 

Prior to measuring gas adsorption, all samples were degassed under 

vacuum. This degassing process is essential for a reliable measurement of 

porosity as it enables the release of moisture and chemical species from the 

pore surface of the adsorbents. The instrument allowed the outgassing step to 
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be conducted at temperatures higher than ambient (up to 350 °C). In order to do 

this, the sample cell was placed inside a heating mantle, which was connected 

to a temperature controller. In theory, a material should be degassed at the 

highest temperature that does not cause any damage to its structure, because 

the higher the temperature, the more efficient and the shorter the degassing 

process. 

The maximum degassing temperature depended upon the type of 

sample analysed. In particular, the raw biomass and the chars were degassed 

at room temperature as these materials kept on releasing a significant amount 

of volatiles on heating, thus contaminating the outgassing station. On the other 

hand, degassing these samples at room temperature often led to isotherms 

characterized by a low-pressure hysteresis (LPH) phenomena, which are further 

discussed in Chapter 4. In addition to raw materials and carbonized 

counterparts, amine-modified carbons were also degassed at ambient 

temperature. In this case, the temperature was not increased to avoid any 

chemical degradation. Conversely, virgin activated carbons were subjected to a 

gradual heating process. Initially, ACs were degassed for 30 min at room 

temperature. After this, the temperature was increased stepwise (ΔT<50 °C) 

until reaching a maximum temperature of 100 to 200 °C. As suggested by 

Tucker [241], a faster heating rate promotes an intense release of a high 

concentration of volatiles, thus potentially causing contamination problems. 

The duration of the degassing process was extended until the final 

outgassing rate dropped below 20 mm Hg·min-1. 

 

3.6.2 Gas isotherm construction 

The porosity of solid materials examined in this study was measured with 

the aid of a Quantachrome Autosorb 1-C gas sorption analyser. The instrument 

returned a gas adsorption isotherm as output. This can be defined as the 

relationship between the amount of gas adsorbed/desorbed onto/from a unit of 

mass of solid sample and the relative pressure P/P0 (corresponding to a certain 

equilibrium vapour pressure) at which the gas is adsorbed onto/desorbed from 

the material, at a constant temperature.  

The construction of the adsorption/desorption isotherm was 

accomplished by using the static volumetric method. This entails admitting a 

known amount of adsorptive gas into the sample cell filled with the solid 

adsorbent. The latter will then adsorb some of the gas admitted, thereby 

implying a variation in the pressure inside the sample cell, which will change 

until equilibrium occurs. If equilibrium is not reached, the sample cell is 

scheduled for another dose of gas. Once equilibrium is established, the amount 

of gas adsorbed onto the solid sample is then calculated by applying the gas 

law as the total amount of gas admitted minus the amount of gas filling the dead 
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space (i.e. space not occupied by solid material) at the equilibrium pressure and 

at the desired temperature. The sample cell was maintained at -196 °C (77 K) 

by using liquid nitrogen when the adsorptive gas was N2, whereas an ice bath 

was used to keep the sample at 0 °C (273 K) when CO2 was used as the 

adsorptive gas (see also 3.6.4). 

A similar principle is applied for the construction of the desorption leg of 

the isotherm, with the exception of removing a known amount of adsorptive gas 

from the sample cell. Therefore, when plotting relative pressure against volume 

of adsorbate, the graphical isotherm will consist of two legs, i.e. adsorption and 

desorption. If adsorption is not fully reversible, desorption branch will not follow 

the same path as the adsorption leg, thus giving rise to the so called hysteresis 

[242]. 

The construction of the adsorption-desorption isotherm allows identifying 

a characteristic pore structure for the analysed solid sorbent. In particular, 

adsorption isotherms were initially classified into six types according to IUPAC 

recommendations [242]. However, thanks to the investigation of new porous 

systems over the last 30 years, this classification has been recently updated by 

a IUPAC report [243], introducing two more isotherm types. The same report 

also refined the hysteresis loops classification, adding two new hysteresis types 

to the four patterns proposed in the first report. 

However, the recent IUPAC report recommended the use of Ar at 87 K 

as the adsorptive gas instead of N2 at 77 K for porosity measurements. Indeed, 

adsorption of Ar at 87 K is considered more accurate due to a series of reasons. 

For instance, thanks to the lack of quadrupole moment and to the higher 

sorption temperature, Ar is less affected by the structure and functional groups 

of the adsorbent surface. The use of Ar at 87 K rather than N2 at 77 K is 

particularly advantageous for the measurement of microporosity. Indeed, the 

higher temperature enhances gas diffusion into smaller micropores, which are 

filled at higher relative pressures, thereby implying faster and higher resolution 

analysis. Nevertheless, the last IUPAC report was published when most of the 

current experimental work had already been accomplished. Therefore, the use 

of Ar as adsorptive gas was not considered in this study. 

Whenever possible, the choice of the amount of sample for the analysis 

was made according to the recommendations given by Quantachrome [244]. In 

particular, the amount of material weighed for each sample was chosen as to 

having a presumed total surface area of 5 to 20 m2. In particular, sample sizes 

were 0.02 to 0.03 g for activated carbons. However, although the raw biomass 

and the chars had significantly lower specific surface areas than those featured 

by activated carbons, the sample size was maintained below 0.05 g in order to 

avoid excessive release of volatiles from these materials during the degassing 

stage (see section 3.6.1). Nonetheless, all measurements were carried out by 

using the smallest sample cell available (d=6 mm, small bulb), thereby 
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minimizing the dead space around the solid material. This helped to reduce the 

buoyancy errors introduced by backfilling sample cell with helium (see further 

details in the Autosorb manual [244]). 

Although the Autosorb 1-C instrument is able to measure gas 

adsorption/desorption down to relative pressures (P/P0) of ca. 10-7, in this study 

N2 adsorption isotherms were measured by applying a shorter P/P0 range (10-3 

to 0.99) because of the long equilibration time required for some of the samples. 

This was dictated by the high number of samples to be analysed. In addition, 

previous studies [245-247] pointed out that nitrogen does not enter 

ultramicropores (d<0.7 nm) as its adsorption is usually kinetically restricted 

because of diffusional limitations. Under this premise, CO2 adsorption isotherms 

(see section 3.6.4) were also measured to provide complementary and more 

reliable information about narrow microporosity. However, in this case the 

isotherm was measured until P/P0=0.03 in order to prevent condensation of 

carbon dioxide in mesopores at higher absolute pressures. 

The routine used for the construction of the N2 isotherms implied the 

measurement of 27 points for the adsorption branch, whereas 10 desorption 

points were acquired by measuring back down to a partial pressure of 0.1. 

Adsorption and desorption data were then reduced into a series of parameters 

by using the AS1Win Version 1.25X Quantrachrome software, including a 

comprehensive library of built-in models (see following sections). 

 

3.6.3 N2 adsorption/desorption data reduction 

3.6.3.1 Brunauer-Emmett-Teller (BET) method - Surface area of non-

microporous materials 

BET theory [248] is widely accepted as method for the determination of 

the surface area of solid materials. This methodology is usually suitable for an 

adsorbent exhibiting isotherms of type II (nonporous or macroporous solid) or 

type IV (a mesoporous material) [242, 249]. N2 adsorption data obtained for the 

aforementioned materials usually yield to the linearization of the BET equation 

((3.7) [244]) over the P/P0 range 0.05-0.3. 

 
𝟏

𝑾 ∙ ((𝑷𝟎 𝑷⁄ ) − 𝟏)
=

𝟏

𝑾𝒎∙𝑪
+

𝑪 − 𝟏

𝑾𝒎∙𝑪
(

𝑷

𝑷𝟎
) (3.7) 

where, P is the absolute pressure of the adsorbate (i.e. nitrogen), P0 is the 

saturation pressure of nitrogen at its boiling point (77 K), W is the weight of gas 

adsorbed at a relative pressure P/P0, Wm is the weight of the adsorbate 

monolayer formed over the surface of the adsorbent, and C is the BET 

constant. The latter is proportional to the magnitude of the adsorbent/adsorbate 

interactions. Low values of this parameter (2 to 50 m2·g-1) represent a weak 

adsorption process usually occurring on adsorbents with low surface areas, 
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such as metals, polymers and organics. Oxides and silicates normally exhibit 

intermediate values (50 to 200 m2·g-1) of the C constant, whereas activated 

carbons are generally characterized by C values higher than 200 [250]. 

The surface area of raw feedstock and chars was determined by 

applying the multipoint BET approach over the conventional P/P0 range (0.05-

0.3). However, as described in section 3.6.3.1.2, a single point approach could 

also be applied. 

 

3.6.3.1.1 Multipoint approach 

According to equation (3.7), when plotting 1/[W(P0/P)-1] (y) vs P/P0 (x), a 

straight line should best fit the experimental data. As a result, the intercept (y0) 

and the slope (m) of the straight line will be defined as in equations (3.8) and 

(3.9) respectively.  

 𝒚𝟎 =
𝟏

𝑾𝒎 ∙ 𝑪
 (3.8) 

 

 𝒎 =
𝑪 − 𝟏

𝑾𝒎 ∙ 𝑪
 (3.9) 

Once the intercept y0 and the slope m have been determined by linear 

regression, it will be possible to calculate C and Wm by combining equations 

(3.8) and (3.9). Accordingly, the total surface area (St), expressed in m2 (after 

appropriate unit conversion), was determined from equation (3.10). 

 𝐒𝐭 =
𝐖𝐦 ∙ 𝐍 ∙ 𝐀𝐜𝐬

𝐌
 (3.10) 

where, Wm is the weight of a monolayer, Acs is the cross-sectional area value for 

nitrogen, assumed to be equal to 0.162 nm2, N is the Avogadro’s number 

(6.023∙1023 molecules∙mol-1), and M is the molecular weight of the adsorbate 

(28.013 g∙mol-1 for N2). 

The specific surface area (S), expressed as m2·g-1, can be then obtained 

as equation (3.11) 

 𝑺 =
𝑺𝒕

𝑾𝒔
 (3.11) 

where, Ws is the mass of sample analysed. 

Note that the software returns a dimensionless value of the intercept (i.e. 

Wm), which is already normalized by the sample weight. Therefore, the specific 

surface area can be calculated directly as equation (3.10). 
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However, the validity of the BET method requires the fulfilment of two 

criteria: 

a) The BET plot must be linear over the P/P0 range considered; 

b) The intercept y0 must be positive, as negative values of this parameter 

would lead to meaningless values of the constant C.  

If, for a certain material, these conditions are not met, the BET equation cannot 

be applied for that particular sample. Therefore, the P/P0 range was accurately 

selected by applying the following procedure [250]:  

i. Acquire as many points as possible within the P/P0 range 0.05 to 0.3; 

Preferably acquire even more points and extend the range to P/P0=ca. 

0.4. However, points above 0.5 should not be considered as the BET 

model fails at predicting multilayer formation leading to the capillary 

condensation of the adsorbate within the pores; 

ii. Determine the upper limit of the linear BET range by calculating the 

single-point (see section 3.6.3.1.2) BET area using each datum point in 

turn. Normally, the calculated single-point area will increase with 

increasing P/P0 up to some maximum, beyond which the calculated 

value will decrease. That maximum indicates the upper limit for the multi-

point range. However, in certain cases, the calculated single-point value 

never goes through a maximum. This would be evidenced by a gradual 

decrease in slope in the BET plot.  

iii. Discard points at P/P0 values above the upper limit found at (“ii”) and/or 

discard any other P/P0 values that clearly do not lie on a straight BET line 

from the multipoint surface area calculation. Refine the BET plot as long 

as at least three [244] data points are left. 

 

3.6.3.1.2 Single-point approach 

As an alternative to the multipoint approach, a simplified procedure can 

also be applied, which entails using only one data point lying within the linear 

region of the BET plot. This procedure is based on assuming the intercept of the 

BET equation is equal to zero (and the slope equal to 1/Wm). This assumption is 

acceptable whenever the C value is sufficiently large (e.g. for activated 

carbons). Accordingly, solving for Wm, equation (3.7) will reduce to equation 

(3.12). The latter can be used to calculate the monolayer capacity once the 

amount of nitrogen adsorbed at one relative pressure has been measured 

(preferably near P/P0=0.3, which usually gives good general agreement with the 

multi-point estimation). 

 𝑾𝒎 = 𝑾 ∙ (𝟏 − 𝑷 𝑷𝟎⁄ ) (3.12) 

Considering the ideal gas law, equation (3.12) can be rearranged as equation 

(3.13). 
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 𝑾𝒎 =
𝑷 ∙ 𝑽 ∙ 𝑴

𝑹 ∙ 𝑻
∙ (𝟏 − 𝑷 𝑷𝟎⁄ ) (3.13) 

Finally, by replacing the expression for Wm found from equation (3.13) in 

equation (3.10), the surface area can be expressed as equation (3.14). 

 𝑺𝒕 =
𝑷 ∙ 𝑽 ∙ 𝑵 ∙ 𝑨𝒄𝒔

𝑹 ∙ 𝑻
∙ (𝟏 − 𝑷 𝑷𝟎⁄ ) (3.14) 

 

3.6.3.2 BET method - Surface area of microporous materials 

The BET equation is not rigorously applicable to microporous adsorbents 

mainly because it is not easy to disentangle the monolayer formation process 

from micropore filling [251]. In fact, monolayer completion is supposed to occur 

at around P/P0=0.01, thus overlapping with the standard pressure range used 

for BET method. As the BET model does not take into account micropore filling, 

the surface area tends to be underestimated. On the other hand, adsorbate 

molecules lying at the centre of super-micropores (d>0.7 nm) do not touch the 

adsorbent surface, implying that the surface area will be overestimated [249].  

However, an equivalent BET area for microporous materials can still be 

found by following the procedure recommended by the International Standard 

Organization (ISO) [249]. This methodology is essentially based on the 

following criteria: 

1. The constant C should be positive (same as criterion b) section 

3.6.3.1.1); 

2. BET equation should be applied within a P/P0 range where the term 

na∙(1−P/P0) continuously increases with P/P0. Note that, as na represents 

the number of moles of adsorbate, this will be proportional to the weight 

of the adsorbate W. In other words, it is also possible to consider the 

increasing trend of the term W∙(1−P/P0). Furthermore, as the single-point 

surface area is proportional to W∙(1−P/P0), it can be said that the second 

ISO criterion essentially coincides with the point (“ii”) listed in section 

3.6.3.1.1. 

As the linear region of the BET plot seems to be normally shifted to lower 

relative pressures for microporous materials, the lower limit of the P/P0 range 

was extended down to 0.01. The modified range recommended by ISO was 

used for the calculation of the surface area of the activated carbons, which 

generally presented a highly developed microporous structure. 

Correlations between surface areas obtained by applying the BET method 

either over a conventional (P/P0=0.05-0.3) and ISO pressure range (P/P0=0.01-

0.1) to selected activated carbons is reported in Appendix B. Samples were 

grouped in virgin and PEI-modified carbons. For both data series, a linear 
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relationship was found with a relatively high coefficient of determination (in 

excess of 0.9996). The linear equations had a slope very close to 1 and 

intercept near to 0, thus signifying that, for the set of samples analysed, the 

calculation of surface area was not significantly affected by the BET approach 

applied (Conventional or ISO). 

 

3.6.3.3 Total pore volume - Gurvitsch’s rule 

Total pore volumes (Vtot) were estimated by applying Gurvitsch’s rule 

[252]. This entailed converting the amount of nitrogen adsorbed (Vads) at 

saturation (P/P0=0.99 [118]) in the corresponding volume of liquid adsorbate 

(Vliq), expressed as cm3
liq·g-1, by applying equation (3.15). 

 𝑽𝒕𝒐𝒕 = 𝑽𝒍𝒊𝒒 =
𝑷𝒂 ∙ 𝑽𝒂𝒅𝒔 ∙ 𝑽𝒎

𝑹 ∙ 𝑻
 (3.15) 

where, Pa and T refer to the standard pressure and temperature conditions (1 

atm and 273.15 K respectively), Vm is the molar volume of the liquid adsorbate 

(34.7 cm3∙moles-1 for N2), and R is the universal gas constant (82.0575 

cm3∙atm∙K-1∙moles-1). 

 

3.6.3.4 Mesopore volume - Barrett-Joyner-Halenda (BJH) model and 

choice of the isotherm leg 

Mesopore size was determined assuming cylindrical geometry of the 

pores and starting from the (modified) Kelvin equation, which gives the pore 

radius wherein condensation occurs at a relative pressure P/P0 [244]. In 

particular, the BJH [253] model suggested a corrected expression for the actual 

pore radius (rp), given by the Kelvin radius (rK) plus the thickness of the 

adsorbate layer (t) which is adsorbed onto the pore walls prior to condensation 

during adsorption, or which remains on pore walls after evaporation during 

desorption. The thickness of the adsorbed layer also depends upon the relative 

pressure P/P0. The BJH model calculates the pore volume by considering the 

average values of the Kelvin radius and layer thickness calculated at the upper 

and lower limits of each P/P0 increment (adsorption step)/decrement (desorption 

step). Cumulative values of mesopore volumes were then calculated by 

integration of the BJH pore size distribution between 2 and 50 nm [242, 254]. 

The choice of the isotherm leg for the application of the BJH model has 

been widely argued in the literature. In theory, desorption branch would be more 

appropriate because, for the same volume of adsorptive gas, it exhibits a lower 

relative pressure compared to that associated with the adsorption leg. This 

implies a lower free energy state, which is closer to the true thermodynamic 

stability [244]. In contrast, Kruk et al. [255] showed that their modified form of 

the Kelvin equation [256] failed at calculating the pore size distributions for a 
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cylindrical geometry of pores when considering nitrogen desorption at 77 K, in 

particular for relative pressure (P/P0) higher than 0.4. This was mostly due to 

the irreversibility of the isotherms at P/P0>0.4 because of the condensation of 

the adsorbate inside the mesopores. In addition to this, the choice of the 

isotherm leg depends on the type of hysteresis shown, which is related to the 

shape of the pores. Most of the isotherms measured in this study were 

characterized by an H3 hysteresis loop [242]. This type of hysteresis does not 

exhibit any limiting adsorption near saturation, and is characteristic of 

aggregates of plate-like particles, thus implying slit-shaped pore geometry. 

Under these conditions, as suggested by IUPAC recommendations, the 

application of the BJH model to the adsorption data would give a more accurate 

estimate of the pore size distribution. Further explanations about the analysis of 

mesoporosity are also given elsewhere [256, 257]. 

Nevertheless, for most of samples the hysteresis loop did not close 

properly, probably due to inefficient degassing, giving rise to LHP. Therefore, in 

order to have a direct comparison of the mesopore volume for all the samples, 

the adsorption branch of the N2 isotherm was chosen in this study for the 

application of the BJH model. Isotherms hysteresis is compared for few 

representative samples in Chapter 4. Moreover, mesopore volumes determined 

by applying the BJH model to the desorption leg of the N2 isotherm were also 

calculated. Note that, when measuring the desorption leg of the N2 isotherm 

only 10 points were acquired (see section 3.6.2), simulated values of cumulative 

(meso)pore volumes were generated by interpolating the known data given by 

the BJH distribution over the target range (2-50 nm). 

 

3.6.3.5 Micropore volume - Dubinin-Radushkevich (DR) model 

The DR model is based on the Polanyi potential theory of adsorption 

[258]. On this premise, Dubinin and Radushkevich [259] assumed that the 

fractional filling of the micropore volume (V/V0) can be related to the adsorption 

potential (A) as in equation (3.16) [244]: 

 
𝑽

𝑽𝟎
=· 𝒆

−(
𝑨

𝜷𝑬𝟎
)

𝟐

 (3.16) 

where, A is given by equation (3.17): 

 𝐀 = 𝐑𝐓 𝐥𝐧(𝑷 𝑷𝟎⁄ ) (3.17) 

V is the volume occupied by the liquid adsorbate, V0 is the micropore volume, 

E0 is denoted as characteristic energy of adsorption, and β is the affinity 

coefficient, which is determined as in equation (3.18) [244]: 

 𝛃 =
𝝂

𝝂𝑪𝟔𝑯𝟔

 (3.18) 
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where, ν and νC6H6 are the liquid molar volume of a given adsorbate and 

benzene (used as the reference liquid) respectively. In this study, a β value of 

0.39 was used. 

The volume of liquid adsorbate and micropore volume can be converted into 

their corresponding weights using equations (3.19) and (3.20) respectively 

[256]: 

 𝐖 = 𝐕 · 𝛒 (3.19) 

 

 𝑾𝟎 = 𝑽𝟎 · 𝛒 (3.20) 

where, ρ is the adsorbate liquid density (equal to 0.808 g·cm-3
liq for nitrogen). 

After substituting equations (3.17), (3.19) and (3.20) in equation (3.16), and 

applying base-10 logarithm to both sides, the latter can be rearranged in a 

linear form as equation (3.21): 

 𝐥𝐨𝐠𝟏𝟎 𝑾 = 𝐥𝐨𝐠𝟏𝟎 𝑾𝟎 − 𝟐. 𝟑𝟎𝟑
𝑹𝑻

𝜷𝑬𝟎
· [𝐥𝐨𝐠𝟏𝟎(𝑷𝟎 𝑷⁄ )]𝟐 (3.21) 

where, 2.303 is the conversion factor from natural to base-10 logarithm. 

According to equation (3.21), when plotting the N2 isotherm data as 

log10(W) vs [log10(P0/P)]2, W0 and E0 can be calculated by linear regression. In 

particular, the DR plot was obtained for P/P0<0.02. The micropore volume (W0) 

and energy of adsorption (E0) were then calculated from the intercept and slope 

of the linear relationship equation (3.21) respectively. 

 

3.6.3.6 Pore size distribution (PSD) - Non-local density functional theory 

(NLDFT) model 

It is widely accepted that the application of theories based on 

macroscopic approaches and thermodynamics (such as the BJH approach or 

semi-empirical methods) for the calculation of the pore size distribution lead to 

an underestimation of pore sizes because of an unrealistic interpretation of the 

pore filling, especially in the micropore domain [243]. In contrast, the density 

functional theory (DFT) method allows for a more accurate analysis of 

micropore size, as it is based on a microscopic approach. In particular, this 

method relies on the fundamental principles of statistical mechanics in order to 

describe the adsorption behaviour and the local structure of fluids (i.e. the liquid 

adsorbate) confined in the pores on a molecular level. Further details related to 

the DFT methodology have been reported elsewhere [260-262]. 

However, the (local) DFT method seems to fail at analysing narrow 

micropores widths [263]. Therefore, NLDFT was introduced as an improved 

methodology [260] which has been extensively applied for the pore size 
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analysis of micro and mesoporous carbons [93, 116, 264]. The NLDFT model 

was used for the calculation of the PSDs of the materials analysed in this study. 

As explained by Jagiello and Thommes [265], the key feature of the pore 

size distribution calculation when using the NLDFT approach is the kernel. 

Essentially, the latter consists of a set of theoretical isotherms generated by 

applying non-local density functional theory for each pore size and for a given 

adsorbate-adsorbent system. The kernel is obtained from the integration of the 

equilibrium density profiles of the adsorbate in model pores (adsorbent). The 

calculated isotherms will depend upon a series of parameters characteristic of 

the given adsorption system (i.e. carbon-N2 or carbon-CO2), such as 

adsorbate/adsorbate and adsorbate/adsorbent interactions as well as pore 

geometry [263].  

The final pore size distribution can be obtained by solving the integral 

adsorption equation (IAE) [263] also called generalized adsorption isotherm 

(GAI) equation [243]. The application of this relationship assumes that the 

experimental isotherms can be calculated via integration of the contributions 

given by each single reference isotherm (related to a certain pore width) 

multiplied by their relative pore distribution (weighting function), over a 

determined range of pore sizes. The solution of the integral is obtained by using 

a fast non-negative least squares algorithm [263], which minimizes the fitting 

error of NLDFT calculated isotherms to the experimental isotherm. In other 

words, the resulting PSD is the contribution by volume from different (ideal) 

pores of fixed widths, whose combination of ideal isotherms best fit the 

experimental data. 

Micropore and smaller mesopore distributions were determined by 

selecting the NLDFT N2-carbon kernel (77K) provided by the software used in 

this work, which was based on a slit-pore model with graphite-like parallel walls 

[244, 266]. 

 

3.6.4 CO2 adsorption data reduction 

As already mentioned in section 3.6.2, the use of nitrogen at 77 K for the 

characterization of narrow microporosity is not recommended, as the access of 

N2 to smaller pores is restricted by diffusional limitations. In contrast, using CO2 

as the adsorptive gas at 273 K was proved to be a more reliable solution for the 

assessment of ultramicropores (d<0.7 nm) [245-247]. Although the kinetic 

diameters of the two adsorptives are similar (0.33 nm and 0.38 nm for CO2 and 

N2 respectively [245]), the higher temperature condition favours the diffusion of 

carbon dioxide into the smaller pores. In addition to this, at 273 K, the saturation 

vapour pressure of CO2 is much higher (ca. 26140 Torr) than that of nitrogen 

(760 Torr) [266]. Consequently, lower values of absolute pressure are required 

for the analysis of narrow microporosity compared to those needed when 
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measuring nitrogen adsorption. For instance, a relative pressure P/P0 of 10-5 

(corresponding to the first point acquired for the measurement of the CO2 

adsorption isotherm) yields an absolute pressure of 0.2614 Torr when using 

CO2 as the adsorptive gas. Conversely, the same relative pressure would give a 

significantly lower absolute pressure (i.e. 0.0076 Torr) when using N2 as the 

adsorptive. It follows that the ultramicroporous domain (corresponding to the 

lowest values of relative pressure) is more easily accessed by CO2 than by N2. 

In fact, higher temperatures and absolute pressures enhance the diffusion of 

carbon dioxide through the pores of the adsorbent. Accordingly, faster diffusion 

rates allow easier access to smaller pores and shorter analysis time (ca. 3 h) 

compared to that observed when using N2 as the adsorptive (30 h or longer) 

[266]. 

On the other hand, when measuring CO2 adsorption at 273 K it was not 

possible to produce a full isotherm, as carbon dioxide would have condensed in 

mesopores for relative pressures P/P0 higher than 0.03 [246, 262]. 

Pore size distributions by volume for pores having widths below 1.5 nm 

were achieved through the application of the NLDFT model (see section 

3.6.3.6) to the CO2 adsorption data prior to changing kernel to “NLDFT - CO2 - 

carbon equilibrium transition kernel at 273 K”, assuming a slit-pore model [244]. 

Integration of the NLDFT PSD for d<0.7 nm allowed calculation of the 

ultramicropore volume, denoted as Vumi, NLDFT. Additionally, ultramicropore 

volume was also determined by applying the DR model (see section 3.6.3.5) to 

the CO2 adsorption data (P/P0<0.02). The latter parameter was designed as 

Vumi, DR. 

 

3.7 Chemical, morphological and structural analyses 

3.7.1 Elemental analysis (CHNS) 

Elemental analysis (C, H, N, S) of raw biomass, chars and activated 

carbons was carried out by using an elemental analyser (Flash EA2000). 

Samples preparation entailed weighing around 2.5 mg of material, which was 

sealed within a tin capsule. Each sample was prepared in duplicate. Along with 

the samples, a series of standards and references having known elemental 

compositions were also included in the analysis for calibration and comparison 

purposes respectively.  

After this, tin capsules were dropped into the combustion chamber of the 

instrument. Here, a temperature of ca. 900-1000 °C was held and excess 

oxygen was injected via the helium carrier gas. Once the tin is exposed to the 

extremely oxidizing atmosphere, a strong exothermic reaction is triggered. The 

temperature increases up to ca. 1800 °C instantly causing the complete 

oxidation of the sample. The combustion gaseous products are then swept 
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through the reduction reactor, where CO2, H2O, NO2 and SO2 are formed. 

Afterwards, the reduced gases pass through and separate in a chromatography 

column. The amount of each gas phase is measured using a thermal 

conductivity detector (TCD), which is calibrated with the aforementioned 

standards. Gas concentrations are then converted into weight percentages of 

carbon (C), hydrogen (H), nitrogen (N) and sulphur (S) by means of dedicated 

software. Prior to analysis, samples were dried overnight at 105 °C, therefore 

results were obtained on a dry basis. O content was estimated by difference as 

in equation (3.22): 

 𝑶 = 𝟏𝟎𝟎 − (𝑪 + 𝑯 + 𝑵 + 𝑺) (3.22) 

 

3.7.2 Proximate analysis 

Standard procedures recommended by the British Standards Institution 

(BSI) were used to determine moisture (M) [267], volatile matter (VM) [268] and 

ash (A) content [269] of raw biomass and chars. Measurements were carried 

out in duplicate. Fixed carbon (FC) was obtained by difference. 

As concerns activated carbons, proximate analyses were carried out via 

two different methods. Standard methodology recommended by American 

Society for Testing and Materials (ASTM) [270] allowed the determination of M, 

VM and A contents, whereas even in this case FC was calculated by difference. 

However, when only small quantities of sample were available for analysis, the 

use of a STA 8000 thermogravimetric analyser was preferred to the standard 

procedure. In fact, Thermogravimetric Analysis (TGA) only requires 10 to 20 

milligram of material for each sample, whereas 1 g of sample for each duplicate 

are used with the standard methods. This applied to the carbons obtained 

through KOH activation, whose yield was much lower than that obtained after 

physical (CO2) activation of the chars (see Chapters 4 and 5). Therefore, a TGA 

routine was specifically created for the determination of proximate analyses. In 

particular, few mg of each sample was loaded into a small alumina crucible. 

Materials were first heated in air at 15 °C·min-1 up to 105 °C and held at this 

temperature for 10 min. This first step entailed determining the moisture 

content. Devolatilization of the sample was then achieved by switching the gas 

atmosphere to N2 and raising the temperature up to 900 °C at the same heating 

rate. This allowed the determination of the volatile matter in the material. Finally, 

the gas flow was changed back to air and samples were held at 900 °C for 30 

min in order to burn off the carbon fraction of the sample, thus leaving inorganic 

material within the crucible. This last step enables the calculation of fixed 

carbon and residual ash. Data were corrected for the influence of buoyancy by 

baseline subtraction. The latter was measured by running the same experiment 

with an empty sample holder. 



78 

 

 

In addition, STA 8000 instrument produced Differential 

Thermogravimetric Analysis (DTGA) evolution profiles, which enables 

identifying the (peak) temperature associated with a particular change in sample 

mass. 

 

3.7.3 X-Ray Diffraction (XRD) 

This non-destructive technique is based on X-ray diffraction theory [271, 

272]. In particular, considering the scheme illustrated in Figure 3-8, Bragg’s law 

can be derived as in equation (3.23). This relationship inversely relates the 

diffraction angle (2θ) between the incident X-ray hitting the first atomic layer 

(hkl) and the X-ray diffracted from the second atomic layer, to the interplanar 

spacing (dhkl) between the two parallel atomic layers. It follows that, the larger 

the space between the crystal planes, the lower the corresponding angle of 

diffraction of the X-ray radiation. 

 

 

Figure 3-8 Scheme representing the interference of an incident X-ray 
(wavelength λ) scattered from two parallel atomic layers (hlk) separated 
by an interplanar distance d. 

 𝟐𝒅 ∙ 𝐬𝐢𝐧 𝜽 = 𝒏𝝀 (3.23) 

where, d is the interplanar spacing, θ is the angle of incidence of an X-ray, n is 

equal to 1 and λ is the wavelength. 

The XRD pattern is obtained by plotting the X-ray diffraction intensity vs. 

the scattering angle (2θ). The instrument used for recording an XRD pattern is 

the X-ray powder diffractometer, which normally includes an X-ray source, a 

goniometer, which allows mounting and orienting of a sample, and a detector, 

which enables the X-ray intensity to be measured over the desired 2θ diffraction 

range. Note that X-ray diffraction of powders does not require orientating the 

sample with respect to the incident beam, as the microcrystalline nature of 

powder means crystallites are randomly oriented [273].  
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XRD analyses were conducted in an attempt to investigate the presence 

of inorganic crystalline compounds within the structure of the materials included 

in this work. XRD patterns were recorded using a Bruker D8 powder 

diffractometer system operating with a Cu Kα radiation source. The X-ray 

patterns were acquired by means of the software DIFFRACPlus and recorded in 

the 2θ range 10-80°, with a step width of 0.033° and a time per step of 1 s. Prior 

to measuring XRD patterns, samples were dried at 105 °C overnight. 

In order to identify crystalline phases present within the materials, 

measured XRD patterns were matched to an X-ray diffraction database library 

provided by the software package Highscore (Panalytic, UK). 

In addition, the size of the crystallites was calculated according to the 

Scherrer equation (equation (3.24)) [274]: 

 
𝑲 ∙ 𝝀

𝑭𝑾𝑯𝑴 ∙  𝒄𝒐𝒔 𝜽
  (3.24) 

where, K is the shape factor and was assumed to be 0.9, λ was 0.154 nm, 

FWHM is the full width at half maximum in radians, and θ was half the Bragg 

diffraction angle. 

 

3.7.4 Scanning Electron Microscope (SEM) and Energy-Dispersive 

X-ray (EDX) spectroscopy  

A Carl Zeiss EVO MA15 SEM, having a nominal resolution of 3nm at 

30kV, was used to examine the surface morphology of the raw biomass, chars 

and activated carbons. The instrument was operated with a working distance of 

8 to 9 mm and an accelerating voltage of 20 kV using an in lens detector. 

Further specifications about the microscope used in this work are given 

elsewhere [275]. 

Samples were normally oven-dried at 105 °C overnight prior to analysis. 

A small amount of dry powder was then mounted on aluminium stubs, and any 

excess material was removed by airblowing. Furthermore, in order to make the 

sample conductive and avoid charging, the specimens were usually gold coated 

using an Emscope SC500 specimen vacuum gold coater with a 30 nm layer of 

99.99% Au at 20 mA. Coated samples were then stored in a desiccator prior to 

analysis. 

Secondary electron images, sensitive to surface topography, were taken 

at 5000 x magnification for all samples. Moreover, a semi-quantitative analysis 

of the samples’ inorganic components was conducted using the Oxford EDX 

system integrated with the scanning electron microscope (liquid nitrogen-free X-

Max Silicon Drift Detector (SDD) [276]).  
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EDX technique relies on the detection of the X-rays generated when an 

inner shell electron is displaced by an incident electron of the microscope beam 

hitting the sample. As each element gives rise to a specific X-ray energy, EDX 

analysis allows for elemental identification [276]. AZtec software was used to 

obtain EDX spectra and maps and relevant elemental compositions. 

In addition, the cross section of a virgin commercial carbon (AR) and its 

optimally-PEI impregnated counterpart (AR-PEI) were also examined by using 

back-scattered imaging (atomic weight-sensitive). This was done in an attempt 

to localize the presence of the polymer within the pores of the carbon support. 

In this case, materials were embedded into a Transoptic resin by using a 

mounting press. After cooling, specimens were sequentially subjected to 

grinding and polishing steps in order to expose the cross section. 

 

3.7.5 Boehm titrations 

Boehm titrations were carried out according to the methodology reported 

by Bagreev et al. [277]. A gram of each activated carbon was mixed with 50 ml 

of 0.05 M solutions of either sodium hydroxide (NaOH) or hydrochloric acid 

(HCl) in vials, which were sealed and shaken for 24 h. Solutions were 

previously standardized following the procedure suggested by Oickle et al. 

[278]. The content of the vials was filtered and 5 ml of each filtrate was pipetted 

into a beaker. The excess of base or acid was then titrated with either HCl or 

NaOH, respectively. The amounts of overall basic and acidic groups were 

calculated as given in equations (3.25) and (3.26) respectively according to the 

relationships reported by [279] for direct titrations. 

 𝑩𝒂𝒔𝒊𝒄 =
[𝑯𝑪𝒍] ∙ 𝑽𝑯𝑪𝒍,𝒎𝒊𝒙 − ([𝑵𝒂𝑶𝑯] ∙ 𝑽𝑵𝒂𝑶𝑯,𝒄𝒐𝒏𝒔 ∙ 𝑫𝑭)

𝒎𝒄𝒂𝒓𝒃𝒐𝒏
 (3.25) 

 

 𝑨𝒄𝒊𝒅𝒊𝒄 =
[𝑵𝒂𝑶𝑯] ∙ 𝑽𝑵𝒂𝑶𝑯,𝒎𝒊𝒙 − ([𝑯𝑪𝒍] ∙ 𝑽𝑯𝑪𝒍,𝒄𝒐𝒏𝒔 ∙ 𝑫𝑭)

𝒎𝒄𝒂𝒓𝒃𝒐𝒏
 (3.26) 

where, Basic and Acidic are the mmol of basic and acidic surface groups 

respectively per unit of mass of carbon (mcarbon), [HCl] and [NaOH] are the 

concentration values of the standardized solutions, VHClmix and VNaOHmix are the 

volumes of the standardized solutions mixed with the carbon, VNaOHcons and 

VHClcons are the volumes of the standardized solutions consumed during titration, 

and DF is a dilution factor equal to 10. 

Results were interpreted according to the assumption that NaOH 

neutralizes all acidic groups (carboxylic, phenolic and lactonic groups) and HCl 

reacts with all basic groups. 
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3.7.6 Fourier Transform Infrared (FTIR) spectroscopy  

FTIR spectra were collected in attenuated total reflection (ATR) geometry 

on a Thermo Scientific iS10 FTIR spectrometer, over a wavenumber range of 

4000 - 600 cm−1. An environmental background was subtracted every 10 min. 

FTIR analysis was used to identify any residual inorganic (potassium-based) 

compounds after chemical treatment of chars (KOH activation followed by 

washing). This allowed assessment of the efficacy of the washing procedure 

(see section 3.4.2) for the removal of K-based species. Samples were 

previously dried at 105 °C overnight prior to acquiring spectra. 

A detailed description of this characterization technique can be found 

elsewhere [280]. 

 

3.7.7 X-ray Photoelectron Spectroscopy (XPS) 

XPS is a non-destructive surface-sensitive technique. In particular, the 

electronic states of the atoms present within the outer layer (up to 10 nm) of the 

specimen’s surface are excited by X-ray radiation of a known energy. Inner 

shell electronic excitation gives rise to the emission of photoelectrons, whose 

energy is filtered via a hemispherical analyser (HSA) and then measured 

through an electron energy analyser. The energies of the photoelectrons 

correspond to a specific binding energy of the electronic states of atoms [281]. 

XPS spectra are then obtained by recording the energy of the 

photoelectrons escaped from the sample surface, expressed as counts·sec-1, 

vs. the correspondent electron binding energy (eV). The peak intensities are 

proportional to the atomic concentration, whereas peak positions (i.e. binding 

energies) give indications about the type and the chemical states of the element 

identified [281]. 

XPS analysis was conducted in an attempt to identify the type of N-

containing functional groups, which were incorporated onto the surface of a 

commercial carbon (AR) following PEI impregnation. In order to do this, the 

virgin activated carbon and its PEI-modified counterpart were also analysed. 

XPS spectra were measured using the National EPSRC XPS Users 

Service (NEXUS) facility at the University of Newcastle, with the aid of a 

Thermo Scientific Theta Probe XPS provided with a microfocused 

monochromatic aluminium K-alpha X-ray source. The spot size was 400 x 800 

μm. Pass energies were 200eV and 40eV for survey and high resolution spectra 

respectively. 
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Prior to packing and sending the samples out, materials were accurately 

immobilized by making a “sandwich” between two layers of indium foil, which 

reduced charging during measurement. 

3.8 CO2 capture performance 

The CO2 capture performance of the sorbents was assessed by means of a 

thermogravimetric analyser (Mettler Toledo TGA/Differential Scanning 

Calorimetry (DSC) 1). CO2 uptakes were determined thermogravimetrically by 

creating appropriate routines (see the following section and also Chapter 4). 

The instrument allowed the temperature to be varied as well as the gas 

atmosphere. Gas cylinders containing pure (99.8%) or 15% v/v CO2 in N2 were 

purchased from BOC Gases Ltd, whereas the purging gas (nitrogen) was 

directly piped in. The adsorption gas and temperature conditions for the 

programmes used in this experimentation are reported below: 

i. Pure CO2, ca. 35 °C (first screening); 

ii. 15% v/v CO2 in N2, ca. 53 °C (simulated post-combustion conditions); 

iii. 15% v/v CO2 in N2, ca. 77 °C (simulated post-combustion conditions, 

higher temperature); 

iv. Pure N2, ca. 53 °C (correction of programme “ii” for nitrogen adsorption)1. 

All experiments were run at atmospheric pressure. For each programme 

created, a blank run (empty pan) was first conducted under identical test 

conditions in order to correct sample data for buoyancy effects (see also 

Chapter 4). 

 

3.8.1 Calculation of CO2 sorption capacity - TGA programmes 

All samples were initially degassed under nitrogen (flow rate of 50 

ml·min-1) at 120 °C for 30 min. Subsequently, materials were cooled down to 

the desired temperature (35, 53 or 77 °C). At this stage, the gas atmosphere 

was switched to pure CO2, 15% v/v CO2 in N2 (total 50 ml·min-1), or pure N2. 

The temperature was kept constant for 30 min in order to measure the 

equilibrium capacity of the materials when exposed to the reactive gas. The 

resulting weight increase was interpreted as the adsorption capacity of the 

sorbents at the chosen temperature and for the given adsorbate. Note that, the 

exact value of the uptake at saturation was calculated both by using the “step 

horizontal” command of the TGA software and by further data processing 

through MS Office Excel. Afterwards, the temperature was increased up to 100 

°C at a fixed heating rate (5 ºC·min-1) to see the effect of the temperature on the 

desorption capacity of the materials. Finally, the atmosphere was switched back 

                                            

1 The amount of sample used was the same as that used for ii 
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to N2 and the temperature was increased to 120 °C to complete the desorption 

step. 

The cyclic performance of the sorbents was also tested by repeating the 

post-combustion routine (“ii”) over 10 cycles. In this case, regeneration was 

accomplished in just a single step, which entailed heating the sample (heating 

rate of 5 °C·min-1) up to 120 °C without changing the partial pressure of CO2 

(i.e. atmosphere was changed back to N2 only once it had reached the final 

temperature for the start of the following cycle). This allowed simulation of a 

RTSA as a regeneration strategy. 

Explanatory results related to TGA methods used are given in Chapters 

4 and 6. 

 

3.8.2 Calculation of heat of adsorption/desorption - DSC data 

DSC data (i.e. heat flow) related to the post-combustion programme “ii” 

(ca. 53 °C, 15% v/v CO2 in N2 (total 50 ml·min-1)) were used to calculate the 

heat of adsorption (ΔHads) and the heat of desorption (ΔHdes) according to the 

equation suggested by [116]. In particular, the heat flow raw data, expressed as 

mW, was integrated by using Origin Pro “Integrate” function over the relevant 

time span (0<t<30 min for adsorption or 30<t<40 min for desorption). Integral 

values were defined as Total enthalpy of adsorption/desorption and expressed 

as kJ after appropriate unit conversion. The latter was divided by the amount 

(expressed as moles) of gas (CO2 or N2) adsorbed onto/desorbed from the 

sample during the adsorption (0-30 min)/desorption (30-40 min) steps, which 

yielded the final value of heat of adsorption/desorption expressed as kJ·mol-1.
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4 Eco-friendly synthesis of selective CO2 sorbents for post-

combustion capture: the key role of basicity 

4.1 Outline 

This chapter is concerned with the preparation of activated carbons (ACs) 

starting from a traditional type of biomass, i.e. oak wood. The final ACs were 

then tested for CO2 sorption. 

As described in section 4.2, the raw feedstock was subjected to both to 

conventional pyrolysis and to hydrothermal carbonization (HTC). The 

repeatability of carbonization processes was evaluated in terms of char yield. 

As concerns hydrothermal synthesis, repeatability of water balance (see 

Chapter 3) was also evaluated. 

In section 4.3, results related to the optimization of the CO2 activation of 

oak wood chars are reported. In particular, the effect of activation temperature 

and holding time on the texture of the resulting carbons was studied. Chemical 

treatment using KOH was also applied. In this case, optimal conditions obtained 

for Laminaria hyperborea (see Chapter 5) were used. In addition, the effect of 

the washing procedure was studied. Also, repeatability of the activation process 

(i.e. activation yield) and textural properties of final carbons was evaluated. 

Section 4.4 summarizes the textural properties of the optimally-activated 

carbons (only), comparing these with chars and raw material. This allowed 

highlighting of the change of porosity of the raw oak wood after each treatment 

applied (i.e. carbonization, activation). Insights concerning hysteresis 

phenomena are given for few representative samples. Textural characterization 

of a commercial carbon (GAC) was also included for comparison purposes. 

Moreover, CO2 adsorption isotherms were measured for all selected samples to 

investigate narrower microporosity.  

In section 4.5, attention is focused on how the abovementioned treatments 

affected the structure and the chemistry of the raw feedstock. Elemental and 

proximate analyses provided primary information about the chemical properties 

of the oak wood-derived materials. The morphology of the samples was 

examined through Scanning Electron Microscope (SEM) imaging. Energy-

Dispersive X-ray (EDX) spectroscopy analyses corresponding to the SEM 

micrographs were also acquired in order to reveal the chemical nature of 

inorganic fractions found in the samples. Furthermore, X-Ray Diffraction (XRD) 

patterns were measured in an attempt to detect the presence of inorganic 

crystalline phases within the structure of oak wood-based samples.  
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A quantitative estimation of basic and acidic groups present on the surface 

of oak wood-based materials was obtained by Boehm titration. However, it is 

worth noting that, as this technique required a significant amount of sample, 

only some of the oak wood-derived samples were analysed. For instance, 

despite the largest texture development (see Table 4-9) exhibited by KOH-

activated hydrochar (i.e. OW250CA), this material was discarded because of 

the extremely low activation yield (see Table 4-6). Furthermore, priority was 

given to samples exhibiting the most selective sorption under post-combustion 

conditions, as this was believed to be due to greater basicity. Based on these 

selection criteria, it was decided to focus on the comparison of pyrolyzed oak 

wood and its activated derivatives. Routines for the measurement of CO2 

sorption capacities are presented in section 4.6 for a representative sample. 

CO2 uptakes were measured under two different sets of conditions. A first 

screening of the sorption potential for all the materials was carried out at higher 

partial pressure (100% by volume or 1 bar) and lower temperature (35 °C). In 

addition to this, the best performing samples were also tested for simulated 

post-combustion capture (0.15 bar, 53 °C). In particular, the samples selected 

were those that showed either the highest pure CO2 uptakes (see Figure 4-28) 

or regeneration behaviour at higher temperatures that suggested chemisorption 

behaviour (see Figure 4-30). 

Finally, in section 4.7, conclusions about the entire chapter are drawn. 

 

4.2 Carbonization of oak wood 

4.2.1 Repeatability of dry pyrolysis and HTC 

The repeatability of carbonization processes was evaluated in terms of 

char yield. In addition, variability of water balance associated with hydrothermal 

process was also studied. Experimental runs were carried out in triplicate. 

As concerns traditional pyrolysis, around 5 g of raw oak wood was 

carbonized in a ceramic furnace and all conditions (see Chapter 3) were kept 

the same in each run. Note that repeatability of liquid and gas fraction was not 

reported as no condensable were obtained during the runs. This was probably 

due to the low amount of raw material used and the high nitrogen flow rate, 

which apparently swept away all volatiles preventing their condensation in the 

bubbler.  

With respect to HTC, ca. 24 g of raw feedstock were mixed with 220 g of 

distilled water and heated up at 250 °C for 1 h. Hydrothermal carbonization runs 

were also carried out in triplicates. 

From results presented in Table 4-1, it is possible to see that the average 

yield obtained after dry carbonization of raw oak wood (21.50 wt%) was around 
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one third the analogue value recorded after hydrothermal carbonization (58.46 

wt%). This result would suggest hydrothermal carbonization as more cost-

effective route for the production of oak wood-based char. It is reasonable to 

attribute the lower pyrolysis yield to the far higher temperature condition held 

during traditional treatment. Yet, conventional carbonization caused a more 

intense devolatilization of the raw feedstock and a higher proportion of fixed 

carbon (FC) in the final product (see Table 4-11), thus leading to a more stable 

char. 

Average pyrolysis yield was slightly lower than the figure reported by 

Sanchez et al. [160] (26 wt%), who carbonized Quercus agrifolia wood waste at 

800 °C for 2 h. Moreover, Jindo et al. [179] pyrolyzed oak tree (Quercus serrata) 

at 800 °C for 10 h. This study reported a slightly lower char yield (ca. 19.1 wt%) 

compared to that measured in this work, probably due to the longer dwell time 

applied. 

Traditional pyrolysis runs led to an excellent repeatability regarding the 

amount of final char obtained, as data showed very low standard deviation 

(0.3%). Furthermore, calculated standard deviation from the mean (1.45%) was 

well below the acceptable limit of 10% reported by literature [282], thus 

indicating an excellent reproducibility of the pyrolysis treatment. In addition to 

that, the average value of yield (21.50 wt%) was slightly lower than that 

measured after the pyrolysis (single run) of the same feedstock carried out in a 

stainless steel vertical furnace (ca. 24 wt%) under the same conditions of 

nitrogen flow rate and maximum temperature. However, note that pyrolysis rate 

depended upon the type of rig used, as it was not possible to set a specific 

heating rate (HR) by using furnace controllers. In particular, large scale-rig 

(stainless steel vertical furnace) entailed heating up the sample according to a 

slower heating ramp (ca. 10 °C·min-1) than that observed for ceramic furnace 

(25 °C·min-1). As suggested by Carpenter et al. [181], a slower heating ramp is 

expected to enhance char production and this may explain the higher yield in 

the latter case. In addition to that, it worth mentioning that a much larger amount 

of raw feedstock (ca. 240 g) was carbonized in the bigger rig. Nevertheless, as 

shown in Chapter 5, reactor loading did not seem to affect the pyrolysis yield 

after the carbonization of Laminaria hyperborea in the large-scale rig. 

Average yield measured after hydrothermal carbonization (58.46 wt%) 

was found to be higher than the datum (43.6 wt%) reported in the work of 

Karagoz et al. [182]. These authors carried out hydrothermal synthesis of oak 

wood waste (sawdust) under the same conditions of temperature and holding 

time considered in this study. However, different amounts of raw material and 

distilled water were used, which might explain discrepancy between results. 

Additionally, a solid residue yield of 40 wt% was reported by Sevilla et al. [183] 

after hydrothermal carbonization of Eucalyptus sawdust. Even in this case, the 

feedstock/water phase ratio was different from that used in this work. 
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Furthermore, mixture was held at 250 °C for a longer dwell time (i.e. 2 h), which 

might have caused a lower char production. 

 

Table 4-1 Repeatability of carbonization processes for raw oak wood  

Carbonization Water balance 

OW8002 OW2503 

Run CYdb4 Run CYdb minitial mrecovered mlost
 

- wt% - wt% mg mg mg 

1 21.80 1 59.71 220.00 155.49 64.51 

2 21.18 2 60.70 220.00 161.01 58.99 

3 21.52 3 54.98 220.00 166.20 53.80 

Mean 21.50 Mean 58.46 - 160.90 59.10 

SD5 0.31 SD 2.50 - 4.37 4.37 

SD (% Mean) 1.45 SD (% Mean) 4.27 - 2.72 7.40 

 

Table 4-1 also shows that HTC repeats exhibited a slightly higher 

variability compared to dry pyrolysis, with variation of up to 4.27%. High 

variability was found for the mass of water recovered after hydrothermal 

treatment, yielding to standard deviation of up to 4.37%. On the other hand, 

deviation from the mean reported was below 10% for all the parameters, which 

suggests an acceptable reproducibility of both carbonization processes [168]. 

4.3 Activation of oak wood-based chars 

4.3.1 CO2 activation of oak wood-based chars - Optimal conditions 

The CO2 activation of charred oak was carried out at constant flow (0.6 

l·min-1) and heating rate (10 °C·min-1). Activation temperature and holding time 

were varied in order to evaluate their effect on the textural properties of the final 

carbons. Optimal conditions were those that maximized the surface areas of the 

resultant porous materials. 

                                            

2 Oak wood (OW) pyrolyzed at 800 °C 

3 OW hydrothermally carbonized at 250 °C 

4 Carbon yield (CY). Db stands for dry basis 

5 Standard deviation 
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Note that textural parameters of the initial chars are reported in section 

4.4 (see Table 4-9). 

 

4.3.1.1 The effect of the temperature 

4.3.1.1.1 Hydrothermally carbonized wood (OW250) 

Hydrochar (OW250) was activated at 500, 600 and 700 °C. The final 

temperature was hold for 30 min in each case. As reported in Table 4-2, 

although the considerable burn-off (41 wt%), the initial temperature chosen (500 

°C) was not sufficiently high to imply a significant increase of surface area of the 

starting char (see Table 4-9). This might be because when temperature was 

500 °C the reaction between char and CO2 was too slow. As seen in Table 4-2, 

600 °C maximized the hydrothermally carbonized oak’s surface area, and 

therefore it was deemed as optimal temperature. This condition corresponded 

to a burn-off of 46 wt%. It seems that the extra 7% burn-off opened up the 

(micro)porosity in the sample. Isotherm measured for this sample showed a 

significant micropore filling at the very beginning of the pressure range. In 

addition to that, the slope observed over mid pressure range can be attributed 

to multilayer adsorption process on the non-microporous surface (i.e. 

mesopores, macropores and external surface) [283]. 

Conversely, activation at the highest temperature tested (700 °C) was 

found to be too severe for the hydrochar, leading to higher material burn-off but 

lower porosity. This was probably because the sample had not experienced any 

previous high temperature treatment. As a result, a significant drop of pore 

volume was measured, likely caused by a collapse of the pore walls. This is 

shown by the lower volume of nitrogen adsorbed at the very low pressure and 

the milder slope in the mid-pressure range (see Figure 4-1). However, the 

isotherm shape of all activated carbons is closer to a type II [242], thus 

indicating a limited micropore percentage (up to 62.5% for 

OW250PA_600_0.5h). The latter can be calculated from values reported in 

Table 4-2 using (4.1)). 

 (
𝑽𝒎𝒊

𝑽𝒕𝒐𝒕
) · 𝟏𝟎𝟎 (4.1) 

The ineffectiveness of the lowest activation temperature (500 °C) was 

further backed by the non-local density functional theory (NLDFT) pore size 

distribution measured for OW250PA_500_0.5h, as no distinct peaks were 

observed. This confirmed that at 500 °C CO2 oxidation of char was too slow to 

form any significant porosity. On the contrary, ACs obtained at 600 and 700 °C 

exhibited an intense sharp peak at ca. 0.3 nm, indicating development of 

ultramicroporosity (d<0.7 nm). However, peak shoulders extending up to ca. 1.2 

nm were also observed, suggesting the presence of a supermicropore (d>0.7 
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nm) population. However, both ultra- and supermicropores decreased with 

increasing temperature from 600 to 700 °C. In addition to that, optimal sample 

(OW250PA_600_0.5h) exhibited an additional sharp peak centred at around 0.8 

nm and very broad peaks for pore widths higher than 2 nm. The latter indicated 

a minor contribution of mesoporosity. 

 

Table 4-2 Effect of CO2 activation temperature (T) on burn-off and textural 
parameters of hydrothermally carbonized wood; t represents the 
activation dwell time. 

Sample ID6 

T t BO7 SBET8 Vtot9 Vmi10 Vme11 Vma12 

ºC h wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

OW250PA_500_0.5h 500 0.5 41 39 0.071 0.020 0.023 0.028 

OW250PA_600_0.5h 600 0.5 46 415 0.278 0.173 0.066 0.040 

OW250PA_700_0.5h 700 0.5 53 257 0.163 0.102 0.023 0.039 

 

                                            

6 PA stands for physically activated 

7 Burn-off 

8 Surface area calculated by applying Brunauer–Emmett–Teller (BET) method 
to N2 adsorption data 

9 Total pore volume calculated by applying Gurvitsch’s rule at P/P0=0.99 

10 Micropore volume calculated by applying Dubinin-Radushkevich (DR) model 
to N2 adsorption data 

11 Mesopore volume calculated by applying Barrett-Joyner-Halenda (BJH) 
model to N2 adsorption data 

12 Macropore volume calculated by difference 
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Figure 4-1 N2 adsorption isotherms - Effect of temperature on CO2 
activation of hydrothermally carbonized oak wood 

 

 

Figure 4-2 NLDFT pore size distributions - Effect of temperature on CO2 
activation of hydrothermally carbonized oak wood 

 

4.3.1.1.2 Pyrolyzed wood (OW800) 

Higher temperatures were chosen for the activation of the pyrolyzed oak 

wood, as this was already subjected to a more severe heat-treatment. In 

particular, runs were carried out at 750, 800 and 850 °C. In this case, sample 

was held to activation temperature for 1 h. Very similar textural properties and 

carbon burn-offs were obtained at 750 and 800 °C. However, the latter slightly 

prevailed over the former in terms of texture development. Isotherms measured 

for these samples may be considered as an intermediate between types I and II 

[264]. Although there was a pronounced upswing exhibited in the microporous 

pressure range, the mild slope in the mid pressure range indicated the presence 

of mesoporosity to some extent.  
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Table 4-3 Effect of CO2 activation temperature on burn-off and textural 
parameters of pyrolyzed wood 

Sample ID 

T t BO SBET Vtot Vmi Vme Vma 

ºC h wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

OW800PA_750_1h 750 1 32 505 0.257 0.193 0.037 0.026 

OW800PA_800_1h 800 1 34 627 0.313 0.240 0.042 0.031 

OW800PA_850_1h 850 1 89 0 0.000 0.000 0.000 0.000 

 

 

Figure 4-3 N2 adsorption isotherms - Effect of temperature on CO2 
activation of pyrolyzed oak wood 

 
In contrast, a further increase of activation temperature (up to 850 °C) of 

the initial char was detrimental, textural parameters being dramatically reduced 

down to effectively zero as given in Table 4-3. Accordingly, 800 °C resulted to 

be the optimal activation temperature for the pyrolysis-derived oak char. This 

result disagreed with the optimal condition reported by Sanchez et al. [160], 

who found increased surface area when increasing temperature from 800 to 

840 °C. Yet, this might be ascribed to the lower burn-off (68.3 wt%) reported by 

these authors compared to that experienced by the oak wood char tested in this 

work under similar conditions (89 wt%). 

An isotherm measured for OW800PA_850_1h showed evidence for the 

complete degradation of its texture (see Figure 4-3). A negative trend of the 

adsorbate volume with increasing pressure was observed. This clearly indicated 

a total destruction of the porous structure for this sample. It is likely that when 

temperature was 850 °C, activation went far beyond the limit of volatiles 

evolution, thereby leading to the damage of any porosity previously created. 
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As seen in Figure 4-4, a narrower distribution of pores was obtained 

when increasing activation temperature from 750 to 800 °C. In particular, it 

seemed that ultramicroporosity increased at the expense of supermicroporosity. 

As given in Table 4-3, this is consistent with the increase of surface area (from 

505 up to 627 m2·g-1) with increasing temperature.  

In contrast, further increase of temperature up to 850 °C led to a collapse 

of the porosity created at 800 °C. This was shown by the flat NLDFT distribution 

exhibited OW800PA_850_1h. 

 

 

Figure 4-4 NLDFT pore size distributions - Effect of temperature on CO2 
activation of pyrolyzed oak wood 

 

4.3.1.2 The effect of the dwell time 

4.3.1.2.1 Hydrothermally carbonized wood (OW250) 

Starting from the optimal condition of 600°C found in section 4.3.1.1.1, 

holding times other than initial value (0.5h) were examined in order to assess 

the influence of this factor on the texture change of the activated materials. 

In particular, hydrochar (OW250) was held at the optimal temperature 

(600 °C) for no dwell time (0 h) or 1 h. Despite a small difference in burn-off, a 

substantial texture development was observed when increasing the dwell time 

from 0 to 30 min (see Table 4-4). The product obtained after activating the char 

for 0.5 h had the largest total pore volume, which was in agreement with the 

highest volume of nitrogen adsorbed by this sample (see Figure 4-5). In addition 

to that, the larger contribution of mesoporosity was in accordance with the 

steeper slope observed in the mid pressure range of the N2 adsorption 

isotherm. Contrarily, longer holding time (i.e. 1 h) did not cause any further 

increase of the surface area. This might be because some of micro and 

mesopores were widened to form macropores when increasing dwell time from 
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30 min to 1 h. As shown in Figure 4-5, the larger volume of macropores was in 

line with the slightly steeper upswing of the isotherm near saturation. On the 

other hand, it worth noticing the drop in mesoporosity indicated by the less 

steep slope over the mid pressure range of the isotherm measured for 

OW250PA_600_1h. Based on these results, 0.5 h was deemed as optimal 

dwell for the activation of HTC-derived oak char. 

 

Table 4-4 Effect of CO2 activation dwell time on burn-off and textural 
parameters of hydrothermally carbonized wood 

Sample ID 

T t BO SBET Vtot Vmi Vme Vma 

ºC h wt% m2·g-1 cm3·g-1 cm3·g-1 cm3·g-1 cm3·g-1 

OW250PA_600_0h 600 0 44 169 0.193 0.069 0.035 0.089 

OW250PA_600_0.5h 600 0.5 46 415 0.278 0.173 0.066 0.040 

OW250PA_600_1h 600 1 47 413 0.255 0.160 0.041 0.054 

 

 

Figure 4-5 - N2 adsorption isotherms - Effect of dwell time on CO2 
activation of hydrothermally carbonized oak wood 

 

Surface area maximum attained by optimally activated hydrochar 

(OW250PA_600_0.5h) corresponded to a burn-out of ca. 46 wt%. This value 

was found to be higher than that measured after optimal activation of OW800 

(i.e. OW800PA_800_1h, see Table 4-3). This was probably because hydrochar 

was poorly carbonized during hydrothermal treatment. Accordingly, a larger 

amount of volatile matter (VM) was released during the activation process (see 

Table 4-11). 

As seen by the increased height of the peak centred over ca. 0.3 nm 

(see Figure 4-6), ultramicroporosity significantly increased when increasing 

holding time from 0 to 0.5 h. Apparently, when no dwell time was applied, 
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volatiles might have not been completely released. This did not allow for full 

exploitation of the activation treatment. 

In line with nitrogen isotherms, porosity distribution did not significantly 

change when increasing dwell time from 0.5 to 1 h. After longest activation, 

ultramicroporosity population appeared to be entirely retained, whereas 

supermicroporosity slightly decreased (see missing peak at ca. 0.8 nm for 

OW250PA_600_1h). In addition to that, reduction of mesoporosity with 

increasing dwell time was indicated by pore distributions trend over the 

mesoporous range (d>2 nm). 

 

 

Figure 4-6 NLDFT pore size distributions - Effect of dwell time on CO2 
activation of hydrothermally carbonized oak wood 

 

4.3.1.2.2 Pyrolyzed wood (OW800) 

As reported in Table 4-5, the additional holding times examined for 

pyrolyzed oak wood (OW800) were 0 and 2 h. A significant difference in texture 

was measured when adjusting the activation dwell time. This was probably due 

to the larger time step considered in this case. However, findings did not appear 

to agree with the linear trend between dwell time and yield found by Sanchez et 

al. [160]. Also, the texture detriment when increasing dwell time from 1 to 2 h 

was not consistent with what reported by Zhang et al. [161]. Plausibly, 

discrepancies in optimal conditions might be ascribed either to different nature 

of the raw feedstock or to dissimilar pyrolysis conditions applied.  
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Table 4-5 Effect of CO2 activation dwell time on burn-off and textural 
parameters of pyrolyzed wood  

Sample ID 

T t BO SBET Vtot Vmi Vme Vma 

ºC h wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

OW800PA_800_0h 800 0 8 395 0.215 0.153 0.039 0.024 

OW800PA_800_1h 800 1 34 627 0.313 0.240 0.042 0.031 

OW800PA_800_2h 800 2 48 385 0.228 0.146 0.048 0.034 

 

 

Figure 4-7 - N2 adsorption isotherms - Effect of dwell time on CO2 
activation of pyrolyzed oak wood 

 
As previously reported in section 4.3.1.2.1 for the hydrochar, when no 

holding time was applied activation treatment showed poor efficiency, as also 

indicated by the very low burn-off found for OW800PA_800_0h (see Table 4-5). 

This was likely owed to a low reaction rate between carbon dioxide and char. As 

illustrated by Figure 4-7, micropore filling significantly increased when 

increasing residence time from 0 to 1 h. 

Isotherms measured for OW800PA_800_0h and OW800PA_800_1h 

seemed to follow the same path (but with more micropore filling for the latter) 

with increasing pressure. This was suggestive of unaltered meso and 

macroporosity, and in line with meso and macropore volumes given in Table 

4-5. 

Conversely, when holding the sample at the optimal temperature for too 

long (i.e. 2 h), surface areas and pore volumes significantly declined probably 

due to the collapse of the micropore walls. This is shown by the dramatic 

decrease in microporous volume (see Table 4-5). Moreover, it seemed that a 

minor proportion of micropores were widened to form meso and macropores. 

This agreed with the steeper slope of the isotherm measured for 
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OW800PA_800_2h over the mid pressure range. Furthermore, this finding was 

corroborated by the higher burn-out measured for this sample (48 wt%). These 

results coupled with those reported in section 4.3.1.1.2 would then imply that 

burn-offs higher than 34 wt% were detrimental for the porous structure of the 

activated-OW800. Therefore, a residence time of 1 h was found to be optimal 

for the activation of pyrolyzed oak. 

Results shown in Figure 4-8 reflected aforementioned textural changes. 

In particular, ultramicropore population peaked at ca. 0.3 nm dramatically 

increased when increasing holding time from 0 to 1 h. On the contrary, 

prolonged activation (i.e. 2 h) caused a damage of the porous structure formed 

after the first hours of treatment.  

 

 

Figure 4-8 - NLDFT pore size distributions - Effect of dwell time on CO2 
activation of pyrolyzed oak wood 

 

4.3.2 KOH activation of oak wood-based chars 

Chemical activation of charred wood was carried out adopting the 

optimal conditions determined for Laminaria hyperborea (see Chapter 5). 

As given in Table 4-6, KOH activation gave rise to a far more dramatic 

texture development of the final carbons compared to the CO2-activated 

counterparts (see section 4.3.1). It is interesting to note that the largest surface 

area and pore volumes were attained after the chemical activation of the 

hydrochar. This could be attributed to the larger abundance of volatiles 

measured for the hydrothermally carbonized wood compared to those 

measured for OW800 (see Table 4-11). Despite the substantial texture 

development experienced by OW800CA, its surface area was found to be lower 

than that exhibited by a chemically-activated char derived from lignin prepared 
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by Fierro et al. [169]. These authors reported highest surface area of ca. 3000 

m2·g-1 when activation temperature was 700 °C and KOH:char ratio was 3:1.  

Surface area attained by OW250CA was nearly as large as that reported 

by Sevilla et al. [93] after chemical activation of hydrothermally carbonized 

sawdust under similar conditions (800 °C, KOH:char ratio=4:1). On the other 

hand, the outstanding enhancement of porosity experienced by the hydrochar 

resulted in a very low activation yield (less than 3 wt%). As already mentioned 

in section 4.3.1, this was mostly because the hydrochar was poorly carbonized 

during the hydrothermal treatment, therefore experiencing much larger material 

loss during the activation process. 

Gas adsorption isotherm and pore size distributions are reported for all 

samples in section 4.4. 

 

Table 4-6 Yield and textural parameters of oak wood chars after KOH 
activation 

Sample ID 

T CR13 AYdb
14 SBET Vtot Vmi Vme Vma 

°C - wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

OW250 - - - 6 0.035 0.001 0.012 0.022 

OW250CA15 750 4:1 2.44 2757 1.412 0.944 0.080 0.389 

OW800 - - - 164 0.150 0.074 0.044 0.031 

OW800CA 750 4:1 44.41 2061 1.008 0.773 0.067 0.168 

 

4.3.2.1 The effect of the washing procedure 

In this section, attention was focused on the importance of the washing 

procedure after KOH activation. 

OW800CA was the selected sample. In particular, this carbon was 

obtained by mixing the pyrolyzed oak wood (OW800) and KOH according to a 1 

to 4 ratio.  

As illustrated in Figure 4-9, the porosity of the unwashed carbon was 

completely inaccessible. This might be ascribed to the presence of potassium-

based compounds (e.g. potassium carbonate). These are believed to be formed 

                                            

13 Chemical ratio (KOH:char) 

14 Activation yield (AY). Db stands for dry basis. 

15 CA stands for chemically activated 



98 

 

 

during heat-treatment (see Chapter 3) and deposited inside the carbon pores. 

The total lack of porosity found in this study for the unwashed sample was not 

consistent with results shown by Illingworth [168], who reported some degree of 

microporosity when no washing was applied. However, this might be owed to 

the lower KOH:char ratio (1:1) used by that author. Conversely, the larger 

amount of potassium hydroxide used (KOH:char ratio=4:1) in this work seemed 

to have led to a complete blockage of the sorption sites. This was in line with 

findings reported by Lozano-Costello et al. [167], who did not measure any 

porosity for an unwashed carbon obtained by using a 2:1 KOH:char ratio. 

Apparently, the aqueous rinsing allowed releasing most of the chemical 

residue, thus revealing the greater part of the porous structure of the carbon. 

On the other hand, when acid was used as washing agent, an even more 

efficient unblocking of the pores was achieved. This led to a further increase of 

the microporous volume from ca. 0.52 to 0.77 cm3·g-1, while surface area 

increased by 50%. These results disagreed with those reported by Illingworth 

[168], which showed no influence of the washing agent on the microporosity of 

the carbon. In addition to that, HCl washing revealed a significant increase of 

larger porosity, thereby indicating that a large proportion of meso and 

macroporosity were also created after KOH activation. 

From Fourier Transform Infrared (FTIR) spectra recorded for the 

unwashed carbon (see Figure 4-10), absorbance bands (C-O stretch at ca. 

1385 cm-1, C-O out of plane at ca. 878 cm-1 and C-O in plane at ca. 706 cm-1) 

typical of inorganic carbonates [280] were observed.   
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Figure 4-9 Influence of the washing procedure on textural parameters of 
pyrolyzed wood after KOH activation (OW800CA) 

 

These absorption peaks could be reasonably assigned to the residual 

potassium carbonate, which was formed during chemical treatment. This was 

also confirmed by the very high concentration of potassium detected by EDX for 

the unwashed carbon (see Figure 4-11). The same bands were observed for 

the carbon washed with water only but the absorption peaks appeared to be 

much weaker, indicating that most of the potassium carbonate was removed by 

aqueous rinsing. This was also indicated by the negligible K content measured 

by EDX for the sample washed with distilled water only. In contrast, absorption 

bands disappeared in the spectrum recorded for the acid washed sample, 

thereby confirming the higher removal efficiency obtained through HCl rinsing. 

This agreed with EDX chemical compositions found for the acid washed carbon, 

where no K was detected (see Table 4-12). It is also worth noting that HCl 

washing left a lower concentration of impurities (see “Others” in Figure 4-11) 

compared to those retained by the chemically activated carbon after aqueous 

washing. Consequently, the purity of the carbon enriched relatively.  
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Figure 4-10 Influence of the washing procedure on FTIR spectra of 
OW800CA 

 

 

Figure 4-11 Influence of the washing procedure on EDX chemical 
compositions of OW800CA 

 

4.3.2.2 Repeatability of the optimal run  

The pyrolyzed oak wood activated by KOH (i.e. OW800CA) was chosen 

as sample to assess the repeatability of the chemical activation procedure with 

respect to yield and textural parameters. Although KOH activation implied two 

steps, i.e. heat-treatment and HCl washing, error related to the activation yield 

was relatively low with standard deviation below 3%.  
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On the other hand, textural parameters showed far higher variability with 

standard deviation from the mean of up to 12% for the total pore volume. This 

error would not be acceptable in terms of repeatability [282]. However, it is 

worth mentioning that textural parameters are significantly affected by the 

degree of activation (i.e. yield). In particular, as seen in Table 4-7, the higher the 

yield, the larger surface areas and pore volumes of the final carbon. Therefore, 

in order to perform a reliable repeatability test for textural properties, attention 

was focused on repeat textural property measurements on one of the activation 

runs previously considered (i.e. run 2). 

 

Table 4-7 Repeatability of chemical activation of pyrolyzed oak wood 
(OW800CA) in terms of yield and textural parameters 

Run 

AYdb SBET Vtot Vmi 

% m2·g-1  cm3·g-1  cm3·g-1  

1 44.41 2061 1.008 0.773 

2 40.03 1768 0.788 0.674 

3 38.34 1710 0.788 0.653 

Mean 40.93 1846 0.86 0.70 

SD 2.56 154 0.10 0.05 

SD (% Mean) 6.2 8.3 12.0 7.5 

 

Table 4-8 Repeatability of N2 adsorption measurements for OW800CA (run 
2) 

Run 

SBET Vtot Vmi 

m2·g-1  cm3·g-1  cm3·g-1  

2.1 1768 0.788 0.674 

2.2 1882 0.865 0.721 

2.3 1780 0.820 0.683 

Mean 1810 0.824 0.693 

SD 51 0.031 0.021 

SD (% Mean) 2.8 3.8 3.0 

 

As expected, in this case the error associated with textural parameters 

was far lower, as influence of activation yield was removed. As given in Table 

4-8, standard deviation from the mean was found to be well below the limit of 

acceptance (10%) for all parameters. This indicated a good repeatability of the 

N2 adsorption measurement for this sample.  
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4.4 Texture evolution of raw oak wood 

4.4.1 N2 adsorption isotherms 

As seen in Figure 4-12, raw oak wood (OW) adsorbed a negligible 

volume of nitrogen. Interestingly, OW’s surface area is slightly higher than that 

measured for its hydrothermally carbonized counterpart (OW250). This could be 

attributed to the enlargement of porosity (see increase of macropore volume in 

Table 4-9) observed after hydrothermal treatment. However, surface area of 

raw oak wood was lower than that reported by Zhang et al. [6] (95 m2·g-1).  

 

 

Figure 4-12 N2 adsorption isotherms for key oak wood-based samples and 
commercial carbon 

 
Unlike hydrothermal treatment, traditional pyrolysis of wood at 800 °C 

resulted in the creation of a more developed porous structure with surface areas 

increasing up to 164 m2·g-1. This finding is in line with the more dramatic 

devolatilization caused by pyrolysis treatment (see Table 4-11). Nonetheless, 

OW800’s surface area was lower than that measured by Jindo et al. [179] for 

pyrolyzed oak tree at 800 °C for 10 h. In that case, increased surface area 

might be ascribed to the prolonged pyrolysis process. In addition to that, as 

indicated by the NLDFT peaks at pore widths lower than 1 nm (see Figure 

4-13), some extent of microporosity was created during heat-treatment at 800 

°C. 

Activation under CO2 atmosphere led to a moderate increase of porosity 

for both chars. However, as concerns pyrolyzed char (OW800), physical 

treatment led to a maximum surface area lower than those reported by other 

works [160, 161]. In these studies, the authors reported highest textural 

development at burn-off far larger than the optimal figure found in the current 

work. In contrast, current experimentation showed a decrease in all textural 
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parameter when further increasing the severity (i.e. burn-off) of the treatment. 

On the other hand, OW800PA’s surface area was comparable to values 

reported by Lopez et al. [180] for CO2-activated carbons derived from pyrolyzed 

oak. 

 

 

Figure 4-13 N2 NLDFT pore size distributions for key oak wood-based 
samples and commercial carbon 

 

Activated carbons produced N2 adsorption isotherms which appeared to 

be closer to type I [242]. In particular, the relatively sharp knee at the very low 

pressure indicates a high micropore percentage (up to 77% for OW800PA), 

which was calculated as (4.1). This is further back by the narrow pore size 

distributions exhibited by physically activated carbons (see Figure 4-13). It is 

also worth noticing how NLDFT mode measured for OW800 was amplified and 

shifted toward lower pore diameter (from ca. 0.7 nm to ca. 0.4 nm) after CO2 

activation. This indicated the formation of ultramicropores (d<0.7 nm) after 

activation under CO2.  

Although OW800PA features larger pore volume and surface area than 

those measured for OW250PA (see Table 4-9), the hydrochar exhibited a more 

dramatic texture enhancement after physical activation. In particular, 

OW250PA’s surface area experienced a ca. 70-fold increase compared to the 

figure measured for the non-activated material. This finding might be explained 

by the poor carbonization that occurred during hydrothermal treatment. This 

was indicated by the lower values of carbon content and by the higher 

proportion of volatiles given in Table 4-11 for OW250. From this result, it could 

be inferred that a further devolatilization of the sample occurred throughout the 

activation treatment, resulting in larger development of porous structure. On the 

other hand, the limited texture enhancement observed for the pyrolysis-derived 

char might be attributed to its higher ash (A) content (Table 4-11). These were 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.0

0.2

0.4

0.6

0.8
d
V

(w
) 

(c
m

3
n

m
-1
g

-1
)

Pore Width (nm)

 OW

 OW250

 OW800

 OW250PA

 OW800PA

 OW250CA

 OW800CA

 GAC



104 

 

 

not removed after physical treatment, thus deactivating some of the sorption 

sites.  

In contrast, a far higher volume of nitrogen was adsorbed by commercial 

carbon (GAC), which is characterized by lower ash and higher carbon content 

(see Table 4-11). GAC’s isotherm exhibited a more pronounced initial upswing 

at the lowest pressure values followed by a flat trend with increasing pressure. 

This is typical of type I-like isotherms, indicating a prevalent proportion of 

micropores (up to 85%) within the porous structure of this material. Additionally, 

GAC exhibited a bimodal pore size distribution. In particular, this sample 

showed a larger proportion of ultramicropores than that found for OW800PA 

(see the first peak centred at ca. 0.4 nm in Figure 4-13). In addition to this, the 

second broad peak extending from 1 to 2 nm indicated a great contribution of 

supermicropores, which were not significantly developed for the char-based 

carbon samples that were physically activated in this work. 

Nevertheless, when activating chars with KOH, the final carbons 

exhibited much higher uptake of N2 than all the other sorbents. Interestingly, the 

largest surface area was attained by OW250CA (up to 2757 m2·g-1). As earlier 

mentioned for physical activation, this result might be essentially due to a higher 

degree of devolatilzation experienced by the hydrochar during heat-treatment. 

However, it worth mentioning that KOH-activated samples presented a higher 

percentage of larger pores compared to that found for the corresponding CO2-

activated carbons. This was indicated by the different isotherm shape observed 

for chemically-activated wood in Figure 4-12. In fact, unlike physically activated 

and commercial carbons, KOH-activated samples exhibited a more open knee 

of the isotherm and, especially for OW250CA, the greater part of N2 was 

adsorbed at higher pressure.  

These findings matched with the multimodal NLDFT distributions 

exhibited by these samples, thereby indicating a more heterogeneous porous 

structure. However, it is worth noting that no peaks associated with 

ultramicropore widths (d<0.7 nm) were measured for KOH-activated sorbents.  

Although OW250CA exhibited a larger micropore volume than that 

measured for OW800CA (ca. 0.95 cm3·g-1 vs ca. 0.77 cm3·g-1 respectively), the 

latter featured a higher microporosity (77% vs 67%) as a fraction of total 

porosity. This was explained by the higher figure of macropore volume found for 

OW250CA (nearly 0.39 cm3·g-1 vs ca. 0.17 cm3·g-1 for OW800CA). As 

abovementioned, the different proportions of porosity types found for chemically 

treated carbons might be ascribed to the dissimilar degree of carbonization of 

the starting chars. Moreover, the more dramatic texture development 

experienced by KOH-activated chars might be because chemical treatment was 

more severe than CO2 oxidation. Apparently, KOH attacked carbon structure 

more efficiently, thus creating a greater amount of porosity. Furthermore, acid 

washing step allowed for removal of most of the ash contained within the initial 
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chars, thereby unblocking further pores (see section 4.3.2.1). On the other 

hand, this treatment seemed to be less suitable for tailoring carbon with high 

degree of microporosity. 
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Table 4-9 Gas adsorption data for key oak wood-based samples and commercial carbon 

Sample ID 

N2 adsorption -196 °C CO2 adsorption 0°C 

SBET Vtot Vmi Vme Vma Vads, 0 °C, 1bar16 Vumi, NLDFT17 NLDFT mode Vumi, DR18 E0, DR19 

m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  kJ·mol-1 

OW 26 0.029 0.002 0.014 0.013 0.4 0.001 0.007 0.001 - 

OW250 6 0.035 0.001 0.012 0.022 1.5 0.003 0.028 0.005 - 

OW800 164 0.150 0.074 0.044 0.031 11.8 0.028 0.251 0.087 - 

OW250PA 415 0.278 0.173 0.066 0.040 9.9 0.024 0.247 0.095 - 

OW800PA 627 0.313 0.240 0.042 0.031 15.0 0.040 0.356 0.064 30.3 

OW250CA 2757 1.412 0.944 0.080 0.389 6.5 0.014 0.129 0.029 - 

OW800CA 2061 1.008 0.773 0.067 0.168 11.3 0.026 0.233 0.078 25.2 

GAC 1231 0.559 0.474 0.078 0.006 10.9 0.026 0.229 0.109 23.7 

 

                                            

16 CO2 adsorption at 0 °C and 1 bar 

17 Ultramicropore volume calculated by applying NLDFT model to CO2 adsorption data 

18 Ultramicropore volume calculated by applying DR model to CO2 adsorption data 

19 Energy of adsorption calculated by applying DR model to CO2 adsorption data 
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4.4.1.1 Study of isotherm hysteresis 

As already mentioned in Chapter 3, adsorption leg was chosen for the 

calculation of mesopore volume. This decision was mostly dictated by the lack 

of consistency encountered when measuring N2 desorption of materials 

analysed. Therefore, in this section few representative cases of isotherm 

hysteresis are shown (see Figure 4-14 and Figure 4-15). Moreover, estimation 

of mesoporous volume derived from the application of BJH model to desorption 

leg is reported for selected samples (see Table 4-10). 

In particular, isotherms measured for some of the samples examined 

(see Figure 4-14) did not exhibit any closure of the hysteresis loop. As 

suggested by IUPAC recommendations [242], low-pressure hysteresis (LPH) 

phenomenon might be attributed to an inefficient degassing process that did not 

ensure the cleanness of the adsorbent surface prior to measuring N2 

adsorption. This might have occurred for the physically activated hydrochars 

that were degassed at a maximum temperature of 100 °C (see Table 4-10). 

This was because these samples kept releasing sticky volatiles when degassed 

at temperatures higher than 100 °C in agreement with the high proportion of 

volatile matter measured for OW250PA (see Table 4-11). Therefore, in order to 

prevent instrument contamination, more intense degassing process was 

avoided for these samples.  

Results shown in this work agreed with those reported in the study of 

Silvestre-Albero et al. [284]. These authors showed that desorption leg did not 

re-join the adsorption branch at low-pressure region when degassing samples 

at low temperature (i.e. 150 °C). Contrarily, closure of hysteresis loop was 

observed when degassing materials at 250 °C. Apparently, after a poor 

degassing treatment, volatiles and other chemical compounds are retained 

within the porous structure of the adsorbent. These molecules tend to block 

narrow micropores, thus delaying or preventing nitrogen adsorption. Therefore, 

whenever possible, degassing of adsorbents at higher temperatures is highly 

recommended.  

Moreover, Silvestre-Albero et al. [284] showed that hysteresis 

phenomena could be an artefact due to the lack of equilibrium during the 

measurement of N2 isotherms. These authors reported that low-pressure 

hysteresis did not occur when using a longer elapsed time between consecutive 

pressure readings, as this ensured achieving a real equilibrium. In particular, 

they observed LPH when a low equilibration time (80 s) was considered, while 

no low-pressure hysteresis was observed when increasing equilibrium time to 

300 s. In this study, an equilibration time of 180 s was used but the effect of this 

parameter on the LPH was not studied. 

Nevertheless, as shown in Figure 4-14, hysteresis exhibited by isotherms 

was close to H3 type [242]. Desorption leg immediately deviated from 
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adsorption branch, thereby indicating condensation of adsorbate in 

mesoporous. Later on, desorption and adsorption legs run quasi-parallel with 

decreasing relative pressure, without re-joining because of low-pressure 

hysteresis phenomenon. As reported in Table 4-10, the choice of isotherm leg 

did not affect the estimation of the mesopore volume for OW250PA_700_0.5h. 

Yet, the application of the modified Kelvin equation to the isotherm desorption 

branch led to a slightly larger mesoporous volume for OW250PA_600_0.5h. 

Isotherms reported in Figure 4-15 denoted a type H3 hysteresis [242], 

which is characteristic of aggregates of plate-like particles and implies a slit-

shaped pore geometry. Note that a delayed opening of hysteresis loop that 

occurred for OW800PA at ca. P/P0=0.9. This is typical of type H2 hysteresis 

[242], which indicated the probable presence of "ink-bottle" pores to some 

extent. These hindered the evaporation of adsorbate from the pores. It follows 

that this sample might present a partially disordered porous network. 

 

Table 4-10 Hysteresis case studies - Mesoporous volume and degassing 
temperature  

Sample ID 

Vme, ads20 Vme, des21 Tmax, degas 

cm3·g-1  cm3·g-1  °C 

OW250PA_600_0.5h 0.053 0.078 100 

OW250PA_700_0.5h 0.023 0.022 100 

OW800PA 0.042 0.080 200 

  

                                            

20 Mesopore volume calculated by applying BJH model to N2 adsorption data 

21 Mesopore volume calculated by applying BJH model to N2 desorption data 
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Figure 4-14 Isotherms hysteresis – case study 1 (“D” stands for 
desorption) 

 

Nonetheless, unlike for samples discussed in case 1, isotherm 

desorption leg measured for OW800PA re-joined the adsorption branch at low 

pressure (see Figure 4-15). The closure of hysteresis loop at P/P0=0.4 found for 

OW800PA is typical when using nitrogen as adsorptive [242]. Hysteresis loop 

reported in this study agreed fairly well with that shown by Zhang et al. [161] for 

a similar material (i.e. CO2-activated oak wood at 800 °C for 1 h). According to 

IUPAC nomenclature [242], isotherm shown in Figure 4-15 should be defined as 

type IV rather than type II. 

As reported in Table 4-10, in this case material was degassed at higher 

temperature (200 °C), as a limited release of gaseous compounds was 

observed during degassing. This confirmed the importance of a more efficient 

degassing at preventing LPH. Moreover, it is likely that the lower amount of 

volatiles found for this sample (see Table 4-11) might have facilitated the 

degassing process.  

As given in Table 4-10, a larger mesopore volume was obtained when 

using desorption leg for BJH calculation. The increased mesopore volume was 

ascribed to the hysteresis area between lower branch (adsorption) and upper 

branch (desorption).  
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Figure 4-15 Isotherms hysteresis - case study 2 (“D” stands for 
desorption) 

 

4.4.2 CO2 adsorption isotherms 

As depicted by Figure 4-16, all samples adsorbed a relatively small 

amount of CO2 at 0 °C. As expected, negligible amounts of CO2 were adsorbed 

by raw and hydrothermally carbonized wood. This agreed with the absence of 

porous structure already revealed by N2 adsorption measurements for these 

samples.  

Surprisingly, the pyrolyzed char (OW800) attained the second largest 

CO2 uptakes among the set of samples tested. OW800’s performance 

outweighed sorption capacities exhibited by activated carbons featuring much 

larger surface areas, such as OW250PA, GAC and chemically-treated carbons. 

This finding suggested the formation of ultramicropores during the pyrolysis 

treatment. In addition to that, this emphasizes that KOH activation only led to 

the development of pores having larger widths (d>0.7 nm). This also agreed 

with NLDFT distributions showed in Figure 4-17.  

Conversely, a significant increase of ultramicropore volume was caused 

by physical activation, which appeared to be a more suitable treatment for 

developing sorbents with narrower pores. All samples exhibited a unimodal 

NLDFT distribution peaked in ultramicropores (pore width ca. 0.35 nm). Mode 

magnitude approximately followed the adsorbed volume of CO2 at saturation, 

with the highest peak intensity found for OW800PA.  

Based on the approximate linear correlation shown in Figure 4-18, the 

ultramicropore determined applying the NLDFT method to the CO2 adsorption 

isotherms at 0 °C and 1 bar is proportional to the maximum volume of CO2 

adsorbed. Linear regression yielded a coefficient of determination R2=0.9895. 

Results shown in this work agreed with findings reported by Presser et al. [285]. 
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On the other hand, as seen in Figure 4-19, poor correlation was observed when 

plotting CO2 uptakes versus ultramicropore volume determined by applying DR 

method to the CO2 adsorption data. This was in contrast with what stated by 

Sevilla et al. [106]. Therefore, NLDFT method was believed to be a more 

reliable estimation of the narrow microporosity of the samples analysed in this 

study. 

Nevertheless, DR model was applied to the CO2 adsorption data to have 

a quantitative estimation of the interaction strength between the adsorbate (i.e. 

CO2) and some of the adsorbents tested. In particular, the energy of adsorption 

E0 followed the sequence OW800PA>OW800CA>GAC. It follows that the 

physically-activated carbon seemed to have a stronger affinity with CO2 than 

the corresponding chemically activated sample and commercial carbon. 

 

 

Figure 4-16 CO2 adsorption isotherms for key oak wood-based samples 
and commercial carbon  
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Figure 4-17 CO2 NLDFT pore size distributions for key oak wood-based 
samples and commercial carbon 

 

 

Figure 4-18 Correlation between CO2 uptake at 273 K and 1 bar, and the 
narrow micropore volume (d<0.7 nm) determined by applying the NLDFT 
method to the CO2 adsorption isotherms measured for key oak wood-
based samples and commercial carbon.  
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Figure 4-19 Correlation between CO2 uptake at 273 K and 1 bar, and the 
narrow micropore volume (d<0.7 nm) determined by applying the DR 
method to the CO2 adsorption isotherms measured for key oak wood-
based samples and commercial carbon. 

 

4.5 Chemical and structural properties of raw oak wood and its 

derivatives 

4.5.1 Elemental and proximate analyses 

Elemental composition of raw oak wood mostly agreed with data 

previously reported in other works for similar feedstock [161, 180] and is typical 

of lignocellulosic materials. In addition to this, the high volatile content (up to ca. 

86 wt%) was fairly consistent with the figure measured by Lopez et al. [286] for 

Pyrenean oak (80.6 wt%). Results revealed insignificant sulphur and low 

nitrogen contents for all samples (see Table 4-11). Hydrogen content below 1 

wt% was measured for all materials, except for raw oak wood and HTC-derived 

products (OW250 and OW250PA). In particular, hydrochars normally have 

higher hydrogen content than that featured by pyrochars [287], as pyrolysis 

implies a more severe thermal conversion [288] in comparison to HTC. A 

decrease in H/C and O/C ratios after HTC of raw oak wood was observed, 

which was ascribed to dehydration reaction occurring during hydrothermal 

treatment [183]. 

Moreover, it is worth noting that the hydrochar (OW250) had a great 

proportion of volatiles, whose release during the activation process 

(OW250PA’s VM is ca. 30 wt% lower than that of OW250) might have been 

responsible for the outstanding texture development (see Figure 4-12 and Table 

4-9) experienced by this material. Apparently, as oak wood was poorly 

carbonized after HTC, the hydrochar was subjected to an additional 
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devolatilization during activation treatment, leading to an increase of the 

proportion of carbon from 61 to ca. 76 wt%. In addition to that, the high volatiles 

loss that occurred after the heat-treatment under CO2 agreed with the larger 

reduction of H content, which decreased by ca. 60%. Also, fixed carbon 

enriched relatively (OW250PA’s FC is ca. 30 wt% higher than that of OW250). 

Accordingly, it could be said that the liberation of volatile compounds accounted 

for most of the activation burn-off (ca. 45 wt% as given by Table 4-4) 

experienced by OW250. In contrast, volatiles content for OW800 was much 

lower as traditional pyrolysis, conducted at higher temperature than that held 

during HTC, had already removed most of the volatiles matter. This was also 

indicated by the lower carbon yield obtained after pyrolysis (ca. 21.5 wt%, see 

Table 4-1), which was less than half that of OW250 (nearly 56 wt%). As a result, 

a relatively lower burn-off (ca. 34 wt%, see Table 4-5) was measured after 

optimal activation of OW800. 

Nonetheless, a higher proportion of fixed carbon (ca. 66 wt%) was found 

for OW800’s compared to that featured by the OW250 hydrochar (nearly 33 

wt%). This indicated the formation of a more stable carbon structure after 

pyrolysis. The higher degree of devolatilization, along with a slightly larger 

fraction of ash could explain why this sample did not experience a significant 

texture enhancement (see Figure 4-12) after physical activation. 

 

Table 4-11 - Elemental and proximate analyses for key oak wood-based 

samples and commercial carbon 

 Ultimate, db Proximate, db 

Sample ID N C H S O VM A FC 

OW 0.3 46.7 5.6 0.1 47.3 85.9 1.9 12.2 

OW250 0.7 61.0 4.5 0.0 33.8 58.5 9.1 32.9 

OW800 0.7 77.9 0.7 0.0 20.7 20.8 13.8 66.1 

OW250PA 1.2 75.9 1.9 0.0 21.0 29.1 8.9 62.1 

OW800PA 1.2 74.2 0.5 0.0 24.2 22.2 11.3 65.9 

OW250CA 0.4 77.5 0.5 0.0 21.6 21.1 10.4 64.8 

OW800CA 0.3 91.6 0.3 0.0 7.8 10.5 9.6 79.9 

GAC 0.1 90.1 0.6 0.1 9.1 11.3 1.6 87.0 

 

Heat-treatment under CO2 did not cause any significant demineralization 

of the unactivated wood, as seen by the similar ash contents found for initial 

chars and physically activated counterparts. Indeed, these showed lower 

carbon purity than that observed for the commercial carbon (GAC). This was 

shown by GAC’s extremely large fixed carbon content (87 wt%). In addition to 
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that, GAC’s lower ash/volatile abundances were in line with its more developed 

texture (Figure 4-12 and Table 4-9) compared to that of physically activated oak 

wood.  

On the other hand, chemical activation of OW800 followed by acid 

washing led to a material with comparable purity in carbon (overall C content up 

to 91.6 wt%) than that found for GAC (90.1 wt%). This was likely due to the 

washing treatment, which reduced the ash content from 13.8 wt% down to 9.6 

wt%. In addition to this, release of oxygen as CO and CO2 during KOH 

activation led to an increase in C/O ratio [289]. This was also in agreement with 

the lower concentration of volatiles measured for OW800CA (10.5 wt%) 

compared to that found for the physically activated carbon (22.2 wt%). In 

contrast, OW250CA exhibited lower carbon content (ca. 77 wt%) than that 

measured for OW800CA. The lower proportion of carbon found for OW250CA 

might be partly attributed to a poorer demineralization. This was suggested by 

the slightly higher fraction of ash measured by proximate analysis for this 

sample (ca. 10.4 wt%) compared to that featured by OW800CA (9.6 wt%). On 

the other hand, the lower purity of carbon matrix exhibited by OW250CA could 

be also explained by the higher amount of residual volatile matter (21.1 wt%) 

exhibited by this sample compared to that measured for OW800CA (10.5 wt%). 

Nevertheless, the hydrochar experienced a more dramatic reduction in volatiles 

(around 64% loss) than that occurred during KOH activation of pyrolyzed wood 

(ca. 50% loss). As previously stated, this might have caused the larger texture 

enhancement observed for OW250CA (see Table 4-9). 

 

4.5.2 SEM and EDX analyses 

SEM micrographs acquired at 5000 x magnification (Figure 4-20) depicts 

the morphology of all materials studied.  

From Figure 4-20(a), the cellular appearance typical of a lignocellulosic 

biomass precursor [93, 183] could be observed. As seen in Figure 4-20(b) and 

(c), carbonization process did not significantly change the structure of the raw 

material. However, some small macropores can be observed for OW800, thus 

indicating that an elementary porous structure had started to develop during 

pyrolysis at 800 °C. 

Although it was shown that heat-treatment under CO2 led to the 

development of a more porous structure (see Table 4-9), this was not 

corroborated by SEM images as microporosity and mesoporosity are too small 

to be visible in SEM micrographs (see Figure 4-20(d) and (e)).  

Nevertheless, SEM micrographs revealed the presence of particles 

dispersed onto the structure of chars and CO2-activated carbons. As proved by 

EDX chemical compositions (see Figure 4-21) acquired on the micrographs 

shown in Figure 4-20, these particles were found to be inorganic. In particular, 
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Ca seemed to be the most abundant element both in raw oak wood and in 

synthesized derivatives (i.e. chars, activated carbons). Calcium concentration 

originally measured in the raw wood enriched relatively after carbonization and 

activation processes, whereas oxygen was found to decrease. This could be 

ascribed to the removal of O-based volatiles during heat-treatment of woody 

biomass. 

SEM images taken for commercial carbon (GAC) showed an 

approximately regular macroporosity (see Figure 4-20(h)). By contrast, 

heterogeneously sized macropores were exhibited by KOH-activated samples, 

especially by OW800CA. The more evident development of porosity highlighted 

by SEM imaging agreed with the greater surface area noted for these samples 

in Table 4-9. Apparently, chemical treatment was more efficient at attacking the 

carbon matrix, thus creating a larger fraction of voids. Furthermore, unlike for 

oak wood chars and physically activated carbons, micrographs related to 

chemically activated wood and GAC showed lack of mineral matter. This was 

found to be consistent with what is highlighted in Figure 4-20, where a 

significantly lower inorganic content was measured for chemically activated 

samples. This was also in line with the lower ash abundances measured by 

proximate analysis (Table 4-11) for these materials. 
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Figure 4-20 SEM images at 5000x magnification for (a) OW, (b) OW250, (c) 
OW800, (d) OW250PA, (e) OW800PA, (f) OW250CA, (g) OW800CA and (h) 
GAC. 
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Figure 4-21 EDX chemical composition for key oak wood-based samples and commercial carbon  
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Table 4-12 - Details about inorganic elements (“Others” Figure 4-21) detected by EDX analyses for key oak wood-based 
samples and commercial carbon 

OW OW250 OW800 OW250PA OW800PA OW250CA OW800CA GAC 

Elem22 wt% Elem wt% Elem wt% Elem wt% Elem wt% Elem wt% Elem wt% Elem wt% 

Al 0.10 Al n.d. Al n.d. Al n.d. Al n.d. Al 0.51 Al 0.47 Al n.d. 

Cl n.d. Cl n.d. Cl 0.42 Cl n.d. Cl 1.14 Cl 0.28 Cl 0.37 Cl n.d. 

Cu n.d. Cu 0.35 Cu 0.24 Cu 0.33 Cu 0.77 Cu 0.13 Cu 0.95 Cu 0.12 

Fe n.d. Fe n.d. Fe n.d. Fe 0.09 Fe n.d. Fe n.d. Fe n.d. Fe n.d. 

K 0.38 K n.d. K 0.15 K 0.10 K 0.35 K n.d. K n.d. K 0.11 

Mg 0.09 Mg n.d. Mg 0.12 Mg n.d. Mg 0.33 Mg n.d. Mg n.d. Mg n.d. 

Mn n.d. Mn n.d. Mn n.d. Mn n.d. Mn 0.28 Mn n.d. Mn n.d. Mn n.d. 

Mo n.d. Mo n.d. Mo n.d. Mo n.d. Mo n.d. Mo n.d. Mo n.d. Mo 0.60 

 

 

 

                                            

22 Elem stands for Element. 
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4.5.3 XRD patterns 

As depicted by Figure 4-22(a), XRD pattern of raw oak wood showed a 

broad scattering between 20 and 25° 2θ. This might be ascribed to the 002 

reflection, associated with disordered structure of non-graphitising carbon [79]. 

This peak is normally observed over the reported 2θ range for carbon solids 

with a long-chain structural order [290]. Signal appeared to be broader and with 

a lower intensity after thermal treatment of wood (see Figure 4-22(b-d)). In 

addition to that, the reflection seemed to be shifted toward higher angles. This 

could have occurred because of the reduction of the interlayer distance 

between 002 graphitic planes [272]. The decrease of interlayer spacing with 

increasing temperature treatment has already been reported by Zhang et al. 

[82] for non-graphitising carbons.  

However, slightly sharp peaks were also measured for pristine oak wood 

and best fitted by the standard pattern of a Ca-based crystalline phase (i.e. 

calcium oxalate hydrate, 00-016-0379). The three most intense peaks were 

recorded at ca. 15.1, 24.5 and 30.3° 2θ. The same compound was identified 

after hydrothermal carbonization of wood, as all characteristic peaks were also 

measured for OW250 (see Figure 4-22(b)). However, peaks increased in 

sharpness, therefore indicating an increase of the crystallinity after the heat-

treatment at 250 °C. Nonetheless, some impurities (see asterisks in Figure 

4-22(a) and (b)) were present within both the raw material and within hydrochar. 

Moreover, according to the Sherrer equation [291] (see also Chapter 3), the 

increase of sharpness was caused by the growth of the crystallites size after 

heat-treatment. Indeed, the average crystal size of calcium oxalate hydrate was 

found to increase from 48.7 to 54.2 nm. 

In contrast, sharp peaks measured for pyrolyzed char (i.e. OW800) 

matched with the standard pattern of calcium hydroxide (00-004-0733). Main 

peaks were measured at ca. 18.1, 34.1 and 47.1° 2θ. The presence of calcium 

hydroxide might be explained by the conversion of calcium oxalate hydrate 

during pyrolysis. Calcium carbonate was identified on the structure of Holm and 

Pyrenean oak after pyrolysis at 600 °C by Lopez et al. [180]. However, as 

concerns OW800, it might be that at 800 °C calcium carbonate might have 

calcined to some extent [292], thus leading to the formation of calcium 

hydroxide. 

As seen in Figure 4-22(c), XRD patterns of physically activated chars 

revealed the presence of calcium carbonate. In particular, a very sharp peak 

was measured at ca. 29.4° 2θ, matching with the most intense peak of the 

standard pattern (01-080-9776). Additionally, a good matching was found for 

the remaining peaks having lower intensity. The most intense were measured at 

ca. 36.0, 39.5, 43.2, 47.5 and 48.5° 2θ. Apparently, under CO2 atmosphere, Ca-

based compounds initially present within the chars (i.e. calcium oxalate hydrate 

and calcium hydroxide respectively) were converted into calcium carbonate 
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through carbonation reaction. XRD results were consistent with EDX findings, 

revealing a major presence of Ca-based particles onto the oak wood-based 

samples (see Figure 4-21).  

As concerns KOH-activated chars, XRD analyses showed few sharp 

peaks but having low intensity (see Figure 4-22(d)). This suggested that most of 

the Ca-based crystalline phases were removed after acid washing. This was in 

agreement with the lower ash content found for these samples by proximate 

analyses as given in Table 4-11. Additionally, a lower concentration of inorganic 

species was detected by EDX for chemically-activated carbons. Nonetheless, 

peaks measured for OW800CA were fitted by calcium carbonate pattern, thus 

indicating a residual presence of this compound onto the structure of the 

chemically-activated wood. This might suggest that demineralization was not 

fully efficient and agreed with EDX results, showing a residual abundance of 

calcium for OW800CA (see Figure 4-21).  

In contrast, aluminium oxide was identified as best match of peaks 

measured for OW250CA. This finding was once again consistent with EDX 

chemical composition measured for this sample, giving Al as the most abundant 

among inorganic species detected, followed by Cl and Cu. Al-based impurities 

might have not been detected for other samples because of the presence of 

more dominant phases. However, aluminium detected for OW250CA might 

have come from the alumina crucible used during the heat-treatment, as the 

ceramic vessel was acid washed in order to facilitate the recovery of the carbon 

product when KOH activation was performed. 

However, results showed that KOH-activated carbons were 

characterized by a more amorphous structure typical of activated carbons. This 

agreed with the higher purity of the carbon matrix exhibited by these samples, 

especially by OW800CA (see Table 4-11). Finally, as depicted by Figure 

4-22(e), a very amorphous structure was revealed for commercial carbon 

(GAC), only showing very broad peaks. 
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Figure 4-22 XRD patterns and standard stick patterns for raw oak wood (a), oak wood-derived chars (b), physically-activated 
chars (c), chemically- activated chars (d) and commercial carbon (e). 
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4.5.4 Boehm titration for selected samples 

Figure 4-23 gave quantitative information about the surface chemistry of 

some of the samples analysed. It is interesting to note that the number of basic 

functionalities measured for the physically activated oak wood (OW800PA) 

exceptionally prevailed over those measured for OW800CA and GAC. In 

accordance with EDX and XRD results, it is reasonable to relate the more 

pronounced basic character of this sample to the presence of Ca-based 

compounds within its carbon matrix.  

On the other hand, a low amount of acidic groups was measured for all 

samples. In particular, OW800CA had the largest number of acidic 

functionalities, probably due to the acid washing treatment following chemical 

activation. 

 

 

Figure 4-23 Boehm titration for selected samples 
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4.6.1 CO2 uptake programmes 
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higher temperature (ca. 53 °C) and lower partial pressure of CO2 (15% by 

volume or 0.15 bar). 

 

4.6.1.1 35 °C, 100% CO2 

Figure 4-24 showed temperature programme and sample weight change 

related to the routine used for an initial test of the sorption capacity of the 

carbons. In particular, Figure 4-24(a) illustrates results obtained from the first 

version of the programme. This had to be amended for different reasons. First, 

the duration of degassing step at 120 °C was reduced from 60 to 30 min as 

limited weight losses were recorded in the last 30 min. Furthermore, for the 

same reason, the duration of the last isothermal step under N2 at 120 °C was 

decreased from 30 to 15 min. 

However, the major change concerned the cooling step prior to switching 

gas atmosphere from N2 to CO2 (S1). In fact, as seen in Figure 4-24(a), the 

switch to CO2, dictating the beginning of the adsorption step, started when 

temperature was still decreasing. This occurred as a nominal cooling rate 

(HR=10 °C·min-1) was initially considered, corresponding to a ca. 9 min time 

span. However, as clearly shown by Figure 4-24(a), TGA furnace took much 

longer (ca. 24 min overall) to cool down to the desired temperature, as the 

actual cooling rate was slower than the theoretical one. Therefore, in order to 

estimate the sorption capacity at constant temperature, an isothermal step 

under N2 as long as the difference between actual (24 min) and theoretical 

duration (9 min) of cooling stage was added in the amended programme 

immediately after the 30 min degassing step. Consequently, as illustrated in 

Figure 4-24(b), this amendment allowed switching to CO2 (i.e. starting the 

adsorption step) when both sample weight and temperature attained a plateau 

(see S1 at t=54 min). As a result, the increase in weight occurring at constant 

temperature (ca. 35 °C) when sample was exposed to CO2 was interpreted as 

the CO2 adsorption capability of the sample only, i.e. thereby eliminating weight 

changes due to buoyancy effects caused by cooling.  

Adsorption kinetics were measured at constant temperature for 30 min, 

i.e. from t=54 min to t=84 min. However, note that later on a time scale 0-30 min 

was used for the visual representation of the sorption kinetics alone (see for 

instance Figure 4-28). Sample was regenerated at 100 °C at a heating rate of 5 

°C·min-1 (i.e. between t=84 min and t=97 min) and the residual amount of CO2 

was plotted against the temperature (see Figure 4-30) in order to evaluate the 

desorption behaviour of the material. Regeneration of the sorbent was then 

completed by switching back to nitrogen (S2) and bringing the temperature up 

to 120 °C. Final temperature was then held for further 15 min. 

Sample run shown in Figure 4-24(b) was corrected for buoyancy effects 

by running the same programme for an empty pan (blank), which was shown in 
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Figure 4-25. The initial buoyancy was due to the decrease of temperature 

during the cooling stage. According to ideal gas law, nitrogen has higher density 

at lower temperature, thus involving a lower apparent weight of the pan. 

However, at ca. 50 °C (t=ca. 40 min), weight started to increase. This was 

ascribed to the sorption of the purging gas onto the alumina pan surface. A 

more significant buoyancy effect was observed when gas atmosphere was 

switched from nitrogen to carbon dioxide (at ca. 54 min). As the latter has a 

higher molecular weight and thus higher density than that of nitrogen, exposing 

the sample to CO2 will result in a lower apparent weight of the pan. Vice versa, 

for the aforementioned reasons, weight increase occurred both when increasing 

the temperature (at ca. 84 min) and when switching back gas atmosphere to 

nitrogen (ca. 97 min). 

 

 

Figure 4-24 CO2 uptakes programme (100% CO2, 35 °C) for representative 
sample (OW800PA): (a) before amendment and (b) after amendment 
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Figure 4-25 CO2 uptakes programme (100% CO2, 35 °C) - Blank run 
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Figure 4-26 CO2 uptakes programme (15% CO2, 53 °C) for representative 
sample (OW800PA) 

 

 

Figure 4-27 CO2 uptakes programme (15% CO2, 53 °C) - Blank run 
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As reported in Table 4-13, the highest CO2 capacity at 35 °C was 

recorded for the OW800CA, which adsorbed 71.6 mg CO2∙g-1 (ca. 1.62 mmol 

CO2∙g-1). This datum is comparable or even higher than values reported in other 

studies, where CO2 uptakes were achieved under similar conditions [221, 293]. 

Nevertheless, sorption capacity fall short those of the best performance ever 

reported for ACs at room temperature and under pure CO2 by Sevilla et al. [93]. 

These authors prepared CO2 sorbents through KOH activation of 

hydrothermally carbonized chars derived from biomass, achieving up to ca. 212 

mg CO2∙g-1. The lower CO2 capacities of the sorbents tested in this study might 

be partly attributed to the higher sorption temperature considered (35 °C as 

opposed to room temperature), but also to the carbon’s smaller ultramicropore 

volumes (highest value of ca. 0.040 cm3∙g-1  for OW800PA vs 0.52 cm3∙g-1 [93]). 

In fact, this feature, in line with what reported in other works [294, 295], seems 

to be chiefly responsible for adsorbing carbon dioxide at high partial pressure 

(i.e. 1 bar).  

Nevertheless, OW800CA outweighed the sorption performances of a 

commercial carbon included for comparison purposes. This can be ascribed to 

the more developed porous structure obtained after chemical activation of 

pyrolyzed wood (see Table 4-13). On the other hand, despite larger surface 

area and micropore volume than OW800CA, OW250CA attained a CO2 uptake 

of only 45 mg CO2∙g-1. This could be attributed to the lower narrow 

microporosity featured by this sample (0.014 cm3∙g-1) compared to that 

measured for OW800CA (0.026 cm3∙g-1). Furthermore, it is worth noting that the 

adsorption capability achieved at 35 °C by the physically activated oak wood 

(OW800PA) was very close to that of commercial carbon, although the latter 

has significantly higher textural properties (GAC’s surface area is twice that of 

OW800PA), which should have implied far higher CO2 uptake.  

It follows that both ultramicropore volume and larger porosity (i.e. surface 

area) seem to be affecting CO2 sorption at 35 °C and 1 bar. This was proved by 

correlations reported in Appendix A. In particular, for a selected set of samples, 

uptakes at 35 °C and 1 bar were plotted vs either BET surface area or a textural 

factor determined as BET surface area times the ultramicropore volume 

calculated by applying NLDFT model to the CO2 adsorption isotherms 

measured at 0 °C. In particular, poor correlation was found between CO2 

uptakes and the surface area only (R2=0.5103). In contrast, coefficient of 

determination increased up to 0.9024 when considering correlation between 

CO2 uptakes and textural factor.  

Nonetheless, some other parameters might have played a key role in the 

CO2 uptake process. This was indicated by Figure 4-29, where CO2 uptakes 

were normalized by surface area to remove the effect of texture. The higher 

figure of normalized uptakes measured for physically activated oak wood (see 

Table 4-13), coupled with the higher amount of basic functionalities (see Figure 

4-23) found for this sample, suggested that, if texture is disregarded, CO2-
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activated oak wood has a greater CO2 sorption potential than that of the 

corresponding chemically-activated carbon (OW800CA) and GAC. The greater 

affinity between CO2 and OW800PA could be due to the stronger basic 

character exhibited by the CO2-activated wood (see Figure 4-23). Basicity of 

OW800PA could be attributed to some Ca-based groups, as calcium was the 

most abundant element for all oak wood-derivatives (see Figure 4-21). In 

particular, alkalinity might have been arisen from the amorphous fractions of 

calcium oxide and/or hydroxide (not detected by XRD pattern in Figure 4-22(c)) 

intrinsically present within the structure of the material. Crystalline form of 

Ca(OH)2 had already been identified for OW800 (see Figure 4-22(b)) and it may 

have not been totally converted into calcium carbonate after CO2 activation. On 

the other hand, it may be that some of the calcium carbonate decomposed at 

800 °C [292], thus giving rise to amorphous calcium oxide/hydroxide. This 

would explain a probable chemisorption of CO2 occurring onto the oak wood-

derived carbons (carbonation reaction). 

 

 

Figure 4-28 CO2 kinetics measured at 35 °C and 1 bar (total pressure of 1 
bar) for all samples 

 

Moreover, as illustrated in Figure 4-30, the CO2 uptakes decreasing 

trend with increasing temperature was less steep for OW800PA, in particular 
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dioxide molecule. This could be attributed to the lower amount of basic 
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result of acid washing. The stronger bond between OW800PA and carbon 

dioxide was also suggested by the higher energy of adsorption calculated for 

this sample by applying DR model to the CO2 adsorption isotherms measured 

at 0 °C (see Table 4-9). 

 

 

Figure 4-29 CO2 kinetics measured at 35 °C and 1 bar (total pressure of 1 
bar) and normalized by surface area for best performing samples 

 

 

Figure 4-30 Regeneration (single rapid temperature swing adsorption 
(RTSA) cycle, 35-100 °C) for best performing samples 
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Table 4-13 CO2 uptakes measured at a total pressure of 1 bar for oak wood derivatives (chars and activated carbons) and 
commercial carbon (GAC) 

 

Sample ID 

1 bar (100% CO2) 0.15 bar (15% CO2) 

35 °C 35 °C , Norm23 60 °C Wloss, 35-60 °C
24 100 °C Wloss, 60-100 °C

25 53 °C 

mg CO2∙g-1  mg CO2∙m-2 mg CO2∙g-1  % mg CO2∙g-1  % mg CO2∙g-1  

OW250 2.6  - - - - NM26 

OW800 39.6 - - - - - NM 

OW250PA 40.6 - - - - - 7.2 

OW800PA 57.1 9.1E-02 33.4 41 8.8 74 11.8 

OW250CA 45.0 - - - - - 5.1 

OW800CA 71.6 3.5E-02 34.9 51 6.3 82 8.4 

GAC 60.6 4.9E-02 33.0 45 9.2 72 9.0 

 

                                            

23 CO2 uptakes normalized by BET surface area 

24 Calculated as difference between the sorption capacity at 35 and 60 °C, and expressed as a % of the sorption capacity at 35 °C. 

25 Calculated as difference between the sorption capacity at 60 and 100 °C, and expressed as a % of the sorption capacity at 60 °C. 

26 Not measured 
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4.6.3 Simulated post-combustion performance 

As depicted by Figure 4-31, under simulated post-combustion conditions 

(ca. 53 °C, 15% CO2) all selected materials attained fast CO2 sorption kinetics. 

However, the highest sorption capacity measured for the thus synthesized virgin 

carbons (ca. 12 mg CO2∙g-1 or 0.27 mmol CO2∙g-1 for OW800PA) is slightly 

lower than the best performance (0.50 mmol CO2∙g-1) reported in the literature 

for ACs under similar conditions (ca. 40 °C, 0.15 bar) [58]. 

Nevertheless, it is interesting to observe that OW800PA attained larger 

CO2 uptakes than those measured for OW800CA (8.4 mg CO2∙g-1) and GAC (9 

mg CO2∙g-1) at the equilibrium. As already stated in section 4.6.2, it seems 

reasonable to associate such behaviour with the more favoured surface 

chemistry of OW800PA. Apparently, basic surface of the oak wood carbon 

ensured stronger interactions with the carbon dioxide molecule at higher 

temperatures and lower gas concentration, thus implying a higher (CO2/N2) 

selectivity of the sorbent. In contrast, the performance of the other two sorbents 

(GAC and OW800CA), only relying on texture, was significantly affected by the 

increase of temperature, when physisorption becomes less effective. Indeed, 

chemically activated wood appeared to release some CO2 over equilibration 

time. As observed in Figure 4-31, decreasing trend led to the cross over 

between sorption curves measured for OW800CA and GAC occurring at ca. 15 

min. 

 

 

Figure 4-31 15% CO2 adsorption kinetics at 53 °C and 0.15 bar (total 
pressure of 1 bar) measured for best performing samples 
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RTSA cycles. In this case, material regeneration was accomplished at 120 °C. 

Note that, despite Figure 4-32 suggested 100 °C as suitable condition for 

regeneration of OW800PA, other sorbents (see Chapter 5 and 6) were not fully 

regenerated at this temperature.  

Therefore, in order to compare the regeneration capability of materials 

under identical conditions, 120 °C was chosen as regeneration temperature for 

cyclic experiments. In particular, Figure 4-33(a) illustrates the recyclability of the 

physically-activated carbon (OW800PA). Note that the apparent decrease of the 

plateau observed in Figure 4-33(a) is due to a continuous baseline drift 

downwards. Nonetheless, as clearly seen by Figure 4-34, where only the first 2 

adsorption/desorption cycles are shown, the sorbent regeneration was rapidly 

(ca. 14 min) completed when swinging the temperature up to 120 °C. 

Interestingly, Figure 4-34 also showed that during the first adsorption step 

OW800PA exhibited a slower CO2 sorption kinetic in comparison to that 

observed over the second adsorption stage. In addition to this, as represented 

in Figure 4-33(b), the CO2 uptake attained by OW800PA after the first 

adsorption step was higher than those attained during the following cycles. 

These observations seem to suggest that (Ca-based) chemical functionalities 

present within OW800PA were removed after the first temperature swing at 120 

°C. Consequently, as depicted by Figure 4-33(b), the CO2-activated wood only 

attained ca. the 75% of the initial sorption capacity at the end of the second 

adsorption step. In spite of this, Figure 4-33(b) also showed that from the 

second cycle onward OW800PA’s sorption capability appeared to be steady, 

thus indicating a good durability of the sorbent. 

 

 

Figure 4-32 Regeneration (single RTSA, 53-100 °C) for best performing 
samples  
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Figure 4-33 (a) Regeneration performance and (b) CO2 sorption capacity 
over ten RTSA cycles for the physically-activated wood (OW800PA) 

 

 

Figure 4-34 Zoom of the first 2 RTSA cycle for the physically-activated 
wood (OW800PA) 
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Raw oak wood (OW) was successfully converted into activated carbons 

through a two steps process, i.e. carbonization and activation.  

Pyrolysis of wood conducted at high temperature (i.e. 800 °C) resulted in a 

higher extent of carbonization compared to that obtained by hydrothermal 

treatment. In fact, fixed carbon found for pyrolyzed wood (OW800) was twice as 
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large (66 wt% vs 33 wt%) that measured for hydrochar (OW250). In contrast, 

raw material was not completely devolatilized after hydrothermal treatment. 

Consequently, hydrothermally carbonized wood did not show any well-defined 

porous structure, whereas some degree of microporosity was already formed 

after pyrolysis. Both carbonization processes were found to be repeatable in 

terms of char yield. Additionally, pyrolysis of wood was not affected by the type 

of rig used. On the other hand, mass balance carried out for HTC process water 

showed a slightly higher variability. Nevertheless, relatively low errors were 

obtained for all parameters, thus indicating acceptable repeatability of the 

carbonization processes. 

Synthesized chars were then activated by pursuing two different routes. 

Physical activation of biochars was optimized by maximizing surface area as a 

function of activation temperature and dwell time. Results revealed a stronger 

influence of the former parameter on the texture development of activated 

hydrochar. However, a remarkable effect of the activation holding time on the 

textural parameters of pyrolyzed wood was observed. In particular, surface area 

dramatically increased when increasing the dwell time from 0 to 1 h, whereas 

significantly decreased when prolonging the holding time from 1 to 2 h. Optimal 

conditions were found to be 600 °C for 30 min and 800 °C for 1 h for hydrochar 

and pyrolyzed wood respectively. After optimal heat-treatment, hydrochar 

(OW250) was subjected to a higher carbon burn-off (46 wt%) than that 

measured for OW800 (34 wt%). This was likely because of a further 

devolatilization experienced by the hydrothermally carbonized wood during 

activation. Yet, limited values of surface areas were obtained for physically-

activated carbons, i.e. 415 m2∙g-1 for OW250PA and 627 m2∙g-1 for OW800PA.  

Conversely, KOH activation followed by acid washing led to far more 

dramatic texture enhancement than that achieved through physical (CO2) 

activation. In particular, the highest surface area (2757 m2∙g-1) was achieved 

after chemical activation of hydrochar (OW250CA). In addition, a washing step 

was found to be essential in order to exploit the porosity created by KOH 

carbonation. Particularly, porosity of unwashed sample was completely 

inaccessible. This was ascribed to potassium carbonate residues blocking the 

pores. The presence of residual potassium carbonate was proved by combining 

FTIR and EDX results. In addition, after acid washing of OW800CA, surface 

area increased by 50% compared to the value obtained after washing the 

sample with water only. This was due to a more efficient removal of potassium-

based compounds deposited within the carbon pores after heat treatment. 

Furthermore, especially for OW800CA, chemical treatment resulted in a higher 

purity of the carbon matrix, as most of the inorganic impurities were dissolved 

by acid. On the other hand, chemical activation involved some drawbacks. First, 

especially after KOH activation of hydrochar, a very low yield was obtained (less 

than 3 wt%). Therefore, the production of this material on a larger scale would 

be uneconomical. In contrast, larger activation yield were obtained for 
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OW800CA (ca. 44 wt%). Yet, it is worth mentioning that a very light powder with 

low mechanical strength was obtained as final product. This could represent an 

issue if an adsorption column was to be packed with this material, as 

mechanically strong particles would be preferred in industrial applications. 

Interestingly, activation treatments of hydrothermally synthesized wood led 

to much more dramatic texture development than that experienced by pyrolysis-

derived char. As aforementioned, this was mostly due to the additional 

devolatilization that occurred when submitting hydrochars to the activation 

process. Based on observation reported, it could be inferred that physical 

activation of hydrochar might be a more energetically convenient route for the 

preparation of porous sorbents, especially when starting from wet feedstock 

containing low amount of ash. 

According to CO2 adsorption isotherms measured at 0 °C, activation 

methods gave rise to carbons having a very low proportion of narrow 

microporosity. NLDFT model was believed to give a more reliable estimation of 

the ultramicropore volume as a stronger correlation with the volume of CO2 

adsorbed at 0 °C and 1 bar was found. 

SEM imaging coupled with EDX analysis allowed for detection of Ca-

containing particles attached to the carbon structure of oak wood derivatives. 

XRD patterns confirmed the presence of Ca-based crystalline phases for all 

samples except KOH-activated hydrochar (OW250CA), as inorganic fractions 

were mostly removed after HCl washing. In particular, hydrated forms of 

calcium-containing compounds (calcium oxalate and calcium hydroxide) were 

identified within the structure of raw and carbonized wood, while physically 

activated chars exhibited calcium carbonate as main crystalline phase. This 

might have arisen after carbonation reaction occurring throughout CO2 

activation. On the other hand, amorphous fractions of calcium hydroxide (not 

detected) may have formed following to a slow rate decomposition of calcium 

carbonate at 800 °C. However, larger proportion of alkali metal-containing 

species were believed to be responsible for the higher basic character 

possessed by OW800PA. Indeed, as shown by Boehm titration, this sample 

exhibited a far larger number of basic functionalities compared to that measured 

for its chemically-activated analogue (OW800CA) and for a commercial carbon 

(GAC) included for comparison purposes. 

All carbons exhibited fast CO2 sorption kinetics at 35 °C and 1 bar, 

reaching saturation within less than 5 min. OW800CA attained the largest 

sorption capacity (around 70 mg CO2∙g-1). This figure was higher than that 

exhibited by the commercial carbon (GAC), but far lower than highest values 

reported by literature. Lower CO2 uptakes measured in this study were mostly 

attributed to the undeveloped ultramicroporosity of the materials tested. This 

confirms the importance of narrower microporosity in the CO2 uptake process at 

high partial pressure. Nevertheless, correlations reported in this work seemed to 
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suggest that CO2 sorption at 35 °C and 1 bar might be governed by a 

combination of surface area (i.e. larger porosity) and narrow microporosity.  

Unexpectedly, under simulated post-combustion conditions (53 °C, 0.15 

bar) the physically activated carbon (OW800PA) was more selective at 

capturing CO2 than other sorbents with well more developed texture (i.e. 

OW800CA and GAC). This finding was ascribed to the larger basicity measured 

for OW800PA, which in its turn was related to Ca-containing species intrinsically 

present within the structure of the CO2-activated wood. It seemed that alkali 

metal-based inorganic matter ensured a stronger interaction between CO2 and 

the physically-activated carbon. This agreed with the higher energy of 

adsorption measured between the sorbent and CO2 at 0 °C. Inorganic species 

were mostly removed after chemical treatment, by acid washing, and were not 

present within the commercial carbon. Since OW800CA and GAC were not as 

selective as OW800PA under post-combustion conditions, the findings clearly 

indicated that texture is no longer the predominant parameter at higher 

temperature and lower partial pressure (i.e. post-combustion condition). In 

contrast, basicity appeared to be the key factor to be considered when 

designing selective sorbents for post combustion capture.  

Along with increased selectivity, OW800PA also exhibited a more facile 

desorption step and was fully regenerated at 100 °C. This suggested that a very 

low temperature could be applied for the regeneration of the material over 

multiple RTSA cycles. Accordingly, heat required for the sorbent regeneration 

would be reduced, thus optimizing energy costs. Furthermore, excepting an 

initial loss after the first adsorption-desorption cycle, the sorbent capacity 

seemed to attain a plateau over the remaining 8 cycles, thereby indicating good 

durability over the time. 

In conclusion, traditional pyrolysis followed by chemical activation seemed 

to be the most suitable route to produce cost-effective CO2 (physi)sorbents at 

higher partial pressure of CO2 and lower temperature. In addition to this, raw 

oak wood revealed to be an advantageous precursor for an eco-friendly 

synthesis of selective CO2 sorbents under post-combustion conditions. In 

particular, alkali metal (Ca)-containing compounds intrinsically incorporated 

within the raw material allowed producing highly basic sorbents without applying 

any chemical modifications. Physical activation is preferred to chemical 

treatment for preparation of CO2 sorbents at low partial pressure, as it does not 

remove basic inorganic functionalities, which are evidently vital under post-

combustion conditions. Additionally, physical treatment is less contaminant than 

KOH activation. 
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5 Sustainable and regenerable alkali metal-containing 

carbons derived from seaweed for post-combustion capture 

of CO2 

5.1 Outline 

This chapter focuses on the use of a widely available feedstock, seaweed, 

for a sustainable preparation of alkali metal-containing activated carbons (ACs). 

In particular, attention was directed toward a type of brown macroalgae (i.e. 

Laminaria hyperborea), which was selected as precursor for ACs fabrication. 

The raw material processing was similar to that pursued for the oak wood 

(see Chapter 4). A first step entailed obtaining chars either by dry pyrolysis or 

by hydrothermal carbonization (HTC). Results related to the repeatability of the 

carbonization of Laminaria hyperborea are reported in section 5.2.  

Following this, pyrolyzed and hydrothermally carbonized Laminaria 

hyperborea were activated by pursuing two different routes, i.e. either physical 

(CO2) or chemical (KOH) activation. In section 5.3, the optimal conditions are 

systematically determined for both activation procedures. In particular, the 

Brunauer-Emmett-Teller (BET) surface area of the carbons is maximized as a 

function of chosen parameters. As concerns the CO2 activation, in line with 

experiments already done for the oak wood in Chapter 4, the influences of 

activation temperature and dwell time on the textural properties of the carbons 

were assessed. With respect to the chemical treatment, the effects of activation 

temperature and KOH to char ratio were examined. 

In section 5.4, the textural parameters of the raw macroalgae and all its 

derivatives (i.e. chars and optimally-activated carbons) are compared. In 

addition, the CO2 adsorption at 0 °C was also measured in an attempt to 

quantify the narrow microporosity of the samples. 

The alteration of the chemical properties of the raw Laminaria hyperborea 

induced by carbonization and activation processes is discussed in section 5.5. 

However, some of the characterizations (i.e. X-Ray Diffraction (XRD) and 

Boehm titrations) were conducted only for some of the macroalgae-derived 

materials (see section 5.5.3). This choice was mostly dictated both by the large 

amount of material required by these techniques and by the scarcity of the raw 

feedstock. In addition to this, in accordance with the strategy already described 

in Chapter 4, the samples of interest were selected according to their CO2 

capture performance (see section 5.6). In particular, a first test carried out at 

lower temperature (35 °C) and higher partial pressure of CO2 (1 bar) was used 

to identify samples showing the most interesting behaviour in terms of CO2 
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uptake and sorption kinetics. Based on results observed, additional 

characterizations and a post-combustion test were carried out only for pyrolyzed 

Laminaria hyperborea (LH_S800) and its activated counterparts (LH_S800PA 

and LH_S800CA). 

Finally, a summary of the chapter is given in section 5.7. 

 

5.2 Carbonization of Laminaria hyperborea 

5.2.1 Repeatability of dry pyrolysis and HTC 

As already done for the oak wood in Chapter 4, the carbonization of 

Laminaria hyperborea was carried out in triplicate in order to assess its 

repeatability. In particular, the variation of the carbonization yield was 

determined for both dry pyrolysis and for hydrothermal carbonization. 

Furthermore, for each HTC run, the errors related to the water balance (see 

Chapter 3) were also calculated. 

Around 5 g of raw Laminaria hyperborea were pyrolyzed in a ceramic 

furnace, and each run was performed under the same conditions (see Chapter 

3). As already mentioned in Chapter 4, it was not possible to estimate the 

repeatability of liquid and gas fractions, as the limited amount of volatiles 

produced was dragged away to the exhaust by the purge gas before it could 

condense in the trap.  

Standard amounts of raw material (24 g) and water (220 g) were used for 

the hydrothermal treatment repeats. The mixture was then heated up at 250 °C 

and held at this temperature for 1 h. 

As seen in Table 5-1, the pyrolysis treatment led to higher yield variability 

than that measured for the HTC repeats. This was indicated by the higher value 

of standard deviation from the mean (up to 7.33%) calculated for the LH_S800’s 

yield compared to that obtained for LH_S250 (3.56%). Yet, the repeatability of 

both carbonization processes was within the maximum tolerable value (i.e. 10% 

[282]). 

The average pyrolysis yield (ca. 27 wt%) was higher than that recorded 

for the pyrolyzed wood (21.50 wt%, see Chapter 4). This might be due to the 

catalytic effect of the higher inorganic fractions (especially K) contained by 

Laminaria hyperborea (see Table 5-11 and Table 5-12), which are expected to 

increase the char production [134, 181, 200, 201]. On the other hand, proximate 

analyses revealed that the proportion of fixed carbon (FC) measured for 

pyrolyzed Laminaria hyperborea (27.5 wt%) was much lower than that 

measured for OW800 (66.1 wt%). This was probably because of the larger 

amount of ash (A)-free organic matter contained within the raw oak wood, which 
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was converted to ash-free carbon [296]. This might suggest oak wood as a 

better candidate for activated carbon production. 

Pyrolysis of Laminaria hyperborea was also conducted in a larger scale 

(stainless steel) rig under the same conditions held when using the ceramic 

furnace, but loading larger amounts of raw feedstock. The large-scale pyrolysis 

was carried out in duplicate, yet a different mass of raw material was used for 

each run (ca. 65 or ca. 140 g). Interestingly, the carbonization runs led to very 

similar yields (ca. 30.36 wt% and 30.79 wt% respectively), thus showing that the 

mass of raw feedstock did not affect the final char yield. In addition to that, it is 

notable that the pyrolysis process conducted in the large-scale rig resulted in a 

slightly higher char formation compared to the carbonization carried out in the 

small-scale rig (i.e. ceramic furnace). Accordingly, if the influence of the reactor 

loading was to be excluded, this finding might be ascribed to a slower pyrolysis 

(lower heating rate (HR)) occurred in the large-scale rig, which might have 

facilitated char production [181]. This result was also in line with that found by 

Ross et al. [134], reporting a larger char formation for slow ramp rate pyrolysis 

than for flash pyrolysis. 

According to the author’s best knowledge, no data related to the 

carbonization of Laminaria hyperborea under similar conditions used in this 

study were found in the literature. However, few studies about the pyrolysis of 

different types of Laminaria have been reported. For instance, Bae et al. [138] 

pyrolyzed Laminaria japonica at 600 °C for 1h, measuring a product yield of ca. 

40 wt%. This was higher than that measured in this study likely because of the 

lower pyrolysis temperature applied. In addition, Ferrera-Lorenzo et al. [203] 

pyrolyzed a macroalgae solid waste under similar conditions to those used in 

this work (i.e. 750 °C for 1 h). A carbonization yield of ca. 30 wt% was reported 

by these authors, which agrees with that found in the present study, especially 

when pyrolyzing Laminaria hyperborea in the large scale reactor. Also, Stratford 

et al. [202] reported a lower char formation (i.e. 17 wt%) after pyrolysis of 

Laminaria digitata (oarweed) at 800 °C. However, in this case the product yield 

was determined considering the solid residue following pyrolysis and acid 

washing. 

The hydrothermal treatment of Laminaria hyperborea yielded a slightly 

larger amount of solid residue (ca. 34 wt%) than that measured after pyrolysis. 

This was in accordance with results already found for oak wood (see Chapter 

4), as the hydrothermal synthesis of biomass was carried out at much lower 

temperature compared to that used for the pyrolytic treatment. 

Previous studies on the hydrothermal treatment of macroalgae are also 

limited. A solid residue of ca. 25 wt% was reported by Anastasakis and Ross 

[206] who performed HTC of Laminaria hyperborea at 250 °C for 15 min. 

Furthermore, another type of macroalgae (i.e. Enteromorpha prolifera) was 

hydrothermally carbonized by Xu et al. [208] at 250 °C for 60 min, obtaining a 
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solid yield of 15 wt%. HTC of Enteromorpha prolifera was also carried out by 

Zhou et al. [205], who reported hydrochar yields below 20 wt% when conducting 

hydrothermal treatment at temperatures of 240 and 260 °C held for 30 min. It is 

worth noting that the higher yield obtained for Laminaria hyperborea in this work 

might indicate this feedstock as a more convenient precursor in terms of 

hydrochar production. 

 

Table 5-1 Repeatability of carbonization processes of Laminaria 
hyperborea. SD is the standard deviation of the three measurements. 

Carbonization Water balance 

LH_S80027 LH_S25028 

Run CYdb29 Run CYdb minitial mrecovered mlost
 

- wt% - wt% mg mg mg 

1 24.63 1 34.05 220.00 166.58 53.42 

2 28.16 2 35.26 220.00 162.88 57.12 

3 27.93 3 32.84 220.00 163.79 56.21 

Mean 26.91 Mean 34.05 - 164.42 55.58 

SD 1.97 SD 1.21 - 1.57 1.57 

SD (% Mean) 7.33 SD (% Mean) 3.56 - 0.96 2.83 

 

Nonetheless, in contrast to results found for traditional pyrolysis, the 

average yield measured for hydrothermal carbonization of Laminaria 

hyperborea (ca. 34 wt%) was substantially lower than that obtained for the 

hydrothermally carbonized wood (ca. 58.5 wt%). This finding might signify that 

the catalytic effect of inorganic matter during hydrothermal treatment was not as 

important as that during pyrolysis. In fact, some inorganics might have been 

released into the HTC process water. On the other hand, wood-derived biomass 

normally features higher levels of lignin, which is believed to favour char 

production [134, 181, 200, 201]. 

A very low variability of the water balance was achieved when repeating 

HTC of Laminaria hyperborea, with standard deviation below 1%. The average 

amount of process water recovered after hydrothermal carbonization of 

                                            

27 Laminaria hyperborea summer (LH_S) pyrolyzed at 800 °C 

28 LH_S hydrothermally carbonized at 250 °C 

29 Carbon yield (CY). Db stands for dry basis 
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Laminaria hyperborea (164.42 mg) was comparable to that found for oak wood-

derived hydrochar (160.90 mg), which seems to suggest that the type of 

feedstock did not significantly affect the amount of water lost during the 

hydrothermal process. 

 

5.3 Activation of macroalgae-based chars - Optimal conditions 

5.3.1 CO2 activation 

The physical activation of carbonized Laminaria was conducted under 

the same conditions of CO2 flowrate (0.6 l·min-1) and heating rate (10 °C·min-1) 

already used for oak wood (see Chapter 4). These were maintained constant for 

each run. Once again, the influence of activation temperature and holding time 

on the development of the textural parameters of the activation products was 

studied. Initially, a first attempt value of dwell time was used, whereas the 

activation temperature was varied. Following this, the optimal activation 

temperature was maintained unaltered while the holding time was varied. 

In order to avoid repetition, the textural properties related to the chars are 

only reported in Table 5-10. 

 

5.3.1.1 The effect of the temperature 

5.3.1.1.1 Hydrothermally carbonized Laminaria hyperborea (LH_S250) 

Laminaria hyperborea-derived hydrochar was activated at 550, 600 and 

650 °C. At this stage, the activation temperature was held for 30 min.  

As suggested by Figure 5-1, OW250 experienced a dramatic 

improvement of texture after activation at 550 °C. Indeed, hydrochar’s surface 

area increased from 6 to 248 m2·g-1. Interestingly, a slightly milder condition 

(500 °C for 30 min) applied for physical activation of hydrothermally carbonized 

wood in Chapter 4 led to limited textural enhancement. These results appear to 

indicate 550 °C as the onset temperature for an efficient reaction between 

carbon dioxide and HTC-derived chars. 

A further increase of porosity was obtained when increasing temperature 

from 550 to 600 °C. In particular, the isotherm measured for 

LH_S250PA_600_0.5h (see Figure 5-1) displayed an increase of micropore 

filling at low pressure, which was consistent with the increase in microporous 

volume reported in Table 5-2. In contrast, a slight decrease in total pore volume 

occurred. This suggested that the higher temperature condition might have 

caused the collapse of meso and macropore walls, which is in line with the less 

steep upswing measured at saturation for LH_S250PA_600_0.5h. Nonetheless, 
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the isotherms shape (type II [242]) was not noticeably affected by the 

temperature of the treatment. 

Conversely, a reduction of porosity occurred when the temperature was 

further increased from 600 to 650 °C. In particular, the detriment of porosity 

mostly affected micropores, whose volume was reduced by ca. 50%. The 

isotherm measured for LH_S250PA_650_0.5h did not change in shape but 

appeared to be shifted down. 

 

Table 5-2 Effect of CO2 activation temperature on burn off and textural 
parameters of hydrothermally carbonized Laminaria hyperborea 

 T t BO30 SBET31 Vtot32 Vmi33 Vme34 Vma35 

Sample ID36 °C h wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

LH_S250PA_550_0.5h 550 0.5 44 248 0.331 0.103 0.069 0.158 

LH_S250PA_600_0.5h 600 0.5 48 301 0.288 0.121 0.057 0.109 

LH_S250PA_650_0.5h 650 0.5 51 160 0.228 0.062 0.053 0.112 

  

                                            

30 Burn-off 

31 Surface area calculated by applying BET method to N2 adsorption data 

32 Total pore volume calculated by applying Gurvitsch’s rule at P/P0=0.99 

33 Micropore volume calculated by applying DR model to N2 adsorption data 

34 Mesopore volume calculated by applying Barrett-Joyner-Halenda (BJH) 
model to N2 adsorption data 

35 Macropore volume calculated by difference 

36 PA stands for physically activated 
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Figure 5-1 N2 adsorption isotherms - Effect of temperature on CO2 
activation of hydrothermally carbonized Laminaria hyperborea 

 

 

Figure 5-2 Non-local density functional theory (NLDFT) pore size 
distributions by volume - Effect of temperature on CO2 activation of 
hydrothermally carbonized Laminaria hyperborea 

 

As illustrated in Figure 5-2, regardless of the temperature, the activation 

treatment led to a significant development of ultramicroporosity. Particularly, the 

peak centred at ca. 0.3 nm hit a maximum at 600 °C, which is in agreement with 

the highest value of micropore volume exhibited by LH_S250PA_600_0.5h. 

Interestingly, ACs obtained at 550 and 600 °C exhibited a second peak centred 

at around 1.2 nm, thus indicating the presence of supermicropores. When 

increasing temperature from 600 to 650 °C, the supermicropores population 

mostly disappeared, while ultramicroporosity was significantly reduced. This 

seems to indicate damage of the microporous structure previously created 

between 550 and 600 °C. The optimum temperature for CO2 activation of 
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hydrothermally carbonized Laminaria hyperborea was therefore deemed to be 

600°C.  

 

5.3.1.1.2 Pyrolyzed Laminaria hyperborea (LH_S800) 

As depicted by Figure 5-3, irrespective of the activation temperature, 

pyrolyzed Laminaria hyperborea exhibited a limited improvement of texture after 

heat-treatment under CO2. 

Unlike the hydrothermal treatment, pyrolysis generally implies the 

creation of a more stable char as the raw material undergoes a more intense 

devolatilization. Therefore, it was decided to apply a more severe heat-

treatment for the activation of LH_S800. However, LH_S800 exhibited much 

higher burn out (50 wt% at 750 °C for 0.5 h) than that showed by the oak wood 

analogue (32 wt%, see Chapter 4) under similar conditions (750 °C for 1 h). The 

high material loss caused the destruction of the micropore walls. Indeed, as 

given in Table 5-3, the micropore volume was found to decrease by ca. 87% 

when increasing temperature from 700 to 750 °C. 700 °C was found to be the 

optimal activation temperature, with surface area increasing up to 189 m2·g-1. 

However, it is worth noticing that LH_S800PA_650_0.5h featured a higher 

proportional microporosity37 (ca. 73%) than that of LH_S800PA_700_0.5h (ca. 

55%). This agreed with the different shapes of the isotherms measured for 

these samples. In particular, the isotherm knee widened when increasing 

temperature from 650 to 700 °C. Moreover, the isotherm measured for the 

sample activated at 700 °C showed a noticeable slope with increasing pressure, 

suggesting the formation of mesoporosity. According to the IUPAC classification 

[242], this is typical of type II isotherms and agreed with the increased volume 

of mesopores reported in Table 5-3 for this material. By contrast, 

LH_S800PA_650_0.5h exhibited a near type I isotherm, with a narrower knee 

followed by a flat trend over the mid pressure range, which indicated negligible 

mesoporosity. 

As observed in Figure 5-4, the larger micropore percentage of 

LH_S800PA_650_0.5h was confirmed by the narrower pore size distribution 

(PSD) shown for this sample in comparison to LH_S800PA_700_0.5h and 

LH_S800PA_750_0.5h. In addition, LH_S800PA_650_0.5h attained the highest 

abundance of the peak centred in ultramicropores. In contrast, when increasing 

temperature from 650 to 700 °C, populations of supermicropores were formed, 

with pore diameter ranging from 1 to 2 nm. Furthermore, broad peaks at pore 

widths larger than 2 nm corroborated the presence of mesopores within 

LH_S800PA_700_0.5h. Peaks observed over the microporous width range 

                                            

37 Calculated as (Vmi/Vtot)·100. 
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disappeared for LH_S800PA_750_0.5h, thus reiterating the significant reduction 

of microporosity that occurred when increasing temperature from 700 to 750 °C. 

 

Table 5-3 Effect of CO2 activation temperature on burn off and textural 
parameters of pyrolyzed Laminaria hyperborea 

 T t BO SBET Vtot Vmi Vme Vma 

Sample ID °C h wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

LH_S800PA_650_0.5h 650 0.5 7 140 0.078 0.057 0.009 0.013 

LH_S800PA_700_0.5h 700 0.5 13 189 0.126 0.069 0.030 0.028 

LH_S800PA_750_0.5h 750 0.5 50 83 0.066 0.009 0.034 0.023 

 

 

Figure 5-3 N2 adsorption isotherms - Effect of temperature on CO2 
activation of pyrolyzed Laminaria hyperborea 
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Figure 5-4 NLDFT Pore size distributions by volume - Effect of 
temperature on CO2 activation of pyrolyzed Laminaria hyperborea 

 

5.3.1.2 The effect of the dwell time 

5.3.1.2.1 Hydrothermally carbonized Laminaria hyperborea (LH_S250) 

The optimal activation temperature of 600°C, determined in section 

5.3.1.1.1 for a dwell time of 30 min, was also held for no residence time (i.e. 0 

h) or 1 h. In particular, when the char was not held at temperature, the efficiency 

of CO2 oxidation was lower, probably due to a slow reaction rate. In contrast, a 

longer holding time of 1h led to a detriment of the porosity created at 600 °C for 

0.5 h.  

 

Table 5-4 Effect of CO2 activation dwell time on burn off and textural 
parameters of hydrothermally carbonized Laminaria hyperborea 

 T t BO SBET Vtot Vmi Vme Vma 

Sample ID °C h wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

LH_S250PA_600_0h 600 0 46 118 0.210 0.046 0.063 0.101 

LH_S250PA_600_0.5h 600 0.5 48 301 0.288 0.121 0.057 0.109 

LH_S250PA_600_1h 600 1 49 180 0.224 0.076 0.044 0.104 
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Figure 5-5 N2 adsorption isotherms - Effect of dwell time on CO2 activation 
of hydrothermally carbonized Laminaria hyperborea 

 

 

Figure 5-6 NLDFT Pore size distributions by volume - Effect of dwell time 
on CO2 activation of hydrothermally carbonized Laminaria hyperborea 
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carbon burn out (46 wt%), nearly as large as that experienced by 

LH_S250PA_600_0.5h (48 wt%, see Table 5-4). However, the hydrothermally 

carbonized wood attained a noticeably higher surface area (415 m2·g-1) than 

that of macroalgae-derived hydrochar. 

The dwell time seemed not to affect the shape of the pore distributions of 
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bimodal pore size distribution with peaks at ca. 0.5 and ca. 1.2 nm respectively. 

NLDFT modes reflected the isotherms’ results. 

 

5.3.1.2.2 Pyrolyzed Laminaria hyperborea (LH_S800) 

The effect of the dwell time on the textural properties of LH_S800 was 

evaluated by considering the same time steps used for hydrothermally 

carbonized Laminaria hyperborea. This entailed holding the optimal 

temperature (i.e. 700 °C, see section 4.3.1.1.2) for 0 or 1 h. Compared to the 

pyrolyzed oak wood (see Chapter 4), a lower time span was chosen in an 

attempt to gradually refine the material burn out.  

Nevertheless, the variation of the residence time did not lead to any 

improvement of the texture. Indeed, a dwell time of 30 min was found to be 

optimal for the CO2 activation of Laminaria-derived pyrolysis char because 

resulted in the highest surface area. In particular, as seen by Table 5-5, when 

no dwell time was applied the porosity development of the final carbon was very 

similar to that experienced by the sample held at the same temperature for 30 

min. This was in accordance with the comparable burn-offs measured for these 

samples. On the other hand, increasing activation duration from 0 to 30 min led 

to a further development of meso and macropores, while no additional 

microporosity was formed. In fact, although micropore filling at the very low 

pressure was not affected by the increase of the dwell time, the isotherm 

measured for LH_S800PA_700_0.5h exhibited a more open knee, leading to a 

higher adsorption of nitrogen with increasing pressure. This was consistent with 

the slightly larger meso and macropore volumes found for this sample (see 

Table 5-5). In contrast, when the activation was further prolonged up to 1 h, a 

significant increase of burn off was measured (from 13 to 38 wt%), which 

appeared to damage the micropore walls (micropore volume decreased by 

45%).  

 

Table 5-5 Effect of CO2 activation dwell time on burn off and textural 
parameters of pyrolyzed Laminaria hyperborea 

 T t BO SBET Vtot Vmi Vme Vma 

Sample ID °C h wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

LH_S800PA_700_0h 700 0 6 171 0.110 0.068 0.026 0.016 

LH_S800PA_700_0.5h 700 0.5 13 189 0.126 0.069 0.030 0.028 

LH_S800PA_700_1h 700 1 38 93 0.069 0.032 0.020 0.016 

 

Interestingly, as seen in Figure 5-8, it seemed that ultramicroporosity 

decreased when increasing dwell time from 0 to 30 min, while new 
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supermicropore populations appeared for LH_S800PA_700_0.5h. Apparently, 

when prolonging the activation process some of the ultramicropores were 

widened to form supermicropores. Conversely, both ultramicroporosity and 

supermicroporosity decreased when the activation dwell time was increased 

from 30 to 60 min.  

 

 

Figure 5-7 N2 adsorption isotherms - Effect of dwell time on CO2 activation 
of pyrolyzed Laminaria hyperborea 

 

 

Figure 5-8 NLDFT Pore size distributions by volume - Effect of dwell time 
on CO2 activation of pyrolyzed Laminaria hyperborea 

 

5.3.2 KOH activation 
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chemical ratio were examined. Initially, KOH:char ratio was maintained at 4:1, 

while activation temperature was varied (i.e. 550, 650 or 750 °C). Afterwards, 

the optimal activation temperature was kept unaltered, while chemical ratios 

other than the initial one (1:1 or 2:1) were applied. 

 

5.3.2.1 The effect of the temperature 

5.3.2.1.1 Hydrothermally carbonized Laminaria hyperborea (LH_S250) 

As seen in Figure 5-9, all KOH activation runs caused a dramatic 

enhancement of the texture of the hydrochar. However, as given in Table 5-6, 

the activated chars obtained after heat-treatment at 550 °C presented a much 

larger proportional microporosity (ca. 80%) than those of products obtained at 

650 (71%) or 750 °C (60%). The high micropore percentage of 

LH_S250CA_550_4:1 agreed with the near type I isotherm measured for this 

sample. This could be ascribed to the slow rate of the carbonation reaction at 

550 °C, which prevented micropores from widening.  

A significant increase of porosity occurred when increasing activation 

temperature from 550 to 650 °C. This was consistent with findings shown by 

Illingworth [168], who KOH-activated some pyrolyzed flax fibre. That author 

reported a major porosity development occurring between 450 (onset of 

activation) and 650 °C. Formation of pores was predominantly attributed to the 

removal of volatile/disorganized material from the char. However, when 

temperature was raised from 550 to 650 °C, a transition from type I isotherm to 

type I-II was observed. In particular, the isotherm knee appeared to be distinctly 

shifted upward but also widened. Micropore volume and surface area 

experienced a near 3-fold increase. A moderate further increase of porosity was 

measured when increasing temperature up to 750 °C. However, mostly meso 

and especially macropores were formed at this stage, while the micropore 

volume did not substantially change. Once again, this result was found to be in 

agreement with observations reported by Illingworth [168]. In particular, that 

author related pore widening to the increased speed of the gasification 

reactions between fixed carbon (i.e. micropore walls) and steam/CO2 produced 

during the activation process at a temperature higher than 700 °C. The 

enlargement of the average pore width with increasing activation temperature 

was also reported by Sevilla et al. [106], who KOH-activated an HTC-derived 

product consisting of a mixture of microalgae (Spirulina platensis) and glucose. 



 

 

 

1
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2
 

 

 

Table 5-6 Effect of activation temperature on activation yield and textural parameters of hydrothermally carbonized Laminaria 
hyperborea 

 T CR38 AYdb
39 SBET Vtot Vmi Vme Vma 

Sample ID40 °C - wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

LH_S250CA_550_4:1 550 4:1 19 980 0.481 0.382 0.022 0.077 

LH_S250CA_650_4:1 650 4:1 8 2659 1.344 0.959 0.100 0.285 

LH_S250CA_750_4:1 750 4:1 3 2771 1.558 0.942 0.169 0.447 

 

                                            

38 Chemical ratio (KOH:char) 

39 Activation yield (AY). Db stands for dry basis 

40 CA stands for chemically activated 
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Figure 5-9 N2 adsorption isotherms - Effect of temperature on chemical 
activation of hydrothermally carbonized Laminaria hyperborea 

 
Apparently, KOH carbonation was very fast at 750°C, such that the 

speed of micropore widening was higher than that of micropore formation. As 

illustrated by Figure 5-9, isotherms measured for LH_S250CA_650_4:1 and 

LH_S250CA_750_4:1 seem to follow the same path up to P/P0 ca. 0.1. Yet, 

with increasing pressure, sample activated at 750 °C adsorbed larger amount of 

nitrogen onto the additional meso and macropores formed within its structure. 

As given in Table 5-6, the pore widening was accompanied by a decline in the 

activation yield, thus suggesting that the formation of larger pores was caused 

by the removal of material from the char. 

As suggested by data reported in Table 5-6, porosity progressively 

increased with decreasing product yield. However, in terms of surface area 

maximization, an activation temperature of 750 °C was optimal for the KOH 

activation of hydrothermally carbonized Laminaria. 

As depicted by Figure 5-10, the narrower pore size distribution exhibited 

by LH_S250CA_550_4:1 corroborated the higher microporosity exhibited by this 

sample. In particular, the NLDFT mode apperared at ca. 0.3 nm, but this peak’s 

shoulder, extending up to 2 nm indicated a pore population featuring both ultra 

and supermicropores. Conversely, with increasing temperature 

supermicropores were developed at the expense of ultramicropores by the 

latter’s widening. In addition, a multimodal distribution was observed for carbons 

obtained at 650 and 750 °C, thus indicating the formation of different groups of 

pores with diameter ranging from 1.2 to 2 nm. Furthermore, the development of 

a mesopore population was observed, which was consistent with the isotherms’ 

shape discussed earlier.  
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Figure 5-10 NLDFT Pore size distributions by volume - Effect of 
temperature on chemical activation of hydrothermally carbonized 
Laminaria hyperborea 

 

5.3.2.1.2 Pyrolyzed Laminaria hyperborea (LH_S800) 

The pyrolyzed macroalgae exhibited a more gradual increase of porosity 

with increasing temperature compared to LH_S250. Once again, at the lowest 

temperature (i.e. 550 °C), the porous structure of the carbon was mostly 

composed of micropores, as highlighted by the near type I isotherm observed 

for LH_S800CA_550_4:1 in Figure 1-11. It is worth noting that, under the same 

conditions of temperature and chemical ratio, the KOH activation of pyrolyzed 

Laminaria hyperborea led to a far larger activation yield (ca. 53 wt%) than that 

obtained after chemical treatment of the corresponding hydrochar (19 wt%). 

This was likely due to the higher degree of devolatilization experienced by the 

hydrothermally carbonized Laminaria hyperborea during the activation process. 

The isotherm’s knee progressively increased and widened with increasing 

temperature, leading to a maximum surface area of 2266 m2·g-1and a total pore 

volume of 1.384 cm3·g-1. Thus, of the temperatures studied, 750°C was deemed 

to be to optimum activation temperature. 

PSD by volume shown in Figure 5-12 reflected results already discussed 

for the chemical activation of the hydrochar in section 5.3.2.1.1. In particular, 

PSD comparisons revealed the pore widening of the samples activated at 

higher temperature (>550 °C) for the same KOH:char ratio (4:1). This can be 

seen from the broadening of the distributions observed for 

LH_S800CA_650_4:1 and LH_S800CA_750_4:1. Essentially, narrow 

ultramicropores formed at 550 °C were enlarged to form supermicropores when 

applying more severe temperature conditions (650 and 750 °C). A similar 

correlation between porosity and temperature has already been reported in 
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other studies [150, 175, 297]. These reported a predominant formation of 

narrow micropores between 400 and 700 °C, whereas ultramicroporosity began 

to decline in favour of larger micropores and mesopores for temperatures higher 

than 600 °C. Pore enlargement was also found by Ferrera-Lorenzo et al. [142] 

after increasing activation temperature from 750 to 900 °C (KOH:char ratio of 

1). In particular, these authors chemically-activated a char derived from the 

pyrolysis of an algal meal at 750 °C. However, the same study showed an 

increase of ultramicroporosity with increasing temperature when KOH:char ratio 

was 0.5. This was probably due to the lower intensity of activation (see also 

section 5.3.2.2). 

 

Table 5-7 Effect of activation temperature on activation yield and textural 
parameters of pyrolyzed Laminaria hyperborea 

 T CR AYdb SBET Vtot Vmi Vme Vma 

Sample ID °C - wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

LH_S800CA_550_4:1 550 4:1 53 768 0.406 0.260 0.037 0.109 

LH_S800CA_650_4:1 650 4:1 19 1454 0.805 0.545 0.104 0.157 

LH_S800CA_750_4:1 750 4:1 13 2266 1.384 0.822 0.197 0.365 

 

 

Figure 5-11 N2 adsorption isotherms - Effect of temperature on chemical 
activation of pyrolyzed Laminaria hyperborea  
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Figure 5-12 NLDFT Pore size distributions by volume - Effect of 
temperature on chemical activation of pyrolyzed Laminaria hyperborea 

 

It is worth mentioning that pore abundances observed in the pore size 

distributions of the carbons derived from pyrolyzed Laminaria hyperborea were 

lower than those measured for the chemically activated hydrochar. This agreed 

with the higher surface areas obtained after KOH activation of LH_S250. The 

lower texture development experienced by pyrolyzed Laminaria hyperborea was 

likely due to the higher amount of ash found in LH_S800 (see Table 5-11). 

These might have hindered the interaction between KOH and the carbon 

skeleton of the char. 

 

5.3.2.2 The effect of the KOH/char ratio 

5.3.2.2.1 Hydrothermally carbonized Laminaria hyperborea (LH_S250) 

As depicted by Figure 5-13, changing the chemical ratio had a less 

dramatic influence on the textural parameters of the hydrochar-derived carbons 

compared to that caused by varying the activation temperature (see section 

5.3.2.1.1). In particular, as reported in Table 5-8, comparable product yields and 

textural properties were found for carbons obtained using KOH:char ratios of 

1:1 and 2:1. By contrast, when the chemical ratio was increased from 2 to 4, the 

isotherm knee became lower and broader. Indeed, as seen in Figure 5-13, the 

isotherm measured for LH_S250CA_750_4:1 appeared to cross over the 

isotherms exhibited by LH_S250CA_750_1:1 and LH_S250CA_750_2:1 at P/P0 

ca. 0.1. The lower contribution of microporosity reflected the decrease of 

micropore volume found when the chemical ratio was 4, whereas total (i.e. 

mesoporous and macroporous) volume increased (see Table 5-8). From these 

observations, it was inferred that, with increasing severity of activation (i.e. 

amount of KOH used), the carbonation reaction rate between KOH and the 
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carbon structure was faster. Accordingly, during the activation process most of 

smaller pores were widened immediately after being formed, giving rise to meso 

and macroporosity. Similar results were reported in previous works concerning 

KOH activation of biomass-derived chars [78, 178]. Nonetheless, a chemical 

ratio of 4 was optimal for the KOH activation of LH_S250 as 

LH_S250CA_750_4:1 had the highest surface area. 

 

Table 5-8 Effect of KOH:char ratio on activation yield and textural 
parameters of hydrothermally carbonized Laminaria hyperborea 

 T CR AYdb SBET Vtot Vmi Vme Vma 

Sample ID °C - wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

LH_S250CA_750_1:1 750 1:1 15 2702 1.374 0.974 0.093 0.307 

LH_S250CA_750_2:1 750 2:1 16 2651 1.224 0.999 0.059 0.165 

LH_S250CA_750_4:1 750 4:1 3 2771 1.558 0.942 0.169 0.447 

 

 

Figure 5-13 N2 adsorption isotherms - Effect of KOH:char ratio on 
chemical activation of hydrothermally carbonized Laminaria hyperborea 
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Figure 5-14 NLDFT Pore size distributions by volume - Effect of KOH:char 
ratio on chemical activation of hydrothermally carbonized Laminaria 
hyperborea 

 

According to results in Figure 5-14, the KOH:char ratio did not 

significantly affect the micropore width distribution of the activated carbons. All 

chemically-activated samples presented a very broad PSD, thus signifying the 

presence of a heterogeneous porosity. However, it is worth mentioning that for 

all samples no distinct contribution in the ultramicroporous domain (d<0.7 nm) 

was observed. This was probably due to the high intensity of activation. 

Moreover, when using the highest chemical ratio (KOH:char=4), smaller 

supermicropores (between 0.7 and 1.2 nm) were enlarged to form larger 

supermicroporosity (between 1.2 and 2 nm) and mesoporosity (d>2 nm). 

 

5.3.2.2.2 Pyrolyzed Laminaria hyperborea (LH_S800) 

Compared to results shown for LH_S250 in Figure 5-13, variation of the 

KOH:char ratio had more distinct effects on the texture of the carbons derived 

from pyrolyzed Laminaria hyperborea (see Figure 5-15). In fact, a clear increase 

of LH_S800’s porosity was observed with increasing KOH:char ratio. A gradual 

broadening of the isotherms’ knee was observed, which reflected a progressive 

increase of total pore volume and surface area. Based on this, a KOH:char ratio 

of 4 was deemed to be optimal for the chemical activation of Laminaria-derived 

pyrolysis char. Nonetheless, when increasing the amount of KOH used, the 

contribution from larger pores increased. In particular, when the chemical ratio 

was increased from 1 to 2, the relative increase of meso (ca. 41%) and 

macropores (ca. 56%) was higher than that of micropores (ca. 20%). As 

discussed earlier, this suggested that microporosity enlargement prevailed over 

formation of micropores. Additionally, the increase of KOH:char from 2 to 4 
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caused a further slowing of micropores formation (now ca. 16%), while 

mesopore volume appeared to be constant. In addition to this, extra 

macropores were created at the expense of micro and mesopores. 

The same effect was already observed when increasing activation 

temperature (see section 5.3.2.1). In this case, a higher abundance of KOH 

might have increased opportunities for reaction with the carbon matrix. 

 

Table 5-9 Effect of KOH:char ratio on activation yield and textural 
parameters of pyrolyzed Laminaria hyperborea 

 T CR AYdb SBET Vtot Vmi Vme Vma 

Sample ID °C - wt% m2·g-1  cm3·g-1  cm3·g-1  cm3·g-1  cm3·g-1  

LH_S800CA_750_1:1 750 1:1 34 1527 0.899 0.584 0.142 0.172 

LH_S800CA_750_2:1 750 2:1 27 1871 1.172 0.703 0.201 0.268 

LH_S800CA_750_4:1 750 4:1 13 2266 1.384 0.822 0.197 0.365 

 

 

Figure 5-15 N2 adsorption isotherms - Effect of KOH:char ratio on 
chemical activation of pyrolyzed Laminaria hyperborea 
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Figure 5-16 NLDFT Pore size distributions by volume - Effect of KOH:char 
ratio on chemical activation of pyrolyzed Laminaria hyperborea 

 

Interestingly, as highlighted by Figure 5-16, ultramicroporosity was only 

observed for KOH:char=1:1 and 2:1. In contrast, when using a KOH:char ratio 

of 4:1, the PSD mode was shifted toward larger pore widths (i.e. from ca. 0.3 to 

1.2 nm), thereby indicating widening of ultramicropores to form 

supermicroporosity. This confirmed that using higher KOH:char ratios caused a 

broadening of the PSD within the microporous domain, thus signifying a more 

heterogenous micropore size distribution. However, for pore diameters larger 

than 1.2 nm, PSD plots were found to have a similar shape for all carbons, 

wherein the abundance associated with each pore size increased with 

increasing KOH:char ratio. 

 

5.4 Texture development of raw Laminaria hyperborea 

5.4.1 N2 adsorption isotherms 

Figure 5-17 shows an absence of porous structure for raw Laminaria 

hyperborea. A negligible surface area (<1 m2·g-1) has already been reported for 

raw macroalgae waste (algal meal) by Ferrera-Lorenzo et al. [142]. The same 

authors found a very low surface area (ca. 4 m2·g-1) after pyrolysis of 

macroalgae at 750 °C, which was lower than that measured for Laminaria 

hyperborea after pyrolysis at 800 °C in this study (ca. 66 m2·g-1). This could be 

attributed to the slightly higher temperature applied during the pyrolytic 

treatment performed in this work, which seemed to have caused the 

development of a rudimentary porous structure. It is worth mentioning that the 

pyrolysis of Laminaria led to a char having lower porosity than that found for the 

pyrolyzed oak wood (see Chapter 4). This was ascribed to the higher amount of 
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ash found by proximate analysis of the raw macroalgae (see Table 5-11) 

compared to that found for the pristine oak wood (see Chapter 4). A very low 

surface area was measured for the hydrothermally carbonized Laminaria 

hyperborea. On the other hand, this sample had a larger pore volume than that 

measured for its pyrolyzed analogue. Nonetheless, the hydrochar porosity was 

predominantly composed of macropores, thus explaining the limited surface 

area of LH_S250. The porosity of Laminaria hyperborea derived-hydrochar was 

found to be very similar to that of the hydrothermally carbonized oak wood, 

thereby confirming that HTC generally give rise to macroporous materials. On 

the other hand, slightly larger surface areas (up to ca. 32 m2·g-1) were reported 

after hydrothermal carbonization of other macroalgae (i.e. Sargassum horneri) 

[207]. 

A very limited texture enhancement was achieved after CO2 activation of 

Laminaria hyperborea macroalgae-based chars. This was attributed to the high 

amount of mineral matter contained within seaweed (see Table 5-11). The mild 

oxidation under CO2 does not allow for removal of ash. Therefore, the inorganic 

fractions remained within the carbon structure hindered the creation of new 

cavities. However, it is worth noting that the macroalgae-derived hydrochar 

experienced a larger increase of porosity than that observed for pyrolyzed 

Laminaria hyperborea, reaching surface areas up to 300 m2·g-1. As already 

elucidated when comparing oak wood-derived chars in Chapter 4, this could be 

reasonably attributed to the lower degree of carbonization involved by the HTC 

treatment. Consequently, a more intense devolatilization occurred when further 

heat-treating the hydrochar at higher temperature (600 °C) under CO2 

atmosphere (see Table 5-11). Overall, isotherms exhibited by physically-

activated Laminaria hyperborea could be identified as type II [242].  

In contrast, the corresponding chemically-activated carbons presented 

outstanding textural properties. Isotherms displayed by both of the KOH-

activated chars could be defined as intermediate between types I and II [264]. 

As seen by the significant upswing that occurred at very low pressure, 

chemically-activated materials exhibited a more pronounced micropore filling. 

Nonetheless, the isotherms’ knees were very broad and the nitrogen volume 

adsorbed increased with increasing pressure. This is typical of a hierarchical 

porous system combining micropores and mesopores [107]. In addition to that, 

as explained by Zhang et al. [107], inorganic fractions contained within 

macroalgae-based chars might have contributed to the porosity development. 

Indeed, during heat-treatment under N2, ash is believed to function as an in situ 

template for the creation of porous sites. After this, the removal of inorganic 

species by acid washing is necessary to reveal the voids within the carbon 

matrix. 

The KOH activation of pyrolyzed Laminaria hyperborea led to a 

maximum surface area of 2266 m2·g-1 and total pore volume of ca. 1.384 cm3·g-

1. These were found to be larger than the highest values (1727 m2·g-1 and 0.774 
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cm3·g-1 respectively) reported by Ferrera-Lorenzo et al. [142], who chemically-

activated macroalgae waste after pyrolysis at 750 °C. These authors obtained 

the largest texture development at 900 °C using a KOH:char ratio of 1. 

KOH-activated carbons derived from hydrothermally carbonized 

Laminaria hyperborea exhibited far larger surface area (2771 m2·g-1) and pore 

volume (1.558 cm3·g-1) than those reported by Zhang et al. [107] (418 m2·g-1 

and 0.37 cm3·g-1 respectively) after chemical activation of Enteromorpha 

prolifera-based hydrochar. However, in the study of Zhang et al. [107], a wet 

impregnation was carried out prior to heat-treating KOH-impregnated hydrochar 

at 600 °C. Therefore, the limited texture enhancement might have been due 

either to a previous carbonation of KOH during the drying step or to the mild 

nature of the heat-treatment. In addition to that, the optimal conditions for 

maximizing the surface area of LH_S250 were very similar to those reported by 

Sevilla et al. (700 °C, KOH:char ratio of 4), who chemically-activated a 

microalgae-derived hydrochar. However, the chemically-activated carbon 

obtained in this work showed higher surface area compared to that reported in 

the study of Sevilla (2390 m2·g-1). Therefore, in comparison with results 

reported in the literature for other types of macroalgae, Laminaria hyperborea 

seems to be a more promising precursor for preparing highly porous carbons. 

Pore size distributions by volume plotted in Figure 5-18 emphasize the 

near absence of micro and mesoporosity within raw and carbonized Laminaria 

hyperborea. Furthermore, the PSDs clearly highlight a substantially different 

distribution of porosity exhibited by CO2- and KOH-ACs. In particular, 

physically-activated carbons exhibited narrower distributions, showing 

populations only within the microporous size range. By contrast, very broad 

multimodal distributions were observed for KOH-activated carbons, indicating 

that these materials were characterized by a heterogeneous porous structure. 



 

 

 

 

1
6

3
 

Table 5-10 Gas adsorption data for key Laminaria hyperborea-based samples and magnesium oxide. NM stands for not 
measured 

Sample ID 

N2 adsorption -196 °C CO2 adsorption 0 °C41 

SBET Vtot Vmi Vme Vma Vads, 0 °C, 1bar Vumi, NLDFT NLDFT mode Vumi, DR E0, DR 

m2·g-1 cm3·g-1 cm3·g-1 cm3·g-1 cm3·g-1 cm3·g-1 cm3·g-1 cm3·nm-1·g-1 cm3·g-1 kJ·mol-1 

LH_S 0 0.015 0.000 0.006 0.009 0.0 0.000 0.000 0.000 - 

LH_S250 4 0.180 0.006 0.048 0.126 0.0 0.000 0.000 0.000 - 

LH_S800 66 0.083 0.021 0.039 0.024 0.4 0.000 0.002 0.001 44.14 

LH_S250PA 301 0.288 0.121 0.057 0.109 11.8 0.030 0.269 0.084 - 

LH_S800PA 189 0.126 0.069 0.030 0.028 5.6 0.015 0.014 0.044 27.01 

LH_S250CA 2771 1.558 0.942 0.169 0.447 8.8 0.020 0.018 0.100 - 

LH_S800CA 2266 1.384 0.822 0.197 0.365 6.6 0.015 0.013 0.500 22.08 

MgO 72 0.129 0.037 0.071 0.021 NM NM NM NM NM 

                                            

41 See Table 4-9 for parameters description 
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Figure 5-17 N2 adsorption isotherms for key Laminaria hyperborea-based 
samples. 

 

 

Figure 5-18 NLDFT pore size distribution for key Laminaria hyperborea-
based samples. 

 

5.4.2 CO2 adsorption isotherms 

As expected, no CO2 was adsorbed at 0 °C onto raw and hydrothermally 

carbonized Laminaria hyperborea. This was in line with N2 adsorption data 

reported in section 5.4.1. A very low amount of CO2 was adsorbed at saturation 

by pyrolyzed Laminaria hyperborea (ca. 0.4 cm3·g-1), thus confirming the lack of 

narrow microporosity within this sample. Nevertheless, it is interesting to notice 

the high energy of adsorption (ca. 44 kJ·mol-1) calculated for LH_S800, 
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signifying a strong interaction between CO2 and seaweed char. This value was 

far higher than that obtained for LH_S800’s activated counterparts, thereby 

indicating a lower affinity between carbon dioxide and these adsorbents. 

Figure 5-19 also shows that physically-activated hydrochar adsorbed a 

higher volume of CO2 compared to KOH-activated carbons, thus indicating a 

larger proportion of ultramicropores. Results were consistent with those 

reported in Figure 5-20, wherein it was possible to observe that LH_S250PA 

attained the highest CO2 NLDFT mode centred at ca. 0.35 nm. Nonetheless, 

these observations are in contrast with findings reported in Figure 5-18, where 

KOH-activated samples appear to exhibit a higher ultramicroporosity. However, 

this inconsistency might have been due to nitrogen diffusional limitations 

through the pore network of physically-activated carbons, thus leading to an 

underestimation of the PSD abundance in the ultramicroporous domain for 

these samples. 

It is also worth noting that LH_S800PA seems to adsorb more CO2 than 

the corresponding KOH-activated carbons at the very low pressure 

(P/P0<0.0175). After this, the uptake per unit pressure exhibited by the 

physically activated sample was found to decline with increasing pressure. The 

different isotherm shape shown by LH_S800PA in comparison to KOH-activated 

carbons might be attributed to increased affinity between the adsorptive and the 

material at very low partial pressure of CO2 (P<0.34 bar).  

In line with results presented in Chapter 4, the correlation between CO2 

uptakes measured at 0 °C and 1 bar and ultramicropore volumes was higher 

when applying the NLDFT model for calculation of narrow microporosity 

(R2=0.9901, see Figure 5-21) compared to that obtained when applying the 

Dubinin-Radushkevich (DR) method. In contrast, the application of the DR 

model gave rise to an overestimation of ultramicroporosity (up to 0.5 cm3∙g-1 for 

LH_S800CA, see Table 5-10) and a lower coefficient of determination 

(R2=0.8426, see Figure 5-22). Nevertheless, an increase of correlation was 

observed compared to that found for oak wood-derived samples. However, 

based on the more reliable predictions given by the NLDFT model, the 

maximum ultramicropore volume attained by macroalgae-derived carbons (0.03 

cm3∙g-1, see Table 5-10) was well smaller than the highest figure reported in the 

literature (0.52 cm3∙g-1 [93]). 
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Figure 5-19 CO2 adsorption isotherms for key Laminaria hyperborea-
based samples 

 

 

Figure 5-20 NLDFT pore size distribution for key Laminaria hyperborea-
based samples  
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Figure 5-21 Linear correlation between CO2 uptake at 273 K and 1 bar, and 
the narrow micropore volume (d<0.7 nm) determined by applying the 
NLDFT method to the CO2 adsorption isotherms for key Laminaria 
hyperborea-based samples. 

 

 

Figure 5-22 Correlation between CO2 uptake at 273 K and 1 bar, and the 
narrow micropore volume (d<0.7 nm) determined by applying the DR 
method to the CO2 adsorption isotherms for key Laminaria hyperborea-
based samples. 
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5.5 Chemical and structural characterization of raw Laminaria 

hyperborea and its derived products 

5.5.1 Elemental and proximate analyses 

Results obtained from the elemental analysis of Laminaria hyperborea 

showed a certain similarity to those reported by Ross et al. [134]. In that study, 

the proximate analyses of the raw feedstock were measured using 

Thermogravimetric Analysis (TGA). Data were quite consistent with those 

reported in this work, indicating a high proportion of volatile matter (VM) within 

the seaweed sample. 

As seen in Table 5-11, a relative increase of N content was observed 

after hydrochar formation, thus suggesting that most of N functionalities are 

retained within the solid fraction after hydrothermal carbonization. By contrast, 

the level of N remained unaltered after pyrolysis of the raw feedstock. This 

result was in agreement with that reported by Haykiri-Acma et al. [200], who 

pyrolyzed brown seaweed (Phaeophyta) at 900 °C. On the other hand, N 

functionalities are partly removed after activation, in particular after the chemical 

treatment (i.e. KOH activation followed by HCl washing). 

Haykiri-Acma et al. [200] also reported an increase of the sulphur content 

after pyrolysis at high temperature, which also agreed with results reported in 

this work for LH_S800. This is due to the presence of carbohydrates and 

proteins, although the biochemical composition of macroalgae is different to that 

in terrestrial biomass as reported in the literature for this type of feedstock [134, 

203].  

A high level of H was retained within the hydrothermally-carbonized 

Laminaria hyperborea. In contrast, a dramatic reduction in the hydrogen content 

occurred after pyrolysis, thus indicating a more severe thermal conversion 

[288]. A moderate drop in H content was measured after CO2 activation of the 

hydrochar. On the other hand, H was removed for the greater part after the 

chemical treatment.  

The O concentration initially exhibited by the raw material decreased 

after the carbonization step as this entailed heat-treating materials under near 

O-free atmosphere. Accordingly, a reduction of the O-based functionalities 

might have occurred. As expected, the O abundance of the chars increased 

after oxidization under CO2 atmosphere, especially for LH_S800. Conversely, 

chemical activation caused a dramatic reduction of the O content, as chars 

were heat-treated under pure nitrogen. Indeed, the release of oxidized forms of 

C as volatiles is expected to occur during KOH activation [289]. In addition to 

this, as O fraction was determined on a dry basis, oxygen content includes 

metal oxides (i.e. ash). These were removed by acid washing after KOH 

activation, thus contributing to the dramatic reduction of the O abundance for 

the chemically-treated samples. 
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Apparently, the hydrothermal synthesis of Laminaria hyperborea yielded 

a more highly carboniferous product (64.7 wt%) compared to that obtained after 

the pyrolysis treatment (46.9 wt%). However, only half of the overall carbon 

content was actually bound to the structure of the hydrochar (see fixed carbon 

of 33.5 wt%). This was in line with the higher proportion of volatile compounds 

measured for the hydrothermally carbonized Laminaria hyperborea (57.1 wt%) 

compared to those found in LH_S800 (13.2 wt%). Most of the volatile matter 

contained in the raw Laminaria hyperborea was retained within the hydrochar 

after the milder carbonization achieved by HTC. However, despite the more 

dramatic devolatilization that occurred after the pyrolysis of macroalgae, the 

LH_S800’s carbon fraction was found to increase only from ca. 40 wt% to ca. 

47 wt%. The limited increase in the carbon content could be attributed to loss of 

carbon via the volatiles and to the high levels of ash from the raw seaweed. 

Consequently, a substantial enrichment in ash content occurred after pyrolysis. 

Nonetheless, it is worth noting that the hydrochar had a noticeably higher fixed 

carbon (33.5 wt%) than that measured for LH_S800 (27.5 wt%). This result, 

along with the decrease in ash found after HTC treatment, may be explained by 

the dissolution of inorganic species within the aqueous HTC process. 

The carbon content of the pyrolyzed char was found to decrease after 

activation under CO2. This could be partly attributed to the creation of porosity 

to some extent (i.e. carbon burn off). Once again, the low levels of carbon found 

for LH_S800PA was mostly because physical treatment does not remove the 

inorganic fractions present within pyrolyzed macroalgae. On the other hand, 

after CO2 activation of pyrolyzed Laminaria hyperborea ash content slightly 

decreased from 59.3 wt% to 48.7 wt%. This might be explained by 

recombination of the O contained within ash to form oxygen-containing 

functional groups. Conversely, the activation of the hydrochar caused an 

additional evaporation of volatiles (see drop by more than 40 wt% as given in 

Table 5-11) from the poorly carbonized sample. As a result, LH_S250’s 

enriched in fixed carbon relatively. These findings agreed fairly well with those 

reported for physically-activated oak wood (see Chapter 4).  

Nevertheless, much higher carbon content was exhibited by KOH-

activated carbons, which is probably due to the removal of the inorganic fraction 

by acid-washing of the KOH-activated carbons. This was consistent with the 

lower levels of ash found for LH_S250CA and LH_S800CA compared to those 

found in the physically activated analogues. This chemical activation of 

pyrolyzed Laminaria hyperborea gave rise to a slightly higher carbon content 

(89.1 wt%) than that measured for LH_S250CA (83 wt%). This result was 

consistent with EDX elemental compositions (see Figure 5-26), and was 

ascribed to the larger amount of residual volatiles left within LH_S250CA. On 

the other hand, the hydrochar exhibited a dramatic decrease of the volatile 

fraction (ca. 64% loss) after chemical activation. The high degree of 

devolatilization experienced by LH_S250CA might explain the larger texture 
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development exhibited by LH_S250CA compared to that of LH_S800CA (see 

Table 5-10).  

According to data reported in Table 5-11, the volatiles content of 

pyrolyzed seaweed slightly increased after KOH activation (from 13.2 to 16.4 

wt%). However, it is worth noting that the VM figure reported in Table 5-11 for 

seaweed char (LH_S800) was carried out by using the British Standards 

Institution (BSI) method, while the volatile content reported for the chemically-

activated counterpart (LH_S800CA) was obtained by TGA. In contrast, the 

char’s volatile content measured by TGA (ca. 18 wt%, see Figure 5-23) was 

found to be slightly higher than that measured for LH_S800CA.  

LH_S250CA appeared to contain a larger abundance of carbon bound to 

its structure (79.4 wt%) than that found in LH_S800CA (72.5 wt%). This was 

attributed to the lower amount of residual ash (0.3 wt%) from the KOH-activated 

hydrochar compared to that left by its pyrolyzed counterpart (11.1 wt%). 

Apparently, the washing treatment applied for LH_S250CA was more efficient 

than that carried out for LH_S800CA as a higher percentage of ash was 

removed for the former (96.8% loss vs 81.3% loss, respectively). This agreed 

with the lower activation yield measured for LH_S250CA (see Table 5-6), and 

might have been a contributory factor in its more remarkable texture 

enhancement (see Table 5-10). 

 

Table 5-11 Elemental and proximate analyses for isotherms for key 
Laminaria hyperborea-based samples 

Sample ID 

Ultimate, db Proximate, db 

N C H S O VM A FC 

LH_S 1.7 40.1 5.3 0.3 52.6 77.7 18.1 4.2 

LH_S250 3.1 64.7 4.9 0.3 27.0 57.1 9.4 33.5 

LH_S800 1.7 46.9 0.9 2.3 48.3 13.2 59.3 27.5 

LH_S250PA 2.9 67.4 2.1 0.0 27.7 14.4 13.4 72.2 

LH_S800PA 1.4 28.5 0.7 0.0 69.3 21.1 48.7 30.2 

LH_S250CA 1.4 82.9 0.7 0.5 14.5 20.3 0.3 79.4 

LH_S800CA 0.9 89.1 0.4 1.1 8.5 16.4 11.1 72.5 
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5.5.1.1 Insight regarding TGA as a method for proximate analyses 

As already mentioned in Chapter 3, proximate analysis was carried out 

using TGA for the seaweed-derived ACs. For comparison purposes, the 

thermogravimetric method was also applied for the proximate analysis of the 

pyrolyzed seaweed (LH_S800). 

Figure 5-23 displays the weight losses experienced by the sample during 

TGA. The first weight loss was ascribed to the evaporation of moisture (around 

9 wt%). After this, sample was pyrolyzed under N2 up to 900 °C in order to 

release its volatile matter. The amount of volatiles (ca. 18 wt% db) observed 

was slightly higher than that measured by BSI method (13.2 wt% db as seen in 

Table 5-11). The fixed carbon measured by the TGA (ca. 41 wt% db) was 

considerably higher than that found using the standard method (27.5 wt% db). 

Consequently, this led to estimate a lower abundance of ash compared to that 

measured by the BSI methodology (ca. 40.9 wt% and 59.3 wt% db 

respectively). 

In theory, the fixed carbon obtained from the thermogravimetric analysis 

should be considered more reliable as it represents a direct estimation of the 

parameter. Conversely, when referring to standards (i.e. BSI method), fixed 

carbon is calculated by difference. The other way around applies to 

determination of ash content.  

However, the lower proportion of fixed carbon might have been due to an 

incomplete combustion of the carbon fraction when heat-treating the 

devolatilized sample inside the furnace (standard method), thus leading to an 

overestimation of the residual ashes. On the other hand, it might also be that 

the thermogravimetric programme used was not suitable for determining 

proximate analysis for this type of char.  
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Figure 5-23 Proximate analyses determined by TGA for pyrolyzed 
Laminaria hyperborea (LH_S800) 

 

 

Figure 5-24 Comparison between TGA and DTGA curves for pyrolyzed 
Laminaria hyperborea (LH_S800) 

 

From the Differential Thermogravimetric Analysis (DTGA) curve shown in 

Figure 5-24, it was possible to identify the temperature values at which 

maximum weight losses occurred. All peaks shown are upwards, which, 

according to the convention used in calculating DTGA, are associated with an 

endothermic process.  The first endothermic reaction was attributed to the 

evaporation of moisture, reaching a maximum at ca. 100 °C. Afterwards the 

sample released its volatile compounds, with the highest weight loss achieved 
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at ca. 750 °C. The last peak, observed at 900 °C, was ascribed to the carbon 

burn off occurring after changing gas atmosphere from nitrogen to air. 

 

5.5.2 Scanning Electron Microscope (SEM) and Energy-Dispersive 

X-ray (EDX) analyses 

Figure 5-25(a) depicts the morphology of raw Laminaria hyperborea. This 

was typical of a plant tissue structure [141].  

Carbonization and physical activation processes did not significantly 

change the initial morphology of macroalgae (see Figure 5-25(b, c, d, e)). This 

might explain the limited increase of porosity measured after CO2 activation of 

the chars (see section 5.3.1). In addition, coarse particles were clearly shown 

for chars and physically-activated counterparts. These were found to be 

inorganic as revealed by EDX chemical compositions (see Table 5-12) acquired 

on the same area shown by the micrographs. 

Unlike abovementioned treatments, the KOH activation and subsequent 

acid-washing stripped the seaweed-based chars of inorganic particles. This led 

to an outstanding development of porosity as described in section 5.3.2. 

Nonetheless, only macropores could be observed from Figure 5-25(f, g) as the 

resolution did not allow the identification of smaller pores. No particles were 

clearly identified for chemically-activated carbons, which agreed with the 

scarcity of inorganic fractions detected by EDX analysis for these samples (see 

Figure 5-26).  

Carbon contents measured by EDX agreed fairly well with those found by 

elemental analysis (see Table 5-11). In fact, data shown in Figure 5-26 

confirmed that traditional pyrolysis of seaweed gave rise to a char lower in 

carbon in comparison to hydrochars. HTC led to a larger increase of the overall 

carbon content and to a lower inorganic fraction. This was in agreement with the 

lower ash content measured by proximate analysis for the hydrochar (see Table 

5-11). The lower level of inorganic matter exhibited by the hydrochar (see 

Figure 5-26) might suggest aqueous leaching of inorganics to some extent 

during hydrothermal carbonization. 

CO2 activation affected the chars in different ways. In spite of the higher 

activation burn-off recorded for LH_S250 in Table 5-2, this sample exhibited an 

increase of the carbon content (see Table 5-11). As already described in 

section 4.5.1, this was likely due to the additional devolatilization of the 

hydrochar occurred during the activation step. Consequently, the carbon 

fraction enriched relatively. By contrast, Figure 5-26 showed that, after oxidation 

with CO2, LH_S800’s carbon content decreased, whereas its oxygen 

abundance increased. These results were in line with elemental analysis (Table 

5-11). Accordingly, a more significant rise of the overall abundance of inorganic 
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elements was measured for this sample. Nevertheless, this finding disagrees 

with the ash reduction measured by proximate analysis for the LH_S800PA. 

In addition to this, Figure 5-26 also illustrates how chemical treatment 

caused a reduction of the inorganic fraction of the unactivated materials (i.e. 

chars). This was likely due to the HCl washing carried out after the heat-

treatment. As a result, an increase of the carbon abundance was measured for 

both KOH-activated carbons. 

Further details about the nature of the inorganic fractions detected by 

EDX analyses were given in Table 5-12 for all the samples. A broad range of 

elements was detected in the raw and pyrolyzed macroalgae, whose inorganic 

fraction was mostly composed of alkali metals and chlorine.  

Alkali metals and chlorine were largely retained after CO2 activation of 

pyrolyzed Laminaria hyperborea. In contrast, the KOH activation and 

subsequent acid-washing led to the removal of most of inorganic elements 

originally present within raw and carbonized macroalgae. This was consistent 

with proximate results (see Table 5-11).  
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Figure 5-25 SEM images at 5000x magnification for (a) LH_S, (b) LH_S250, 
(c) LH_S800, (d) LH_S250PA, (e) LH_S800PA, (f) LH_S250CA and (g) 
LH_S800CA 

(a) 

(e) (d) 

(b) (c) 

(g) (f) 
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Figure 5-26 EDX chemical compositions acquired on the micrographs shown in Figure 5-25 for for key Laminaria hyperborea-
based samples  
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Table 5-12 Details about inorganic elements (see “Others” Figure 5-26) detected by EDX analyses for for key Laminaria 
hyperborea-based samples 

LH_S LH_S250 LH_S800 LH_S250PA LH_S800PA LH_S250CA LH_S800CA 

Element wt% Element wt% Element wt% Element wt% Element wt% Element wt% Element wt% 

Al 2.98 Al ND42 Al 0.09 Al ND Al ND Al 1.02 Al 2.48 

Ca 2.59 Ca 1.42 Ca 1.21 Ca 5.33 Ca 0.71 Ca ND Ca ND 

Cl 1.89 Cl 1.55 Cl 8.07 Cl 0.08 Cl 1.79 Cl ND Cl 0.46 

Cu 1.26 Cu 0.24 Cu 0.49 Cu 0.33 Cu ND Cu ND Cu ND 

Fe ND Fe ND Fe ND Fe 0.33 Fe ND Fe ND Fe ND 

I 0.73 I ND I 0.55 I ND I ND I ND I ND 

K 0.60 K 2.45 K 9.03 K 0.11 K 1.05 K ND K ND 

Mg 0.33 Mg 0.51 Mg 0.58 Mg 0.87 Mg 6.03 Mg 0.62 Mg ND 

Na 0.27 Na 1.04 Na 3.90 Na ND Na 12.50 Na ND Na ND 

P 0.20 P 0.29 P 0.33 P 2.84 P 4.97 P ND P ND 

S 0.06 S 1.91 S 1.69 S 0.40 S 3.06 S 0.4 S 0.56 

 

                                            

42 Not detected 
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5.5.3 Further characterization for selected samples 

5.5.3.1 XRD patterns 

As depicted by Figure 5-27(a) and (b), XRD patterns measured for raw 

macroalgae (LH_S) and its pyrolyzed counterpart (LH_S800) displayed the 

presence of a series of sharp and intense peaks. The untreated macroalgae 

also exhibited a very broad peak measured between 20 and 25° 2θ. A similar 

broad peak was already shown by XRD pattern measured for raw oak wood in 

Chapter 4, and can be ascribed to a non-graphitizing form of carbon [79]. 

Following heat treatment under N2 atmosphere (i.e. pyrolysis at 800 °C and 

chemical activation) the distance between the (002) graphitic planes decreased 

[82]. Accordingly, as seen in Figure 5-27(b) and (c), the location of the Bragg 

[272] diffraction angle of the broad peak was slightly shifted to the right for 

pyrolyzed Laminaria hyperborea and its activated derivatives. 

Most of the sharp peaks found for virgin Laminaria hyperborea matched 

the standard pattern of potassium chloride (00-004-0587), which can be 

considered as the main crystalline phase for this sample. All peaks related to 

this phase were also detected in the XRD pattern of pyrolyzed Laminaria 

hyperborea. This was in line with the high content of K and Cl found by EDX 

(Table 5-12) for raw and pyrolyzed Laminaria hyperborea. Most of the 

remaining peaks identified for LH_S were associated with sodium chloride (01-

080-3939). All these peaks were also found in the pattern of pyrolyzed 

Laminaria hyperborea, yet a slight shift toward lower angles was noticed. This 

might have been due to a distortion of the lattice parameter of the crystals.  

Crystalline phases detected in this study for virgin and carbonized 

seaweed agreed with results previously reported in the literature. In particular, 

Wang et al. [298] identified the presence of alkaline chlorides within seaweed-

based ashes. In addition to that, sylvite (KCl) was detected on seaweed ashes 

by Yaman et al. [200], while halite (NaCl) matched the pattern of oarweed-

based chars obtained after pyrolysis at 500 °C [202]. Furthermore, reflections 

corresponding to halite were also found for raw seaweed (i.e. Undaria 

pinnatifida) by Song et al. [133]. The same phase was retained after pyrolysis at 

1000 °C. 

By comparing Figure 5-27(a) and Figure 5-27(b), it was possible to 

observe that the most intense peaks related to potassium and sodium chloride 

became sharper after pyrolysis. This suggested the growth of the crystals after 

heat-treatment [291]. The average crystal sizes of sylvite and halite were 

calculated by applying the Scherrer equation (see Chapter 3) to XRD data as 

also reported in the study of Salari et al. [274]. For each phase, the full-widths at 

half-maximum (FHMWs) of the three most intense peaks were averaged. The 

latter were measured at ca. 28.5, 40.6 and 50.3° 2θ for sylvite, whereas those 

related to halite were observed at ca. 31.8, 45.6 and 56.6° 2θ. The average size 
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of sylvite crystals was found to increase from 35.8 to 38.3 nm, while halite 

crystallites increased from 38.5 to 45.0 nm. 

Interestingly, as observed in Figure 5-27(b), additional signals were 

measured for pyrolyzed seaweed. This suggested the formation of new phases 

after pyrolysis treatment. In particular, reflections observed at ca. 43.0, 62.4 and 

78.7° 2θ were assigned to magnesium oxide (04-014-7436). This compound 

was also identified by Song et al. [133] after pyrolysis of seaweed (i.e. Undaria 

pinnatifida) at 1000 °C. According to the authors, magnesium ions (normally 

incorporated within alginates present in raw macroalgae) may react with 

oxygen-containing species such as H2O to form MgO during pyrolysis at high 

temperature. In addition to this, as suggested by Ross et al. [134], most of the 

inorganic fractions contained in raw seaweed tend to decompose to their oxides 

when pyrolyzed at 750-800 °C. Accordingly, it might be that crystalline MgO 

arose from the pyrolytic breakdown of amorphous Mg alginates present within 

the raw brown algae [299]. Some residual peaks with low intensity measured at 

ca. 20.8 and 34.4° 2θ were ascribed to unknown impurities (see asterisks in 

Figure 5-27(b)). These reflections might be attributed to trace alkali metals or 

alkali metal-based alginates whose detection was prevented by overlapping 

with phases that are more dominant. 

Figure 5-27(b) also showed that all peaks identified within pyrolyzed 

Laminaria hyperborea were observed for its CO2-activated counterpart. This 

result seems to suggest that inorganic phases were largely retained after 

physical treatment. In addition, the intensity of the XRD pattern measured for 

LH_S800PA appeared to be shifted down. This might be attributed to the 

formation of pores following to the CO2 activation of seaweed char (see Table 

5-10 and Figure 5-17). Nevertheless, peak widths corresponding to potassium 

chloride seemed to shrink after physical treatment. This agreed with a further 

increase of size (from 38.3 to 46.4 nm) found for sylvite crystallites. By contrast, 

the lattice spacing of halite crystals dramatically decreased from 45.0 to 17.9 

nm. This was consistent with the significant reduction of intensity observed for 

peaks assigned to halite, and seemed to indicate the decomposition of sodium 

chloride during activation treatment. A moderate decrease of MgO crystallite 

(from 40.3 to 38.3 nm) was also found, thus indicating that magnesium oxide 

was mostly retained within the physically-activated carbon. 

As seen by Figure 5-27(c), no peaks associated with alkali chlorides and 

magnesium oxides were found for LH_S800CA. This might be due to the 

dissolution of crystallites after acid (HCl) washing, which agreed with the 

dramatic decrease of ash content measured by proximate analysis (from ca. 59 

wt% to ca. 11 wt%, see Table 5-11). Furthermore, as given in Table 5-12, EDX 

analysis did not detect any of the elements present within the aforementioned 

compounds, except for a low concentration of Cl. Nonetheless, the latter 

presence might be due to the washing treatment of the sample by hydrochloric 

acid.  
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However, a series of low intensity peaks were measured for 

LH_S800CA. Most of these were best fitted by the standard pattern of 

aluminium oxide (04-013-1687) and aluminium hydroxide (04-014-1754). The 

presence of Al-based impurities was in accordance with EDX chemical 

composition measured for LH_S800CA (see Table 5-12), wherein Al is the most 

abundant inorganic element detected. Interestingly, aluminium oxide is also 

identified for the chemically-activated wood (OW250CA) in Chapter 4. It seems 

that acid etching removed most of the inorganic species but oxidized forms of Al 

appeared to be the only inorganic phases that were not fully dissolved by acid 

washing. Al-containing impurities might have not been detected within raw and 

pyrolyzed seaweed because of the higher background swamping their XRD 

patterns. In addition to this, aluminium compounds might have underlain other 

predominant crystalline phases (e.g. alkaline chlorides). However, it may also 

be that crystalline Al-based compounds might have arisen from the heat-

treatment of amorphous aluminium originally contained within macroalgae (see 

Table 5-12). Weak peaks related to other unknown impurities (see asterisks in 

Figure 5-27(c)) were observed at ca. 29.3 and 42.6° 2θ. These might be 

ascribed to trace alkali metals. Nevertheless, LH_S800CA’s pattern also 

showed two broad peaks at around 25 (002) and 43° 2θ (100). These 

highlighted a more amorphous structure of the sample, typical of activated 

carbon [77].  
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Figure 5-27 XRD Patterns for (a) raw macroalgae (LH_S), (b) pyrolyzed 
macroalgae (LH_S800) and physically-activated counterpart (LH_S800PA), 
and (c) chemically-activated counterpart (LH_S800CA) 

 

5.5.3.2 Boehm titration 

As observed from Figure 5-28, a large number of basic groups (up to ca. 

2.2 mmol·g-1) was measured for pyrolyzed seaweed. The significant 

concentration of basic functionalities could be attributed to the high level of 

alkaline species previously identified by EDX analyses (see Table 5-12). Basic 
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findings, revealing a dramatic decrease of ash after chemical treatment as a 

result of acid washing. In addition to this, EDX results also showed a drop in the 

overall content of inorganic material (see others in Figure 5-26) from 25.9 to 3.5 

wt%. 

 

 

Figure 5-28 Basic and acidic functionalities measured by Boehm’s 
titration for pyrolyzed macroalgae (LH_S800), physically-activated 
counterpart (LH_S800PA), and chemically-activated counterpart 
(LH_S800CA) 

 
Figure 5-28 also displayed a negative amount of acidic groups for 

LH_S800 and LH_S800. This indicated not only the total absence of acidic 

functionalities within the sample but also the presence of weakly bonded basic 

functionalities that might have been leached from the char. When mixing 

materials with the alkaline standard solution (0.05 M NaOH) used to neutralize 
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increased. Accordingly, as the number of acidic groups was determined by 

difference between the amount of alkaline species in the supernatant before 

and after exposure to the material, this yielded a negative value. In contrast, the 

higher number of acid groups found for LH_S800CA could be attributed to some 

residual washing acid (HCl) that was not completely washed off the material. 
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CO2 uptake, probably because of its poor textural properties (see Table 5-10). 

Nevertheless, although of rather low surface area (see Table 5-10), the 

pyrolyzed char (i.e. LH_S800) and its physically-activated derivative 

(LH_S800PA) showed a higher sorption potential in comparison to the other 

samples. The sorption curve of observed for these materials did not reach a 

plateau after 30 min, indicating that higher uptakes could have been achieved if 

the adsorption step were to be prolonged. 

Despite the limited texture development, CO2 activation of hydrochar led 

to a substantial increase of the CO2 uptake capability and to a rapid sorption 

kinetic. This might be predominantly attributed to its relatively high 

ultramicropore volume as given in Table 5-10. This result confirmed the 

importance of the narrower porosity for adsorbing CO2 at high partial pressure 

[295]. Conversely, physical activation of LH_S800 did not significantly change 

the sorption behaviour of the pyrolyzed char. However, a moderate increase of 

the sorption speed was observed for the LH_S800PA. Although physical 

activation caused only limited development of texture (see Table 5-10), the 

creation of this new porosity might have facilitated the access of CO2 to the 

sorption sites. 

Nevertheless, as it was possible to observe from Figure 5-29, sorption 

curves of pyrolyzed char and its physically-activated derivative exhibited a 

similar trend and converged after 30 min. The comparable CO2 sorption kinetic 

was ascribed to the similar inorganic composition found for these materials. In 

particular, as suggested by EDX results (see Table 5-12), the presence of alkali 

(K and Na) and alkali earth (Ca, Mg) metals were detected within both the char 

and its physically-activated counterpart. In addition, XRD patterns obtained for 

LH_S800 and LH_S800PA (see Figure 5-27(b)) revealed the presence of 

magnesium oxide within the structure of these samples. These results might 

suggest that carbonation reaction between magnesium oxide and CO2 might 

have occurred to some extent. Indeed, it was previously reported that MgO can 

absorb CO2 at low temperature (50-100 °C) and in presence of moisture [300], 

which might have been retained within the carbon structure. On the other hand, 

absorption of CO2 onto MgO particles was also reported under dry conditions 

and at temperatures ranging from 25 to 75 °C [131]. In addition, chemisorption 

of CO2 onto magnesium oxide at low temperature (ca. 53 °C) was demonstrated 

in this work by the measurement of CO2 sorption kinetics under post-

combustion conditions for pure MgO (see Figure 5-31). 

In contrast, chemically-activated macroalgae exhibited higher CO2 

uptakes and faster sorption kinetics, thus showing a behaviour typical of 

physisorbents. This agreed with the much higher surface areas measured for 

these samples. The different sorption performance displayed by KOH-ACs was 

also attributed due to the removal of alkali metal-based compounds (with 

specific regard to magnesium oxide) after chemical treatment due to acid 

washing. In particular, as revealed by EDX (see Table 5-12), none of alkali 
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metals was detected after KOH activation of pyrolyzed seaweed. This was 

probably due to the acid washing step.  

Interestingly, LH_S250CA reached the highest value of CO2 uptake but 

significant fluctuations were recorded during the adsorption stage, thus 

suggesting a weak interaction between CO2 and the sorption sites. However, it 

is worth noting that this KOH-activated carbon had lower narrow micropore 

volume than its CO2-activated analogue (see Table 5-10). Results would thus 

imply that CO2 uptakes at 35 °C and 1 bar might be governed by a combination 

of narrow micropores and larger pores (i.e. surface area). This was also 

corroborated by correlations reported in Appendix 1 (see also Chapter 4). 

 

 

Figure 5-29 CO2 adsorption kinetic at 35 °C and 1 bar for key Laminaria 
hyperborea-based samples 
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Table 5-13 CO2 uptakes measurement at a total pressure of 1 bar for key Laminaria hyperborea-based samples 

Sample ID 

1 bar (100% CO2) 0.15 bar (15% CO2) 

35 °C 60 °C Wloss, 35-60 °C
43 100 °C Wloss, 60-100 °C

44 53 °C 

mg CO2∙g-1  mg CO2∙g-1  % mg CO2∙g-1  % mg CO2∙g-1  

LH_S250 3.3 0.3 90 0.0 100 NM45 

LH_S800 26.5 20.1 24 3.3 84 10.4 

LH_S250PA 40.2 22.67 44 2.3 90 NM 

LH_S800PA 28.4 21.13 26 4.9 77 10.7 

LH_S250CA 54.1 27.45 49 10.2 63 NM 

LH_S800CA 57.2 26.95 53 3.5 87 6.3 

MgO NM NM NM NM NM 4.6 

 

                                            

43 Calculated as difference between the sorption capacity at 35 and 60 °C, and expressed as a percentage of the sorption capacity at 35 
°C. 

44 Calculated as difference between the sorption capacity at 60 and 100 °C, and expressed as a percentage of the sorption capacity at 60 
°C. 

45 Not measured 
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Figure 5-30 Regeneration (rapid temperature swing adsorption (RTSA), 35-
100 °C) for key Laminaria hyperborea-based samples 

 

As shown in Figure 5-30, except for LH_S250, which adsorbed a very 

low amount of CO2, all samples failed to fully regenerate at 100 °C. This 

suggested that a higher temperature should be used when RTSA cycles were to 

be performed. At lower temperature (e.g. below 60 °C), KOH-activated carbons 

exhibited the fastest desorption rate, losing up to 53% of the CO2 adsorbed (see 

Table 5-13). However, It is worth noticing that, at temperature higher than 60 

°C, LH_S250CA desorption curve was less steep. This result reflected the 

lowest weight loss exhibited between 60 and 100 °C (see Table 5-13). 

Apparently, an outer layer of weakly adsorbed CO2 might have been released 

as temperature was increased initially. This is in line with the unsteady CO2 

uptake profile previously shown in Figure 5-29 for LH_S250CA. On the other 

hand, some of the CO2 molecules might have been strongly attached to the 

sample structure, thus implying a difficult regeneration of the material at higher 

temperatures. 

By contrast, both LH_S800 and LH_S800PA showed a very slow CO2 

removal rate at lower temperature as can be seen from the near flat shape of 

the desorption curve. Indeed, as given in Table 5-13, a very low percentage of 

CO2 was released from these samples between 35 and 60 °C. This might have 

been caused by a stronger bond (i.e. chemisorption) established between the 

CO2 molecule and inorganic species (e.g. MgO) present within these samples 

(see Figure 5-27).  
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5.6.2 Simulated post-combustion performance 

In this section, the simulated post-combustion capture performance of 

pyrolyzed Laminaria hyperborea and its activated derivatives was compared. 

Furthermore, pure magnesium oxide (MgO) was included for comparison 

purposes. 

As seen in Figure 5-31, when measuring the sorption kinetic at lower 

partial pressure (0.15 bar) of CO2 and higher temperature (53 °C), the sorption 

capacity of the chemically-activated seaweed dramatically decreased. 

LH_S800CA exhibited the fastest sorption kinetic, reaching saturation in less 

than 2 min. On other hand, although having significantly higher surface area, 

this KOH-AC had a lower maximum sorption capability than those measured for 

its parent char and its physically-activated counterpart. In addition, the CO2 

sorption capacity recorded for LH_S800CA was not steady, but appeared to 

decrease over the equilibration time. Although the temperature was constant 

throughout the adsorption stage, it seems that some of the (weakly bonded) 

CO2 captured by LH_S800CA at the early stage of the adsorption process might 

have been subsequently desorbed. This behaviour could be attributed to the 

prolonged exposure of the material at a relatively high temperature (53 °C), 

which may have favoured desorption of carbon dioxide. This would then 

suggest a pure physisorption process for LH_S800CA, which becomes less 

effective at higher temperature.  

 

 

Figure 5-31 CO2 adsorption kinetic at 53 °C and 0.15 bar (total pressure of 
1 bar) measured for pyrolyzed macroalgae (LH_S800), physically-activated 
counterpart (LH_S800PA), chemically-activated counterpart (LH_S800CA), 
and magnesium oxide (MgO).  
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By contrast, despite the very low surface area available, LH_S800 and 

LH_S800PA significantly outweighed the sorption performance of the KOH-

activated Laminaria hyperborea, capturing nearly twice as much CO2 than that 

adsorbed by LH_S800CA after 30 min. The remarkable difference in surface 

area between the samples (see Table 5-10) seems to suggest that the sorption 

potential exhibited by macroalgae char and its CO2-activated derivative was 

independent of textural properties. Unlike for LH_S800CA, which was 

demineralized (i.e. by HCl washing), a relatively high concentration of alkali 

metals were found for LH_S800, which was largely retained after physical 

activation (see Table 5-12). The inherent alkalinity of seaweed-char and its 

physically activated derivative agreed with the higher number of basic groups 

measured for these samples (see Figure 5-28). Therefore, it appears that the 

effect of inorganics on the sorption potential of LH_S800 and LH_S800PA 

becomes more influential at lower partial pressure, when a higher selectivity is 

vital. In particular, magnesium oxide, which was identified by XRD analyses on 

the structure of pyrolyzed and CO2-activated macroalgae (see Figure 5-27), 

may have been responsible for a more selective (chemi)sorption of CO2 under 

post-combustion conditions. 

 

 

Figure 5-32 CO2 adsorption progress at 53 °C and 0.15 bar (total pressure 
of 1 bar) measured for pyrolyzed macroalgae (LH_S800), physically-
activated counterpart (LH_S800PA), and magnesium oxide (MgO). 
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due to the poor reactivity of the MgO at lower temperature, which might imply a 

limited CO2 conversion (into MgCO3).  

As seen in Figure 5-31, LH_S800PA displayed far higher uptakes than 

those observed for MgO. On the other hand, as highlighted by Figure 5-32, 

when the CO2 adsorption kinetics of the materials are normalized by the 

maximum CO2 uptakes (see equation (5.1)), the sorption rate (i.e. CO2 

adsorption progress) observed for magnesium oxide closely follows that found 

for LH_S800PA. This seems to suggest that the chemisorption contribution 

observed for LH_S800PA may be similar to the mechanism typical of pure MgO 

[302]. 

 𝑪𝑶𝟐,   𝒂𝒅𝒔 𝒑𝒓𝒐  (𝒕) =
𝑪𝑶𝟐,   𝒂𝒅𝒔(𝒕)

𝑪𝑶𝟐,   𝒂𝒅𝒔 𝒎𝒂𝒙
· 𝟏𝟎𝟎 (5.1) 

where, for each sample, CO2, ads pro (t), defined as CO2 adsorption progress, is 

the percentage fraction of the overall CO2 adsorption capacity (CO2, ads max) at a 

given time t, and CO2, ads (t) is the CO2 adsorption at a given time t. 

The CO2 (chemi)sorption kinetic observed in this study for magnesium 

oxide was consistent with that measured by Song et al. [303] under similar 

conditions (50 °C, 0.15 bar). These authors synthesized porous MgO and 

described its sorption behaviour as a two-stage process. In particular, the faster 

CO2 uptake occurring at the early stage of the adsorption step is believed to be 

governed by diffusion through the gas film surrounding the MgO particles, 

whereas intraparticle diffusion resistance becomes more dominant during the 

second step, resulting in a slower sorption process. 

Nonetheless, the higher CO2 sorption potential exhibited by the 

physically-activated Laminaria might be ascribed to the larger surface area 

measured for this sample (see also Table 5-10). LH_S800PA’s capture potential 

seems to be the result of a synergetic effect of physisorption and chemisorption 

contributions. Presumably, the more developed porous network not only 

ensured a higher physisorption effect, but might have also facilitated the access 

of CO2 to the chemisorption sites (i.e. MgO crystals). 

By contrast, although the macroalgae-based char (LH_S800) attained 

nearly as large CO2 uptakes as that achieved by LH_S800PA, LH_S800 

exhibited a much slower uptake rate. This may be attributed to the undeveloped 

porous network found for this sample (see Table 5-10). This may cause 

reduced mobility of CO2 through the pore channels of the material, and 

therefore a delay in accessing both the carbon pores (i.e. physisorption sites) 

and the MgO particles (i.e. chemisorption sites) present within the porous 

network of the material.  

The highest sorption capacity exhibited by MgO-containing materials 

synthesized in this work (10.7 mg CO2·g-1 for LH_S800PA, see Table 5-13) was 
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lower than the capture capability (63 mg CO2·g-1) achieved by a MgO-

containing mesoporous carbon under similar conditions (Tads=50 °C, PCO2=0.15 

bar [131]). However, the synthesis of alkali metal-containing sorbents presented 

in this study was more sustainable and easier compared to that reported in the 

work of Bhagiyalakshmi et al. [131], as seaweed treatment did not involve any 

chemical addition (i.e. impregnation of alkali-containing compounds), and a 

widely available feedstock was used. 

In addition to this, Laminaria hyperborea-based sorbents were fully 

regenerated at 100 °C (see Figure 5-33), which is lower than the temperature 

applied by [131] (200 °C) for the regeneration of Mg-containing carbons. 

Therefore, the use of the sorbents examined in this study would potentially 

imply a lower cost associated with RTSA cyclic operations. The easier 

regeneration (at ca. 80 °C) exhibited by LH_S800CA in Figure 5-33 seems to 

indicate a weak (physi)sorption of CO2 onto this sample, which is in accordance 

with the sorption trend shown in Figure 5-29. Importantly, the regeneration of 

physically activated Laminaria hyperborea appeared to be fully accomplished at 

100 °C. In contrast, LH_S800 and pure magnesium oxide appeared to be less 

easy to regenerate, as indicated by the slower release of CO2 with increasing 

time and the residual CO2 retained within these samples at the end of the 

desorption step.  

The evolution profile of the residual CO2 on the sample with increasing 

time (during desorption) was also normalized in a similar manner to the CO2 

adsorption kinetic by using equation (5.2). 

 𝑪𝑶𝟐,   𝒅𝒆𝒔 𝒑𝒓𝒐  (𝒕) =
𝑪𝑶𝟐,   𝒂𝒅𝒔(𝒕)

𝑪𝑶𝟐,   𝒂𝒅𝒔 𝒎𝒂𝒙
· 𝟏𝟎𝟎 (5.2) 

where, for each sample, CO2, des pro (t), defined as CO2 desorption progress, is 

the percentage reduction of CO2, ads max at a given time t during the desorption 

step, and CO2, ads (t) is the residual CO2 remaining adsorbed onto the sample at 

a given time t. 

Interestingly, when comparing the CO2 desorption progress of the 

materials (see Figure 5-34), it was noticed that the desorption behaviour 

observed for pure MgO was closer to that found for Laminaria hyperborea-

derived char (LH_S800). This might suggest a different CO2 chemidesorption 

mechanism in comparison to that occurring from LH_S800PA. In particular, it 

might be that the CO2 activation of the macroalgae-based char led to the 

formation of potassium and/or sodium carbonate. As reported by [58, 126, 304], 

Na and K-based carbonates can absorb CO2 under moist conditions, giving rise 

to alkali metal bicarbonates. These are less stable than the corresponding 

carbonates and can be easily regenerated at low temperature (100-200 °C). 

Assuming that some water molecules remained trapped within the structure of 

physically-activated carbon after initial degassing at 120 °C for 30 min, this 
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would explain the more facile regeneration exhibited by LH_S800PA. 

Nonetheless, at 100 °C LH_S800 and pure MgO also released most of the CO2 

captured (nearly 80%), thus indicating a relatively weak interaction with CO2 

molecule, which favored desorption. 

The regeneration temperature of carbonated magnesium oxide and 

MgO-containing carbon materials fabricated in this work was far lower than that 

usually reported for MgO (450-500 °C [131, 305]). However, MgCO3 

reconversion (into MgO) at relatively low temperature (200 °C) has already 

been reported by Bhagiyalakshmi et al. [131], who synthesized a magnesium 

oxide-containing carbon. These authors explained this behaviour through the 

weaker interaction between CO2 and the MgO particles not embedded within 

the framework of the carbon-based sorbent. On this premise, the CO2 sorption 

capacity of the macroalgae-based sorbents may be mostly attributed to 

magnesium oxide particles not bound to the carbon structure (i.e. MgO present 

on the external surface of the solid material). 

Nevertheless, based on results presented earlier, a cyclic test under 

post-combustion conditions was performed both for pyrolyzed Laminaria 

hyperborea (LH_S800) and for its physically activated counterpart 

(LH_S800PA), as these were the most promising samples in terms of sorption 

potential and selectivity. In addition, in order to ensure full regeneration of both 

sorbents, it was decided to extend the temperature swing up to 120 °C when 

performing RTSA cycling as the regeneration strategy (see Figure 5-35(a)).  

As seen in Figure 5-35(a), pyrolyzed Laminaria hyperborea exhibited 

very slow sorption kinetics without reaching a plateau within 30 min. This 

agrees with sorption kinetics previously shown in Figure 5-31. As already 

mentioned, it is presumed that the delayed kinetics were due to the lack of 

porous channels, which did not allow for efficient transport of CO2 onto 

(chemi)sorption sites (i.e. MgO crystalline particles). However, the char clearly 

showed a great sorption potential which could be fully exploited if adsorption 

was to be prolonged, potentially leading to even higher uptakes. On the other 

hand, as depicted by Figure 5-36, the sample was successfully regenerated at 

100 °C after each cycle. It is worth noting that, in Figure 5-36 the peak sample 

weight does not coincide with the start of the heating stage. This seems to 

confirm the presence of a stronger interaction between CO2 and pyrolyzed 

Laminaria, whose regeneration appears to be less sensitive to the increase of 

temperature in comparison to a physisorbent. In addition, as highlighted in 

Figure 5-35(b), the sorption capability remained stable over 9 adsorption-

desorption cycles. Nonetheless, a relatively higher capacity loss (ca. 20%) was 

observed after the last adsorption-desorption cycle. This might indicate 

poisoning of some inorganics functionalities, thus leading to a reduced 

chemisorption contribution.  
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Figure 5-33 Regeneration (RTSA, 53-100 °C) for pyrolyzed macroalgae 
(LH_S800), physically-activated counterpart (LH_S800PA), chemically-
activated counterpart (LH_S800CA), and magnesium oxide (MgO) 

 

 

Figure 5-34 CO2 desorption progress (RTSA, 53-100 °C) for pyrolyzed 
macroalgae (LH_S800), physically-activated counterpart (LH_S800PA), 
and magnesium oxide (MgO). 
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was observed for LH_S800PA, which was also consistent with the sorption 

behaviour displayed by this sample in Figure 5-31. Nonetheless, this sorbent 

still appeared not to reach its maximum capacity at the end of the equilibration 

time, thereby indicating the potential of attaining even higher sorption capability 

over a longer adsorption stage. Desorption of CO2 was efficiently accomplished 

after swinging the temperature up to 120 °C. Nevertheless, as illustrated by 
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Figure 5-33 and Figure 5-38, this material can be fully regenerated at 

temperature even lower than 120 °C (100 °C), thus potentially implying a lower 

cost of the regeneration step. 

 

 

Figure 5-35 (a) Recyclability and (b) sorption capacity over ten RTSA 
cycles for pyrolyzed Laminaria (LH_S800) 

 

 

Figure 5-36 1st RTSA cycle for pyrolyzed Laminaria (LH_S800) 
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might suggest that the decline of sorption capability was due to the removal of 

chemical functionalities weakly bonded to the carbon’s structure, which 

apparently were released from the material when heated up to 120 °C for the 

first time. However, this may also be attributed to the incomplete reconversion 

of magnesium carbonate into MgO (i.e. formation of intermediates such as 

Mg(OH)2), thus leading to a decrease of chemisorption potential. Nevertheless, 

it is worth noting that the sorbent’s capacity stabilized after the first cycle, thus 

indicating good durability over time. 

 

 

Figure 5-37 (a) Recyclability and (b) sorption capacity over ten RTSA 
cycles for physically-activated Laminaria (LH_S800PA) 

 

 

Figure 5-38 1st RTSA cycle for physically-activated Laminaria 
(LH_S800PA)  
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5.7 Chapter Conclusions 

Laminaria hyperborea was found to be a versatile precursor for 

sustainable synthesis of activated carbons intended for various applications. 

HTC of this macroalgae resulted in a slightly larger carbonization yield than that 

obtained after pyrolysis. Both processes showed good repeatability in terms of 

char production. The type of reactor was found not to significantly affect the 

product yield upon pyrolysis. Low errors related to HTC water balance 

measurements were obtained. The structure of Laminaria hyperborea-derived 

hydrochar (LH_S250) was essentially non-porous (except for a small amount of 

macroporosity), probably because the raw material was not completely 

devolatilized after the hydrothermal synthesis. Some porosity was measured for 

the pyrolyzed char (LH_S800) and this contained a far lower amount of volatile 

compounds. This was likely due to the higher degree of carbonization achieved 

at higher temperature (800 °C). On the other hand, like oak wood (see Chapter 

4), Laminaria hyperborea, when poorly carbonized by HTC, exhibited a more 

dramatic development of texture following activation treatments. 

CO2 activation of Laminaria hyperborea-based chars caused a moderate 

texture development. Final surface areas and total pore volumes were even 

lower than those obtained after physical activation of the carbonized wood (see 

Chapter 4). In addition, under optimal conditions, the surface area per unit of 

burn off obtained for Laminaria hyperborea-derived carbons was lower than that 

obtained after activation of wood-based chars. These results were attributed to 

the lower carbon purity found in carbonized Laminaria hyperborea. This was 

particularly true when comparing pyrolysis-derived products. Indeed, an 

extremely high ash content (ca. 60 wt%) was measured for the pyrolyzed 

macroalgae. After activation with CO2 inorganic species were mostly retained 

within the carbon matrix. Accordingly, a more limited development of porosity 

was obtained in comparison to that caused by the chemical activation. 

The optimal temperatures for physical activation were 600 °C and 700 °C 

for hydrothermally carbonized and pyrolyzed macroalgae, respectively. A dwell 

time of 30 min was found to be optimal in both cases. However, as already 

found for the activation of oak wood-based chars, the holding time had a less 

dramatic influence on the textural parameters of the final carbons compared to 

the effect of the activation temperature. Overall, the porosity of physically-

activated carbons was low, with a predominant contribution from micropores. 

However, a relatively high proportion of meso and macropores were also 

present. Interestingly, CO2 activation led to narrower pore size distribution, with 

a significant contribution from ultramicropores, especially for the activated 

hydrochar. 
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Conversely, KOH activation led to a far more dramatic increase of 

textural parameters. 750 °C was found to be the optimal KOH-activation 

temperature for both chars. In addition, the higher the KOH:char ratio, the larger 

the surface area of the final carbons. However, optimal conditions in terms of 

surface area maximization corresponded to minimum values of the product 

yield. It is interesting to note that a lower intensity of activation (T=550 °C, 

KOH:char ratio=1) led to highly microporous materials, featuring mostly 

narrower micropores. These showed a type I-like isotherm. Conversely, when 

more severe conditions (T>550 °C, KOH:char ratio>1) were applied, pore 

widening became a significant feature of the process. Consequently, the final 

carbons displayed a type I/II isotherm, which is usually found for porous 

materials featuring both micro and mesopores. HCl washing was an essential 

step for increasing the purity and the porosity of the chemically-ACs, as it 

removed not only residual potassium compounds, but also other inorganic 

species (ashes). 

Owing to their outstanding texture development, the chemically-activated 

carbons exhibited fast sorption kinetics and high CO2 uptakes (up to nearly 60 

mg CO2∙g-1) at 35 °C and 1 bar. These results seem to suggest that carbons 

derived from the KOH activation of Laminaria hyperborea-based chars might be 

promising candidates for pre-combustion capture of CO2. This was in line with 

results shown in Chapter 4, leading to the inference that the texture governs 

CO2 adsorption at higher partial pressure. However, correlations reported in 

Appendix 1 suggest that narrow microporosity and surface area might be both 

contributing to capturing CO2. Although causing limited enhancement of surface 

area (from 4 to ca. 300 m2·g-1), physical activation of hydrochar caused a 

dramatic improvement of the sorption capacity of the unactivated material (from 

ca. 3 to 40 mg CO2∙g-1). This was mostly attributed to the significant increase of 

ultramicropore volume. Conversely, Laminaria hyperborea-based char 

(LH_S800) and its physically-activated counterpart (LH_S800PA) exhibited 

lower uptakes and much slower kinetics, thereby indicating a different sorption 

behaviour. Their sorption potential appeared to be more dominated by the 

chemical nature of the materials. 

Under post-combustion conditions, the CO2 sorption capacity of the 

KOH-activated carbon dramatically decreased. Interestingly, in spite of their 

undeveloped porous structure, pyrolyzed Laminaria hyperborea (LH_S800) and 

its physically activated counterpart (LH_S800PA) exhibited a far greater 

sorption potential than that measured for the chemically-activated macroalgae 

(LH_S800CA). This result was ascribed to the chemisorption contribution 

afforded by alkali metal-based functionalities. Indeed, alkali metals were 

detected by EDX within the structure of the char and its CO2-AC counterpart. In 

addition to this, crystalline forms of alkali metal-containing compounds (with 

particular regard to magnesium oxide) were identified by XRD. The alkaline 

nature of the Laminaria hyperborea-derived char and its physically-activated 
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counterpart was corroborated by the higher number of basic surface 

functionalities measured through Boehm titrations for these materials compared 

to those found on LH_S800CA’s surface. In contrast, the chemical activation 

and subsequent acid-washing resulted in removal of inorganic species as was 

highlighted by proximate, EDX and XRD results. These observations seem to 

confirm that the higher selectivity at low partial pressure of CO2 showed by 

LH_S800 and LH_S800PA was less dependent on textural properties, and 

more due to the favourable chemistry of these sorbents. In particular, MgO 

crystals appeared to have played a key role in the selective sorption of CO2 at 

lower partial pressure and higher temperature. This speculation is supported by 

the very similar sorption behaviour observed for pure magnesium oxide and 

Laminaria hyperborea-based sorbents during the post-combustion test. 

Additionally, a stronger interaction between CO2 and seaweed-derived sorbents 

was revealed by the calculated energy of adsorption at 0 °C, following the 

sequence LH_S800>LH_S800PA>LH_S800CA. 
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6 Chemical modification of activated carbons: Optimized wet 

impregnation of amines  

6.1 Outline 

The present chapter focuses on the chemical modification of activated 

carbons (ACs). In particular, the wet impregnation of polyethyleneimine (PEI) 

onto a commercial carbon (AR) was optimized. The optimization entailed 

assessing the effect of a series of parameters on the CO2 sorption capacity of 

the impregnated carbons measured under simulated post-combustion 

conditions. For each parameter, the optimal value was determined for maximum 

uptake of CO2. 

Initially, the amount of polymer loaded onto the carbon support was 

varied between 29 and 50 wt%, while a stirring time of 30 min and methanol as 

solvent were set as fixed conditions (see section 6.2.1). After this, the optimal 

loading identified with methanol as solvent were kept as constant conditions in 

order determine the optimal value of the stirring time of the 

PEI/methanol/carbon mixture (see section 6.2.2.1). The duration of the agitation 

was varied from 0.5 to 8 h. Moreover, the effect of this parameter was also 

evaluated for loadings other than the optimal value (see section 6.2.2.2). 

Following this, the optimal values of PEI loading and stirring time were kept 

unaltered in an attempt to determine the effect of the type of solvent (i.e. 

methanol or water) used to dissolve the polymer (section 6.2.3). CO2 uptakes 

were measured both at 53 °C and at 77 °C in order to determine the effect of 

the temperature on the sorption behaviour of the PEI-impregnated materials. 

Results specifically related to the optimization of the aqueous impregnation (i.e. 

water as solvent) are reported in sections 6.2.3.1 (53 °C) and 6.2.3.2 (77 °C).  

Afterwards, starting from the optimal conditions found at 53 °C, the effect 

of additional factors on the CO2 sorption capacity of the impregnated carbons 

was investigated. In particular, the influence of an alternative carbon support 

(see section 6.2.4) and the effect of a different impregnating agent (see section 

6.2.5) were studied. Furthermore, the effect of the addition of hydroxyl group-

containing compound (i.e. glycerol) was evaluated (see section 6.2.6). 

The carbon prepared under optimized conditions (defined as AR-PEI) 

was then subjected to a variety of characterizations in order to detect the 

presence of PEI on its structure (see section 6.3). 

Experimental sorption kinetics measured for virgin (AR) and optimally 

PEI-impregnated carbon (AR-PEI) were fitted to models in section 6.4. 
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Section 6.5 is concerned with the CO2 capture performance of the 

optimal sorbent. First, the optimally PEI-modified sample was compared with 

the parent carbon and a benchmark sorbent (i.e. zeolite Z-13X (Z13X)), 

included for comparison purposes (see section 6.5.1). In line with experiments 

carried out for in-house ACs (see Chapter 4 and 5), materials were first tested 

at low temperature (35 °C) and high CO2 partial pressure (1 bar) (see section 

6.5.1.1). After this, attention was focused on the simulation of the post-

combustion capture behaviour, which is presented in section 6.5.1.2. In addition 

to this, the cyclic regeneration capacity of the optimally PEI-impregnated carbon 

under simulated post-combustion conditions is illustrated in section 6.5.2. 

Conclusions related to the present chapter are then set out in section 6.6. 

6.2 Optimization of the PEI impregnation procedure 

6.2.1 Effect of PEI loading (methanol, 53 °C) 

Results reported in Table 6-1 refer to the optimization of (i) PEI nominal 

loading (NL) (29-50 wt%, 0.5 h, methanol), (ii) stirring time (0.5-8 h, optimal 

nominal PEI loading, methanol) and (iii) solvent type (methanol or water, 

optimal nominal PEI loading and stirring time) at 53 °C. 

For each impregnated sample, the amount of PEI actually loaded onto 

the carbon was calculated gravimetrically and noted in Table 6-1. The 

percentage ratio of actual loading to the nominal loading was defined as 

impregnation efficiency. It is worth noting that the highest efficiency was 

achieved when using water as solvent. This might indicate that water is a better 

carrier of the polymer within the pore channels. 

Elemental analysis confirmed a distinct increase of the nitrogen content 

with increasing polymer loading for all impregnated samples. On the other hand, 

as revealed by the textural parameters of the impregnated samples given in 

Table 6-2, PEI impregnation caused a dramatic pore blockage. As seen in 

Figure 6-1(a) and (b), and Figure 6-2(a), the reduction of accessible pore 

volume is more pronounced at higher loading. It is interesting to note that most 

of the pore volume reduction is accounted for by micropore blocking. 

Nevertheless, it is difficult to say whether the polymer actually fills the 

micropores rather than just blocking them off [116]. However, Figure 6-2(a) also 

shows that increasing the amount of polymer loaded onto the carbon led to a 

rise of the N content of the impregnated samples.  
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Table 6-1 Primary optimization - Impregnation efficiency and Nitrogen 
content 

Sample ID 

AL46 Impregnation efficiency47 N48 N, SE49 

wt% % wt% wt% 

AR - - 0.4 - 

AR_PEI_29%_Me_0.5h 19.8 68.1 4.2 0.2 

AR_PEI_38%_Me_0.5h 25.6 67.4 4.6 0.2 

AR_PEI_44%_Me_0.5h 29.6 67.2 5.5 0.5 

AR_PEI_50%_Me_0.5h 32.7 65.4 7.1 0.2 

AR_PEI_44%_Me_2h 30.3 68.8 7.1 0.1 

AR_PEI_44%_Me_4h 28.5 64.9 6.6 0.2 

AR_PEI_44%_Me_6h 30.9 70.1 7.4 0.3 

AR_PEI_44%_Me_8h 31.0 70.5 7.7 0.1 

AR_PEI_44%_W_8h 34.3 78 8.2 0.1 

Z13X -  - 0 - 

 

As suggested by Figure 6-2(b), the optimal loading (nominal loading of 

44 wt%, corresponding to an actual loading of ca. 29.6 wt% as given in Table 

6-1) in terms of maximized CO2 uptake (see also Table 6-3) seems to be due to 

an ideal compromise between the N functionalities incorporated and the pore 

volume reduction. This optimal loading was determined based on a stirring time 

of 0.5 h with methanol as solvent. Loadings lower than the optimal value gave a 

lower sorption capacity, probably due to the lower concentration of basic N-

containing groups. Conversely, the drop in the CO2 uptakes associated with 

higher loadings might be due to the limited diffusion of carbon dioxide through 

the PEI film [120]. This agrees with the slower kinetic exhibited by 

AR_PEI_50%_Me_0.5h (see Figure 6-3).  

                                            

46 Actual loading calculated by mass balance 

47 Expressed as percentage of actual loading divided by nominal loading 

48 Measured by CHNS elemental analysis in triplicate; data represent average 
values. 

49 Standard error (n=3) 
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Table 6-2 Primary optimization - Textural parameters 

Sample ID 

SBET
50 Vtot

51 Vmi
52 Vme+ma

53 

m2∙g-1 cm3∙g-1 cm3∙g-1 cm3∙g-1 

AR 1531 0.691 0.569 0.122 

AR_PEI_29%_Me_0.5h 1336 0.614 0.49 0.124 

AR_PEI_38%_Me_0.5h 1040 0.475 0.389 0.086 

AR_PEI_44%_Me_0.5h 966 0.456 0.359 0.097 

AR_PEI_50%_Me_0.5h 793 0.392 0.293 0.099 

AR_PEI_44%_Me_2h 783 0.364 0.295 0.07 

AR_PEI_44%_Me_4h 729 0.352 0.275 0.077 

AR_PEI_44%_Me_6h 677 0.289 0.261 0.028 

AR_PEI_44%_Me_8h 610 0.273 0.234 0.039 

AR_PEI_44%_W_8h 355 0.179 0.136 0.043 

Z13X 521 0.398 0.207 0.191 

  

                                            

50 Surface area calculated by applying Brunauer–Emmett–Teller (BET) method 
to N2 adsorption data 

51 Total pore volume calculated by applying Gurvitsch’s rule at P/P0=0.99 

52 Microporous volume calculated by applying Dubinin-Radushkevich (DR) 
model to N2 adsorption data 

53 Sum of mesoporous and macroporous volume, calculated by difference (Vtot-
Vmi) 
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Figure 6-1 Effect of PEI loading: (a) N2 Adsorption Isotherms and (b) non-
local density functional theory (NLDFT) Pore size distributions (PSDs) by 
volume. A stirring time of 0.5 h and methanol solvent were used to 
impregnate these samples 
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Figure 6-2 Effect of PEI loading: (a) N content and pore volume reduction, 
and (b) CO2 uptakes at 53 °C and 0.15 bar (total pressure of 1 bar). A 
stirring time of 0.5 h and methanol solvent were used to impregnate these 
samples. Error bars represent standard error (n=3). 

 

 

Figure 6-3 Effect of PEI loading: CO2 adsorption kinetics at 53 °C and 0.15 
bar (total pressure of 1 bar). A stirring time of 0.5 h and methanol solvent 
were used to impregnate these samples. 
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Table 6-3 Primary optimization - CO2 uptakes at 53 or 77 °C and 0.15 bar 
(total pressure of 1 bar) 

Sample ID 

CO2 uptakes54   Capacity loss55 

53 °C 53 °C, SE56 77 °C % 

AR 9.4 0.8 6.8 18 

AR_PEI_29%_Me_0.5h 21.0 0.9 - - 

AR_PEI_38%_Me_0.5h 20.8 1.3 - - 

AR_PEI_44%_Me_0.5h 24.5 0.7 - - 

AR_PEI_50%_Me_0.5h 24.0 0.9 - - 

AR_PEI_44%_Me_2h 23.9 1.0 - - 

AR_PEI_44%_Me_4h 25.0 1.1 - - 

AR_PEI_44%_Me_6h 29.2 2.0 - - 

AR_PEI_44%_Me_8h 33.4 0.4 21.8 35 

AR_PEI_44%_W_8h 23.8 - 21.8 8 

Z13X 22.7 0.6 - - 

 

6.2.2 Effect of stirring time (methanol, 53 °C) 

6.2.2.1 Optimal PEI loading 

The effect of the stirring time of the PEI/solvent/carbon blend on product 

characteristics was assessed based upon the optimal value of 44 wt% (on 

nominal basis) PEI loading (from methanol solution) found in section 6.2.1.  

As plotted in Figure 6-4(a), when increasing the agitation time from 0.5 h 

to 2 h, a slight increase of the nitrogen content of the PEI-impregnated carbon 

was measured. This coincides with the significant reduction of the total pore 

volume observed between stirring time values of 0.5 and 2 h, and might suggest 

that the lowest duration (30 min) was not sufficient for an efficient polymer 

loading. In contrast, as indicated by Figure 6-4(a) and Table 6-1, for stirring 

durations longer than 2 h and for the same (optimal) NL, the amount of polymer 

                                            

54 Uptakes measured as mg of CO2 per g of sorbent in triplicate. Data represent 
average values. 

55 Calculated as difference between the sorption capacity at 77 and 53 °C, and 
expressed as a percentage of the sorption capacity at 53 °C 

56 Standard error (n=3) 
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loaded onto the carbon support did not significantly change. On other hand, 

although the available porosity of the carbon continuously declined with 

increasing agitation duration (see Figure 6-4(a)), the CO2 capacity of the 

sorbent increased (Figure 6-4(b)). This could be explained by the fact that 

longer stirring time might have improved the dispersion of PEI through the 

porous network of the support, thus enhancing the diffusion of CO2 and the 

access to the amino groups. 

 

 

Figure 6-4 Effect of stirring time: (a) N content and pore volume reduction, 
and (b) CO2 uptakes at 53 °C and 0.15 bar (total pressure of 1 bar). Optimal 
nominal PEI loading (44 wt%) and methanol solvent were used to 
impregnate these samples. Error bars represent standard error (n=3). 

 

Accordingly, a longer agitation of the slurry seems to suggest enhanced 

PEI penetration into the carbon porosity. In turn, this optimized utilization of the 

pores led to an increase of CO2 uptakes as seen in Figure 6-4(b). In particular, 

although a slight drop in CO2 uptake between stirring time values of 0.5 and 2 h 

occurred, the carbon dioxide capacity progressively increased for stirring times 

longer than 2 h. The initial decrease of CO2 uptake capability might be 

attributed to a higher amount of polymer loaded when increasing stirring time 

from 0.5 to 2 h (see increase of N in Figure 6-4(a)). However, it is possible that, 

for lower stirring time (e.g. 2 h), the polymer might have been deposited in 

localized spots on the solid support, thereby limiting the diffusion of CO2 

throughout the porous matrix but without compensating factor of well-distributed 

PEI to enhance CO2 uptake. This agrees with the more pronounced pore 
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blocking experienced by AR_PEI_44%_Me_2h (see Figure 6-4(a)). In addition 

to this, as depicted in Figure 6-5, AR_PEI_44%_Me_2h exhibited a slower 

sorption rate than that of AR_PEI_44%_Me_0.5h, thus corroborating the 

decrease of CO2 diffusivity when increasing stirring time from 0.5 to 2 h. 

Conversely, for higher stirring times (>2 h), it is speculated that a more efficient 

distribution of PEI through the porous network, with consequently more amino 

groups accessible to CO2, might outweigh the pore blocking and diffusional 

limitations.  

 

Figure 6-5 Effect of stirring time: CO2 adsorption kinetics at 53 °C and 0.15 
bar (total pressure of 1 bar). Optimal nominal PEI loading (44 wt%) and 
methanol solvent samples were used to prepare these samples. 

 

6.2.2.2 Non-optimal PEI loadings 

Results presented in this section further evidence the beneficial effect of 

a longer agitation on the CO2 sorption capacity of the PEI-impregnated 

samples. Uptake of CO2 increased with increasing stirring time even when 

considering polymer loadings other than the optimal one. In particular, for a 

nominal loading of 38 wt%, a dramatic increase of CO2 sorption capacity was 

measured when agitation time was increased from 0.5 h to 2 h (see Figure 

6-6(b)). A more moderate rise of the CO2 uptake was recorded between 2 and 4 

h, whereas sorption capability decreased when agitation was carried out for 6 h. 

This was probably due to the higher amount of polymer actually loaded when 

stirring time was 6 h (also see higher values of actual loading and N content for 

AR_PEI_50%_Me_6h as given in Table 6-4), which might have blocked the 

mobility of CO2 through the porous support. N and actual loading data 

correlated with the dramatic reduction of pore volume when increasing stirring 

time from 4 to 6 h (see Figure 6-6(a) and Table 6-4). However, note that 

nitrogen content and PEI actual loading figures do not always follow the same 
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longest stirring time studied, which partly outweighed the pore blockage and 

therefore the diffusional limitations. 

An improvement of the CO2 sorption capacity with increasing stirring time 

was also observed for the largest nominal loading studied (i.e. 50 wt%). In 

particular, a steep rise of the sorbent’s CO2 uptake occurred when increasing 

the stirring time from 2 h, reaching a maximum when the PEI/methanol/carbon 

mixture was stirred for 4 h (see Figure 6-7(b)). However, unlike for NLs of 38 

and 44 wt%, where CO2 uptake maximum was achieved for a stirring time of 8 

h, when using a higher NL (50 wt%) the CO2 capacity peak was shifted to a 

shorter agitation duration (e.g. 4 h). This was attributed to the slightly larger 

amount of polymer actually loaded onto the carbon when using a NL of 50 wt% 

(see Table 6-4) in comparison to those recorded for lower NLs and for stirring 

times longer than 4 h (see Table 6-4 and Table 6-1). Accordingly, the extra 

loading of polymer appeared to be responsible for a higher extent of pore 

blockage and lower CO2 uptakes (see Table 6-5 and Figure 6-7(a)). 

Nevertheless, even in this case, diffusional limitations seem to be partly 

compensated by a better distribution of the polymer when further increasing 

agitation duration from 6 to 8 h. 

As seen by the CO2 sorption kinetics presented in Figure 6-8, samples 

impregnated for longer times (darker curves) generally prevailed over those 

prepared through shorter agitations (lighter curves). In addition to this, as 

indicated by results given in Table 6-3 and Table 6-6, when using a nominal PEI 

loading of 50 wt% and stirring times longer than 0.5 h, higher CO2 uptakes were 

achieved in comparison to those measured for a nominal PEI loading of 38 

wt%. On the other hand, for the same stirring times, CO2 sorption kinetics 

recorded for samples impregnated with a nominal loading of 50 wt% were 

generally slower than those measured for materials obtained using a PEI 

nominal loading of 38 wt%. The lower sorption speed could be attributed to the 

larger amount of PEI introduced within the porous structure of the sorbents (see 

actual loading of 35 wt% for AR_PEI_50%_Me_6h vs 26.4 wt% for 

AR_PEI_38%_Me_6h, as noted in Table 6-4). This was consistent with the 

more remarkable pore blocking observed when using a nominal loading of 50 

wt% (see comparison between Figure 6-6(a) and Figure 6-7(a)). 
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Figure 6-6 Effect of stirring time: (a) N content and pore volume reduction, 
and (b) CO2 uptakes at 53 °C and 0.15 bar (total pressure of 1 bar). 
Nominal PEI loading of 38 wt% and methanol solvent were used to 
impregnate these samples. 

 

Table 6-4 Effect of stirring time for non-optimal PEI loadings - 
Impregnation efficiency and Nitrogen content 

Sample ID 

AL Impregnation efficiency N 

wt% % wt% 

AR_PEI_38%_Me_2h 23.9 62.9 5.0 

AR_PEI_38%_Me_4h 23.3 61.4 5.2 

AR_PEI_38%_Me_6h 26.4 69.4 6.9 

AR_PEI_38%_Me_8h 26.3 69.1 6.6 

AR_PEI_50%_Me_2h 32.6 65.2 7.1 

AR_PEI_50%_Me_4h 31.6 64.0 7.1 

AR_PEI_50%_Me_6h 35.0 70.0 7.3 

AR_PEI_50%_Me_8h 32.6 65.2 6.9 
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Figure 6-7 Effect of stirring time: (a) N content and pore volume reduction, 
and (b) CO2 uptakes at 53 °C and 0.15 bar (total pressure of 1 bar). 
Nominal PEI loading of 50 wt% and methanol solvent were used to 
impregnate these samples. 

 

Table 6-5 Effect of stirring time for non-optimal PEI loadings - Textural 
parameters 

 SBET Vtot Vmi Vme+ma 

Sample ID m2∙g-1 cm3∙g-1 cm3∙g-1 cm3∙g-1 

AR_PEI_38%_Me_2h 983 0.457 0.369 0.088 

AR_PEI_38%_Me_4h 876 0.427 0.322 0.105 

AR_PEI_38%_Me_6h 720 0.335 0.270 0.065 

AR_PEI_38%_Me_8h 684 0.346 0.254 0.092 

AR_PEI_50%_Me_2h 879 0.404 0.329 0.075 

AR_PEI_50%_Me_4h 492 0.232 0.184 0.048 

AR_PEI_50%_Me_6h 411 0.197 0.159 0.038 

AR_PEI_50%_Me_8h 412 0.182 0.159 0.023 
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Table 6-6 Effect of stirring time for non-optimal loadings - CO2 uptakes at 
0.15 bar (total pressure of 1 bar) and 53 °C 

Sample ID 

CO2 uptakes 

53 °C 77 °C 

AR_PEI_38%_Me_2h 26.8 - 

AR_PEI_38%_Me_4h 29.7 - 

AR_PEI_38%_Me_6h 26.2 - 

AR_PEI_38%_Me_8h 29.8 - 

AR_PEI_50%_Me_2h 25.7 - 

AR_PEI_50%_Me_4h 31.4 22.5 

AR_PEI_50%_Me_6h 27.1 - 

AR_PEI_50%_Me_8h 28.2 - 

 

Overall, for both non-optimal nominal values of PEI loading investigated, 

stirring times longer than 30 min led to higher CO2 uptakes. This seemed to 

indicate that an extended duration of impregnation allowed a more efficient 

distribution of the polymer onto the carbon support, which outweighed the 

negative effect of pore blockage and slow gas diffusion, thereby maximizing the 

final CO2 sorption capacity of the PEI-loaded carbons (see also Table 6-6). 

However, in accordance with results showed in section 6.2.1, it seems that the 

CO2 uptake maximum is reached for an optimal compromise between utilized 

porosity and amount of N incorporated. 
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Figure 6-8 Effect of stirring time: CO2 adsorption kinetics at 53 °C and 0.15 
bar (total pressure of 1 bar). Nominal PEI loading of (a) 38 wt% or (b) 50 
wt% and methanol solvent were used to prepare these samples 

 

6.2.3 Effect of solvent type and sorption temperature 

Figure 6-9 shows the influence of the kind of solvent employed to 

dissolve the polymer during the impregnation. Values of nominal PEI loading 

and stirring time of the polymer/solvent/carbon blend were chosen according to 

the optimal values for maximized CO2 uptake (i.e. 44 wt% and 8h) determined 

above. The CO2 sorption kinetics were measured at two different temperatures. 

At the lower temperature (dashed lines) in particular, the PEI-loaded 

carbon impregnated using methanol (AR_PEI_44%_Me_8h_53 °C) achieved 

much larger uptakes than when using water (AR_PEI_44%_W_8h_53 °C). The 

latter sample showed somewhat slower kinetics, which might be due diffusional 

limitations of the carbon dioxide molecule through the PEI gel [120, 123]. The 

delayed CO2 sorption agreed with the larger values of actual loading and N 

contents found for AR_PEI_44%_W_8h (see Table 6-1). This was further 

corroborated by the higher extent of pore blockage experienced by this sample 

as given in Table 6-2. Interestingly, CO2 uptakes almost as large as those 
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achieved by AR_PEI_44%_Me_8h were attained by using water as solvent but 

with lower polymer loading and shorter stirring time (see AR_PEI_38%_W_2h in 

Table 6-9).  

As expected, when measuring the CO2 uptakes at higher temperature 

(i.e. 77 °C), kinetics became faster for both samples (solid lines). In addition to 

this, it is remarkable to observe that the CO2 sorption curves tend to converge 

at saturation. It is worth mentioning that, if adsorption stage was to be extended 

over long duration, sorption curves measured at lower temperature (53 °C) 

might be also converge. Moreover, as shown by Figure 6-9, a more dramatic 

drop in capacity (ca. 35%, see Table 6-3) was experienced by 

AR_PEI_44%_Me_8h, compared to AR_PEI_44%_W_8h. This suggested that 

the CO2 uptake process onto AR_PEI_44%_Me_8h was thermodynamically-

controlled [214]. Conversely, the PEI-modified carbon impregnated using water 

(i.e. AR_PEI_44%_W_8h) exhibited a lower reduction of sorption capacity at 

higher temperature. This seemed to indicate a kinetic, diffusion controlled 

process [123] for the uptake of CO2 onto this sample. It appears that the larger 

number of amino groups loaded onto the carbon when using water was not fully 

accessible at lower temperature (53 °C) because of resistance to diffusion of 

CO2 through the PEI gel, which was attenuated at higher temperature (77 °C). 

However, CO2 sorption capability of PEI-impregnated carbons generally 

decreased at higher temperature. This might suggest a predominant role is 

played by thermodynamic (sorption) effects, which, unlike diffusion, become 

unfavourable with increasing temperature. This result was in contrast with those 

reported by previous works, in which 75 °C was found to be optimal in terms of 

maximization of CO2 uptakes [120, 223-225]. However, as suggested by Wang 

et al. [226], at temperatures higher than 75 °C desorption of CO2 may be 

occurring, thus counteracting the uptake process and resulting in a net 

decrease of sorption capacity.  
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Figure 6-9 Effect of solvent type and sorption temperature: CO2 
adsorption kinetics at 0.15 bar (total pressure of 1 bar) for 53 °C and 77 °C; 
samples were prepared using optimal values of nominal PEI loading (44 
wt%) and stirring time (8 h) 

 

Following these results, optimization of aqueous impregnation was 

studied and is presented below both at 53 °C (see section 6.2.3.1) and at 77 °C 

(see section 6.2.3.2). 

 

6.2.3.1 Optimization of aqueous impregnation at 53 °C 

6.2.3.1.1 Effect of PEI loading (water, 53 °C) 

For a common value of stirring time (i.e. the optimal value of 8h 

determined for methanol solvent in section 6.2.2.1), Figure 6-10(a) shows that 

the N content of the PEI-impregnated carbons increased with increasing 

amount of polymer loaded onto the porous support. Consequently, this led to a 

progressive decrease of porosity due to pore blocking.  

Interestingly, as given in Table 6-7, higher impregnation efficiency (up to 

81% for AR_PEI_38%_W_8h) was achieved when water was used as solvent. 

This seems to suggest the more environmentally sound aqueous impregnation 

as being a more efficient technique for loading the polymer onto the carbon 

support. Consequently, as seen in Figure 6-10(b), the optimal nominal loading 

value (i.e. 38 wt%) was lower than that ascertained when using methanol (i.e. 

44 wt%, see Figure 6-2(b)).  
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Table 6-7 Optimization of aqueous impregnation - Impregnation efficiency 
and Nitrogen content 

Sample ID 

AL Impregnation efficiency N 

wt% % wt% 

AR_PEI_38%_W_0.5h 29.1 76.4 5.5 

AR_PEI_44%_W_0.5h 34.5 78.4 6.8 

AR_PEI_50%_W_0.5h 38.0 76.0 7.5 

AR_PEI_38%_W_2h 28.6 75.2 6.7 

AR_PEI_38%_W_4h 29.6 77.8 6.9 

AR_PEI_38%_W_6h 32.0 84.3 7.9 

AR_PEI_38%_W_8h 30.8 81.1 7.3 

AR_PEI_50%_W_2h 40.5 80.9 8.1 

AR_PEI_50%_W_4h 38.8 77.7 7.9 

AR_PEI_50%_W_6h 39.9 79.7 8.1 

AR_PEI_50%_W_8h 38.1 76.2 7.7 

 

As shown in Figure 6-10(b), the minimum CO2 uptake was attained for a 

nominal PEI addition of 44 wt%. Moreover, a further increase of nominal PEI 

loading (up to 50 wt%) led to a delayed sorption kinetic (see 

AR_PEI_50%_W_8h’s sorption curve in Figure 6-11). This was ascribed to 

increased diffusional limitations of CO2 through the polymer bulk due to the 

more pronounced pore blockage experienced by AR_PEI_50%_W_8h (see 

Figure 6-10(b) and Table 6-8). On the other hand, in spite of the lower uptake 

rate at the beginning of adsorption step, this sample attained a slightly larger 

uptake at saturation than that measured for AR_PEI_44%_W_8h (see cross 

over at ca. 7 min in Figure 6-11). This was probably due to the higher amount of 

effective N functionalities incorporated onto AR_PEI_50%_W_8h’s structure, 

which balanced the lack of CO2 diffusion within pore channels.  
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Table 6-8 Optimization of aqueous impregnation - Textural parameters 

Sample ID 

SBET Vtot Vmi Vme+ma 

m2∙g-1 cm3∙g-1 cm3∙g-1 cm3∙g-1 

AR_PEI_38%_W_0.5h 886 0.438 0.330 0.108 

AR_PEI_44%_W_0.5h 859 0.404 0.322 0.082 

AR_PEI_50%_W_0.5h 722 0.396 0.256 0.140 

AR_PEI_38%_W_2h 734 0.381 0.277 0.104 

AR_PEI_38%_W_4h 640 0.303 0.236 0.067 

AR_PEI_38%_W_6h 460 0.224 0.173 0.051 

AR_PEI_38%_W_8h 628 0.306 0.237 0.069 

AR_PEI_50%_W_2h 292 0.159 0.111 0.048 

AR_PEI_50%_W_4h 366 0.221 0.137 0.084 

AR_PEI_50%_W_6h 279 0.131 0.110 0.021 

AR_PEI_50%_W_8h 183 0.110 0.071 0.039 

 

Table 6-9 Optimization of aqueous impregnation - CO2 uptakes at 53 or 77 
°C and 0.15 bar (total pressure of 1 bar) 

Sample ID 

CO2 uptakes  Capacity loss 

53 °C 77 °C % 

AR_PEI_38%_W_0.5h 31.5 - - 

AR_PEI_44%_W_0.5h 28.5 - - 

AR_PEI_50%_W_0.5h 30.2 18.3 39 

AR_PEI_38%_W_2h 32.1 - - 

AR_PEI_38%_W_4h 21.4 - - 

AR_PEI_38%_W_6h 27.0 - - 

AR_PEI_38%_W_8h 28.3 17.2 39 

AR_PEI_50%_W_2h - 27.1 - 

AR_PEI_50%_W_4h 25.8 27.3 -6 

AR_PEI_50%_W_6h - 20.8 - 

AR_PEI_50%_W_8h 25.9 22.0 15 

  



216 

 

 

 

 

Figure 6-10 Effect of PEI loading: (a) N content and pore volume 
reduction, and (b) CO2 uptakes at 53 °C and 0.15 bar (total pressure of 1 
bar). A stirring time of 0.5 h and water solvent were used to impregnate 
these samples. 

 

 

Figure 6-11 Effect of PEI loading: CO2 adsorption kinetics at 53 °C and 
0.15 bar (total pressure of 1 bar). A stirring time of 0.5 h and water solvent 
were used to impregnate these samples. 
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AR_PEI_38%_W_6h (up to 32 wt%, see Table 6-7). This resulted in the lowest 

pore volume attained by this sample (see Table 6-8 and Figure 6-12(b)). 

It seemed that lower stirring times (e.g. 0.5 h) might have been not 

sufficient to disperse the polymer through the pores, which might thus have 

been retained in the solvent to a higher extent. This has already been observed 

when studying the effect of the stirring time on the N content of samples 

impregnated using methanol as solvent (see Figure 6-4, Figure 6-6, and Figure 

6-7).  

On the other hand, excessive loadings of polymer appear to hinder the 

diffusion of CO2 through the pore channels when measuring sorption at 53 °C. 

This is shown by the slower kinetics (see Figure 6-13) exhibited by samples 

impregnated for durations longer than 2 h. Indeed, as shown in Figure 6-12(b), 

the highest CO2 uptake was achieved when agitation was stopped after 2 h. In 

contrast, the sorption capacity significantly decreased when increasing stirring 

time from 2 to 4 h, where a minimum was attained. Nevertheless, CO2 uptakes 

then exhibited an increasing trend for stirring times between 4-8 h. Apparently, 

prolonged agitation might have caused a more efficient dispersion of the larger 

amount of polymer loaded, thus outweighing the adverse impact of pore 

blockage. This was further corroborated by the larger reduction of pore volume 

exhibited for a stirring time of 6h (see Figure 6-12(a) and Table 6-8). 

It is worth pointing out that the optimization of aqueous impregnation 

conducted at 53 °C gave rise to CO2 uptakes (32.1 mg CO2·g-1, see Table 6-9) 

nearly as large as the optimal value (33.6 mg CO2·g-1 see Table 6-3) achieved 

when solvent was methanol. On the other hand, this was accomplished using 

lower polymer loading (38 wt%) and shorter stirring time (2 h) with a “greener” 

solvent. Hence, this would represent a more environmentally friendly option, as 

it would entail using no methanol and a lower amount of amines. In addition to 

that, this solution would allow faster preparation of the CO2 sorbents.  
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Figure 6-12 Effect of stirring time: (a) N content and pore volume 
reduction, and (b) CO2 uptakes at 53 °C and 0.15 bar (total pressure of 1 
bar). Optimal nominal PEI loading (38 wt%) and water as solvent were 
used to prepare the samples.  

 

 

Figure 6-13 Effect of stirring time: CO2 adsorption kinetics at 53 °C and 
0.15 bar (total pressure of 1 bar); samples were prepared using an optimal 
value of nominal PEI loading (38 wt%) and water as solvent.  
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6.2.3.2 Optimization of aqueous impregnation at 77 °C 

In section 6.2.3, regardless of the solvent, the CO2 sorption capacity of 

PEI-impregnated carbons declined as the sorption temperature was raised from 

53 to 77 °C. Nonetheless, it is also evident that, at 77 °C and for the same 

conditions of PEI loading and stirring time, the aqueous impregnation results in 

as large CO2 uptakes as those achieved by using methanol (see Figure 6-9). 

Therefore, this section aims to investigate whether the more environmentally 

friendly aqueous impregnation could be further optimized in terms of CO2 

sorption capacity measured at increased temperature (i.e. 77 °C). 

6.2.3.2.1 Effect of PEI loading (water, 77 °C) 

 As shown by Figure 6-14(a), the nitrogen content of the PEI-coated 

carbons increased with increasing amount of polymer loaded onto the porous 

substrate. By contrast, the pore volume decreased with increasing PEI loading. 

This was in line with results previously shown (see Figure 6-2(a) and Figure 

6-10(a)). 

 

 

Figure 6-14 Effect of PEI loading: (a) N content and pore volume 
reduction, and (b) CO2 uptakes at 77 °C and 0.15 bar (total pressure of 1 
bar). A stirring time of 8 h and water as solvent were used to impregnate 
these samples. 
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found at 53 °C when using water (i.e. 38 wt%, see section 6.2.3.1.1) or 

methanol (i.e. 44 wt%, see section 6.2.1) as solvent. This suggests a mutual 

relation between PEI loading and sorption temperature, and is consistent with 

observations reported by Wang et al. [222]. This behaviour was attributed to the 

effect of a higher temperature condition, which apparently facilitated the 

diffusion of CO2 through the polymer film. Consequently, more amines become 

available for CO2 sorption, thereby resulting in increasing CO2 uptakes with 

increasing amount of polymer loaded onto the carbon. 

 

 

Figure 6-15 Effect of PEI loading: CO2 adsorption kinetics at 77 °C and 
0.15 bar (total pressure of 1 bar). A stirring time of 8 h and water solvent 
were used to impregnate these samples. 

 

On the other hand, Figure 6-15 showed very slow sorption kinetics for 

AR_PEI_50%_W_8h. This was evidently due to the larger amount of polymer 

loaded onto this sample (see values of actual PEI loading in Table 6-7) 

compared to that coated onto the porous structure of AR_PEI_38%_W_8h and 

AR_PEI_44%_W_8h (see values of actual PEI loading in Table 6-1 and Table 

6-7). The sorption behaviour of highly loaded materials is typical of a kinetically-

diffusion controlled process, wherein access of CO2 to the amino groups of the 

polymer is delayed [120]. 
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A significant improvement of CO2 sorption capacity was observed when 

increasing the stirring time from 0.5 to 2 h (see Figure 6-16(b)). This could be 

ascribed to the beneficial effect of a longer mixing step, which not only allowed 

the loading of more N groups but might have also ensured a more efficient 

utilization of the porosity of the carbon support. CO2 uptakes exhibited a slight 

increase when impregnation duration was further prolonged from 2 to 4 h, 

where a maximum was attained. On the other hand, a drop in CO2 uptakes was 

measured for stirring times longer than 4 h. Although at 77 °C CO2 is supposed 

to diffuse more easily through the PEI film, an excess of polymer might have 

prevented some of the gas from reaching amino groups. In fact, when using 

water as solvent a higher amount of polymer was actually loaded onto the 

carbon (32.6 wt% for AR_PEI_50%_Me_8h vs 38.1 wt% for 

AR_PEI_50%_W_8h, see Table 6-4 and Table 6-7 respectively). Accordingly, 

the pore blockage of the solid support was more pronounced (0.182 cm3·g-1 for 

AR_PEI_50%_Me_8h vs 0.110 cm3·g-1 for AR_PEI_50%_W_8h, see Table 6-5 

and Table 6-8 respectively). This result was corroborated by the slower CO2 

sorption kinetics measured for samples stirred for longer time (see Figure 6-17). 

In contrast, AR_PEI_50%_W_0.5h exhibited the fastest sorption kinetic but the 

lowest uptake at saturation. 

Moreover, note that, under identical optimal conditions in terms of 

nominal PEI loading (50 wt%) and stirring time (4 h), a more sustainable (i.e. 

aqueous) impregnation led to higher uptakes (27.3 mg CO2·g-1 see Table 6-9 

and Figure 6-16(b)) than those achieved when solvent was methanol (22.5 mg 

CO2·g-1 see Table 6-6). In addition, the CO2 sorption capacity measured for 

AR_PEI_50%_W_4h increased at 77 °C (see Table 6-9). This suggests that, for 

larger polymer loading and at higher temperature, the benefit of having a 

greater number of N-based functional groups outweighs the polymer-induced 

pore blocking. In fact, in contrast to sorption (thermodynamic effect), diffusion is 

favoured by the higher temperature (i.e. 77 °C in this case), which maximized 

CO2 uptake. This finding seems to agree with results previously reported by 

literature for amines/silica blends [120, 223-225].  
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Figure 6-16 Effect of stirring time: (a) N content and pore volume 
reduction, and (b) CO2 uptakes at 77 °C and 0.15 bar (total pressure of 1 
bar). An optimal value of nominal PEI loading (50 wt%) and water as 
solvent were used to prepare these samples. 

 

 

Figure 6-17 Effect of stirring time: CO2 adsorption kinetics at 77 °C and 
0.15 bar (total pressure of 1 bar); samples were prepared using an optimal 
value of nominal PEI loading (50 wt%) and water solvent. 
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Table 6-10 Main optimal conditions as identified by maximization of the 
CO2 sorption capacity of PEI-impregnated carbons - Optimal values of PEI 
loading and stirring time are reported for each sorption temperature and 
solvent type used 

 
53 °C 77 °C 

Water Methanol Water Methanol 

Opt. NL57 wt% 38 44 50 50 

Opt. AL58 wt% 28.6 31.0 38.8 31.6 

Opt. Stirring time59 h 2 8 4 4 

Max CO2 uptake mg CO2·g-1 32.1 33.6 27.3 22.5 

 

6.2.4 Influence of the carbon support  

As given in Table 6-11, OW800CA exhibited a far larger porosity than 

that of AR. Accordingly, larger values of actual loading and N content were 

measured after PEI impregnation of the wood-derived substrate (see Table 

6-11). Note that impregnation conditions used for coating PEI onto OW800CA 

were the optimal parameters identified when measuring CO2 sorption at 53 °C 

and reported in Table 6-10 (i.e. methanol as solvent, a NL of 44 wt%, and a 

stirring time of 8 h). 

 

Table 6-11 Effect of the carbon support - Textural parameters, actual 

loading and N content 

Sample ID 

SBET Vtot Vmi Vme+ma AL N 

m2·g-1 cm3·g-1 cm3·g-1 cm3·g-1 wt% wt% 

AR 1531 0.691 0.569 0.122 - 0.4 

AR_PEI 610 0.273 0.234 0.039 31.0 6.9 

OW800CA 2061 1.008 0.773 0.235 - 0.3 

OW800CA_PEI 0 0.000 0.000 0.000 41.7 9.5 

 

The increased actual loading measured for OW800CA was reflected by 

more dramatic pore blockage depicted by isotherms (see Figure 6-18) and 

                                            

57 Optimal nominal loading determined for a common value of stirring time 

58 Optimal actual loading corresponding to the optimal nominal loading 

59 Determined for a common (optimal) value of PEI loading 
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PSDs by volume (see Figure 6-19) for this sample. Indeed, as reported in Table 

6-11, the porosity of OW800CA was entirely used up after PEI impregnation. 

 

 

Figure 6-18 Effect of the carbon support - N2 adsorption isotherms 

 

 

Figure 6-19 Effect of the carbon support - NLDFT PSDs by volume 

 

Figure 6-20 revealed that OW800CA had a far more functionalized 

surface than that featured by AR. In particular, oak wood-derived carbon 

exhibited more acidic groups compared to those present within AR’s structure. 

These might have resulted in a stronger affinity between the oak wood-based 

support and the polymer, thus facilitating the PEI coating onto the solid support. 

On the other hand, the OW800CA’s acidic functionalities might have neutralized 

part of the basic groups contained within the polymer. Accordingly, the net 

amount of amines available for CO2 uptake might have been much lower. This 

would explain the less significant improvement of the CO2 sorption capacity 

shown in Figure 6-21.   
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Figure 6-20 Effect of the carbon support – Basic and acidic functionalities 
measured by Boehm titrations  

 

 

Figure 6-21 Effect of the carbon support - CO2 uptakes at 53 °C and 0.15 
bar (total pressure of 1 bar) 
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Figure 6-22 Effect of the carbon support - CO2 adsorption kinetics at 53 °C 
and 0.15 bar (total pressure of 1 bar) 

 

6.2.5 Influence of the impregnating agent 

Various types of N-containing additives were impregnated onto 

commercial carbon (AR). Impregnation conditions (PEI NL, stirring time and 

solvent type) were the same as those used in section 6.2.4. As seen in Table 

6-12, a lower weight of polymer was actually loaded onto the carbon support 

after monoethanolamine (MEA) impregnation. This result was in line with the 

less dramatic pore blockage exhibited by AR-MEA (see Table 6-12 and Figure 

6-23). It is worth pointing out that, as seen in Figure 6-24, AR-MEA exhibited a 

different pore size distribution in comparison to those observed for AR-PEI and 

AR-tetraethylenepentamine (TEPA). In particular, despite, or perhaps because 

of, the MEA molecule being smaller than TEPA and PEI, MEA impregnation 

appeared to cause a lower reduction of microporosity than that experienced by 

AR-TEPA and AR-PEI. This observation seems to suggest that part of the 

amount of TEPA and PEI (larger molecules than MEA) loaded onto the carbon 

support might have not entered micropores. Indeed, as also suggested by 

Gibson et al. [116], TEPA and PEI might have simply blocked micropores for 

nitrogen adsorption. 

Although MEA is a primary amine, thus implying a higher basicity than 

that featured by secondary amines, the impregnation of this compound did not 

bring any significant improvement to the CO2 sorption capacity of the pristine 

carbon (see in Figure 6-25). This was attributed to the lower number of amino 

groups available for CO2 chemisorption contained by the MEA molecule, which 

agreed with the lower nitrogen content measured for AR-MEA. 
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Table 6-12 Effect of the impregnating agent - Textural parameters, actual 
loading and N content  

Sample ID 

SBET Vtot Vmi Vme+ma AL N 

m2·g-1 cm3·g-1 cm3·g-1 cm3·g-1 (wt%) (wt%) 

AR 1531 0.691 0.569 0.122 - 0.4 

AR_PEI 610 0.273 0.234 0.039 31 6.9 

AR_MEA 898 0.406 0.342 0.064 16.6 3 

AR_TEPA 593 0.307 0.215 0.092 34.1 5.2 

 

In contrast, as observed in Figure 6-25, a more dramatic enhancement of 

the CO2 sorption performance of the virgin carbon occurred after impregnation 

with PEI or TEPA. This could be ascribed to the higher density of amino groups 

of these molecules. However, this finding might also suggest that secondary 

amines, present within both TEPA and PEI, are mostly responsible for an 

increased affinity with CO2. This is in agreement with what previously found in 

other works [306-308]. Therefore, the enhancement of CO2 capture capacity 

might be due to a combination of N groups’ density and type (i.e. amines). 

It is worth mentioning that chemical modification with TEPA resulted in a 

slightly higher increase of the CO2 capacity of the parent carbon compared to 

that achieved after PEI impregnation. This is consistent with results reported in 

other studies [121, 122, 224, 237, 238], and probably due to favoured physical 

properties (lower viscosity and density, see Chapter 3) of TEPA in comparison 

to those typical of PEI, which might have facilitated the tetraethylenepentamine 

distribution through the pore channels of the carbon support and the CO2 

diffusion through the TEPA bulk. This agrees with what reported by Sanz-Pérez 

et al. [121]. In addition to this, as suggested by Wang et al. [237], this result 

may also be ascribed to the higher density of amino groups present within 

TEPA molecule. Furthermore, because of steric reasons (the PEI molecule is a 

lot larger than TEPA), polyethyleneimine has a higher number of amino groups 

that cannot be easily accessed by CO2, thus leading to a lower CO2 uptake 

compared to that of TEPA [116].  
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Figure 6-23 Effect of impregnating agent - N2 adsorption isotherms 

 

 

Figure 6-24 Effect of impregnating agent - NLDFT PSDs by volume 

 

 

Figure 6-25 Effect of impregnating agent - CO2 uptakes at 53 °C and 0.15 
bar (total pressure of 1 bar)  
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As observed in Figure 6-26, both AR-PEI and AR-TEPA exhibited more 

slowly equilibrating CO2 sorption kinetics compared to that found for the parent 

carbon. On the other hand, impregnated samples attained a significantly higher 

plateau than AR, with AR-TEPA prevailing over AR-PEI. 

Figure 6-27 showed that AR-MEA exhibited a lower regeneration rate 

(i.e. decrease of CO2 uptake·°C-1) than those observed for AR-TEPA and AR-

PEI, probably due to stronger bond between primary amine and carbon dioxide. 

However, as MEA-impregnated carbon captured a negligible amount of CO2, its 

regeneration was accomplished at 100 °C. By contrast, both AR-TEPA and AR-

PEI displayed an easier removal of carbon dioxide with increasing temperature 

but larger amount of residual CO2 at 100 °C. This suggested the choice of a 

higher temperature in an attempt to ensure the full regeneration of these 

chemisorbents. 

Although TEPA-impregnated carbon slightly outperformed PEI-

impregnated support, it was decided to use PEI for following experiments, as 

this compound has a much higher molecular weight than TEPA (see Chapter 3), 

thereby implying a higher thermal stability [237]. This was considered a crucial 

factor when opting for rapid temperature swing adsorption (RTSA) as the 

regeneration strategy. This decision was also supported by a few studies 

reporting a more intense TEPA leaching from solid supports compared to that 

exhibited by PEI when performing cycling tests [29, 116, 121, 122, 224, 237, 

238]. 

 

 

Figure 6-26 Effect of impregnating agent - CO2 adsorption kinetics at 53 °C 
and 0.15 bar (total pressure of 1 bar)  
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Figure 6-27 Effect of impregnating agent - Regeneration (RTSA, 53-100 °C) 

 

6.2.6 Influence of OH group-containing additive 

The successful incorporation of glycerol onto the carbon support was 

corroborated by elemental analysis (see Table 6-13). In particular, H increased 

with increasing amount of glycerol loaded during impregnation. Accordingly, the 

proportion of N relatively decreased for all glycerol-containing samples. 

 

Table 6-13 Effect of glycerol addition - Actual loading and elemental 
analysis; the actual loading measured for the glycerol-containing samples 
refers to the PEI/glycerol mixture. Gly stands for Glycerol. 

Sample ID 

AL N C H S 

(wt%) (wt%) (wt%) (wt%) (wt%) 

AR_PEI 31.0 6.9 74.7 2.8 0.0 

AR_PEI_Gly_4:1 35.6 6.3 77.8 3.0 0.0 

AR_PEI_Gly_2:1 38.2 6.3 75.7 3.2 0.0 

AR_PEI_Gly_1:1 43.4 6.1 74.1 3.3 0.0 
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Figure 6-28 Effect of glycerol addition - CO2 adsorption kinetics at 53 °C 
and 0.15 bar (total pressure of 1 bar). 

 

Table 6-14 Effect of glycerol addition - CO2 uptakes (CO2, ads max) at 53 °C 
and 0.15 bar (total pressure of 1 bar), and amine efficiency. N* represents 
the amount of nitrogen actually incorporated after impregnation of PEI or 
PEI/glycerol blend onto the carbon support, and is calculated by 
subtracting the N content of AR (see Table 6-1) from the N levels 
measured for impregnated samples (see Table 6-13). The CO2, ads max /N* 
molar ratio is then calculated as (CO2, ads max/N*)·(MW(N)/MW(CO2)), where 
CO2, ads max is expressed as wt%. 

 
CO2, ads max N* CO2, ads max:N* molar ratio 

Sample ID mg CO2·g-1 wt% wt% - 

AR_PEI 33.6 3.36 6.54 0.164 

AR_PEI_Gly_4-1 23.7 2.37 5.90 0.128 

AR_PEI_Gly_2-1 24.3 2.43 5.93 0.130 

AR_PEI_Gly_1-1 24.1 2.41 5.71 0.134 

 

However, as clearly depicted by Figure 6-28, the addition of glycerol to 

the PEI/solvent/carbon mixture did not improve the CO2 uptake capability of the 

PEI-impregnated carbon (AR-PEI) under simulated post-combustion conditions. 

This is in contrast with findings reported by previous works for PEI or TEPA-

impregnated silica [214, 216, 233]. Nonetheless, the decrease of the CO2 

adsorption capacity observed in this work when adding glycerol is consistent 

with the lower ratio of moles of CO2 adsorbed per mole of N incorporated after 

impregnation (see values reported in Table 6-14) exhibited by glycerol-doped 

materials compared to that calculated for the glycerol-free sample (AR-PEI).  

The lower CO2 capacity and CO2 captured:N molar ratio (usually defined 

as amine efficiency) exhibited by glycerol-containing samples might be 
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attributed to the additional pore blockage (see Figure 6-29 and Table 6-15) 

caused by the insertion of the glycerol within the porous structure of the carbon 

support. In fact, as given in Table 6-15, increasing amount of glycerol (i.e. 

decreasing PEI:Glycerol ratio) caused a progressive reduction of porosity. This 

might have impeded the access of CO2 to some of the amino groups 

incorporated through PEI impregnation. Diffusional limitations might have 

outweighed the beneficial effect imparted by the presence of OH moieties (i.e. 

increase of theoretical amine efficiency from 0.5 to 1) [115, 216, 232]. The 

porosity reduction trend reflected the larger overall loading observed with 

increasing amount of glycerol (i.e. decreasing PEI:Glycerol ratio) as given in 

Table 6-13. 

Nonetheless, when comparing glycerol-modified samples only, the 

CO2:N ratio in Table 6-14 appears to slightly increase with increasing amount of 

glycerol added (i.e. decreasing PEI:Glycerol ratio). This seems to indicate that 

the amine efficiency is favoured by a higher amount of hydroxyl groups, which 

might have interacted with amino groups to a low extent in order to enhance the 

CO2 chemisorption mechanism [115, 216, 232]. This observation is consistent 

with the fact that the reduction of the maximum CO2 uptake capacity appears to 

be independent of the PEI:Glycerol ratio (and therefore from the pore volume 

reduction). It follows that, with increasing amount of glycerol loaded onto the 

carbon support, the higher amine efficiency might have counteracted the 

adverse effect of pore blockage (i.e. lower gas diffusivity). 

It is also worth mentioning that the CO2:N molar ratio calculated for AR-

PEI (0.164, see Table 6-14) is lower than the maximum theoretical value under 

dry conditions reported in the literature (i.e. 0.5 [116, 216-218]). This was partly 

due to some of the N functionalities contained within PEI, with particular regard 

to tertiary amines, which are not effectively contributing to the CO2 conversion 

process, as these are not able to form carbamate under dry conditions (i.e. their 

theoretical amine efficiency is 0) [232]. Indeed, the actual maximum amine 

efficiency for PEI-modified solid sorbents under anhydrous conditions was 

reported to be 0.39 [215], assuming a primary:secondary:tertiary amine ratio of 

44:33:23 within low molecular weight (800 g·mol-1) PEI [309]. In addition to this, 

some of the primary and secondary amines might have not been accessible to 

carbon dioxide because of diffusion resistance through the PEI film. 

Nevertheless, the amine efficiency exhibited by AR-PEI is as high as [215, 237] 

or slightly lower [231] than other values reported in the literature for PEI-

supported sorbents in absence of water.  
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Figure 6-29 Effect of glycerol addition - N2 adsorption isotherms. 4:1, 2:1 
and 1:1 are the PEI:Glycerol ratios examined. 

 

Table 6-15 Effect of glycerol addition - Textural parameters 

Sample ID 

SBET Vtot Vmi Vme+ma 

m2·g-1 cm3·g-1 cm3·g-1 cm3·g-1 

AR_PEI 610 0.273 0.234 0.039 

AR_PEI_Gly_4:1 386 0.198 0.148 0.050 

AR_PEI_Gly_2:1 247 0.130 0.093 0.037 

AR_PEI_Gly_1:1 148 0.094 0.055 0.039 

 

In order to appreciate the effect of the glycerol addition on the variation of 

the CO2 adsorption rate, the CO2 sorption kinetics measured for glycerol-free 

and glycerol-containing samples were normalized by their relative maximum 

uptake (see equation related to the CO2 adsorption progress used in Chapter 

5). In fact, when comparing the CO2 adsorption progress in Figure 6-30, it is 

possible to observe that, at the very beginning of the adsorption stage (i.e. t<3 

min), AR_PEI_Gly_4:1 shows a slightly faster CO2 uptake rate than that 

measured for AR-PEI. Previous studies reported an acceleration of the CO2 

adsorption rate when adding PEG to PEI-impregnated sorbents [123, 217]. 

Moreover, Labreche et al. [214] postulated that the addition of glycerol might 

hasten the adsorption process as the rigid PEI chain is plasticized, thus 

favouring the diffusion of CO2 through the polymer gel. In spite of this, these 

authors did not show the effect of the glycerol on the CO2 adsorption kinetics. 

However, the CO2 adsorption progress of all glycerol-containing samples 

decreased with increasing time. In addition, the greater the pore reduction (see 

Figure 6-29), the slower sorption rate is, following the sequence 

AR_PEI_Gly_1:1<AR_PEI_Gly_2:1<AR_PEI_Gly_4:1. This seems to suggest 

that the slower kinetics in the late stage of the adsorption process exhibited by 
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glycerol-doped sorbents might be ascribed to pore blockage and consequent 

diffusional limitations. 

Furthermore, in an attempt to highlight the influence of the additive (i.e. 

glycerol) on the CO2 desorption rate, the same normalization was also applied 

to the CO2 desorption kinetics of all the samples. In particular, as illustrated in 

Figure 6-31(b), when the CO2 desorption progress is considered, all glycerol-

plasticized samples exhibited a noticeably faster release of CO2, especially at 

higher temperature. As suggested by Yue et al. [216], more facile regeneration 

of the chemisorbent may occur because, when hydroxyl groups are present, a 

less thermally stable carbamate type zwitterion is formed. 

 

 

Figure 6-30 Effect of glycerol addition - CO2 adsorption progress at 53 °C 
and 0.15 bar (total pressure of 1 bar). Inset shows the first 3 min of the 
CO2 adsorption step.  
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Figure 6-31 Effect of the glycerol addition: (a) CO2 desorption kinetics and 
(b) CO2 desorption progress at 53-100 °C and 0.15 bar (total pressure of 1 
bar). 

 

6.3 Detection of PEI on the optimally PEI-impregnated carbon 

The presence of PEI inside the carbon pores is confirmed by the dramatic 

reduction of the N2 volume that can be adsorbed after PEI impregnation (Figure 

6-32 (a)). However, as shown by Figure 6-32(b), the PEI-loaded carbon 

exhibited a larger CO2 adsorption capacity at 0 °C than that of the virgin carbon. 

Figure 6-32(b) also highlights how the CO2 isotherm shapes for the two 

samples are somewhat different, as shown by the initial steeper plot exhibited 

by the PEI-modified carbon at low-pressure values. This behaviour is explained 

by the increased affinity of the PEI-loaded carbon for carbon dioxide due to the 

presence of the N-based functionalities contained in the polymer.  
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Figure 6-32 N2 (a) and CO2 (b) adsorption isotherms for virgin and 
optimally PEI-impregnated carbons 

 

The Scanning Electron Microscope (SEM) micrographs in Figure 6-33 

depict the cross sections of virgin carbon and polymer-impregnated carbon. 

Although the overall morphology is maintained, it is noticeable that some of the 

macropores of the carbon substrate were partially blocked by PEI impregnation. 

 

 

Figure 6-33 Back-scattered SEM micrographs at 1 Kx magnification of the 
cross-section of (a) virgin and (b) optimally PEI-impregnated carbons  
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Figure 6-34 shows significant differences in the Thermogravimetric 

Analysis (TGA) of virgin and PEI-impregnated carbons. First, as seen in Figure 

6-34(a), the PEI-modified sample experienced a more pronounced weight loss 

occurring at lower temperature. This might be due to liberation of a higher 

amount of trapped moisture due to the hygroscopic nature of the polymer [217]. 

The peak shown by the Differential Thermogravimetric Analysis (DTGA) curve 

indicates that the highest mass loss occurs at ca. 100 °C (see Figure 6-34 (b)). 

Secondly, the TGA profile of the PEI-loaded sample revealed a much larger 

weight loss between 150 °C and 500 °C. 

This can be ascribed to the polymer decomposition [310] with the 

liberation of volatile material and / or volatilization although the polymer can 

nevertheless be regarded as being relatively thermally stable. According to the 

DTG curve of the PEI-impregnated carbon, the polymer started this process at 

around 175 °C [311] as shown by the additional peak. No significant weight loss 

was observed above 600 °C, suggesting that evolution of volatile material was 

completed by this stage. 

 

 

Figure 6-34 (a) TGA and (b) DTGA of virgin and optimally PEI-impregnated 
carbons 

 

As shown by Figure 6-35, the carbon’s basicity significantly increased 

after the impregnation of polyethyleneimine. This is due to the incorporation of 

N-containing functionalities present within the polymer. Conversely, a seemingly 

negative concentration of acidic groups was found for the PEI-impregnated 

carbon. Acidic groups, which were present in already very small quantities for 

the parent carbon, might have been neutralized by the polymer. Nevertheless, 
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standard solution (0.05 M NaOH) used to neutralize acidic groups, some of the 

polymer’s basic groups might have actually been transferred into the liquid 

phase (supernatant), thereby increasing its alkalinity. This would result in a 

seemingly negative quantity of acidic groups since this is assayed by difference 

between the concentrations of alkaline species in the supernatant before and 

after exposure to the PEI-impregnated carbon. 

 

 

Figure 6-35 Surface functional group concentrations assayed for virgin 
and optimally PEI-impregnated carbon 

 

 

Figure 6-36 Comparison of X-ray Photoelectron Spectroscopy (XPS) 
survey scan spectra measured for virgin and optimally PEI-impregnated 
carbons. C/S indicates the counts per second. Inset shows the 
deconvoluted N1s spectra for the PEI-modified carbon. 

 

Conclusive evidence of the successful impregnation of PEI onto the 

carbon support was given by XPS (see Figure 6-36). Indeed, from the survey 

scan spectra shown in Figure 6-36 it is possible to observe a well-defined N1s 

peak at ca. 399.2 eV for the PEI-loaded carbon. This is typical of N 

functionalities of PEI as reported by Drage et al. [234], who measured a N1s 
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Le et al. [312] reported a N1s peak at 398.2 eV for a PEI-coated mesoporous 

silicate (MCM-41). The slight shift in the position of the N1s peak measured in 

this study might be ascribed to a different interaction between PEI and the 

carbon support compared to that occurring with silica-based substrates. It is 

worth mentioning that Maroto-Valer et al. [313] reported a predominant 

presence of pyridine and imine groups on a PEI-impregnated carbon derived 

from anthracite, whereas no amino groups were identified by these authors. 

This is in contrast with results found in this work, as in this case N1s peak could 

be reasonably attributable to the amino groups of the PEI chain. 

C1s and O1s peaks were recorded at ca. 284 eV and 532 eV respectively 

for both samples. Note that the dramatic decrease of the intensity of all the 

peaks (with particular regard to the carbon peak) in the PEI-impregnated 

sample seemed to corroborate the presence of the polymer within the pores of 

the carbon support. 

 

6.4 Sorption kinetics modeling 

The CO2 sorption kinetics measured for the virgin (AR) and the PEI-

modified commercial carbon (AR-PEI) were fitted to two models, i.e. pseudo 

first order and pseudo second order, whose equations can be found elsewhere 

[314]. Model parameters were calculated with the aid of Origin Pro software by 

minimizing the square of residuals (SOR). 

As clearly shown both in Figure 6-37(a) and Figure 6-37(b), both models 

failed at predicting the early stage of the CO2 adsorption process occurring onto 

the sorbents tested. However, the absence of CO2 uptake observed for t<ca. 1 

min might be attributed to an artefact due to the experimental measurement 

conducted using TGA. [315]. Specifically, when switching the atmosphere from 

nitrogen to carbon dioxide (see Chapter 4 for further details), CO2 does not 

instantaneously displace the N2 present within the TGA chamber and 

surrounding the sample. Accordingly, the adsorption of CO2 onto the solid 

material is delayed. 

Nonetheless, as concerns AR, both models exhibited a poorer fit of the 

experimental data over the entire equilibration time (see Figure 6-37). This was 

likely because of the fast kinetics exhibited by AR at the early stage of the 

adsorption process, which does not agree with the model’s predictions. In 

addition to this, the lack of agreement between experimental and model kinetics 

is caused by the decreasing trend of AR’s sorption capacity with increasing 

time. These results seem to suggest that pseudo first order and pseudo second 

order models are not suitable for interpreting pure physisorption. 
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Figure 6-37 Sorption kinetics fitting for (a) virgin commercial carbon (AR) 
and (b) PEI-modified commercial carbon (AR-PEI) 

 

In contrast, a relatively better fit was observed when correlating models 

to the experimental CO2 sorption kinetic measured for AR-PEI (see Figure 

6-37(b)), with higher values of R2 than those determined for AR (see Table 

6-16). The improved fitting of the experimental data may be attributed to the 

presence of a chemisorption contribution in AR-PEI’s sorption process. In 

addition to this, it is worth noting that AR-PEI’s sorption kinetic was better 

interpreted by the pseudo first order model (see R2 values in Table 6-16). This 

is in contrast with what reported by Aroua et al. [316], who measured the Pb2+ 

adsorption kinetics for PEI-impregnated AC. Indeed, these authors found that 

experimental sorption data were best fitted by the pseudo second order model. 

This might be due to a different interaction between PEI and Pb2+ in comparison 

with that between the polymer and CO2. 
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Table 6-16 Kinetic model parameters for CO2 sorption onto virgin (AR) and PEI-modified commercial carbon (AR-PEI) 

  
Pseudo 1st order Pseudo 2nd order 

 
qe, exp

60 qe, mod
61 K1

62 R2 qe, mod K2
63 R2 

Sample ID mg CO2·g-1 mg CO2·g-1 min-1 - mg CO2·g-1 g·mgCO2
−1·s−1 - 

AR 8.28 8.83 0.86 0.80 9.23 0.17 0.65 

AR-PEI 33.60 33.08 0.39 0.95 36.68 0.01 0.90 

 

                                            

60 CO2 adsorbed capacity at equilibrium measured experimentally 

61 CO2 adsorbed capacity at equilibrium predicted from the model 

62 Rate constant of pseudo-first-order adsorption 

63 Rate constant of pseudo-second-order adsorption 
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6.5 Assessment of CO2 capture performance of the optimally 

PEI-impregnated carbon 

6.5.1 Comparison with virgin AC and benchmark sorbent (Z13X) 

6.5.1.1 35 °C, 100 % CO2 

As seen in Figure 6-38, at high partial pressure of CO2 both AR and 

zeolite Z-13X attained larger CO2 uptakes than that exhibited by the PEI-

modified carbon. The latter was evidently hindered compared to the parent 

carbon because the polymer took up the pore space, thus deactivating part of 

the (physi)sorption sites.  

N2 adsorption data reported in Table 6-2 highlighted a far more 

developed porous structure for AR compared to that of zeolite. Nevertheless, 

the higher uptake of CO2 achieved by Z13X could be ascribed to the larger 

ultramicropore volume (0.105 cm3∙g-1) measured for this material by CO2 

adsorption at 0 °C, compared to that found for AR (0.026 cm3∙g-1).  

 

 

Figure 6-38 CO2 uptakes measured at 35 °C and 1 bar (total pressure of 1 
bar): comparison of virgin carbon, optimally PEI-impregnated carbon and 
Z13X  
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Figure 6-39 Regeneration (RTSA, 35-100 °C): comparison of virgin carbon, 

optimally PEI-impregnated carbon and Z13X 

 

As shown in Figure 6-39, both AR and Z13X released CO2 more easily 

than AR-PEI during the desorption step. Nonetheless, especially for zeolite, 

regeneration was not fully accomplished, as samples exhibited residual 

adsorbed CO2 at 100 °C. Figure 6-39 also shows a higher retention of CO2 (see 

less step slope) for AR-PEI, especially at lower temperature (see cross over 

between AR-PEI and AR desorption profiles at ca. 65 °C). This seems to 

indicate a stronger interaction (i.e. chemisorption) between CO2 and the PEI-

coated carbon, which could be attributed to the basic character of the N 

functionalities incorporated onto the carbon structure. 

 

6.5.1.2 Simulated post-combustion performance 

As shown by Figure 6-40, when measuring CO2 uptakes under simulated 

post-combustion conditions (53 °C and 0.15 bar CO2 partial pressure (total 

pressure of 1 bar)), the PEI-impregnated carbon showed the largest CO2 

sorption capacity. In particular, a capability improvement of ca. 4 times 

compared to the parent carbon was recorded (see also Table 6-3). Moreover, 

the CO2 uptake of the modified carbon was even higher than that measured for 

Z13X. Furthermore, the CO2 sorption kinetic observed for PEI-loaded carbon is 

much faster than that measured for zeolite. In fact, after 5 min, AR-PEI 

achieved most of its CO2 uptake, which was nearly 2 times larger than that 

attained by Z13X at the same stage. In contrast, the zeolite had not reached 

saturation after 30 min. This suggests PEI-modified carbon to be a more 

promising CO2 sorbent under real world operating conditions when fast sorption 

kinetics are required [58].  
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Figure 6-40 CO2 uptakes at 53 °C and 0.15 bar (total pressure of 1 bar): 
comparison of virgin carbon, optimally PEI-impregnated carbon and Z13X 

 

In addition to faster sorption rates, the optimally PEI-impregnated carbon 

also exhibited a higher selectivity toward carbon dioxide compared to that 

observed for Z13X. Indeed, as shown in Figure 6-41, when exposing samples to 

pure nitrogen at 53 °C (total pressure of 1 bar), both virgin and PEI-modified 

carbons did not exhibit any gas uptake. In addition, the weight of the unmodified 

carbon (AR) seems to decrease slightly, thereby suggesting desorption of some 

of the nitrogen previously adsorbed. Conversely, despite a very slow sorption 

rate, zeolite appeared to adsorb a significant amount of nitrogen. The slow 

uptake of N2 might be explained through the hydrophilicity of this sorbent [214]. 

In particular, as samples were not stored in a desiccator, zeolite might have 

adsorbed more water from the air compared to carbon, which is normally more 

hydrophobic. Thus. apparently, nitrogen may be slowly displacing the moisture 

molecules pre-adsorbed onto the zeolite porous framework. On this basis, it is 

possible that the sorption capacity previously exhibited by Z13X in Figure 6-40 

may not be entirely ascribed to uptake of CO2. 

However, results related to the measurement of samples’ sorption 

kinetics under pure N2 seem to agree with the sorbents’ behaviour during the 

cooling stage performed under nitrogen (see Figure 6-42) immediately before 

measuring adsorption under 15% CO2/85% N2. Indeed, sample weights 

recorded for AR and AR-PEI exhibit a low plateau at saturation, whereas 

Z13X’s sample weight continuously increases with increasing time without 

equilibrating.  

Overall, these findings highlighted that the affinity between sorbents and 

nitrogen followed the sequence Z13X>AR>AR-PEI, thus suggesting that not 

only PEI-modified carbon was less sensitive to N2 compared to zeolite, but also 

that the presence of polymer within AR’s porous structure ensured an increased 

selectivity towards capturing CO2.  
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Figure 6-41 Pure N2 uptakes measured at 53 °C and 1 bar: comparison of 
virgin carbon, optimally PEI-impregnated carbon and Z13X 

 

 

Figure 6-42 Preliminary adsorption of nitrogen during 22 min cooling 
stage prior to measuring CO2 uptakes at 53 °C and 0.15 bar (total pressure 
of 1 bar) 

 

As shown by Figure 6-43, the very low amount of CO2 adsorbed onto the 

virgin carbon was completely removed at ca. 85 °C. Conversely, the 

regeneration of zeolite and PEI-modified carbon was not efficient at 100 °C 

probably because of the stronger interaction between CO2 and these materials. 

This dictates the need for a higher temperature to effectively regenerate the 

sorbents. In particular, the amount of CO2 adsorbed by Z13X remained nearly 

unaltered until temperature was ca. 75 °C. Note that the slight apparent 

increase in uptake at lower temperatures was probably due to buoyancy effects 

when increasing the system temperature. Nonetheless, the stronger bond 

between Z13X and CO2 could be attributed to the interaction between the 

permanent quadrupole moment of carbon dioxide and the electric field induced 

by the cations present within the zeolite network [58, 69, 317]. This electrostatic 
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force outweighs Van der waals interactions [59] typical of activated carbons. In 

addition to that, Z13X’s desorption behaviour might be explained by the 

formation of carbonates and carboxylates on the surface of the zeolite after 

reaction with CO2, which are regenerated only at high temperature (350 °C) 

[12]. 

The stronger bond between PEI-loaded carbon and CO2 led to the far 

more intense exothermic peak exhibited by the modified carbon’s heat flow 

compared to that observed for AR (see Figure 6-44). This clearly indicated a 

chemisorption of CO2 as also suggested by the value of heat of adsorption (69 

kJ·mol-1, see Table 6-17) calculated for the PEI-coated carbon, which falls in 

the range of values usually associated with chemisorbents [58]. It is worth 

pointing out that it was possible to quantify a reliable figure of the adsorption 

enthalpy (i.e. integral of heat flow curve) for AR and AR-PEI because these 

exhibited a distinct peak as atmosphere was changed to 15% CO2 (see Figure 

6-44). On the other hand, samples did not attain any well-defined peak during 

desorption stage, thus not discrimination between contributions from nitrogen 

and carbon dioxide. 

 

 

Figure 6-43 Regeneration (RTSA, 53-100 °C): comparison of virgin carbon, 
optimally PEI-impregnated carbon and Z13X  
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Figure 6-44 Heat flow related to adsorption and desorption of CO2 under 
simulated post-combustion conditions: comparison of virgin carbon and 
optimally PEI-impregnated carbon 

 

 

Figure 6-45 Heat flow related to adsorption and desorption of N2 under 
simulated post-combustion conditions: comparison of virgin carbon and 
optimally PEI-impregnated carbon 

 

However, in an attempt to disentangle the influence of the two gases on the 

heat flow related to the desorption process, values reported in Table 6-18 were 

corrected for the contribution associated with desorption of pure nitrogen (see 

methodology description in Chapter 3). In particular, the integral of the heat flow 

measured under pure nitrogen (Figure 6-45) was subtracted from the integral 

value obtained under 15% CO2/85% N2 mixture (Figure 6-44) over the same 

interval (30-40 min). In addition to this, the actual moles of desorbed CO2 were 

assumed to be yielded by the (CO2 + N2) moles desorbed from the sample 

under 15% CO2/85% minus the (N2) moles desorbed from the sample under 
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pure nitrogen (see Figure 6-45). The heat of adsorption/desorption was then 

calculated as total enthalpy of adsorption/desorption divided by the 

adsorbed/desorbed moles of CO2. 

 

Table 6-17 Differential Scanning Calorimetry (DSC) data related to the 
adsorption of CO2 - Total enthalpy was calculated as the integral of heat 
flow for 0<t<30 min. Heat of adsorption was calculated as total enthalpy 
divided by adsorbed moles of gas. 

Sample ID 

Adsorption 

Total enthalpy Adsorbed CO2 Heat of adsorption (ΔHads) 

mJ mol kJ·mol-1 

AR 137 3.9E-06 35 

AR_PEI 1717 2.5E-05 69 

 

 

Table 6-18 DSC data related to desorption of CO2 and pure N2. Total 
enthalpy was calculated as the integral of heat flow for 30<t<40 min. Heat 
of desorption was calculated as total enthalpy divided by desorbed moles 
of gas. 

Sample ID 

Desorption 

Total enthalpy Desorbed CO2 Heat of desorption (ΔHdes) 

mJ mol kJ·mol-1 

AR_tot 64 833 5.2E-06 159 

AR_N2 
65 721 2.5E-06 - 

AR_CO2 
66 112 2.7E-06 41 

AR-PEI_tot 2306 1.6E-05 145 

AR-PEI_N2 1232 1.8E-06 - 

AR-PEI_CO2 1073 1.4E-05 76 

 

Corrected values of the heat of desorption approximately agree with the 

heat of adsorption figures (see Table 6-17 and Table 6-18 respectively) for both 

samples. Note that, the slightly higher heat of desorption data obtained might be 

                                            

64 Run under 15% CO2/85% N2 mixture (see Figure 6-44) 

65 Run under pure N2 (see Figure 6-45) 

66 Corrected estimation. Values of total enthalpy and desorbed moles of CO2 
were calculated by difference (19-20) 
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explained through a higher amount of N2 adsorbed onto the samples under pure 

nitrogen atmosphere (no competition from CO2). The extra moles of adsorbed 

nitrogen would then imply an underestimation of the actual moles of adsorbed 

CO2, and therefore resulting in slightly higher values of the corrected heat of 

desorption. As given in Table 6-18, the heat of desorption measured for the 

PEI-loaded carbon was ca. 76 kJ∙mol-1 is in agreement with the less easy 

regeneration observed for this sample in comparison to AR (see Figure 6-43). 

This further corroborates the existence of a chemisorption contribution in the 

CO2 uptake process for AR-PEI. Interestingly, the desorption enthalpy required 

for the regeneration of the PEI-modified carbon was much lower than the 

energy consumption needed to regenerate a 30% MEA solution (209 kJ∙mol-1) 

[30]. 

 

6.5.2 Cyclic post combustion capture for the optimally PEI-

impregnated carbon 

Figure 6-46 illustrates the main steps of the cyclic run performed for the 

optimally PEI-impregnated carbon. In particular, after degassing the sample for 

30 min under N2, the material was subjected to multiple cycles. Each cycle 

consisted of three main stages. First, sample was cooled down from 120 °C 

(degassing/regeneration temperature) to ca. 53 °C (sorption temperature). 

During this stage (ca. 22 min) the sample weight increased, thus indicating a 

minor uptake of nitrogen onto the material. After this (at ca. 52 min), the 

atmosphere was switched to 15% CO2/85% N2 and the sorption kinetic was 

measured for 30 min. Finally, the solid sorbent was regenerated by swinging the 

temperature up to 120 °C. This step was quite fast (ca. 14 min) in order to 

simulate RTSA as the regeneration strategy. At the end of the regeneration 

step, atmosphere was then switched back to pure nitrogen in order to start the 

second cycle.  
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Figure 6-46 Illustration of RTSA cycling experiment (first 2 cycles only) 
carried out for the optimally PEI-impregnated carbon under simulated 
post-combustion conditions (T=ca. 53 °C, PCO2=0.15 bar, Ptot=1 bar). 

 

Figure 6-47 illustrated the energetic processes occurring during the first 

RTSA cycle of the CO2 sorption test. The upward (exothermic) DSC peak was 

associated with the adsorption of CO2 as also shown by the increase of sample 

weight. The position of the heat flow peak indicates that the highest CO2 uptake 

rate was achieved at ca. 2.5 min. Indeed, the speed of adsorption appeared to 

become slower and slower with increasing time. During the desorption stage the 

sample was heated up in order to remove CO2 from the sorption sites. This 

endothermic process caused a negative heat flow from the sample as reflected 

by the heat flow profile which starts to decline at t=30 min. 

 

Figure 6-47 Heat flow related to adsorption and desorption of CO2 under 
simulated post combustion conditions during the first RTSA cycle 

 

The regeneration performance of the best performing PEI-impregnated 

carbon over 10 cycles is reported in Figure 6-48(a). Despite the sample’s high 
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heat of desorption (see Table 6-17), CO2 was fully desorbed after each cycle at 

a relatively low temperature (120 °C). Moreover, the desorption kinetics 

exhibited by AR-PEI were quite rapid, with sorbent being regenerated in ca. 14 

minutes. This suggests that RTSA could be successfully applied as the 

regeneration strategy in a real world application.  

Furthermore, as seen in Figure 6-48(b), the maximum CO2 capacity of the 

sample remained nearly constant over ten adsorption-desorption cycles, thus 

demonstrating a potential long lifetime for the PEI-modified carbon. The slightly 

decreasing trend might be due to urea formation, as this is not removed at 120 

°C [214]. Additionally, it is worth mentioning that the sorption capacity of the 

polymer-loaded carbon would probably be even larger under real post-

combustion conditions because the presence of moisture in the flue gas (not 

considered in this study) is believed to enhance the chemisorption of CO2 onto 

amines [230]. 

 

 

Figure 6-48 (a) Regeneration performance and (b) Cyclic capacity over ten 
RTSA cycles for the optimally PEI-impregnated carbon 

 

6.6 Chapter Conclusions 

The CO2 sorption capacity of an activated carbon under simulated post-

combustion conditions was successfully enhanced through wet impregnation of 

amines. Polyethyleneimine was initially chosen as the main impregnating agent. 
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The PEI impregnation was systematically optimized. The characterization of the 

optimally PEI-impregnated carbon confirmed that PEI was successfully loaded 

onto the porous network of the virgin carbon support. 

A primary optimization was performed by maximizing post combustion 

CO2 uptakes at 53 or 77 °C as a function of the polymer loading, the stirring 

time of the polymer/solvent/carbon mixture and the solvent type used to 

dissolve the polymer.  

Interestingly, for the same (optimal) polymer loading and for any solvent 

and sorption temperature, a prolonged agitation (i.e. stirring time>0.5 h) during 

polymer impregnation led to a general improvement of the CO2 sorption 

capacity of the PEI-impregnated samples. However, the value of the stirring 

time that maximized CO2 uptake varied depending upon the solvent type and 

the sorption temperature. Overall, it was noticed that, under identical conditions 

of polymer loading and solvent type, the fraction of pore volume filled with 

polymer increased with increasing stirring time. Therefore, the increase of CO2 

uptake, despite decreasing pore volume, was attributed to the beneficial effect 

of a thorough agitation at engendering a good dispersion of the polymer into the 

pore channels, thus leading to an optimized exploitation of the carbon support. 

Moreover, the positive effect of the stirring time on the CO2 capture capacity of 

PEI-impregnated samples (using methanol as solvent) measured at 53 °C was 

independent of the polymer loadings examined (i.e. the same trend was 

observed for PEI loadings other than the optimal value). 

A more complex discussion is required to explain the effect of the 

remaining parameters on the optimization of the CO2 capture performance of 

the PEI-loaded carbons. This was because of a mutual dependency of these 

factors. In particular, the solvent type seemed to affect the amount of polymer 

loaded onto the carbon-based supports. Specifically, for a given value of stirring 

time, higher amounts of PEI were generally loaded onto the carbon when water 

was used as solvent. In addition, for a given nominal loading of PEI, the optimal 

solvent could thus vary because the actual PEI loading which resulted in 

maximum CO2 uptake varied depending upon sorption temperature. 

For instance, when measuring CO2 uptakes at 53 °C, the impregnation 

conditions that maximized sorption capacity were: a nominal loading of 44 wt% 

(actual loading of ca. 29.6 wt%), a stirring time of 8 h and methanol as solvent. 

These conditions also gave rise to fast sorption kinetics, thus not implying 

significant diffusion limitations. In contrast, under identical conditions of nominal 

PEI loading and stirring time, lower CO2 uptakes accompanied by slower 

kinetics were observed when using water as solvent. This was because of the 

higher impregnation efficiency in aqueous solvent (i.e. actual loading up to 34.3 

wt%). Although this seems to suggest water as a better carrier for polymer 

dispersion, the higher amount of PEI actually introduced within the porous 

channels of the carbon during aqueous impregnation reduced the CO2 
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diffusivity through the polymer film at low temperature (i.e. 53 °C). In fact, when 

high amounts of polymer are coated onto the pores of the carbon support, CO2 

uptake is a diffusion-controlled process, which entails a trade-off in terms of 

CO2 capacity at lower temperatures (i.e. 53 °C). However, the more 

environmentally friendly (i.e. aqueous) impregnation resulted in CO2 uptakes 

(32.1 mg CO2·g-1) nearly as large as the optimal uptake (33.6 mg CO2·g-1) 

attained when methanol was used, but using a lower amount of polymer 

(nominal loading of 38 wt%, corresponding to an actual loading of 28.6 wt%) 

and shorter impregnation durations (2 h). 

Nevertheless, when measuring CO2 uptakes at higher temperature (77 

°C), the CO2 sorption capacity decreased for most of the impregnated samples. 

This was attributed to a more dominant desorption process occurring at higher 

temperature. In spite of this, for either of the solvents used (methanol or water), 

the CO2 sorption capability was now maximized by a higher PEI loading (50 

wt%). In addition to this, for identical optimal conditions of nominal PEI loading 

(50 wt%) and stirring time (4 h), the more environmentally sound (i.e. aqueous) 

impregnation led to larger uptakes (27.3 mg CO2·g-1) than those achieved when 

solvent was methanol (22.5 mg CO2·g-1). This was  because water facilitated 

higher actual PEI loading which, at this higher temperature, enabled higher CO2 

uptake due to a combination of more amine groups (from more polymer), which 

were more accessible to CO2 due to its enhanced diffusivity at 77°C. In addition, 

for these reasons, AR_PEI_50%_W_4h was the only sample experiencing an 

improvement of the CO2 sorption capacity when temperature was raised from 

53 to 77 °C because the higher temperature allowed the sample to exploit its 

high polymer loadings (an actual loading of up to 38.8 wt% was measured for 

AR_PEI_50%_W_4h) as CO2 diffusion capability increased. Specifically, when 

increasing temperature from 53 to 77 °C, the CO2 transport from the external 

surface of the support toward the polymer bulk loaded inside the pores was 

accelerated. Therefore, more (chemi)sorption sites (i.e. amino groups) could 

become accessible to participate in CO2 capture. 

Therefore, if capture is to be accomplished at 77 °C, the more 

sustainable solvent (i.e. water) is preferred to methanol for preparing PEI-

impregnated sorbents. Moreover, this higher temperature regime would require 

less cooling, as the flue gas would only need to be cooled down to 77 °C rather 

than 53 °C prior to entering the capture unit. Accordingly, cost associated with 

RTSA cycling would be potentially reduced. 

Under optimal conditions of nominal PEI loading, stirring time and 

solvent, the use of a more porous carbon support (OW800CA) allowed the 

loading of a much higher amount of polymer. On the other hand, this resulted in 

a complete blockage of the support porosity, thus increasing diffusional 

limitations. Accordingly, PEI-impregnation of OW800CA led to a very limited 

improvement of the CO2 sorption capacity at 53 °C. This was also ascribed to 

the higher number of acidic groups measured for the oak wood-based support. 
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Acidic functionalities are expected to react with amino groups, thus neutralizing 

their CO2 chemisorption potential. 

Interestingly, the impregnation of TEPA onto the commercial carbon led 

to larger uptakes (39.2 mg CO2·g-1) than those attained when loading PEI (33.6 

mg CO2·g-1). This was ascribed to the more favourable physical properties 

featured by the tetraethylenepentamine molecule. In spite of this, PEI was 

selected as optimal impregnating agent because of its higher thermal stability, 

which was believed to be a key factor for minimizing amine leaching during 

RTSA cycling. In contrast, impregnation with MEA did not lead to any 

improvement of the CO2 sorption capacity of the unmodified carbon. 

The addition of glycerol to the mixture PEI/carbon/solvent did not bring 

any enhancement of the CO2 sorption capacity. However, a moderate increase 

of speed of adsorption/desorption was observed. This was likely caused by the 

change of the chemisorption mechanism in presence of hydroxyl groups. 

Under simulated post-combustion conditions (i.e. 53 °C and 0.15 bar 

partial pressure of CO2), the best-performing PEI-impregnated sample attained 

a CO2 sorption capability nearly 4 times larger than that achieved by the parent 

material. Amine-functionalization caused an increase of the heat of 

adsorption/desorption to values typical of a chemisorption process, which 

accounted for the improved selectivity of the sorbent for capturing CO2 at higher 

temperatures and lower pressure. The optimally PEI-impregnated carbon also 

exhibited larger uptakes and more rapid sorption kinetics than a benchmark 

sorbent (i.e. Z13X). In spite of this, the CO2 uptake attained by the best sorbent 

synthesized in this work (ca. 0.75 mmol·g-1) is still lower than the target value (3 

mmol·g-1) to be reached in order to make sorption process more convenient 

than chemical absorption onto liquid amines. Moreover, the highest post-

combustion capacity for CO2 measured in this study falls short of the largest 

CO2 uptakes reported in the literature under similar conditions (see Appendix 

C). 

Nevertheless, the best PEI-loaded carbon fabricated in the present work 

was easily regenerated at a relatively low temperature (120 °C) through the 

RTSA strategy. In addition, the energy demand associated with the 

regeneration of the best performing chemisorbent was found to be only one 

third of that required for the state of the art technology (i.e. 30% MEA solution). 

Amine leaching was minimal, as the CO2 sorption capacity remained nearly 

unaltered over ten working cycles. The durability of the sorbent appears to be 

due the thermal stability of the PEI/carbon support blend.
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7 Conclusions 

7.1 Biomass feedstocks  

The application of Laminaria hyperborea (LH_S) for preparing CO2 

sorbents has been presented for the first time in this report. Novel activated 

carbons (ACs) were successfully synthesized through carbonization of the 

unconventional biomass feedstock and subsequent activation of seaweed-

based biochars. Nonetheless, the traditional biomass, i.e. oak wood (OW), 

revealed to be a more suitable raw material for the preparation of highly porous 

carbons. This was mostly due to the lower percentage of inorganics contained 

within wood-based feedstock (1.9 wt%) compared to that found for macroalgae 

(18.1 wt%). As a result, carbonization (in particular pyrolysis) of wood gave rise 

to biochars with higher carbon purity than those obtained after seaweed 

processing. 

However, especially after CO2 activation, wood-derived carbons presented 

a higher extent of porosity. The higher amount of inorganics featured by 

Laminaria hyperborea hindered the formation of pores when mild activation (i.e. 

physical activation) was applied. On the other hand, regardless of the feedstock 

used, when chars were chemically treated (i.e. KOH activation followed by HCl 

washing), resulting ACs had higher purity and larger porosity in comparison to 

physically-activated counterparts. This was ascribed to the demineralization 

occurred upon acid washing. Nonetheless, under the same conditions, chemical 

activation of Laminaria hyperborea implied much lower product yields than 

those measured after chemical treatment of oak wood. This seems to suggest 

that the production of chemically-activated macroalgae on an industrial scale 

would be uneconomical. 

Pyrolysis of wood followed by chemical activation was found to be a good 

compromise between product yield and porosity enhancement. Moreover, AC 

obtained through this preparation route attained the highest CO2 uptake (ca. 70 

mg CO2·g-1) at 35 °C, PCO2=1 bar and Ptot=1 bar. This result appears to indicate 

chemically-activated wood as a promising sorbent for pre-combustion 

applications (e.g. Ptot=30 bar). 

Chemical characterization of wood-based materials revealed a 

predominant presence of Ca-containing compounds (e.g. calcium hydroxide, 

calcium carbonate) within inorganic matter. Conversely, investigations on the 

chemistry of Laminaria hyperborea-derived products allowed identifying a major 

presence of Na and K chlorides along with magnesium oxide on macroalgae-

based char and physically activated counterpart. It is worth noting that, due to 

the demineralization occurred after HCl washing, the greater part of the 
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inorganic species present onto raw biomass, chars and physically-activated 

carbons were not found within the structure of chemically-ACs. Nevertheless, 

the presence of alkaline species onto biomass-derived samples was reflected 

by the high basicity of the materials, which was proved to play a key role in the 

CO2 uptake process under post-combustion conditions (53 °C, 0.15 bar). In fact, 

in-house ACs outperformed a commercial carbon having better textural 

properties but significantly lower inorganic fractions. However, the effect of 

inorganic matter was more pronounced for seaweed-derived products, showing 

a CO2 (chemi)sorption behaviour similar to that observed for magnesium oxide. 

Interestingly, the exploitation of alkali metals intrinsically contained within 

the structure of macroalgae enabled achieving a greener and cheaper 

fabrication of alkali-based sorbents compared to procedures previously reported 

in the literature. Moreover, the use of a widely available raw material (i.e. 

seaweed) for the manufacture of CO2 sorbents promoted the environmental 

sustainability of the entire process. 

 

7.2 Carbonization routes 

Hydrothermal carbonization (HTC) of biomass used in this work gave rise 

to poorly carbonized chars compared to pyrolysis-derived counterparts. 

Hydrochars had negligible porosity, entirely composed by macropores. In 

contrast, a moderately larger porosity development was achieved after 

pyrolysis, with the creation of microporosity to some extent. The milder heat-

treatment (250 °C) entailed by HTC did not properly devolatilize the raw 

materials. As a result, hydrochars presented a well higher fraction of volatiles 

(up to 58.5 wt%) within their structure compared to that found for pyrolyzed 

derivatives (below 21 wt%). Consequently, further removal of volatiles occurred 

during activation treatments of hydrochars. This was reflected in a more 

dramatic texture development experienced by HTC-derived chars. In addition to 

this, ACs obtained from the chemical activation of hydrochars exhibited higher 

surface area than those obtained after chemically-treating pyrolyzed analogues. 

In particular, the highest surface area herein reported (2757 m2·g-1) was 

attained after (optimal) chemical activation of Laminaria hyperborea-derived 

hydrochar. Nevertheless, the best textural properties achieved by chemically-

activated hydrochars corresponded to lowest product yields (<3 wt%), which 

would impede the commercialization of these materials. By contrast, physical 

activation of hydrochars led to much higher carbon yields (in excess of 50 wt%). 

Also, CO2-activated hydrochars attained relatively high CO2 uptakes (around 40 

mg CO2·g-1) at 35 °C and 1 bar (total pressure of 1 bar), thereby indicating 

potential application for pre-combustion capture. 

Unexpectedly, hydrothermal synthesis of Laminaria hyperborea yielded to 

a slightly higher proportion of fixed carbon and to a much lower ash content 
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compared to those recorded for pyrolyzed macroalgae. This result was ascribed 

to the dissolution of inorganic species within the aqueous HTC process, thus 

causing a relatively higher purity in carbon for hydrochars in comparison to that 

of pyrolysis-derived samples. Moreover, although HTC of Laminaria hyperborea 

and oak wood led to hydrochars containing a similar fraction of fixed carbon 

(33.5 wt% and 32.9 wt% respectively), carbonization yield obtained after HTC of 

Laminaria hyperborea (ca. 34 wt%) was substantially lower than that obtained 

for hydrothermally carbonized wood (ca. 58.5 wt%). This finding was attributed 

to the higher levels of lignin usually contained by wood-based biomass, which 

are believed to favour biomass conversion into char. Interestingly, pyrolysis of 

Laminaria hyperborea implied higher carbonization yield (ca. 27 wt%) compared 

to that measured for pyrolyzed wood (21.50 wt%). This was ascribed to the 

catalytic effect of inorganic fractions (especially K) contained within macroalgae, 

which seems to increase char production. However, pyrolyzed Laminaria 

hyperborea had a much lower proportion of fixed carbon (27.5 wt%) than that 

exhibited by pyrolyzed wood (66.1 wt%). This was probably due to the lack of 

ash-free organic matter contained within Laminaria hyperborea, which could not 

be converted into ash-free carbon. 

Overall, pyrolysis seems to be the recommended route for the fabrication 

of chars when further treatment (activation) needs to be pursued. Indeed, with 

particular regard to oak wood, pyrolytical process created a more stable product 

with a larger amount of fixed carbon available for porosity formation. By 

contrast, HTC could be potentially cheaper (less energy demanding) than 

pyrolysis for the production of functionalized biochars, especially when starting 

from wet feedstock, as no pre-drying would be required. In addition to this, the 

amount of char formed after HTC was generally larger (in excess of 55 wt%) 

than that produced through dry pyrolysis (up to ca. 27 wt%), thus suggesting a 

more cost-effective production of biochars. These may be suggested for use in 

applications other than that studied in this work, such as soil amendments. 

 

7.3 Activation methods 

Porosity of biochars was enhanced through the application of two 

activation methodologies, i.e. physical (CO2) and chemical (KOH) activation. 

CO2 activation generally implied a limited development of the textural 

properties of carbonized materials. This was particularly true for seaweed-

based chars and was mostly due to the mildness of the physical treatment. In 

fact, controlled oxidation under CO2 did not remove inorganic particles, which 

were left within the pore cavities. 

Procedure optimization led to a maximum surface area of ca. 627 m2·g-1 

achieved after activation of pyrolyzed oak wood at 800 °C for 1 h. As concerns 
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pyrolyzed Laminaria hyperborea, the highest surface area (189 m2·g-1) was 

attained at a slightly lower temperature (700 °C) held for a dwell time of 30 min. 

Maximum surface areas corresponded to optimal burn-offs of 34 wt% and 13 

wt% respectively. The lower surface per unit of burn off obtained for Laminaria 

hyperborea-derived AC was attributed to the lower proportion of fixed carbon 

featured by carbonized Laminaria hyperborea. Higher intensities (i.e. 

temperatures/residence times) of activation resulted to be detrimental for the 

texture of the carbons. 

The effect of the activation temperature on the variation of textural 

parameters of the final carbons was more drastic compared to that of holding 

time when considering a 30 min increment. However, when increasing time step 

from 30 to 60 min (see activation of OW800 in Chapter 4), a more dramatic 

influence of the residence time on the activation burn-off was observed, which 

was reflected in a higher variation of the textural parameters. 

Regarding CO2 activation of HTC-derived products, surface area was 

maximized when temperature was 600 °C and dwell time was 30 min. Optimal 

burn-offs (46 wt% and 48 wt% for oak wood and Laminaria hyperborea-based 

carbons respectively) were larger than those found for pyrolyzed analogues. 

This was likely due to the additional devolatilization experienced by hydrochars 

during heat-treatment under carbon dioxide. Observations also indicated 550 °C 

as the probable onset temperature for an efficient reaction between carbon 

dioxide and hydrochars. On the other hand, when increasing the intensity of 

activation (i.e. T>650 °C, burn-off>46 wt%), damage of porous structure was 

observed. 

In contrast, chemical method (KOH activation and subsequent HCl rinsing) 

enabled a more dramatic enhancement of porosity. Apparently, the use of KOH 

as activating agent resulted in a more intense attack to the carbon structure. In 

addition to this, acid washing step was essential not only for removing any 

residual potassium-based compounds deposited within the pores, but also for 

etching other mineral matter, which might have functioned as an in-situ template 

for the creation of additional pores. Accordingly, chemically-activated carbons 

generally exhibited higher carbon purity and far more developed porous network 

than their physically-activated analogues. Surface area optimization performed 

for Laminaria hyperborea-derived chars led to identical optimal conditions in 

terms of temperature (750 °C) and KOH:char ratio (4:1). Nevertheless, it is 

worth noticing that when activation conditions were severe (T>550 °C, 

KOH:char ratio>1), carbons exhibited a more heterogeneous distribution of 

pores, with contributions from different pore widths but predominant proportion 

of larger pores (meso and macropores). Conversely, a milder chemical 

treatment (T=550 °C, KOH:char ratio=1) as well as physical activation revealed 

to be more suitable for tailoring the manufacture of carbons with narrower pore 

size distributions, featuring mostly microporosity, with major contribution from 

ultramicropores (d<0.7 nm). 
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Chemical treatment allowed producing carbons that exhibited superior 

surface areas and larger sorption capacities at 35 °C and pure CO2 (PCO2=1 bar) 

than those attained by CO2-ACs. Nonetheless, chemical method implied much 

lower carbon yields than those obtained for physical activation, in particular for 

hydrochars-derived ACs. In addition to that, ACs obtained after chemical 

activation were in the form of a very fine powder, especially when applying 

severe conditions. The low mechanical strength of the chemically-ACs particles 

impedes their application in industry (e.g. adsorption column). Thus, milder 

KOH activation or physical treatment might represent a more suitable option for 

producing CO2 sorbents suitable for pre-combustion capture, as higher carbon 

yield, stronger particles and larger ultramicroporosity will be obtained. 

Conversely, physical treatment resulted to be more beneficial for CO2 

sorption performance of the carbons under post-combustion conditions. Indeed, 

most of (alkali metal-containing) inorganic species incorporated within chars 

were largely retained after heat-treatment under CO2. Alkali metal-based 

functionalities were evidently responsible for selective sorption of CO2 under 

reduced pressure (PCO2=0.15 bar). In contrast, most of inorganic matter was 

removed after chemical treatment of the chars, thus causing a lower sorption 

capability under post-combustion conditions.  

In addition to this, CO2 activation represents a more eco-friendly and 

cheaper methodology for the manufacture of ACs, as this route poses a lower 

cost and environmental impact in comparison to that implied by the chemical 

treatment (i.e. no use of chemicals such as KOH and HCl). 

 

7.4 Chemical modification of carbons 

Optimized impregnation of polyethileneimine (PEI) dramatically improved 

the CO2 sorption capacity of a commercial carbon (defined as AR) under post-

combustion conditions (i.e. 53 °C, PCO2=0.15 bar, and Ptot=1 bar). The sorption 

capacity of the impregnated carbon prepared under optimized conditions was 

ca. 4 times larger than that observed for the parent support, and more than 3 

times higher than that achieved by the best performing virgin carbon examined 

in this study. The maximum uptake (up to 33.6 mg CO2·g-1) was attained for a 

nominal loading of 44 wt% (actual loading of 31 wt%), a stirring time of the 

solvent/polymer/carbon mixture of 8 h and methanol as solvent. A series of 

characterization techniques performed on the optimally-impregnated carbon 

proved that PEI was successfully loaded onto the porous support. 

Overall, optimization of the chemical impregnation procedure led to infer 

that, for a common amount of polymer loaded onto the porous support and for 

any type of carrier (methanol or water), longer agitations of the 

solvent/polymer/carbon blend generally enhanced the post-combustion CO2 
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capture performance of the PEI-coated carbons. This behaviour was associated 

with a more facile dispersion of the polymer into the pore channels when longer 

agitations were applied, thereby leading to an optimized utilization of the porous 

support. 

Importantly, the effects of solvent type, PEI loading and sorption 

temperature appeared to be mutually related. In the first place, regardless of the 

stirring time, using water as solvent always allowed loading larger amounts of 

polymer onto the carbon support, thus indicating aqueous solvent as a better 

carrier for polymer dispersion. Secondly, the optimal PEI loading (and therefore 

the kind of solvent) resulted to be temperature-dependent. In essence, at lower 

temperature (i.e. 53 °C), a lower actual PEI loading (31 wt%), coupled with 

methanol as solvent, enabled achieving the absolute maximum CO2 sorption 

capacity (33.6 mg CO2·g-1) and the fastest CO2 kinetics.  

Irrespective of the impregnation conditions, except for one sample 

(AR_PEI_50%_W_4h), CO2 sorption capacity always decreased when 

increasing temperature from 53 to 77 °C, thus indicating that CO2 uptake 

process was mostly governed by thermodynamic (sorption) effects. However, 

the higher temperature (77 °C) implied a change in the optimal conditions 

maximizing CO2 uptakes. Specifically, the largest CO2 sorption capacity (27.3 

mg CO2·g-1) exhibited by AR_PEI_50%_W_4h was obtained for a nominal 

loading of 50 wt% and using water as solvent. In addition to this, 

AR_PEI_50%_W_4h was the only sample exhibiting an increase of CO2 

sorption capacity when temperature was raised from 53 to 77 °C. The increase 

of sorption capability with increasing temperature was explained through the 

enhancement of the CO2 diffusion mechanism at higher temperature, which 

governs the CO2 uptake process (kinetically-diffusion controlled) when high 

amount of PEI are loaded onto the pore channels of the carbon support. Indeed, 

the increased temperature favoured the CO2 transport through the PEI film/pore 

channels, thus increasing the number of CO2-capturing sites that actually 

contribute to the chemisorption process. Hence, a more environmentally sound 

(aqueous) impregnation is the ideal solution for the preparation of 

chemisorbents when capturing CO2 at 77 °C. In fact, this would also imply a 

lower energy penalty due to the regeneration of the sorbents when using rapid 

temperature swing adsorption (RTSA) cycling as strategy, because the cooling 

step of the flue gas prior to entering the capture unit would be less energy-

intensive. 

The set of optimal conditions determined at 53 °C was used for 

assessing the effect of further parameters. In particular, the use of the 

chemically-activated oak wood (i.e. OW800CA) as an alternative porous 

support did not improve the sorption capacity attained by PEI-modified AR. This 

was likely due to the higher amount of acidic functionalities present onto the 

surface of the oak wood-based support in comparison to those measured for 
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the commercial substrate. Indeed, acid groups might have neutralized most of 

the amino groups present within the PEI chain. 

At 53 °C, CO2 uptakes attained an absolute maximum (39.2 mg CO2·g-1) 

when impregnating agent was tetraethylenepentamine (TEPA), while 

monoethanoloamine (MEA) did not lead to any improvement of the capacity of 

the parent carbon. The more efficient impregnation of TEPA was probably due 

to the lower viscosity and density featured by this molecule compared to those 

typical of PEI. On the other hand, PEI was preferred to TEPA because of its 

higher thermal stability, which was considered a priority when testing 

recyclability of the sorbents through RTSA. 

Although lower CO2 uptakes were measured when adding glycerol to the 

PEI/carbon/solvent blend, adsorption and desorption kinetics were found to be 

slightly faster. In addition to this, glycerol-containing and glycerol-free samples 

exhibited comparable “amine efficiency” (CO2 captured:N molar ratio). These 

findings were ascribed to the introduction of hydroxyl groups, which appeared to 

change the chemisorption mechanism. 

In general, amine-functionalization allowed having a significant 

chemisorption contribution, which accounted for improving the selectivity of the 

sorbents at capturing CO2 at higher temperatures and lower pressure (post-

combustion scenario). Best performing PEI-loaded carbon exhibited larger 

sorption capacity and faster sorption kinetics than a benchmark sorbent (i.e. 

zeolite Z-13X (Z13X)). In addition to this, best solid chemisorbent fabricated in 

this work showed easiness of regeneration at a relatively low temperature (120 

°C) when applying RTSA as strategy. Although a minor part of amines leached 

from the sorbent, the CO2 sorption capacity was found to remain approximately 

constant over ten adsorption/desorption cycles, thereby indicating good 

durability. 

The optimal chemisorbent synthesized in this work exhibited a less 

energy-intensive regeneration compared to that of the state-of-the-art 

technology (30% MEA solution). This may compensate the lower chemisorption 

capacity possessed by PEI-modified AC in comparison to that of 30% MEA 

solution. Therefore, the industrial implementation of a CO2 capture unit based 

on the solution proposed in this study (adsorption onto solid sorbents) might be 

potentially more convenient than the conventional post-combustion technology 

(absorption onto liquid amines), if used in a combustion-based power plant.  
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7.5 The mechanism of CO2 uptake onto virgin and chemically-

modified activated carbons  

Oak wood-derived ACs, with specific regard to the chemically-activated 

sample (OW800CA), generally exhibited sorption performance typical of 

physisorbents. CO2 uptake process appeared to be mostly due to physical 

adsorption (Van der Waals forces) of carbon dioxide onto the pores surface, 

especially at lower temperature (35 °C) and higher partial pressure of CO2 (1 

bar). This was corroborated by very fast sorption kinetics and significant decline 

of sorption capacity with increasing temperature. Nevertheless, under post-

combustion conditions (53 °C, PCO2=1 bar and Ptot=1 bar), physically-activated 

oak wood (OW800PA) showed a higher sorption capacity than that of samples 

having more developed texture but lower basicity (i.e. OW800CA and GAC). 

This was explained through a weak chemisorption contribution given by alkali 

(Ca)-based surface functionalities present within the structure of OW800PA. 

The latter’s stronger interaction with CO2 was corroborated by the higher energy 

of adsorption obtained from the measurement of CO2 adsorption isotherms at 0 

°C, following the sequence OW800PA>OW800CA>GAC. Results highlighted 

that basicity outweighed texture contribution in terms of CO2 capture potential 

when increasing sorption temperature and decreasing the CO2 partial pressure. 

Despite the relatively low sorption temperature (53 °C), findings seemed to 

suggest that carbonation reaction between Ca-containing compounds (i.e. 

calcium hydroxide) and carbon dioxide might have occurred to a minor extent. 

Conversely, stronger evidence of a chemisorption mechanism was 

reported for seaweed-based sorbents. In particular, at higher temperature and 

lower pressure (post-combustion conditions), pyrolyzed Laminaria hyperborea 

(LH_S800) and its physically (CO2)-activated derivative (LH_S800PA) exhibited 

a larger CO2 sorption capacity than that measured for chemically-activated 

macroalgae (LH_S800CA). The latter sorbent had much larger surface areas 

but lower level of alkali metals compared to the former materials, and its 

sorption behaviour was typical of physisorbents. Moreover, under post-

combustion conditions, sorption kinetics measured for LH_S800 and 

LH_S800PA were found to be similar to that observed for magnesium oxide. 

This agreed with the presence of MgO crystals onto the seaweed-derived 

sorbents. On the other hand, CO2-activated Laminaria exhibited higher sorption 

potential and faster kinetics in comparison both to the parent char and to pure 

magnesium oxide. This was ascribed to the slight increase of porosity after 

physical activation of macroalgae-based char. The improved porous network 

exhibited by LH_S800PA not only ensured a higher physisorption contribution, 

but it might have also favoured the migration of CO2 toward the chemisorption 

sites (MgO crystallites). These observations led to infer that uptake of CO2 onto 

LH_S800PA was due to a synergetic contribution of chemisorption (carbonation 
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reaction between magnesium oxide crystals and CO2) and physisorption 

(increased porosity) processes. Furthermore, the strength in the CO2 sorption 

process occurring onto macroalgae-derived sorbents agreed with the calculated 

energy of adsorption at 0 °C, which followed the order 

LH_S800>LH_S800PA>LH_S800CA. Nonetheless, sorbents were partly 

(LH_S800) or fully (LH_S800PA) regenerated at very low temperature (100 °C), 

thus revealing a relatively weak intensity of the chemisorption process. The 

reconversion of MgCO3 into MgO was attributed to a weak interaction between 

CO2 and the MgO particles not embedded within the framework of the carbon-

based sorbent (i.e. magnesium oxide crystals anchored onto the carbon 

surface). However, it is worth mentioning that, the more facile regeneration 

observed for LH_S800PA seemed to suggest a change in the sorption 

mechanism of CO2 following to physical activation of pyrolyzed Laminaria 

hyperborea. In particular, Na and/or K-based carbonates might have formed. 

These can absorb CO2 under moist conditions, giving rise to alkali-metals 

bicarbonates, which can be easily regenerated at low temperature (100-200 

°C). 

Unlike virgin carbons, a distinct chemisorption behaviour was observed for 

amine-modified sorbents. In fact, the incorporation of PEI onto the commercial 

carbon (AR) used as support caused an increase of the heat of 

adsorption/desorption to values typically measured for chemisorbents (69-74 

kJ·mol-1). This proved that CO2 uptake process changed from physisorption to 

chemisorption. In addition, in this case chemisorption mechanism was due to 

the typical two-step reaction occurring between amines and carbon dioxide. In 

contrast to results reported in the literature, the addition of an OH-containing 

guest (glycerol) to the polymer/solvent/AC system did not lead to any increase 

of the CO2 chemisorbed onto amine-containing sorbents. This was likely due to 

additional pore blockage and resistance to gas diffusion involved by the 

presence of glycerol. Nonetheless, glycerol-containing samples exhibited nearly 

as large amine efficiency as that calculated for glycerol-free sorbents. 

Furthermore, slightly higher adsorption/desorption rates were measured for 

glycerol-doped materials. These results seemed to suggest that the introduction 

of hydroxyl groups promoted CO2 conversion but to a low extent. 

As already mentioned, findings reported in this work also highlighted that 

CO2 uptake process occurring onto amine-modified carbons was influenced by 

the sorption temperature and by the amount of PEI actually loaded onto the 

porous support. In particular, when sorption temperature was 53 °C, the highest 

CO2 uptake was achieved for relatively lower PEI actual loading, and 

thermodynamic (sorption) effect was the predominant feature of the capture 

process. Conversely, when loading a higher concentration of PEI, uptake 

process was mostly governed by diffusion mechanism, which adversely affected 

CO2 capture performance (i.e. slower uptake rate and lower capacity) at lower 

temperature. However, with increasing sorption temperature (77 °C), the 
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maximum uptake was attained when loading higher amount of polymer (i.e. 

kinetically-diffusion controlled process) as diffusion effects became more 

dominant. This was ascribed to the increase of the CO2 diffusivity through the 

PEI gel with increasing temperature. 

 

7.6 Directions for future work 

 This work shows that inorganics (i.e. alkali metal-based functionalities) 

resulted to be more influential than texture in the post-combustion 

capture of CO2. This is particularly true for Laminaria hyperborea-derived 

products, as these materials exhibited a significant (chemi)sorption 

potential, which was mostly attributed to the presence of magnesium 

oxide particles within their structure. Therefore, in order to optimize the 

sorption potential of alkali metals-containing carbon materials, it might be 

worth testing alternative precursors having a higher amount of ash (with 

particular regard to Mg-containing fractions) than that measured for 

Laminaria hyperborea. For instance, Laminaria hyperborea usually has a 

higher concentration of inorganics when collected in winter season. 

However, it may be also worthwhile synthesizing carbons starting directly 

from Mg-alginates, which might be potentially lead to even larger CO2 

chemisorption capacities of the final sorbents. 

 Activation of hydrochars was generally found to be an inconvenient route 

for the fabrication of activated carbons. In fact, physical treatment did not 

significantly develop the porosity of the hydrochars, whereas chemical 

treatment resulted in very low activation yields. On this basis, in an 

attempt to obtain larger surface areas along with higher carbon yields, it 

would be interesting to develop a one-step treatment, which would entail 

blending the raw material with an appropriate activating agent prior to 

running HTC (i.e. carbonization and activation occur simultaneously).  

 Correlations between textural parameters and CO2 uptakes at 35 °C and 

1 bar reported in this work indicate that both surface area and 

ultramicropore volume are affecting the CO2 sorption capacity of the 

carbons at high gas partial pressure and relatively low temperature. 

However, in an attempt to further investigate on this correlation, a wider 

range of samples should be included. Additionally, it would be interesting 

to determine activation treatments’ optimal conditions for maximum 

ultramicropore volume rather than for largest surface area. This could 

potentially lead to even larger CO2 uptakes at 35 °C and 1 bar.  

 Results reported in Chapter 5 reveal a (chemi)sorption potential for some 

of the seaweed-derived sorbents. In particular, the sorption performance 

of pyrolyzed Laminaria hyperborea was improved after CO2 activation, 

which caused a moderate development of the texture without implying a 

significant demineralization. However, it would be worth trying to refine 
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the intensity/type of activation treatments in an attempt find a trade-off 

between porosity and concentration/form (e.g. MgO, NaCO3, K2CO3) of 

alkali metal-containing functionalities. In this regard, it may be worth 

studying the CO2 sorption performance of the KOH-activated counterpart 

submitted to water-washing only. Indeed, in contrast to acid-washing, 

aqueous rinsing might free the pore structure from the majority of the K 

salts without eliminating most of the inorganic content (alkali metals). 

Therefore, given that the CO2 uptake seems to be optimized by a 

synergistic effect of textural development and chemisorption on the 

inorganic content, water-washed sample might be proven to be an even 

more optimal CO2 sorbent than that deemed in this study.  

 In this work, highly porous carbons were obtained when pursuing 

chemical activation. Chemically(KOH)-activated carbons attained the 

highest CO2 uptakes at 35 °C, PCO2=1 bar and Ptot=1 bar. These findings 

suggest that these materials could be promising for pre-combustion 

capture of CO2. However, in order to be applicable in a pressure swing 

adsorption (PSA) unit for CO2/H2 separation, the CO2/H2 selectivity of the 

sorbents needs to be assessed. Thus, further adsorption tests at higher 

total pressure (i.e. 5-40 bar) and under multi-component gas phase 

typical of the shifted-syngas for pre-combustion capture would be 

required. 
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Appendix A 

 

 

Figure A 1 Correlation between CO2 uptakes measured at 35 °C and 1 bar 
and BET surface area 

 

 

Figure A 2 Correlation between CO2 uptakes measured at 35 °C and 1 bar 
and textural factor. The latter was determined as BET surface area times 
the ultramicropore volume calculated by applying NLDFT model to the 
CO2 adsorption isotherms measured at 0 °C. 
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Table A 1 Main textural parameters and CO2 uptakes at 35 °C and 1 bar for 
selected samples 

Sample ID 

CO2 uptake, 35 °C and 1 bar Vumi, NLDFT SBET SBET·Vumi, NLDFT 

mg CO2∙g-1 cm3·g-1 m2·g-1 m2·g-1·cm3·g-1 

AR 55.6 0.025 1531 38.51 

AR_PEI 45.1 0.040 610 24.24 

GAC 60.6 0.026 1231 31.53 

LH_S250PA 40.2 0.030 301 9.01 

LH_S800 26.5 0.000 66 0.03 

LH_S800CA 57.2 0.015 2266 33.37 

LH_S800PA 28.4 0.015 189 2.84 

OW250PA 40.6 0.024 415 9.91 

OW800 39.6 0.028 164 4.59 

OW800CA 71.6 0.026 2061 53.85 

OW800PA 57.1 0.040 627 24.85 

Z13X 68.3 0.105 543 56.84 
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Appendix B 

 

 

Figure B 1 Correlation between SBET values calculated by applying BET 
method over Conventional (P/P0 = 0.05-0.3) or ISO (P/P0 = 0.01-0.1) 
pressure range for Virgin Activated Carbons (ACs) 

 

 

Figure B 2 Correlation between SBET values calculated by applying BET 
method over Conventional (P/P0 = 0.05-0.3) or ISO (P/P0 = 0.01-0.1) 
pressure range for PEI-modified Activated Carbons (ACs) 
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Table B 1 SBET values in m2·g-1 calculated by applying BET method over 
Conventional (P/P0 = 0.05-0.3) or ISO (P/P0 = 0.01-0.1) pressure range for 
Virgin Activated Carbons (ACs) 

Sample ID ISO Conventional 

AR 1531 1541 

OW800CA 2061 2078 

OW250CA 2757 2809 

LH_S800PA 189 192 

LH_S800CA 2266 2285 

LH_S250CA 2771 2826 

OW800PA_800_2h 385 383 

OW250PA_500_0.5h 39 41 

OW250PA_600_0h 169 168 

LH_S250PA_550_0.5h 248 247 

LH_S250PA_600_0h 118 119 

LH_S250PA_600_1h 180 179 

LH_S800PA_750_0.5h 21 83 

LH_S800PA_700_0h 171 171 

LH_S800PA_700_1h 93 94 

LH_S800CA_650_4-1 1454 1475 

LH_S800CA_750_1-1 1527 1534 

LH_S800CA_750_2-1 1871 1884 

LH_S250CA_650_4-1 2659 2738 

LH_S250CA_750_1-1 2702 2785 

LH_S250CA_750_2-1 2651 2655 
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Table B 2 SBET values in m2·g-1 calculated by applying BET method over 
Conventional (P/P0 = 0.05-0.3) or ISO (P/P0 = 0.01-0.1) pressure range for 
PEI-modified Activated Carbons (ACs) 

Sample ID ISO Conventional 

AR_PEI_29%_Me_0.5h 1336 1354 

AR_PEI_38%_Me_0.5h 1040 1044 

AR_PEI_44%_Me_0.5h 966 971 

AR_PEI_44%_Me_2h 783 790 

AR_PEI_44%_Me_4h 729 730 

AR_PEI_44%_Me_6h 677 677 

AR_PEI_44%_Me_8h 610 610 

AR_PEI_38%_Me_2h 983 984 

AR_PEI_38%_Me_4h 876 884 

AR_PEI_38%_Me_6h 720 730 

AR_PEI_38%_Me_8h 684 696 

AR_PEI_50%_Me_2h 879 880 

AR_PEI_50%_Me_4h 492 505 

AR_PEI_50%_Me_6h 411 412 

AR_PEI_50%_Me_8h 412 413 

AR_PEI_38%_W_0.5h 886 887 

AR_PEI_38%_W_2h 734 733 

AR_PEI_38%_W_4h 640 640 

AR_PEI_38%_W_6h 460 461 

AR_PEI_38%_W_8h 628 629 

AR_PEI_44%_W_0.5h 859 862 

AR_PEI_44%_W_8h 355 355 

AR_PEI_50%_W_0.5h 722 722 

AR_PEI_50%_W_2h 292 296 

AR_PEI_50%_W_4h 366 369 

AR_PEI_50%_W_6h 279 280 

AR_PEI_50%_W_8h 183 185 
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Appendix C 

Table C 1 CO2 sorption capacities (mmol·CO2·g-1) measured for best 
performing sample in this work versus values reported by literature for 
other sorbents under similar temperature/CO2 partial pressure conditions 

 

Sample ID CO2 sorption capacity 

PEI-AC67 (this work) 0.75 

PEI-AC ([115]) 3.98 

PEI-silica68 ([122]) 5.34 

Z13X69 (this work) 0.52 

Z13X ([57]) 3.03 

MOF70 (Mg-CPO-27, [57]) 6.55 

 

                                            

67 Polyethyleneimine-modified activated carbon 

68 Polyethyleneimine-modified silica 

69 Zeolite-13X  

70 Metal organic framework 


