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Abstract 

Osteoarthritis (OA) is the most common form of arthritis. Affected individuals 

commonly suffer with chronic pain, joint dysfunction, and reduced quality of 

life. OA also confers an immense burden on health services and economies. 

Current OA therapies are symptomatic and there are no therapies that 

modify structural progression. The lack of validated, responsive and reliable 

biomarkers represents a major barrier to the development of structure-

modifying therapies.  

MRI provides tremendous insight into OA structural disease and has 

highlighted the importance of subchondral bone in OA. The hypothesis 

underlying this thesis is that novel quantitative imaging biomarkers of 

subchondral bone will provide valid measures for OA clinical trials. The 

Osteoarthritis Initiative (OAI) provided a large natural history database of 

knee OA to enable testing of the validity of these novel biomarkers.  

A systematic literature review identified independent associations between 

subchondral bone features with structural progression, pain and total knee 

replacement in peripheral joint OA. However very few papers examined the 

association of 3D bone shape with these patient-centred outcomes. 

A cross-sectional analysis of the OAI established a significant association 

between 3D bone area and conventional radiographic OA severity scores, 

establishing construct validity of 3D bone shape. 

A nested case-control analysis within the OAI determined that 3D bone 

shape was associated with the outcome of future total knee replacement, 

establishing predictive validity for 3D bone shape. 

A regression analysis within the OAI identified that 3D bone shape was 

associated with current knee symptoms but not incident symptoms, 

establishing evidence of concurrent but not predictive validity for new 

symptoms. 

In summary, 3D bone shape is an important biomarker of OA which has 

construct and predictive validity in knee OA. This thesis, along with parallel 

work on reliability and responsiveness provides evidence supporting its 

suitability for use in clinical trials.  
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Chapter 1 Introduction  

1.1 Background  

Osteoarthritis (OA) is the commonest arthritis and is one of the leading 

causes of chronic pain, disability and socioeconomic burden in the world. In 

the United Kingdom and United States of America OA affects 8.5 million[1] 

and 26.9 million[2] people respectively. The prevalence of OA increases with 

age and obesity and is therefore expected to increase in prevalence in our 

ageing and increasingly obese population. The prevalence amongst 

Individuals aged 45 and older of any OA is estimated to increase from 26.6% 

currently to 29.5% by 2032. During the same interval, the number of 

individuals seeking a clinical review for peripheral OA is estimated to 

increase by 26,000 per million by 2032[3].  

In adults above the age of 45 years, the individual prevalence of both knee 

[4] and hip [5] OA is as high as 28%. Together knee and hip OA are 

currently the eleventh greatest contributor to global disability, and it is highly 

likely that this is an underestimate of the true burden of OA. OA accounted 

for 10% of disability-adjusted life-years (DALYs) due to musculoskeletal 

conditions[6]. Approximately 2% of all sick days are attributable to knee OA 

and amongst individuals of working age, those with knee OA have twice the 

risk of sick leave and a 50% increased risk of disability pension compared 

with the general working population[7]. The pain and dysfunction of OA 

confers a substantial socioeconomic burden in developing countries of 1.0-

2.5% gross domestic product[8]. Therefore OA represents a massive and 

rapidly increasing burden on individuals on health services and on society as 

a whole.  

While the majority of patients report chronic pain, the burden of OA is 

intensified by the limitations of current non-surgical therapy with only 30% of 

people with OA reporting satisfaction with their analgesia[1, 9]. The mainstay 

of current non-surgical therapy involves a patient-centred package of non-

pharmacological and pharmacological therapies for reducing pain and 



- 2 - 

improving function before considering surgery. These are limited to a 

moderate effect size at best[10] and may have significant toxicities. For 

example oral paracetamol[11] and non-steroidal anti-inflammatory drugs( 

NSAIDs)[12] are commonly prescribed and are associated with greater risk 

of cardiovascular, gastro-intestinal and renal adverse events[13]. This is of 

particular significance to a population of OA which tends to be older with 

more prevalent comorbidity  

Attempts to develop a disease modifying osteoarthritis drug (DMOAD) have 

been hindered by the failure to demonstrate a substantive improvement in 

symptoms whilst also inhibiting structural deterioration of the OA joint. While 

recent trials report inhibition of structural progression, there are 

methodological limitations with these. Therefore there are currently no 

licensed structural-modifying therapies although these are highly desirable.   

This may in part reflect the insensitivity and limitations of existing measures 

of structural progression. These are used to determine eligibility for, and as 

primary outcome measures in DMOAD trials[14]. These structural severity 

and progression measures have primarily been based upon two-dimensional 

projection images of conventional radiography which rely upon surrogate 

measures of cartilage loss. Therefore while the need for prevention and 

novel effective treatment strategies for OA is of vital importance, the demand 

for better biomarkers for determining the effectiveness of prospective 

DMOADs is of equal importance. 

OA has traditionally been considered to be primarily a disease of cartilage 

and hence the focus has been on modifying this tissue. Historic attempts at 

developing DMOADs have focused primarily on preventing hyaline articular 

cartilage loss, in an attempt to provide “chondroprotective” therapies. 

However typical clinical OA is a pathology of multiple tissues and therefore 

more recently, other tissues have been targeted including the subchondral 

bone which is the bone that supports the articular cartilage and  which plays 

an integral role in the pathogenesis of OA[15].  

Although the diagnostic criteria for OA developed by in 1957 incorporated 

osteophytosis and subchondral sclerosis as a distinctive feature of OA, the 

subchondral bone is relatively understudied compared to cartilage. However 
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there is an increasing acknowledgement that it is involved in the 

pathogenesis of early and late-OA through both biomechanical and 

biochemical pathways. SCB is a dynamic structure which adapts to 

increased applied load by homeostatic remodelling of the trabecular SCB, 

changes in SCB mass and expansion of the SCB surface area, to name 

three examples. However SCB changes may also herald deterioration in 

nearby joint tissues especially the articular cartilage which highlights the 

importance of biomechanics and SCB in the aetiopathogenesis of OA.  

SCB has a well-connected population of osteocytes that perceive load and 

respond to microdamage through mechanotransduction of load and 

apoptosis resulting in a biochemical orchestration of osteoblasts (bone 

forming cells) and osteoclasts (bone resorbing cells) that carry out 

homeostatic ‘reparative’ remodelling which occurs in a biphasic response. 

There is an initial increase in bone turnover in response to microfractures 

with a net bone resorption with associated loss of bone volume and 

increased porosity in the junction between the cartilage and bone which 

permits pathological ‘cross-talk’. As further SCB accumulates the bone 

remodelling cells and their biochemical signalling fail to achieve repair and 

become maladaptive. A subsequent reparative net bone formation response 

occurs but this is with hypomineralised osteoid with a reduced stiffness 

relative to the bone volume formed and this is associated with an alteration 

in bone shape. This biomechanical deterioration in SCB drives deterioration 

in adjacent joint tissues especially cartilage and OA develops. A better 

understanding of what represents pathological change in SCB and the 

biomechanical and biochemical pathways involved in the pathogenesis of 

OA may permit the identification of individuals most at risk of OA but also 

targets for bone-modifying therapies. 

Conventional radiography (CR) is unable to capture the severity of the multi-

tissue involvement in joints with OA joints. This is particularly important 

because many of the trials of prospective disease modifying agents in OA 

have attempted to recruit a homogenous population that are likely to exhibit 

structural progression by selecting people with CR-defined OA. 

Unfortunately these patients may lack uniformity in terms of joint tissue 

involvement because CR is insensitive to tissue pathology like bone marrow 
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lesions (BMLs) which have important prognostic implications and are 

associated with worse structural and symptomatic outcomes. 

MRI-determined quantitative and semi-quantitative measurements of joint 

tissue in OA have started to be used as clinical outcome measures in 

structure-modification trials. This reflects the opinion of the Osteoarthritis 

Research Society International working group that recommended MRI 

cartilage morphology assessment be used as a primary structural end point 

in clinical trials which also acknowledged the rapid evolution of quantitative 

MRI assessments of subchondral bone and synovium. Therefore using MRI 

biomarkers of joint structure in OA represents a significant improvement in 

sensitivity to clinically significant structural pathology, responsiveness and in 

its correlation with pain compared with CR biomarkers. However we have 

not yet harnessed the full potential of MRI biomarkers and utilised all MRI 

has to offer. 

There are several examples of 2D and 3D imaging biomarkers that have 

been described for bone and cartilage which highlight the importance of 

SCB. The SCB is important in the pathogenesis of OA including SCB shape. 

3D bone imaging biomarkers have not been formally investigated as part of 

a biomarker validation process. The importance of modelling the shape of 

the knee bones with statistical shape modelling, active shape modelling and 

active appearance modelling is the analysis of bone shape may permit the 

validation of novel bone imaging biomarkers with improved responsiveness 

profile than existing imaging biomarkers for prospective use in OA 

modification trials. 

 

The hypothesis underlying this thesis was that MRI evaluation of the SCB 

would provide a number of unique biomarkers of patient-centred OA 

outcomes for future therapeutic trials of disease modifying OA drugs. The 3D 

knee bone shape was examined in large cohorts for its construct validity by 

comparing it with conventional radiographic measures and for its criterion 

validity by examining it’s association with knee replacement and current and 

incident knee symptoms.  

This thesis describes the independent association of imaging-defined OA 

subchondral bone biomarkers with patient-centred outcomes of OA and then 



- 5 - 

more specifically describes the validity of 3D bone shape. The association of 

3D bone shape with knee replacement provided evidence of predictive 

validity. The association of 3D bone shape with current but not with incident 

persistent knee symptoms provided evidence of concurrent but not 

predictive validity. The association of 3D knee bone structure of OA with 

conventional radiographic OA measures provided evidence of construct 

validity. This work further underpins the value of quantitative bone measures 

in future therapeutic trials of disease modifying osteoarthritis drugs.  

1.2 Structure of the thesis 

The hypothesis underlying this thesis was that MRI evaluation of the SCB 

would provide a number of unique biomarkers of patient-centred OA 

outcomes for future therapeutic trials of disease modifying OA drugs 

1.2.1 Chapter 2: Literature review 

This was a narrative literature review covering OA and focussing on bone 

the osteoarthritis initiative (OAI) and semi-quantitative and quantitative 

imaging analysis. The unique resources of this thesis are the OAI and 

quantitative imaging of bone shape. 

1.2.2 Chapter 3 A systematic review of the relationship between 

subchondral bone features, pain and structural pathology in 

peripheral joint osteoarthritis. 

This was a systematic literature review of the relationship between imaging-

assessed subchondral bone features, pain and structural pathology in 

peripheral joint osteoarthritis. This highlights that subchondral bone plays an 

integral role in the pathogenesis of OA and that subchondral bone shape is 

independently associated with structural progression, joint replacement and 

pain incidence in knee OA. This highlights that bone shape is important  but 

understudied and bone represents a valid target in the prospective treatment 

of OA. 

1.2.3 Chapter 4 The relationship between clinical characteristics, 

radiographic osteoarthritis and 3D bone area 
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This is a cross-sectional analysis of the relationship between clinical 

characteristics, CR measures of OA and OA-attributable 3D bone area. This 

identifies construct validity of bone area as it is significantly associated with 

CR measures such as osteophytes. However these CR measures do not 

substantively explain the variance in the OA-attributable 3D bone area which 

may reflect the additional information provided by 3D MRI when describing 

subchondral bone shape. 

1.2.4 Chapter 5 The relationship between three-dimensional knee 

MRI bone shape and total knee replacement – a case control 

study 

This is a nested case-control analysis within the OAI, of the relationship 

between 3D bone shape and the outcome of TKR. This identifies that a more 

advanced structural severity in 3D bone shape is associated with the 

outcome of TKR. This provides evidence of predictive validity of bone shape 

in regards to the outcome of TKR which reflects both pain and structural 

progression of OA. 

1.2.5 Chapter 6 The relationship between 3D MRI bone shape and 

knee osteoarthritis symptoms in knees with and without 

radiographic knee osteoarthritis. 

Chapter 6 is an analysis of the relationship between 3D bone shape and the 

outcomes of prevalent frequent knee symptoms (PFKS) and incident 

persistent knee symptoms (IPKS).  This analysis incorporates knees without 

ROA but at risk of OA and all knees within the OAI. There was no 

association of 3D bone shape vectors with either PFKS or IPKS in knees 

without radiographic OA. However 3D bone shape vectors are associated 

with concurrent frequent knee symptoms of OA but not with incident 

persistent symptoms amongst all knees within the OAI that include those 

with radiographic OA.  This provides evidence of concurrent validity for the 

association between 3D bone shape and knee symptoms.  

 

1.2.6 Chapter 7 Discussion, future directions and conclusions 
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This chapter discusses the results of this thesis, the conclusions that can be 

drawn, an update on the literature review and the future directions in this 

field.  
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Chapter 2 Literature Review 

This chapter reviews the current epidemiology of OA, the natural history and 

definitions of OA. The description of OA and historic trials of prospective 

therapies in OA previously relied on X-ray and focussed on cartilage 

measurement. MRI is better but we still have not utilised all of the 3D 

information provided by MRI. The best personalised biomarkers in OA are 

currently imaging biomarkers and the process of validation of biomarkers 

and the use of MRI is discussed. Finally the chapter also describes two 

novel resources, the Osteoarthritis Initiative[16] and automated statistical 

shape modelling. This explains the resource and technology used with 

modern quantitative analysis to develop novel imaging biomarkers of bone 

that may provide novel valid measures for clinical OA trials. 

2.1 Introduction  

Osteoarthritis (OA) is the most common arthritis and is a leading cause of 

global chronic pain, disability and socioeconomic burden. OA affects 8.5 

million people in the United Kingdom[1]. In adults above the age of 45 years, 

radiographic and symptomatic knee OA have a prevalence of 19-28% and 7-

17% respectively. The epidemiology and natural history differ between joints 

and individuals. The prevalence of OA increases with age and obesity..  

2.2 Defining OA and subtypes 

OA refers to structural deterioration of synovial joints that in early stages 

may initially involve individual tissues, which in the context of appropriate 

risk factors may evolve, by a complex cascade of biomechanical and 

biochemical pathologies, into the typical whole joint multi-tissue pathologies 

seen in typical painful clinical OA. This includes changes to the hyaline 

articular cartilage, the underlying subchondral bone, the meniscal 

fibrocartilages (in the knee) and the synovium.  
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2.2.1 The problems with defining OA 

Definitions of OA have derived from epidemiological studies and clinical 

trials where OA may be defined using clinical findings (joint symptoms and 

examination findings) alone, the presence of imaging-assessed pathology, 

or a combination of the two. Only 50% of knees with radiographic OA (ROA) 

have symptoms[17] and activity-related pain of OA may occur in a prodromal 

phase before the incidence of ROA[18]. Therefore in research studies of OA, 

a more specific definition of OA can be achieved by any combination of  joint 

imaging-assessed structural pathology (e.g. Kellgren Lawrence grade 2, a 

definite radiographic osteophyte –Figure 1)[19] and clinical findings and 

laboratory tests (e.g.Table 3)[20-22].  

While conventional radiography (CR) is feasible, it is limited in its utility by its 

relatively insensitive detection of structural pathology in tissues other than 

bone (Figure 1). 

Amongst individuals within the Framingham cohort above the age of 50 

years, with no pain and normal knee radiography, 88% of individuals had at 

least one OA tissue lesion in the knee on magnetic resonance imaging (MRI) 

[23]. MRI can visualise  the true three dimensional multi-tissue joint 

pathology of OA[24, 25]  and these MRI-detected structural changes (Figure 

2), which are more closely associated with patient reported pain[26]. 

Ultrasound (US) also has the capacity to acquire 3D images and, for 

example, has been shown to detect many more osteophytes than CR in 

hand OA[27, 28]. These modern imaging studies highlight that many of our 

concepts and definitions of OA have been based on an inaccurate imaging 

phenotype. Therefore there is currently no generally agreed-upon ‘gold 

standard’ for defining cases of OA, and the epidemiology of OA varies 

according to the definition of OA for any specified joint. 

 



- 10 - 

Figure 1 Conventional knee radiography 

 

 

Table 1 The Kellgren Lawrence grade 

Grade Features of Osteoarthritis 

Grade 0 No radiographic features 

Grade 1 Doubtful joint space narrowing,                           
possible osteophytic lipping 

Grade 2 Possible joint space narrowing,                            
definite osteophytes 

Grade 3 Multiple osteophytes,                                          
definite joint space narrowing,                               

some sclerosis,                                                 
possible deformity of bone contour 

Grade 4 Large osteophytes,                                               
marked joint space narrowing,                               

severe sclerosis,                                                 
definite bone deformity 

 

This was first described by Kellgren and Lawrence[19] 
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Figure 2 Knee MRI demonstrating multi-tissue involvement 

 

Medial tibial bone marrow lesion (long arrow) and macerated medial 

meniscus (short arrow). (Reprinted by permission from Macmillan Publishers 

Ltd: Nature Clincal Reviews [29] Copyright 2009.) 

Table 2 The prevalence of MRI-detected knee lesions and crepitus 

 

MCL / LCL – medial and lateral collateral ligaments of the knee 

MTF / LTF /PF – medial tibiofemoral  / lateral tibiofemoral / patellofemoral 

(Reprinted by permission from Elsevier Ltd: Osteoarthritis and cartilage [30])  
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2.2.2 Early OA 

The concept of early OA is imprecisely defined. Incident ROA has provided 

one operational concept of early OA. However both structural changes and 

symptoms of OA precede the incidence of ROA. As mentioned, at least one 

structural lesion of knee OA is present on MRI of people over 50 years 

without ROA or knee pain [23]. By the time knee ROA is detectable, 10% of 

knee hyaline articular cartilage is lost [31]. Incident knee ROA is preceded 

by prodromal symptoms of pain on twisting or pivoting and pain on standing 

by 39 and 25 months respectively[18]. Pain on stair climbing appears to be 

the first mechanical symptom to manifest amongst knees with ROA and at 

risk of ROA[32].  

It is very likely that problems such as isolated cartilage defects and meniscal 

tears are early structural lesions that progress to clinical OA, though these 

are not currently classified as early OA. Compositional measures using 

special MRI sequences can also demonstrate glycosaminoglycan loss 

before MRI can detect morphological changes [33, 34]. So substantial 

evolution of the concept and alternative definitions of “early” OA are 

required. 

2.2.3 Inflammatory OA 

OA is not considered to be a classical inflammatory arthritis because of 

features including a relative paucity of neutrophils in synovial fluid, a lack of 

subchondral bone erosions and no evidence of systemic inflammation or 

features of autoimmunity; these features were used to distinguish OA from 

the archetypal inflammatory arthritis, rheumatoid arthritis (RA). Clinicians 

may refer to inflammatory OA as the discrete very swollen joints seen in 

some patients with hand OA. But it is likely that there is much more 

widespread synovitis than is appreciated clinically. Modern imaging with its 

more accurate detection of synovial hypertrophy and effusion has changed 

our understanding of the frequency of inflammation in OA joints[35]. Using 

contrast-enhanced MRI, extensive synovitis is prevalent in most knees 

(>85%)[36-38] and hands (68%)[39] with established OA that met the 

respective OA joint criteria (Table 3).  
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Erosive OA refers to a group of patients with radiographic erosions, and the 

term is often used synonymously with inflammatory OA (though not all OA 

inflammation is associated with erosions). The overall prevalence of erosive 

OA is unclear, and the prevalence of erosions varies somewhat according to 

their definition and the imaging modality employed for detection. In two 

cohorts of women selected for erosive hand ROA, erosions were identified in 

17-18%, 35% and 61% of small joints using CR, ultrasonography and MRI 

respectively[28, 40]. When defined radiographically, erosive hand OA 

appears to have a greater association with obesity, hypertension, 

dyslipidaemia and the metabolic syndrome relative to non-erosive hand 

OA[41, 42]. 

2.2.4 Generalised OA 

An imprecisely defined phenotype is where multiple OA joints are present in 

an individual, that may referred to as generalised or also polyarticular OA. It 

is well recognised that a history of hand OA confers an increased risk of hip 

and knee OA, a history of knee OA confers a higher risk of hip OA and vice 

versa. These associations are independent of confounding factors of age, 

gender and BMI[43]. Generalised OA also conferred a greater risk of knee 

OA structural progression[44]. Generalised OA has been more frequently 

observed in women than men and with increasing age and is associated with 

poorer function, disability, quality of life and mortality than OA involving 

fewer joints[45]. Whether generalised OA reflects an accumulation of 

adverse biomechanical environments in adjacent joints or load 

compensation from other joints or systemic factors such as genetic tendency 

or obesity is not well understood [45].  

2.3 Epidemiology and risk factors 

The epidemiology of OA is complex which reflects the variation in the 

applied definition[46], the specific joint involved and the heterogeneity of the 

OA phenotype[47]. Epidemiological studies, particularly analyses of large 

prospective cohorts, provide important information about risk factors that in 

turn provide insight into the aetiology of OA. This is supported by several 

well recognised associations with the prevalence and incidence of OA in 
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peripheral joints. These include both non-modifiable (e.g. age, gender, 

trauma, alignment and genetic predisposition) and modifiable risk factors 

(e.g. obesity, occupational injury). Modifiable risk factors are prospective 

interventional targets for treatment and prevention.  

2.3.1 Prevalence  

The knee, hip and hand are most frequently affected joints and the 

prevalence of OA increases with age, which is the most important risk factor 

for OA prevalence[2]. This may represent a senescent impairment of tissue 

regeneration in addition to a cumulative effect of other risk factors 

associated with ageing. Approximately 14% of adults older than 25 years 

and 34% of adults older than 64 years have clinical OA of one joint or 

more[2]. Symptomatic OA of the knee, hip and hand are more prevalent in 

females[4, 48-51]. The population prevalence of OA of the hip and knee in 

the UK is also greater with than without obesity (Figure 3)[52]. However in a 

meta-analysis of OA prevalence studies in adults older than 55 years, 

women have higher knee and hand OA prevalence but there is no significant 

gender difference for hip OA. In the same meta-analysis no significant 

gender differences were observed in the prevalence of knee, hip or hand OA 

amongst adults below 55 years of age[53]. Women tended to have greater 

prevalence of OA when non-radiographic (e.g. clinical) methods were used 

for defining OA.  
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Figure 3 Population prevalence of Hip and knee OA with and without 
obesity 

 

The population prevalence is expressed as percentage of the population 

above the age of 45. The English Longitudinal Study of Ageing (ELSA)  - a 

large multicentre and multidisciplinary study of people aged 50 and over and 

their younger partners, living in private households in England – was chosen 

as the basis for the prevalence models. Sample members are drawn from 

respondents to the Health Survey for England (HSE). Study members have 

a face-to-face interview (a computer-assisted personal interview followed by 

a self-completion questionnaire) every two years of the study and a nurse 

assessment every four years. This particular survey was chosen because 

the sample used in ELSA was designed to be nationally representative and 

since osteoarthritis is rare under 50 years of age.  

Reproduced (with permission)  from the Arthritis research UK website  

(http://www.arthritisresearchuk.org/arthritis-information/data-and-

statistics/musculoskeletal-calculator/analysis.aspx?ConditionType=1,2&Char 

tType=1&AgeBracket=2,4,3&Bmi=1,2,3,4) 

 

http://www.arthritisresearchuk.org/arthritis-information/data-and-statistics/musculoskeletal-calculator/analysis.aspx?ConditionType=1,2&Char%20tType=1&AgeBracket=2,4,3&Bmi=1,2,3,4
http://www.arthritisresearchuk.org/arthritis-information/data-and-statistics/musculoskeletal-calculator/analysis.aspx?ConditionType=1,2&Char%20tType=1&AgeBracket=2,4,3&Bmi=1,2,3,4
http://www.arthritisresearchuk.org/arthritis-information/data-and-statistics/musculoskeletal-calculator/analysis.aspx?ConditionType=1,2&Char%20tType=1&AgeBracket=2,4,3&Bmi=1,2,3,4
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In adults aged 45 years and older in the American Johnston County project 

and Framingham cohorts, the prevalence of knee ROA was 28% and 19% 

respectively, whereas the symptomatic knee OA prevalence was 17% and 

7% respectively[4, 51]. In adults aged 60 years and older 37% and 12% had 

knee ROA and symptomatic knee OA respectively[48]. In the UK 18% of 

adults above the age of 45 have self-reported knee OA.  In a meta-analysis, 

a history of prior knee injury increased the risk of prevalent knee OA four 

fold[54]. 

In adults of 45 years or more in the USA Johnston County project the 

prevalence of hip ROA was 28% whilst symptomatic OA was 9%. In adults in 

the UK over 45 years 11% have self-reported hip OA.  In adults over the age 

of 60 years the clinical ACR criteria for hand OA (Table 3) was met by 

8%[49], whilst typical hand OA symptoms were reported by 22% of adults 

over 70 years of age[50]. Amongst adults above the age of 50 the 

prevalence of symptomatic foot and ROA was 17%[55].  

2.3.2 Incidence 

Generic risk factors for the incidence of the knee, hip and hand OA include 

age and female gender[43]. Occupational exposure to increased 

biomechanical stresses increases the risk of hip and knee (after adjusting for 

age, gender, body mass index and previous trauma)[56, 57]. Participation in 

sporting activities [58, 59] and the presence of OA in other joints increases 

the risk of incident hip and knee OA[43]. 

2.3.2.1 Age and Gender 

The age and sex-standardized incidence rates of symptomatic OA in adults 

of 20 years and older are quoted as per 100,000 person years: these are 

240, 88 and 100 for the knee, hip and hand respectively[60].  

The incidence of symptomatic OA of the knee, hip and hand increases with 

age, with women having higher rates than men, particularly after 50 years of 

age. Amongst women the incidence of clinical OA of the hip and knee 

increases rapidly between 50 and 75 years and then decreases thereafter. 

However incident clinical hand OA peaks in women in peri- and post-

menopausal years between 55 and 60 years and decreases thereafter[43]. 
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Amongst men the incidence of clinical OA of the knee, hip and hand 

increases from 50 to 75 years and then decreases. A meta-analysis and 

large primary care database reported a greater risk of OA incidence 

amongst women for the knee, hip [53] and hand[43] respectively (Figure 4). 
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Table 3 American College of Rheumatology radiological and clinical 
criteria for osteoarthritis of the knee and hip 

Hand (clinical) 
 

Osteoarthritis if 1, 2, 3, 4 or 1, 2, 3, 5 are present: 

1 Hand pain, aching, or stiff ness for most days of previous month 

2 Hard tissue enlargement of two or more of ten selected joints* 

3 Swelling in less than three metacarpophalangeal joints 

4 Hard tissue enlargement of two or more distal interphalangeal joints 

5 Deformity of two or more of ten selected hand joints* 

Hip (clinical and radiographic) 
 

Osteoarthritis if 1, 2, 3 or 1, 2 ,4 or 1, 3, 4 are present: 

1 Hip pain for most days of previous month 

2 Erythrocyte sedimentation rate of less than 20 mm in the first hour 

3 Femoral or acetabular osteophytes on radiographs 

4 Hip joint space narrowing on radiographs 

Knee (clinical) 
 

Osteoarthritis if 1, 2, 3, 4 or 1, 2, 5 or 1, 4, 5 are present: 

1 Knee pain for most days of previous month 

2 Crepitus on active joint motion 

3 Morning stiff ness lasting 30 min or less 

4 Age 38 years or older 

5 Bony enlargement of the knee on examination 

Knee (clinical and radiographic) 
 

Osteoarthritis if 1, 2 or 1, 3, 5, 6 or 1, 4, 5, 6 are present:  
1 Knee pain for most days of previous month 

2 Osteophytes at joint margins on radiographs 

3 Synovial fluid typical of osteoarthritis (laboratory) 

4 Age 40 years or older 

5 Crepitus on active joint motion 

6 Morning stiff ness lasting 30 min or less 

*Ten selected joints include bilateral second and third interphalangeal proximal joints, 
second and third proximal interphalangeal joints, and first carpometacarpal joint. 
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Figure 4 The incidence of OA 

 

 

Age and gender-specific incidence rates (/1000 person-years) of knee 

osteoarthritis (OA) (black), hip OA (red), and hand OA (green). Solid, All 

population; short dash line, women; long dash line, men 

SIDIAP (http://www.sidiap.org) is anonymised primary care 

electronic medical records of a highly representative sample of patients 

attending GPs in Catalonia (North-East Spain), covering a population of 

about 5 million patients. SIDIAP contains primary care records for>5 

million people from Catalonia (Spain). Participants aged ≥40 years with an 

incident diagnosis of knee, hip or hand OA between 2006 and 2010 were 

identified using International Classification of Diseases (ICD)-10 codes 

.Reproduced from Annals of Rheumatic disease, Prieto-Alhambra D, et al. 

79, 1659-64 2014; with permission from BMJ Publishing Group Ltd.[43]. 
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2.3.2.2 Obesity 

Obesity increases the biomechanical load upon weight-bearing joints which 

may explain its independent association with the incidence of knee ROA[61]. 

Obesity is the strongest potentially modifiable risk factor in meta-analyses 

and confers more than a three-fold greater risk of incident knee OA [62-64] 

and a greater risk of knee OA pain incidence[65] and structural 

progression[66]. Obesity is associated with incident hand OA[67] and self-

reported knee OA but interestingly not hip OA[68, 69]. There is conflicting 

evidence as to whether obesity is associated with structural progression of 

the hip or knee but there is no association between body mass index and 

hand OA pain or structural progression[70]. Obesity directly increases the 

biomechanical load in weight-bearing joints that may also promote the 

production of proinflammatory cytokines (including adipokines) that mediate 

the catabolic processes of OA[71, 72].  

2.3.2.3 Joint injury 

Joint injury can cause damage to articular cartilage, bone, meniscus and 

rupture of the anterior cruciate ligament, all of which can cause a 

biomechanically adverse environment within the joint that predisposes to 

further deterioration of the joint tissues. Joint injury is associated with 

subsequent incident knee pain in a systematic review and meta-analysis of 

cohort studies[65] and also a nine-fold greater odds of progression to end-

stage knee ROA in 48 months, amongst knees without baseline knee 

OA[73].  

2.3.2.4 Bone shape and malalignment 

There is increasing evidence that OA is a consequence of the failure to 

effectively dissipate adverse biomechanical forces within a susceptible joint. 

Bone shape within joints has long been recognised as a predisposing factor 

for adverse biomechanics. The presence of an aspherical femoral head (a 

cam-deformity) is associated with femoro-acetabular impingement and is 

associated with delamination of the acetabular cartilage and confers up to a 

ten-fold greater risk of end-stage hip OA within 5 years[74]. Similarly the 

expansion of the three-dimensional shape of tibial and femoral bones is 

associated with incident knee ROA[75]. Malalignment of the knees unequally 
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distributes load across the medial and lateral femoro-tibial joint compartment 

which results in a varus (bow-legged) or valgus (knock knees) deformity.  

The compartment with the greater load as a consequence of the 

malalignment is more likely to develop ROA and structural progression of 

cartilage damage[76, 77].  

 

2.3.2.5 Genetics and epigenetics 

Genetic studies within family-based studies and extreme OA phenotypes 

have confirmed the strength of genetic predisposition to OA. The 

identification of genes associated with OA through association studies confer 

only small effect sizes [78] but single-nucleotide polymorphisms (SNP) have 

been associated with established risk factors such as obesity (FTO [78, 79]) 

and hip bone shape (FRZB [80]). One SNP near the NCOA3 gene reached 

genome-wide significance level[81]. The NCOA3 gene is clinically important 

because it is expressed in articular cartilage and its expression was 

significantly reduced in damaged cartilage compared to normal cartilage in 

femoral heads removed at the time of hip replacement[81]. As OA is likely a 

complex polygenic problem, genomics alone will be unlikely to stratify 

individuals into who will or will not develop OA, but may lead to the 

development of new therapeutic targets for individual joints[82].  

 

Epigenetic studies have indicated the disruption of cartilage homeostasis 

may reflect environmental factors promoting abnormal expression of genes 

that disrupt the anabolic and catabolic processes that regulate cartilage 

integrity. The alteration in gene expression of anti-inflammatory or pro-

inflammatory cytokines, articular cartilage proteins, matrix proteases and 

transcription factors may be involved in the pathogenesis of OA and 

represent important novel therapeutic targets [83]. 

2.3.3 Structural progression 

Structural progression is usually defined as imaging evidence of structural 

deterioration in a joint, though soluble biomarkers may also reflect this 

process. Conventionally these have been surrogate measures of cartilage 
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damage from CR. Radiographic structural progression can be assessed by 

measuring joint space narrowing (JSN) using semi-quantitative tools like the 

OARSI atlas [84, 85] or quantitative tools. The Kellgren Lawrence grade[19] 

is a composite measure of JSN, osteophytes, subchondral sclerosis that is 

described on an ordinal scale (Figure 1,Table 1). Joint space width is used 

as a surrogate for assessing cartilage thickness but in the knee it reflects a 

construct of reduction in hyaline articular cartilage thickness along with 

meniscal extrusion and degeneration[86]. The Kellgren Lawrence scoring 

does not represent an interval variable where individual categories are 

equidistant from each other. Therefore it is important to recognise that the 

proportion of knees that progress from one grade to the next are not 

comparable for all starting points in the scale.  

With its three dimensional visualisation of joint tissues, MRI has broadened 

concepts of structural progression.  The quantification of MRI cartilage 

volume affords advantages over CR because structural loss of cartilage can 

be detected in the pre-ROA phase[87] and in end-stage OA, after the total 

loss of joint space width (‘bone on bone’ or  Kellgren Lawrence grade 4)[88]. 

As well, MRI demonstrates structures other than cartilage (Table 2,Figure 2) 

that might be used to measure structural progression such as bone marrow 

lesions (BMLs) or bone shape.  

The structural progression measured by ROA of knee, hip and hand OA is 

typically slow and takes place over several years but can also remain stable 

over years [89-92]. Structural progression varies by joint affected. In knees 

the mean annual risk of progression of KL grade is 5.6% ± 4.9% and mean 

rate of joint space narrowing is 0.13 ± 0.15mm/year, with change occurring 

in only a small group of “progressors” in a 12-month observational study and 

a 30 month randomised controlled trial[93, 94]. The same observation was 

made when structural progression was analysed in the OAI.  

It is important to understand the inertia of the trajectory of radiographic 

structural progression in knee OA that has been described by Felson and 

colleagues. A nested case control analysis within the OAI described  case 

knees as those with incident ROA (KL=2, a combination of incident JSN and 

osteophytosis) by the end of the first year of follow up and control knees 
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which maintained a stable KL grade of 2 during the first year. This was an 

elderly obese population. Both incident ROA (KL 2) and stable ROA (KL 2) 

knees were examined subsequently for progression of JSN (OARSI grade) 

or KL grade in the following (2nd) year.  13.7% and 4.1% of knees developed 

a higher KL grade in the incident and stable groups respectively. 25.8% and 

6.1% of knees developed progression in JSN in the incident and stable 

group (with JSN grade 0 or 1) respectively(Table 4)[92]. 

After adjustment for sex, race, baseline age, BMI, clinic site, physical activity 

survey of the elderly, quadriceps strength and alignment the incidence group 

had a four and five fold greater odds of KL grade and JSN grade progression 

than the stable group. This suggests that in adults with a mean age of 61 

years and mean BMI of ~29, radiographic structural progression is not 

phasic but an inciting event precipitates a trajectory of structural 

deterioration with inertia. 

Table 4 The inertia of knee osteoarthritis radiographic progression  

 Incident JSN 

and KL 2 

N=167 

Stable JSN 

(grade 0-1) 

N=4979 

Incident KL2 

N=139 

Stable KL2 

and JSN 

N=3173 

% with JSN 

progression 

25.8% 6.1% 13.7% 4.1% 

% without 

JSN 

progression 

74.2% 93.9% 86.3% 95.9% 

JSN – joint space narrowing, KL – Kellgren Lawrence 

Data collected from the Osteoarthritis Initiative (OAI) 

 

MRI-determined cartilage volume loss in knee OA progresses at a mean rate 

of 4% per annum and more than half of all knees are “progressors”[95]. Loss 

of cartilage volume occurs more rapidly with increasing age, body mass 

index, lower limb muscle weakness but also with co-existing structural 

changes such as BMLs and meniscal damage[95, 96] (Figure 2). Muscle 
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weakness has not been considered to be a risk factor for structural 

progression based upon a systematic review of studies using CR and not 

MRI[44]. 

 

2.3.4 Symptom progression 

Studies that refer to OA ‘progression’ generally refer to structural 

progression, though sometimes progression to joint replacement is used as 

a surrogate for presumed worsening of pain and structure. OA symptom 

progression is not well defined and could refer to progression of pain 

severity or the new incidence of pain within individuals usually in cohort 

studies. Pain can be serially measured using numeric rating or visual 

analogue scales or using standardised questionnaires that ask patients to 

quantify pain severity. Amongst knees with ROA, little change is observed in 

knee pain over six years [97] except when large increases in radiographic 

structural severity are observed[98]. BMLs and bone shape are 

independently associated with future increases in knee pain severity[99-101] 

and incident knee pain[102] respectively. The probability of joint replacement 

is increased by increasing severity of joint pain[103], increasing ROA 

severity[104] and MRI-demonstrated BMLs, cartilage and meniscal damage 

and synovitis that indicate joint failure[103, 105].  

2.3.5 Secondary osteoarthritis 

The term ‘primary’ or idiopathic OA is less frequently used now, perhaps 

because we understand the frequency of pre-OA lesions (like meniscal 

damage) that would often not be detected in routine clinical practice and for 

which patients often have no knowledge (probably arising from minor or 

forgotten trauma). However OA does occur secondary to other diseases. 

Congenital or developmental causes include bone dysplasias such as 

epiphyseal dysplasia, localised diseases such as Perthe’s disease of the hip, 

congenital hip dislocation and slipped femoral epiphysis. Endocrinological 

predisposing diseases include acromegaly, diabetes mellitus, 

hyperparathyroidism and hypothyroidism. Metabolic predisposing diseases 

include haemochromatosis, ochronosis (alkaptonuria), Gaucher’s disease 

and Wilson’s disease. Finally neuropathic (Charcot joints), calcium 
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deposition diseases (primary pseudogout), haemoglobinopathies and other 

bone and joint diseases may also cause secondary OA.  

2.3.6 Impact of osteoarthritis 

Individuals with OA suffer pain which is associated with disability and 

reduced quality of life. The impact of OA on an individual’s function, mood, 

relationships, occupation and leisure activities may be extensive. Workers 

with OA reported more frequent pain, greater use of healthcare resources 

and costs, reduced productivity and poorer quality of life as self-rated OA 

severity increased[106]. 

One in eight individuals with OA suffer self-reported unbearable pain and 

one in five give up holidays, hobbies and leisure activities. One third of 

people with OA retire early, give up work or reduce the number of hours they 

work because of their condition. Those who retire early do so an average of 

8 years early. Furthermore two thirds of people with OA report an increase in 

their own costs including travel and treatment which in total  equates to a 

mean of £480 per person each year[1].  

OA is the most common worldwide cause of mobility disability and it is 

increasingly accountable as a cause for years lived with disability and 

limitation of quality of life[6].  

The lived experiences of people with OA can be influenced for better or for 

worse by one or a combination of the following: functional impairment, 

attitudes towards OA symptoms, personal perceptions of OA and perceived 

perceptions of other people towards OA. Favourable changes in any of 

these may improve the lives of those living with OA[107] (Figure 5). A 

systematic review of generalised OA indicates this is associated with poorer 

quality of life, function and increased disability compared to an OA 

monoarthritis[45]. Increasing OA joint burden is also associated with 

increasing risk of depression[108].  
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Figure 5 The factors affecting lived experiences of OA 

 

A line of argument diagram. Four concepts can act in isolation or in 

combination to influence the experiences perceived by the person with OA. 

Reprinted with permission of Taylor and Francis [107]. 

2.3.7 Health economic impact 

OA is associated with pain, disability, absenteeism and early retirement. The 

socioeconomic burden ranges from one to two-and-a-half per cent of gross 

domestic product in developed countries[8].  The economic burden of OA on 

society and health services is tremendous. This is generated through a 

combination of direct and indirect costs. Individuals with OA have double the 

rate of absenteeism compared with controls in North American [109] and 

Swedish population based cohorts [7]. The mean total direct and indirect 

costs are two to three fold higher [109] and there was a 40–50% increased 

risk of disability pension in comparison with the general population[7].  

In the UK between 1991 and 2006, 25845 hips and 23260 knees underwent 

total joint replacement[110]. The estimated mortality-adjusted lifetime risk of 

total hip replacement (THR) at age 50 was 11.6% for women and 7.1% for 

men. For total knee replacement (TKR) the risks were 10.8% for women and 

8.1% for men[110]. OA represents more than 93% of all joint replacement 

indications and the total annual cost of joint replacements is estimated at 

£852 million in the UK in 2010[111]. 

2.3.8 Mortality 
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Case series of individuals with OA have utilised different methods to 

describe the effect of a diagnosis of OA on mortality. Conflicting results have 

been reported by two different analyses, reporting an increased mortality 

and normal mortality rates conferred by a diagnosis of OA compared with 

national statistics of the general population[112, 113]. Symptomatic OA of 

the hip and knee was reported to confer approximately a two-fold greater 

risk of cardiovascular (CV) and dementia-associated deaths compared with 

the general population. While this association did not adequately adjust for 

the confounding effects of disability and comorbidity in the general 

population, walking disability was found to be a major risk factor for mortality 

amongst individuals with OA[112]. A subsequent population cohort reported 

that OA did not confer a greater risk of CV events but disability was 

independently associated with this outcome after adjusting for the presence 

of symptomatic and asymptomatic ROA[114]. An analysis of the 

Framingham population cohort reported that hand OA did not confer a 

greater risk of mortality but symptomatic hand ROA conferred a greater risk 

of CV events than asymptomatic hand ROA. A cohort in North America, 

designed to describe osteoporotic fractures and recruited from secondary 

care, described a greater risk of all cause and CVD mortality conferred by 

the presence of hip ROA compared to the absence of ROA of the hip. This 

effect was independent of poor physical function but the causal effect was 

significantly explained by poor physical function [115]. Therefore a greater 

burden of OA and subsequent disability may be important risk factors for 

mortality.  

2.4 Pathogenesis and pathological features 

There are multiple tissues that are essential components of diarthrodial 

(synovial) joints. Each tissue has its own composition and structure which 

plays an important functional role in effectively dealing with mechanical 

loads encountered during life. The hyaline articular cartilage is a tissue 

capable of distributing and transferring impressive load across diarthrodial 

joints without sustaining significant structural deterioration[116]. This 

cartilage affords a gliding surface for the joint which is almost frictionless and 

which permits load transmission during dynamic activity. It is the unique 
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mechanical and morphological properties of hyaline cartilage that permit it to 

fulfil its complex functional demands[116-118]. Subchondral bone is also 

integral to the maintenance of the integrity of articular cartilage and works in 

concert with this cartilage to effectively dissipate load by a process of load-

sensitive remodelling (see Section 2.6).  

OA is a syndrome of deterioration of synovial joints that is characterised by 

focal and progressive loss of the hyaline articular cartilage of joints, bone 

changes beneath the cartilage, synovial inflammation and debilitating pain.  

There is no single pathway of pathogenesis but in order for a structurally 

normal joint to become osteoarthritic, this requires a sufficient burden of joint 

tissue structural damage, biomechanical adversity along with a varying 

combination of risk factors (see epidemiology). These inflammatory, 

metabolic and genetic contributory factors may drive a subsequent 

heterogenous cascade of biomechanical and biochemical pathologies that 

overwhelm normal repair processes and establish the joint ‘failure’ that 

presents as clinical OA.  

This pathogenesis is likely to progress through a sequence of stages that 

can be described macroscopically using MRI studies and microscopically 

using histological studies.  

 

2.4.1 Macroscopic 

In early asymptomatic stages only individual tissues are likely to be involved 

and cartilage defects[119], meniscal degeneration[120] and BMLs[121] are 

all known to be present amongst individuals without knee OA symptoms. 

These lesions (see Figure 2, Table 2) are associated with incident knee 

ROA[122] and structural progression of cartilage volume or thickness 

loss[123-125]. It is likely that a ‘domino effect’ occurs where an inciting event 

such as a meniscal tear predisposes to cartilage loss, adjacent bone marrow 

lesions, meniscal extrusion and malalignment which establishes a 

progressive biomechanical adverse environment within the joint.  
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2.4.2 Microscopic 

OA represents whole-joint ‘failure’. Normal joint structure and function 

depend upon the ability of constituent tissues to perceive and respond to 

stress, strain and load. This is particularly true of the articular cartilage and 

subchondral bone. The cells within these tissues ensure the joint’s ability to 

receive and dissipate stress is maintained by homeostatic reparative 

processes. This includes the chondrocytes that maintain a substantial 

extracellular matrix. Chondrocytes synthesise molecules to restore the 

cartilage matrix, but also produce pro-inflammatory cytokines (e.g. 

interleukin-1) and tissue destructive enzymes (e.g. metalloproteinases) 

which decrease anabolic matrix synthesis (Figure 6)[126]. This matrix 

consists of a collagenous extracellular matrix, that consists of proteoglycan 

and elastin fibres. Cartilage and joint structural integrity and function are lost 

as a net catabolic process is established during the OA process. An 

extension of the calcified cartilage zone increases biomechanical forces 

across the cartilage and adjacent bone. Biomechanical derangements within 

the joint can stimulate the production of further catabolic enzymes. In parallel 

with these cartilage derangements the cellular activity in subchondral bone 

changes, probably to attempt to adjust to biomechanical forces. This results 

in resorption and the production of an increased volume of immature 

unmineralised bone. This may compromise the biomechanical support for 

the overlying cartilage which may augment the biomechanical forces 

transmitted through cartilage resulting in further damage. Furthermore an 

increased permeability at the junction between the articular cartilage and 

bone (osteochondral junction), driven by microcracks in the cartilage and 

subchondral angiogenesis, exposes the cartilage to an abnormal 

biochemical environment (Figure 7)[15]. Synovial inflammation is 

precipitated by cartilage debris and catabolic mediators entering the synovial 

cavity. Synovial macrophages produce some of the chemokines and 

metalloproteinases that degrade cartilage (Figure 6). This in turn amplifies 

synovial inflammation, creating a potentially vicious cycle between these 

tissues.  
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Figure 6 Pathogenesis of OA 

 

The role of proinflammatory cytokines in the pathophysiology of OA. The 

levels of cytokines are elevated in OA and downregulate anabolic events 

and upregulation of catabolic and inflammatory responses. This results in 

structural damage.  Reprinted by permission from Macmillan Publishers Ltd: 

Nat. Rev. Rheumatol. [126], copyright (2011). 
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Figure 7 Pathogenesis of OA – osteochondral disruption 

 

Molecular cross-talk at the osteochondral junction. A vascular channel is shown breaching from the subchondral bone (SCB), through the 

calcified cartilage (CC) into the non-calcified cartilage (NCC). Channel contents include macrophages, osteoclasts, osteoblasts and a blood 

vessel (BV). Cells within the channel interact through cytokines, growth factors and other signals that stimulate angiogenesis, nerve growth 

and sensitisation, osteoclastic activity and new bone formation. Importantly, these local interactions are enhanced in OA by signals across 

the osteochondral junction. With disruption of the tidemark, subchondral tissues become exposed to factors produced by articular 

chondrocytes nearer the joint surface, such as vascular endothelial growth factor (VEGF), and potentially to influences from the synovium. 

(Reprinted by permission from Elsevier Ltd: Bone [15])  
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2.4.3 Pain and measuring pain in OA 

OA is one of the most common causes of chronic pain and pain is the most 

common symptom of OA. Pain is the primary reason for patients seeking 

medical help with OA and involves peripheral and central nociceptive 

mechanisms. Pain is important to recognise for its characteristics to 

accurately diagnose OA but also to appreciate its likely origin as any 

successful treatment must ideally target the source of pain. This section 

describes the origin of pain in OA, the characteristic pain of OA, the 

structural associations and likely determinants of pain and finally attempts to 

treat pain.  

2.4.3.1 The pathogenesis of pain 

OA pain is generated from damaged joint tissues where irritative chemical, 

mechanical or thermal stimuli precipitate afferent nociceptive neurons to 

depolarise and send nociceptive signals to the sensory cortex via the dorsal 

horn of the spinal cord.  

Nociceptors within a joint vary by joint tissue and by stage of OA. Healthy 

diarthrodial joints have nociceptive fibres richly innervating the synovium and 

subchondral bone. These fibres also innervate the joint capsule and 

ligaments and the outer edge of the menisci in the knee but the cartilage is 

aneural and avascular in normal joints[127]. Therefore in normal joints and in 

early OA, the cartilage is unlikely to be the source of pain. However as OA 

progresses there is neurovascular invasion which provides cartilage with the 

potential for nociception[15](2.6.1.2 Subchondral bone and the 

osteochondral junction).  

Activity-related pain of OA is typically present in a prodromal phase of ‘early’ 

OA before the incidence of ROA[18]. This pain in early OA is typically 

mechanical [128]and may reflect the increased load upon SCB denuded of 

shock-absorbing cartilage and increased intra-articular pressure with a joint 

effusion. Cartilage degradation products also promote a secondary synovitis 

and joint inflammation which involves the release of cyclooxygenases, lipo-
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oxygenases, leukotrienes,  phospholipases and nitrous oxide that are 

involved in pain mechanisms. 

In acute pain, a peripheral nociceptor receives a stimulus and transduces 

this into an afferent sensory neurone action potential that relays with a spinal 

neurone for onward transmission to the thalamus and thereafter the sensory 

cortex. There are serotonergic and noradrenergic pathways within the 

central nervous system that provide descending inhibition to modulate and 

reduce the signal that is conveying the acute pain. However in chronic pain, 

greater sensitivity in the peripheral nociceptor can increase this signal and 

this is called peripheral sensitisation. Examples of mediators of peripheral 

sensitisation include neuronal growth factor (NGF), substance P, calcitonin 

gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive 

intestinal peptide (VIP).  

Central pain neurological mechanisms play an important role in the 

perception of pain. Increased nociceptive transmission from the spine to the 

sensory cortex can be increased due to inhibition of the inhibitory central 

descending pathways and this is called central sensitisation. Central 

sensitisation has many determinants and can be influenced by comorbidities 

including mood disorders, loneliness and sleeping problems in OA. 

The enhanced pain experienced in response to a given stimulus reflects 

neural plasticity in the chronic pain of OA which involves both peripheral and 

central sensitisation. This is demonstrated by saline injections into the tibialis 

anterior muscle of patients with OA causing more intense pain than 

individuals without OA[129]. 

In more advanced forms of OA neuropathic pain may be involved whereby 

altered spontaneous and evoked activity from peripheral neuronal injury 

results in pain without the typical mechanical stimulus of OA pain. This 

unpredictable intense pain[128] is perhaps the most debilitating of OA[130]. 

2.4.3.2 OA pain and its structural associations 

OA pain is well known to be poorly associated with conventional 

radiographic structural knee OA severity. Only 50% of knees with 

radiographic OA (ROA) have symptoms[17]. Little change in pain is 
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observed in knees with ROA over six years[97] except when large increases 

in ROA structural severity are observed[98].  

CR is not as sensitive or specific in detecting structural pathology and 

progression as magnetic resonance imaging (MRI)[23, 86]. The OA joint 

tissue lesions detected by MRI (e.g. cartilage defects, meniscal tears, bone 

marrow lesions - see Figure 2) are prevalent in knees without ROA [23] and 

these are associated with incident symptoms [131] which highlights the 

importance of peripheral joint structural lesions in the pathogenesis of 

nociception. In particular a recent systematic literature review highlighted the 

important associations of MRI-detected synovitis and bone marrow lesions 

(BMLs) with knee OA pain[132]. An increase in the number or size of BMLs 

was associated with increasing knee pain, whilst a decrease in BMLs was 

associated with reduced knee pain[26]. BMLs are consistently associated 

with knee pain [26, 100, 133-135]. The pathophysiology by which BMLs may 

cause pain is unknown but this might include ischaemia from a decreased 

blood supply, subchondral microfractures, and raised intraosseous 

pressure[136-138]. 

Numerous other structural associations with pain have been demonstrated 

including SCB attrition (see 2.6.3) [135, 139], synovitis [135] and meniscal 

tears[135]. 

Demonstrating the longitudinal role of BMLs and synovitis in pain 

pathogenesis is more feasible because these lesions appear and disappear 

or regress. Meniscal tears and SCB attrition do not reverse. 

2.4.3.3 OA pain and measuring pain 

Pain is a characteristic feature of OA and is typically activity-related or 

mechanically-exacerbated and is relieved by rest. OA pain is 

characteristically intermittent in large OA knee cohort observational 

studies[140]  but as OA becomes more advanced, patients report pain with 

different qualities (such as “a burning sensation”) which may reflect 

neuropathic pain, and central pain mechanisms including sensitisation may 

reduce pain thresholds.  

Pain can be quantified using different methods and these include the visual 

analogue scale for pain (VAS), the numeric rating scale for pain (NRS), the 
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McGill pain questionnaire (MPQ), the Intermittent and Constant 

Osteoarthritis Pain (ICOAP) and the Western Ontario and McMaster 

Universities Arthritis Index (WOMAC).  

Pain severity can be described using the pain VAS, NRS, pain quality can be 

assessed with the MPQ and the time course of pain can be described by the 

ICOAP. The WOMAC is used to evaluate the pain, stiffness, and physical 

functioning of the joints of patients with OA of the hip and knee.  

The pain VAS is a unidimensional continuous measure comprised of a 

horizontal or vertical line which is usually 10 centimetres in length and 

anchored by two descriptors, one for each symptom extreme. 

The NRS is a segmented numeric version of the VAS where a respondent 

must select integers (0–10) that reflects the intensity of their pain. There are 

also anchoring terms describing pain severity at the extremes of the 11-point 

numeric scale.  

The MPQ identifies qualities of pain associated with distinct nociceptive 

disorders and neuropathic pain disorders like OA and also can measure the 

effectiveness and efficacy of pain interventions. This is a multidimensional 

pain questionnaire designed to measure pain intensity as well as the 

sensory, affective and evaluative aspects of pain in adults with chronic pain 

such as in OA. Four subscales evaluate the sensory, affective and 

evaluative, and miscellaneous aspects of pain 

The ICOAP is another multidimensional OA-specific measure for 

comprehensively evaluating pain in people with hip or knee OA. This 

includes the impact of pain on mood, sleep, and quality of life pain as well as 

measuring the intensity and frequency of pain.  It is an 11-item scale 

evaluating 2 pain domains: a 6-item scale evaluates intermittent pain while a 

5-item scale evaluates constant pain. 

The WOMAC is another multidimensional OA-specific measure for 

comprehensively evaluating the pain, stiffness, and physical functioning of 

the joints of patients with OA of the hip and knee. The WOMAC measures 

five items for pain (score range 0–20), two for stiffness (score range 0–8), 

and 17 for functional limitation (score range 0–68). Physical functioning 

questions cover activities of daily living[141]. 
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2.4.3.4 Novel approaches to measuring and treating pain in OA   

While structural joint pathology and inflammation are recognised as 

important contributing factors to pain, OA pain pathophysiology is relatively 

poorly understood. The mechanisms of peripheral and central sensitisation 

and neuropathic pain contribute to OA pain severity are important in the 

maintenance of pain and facilitate the conversion of acute pain into chronic 

pain. The role of the central nervous system in pain is highlighted by the 

observation that 10-20% of people with knee OA have persistent severe pain 

after total knee replacement[142-144]. Pain may therefore be a 

consequence of multiple mechanisms and this may explain why the 

response to conventional OA pain treatments, which often target one 

specific pain mechanism, is often inadequate.  

Quantitative sensory testing (QST) is an example of a mechanism that 

assesses the mechanisms of pain involved and a phenotyping of pain. This 

evaluates somatosensory evoked responses to innocuous or noxious stimuli 

using several modalities including  controlled chemical, thermal, mechanical 

and/or electrical. These stimuli are applied by an examiner to an anatomical 

test site such as a joint until the subject indicates pain. The subject’s 

responses to the stimuli locally can be used to assess peripheral 

sensitisation. The subject may also report pain at a nearby or distant location 

from the applied stimulus which may imply central sensitisation. These 

methods are being used to develop strategies for measuring the pain 

mechanisms involved in OA pain perception and the relative impact of 

peripheral and central sensitisation, descending pain control, and referred 

pain. This may permit patient phenotyping for targeted therapy directed at 

the underlying pain mechanism. 

One of the major mediators of peripheral sensitisation and pain in animal 

models of OA is nerve growth factor (NGF). The monoclonal antibody 

tanezumab provides a blockade of the NGF mechanism and in a 

randomised controlled trial in humans a sustained improvement in knee pain 

was demonstrated and therapy was essentially well tolerated. Unfortunately, 

trials were suspended due to increased rates of joint replacement[145] but 

investigation is now underway again. 
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In summary OA pain is a complex construct of tissue damage, peripheral 

sensitisation, central sensitisation and neuropathic pain. While OA pain has 

important structural associations with MRI-determined structural pathology 

these other mechanisms must be acknowledged as important determinants 

of OA pain.  

2.5 Management  

2.5.1 Clinical features 

NICE and EULAR guidelines advise that appropriate symptoms, clinical 

findings and age at onset can be used to clinically diagnosed OA[146-148]. 

Activity related joint pain reported in patients over the age of 45 with less 

than 30 minutes of morning joint stiffness can be considered to have OA 

without further investigation. The likelihood is increased further by risk 

factors (see Epidemiology and risk factors) and joint-specific examination 

findings of pathology including knee crepitus or Heberden’s nodes in the 

hands. 

 

2.5.2 Investigation 

X-rays and laboratory analysis of blood and synovial fluid are not necessary 

for the clinical diagnosis of OA. However in the presence of atypical features 

that suggest the presence of diagnoses other than OA, these tests may be 

used for differential diagnosis of inflammatory arthritis, septic arthritis or 

malignant bone pain[148]. These features include, rapid progression of 

symptoms, a hot swollen joint or prolonged morning stiffness of more than 

one hour 

2.5.3 Treatment 

Recent years have seen the emergence of a large number of evidence-

based guidelines from important musculoskeletal organisations. These are 

based on the published literature, expert opinion and, to a lesser extent, 

patient opinion (all three sources are valid for comprehensive guidelines). 

There is generally broad agreement across these guidelines in which 

therapies they recommend, though some discrepancies are obvious. 
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2.5.3.1 Nonpharmacological interventions 

Guidelines for the management of OA unanimously recommend the 

provision of health education and to encourage self-management. All 

individuals with OA should comprehend their arthritis reflects a failed repair 

process usually arising due to several joint insults, their personal risk factors 

(e.g obesity) and their prognosis. This information should be reinforced at 

subsequent consultations and with both electronic and written resources.  

All patients with OA should be offered advice on exercise that initially 

focusses on local muscle strengthening and then general aerobic fitness 

thereafter. A Cochrane review finds that land based knee and hip exercise 

programmes can reduce pain and improve physical function[149, 150]. 

Exercise programmes must be tolerable and realistic to promote adherence 

and should therefore be tailored to the severity of the OA at presentation.  It 

is unlikely that a patient with painful knee OA, that cannot perform a straight 

leg raise, will significantly benefit from walking without quadriceps 

strengthening first. Exercise programmes for individuals with significant 

muscle weakness should begin with low-impact exercises such as cycling on 

exercise bikes and walking laps in a swimming pool. Depending upon each 

individuals capability, the ‘dose’ of exercise should be titrated up.  

Overweight or obese individuals should be offered a dietician’s review or 

dietary advice because weight loss is associated with reduction in pain and 

better function (though there is little evidence for benefits on structural 

progression)[151, 152]. Aids and devices (for example, splints for base of 

thumb OA and devices for opening jars) help with everyday activities. 

Recommended footwear for individuals with OA includes shoes with no heel 

elevation, thick shock-absorbing soles and adequate plantar arch support.  

In summary, the multi-disciplinary patient-centred combination of exercise 

self-management and education should set realistic goals with regular 

reassessment and encouragement to maintain the required lifestyle 

changes[153]. 
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2.5.3.2 Pharmacological interventions 

The first-line pharmacological treatments are topical NSAIDs and oral 

paracetamol due to their favourable risk:benefit ratio. However recent 

evidence suggests that paracetamol may have greater toxicity than is 

generally appreciated, and be a less effective analgesic in OA than 

previously thought[10, 154](Table 6) 

In one study, after 13 weeks of regularly taking either ibuprofen or 

paracetamol three times a day for knee OA, one in five participants lost more 

than 1g per decilitre of haemoglobin[13]. A systematic review identified a 

dose-response effect on cardiovascular, gastrointestinal and renal adverse 

events[11] 

Topical capsaicin is a chilli pepper extract that depletes neurotransmitters in 

sensory terminals and attenuates the central transmission of peripheral pain 

impulses from the joint. It is generally recommended as supplementary 

analgesic for hand and knee OA and is again safe.  

Treatments may vary in efficacy according to the anatomical location of OA; 

most of the published evidence derives from knee OA trials, both 

nonpharmacological and pharmacological interventions are used, separately 

but more commonly in combination, in the treatment of OA(Table 5). 

Should further analgesia be required, practitioners should consider oral 

NSAIDS, selective COX-2 inhibitors and then opiates, acknowledging the 

greater risk of toxicity particularly with increasing age and co-morbidities. 

Nutraceuticals, including glucosamine sulphate and chondroitin sulphate 

products, are natural compounds consisting of glycosaminoglycan unit 

components and glycosaminoglycans respectively. Despite the substantial 

volume of published evidence, they are often not recommended due to the 

lack of certainty of clinically important analgesic or structural benefits. 

However nutraceuticals have been reported to afford small benefits in pain-

relief in low quality trials[155, 156].  
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Table 5 Summary of the latest evidence based guidelines for OA treatments 

 

Reprinted by permission from John Wiley & Sons Ltd: Prescriber, Table reproduced from [157]
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Table 6 Relationship between effect size for pain relief and quality of 
randomized controlled trial 

 

NSAIDs – non-steroidal anti-inflammatory drugs 

IAHA – intra-articular hyaluronic acid 

GS – glucosamine 

CS – chondroitin sulphate 

ASU -Avocado soybean unsaponifiables 

Jaded - a procedure to independently assess the methodological quality of a 

clinical trial 

ES – effect size. This is a standard mean difference between 

groups (e.g., treatment vs placebo). ES is calculated by dividing 

the mean difference between treatments by the standard 

deviation of the difference. It is, therefore, a number without 

units that can be used for cross-study comparisons. Clinically 

ES >0.2 is considered small, ES>0.5 is moderate and ES> 0.8 is 

a large effect. 

(Reprinted by permission from Elsevier Ltd: Osteoarthritis and Cartilage [10] 

 

The intra-articular injection of corticosteroids is a useful short-term adjunct in 

the treatment of moderate to severe OA pain, which may facilitate muscle 

strengthening and exercise. Hyaluronan (HA, or hyaluronic acid) is a high 

molecular-weight glycosaminoglycan, a naturally occurring synovial fluid and 
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cartilage component. It provides the visco-elastic properties of synovial fluid 

that may provide lubricating and shock absorbing properties. Intra-articular 

HA is not recommended for OA by the NICE guideline[148]; in contrast the 

ACR guideline conditionally recommends its use in individuals older than 74 

years with knee OA pain that is refractory to conventional pharmacological 

therapies[158].  

 

2.5.3.3 Joint surgery 

Surgical intervention in OA may include arthroscopic surgery or partial or 

complete joint replacement. Arthroscopic debridement and lavage are not 

recommended as treatment for OA, except when there is a clear history of 

true mechanical locking of an osteoarthritic knee. However joint surgery 

should be considered if a patient with OA suffers persistent symptoms 

despite adequate use of the non-pharmacological and pharmacological 

interventions described above. In this circumstance clinicians should 

consider an orthopaedic referral to primarily consider joint replacement.  

2.5.4 Conclusions 

OA represents a process of joint failure with a great variety of risk factors 

and complex pathogenic pathways. OA confers a huge burden on individuals 

and health economies alike which is expected to increase in ageing and 

increasingly obese populations. Current treatments for OA consist of 

moderately effective non-pharmacological and pharmacological pain-

relieving therapies. There are currently no licensed structure-modifying 

therapies. Joint replacement reduces pain but joint prostheses have a finite 

life expectancy and revision surgery offers less favourable outcomes.  

2.6 Subchondral bone in OA 

The subchondral bone (SCB) is the bone tissue adjacent to the hyaline 

articular cartilage of diarthodial (synovial) joints. The SCB can be divided 

into two regions, the SCB plate and the subchondral trabecular bone (Figure 

10). The osteochondral junction (OCJ) is the interface between the rigid 

skeleton and the articular cartilage [159] and consists of the deeper calcified 

and non-calcified cartilage, the tidemark, the cement line and SCB plate 
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which is cortical bone (Figure 8,Figure 9,Figure 10). The OCJ is an important 

interface between the subchondral and synovial compartments and plays an 

integral role in maintaining normal joint physiology but also in the 

pathogenesis of OA.  

Beneath the plate is the subchondral trabecular bone of the epiphysis which 

contains sensory nerves, blood vessels, endothelium and haemopoeitic 

bone marrow. The bone and cartilage form an osteochondral functional unit 

which is responsible for effectively dissipating forces associated with joint 

movement in order to maintain the integrity of the joint. 

Figure 8 The structure of articular cartilage and subchondral bone 

 

Diagrammatic representation of the zones of articular cartilage and 

subchondral bone. Reprinted by permission from BioMed Central: BMC 

Musculoskeletal Disorders, Lyons et al [159].



- 44 - 

Figure 9 The anatomy and histology of joint tissues 

 

Normal joint structure and osteochondral junction. Photomicrograph showing osteochondral junction in a medial tibial plateau from a 

patient without arthritis. Scale bars represent 100 μm. NCC — non-calcified cartilage; CC — calcified cartilage; SCB — subchondral 

bone; Sp — subchondral bone space; V — vascular channel. Arrows denote tidemark; dotted line indicates the osteochondral 

junction. (Reprinted by permission from Elsevier Ltd: Bone [15])
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Figure 10 The structure of articular cartilage and subchondral bone in a 
normal human joint.  

 

The structure of articular cartilage and subchondral bone in a normal human 

joint. CC, calcified cartilage; NCC, non-calcified cartilage; SBP, subchondral 

bone plate; STB, subchondral trabecular bone. Arrows denote the tidemark; 

the dotted line indicates the cement line. Reprinted by permission from 

BioMed Central: Arthritis Research & Therapy, Li et al[160]. 

SCB plays a supportive physiological role in maintaining and sustaining the 

viability of hyaline articular cartilage through biomechanical and biochemical 

pathways[161]. The SCB provides biomechanical support through shock-

absorbing and supportive functions for protecting the cartilage. SCB 

physiologically undergoes continuous bone remodelling as part of an 

adaptive mechanism to appropriately dissipate load through bone. This 
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involves a tightly regulated homeostatic process of bone matrix formation 

and resorption, which is driven by osteoblasts and osteoclasts respectively 

with no overall change in the shape of the bone. Change in shape, 

architecture and integrity of the subchondral bone is associated with 

ineffective dissipation of load and subsequent biomechanically driven 

structural deterioration of the SCB and cartilage and the onset of OA.  

In healthy joints there is convincing evidence that the vascular SCB provides 

biochemical support by the delivery of nutrients to the avascular cartilage 

through small channels that span the OCJ[161, 162]. The limited 

permeability for biochemical ‘cross-talk’ afforded by the integrity of the OCJ 

in healthy joints [163] is characteristically compromised in OA where 

osteochondral junction channels form which are associated with increased 

biochemical and cellular ‘cross-talk’ between SCB and cartilage[164]. This 

interaction is associated with important biochemically driven pathological 

deterioration of the SCB and cartilage and the onset of OA. 

The role of the SCB in the biomechanical and biochemical pathogenesis of 

OA will be discussed below in terms of change in macroscopic SCB shape, 

SCB architecture and SCB cellular and biochemical effectors on a 

microscopic level. 

2.6.1 Subchondral bone cellular changes in OA 

The evidence describing the role of the SCB in OA pathogenesis at a cellular 

level is discussed here. 

2.6.1.1 Subchondral bone remodelling 

In the healthy joint bone turnover is a continuous process of modelling and 

remodelling carried out by bone forming osteoblasts and bone resorbing 

osteoclasts. These cells are not ‘permanent’ residents of the bone and are 

recruited and derived from their prospective progenitor cells when ‘demand’ 

requires the remodelling of bone. This is a carefully balanced homeostatic 

process intended to maintain the integrity of the osteochondral unit.  

Remodelling involves resorption of ‘old bone’ by osteoclasts and the 

replacement with new osteoid secreted by osteoblasts. The first stage 

involves osteoclastic recruitment and activation which causes bone 
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resorption. Subsequently osteoblast precursors are recruited which 

proliferate and mature into osteoblasts before producing new bone matrix 

(osteoid). This matrix is then mineralised to produce new bone which 

finalises the bone remodelling (Figure 11).  

Osteocytes are a third cell type and are the most abundant cell type in bone 

and are ‘permanent’ residents of bone, derived from osteoblasts. They have 

a dendritic morphology with extensive connectivity throughout the 

mineralized matrix of bone. They reside within the mineralised bone matrix in 

lacunae where they are integrated into the bone structure, able to perceive 

mechanical load and are connected to other osteocytes in a multicellular 

network via the lacunar-canalicular system. This is believed to represent the 

means by which osteocytes act as bone mechanosensors and respond to 

mechanical stimuli to maintain the integrity of SCB by coordinating 

osteoblastic and osteoclastic activity (Figure 16). These physiological 

pathways carefully balance catabolism and anabolism of the osteochondral 

unit to repair damaged tissue. When the extent of damage exceeds the 

capacity to repair it, the imbalance in the anabolic and catabolic molecular 

and cellular pathways leads to the pathogenesis of OA.
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Figure 11 Physiological subchondral bone remodelling 

 

 

 

Osteoclasts–osteoblast interactions in the basic multicellular unit (BMU). (A) Osteoclasts (OC) differentiate from OC precursors (OCP) 

under the influence of MCSF and RANKL produced by osteoblast (OB) lineage cells including osteocytes. As OCs create a resorption 

pit, growth factors, including TGFb and IGF1, are released from the bone matrix. These growth factors may recruit mesenchymal 

osteoblast progenitors and promote their differentiation into mature cells that secrete osteoid to fill the area of resorbed bone. Some 

OBs differentiate further into matrix-embedded osteocytes. IGF1, insulin-like growth factor 1; MCSF, macrophage colony stimulating 

factor; RANKL, receptor activator of NF-kB ligand; TGFb, transforming growth factor b. Reprinted by permission from Elsevier Ltd: 

Trends Mol Med, Charles et al [165]

                  Resorption  Reversal            Osteoid formation Mineralisation 
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Subchondral bone is a dynamic structure and mechanical stimulation is a 

major environmental regulator of SCB, which remodels in response to load. 

Wolff’s law describes this concept by stating SCB responds and adapts to 

repeated load. Increased load is associated with SCB microfractures which 

are repaired by homeostatic remodelling to maintain the integrity of the 

SCB[166]. Similarly SCB also remodels with decreased load such that in 

zero gravity, cosmonauts in space for six months experience significant 

reduction in tibial cortical and trabecular bone mass measured by 

quantitative computerised tomography[167] and dual-energy X-ray 

absorptiometry[168].  

Osteocytes are the putative mechanosensors[169] that coordinate the 

remodelling. This is supported by a study where ablation of osteocytes (but 

not osteoblasts) in mice resulted in a resistance to disuse-induced bone 

resorption when the hind limbs are unloaded[170]. The pathway of 

mechanotransduction is not clearly described but in-vitro studies report 

osteocyte vesicular ATP release is proportional to the magnitude of loading 

and may be an acute mediator of mechanical signalling[171].  

Osteocytes may promote osteoclastic resorption through the same 

biochemical mechanisms used by osteoblasts (Figure 12).  

Osteoclastic differentiation and activation is promoted when receptor 

activator of nuclear factor kappa Beta ligand (RANKL) binds to its receptor 

(RANK) on osteoclasts and their precursors. Osteoprotegerin (OPG) is a 

decoy receptor of RANKL and hence inhibits osteoclastic activity and bone 

resorption. Osteocytes in vitro respond to unloading with a greater 

expression of RANKL than OPG[172] which is likely to increase osteoclastic 

resorption[173, 174].  
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Figure 12 The RANKL and OPG system 

 

 

RANKL expressed by osteoblast lineage cells binds to RANK on the surface 

of pre-osteoclasts and mature osteoclasts, resulting in increased bone 

resorption via an increase in osteoclast differentiation, activity, and survival. 

OPG is a 'decoy receptor', also produced by osteoblasts, that binds to 

RANKL, preventing RANKL binding to RANK and thereby inhibiting 

osteoclastic bone resorption. It is the balance of RANKL and OPG that 

determines the ultimate rate of bone resorption. A high rate of bone 

remodeling may be due  to an excess of RANKL over OPG. (Reprinted by 

permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology 

[175]. Copyright 2011). 
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Figure 13 The osteocytic response to microdamage in SCB 

 

Schematic summary of the role of osteocytes in triggering bone resorption. 

A) Microcracks in bone caused by fatigue loading lead to highly localized 

osteocyte apoptosis (shown in white) surrounding the microcrack. B) Recent 

studies show that surviving osteocytes immediately neighboring the region of 

apoptosis upregulate production of pro-osteoclastogenic signals (i.e. 

RANKL, and others). Springer Calcif Tissue Int, Osteocytes: master 

orchestrators of bone, 2014 Schaffler et al, reprinted with permission of 

Springer [169]. 
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Microfractures, microcracks or microdamage are well recognised and 

prevalent features of OA which involves the trabecular bone, the SCB plate 

and the calcified cartilage.[176, 177] They are observed after 

overloading[178] and may be linear or diffuse[166]. Typically there is local 

osteocyte apoptosis in the region of the microcrack (Figure 13). 

The osteocytes that survive in the adjacent regions to the region of 

apoptosis then upregulate osteoclastogenic signals including RANKL. 

Osteocytes that are unaffected and at a significant distance from the 

microcrack do not upregulate osteoclastogenic signals. Therefore there is 

focal osteoclast recruitment and bone resorption as part of a microdamage 

repair process (Figure 13). Osteocytes appear to respond to the linear form 

of microcracks by promoting remodelling with osteoclastic bone resorption of 

the compromised tissue followed by the formation of new osteoid by 

osteoblasts (Figure 13). However osteocytes do not promote remodelling to 

diffuse areas of microdamage[166]. This supports the concept that OA 

represents a failure to meet the demands for ‘repair’ of the joint tissues. SCB 

microdamage is considered to be involved in the pathogenesis of OA both at 

initiation and progression stages as the accumulation of SCB microdamage 

exceeds the rate of repair[176]. Repeated loading of canine femurs was 

associated with an accumulation of such microdamage. A threshold effect 

was observed whereby the elastic modulus (stiffness) decreased after a 

sufficient accumulation of microdamage in the trabecular bone was accrued 

which implicates microdamage in biomechanical model of OA 

pathogenesis[179].    

Another pathway that may permit osteocytes to coordinate remodelling is via 

the canonical Wnt signalling pathway, which promotes osteblastic maturation 

and bone formation[180]. Sclerostin is an inhibitor of a co-receptor low-

density lipoprotein receptor-related protein 5 (LRP5) of the canonical Wnt 

signalling pathway and hence it inhibits bone formation[181]. Osteocytes 

produce Wnts and sclerostin[172]. In vivo experiments in rat ulnar bones 

indicate that sclerostin is produced in abundance in unloaded states which 

inhibits new bone formation. When ulnar load increases 

mechanotransduction by osteocytes dramatically reduces sclerostin 
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production which disinhibits the osteoblastic bone formation and hence new 

bone formation commences (Figure 14)[181]. 

Immobility and zero gravity in humans are well-recognised risk factors for net 

bone loss[167, 168]. Amongst postmenopausal women with and without 

immobility , sclerostin levels were significantly greater amongst immobile 

women and conferred significantly reduced bone formation biomarker  and 

quantitative bone volume of the calcaneum[182].   

Human femoral head specimens, from joints with OA undergoing 

arthroplasty, had significantly reduced bone osteocyte expression of 

sclerostin and increased osteoblast activity compared to  normal controls. 

This highlights the importance of sclerostin and its potential role in the 

osteocyte-coordinated pathogenesis of OA [183]. Therefore osteocytes have 

the potential to sense and adapt to the mechanical demands upon the SCB 

by coordinating bone formation and resorption via osteoblastic and 

osteoclastic regulation with RANKL/OPG and Wnt/sclerostin(Figure 15, 

Figure 16). However these homeostatic processes fail in OA.  
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Figure 14 Sclerostin mediation of LRP5 signalling during mechanical 
loading 

 

The role of sclerostin in Lrp5 signalling before and after mechanical loading. 

(Bottom) Before loading in the unstimulated state, dendritic osteocytes 

secrete plenty of sclerostin (purple circles). This inhibits Wnt signalling in the 

overlying osteoblasts by LRP5 receptor antagonism.  

(Top) After mechanical loading, in the stimulated state, there is a substantial 

reduction in sclerostin levels which increases LRP5 availability for Wnt 

binding, which disinhibits the canonical Wnt intracellular signalling pathway 

that promotes bone formation. Reprinted with permission of American 

Society for Biochemistry and Molecular Biology, Journal of Biological 

Chemistry [181] 
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Figure 15 The mechanism by which osteocytes may coordinate bone 
remodelling 

 

Osteoclasts (OCs) and osteoblasts (OBs) within a cancellous BMU are 

shown as being derived from precursors (pOC and pOB). (?) sclerostin may 

also stimulate RANKL expression by osteocytes. Reprinted by permission 

from John Wiley & Sons Ltd: J Bone Miner Res, [184]  
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Figure 16 The mechanism by which osteocytes may coordinate bone homeostais through mechanotransduction. 

 

Osteocytes may orchestrate functional adapation in the subchondral bone by a process of mechanotransduction. This image 

summarises the role of osteocytes in bone homeostasis and is a summary of evidence described in the following articles  [169, 181, 

185] 
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2.6.1.2 Subchondral bone and the osteochondral junction 

In early knee OA SCB remodelling involves a net osteoclastic resorption 

(2.6.2.2 Early OA). This includes an initial thinning of and channel formation 

through the SCB plate in early OA  in  canine [186, 187] and rabbit cruciate 

ligament transection models[188]. Channels within the SCB plate can be 

seen extending towards the cartilage with osteoclasts at the advancing edge 

in human tibial plateau explants at the time of knee replacement for OA[189].  

This SCB plate resorption ultimately compromises the selective porosity of 

the normal OCJ after the OCJ channels completely traverse the OCJ [164, 

176].  

When intact the OCJ only permits the passage of nutrients but the presence 

of OCJ channels permits pathogenic biochemical ‘cross-talk’ between SCB 

and the cartilage and synovial compartment. This ‘cross-talk’ heralds the 

cartilage catabolism associated with a neurovascular invasion of the 

cartilage from the SCB. Osteoclasts and catabolic biochemical agents from 

the SCB also pass into the cartilage through the OCJ channels. This process 

results in cartilage fibrillation and fissuring which may progress so that 

fissuring occurs down to these OCJ channels. This permits biochemical and 

cellular interaction of the synovial compartment with the SCB and vice versa 

which promotes further catabolism within the osteochondral unit (Figure 17). 

These processes may increase the failure of the osteochondral unit  to 

effectively dissipate load. This may increase loading within the joint, driving 

further SCB microdamage and SCB remodelling which may promote a 

vicious cycle of structural deterioration within the osteochondral unit.  

The incursion of these neurovascular structures may extend into the non-

calcified articular cartilage, osteophytes and even inner regions of 

menisci[190, 191]. Typically there is calcification and ossification of the 

cartilage around these channels which in part drives extension of the 

calcified cartilage region and the tidemark which may cause further 

biomechanical adversity, loading and microdamage for the SCB. Therefore 

the vascular incursion of cartilage heralds structural progression.  
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Figure 17 The pathological changes in the osteochondral unit in OA 

 

Complex changes in the bone–cartilage unit increase the flow of fluid and solutes in osteoarthritic joints. In OA, the permeability of the 

bone–cartilage unit is increased, through subchondral angiogenesis and the development of cartilaginous cracks and fissures, and 

patches of uncalcified cartilage that extend into the calcified layer. An increase in hydraulic conductance also leads to fluid exudation 

and further damage to the articular cartilage. OA subchondral bone osteoblasts have an activated phenotype characterized by 

production of IL-6, MMPs and angiogenic factors. Articular chondrocytes lose their stable phenotype and express markers of terminal 

differentiation. The tidemark—the demarcation line between calcified and articular cartilage—shifts upwards, representing a thinning 

of the articular cartilage, thereby increasing strain in the bone–cartilage unit. Reprinted by permission from Macmillan Publishers Ltd: 

Nat Rev Rheumatol [164], copyright 2011.
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The role of the SCB in the pathogenesis of OCJ channel formation and the 

neurovascular incursion is discussed here.  

Osteoclastic activity is increased in OA SCB and may be responsible for the 

migration of osteoclasts into the cartilage from subchondral pits[192], 

through the SCB plate OCJ channels towards the joint surface. These 

osteoclasts release multiple matrix metalloproteinases (MMPs) and 

cathepsin K which may degrade the articular cartilage matrix and promote 

the incursion of neurovascular channels into the articular cartilage[193, 194]. 

The formation of OCJ channels is typically associated with an infiltration of 

inflammatory cells (e.g. macrophages) into the SCB marrow spaces[189] 

which is likely to promote osteoclastic activity along with catabolic ‘cross-talk’ 

that drives cartilage degradation[164].  

Osteoblasts in osteoarthritic SCB plates may also remotely promote the 

degeneration of articular cartilage by ‘cross talk’. Firstly OA osteoblasts may 

promote the vascular invasion of articular cartilage by SCB because they 

have an upregulated expression of the angiogenic growth factor hepatocyte 

growth factor which appears to cross the OCJ from the SCB into cartilage in 

early OA (before significant cartilage damage is present)[195]. Secondly in 

vitro experiments of osteoblasts, isolated from bones affected by OA, 

express cytokines that promote remodelling that appeared to inhibit the 

expression of chondroprotective genes (e.g. aggrecan) in chondrocytes 

whilst promoting the expression of genes for MMPs[196]. This indirectly 

promotes cartilage catabolism. 

Chondrocytes are also capable of responding to increased load and by 

mechanotranduction release several pathogenic molecules including 

vascular endothelial growth factor (VEGF) which drives osteoclastogenesis 

in the SCB and migration of osteoclasts into the cartilage where they 

express MMPs[189]. However the capacity of chondrocytes to repair and 

remodel the extracellular matrix that surrounds them is comparatively limited 

relative to the bone matrix and its cellular components[197]. 

Both angiogenesis and neurogenesis are linked by common pathways that 

are stimulated by the release of proangiogenic factors like VEGF and beta-

nerve growth factor (beta-NGF) in response to chondrocyte loading. This 
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drives the incursion of sensory and sympathetic nerves along with new blood 

vessels into a previously avascular and aneural cartilage[189, 198]. There is 

increased nerve growth factor expression within these vascular channels 

which drives sensory nerve growth.  

Sensory innervation and vascular incursion of hyaline articular cartilage has 

been observed across a spectrum of early to advanced OA[198]. This 

provides a plausible mechanism  for nociception and biochemically mediated 

progression in structural degeneration of the articular cartilage.  

The formation of osteophytes and normal skeletal development have 

remarkably analogous mechanisms which are discussed here to explain the 

rationale for the SCB representing a treatment target in OA (2.6.4 Can the 

OA Subchondral Bone be therapeutically targeted?).  

In-vitro studies indicate chondrocytes mediate physiological skeletal 

development by conversion of cartilage into skeleton (endochondral 

ossification). These mechanisms are in many ways analogous with 

pathogenic mechanisms in OA which includes signalling via Wnt 

pathway[180]. For endochondral ossification in the developing skeleton to 

occur chondrocytes produce MMPs which degrade cartilage and promote an 

invasion of healthy cartilage, by new blood vessels along with osteoclasts 

and osteogenic cells, mediated by vascular endothelial growth factor 

(VEGF). The activation of osteoclasts appears to be essential for 

subsequent endochondral ossification[199, 200].      

Osteophyte formation occurs by an analogous process of endochondral 

ossification, initiated by vascular invasion of cartilage along with 

osteoclastogenesis [201-203] and concomitant increased bone turn over. 

However the notable exception to this analogy is that osteophytosis occurs 

in the mature skeleton (Figure 18).  
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Figure 18 Osteophyte formation in the mature skeleton 

 

Sites of angiogenesis in the OA knee. a | The structure of the normal knee (left) 

and sites of angiogenesis in OA (right). The synovium is continuous with the 

periosteum and apposed to cartilage. The meniscus merges with the 

collagenous capsule. Subchondral bone contains marrow spaces. The tidemark 

between calcified and noncalcified cartilage is indicated by a dashed line. b | 

Osteoclasts and chondroclasts (brown) cut channels through the tidemark at the 

osteochondral junction and invade the normally avascular cartilage. Channels 

are occupied by vascularized mesenchymal tissue and endochondral 

ossification results in a bone cuff surrounding the channel. Pre-existing blood 

vessels are shown in orange, neovasculature in red, and chondrocytes as green 

circles. c | A fissure from the articular surface communicates with subchondral 

bone spaces. Vascularized mesenchymal tissue extends from the subchondral 

bone through the fissure and over the articular surface forming pannus. d | 

Osteophyte formation resulting from cartilage deposition. Reprinted by 

permission from Macmillan Publishers Ltd: Nat Rev Rheumatol.[190], copyright 

2012  
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2.6.2 Subchondral bone architecture and remodelling in OA 

The supporting trabeculae of the subchondral trabecular bone, arise from 

the SCB plate and provide important shock-absorbing function to the 

overlying cartilage by dissipating force across the joint surface with a gradual 

transition of strain and stress. The trabecular bone is a dynamic structure 

and, through the process of bone remodelling, adapts to the applied 

mechanical forces. Julius Wolff, a surgeon and anatomist from Berlin, 

described the relationship between bone geometry and mechanical 

influences on bone in 1892. Wolff’s hypothesis states that the material 

properties and distribution of bone are determined by the direction and 

magnitude of applied load so that it is a better structure to resist such loads 

[197]. He similarly hypothesised that a reduction in applied load to a bone 

will result in a bone catabolism such that bone structure is intended to only 

withstand the loads applied to it. 

Functional adaptation of bone, as proposed by Wollf, is mediated by the 

cells in bone. This includes osteocytes that are putative mechanosensors 

(along with chondrocytes), osteoclasts and their progenitors that resorb bone 

and osteoblasts that deposit bone matrix (see 2.6.1 Subchondral bone 

cellular changes in OA). The remodelling adaptation within the SCB ensures 

that biomechanical load is effectively dissipated through the osteochondral 

functional unit. Any alteration to the material properties of either the articular 

cartilage or the SCB that sufficiently impairs the ability to effectively dissipate 

load, is associated with the synchronous structural degeneration in cartilage 

and SCB[197, 204] involving biomechanical and biochemical pathways. 

Controversy remains over whether the bone or the cartilage is the first 

structure to ‘fail’ in the natural history of human OA. This section describes 

the pathological changes in SCB architecture in both early and established 

OA and highlights a biphasic response in SCB observed in animal models 

with significant similarities in humans. This section also describes the 

potential for SCB as an early target in the prevention of OA and previous 

attempts at targeting the bone as a treatment in OA.  
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2.6.2.1 Established OA and structural progression 

The diagnostic criteria of ROA published in 1957 by Kellgren & Lawrence 

identifies subchondral sclerosis and osteophyte formation as pathognomonic 

of OA[19]. The Altman atlas also recognises subchondral sclerosis as a 

dichotomous outcome[84]. The architectural changes of this change will be 

discussed here. 

Sclerosis implies a hardening or stiffening of the subchondral bone which 

has been hypothesised to represent a failure of SCB to dissipate load which 

promote cartilage degeneration.  

In knee OA with established subchondral sclerosis, trabecular bone 

microarchitecture, mass and density can be measured using dual-energy x-

ray absorptiometry (DXA), fractal signature analysis (FSA) [205],  

quantitative computed tomography[187], magnetic resonance imaging [206]  

and histologically [207] to determine the correlation with this pathognomonic 

feature. Joint tissue samples have also be assessed mechanically [207]. 

Amongst 3048 knees in the Framingham OA cohort, radiographic 

subchondral sclerosis was independently and strongly associated with 

ipsilateral increase in bone mineral density(BMD)[208]. A greater BMD was 

independently associated with subsequent joint space narrowing in the 

medial compartment[208, 209] and cartilage defect development[210]. 

FSA characterises the complicated histomorphometry of SCB by providing a 

description of trabecular SCB microarchitecture and directional physical 

properties from trabecular size, number, spacing and cross-linking on 

radiographic images[211, 212]. 

Buckland-Wright and colleagues observed that increasing severity of knee 

ROA and JSN was associated with thicker trabeculae with less space 

between trabeculae[212] (Figure 19) 
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Figure 19 Thicker and less well spaced trabeculae 

. 

Part of a macroradiograph of an OA knee joint showing subchondral 

sclerosis showing trabeculae. These are thicker and less well spaced than in 

normal bone.  Reproduced from Annals of Rheumatic diseases, Buckland-

Wright et al, 55,1996, [212]. with permission from BMJ Publishing Group Ltd 

 

In 138 knees with symptomatic and ROA, a higher baseline vertical or lower 

baseline horizontal trabecular fractal signature was strongly and 

independently associated with progression in JSN over three years[211]. 

Furthermore amongst knees awaiting joint replacement, increased SCB 

sclerosis, as represented by decreased trabecular spacing was 

independently associated with a lower minimum JSW [213]. 

Lo and colleagues examined the MRI knee scans of 482 participants of the 

Osteoarthritis Initiative. Increasing JSN grade was associated with 

increasing proximal tibial SCB BMD, trabecular thickness, trabecular 

number, bone volume fraction (a measure of SCB sclerosis) and reducing 

inter-trabecular spacing [206]. Bone volume fraction is the proportion of 

trabecular tissue volume within a defined volume of bone (Figure 20). Similar 

observations are made using volumetric computed tomography of knee and 

hips with OA[214, 215]. 

A longitudinal study by Dieppe and colleagues observed an association 

between increasing signal in the subchondral bones of knees (a surrogate of 

bone turnover) with established OA and subsequent increasing JSN ( a 

surrogate of cartilage loss)[216].  
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Figure 20 Increasing bone volume fraction of OA SCB 

 

These are 3D reconstructed images of the subchondral bone in a normal (A) 

and OA (B) femoral heads. Reprinted by permission from Elsevier Ltd: 

Osteoarthritis and cartilage [215]. 

 

Radin and Rose in 1973 identified that increasing load placed through rabbit 

knees was associated with SCB trabecular microfracture[217],  reversible 

stiffening of the SCB[218] accompanied by the earliest osteoarthritic 

changes in chondrocyte metabolism. Radin and Rose hypothesised but 

never proved that the increased volume and thickness of the SCB in OA was 

associated with increased stiffness which increased shear forces in the 

overlying cartilage which led to cartilage degeneration [219].  

Radin and Rose assumed that bone volume is the only determinant of SCB 

stiffness. However other physical properties of SCB such as apparent 

density (reflecting the mineralized bone structural density in g/cm3) and the 

extent of microdamage accumulation are also major determinants of the 

mechanical properties and stiffness of SCB [179] (see 2.6.1.1 Subchondral 

bone remodelling).  

Subsequent studies, that are described below, demonstrated that a greater 

volume of hypomineralised bone conferred a lower SCB stiffness after 

adjusting for bone volume fraction. 

In humans the SCB of femoral heads removed at the time of total hip 

replacement for end stage OA were compared with normal autopsy controls 

using histological and biomechanical analyses. 
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Amongst femoral heads with OA, a significantly increased bone volume 

density with a reduction in mineralisation is observed [220, 221]. A 

significant excess of type I collagen is synthesised in the OA SCB, and the 

deposited collagen was significantly  less mineralised with a substantially 

reduced calcium to collagen ratio [222]. While femoral heads with OA have 

significantly more hypomineralised SCB than controls, this appears to confer 

a significantly lower SCB stiffness only after adjusting for bone volume 

fraction[207]. This implies that the stiffness per unit of the hypomineralised 

bone volume is reduced. Apparently conflicting results were published by 

Pugh and colleagues who described significantly increased stiffness in SCB 

adjacent to subtle (histochemical) cartilage damage in cadaveric femoral 

heads compared to cadaveric femoral heads. However it is important to note 

that there was no adjustment for bone volume fraction and none of the 

femoral heads had subchondral sclerosis or macroscopic OA with ages 

ranging from 20-66 years[223].  

Finally Day[224] and colleagues and Ding[225] collectively observed that 

amongst proximal tibia removed from cadavers micro-computed 

tomography, those with cartilage damage had increased bone volume 

fraction, trabecular thickness and reduced trabecular spacing compared to 

those without cartilage damage. Ding ensured those with and without OA 

were age- and gender-matched. Day mechanically tested the proximal tibiae 

of cadavers and despite the increase in bone volume fraction, the stiffness 

(tissue modulus) was reduced by 60% compared to SCB without overlying 

cartilage damage[224, 226]. This was attributed to the hypomineralisation of 

the SCB as a consequence of increased bone turnover and remodelling. 

Similar findings have been observed by Burr and Li and colleagues[227, 

228].   

An association between increasing histological SCB turnover, bone volume 

fraction and trabecular thickness with increasing severity of overlying 

cartilage degeneration was described in end-stage human OA by Matsui and 

colleagues in tibial condyles and Klose-Jensen and colleagues in femoral 

heads  removed at the time of joint replacement [229, 230].  
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In summary these analyses highlight the typical changes of established and 

progressive OA as being increased  BMD, bone volume fraction, trabecular 

thickness, trabecular number and decreasing trabecular spacing. The 

mechanical stiffness per unit of bone volume fraction is significantly reduced.   

 

2.6.2.2 Early OA 

While the SCB architectural changes of established and end-stage OA are 

well described in humans, the early changes of OA in humans are less well 

described. Identifying and studying humans at the point when the cartilage 

and subchondral bone begin to ‘fail’ or deteriorate is challenging and 

obtaining tissue for histological analysis is unethical. Therefore there has 

been significant reliance on animal models and comparison with in vivo 

studies in crude and imprecise but practical definitions of ‘early’ OA. These 

analyses highlight the importance of SCB changes in the initiation of OA. In 

contrast to the net osteoblastic expansion of bone volume fraction, the initial 

response is a net osteoclastic resorption of bone which correlates with the 

initial bone response to damage as part of the homeostatic repair 

mechanism (see 2.6.1.1 Subchondral bone remodelling). However this and 

subsequent formation of abnormal bone is associated with cartilage 

deterioration and OA initiation. 

Animal models 

Surgically induced cartilage ‘groove’ damage on the femoral condyles of  

Beagle dogs whilst avoiding damage to the underlying SCB caused OA 

pathology to develop in both the femoral and tibial tissues [231, 232]. 

Anterior cruciate ligament transection (ACLT) in the same animals caused a 

an unstable joint with similar OA-pathology  consequences. ACL injury is a 

well-recognised risk factor (see 2.3.2.3 Joint injury) for knee OA and may 

result in increased joint loading. When the two dog models were compared 

with micro computed tomography of the tibial plateau, both models reported 

increased thinning and porosity of the SCB plate as well as the onset of 

cartilage damage[233]. This implies that irrespective of mechanism of 

induction , the net bone resorption and onset of cartilage damage is intrinsic 

to the process of OA [234].  



- 68 - 

In mice models knees were injected with collagenase or iodoacetate to 

cause cartilage deterioration[235-237] or they underwent ACLT to induce an 

unstable joint[238]. The tibiae were subsequently analysed using micro-

computed tomography and histology to examine the bone changes during 

the follow up. In the early stages of the OA models a similar SCB resorption 

occurred [235, 237, 238]. Similar results are observed in ACLT of rats[239] 

rabbits [188] and cats[240] with thinning of the SCB plate. It is important to 

note that in the cat ACLT model, the SCB plate remained thin[240], however 

that rats, rabbits and in meniscectomised guinea pigs a subsequent recovery 

and thickening of SCB bone was observed [188, 239, 241] indicating a 

biphasic response in the SCB.  

Finally invasive ACLT in mixed-breed dog- [187] and non-invasive ACLT in 

mice- [242] models of knee OA have been used for the longitudinal analysis 

of SCB BMD measured using quantitative computed tomography. These 

models identified that the BMD significantly decreases in the initial period 

after ACLT. In the mouse ACLT model, trabecular bone loss was evident 

after seven days but there was partial recovery by 28 days and by 56 days 

significant new (non-native) bone formation was evident with a new steady 

state [242]. This biphasic response in SCB with initial resorption may also 

reflect the period after injury where antalgic disuse may reduce load and 

induce net bone resorption as well (see 2.6.1.1 Subchondral bone 

remodelling) 

In summary these models of early OA bone resorption and reduced bone 

volume fraction are distinguished from the sclerotic appearances seen in 

later stages of OA described above and in human femoral heads[222, 230] 

and canine ACLT knees [243]. 

Humans 

Observational studies of human ‘early’ OA have identified comparable  initial  

SCB resorption  with a suggestion of second phase of net bone formation in 

the SCB.  

Bolbos and colleagues reported a significantly lower bone volume fraction in 

the SCB of knees with early OA (KL grade 1-2) compared to healthy controls 

(KL grade 0) using high-resolution MRI[244].  
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Klose-Jensen and colleagues analysed the bone volume fraction, bone 

turnover in SCB regions with varying degrees of overlying cartilage damage 

in femoral heads removed at the time of hip replacement for OA or from 

controls without a history or evidence of joint disease. The analysis identified 

that in regions with no or mild cartilage deterioration, the SCB had 

significantly increased bone turnover and a lower mean bone volume 

fraction (which did not meet clinical significance) than controls while the 

most advanced cartilage loss had both significantly increased bone turnover 

and bone volume fraction than controls[230].  

Van Meer and colleagues observed that BMD significantly decreases in the 

SCB of the tibia and femur of knees after ACLT in humans. There is a 

subsequent significant increase in the BMD after the second year but this 

does not exceed baseline[245]. Although these knees did not have OA 

ACLT is a known risk factor for OA (see 2.3.2.3 Joint injury). 

The presence of increased bone turnover in early OA is supported by 

soluble biomarkers as well. Petersson and colleages identified a significantly 

higher serum level of a bone turnover marker (bone sialoprotein) amongst 

knees with than without incident ROA[204].  

 

2.6.2.3 Does subchondral bone failure precede cartilage failure? 

The osteochondral unit represents a functional unit of interdependent joint 

tissues. In established OA, these tissues each play a role in the  

biomechanical and biochemical pathways of pathogenesis. However an 

unanswered question is whether the deterioration or failure to repair in one 

tissue precede deterioration in the other as part of the cascade of OA 

pathogenesis.   

Radin and colleagues observed that increased load in rabbit knees caused 

increased stiffness in SCB before substantial changes in the adjacent 

cartilage[218]. This led Radin and colleagues to hypothesise that SCB 

pathology and increased stiffness caused increased shear forces in the 

overlying cartilage which led to cartilage degeneration[219] 
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A number of human studies supports the theory that SCB pathology 

precedes cartilage degeneration. A cross-sectional study of knee MRI scans 

of post-menopausal women without knee OA symptoms, indicated that 

meniscal tears were associated with increased tibial bone area but not 

cartilage volume[246]. Tibial total bone area (tAB) has been discussed 

earlier(2.6.3 Bone shape and subchondral bone MRI features in OA). The 

major limitation of this study is that it assesses cartilage in cross-section 

which does not exclude a preceding period of cartilage loss.  

A longitudinal study of adults with a mean age of 45 years without symptoms 

of knee OA had serial knee MRI measurements. An increasing baseline 

tibial bone area was associated with subsequent greater loss of cartilage 

volume on follow up[247]. This study also does not exclude a preceding 

period of cartilage loss which may have preceded MRI-detectable changes 

in tibial bone area. 

However the most convincing evidence addressing whether bone pathology 

may precede cartilage damage is from animal models where histological 

assessment of the SCB and cartilage tissues is more accurate in early OA.  

The following three models using Beagle canine knees illustrate that a 

common osteochondral degeneration of OA occurs after different initial joint 

insults including ACLT or isolated damage to either the articular cartilage or 

SCB.  

The primary cartilage damage model involved small superficial grooves 

being surgically made on the weight-bearing region of the femoral condyles 

without damaging the SCB (Figure 21). Joint reassessment occurred after 

10 weeks of forced joint loading[231, 232].  

The ACLT model involved the surgical transection of the ACL in the same 

aged dogs to increase loading in both SCB and cartilage .  
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Figure 21 Primary Cartilage injury model 

 

Schematic clarification of methods used. A: Localization of grooves made 

exclusively in the femoral condyles in the groove model. B: Selected regions 

that were analysed in the tibia using micro-CT. 1: cylinder in medial 

epiphysis; 2: cylinder in lateral epiphysis; 3: cylinder in metaphysis; 4: 

diaphysis. Reprinted by permission from BioMed Central: BMC 

Musculoskeletal Disorders, Sniekers et al [233]. 

 

For ACLT and primary cartilage damage knees, micro-computed 

tomography of the tibiae identified increased SCB plate thinning and 

porosity[233]. However the ACLT knees formed osteophytes from 10 weeks 

onwards whilst the primary cartilage damage knees first formed osteophytes 

at 20 weeks. Both models had histological evidence of cartilage 

degeneration in the tibia at 20 weeks. Bone resorption and incident cartilage 

damage are common consequences of the two OA models[234]. 

There are two OA models of initial ‘isolated’ SCB damage. The first used 

Beagle dogs of the same age as the ACLT and cartilage damage models. 

They received a patellofemoral impact inducing a trochlear bone marrow 

lesion but no cartilage damage on MRI of the knee was detected. 

Subsequent osteochondral biopsies from the femoral trochlea at six months 

identified cartilage degeneration[248]. The authors acknowledge that the 

MRI may have been insensitive to structural early cartilage damage. 
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The second ‘isolated’ SCB damage model involved tibial osteotomy, in 

significantly younger Beagle dogs, that conferred a valgus abnormality or a 

sham operation and a control group. Macroscopic and histologic analyses 

were made at seven and 18 months follow up which confirmed primarily 

medial femoral condyle cartilage degeneration.  

Models of spontaneous OA in guinea pigs identified that SCB BMD in the 

medial tibia reduced before histological evidence of adjacent cartilage 

degeneration occurred[249]. 

In summary this evidence identifies that a common pathway to OA can be 

achieved by an initial failure of either SCB or cartilage.  However while there 

remains controversy about whether bone or cartilage OA pathology 

represents the inciting event in human OA, cartilage is likely to deteriorate at 

the same time as SCB (see Figure 22).  

2.6.2.4 Architectural associations with OA risk factors 

The association of architectural changes of the SCB with OA risk factors is 

described here.  

There are no studies in humans describing the association of obesity with 

trabecular architecture. However amongst humans with established knee 

OA, the BMD of the medial and lateral plateau is significantly greater on the 

side with greatest biomechanical load as a consequence of 

malalignment[250, 251] or meniscal damage[252]. Injury and anterior 

cruciate ligament transection are definitely associated with changes in SCB 

BMD in animal models as described above [187, 242]. In humans similar 

changes are seen after ACLT[245].  

In summary OA SCB architectural changes are associated with OA risk 

factors. 
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Figure 22 An evidence-based hypothetical sequence of SCB OA 
pathology 

 

Anterior cruciate ligament (ACLT), bone volume fraction (BVF), 

osteochondral junction (OCJ). This sequence was formulated using the 

literature from the animal models and human evidence on OA, described in 

this chapter. 

 

 

 

 



- 74 - 

 

 

2.6.3 Bone shape and subchondral bone MRI features in OA 

Change in bone shape such as flattening of the SCB (attrition) on 

conventional radiography has long been known to clinicians to be associated 

with OA symptom and structural progression[253]. Changes to the bone and 

joint geometry can adversely affect the congruity of the joint surfaces and 

impair the effective dissipation of load through the joint tissues which may 

overload the articulating tissues and promote their deterioration as part of 

the pathogenesis of OA (2.6.1.1 Subchondral bone remodelling, 2.6.1.2 

Subchondral bone and the osteochondral junction). 

Bone shape changes can now be quantified on two-dimensional 

conventional radiographic imaging as well as on three-dimensional 

tomographic imaging such as magnetic resonance imaging (MRI). MRI 

therefore provides a three-dimensional evaluation of SCB pathology in OA 

which includes shape, bone marrow lesions, osteophytes, cysts and attrition. 

These will all be discussed here including their association with OA risk 

factors and OA structural severity. 

2.6.3.1 Bone shape of the knee 

2.6.3.1.1 Knee subchondral bone cross-sectional area 

While bone shape has been less studied than BMLs due to quantification 

issues, the area of subchondral cortical bone that constitutes the articulating 

region of the bone on one side of a diarthrodial joint can be quantified from 

tomographic imaging such as MRI using laborious manual segmentation 

techniques (2.10 Statistical Shape modelling). The formal nomenclature 

used to describe the total subchondral bone area is tAB[254].The bone most 

frequently segmented for bone area in the literature is the tibial plateau, due 

to its relatively flat shape and distinct cartilage margins. This bone area, 

measured as a cross-sectional bone area of an axial image of the tibia 

(Figure 23) has been described by Jones and colleagues in observational 

studies amongst the healthy population and those with and at risk of knee 

OA[31]. It can be divided into medial and lateral tAB (Figure 23) 
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Figure 23 Segmented axial medial and lateral tibial plateaus 

 

Tibial plateau bone area measurement by taking the mean of the area at 

different axial levels  [255]. 

 

Bone area is associated with body size but also OA risk factors and these 

are discussed here. It is important to note that height and gender  are 

determinants of bone area in healthy knees [256, 257]. In particular height 

accounts for 70% of the variance in tAB in knees indicating an allometric 

relationship between height and tAB[257]. This is a logical relationship as 

the greater the height, the larger the area will be required to dissipate the 

greater load. Furthermore, while there are gender differences in tAB, the 

majority of the variance in the  difference in tAB between genders is 

explained by difference in height[256].  

Amongst older adults tAB increases in size to a smaller extent than in 

developing children. The tibial tAB in healthy women, with a mean age of 57 

years, increases by 0.8-1.2% per annum over 2.5 years [258]. Amongst 

male and female adults with a mean age of 64 years and with OA knee the 

medial and lateral tAB increase by a mean of 2.2% and 1.5% in two years 

respectively[259]. The significance of these differences should be 

considered in the context of the coefficient of the variance (measurement 

error) quantified as 2.3% for the medial tibia tAB, and 2.4% for the lateral 

tibia tAB. Amongst healthy knees only 18-21% had an increase in tAB above 

measurement error[258]. 



- 76 - 

Obesity is independently prospectively associated with the incidence of ROA 

knee in the Framingham cohort and is therefore an established risk factor for 

knee OA[61]. Obesity may cause OA incidence (see 2.3.2.2 Obesity) as a 

result of increased joint loading. Obesity is associated with the medial and 

lateral tAB of the tibia [260]. Individuals with obesity (body mass 

index>30kg/m2) also had greater medial tibial tAB in comparison with 

individuals with normal body mass index (18.5-24.9kg/m2). Furthermore 

obesity was independently associated with an increase in medial tibial 

tAB[259] and a longitudinal increase in cartilage defects[261]. Body mass 

index explained 7.3% of the variance in the mean annual percentage change 

in the medial and lateral tAB as described above[259] which implies obesity 

is a significant determinant of tAB change. However while the mean 

magnitude of tAB change is of a similar order of magnitude as the 

measurement error (2.3%) further evidence is required to confirm obesity is 

a determinant of tAB. While a biomechanical cause for an association 

between obesity and tAB would be logical in the context of Wolff’s law, both 

tAB and obesity may also share the same determinants such as a genetic 

aetiology.  

In support of Wolff’s law is the observation that tibial bone area appears to 

expand in response to increased applied load. The loss of integrity of the 

meniscal tissue within the knee impairs the capacity for the knee to 

effectively dissipate load. As a consequence the adjacent structures, 

including the articular cartilage and SCB are subject to increased load. It is 

therefore fitting that tibial tAB is highly correlated with ipsilateral meniscal 

surface area[262]. Furthermore ipsilateral meniscal extrusion and tears are 

independently associated with a larger tAB in cross-sectional observational 

studies[246, 263-265]. In a two year longitudinal study of 117 patients with 

knee OA, baseline extrusion of the medial meniscus was independently 

associated with a longitudinal expansion of the medial tibial tAB[265]. A 

limitation of this longitudinal analysis include the actual changes in tAB being 

small relative to the coefficient of the variance (measurement error) and the 

longitudinal model used height as a ratio (body mass index) not a metric 

measure which may result in inadequate adjustment of a major confounding 

factor.  
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Individuals with anterior cruciate ligament (ACL) tears have an independent 

association with larger tibial tAB than those without ACL tears in cross-

sectional analysis [266]. Furthermore malalignment is independently 

associated with a larger tibial tAB  change in the compartment with greater 

biomechanical load conferred by the malalignment[267, 268]. For example 

the medial tibial tAB was 10% larger in varus than neutrally aligned knees 

with OA[267]. Acknowledging the limitations of the existing literature, these 

findings support the role of load in SCB remodelling in the pathogenesis of 

OA.  

A statistically independent association of tAB has been described with the 

severity of radiographic OA[259, 269]. Subsequent medial cartilage volume 

loss[210] and knee replacement[270] has been described independent of 

age, gender and body mass index. Therefore expansion of axial tibial cross-

sectional bone area (tAB) is associated with knee OA severity, risk factors 

for structural progression and with structural progression itself but limitations 

conferred by a relatively large coefficient of the variance (measurement 

error) confirm the requirement for further validation of tAB as a biomarker of 

OA and a potential target for disease modification. 

2.6.3.1.2 Three-dimensional knee bone shape 

Eckstein and colleagues in chondrometrics have also utilised a different 

method of quantifying bone area over the tibia but also the femur and patella 

using manual segmentation derived from serial magnetic resonance (MR) 

images. This employs image segmentation and analysis algorithms[271] and 

is described later(2.10.2 The two- and three dimensional shape modelling for 

determining joint shape). Using this method similar gender differences in 

tibial bone area are also observed[262]. This segmentation method for 

measuring tAB describes a similar expansion in tAB seen in the medial tibia 

in varus malalignment but the same expansion is observed in the medial 

femur[267].  

Imorphics have developed an automated segmentation method for defining 

the three dimensional shape of knee bones using the next generation of 

statistical shape modelling called active appearance models. This permits 

the quantification of the undulating three dimensional surfaces of the tibia, 
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femur and patella tibial based upon three-dimensional MRIs. As such the 

tAB can be quantified for each of the articulating surfaces of bones and the 

three dimensional shape of bones can be quantified on a continuous vector 

scale that describes the difference in shape between OA and no OA. The 

methods describing this are below (2.10.2 The two- and three dimensional 

shape modelling for determining joint shape).  

Hunter and colleagues in Imorphics identified that changes in tAB in the 

femur, tibia and patella over 24 months all predicted incident knee ROA in 

the Osteoarthritis Initiative. Admittedly the limitations of this analysis include 

it was a nested case-control study without matching for body mass index. 

Neogi and colleagues in Imorphics described the baseline three dimensional 

bone shape vector values for the tibia, femur and patella  predicted incident 

knee ROA in the Osteoarthritis Initiative. Admittedly the limitations of this 

analysis include it was a nested case-control study but it did adjust for 

important covariate determinants of OA. 

 

2.6.3.1.3 Two-dimensional proximal tibial shape  

Nakamura and colleagues identified that stratifying tibial osteophyte 

morphology on conventional knee radiography (normal, horizontal, upward 

and downward -Figure 24) was significantly correlated with MRI-determined 

medial meniscal extrusion and degeneration. This association was not 

significant in the lateral compartment. While bone shape was associated 

with joint degeneration, only 8 knees had downward osteophytes, there was 

no adjustment for confounding factors and the analysis was cross-sectional 

which restricts any inferences about a causal role of bone shape[272]. 
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Figure 24 Medial tibial osteophyte morphology 

 

Medial tibial spur classification on X-ray. The shapes of the medial tibial 

spurs on X-ray were classified into four types. (Reprinted by permission from 

Elsevier Ltd: Magn Reson Imaging [272]). 

 

2.6.3.1.4 Two-dimensional distal femoral shape 

The shape of the distal femur, in particular a shallow femoral trochlear 

groove, has been associated with ‘premature’ OA in the context of a case 

series of 31 individuals with multiple epiphyseal dysplasia[273]. Stefanik and 

colleagues examined the shape of the femoral trochlea in 881 knees from 

the Multicenter Osteoarthritis Study (MOST) study. Knees with a flatter 

lateral trochlea (a shallower femoral trochlear grove) had an independent 

association with patellofemoral joint bone marrow lesions and cartilage 

damage[274]. 
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Amongst knees with OA and normal, varus or valgus alignment, the femoral 

condyle shape varied most obviously in valgus malalignment when 

examining the geometry (angles, axes and tangents) of conventional 

radiographic images and axial MRI slices of distal femurs. The shape 

difference between knees with OA and controls was most noticeable in the 

lateral femoral condyle of valgus knees. There was no significant difference 

in shape of the femoral condyles between controls and varus knees with OA. 

This implies increased biomechanical load may cause shape change[275].  

2.6.3.1.5 Two-dimensional shape of the tibiofemoral joint 

Haverkamp and colleagues used statistical shape modelling to describe the 

shape of the distal femur and proximal tibia on conventional knee 

radiography in a cross-sectional sample of 609 women’s knees in the 

Rotterdam cohort. The femoral and tibial width and the elevation of the 

lateral tibial plateau was independently associated with the presence of knee 

ROA and the bone widths were associated with diffuse cartilage 

defects[276].     

Bredbenner and colleagues analysed the surface geometry of the tibia and 

femur in 12 individuals who were considered to have no risk of knee OA and 

12 individuals with risk of OA from the Osteoarthritis Initiative. The surface 

geometry was segmented using statistical shape modelling and differences 

in surface geometry of the tibiae and femurs were found to be significantly 

different between those at and those not at risk without adjustment for 

confounders[277]. This analysis involved very small numbers and it should 

be noted that some individuals within the control arm of the OAI have 

evidence of knee ROA at baseline which limits any inferences from this 

analysis.  

2.6.3.1.6 Patellar shape 

Patella shape itself has not been associated with patellofemoral OA. 

However a medial tilt of the patella upon the femoral trochlea was 

associated with a reduction in WOMAC pain score severity amongst adults 

aged 25 to 60 in a community-based cross-sectional sample[278]. 
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2.6.3.2 Bone shape of the hip  

While risk factors for hip OA include a history of increased hip loading[279] 

or injury[280], increasing age[43], being female[43] and inherited 

genes[281], the geometric shape of the hip is now recognised to be an 

independent prospective risk factor for the development of ROA hip rather 

than being a consequence of OA itself. The evidence-base for this is 

described here. 

2.6.3.2.1 Femoroacetabular impingement 

Femoroacetabular impingement (FAI) is a pathological condition where there 

is impingement between the acetabulum and the femoral head during 

movement of the hip. The first of two types is where the presence of an 

aspherical femoral head (a cam-deformity) creates an abnormally shaped 

junction between the femoral head and neck and this additional material 

causes the impingement upon the acetabulum (Figure 25,Figure 26). As the 

asphericity of the femoral head increases so does the alpha angle which can 

be measured on conventional radiography of the hip (Figure 26).  This 

impingement is associated with delamination of the acetabular cartilage and 

confers up to a ten-fold greater risk of end-stage hip OA within 5 years[74]. 

‘Pistol grip’ deformity described by Doherty and colleagues also refers to 

similar asphericity of the femoral head and a risk factor for FAI[282]. A 

second possible form of FAI is the ‘pincer’ form the labrum of the 

acetabulum covers more of the femoral head than usual and causes 

impingement. 
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Figure 25 Radiographs of a normal hip and a hip with cam lesion 

 

In a normal hip, the concavity of the femoral head-neck junction (green 

arrow) allows an extensive range of hip movement without impingement of 

the femur against the acetabular rim. In cam lesion femoroactebular 

impingement, the loss of this concavity at the anterosuperior head-neck 

junction (red arrow) results in impaction of the femur against the acetabular 

rim. (Reprinted by permission from Elsevier Ltd: Lancet [283]). 
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Figure 26 Mechanisms of cam impingement 

 

Mechanism of cam impingement. a,b | A spherical femoral head provides the 

hip with a wide range of motion. c,d | A cam abnormality (asterisk) can cause 

impingement (arrow) against the acetabular rim, especially during flexion 

and internal rotation of the hip. The α angle is indicated in a and c. 

(Reprinted by permission from Macmillan Publishers Ltd: Nat Rev 

Rheumatol [284] copyright 2013) 

 

2.6.3.2.2 Acetabular dysplasia 

Acetabular dysplasia has a European prevalence of 3.4% [285] and is also 

associated with prevalent hip OA. In the left panel (Figure 27) an 

incongruent type I hip has a shallower acetabulum than normal which 

increases the freedom of movement of the femoral head which may overload 

the labrum, which can shear from the acetabular bony rim[286]. In the right 

panel (Figure 27) a congruent type II hip has a ‘short roof’ acetabulum which 

does not cover the femoral head sufficiently. This may confer increased load 

upon a reduced area of the articular surface and cause possible ‘fatigue’ 

fracture.[286]. 
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A prospective longitudinal study by Reijman and colleagues within the 

Rotterdam study identified that over a mean of 6.6 years follow up, 9.3% 

developed incident hip ROA. The presence of baseline acetabular dysplasia 

conferred a 4.3 fold greater odds of incident hip ROA than those without 

dysplasia and this association was independent of OA risk factors[287]. 

Lane and colleagues also observed an association of mild acetabular 

dysplasia with subsequent incident hip ROA during approximately nine years 

of follow up in a cohort of post-menopausal females[288].   

 

Figure 27 Acetabular dysplasia and its association with OA hip 

 

Schematic diagram of the hip joint architecture. a | Hip dysplasia 

pathophysiology of the acetabular rim in the incongruent type I hip (left 

panel). In this configuration, the hip has a shallower, more vertical 

acetabulum and a greater radius of curvature than normal. This architecture 

increases the freedom of movement of the femoral head, leading to 

overloading of the labrum, which can shear from the acetabular bony rim. 

(Reprinted by permission from Macmillan Publishers Ltd: Nat Rev 

Rheumatol [286], copyright 2012). 
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2.6.3.2.3 Two dimensional modelling of the femoral head 

 

Shape recognition is an important function of statistical shape modelling and 

was first used for practical purposes for automated facial recognition. This 

involves a computer programme being trained to precisely and reliably 

recognise the edges of similar structures presented as images. Once 

trained, an automated statistical shape model of shape and shape 

change[289] can be used to capture subtle shape changes based on 

conventional radiography. 

 

Gregory and colleagues analysed a subgroup of the Rotterdam study with 

110 hips without hip ROA (KL grade <2) at baseline that were followed up 

after six years. This consisted of 55 cases of hips that progressed by 3 or 

more KL grades during the follow up and these were matched with controls 

based upon age and gender but not body mass index. Statistical shape 

modelling of the proximal femur identified significant subtle shape changes 

between cases and controls[290]. The inadequate matching or adjustment 

for BMI remained a major confounding factor. 

 

Lynch and colleagues examined the proximal femoral shape from 

conventional hip radiography over eight years amongst approximately 350 

elderly caucasian women without hip ROA at baseline. Using active shape 

modelling some subtle shape features were independently associated with 

incident hip ROA amongst 100 cases and 250 controls that did not develop 

hip ROA in a case-control analysis[291].  

 

Waarsing and colleagues examined serial DXA images of hip joints in 161 

individuals with established hip OA (ACR criteria), taken two years apart. A 

statistical shape model identified various features of the two-dimensional 

shape of the femur and acetabulum that were independently associated with 

structural progression and severity of the hip ROA[292]. This is the most 

convincing evidence of the three studies of an association between shape 

and structural progression. Therefore shape change of the hip joint is 

relevant in OA hip 
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2.6.3.4 Subchondral bone marrow lesions 

Bone marrow lesions (BMLs) are the most studied SCB pathology to date. 

These are not detectable on conventional radiography and are best detected 

on T2-weighted (proton-density-weighted) fast spin echo images on MRI 

where they are non-cystic ill-defined hyperintensities (Figure 28)[293]. They 

are most frequently identified at sites of greater mechanical load, such as 

where malalignment loads the joint[294], where meniscal degeneration 

exists[295], in association with ACL tear [245, 266] [296] and with obesity 

[99, 121]. BMLs are histologically described as regions of ‘localised 

infarction reaction’[297] with active and chronic remodelling processes[298, 

299]. The increased turnover within BMLs reflects typical trabecular 

remodelling of OA. This is confirmed by the SCB histomorphometric 

changes within BMLs including a hypomineralised region of increased bone 

volume fraction with increased thickness of trabeculae but with reduced 

trabecular number and spacing[297, 298]. This makes areas of SCB affected 

by BML more susceptible to attrition where the bone becomes flattened or 

depressed[300] and the overlying cartilage more susceptible to 

degeneration. BMLs are typically found to be topographically adjacent to 

regions of histological cartilage degradation[299] and this correlates with the 

in-vivo imaging findings. BMLs in-vivo are common findings on MRI knee 

scans in the SCB of moderate to severe OA where their incidence increases 

with greater knee ROA severity[294] and they are associated with adjacent 

cartilage damage[301]. Clinical studies have identified that larger BMLs are 

more common in painful than non-painful knees[134]. The development of 

new BMLs has been associated with new onset knee pain[121]. BMLs, 

unlike bone attrition, can regress over time and can be found in individuals 

without structural ROA[121, 302].
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Figure 28 Subchondral bone marrow lesions in the femoral trochlea 

 

The bright white changes identified by the arrows are bone marrow lesions. (Reprinted by permission from Elsevier Ltd: Radiologic 

Clinics of North America [303]). 
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2.6.3.5 Subchondral bone attrition 

SCB attrition is the flattening or depression of the SCB adjacent to the joint 

surface(Figure 29). The evidence suggests that MRI SCB attrition may be a 

reflection of tibiofemoral compartment-specific mechanical load. This is 

because the tibiofemoral compartment receiving the greatest biomechanical 

load from malalignment[304, 305] and meniscal extrusion and degeneration 

[305] is significantly more frequently affected by MRI-determined SCB 

attrition. BMLs share these same load-associations and it is fitting that BMLs 

are highly associated with and predict incident bone attrition 

longitudinally[300]. SCB with BMLs may be more susceptible to this 

‘collapse’ and flattening because of the reduction in stiffness afforded by the 

hypomineralised SCB found within BMLs[297, 298](2.6.2.1 Established OA 

and structural progression). The prevalence of SCB attrition increases with 

greater Kellgren Lawrence grade radiographic structural severity of OA[306] 

and is independently associated with greater overlying cartilage 

loss[307].Bone attrition is independently associated with knee pain[139]. 

There is inconclusive evidence describing whether MRI-determined attrition 

is associated with obesity or not and there is no evidence describing MRI-

determined attrition incidence after ACL rupture.  
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Figure 29 Subchondral bone attrition and osteophytosis 

 

Subchondral bone attrition in the lateral tibiofemoral compartment. 

(Reprinted by permission from Elsevier Ltd: Radiologic Clinics of North 

America [303]). 

 

 

2.6.3.6 Osteophytes 

The term osteophyte may refer to three kinds of ‘osteophyte’. The first is a 

traction spur or enthesophyte, formed where tendons and ligaments insert. 

The second is an inflammatory spur or syndesmophyte formed where 

ligaments and tendons insert to bone as seen in ankylosing spondylitis. The 

third is the osteochondrophyte of OA which can form at the margins of 

diarthrodial joints, apophyseal joints and vertebral bodies. From hence forth 

osteophyte refers to an osteochondrophytes of OA. Osteophytes are a 
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characteristic feature of OA and are fibrocartilage-capped bony outgrowths 

originating from the periosteum of the cortical bone at the joint 

margins[308](Figure 29). They form as a consequence of stressors such as 

mechanical load and the process is driven by cytokines and growth factors. 

These promote the proliferation of mesenchymal stem cells in the 

periosteum to differentiate into chondrocytes as part of chondrogenesis[308].  

Hypertrophic mature chondrocytes are subsequently replaced with 

osteoblasts that mediate bone formation by endochondral 

ossification(2.6.1.2 Subchondral bone and the osteochondral junction). 

Like the other SCB pathologies, the presence of osteophytes are associated 

with increased mechanical load as a consequence of ACL tear[309], 

malalignment[305, 310] and meniscal damage[272, 311]. Osteophytes are 

also associated with x-ray severity[312] and cartilage damage[313]. The 

evidence describing an association  with pain is inconclusive. There is no 

evidence describing the presence or absence of an association with obesity 

and MRI-determined osteophytes.  

 

2.6.3.7 Subchondral bone cysts 

SCB cysts are frequently found in knees with OA and are recognised as one 

of the hall-mark features on conventional radiography. They are considered 

to represent bone trauma. Their typical appearance on unenhanced MRI is a 

well-defined rounded area of fluid-like intensity[293]. However these are 

strictly cyst-like lesions and not pure cysts because the histological findings 

of these lesions do not include an epithelial lining[314] and they enhance on 

contrast enhanced MRI.[315]  

The histological features are of bone trauma containing increased bone 

turnover, necrotic bone fragments which and are lined by a nonepithelial 

fibrous wall[314, 316]. The histomorphometric changes within these SCB 

cysts include a hypomineralised region of increased bone volume fraction 

which is similar to BMLs[316]. Femoral heads excised at the time of joint 

replacement had higher bone volume fractions with higher total SCB cyst 

volume[317]. Accordingly, SCB cysts are most frequently found adjacent to 

or within BMLs[315] and they develop longitudinally within BMLs amongst 
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patients with or at risk of knee osteoarthritis[318]. They may form as a 

consequence of increased load as they are more prevalent in knees with 

ACL tears[296] and their prevalence increases with increasing severity of 

knee OA[319]. Degeneration of articular cartilage is associated with the 

presence of adjacent SCB cysts[315, 316]. There is no evidence describing 

the association of MRI-determined SCB cysts with obesity, malalignment or 

meniscal damage. 

In summary MRI-detected SCB lesions are associated with the histological 

and histomorphometric features of OA, risk factors for OA and OA structural 

severity and pain. 

 

2.6.4 Can the OA Subchondral Bone be therapeutically targeted? 

The collective evidence described above (2.6 Subchondral bone in OA) 

indicates the importance of subchondral bone in the pathogenesis of OA at a 

macroscopic level with bone shape, in terms of bone architecture and at 

cellular level.  

2.6.4.1 Anti-resorptive drugs 

SCB is an attractive treatment target given the known pathology of increased 

bone turnover associated with an excess of bone resorption initially and a 

subsequent increase in hypomineralised bone volume fraction with reduced 

stiffness and associated cartilage degradation. 

2.6.4.1.1 Bisphosphonates 

Anti-resorptive agents such as bisphosphonates inhibit osteoclasts and bone 

remodelling process[320] and may subsequently be chondroprotective. 

Animal models of OA in rats and dogs have identified a beneficial effect of 

several bisphosphonates in the context of high bone turnover through their 

impact on subchondral bone which includes inhibition of remodelling, 

osteophyte formation along with decreased vascular invasion of calcified 

cartilage, cartilage degradation and pain[239, 321-324]. This appears to be a 

class effect and zoledronic acid has also been shown to have a 

chondroprotective effect in rabbits[325].  
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In humans the effects of bisphosphonates on symptoms and structural 

progression have varied. The Knee OA Structural Arthritis (KOSTAR) study 

tested the efficacy of 5mg/day, 15mg/day or 50mg/week of risedronate in its 

effect on symptoms (WOMAC and patient global assessment) and structural 

progression (JSN using fluoroscopically positioned, semiflexed-view 

radiography)  in patients with medial knee OA (determined by radiographic 

JSN) over two years. This was a phase III randomised placebo-controlled 

trial which found no significant difference in symptoms or structural 

progression between risedronate at any dose  and placebo. This study did 

not account for the heterogeneity of the OA population regarding 

subchondral bone abnormalities because patients were selected on the 

basis of conventional radiography which is insensitive to the detection of 

SCB pathology like BMLs (2.9 Magnetic resonance imaging). Furthermore 

an evaluation of the sensitivity to change of JSN as an outcome measure for 

structural change suggests that these studies were significantly 

underpowered to show a response[326]. However some potentially 

beneficial effects have been noted. A dose-dependent reduction in 

biomarkers of cartilage degradation  at 6 months of therapy was noted (C-

terminal cross-linking telopeptide of type II collagen) which was associated 

with a slower knee OA structural progression based upon JSN[327]. On 

trabecular analysis of the SCB on conventional radiography in individuals 

with significant JSN during KOSTAR, there was loss of trabeculae in the 

placebo and 5mg/day groups while there was preservation of vertical 

trabeculae with 15mg/week of risedronate and an increase in vertical 

trabeculae with 50mg/week indicating a dose-dependent preservation of 

SCB integrity[328]. 

The British study of risedronate in structure and symptoms of knee OA 

(BRISK) investigated risedronate at a dose of 5mg/day or 15mg/day in a 1-

year prospective, double-blind, placebo-controlled study. Symptoms were 

measured with WOMAC and patient global assessment and structural 

progression was measured with radiographic JSN. This trial included knees 

with medial knee OA[329]. This was a significant improvement in the 

patient’s global assessment and a trend towards attenuation of JSN and 

improvement in WOMAC but this was not significant. 
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Cartilage degradation and bone resorption markers were significantly 

decreased in the risedronate arms. Similar criticism applies to BRISK and 

KOSTAR for inadequate powering for the sensitivity to change of the 

outcome measure JSN. No study has examined cartilage volume as an 

endpoint in a bisphosphonate OA trial.  

The only randomised placebo-controlled trial using MRI, that investigated 

symptomatic knee OA with concurrent BMLs, identified that zoledronic acid 

reduced the size of BMLs and knee pain at 6 months. However the pain 

reduction was not maintained at 1 year and BML size had a trend towards a 

smaller size[330]. 

The Fracture Intervention Trial (FIT) was a randomised placebo-controlled 

trial of alendronic acid for osteoporosis. The effect of alendronic acid on 

anterior vertebral radiographic osteophyte progression was described.  

Alendronic acid significantly reduced osteophyte progression but there was 

no data on pain[331]. 

Carbone and colleagues performed a cross-sectional study of the Women in 

the Health, Aging and Body Composition Study. Postmenopausal women 

with and without knee OA symptoms (n=818), underwent MRIs of their 

knees and 214 were taking anti-resorptives. Overall anti-resorptive use was 

not associated with pain but alendronic acid use was associated with 

significantly less severe pain (WOMAC). Alendronic acid and oestrogen 

therapy were associated with significantly less SCB attrition and BML 

prevalence in the knee on MRI in comparison with women not 

receiving these medications[332]. 

Amongst participants of the Osteoarthritis Initiative cohort with moderate 

knee OA (Kellgren Lawrence 2-3) and a numeric rating scale (NRS) of pain 

of four or more out of ten, individuals taking bisphosphonates received a 

significant reduction in pain NRS at follow up at years two and three but not 

four. There was also a trend towards reduced JSN at year four follow up 

(p=0.06).  

Cauley and colleagues described a large randomised placebo-controlled trial 

of annual zoledronic acid for the treatment of pain owing to back pain or 

fracture in postmenopausal women with osteoporosis. Zoledronic acid 
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significantly reduced the number of days with patient-reported back pain 

over a 3-year period which was independent of incident fracture[333]. This 

may indirectly reflect the capacity of zoledronate to reduce OA pain.  

Koivisto and colleagues describe a randomised placebo-controlled trial of 

zoledronic acid for the treatment of lower back pain (LBP) in individuals with 

modic changes which are bone marrow pathologies associated with the 

presence and persistence of LBP. Zoledronate significantly reduced LBP at 

one month and NSAID use at one year[334]. This may indirectly reflect the 

capacity of zoledronate to reduce OA pain.  

Furthermore there have been improvements in symptoms and progression 

of disease at certain locations and reduction in subchondral bone 

lesions[328-331]. 

In summary there is evidence supporting the potential for bisphosphonate 

being disease modifiers of symptoms and structural change in specific 

phenotypes of OA with SCB pathology. However more robust assessment 

with better outcome measures (e.g. MRI measures) in adequately powered 

trials are still required to establish the efficacy of bisphosphonates in OA.  

 

2.6.4.1.2 Strontium 

More recently the effect of strontium ranelate on structural progression (JSN) 

and knee pain (WOMAC) in knee OA was assessed in a randomised 

placebo-controlled trial over three years. This is the Strontium Efficacy in 

Knee OsteoarthrItis trial (SEKOIA). This identified a small reduction in both 

JSN and total WOMAC and WOMAC pain with 2g/day[335].  

Pelletier and colleagues published an analysis of a subgroup of the SEKOIA 

that had MRI scans. This analysis concluded that at 36 months, there was a 

significant reduction in BML size score in 25-40% (similar to the effect of 

zoledronate) which also correlated with reduced cartilage volume loss in the 

medial compartment[336]. 

A post-hoc analysis of pooled data from two strontium trials for osteoporosis  

was performed to determine the efficacy of strontium in treating structural 

progression and symptoms of patients with spinal OA. The TReatment Of 
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Peripheral OSteoporosis (TROPOS) and Spinal Osteoporosis Therapeutic 

Intervention (SOTI) trials. After three-years there was no significant 

difference in vertebral osteophyte scores but an improvement in back pain. 

An improvement of one point or more on a likert scale, was significantly 

more frequent with strontium therapy[337]. 

Strontium has also demonstrated a reduction in cartilage defects and 

subchondral bone thickening in a randomised placebo-controlled trial in an 

ACLT model of OA in dogs[338]. 

The evidence supporting the potential for strontium to modify structural 

progression and pain in OA suggests strontium may be an effective therapy 

for OA knee. However strontium is associated with increased cardiovascular 

risk which limits its future utility. 

2.6.4.2 Calcitonin 

Calcitonin is a hormone that antagonises the effect of parathyroid hormone 

(PTH) in its bone resorptive effects. It has demonstrated the potential to 

improve symptoms and structural progression in OA in humans and animals. 

18 Rabbits having surgically induced knee OA (e.g. ACLT) were randomised 

to receive calcitonin IM or placebo. The structural progression of OA based 

on histological and imaging was attenuated in the calcitonin group compared 

to placebo[339]. In ACLT models of OA in dogs, calcitonin inhibited the SCB 

trabecular resorption compared with the placebo arm. The preservation of 

SCB integrity was associated with a significant reduction in cartilage 

defects[340].  

In humans intranasal calcitonin was administered in an open-label study of 

220 women who fulfilled the criteria of having post-menopausal 

osteoporosis, with at least moderate regular pain in a knee with moderate 

radiographic OA (Kellgren Lawrence two or three). After three months of 

therapy there was significant improvement in WOMAC pain perception, 

stiffness and function and these were maintained to the end of the trial at 

one year. How much of this was placebo effects is unknown[341]. A small 

randomised placebo-controlled trial of oral calcitonin reported an 
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improvement in function and reduced cartilage degradation biochemical 

biomarkers[342]. 

2.6.4.3 Parathyroid hormone 

Parathyroid hormone (PTH) is considered to promote matrix synthesis and 

inhibit the maturation of chondrocytes[343] that have been associated with 

endochondral ossification (the process of osteophyte formation). There are 

no human studies of parathyroid hormone in OA but in animal models after 

meniscal or ligament injuries in mice, a placebo controlled trial of teriparatide 

(recombinant human PTH) demonstrated less chondral damage and 

increased bone volume fraction in the teriparatide arm[344]. Similar 

improvements in trabecular thickness accompanied by chondroprotective 

effects  have been demonstrated in rabbit OA models[345]. 

2.6.4.4 Vitamin D 

Vitamin D is known to be important in bone metabolism and previous 

observational studies have suggested increasing levels above 36 ng/mL was 

associated with beneficial effect[346, 347]. Therefore a 2-year randomized, 

placebo-controlled trial of supplementing vitamin D levels in symptomatic 

knee OA to elevate serum levels to more than 36 ng/mL was performed. 

There was no significant difference between vitamin D and placebo groups 

for change in symptoms, bone marrow lesion size, cartilage thickness or 

radiographic JSW[348]. 

 

2.6.5 Summary 

SCB plays an integral role in the pathogenesis of OA from the earliest 

through to the most advanced stages of OA. The likely sequence of events 

in SCB that lead to OA have been summarised (Figure 22).  SCB 

pathologies are associated with conventional OA risk factors that over load 

joints but SCB shape and imaging abnormalities are independent risk factors 

for OA themselves before clinical OA develops and as it progresses (Table 

7). Therefore SCB represents an important tissue in OA and potentially an 

important biomarker and target for prospective disease modification.  



- 97 - 

Table 7 The association of subchondral bone changes with knee & hip OA risk factors 

 Age Gender Obesity Injury or ACL 

tear 

Malalignment Meniscal 

damage 

X-ray Severity Cartilage 

damage 

Trabecular 

bone mass,  

BMD or BVF. 

(CR/DXA/qCT 

or MRI) 

  n/a +[245] +[250, 251] +[252] 

+ 

[208, 215] 

[349] 

+ 

[210] 

[350] 

 

BML (MRI) Not associated 

[121] 

[23] 

 +[99, 121] 
+[245, 266] 

[296] 
+[294] +[295] + [294] + [301] 

Osteophytes  

(MRI) 
+[23]  n/a +[309, 351] +[305, 310] +[272, 311] +[312] +[313] 

Attrition 

(MRI) 
  

Not associated 

[352] 
n/a +[304, 305] +[305] +[306] +[307] 

Cyst (MRI) +[23] n/a n/a +[296] n/a n/a +[319] +[315] 

tAB (MRI) 
+ [258] +[256, 257] + [260] [259] + [266] + [267, 268] 

+ [246, 263-

265] 
+ [269] [353] 

2D Shape   n/a n/a +[275] +[272] +[276] +[74] 

Bone mineral density (BMD), bone volume fraction (BVF), conventional radiography (CR), dual-energy X-ray absorptiometry (DXA), quantitative 

computed tomography (qCT), not available (n/a), an association is present with positive correlation (+). 
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2.7 Biomarkers validation and surrogate measures 

2.7.1 Biomarkers and surrogate measures 

A biomarker is something that can be measured (relatively) easily which tells 

us information about the presence, severity or progress of a disease 

process. This can include a chemical that can be measured in blood or 

urine, a genetic marker or in the case of this research a quantifiable imaging 

feature such as bone area or bone shape. An example of a biomarker used 

in rheumatology is C-reactive protein. As inflammation increases, the blood 

concentration increases. Many biomarkers provide at most a rough 

indication of the process that they are being used to measure, and very few 

are effective at predicting the future progress of disease. Biomarkers are 

therefore disease-centred variables and represent one end of a spectrum. At 

the other end of the spectrum are patient-centred variables which are 

variables that reflect how a patient ‘feels, functions or survives’. These guide 

clinical decision making and are primary endpoints in clinical trials. For 

example in knee OA the end-stage of OA is treated with a total knee 

replacement which is a measure of ‘joint survival’. However the time from the 

onset of OA to the time of a joint replacement may be more than three 

decades which is too long for any clinical trial. Therefore surrogate 

measures of the patient-centred outcome are required and these are 

referred to as surrogate outcome measures. 

In order to be used as a surrogate outcome measure, a biomarker must 

demonstrate sufficient validity. Validation of a biomarker is a continuous 

incremental process and demonstrating validity is not all or nothing event. 

Validation requires certain domains to be assessed and once a threshold is 

exceeded then the biomarker may be used as a surrogate measure of how a 

patient feels, functions or survives[354]. One strategy used for biomarker 

validation is the Outcome Measures in Rheumatology (OMERACT) filter 

described by Boers and colleagues which will be described here[355]. 

 

 



- 99 - 

2.7.2 Validation of biomarkers using the OMERACT filter 

The OMERACT filter encapsulated the concepts of validity by requiring truth, 

discrimination and feasibility and this is described in the OMERACT hand 

book[356].  

Truth requires that the biomarker measures the patient centred outcome it is 

intended to measure in an unbiased and relevant way. Truth summarises the 

concepts of face, content, construct, and criterion validity. Truth may also be 

referred to as internal validity.  

Discrimination requires that the biomarker should be able to discriminate 

between situations of interest or different groups at one time point such as 

prognosis, or states at different times by measuring change. This 

discrimination summarises the demonstration of reliability and sensitivity to 

change or responsiveness respectively. This incorporates the concept of 

precision. This is important because precision errors should be sufficiently 

low in relation to the magnitude of expected change for a given marker 

during the natural history of change in the biomarker of a disease. If the 

measurement noise or error is high relative to the actual change in the 

biomarker (signal) being measured then a poor noise to signal ratio limits the 

utility of the biomarker. 

Feasibility requires that the biomarker can be applied easily, acknowledging 

the constraints of time, money, and interpretability. Feasibility summarises 

an important stage in the selection of biomarkers, that may determine a 

biomarkers success. For imaging biomarkers this should evaluate the 

practicalities of using a biomarker including cost, burden upon the patient 

being imaged, equipment requirement, and overall ease of use are 

appraised. The feasibility has to be balanced against the need for a 

comprehensiveness and  adequate coverage of the OA outcome. The 

challenge is to maximize feasibility by reducing the demands of the 

biomarker to the minimum required for validity.   

The following defines the components of validation with a specific focus on 

imaging biomarkers for OA. 
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2.7.2.1. Face and Content validity 

Face validity requires that the biomarker of OA should on the face of it reflect 

the OA outcome of interest. In order to demonstrate content validity, there 

should be evidence from qualitative research demonstrating that the 

biomarker measures the OA outcome or concept of interest. This should 

include evidence that the domain(s) of the OA biomarker are appropriate 

and comprehensive relative to its intended measurement of OA outcome 

and the population of OA that this is intended to apply to. For imaging 

biomarkers of OA (and their proposed scoring system or scale) they should 

capture the intended pathophysiologic features of OA such as pain.  A 

review of the evidence for validation should consider this association from all 

perspectives including the researcher, clinician and patient. 

2.7.2.2 Construct validity 

In order to demonstrate construct validity, there should be evidence that the 

concept of the OA biomarker(s)  should conform to a priori hypotheses 

regarding logical relationships that should exist with other measures or 

characteristics of OA and OA patient groups. Construct validity requires that 

the biomarker is a measure of the OA domain it is intended to measure. This 

is generally assessed by comparing the prospective OA biomarkers 

measure with other measures of the same OA domain. For example for a 

structural imaging biomarker of OA to have construct validity it should 

correlate or be associated with another structural measure of OA such as 

the KL grade or JSN or provide similar results. The judgement of the 

strength of association determines the strength of evidence of construct 

validity along with the number of measures of OA that it correlates with. This 

differs from criterion validity for OA biomarkers because criterion validity 

reflects the strength of association between an OA biomarker and an OA 

gold standard or ‘criterion’. However with constructs, there is no gold 

standard.  

2.7.2.3 Criterion validity  

Criterion validity reflects the extent to which a biomarker directly predicts a 

patient outcome or the existing gold standard biomarker of the patient 

outcome.  
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For example if total knee replacement (TKR) is the OA patient outcome of 

interest and computed tomographic (CT) measurement of bone width is the 

gold standard for predicting TKR, an OA MRI biomarker can demonstrate 

criterion validity if it correlates well with the CT bone measurement (the gold 

standard or ‘criterion’). However for many OA patient outcomes criterion 

validity cannot be measured because there is no gold standard.  

Therefore criterion validity can also be demonstrated if the MRI biomarker is 

directly predictive of TKR which becomes the ‘criterion’.  

Criterion validity can be divided into concurrent validity and predictive 

validity. Concurrent validity describes cross-sectional associations between 

OA biomarkers and the outcome of interest such as joint replacement. 

Predictive validity reflects a longitudinal relationship where an OA biomarker 

measurement at baseline is associated with a subsequent or future outcome 

of joint replacement.  

 

2.7.2.4 Responsiveness 

The capacity of an OA biomarker to validly detect or measure a significant 

change over time is described as responsiveness. In order to demonstrate 

responsiveness the biomarker should first be expected to change in a way 

that is concordant with other OA biomarkers of the same process.   

Thereafter estimates of the standardised change in the biomarker over time 

such as the effect size or the standardised response mean, can be used to 

describe and quantify responsiveness. Furthermore the correlation between 

change in a validated biomarker and change in the new biomarker can be 

assessed by measuring the area under the curve (AUC) of the Receiver 

Operator Characteristic (ROC) curve if the validated biomarker can be 

dichotomised.  

 

2.7.2.5 Reliability 

This may be referred to as stability whereby the day-to-day variability of the 

measurement of the biomarker as a consequence of actual variation in the 

tissue structure being imaged or the measurement error of the biomarker  
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may contribute to measurement noise. One way of testing this is to use a 

test-retest reliability of the biomarker. If the biomarker will be measured by 

one individual only then the reliability can be expressed as an intra-observer 

reliability or intra-rater agreement. If the biomarker is measured by several 

observers then the reliability should also be expressed as an inter-observer 

reliability or inter-rater agreement. The level of agreement can be expressed 

as intra-class correlation coefficient (ICC) or a weighted Kappa coefficient 

(Kw). It can also be expressed as a coefficient of the variance of the same 

measure (CoV) which is a relative standard deviation and is expressed as a 

percentage and reflects the noise to signal ratio. This is particularly relevant 

when automated measurements of the biomarker are made. 

In summary there are many components that are required to validate a 

biomarker as a surrogate measure of a patient-centred outcome. Validity is 

not binary but is a continuous process and therefore appraisal of evidence is 

required to suitably validate biomarkers.  

2.8 Biochemical biomarkers 

Biochemical biomarkers of OA have the potential to contribute to the 

diagnosis of OA, the delineation of phenotypes, the quantification of tissue 

burden and prognosis and to measure the efficacy of therapeutic 

interventions. However even the best described biochemical biomarkers 

(cartilage markers) lack sufficient discriminative capacity and validity to be 

used to facilitate the clinical trial design, diagnosis and estimation of 

prognosis in individuals with OA or to be used as surrogate outcome 

measures in intervention trials[357].  

Important molecules in joint tissue metabolism and pathogenesis of OA have 

potential as biochemical biomarkers of OA. These include enzymes, 

cytokines and the constituents of the extracellular matrix that include 

collagen and proteoglycan precursors and degradation products that are 

released into biological fluids. These may first be released locally into the  

synovial fluid of the joint with OA and then systemically into the blood and 

urine. The concentration in these compartments may reflect cartilage, 

subchondral bone and synovial metabolism which may be used as a 
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measure of joint tissue degradation and formation. The advantages and 

disadvantages of this approach are now discussed. 

The majority of connective tissue components of joints are frequently 

present in many other tissues in the body and therefore the systemic 

measurement of  concentrations of these components in the blood and urine 

will reflect the healthy tissue turn-over of the whole body (systemic 

metabolism) and not specific joint pathology of OA. This may be particularly 

relevant when the pathologic turnover in small joints of the hand is less than 

the physiologic turnover in all of the other larger joints. Furthermore systemic 

biochemical marker concentrations are subject to systemic distribution, 

metabolism and excretion. The volume of distribution may vary with body 

mass index and the metabolism and excretion may vary with varying 

degrees of renal and hepatic dysfunction that are prevalent amongst people 

with OA. Systemic concentrations may also vary with food intake, physical 

activity, and when multiple joints and other connective tissues are involved. 

Therefore these systemic biomarkers may not accurately capture the 

specific local tissue pathology when only a few joints are affected by OA and 

their utility may be greater in generalised OA.  

Measuring biomarker concentrations in synovial fluid may offer a more 

accurate representation of OA pathology within specific joints. However 

variation in joint movement and intermittent synovitis may cause 

concentrations of biomarkers to vary over time.  

The National Institutes of Health-funded OA biomarkers network has 

classified specific biomarker definitions into five categories to improve the 

development and analysis of OA biomarkers; Burden of disease, 

Investigative, Prognostic, Efficacy of intervention and Diagnostic (BIPED) 

[358]. A recent systematic review classified 26 biochemical markers of 

cartilage, bone or synovial metabolism by the BIPED categories[357]. The 

best performing, most frequently and broadly described biochemical 

biomarkers are in the context of knee and hip OA and are considered to be a 

measure of collagen degradation (urinary C-terminal telopeptide II, serum 

cartilage oligomeric protein). There is evidence of predictive validity of these 

two biomarkers for incidence of knee ROA [359, 360] and progression of hip 
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and knee ROA[361] in longitudinal cohort studies having adjusted for age, 

gender and BMI. However biochemical markers have little ability to predict 

symptoms[360]. The performance of the other biomarkers e.g. serum 

hyaluronic acid and urine/serum N-terminal peptide 1, could not be 

adequately evaluated due to a lack of evidence. Despite the considerable 

research efforts made to determine if they can be used for as surrogate 

measures for diagnostic purposes or to reflect how a patient feels, functions 

or survives, the authors of the systematic review [357] concluded that none 

of the available biomarkers had sufficient discriminative properties to be 

used for these purposes. The same conclusions have been drawn by the 

European Society for Clinical and Economic Aspects of Osteoporosis and 

Osteoarthritis also draw the same conclusion[362].  

Currently none of these biochemical markers, are sufficiently discriminating 

to be used as surrogate outcome measures[363].  

2.9 Magnetic resonance imaging  

Conventional radiography (CR) is unable to capture the severity of the multi-

tissue involvement in joints with OA joints. This is particularly important 

because many of the trials of prospective disease modifying agents in OA 

(DMOADs) have attempted to recruit a homogenous population that are 

likely to exhibit structural progression by selecting people with knee 

Kellgren-Lawrence grades ≥2. Unfortunately  these patients may lack 

uniformity in terms of joint tissue involvement because CR is insensitive to 

tissue pathology like bone marrow lesions (BMLs) which have important 

prognostic implications and are associated with worse structural and 

symptomatic outcomes (2.4.3.2 OA pain and its structural associations). 

Amongst individuals within the Framingham cohort above the age of 50 

years, with no pain and normal knee radiography, 88% of individuals had at 

least one OA tissue lesion in the knee on magnetic resonance imaging (MRI) 

[23]. This included an osteophyte, cartilage damage and BML prevalence of 

72%, 68% and 50% respectively. MRI is more sensitive to osteophytes and 

cartilage damage than conventional radiography[364]. Therefore appropriate 
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stratification and  monitoring of these tissue pathologies among patients with 

OA requires MRI.  

MRI offers several advantages including the ability to examine the presence 

and extent of tissue pathology in each of the joint tissues in OA[25]. The 

quantification of MRI cartilage morphometry in knee OA has demonstrated 

good evidence of reliability and responsiveness and there is some evidence 

of its predictive and construct validity[365, 366]. This includes loss of 

quantitative cartilage volume being a potential predictor of total knee 

replacement (TKR). The measurement of subchondral BMLs and synovitis in 

knee OA has also demonstrated good responsiveness for semiquantitative 

MRI assessment[366]. Further data is required to accurately quantify the 

BMLs and synovitis and to determine whether these demonstrate predictive 

validity of outcomes such as TKR. 

The disadvantages of MRI include that the acquisition is more time-

consuming and expensive than plain radiography. However in terms of 

clinical trials, the greater responsiveness of tissue measures might mitigate 

the additional costs because fewer patients may be required to demonstrate 

a structure-modifying effect.  

MRI-determined quantitative and semi-quantitative measurements of joint 

tissue in OA ( 2.11Imaging biomarkers in OA) have started to be used as 

clinical outcome measures in structure-modification DMOAD trials. This 

reflects the opinion of the Osteoarthritis Research Society International 

(OARSI) working group  that recommended MRI cartilage morphology 

assessment be used as a primary structural end point in clinical trials which 

also acknowledged the rapid evolution of quantitative MRI assessments of 

subchondral bone and synovium[367].  

Therefore using MRI biomarkers of joint structure in OA represents a 

significant improvement in sensitivity to clinically significant structural 

pathology, responsiveness and in its correlation with pain compared with CR 

biomarkers. However we have not yet harnessed the full potential of MRI 

biomarkers and utilised all of the three dimensional tomographic information 

that MRI has to offer. 
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2.10 Statistical Shape modelling, active shape modelling and 

active appearance modelling 

Man-made or manufactured  shapes are relatively easy to describe and 

identify in two or three-dimensions. However describing the shape of 

naturally occurring organs like joints that adapt to their environment is much 

more challenging but represents an important source of in vivo information. 

This is because the shapes are often complex, asymmetrical structures and 

there is significant variation between individuals at a population level.  

Historically defining the shape of similar tissues or organs has been 

achieved by the process of manual segmentation. This is a labour-intensive 

and time-consuming process which requires that the edge of the structure of 

interest (e.g. a cartilage plate or SCB area seen on an MRI slice) be drawn 

around to define the shape of it. However computers can be trained to 

recognise shape using ‘machine vision’. If the geometric properties of the 

target tissue are manually segmented in a  substantial population of training 

set images, the segmented regions of interest can be analysed for their 

geometric (shape) properties using statistical analysis to create a statistical 

shape model (SSM). This ‘trained’ SSM is a shape-recognition model that 

has learnt what shape to look for in a subsequent target image.  This 

process involves the analysis of geometric shape identifying landmarks on 

the edge of the target tissue that are consistent at a population level.  These 

are referred to as consistent landmarks and their automated application to 

subsequent target images can automate the segmentation and substantially 

reduce the labour-intensive approach of manual segmentation. One of the 

first applications for this shape recognition was in the application of facial 

recognition in 1998.  How well the training set represents the variation in 

shape in the target image population is one of the determinants of how well 

the model can segment the shape accurately. Where multiple MRI slices are 

available for one joint, the cartilage plate or SCB area can be segmented on 

serial adjacent slices which permit a 3D shape reconstruction to be made 

(2.10.2.3 Segmented three dimensional bone area, cartilage thickness and 

volume).   
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The next generation of shape recognition involved an additional statistical 

model that incorporates the variation in characteristics in the target images. 

These are called active shape models(ASM)[289]. An ASM involves a local 

search algorithm which relies upon the same pure edge-based approach of  

the SSM. However the model actively seeks to update the fit of the model to 

the target image (without using the grey-scale texture) to ensure the best fit 

is achieved which brings the model closer to the correct solution (Figure 30). 

Hutton and colleagues used this for the purposes of detecting cephalometric 

landmarks[368].  

Figure 30 Active shape model and local searching 

 

In the first image the model at the beginning has been synthesised by the 

ASM. The model then attempted to constrain the edge of the shape using 

learned consistent landmarks. However local searches for all landmarks are 

evaluated at different positions perpendicular to the model surface in the 

second image and the new best landmark positions are identified . The ASM 

model parameters and landmarks are then updated to minimise the 

distances between the model landmarks and the actual shape. Reprinted by 

permission from Elsevier Ltd: Medical Image Analysis [369] - 2009) 

 

Finally the latest generation of shape modelling is the active appearance 

model (AAM). These also actively seek to keep to a minimum  the difference 

between the actual shape of a new target image and one synthesised by the 

AAM. This is achieved not only by local searches of the shape (as in ASM) 

but also by using a model of grey-scale texture on either side of the edge of 

the shape. The model learns, from training sets, what grey-scale texture to 

expect on either side of the learned edge by analysing the greyscale 
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changes in a rim of 5-6mm spanning either side of the learned edge in a 

perpendicular manner to the edge. This ensures the appearance of the grey-

scale texture is actively searched  to optimise the shape automated 

segmentation. In the tissues of the knee, for example, the MRI signal 

provides a grey-scale variation which may have darker signal in the cartilage 

overlying the SCB and brighter signal in the bone. By learning from training 

samples, the AAM can actively define shape more accurately. This is the 

technology that has been applied in defining bone shape and bone area in 

the subsequent Chapters 4-6. 

 

2.10.1 The applications of shape modelling 

The advantages of analysing the shape, or the change in shape of tissues 

based on imaging is that this can provide three-dimensional morphological 

data that can be used non-invasively to describe human physiology  and 

pathophysiology in vivo. Tissue shape can indeed be a directly involved in 

the pathogenesis of disease(2.6.3.2.1 Femoroacetabular impingement).  In 

states of disease shape may be particularly important when planning 

interventions with narrow therapeutic windows such as surgical resection of 

cancer or radiotherapy. It may also be useful when creating prostheses. 

Finally shape and volume can be determined by shape models and these 

may provide important prognostic information if suitably validated. Examples 

of how statistical shape modelling, active shape models and active 

appearance models have all contributed to these are described below.  

The physiological shape changes in the tracheobronchial tree[370] and liver 

[371] during breathing have been modelled in order to better understand the 

changes in these organs during bronchoscopy and surgery. The shape 

change in the levator ani during straining[372] has also been modelled. The 

shape change in mandibles during development has also been measured 

with models longitudinally to describe growth of bone[373]. The shape of the 

larynx has also been modelled to describe the association of shape with 

pitch of voice as part of natural variation[374]. The variation in the shape of 

brains during development[375] and during ageing[376] have also been 

performed to describe these physiological processes.  
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The left atrium is known to remodel and dilate in atrial fibrillation. This shape 

change in the left atrium in atrial fibrillation is believed to be associated with 

the outcome of cerebrovascular accident. Therefore shape modelling has 

been used by Cates and colleagues to describe the shape changes in the 

chambers of the heart[377]. 

Echocardiographic imaging of the fetal heart is an important component of 

screening for congenital abnormalities. In order to improve the sensitivity of 

screening it has been proposed that active appearance models of the heart 

chambers may add important diagnostic information to the screening 

process and these models have been trained. 

Vertebral fractures are important causes of morbidity. However while 

conventional radiography is inexpensive and accessible it is relatively 

insensitive to detecting osteoporotic fractures compared to computed 

tomography which is more expensive and less accessible. The shape 

change of vertebrae seen on conventional radiography may be subtle but 

the detection of a fracture affects clinical management and may prevent 

morbidity. The shape change associated with small fractures may be subtle 

and therefore active appearance models are being trained upon 

conventional radiographs to try to improve the sensitivity of fracture 

detection.[378, 379]. 

Brain tissue shape has also been used to identify associations between 

brain tissue shape and conditions like attention-deficit hyperactivity 

disorder[380], schizophrenia[381, 382] and psychiatric disorders[383]. 

Planning radiotherapy is very important. Irradiation of noncancerous tissue 

may cause significant iatrogenic comorbidity. Shape models may improve 

the anatomical spatial awareness and minimise complications of therapy in 

head and neck malignancy[384] as well as prostate malignancy[385]. 

Tumour pathology can also be detected focally within an organ using shape 

modelling for more targeted therapy[385]. 

Training for surgical interventions such as hysteroscopy can be provided by 

modelling the shape of multiple real uterine cavities and converting this 

information into a simulator or virtual hysteroscopy for trainee surgeons[386]. 

Planning surgical interventions with computer-assisted surgery is an 
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evolving area of research. Pre-operative planning in neurosurgery with 

segmented brain images may be improved with 3D models of the brain, that 

provide localization, targeting, and visualization of tumours that can be used 

to simulate planned interventions[387] (Figure 31). Pre-operative shape 

modelling from ultrasound can also be used to assist planning in hip 

replacement[388, 389], for anterior cruciate ligament reconstruction[390, 

391]. 

 

Figure 31 3D Segmentation of tissues of the brain 

 

A model of a patients head and segmented brain regions. Reprinted by 

permission from John Wiley & Sons Ltd: Journal of Magnetic Resonance 

Imaging [387].  

 

In order to improve the fit and comfort of hearing aids, a better shape fit in 

the external auditory meatus is required. Designing custom-made hearing 

aids to fit the external auditory meatus using shape models has been 

described.[392] 

Prognostic information may be obtained from shape modelling of medical 

images. For example the volume of the prostate in prostate cancer is a 

strong predictor of treatment outcome especially if this volume is combined 

with a baseline prostate-specific antigen level[393]. Cam deformity of a 

femoral head on conventional radiography is also predictive of ten-fold 

greater risk of end-stage hip OA within 5 years[74]. 

In summary the field of shape modelling has already identified important 

applications in medical practice in terms of improving our understanding of 
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physiology and pathophysiology in humans. Shape models may also 

improve prognostic accuracy and interventional precision and permit 

personalised medicine by making custom-made prostheses. This technology 

and its application in the field of OA will be described in the next section.  

2.10.2 The two- and three dimensional shape modelling for 

determining joint shape, cartilage volume and bone area 

The shape of the subchondral bone has been identified as being associated 

with risk factors for OA, the structural progression of OA and it is an 

independent risk factor for incident OA and joint replacement (2.6.3 Bone 

shape and subchondral bone MRI features in OA, 2.11.1.2.5 Quantitative 

bone area and three-dimensional bone shape). However most of the 

assessments of bone shape used to demonstrate these associations have 

been based upon two-dimensional images alone or with reconstruction into 

three-dimensional shapes. While imaging biomarkers are the best 

personalised biomarkers ( 2.11 Imaging biomarkers in OA), more responsive 

biomarkers are required for the purposes of clinical trials, and three 

dimensional shape may provide novel imaging biomarkers of cartilage and 

subchondral bone shape, this section discusses the existing imaging shape 

biomarkers. 

2.10.2.1 Segmented bone shape on conventional radiography 

Agricola and colleagues have used SSM to describe the 2D shape of the 

SCB in the hip joint including the femoral head and acetabular shape to 

describe the association with OA progression in a nationwide prospective hip 

OA cohort study [394]. 

Waarsing and colleagues described the association of knee bone 2D shape, 

determined by SSM, with the presence or absence of cartilage defects[276]. 

Lynch and colleagues examined the association of incident hip OA with 

variations in 2D proximal morphology, assessed by ASM [291]. 

2.10.2.2 Segmented two dimensional tibial bone area 

Jones and colleagues have described the cross-sectional bone area of the 

tibia described in observational studies amongst the healthy population and 

those with and at risk of knee OA [31]. Bone area was calculated from axial 
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MRI slices of the tibial bone plateau (Figure 23) that were closest to the joint. 

The medial and lateral tibial bone areas were then measured from these 

directly using manual segmentation to provide the cross-sectional bone 

areas. An average of the three areas was used as an estimate of the tibial 

plateau bone area (tAB)[263, 395, 396]. 

 

2.10.2.3 Segmented three dimensional bone area, cartilage thickness 

and volume 

Eckstein and Chondrometric’s colleagues have also quantified cartilage 

volume, cartilage thickness and bone area over the tibia but also the femur 

and patella using laborious manual segmentation derived from serial 

magnetic resonance (MR) images, and analysis algorithms[271]. This 

Cartilage thickness has also been segmented  ( 

Figure 32) which can be used to provide a reconstruction of the femoral and 

tibial cartilage plates in three dimensions. Eckstein and colleagues have 

defined the different regions (Figure 33,Figure 34), and subregions within the 

knee (Figure 33,Figure 34). For bone area (tAB), the medial and lateral 

femur, tibia and patella are consistently divided into different subregions that 

can be appreciated below for the femur and tibia.  Notably the central region 

of the femur is identified as the ‘weight bearing’ region which is distinct from 

the femoral trochlea of the patellofemoral joint or the posterior femur (Figure 

33,Figure 34). The tibia is divided into medial and lateral regions and these 

two are further subdivided into five subregions (Figure 34). 
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Figure 32 Measuring cartilage thickness 

 

Examples of the coronal measurement of cartilage thickness using 

segmentation. cLF (central lateral femur), cMF (central medial femur). 

Reprinted by permission from John Wiley & Sons Ltd: NMR Biomed from 

[397] 



- 114 - 

Figure 33 Reconstruction of tAB of the medial and lateral tibia and 
femur 

 

b) Reconstruction of the femoral bone only and of the tAB of the above 

cartilages 

c) Reconstruction of the tibial bone only and of the tAB of the above 

cartilages 

Springer Calcif Tissue Int, Medial-to-lateral ratio of tibiofemoral subchondral 

bone area is adapted to alignment and mechanical load, 2009 Eckstein et al, 

reprinted with permission of Springer Reproduced from [267] 
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Figure 34 Regions and subregions of the knee - chondrometrics 

 

Three-dimensional reconstruction of the tibial and femoral subchondral bone 

with subregional division. Reprinted by permission from Macmillan 

Publishers Ltd: Nature Reviews Rheumatology [398] Copyright 2012 
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Figure 35 Regions and subregions of the knee - Arthrovision 

 

Division of the three-dimensional tibial and femoral subchondral bone into 

subregions. Reprinted by permission from BioMed Central: Arthritis 

Research Therapy, Pelletier et al [123] 

 

Pelletier and Arthrovision colleagues have similarly segmented the cartilage 

plates in order to calculate femoral and tibial cartilage volume by segmenting 

the tibiofemoral compartment using shape modelling [123](Figure 35). They 

have also used cartilage thickness and maps of the findings. 

In summary there are many examples of 2D and 3D imaging biomarkers that 

have been described above. The SCB is important in the pathogenesis of 

OA including SCB shape. The importance of modelling the shape of the 

knee bones with SSM, ASM and AAM is it may permit the validation of novel 

imaging biomarkers with improved responsiveness profile than existing 

imaging biomarkers for prospective use in OA modification trials. 

2.11 Imaging biomarkers in OA 
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Joint imaging has permitted the direct and indirect description of articular 

tissues and their structural pathology. The quantitative and semi-quantitative 

descriptions of the imaged articular tissue structural pathology, morphology 

and composition have provided measures or biomarkers of physiological and 

pathophysiological processes that are specific to the joint and are these 

imaging biomarkers are currently the best personalised biomarkers in OA.  

Conventional radiography (CR) provides two-dimensional projection images 

that only directly visualise bone and are insensitive to structural pathology 

and longitudinal change in this. Therefore imaging biomarkers derived from 

unstandardised radiographic protocols are typically subject to significant 

measurement error, poor responsiveness and structural changes are poorly 

correlated with the clinical syndrome. Nevertheless, with appropriately 

standardised radiographic protocols the measurement of joint space 

narrowing from CR is the current standard for determining structural 

progression in OA.  

MRI provides three-dimensional tomographic imaging which greatly 

improves the sensitivity to detecting structural pathology of all joint tissues 

and longitudinal change in this. Imaging biomarkers derived from MRI are 

subject to less measurement error, better responsiveness and structural 

pathology correlation with the clinical syndrome. MRI measures have greatly 

contributed to the description of the natural history of knee OA and the 

identification important structural pathologies of tissues within the ‘whole 

joint’ that are associated with important clinical and structural outcomes in 

knee OA. 

Imaging biomarkers, unlike systemic biochemical markers (2.8 Biochemical 

biomarkers), are joint-specific and have been used in longitudinal 

observational studies to describe the natural history of OA. This process has 

demonstrated that several of these measures have concurrent and 

predictive validity regarding clinically important outcomes such as structural 

progression, pain and joint replacement. The variety, validation, advantages 

and disadvantages of imaging biomarkers are described here. 

2.11.1 Quantitative measures in OA 
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The structural pathology of OA can be described using quantitative 

measures. These measures are not used in routine clinical practice but they 

may be used as a structural outcome measures and for clinically meaningful 

outcomes like symptoms and joint replacement. These measures are 

described here.  

2.11.1.1 Conventional radiographic quantitative measures 

2.11.1.1.1 Continuous joint space width and joint space narrowing 

The measurement of joint space width (JSW) and joint space narrowing 

(JSN) by conventional radiography (CR) quantifies the interbone distance 

between opposing bones of any diarthrodial (synovial) joint. This section will 

primarily focus on the knee. JSW for the tibiofemoral joint is between the 

femur and the tibia. JSW and JSN are considered to be surrogate measures 

for hyaline articular cartilage thickness or loss respectively. However JSN is 

in fact a composite of cartilage loss and meniscal degeneration and/or 

extrusion.  

Weight-bearing is necessary to displace synovial fluid, to juxtapose the 

opposing articular cartilage surfaces and to maintain a similar cartilage 

compression and hence reproducible joint positioning between 

examinations. In routine clinical practice knee radiographs are typically 

weight-bearing in extension. Weight-bearing knee radiographs have a 

significantly smaller medial minimum JSW than non-weight-bearing 

radiographs[399]. 

Any interbone measurement with this protocol may be affected by variation 

in the degree of knee flexion, rotation (of the femur or tibia), medial tibial 

plateau alignment and magnification (Figure 36). Magnification is a product 

of the position of the knee relative to the x-ray beam and x-ray film. 
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Figure 36 Positioning of the subject for the fixed flexion and Lyon-
Schuss radiographs and examples of good and poor alignment of 
the medial tibial plateau with the X-ray beam 

 

The interbone measurement may be affected by variation in the degree of 

knee flexion and rotation of the femur or tibia. Reproduced from Annals of 

Rheumatic diseases, Le Graverand et al, 2008, [94]. with permission from 

BMJ Publishing Group Ltd. 

 

A full extension knee radiograph can also artificially increase apparent 

cartilage thickness[400] and is less reproducible than semi-flexed knee 

views[401, 402]. Therefore in order to improve the measurement noise to 

signal ratio and minimise the effect of repositioning error or inter-occasion 

variation (reliability), serial monitoring of JSW should be made by a 

standardised radiographic positioning with weight-bearing flexion protocols 

of which there are several; 

Fluoroscopic protocols such as  

 the Lyon-Schuss protocol takes a posteroanterior view of the knee 

with the pelvis, thigh and patellae of the patient being flush with the 

film cassette which is in the same plane as the tips of the great toes 

and confers an approximate fixed knee flexion of 20 degrees[403]. 
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This method appears to have a better sensitivity to change in JSW 

because this affords better alignment of the medial tibial plateau 

(Figure 36) [94, 402, 404] and does not require magnification 

correction unlike anteroposterior methods[403]. The limitations of this 

method include increased cost and patient irradiation and hence 

protocols without fluoroscopic-guidance were developed including the 

fixed-flexion[402] and metatarsophalangeal[405]. 

Non-fluoroscopic protocols include:  

 A postero-anterior view of the knee with the cassette in the same 

plane as the 1st metatarsophalangeal joint[406]. However the degree 

of knee flexion is not standardised.  

 A fixed degree of knee flexion and foot rotation and position of the 

knee relative to the x-ray beam and film can be standardised for each 

subject using a consistently-placed SynaFlexer plexiglass knee 

positioning frame[402] (Figure 42). 

 Finally a modified Lyon-Schuss protocol combines the positioning of 

the Lyon-Schuss with the use of the Synaflexer frame without the 

fluoroscopy[407]. 

While the sensitivity to change is improved when the medial tibial plateau is 

parallel to the X-ray beam a suggested alternative without fluoroscopic-

guidance is to acquire multiple radiographs of each knee to ensure the best 

projection image is achieved[408]. A quality control approach for tibial 

plateau alignment was incorporated in the Osteoarthritis Initiative 

radiography protocol. Where radiographs of insufficient quality were 

identified, participants were invited to have multiple knee radiographs ( 

2.12.4 Knee radiography protocol[409]) 

Metric JSW can be measured manually from CR with a graduated ruler, 

calipers, or using semi-automated computer software[410, 411].  

Furthermore the minimum interbone distance (mJSW) can also be measured 

as a measure of greatest JSN[412]. It can also be measured at location-

specific locations at or in relation to specific anatomical landmarks[413]. In 

knees without and with ROA knee, mJSW and location-specific JSW had 
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optimal responsiveness respectively[413]. However despite the best efforts 

to minimise repositioning errors, the minimum inter-occasion variation 

(standard deviation of the difference between test-retest measurements of 

mJSW) was approximately 0.1mm in the methods with best 

repeatability[402, 414]. This represents a smallest detectable difference of at 

least 0.2mm. Considering that the mean rate of annual knee JSN is 0.13 ± 

0.15mm/year, with change occurring in only a small group of 

“progressors”[93, 94], this represents a significant measurement noise to 

signal ratio and highlights the lack of responsiveness of this measure.   

CR JSN is also limited by the fact that JSN is not a specific measure of 

hyaline cartilage loss but a composite measure of the degeneration of two 

tissues. JSW is a construct of degeneration and extrusion of the menisci as 

well as hyaline articular cartilage degeneration[86].  

Furthermore a systematic literature review of relevant structural progression 

defined by JSW identified considerable heterogeneity in definition of loss of 

metric JSW required to be defined as a ‘progressor’[415]. There is no current 

consensus of opinion on which threshold represents an accurate definition.  

Despite these limitations CR continuous JSW or JSN remains the 

recommended measurement for measuring structural change according to 

the Osteoarthritis Research Society International Food and Drug Agency 

(OARSI FDA) OA assessment of structural change working group[367].  

The validity of JSN as a clinically and structurally important measure of OA 

is supported by the following evidence. Knee JSN occurring over five years 

is predictive of future knee replacements as much as 15-years later[104, 

416]. Degenerative meniscal changes at baseline in knees are predictive of 

JSN two years later[417]. Degenerative changes of knee hyaline articular 

cartilage, menisci and meniscal extrusion are also predictive of JSN 30 

months later[418].  Subchondral bone changes of OA include increased 

turnover and bone marrow lesions. A bone turnover biomarker is predictive 

of subsequent JSN in knees with symptomatic and ROA[419]. JSN of hand 

OA is associated with BMLs[420]. Amongst 942 patients with symptomatic 

knee OA, a lower baseline metric mJSW and greater JSN over four years 

was predictive of greater deterioration in pain, function and quality of life 
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after suitable covariate adjustment[421]. Metric JSW responsiveness 

(measured using the Synaflexor)[402] has been compared with the 

responsiveness of cartilage volume in the progressor cohort of the OAI over 

12 months in 150 knees. The conclusion from the authors was that the most 

responsive JSW and MRI cartilage volume measures were comparable at -

0.32 and -0.39 respectively (expressed as standardised response 

means)[413, 422]. This may in part be explained by the slow rate of cartilage 

progression in conjunction with the equally poor measurement to noise ratio 

of the cartilage volume measurement method. The greatest rate of cartilage 

volume loss was  -2.5% per annum[422],  but the coefficient of the variance 

(the noise to signal ratio on inter-occasion measurement error) of cartilage 

volume segmentation ranged from 3 to 5% (see the web appendix of this 

citation[422]). This is comparable to radiographic JSN coefficient of the 

variance [412] which may explain the  limitations of measurement noise to 

signal ratio of these methods. A superior coefficient of the variance for the 

measurement of cartilage volume is quoted by Eckstein et al. of 2.4-

3.3%[423] indicating a better method for cartilage volume assessment. 

A meta-analysis of the responsiveness of JSW confirmed that this was 

significantly better with trials with flexed knees with greater than two years of 

duration (SRM =0.71). The intra-reader and inter-reader intra-class 

correlation coefficients were excellent and coefficient of the variance 

estimates were approximately 3%[424].  

The implications of this are that trials based on JSW as an outcome 

measure require follow up periods of at least two years and due to the 

relative insensitivity to change and poorer reliability, require large numbers 

of patients per arm to adequately power the study which represents a major 

barrier to performing trials of prospective disease modifying agents. This 

highlights the inadequacy of JSN as the current OARSI FDA standard of OA 

structural progression measurement and the need for better biomarkers. 

2.11.1.1.2 Continuous (metric) alignment 

Alignment of joints can be assessed using clinical and radiographic 

methods. This section will focus specifically on the knee. Knee alignment 

can be measured clinically using a goniometer as it is in the Osteoarthritis 
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Initiative at baseline or using lower limb conventional radiographs. 

Radiographic knee alignment can be classified in two ways. The most 

commonly used method is the mechanical axis which requires a full-length 

lower limb radiographic image and measures the hip-knee-ankle angle[425]. 

This is the femur-tibia angle formed by the intersection of a line connecting 

the centre of the femoral head with the middle of the knee and another line 

connecting the middle of the ankle joint with the middle of the knee joint. The 

second method is the anatomic axis which is the angle formed by the 

intersection of a line through the middle of the tibial shaft and a line through 

the middle of the femoral shaft[426]. 

A systematic literature review of the concurrent and predictive validity of 

knee OA malalignment as a measure of radiographic and MRI structural 

severity and progression identified that increasing goniometer-measured 

malalignment was associated with concurrently greater osteophytes and 

JSN[427]. Continuous varus and valgus malalignment of the knee measured 

by radiographs was concurrently associated with greater cartilage 

degeneration on MRI[428]. The systematic review in 2009 also concluded 

that continuous baseline radiographically-determined alignment was 

predictive of radiographic and MRI-determined structural progression in 

longitudinal studies. This along with more recent literature provides evidence 

of predictive validity of continuous malalignment which will be described here 

in terms of radiographic followed by MRI structural progression outcomes.  

Baseline alignment, in knees with symptomatic ROA, was independently 

associated with longitudinal progression in medial and lateral JSN with varus 

and valgus malalignment respectively[429, 430].   

Baseline malalignment severity, in 117 knees with symptomatic ROA, was 

associated with a dose dependent increase in rate of MRI cartilage volume 

loss (either tibial or femoral) in the medial and lateral compartments, with 

increasing varus and valgus malalignment respectively over two years[431].  

Baseline varus malalignment severity, in 293 knees without evidence of 

tibiofemoral cartilage defects at baseline, was independently associated with 

a dose dependent effect on incident medial WORMS cartilage defects 

(2.11.2.2.2 Knee semi-quantitative measures). Baseline malalignment also 
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reduced the risk of incident cartilage defects in the compartment receiving 

less load over 30 months[77]. The same  observation that varus and valgus 

malalignment ‘off-loads’ the lateral and medial compartments respectively 

and reduces the odds of cartilage damage over two years, was made 

amongst knees with ROA[432]. 

Loss of medial cartilage thickness and volume were both independently 

associated with continuous varus malalignment in 250 knees with 

established OA but the valgus deformity was associated but not 

independently with lateral cartilage loss of the same measures[433].  

Sharma and colleagues reported that continuous valgus deformity is not 

independently associated with lateral cartilage loss[77, 433]. These analyses 

only included 55 knees with valgus. Felson and Cicuttini and colleagues, 

included up to 881 knees with valgus deformity and reported independent 

associations between longitudinal lateral cartilage loss and categorical  [76]  

and continuous [431] valgus malalignment respectively. The risk of incident 

OA and progression of knee OA utilised ROA and MRI measures and found 

categorised valgus deformity (in 881 knees) was independently associated  

with MRI cartilage loss, and increasing severity of radiographic JSN and 

meniscal degeneration[76]. Therefore there is  good evidence that varus and 

valgus malalignment are independently predictive of structural progression.  

Continuous malalignment also has predictive validity regarding future 

symptoms and total knee replacement. Valgus malalignment at baseline is 

also independently associated with persistent knee symptoms of OA or total 

knee replacement after six years [434] and when incorporated in phenotypic 

stratification, confers a greater risk of structural progression[435]. 

Varus alignment is associated with pain severity in cross-sectional analysis 

[436] and malalignment is associated with incident bone marrow lesions in 

the biomechanically loaded compartment[437]. 

More recently the femur-tibial angle, obtained from fixed-flexion knee films, 

with adjustment for sex-specific varus shift was found to be as good as the 

long-limb radiograph and better than goniometry in predicting change in 

cartilage thickness over two years[438].  

 



- 125 - 

In summary CR quantitative imaging biomarkers have been validated as  

measures of clinically and structurally important outcome measures. 

However despite great efforts to optimise the responsiveness of JSN, the 

current standard for measuring structural progression, the insensitivity of this 

measure to change represents a significant barrier to discerning the potential 

for disease modification and advancing the treatment of OA. More 

responsive biomarkers are therefore required. 

 

2.11.1.2 MRI quantitative measures 

There are broadly two strategies for the quantification of MRI OA structural 

pathology. Quantitative MRI measures are described here and semi-

quantitative MRI measures below (2.11.2.2 MRI semi-quantitative 

measures). While semi-quantitative measures use an ordinal scale, 

quantitative measures quantify tissue characteristics such as cartilage 

thickness[439] or volume[440] which typically uses segmentation 

techniques.  

The imaging sequences required for quantitative measures differ from semi-

quantitative grading because spatial resolution is more important and the 

precise distinction of the osteochondral interface and cartilage surface is 

essential.  This is because most quantitative analyses involve the 

segmentation of tissues which are usually performed manually or using 

semi-automated methods. These methods can be labour intensive and 

require expert analysis, specialised computer software, special training of 

segmenters and quality control procedures[441]. 

Quantitative measures were found to be more sensitive to change than 

semi-quantitative measures[442]. As a consequence the measurement of 

longitudinal structural change with semi-quantitative measures has evolved 

[443, 444] to offer comparable longitudinal sensitivity to change[366].  

 

2.11.1.2.1 Quantitative morphologic measurement of cartilage thickness & volume 

In order to quantitatively measure cartilage thickness or volume, 

segmentation of the joint tissues on MRI is required. This can be 
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reconstructed into femoral and tibial cartilage volumes or used to measure 

cartilage thickness ( 

Figure 32).The precision and reliability of the different segmentation 

methods is good[366, 397, 445]. From the segmented cartilage and bone, 

several measures can be made based upon the division of the joint into 

regions determined by a panel of experts[271](2.10.2 The two- and three 

dimensional shape modelling for determining joint shape). Segmentation of 

the tissues, particularly the cartilage, permits the calculation of the following; 

the total area of the SCB (tAB), the area of the cartilage surface (AC), the 

tAB covered by the AC (cAB) and the denuded area of SCB (dAB) which is 

expressed as percentage of tAB not covered by AC. Finally both volume of 

cartilage (VC) and cartilage thickness (ThC) can be quantified[446]. These 

can be calculated for each defined joint region and subregion (Figure 

34,Figure 35)[398]. 

These two measures have excellent reliability as demonstrated by a meta-

analysis of studies. This included a coefficient of the variance of 3% for both 

inter- and intra-reader reliability. Inter- and intra-reader intra-class correlation 

was excellent[366].  

The responsiveness to change of cartilage thickness and volume have been 

analysed in a broad range of observational studies[95, 431, 447-449]. A 

meta-analysis of the responsiveness of MRI-determined quantitative 

cartilage measures to cartilage loss[366] indicated a greater sensitivity to 

change than an equivalent meta-analysis of radiographic JSW[424]. In direct 

comparisons of the two methods, MRI-determined cartilage measures were 

more responsive than CR JSW as well[95, 448]. 

Cartilage thickness can be described using a thickness map of the femur 

and tibia.. 

The rate of cartilage thickness or volume loss is increased in the context of 

typical OA risk factors and severity measures. This includes obesity[95, 

123], meniscal degeneration[123], malalignment[433, 450], frequent 

pain[448, 451] and evidence of greater radiographic structural severity[123, 

451-454]. 
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The validity of cartilage loss as a clinically meaningful biomarker have been 

reported. Denuded area of SCB (dAB) is associated with knee pain in cross-

sectional studies[455, 456] and predictive of incident knee pain in 

longitudinal studies[456]. Knees with greater rates of tibiofemoral cartilage 

loss were more likely to subsequently  receive  total knee replacement than 

at lower rates[270, 457]. In a nested case-control study within the OAI, the 

rate of cartilage loss in the two years prior to TKR accelerated[458]. 

Variable thresholds of cartilage loss have been used to determine significant 

from insignificant structural progression. This threshold has been determined 

by the subregional change in healthy joints[459], the precision of cartilage 

quantification[433] and the smallest detectable change[447] in cartilage 

quantification. 

In summary MRI-determined quantitative measures of cartilage loss are 

validated biomarkers of clinically important outcomes such as joint 

replacement, pain and incident pain and are associated with typical risk 

factors for OA. These measures are more responsive than CR-determined 

measures. 

2.11.1.2.2 Quantitative compositional measurement of cartilage 

While morphological MRI sequences permit the three-dimensional 

measurement of joint tissues, more advanced MRI sequences can be used 

to characterise and quantify the ultra-structural or biochemical composition 

of articular cartilage.  These assessments of tissue composition may be 

used to identify and quantify degenerative changes in cartilage that precede 

morphologically defined cartilage loss of OA.  

Healthy cartilage consists of collagen fibres and proteoglycans which are 

‘core proteins’ with glycosaminoglycan (GAG) side chains. Collagen fibres 

are organised in an anisotropic manner in different layers of cartilage (Figure 

8) which confers it’s load-dissipating mechanical properties. Early 

biochemical alterations in the natural history of OA include 

glycosaminoglycan (GAG) depletion, increased permeability to water[460] 

and loss of the anisotropy of the extra-cellular matrix network in animals 

[461, 462] and humans[463, 464]. These alterations can not be detected 

with standard morphologic magnetic resonance sequences (Figure 37).  
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Compositional sequences such as diffusion weighted imaging and T2 

mapping procedures are sensitive to the loss of anisotropy of the matrix 

network. Delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) [465] 

and glycosaminoglycan chemical exchange saturation transfer  (gagCEST). 

dGEMRIC are biomarkers of glycosaminoglycan concentration within the 

cartilage. dGEMRIC has been demonstrated construct validity histologically 

and biochemically in human and animal cartilage[466-469]. In vivo spatial 

variation in cartilage signal, in particular circumstances, reflects variations in 

cartilage GAG concentration[470]. MRI scans are performed 90 minutes 

after the contrast is administered and dGEMRIC has good reproducibility 

with an intra-class correlation coefficient (ICC 0.87-0.95)[471].  

In case-series analysis of knees undergoing partial meniscectomy, the 

baseline dGEMRIC values were associated with incident JSN and 

osteophyte formation[472]. In longitudinal analysis the cartilage thickness 

change was inversely associated with dGEMRIC[473](Figure 37). 

Furthermore dGEMRIC is sensitive to weight loss[474]. Therefore dGEMRIC 

is probably the best-understood compositional sequence with the greatest 

validation but further validation is required before this can be used as a 

surrogate measure of OA clinical outcomes such as pain and joint 

replacement. 

Clinical studies for the validation of gagCEST as a biomarker of cartilage 

degeneration in OA are lacking. Other quantitative compositional imaging 

biomarkers of cartilage composition lack precision data but include T1-

weighted sodium MRI[475], and computed tomography of the knee after 

intra-articular cationic contrast injection[476]. 

In summary compositional MRI sequences represent quantitative MRI 

cartilage measures that have potential to complement the existing and better 

validated morphological assessments of cartilage 
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Figure 37 MRI compositional cartilage maps of the tibiofemoral joint 

 

An MRI shows a decrease in the dGEMRIC index particularly in the weight 

bearing areas at the central and posterior tibia (large white arrows). 

Reprinted by permission from Elsevier Ltd: Osteoarthritis and cartilage [34] 

 

2.11.1.2.3 Quantitative bone marrow lesions  

Bone marrow lesions can be segmented using semi-automated methods 

that first segment the cartilage-bone interface, the BML itself and then 

quantify the volume of the BML by using multiple slices of the joint(Figure 

38). The importance of segmenting the cartilage bone interface is to ensure 

the BMLs are within a predefined distance from the bone cortex to ensure 

they are truly subchondral. The calculated BML volume was associated with 

adjacent cartilage thickness and full thickness cartilage loss[477]. Bone 

volume has been quantified using similar methods and found to correlate 

with increased bone volume fraction[298]. BML volume has also been found 

to be associated with pain severity and JSN at baseline and to be predictive 

of JSN progression in longitudinal analyses[100]. 
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Figure 38 Bone marrow lesion segmentation 

 

Segmented knee MRI scans. The red lines identify the bone boundary and 

the yellow lines surround areas of high signal intensity (BMLs). Reprinted by 

permission from BioMed Central: Arthritis Research Therapy, Driban et a 

[100] 

2.11.1.2.4 Quantitative trabecular morphometry 

The structure of bone is complex (2.6 Subchondral bone in OA). Quantitative 

assessment of macrostructural characteristics, such as geometry and shape 

of bones are important biomarkers of (OA2.6.3 Bone shape and subchondral 

bone MRI features in OA). Macrostructural SCB mineral density (BMD) is an 

important biomarker of OA and this can be quantitatively assessed using 

conventional radiographs, dual-energy x-ray absorptiometry (DXA) and 

computed tomography (CT), especially volumetric quantitative (qCT) 

Microstructural assessments of the trabecular SCB have greatly improved 

our understanding of the pathogenesis of OA(2.6.2 Subchondral bone 

architecture and remodelling in OA). Methods for this microarchitectural 

assessment include micro- computed tomography (micro-CT), high-

resolution computed tomography (hrCT), micromagnetic resonance (micro-

MR) and high-resolution magnetic resonance (hrMR). Microarchitectural 

features can be quantified based on segmentation and three-dimensional 

methods and the main measurements include bone volume fraction, 

trabecular thickness, trabecular number, thickness and spacing  
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Bone volume fraction (BV/TV) or bone mineral density (BMD) is the most 

important parameter for describing trabecular microarchitecture and is 

defined as the bone volume divided by its total volume (%). BVF is an 

approximation of subchondral sclerosis(Figure 20).  

Trabecular number (TbN) is a three-dimensional measure calculated from 

micro-CT images. Trabecular thickness (TbTh) is expressed as the mean 

trabecular thickness. Trabecular spacing or trabecular separation (TbSp) is 

calculated as the mean distance between trabeculae (µm). The changes in 

these measures in OA and their association with clinical OA have been 

described earlier(2.6.2 Subchondral bone architecture and remodelling in 

OA). 

2.11.1.2.5 Quantitative bone area and three-dimensional bone shape 

Bone area (2.6.3.1.1 Knee subchondral bone cross-sectional area) and 3D 

bone shape (2.6.3.1.2 Three-dimensional knee bone shape) have been 

discussed earlier. 

2.11.1.2.6 Meniscus and effusions 

Meniscus and effusions can both be segmented using similar technology to 

cartilage and bone segmentation. These are in their infancy relative to bone 

and cartilage. 

In summary quantitative measures of OA have been used across a range of 

imaging modalities. Compared to semi-quantitative measures, quantitative 

systems use a more complex, technology dependent and time-consuming 

approach for assessing structural pathology. However the continuous 

measures may be more sensitive to change making them better outcome 

measures. The most validated OA quantitative measures are for the knee 

and include cartilage volume and thickness. The current standard for 

measuring structural progression in knee OA is radiographic JSN. 

Regardless of these measures no biomarker demonstrates a strong 

association with both structural progression and clinically meaningful 

symptoms. More sensitive and validated biomarkers are therefore desirable. 
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2.11.2 Semi-quantitative measures of structural OA 

The structural pathology of OA can be measured using semi-quantitative 

scoring systems. These scoring systems are not used in routine clinical 

practice but are frequently used in longitudinal or cross-sectional 

observational studies and interventional trials. They may be used as 

selection criteria to enrich a cohort with a relatively homogenous structural 

severity of OA (e.g. an identical KL grade)[92] or as a structural outcome for 

measuring structural progression such as a semi-quantitative cartilage 

defect score[478].  

Conventional radiographic measures whether they are semi-quantitative or 

quantitative are limited by the fact that they are less responsive, reliable and 

sensitive to whole-joint structural pathologies and their structural progression 

than MRI and they are less well correlated with the clinical syndrome. In 

particular CR is insensitive to the detection of OA structural pathology 

associated with pain (e.g. BMLs and synovitis)(2.4.3.2 OA pain and its 

structural associations). Therefore large changes in semi-quantitative 

structural scoring are often required to represent clinically meaningful 

change. For example only increases of two more KL grades(Table 1) in 

knees over 4 to 5 years is associated with increasing pain and 

dysfunction[98]. 

Unlike quantitative measures that use continuous scales, semi-quantitative 

measure use an ordinal scale e.g. 0-3 which may be described as absent, 

mild, moderate or severe. The structural change required to move from one 

grade to the next may not be uniform along the scale (e.g the change 

between zero and one, and between one and two) and therefore these may 

not be interval variables. Acknowledging these limitations, semi-quantitative 

measures are more convenient, more rapidly scored and do not require no 

complex imaging analysis technology. Therefore they are a more feasible 

and are an  approximation of quantitative structural measures. The different 

forms of semi-quantitative measures of structural OA are described here. 
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2.11.2.1 Conventional radiographic semi-quantitative measures 

2.11.2.1.1 Kellgren Lawrence grade  

The most frequently used CR semi-quantitative system to identify and grade 

OA is the Kellgren–Lawrence (KL) score. This is a widely accepted scale 

which can be applied to peripheral and axial joints but is most frequently 

used for the knee[19]. This is a composite measure of JSN, osteophytes, 

subchondral sclerosis that is described on an ordinal scale (Table 1,Figure 

1). The presence or absence of OA is typically defined as grade two or 

higher.  The advantages of KL score are that it incorporates the severity of 

structural pathology in more than one tissue in this multi-tissue whole joint 

disorder. The baseline knee KL score is predictive of knee joint replacement 

in the OAI[479]. Knees demonstrating an increase in KL grade compared to 

stable KL grade over one year have greater odds of further increases in KL 

grade in the following year [92], but only increases of 2 more KL grades in 

knees over 4 to 5 years is associated with increasing pain and 

dysfunction[98]. However the disadvantages of KL scoring are that it 

depends upon the presence of osteophytes which can change with minor 

changes in the rotation of a knee and the standardisation of rotational 

positioning of the knee is difficult. The KL grade does not represent an 

interval variable where individual categories are equidistant from each other 

in severity. Therefore it is important to recognise that the proportion of knees 

that progress from one grade to the next are not comparable for all starting 

points in the scale. The OA threshold of KL 2 has been inconsistently 

defined in longitudinal studies which have led to some heterogeneity in 

definitions of OA. Almost all definitions of KL 2 require a definite osteophyte, 

some do not mention JSN, some require JSN while others require the 

absence of JSN[480]. In the Framingham Osteoarthritis study where X-ray 

and MRI scores were available for 189 knees, KL grade 2 without JSN 

(OARSI JSN = 0) and with JSN (OARSI JSN =1) had substantial semi-

quantitative WORMS weight-bearing TFJ cartilage loss in 4% and 44% of 

knees respectively[481]. This highlights the importance of the difference in 

KL2 definition. It is also noteworthy that KL grade 3 requires definite joint 

space narrowing but this may range from mild to nearly bone on bone 
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narrowing. Therefore KL grades may encompass a broad spectrum of 

pathology and the ordinal KL scale is not an interval variable. 

Felson and colleagues analysed a cohort of 842 knees with established 

ROA in at least one knee from the MOST study. Structural progression was 

defined after 30 months of follow up using OARSI JSN[84] (with half grades) 

to define structural progression. Had KL grade been used to define structural 

progression, less than half of all those determined as having JSN structural 

progression would have been detected by a change in KL grade. Therefore 

KL grade is relatively insensitive to structural progression than JSN[481]. 

This has led to the suggestion from Felson and colleagues that an additional 

‘definite osteophyte only’ grade should be distinguished to determine ROA 

incidence and for structural progression to focus on JSN[482].  

In conclusion KL grade is insensitive to clinically meaningful change in 

symptoms and is less sensitive to structural change than ordinal OARSI JSN 

but it is still an independent predictor of knee joint replacement. Variations in 

KL grade definition amongst different studies may represent important and 

latent differences in structural severity between studies.  

2.11.2.1.2  The Osteoarthritis Research Society International (OARSI) atlas 

classification  

The Osteoarthritis Research Society International (OARSI) atlas 

classification grade ROA of the knee, hip and hand. It provides distinct 

scoring systems for each joint and describes JSN, osteophytes with a semi-

quantitative score (0-3) and the presence or absence of subchondral 

sclerosis, cysts and attrition but also joint malalignment [84]. In the knee the 

features are identified by their presence in the medial and lateral tibiofemoral 

compartments (Figure 39). 

Amongst 276 knees in the MOST study, OARSI knee JSN was significantly 

associated with progressive WORMS cartilage damage, meniscal damage 

and extrusion after adjusting for age, gender and BMI[418]. Knees with 

higher OARSI grades of JSN had thinner cartilage in the medial TFJ than 

those without JSN[483]. This provides evidence of predictive and construct 

validity of OARSI JSN. 
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The inter-rater and intra-rater reliability and the sensitivity to change 

(standardised response mean) was compared between categorised metric 

JSW, KL grade and OARSI JSN grade for 1759 x-rays from three trials and 

two cohorts. Categorised metric JSW had better reliabilities and sensitivity to 

change than the other two ordinal measures[484]. Disease progression may 

be defined as an increase in KL, JSN or osteophyte grade. However JSN 

had the lowest inter-observer variability[485].  

Cross-sectional analysis of 696 people from the MOST study and 336 

people from the Framingham OA cohort examined the association of pain 

severity and consistency with ROA grade of KL, OARSI JSN and OARSI 

osteophyte grades. To avoid typical confounders, knees were compared 

within individuals with discordant pain severity and consistency between 

knees. All three ROA measures were associated with these pain measures 

but OARSI JSN grade and KL grade had greater association with OA pain 

than OARSI osteophyte grade[486]. 

Other examples of scoring systems utilising atlas scoring systems include 

Nagaosa and colleagues’ for knee OA, the Kallman[487], Verbruggen[488] 

and Dougados  scoring systems[489]. These scoring methods have been 

compared with KL grade and demonstrated to have similar reliability and 

sensitivity to change and may be used to detect hand ROA change over time 

[489]. 

Therefore OARSI JSN grade has construct validity and offers advantages 

over KL grade in terms of its reliability and responsiveness and its 

association with pain relative to OARSI osteophyte grade.  
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Figure 39 Altman Atlas semi-quantitative scoring 

This is the Altman atlas: semi-

quantitattive scoring system for radiographic OA [84]  
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2.11.2.1.3  Categorical Alignment of the knee  

A systematic literature review of predictors of radiographic structural 

progression identified that categorical varus and valgus malalignment of the 

knee (Figure 40) is  independently associated with structural 

progression[428].  

Figure 40 Alignment of the knee 

 

These images explain the different forms of  knee malalignment. Reprinted 

by permission from Elsevier Ltd: Rheum Dis Clin North Am [490] 

 

Incident radiographic OA (KL≥2) was associated with categorical 

malalignment (varus and valgus) which was specific to obese and 

overweight individuals and not with normal BMI[491]. Amongst obese 

women, malalignment (valgus or varus) was associated with greater risk of 

incident radiographic OA (KL≥2) over 2.5 years [492]. Amongst 315 knees 

largely without OA and concurrent obesity, the categorised malalignment of 

the knees was not associated with tibial cartilage volume loss or tibiofemoral 

chondral defects longitudinally on MRI over 2.4 years after adjustment for 

confounding factors[268]. This implies that the increased load of 

malalignment and obesity may contribute to greater risk of incident ROA and 

these two predictors of OA may interact[493].  
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In a population of mostly obese individuals at risk of OA, categorised varus 

but not valgus was associated with incident tibiofemoral ROA after adjusting 

for age, gender and body mass index [494]. 

While ROA progression (KL increase ≥1 grade) has been associated with 

varus but not valgus malalignment [491], this is a relatively insensitive 

measure of structural progression as previously described (See 2.11.2.1.1 

Kellgren Lawrence grade) and therefore the association with valgus 

malalignment with better structural measures was explored. This included 

larger studies, of 881 knees using more responsive structural measures, 

which reported independent associations between categorised valgus 

deformity and incident knee ROA and progression of knee OA with 

radiographic JSN and MRI cartilage and meniscal degeneration[76]. 

Increasing severity of varus and valgus malalignment in ROA knee were 

also associated with greater risk of progression in the biomechanically 

loaded compartment[494, 495].  

Therefore there is good evidence that categorical varus and valgus 

malalignment are independently predictive of structural progression and may 

be involved in structural incidence of knee OA when combined with obesity.  

2.11.2.2 MRI semi-quantitative measures 

The semi-quantitative strategy for the quantification of MRI OA structural 

pathology is described below but a comparison with quantitative MRI 

measures described above (2.11.1.2 MRI quantitative measures) will first be 

made.  

Trained readers can semi-quantitatively describe the severity of OA 

structural pathology on MRI using an ordinal scale (e.g. 0,1, 2 and 3) without 

the arduous segmentation, additional image processing and special imaging 

sequences required for quantitative analysis of joints. The whole joint semi-

quantitative scoring systems may take up 50 minutes per knee for a reader 

and therefore they remain research tools that are not used during routine 

clinical practice where only qualitative reporting is standard.  

Semi-quantitative measures, that may not be interval variables, are designed 

to approximate the 3D quantitative structural pathology of OA on ordinal 

scales. The difference in responsiveness of these two measure types was 



- 139 - 

highlighted when describing changes in BMLs and cartilage in knees over 24 

months. Quantitative measures were found to be more sensitive to change 

than semi-quantitative measures[442]. As a consequence the measurement 

of longitudinal structural change with semi-quantitative measures has 

evolved  to incorporate ‘within-grade’ scoring changes to improve 

longitudinal sensitivity to change [443, 444]. Severe malalignment has since 

been identified as predictive of ‘within grade’ but not whole grade 

progression in cartilage loss supporting this rationale[496].  

While ‘within-grade’ scoring changes are  now commonly used, the 

disadvantage of this is that this process demands that the reader is 

unblinded to order of serial image acquisition[496] which may introduce bias. 

Despite these limitations a meta-analysis of the responsiveness and 

reliability of semi-quantitative and quantitative measures of BMLs and 

cartilage in knee OA found that the pooled standardised response means for 

both methods were adequate-to-good and  comparable[366]. The random-

effects pooling of intrareader and inter-reader intraclass correlation 

coefficients for each tissue indicated excellent reliability. The intrareader and 

inter-reader kappa values were also moderate to excellent. 

Semi-quantitative measured in cross-section may offer and advantage over 

metric quantitative measurements. This is because lesion size may vary 

according to the absolute size of the person whilst semi-quantitative 

measures are relative to the size of the joint. 

The optimum MRI protocol for the purposes of semi-quantitative analysis 

differs for quantitative MRI analysis. Peterfy for example selected 

unenhanced pulse-sequences for optimum semi-quantitative evaluation of 

each component of knee OA[497]. While for quantitative evaluation protocols 

with better spatial resolution are more important for the precise distinction of 

the osteochondral interface and cartilage surface for segmentation. 

In terms of the validity of semi-quantitative MRI knee scores in relation to 

pain, two systematic reviews indicated moderate associations of pain with 

BMLs and synovitis or joint effusion[132, 365]. Felson’s BML score was 

associated with knee pain and incident knee pain was associated with an 
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increase in BML score. Furthermore a linear positive relationship between 

BLOKS maximal BML size and WOMAC pain score has been observed[498] 

In terms of validity of semi-quantitative MRI knee scores in relation to the 

prediction of MRI-determined structural progression. Progression of cartilage 

deterioration is greater in individuals with a raised BMI of 30 or more in a 

longitudinal observational study[499]. Cartilage deterioration also progresses 

in longitudinal studies in the context of synovitis[500], BMLs[500], meniscal 

damage[501] and prevalent cartilage damage[500]. 

2.11.2.2.2 Knee semi-quantitative measures 

The following text describes the semi-quantitative assessment of the knee in 

OA with scoring systems for individual tissues as well as whole organ 

assessment .  

Individual tissues of the knee can be semi-quantitatively assessed such as 

the synovium. A precise anatomical description of synovitis of the whole-

knee is only possible on contrast enhanced images and Guermazi and 

colleagues have an example of a synovitis scoring system (0-2) which is 

assessed at 11 sites to achieve this[502]. On unenhanced MRIs semi-

quantitative scoring systems are also described individually for  BML size (0-

3) [133] the degeneration of cartilage (0-4) [353], meniscus (0-3)[503] and 

ligaments (0-3)[30].  

While OA is a ‘whole organ’ disease the extent of the structural involvement 

is best captured by ‘whole organ’ scoring systems, of which there are four 

well-described systems all of which are based on MRI without contrast. 

The first comprehensive scoring system was described in 2004 by Peterfy 

and colleagues[504]. This was named the Whole ORgan Magnetic 

Resonance iMaging Score (WORMS) and it has been extensively used in 

MRI studies worldwide.  This includes the Framingham Knee Osteoarthritis 

study[23], the Osteoarthritis Initiative[505] and the Multicenter Osteoarthritis 

Study (MOST)[307].  

This provides a system based upon the division of knees into complex 

subregions (Figure 41) rather than using a lesion-oriented system. 

Cumulative scores for each lesion type in each compartment and at a whole 
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knee level are calculated. One advantage of this is that multiple lesions per 

subregion are considered together which may simplify analysis and 

interpretation of data. This is because a lesion based approach may be 

compromised if lesions coalesce or split during longitudinal observation. 

Furthermore this is the only whole joint scoring system to include 

subchondral attrition (Table 9).   

Kornaat and colleagues in 2005 introduced the Knee OA Scoring System 

(KOSS)[506]. This describes similar OA features as the WORMS but with 

different subregional division and without attrition, bursitides, loose bodies 

and ligament abnormalities (Table 9). The KOSS scores knees according to 

the following anatomical areas. The medial and lateral:  

 patella facets (divided by the patellar crest) 

 femoral trochlear facets 

 femoral condyles (excluding the trochlear grove) 

 tibial plateaus 

The menisci, effusion size, synovitis and Bakers cysts are also included.  

Unlike WORMS each lesion grade is differentiated by the lesion size. 

Furthermore subchondral cysts, BMLs and cartilage condition are 

individually scored for each KOSS subregion unlike the WORMS which 

scores these cumulatively. KOSS scores meniscal subluxation (unlike 

WORMS) but both KOSS and WORMS score meniscal morphology.  

 

In 2008 Hunter and colleagues introduced the Boston-Leeds OA Knee Score 

(BLOKS) which, unlike WORMS, applies a lesion-oriented system to BML 

scoring[498] which is more conducive to longitudinal analysis of individual 

lesions. The division into subregions is based upon weight-bearing regions 

of the knee rather than the patellofemoral joint (Figure 41)  

Controversy remains regarding whether the WORMS or BLOKS is a better 

validated outcome measures in knee OA. When comparing longitudinal 

changes in BLOKS and WORMS scores in 113 knees, WORMS BML 

measurements had a stronger association with cartilage loss than BLOKS 

BML scoring. BLOKS meniscal tear and signal abnormality assessment was 
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better for predicting cartilage loss than the WORMS meniscal scoring. 

Neither scoring system was superior at cartilage assessment[507].  However 

comparison of WORMS and BLOKS scores amongst 71 subjects indicated 

that unlike BLOKS BML score, WORMS BML score was not associated with 

pain and was less strongly associated with cartilage loss[498]. 

In 2011 Hunter and colleagues developed the MOAKs (MRI OA Knee score) 

system. The design was informed by the relative advantages and 

disadvantages of the existing scoring system. The MOAKS incorporates a 

subregional assessment, a refinement of the BML and meniscal scoring and 

removed redundant features in the scoring of BMLs and cartilage[508]. It is 

now being used in the Osteoarthritis Initiative. 

The WORMS and MOAKs systems similarly divide the femur and tibia into 

anterior, central and posterior regions while the BLOKS system divides the 

femoral condyles into trochlear and weight-bearing regions. The WORMS, 

BLOKS and MOAKS scoring systems share a similar delineation of medial & 

lateral regions of the femur (Figure 41).  

Some of the ordinal measures used in these systems are not interval 

variables and therefore the structural progression required to progress from 

one grade to the next may or may not be uniform (Table 8). The 

acknowledgement that the sensitivity to change of quantitative measures 

was greater than semi-quantitative measures, led to a change of scoring 

occurred. This included scoring “within-grade” changes between longitudinal 

follow up points[496].  
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Figure 41 Anatomical regions used in WORMS MOAKS & BLOKS 

 

Anatomical subregions used in WORMS, MOAKS and BLOKS 

semiquantitative scoring systems for knee OA. a | WORMS and MOAKS 

divide MRI data for the femur and tibia into anterior (A), central (C) and 

posterior (P) subregions for scoring of knee OA features. b | BLOKS 

separates assessment of knee OA features of femoral condyle into trochlear 

and weight-bearing subregions. c | The medio–lateral division of the femur 

defined for all three scoring systems. Abbreviations: A, anterior; BLOKS, 

Boston–Leeds Osteoarthritis Knee Score; C, central; MOAKS, MRI 

Osteoarthritis Knee Score; P, posterior; SS, subspinous; WORMS, Whole 

Organ Magnetic Resonance Imaging Score. (Reprinted by permission from 

Macmillan Publishers Ltd: Nat Rev Rheumatol [509], copyright 2013). 

Table 8 The ordinal scales of semi-quantitative scoring systems may or 
may not be interval variables 

 Grade 0 Grade 1 Grade 2 Grade 3 

BML size scoring – extent of regional involvement 

BLOKS [498] 

 

0% <25% 25-50% >50% 

MOAKS [508] 0% <33% 33-66% >66% 

Meniscal extrusion over the edge of the tibial plateau 

KOSS[506] Absent <33% width 

of meniscus 

33-66% 

width of 

meniscus  

>66% width 

of meniscus 

MOAKS [508] <2mm 2-2.9mm 3-4.9mm >5mm 
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Table 9 Comparison of the four knee whole organ semi-quantitative scoring systems 

  Cartilage  BMLs 
Subchondral  

cysts 
Attrition 

Effusion and 
synovitis  

Synovial 
thickening 

Peri-articular  
cysts 

Bursitides 
Loose  
bodies 

Osteophyte Meniscus 
Meniscal  
extrusion 

Cruciate and  
collateral 
ligaments 

WORMS 
[504] 

0-6 0-3 0-3 0-3 0-3   0-3 0-3 0-3 0-7 Tear (0-4)   
(0-1) tear 

Presence or 
absence 

KOSS 
[506] 

Size and 
depth 
(0-3) 

0-3 0-3   0-3 0-1 
Popliteal  

(0-3) 
    0-3 Tear (0-3) 0-3   

BLOKS 
[498] 

Size and 
depth 
(0-3) 

 
% dAB at 
specified  

points 

For each  
lesion: 

size (0-3) 
 

% area of 
adjacent 

bone 
surface  

(0-3) 

Proportion  
of cyst  

that is BML 
(0-3) 

  

Effusion size 
(0-3) 

 
Synovial volume  

in: 
Hoffa's pad (0-3) 
5 other sites (0-1) 

  0-1 0-1 0-1 
(0-3) 

size in 12  
locations 

(0-1) for  each 
of: 
-intrameniscal 
signal 
-tears 
-maceration 
-cyst 

0-3 
(0-1) tear 

Presence or 
absence 

MOAKS 
[508] 

Size and 
depth 
(0-3) 

For each  
lesion: 

size (0-3) 
    

Effusion synovitis 
(0-3) 

Hoffa synovitis 
signal 
(0-3) 

  0-1 0-1 0-1 
(0-3) 

size in 12  
locations 

(0-1) for  each 
of: 
-intrameniscal 
signal 
-tears 
-maceration  
-cyst 
-hypertrophy 

0-3 
(0-1) tear 

Presence or 
absence 

BLOKS, Boston–Leeds Osteoarthritis Knee Score; dAB – denuded area of bone; KOSS, Knee OA Scoring System; MOAKS, MRI 

Osteoarthritis Knee Score; SS, subspinous; WORMS, Whole Organ Magnetic Resonance Imaging Score., 
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In conclusion semi-quantitative MRI measures have greatly contributed to the 

description of the natural history of knee OA and the identification structural 

pathologies of tissues within the ‘whole joint’ that are associated with important 

clinical and structural outcomes in knee OA. 

Compared to quantitative measures, semi-quantitative systems use a simpler 

and quicker process for assessing structural pathology than segmentation of 

tissues but the ordinal scales used may be less sensitive to change and 

interpretation of change in score progression should acknowledge if the scales 

are interval variables or not. The most validated OA semi-quantitative measures 

are for the knee.2.12 The Osteoarthritis Initiative 

2.12 Summary of the OAI 

2.12.1 Background  

Osteoarthritis (OA) is the most common form of arthritis. Its major symptoms are 

pain and stiffness which negatively impact individuals` ability to perform activities 

of daily living. There is discordance between symptom and radiographic changes 

Only 50% of knees with radiographic OA (ROA) have knee OA symptoms[17]. As 

obesity increases worldwide and coupled with an ageing population, it is 

anticipated that the burden of OA will become a major problems for health 

systems. 

No proven disease –modifying therapies are available for OA and current 

treatment is exclusively directed at symptomatic pain relief.  

The structural progression measured by radiographic OA of knee, hip and hand 

OA is typically slow and takes place over several years but can also remain 

stable over years [89-91]. In knees the mean annual risk of progression of KL 

grade is 5.6% ± 4.9% and mean rate of joint space narrowing is 0.13 ± 

0.15mm/year, with change occurring in only a small group of “progressors”[93, 

94]. Radiographic improvement is atypical.  
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Magnetic resonance imaging provides the ability to visualise joints in three 

dimensions. The quantification of MRI cartilage volume affords advantages over 

conventional radiography because structural loss of cartilage can be detected in 

the pre-radiographic phase of OA[87] and in end-stage OA, after the total loss of 

joint space width (‘bone on bone’ or  Kellgren Lawrence grade 4)[88]. 

In light of the slow natural history of OA progression, long follow up times are 

required to study OA and its variable clinical outcomes. It has proven very 

expensive to conduct trials and the lack of suitable biomarkers of diseases 

activity have meant that past attempts have been unsuccessful in studying 

disease progression.  

2.12.2 Overview and aims 

The broad aims of the OAI are to develop a prospective cohort suitable for 

investigating the natural history of the entire spectrum of knee OA. This includes 

those ‘at risk’ of knee OA, with early or pre-clinical knee OA, with established 

knee OA and those with endstage knee OA. In order to understand this evolution 

of OA, this cohort will collect imaging, biochemical, genetic and clinical biomarker 

data from participants representing and progressing through the different stages.  

This will permit the investigation of the relationship of these biomarkers with the 

evolution of OA which may identify risk factors for the evolution through each 

stage. There is also the potential that some of these biomarkers may be validated 

as surrogate outcome measures of how patient’s joints feel, function and survive 

in the process.  

The OAI also aims to determine the validity of radiographic, magnetic resonance 

imaging and genetic measurements as potential biomarkers and surrogate 

endpoints for knee OA. The initial objective was to recruit about 5000 participants 

with either clinically significant knee OA or those at high risk of developing OA 

along with a set of ‘normal’ controls for biomarker reference purposes.  

In total 4796 participants (age range 45-79) were recruited into the OAI cohort 

and entered into the study at baseline and were assessed annually thereafter. 

Each participant was sub-divided into three subcohorts (1) the progression group 
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(n=1389 (29%)), who had symptomatic and radiographic knee OA on enrolment, 

(2) the incidence group (n=3285 (68%)), who did not have definite knee OA on 

enrolment, but were considered at elevated risk of knee OA during the study, and 

(3) the control group (n=122 (3%), who did not have knee symptoms, knee 

radiographic OA or any risk factors. 

2.12.3 Inclusion criteria 

The overall recruitment goal was to obtain approximately equal numbers of males 

and females, to be aged between 45-79 and at least 23% from ethnic minorities. 

Prevalent symptomatic OA definition for OAI encompasses both presence of 

frequent knee symptoms (FKS) and radiographic features and is similar to the 

ACR criteria for clinical knee OA[22]. As symptoms of knee OA are often 

intermittent and many years may elapse before they become monotonic/chronic, 

there is no clearly defined point of onset. Degenerative changes precede and 

predict the incidence of radiographic knee OA[122] therefore there are limitations 

to the existing definition of the OA progression group. 

To be in the Progression subcohort participants are required to have in at least 

one knee both the following: 

Frequent knee symptoms (defined as having had had knee pain in the last 12 

months for at least one month) and radiographic knee OA defined as a definite 

tibiofemoral osteophytes (OARSI grade 1-3 equivalent to K-L grade ≥ 2 on a fixed 

flexion radiograph.  

Incident subcohort classification is having no symptomatic OA in either knee but 

at risk of developing symptomatic OA. Incidence is defined as the first occurrence 

in either knee of both FKS and radiographic OA in the same knee. 

For feasibility of recruitment and to enrich each stratum so that reasonable 

number of incidents would be recorded age-eligible persons would be classified 

as high risk depending on age band. 

Age 45-79: participants need to have FKS or frequent use of medication for 

treatment of knee symptoms (use of all types of medication on most days of a 
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month in the past 12 months), or infrequent knee symptoms (pain, aching or 

stiffness in or around the knee at any time in the past 12 months but not on moist 

days for at least one month) and should have at least one eligibility risk factor. 

Age 50-69:  any of FKS or frequent use of medication as above or be overweight 

or have 2 or more eligibility risk factors. 

Age 70-79: any of FKS, frequent use of medications or at least one risk factor 

List of risk factors  

 Knee symptoms which can be any of FKS or infrequent  and frequent use 

of medication 

 Overweight (greater than 93kg in males and 77kg in females aged 45-69 

and greater than 97kg in males and 81kg in females between 70-79 years 

old) 

 Knee injury defined as history of knee injuring causing walking difficulties 

for at least one week. 

 Knee surgery defined as any history of knee surgery  

 Family history of total knee replacement in a biological parent or sibling 

 Heberden`s nodes  

 Repetitive knee bending 

 Age 70-79  

The control subcohort is defined as those having no pain, aching or stiffness in 

either knee in the past year, no radiographic OA (OARSI osteophyte grade=0 

and JSN grade =0) and no eligibility risk factors. 

 

2.12.4 Knee radiography protocol 

For the purposes of the OAI, the non-fluoroscopic fixed flexion SynaFlexer 

plexiglass knee positioning frame (Figure 42) protocol[402] was adopted as the 

primary method for serial measurement of JSN in the OAI protocol[510]. This was 

chosen because a fixed flexion weight-bearing protocol is required for JSW to be 

a valid indirect measure of cartilage thickness[402, 511]  and the chosen method  

demonstrated comparable repeatability precision for JSW measurement [402, 

512] with fluoroscopically-guided protocols[402, 513] (see 2.11.1.1.1 Continuous 
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joint space width and joint space narrowing)  and provides consistency in terms 

of the image of the knee over time[514]. 

Fluoroscopic methods were also considered too costly and impractical for the 

OAI protocol but a subcohort of the progressor subcohort had Lyon Schuss 

protocols added to test whether there was a difference in sensitivity to the 

measurement of JSN (pg 20 of protocol [515]).  

Figure 42 Non-fluoroscopic fixed flexion SynaFlexer plexiglass knee 
positioning frame protocol 

 

Non-fluoroscopic fixed-flexion radiographic knee protocol with 10° caudal beam 

angulation to ensure alignment of the beam with the medial tibial plateau. A 

standardized degree of knee flexion (20°) and external foot rotation (5°) are 

achieved with use of the SynaFlexer calibration and positioning frame Springer 

European Radiology, Fixed-flexion radiography of the knee provides reproducible 

joint space width measurements in osteoarthritis, 2004 Kothari et al, reprinted 

with permission of Springer[512].  
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While the majority of knee radiographs were taken without fluoroscopic guidance 

and the alignment of the tibial plateau is integral to the sensitivity of serial 

radiographs for measuring joint space narrowing (see 2.11.1 Quantitative 

measures in OA), a quality control technique was employed to ensure that 

radiographs failing to meet this and other quality criteria were repeated by inviting 

participants to return for repeat imaging (page 11 and 18 of the OAI Radiographic 

operations manual [409]) 

 

2.13 Thesis aims 

The aim of this thesis was first to describe the association of imaging-detected 

subchondral bone features of OA with the outcomes of joint replacement, 

structural progression and pain in the common sites of peripheral OA. The 

hypothesis underlying this thesis is that subchondral knee bone 3D shape, 

defined using 3D knee MRI segmentation, would demonstrate association with 

existing radiographic measures of structural knee OA pathology and with patient-

centred knee OA clinical outcomes of total knee replacement and knee OA 

symptoms. These associations were examined in the largest observational cohort 

of knee OA in the world, the Osteoarthritis Initiative. By demonstrating these 

associations, this would potentially provide evidence of construct, predictive and 

concurrent validity of this novel bone shape biomarker. This may provide a more 

discriminative biomarker and surrogate measure of important patient-centred 

outcomes for future therapeutic trials of disease modifying osteoarthritis drugs.  
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Chapter 3 A systematic review of the relationship between 

subchondral bone features, pain and structural pathology in 

peripheral joint osteoarthritis. 

3.1 Introduction 

It is now well established that OA is a  “whole-organ disease” and not a cartilage-

centric condition. Hyaline articular cartilage is the most studied of all joint tissues 

in osteoarthritis (OA) but despite targeting this tissue there are no licensed 

disease modifying OA drugs (DMOADs). In Chapter 2 the integral role that 

subchondral bone plays in the pathogenesis of knee osteoarthritis (OA) has been 

described. The imaging-determined OA subchondral bone features are 

associated with risk factors of OA, OA severity and pain (described in Table 7). 

The subchondral bone is intimately associated with hyaline cartilage deterioration 

and it is therefore a tissue of great interest, however subchondral bone remains 

relatively understudied in comparison with cartilage.  

Conventional radiographs are known to be relatively insensitive to the structural 

features of OA[23],  in part because they do not assess three-dimensional (3D) 

bone structure[516] (as described in Chapter 4 The relationship between clinical 

characteristics, radiographic osteoarthritis and 3D bone area). A number of non-

conventional radiographic imaging modalities accurately demonstrate in vivo 

SCB pathological changes, including magnetic resonance imaging (MRI), 

computed tomography (CT), dual-energy X-ray absorptiometry (DXA), 

scintigraphy and positron emission tomography (PET)[23, 25, 365, 517-521]. 

Hunter and colleagues found a moderate association between bone marrow 

lesions BMLs, structural progression and longitudinal change in pain in a 

systematic review focused on MRI biomarkers and knee OA [365]. In another 

systematic review Kloppenburg and colleagues examined associations between 

MRI features and knee pain, but not structural pathology[132].  
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Therefore a comprehensive review of the literature was performed on 

subchondral bone structure assessed with all non-conventional radiographic 

imaging modalities, examining the common sites of peripheral OA and describing 

the relationships between imaging-detected subchondral bone features and joint 

replacement, structural progression and pain. 

3.2 Aims  

A systematic literature review of the association of imaging-detected subchondral 

bone features of OA with the outcomes of joint replacement, structural 

progression and pain in the common sites of peripheral OA. Imaging was defined 

as all non-conventional radiographic imaging modalities. 

3.3 Methods  

3.3.1 Systematic literature search 

A systematic literature search of Medline (from 1950), EMBASE (from 1980) and 

the Cochrane library databases until September 2014 was performed for original 

articles reporting relationships of non-radiographic imaging-assessed 

subchondral bone pathologies with joint replacement, pain or structural 

progression in knee, hip, hand, ankle and foot OA. The bone pathological 

changes include bone marrow lesions (BMLs), osteophytes, attrition, cysts, as 

well as changes in shape, bone mineral density, bone morphometry (bone 

volume fraction, trabecular number, spacing and thickness), and bone signal 

from positron emission tomography (PET) and scintigraphy.  

Non-conventional radiographic imaging referred to magnetic resonance imaging 

(MRI), computed tomography (CT), dual-energy x-ray absorptiometry (DXA), 

scintigraphy and PET. However while this PhD has a major focus on bone shape 

modelling and conventional radiography is not known to be insensitive to bone 

shape, the search term ‘bone shape’ was not restricted to non-conventional 

radiographic imaging. 
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A full description of the search terms used is recorded in Table 10andTable 11. 

The final search was restricted to humans. There was no language restriction 

and abstracts were not excluded. Exclusion criteria included case reports, 

surgical intervention studies or trials of surgical techniques in OA, imaging 

technique studies, studies of OA where serum biomarkers are the only structural 

outcome measure, review articles, editorials and letters, animal studies, studies 

not meeting the inclusion criteria, studies where the bone feature was not in the 

subchondral bone adjacent to the joint being analysed and abstracts of any study 

already included as a formal and full publication. Any analysis of less than 20 

patients with confirmed OA was excluded to remove papers at risk of study 

imprecision. These exclusion criteria are listed in Figure 43. The inclusion criteria 

were in vivo observational studies of a human population with clinical and/or 

radiographic OA, which included an imaging description of the adjacent 

subchondral bone pathology to the OA-joint and the relationship of this with pain, 

structural progression or joint replacement. Analyses describing the relationship 

between OA bone manifestations and structural severity (cross-sectional) or 

progression (prospective cohorts) in populations without clinical and radiographic 

OA were included to incorporate early structural features of joint degeneration. 

The outcome measures of structural severity or progression included cartilage 

defects, cartilage thickness, cartilage volume, denuded subchondral bone, 

Kellgren-Lawrence grade, joint space width and joint space narrowing.  Other 

outcome measures included joint replacement and any pain measures. 

The articles identified by the preliminary search were screened by two reviewers 

(DH, AB) for relevance and for references not identified by the preliminary 

search, although no additional citations were found. Discordance in opinion was 

resolved by a third reviewer (SK). We applied the methods for reporting meta-

analyses of observational studies in epidemiology that are recommended by the 

Cochrane collaboration[522, 523].  
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3.3.2 Data extraction 

Data extraction was performed by two reviewers (DH, AB). Papers meeting the 

inclusion/exclusion criteria were divided into longitudinal and cross-sectional 

papers. Longitudinal papers included prospective and retrospective cohorts and 

case-control studies with longitudinal data (i.e. nested case control studies). 

Extracted data included (a) patient demographics (age, sex and body mass 

index) (b) OA (clinical, radiographic or diagnostic) classification used, with the 

definition and prevalence of radiographic OA, (c) subchondral bone pathology 

feature, (d) joint replacement, pain or structural progression outcome measure 

(e) presence/absence of a relationship between feature and outcome (f) 

statistical results with or without adjustment for confounders and (g) the 

ipsicompartmental or contralateral compartment structural progression in relation 

to the compartment of the subchondral bone pathology feature for longitudinal 

studies.  

3.3.3 Quality assessment 

The quality of each observational study was independently assessed by two 

reviewers (TC, AB). A standardised quality scoring tool, previously used in other 

similar systematic reviews[132, 524] was adapted to assess the following 

components: (a) study population, (b) MRI subchondral bone feature, (c) pain or 

joint replacement or structural progression outcome, (d) study design and (e) 

analysis and data presentation (Figure 12). A score of ‘1’ or ‘0’ was allocated for 

each question according to whether the study fulfilled the criteria or not 

respectively. Where multiple bone features were assessed per article (e.g. 

criteria 11) the mean score was used. Any discordance in opinion was recorded 

and where consensus could not be achieved a third reviewer (PC) was 

consulted. The total number of criteria applied to each type of study (e.g. cohort 

n=18 and cross-sectional n=14) varied and therefore scores were compared as 

percentages of the maximum score. A study was considered to be high quality if 

it exceeded or equaled the mean score in its class. However quality was not 

universally considered to be dichotomous. Where inconsistent associations were 
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observed between studies of high and low quality, the real difference in 

percentage quality score was acknowledged in drawing conclusions. 

Most studies selected patients from existing cohorts rather than from the general 

population (criteria 1) and patients were selected by a minimum of evidence of 

OA (e.g. KL≥2) rather than at a uniform stage of OA severity (e.g. KL=2) (criteria 

2). Most studies did not provide evidence of assessing the bone image feature 

before the knee OA outcome (criteria 9) and similarly did not indicate a 

prospective analysis plan for the relationship between bone image feature and 

OA outcome (criteria 17) 
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Table 10 Search terms EMBASE (1980 to September 2014) 

1 osteoarthri* 42 

25 or 26 or 27 or 28 or 29 or 30 or 31 
or 32 or 33 or 34 or 35 or 36 or 37 or 

38 or 39 or 40 or 41 

2 osteoarthro* 43 "magnetic resonance imag*".ti,ab 

3 (arthri* adj2 degenerative) 44 mri.ti,ab 

4 exp OSTEOARTHRITIS 45 mr.ti,ab 

5 1 or 2 or 3 or 4 46 "magnetic resonance".ti,ab 

6 knee*.ti,ab 47 
NUCLEAR MAGNETIC 

RESONANCE IMAGING/ 

7 KNEE/ 48 43 or 44 or 45 or 46 or 47 

8 hand*.ti,ab 49 24 AND 42 and 48 

9 HAND/ 50 DEXA 

10 Hip*.ti,ab 51 DXA 

11 HIP/ 52 
DUAL ENERGY X RAY 
ABSORPTIOMETRY 

12 foot* 53 50 OR 51 or 52 

13 exp FOOT/ 54 "bone mineral density" 

14 ankle* 55 BMD 

15 exp ANKLE/ 56 BONE DENSITY/ 

16 
6 or 7 or 8 or 9 or 10 or 11 or 12 or 

13 or 14 or 15 57 54 or 55 or 56 

17 5 and 16 58 24 and 53 and 57 

18 HAND OSTEOARTHRITIS 59 "Computed tomography" 

19 HIP OSTEOARTHRITIS 60 CT 

20 coxarthr*.ti,ab 61 
COMPUTER ASSISTED 

TOMOGRAPHY 

21 KNEE OSTEOARTHRITIS/ 62 "micro-computed tomography" 

22 gonarthr*.ti,ab 63 pQCT 

23 18 or 19 or 20 or 21 or 22 64 HR-pQCT 

24 17 or 23 65 59 or 60 or 61 or 62 or 63 or 64 

25 "subchondral bone".ti,ab 66 57 or 42 

26 bml.ti,ab 67 24 and 65 and 66 

27 "bone marrow lesion*".ti,ab 68 PET 

28 "bone marrow oedema".ti,ab 69 24 and 68 

29 "bone marrow edema".ti,ab 70 scintigraphy 

30 BONE MARROW EDEMA/ 71 24 and 70 

31 osteophyte*.ti,ab 72 Bone shape 

32 OSTEOPHYTE/ 73 24 and 72 

33 "bone cyst*".ti,ab 74 49 or 58 or 67 or 69 or 71 or 73 

34 BONE CYST/ 75 74 limit to humans 

35 "bone area*".ti,ab   

36 "bone shape".ti,ab   

37 "bone attrition".ti,ab   

38 "trabecular".ti,ab   

39 TRABECULAR BONE/   

40 "volume fraction".ti,ab   

41 "BV/TV".ti,ab   
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Table 11 Search Terms Medline (1950 to September 2014) 

1 osteoarthri* 40 "magnetic resonance imag*" 

2 osteoarthro* 41 mri 

3 (arthri* adj2 degenerative) 42 mr 

4 exp OSTEOARTHRITIS 43 "magnetic resonance" 

5 1 or 2 or 3 or 4 44 
MAGNETIC RESONANCE 

IMAGING/ 

6 knee* 45 40 OR 41 or 42 OR 43 OR 44  

7 knee/ OR exp KNEE JOINT/ 46 23 AND 39 and 45 

8 hand* 47 DEXA 

9 hand/ OR exp HAND joint 48 DXA 

10 Hip* 49 Absorbtiometry, photon/ 

11 hip/ OR exp HIP JOINT 50 47 or 48 or 49  

12 foot*.ti,ab 51 "bone mineral density" 

13 foot/ OR exp FOOT JOINTS/ 52 BMD 

14 ankle*.ti,ab 53 BONE DENSITY/ 

15 ankle / OR exp ANKLE JOINT/ 54 51 OR 52 or 53 

16 
6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 

or 14 or 15 55 23 AND 50 and 54 

17 5 and 16 56 "Computed tomograph*" 

18 osteoarthritis hip 57 CT 

19 coxarthr* 58 
tomography, X-RAY 

COMPUTED/ 

20 osteoarthritis knee 59 "micro-computed tomography" 

21 gonarthr* 60 pQCT 

22 18 or 19 or 20 or 21 61 HR-pQCT 

23 17 or 22 62 56 or 57 or 58 or 59 or 60 or 61 

24 "subchondral bone" 63 54 or 39 

25 bml 64 23 and 62 and 63 

26 "bone marrow lesion*" 65 PET 

27 "bone marrow oedema" 66 23 and 65   

28 "bone marrow edema" 67 Scintigraphy 

29 osteophyte* 68 23 and 67 

30 OSTEOPHYTE/ 69 Bone shape 

31 "bone cyst*" 70 23 and 69 

32 BONE CYSTS/ 71 46 or 55 or 64 or 66 or 68 or 70 

33 "bone area*" 72 71 limit to humans 

34 "bone shape"   

35 "bone attrition"   

36 trabecular   

37 "volume fraction"   

38 "BV/TV"   

39 

24 OR 25 OR 26 OR 27 OR 28 OR 
29 OR 30 OR 31 OR 32 OR 33 OR 

34 OR 35 OR 36 OR 37 OR 38   
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Table 12 Quality scoring tool 

Item Criterion CC CH CS 

Study population 
1 Recruitment from the general population 1 1 1 

2 Selection occurred before disease onset or at a uniform point. 
A uniform point was considered to be equal baseline grade of 
structural  progression (e.g. Kellgren Lawrence grade) or an 
analysis within the same osteoarthritic joint 

1 1 1 

3 Cases and controls drawn were from the same population 1   

4 Participation rate >80% for cohort studies (retrospective cohort 
studies score zero automatically) 

 1  

5  Sufficient description of baseline characteristics - must include 
age, gender and BMI (or height and weight) 

1 1 1 

6 Baseline characteristics comparable between cases and 
controls - must include age, gender and BMI (or height and 
weight) 

1   

Assessment of Imaging-detected subchondral bone risk factor or feature 
7 Risk factor / feature assessed with a standardised method (e.g. 

WORMS BML scoring or an automated calculation of bone area 
but not a subjective opinion of a radiologist on the presence of 
bone attrition) 

1 1 1 

8 Risk factor / feature assessment was identical (performed the 
same way) in the studied population(s) 

1 1 1 

9 Risk factor / feature was assessed prior to the outcome 
(structural progression or pain). A score of zero was allocated if 
the methods did not describe this. 

1 1 1 

Assessment of joint OA outcome (pain or structural  progression) 
10 Outcome assessment was identical in the studied population(s) 1 1 1 

11  Outcomes were assessed reproducibly (intraclass correlation 
coefficient > 0.81 with a standardised assessment). If multiple 
outcomes were measured the mean reproducibility score was 
used. 

1 1 1 

12  Outcome classification was standardised (e.g. the WOMAC pain 
score but not a subjective opinion of a patient’s pain) 

1 1 1 

Study design 
13  Prospective study design used  1  

14  Follow up time > 3 years 1 1  

15 Information provided on completers vs withdrawls in cohorts 
(without prospective trial data cohorts automatically score zero) 

 1  

16  Outcome evaluators were blinded to  feature (risk factor) 1 1 1 

17 Analysis of relationship between feature and outcome was 
planned prospectively  

1 1 1 

Analysis and data presentation 
18 The frequency of most important outcomes were given 1 1 1 

19  appropriate analysis techniques used (statistical or comparative 
techniques) 

1 1 1 

20  adjusted for at least age, BMI and gender 1 1 1 

Maximum Score 17 18 14 

CC: case control, CH cohort (prospective and retrospective), CS: cross sectional  
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3.3.4 Best evidence synthesis 

Statistical pooling of the data was considered inappropriate in light of the 

heterogeneous study populations, methodological quality and bone feature or 

outcome measurements for OA. For example the feature bone marrow lesions 

(BMLs) could be described by their crude presence, ordinal size, metric size, 

volume or change in volume. Therefore a qualitative summary of the evidence for 

each bone feature (e.g. BML) and its association with pain or structural 

progression and joint replacement was provided based on the study design, 

adequacy of adjustment for confounders (age, gender and body mass index) and 

quality score. An association of a bone feature with a longitudinal OA outcome 

(i.e. structural progression, longitudinal change in pain, incident pain or joint 

replacement) was determined from cohort studies only. If a prospective cohort 

study analysis was of above average quality and found a statistically significant 

association between a bone feature and a longitudinal outcome after adjustment 

for at least age, gender and body mass index (referred to in the text as ‘well-

adjusted’), this association was referred to as an ‘independent’ association. 

These three criteria were determined for all longitudinal analyses and if any of 

these three criteria were not fulfilled, the association was referred to simply as an 

association. The validity of cross-sectional associations was determined using 

cross-sectional and case-control studies and establishing whether the analysis of 

the association of severity was well-adjusted or not. This data is summarized 

inTable 21. 

Studies which investigated the association between multiple bone features and 

OA pain or structural progression outcomes were considered as a single study 

for each bone feature.  Included studies that established a significant correlation 

between bone and pain, structural progression or joint replacement were 

described as positive (+) or negative (-) accordingly. If no association or 

inconclusive findings were described this was reported as no association (NA) or 

no conclusion (NC) respectively.  
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3.4 Results  

3.4.1 Systematic literature search and selection 

The PRISMA diagram (Figure 43) describes the literature flow. Following 

exclusion of duplicates and triplicates, 2456 articles met the search criteria. 

After applying inclusion/exclusion criteria, 139 articles were included for data 

extraction and quality scoring. In total, 71 papers provided longitudinal data 

(55 cohorts, 16 case-controls), 70 provided cross-sectional data, and two 

papers provided both.  

3.4.2 Data extraction from selected studies 

In only 12 studies did the mean age fall below 50 years[31, 96, 101, 261, 

312, 353, 525-531]. Most (n=93) described both genders; two included men 

only[529, 532], 14 studies included females only [215, 276, 312, 349, 442, 

530, 531, 533-539] and there was an undisclosed gender ratio in six[209, 

282, 540-546]. Knee OA was defined using clinical and radiographic criteria 

and is described in Table 16. Radiographic OA was invariably defined as KL 

grade ≥2 or any radiographic OA abnormality from the Altman atlas[85]. 

Individual pain or structural progression measures were examined in 88 

studies; 52 studies examined multiple features (Table 17,Table 18,Table 

19,Table 20). Subchondral bone was analysed with MRI in 113 articles, DXA 

in eight[206, 208, 209, 532-534, 547, 548], CT in four[214, 215, 539, 549], 

scintigraphy in eight[216, 526, 536, 537, 550-553] and no articles using PET 

met the inclusion criteria. Included articles described 116 knee, 15 hip, six 

hand and two ankle studies. Of these studies 13 described structural 

associations without clinical or radiographic OA[31, 210, 259, 261, 301, 313, 

353, 527, 528, 535, 554-556]. No foot articles met the inclusion criteria. 
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Figure 43 Search strategy results and article exclusion 

 

*Two articles included both cross-sectional and longitudinal data. 

Longitudinal data included 16 case-control studies and 55 cohort studies 
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3.4.3 Quality assessment of studies  

Concordance of opinion in quality scoring was observed in 2040 (89%) of 

the 2242 scoring items assessed which are recorded in Table 13, Table 14, 

Table 15.  The majority of discordant scoring was for study design (criteria 

17) and data presentation (criteria 18). Quality scores were converted to 

percentages of the maximum scores for each class of paper. The mean 

(range) quality score was 59% (29-79), 54% (22-83) and 59% (47-76) for 

cross-sectional, cohort and case-control studies respectively.  
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Table 13 Quality scoring results cross-sectional studies 

  
Quality Scoring Criteria 

No. Cross-sectional Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total % 

1 Ai 2010 [557] 0 0     0   1 1 0 1 1 1       1 0 1 1 0 8 57% 

2 Akamatsu 2014 [533]  0 0     1   1 1 0 1 0 1       1 0 1 1 0 8 57% 

3 Antoniades 2000 [534] 0 0     1   1 1 0 1 1 1       1 0 1 1 0 9 64% 

4 Baranyay 2007 [554]  0 1   1  1 1 0 1 1 1    0 0 1 1 1 10 71% 

5 Bilgici 2010 [558]  0 0     1   1 1 0 1 1 1       1 0 0 1 0 8 57% 

6 Burnett 2012 [549] 0 0     0   1 1 0 1 1 1       1 0 1 1 0 8 57% 

7 Chaganti 2010 [532] 0 0     1   1 1 0 1 0 1       1 0 1 1 1 9 64% 

8 Chiba  2011[215] 0 0     0   1 1 1 1 0 1       1 0 1 1 0 8 57% 

9 Chiba 2012 [349] 0 0     1   1 1 0 1 0 1       1 0 1 1 0 8 57% 

10 Crema 2010 [315] 0 0     1   1 1 0 1 1 1       0 0 1 0 0 7 50% 

11 Dawson 2013 [556] abstract  0 0   1    0 0 0 0 0 0    0 0 0 0 1 2 14% 

12 Ding 2005  [353] 0 0   1  1 1 0 1 1 1    0 0 1 1 1 9 64% 

13 Dore [547] 2009 0 0     1   1 1 0 1 1 1       1 0 1 1 1 10 71% 

14 Driban [545] 2011 0 0     1   1 1 0 1 1 0       1 0 1 1 1 9 64% 

15  Driban [546]2011 0 0     1   1 1 0 1 1 1       1 0 1 1 1 10 71% 

16 Eckstein [483] 2010 0 0     1   1 1 0 1 0 1       0 0 1 0 0 6 43% 

17 Felson  2001 [133] 0 0     1   1 1 0 1 0.5 1       0 0 1 1 0 7.5 54% 

18 Fernandez-Madrid1994 [559] 0 0     1   0 0 0 1 0.5 1       1 0 1 1 0 6.5 46% 

19 Frobell 2010 [560] 0 0     1   1 1 0 1 0 1       0 0 1 1 1 8 57% 

20 Gosvig 2010 [561] 0 0   0  1 1 0 1 0 1    0 0 1 1 1 7 50% 

21  Gudbergsen [562] 0 0     1   1 1 0 1 0 1       0 0 1 1 1 8 57% 

22 Guymer 2007 [535] 0 1   1  1 1 0 1 1 1    0 0 1 1 1 10 71% 

23 Haugen  2012 [563] 0 0     1   1 1 0 1 1 1       1 0 1 1 0 9 64% 

24  Haugen  2013 [564] 0 0     0   1 1 0 1 0 1       0 0 1 1 0 6 43% 

25  Haugen  2012 [565] 0 0     1   1 1 0 1 1 1       1 0 1 1 0 9 64% 

26 Haverkamp 2011  [276] 0 0   1  1 1 0 1 0 1    0 0 0 1 0.5 6.5 46% 

27 Hayashi [566] 0 0     1   0 1 0 1 1 1       1 0 1 1 0 8 57% 
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No. Cross-sectional Study 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Total % 

28 Hayes [312] 0 0     1   1 1 0 1 0.5 1       1 0 1 1 0 8.5 61% 

29 Hernandez-Molina 2008 [139]  0 0     1   1 1 0 1 1 1       1 0 1 1 1 10 71% 

30 Ip [567] 0 0     1   1 1 0 1 0.5 1       1 0 1 1 1 9.5 68% 

31 Jones 2004  [31] 0 0   0  1 1 0 1 1 1    0 0 0 1 1 7 50% 

32 Kalichman [568] 2007 0 0     1   1 1 0 1 0 1       1 0 1 1 1 9 64% 

33  Kalichman [569] 2007 0 0     1   1 1 0 1 0 1       0 0 1 1 1 8 57% 

34 Kim [570] 0 0     0   1 1 0 1 1 1       1 0 1 1 1 9 64% 

35 Knupp 2009 [526] 0 0   0  1 1 0 1 1 1    1 0 1 1 0 8 57% 

36  Kornaat [571] 2006 0 0     1   1 1 0 1 1 1       1 0 1 1 1 10 71% 

37  Kornaat [572] 2005 0 0     1   1 1 0 1 1 1       0 0 1 1 0 8 57% 

38 Kraus 2009 [550] 0 0   1  1 1 0 1 1 1    1 0 1 1 1 10 71% 

39 Kraus 2013 [551] 0 0   1  1 1 0 1 1 1    1 0 1 1 1 10 71% 

40 Kumar [573] 1 0     1   1 1 0 1 1 1       1 0 1 1 0 10 71% 

41 Lindsey [350] 0 0     1   1 1 0 1 1 1       1 0 1 1 0 9 64% 

42  Link [319] 2003 0 0     0   1 1 0 1 0.5 1       1 0 1 1 0 7.5 54% 

43 Lo   2005 [574] 0 0     1   1 1 0 1 1 1       0 0 1 0 0 7 50% 

44 Lo [575] 2009 0 0     1   1 1 0 1 1 1       1 0 1 1 1 10 71% 

45 Lo [206] 2012  0 0     1   1 1 0 1 1 1       1 0 1 1 0 9 64% 

46 Lo [208] 2006 0 0     1   1 1 0 1 1 1       1 0 1 1 1 10 71% 

47 Macfarlane 1993 [552] 0 0   0  1 1 0 1 1 1    1 0 1 1 0 8 57% 

48 Maksymowych  2014 [576] 0 0     1   1 1 0 1 1 1       1 0 1 1 0 9 64% 

49 McCauley 2001  [528] 0 0   0  1 1 0 1 0 1    0 0 0 0 0 4 29% 

50 McCrae 1992 [553] 0 0   1  1 1 0 1 0 1    0 0 1 1 0 7 50% 

51 Meredith 2009 [555] 0 1   0  1 1 0 1 0 1    0 0 1 1 0 7 50% 

52 Moisio [456] 2009 0 0     1   1 1 0 1 1 1       1 0 0 1 1 9 64% 

53 Neumann  2007 [542] 0 0     0   1 1 0 1 0 1       0 0 1 1 0 6 43% 

54 Ochiai [543] 2010 0 0     0   0 1 0 1 1 1       1 0 1 1 0 7 50% 

55 Okazaki [539] 2014 0 0     0   1 1 0 1 0 1       1 0 1 1 0 7 50% 

56  Ratzlaff [577] 2013 0 0     1   1 1 0 1 1 1       1 0 1 1 1 10 71% 

57  Ratzlaff [544] 2014 0 0     1   1 1 0 1 1 1       1 0 1 1 0 9 64% 
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58  Reichenbach  2008 [306] 0 0     1   1 1 0 1 0 1       0 0 1 0 0 6 43% 

No. Cross-sectional Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total % 

59 Reichenbach 2011  [529] 0 1   1  1 1 0 1 0 1    0 0 1 1 1 9 64% 

60  Roemer [578]  2012 0 0     1   1 1 0 1 0 1       0 0 1 1 1 8 57% 

61 Scher 2008 [579]  0 0     0   1 1 0 1 0 1       0 0 1 1 0 6 43% 

62 Sengupta [580] 2006 0 0     1   1 1 0 1 1 1       1 0 1 1 1 10 71% 

63 Sharma [131] 2014 0 0     1   1 1 0 1 1 1       1 0 1 1 1 10 71% 

64 Sowers  2003 [531] 0 0     1   1 1 0 1 0.5 1       0 0 1 1 0 7.5 54% 

65  Stefanik [581] 2014 0 0     1   1 1 0 1 1.0 1       1 0 1 1 1 10 71% 

66 Stefanik [274] 2012 0 0     1   1 1 0 1 0 1       0 0 1 1 1 8 57% 

67 Stehling 2010  [313] 0 1   1  1 1 0 1 1 1    0 0 1 1 1 10 71% 

68 Torres  2006 [135] 1 0     1   1 1 0 1 0.5 1       0 1 1 1 0 9.5 68% 

69 Wang 2005  [259] 0 0   0  1 1 0 1 1 1    0 0 1 1 1 8 57% 

70 Zhai  2006 [582] 1 0     1   1 1 0 1 1 1       1 0 1 1 1 11 79% 

                    Mean 8.3 59% 

                    Max 14  
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Table 14 Quality scoring results cohort studies 

  
Quality Scoring Criteria 

   
No. Cohort Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 total % 

1 Agricola 2013 [74] 0 1  1 1  1 1 0 1 1 1 0 1 0 0 0 1 1 1 12 67% 

2 Agricola 2013 [394] 0 1  1 1  1 1 0 1 1 1 0 1 0 0 0 1 1 1 12 67% 

3 Agricola 2013  [583] 0 1  1 1  1 1 0 1 1 1 0 1 0 1 0 1 1 1 13 72% 

4 Bruyere[209] 2003 0 0   0 0   1 1 0 1 0 1 0 0 0 1 0 1 1 1 8.0 44% 

5 Carnes [584] 2012 0 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 1 9.0 50% 

6 Carrino [585] 2006 0 0   0 0   0 1 0 1 0 1 0 0 0 0 0 1 0 0 4.0 22% 

7 Cicuttini 2004 [270] 0 0  1 1  1 1 0 1 1 1 1 1 1 1 0 1 1 1 14 78% 

8 Crema 2013 [586] 0 0   0 1   1 1 0 1 0 1 0 0 0 0 0 1 1 1 8.0 44% 

9 Crema 2014 [587] 1 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 1 10.0 56% 

10 Davies-Tuck [588] 2008 0 0   0 1   1 1 0 1 1 1 0 0 1 0 0 1 1 1 10.0 56% 

11 Davies-Tuck 2010  [301] 0 1  0 1  1 1 0 1 1 1 0 0 1 0 0 1 1 1 11 61% 

12 De-Lange  2014 [589] 0 0   0 1   1 1 0 1 0 1 1 1 0 1 0 1 1 1 11 61% 

13 Dieppe 1993 [216] 0 0  0 1  1 1 0 1 0 1 0 1 0 1 0 1 1 0 9.0 50% 

14 Ding 2006  [261] 1 0  1 1  1 1 0 1 1 1 0 0 0 0 0 1 1 1 11 61% 

15 Ding [96] 2008 1 0   0 1   1 1 0 1 1 1 1 0 1 0 1 1 1 1 13 72% 

16 Dore 2010 [99] 1 0   0 1   1 1 0 1 1 1 0 0.5 0 1 0 1 1 1 11.5 64% 

17 Dore 2010 [590] 0 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 1 9.0 50% 

18 Dore 2010 [210] 0 0  0 1  1 1 0 1 1 1 0 0 0 0 0 1 1 1 9.0 50% 

19  Driban[591] 2011 0 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 1 9.0 50% 

20  Driban [592] 2012 0 0   0 1   0 1 0 1 0 1 0 0 0 0 0 0 1 0 5.0 28% 

21 Driban [100] 2013 0 0   0 1   1 1 0 1 1 1 0 1 0 1 0 1 1 1 11.0 61% 

22 Everhart [102] 2014 0 0   0 1   1 1 0 1 1 1 0 1 0 1 0 1 1 1 11.0 61% 

23 Felson [294] 2003 0 0   1 1   1 1 1 1 1 1 1 0 1 1 1 1 1 1 15.0 83% 

24 Foong  [101] 2014 0 0   0 1   1 1 0 1 1 1 0 1 1 1 0 1 1 1 12.0 67% 

25  Guermazi [124] 2014 0 0   0 1   1 1 0 1 0 1 0 1 0 1 0 1 1 1 10.0 56% 

26  Haugen [39] 2014 0 0   0 1   1 1 0 1 1 1 0 1 0 1 0 1 1 1 11.0 61% 

27  Haugen [593] 2014 0 0   0 1   1 1 0 1 1 1 0 1 0 1 0 1 1 1 11.0 61% 

28 
Hernandez-Molina 

[594]2008  0 0   0 1   0 1 0 1 1 1 0 0 0 0 0 1 1 1 8.0 44% 
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No. Cohort Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 total % 

29 Hochberg 2014  [540] 0 0  1 0  1 1 0 1 1 1 0 1 0 1 0 1 1 1 11.0 61% 

30 Hudelmaier [595] 2013 0 0   0 1   1 1 0 1 1 1 0 0 0 1 0 1 1 0 9.0 50% 

31 Hunter [596] 2006 0 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 0 8.0 44% 

32 Kornaat  [302] 2007 0 0   0 1   1 1 0 1 1 1 0 0 0 1 0 1 1 1 10.0 56% 

33 Koster 2011  [527] 0 0  0 1  0 1 0 1 0 1 1 0 1 0 0 1 1 0 8 44% 

34 Kothari  [478] 2010 1 0   0 1   1 1 0 1 0 1 0 0 0 0 0 1 1 1 9.0 50% 

35  Kubota[597] 2010 0 0   0 1   0 1 0 1 0 1 1 0 0 0 0 1 1 0 7.0 39% 

36 Liu 2014  [541] 0 1  1 0  1 1 0 1 1 1 1 0 0 0 0 0 1 0 9.0 50% 

37 Lo [548] 2012 0 0   0 1   1 1 0 1 0 1 0 0 0 1 0 1 1 1 9.0 50% 

38 
Madan-Sharma [417] 

2008 0 0   0 1   1 1 0 1 0.5 1 0 0 0 0 0 1 1 1 8.5 47% 

39 Mazzuca 2004 [536] 0 0  1 1  1 1 0 1 1 1 0 0 0 1 0 1 1 1 11 56% 

40 Mazzuca 2005 [537] 0 0  1 1  1 1 0 1 1 1 0 0 0 1 0 1 1 0 10 56% 

41 Moisio [456] 2009 0 0   0 1   1 1 0 1 1 1 0 0 0 1 0 1 1 1 10.0 56% 

42 Parsons [598] 2014 0 0   0 1   1 1 0 1 0 1 0 0 0 1 0 1 1 1 9.0 50% 

43 Pelletier [123] 2007 0 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 1 9.0 50% 

44 Raynauld [599] 2008 0 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 1 9.0 50% 

45 Raynauld 2011 [457] 0 0  0 1  1 1 0 1 1 1 0 1 0 1 0 1 1 1 11.0 61% 

46 Raynauld 2013 [103] 0 0  0 1  1 1 0 1 1 1 0 1 0 1 0 1 1 1 11.0 61% 

47 Roemer [443] 2009 0 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 1 9.0 50% 

48 Roemer [444] 2009 0 0   0 1   1 1 0 1 0 1 0 0 0 0 0 1 1 1 8.0 44% 

49 Roemer [500] 2012 0 0   0 1   1 1 0 1 0 1 0 0 0 0 0 1 1 1 8.0 44% 

50 Scher 2008 [579] 0 1  0 1  1 1 0 1 1 1 0 0 0 1 0 1 1 0 10 56% 

51 Sowers [530] 2011 0 0   0 1   1 1 0 1 0.5 1 0 1 0 1 0 1 1 0 9.5 53% 

52 Tanamas [600] 2010 0 0   0 1   1 1 0 1 1 1 0 0 1 0 0 1 1 0 9.0 50% 

53 Tanamas [601] 2010 0 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 0.5 8.5 47% 

54 Wildi [602] 2010 0 0   0 1   1 1 0 1 1 1 0 0 0 0 0 1 1 1 9.0 50% 

55  Zhang [26] 2011 0 0   0 1   1 1 0 1 1 1 0 0 0 1 0 1 1 0 9.0 50% 

  
      

            
       

mean 9.7 54% 

  
      

            
       

Max 18.0   
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Table 15 Quality scoring results case-control studies 

  
Quality Scoring Criteria 

  No. Case control study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 total % 

1 Aitken 2013 [525] 0 0 0   0 0 1 1 0 1 0 1   1   0 0 1 1 1 8 47% 

2 Barr 2012  [603] 0 1 1  1 0 1 1 0 1 1 1  1  1 0 1 1 1 13 76% 

3 Bennell 2008 [214] 0 0 0   1 0 1 1 0 1 1 1   0   1 0 1 1 1 10 59% 

4 Bowes 2012 [604]  0 1 1   1 0 1 1 0 1 0 1   1   1 0 1 1 1 12 71% 

5 Doherty 2008 [282] 0 0 0  1 0 1 1 0 1 1 1  0  0 0 1 1 1 9 53% 

6 Felson 2007 [134] 0 1 1   1 0 1 1 0 1 1 1   0   1 0 1 1 1 12 71% 

7 Hunter 2013 [605] 0 0 1   1 0 1 1 0 1 0 1   1   1 0 1 1 0 10 59% 

8  Javaid 2012 [606]  0 0 1   1 1 1 1 0 1 1 1   0   0 0 1 1 0 10 59% 

9 Javaid 2010 [607] 0 1 1   1 1 1 1 0 1 1 1   0   1 0 1 1 1 13 76% 

10 Neogi 2013 [75] 0 1 1   1 0 1 1 0 1 0 1   0   1 0 1 1 1 11 65% 

11 Neogi 2009 [307] 0 0 1   1 1 1 1 0 1 0 1   0   0 0 1 1 1 10 59% 

12 Nicholls 2011  [538] 0 0 1  1 1 1 1 0 1 1 1  1  1 0 0 1 1 12 71% 

13 Ratzlaff 20148 [608] 0 1 1  0 0 1 1 0 1 1 1  0  1 0 1 1 1 11 65% 

14 Stahl 2011 [442] 0 0 1   1 0 1 1 0 1 1 1   0   0 0 1 0 0 8 47% 

15 Wluka 2005 [269] 0 0 0   1 0 1 1 0 1 1 1   0   0 0 0 1 1 8 47% 

16 Zhao 2010 [609] 1 0 0   1 0 1 1 0 1 0.5 1   0   0 1 1 1 0 9.5 56% 

  
                    

mean 10.1 59% 

  
                    

max 17   
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Table 16 A description of the included studies, the relationships examined and the quality of each paper 

Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

Knee cohort studies 

Bruyere 2003 
[209] 

56 Knee OA (ACR criteria), gender 
distribution unknown, mean age 65 

yrs 

Subchondral 
tibial bone BMD 

(DXA) (C) 

Minimum medial 
JSW TFJ after one 

year (L) 

Multiple 
regression 

  

Low 
(44) 

Carnes 2012  
[584] 

395 Randomly selected older adults with 
over 52% knee ROA. 50% female, 

mean age 63 yrs. TASOAC 

MRI tibial Bone 
area (C)  

Semi-quantitative 
cartilage defect 
progression TFJ 

(L) 

Logistic 
regression 

Low 
(50) 

Carrino 2006 
[585] 

32 Chronic knee pain with MRI features 
of OA. 63% female, mean age 51 yrs. 

USA 

Crude presence 
of MRI BML, 

bone cyst TFJ 
(C) and (L) 

Graded cartilage 
defect TFJ (L) 

Crude comparison Low 
(22) 

Cicuttini 2004  
[270] 

113 Symptomatic, clinical (ACR) knee OA 
with mild to moderate TFJ ROA, 

mean age 64yrs, mean BMI 29, 58% 
females. Australia 

Baseline 
Quantitative MRI 
tibial bone area 

(C) 

TKR incidence (L) 
over 4 years 

Logistic 
regression 

High 
(78) 

Crema 2013 
[586] 

1351 Knee OA or at high risk of it. 39% 
ROA,  62% female, mean age 62 yrs. 

MOST 

MRI Incident 
BML (WORMS) 

TFJ 
(L) 

Progressive (30 
month) semi-
quantitative 

cartilage defect  
(WORMS) TFJ (L) 

Logistic 
regression 

Low 
(44) 

Crema 2014 
[587] 

163 Clinical knee OA, 37% knee ROA, 
54% female, Mean age 58 yrs.  

MRI BML (semi-
quantitative) 

(C) (all regions) 

Cartilage loss 
(semi-quantitative) 

(L) 
(all regions) 

Logistic 
regression 

High 
(56) 

Davies-Tuck 
2008 [588] 

117 ACR knee OA. 58% female, mean 
age 64 yrs.  Australia 

Baseline MRI 
tibial bone 

plateau area (C) 
TFJ 

Progressive semi-
quantitative 

cartilage defect 
score (L) medial 
and lateral TFJ 

Linear regression High 
(56) 

Davies-Tuck 2010  
[301] 

271 No clinical knee OA (ACR clinical 
criteria) and no current or historic 

Incident BML 

(new BML after 2 

Progression in 

semi-quantitative 

Logistic 
regression 

High 
(61) 



- 170 - 

170 

 

Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

knee pathology, mean age 58yrs, 
65% female, mean BMI 25. 
Melbourne. 

years with no 

BMLs at baseline) 

MRI TFJ (L) 

MRI cartilage 

defects score after 

2 years. TFJ  (L) 

De-Lange 2014 
abstract [589] 

133 Symptomatic OA knee. ROA Knee 
(>50%), 80% female, mean age 60 
yrs. GARP study 

MRI osteophytes 
(medial or lateral 

TFJ) (C) 

Radiographic JSN 
progression 
(OARSI) (L) 

 

Generalised 
estimation 

equation models 

High 
(61) 

Dieppe 1993 
[216] 

94 Symptomatic and ROA knee (100%). 
96% women, mean age 64 yrs, mean 

BMI 26. Referrals to hospital 
rheumatology unit 

Baseline late and 
or early-phase 
subchondral 

bone 
scintigraphy 
signal (C) 

Progression of 
JSN by ≥2mm or 
knee operation 
after 5 years (L) 

Pearson Chi 
squared test 

Low 
(50) 

Ding 2006  
[261] 

325 Mostly no ROA knee (17% ~ KL =1), 
58% female, Mean age 45 yrs. Mean 

BMI 27. Offspring study 

Baseline MRI 
tibial bone area 

(C) TFJ 

Change in semi-
quantitative MRI 
cartilage defect 

scores over 2.3 yrs 
(L) TFJ  

Logistic 
regression 

High 
(61) 

Ding 2008 [96] 252 Randomly selected adults with 15% 
knee ROA. 58% female, mean age 

45 yrs. 

Baseline MRI  
 tibial bone area 

(C) TFJ 

Progressive 
Cartilage volume 

loss (L) TFJ 

Multivariable 
linear regression 

High 
(72) 

Dore 2010 [99] 
 

395 Symptomatic knee OA, knee ROA 
(58%). 51% female, mean age 63 

yrs, mean BMI  28. TASOAC 

MRI BML size (L) 
regional or whole 

TFJ over 2.7 
years 

Change in 
WOMAC pain (L) 

over 2.7 years 
Incident TKR over 

5 years (L) 
 

Mixed effects 
models 

High 
(64) 

Dore 2010  
[590] 
12(6)  

405 Prevalent knee OA, 50% female,  
Mean age 63 yrs. TASOAC 

Baseline semi-
quantitative BML 
severity (C) TFJ 

 

Ipsi-compartmental 
cartilage volume 

loss (L) 

Logistic 
regression and 

generalised 
estimating 
equations 

Low 
(50) 

Dore 2010  341 Older adult cohort. Right knees only. Baseline Increase or no Logistic Low 
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Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

[210] Mean age 63 yrs, ~48% female, 
mean BMI 27.  

TASOAC 

proximal tibial 
BMD, DXA 

Baseline tibial 
bone area MRI 

(C)  

increase in semi-
quantitative MRI  
cartilage defects 
over 2.7 years (L) 

regression 
 

(50) 

Driban 2011 
[591] 

 

44 ACR knee OA(100%). 100% knee 
ROA, , 52% female, Mean age 65 

yrs. Clinical trial of Vitamin D 

Baseline 3D BML 
volume (C) and 

24 month change 
in 3D BML 

volume (L) in  
TFJ 

compartments 

24 month change 
in 

ipsicompartmental 
full thickness 

cartilage lesion 
area (L) 

Multiple linear 
regression, 
Spearman 
correlations 

Low 
(50) 

Driban 2012 
[592] 

Abstract  

38 Knee ROA (100%). 66% female, 
mean age 61 yrs. OAI 

MRI BML volume 
change (L) TFJ 
over 24 months 

 

Change in 
cartilage thickness 
and denuded area 

of bone (L) TFJ 
over 24 months 

Pearson 
correlation 
coefficients 

Low 
(28) 

Driban 2013 
[100]  

 

404 Prevalent ROA knee (71%) 49% 
female, mean age 63 yrs. OAI 

Knee baseline 
BML volume (C) 
BML volume 48 
month change 

(L) 
(TFJ) 

48 month change 
in WOMAC pain 

(L) and  
 OARSI JSN grade  

(L) 
(TFJ) 

Multiple linear 
regressions & 

logistic regression 

High 
(61) 

Everhart 2014 
[102]  

1338 Prevalent ROA knee (74%) 60% 
female, Mean age 62 yrs. OAI 

Baseline TFJ 
subchondral 

surface ratio of 
medial and 
lateral TFJ 

compartments 
(C) 

Incident frequent 
knee pain at 48 

months or 
radiographic 

progression of  
lateral or medial  

knee TFJ OA at 48 
months (L) 

 
 

Logistic 
regression 

High 
(61) 

Felson 2003  223 ACR knee OA and 75% ROA. 42% Baseline OARSI JSN grade Generalised High 
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Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

[294] female, mean age 66 yrs. BOKS presence of BML 
in medial or 

lateral TFJ (C) 

progression of TFJ 
(L) 

estimating 
equations 

(83) 

Foong 2014 
[101] 

198 17% ROA knee, 42% female, Mean 
age 47 yrs. Offspring study 

Change in 
quantitative BML 

size (L) and  
incident BMLs (L) 
In all three knee 
compartments 
over 8 years 

WOMAC Knee 
pain severity over 

8 years (L) 

Linear  regression High 
(67) 

Guermazi 2014 
Abstract [124] 

196 Knee ROA (24%), 62% female,  
mean age 60 yrs 
 

Semi-quantitative 
BML score 

WORMS (C) 
TFJ 

Cartilage thickness 
loss over 30 
months (L) 

multivariable 
logistic regression, 

High 
(56) 

Hernandez-
Molina  2008  

[594] 

258 ACR knee OA and 77% ROA. 43% 
female, mean age 67 yrs. BOKS 

Crude presence 
of central BMLs  
on MRI (C) TFJ 

Semi-quantitative 
cartilage defect 

(WORMS) (L) TFJ 

Logistic 
regression 

Low 
(44) 

Hochberg 2014 
Abstract 

[540] 

1024 100% Symptomatic and radiographic 
knee OA (the ‘progressor’ arm). OAI 

Semi-quantitative 
MRI baseline 

femoral condyle 
BML size (C) 

Incident TKR over 
6 years (L) 

 

Multivariable Cox 
proportional 

hazard models 

High 
(61) 

Hudelmaier 
2013 [595] 

abstract 

899 Prevalent ROA knee, ROA 60%, 60% 
women, mean age 62 yrs, OAI 

Annual change in 
Segmented MRI 
knee bone area 

(L) 

Baseline KL grade 
(C) 

Non-paired t-test Low 
(50) 

Hunter 2006 
[596] 

217 ACR knee OA. 44% female, mean 
age 66 yrs. BOKS 

Change in MRI   
semi-quantitative 

BML score (L) 
TFJ 

Change in semi-
quantitative 

cartilage defect 
score (WORMS) 

(L) TFJ  

Generalised 
estimating 
equations 

Low 
(44) 

Kornaat  2007 
[302] 

182 OA knee symptoms (38%) and ROA 
(38%). 80% female, mean age 59 

yrs. GARP 

Semi-quantitative 
MRI BML change 
over 2 years (L) 

TFJ 

Mean WOMAC 
pain over 2 years 

Linear mixed 
models 

High 
(56) 
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Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

Koster 2011  
[527] 

117  One year follow up after acute knee 
trauma in primary care, 12% ROA 

knee, mean age 41yrs, 43% female, 
mean BMI 26, HONEUR  

Baseline BML 
presence (C) TFJ 

Any progression in 
KL grade over 1 

year (L) TFJ 

Logistic 
regression 

Low 
(44) 

Kothari 2010 
[478] 

177 Some WOMAC dysfunction and 
>74% ROA knee, 79% female, mean 

age 66 yrs. MAK-2 

Semi-quantitative 
baseline MRI 

BML, bone cyst 
and attrition 

(WORMS) (C) 
TFJ 

Semi-quantitative 
cartilage defect 

score change over 
2 years (WORMS) 

(L) TFJ. 

Logistic 
regression, with 

generalised 
estimating 
equations 

Low 
(50) 

Kubota  
2010[597] 

122 Clinical and ROA (80%) of the knee.  
>90% female, mean age 68 yrs. 

Japan 

MRI BML semi-
quantitative 

volume score 
change over 6 
months (L) TFJ  

KL grade 
progression over 6 

months (L) TFJ 

Mann-Whitney U-
test 

Low 
(39) 

Lo 2012  
[548] 

497 52% ROA knee, 47% female , Mean 
age 64 yrs. OAI 

DXA measured  
medial:lateral 

periarticular BMD  
and MRI BVF, 

trabecular 
number, 

thickness and 
spacing (C) 

OARSI medial TFJ 
JSN grade 
progression 

between 24 and 48 
months (L) 

Logistic 
regression 

Low 
(50) 

Liu 2014 S470 
Abstract 

[541] 

128 Medial knee OA, KL grade 4. Japan Baseline Semi-
quantitative 

osteophyte score 
(WORMS) (C) 

TFJ 

Incident TKR at 6 
months follow up 

(L)  

Mann Whitney-U 
test & ROC curve 

Low 
(50) 

Madan-Sharma  
2008 
[417] 

186 Prevalent ROA knee (40%). 81% 
female, mean age 60 yrs. GARP 

Baseline MRI 
semi-quantitative 
BML, bone cyst 

(C) TFJ 

OARSI medial TFJ 
JSN grade 

progression over 2 
years (L) TFJ 

Logistic 
regression 

Low 
(47) 

Mazzuca 2004 
[536] 

86 100% female, mean age 55 yrs, 
mean BMI 37. 

Baseline late-
phase bone 

Progression of 
minimum JSN of 

Pearson 
correlation 

High 
(56) 
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Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

scintigraphy 
(adjusted for 
normal bone 
uptake) of the 

medial tibia and 
whole knee (C) 

the medial TFJ 
from baseline to 30 
months 

(L) 

coefficients 

Mazzuca 2005 
[537] 

174 100% female, mean age 56 yrs, 
mean BMI 36. A placebo controlled 

trial of doxycycline 

Baseline late-
phase bone 
scintigraphy 
(adjusted for 
normal bone 
uptake) of the 

medial tibia and 
whole knee (C) 

Progression of 
minimum JSN of 
the medial TFJ 
from baseline to 30 
months 

(L) 

multiple linear 
regression 

High 
(56) 

Moisio 2009 
[456] 

168 Some WOMAC dysfunction and 90% 
ROA knee. 78% female, mean age 

66 yrs. MAK-2 

Baseline MRI 
semi-quantitative 
BML score (C) 
TFJ and PFJ 

 

Incident frequent 
knee pain 2 years 
after baseline (L) 

Logistic 
regression 

High 
(56) 

Parsons 2014 
Abstract  

[598] 

559 Knee ROA (100%), 73% female, 
mean age 63 yrs. SEKOIA 

Baseline semi-
quantitative BML 

score (C) 

 Annual TFJ JSN 
(L) 

Linear regression Low 
(50) 

Pelletier 2007 
[123] 

107 100% radiographic OA knee, 64% 
female, Mean age 62 yrs. 

Bisphosphonate Trial 

Regional semi-
quantitative 

baseline BML 
score (medial or 
lateral TFJ) (C) 

Regional cartilage 
volume over 24 

months (medial or 
lateral TFJ) (L) 

Multivariate 
regression 

Low 
(50) 

Raynauld 2008 
[599] 

86 64% female, Mean age 61 yrs. Trial 
of bisphosphonate 

Change in BML 
size (L) at 24 
months in TFJ 

Medial cartilage 
volume loss (L) at 
24 months in TFJ 

Multivariate linear 
regression 

Low 
(50) 

Raynauld 2011  
[457] 

123 Symptomatic knee OA of the medial 
TFJ, 65% female, mean age 61 yrs, 

mean BMI 32.  

Baseline semi-
quantitative BML 

score (C) TFJ 

Incidence of TKR 
over 3 years (L) 

Logistic 
regression 

High 
(61) 

Raynauld 2013 57 Patients from a chondroitin trial Baseline semi- Incident TKR (L) 4 Logistic High 
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Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

 
[103] 

81% female, mean age 63, mean 
BMI 31.   

quantitative BML 
WORMS score 

(C) 
Medial TFJ 

year follow up 
 

Time to TKR 

regression, Cox 
regression 

(61) 

Roemer 2009  
[443] 

395 Knee OA or at high risk of it. 33% 
ROA. 68% female, mean age 63 yrs. 

MOST 

Change in MRI 
semi-quantitative  
BML size over 30 

months 
(WORMS) (L) 
TFJ and PFJ 

Progression in 
semi-quantitative 

cartilage defects in  
(WORMS) over 30 

months (L) TFJ 
and PFJ 

Logistic 
regression 

Low 
(50) 

Roemer 2009 
[444] 

 

347 Knee OA or at high risk of it. 14% 
ROA. 65% female, mean age 64 yrs. 

MOST 

Baseline MRI 
BML crude 
presence or 

absence 
(WORMS) (L) 

TFJ 

Semi-quantitative 
cartilage defect 

progression over 
30 months 

(WORMS) (L) TFJ 

Logistic 
regression 

Low 
(44) 

Roemer 2012  
[500] 

 

177 Chronic knee pain, 71% knee ROA, 
49% female. Mean age 52 yrs. 

Glucosamine trial 

Semi-quantitative 
BML  

(WORMS) TFJ 
and PFJ (C) 

Semi-quantitative 
cartilage score 6-

month progression 
TFJ and PFJ (L) 

Logistic 
regression 

Low 
(44) 

Sowers 
2011[530] 

363 Minor OA symptoms with18% ROA 
knee. 100% female, median age 45 

yrs. SWAN 

Semi-quantitative 
MRI BML, 

osteophyte, bone 
cyst size 

 in TFJ (C)  

Progression in KL 
grade 

and WOMAC pain 
score 

(11 years follow up ) 
(L) 

Chi-square tests 
or Fisher exact 
tests. Logistic 

regression 

Low 
(53) 

Tanamas 2010 
[601] 

 

109 ACR knee OA, 73% ROA. 40% 
female, mean age 63 yrs. Australia 

Semi-quantitative 
change  in MRI 

Bone cyst or 
BML size (L) 

Knee cartilage 
volume loss over 2 

years (L) TFJ 
Incident TKR over 

4 years 

Logistic 
regression 

Low 
(47) 

Tanamas 2010 
[600] 

 

109 ACR knee OA, 72% ROA. 50% 
female, mean age 63 yrs, mean BMI 

29. Australia 

Baseline semi-
quantitative MRI 

BML size (C) 

Cartilage volume 
change over 2 
years (L) TFJ 

Logistic 
regression 

Low 

(50) 
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Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

Annual change in 
WOMAC pain(L) 

Incident TKR over 
4 years    

Wildi 2010 
[602] 

161 Symptomatic medial TFJ OA knee 
(ACR criteria). 100% ROA knee, 66% 

female, Licofelone trial 

24 month change 
in regional TFJ 

BML score 
WORMS  (L) 

24 months change 
in WOMAC pain  
(L) or regional 

change in cartilage 
volume (L) 

Multivariate 
regression 

Low 
(50) 

Zhang 2011 [26] 570 Patients with knee OA or at high risk 
of it. 41% ROA knee. 68% female, 

mean age 62 yrs. MOST 

Semi-quantitative 
change in MRI 

BML size (L) TFJ 
over 30 months 

Incidence of 
frequent knee 

pain, and 
categorical 

severity (L) over 
30 months 

Logistic 
regression 

Low 
(50) 

Knee case-controls studies 

Aitken 2013 
[525] Abstract  

220  57% female, Mean age 45 yrs. 
Prevalence of ROA unknown. 

Offspring 

Semi-quantitative 
BMLs tibia, femur 

& patella (C) 

Cartilage volume 
and defect score 

Tibia and femur (L) 

Linear regression Low 
(47) 

Bowes 2012 
[604] 

 
 

2197 Cases of clinical knee OA (100% 
ROA, n=1312), control healthy knees 

(0% ROA, n=885). 56% female, 
mean age 61 yrs. OAI dataset 

Change in 
segmented MRI 
3D Bone area 
over 4 year (L) 

KL grade defined 
ROA knee (C) 

 

ANCOVA model High 
(71) 

Bennell 2008 
[214] 

116 Cases of ACR medial knee OA 
(100% medial TFJ ROA) (n=75), 

asymptomatic control knees (n=41). 
54% female, mean age 64 yrs. 

Australia 

Volumetric BMD 
of tibial 

subchondral 
trabecular bone 

(qCT) (C) 

KL grade (C) Generalised linear 
models 

Low 
(59) 

Felson  2007 
[134] 

330 Patients at high risk of knee OA , 
cases with incident pain  (n=110, 
ROA 30%), controls without pain 
(n=220,ROA 20%); 66%female, 

mean age 63 yrs. MOST 

Semi-quantitative 
MRI BML size 

increase 
(WORMS) (L) 

TFJ & PFJ 

Incident frequent 
pain at 15 months 

(L) 

Multiple logistic 
regression, 

High 
(71) 

Hunter 2013 636 636 knees at risk of OA (ROA=0% at MRI bone area 8 Incident ROA knee  Discrete-time Cox Low 
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Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

Abstract [605] 
 

baseline). Cases of incident ROA 
n=318, Controls without incident ROA 

n=318, 67% female. Mean age 60 
yrs. OAI 

knee regions (L) (KL grade ≥2)  
(TFJ) (L) 

Proportional 
Hazards 

Regression 

(59) 

Javaid 2012 
[606] 

 

636 Patients with prevalent ROA. Cases 
have painful knees (n= 546), controls 

have no knee pain (n=90); 65% 
female, mean age 73 yrs. Health 

aging and body composition study 

Baseline Semi-
quantitative MRI 
BML, bone cyst 
and attrition size 
(WORMS) (C) 

TFJ & PFJ 

Presence of 
frequent knee pain 
(C) after 2 years 

Conditional and 
marginal logistic 

regression 

Low 
(59) 

Javaid  2010 
[607] 

155 Clinical knee OA, cases with incident 
pain  (n=33), controls without pain 

(n=122); 67% female, mean age 59 
yrs. ROA 0%; MOST 

Baseline semi-
quantitative MRI 

BML, osteophyte, 
bone cyst size 
(WORMS) (C) 

TFJ & PFJ 

Incident frequent 
knee pain after 15 

months (L) 

Logistic 
regression 

High 
(76) 

Neogi 2013 
[75] 

531 Incident knee TFJ ROA 
cases (n=178), controls did not 

develop ROA (n=353); 62% female, 
mean age 61 yrs. OAI dataset 

MRI 3D bone 
shape 

(Tibia, Femur 
and patella) (C) 

Incident TFJ ROA 
KL grade ≥2 (L) 

Conditional 
Logistic 

regression 

High 
(65) 

Neogi  2009 
[307] 

4446 Clinical knee OA. Within-knee 
subregion cases (n=973) had 

cartilage loss, controls (n=3473) had 
not. 64% female, mean age 63 yrs; 

ROA 59% MOST 

Baseline semi-
quantitative MRI 

Bone attrition 
size (WORMS) 

(C) TFJ 

Cartilage defects 
progression 

(WORMS) after 30 
months TFJ 

Logistic 
regression 

Low 
(59) 

Ratzlaff 2014  

[608] 
278 59% female, mean age 64, mean 

BMI 30. 138 cases of TKR and 138 
ROA matched controls. OAI 

Total tibial BML 
volume 12 and 

24 months before 
TKR and interval 
change between 

12 and 24 (C) 
and (L) 

Incident TKR (L)  Conditional 
logistic regression 

High 
(65) 

Scher 2008 65 Patients with OA knee based upon Presence of any Incident TKR (L) Generalised High 
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Author of 
longitudinal 

studies 

Patient 
number 

(n) 
 

Study demographics Subchondral 
bone feature 

assessed 

Structural 
progression or 
severity / pain 

measure 

Statistical analysis Quality 
(score 

%) 

 
[579] 

radiography (>50% ROA), 54% 
female, mean age 51 yrs. USA 

baseline semi-
quantitative MRI 

BMLs (C) 

over 3 years estimating 
equations 

(56) 

Stahl 2011 [442] 60 Clinical and 100% ROA knee cases 
(n=30) ; controls – healthy knees 
ROA 0% (n=30); All female, mean 

age 58 yrs. USA 

Semi-quantitative 
MRI BML size 
(WORMS) (L) 

TFJ 

Semi-quantitative 
Cartilage defect 

size (L) TFJ 
WOMAC score 

Generalised 
estimating 
equations 

Low 
(47) 

Wluka 2005 
[269]  

149 ACR knee OA cases (n=68), controls 
(n=81) without OA; 54% female, 

mean age 64 yrs. Australia 

Change in MRI 
Tibial bone area 

(L)  

Baseline 
radiographic JSN 

(C) 

Logistic 
regression 

Low 
(47) 

Zhao 2010  
[609] 

38 Clinical and ROA cases (n=24), 
control (n=14) knees (KL=0); 54% 

female, mean age 52 yrs 

MRI BML volume 
(C) TFJ 

Overlying cartilage 
defect progression 

after one year 
(WORMS) (L) TFJ 

WOMAC pain 

Student’s t test Low 
(56) 

 

 

Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

Knee cross-sectional studies 

Ai 2010 [557] 28 Clinical knee OA. 55% 
ROA, 57% female, 

mean age 61 yrs. China 

Semi-quantitative 
MRI BML and 

osteophytes (C) 

Pain verbal rating 
scale (Likert) (C) 

Fisher exact test Low (57) 

Akamatsu 2014 
[533] Abstract 

192 Varus ROA Knee 94%, 
100% female, mean 
age 70 yrs. Japan 

BMD (DXA) (C) 
(medial tibia & 

femoral condyle) 

Medial TFJ JSN 
radiographic 

(C) 

Pearson’s 
Correlation 

Low (57) 

Baranyay 2007  
[554] 

297 No clinical knee OA 
(ACR clinical criteria) 

and no current or 

MRI BML defined as 
large or not large / 

absent in the medial 

MRI semi-quantitative 
cartilage defects of 
medial and lateral 

Logistic 
regression 

High (71%) 
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Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

historic knee pathology, 
mean age 58yrs, 63% 
female, mean BMI 25. 

Melbourne 

and lateral 
compartments of TFJ 

(C) 

compartments of TFJ 
 
Quantitative Cartilage 
volume medial and 
lateral TFJ 
(C) 

Bilgici 2010 [558] 34 ACR knee OA. ROA 
65%, 71% female, 
mean age 50 yrs. 

Turkey 

MRI BML (WORMS) 
(C) 

WOMAC pain & pain 
VAS (C) 

Linear regression Low (57) 

Burnett 2012  
[549] 

42 Knees with OA awaiting 
total knee replacement, 

100% ROA, 60% 
Female, mean age 64 

yrs. Canada 

BMD of patellar 
facets (qCT) (C) 

WOMAC pain – knee 
pain at rest (C) 

Independent t-
test 

Low (57) 

Chiba 2012 
  [349] 

60 Prevalent Knee OA. 
ROA 50%. 100% 

female, mean age 68 
yrs Japan 

MRI Bone volume 
fraction & trabecular 

thickness of the 
medial & lateral 

femur & tibia. (C) 

Metric JSW 
(radiographic) (C) of 

the medial and lateral 
TFJ 

Pearson’s 
Correlation 

Low (57) 

Crema 2010 [315] 1283 Knee OA or at high risk 
of OA. ROA knee 44%. 
60% female, mean age 

62 yrs. 

MRI Bone cysts 
(WORMS) (C) 

Cartilage defect 
(WORMS) (C) 

Comparison of 
tabulated data 

Low (50) 

Ding 2005  
[353] 

372 Mostly no ROA knee 
(17% ~ KL =1), 58% 
female, Mean age 45 

yrs. Mean BMI 27. 
Offspring study 

MRI quantitative tibial 
bone area (C) 

Semi-quantitative 
MRI knee cartilage 

defect severity scores 
(C) TFJ 

Linear regression High (64) 

Dore 2009 [547] 
 

740 >15% ROA knee, 52% 
female, Mean age 62 

yrs. TASOAC 

DXA Tibial 
subchondral BMD (C)  

Radiograph JSN 
grade and MRI 

cartilage defect and 
volume (C) 

Multivariable 
analysis 

High (71) 

Driban 2011 [545] 421 NR MRI Bone volume Radiographic JSN (C) Multiple linear High (64) 
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Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

Abstract fraction (C) regression 

Driban 2011 [546] 
Abstract 

 

285 OAI Progression 
Cohort. No other 

demographic data 
available. 

MRI bone volume 
fraction, trabecular 
number, spacing & 
thickness of medial 

tibia (C) 

The presence of any 
grade of radiographic 
medial & lateral JSN  

(C) 

Multiple linear 
regression  

High (71) 

Eckstein 2010 [483] 73 ROA knee (100%), 63% 
female with mean age 

of 61 yrs. OAI 

MRI Tibial bone area 
(segmented) (C)  

OARSI JSN grade (C) Paired t-tests Low (43) 

 
Felson 2001  

[133] 

401 Prevalent knee OA 
(ACR criteria) and 

assumed ROA knee of 
100%. 41% female, and 

mean age of 67 yrs. 
BOKS 

Semi-quantitative 
MRI BMLs (C) 

KL grade 
chronic knee pain 

presence (C) 

Chi-square or 
fisher exact test 

& logistic 
regression 

Low (54) 

Fernandez-Madrid  
1994  
[559] 

90 ACR knee OA, 66% 
knee ROA, 65% 

female, mean age 55 
yrs. USA 

Crude presence of 
MRI BMLs, 

osteophytes (C) 

KL grade and crude 
pain presence (C) 

Chi-square Low (46) 

Frobell 2010 [560] 891 Three groups; pre-
radiographic OA (KL 
grade <2), ROA and 
controls without OA, 

(total ROA knee 89%), 
60% female, mean age 

61 yrs. OAI 

MRI Bone area – 
manual segmentation 

(C) 

KL grade, OARSI 
JSN grade (C) 

T tests and 
multivariate 

analyses 

Low (57) 

Gudbergsen [562] 
2013 

192 Obesity and knee OA 
(ACR criteria). 81% 

female, mean age 63 
yrs. Denmark 

Semi-quantitative 
MRI BML (BLOKS) 

(C) 

KL grade (C) Spearman 
correlation 
analyses 

Low (57) 

Guymer 2007  
[535] 

 

176 No clinical knee OA 
(ACR clinical criteria) 

and no current or 
historic knee pathology, 

Presence or absence 
of MRI BMLs 

(C) TFJ 

Presence or absence 
of semi-quantitative 

cartilage defects 
(C) TFJ 

Logistic 
regression 

High (71) 
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Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

mean age 52 yrs, 100% 
female, mean BMI 27. 

Melbourne. 

Haverkamp 2011  
[276] 

609 1201 knees with 6% 
knee ROA and 25% 

knee pain prevalence,  
100% female, and 

mean age 54 yrs, mean 
BMI 27. Rotterdam 

study 

2D bone shape knee 
1. femur & tibial width 
2. elevation of lateral 
tibial plateau 

(C) 
 

1.Presence of diffuse 
cartilage defects 
semi-quantitative 

scoring (MRI). 
2.Presence of ROA 

knee (KL≥2) 
3.Pain severity VAS 

 (C) 

Logistic and 
linear 

generalised 
estimating 
equation 

regression 
models 

Low (46) 

Hayashi 2012 [566] 40 ROA knee 57% with 
and without pain, 75% 
female, mean age 57 

yrs. USA 

Crude presence of 
MRI osteophytes, 

bone cysts (C) 

Presence of pain on 
WOMAC pain 
subscale (C) 

Logistic  
regression 

Low (57) 

Hayes 2005 [312] 232 Clinical and ROA knee 
or healthy patients. 

36% ROA knee, 100% 
female, mean age 46 

yrs. Southeast Michigan 
Cohort. 

Semi-quantitative 
MRI BML, 

osteophyte, bone 
cyst (C) 

KL grade and chronic 
pain presence (C) 

Fisher Exact 
Test, 

Chi-squared test 

High (61) 

Hernandez-Molina  
2008 
[139]  

 

1627 Patients >50 yrs of age 
with and without knee 
pain. ROA knee 22%, 

59% female, mean age 
64 yrs. Framingham OA 

cohort 

Semi-quantitative 
MRI bone attrition 

(WORMS) (C) 

Pain severity and 
nocturnal pain 
(WOMAC) (C) 

Logistic 
regression 

High (71) 

Ip 2011  
[567] 

255 Knee pain. ROA 38%, 
56% female, median 
age 62 yrs. Canada 

Semi-quantitative 
MRI BML (C) 

WOMAC pain, 
KL grade (C) 

Logistic 
regression 

& Pearson chi-
squared 

High (68) 

Jones 2004  
[31] 

372 Mean age 45yrs, right 
knees, early ROA knee 
(3-14%), 58% female, 

Tibial bone area 
(MRI) (C) 

Radiographic JSN (C) Linear 
Regression 

Low (50) 
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Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

mean BMI 27. Offspring 

Kalichman 2007 
[568] 

213 Predominantly knee OA 
(ACR criteria). ROA 

knee 75%, 41% female, 
mean age 67 yrs. 

BOKS 

MRI patellar length 
ratio, trochlea sulcus 

angle (C) 

JSN grade (C) Logistic 
regression 

High (64) 

Kalichman 2007 
[569] 

213 Predominantly knee OA 
(ACR criteria). ROA 

knee 75%, 41% female, 
mean age 67 yrs. 

BOKS 

MRI patellar length 
ratio, trochlea sulcus 

angle (C) 

Cartilage defect 
(WORMS) (C) 

Logistic 
regression 

Low (57) 

Kim 2013  
[570] 

358 Aging population with 
35% ROA knee. 51% 
female, mean age 72 

yrs. Hallym Aging Study 

Summary score and 
severity of MRI BML 

(WORMS) (C) 

WOMAC pain (C) or 
presence of knee 

pain 

Logistic 
regression 

High (64) 

Kornaat 2006 [571] 205 Symptomatic (35%)and 
ROA (47%) knee. 80% 
female, median age 60 

yrs. GARP 

 Semi-quantitative 
 MRI osteophyte 
bone cyst & BML (C) 

Chronic pain 
presence (C) 

Logistic 
regression 

High (71) 

Kornaat 2005 [572] 205 Symptomatic (35%)and 
ROA (47%) knee. 80% 
female, median age 60 

yrs. GARP 

Semi-quantitative 
MRI BML (KOSS) 
TFJ and PFJ (C) 

Semi-quantitative  
cartilage defects 

(KOSS) TFJ and PFJ 
(C) 

Odds ratio Low (57) 

Kraus 2009 
[550] 

159 Unilateral symptomatic 
and ROA knee 

(100%);74% female, 
mean age 63 yrs, mean 

BMI 32. POP 

Ipsicompartmental 
late phase bone 

scintigraphy, semi-
quantitative retention 

scoring of TFJ (C) 

Ipsicompartmental 
OARSI scale of TFJ 

JSN (C) 

Bivariate and 
Multivariable 
generalised 

linear modelling 

High (71) 

Lindsey 
 2004 [350] 

74 Prevalent knee ROA 
(71%), 53% female, 
mean age 64 yrs,  

MRI bone volume 
fraction & trabecular 
spacing (lateral TFJ) 

(C) 

Cartilage volume in 
(contralateral TFJ) 
compartment (C) 

Spearmans 
correlation  

High (64) 

Link  2003 [319] 50 Symptomatic knee OA, 
ROA 80%, 60% female, 

Semi-quantitative 
MRI BML, 

KL grade, WOMAC 
pain (C) 

Fisher Exact 
Test, 

Low (54) 



- 183 - 

183 

 

Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

mean age 64 yrs. USA osteophytes, and 
crude presence of 

bone cysts (C) 

Chi-squared test 

Lo 2005 [574] 498 Patients >50 yrs of age 
with and without knee 
pain. ROA knee 23%, 

59% female, mean age 
66 yrs. Framingham OA 

cohort 

Semi-quantitative 
MRI BML 

(WORMS≥1) (C) 

KL grade≥2 (C) Crude 
comparison 

Low (50) 

Lo 2006 [208] 1612 Prevalent Knee OA, 
18% ROA knee, 56% 
female, mean age 64 
yrs. Framingham OA 

Study Cohort 

DXA Medial:lateral 
BMD ratio at the tibial 

plateau (C) 

Radiographic JSN 
grade (medial and 

lateral TFJ) (C) 

Logistic 
regression 

High (71) 

Lo  2009 [575] 160 Symptomatic OA knee, 
100% ROA. 50% 

female, mean age 61 
yrs. OAI 

Semi-quantitative 
MRI BML (BLOKS) 

(C) 

WOMAC pain (C) Univariate and 
multivariate cox 

regressions 

High (71) 

Lo 2012 [206] 482 Prevalent knee OA, 
54% ROA, 47% female, 
mean age 64 yrs. OAI 

MRI bone volume 
fraction, trabecular 
thickness, number 
and DXA BMD of 

proximal medial tibia 
(C) 

Radiographic medial 
JSN grade (C) 

Kruskal-Wallis 
and Mann-

Whitney U tests 

High (64) 

McCauley 2001  
[528] 

193 Knees referred for MRI 
43% female, mean age 

40 yrs, mean weight 
92kg. 

MRI central 
osteophyte presence 

(C) TFJ 

MRI cartilage lesion 
presence (C) TFJ 

Crude 
association 

Low (29) 

McCrae  
1992 
[553] 

30 Clinical or ROA knee 
(100%). 73% female, 

mean age 66yrs, 
Overweight or obese 

(65%). Recruited from 

Late phase ‘extended 
bone uptake’ pattern 
bone scintigraphy, 

presence around the 
TFJ (C) 

Radiographic TFJ 
JSN presence (C) 

Chi squared test Low (50) 
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Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

rheumatology clinic 

Meredith 2009  
[555] 

140 Knees with MRIs before 
arthroscopic partial 

meniscectomy. Median 
age 61 yrs, 61% female   

Sum of semi-
quantitative MRI 

Osteophyte and BML 
scores in the TFJ and 

PFJ (C) 

Sum of semi-
quantitative MRI 
cartilage defect  

scores in the TFJ and 
PFJ (C) 

Chi-squared test 
& 

Spearman test for 
non-parametric 

correlations 

Low (50) 

Moisio  2009 [456] 305 Patients with some 
WOMAC dysfunction 
and 90% ROA knee. 

78% female, mean age 
66 yrs. MAK-2 

Baseline MRI semi-
quantitative BML 

score (C) TFJ and 
PFJ 

 

Presence of baseline 
moderate to severe  

knee pain (C) 

Logistic 
regression 

High (64) 

Ochiai 2010 [543] 48 Patients with clinical 
medial knee OA and 

ROA knee (76%), mean 
age 73 yrs. Gender 

distribution unknown. 
Japan 

MRI irregularity of 
femoral condyle 

contour (C) 

Knee pain VAS (C) Pearson’s 
correlation 

Low (50) 

Okazaki 2014 [539] 29 Radiographic knee OA 
(100%), 100% female, 

Mean age 65 yrs 

Number of CT bone 
cysts (medial femur 

and tibia) (C) 

Knee KL grade (C) NR Low (50) 

Ratzlaff 2013 [577] 115 Radiographic knee OA 
(95%), 48% female, 
age range 45-79 yrs 

Total BML volume in 
the femur or tibia (C) 

Weight bearing knee 
pain WOMAC 
subscale (C)  

Wilcoxon rank 
sum test,  

multivariable 
analysis, 

High (71) 

Ratzlaff 2014 [544] 
abstract 

115 Knee ROA (90%) Median BML volume 
(PFJ, TFJ) (C) 

Stair-climbing knee 
pain WOMAC  (C) 

Wilcoxon rank 
sum test 

High (64) 

Reichenbach 
2008[306] 

964 Patients over 50 yrs of 
age with and without 
knee pain. ROA knee 

18%, 57% female, 

Semi-quantitative 
MRI Bone attrition 

(WORMS) (C) 

KL grade and semi-
quantitative cartilage 

defects (WORMS) (C) 

Crude 
comparison 

Low (43) 
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Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

mean age 63 yrs. 
Framingham OA cohort 

Roemer  2012[578] 
 

1248 Patients over 50 yrs of 
age with and without 
knee pain. ROA knee 

23%, 58% female, 
mean age 64 yrs. 

Framingham OA cohort 

MRI osteophyte 
(WORMS) (C) 

Cartilage defect 
(WORMS) (C) 

Logistic 
regression and 

generalised 
estimating 
equations 

Low (57) 

Scher 2008 [579] 
 

73 Patients with OA knee 
based upon 

radiography (>50% 
ROA), 54% female, 

mean age 51 yrs. USA 

Semi-quantitative 
MRI BML (C) 

Semi-quantitative 
cartilage defect 

(modified Noyes) (C) 

Univariate 
comparison (t-

tests) 

Low (43) 

Sengupta  2006 
[580] 

217 Patients with prevalent 
knee OA (ACR criteria). 
ROA knee >75%, 25% 
female, mean age 67 

yrs. BOKS 

Semi-quantitative 
MRI Osteophyte 
(WORMS) (C) 

Pain severity 
WOMAC, chronic 

pain (C) 

Logistic 
regression 

High (71) 

Sharma 2014 
[131] 

837 At risk of Knee OA but 
without ROA knee, 0% 

ROA knee, 57% 
female, mean age 60 

yrs. OAI 

Semi-quantitative 
MRI BML (WORMS) 

TFJ or PFJ (C) 

Prevalent  frequent 
knee symptoms (C) 

Multiple logistic 
regression 

High (71) 

Sowers  2003  
[531] 

231 Patients with infrequent 
OA knee symptoms and 
15% ROA knee, 100% 
female, mean age 47 

yrs. SWAN 

Semi-quantitative 
MRI BML (C) 

Semi-quantitative 
cartilage defect, 

chronic pain presence 
(C) 

Wilcoxon or 
Maentel– 

Haenszel test of 
general 

association and 
logistic 

regression 

Low (54) 

Stefanik 2012 [274] 881 Patients with knee OA 
or at high risk of it. 

(ROA knee % 
unknown), 63% female, 

MRI lateral trochlear 
inclination and 

trochlear angle (C) 

Semi-quantitative 
cartilage defect 
(WORMS) (C) 

Logistic 
regression 

Low (57) 



- 186 - 

186 

 

Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

mean age 63 yrs. 
MOST 

Stefanik 2014 
abstract [581] 

2087  Prevalent clinical knee 
OA, 60% female, mean 

age 67 yrs 

BML (WORMS) 
 PFJ (C) 

Prevalent knee pain 
(any pain in last 30 
days) and pain VAS 

(C) 

Logistic 
regression 

High (71) 

Stehling 2010  
 [313] 

236 Knees without pain and 
with 6% ROA. Mean 

age 51yrs, 58% female, 
mean BMI 24. OAI 

Presence of any MRI 
semi-quantitative 

BMLs, osteophytes or  
cysts (C) 

Presence of any 
WORMS MRI 

cartilage defects 
(C) 

Multi-variate 
regression 

High (71) 

Torres  2006 [135] 143 Patients with some 
WOMAC dysfunction 
and >55% ROA knee, 

78% female, mean age 
70 yrs. MAK-2 

MRI BML, 
osteophyte,  attrition, 
bone cyst (WORMS) 

TFJ & PFJ (C) 

Pain VAS, semi-
quantitative cartilage 
(WORMS) TFJ & PFJ 

(C) 

Median quantile 
regression, 

High (68) 

Wang 2005  
[259] 

117 
 

Symptomatic, clinical 
(ACR) knee OA with 
mild to moderate TFJ 

ROA, mean age 64yrs, 
mean BMI 29, males 

and females. Australia 

Annual % change in 
tibial bone area (L) 

2 yr follow up. 

Baseline JSN (C) Linear regression Low (57) 

Zhai 2006 [582] 500 Randomly selected 
older adults with over 
23% knee ROA. 50% 
female, mean age 63 

yrs. TASOAC 

Semi-quantitative 
MRI BML (C) 

WOMAC pain>1 (C) Multivariable 
analysis 

High (79) 

Hip cohort studies 

Agricola 2013 
 

[74] 

723 Early symptomatic hip 
OA, the majority had no 
ROA hip (with doubtful 

ROA in 26%), 80% 
female, mean age 56 
yrs, mean BMI 26.1, 

CHECK 

Baseline alpha angle 
(2D femur shape) 

dichotomous 
abnormal >60°, 

normal ≤60 
(C) 

Incident ROA hip 
(KL>1) 

Incident end-stage 
ROA hip  

(KL>2 or THR) 
at or within 5 yrs (L) 

 

Generalised 
estimating 
equations 

High (67) 
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Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

Agricola 2013 
 

[394] 

720 Early symptomatic hip 
OA, the majority had no 
ROA hip (with doubtful 

ROA in 24%), 79% 
female, mean age 

56yrs, mean BMI 26.1. 
CHECK 

Baseline 2D Centre 
edge angle 

(Acetabular shape): 
25°<Normal<40°  

Undercoverage<25° 
Overcoverage>40° 

(C) 

Incident ROA hip 
(KL>1 or THR) 

at or within 5 yrs (L) 
 

Generalised 
estimating 
equations 

High (67) 

Agricola 2013  
[583] 

723 Early symptomatic hip 
OA, the majority had no 
ROA hip (with doubtful 

ROA in 24%), 79% 
women, mean age 

56yrs, mean BMI 26.1. 
CHECK 

Baseline 2D femoral 
and acetabular shape 
modes (segmented 
by statistical shape 

modelling) 
(C) 

Total hip replacement 
at or within 5 yrs (L) 

  

Generalised 
estimating 
equations 

High (72) 

Hip case-control studies 

Doherty 
2008 

 
[282] 

2076 Symptomatic 
radiographic hip OA 

cases (n=965), 
asymptomatic controls 

without radiographic hip 
OA (n=1111) – GOAL 

Non-spherical 2D 
femoral head shape 

assessment:  
1) Appearance of  

‘Pistol grip 
deformity’ (C) 

 2) Maximum femoral 
head diameter 
divided by minimum 
parallel femoral neck 
diameter (C) 

Presence of 
radiographic hip OA  
(JSW≤2.5mm) (C) 

Multivariable 
Logistic 

regression 

Low (53) 

Barr 2012 
 

[603] 

141 First presentation of hip 
pain to primary care, 

32% ACR hip OA 
criteria, 68% female, 

mean age 63 yrs, mean 
BMI 27.  

2D Shape measures 
of centre edge angle 

(acetabular shape) 

(C) 

THR vs no 
radiographic 

progression over 5 
years (L) 

Logistic 
regression 

High (76) 

Nicholls 2011 
 

268 100% women, mean 
age, 55yrs, mean BMI 

2D CAM deformity; 
mean modified 

Total hip replacement 
(L) 

Logistic 
regression 

High (71) 
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Author of 
studies 
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number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

[538] 66. 243 controls, 25 
cases of total hip 

replacement. 
Chingford Study 

triangular index 

height, alpha angle. 

Acetabular dysplasia;  
mean lateral center 

edge angle (C) 

Hip cross-sectional studies 

Chaganti 
2010 
[532] 

3529 10% ROA hip, 100% 
male, Mean age 78 
years. Cohort of the 

Study of Osteoporotic 
Fractures in Men 

Femoral neck BMD 
(C) DXA 

Hip ROA Modified 
croft score 

(categorical 0-4) (C) 

Linear regression High (64) 

Chiba 2011 
[215] 

47 ROA, 100% female, 
mean age 69 yrs 

Acetabular and 
femoral head 
subchondral 
trabecular 

morphometry: 
bone volume fraction, 
trabecular thickness, 
number, separation 

(CT) 

Hip joint space 
volume (CT) (C) 

Pearson’s 
correlation test. 

Low (57) 

Dawson 2013 
Abstract  

[556] 

161 142 asymptomatic hips 
without clinical OA, 19 

with hip OA. 56% 
female, mean age 

63yrs, mean BMI 27,  

Femoral head BMLs 
(MRI) (C) 

 
 

1. Presence of hip OA 
2.Femoral head 
cartilage volume 
(MRI) (C) 

Regression 
modelling 

Low (14) 

Gosvig 
2010 
[561] 

3620 Mean age 61yrs, 63% 
female, ROA hip 10.6%  
 (OA substudy - CCHS 

III) 

2D Categorical Hip 
deformity:  

1) Normal  
2)‘Pistol grip’ 
3) Deep acetabular 
socket 
(C) 

Presence of 
radiographic hip OA  

(JSW≤2mm) (C) 

Multivariate 
logistic 

regression 

Low (50) 
 

Maksymowych 2014 40 55% female, mean age Semi-quantitative Baseline WOMAC Univariable High (64) 
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Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

[576] 65yrs, symptomatic but 
not radiographic hip OA 

BML HIP 
(HOAMS) (C) 

pain (C) regression model 

Neumann 2007  
[542] 

100 Symptomatic hip OA Semi-quantitative 
BMLs (C) 

Semi-quantitative  
Cartilage lesions (C) 

Spearman’s 
correlations 

Low (43) 

Reichenbach 2011  
[529] 

244 Asymptomatic men 
(100%). Mean age 20 

yrs, mean BMI 23, 
Sumiswald cohort 

The presence or 
absence of any semi-

quantitative MRI-
defined CAM-

deformity 
(C)  

Combined femoral 
and acetabular 

cartilage thickness 
(C) 

Multivariable 
linear regression. 

& 
Wald test 

High (64) 

Antoniades 2000 
[534] 

 
 
 
 

1148 White female twins, 
29% hip RO 

A, 100% female, 
median age 53 yrs. St. 
Thomas’ UK Adult Twin 

Register (C) 

DXA BMD 
of the femoral neck of 
left (nondominant) hip 

with ROA  (C) 

Radiographic OA 
(croft Score) (C) 

Logistic 
regression 

High (64) 

Kumar 2013 
[573] 

85 Members of the public 
with 35% ROA hip, 48% 
female , mean age 56 
yrs (C) 

Total hip semi-
quantitative BML and 

subchondral cysts 
score (C) 

Self-reported hip pain 
HOOS score 

Non-parametric 
Spearman’s 
correlations 

High (71) 

Hand case-series studies 

Haugen 2014 
 [39] 

74 91% female, Mean age 
68 yrs 

BMLs – semi-
quantitative 

At 2nd to 5th IPJs (C) 

Progression of hand 
ROA (JSN, KL grade 
or new erosion) (L) 

Generalised 
estimating 
equations 

High (61) 

Haugen 2014 
Abstract [593] 

70 90% female, mean age 
68 yrs 

Sum scores (0-48) for 
BMLs (Oslo Hand OA 
MRI score) (C) IPJS  

AUSCAN pain scale 
(L) 

Linear regression High (61) 

Hand cross-sectional studies 

Haugen 2012 
Abstract [564] 

 
 

108 91% women, mean age 
69 years, 100% ROA 

hand Oslo hand 
osteoarthritis cohort 

BML (Oslo MRI hand 
score) (C) IPJs 

Radiographic JSN 
grade (OARSI atlas) 

(C) IPJs 

logistic 
regression 

with generalised 
estimating 
equations 

Low (43) 

Haugen  106 92% women, mean age BML, cyst, attrition, Hand KL grade of Generalised High (64) 
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Author of 
studies 

Patient 
number 

(n) 
 

Study demographics Subchondral bone 
feature assessed 
(method)  region 

Structural progression 
/ pain outcome 

(method) 
region 

Statistical 
analysis 

Quality 
(score%) 

2012 [565] 
 

69 years, 100% ROA 
Oslo hand osteoarthritis 

cohort 

osteophyte (Oslo MRI 
hand score) (C) 

IPJs 

IPJs (C) estimating 
equations 

Haugen 2012 [563] 
 

85 91% female, mean age 
69 years, 100% ROA 

hand. Oslo hand 
osteoarthritis cohort 

BML, cyst, attrition, 
osteophyte (Oslo MRI 

hand score) (C) 
IPJs sum scores 

AUSCAN pain scale 
(C) 

Linear regression High (64) 

Macfarlane 1993 
[552] 

 

35 100% ROA Hand, 91% 
female, mean age 

62yrs. Rheumatology 
clinic attenders 

Late phase isotope 
bone scan small 
joints of the hand 

(C) 

Hand Pain VAS (C) Kendall’s 
correlation 

Low (57) 

Ankle cross-sectional studies 

Knupp 2009 
[526] 

27 Symptomatic ankle 
varus or valgus 

deformities refractory to 
conservative therapy, 

37% female, mean age 
49 yrs.  

Late phase bone 
scintigraphy, semi-

quantitative retention 
scoring of tibiotalar 

joint (C) 

Tibiotalar ankle joint 
JSN. (Modified 

Takakura score) 
(C) 

 

Mann-Whitney 
Rank sum test 

Low (57) 

Kraus 2013 
[551] 

138 Symptomatic ankle OA 
(23%), ROA ankle 

(79%), 74% female, 
mean age 64yrs, mean 

BMI 31. POP 

Ipsilateral late phase 
bone scintigraphy, 

retention presence in 
tibiotalar joint (C) 

Tibiotalar ROA KL 
grade and JSN (C) 

Generalized 
estimating 
equations 

High (71) 

Australian/Canadian Osteoarthritis Hand Index (AUSCAN); Bone mineral density (BMD); Bone marrow lesion (BML); Boston Osteoarthritis 

of the Knee Study (BOKS), Boston–Leeds. Osteoarthritis Knee Score (BLOKS); a feature or outcome described in cross-section (C); 

Copenhagen City Heart Study (CCHS); Cohort hip and cohort knee (CHECK); knee pain on most days for at least the last month (chronic pain); 

Dual-energy X-ray absorptiometry (DXA); Genetics, Osteoarthritis and Progression study (GARP); GOAL (Genetics of Osteoarthritis and 

Lifestyle); Hip Osteoarthritis MRI scoring system (HOAMS); Hip dysfunction and Osteoarthritis Outcome Score (HOOS); interphalangeal 

joint (IPJ); joint space narrowing (JSN); joint space width (JSW); Kellgren Lawrence (KL); Knee Osteoarthritis Scoring System (KOSS); a 

feature or outcome described longitudinally (L); mechanical factors in arthritis of the knee 2 (MAK-2); patellofemoral joint (PFJ); quantitative 
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computed tomography (qCT); radiographic osteoarthritis (ROA); Michigan study of Women’s Health across the Nation (SWAN); Multicentre 

Osteoarthritis Study (most); osteoarthritis (OA); Osteoarthritis Initiative (OAI); Osteoarthritis Research Society International (OARSI); 

Strategies to Predict Osteoarthritis Progression (POP); Tasmanian Older Adult Cohort (TASOAC);  tibiofemoral joint (TFJ); Total hip 

replacement (THR); visual analogue scale (VAS); Western Ontario and McMaster Universities arthritis index (WOMAC); whole-organ 

magnetic resonance imaging score (WORMS). 
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3.4.4 Relationship between knee bone feature and structural 

progression  

The association of knee bone features with knee structural progression and 

joint replacement are described in Table 17, and Table 21. 

 

3.4.4.1 Knee bone marrow lesions: 

(31 cohort, 15 cross-sectional, four case-control) MRI 

In prospective cohorts with high quality, well-adjusted analyses the presence 

and increasing size of baseline BMLs and incidence of BMLs conferred 

greater odds of structural progression [100, 124, 294, 301, 587]. Similarly 

increasing baseline BML size increased the risk of total knee replacement 

(TKR) and expedited the outcome of TKR[103, 457, 540, 590]. The 

association of BMLs with structural progression was maintained in cohorts 

without clinical features of knee OA[301] and in analyses with poorer quality 

or statistical adjustment [123, 443, 478, 500, 527, 530, 579, 585, 586, 590-

592, 594, 598-601]. Only five low quality cohort analyses did not support 

these findings[417, 444, 596, 597, 602]. 

All cross-sectional analyses found positive correlations between BMLs and 

structural severity[133, 135, 312, 313, 319, 531, 535, 554, 555, 559, 562, 

567, 572, 574, 579]. Three case-control analyses found similar 

associations[525, 608, 609].   

Summary: BMLs are independently associated with knee structural 

progression, and incident TKR. 

 

3.4.4.2 Knee osteophytes:  

(Three cohort, eight cross-sectional) MRI 

In one prospective cohort with high quality and well-adjusted analysis, the 

increasing size of osteophytes conferred greater odds of structural 
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progression[589]. In lower quality inadequately adjusted, prospective 

cohorts, increasing osteophyte size increased the risk of incident TKR and 

structural progression[530, 541]. The increasing size and presence of 

osteophytes was associated with greater structural progression or severity in 

all included analyses[135, 312, 313, 319, 528, 530, 541, 555, 559, 560, 578, 

589].  

Summary: Osteophytes are independently associated with knee structural 

progression and associated with TKR incidence. 

 

3.4.4.3 Knee bone attrition:  

(One cohort, two cross-sectional, one case-control) MRI 

One prospective, well-adjusted, but below average quality cohort analysis 

found an association with baseline attrition severity and structural 

progression that became insignificant after covariate adjustment[478]. The 

unadjusted cross-sectional analyses and case-control analysis found similar 

associations with structural severity [135, 306, 307]. 

Summary: Bone attrition is associated but not independently associated with 

structural progression.  

 

3.4.4.4 Knee bone shape / dimension:  

(Eight cohort, seven cross-sectional, four case-control) MRI 

In prospective cohorts with high quality well-adjusted analyses, greater 

baseline tibial plateau bone area conferred greater odds of structural 

progression of OA and incidence of TKR [96, 261, 270, 588]. The same 

association was observed in a lower quality, prospective cohort, well-

adjusted analysis[584] and in a study of the knee in patients who 

predominantly had no radiographic evidence of knee OA[261]. The 

mismatch ratio of the femoral and tibial articulating areas was not associated 

with structural progression after adjustment[102], but the trochlear sulcus 

angle and shape was associated with cross-sectional patellofemoral 
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structural severity demonstrated on MRI[274, 569]. All cross-sectional [31, 

259, 483, 560] and case control [75, 269, 604, 605] analyses of tibial bone 

area or 3D knee bone shape found association with structural severity [31, 

75, 259, 269, 483, 560, 604, 605].  

Summary: Tibial bone area is independently associated with knee OA 

structural progression and incidence of TKR.  

 

3.4.4.5 Knee bone cyst:  

(Four cohort, five cross-sectional) MRI & CT 

Two prospective cohorts with well-adjusted but below average quality 

analyses of cysts reported no association with structural progression before 

or after adjustment[417, 478]. Two prospective cohorts with low quality 

unadjusted analyses of cysts found an association with structural 

progression[585, 601]. Cross-sectional well-adjusted [313]  and unadjusted 

[312, 315, 319, 539] cyst analyses found an association with structural 

severity.    

Summary: There is no independent association of cysts with structural 

progression after covariate adjustment.  

 

3.4.4.6 Knee trabecular bone morphometry:  

(One cohort, five cross-sectional) MRI 

One prospective cohort, unadjusted, below average quality analysis reported 

increasing bone volume fraction, trabecular number and thickness and 

decreasing trabecular spacing were associated with structural 

progression[548]. The same bone changes were associated with structural 

severity in cross-sectional unadjusted analyses[206, 349, 350, 545, 546].  

Summary: Increasing bone volume fraction, trabecular number, trabecular 

thickness, and decreasing trabecular spacing are associated with knee 

structural progression and severity. 
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3.4.4.7 Knee peri-articular bone mineral density: 

(Three cohort, four cross-sectional one case control) DXA and CT 

Two prospective cohorts with well-adjusted but below average quality 

analyses reported increasing tibial subchondral bone mineral density was 

associated with structural progression[209, 210]. In one prospective cohort 

with an unadjusted below average quality analysis, the medial to lateral ratio 

of tibial peri-articular bone mineral density (BMD) was associated with 

structural progression[548]. All of the cross-sectional analyses[206, 208, 

533, 547], including two well-adjusted analyses[208, 547], reported 

increasing BMD with greater structural severity. One well-adjusted analysis 

using quantitative CT (qCT) reported higher and lower BMD in the anterior 

and posterior tibial plateau respectively, of knees with moderate OA relative 

to asymptomatic controls.  

Summary: Increasing peri-articular radiographic BMD is associated with 

structural progression and severity.  

 

3.4.4.8 Knee scintigraphy: 

(Three cohort, two cross-sectional) 

Prospective cohorts with high quality analyses found greater late-phase 

bone signal was associated with structural progression, with no or 

inadequate covariate adjustment[536, 537], but not after adequate covariate 

adjustment[536]. A prospective cohort, with below average quality, 

unadjusted analysis found greater bone signal was associated with structural 

progression[216]. Bone signal was associated with structural severity in well-

adjusted and unadjusted cross-sectional analyses[550, 553]. 

Summary: Bone scintigraphy signal is associated, but not independently 

associated, with structural progression.   
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3.4.4.9 2D knee bone shape 

One cross-sectional, well-adjusted analysis identified an association of 

enlarging femoral and tibial bone width and elevating tibial plateau with 

greater structural severity[276]. 

Summary: 2D bone shape is associated with structural severity 

 

3.4.5 Relationship between knee bone features and pain  

The association of knee bone features with knee pain are described in Table 

18 and Table 21. In all types of study, bone features were compared with the 

presence, chronicity and severity of pain. In longitudinal studies, features 

were also compared with change in the presence or severity of pain (e.g. 

change in WOMAC pain score). Change in the presence of pain included 

developing new frequent pain, [545], or the resolution of existing pain.  

 

3.4.5.1 Knee bone marrow lesions:  

(Nine cohort, 18 cross-sectional, five case-control) MRI 

In three prospective cohort, well-adjusted, high quality analyses the baseline 

or longitudinal increase in size of BMLs was associated with longitudinally 

increasing knee WOMAC pain severity[99-101]. This association was 

maintained in one[530] but not two[600, 602] similar prospective cohort, 

unadjusted, lower quality analyses. Baseline BML size in the lateral but not 

the medial tibiofemoral joint was associated with incident frequent knee pain 

in a prospective cohort, well-adjusted, high quality analysis[456]. 

Longitudinally increasing BML size was associated with incident frequent 

knee pain in a similar but inadequately adjusted analysis of below average 

quality[26]. In cross-sectional studies the size or presence of BMLs were 

inconsistently associated with the presence of a heterogenous range of pain 

measures, irrespective of adequate covariate adjustment[131, 133, 135, 

312, 319, 456, 531, 544, 557-559, 567, 570, 571, 575, 577, 581, 582].  
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Summary: BMLs are independently associated with longitudinally increasing 

pain severity and are associated with incident frequent knee pain.  

 

3.4.5.2 Knee osteophytes:  

(One cohort, eight cross-sectional, one case-control) MRI 

One prospective cohort, unadjusted, below average quality analysis reported 

increasing baseline osteophyte size was associated with increasing 

WOMAC pain severity[530]. In well-adjusted cross-sectional analyses, 

osteophyte size was associated with the presence[571] but not severity of 

pain[580]. In unadjusted cross-sectional analyses osteophytes were 

inconsistently associated with a heterogenous range of pain measures[135, 

312, 319, 557, 559, 566]. 

Summary: Osteophytes are associated with longitudinally increasing pain 

severity and the cross-sectional presence of pain.     

 

3.4.5.3 Knee bone attrition: 

(Zero cohort, two cross-sectional, one case-control) MRI 

Cross-sectional analyses found greater attrition was associated with greater 

pain severity, without covariate adjustment[135, 139], but not after adequate 

covariate adjustment[139]. An unadjusted case-control analysis found an 

association of attrition and prevalent pain[606]. 

Summary: Bone attrition is associated but not independently associated with 

pain severity.  

 

3.4.5.4 Knee bone shape / dimension: 

(One cohort, one cross-sectional) MRI 

One prospective, well-adjusted, high quality analysis found the femoro-tibial 

articulating surface mismatch was associated with incident frequent knee 
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pain[102]. One unadjusted cross-sectional analysis found the irregularity of 

the femoral condyle surface was associated with knee pain severity[543].  

Summary: Specific features of bone shape are independently associated 

with incident frequent knee pain and also severity.  

 

3.4.5.5 Knee bone cyst:  

(One cohort, five cross-sectional, two case-control) MRI 

One prospective cohort, unadjusted, low quality analysis found no 

association between bone cyst size and increasing WOMAC pain[530]. In 

mostly unadjusted cross-sectional[135, 312, 319, 566, 571] and case control 

analyses[606, 607] of heterogenous cyst measures and pain measures, an 

association between cysts and pain was inconsistently found.  

Summary: Bone cysts may not be associated with longitudinal pain severity 

and a cross-sectional association with pain is uncertain. 

 

3.4.5.6 2D knee bone shape: 

One inadequately adjusted cross-sectional analysis found an association 

between the elevation of the lateral tibial plateau and pain severity[276].  

Summary: 2D lateral tibial bone shape is associated with cross-sectional 

pain severity. 

 

3.4.6 Relationship between hand bone feature and structural 

progression  

The association of hand bone features with hand structural progression are 

described in Table 19 and Table 21. 

3.4.6.1 Hand bone marrow lesions:  

(One case series, two cross-sectional) MRI 
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One well-adjusted, high quality analysis of a prospective OA case series, 

found that increasing BML number and size in the interphalangeal joints at 

baseline conferred greater odds of structural progression[39]. Two adjusted 

cross-sectional analyses found increasing BML number and size scores 

were associated with increasing structural severity[564, 565].  

Summary: BMLs are independently associated with hand structural 

progression.  

 

3.4.6.2 Hand osteophytes bone attrition and cysts: 

One cross-sectional, adjusted analysis found greater MRI attrition or MRI 

osteophyte number and size was associated with greater structural 

severity[565]. However greater MRI cyst presence was not associated with 

greater structural severity[565]. 

 

Summary: Osteophytes and attrition, but not cysts, are associated with hand 

structural severity. 

 

3.4.7 Relationship between hand bone feature and pain  

The association of hand bone features with hand pain are described in Table 

20and Table 21. 

 

 3.4.7.1 Hand bone marrow lesions:  

(One case series, one cross-sectional) MRI 

One well-adjusted, high quality analysis of a prospective OA case series, 

found that BML number and size at baseline was not associated with 

longitudinal change in hand pain[593]. One adjusted cross-sectional analysis 

found no association of BMLs with pain severity[563].  



- 200 - 

200 

 

Summary: BMLs are not independently associated with longitudinal or cross-

sectional pain severity. 

 

3.4.7.2 Hand osteophytes, bone attrition and cysts: 

One cross-sectional, adjusted analysis found no association between the 

features, MRI osteophytes, attrition or cysts, and pain severity[563].  

Summary: Osteophytes, attrition and cysts are not associated with hand pain 

severity. 

 

3.4.7.3 Hand scintigraphy 

(One cross-sectional): 

One cross-sectional unadjusted analysis found no significant association 

between bone signal of the hands and pain severity. 

Summary: Bone scintigraphy signal is not associated with hand pain severity 

 

3.4.8 Relationship between hip bone feature and structural 

progression  

The association of hip bone features with hip structural progression and joint 

replacement are described in Table 19 and Table 21. 

 

3.4.8.1 Hip bone marrow lesions:  

(Two cross-sectional) MRI 

One well-adjusted [556] and one unadjusted [542] cross-sectional analysis 

both found that BMLs were associated with greater structural severity.    

Summary: BMLs are associated with hip structural severity 

 

3.4.8.2 Hip trabecular bone morphometry:  
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One unadjusted cross-sectional analysis found greater MRI bone volume 

fraction, trabecular thickening, trabecular number and lower trabecular 

spacing were associated with greater structural severity[215]. 

Summary: Bone volume fraction, trabecular thickening, number and spacing 

are associated with hip structural severity 

 

3.4.8.3 Hip peri-articular bone mineral density: 

(Two cross-sectional) DXA 

One well-adjusted [532] and one adjusted[534]cross-sectional analysis 

found greater BMD was associated with greater structural severity. 

Summary: BMD is associated with structural severity of the hip.  

 

3.4.8.4 2D and 3D hip bone shape 

(Three cohort, two cross-sectional, three case-control)  

In two prospective cohort, well-adjusted, high quality analyses an increasing 

asphericity of the femoral head (measured as an elevated alpha angle, or in 

shape modes 11 and 15) was associated with total hip replacement 

(THR)[583] or with structural progression and THR[74] respectively. In one 

prospective cohort, well-adjusted, high quality analysis acetabular 

undercoverage of the femoral head (a low centre edge angle) was 

associated with structural progression or THR[394].In one well-adjusted 

cross-sectional analysis, 2D asphericity deformity of the femoral head (cam-

type deformities) was associated with structural severity[561]. In one well-

adjusted cross-sectional analysis of MRI-determined femoral head 

asphericity in asymptomatic young men, there was a significantly lower 

cartilage thickness between those with than those without any detectable 

asphericity. This became insignificant after covariate adjustment[529]. Case-

control analyses identified the same associations as the cohort 

analyses[282, 538, 603]. 
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Summary: Asphericity of the femoral head and acetabular undercoverage of 

the femoral head are independently associated with structural progression 

and THR. 

 

3.4.9 Relationship between hip bone feature and pain  

The association of hip bone features with hip pain are described in Table 20 

and Table 21. 

 

3.4.9.1 Hip bone marrow lesions:  

(Two cross-sectional) MRI 

Two cross-sectional, unadjusted analyses found that increasing semi-

quantitative BML scores were associated with greater pain severity[573, 

576]. Summary: BMLs are associated with hip pain severity.  

 

3.4.9.2 Hip bone cyst:  

One cross-sectional, unadjusted analysis found that increasing MRI semi-

quantitative cyst scores were associated with greater pain severity[573].  

Summary: Cysts are associated with hip pain severity. 

 

3.4.10 Relationship between ankle bone features and structural 

progression 

The association of ankle bone features with ankle structure are described in 

Table 19 and Table 21. 

 

3.4.10.1 Ankle scintigraphy  

(Two cross-sectional)  



- 203 - 

203 

 

One well-adjusted[550] and one unadjusted[553] cross-sectional analysis 

found the presence or semi-quantitative scoring of late phase bone signal in 

the tibiotalar joint was associated with greater structural severity. 

Summary: Bone scintigraphy signal is associated with ankle structural 

severity.  
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Table 17 Knee Structural associations by feature and quality grade 

Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

MRI bone marrow lesion – cohorts 

Felson 
2003  
[294] 

Baseline 
presence of 

BML in 
medial or 

lateral TFJ 
(C) 

OARSI JSN 
grade 

progression of 
TFJ (L) 

Age, sex, and BMI NR OR 6.5 
CI 95%(3.0, 14.0) 

+ 
 

High (83) 

Dore 
2010[99] 

 
 

Baseline 
semi-

quantitative 
MRI BML 

size (C) TFJ 

Incident TKR 
over 5 years 

(L) 
 

Age, sex, BMI, 
knee baseline pain, 

leg strength, 
cartilage defects, 
tibial bone area, 

ROA 

OR (95% CI) 
2.04 (1.55 to 2.69) 

p<0.01 

OR (95% CI)  
2.10 (1.13 to 3.90) 

p=0.019 

+ High (64) 

Driban 
2013 
[100] 

Knee 
baseline BML 

volume (C) 
BML volume 

48 month 
change (L) 

(TFJ) 

48 month 
change in 

OARSI JSN 
grade  (L) 

(TFJ) 

Age, sex, BMI NR Baseline BML Volume 
OR 1.27 (95% CI 1.11 

to 1.46) 
BML volume regression 
OR 3.36 (95% CI 1.55 

to 7.28) 

+ High (61) 

 Davies-Tuck  
2010  

[301] 

Incident BML 
(new BML 

after 2 years 
with no BMLs 
at baseline) 
MRI TFJ (L) 

Progression in 
semi-

quantitative 
MRI cartilage 
defects score 
after 2 years. 

TFJ  (L) 

Age, gender, BMI, 
baseline cartilage 

volume 

OR (95% CI) 
Medial TFJ 

1.86 (0.70 to 4.93) 
p=0.21 

 
Lateral TFJ 

3.0 (1.01 to 8.93) 
p=0.05 

OR (95% CI) 
Medial TFJ 

2.63 (0.93 to 7.44) 
p=0.07 

 
Lateral TFJ 

3.13 (1.01 to 9.68) 
p=0.05 

+ 
Association in 
the lateral TFJ 
and a trend in 
the medial TFJ 

High (61) 

Hochberg 
2014 

 
[540] 

Semi-
quantitative 

MRI baseline 
femoral 

condyle BML 
size (C) 

Incident TKR 
over 6 years 

(L) 
 

Age, gender, BMI, 
race, marital 

status, depressive 
symptoms, quality 
of life, mechanical 

pain, KL grade, 

Medial TFJ 
p<0.0001 

Medial TFJ 
p=0.02 

+ High (61) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

clinical effusion. 

Raynauld 
2011 
[457] 

Baseline 
semi-

quantitative 
BML score 

(C) TFJ 

Incidence of 
TKR over 3 
years (L) 

Age, sex, BMI, 
JSW, WOMAC,  

NR OR (95%CI) 
BML medial plateau 
1.81 (1.08 to 2.03) 

p=0.025 

+ High (61) 

Raynauld 
2013 
[103] 

Baseline 
semi-

quantitative 
BML 

WORMS 
score (C) 

medial TFJ 

Incident TKR 
(L) 4 year 
follow up 

 
Time to TKR 

(L) 

Age, BMI, gender 
WOMAC, CRP 

NR TKR incidence 
OR (95% CI) 

2.107 (1.26 to 3.54) 
p=0.005 

Time to TKR incidence 
Hazard ratio (95%CI) 

2.13 (1.38 to 3.30) 
p= 0.001 

+ High (61) 

Crema 
2014  
[587] 

MRI BML 
(semi-

quantitative) 
(C) all 

regions 

Cartilage loss 
(semi-

quantitative) 
(L) 

(all regions) 

Age, gender, BMI NR β=0.37-0.64 
p<0.001 

+ 
 

High (56) 

Guermazi 
2014 

Abstract 
[124] 

Baseline 
semi-

quantitative 
BML score 

WORMS (C) 

Cartilage 
thickness loss 

over 30 
months (L) 

Age, sex, body 
mass index, and 

anatomical 
alignment axis 

(degrees). 

NR Combined BML score 
in the  medial and 

lateral TFJ 
compartment 

OR 1.9 95%CI (1.1-3.3) 

+ High (56) 

Scher 
2008 
[579] 

Presence of 
any baseline 

semi-
quantitative 
MRI BMLs 

(C) 

Incident TKR 
(L) over 3 

years 

Age NR OR (95% CI) 
8.95 (1.49 to 53.68) 

p=0.02 

+ High (56) 

Sowers 
2011[530] 

Semi-
quantitative 
MRI BML, 

size 
in TFJ (C) 

Progression in 
KL grade 

(11 year follow 
up) (L) 

 

Nil R (CI 95%) Medial 
tibia   ~ 0.46 (0.35 to 

0.55) 
Lateral tibia ~0.23 

(0.13 to 0.33) 

NR + Low (53) 

Kothari  Semi- Semi- Age, sex, BMI, OR 4.04 OR 3.75 + Low (50) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

2010[478] quantitative 
baseline MRI 

BML, 
(WORMS) 

(C) TFJ 

quantitative 
cartilage 

defect score 
change over 2 

years 
(WORMS) (L) 

TFJ. 

other bone lesions CI 95% (2.25 to 7.26) CI 95% (1.59 to 8.82) 

Raynauld 
2008 
[599] 

Change in 
BML size 

(mm) at 24 
months in 

medial TFJ 
(L) 

Medial 
cartilage 

volume (L) at 
24 months in 
medial TFJ 

Age, gender, BMI, 
meniscal extrusion 
and tear, pain and 

bone 
lesions at baseline, 

NR Change in BML size 
with femoral cartilage 

volume loss 
β=-0.31 

standard error (0.08) 
p=0.0004 

- 
Larger medial 

BML size 
means more 
cartilage loss 

in medial 
compartment 

Low (50) 

Roemer 
2009  

 
[443] 

Change in 
MRI semi-

quantitative  
BML size  
(WORMS) 
(L) TFJ and 

PFJ 

Progression in 
semi-

quantitative 
cartilage 
defects in  
(WORMS) 

over 30 
months (L) 

TFJ and PFJ 

Age, sex, BMI, 
baseline KL grade 

NR OR (95%CI) 
Incident BML OR 3.5 

(2.1 to 5.9) 
Progression of BML 2.8 

(1.5 to 3.2) 
Resolution of BML OR 

0.9 (0.5 to 1.6) 
Stable BML OR 1.0 

(reference) 

+ Low (50) 

Dore 
2010  

 
[590] 

Baseline 
semi-

quantitative 
BML severity 
(C) (medial 
and lateral 

TFJ) 
 

Ipsi-
compartmental 

annual 
Cartilage 

volume loss 
(L) 

Age, sex, BMI, 
meniscal damage 

 
NR 

Baseline 
BML severity 

β= -22.1 to      -42.0, for 
all regions 
(p <0.05) 

- 
Bigger BML 

means bigger 
volume loss 

Low (50) 

Parsons 
2014 

Abstract 
[598] 

Baseline 
Semi-

quantitative 
BML score 

(C) 

Annual TFJ 
JSN (L) 

Age, sex, baseline 
KL grade 

NR β=-0.10 (95%CI) 
(-0.18 to 
-0.02) 

+ Low (50) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

Wildi 
2010 
[602] 

 

24 month 
regional 

change in 
TFJ BML 

score 
WORMS  (L) 

24 month 
regional 

change in 
cartilage 

volume (L) 

nil R correlation 
coefficients all <0.07 
p>0.367 for all three 
compartments at 24 

months 

NR NC 
 

Low (50) 

Pelletier 
2007[123] 

Regional 
Semi-

quantitative 
baseline BML 
score (medial 

or lateral 
TFJ) (C) 

Regional 
Cartilage 

volume over 
24 months 
(medial or 

lateral TFJ) (L) 

NR Lateral compartment 
BML score 

Β=-0.31, p=0.001 

NR -  
 

Low (50) 

Driban 
2011[591] 

 

Baseline 
BML volume 
(C) and 24 

month 
change in 

BML volume 
(L) in  TFJ 

compartment
s 

24 month 
change in full 

thickness 
cartilage lesion 

area (L) 

Age, sex, body 
mass index 

NR Baseline BML volume  r 
= 0.48 (95% CI) (0.20 

to 0.69) 
p < 0.002 

+  
Baseline femur 
BML volume 
with loss in 

ipsicompartme
ntal full 

thickness 
cartilage lesion 

area. 

Low (50) 

Tanamas 
2010 
[600] 

 

Baseline 
semi-

quantitative 
MRI BML 

size (C) TFJ 

Cartilage 
volume 

change over 2 
years (L) TFJ 

 
Incident TKR 
over 4 years    

 

Age, sex, BMI, 
baseline tibial 

cartilage volume 
and bone area 

R (CI 95%) 
Total cartilage loss 
0.61 (-0.11 to 1.33) 

 
OR (CI 95%) 
Incident TKR 

1.55 (1.04 to 2.29) 
p=0.03 

R (CI 95%) 
Total cartilage loss 

1.09 
(0.24, 1.93) 

 
OR (CI 95%) 
Incident TKR 

1.57 (1.04 to 2.35) 
p=0.03 

+ 
  

Low (50) 

Madan-
Sharma 

2008 
[417] 

Baseline MRI 
semi-

quantitative 
BML (C) TFJ 

OARSI medial 
TFJ JSN grade 

progression 
over 2 years 

(L) TFJ 

Age, sex, BMI, 
family effect 

NR 0.9 RR 
CI 95% (0.18 to 3.0) 

NA Low  (47) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

Tanamas 
2010  

 

[601] 

Semi-
quantitative 
change  in 
MRI BML 

severity (C) 

Incident TKR 
over 4 years 

(L)  
 

Age, gender, KL 
grade 

OR (CI 95%) 
Medial TFJ  

1.72 
(0.93 to 3.18) 

p=0.08 
Lateral TFJ 

0.95 (0.48 to 1.88) 
p=0.89 

OR (CI 95%) 
Medial TFJ  

1.99 
(1.01 to 3.90) 

p=0.05 
Lateral TFJ 

0.96 (0.48 to 1.94) 
p=0.91 

+ 
Association in 
the medial TFJ 
but not in the 
lateral TFJ 

Low (47) 

Roemer 
2012 

 
[500] 

 

Semi-
quantitative 

BML 
(WORMS) 

TFJ and PFJ 
(C) 

Semi-
quantitative 

cartilage score 
6-month 

progression 
TFJ and PFJ 

(L) 

Age, sex, 
treatment, 
and BMI. 

NR BML TFJ OR 4.74 
95%CI (1.14 to 19.5) 

p=0.032 
BML PFJ OR 1.63 

(0.67 to 3.92) 

+ 
BMLs and 

cartilage score 
correlate 

Low (44) 

Crema  
2013 

 
[586] 

MRI Incident 
BML 

(WORMS) 
TFJ 
(L) 

Progressive 
(30 month) 

semi-
quantitative 

cartilage 
defect 

(WORMS) TFJ 
(L) 

Age, sex, BMI, 
malalignment, 

meniscal disease 

NR OR (CI 95%) 
Medial TFJ 7.6 

(5.1 to 11.3) 
Lateral TFJ 

11.9 (6.2 to 23.0) 

+ Low (44) 

Hernande
z-Molina 

2008[594] 
 
 

Crude 
presence of 

central BMLs  
on MRI (C) 

TFJ 

Semi-
quantitative 
Cartilage 

defect 
(WORMS) (L) 

TFJ 

Alignment, 
BMI, KL grade, 
sex, and age. 

NR Medial TFJ Cartilage 
loss 

OR 6.1 
CI 95% (1.0, 35.2) 

+ Low (44) 

Koster 
2011 

[527] 

Baseline 
BML 

presence (C) 
TFJ 

Any 
progression in 
KL grade over 
1 year (L) TFJ 

Age, BMI OR (95% CI) 
6.01 (1.92 to 18.8) 

p=0.002 

OR (95% CI) 
5.29 (1.64 to 17.1) 

p=0.005 
 

+ Low (44) 

Hunter 
2006[596] 

Change in 
MRI   semi-
quantitative 

Change in 
semi-

quantitative 

Limb alignment Ipsilateral cartilage 
loss 

β= 0.65 

Ipsilateral cartilage loss 
β= 0.26 
p=0.16 

NA after 
adjustment 

Low (44) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

BML score 
(L) TFJ 

cartilage 
defect score 

(WORMS) (L) 
medial or 

lateral TFJ 

p=0.003 
Contralateral cartilage 

loss 
β= -0.27 
p=0.22 

 

Contralateral cartilage 
loss 

β= -0.16 
p=0.52 

 

Roemer 
2009 
[444] 

 

Baseline MRI 
BML crude 
presence or 

absence 
(WORMS) 

(L) TFJ 

Semi-
quantitative 

cartilage 
defect 

progression 
over 30 
months 

(WORMS) (L) 
TFJ 

Age, sex, race, 
BMI, alignment 

OR (CI 95%) 
Slow cartilage loss 

OR 1.74 (0.85 to 3.55) 
Fast cartilage loss OR 

1.32 (0.37 to 4.78) 

OR 
(CI 95%) 

Slow cartilage loss OR 
1.79 (0.83 to 3.87) 

Fast cartilage loss OR 
1.0 (0.24 to 4.10) 

NA Low (44) 

Kubota 
2010 
[597] 

MRI BML 
semi-

quantitative 
volume score 
change over 
6 months (L) 

TFJ 

KL grade 
progression 

over 6 months 
(L) TFJ 

Nil BML score higher in 
KL progression group 

p=0.044 

NR NC Low (39) 

Driban 
2012 

abstract 
[592] 

 

MRI BML 
volume 

change (L) 
TFJ over 24 

months 
 

Change in 
cartilage 

thickness and 
denuded area 

of bone (L) 
TFJ over 24 

months 

Nil Cartilage thickness 
r= -0.34, p=0.04 
denuded bone 
r=0.42, p=0.01 

Femoral cartilage 
indices p>0.05 

NR + Low (28) 

Carrino  
2006[585] 

 

Crude 
presence of 
MRI BML, 

TFJ (C) and 
(L) 

Any grade of 
cartilage 

defect TFJ (C) 
& (L) 

Nil NR NR + Low (22) 

MRI bone marrow lesion  - cross-sectional studies 

Baranyay MRI BML MRI semi- Age, gender, BMI, OR (95% CI) OR (95% CI) + High (71%) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

2007  
[554] 

defined as 
large or not 

large / absent 
in the medial 
and lateral 

compartments 
of TFJ 

(C) 

quantitative 
cartilage 

defects of 
medial and 

lateral 
compartments 

of TFJ (C) 
 

Quantitative 
Cartilage 

volume medial 
and lateral TFJ 

(C) 

cartilage volume or 
bone area 

Cartilage defect 
Medial TFJ 

1.81 (1.26 to 2.59) 
p=0.005 

 
Lateral TFJ 

1.52 (1.14 to 2.04) 
p=0.005 

 
No association with 
ipsicompartmental 
cartilage volume 

Cartilage defect Medial 
TFJ 

1.80 (1.21 to 2.69) 
p=0.004 

 
Lateral TFJ 

1.45 (1.02 to 2.07) 
p=0.04 

 
No association with 
ipsicompartmental 
cartilage volume 

Cartilage 
defects 

 
NA  

Cartilage 
volume 

Guymer 
2007 
[535] 

Presence or 
absence of 
MRI BMLs 

(C) TFJ 

Presence or 
absence of 

semi-
quantitative 

cartilage 
defects 
(C) TFJ 

age, height, weight, 
and tibial cartilage 

volume 

OR (95% CI) 
Medial TFJ 

6.46 (1.04 to 38.39) 
p=0.04 

 
Lateral TFJ 

1.17 (0.22 to 6.26) 
p=0.85 

OR (95% CI) 
Medial TFJ 

3.51 (1.08 to 11.42) 
p=0.04 

 
Lateral TFJ 

1.02 (0.17 to 6.12) 
p=0.98 

+ 
A positive 

association is 
observed in 

the medial but 
not the lateral 

TFJ 

High (71) 

Stehling 
2010  
[313] 

Presence of 
any MRI 

semi-
quantitative 
BMLs (C) 

Presence of 
any WORMS 
MRI cartilage 
defects (C) 

age, gender and 
BMI, KL score, 

knee injury or knee 
surgery,  family 

history of TKR and 
Heberden's nodes 

NR p<0.0001 + High (71) 

Torres 
2006[135] 

MRI BML 
(WORMS) 

(C) TFJ and 
PFJ 

Semi-
quantitative 

cartilage 
(WORMS) (C) 

Nil R=0.56 NR + High (68) 

Ip 2011 
[567] 

Semi-
quantitative 

MRI BML (C) 

KL grade (C) Age, sex, BMI, OA 
stage, joint 

effusion, and 
meniscal damage 

NR Highest BML score 
p < 0.001 

+ High (68) 

Hayes  Semi- KL grade (C) Nil p=0.005 NR + High (61) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

2005[312] quantitative 
MRI BML (C) 

Kornaat 
2005 
[572] 

Semi-
quantitative 
MRI BML 
(KOSS) 

TFJ and PFJ 
(C) 

Semi-
quantitative  

cartilage 
defects 

(KOSS) TFJ 
and PFJ (C) 

Nil OR (95% CI) 
PFJ 

17 (3.8 to 72) 
TFJ 

 120 (6.5 to 2,221) 

NR + Low (57) 

Gudbergs
en 2013 

[562] 

Semi-
quantitative 
MRI BML 

(BLOKS) (C) 

KL grade (C) Nil KL grade 
p=0.046 lateral 
p<0.001 medial 

NR + Low (57) 

Link  2003 
[319] 

Semi-
quantitative 
MRI BML, 

(C) 

KL grade (C) Nil p<0.05 NR + Low (54) 

Sowers 
2003 
[531] 

Semi-
quantitative 

MRI BML (C) 

Semi-
quantitative 

cartilage 
defect (C) 

Nil p for trend 
p<0.0001 

NR + Low (54) 

Felson 
2001 
[133] 

Semi-
quantitative 
MRI BMLs 

(C) 

KL grade 
(C) 

Nil NR NR + Low (54) 

Lo 
2005[574] 

Semi-
quantitative 
MRI BML 

(WORMS≥1) 
(C) 

KL grade≥2 
(C) 

Nil NR NR + Low (50) 

Meredith 
2009  
[555] 

Sum of semi-
quantitative 

MRI 
BML scores 
in the TFJ 

and PFJ (C) 

Sum of semi-
quantitative 

MRI 
cartilage 

defect  scores 
in the TFJ and 

PFJ (C) 

Nil p<0.0003 NR + Low (50) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

Fernande
z-Madrid 

1994 
[559] 

Crude 
presence of 
MRI BMLs 

(C) 

KL grade (C) Nil P<0.001 NR + Low (46) 

Scher 
2008[579] 

 

Semi-
quantitative 

MRI BML (C) 

Semi-
quantitative 

cartilage 
defect 

(modified 
Noyes) (C) 

Nil p=0.012 NR + Low (43) 

MRI bone marrow lesion  - case control studies 

Ratzlaff 
2014  
[608] 

Total tibial 
BML volume 
12 and 24 

months before 
TKR and 
interval 
change 

between 12 
and 24 (C) 
and (L) TFJ 

Incident TKR 
(L)  

NB matched cases 
and controls  

OR (95%CI) 
12 mnths (C) 

1.68 (1.33 to 2.13) 
 

24 mnths (C) 
1.35 (1.02 to 1.78) 

 
12 to 24 mnths 

change (L) 
1.23 (1.03 to 1.46) 

NR + 
True of TFJ 
but not PFJ 

High (65) 

Zhao 
2010  
[609] 

Baseline 
crude 

presence of 
MRI BMLs at 

(C) TFJ 

Overlying 
cartilage 
defect 

progression 
after one year 
(WORMS) (L) 

TFJ 

Nil Change in cartilage 
defect scores for 
areas with  and 

without underlying 
BMLs 

p=0.00003 

NR + Low (56) 

Aitken 
2013 

Abstract 
[525] 

Semi-
quantitative 
BMLs tibia, 

femur & 
patella 

Cartilage 
volume and 
defect score 

tibia and femur 

Age, Sex, BMI NR Tibial cartilage volume  
β=-433mm3 per unit 

increase in BML 
p<0.01 

- Low (47) 

Stahl 
2011[442] 

Semi-
quantitative 
MRI BML 

Semi-
quantitative 

cartilage 

Nil NR p>0.165 NA Low (47) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

size 
(WORMS) 

(L) TFJ 

defect size (L) 
TFJ 

MRI osteophyte – cohort studies 

De-Lange 
2014  

abstract 
[589] 

Semi-
quantitative 
osteophyte 

(KOSS) 
(C) 

Radiographic 
progression of 
JSN of TFJ(L) 

age, gender, BMI 
and 

baseline JSN 

NR OR (95%CI) 
1.8(1.1–3.1) 

+ 
Higher OST 
score, the 

higher the JSN 

High (61) 

Liu 2014  
Abstract 

[541] 

Baseline 
Semi-

quantitative 
osteophyte 

score 
(WORMS) 

(C) TFJ 

Incident TKR 
at 6 months 
follow up (L)  

Activity of daily 
living Disability 

score 

NR RR (95%CI) 
3.01 (1.39 to 6.52) 

 

+ Low (50) 

Sowers 
2011[530] 

Semi-
quantitative 

MRI 
osteophyte 

size 
in TFJ (C) 

Progression in 
KL grade 

(11 year follow 
up) (L) 

 

Nil R (CI 95%) Medial 
tibia   ~ 0.65 (0.59 to 

0.71) 
Lateral tibia ~0.57 

(0.49 to 0.63) 

NR + Low (53) 

MRI osteophyte – cross-sectional studies 

Stehling 
2010 
[313] 

Presence of 
any MRI 

semi-
quantitative 
osteophytes 

(C) 

Presence of 
any WORMS 
MRI cartilage 
defects (C) 

age, gender and 
BMI, KL score, 

knee injury or knee 
surgery,  family 

history of TKR and 
Heberden’s nodes 

NR p=0.0037 + High (71) 

Torres  
2006[135] 

MRI 
osteophyte,  
(WORMS) 
TFJ & PFJ 

(C) 

Semi-
quantitative 

cartilage 
(WORMS) TFJ 

& PFJ (C) 

Nil R=0.73 NR + High (68) 

Hayes Semi- KL grade (C) Nil p<0.001 NR + High (61) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

2005[312] quantitative 
MRI 

osteophyte 
(C) 

Meredith 
2009  
[555] 

Sum of semi-
quantitative 

MRI 
Osteophyte 
scores in the 
TFJ and PFJ 

(C) 

Sum of semi-
quantitative 

MRI 
cartilage 

defect  scores 
in the TFJ and 

PFJ (C) 

Nil p<0.0001 NR + Low (50) 

McCauley 
2001 
[528] 

MRI central 
osteophyte 

presence (C) 
TFJ 

MRI cartilage 
lesion 

presence (C) 
TFJ 

Nil Crude association of 
32 of 35 central 

osteophytes having 
adjacent cartilage 

lesions 

NR + 
Crude, 

unadjusted 

Low (29) 

Roemer 
2012[578] 

 

MRI 
osteophyte 
(WORMS) 

(C) 

Cartilage 
defect 

(WORMS) (C) 

Age, sex, BMI, 
race, TFJ 

radiographic OA 

OR 2378.1 
CI 95% (249.8, 

22,643.4) 

OR 108.8 
CI 95%(14.2, 834.9) 
p for trend<0.0001 

+ Low (57) 

Link  2003 
[319] 

Semi-
quantitative 

MRI 
osteophytes 

(C) 

KL grade (C) Nil p<0.01 NR + Low (54) 

Fernande
z-Madrid 

1994 
[559] 

Crude 
presence of 

MRI 
osteophytes 

(C) 

KL grade(C) Nil P<0.001 NR + Low (46) 

MRI bone attrition – cohort studies 

Kothari  
2010[478] 

Semi-
quantitative 

baseline MRI 
attrition 

Semi-
quantitative 

cartilage 
defect score 

Age, sex BMI, 
other bone lesions 

OR 3.17 
CI 95%(1.64 to 6.16) 

OR 1.85 
CI  95% (0.71 to 4.82) 

NA Low (50) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

(WORMS) 
(C) TFJ 

change over 2 
years 

(WORMS) (L) 
TFJ. 

MRI bone attrition – cross-sectional studies 

Torres 
2006[135] 

MRI  attrition 
(WORMS) 
TFJ & PFJ 

(C) 

Semi-
quantitative 

cartilage 
(WORMS) TFJ 

& PFJ (C) 

Nil R=0.75 NR + High (68) 

Reichenb
ach 

2008[306] 

Semi-
quantitative 
MRI Bone 

attrition 
(WORMS) 

(C) 

KL grade and 
semi-

quantitative 
cartilage 
defects 

(WORMS) (C) 

Nil NR 
Crude correlation 

NR + Low (43) 

MRI bone attrition –case control studies 

Neogi  
2009[307] 

Baseline 
semi-

quantitative 
MRI Bone 

attrition size 
(WORMS) 

(C) TFJ 

Cartilage 
defects 

progression 
(WORMS) 

after 30 
months TFJ 

Age, sex, BMI OR 5.5 
CI 95% (3.0, 10.0) 

OR 3.0 
CI 95% (2.2, 4.2) 

+ Low (59) 

MRI bone Shape / dimension – cohort studies 

Cicuttini 
2004  
[270] 

Baseline 
Quantitative 

MRI tibial 
bone area 

(C) 

TKR incidence 
(L) over 4 

years 

Age, sex, height, 
weight, BMI, 

WOMAC, ROA 
severity 

NR OR (CI 95%) 
1.2 (1.0 to 1.4)  

p=0.02 

+ High (78) 

Ding 
2008[96] 

Baseline MRI 
tibial bone 

area (C) TFJ 

Progressive 
cartilage 

volume loss 
(L) TFJ 

Age, sex, BMI, OA 
family history, 

muscle strength 
and ROA. 

β (CI 95%) 
Medial femoral 

cartilage 
β=0.17 (0.04 to 0.29) 

Total femoral cartilage 

β (CI 95%) 
Medial femoral 

cartilage 
β=0.35 (0.14 to 0.56) 

Total femoral cartilage 

- High (72) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

β =0.07 
(0.003 to 0.14) 

β=0.13 (0.02 to 0.25) 

Ding 2006  
[261] 

 
 

Baseline MRI 
tibial bone 

area (C) TFJ 

Change in 
semi-

quantitative 
MRI cartilage 
defect scores 

over 2.3 yrs (L) 
TFJ  

Age, Sex, BMI, 
Radiographic OA 

features 

NA OR (95%CI) 
Medial TFJ 

1.24 (1.01 to 1.51) 
p=0.04 

Lateral TFJ 
2.07 (1.52 to 2.82) 

p<0.001 

- High (61) 

Everhart 
2014 
[102] 

 

Baseline TFJ 
subchondral 
surface ratio 
of medial and 

lateral TFJ 
compartment

s(C) 

Radiographic 
progression of  

lateral or 
medial  TFJ 

knee OA at 48 
months (L) 

 
 

sex, race, age, 
BMI, tobacco use, 
activity level, knee 

coronal 
alignment, baseline 
symptoms, injury 
history, surgery 

history, KL grade, 
and JSW 

Unadjusted Medial 
SSR vs progression of 

medial JSN 
OR 1.43 95%CI (1.15 

to 1.77) 
P= 0.0015 

 
Medial SSR vs 

progression of lateral 
JSN 

OR 1.87 95%CI (1.44 
to 2.42) 

P< 0.001 
 

Neither medial nor 
lateral SSR was 

associated lateral or 
medial ROA 

progression in adjusted 
analysis 
P>0.05. 

NA 
 

High (61) 

Davies-
Tuck 

2008[588] 

Baseline MRI 
tibial bone 

plateau area 
(C) TFJ 

Progressive 
semi-

quantitative 
cartilage 

defect score 
(L) medial and 

lateral TFJ 

Age, sex, BMI, 
baseline cartilage 

defect 
score, baseline 

cartilage volume 
and baseline tibial 

plateau area 

Lateral TFJ 
OR (CI 95%) 

-0.01 
(-0.06, 0.03) 

p=0.59 

OR (CI 95%) 
Lateral TFJ 

0.06 
(0.004 to 0.11) 

p=0.03 
Medial TFJ 

0.07 (0.03 to 0.12) 
p=0.002 

+ High (56) 

Carnes 
2012[584] 

 

MRI Tibial 
Bone area 

(C) 

Semi-
quantitative 

cartilage 
defect 

progression 

Age, sex, BMI, 
cartilage defects, 

BML 

Lateral tibial bone 
area 

OR 1.11 
CI 95% (1.0, 1.23) 

OR (CI 95%) 
Bone area 

Medial 1.12 (1.01 to 
1.26) 

and lateral tibial ( 1.35 

+ Low (50) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

TFJ (L) (1.12 to 1.63) 

Dore 
2010  
[210] 

Baseline 
tibial bone 

area MRI (C)  

Increase or no 
increase in 

semi-
quantitative 
MRI tibial 
cartilage 

defects over 
2.7 years (L) 

age, sex, body 
mass index, 

baseline cartilage 
defects, 

and subchondral 
bone mineral 

density 

NR OR (CI 95%) 
Medial Tibia 

1.6 (1.0 to 2.6) 
p=0.04 

Lateral Tibia 
2.4 (1.4 to 4.0) 

p=<0.01 
 

+ 
Bone area size 
is associated 

with  
increasing 
cartilage 

defect scores  

Low (50) 

Hudelmai
er 2013 

[595] 
Abstract 

Annual 
change in 

segmented 
MRI knee 
bone area 

(L) 

Baseline KL 
grade (C) 

Nil Medial tibia 
P<0.05 

NR + 
The higher the 
KL grade the 

larger the 
increase in 
bone area 

Low (50) 

MRI bone shape / dimension – cross-sectional studies 

Ding 2005  
[353] 

MRI 
quantitative 
tibial bone 
area (C) 

Semi-
quantitative 
MRI knee 
cartilage 

defect severity 
scores (C) TFJ 

Age, sex, BMI, 
family history, 

cartilage volume  

β (CI 95%) 
Medial TFJ 

 0.06 (0.03 to 0.09) 
Lateral TFJ 

0.09 (0.05 to 0.13) 
 

β (CI 95%) 
Medial TFJ 

 0.11 (0.07 to 0.15) 
Lateral TFJ 

0.17 (0.11 to 0.22) 
 

+ 
Association 

maintained for 
the  whole TFJ 

and by 
compartment 

High (64) 

Kalichma
n 2007 
[568] 

 

MRI patellar 
length ratio, 

trochlea 
sulcus angle 

(C) 

JSN grade (C) Age, sex, BMI NR Trochlea sulcus angle 
p for trend 

Medial JSN p=0.0162 
Lateral JSN 
p= 0.1206 

NC High (64) 

Kalichma
n 2007 
[569] 

 

MRI patellar 
length ratio, 

trochlea 
sulcus angle 

(C) 

Cartilage 
defect 

(WORMS) (C) 

Age, sex, BMI NR Trochlea sulcus angle 
p for trend 

Medial cartilage loss 
p=0.0016 

Lateral cartilage loss 
p=0.0009 to 

+ Low 
(57) 

Stefanik 
2012[274] 

MRI lateral 
trochlear 

Semi-
quantitative 

Age, sex, BMI NR Lateral trochlear 
inclination OR 2.6 

+ Low (57) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

inclination 
and trochlear 

angle (C) 

cartilage 
defect 

(WORMS) (C) 

CI 95% (1.9 to 3.7) 
p<0.0001 

trochlear angle 
OR 2.0 

CI 95% (1.2 to 3.5) 
p<0.0001 

Frobell 
2010[560] 

MRI Bone 
area – 
manual 

segmentation 
(C) 

KL grade, 
OARSI JSN 
grade (C) 

Age & BMI Medial tibia 
JSN & KL 
p <0.0125 

 

Medial tibia 
JSN & KL 
p <0.0125 

 

+ Low (57) 

Wang 
2005  
[259] 

Annual % 
change in 
tibial bone 
area (L) 

2 yr follow 
up. 

Baseline JSN 
(C) 

age, sex, BMI, 
WOMAC score, 

SF-36 score, 
physical activity, 
radiographic OA 

features, baseline 
tibial plateau bone 

area. 

β (CI 95%) 
Medial tibia  

β=0.35  
(-1.10 to 1.80) 

p=0.63 
 

Lateral tibia 
-0.87  

 (-2.35 to 0.61) 
p=0.25 

β (CI 95%) 
Medial tibia  

1.88  
 (0.43 to 3.33) 

p=0.01 
 

Lateral tibia 
-0.42 

 (-2.31 to 1.48) 
p=0.66 

+ 
Association 
with medial 

tibia but not in 
the lateral tibia 

Low (57) 

Jones 
2004  
[31] 

Tibial bone 
area (MRI) 

(C) 

Radiographic 
JSN (C) 

age, sex, height, 
weight 

β (CI 95%) 
Medial tibia  

β=-0.03  
(-0.11 to 0.06) 

 
Lateral tibia 

-0.00 
 (-0.07 to 0.06) 

β (CI 95%) 
Medial tibia  

β=-0.00  
(-0.04 to 0.06) 

 
Lateral tibia 

+0.00 
 (-0.04 to 0.05) 

NA Low (50) 

Eckstein 
2010[483] 

MRI Tibial 
bone area 

(segmented) 
(C) 

OARSI JSN 
grade (C) 

Nil P<0.01 NR + Low (43) 

MRI bone shape / dimension – case-control studies 

Bowes 
2012  

Change in 
segmented 

KL grade 
defined ROA 

Nil NR 
Bone area increased 

NR 
 

+ 
Higher KL 

High (71) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

[604] MRI 3D Bone 
area over 4 

year (L) 

knee (C) and 
(L) 

 

significantly faster in 
ROA vs non-ROA 

p<0.0001 

grades had 
greater 

increase in 
bone area, 

Neogi 
2013  
[75] 

MRI 3D bone 
shape 

(Tibia, Femur 
and patella) 

(C) 

Incident TFJ 
ROA 

KL grade ≥2 
(L) 

Age, sex, BMI NR OR 3 
CI 95% (1.8-5.0) 

+ 
Developing 3D 

OA knee 
shape is 

associated 
with increasing 

ROA knee 

High (65) 

Hunter 
2013 

abstract 
[605] 

Change in 
MRI knee 
bone area 

over 24 
months (L) 

Incident TFJ 
ROA 

(KL grade ≥2) 
(L) 

NR NR Hazard ratio (CI 95%) 
range from 1.17 (1.08 

to 1.27) to 3.97 (2.38 to 
6.63) all highly 

statistically significant 

+ for all bone 
regions 

Enlarging bone 
area 

associated 
with increasing 

ROA knee 

Low (59) 

Wluka 
2005 
[269] 

Change in 
MRI tibial 

bone area (L) 

Baseline 
radiographic 

JSN (C) 

Age, BMI, pain, 
physical activity 

Medial tibial bone 
area 

R=160 (CI 95% 120 to 
201) 

P<0.001 

Medial tibial bone area 
R=145 (CI 95% 103 to 

186) 
P<0.001 

+ Low (47) 

MRI bone cyst – cohort studies 

Kotharii 
2010[478] 

Semi-
quantitative 

baseline MRI 
bone Cyst 
(WORMS) 

(C) TFJ 

Semi-
quantitative 

cartilage 
defect score 

change over 2 
years 

(WORMS) (L) 
TFJ. 

Age, sex BMI, 
other bone lesions 

OR 1.66 
CI 95% (0.55, 4.99) 

OR 0.47 
CI 95% (0.11, 2.03) 

NA Low (50) 

Tanamas 
2010[601] 

 

Semi-
quantitative 
change  in 
MRI Bone 

Knee Cartilage 
volume loss  
over 2 years 

(L) TFJ 

Nil β (CI 95%) 
Lateral tibial cartilage 
loss in cyst regression 
relative to stable and 

NR + Low (47) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

cyst size (L) progressive cysts 
β=  -11.81(-16.64 to -

6.98) 

Madan-
Sharma  

2008[417] 

Baseline MRI 
semi-

quantitative 
bone cyst (C) 

TFJ 

OARSI medial 
TFJ JSN grade 

progression 
over 2 years 

(L) TFJ 

Age, sex, BMI and 
family effect 

NR RR 1.6 
CI 95% (0.5, 4.0) 

NA Low (47) 

Carrino 
2006[585] 

 

Crude 
presence of 
MRI bone 

cyst TFJ (C) 
and (L) 

Any grade of 
cartilage 

defect TFJ (C) 
and (L) 

Nil NR NR + 
 

Low (22) 

MRI bone cyst – cross-sectional studies 

Stehling 
2010 
[313] 

Presence of 
any MRI 

semi-
quantitative 

cyst (C) 

Presence of 
any WORMS 
MRI cartilage 
defects (C) 

age, gender and 
BMI, KL score, 

knee injury or knee 
surgery,  family 

history of TKR and 
Heberden’s nodes 

NR p=0.0131 + High (71) 

Torres 
2006[135] 

MRI bone 
cyst 

(WORMS) 
TFJ & PFJ 

(C) 

Semi-
quantitative 

cartilage 
(WORMS) TFJ 

& PFJ (C) 

Nil R=0.75  NC High (68) 

Hayes 
2005[312] 

Semi-
quantitative 
MRI bone 
cyst (C) 

KL grade (C) Nil p=0.02 NR + High (61) 

Link  2003 
[319] 

Crude 
presence of 
MRI Bone 
cyst (C) 

KL grade (C) Nil p<0.01 NR + Low (54) 
 

Crema 
2010[315] 

MRI Bone 
cysts 

(WORMS) 

Cartilage 
defect 

(WORMS) (C) 

Nil NR NR + 
 

Low (50) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

(C) 

CT bone cyst – cross-sectional studies 

Okazaki 
2014 
[539] 

Number of 
CT bone 

cysts (medial 
femur and 
tibia) (C) 

Knee KL grade 
(C) 

Nil p<0.05 Nil +with KL grade 
in medial TFJ 

Low (50) 

MRI subchondral bone morphometry – cohort studies 

Lo 2012 
Abstract 

[548] 

MRI BVF, 
trabecular 
number, 
thickness 

and spacing 
(C) 

OARSI medial 
TFJ JSN 

progression 
between 24 

and 48 months 
(L) 

Nil OR 2.4 95%CI (1.1 – 
5.0) p=0.02 

NR BVF, 
trabecular 

number and 
thickness are 

positively 
associated 
with JSN 

progression 
but negatively 

associated 
with trabecular 

spacing. 

Low 
(50) 

MRI subchondral bone morphometry – cross-sectional studies 

Driban 
2011 
[546] 

Abstract 
 

MRI bone 
volume 
fraction, 

trabecular 
number, 

spacing & 
thickness of 
medial tibia 

(C) 

The presence 
of any grade of 

radiographic 
medial & 

lateral JSN  
(C) 

Nil R=0.09-1.77 NR + 
Medial JSN 
associated 
with higher 

BVF, 
trabecular 
number, & 

thickness but 
lower spacing 

High (71) 

Driban 
2011 
[545] 

 

MRI Bone 
volume 

fraction (C) 

Radiographic 
JSN (C) 

Nil NR NR + 
higher JSN 
score, lower 
JSW) were 
associated 
with higher 

High (64) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

BVF 

Lindsey 
2004 
[350] 

MRI bone 
volume 
fraction 

trabecular 
and 

trabecular 
number (TFJ) 

(C) 

Cartilage 
volume of tibia 

or femur in 
contralateral 

TFJ 
compartment 

(C) 

Nil Medial TFJ cartilage 
with Lateral TFJ BVF 

and trabecular 
number. 

β =0.29 to 0.36 
p=0.0020 to 0.02 

NR + with 
contralateral 

BVF and 
Trabecular 

number, but – 
with trabecular 

spacing 

High (64) 

Lo 
2012[206] 

MRI bone 
volume 
fraction, 

trabecular 
thickness, 
number, 

spacing and 
DXA BMD of 

(proximal 
medial tibia) 

(C) 

Radiographic 
medial JSN 
grade (C) 

Nil All p<0.0001 Nil + (BV/TV, 
thickness, 

number, BMD) 
 

- (spacin
g) 

High (64) 

Chiba 
2012 
[349] 

MRI Bone 
volume 

fraction & 
trabecular 

thickness of 
the medial & 
lateral femur 
& tibia. (C) 

 

Metric JSW 
(radiographic) 
of the medial 

and lateral TFJ 
(C) 

Nil Bone volume fraction 
-0.48 (p<0.001) 

Trabecular thickness 
-0.51 (p<0.001) 

NR - Low (57) 

DXA BMD – cohort studies 

Dore 
2010  
[210] 

 

Baseline 
proximal 

tibial BMD, 
DXA 
 (C)  

Increase or no 
increase in 

semi-
quantitative 
MRI tibial 
cartilage 

age, sex, BMI, 
baseline cartilage 

defects & 
subchondral tibial 

bone area 

NR OR (CI 95%) 
Medial Tibia 

1.6 (1.2 to 2.1) 
p<0.01 

Lateral Tibia 
 1.2 (0.9, 1.6) 

+ 
Association 

only observed 
in medial tibia 

Low (50) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

defects over 
2.7 years (L) 

p=0.19 

Lo 2012 
Abstract 

[548] 

DXA 
measured 

medial 
:lateral 

periarticular 
BMD 

(paBMD) (C) 

OARSI medial 
TFJ JSN 

progression (L) 

Nil OR 8.4 95%CI (2.8-
25.0) p<0.0001 

nil + JSN 
association 

with baseline 
M:L paBMD 

Low (50) 

Bruyere 
2003 
[209] 

Subchondral 
tibial bone 

BMD (DXA) 
(C) 

Minimum 
medial JSW 

TFJ after one 
year (L) 

Age, sex, BMI, 
minimum JSW 

NR R=-0.43, p=0.02 - 
Negative 

correlation i.e. 
Lower BMD 
gives bigger 
JSW or less 

JSN 

Low (44) 

DXA BMD – cross-sectional studies 

Dore 
2009 
[547] 

 

DXA Tibial 
subchondral 

BMD (C) 

Radiograph 
JSN grade and 
MRI cartilage 

defect and 
volume (C) 

Age, sex BMI NR Medial tibial BMD vs 
JSN R=0.11, p<0.01, 

defect R=0.16, p<0.01, 
cartilage volume 
R=0.12, p=0.01 

+ 
Higher the 
BMD the 

greater the 
JSN and 
cartilage 
defects,  

High (71) 

Lo 2006 
[208] 

DXA 
Medial:lateral 
BMD ratio at 

the tibial 
plateau (C) 

Radiographic 
JSN grade 
(Medial and 

lateral TFJ) (C) 

Age, sex, BMI P<0.0001 NR + with medial 
JSN, - with 
lateral JSN 

High (71) 

Lo 2012 
[206] 

DXA BMD 
(proximal 

medial tibia) 
(C) 

Radiographic 
medial JSN 
grade (C) 

Nil P<0.0001 NR + High (64) 

Akamatsu 
2014 
[533] 

BMD (DXA) 
(C) (Medial 

Tibia & 

Medial TFJ 
JSN 

(radiographic) 

Nil Tibia R=0.571, 
p<0.001 

Femur        R=0.550, 

NR + 
Medial femoral 

and tibial 

Low (57) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

Abstract Femoral 
Condyle) 

(C) p<0.001 condyle BMD 
correlated with 

medial JSN 

Volumetric CT BMD – case control studies 

Bennell 
2008 
[214] 

Volumetric 
BMD in tibial 
subchondral 
trabecular 
bone (C) 

KL grade (C) Age, sex, BMI NR P<0.05 NC 
BMD falls in 

posterior tibial 
plateau as KL 
increases but. 

Anteriorly 
increase in 
BMD noted 

Low 
(59) 

Knee scintigraphic subchondral bone cohort studies 

Mazzuca 
2004 
[536] 

Baseline late-
phase 

subchondral 
bone 

scintigraphy 
(adjusted for 

healthy 
diaphysis 
uptake) of 
the medial 
tibia and 

whole knee 
(C) 

Progression of 
minimum JSN 
of the medial 
TFJ from 
baseline to 30 
months 

(L) 

Age, BMI, KL 
grade (NB all 

women) 

r = 0.22 to 0.30, (p < 
0.05) 

r= 0 to 0.08  
(p>0.05) 

NA after 
adjustment for 

covariates 

High (56) 

Mazzuca 
2005 
[537] 

Baseline late-
phase 

subchondral 
bone 

scintigraphy 
(adjusted for 

healthy 
diaphysis 
uptake) of 
the medial 

Progression of 
minimum JSN 
of the medial 
TFJ from 
baseline to 30 
months 

(L) 

Baseline JSW, 
Treatment group 

NR Coefficient 0.221, 
95%CI (0.003 to 
0.439), p=0.049 

+ 
The greater 

the 
scintigraphic 
bone signal 

the greater the 
JSN 

High (56) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

tibia and 
whole knee 

(C) 

Dieppe 
1993 
[216] 

Baseline late 
and or early-

phase 
subchondral 

bone 
scintigraphy 
signal (C) 

Progression of 
JSN by ≥2mm 

or knee 
operation 

incidence after 
5 years (L) 

Nil p<0.005 NR + 
 

Low (50) 

Knee scintigraphic subchondral bone cross-sectional studies 

Kraus 
2009 
[550] 

Ipsilateral 
late phase 

bone 
scintigraphy, 

semi-
quantitative 

retention 
scoring of 
TFJ (C) 

Ipsilateral 
OARSI scale 
of JSN (C) 

Age, gender, BMI, 
osteophyte OARSI 

score, knee 
alignment knee 

symptoms  

Coefficient 0.47 to 
0.48 (p<0.0001) 

Coefficient 0.26 to 0.29 
(p=0.0005 to0.001) 

+ High (71) 

McCrae 
1992 
[553] 

Late phase 
‘extended 

bone uptake’ 
pattern bone 
scintigraphy, 

presence 
around the 

TFJ (C) 

Radiographic 
JSN presence 

(C) 

Nil OR 47.3, 95%CI (6.4 
to 352) p<0.01 

NR + Low (50) 

2D knee bone shape – cross-sectional studies 

Haverkamp 
2011  
[276] 

 

2D bone 
shape knee 
1. femur & 
tibial width 

2. elevation 
of lateral 
tibial plateau 

1.Presence of 
diffuse 

cartilage 
defects semi-
quantitative 

scoring (MRI). 
2.Presence of 

NB (this is a 
population of 
women only) 

 
ROA models 
adjusted for  
Age, BMI, 

OR (95% CI) 
Bone width vs Knee 

ROA 
2.03 (1.55 to 2.66) 

p<0.001 
Bone width Presence 

of diffuse cartilage 

OR (95% CI) 
Knee ROA 

1.94 (1.44 to 2.62) 
p<0.001 

+ 
Wider bones & 
elevated tibial 
plateau were 

associated with 
the presence of 

ROA knee.  

Low (46) 
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Author Feature 
(method) 

Structural 
progression 

outcome 

Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality (score %) 

(C) 
 

ROA knee 
(KL≥2) 

 (C) 

 
Cartilage defect 

models adjusted for 
KL only  

defects 
p<0.001 

Cartilage 
defects were 

only associated 
with bone width 

Positive correlation reported between bone feature and outcome measure (+); Negative correlation reported between bone feature and 

outcome measure (-); Bone mineral density (BMD); Body mass index (BMI); bone marrow lesion (BML); Boston Osteoarthritis of the 

Knee Study (BOKS);  Boston–Leeds. Osteoarthritis Knee Score (BLOKS); bone volume fraction (BVF); a feature or outcome described in 

cross-section (C); confidence interval (CI); Computed tomography (CT); Dual-energy X-ray Absorptiometry (DXA); Genetics, 

Osteoarthritis and Progression Study (GARP); joint space narrowing (JSN); joint space width (JSW); Kellgren Lawrence (KL); knee 

osteoarthritis scoring system (KOSS); a feature or outcome described longitudinally(L);mechanical factors in arthritis of the knee 2 (MAK-

2); No conclusion could be found for an association between bone feature and outcome measure (NC); Michigan study of women’s 

health across the nation (SWAN); multicentre osteoarthritis study (MOST); Magnetic resonance imaging (MRI); No association (NA);No 

conclusion could be found for an association between bone feature and outcome measure (NC); not reported (NR); osteoarthritis (OA); 

osteoarthritis initiative (OAI); odds ratio (OR); P value (p); Patellofemoral joint (PFJ); relative risk ratio (RR); Subchondral surface ratio 

(SSR); Tasmanian Older Adult Cohort (TASOAC); Tibiofemoral joint (TFJ); Visual analogue scale (VAS); Western Ontario and McMaster 

Universities arthritis index (WOMAC); whole-organ magnetic resonance imaging score (WORMS).   
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Table 18 Knee Pain associations by feature and quality score 

Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

MRI bone marrow lesion – Cohort studies 

Foong 2014 
[101] 

Change in 
BML size (L) 

and 

Incident BMLs 
(L) 

In all three 
knee 

compartments 

WOMAC 
Knee pain 
severity at 
two and 
ten year 
visits (L) 

age, sex, BMI, 
leg 

strength, and 
the presence 

of ROA 

NR Incident or change 
in total BML size 
β=1.53(95%CI 

0.37 to 2.70 

 

Medial tibial 
change in BML 

size 

β = 2.96 (95%CI 
0.59-5.34 

+ 

Incidence of BML 
or increase in size 

associated with 
increase in pain in 

the medial tibia  

High (67) 

 

 

Driban 
2013 

[100] 

 

 

Knee baseline 
BML volume 

(C) 

BML volume 
change (L) 

(TFJ) 

48 month 
change in  
WOMAC 
pain (L), 

 

Age, sex, BMI NR β=0.21 

(standard error 
0.07) 

p=0.004 

+ 

Longitudinal (L) 
Changes in BML 

correlated with (L) 
changes in pain 

severity 

High (61) 

Dore 
2010[99] 

 

MRI BML size 
(L) regional or 

whole TFJ 
over 2.7 years 

Change in 
WOMAC 
pain (L) 
over 2.7 

years 

Age, sex, 
BMI, leg 
strength, 

quality of life, 
and baseline 
pain, function 

β (95% CI)  

Total BML size 
change 

 β=1.06 

 (0.10 to 2.03) 

β (95% CI) Total 
BML size change 

β= 1.13 

(0.28 to 1.98) 

+ High (56) 

Kornaat  
2007[302] 

Semi-
quantitative 
MRI BML 

Mean 
WOMAC 

pain over 2 

Age, sex and 
BMI 

NR β (95% CI) 

β=2(-8 to 11) 

NA High (56) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

change over 2 
years (L) TFJ 

years 

Moisio 
2009[456] 

Baseline MRI 
semi-

quantitative 
BML score (C) 
TFJ and PFJ 

 

Incident 
frequent 

knee pain 
2 years 

after 
baseline 

(L) 

Age, sex, 
BMI, BML 
score, % 

denuded bone 

 

NR 

OR 

(CI 95%) 

Medial tibia & 
femur 

OR 1.41 

(0.86 to 2.33) 

Lateral tibia & 
femur OR 1.70 
(1.07 to 2.69) 

+ 

Lateral TFJ BML 
score associated 

with incident 
frequent knee pain 

 

High (56) 

Sowers 
2011[530] 

Semi-
quantitative 

MRI BML, size 

in TFJ (C) 

Increasing 
WOMAC  
pain (L) 

Nil Medial and 
lateral TFJ 

BMLs 

both p<0.005 

NR + Low (53) 

Zhang 2011 
[26] 

Semi-
quantitative 

change in MRI 
BML size (L) 
TFJ over 30 

months 

Incidence 
of frequent 
knee pain, 

and 
categorical 
severity (L) 

over 30 
months 

Synovitis and 
effusions 

OR (CI 95%) 

Severity of 
frequent knee 

pain 

OR 3.0 (1.5 to 
6.0)  

OR (CI 95%) 

Incident frequent 
knee pain 

P for trend =0.006 

Severity of 
frequent knee pain 

OR 2.2 (1.0 to 4.7) 
p=0.047 

+ 

Ipsilateral 
association  

Low (50) 

 

 

Wildi 2010 24 month 
change in 

24 months 
change in 

Nil R<0.15 

p>0.067 for all 

NR NA 

All compartments 

Low (50) 



- 229 - 

229 

 

Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

[602] 

 

regional TFJ 
BML score 

WORMS  (L) 

WOMAC 
pain  (L) 

compartments had no correlation  

 

Tanamas 
2010[600] 

 

Baseline semi-
quantitative 

MRI BML size 
(C) 

Annual 
change in 
WOMAC 
pain (L) 

Nil NR NR NA Low (50) 

MRI bone marrow lesion – cross-sectional studies 

Zhai 
2006[582] 

Semi-
quantitative 

MRI BML (C) 

WOMAC 
pain>1 (C) 

Age, BMI, 
sex, knee 
strength, 
chondral 
defects 

NR OR 1.44 

CI 95% (1.04, 
2.00) 

+ High (79) 

Sharma 
2014 

[131] 

Semi-
quantitative 
BML score 
WORMS 

TFJ or PFJ (C) 

Prevalent  
frequent 

knee 
symptoms 

(C) 

Age, sex, 
body mass 

index (BMI), 
previous knee 

injury, 

and previous 
knee surgery 

NR BMLs in any 
compartment 

OR 1.96 (95% CI 
1.38 to 2.77 

+ BML association 
with prevalent 

knee symptoms 

High (71) 

Kornaat 
2006 [571] 

Semi-
quantitative 
 MRI BML 

(C) 

Chronic 
pain 

presence 
(C) 

Age, sex, and 
BMI 

NR OR, 1.13 

CI 99%  (0.41, 
3.11) 

p=0.76 

NA High (71) 

Lo 2009 
[575] 

Semi-
quantitative 
MRI BML 

WOMAC 
pain (C) 

Synovitis , 
effusion 
scores 

p for trend 

p=0.0009 

p for trend 

p=0.006 

+ High (71) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

(BLOKS) (C) 

Stefanik 
2014 

abstract 
[581] 

BML 
(WORMS) 

(C) 
(patellofemoral 

joint) 

Prevalent 
knee pain 
(any pain 
in last 30 
days) and 
Pain VAS 

(C) 

Adjusted for 
age, sex, BMI, 

depressive 
symptoms 
and TFJ 

BMLs 

NR Isolated BML  of 
the: 

Lateral PFJ 

OR (95%CI) 1.4 
(0.9-2.0) 

Medial PFJ 

OR (95%CI) 

1.1 (0.8-1.5) 

Isolated lateral 
PFJ BMLs OR 6.6 

(1.7 to 11.5) 

  NC High (71) 

Ratzlaff 
2013 [577] 

Total BML 
volume in the 
femur or tibia 

(C) 

Weight 
bearing 

knee pain 
WOMAC 
subscale 

(C) 

age, sex, BMI, 
race, and 

medial  
minimum joint 
space width 

NR Total BML 

volume 

femur p= 0.003 

Tibia p=0.101 

+ Femoral 

NA Tibial 

High (71) 

Ip 2011 

[567] 

Semi-
quantitative 

MRI BML (C) 

WOMAC 
pain (C) 

Age, sex, 
BMI, OA 

stage, joint 
effusion, and 

meniscal 
damage 

NR 

 

Total WOMAC 
pain 

R=0.05, 

CI 95% (-0.04 to 
0.14) 

Stair climbing pain 

R=0.09 (0.00 to 

NC High (68) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

0.18) 

Torres 
2006[135] 

MRI BML 
(WORMS) TFJ 

& PFJ (C) 

Pain VAS 
(C) 

Age, BMI Coefficient 5.00 

CI 95% (3.00, 
7.00) 

Coefficient  3.72 

CI 95%  (1.76, 
5.68) 

+ High (68) 

Kim 2013 

[570] 

Summary 
score and 

severity of MRI 
BML 

(WORMS) (C) 

WOMAC 
pain 

severity or 
presence 
of knee 
pain (C) 

Age, sex, 
BMI, 

radiographic 
OA 

NR BML summary 
score medial TFJ 

OR 2.33 

CI 95%(1.02, 5.33) 

p<0.001 

 

+ 

Severity of BML is 
proportional to 

WOMAC in medial 
compartment after 

adjustment 

High (64) 

Moisio 
2009[456] 

Baseline MRI 
semi-

quantitative 
BML score (C) 
TFJ and PFJ 

 

Presence 
of baseline 
moderate 
to severe  
knee pain 

(C) 

Percent 
denuded 

bone, age, 
sex, BMI 

NR Bone marrow 
lesion score 

OR 0.95 

CI 95% (0.63, 
1.44) 

Not significant in 
all compartments 

NA found cross-
sectionally 

High (64) 

Ratzlaff 
2014 [544] 

Abstract 

Median BML 
volume (PFJ, 

TFJ) (C) 

Stair-
climbing 

knee pain 
WOMAC  

Nil TFJ p=0.01 

Patellofemoral, 
p=0.01 

Femur p=0.02 

NR + High (64) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

(C) Tibia p=0.03 

Hayes 
2005[312] 

Semi-
quantitative 

MRI BML (C) 

Chronic 
pain 

presence 
(C) 

Nil p=0.001 NR + High (61) 

Ai 2010 
[557] 

Semi-
quantitative 

MRI BML (C) 

Pain 
verbal 
rating 
scale 

(Likert) (C) 

Nil p=0.33 NR NA 

 

Low (57) 

Bilgici 
2010[558] 

MRI BML 
(WORMS) (C) 

WOMAC 
pain, 

pain VAS 
(C) 

Nil WOMAC 

r=0.508, 
p<0.01   

Pain VAS 
r=0.488,p<0.01  

NR + Low (57) 

Sowers 
2003 

[531] 

Semi-
quantitative 

MRI BML (C) 

Chronic 
pain 

presence 
(C) 

Nil OR 5.0 

CI 95% (2.4, 
10.5) 

NR + Low (54) 

Link 
2003[319] 

Semi-
quantitative 

MRI BML (C) 

WOMAC 
pain (C) 

Nil p>0.05 NR NA Low (54) 

 

Felson 
2001 

[133] 

Semi-
quantitative 

MRI BMLs (C) 

Chronic 
knee pain 
presence 

(C) 

Radiographic 
severity, age, 

sex, and 
effusion score 

p<0.001 OR 3.31 

CI 95% (1.54 to 
7.41) 

+ Low (54) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

Fernandez-
Madrid 
1994 

[559] 

Crude 
presence of 

MRI BMLs(C) 

Crude pain 
presence 

(C) 

Nil NR NR NA Low (46) 

MRI bone marrow lesion - case control studies 

Javaid 
2010 

[607] 

Baseline semi-
quantitative 

MRI BML size 
(WORMS) (C) 

TFJ & PFJ 

Incident 
frequent 

knee pain 
after 15 

months (L) 

Age, sex, 
race, BMI 

NR Whole knee OR 
2.8 

CI 95% (1.2, 6.5) 

 

+ 

High (76) 

Felson 
2007 

[134] 

Semi-
quantitative 

MRI BML size 
increase 

(WORMS) (L) 
TFJ & PFJ 

Incident 
frequent 

pain at 15 
months (L) 

Age, sex, 
race, BMI, 
quadriceps 
strength, KL 

score, 
malalignment, 
baseline BML 

score 

OR 4.1 

CI 95% (2.1, 
8.1) 

OR 3.2, 

CI 95% (1.5, 6.8) 

+ High (71) 

Javaid 
2012 

[606] 

Baseline Semi-
quantitative 
MRI BML, 

(WORMS) (C) 
TFJ & PFJ 

Presence 
of frequent 
knee pain 
(C) after 2 

years 

Nil OR 1.70 

CI 95% (1.08, 
2.67) 

NR + Low  (59) 

Zhao 2010 

[609] 

Baseline crude 
presence of 

MRI BMLs at 
(C) TFJ 

Change in 
WOMAC 
Pain (L) 

Nil p=0.60 NR NA Low (56) 

Stahl 2011 Semi-
quantitative 

Changes 
in 

Nil NR Data not shown NA Low (47) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

[442] MRI BML size 
(WORMS) (L) 

TFJ 

WOMAC 
score (L) 

 

MRI osteophyte – cohort studies 

Sowers 
2011[530] 

Semi-
quantitative 

MRI 
osteophyte, 

size 

in TFJ (C) 

Increasing 
WOMAC  
pain (L) 

Nil Medial and 
lateral TFJ 

BMLs 

Both  

p<0.001 

NR + Low (53) 

MRI osteophyte - cross-sectional studies 

Kornaat 
2006 [571] 

Semi-
quantitative 

 MRI 
Osteophyte 

(C) 

Chronic 
pain 

presence 
(C) 

Age, sex, and 
BMI 

NR patellofemoral 

OR 2.25 

CI 95% (1.06 to 
4.77) 

+ High (71) 

Sengupta  
2006[580] 

Semi-
quantitative 

MRI 
Osteophyte 

(WORMS) (C) 

Pain 
severity 

WOMAC, 
chronic 
pain (C) 

Age, sex, BMI NR OR 0.97 

CI 95% (0.86 to  
1.10) 

NA High (71) 

Torres 
2006[135] 

MRI 
osteophyte,  

(WORMS) TFJ 
& PFJ (C) 

Pain VAS 
(C) 

Nil Coefficient 1.18 

CI 95% (0.63, 
1.72) 

Coefficient 0.50 

CI 95% (0.07, 
0.94) 

NC High (68) 

Hayes 
2005[312] 

Semi-
quantitative 

Chronic 
pain 

Nil P<0.001 NR + High (61) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

MRI 
osteophyte (C) 

presence 
(C) 

Ai 2010 
[557] 

Semi-
quantitative 

MRI 
osteophytes 

(C) 

Pain 
verbal 
rating 
scale 

(Likert) (C) 

Nil p=0.166 NR NA 

 

Low (57) 

Hayashi  
2012[566] 

Crude 
presence of 

MRI 
Osteophytes 

(C) 

Presence 
of pain on 
WOMAC 

pain 
subscale 

(C) 

Nil OR 4.2-6.4, 

p=0.001-0.011 

NR + Low (57) 

Link  
2003[319] 

Semi-
quantitative 

MRI 
osteophytes 

(C) 

WOMAC 
pain (C) 

Nil p>0.05 NR NA 

 

Low (54) 

Fernandez-
Madrid 
1994 

[559] 

Crude 
presence of 

MRI 
osteophytes 

(C) 

Crude pain 
presence 

(C) 

Nil NR NR NA 

 

Low (46) 

MRI osteophyte – case-control studies 

Javaid 
2010 [607] 

Baseline semi-
quantitative 

MRI 
osteophyte, 

size (WORMS) 

Incident 
frequent 

knee pain 
after 15 

Age, sex, 
race, BMI 

NR Whole knee 
Severe osteophyte 

OR 4.7 

CI 95% (1.3 to 18) 

 

+ 

High (76) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

(C) TFJ & PFJ months (L) 

MRI bone attrition – cross-sectional studies 

Hernandez-
Molina  
2008  

[139] 

 

Semi-
quantitative 
MRI Bone 

attrition 
(WORMS) (C) 

Pain 
severity 

and 
nocturnal 

pain 
(WOMAC) 

(C) 

Age, sex, 
BMI, BMLs, 

effusions and 
KL grade 

OR (CI 95%) 

Pain severity  

OR 1.6 

(1.1 to 2.3) 

Nocturnal Pain 

OR 1.1 (0.5 to 
2.1) 

OR (CI 95%) 

Pain severity OR 
0.9 

(0.6 to 1.4) 

Nocturnal Pain 

OR 1.0 (0.5 to 
2.1). 

NA 

 

High (71) 

Torres  
2006[135] 

MRI attrition, 
(WORMS) TFJ 

& PFJ (C) 

Pain VAS 
(C) 

Nil Coefficient  
3.33 

CI 95% (1.79, 
4.87) 

Coefficient  1.91 

CI 95% (0.68 to 
3.13) 

+ High (68) 

MRI bone attrition - case control studies 

Javaid 
2012 [606] 

 

Baseline Semi-
quantitative 
MRI attrition 

size (WORMS) 
(C) TFJ & PFJ 

Presence 
of frequent 
knee pain 
(C) after 2 

years 

Nil OR 2.40 

CI 95% (1.51, 
3.83) 

NR  

+ 

Low (59) 

MRI bone shape / dimension  - cohort studies 

Everhart 
2014 

[102] 

 

Baseline TFJ 
subchondral 

surface ratio of 
medial and 
lateral TFJ 

compartments 

Incident 
frequent 

knee pain 
at 48 

months, 

sex, race, 
age, BMI, 

tobacco use, 
activity level, 
knee coronal 

alignment, 

NR Medial SSR 

OR 0.48 95%CI 
(0.30, 0.75) 
p=0.0009 

 

- larger 
MSSR gets 
less incident 

frequent 
knee pain 

High (61) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

(C) (L) baseline 
symptoms, 

injury history, 
surgery 

history, KL 
grade, and 

JSW 

Lateral SSR 

OR 1.27 95%CI 
(0.86, 1.88) 

p=0.19 

MRI Bone Shape / Dimension  - Cross-sectional studies 

Ochiai 
2010[543] 

MRI 
Irregularity of 

femoral 
condyle 

contour (C) 

Knee pain 
VAS (C) 

Nil Irregularity of 
femoral 
condyle 
contour 

r= 0.472, 
p=0.0021 

NR + Low (50) 

MRI Bone Cyst – Cohort studies 

Sowers 
2011[530] 

Semi-
quantitative 

MRI bone cyst 
size 

in TFJ (C) 

Increasing 
WOMAC  
pain (L) 

Nil NR NR analysis 
described as not 

significant but data 
not shown 

NA Low (53) 

MRI Bone Cyst – cross-sectional studies 

Kornaat  
2006 [571] 

Semi-
quantitative 

 MRI 

bone cyst(C) 

Chronic 
pain 

presence 
(C) 

Nil NR Patellofemoral 

OR 1.83 

CI 99% (0.80 to 
4.16) 

NA High (71) 

Torres 
2006[135] 

MRI bone cyst 
(WORMS) TFJ 

Pain VAS 
(C) 

Age, BMI Coefficient  
2.50 

Coefficient 0.82 

CI 95%(-0.50 to 

NA High (68) 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

& PFJ (C) CI 95%  (-0.38, 
5.38 

2.14) 

Hayes 
2005[312] 

Semi-
quantitative 

MRI bone cyst 
(C) 

Chronic 
pain 

presence 
(C) 

Age, sex, and 
BMI 

P<0.001 NR + High (61) 

Hayashi 
2012[566] 

Crude 
presence of 
MRI bone 
cysts (C) 

Presence 
of pain on 
WOMAC 

pain 
subscale 

(C) 

Nil OR 6.7-17.8 

p=0.004 to 
0.03 

NR + Low (57) 

Link 
2003[319] 

Crude 
presence of 

MRI 

bone cyst (C) 

WOMAC 
pain (C) 

Nil p>0.05 NR NA Low (54) 

MRI Bone cyst – case control studies 

Javaid 
2010 [607] 

Baseline semi-
quantitative 

MRI bone cyst 
size (WORMS) 
(C) TFJ & PFJ 

Incident 
frequent 

knee pain 
after 15 

months (L) 

Nil NR NR 

p>0.1 

NA High (76) 

Javaid 
2012[606] 

 

Baseline Semi-
quantitative 

MRI bone cyst 
size (WORMS) 
(C) TFJ & PFJ 

Presence 
of frequent 
knee pain 
(C) after 2 

years 

Nil OR 1.61 

CI 95% (1.03, 
2.52) 

NR + Low (59) 

qCT Bone mineral density – cross-sectional studies 
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Author Feature 
(method) 

Knee Pain 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

Burnett 
2012  

[549] 

BMD of 
patellar lateral 
facet (qCT) (C) 

WOMAC – 
knee pain 
at rest (C) 

Nil Total lateral 
patella facet 

p=0.04, 

Inferior lateral 
facet p=0.005 

NR -  Low (57) 

2D knee bone shape – cross-sectional studies 

Haverkamp 
2011  

[276] 

2D bone shape 
knee 

1. femur & 
tibial width 

2. elevation of 
lateral tibial 
plateau 

(C) 

 

Pain 
severity 

VAS 

 (C) 

models 
adjusted for  

Age, BMI 

NR Bone width 

p=0.167 

Lateral tibia 
plateau elevation 

p=0.002 

+ 

Lateral tibial 
plateau 

associated with 
pain severity 

NA 
bone width with 

pain severity 

Low (46) 

Positive correlation reported between bone feature and outcome measure (+); Negative correlation reported between bone feature and 

outcome measure (-); body mass index (BMI); bone marrow lesion (BML); a feature or outcome described in cross-section (C); knee pain 

on most days for at least the last month (chronic pain) confidence interval (CI); Kellgren Lawrence (KL); a feature or outcome described 

longitudinally(L); No association (NA); No conclusion could be found for an association between bone feature and outcome measure 

(NC); not reported (NR);  osteoarthritis (OA); Osteoarthritis Initiative (OAI); odds ratio (OR); Patellofemoral joint (PFJ); Subchondral 

surface ratio (SSR); Tibiofemoral joint (TFJ); visual analogue scale (VAS); Western Ontario and McMaster Universities arthritis index 

(WOMAC)   
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Table 19 Hand, hip and ankle structural associations by feature and quality grade 

Author Feature 
(method)  

Structural 
severity or 

progression 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
(score %) 

Hand MRI bone marrow lesion case series   

Haugen 
2014 

[39] 

BMLs – semi-
quantitative 

At 2nd to 5th 
IPJs (C) 

Progression of 
Hand ROA 
(JSN, KL 

grade or new 
erosion) (L) 

Age, sex 
BMI, 

OR 2.73 95% CI 
(1.29 to 5.78) 

NR + 

Bigger the BML, 
the more the 

JSN 

High (61) 

Hand MRI bone marrow lesion cross-sectional studies 

Haugen 
2012 

Abstract 

[564] 

299 

 

 

BML (Oslo MRI 
hand score) (C) 

IPJs 

Radiographic 
JSN grade IPJ 
(OARSI atlas.) 

(C) 

Age, sex,  OR 10.0 95%CI 
(4.2–23) 

OR 4.4 95%CI 
(2.2–9.0) 

+ 

BML score 
association with 

more JSN 

Low (43) 

Haugen  

2012  

[565] 

BML (Oslo MRI 
hand score) (C) 

IPJs 

Hand KL 
grade of IPJs 

(C) 

Age, sex NR OR (95%CI) 

BMLs 11(5.5 to 
21) p<0.001 

+ High (64) 

Hand MRI osteophyte cross-sectional studies 

Haugen  

2012  

[565] 

Osteophyte 
(Oslo MRI 

hand score) (C) 

IPJs 

Hand KL 
grade of IPJs 

(C) 

Age, sex NR OR (95%CI) 

Osteophytes 

415 (189 to 908) 

p<0.001 

+ High (64) 
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Author Feature 
(method)  

Structural 
severity or 

progression 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
(score %) 

Hand MRI attrition cross-sectional studies 

Haugen  

2012  

[565] 

Attrition (Oslo 
MRI hand 
score) (C) 

IPJs 

Hand KL 
grade of IPJs 

(C) 

Age, sex NR OR (95%CI) 

Attrition 87 (37 to 
204) 

p<0.001 

+ High (64) 

Hand MRI bone cyst cross-sectional studies 

Haugen  

2012  

 

[565] 

Cyst (Oslo MRI 
hand score) (C) 

IPJs 

Hand KL 
grade of IPJs 

(C) 

Age, sex NR OR (95%CI) 

Cysts 2.0 (0.6 to 
6.3) 

P=0.26 

nil High (64) 

Hip MRI BML cross-sectional studies 

Neumann 
2007 

[542] 

 

Semi-
quantitative 
BMLs (C) 

Semi-
quantitative  

cartilage 
lesions (C) 

Nil R=0.44, p≤0.001 NR + correlation 
between BML 
and cartilage 

lesions 

Low (43) 

Dawson 
2013 

Abstract  

[556] 

Femoral head 
BMLs 

(MRI) (C) 

 

 

1. Presence of 
hip OA 

2.Femoral 
head cartilage 
volume (MRI) 
(C) 

Age, sex, 
BMI 

NA OA hip presence 

OR (95% CI) 

5.32 (1.78 to 15.9) 

p=0.003 

 

Cartilage volume 

Regression 
coefficient (95% CI) 

+ 

BMLs associated 
with diagnosis of 

hip OA, 

 

-  
BMLs inversely 
associated with 
cartilage volume 

Low (14) 
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Author Feature 
(method)  

Structural 
severity or 

progression 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
(score %) 

-245.7mm3  

(-456 to -36) 
p=0.02 

Hip CT bone morphometry cross-sectional studies 

Chiba 2011 

[215] 

Acetabular 
and femoral 
head 
subchondral 
trabecular 
morphometry: 

bone volume 
fraction,   

trabecular 
thickness, 
number, 
separation 
(CT) 

(C) 

Hip joint 
space volume 

(CT) (C) 

Nil Femoral head  

Bone volume 
fraction 

 r=-0.691, 
p<0.001 

NR Joint space 
narrowing is 

associated with 
increased bone 
volume fraction, 

trabecular 
thickening. 
Trabecular 

number and 
spacing 

decrease 

Low (57) 

Hip DXA BMD cross-sectional studies 

Chaganti 

2010 

[532] 

 

Femoral neck 
BMD (C) DXA 

Hip ROA 
Modified croft 

score 
(categorical 0-

4) (C) 

Age, BMI, 
height, 

activity level, 
race, 6-m 
walk pace, 
Nottingham 

muscle 

strength, 
inability to 

NR p<0.0001 + 

Higher BMD for 
higher grade of 

OA of hip 

High (64) 
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Author Feature 
(method)  

Structural 
severity or 

progression 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
(score %) 

do chair 
stands, and 

clinic site 

Antoniades 
2000 

[534] 

DXA BMD 

of the femoral 
neck of left 

(nondominant) 
hip with ROA  

(C) 

Radiographic 
OA (Croft 
Score) (C) 

body mass 
index, 
lifetime 
physical 
activity, 

menopausal 
status, use 

of 
oestrogen, 

and smoking 

OR 1.63 
95%CI(1.06, 

2.50) 

OR 1.80 95%CI 
(1.05, 

3.12) 

+ association 
between BMD 
and hip ROA 
grade in the 
index hip. 

Higher OA 
grade means 
higher BMD 

High (64) 

2D hip bone shape longitudinal  studies 

Agricola 
2013  

[583] 

Baseline 2D 
femoral and 
acetabular 

shape modes 
(segmented by 

statistical 
shape 

modelling) 

(C) 

THR 

at or within 5 
yrs (L) 

  

Age, sex, 
BMI, shape 

modes 

5 modes were 
associated with 

THR 

OR 1.71-2.01 

p≤0.001 

 

 

 

3 modes were 
associated with 

THR  

OR 1.78-2.10 

p≤0.001 

+ 

Increasing 
femoral head 
asphericity is 

associated with 
THR 

High (72) 

Agricola 

2013 

[74] 

Baseline alpha 
angle (2D 

femur shape) 
dichotomous 

abnormal 
>60°, normal 

Incident ROA 
hip (KL>1) 

Incident end-
stage ROA hip  

(KL>2 or THR) 

Age, sex, 
BMI, KL 
grade 

OR (95%CI) 

Incident ROA 
hip 

6.82 (3.55 to 
13.10) 

OR (95%CI) 

Incident ROA hip 

2.42 (1.15 to 
5.06) 

+ 

Elevated alpha 
angle is 

associated with 
incident end-

High (67) 
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Author Feature 
(method)  

Structural 
severity or 

progression 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
(score %) 

≤60 

(C) 

at or within 5 
yrs (L) 

p<0.0001 

 

P=0.02 

Incident severe 
ROA or THR 

3.67 (1.68-8.01) 

p<0.0001 

 

stage OA hip 

Agricola 
2013 

[394] 

Baseline 2D 
Centre edge 

angle 
(Acetabular 

shape): 

25°<Normal<40°  

Undercoverage<25° 

Overcoverage>40° 

(C) 

Incidence 
within 5 years 

of: 

1.ROA hip (KL>1)  
2.End-stage OA  

(KL>2 or THR) 

Age, sex, 
BMI, KL 
grade 

OR (95%CI) 

Overcoverage 

0.52 (0.19 to 
1.43) 

p=0.21 

Undercoverage 

3.64 (1.91 to 
6.99) 

p=0.00 

OR (95%CI) 

Overcoverage 

0.34 (0.13 to 
0.87) 

p=0.025 

Undercoverage 

5.45 (2.40 to 
12.34) p=0.00 

 

Overcoverage is 
protective 

against OA 
incidence (-) 

 

Undercoverage 
is associated 
with greater 
odds of OA 

incidence and 
end-stage OA 

(+) 

High (67) 

2D & 3D hip bone shape cross-sectional studies 

Gosvig 

2010 

[561] 

Categorical Hip 
2D deformity:  

1) Normal  

2)‘Pistol grip’ 

3) Deep 
acetabular 
socket 

Presence of 
radiographic 

hip OA  

(JSW≤2mm) 
(C) 

Age, sex, 
BMI, other 

hip 
deformities 

NR RR (95% CI) 

Pistol grip 

2.2 (1.7 to 2.8) 

p<0.001 

Deep acetabular 
socket 

+ 

 

Low (50) 
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Author Feature 
(method)  

Structural 
severity or 

progression 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
(score %) 

(C) 2.4 (2.0 to 2.9) 

p<0.001 

Normal (p>0.05) 

 

Reichenbach 

2011 

[529] 

The presence 
or absence of 
any 3D semi-
quantitative 
MRI-defined 

cam-deformity 

(C)  

Combined 
femoral and 
acetabular 
cartilage 
thickness 

(C) 

Age, BMI 
(NB all 

participants 
were young 

men) 

Unadjusted 
mean cartilage 

thickness 
difference with 
CAM deformity  

-0.24 mm (95% 
CI -0.46, -0.03) 

 

Adjusted mean 
cartilage 
thickness 

difference with 
CAM deformity  

-0.19 mm (95% 
CI -0.41, 0.02) 

NC 

 

 

High (64) 

2D hip bone shape case control studies 

Doherty 

2008 

[282] 

Non-spherical 
femoral head 

2D shape 
assessment:  

1) Appearance 
of  ‘Pistol grip 
deformity’ (C) 

2) Maximum 
femoral head 
diameter ratio 
to minimum 
parallel femoral 
neck diameter 
(C) 

Presence of 
radiographic 

hip OA  

(JSW≤2.5mm) 
(C) 

age, sex, 
BMI, BMD, 
physical 
activity, 
history of 
hip injury, 
type 3 hand 
(index finger 
shorter than 
ring finger), 
hand nodes, 
and center–
edge angle 

OR (95%CI) 

Pistol grip 
deformity 

5.75 (4.00 to 
8.27) 

Femoral head-
to-neck ratio  

10.45 (7.16 to 
15.24) 

 

OR (95%CI) 

Pistol grip 
deformity 

6.95 (4.64 to 
10.41) 

Femoral head-to-
neck ratio 

12.08 (8.05 to 
18.15) 

 

+ Low (53) 
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Author Feature 
(method)  

Structural 
severity or 

progression 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
(score %) 

 

Barr 2012 

[603] 

2D Shape 
measures of 
centre edge 

angle 
(acetabular 
shape) (C) 

THR vs no 
radiographic 
progression 
over 5 years 

(L) 

Age, 
gender, BMI 

KL grade, 
use of 

walking 
stick, 

WOMAC 
function, 

duration of 
pain  

OR (95%CI) 

Mode 2 

0.74 (0.50 to 
1.10) 

p>0.05 

 

 

OR (95%CI) 

Mode 2 

0.17 (0.04 to 
0.71) 

p<0.05 

 

 

- 

NB, this model  
association is 
inverse and 

correlates with 
acetabular 

shape 

High (76) 

Nicholls 
2011 

[538] 

CAM deformity; 
mean modified 
triangular index 
height, alpha 

angle. 

2D Acetabular 
dysplasia;  

mean lateral 
center edge 
angle, (C) 

Total hip 
replacement 

(L) 

BMI, age 

 

OR (p value) 

Triangular index 

1.131 (0.021) 

Alpha angle 

1.056 (<0.0005) 

Centre edge 
angle 

0.906 (0.004) 

OR (p value) 

Triangular index 

1.291 (0.011) 

Alpha angle 

1.057 (<0.0005) 

Centre edge 
angle 

0.887 (0.002) 

+ 

Association of 
hip replacement 

with CAM 
impingement 

and acetabular 
dysplasia 

indicated by 
these results 

High (71) 

Ankle scintigraphic subchondral bone cross-sectional studies 

Kraus 2013 

[551] 

Ipsilateral late 
phase bone 
scintigraphy, 

retention 
presence in 

tibiotalar joint 
(C) 

Tibiotalar 
ROA KL grade 
and JSN (C) 

Age, 
gender, BMI 

NR KL grade 

r=0.49 p<0.0001 

JSN 

r=0.35 p<0.0001 

 

+ High (71) 
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Author Feature 
(method)  

Structural 
severity or 

progression 
outcome 

Adjustment 
for 

confounders 

Association 

(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
(score %) 

Knupp 
2009 

[526] 

Late phase 
bone 

scintigraphy, 
semi-

quantitative 
retention 
scoring of 

tibiotalar joint 
(C) 

Tibiotalar 
ankle joint 

JSN. 
(Modified 
Takakura 

score) 

(C) 

 

Nil 0.62 to 0.75 

(p<0.01) 

NR + Low (57) 

Positive correlation was reported between bone feature and outcome measure (+); Negative correlation reported between bone feature 

and outcome measure (-);  bone mineral density (BMD); bone marrow lesion (BML); a feature or outcome described in cross-section (C);  

Computed tomography (CT); dual-energy X-ray absorptiometry (DXA); Hip Osteoarthritis MRI scoring system (HOAMS); interphalangeal 

joint (IPJ); joint space narrowing (JSN); joint space width (JSW); Kellgren Lawrence (KL); a feature or outcome described 

longitudinally(L); No association (NA); magnetic resonance imaging (MRI); patellofemoral joint (PFJ); radiographic osteoarthritis (ROA); 

osteoarthritis (OA); Osteoarthritis Research Society International (OARSI);  odds ratio (OR); relative risk (RR); tibiofemoral joint (TFJ); 

total hip replacement (THR);  total knee replacement (TKR); visual analogue scale (VAS); Western Ontario and McMaster Universities 

arthritis index (WOMAC); whole-organ magnetic resonance imaging score (WORMS).   
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Table 20 Hand and Hip Pain associations by feature and quality score 

Author Feature 
(method) 

Pain outcome Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

Hand MRI bone marrow lesion case series  

Haugen 

2014 

Abstract 

[593] 

Sum scores 
(0-48) for 

BMLs (Oslo 
Hand OA MRI 

score) (C) 

AUSCAN 
pain scale (L) 

Age, sex, BMI, 
follow up time 

NR β=-0.26 95%CI  

(-0.55 to 0.03) 

NA High (61) 

Hand MRI bone marrow lesion cross-sectional studies 

Haugen 2012 

[563] 

BML (Oslo 
MRI hand 
score) (C) 

IPJs sum 
scores 

AUSCAN 
pain scale (C) 

Age, sex NR OR (95%CI) 

0.96 (0.82 to 
1.12) 

NA High (64) 

Hand MRI osteophyte cross-sectional studies 

Haugen 2012 

[563] 

Osteophyte 
(Oslo MRI 

hand score) 
(C) 

IPJs sum 
scores 

AUSCAN 
pain scale (C) 

Age, sex NR OR (95%CI) 

1.04 (0.98 to 
1.10) 

NA High (64) 

Hand MRI attrition cross-sectional studies 

Haugen 2012 

[563] 

Attrition 

 (Oslo MRI 
hand score) 

(C) 

IPJs sum 
scores 

 

AUSCAN 
pain scale (C) 

Age, sex NR OR (95%CI) 

1.15 (0.98 to 
1.34) 

NA High (64) 
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Author Feature 
(method) 

Pain outcome Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

Hand MRI subchondral cyst cross-sectional studies 

Haugen 2012 

[563] 

Cyst (Oslo 
MRI hand 
score) (C) 

IPJs sum 
scores 

AUSCAN 
pain scale (C) 

Age, sex NR OR (95%CI) 

0.93 (0.56 to 
1.55) 

NA High (64) 

Hand Scintigraphy subchondral bone cross-sectional studies 

Macfarlane 
1993 

[552] 

Late phase 
isotope bone 
scan small 
joints of the 

hand (C) 

 

 

Hand Pain 
VAS (C) 

Nil Correlation 
coefficient 

0.06, p=0.304 

NR NA Low (57) 

Hip MRI bone marrow lesion cross-sectional studies 

Kumar 2013 

[573]  

Total hip semi-
quantitative 

BML score (C) 

Self-reported 
hip pain 

HOOS score 
(C) 

Nil NR p correlation -
0.29 (p<0.01) 

-  

A higher BML 
score means a 
lower or worse 

HOOS pain 
score 

High (71) 

Maksymowych 
2014  

[576] 

Semi-
quantitative 

BML HIP 

(HOAMS) (C) 

Baseline 
WOMAC pain 

(C) 

Nil p<0.001 NR + High (64) 

Hip MRI subchondral cyst cross-sectional studies 

Kumar 2013 

[573] 

Total hip semi-
quantitative 
subchondral 

Self-reported 
hip pain 

Nil NR p correlation 

-0.37 (p<0.001) 

- 

a higher cyst 

High (71) 
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Author Feature 
(method) 

Pain outcome Adjustment for 
confounders 

Association 
(magnitude) 

crude 

Association 
(magnitude) 

adjusted 

Association Quality 
score (%) 

 cyst score (C) HOOS score 

(C) 

score means a 
lower or worse 

HOOS pain 
score 

 

Positive correlation reported between bone feature and outcome measure (+); Negative correlation reported between bone feature and 

outcome measure (-);  Australian/Canadian Osteoarthritis Hand Index (AUSCAN); bone marrow lesion (BML); a feature or outcome 

described in cross-section (C); knee pain on most days for at least the last month (chronic pain); Hip Osteoarthritis MRI scoring system 

(HOAMS); Hip Dysfunction and Osteoarthritis Outcome Score (HOOS); interphalangeal joint (IPJ); a feature or outcome described 

longitudinally(L); no association (NA); not recorded (NR); osteoarthritis (OA); odds ratio (OR); visual analogue scale (VAS);  
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Table 21 The summary subchondral bone associations with joint replacement, structural progression and pain in peripheral OA 

Subchondral 
bone feature 

of OA 

Pain and structural associations  

Knee structure Knee pain Hand structure Hand Pain Hip structure Hip Pain Ankle structure 

MRI bone 
marrow 
lesions 

Progression (i) 

TKR (i) 

LPS (i) 

IFP (n) 

Progression 
(i) 

No LPS (w) 

No severity (n)  

Severity (w) Severity (n)  

MRI 
osteophytes 

Progression (i) 

TKR (n) 

LPS (n) Severity (n) No severity (n)    

MRI bone 
attrition 

No Progression (0) No severity 
(0) 

Severity (n) No severity (n)    

MRI bone 
shape or 

dimensions 

Progression (i) 

TKR (i) 

IFP (i) 

Severity (n) 

  No severity (0)   

MRI bone cyst No progression 

?severity  

No LPS (n) No severity (n) No severity (n)  Severity (n)  

MRI or CT 
trabecular 

morphometry 

Progression (n)    Severity (n)   

DXA or CT  
Peri-articular 

BMD 

Progression (n)    Severity (w)   

2D bone 
shape 

Severity (w)  Severity (n)   Progression (i) 

THR (i) 

  

Scintigraphy No Progression (0)   No severity (n)   Severity (w) 

Computed tomography (CT), dual energy X-ray absorptiometry (DXA). independent association (i), incident frequent pain (IFP), 

association with no or inadequate covariate adjustment (n), total knee replacement (TKR), total hip replacement (THR), mean change in 

longitudinal pain severity (LPS), well-adjusted association (w), association insignificant after covariate adjustment (0).. 
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3.5 Discussion 

This systematic review is the first to have incorporated quality scoring 

alongside statistical adjustment in the comprehensive examination of the 

relationship of subchondral bone pathology with both structural progression 

of OA and pain for all non-conventional types of radiological imaging of 

peripheral joints with OA. This systematic review has concluded that there 

were independent associations between imaging-assessed bone 

pathologies and structural progression and pain in the knee, hand, and hip.  

Subchondral bone pathology may lead to cartilage degeneration by altering 

the biomechanical force distribution across joint cartilage or disruption of the 

osteochondral junction and release of soluble biomediators influencing the 

cartilage[15, 219] (as discussed in 2.6.1 Subchondral bone cellular changes 

in OA). In OA the homeostatic process of subchondral bone remodelling fails, 

leading to increased bone turnover, volume and change in stiffness and 

shock-absorbing capacity[227, 610, 611]. BMLs histologically represent 

increased bone turnover[297] as discussed in 2.6.3.4 Subchondral bone 

marrow lesions. Cartilage overlying altered bone demonstrates greater 

damage than healthy bone in human cadaver knees[226]. That study, and an 

excluded study[612], concur with the independent association between 

BMLs, and structural progression of OA in knees and hands and total knee 

replacement, as concluded by  this analysis.  Although randomised control 

trials were not excluded from this review, several such trials were excluded 

on the basis of failure to formally quantify any correlation between BMLs with 

structural progression outcomes. These include the strontium[336], intensive 

weight-loss therapy [613] and glucosamine [614] trials and some of these 

describe a concordant reduction in BML size and cartilage volume loss.  

Osteophytes represent subchondral bone hypertrophy typical of OA as 

discussed in 2.6.3.6 Osteophytes. They represent endochondral and direct 

bone formation and create a circumferential increase in bone area around 

each knee cartilage plate, particularly on the medial side in OA, which 
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concurs with the independent association of  MRI osteophytes with structural 

progression observed in this analysis. 

In terms of bone morphology,  knee OA is associated with shallow trochlear 

patellar grooves in multiple epiphyseal dysplasia[273]. These findings concur 

with the findings of Stefanik and Kalichman and colleagues in knee OA in 

this review[274, 568, 569].  Anterior-cruciate ligament (ACL) rupture 

represents a risk factor for developing knee OA. In cases of ACL tear in 

previously normal knees of young healthy adults, the 3D shape of the femur, 

tibia and patella expands more rapidly than controls without radiographic 

knee OA in the subsequent 5 years[615]. The 3D shape of the same knee 

bones have also been associated with the outcome of joint 

replacement[616]. This highlights the importance of bone shape, as 

discussed in 2.6.3 Bone shape and subchondral bone MRI features in OA, 

and concurs with the conclusion from this systematic review that 3D knee 

shape and 2D hip shape are independently associated with structural 

progression and total joint replacement.  

The literature review (in 2.6.3.5 Subchondral bone attrition and 2.6.3.7 

Subchondral bone cysts) indicated that bone attrition and cysts were 

associated with structural severity of OA. However this more rigorous 

systematic review identified that bone attrition and cysts were associated 

with structural progression or severity but not after covariate adjustment, 

which included other OA subchondral bone features. This suggests these 

bone features are epiphenomenon of the pathogenic process of structural 

progression rather than a primary cause. This hypothesis is supported by 

bone cysts and attrition frequently occurring synchronously with BMLs[139, 

601] and incident bone attrition has been strongly associated with the 

presence of BMLs within the same compartment[300].  

Increasing bone volume fraction, trabecular number and thickness, but 

decreasing trabecular spacing on CT and MRI studies were associated with 

structural progression. These specific associations concur with numerous 

human histological and histomorphometric analyses of peripheral joint OA 

subchondral bone samples removed at the time of joint replacement or from 
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post-mortem joints with early OA and subsequently compared with normal 

post-mortem joints with age and gender matching [207, 617, 618].  

Subchondral bone, particularly BMLs, have been found to be associated with 

knee, hip and hand OA pain. However some analyses measuring pain with 

heterogenous pain outcomes, report an absence of a longitudinal or cross-

sectional association with BMLs [302, 319, 619]. Furthermore previous 

systematic reviews have concluded an at-most moderate association of 

BMLs with knee pain[132, 365]. With the benefit of incorporating more well-

adjusted analyses in this systematic review, we have highlighted that BMLs 

are independently associated with change in longitudinal pain severity but 

are only associated with incident frequent knee pain. In analyses excluded 

from the current review, incident knee BMLs predicted incident knee pain in 

healthy community-based adults at risk of OA[121].  Concurrent trends in 

reduction of pain and BML size are observed in  the zoledronic acid trial[330] 

and the intensive diet and exercise for arthritis trial [620]. These were not 

included because they did not make a formal comparison of pain and BMLs. 

The mechanism by which BMLs may cause pain is unknown but may include 

subchondral microfractures, angina from a decreased blood supply causing 

ischaemia and raised intraosseous pressure[136-138].   

The independent association of a mismatch of the femoral and tibial 

articulating surface areas with incident frequent knee symptom indicates that 

bone shape may predict not only the incidence of radiographic knee OA[75] 

but also symptomatic OA.   

3.6 Limitations 

In terms of limitations, stratifying observational studies by quality may 

artificially create relatively high quality studies from a collection of generally 

low quality studies. However the distribution and summary statistics of 

quality scores indicate a suitably broad range of quality, particularly in the 

influential cohort studies with a mean of 54% and range of 22-83%.  The 

decision to exclude articles with any association analysis of less than 20 

patients with OA may seem arbitrary. However several papers report the 



- 255 - 

255 

 

presence or absence of pain or structural progression associations based 

upon small numbers of patients. Our threshold decision reflects the absence 

of specific guidelines on how to exclude such papers, with inherent risk of 

imprecision, in the context of heterogenous populations and statistical 

analyses. Had these papers been included there would have been no 

change in any of the conclusions in Table 21 (data not shown).  The use of 

joint replacement as an outcome measure has a number of limitations 

including the effect of patient willingness, orthopaedic variation in opinion, 

availability of health services and health insurance and therefore may be 

influenced depending upon which country and context the study is 

performed in.  

Each of the analyses of association of bone features with the outcomes of 

structural progression, pain or joint replacement include a variety of different 

covariates for adjustment. For the purposes of this systematic review the 

persistence of an association after adjustment for age, gender and BMI 

represented an association that was ‘well-adjusted’ for important covariates 

of OA. However OA is a multi-tissue disease where the pathology of tissues 

other than subchondral bone also contribute to structural progression and 

pain. Therefore when describing bone feature associations with structural 

progression or joint replacement, the lack of adjustment for other tissue 

degeneration or the interaction of obesity and alignment may represent 

residual confounding (2.11.2.1.3  Categorical Alignment of the knee). 

However the association of BMLs with cartilage loss persists after adjusting 

for alignment[124], meniscal degeneration[599], baseline cartilage volume 

and bone area[600], as well as bone attrition and bone cysts[478]. 

Similarly when describing the association of bone features with pain, the lack 

of adjustment for synovitis (which is moderately associated with knee OA 

pain[132]) may represent residual confounding. However the association of 

BMLs with pain severity and incident frequent knee pain persists after 

adjustment for synovitis in an analysis performed by Zhang and 

colleagues[26].  
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Publication bias could not be assessed with a funnel plot as there were 

insufficient results for odds and relative risk ratios. The heterogenous nature 

of the measures of bone features and structural or pain outcomes, precluded 

a meta-analysis or calculation of an effect size. This was because there 

were insufficient analyses describing the same association between the 

same bone feature and outcome measure pair. 

Ultrasound represents an important and increasingly accessible imaging 

modality for use in routine clinical practice. It is a sensitive imaging 

technique for detecting 3D, early and established structural pathology in OA 

joints and can directly visualise osteophytes, sclerosis and cysts in the 

subchondral bone[621]. Therefore this modality could have been included in 

this review.   

3.7 Conclusions 

In conclusion subchondral bone plays an integral role in the pathogenesis of 

OA. BMLs, MRI osteophytes and tibial bone area are independently 

associated with structural progression of the knee. BMLs and 2D tibial bone 

area are independently associated with total knee replacement. BMLs are 

independently associated with hand OA structural progression and 2D hip 

bone shape is associated with structural hip progression and total hip 

replacement. BMLs are independently associated with longitudinal change in 

pain severity and femorotibial articulating area mismatch is independently 

associated with incident frequent knee pain  

The existing standard for measuring structural progression, radiographic 

joint space narrowing (JSN), poorly correlates with the clinical syndrome and 

remains a relatively insensitive measure (see  2.11 Imaging biomarkers in 

OA). When JSN is used as a trial outcome measure this demands that 

clinical trials are large, long  and expensive. Therefore the unmet need for 

more sensitive and validated imaging biomarkers is huge. 

The independent associations of subchondral bone features with important 

patient-centred outcomes (pain and TKR) and structural progression  
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suggest they may be valid surrogate measures of these outcomes. While 

many of these are MRI-derived measures, they are intrinsically more 

sensitive than radiographic JSN (see  2.11Imaging biomarkers in OA), their 

use as clinical outcomes may substantially reduce the cost, duration and 

size of future trials. They may also improve the precision of OA phenotypic 

stratification to facilitate pathology-specific treatment, prioritisation of 

individuals most in need of OA modification and measuring treatment 

response.  

This systematic review highlights the need for greater information on the 

validity of subchondral bone features to be used as surrogate measures of 

OA patient-centred outcomes in all joints. There was very little evidence 

describing the validity of 3D bone shape as a surrogate measure. This 

unmet need was addressed in writing the following chapters. 

 

3.8 Thesis findings and the recent literature 

The systematic literature review undertaken here in Chapter 3 was inclusive 

of studies up to September 2014. However in order to ensure this literature 

review is up to date, the literature in the intervening period has been 

reviewed to assess whether it would change the conclusions made in this 

Chapter. Cohort studies are described separately from cross-sectional and 

case-control studies in accordance with the methods of this chapter.  

 

3.8.1 The relationship between knee bone feature and structural 

progression  

3.8.1.1 Cohort studies 

In total three new cohort studies were identified. Sharma and colleagues 

identified a subcohort of knees ‘at risk’ of knee OA that did not have 

radiographic OA within the OAI. Knee BMLs at baseline were independently 

associated with an increased risk of incident radiographic OA [622]. Wluka 
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and colleagues described an analysis of knees in a community cohort 

without knee OA symptoms. Knee BMLs at baseline were associated with 

medial tibiofemoral cartilage volume loss[623]. Wang and colleagues 

established a longitudinal cohort of knees of older adults and patellar BMLs 

at baseline were independently associated with progressive cartilage 

loss[624]. These associations have already been described as independent 

associations already and therefore these new reports would not change the 

conclusions of this chapter. 

3.8.1.2 Cross-sectional or case-control studies 

In total two new case-control studies were identified and both were nested 

within the OAI. Roemer and colleagues described an association of incident 

radiographic knee OA[122] with knee bone marrow lesions. Hunter and 

colleagues performed a case-control study that identified that longitudinal 

change in bone shape biomarkers of bone area (tAB) and 3D bone shape 

were both associated with medial tibiofemoral structural progression [625]. 

In this chapter, the methods clarify that case-controls cannot be used to 

describe the independence of an association and therefore the conclusions 

of this chapter would not change with these new findings. 

 

3.8.2 The relationship between subchondral bone features and 

pain 

3.8.2.1 Cohort studies 

In total three new cohort studies were identified. Sharma and colleagues 

identified a subcohort of knees ‘at risk’ of OA that did not have radiographic 

OA within the OAI. Within this subcohort knee BMLs at baseline were 

independently associated with an increased risk of incident persistent knee 

pain [622]. Wluka and colleagues described an analysis of knees in a 

community cohort without knee OA symptoms.  Knee BMLs at baseline were 

associated with incident pain [623]. Wang and colleagues established a 

longitudinal cohort of knees of older adults and patellar BMLs at baseline 

were independently associated with progressive knee pain[624]. 
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These associations have already been described as independent 

associations and therefore these new analyses will not change the 

conclusions within this thesis.  

3.8.2.2 Cross-sectional or Case control studies 

In total one new case-control study and one cross-sectional study were 

identified. Hunter and colleagues performed a case-control study nested 

within the OAI that identified that longitudinal change in bone shape 

biomarkers of bone area (tAB) and 3D bone shape were both associated 

with knee pain progression. However the associations with pain progression 

were less strong compared to structural progression [625]. 

Stefanik and colleagues described a cross-sectional sample of knees within 

the MOST and Framingham OA participants. An association between the 

presence of knee BMLs in the patellofemoral joint and pain was 

observed[626]. The methods in this chapter clarify that case-controls cannot 

be used to describe the independence of an association and therefore the 

these new analyses will not change any previous conclusions. 

 

3.8.3 The relationship between subchondral bone features and 

joint replacement  

3.8.3.1 Cohort studies 

In total two new cohort studies were identified. Agricola and colleagues 

established that in the Cohort Hip and Cohort Knee and Chingford cohorts 

femoral bone shape based upon hip radiograph segmentation was 

independently associated with incident joint replacement of the hip[627]. 

Hafezi-Nejad and colleagues established that in a subcohort of knees within 

the OAI, baseline semi-quantitative knee BMLs were  associated with 

incident total knee replacement [628]. These associations have already been 

described as independent associations and therefore these new analyses 

will not change the conclusions of this chapter. 
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3.8.3.2 Cross-sectional and case-control studies 

In total only one new case-control study was identified. Roemer and 

colleagues described an association of incident total knee replacement [105] 

with knee BMLs. This was a case-control study nested within the OAI. This 

association has previously been described in this chapter and will not 

change the conclusions in This chapter. 
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Chapter 4 The relationship between clinical characteristics, 

radiographic osteoarthritis and 3D bone area 

4.1 Introduction 

In chapter three the systematic literature review identified the need for 

evidence of the validity of 3D bone measures as imaging biomarkers. This 

chapter describes construct validity by exploring the relationship of 3D bone 

structure of OA with the established constructs of radiographic structural OA 

severity.  

Until recently, structural modification trials have relied upon conventional 

radiography to define both the OA phenotype for participant inclusion and for 

measuring structural progression. Conventional radiography is less sensitive 

and specific in detecting structural pathology and structural progression than 

magnetic resonance imaging (MRI) [23, 86]( 2.11 Imaging biomarkers in OA). 

MRI is therefore increasingly used to provide assessment of OA pathology.  

Another advantage of MRI is that its three dimensional data can be 

harnessed to provide quantification of important tissues using manual 

segmentation [31, 269, 440, 560], or automated analysis techniques such as 

active appearance modelling (AAM) that enables relatively rapid, accurate 

quantification of large datasets [629, 630](2.10 Statistical Shape modelling, 

active shape modelling and active appearance modelling). 

Modern imaging approaches recognise that OA is a whole joint disease 

which may involve multiple tissues which confer different phenotypes[631]; 

subchondral bone in particular is integral to the pathogenesis and 

progression of OA [255, 631](2.6 Subchondral bone in OA). In particular, the 

area of subchondral bone (Figure 23) at the femorotibial articulation is larger 

in OA knees than healthy controls and correlates with knee joint space 

narrowing, osteophytes and Kellgren Lawrence (KL) grade after adjusting for 
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at least age and body mass index in cross-sectional studies[31, 269, 560]. 

While the severity of conventional radiographic OA may correlate with 

subchondral bone area expansion, the additional value of bone area 

expansion of OA and the extent to which radiographic measures explain 

variation in this is unknown. Height, weight, gender and age are 

determinants of bone area in healthy knees [256, 257].Therefore the 

objective of this study was to determine the bone area expansion attributable 

to OA and then establish what proportion of the variation of this is explained 

by radiographic measures of knee OA (metric joint space width, osteophyte 

grade and, subchondral sclerosis grade).  

 

4.2 Methods 

Data used in the preparation of this cross-sectional analysis were obtained 

from the NIH Osteoarthritis Initiative (OAI) database, which is available for 

public access at http://www.oai.ucsf.edu/  and is described in 2.12 The 

Osteoarthritis Initiative. This is a database of a multi-centre, prospective, 

longitudinal observational study of knee OA including approximately 4796 

participants [515]. Knee radiographs and knee MRI scans were performed at 

baseline for all participants.  

The main subsample of knees was selected from those with available 

Kellgren Lawrence (KL) and other radiographic OA measure scoring from 

the central Boston University reads of plain films in the OAI. The availability 

of osteophyte and subchondral sclerosis scores was limited to knees of 

individuals who have had confirmed presence of radiographic OA (KL grade 

≥2) in either knee at any time point. Participants without available KL, 

osteophyte and subchondral sclerosis grade data were excluded and the 

knee with the highest KL grade for each participant was selected. When the 

grades for both knees were the same, the right knee was chosen. Baseline 

MRI, radiographic and clinical data were included. A second subsample of 

‘normal’ knees was selected in order to establish a formula for predicting 

‘normal’ bone area based upon height, weight, age and gender. From the 

http://www.oai.ucsf.edu/


- 263 - 

263 

 

whole OAI cohort only knees were included with KL and WOMAC scores of 

zero at baseline, one, two and four year time points and the absence of any 

historic OA knee symptoms prior to baseline. 

MRI sequences collected in the OAI are described in detail by Peterfy and 

colleagues [497].  The current study utilised the double-echo-in-steady-state 

sequence (DESS-we) of the Siemens 3T trio systems [497]. A training set of 

96 knee MRIs, using the DESS-we sequence, were used to build active 

appearance models for the tibia and femur. This training set was selected to 

contain examples of each stage of OA with approximately equal numbers of 

knees fulfilling each KL grade. The mean bone shape had anatomical 

regions outlined as described previously (Figure 44)[632]. We used a 

definition of the area of subchondral bone or ‘tAB’ similar to that designated 

by a nomenclature committee [271]. However this definition was modified to 

include bone (‘peripheral osteophytes’) from around the cartilage plate. The 

boundary between the medial femur (MF) / medial trochlear femur and the 

lateral femur / lateral trochlear femur boundary in the femur was defined as a 

line on the bone corresponding to the anterior edge of the medial or lateral 

meniscus, and extended smoothly to the edge of the tAB. Active appearance 

models were used for the calculation of tAB from knee MRIs which 

measured the undulating 3D surface of bone. The surface area of the 3D 

subchondral bone (tAB) was measured in mm2.  

The medial compartment of the tibiofemoral joint was selected to compare 

medial femur (MF) tAB and medial tibia (MT) tAB with medial joint 

radiographic measures on the basis that this compartment is more frequently 

affected with OA. The following baseline radiographic OA measures are 

described earlier (2.11.1.1 Conventional radiographic quantitative 

measures263 and 2.11.2.1 Conventional radiographic semi-quantitative 

measures). These were selected and divided into three non-KL (OARSI and 

metric) measures and KL grade: metric minimum joint space width (mJSW) 

of the medial compartment on continuous scale, subchondral sclerosis score 

of the medial femur or tibia (OARSI categorical scale 0-3), osteophyte score 

of the medial femur or tibia (OARSI categorical scale 0-3), KL grade 
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(categorical scale 0-4). These assessments were provided by the OAI. A 

semi-automated tool, shown to be as sensitive as manual measures, was 

used to measure mJSW [424, 633]. Further details of the methodology for 

these assessments is available [634]. 

Clinical baseline characteristics, provided by the OAI, included the known 

important clinical risk factors for knee OA: age, gender, weight, height and 

ethnicity and goniometer-measured knee alignment [59, 635, 636]. It was 

this existing clinical knowledge, not a data-driven strategy, that guided the 

selection of covariates for statistical modelling. 

 

Figure 44 Anatomical Bone areas 

 

LF (lateral femur), MF (medial femur), MT (medial tibia), LT (lateral tibia), MP 

(medial patella), LP (lateral patella), LatPF (lateral trochlear), MedPF (medial 

trochlear) 



- 265 - 

265 

 

 

 

4.2.1 Statistical analysis 

Statistical analysis was conducted using STATA software, version 12 

(College Station, TX, 2009). For categorical socio-demographic variables, 

chi- square tests were performed comparing participants with radiographic 

OA and those without radiographic OA. Alignment was trichotomised into 

extreme valgus (<-6°) intermediate alignment (-6° to 6°; reference category) 

and extreme varus (>6°).  

To establish which covariates might operate as potential confounders, 

mediators or competing exposures in the multivariable regression analyses 

exploring the amount of variation explained by radiographic measures, a 

causal path diagram was constructed in the form a Directed Acyclic Graph 

(DAG) [637].This was drawn from established and hypothesized functional 

relationships between bone area and each covariate. No non-causal 

structural association between the radiographic exposure and the bone area 

outcome was identified (Figure 45).   
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Figure 45 A directed acyclic graph 

 

A DAG is used to establish which factors are confounders and mediators to 

ensure a parsimonious model is achieved and that over-adjustment does not 

in the statistical analysis.  

 

The benefit of this approach is that it provides an explicit a priori model of 

the postulated relationships between the exposure, outcome variables and 

each of the available covariates. Such models are invaluable for the 

specification and verification of the statistical analyses and results in 

appropriate adjustment and the most parsimonious model being chosen 

without the risk of over adjustment and thus reduction of statistical power 

which would otherwise occur.  

The first analyses used the ‘normal’ subsample to obtain estimates of what 

normal bone area should be in the normal population. These estimates were 

obtained by modelling bone area with height, weight and age, stratified by 



- 267 - 

267 

 

sex thereby producing estimates that accounted for the sex differences in 

bone area (2.6.3.1.1 Knee subchondral bone cross-sectional area). Having 

obtained the estimates, predicted bone area could be calculated for each of 

the 2588 knees in the main subsample. 

Bone area (MF) =intercept + (A)(HEIGHT) + (B)(WEIGHT) + (C)(AGE) +ε  

 This was subtracted from the measured bone area (tAB) in each of the 2588 

knees to provide the area of bone attributable to OA (OA-tAB) 

Multivariable linear regression models were then constructed to determine 

the proportion of OA-tAB for MF and MT that could be explained by either 

non-KL measures of radiographic damage (joint space width, sclerosis, 

osteophytes) or KL grade. Although the methods of scoring non-KL 

measures of damage are different to that included in the KL scoring system, 

they measure similar pathology therefore models did not include both to 

avoid multicollinearity. These models were adjusted for alignment and 

ethnicity in different combinations and at each stage.   

 For univariable analyses two-tailed p-values have been presented (p<0.05 

was considered evidence of association without adjustment for multiplicity); 

for multivariable analyses 95% confidence intervals have been provided to 

give an indication of significance at the 5% level. However due to the large 

sample size we have considered both statistical significance and the 

associated improvement in R-squared when reporting which variables were 

associated with tAB to a substantive extent.  Normality of residuals and 

homoscedasticity of errors was assessed using residual diagnostic plots as 

well as formal tests of heteroscedasticity (White`s test and Breusch-Pagan 

test) and underlying assumptions of a Gaussian distribution and 

homoscedasticity were met. 

4.3 Results 

Of the 4796 participants in the OAI database 131 met the criteria for ‘normal’ 

knees (Figure 46). Mean age was 60 years and 58 % were female with 12 % 

being obese (BMI greater than 30kg/m²). Of the 4796 participants in the OAI 
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database, 4490 had KL data available. After applying the inclusion criteria 

for selection of the main subsample, 2588 (57%) knees had radiographic 

and clinical data available for analysis (Figure 47). Mean age was 61 years 

and 58% were female with 37% being obese.  

Figure 46 Participant flow diagram for the ‘normal’ knee subsample 

 

Identifying suitable knees for describing the association of bone area with 

height, weight and age in knees without OA.  
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Figure 47 Participant flow diagram 

 

Identifying suitable knees for describing the association of OA-attributable 

bone area with conventional radiographic measures of OA.  

4.3.1 Models of the ‘normal’ knee subsample with clinical data 

When considering the clinical covariates stratified by sex, height, weight, and 

age in males explained 22.5%, 21.6%, and 3.5% of the MF tAB variance 

respectively in univariable analyses. In females these clinical covariates 

explained 43.1%, 32.1% and 0.1% of the MF tAB (Table 22). Similar values 

were identified for MT tAB (Table 23). The greatest variance in tAB was 

explained by height in both medial compartment models in both sexes. 

When all the clinical covariates were entered in the model they explained 

26.6% and 28.9% variance in MF and MT tAB respectively for males, while 

in females they accounted for 54.4% and 53.7% in MF and MT tAB 
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respectively (Table 24, Table 25). In general, taller and heavier individuals 

had greater tAB (Figure 48). Females were more likely to have smaller tAB 

having adjusted for height and weight compared to males (Table 26, Table 

27).  Considering Table 22 and 23, age was not statistically significantly 

associated with tAB (p=0.08 in Table 23). However it was included in the 

non-exposed group models due to existing clinical knowledge that bone 

expands with age and hence it was included in the DAG. 

In order to check whether the linearity assumption held between age and the 

outcome variable (bone area), a formal statistical test (linktest) was 

performed for each shape model and this was found to be not significant i.e. 

the null model is that the model is linear. 

The hatsq variable using linktest was found to be not significant (p=0.93) and 

coupled with linearity plots which suggested a linear relationship, albeit only 

minimal (Figure 49), there was therefore no evidence of non-linearity or need 

to use higher order terms for age. Hence it was modelled in its original form. 

The augmented component-plus-residual plots (Figure 49, Figure 50) 

suggest mild departure from normality which suggested probably adding a 

squared version of age, however the model fit and other linearity checks 

were satisfactory to suggest a linear relationship between age and MF and 

MT. Therefore the addition of higher order terms (e.g. adding (age)2 for ease 

of interpretation) was considered unnecessary. 

Another non-graphical test, the Breusch –Pagan test was performed to test 

that the model residuals were homoscedastic. The test was not significant 

(p=0.60) and therefore the conclusion was drawn that the model residuals 

were homogenous.  

4.3.2 Models with OA-attributable bone area  

In univariable analysis both varus and valgus alignment tended to be 

associated with larger bone area, and explained 2% and 1.2% of the 

variation in  MF OA-tAB and MT OA-tAB respectively (Model 2; Table 30, 

Table 31). Having adjusted for radiographic measures (models 7 & 8; Table 
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30, Table 31) extreme valgus alignment was not consistently associated with 

differences in bone area to a significant degree.  

When using the non-KL radiographic variables on a univariable basis, JSW, 

osteophytes and sclerosis were each significantly associated with MF OA-

tAB, however each explained just 5.3%, 14.9% and 10.1% of the variance of 

MF OA-tAB (Table 28). Higher grades for osteophytes and sclerosis were 

associated with larger bone areas, whilst wider joint spaces were associated 

with smaller bone areas. In the univariable MT OA-tAB models, the variance 

explained by JSW, osteophytes and sclerosis was 6.0%, 10.1% and 8.3% 

respectively (Table 29).  

When entered simultaneously into a model that did not adjust for alignment, 

the non-KL radiographic variables were associated with OA-tAB 

independently of each other, but accounted for just 17.4% and 12.9.% of the 

variance in MF and MT OA-tAB respectively (Model 3: Table 30, Table 31). 

In the MF OA-tAB model some counter-intuitive trends were observed such 

as a wider JSW being associated with a larger bone area.  

Adjusting for  alignment, when entered individually JSW, osteophytes and 

sclerosis were still independently associated with OA-tAB in the expected 

direction, and explained an additional 6.7%, 17.2.% and 11.5% of MF OA-

tAB variance (Models 4, 5 & 6: Table 30). When entered simultaneously the 

radiographic variables explained 18.7% of MF OA-tAB variance having 

adjusted for alignment (Model 7, Table 30). Comparing models 4 and 7, after 

adjusting, alignment and the non-KL radiographic variables the association 

between JSW and OA-tAB was reduced in magnitude, to the extent that it 

did not differ significantly from zero. Similarly in model 7 the differences in 

OA-tAB between knees with sclerosis grades 1-3 and those without sclerosis 

were reduced compared to model 6, although grades 2 & 3 still differed from 

grade 0. The coefficients for osteophyte grades 1, 2 & 3 remained 

comparatively stable between models 5 & 7.  

Adjusting for alignment, JSW, osteophytes and sclerosis explained an 8.3%, 

12.8% and 10.4% MT OA-tAB variance individually (models 4, 5 & 6: Table 

31); when entered simultaneously they explained   approximately 13.5% of 
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variance in MT OA-tAB (Model 7,Table 31). Similar trends to those found for 

MF OA-tAB were observed in the differences in the non-KL radiographic 

variable coefficients between models 4-6 and model 7. 

When using the KL grade on a univariable basis, grades 1-4 were 

associated with greater OA-tAB compared to grade 0; the higher the grade, 

the greater the difference (Table 28, Table 29). Having adjusted for 

alignment, (Model 8: Table 30, Table 31) the differences were slightly 

reduced in magnitude for KL3 and KL4, but KL remained independently 

associated with both MF and MT OA- tAB. Compared to the model in which 

the non-KL radiographic variables were entered simultaneously whilst 

adjusting for clinical variables (Model 7: Table 30, Table 31), the adjusted KL 

model explained slightly more variance for both MF OA-tAB (adjusted R² 

KL= 0.209 vs non-KL=0.187) and MT OA-tAB (adjusted R² KL=0.147 vs non-

KL=0.135) but the differences were not substantive.
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Table 22 Univariable models between medial femur bone area and selected clinical variables in non-exposed group 

Medial femur                               Male model  

Coefficient (95% CI),significance     R-squared                   

                            Female model 

Coefficient (95% CI),significance      R-squared 

Clinical characteristic     

Height (mm)  1.47(0.75,2.18), p<0.001                  0.225 2.13(1.55,2.71), p<0.001                          0.413 

Weight (Kg)  6.57(3.29,9.84), p<0.001                  0.216 10.25(6.87,13.63), p<0.001                     0.321 

Age (yrs)  -4.69(-10.12,0.73), p=0.09                0.035 -0.19(-5.28,4.90),p=0.94                           0.013 

 

Table 23 Univariable models between medial tibia bone area and selected clinical variables in non-exposed group 

Medial tibia                              Male model  

Coefficient (95% CI),significance     R-squared                   

                            Female model 

Coefficient (95% CI),significance      R-squared 

Clinical characteristic     

Height  0.80(0.41,1.20), p<0.001                  0.220 0.98(0.70,1.26), p<0.001                          0.394 

Weight (Kg)  3.92(2.15,5.69), p<0.001                  0.254 4.90(3.31,6.48), p<0.001                          0.329 

Age (yrs)  -2.68(-5.67,0.32), p=0.08                0.039 0.09(-2.31,2.49),p=0.94                           0.013 
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Table 24 Associations between medial femur bone area and selected clinical variables in non-exposed group 

Medial femur                               Male model  

Coefficient (95% CI),significance     R-squared                   

                            Female model 

Coefficient (95% CI),significance      R-squared 

Clinical characteristic     

Height (mm)  1.01(0.14,1.89) p=0.023    1.79(1.21,2.38) p<0.001 

Weight (Kg)  4.27(0.45,8.10) p=0.029 0.266 6.47(3.38,9.58) p<0.001  0.544 

Age (yrs)  0.84(-4.55,6.24) p=0.755  2.24(-1.46,5.95)p=0.231 

 

Table 25 Associations between medial tibia bone area and selected clinical variables in non-exposed group 

Medial tibia                              Male model  

Coefficient (95% CI),significance     R-squared                   

                            Female model 

Coefficient (95% CI),significance      R-squared 

Clinical characteristic     

Height (mm)  0.50(0.03,0.98) p=0.039    0.83(0.55,1.10) p<0.001 

Weight (Kg)  2.79(0.71,4.87) p=0.010 0.289 3.14(1.67,4.61) p<0.001  0.537 

Age (yrs)  0.44(-2.50,3.38) p=0.767  1.19(-0.57,2.95)p=0.182 
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Table 26 Relationship between medial femur bone area and clinical model not stratified by sex 

Medial femur Coefficient (95%CI) p-value 

Height (mm)  1.48 (0.98,1.98) <0.001 
 

Weight (Kg)  5.08 (2.74,7.42) <0.001 
 

Age (yrs)  2.28 (-0.76,5.32) 0.14 
 

*Sex (female) -253.74 (-339.94,-167.54) <0.001 
 

Table 27 Relationship between medial tibia bone area and clinical model not stratified by sex 

Medial tibia Coefficient (95%CI) p-value 

Height (mm)  0.69 (0.44,0.95) <0.001 
 

Weight (Kg)  2.89 (1.70,4.08) <0.001 
 

Age (yrs)  1.03 (-0.51,2.57) 0.19 
 

*Sex (female) -135.56 (-179.32,-91.80) <0.001 
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Figure 48 The relationship between height and weight on medial femur 
area 

 

Medial femur area (mm2), Height (mm) 
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Figure 49 Augmented component-plus-residual plot of age and MF 

 

MF – medial femur area (mm2), Age (yrs) 

This augmented component-plus-residual plot suggests a mild departure 

from normality suggesting a higher order term (i.e. age2 may be necessary. 

However the model fit and other linearity checks were satisfactory to suggest 

a linear relationship between age and MF. 
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Figure 50 Augmented component-plus-residual plot of age and MT 

 

MT- medial tibia area (mm2), Age (yrs) 
This augmented component-plus-residual plot suggests a mild departure 

from normality suggesting a higher order term (i.e. age2 may be necessary. 

However the model fit and other linearity checks were satisfactory to suggest 

a linear relationship between age and MT 
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Table 28 Univariable regression analysis of non-KL radiographic 
variables with medial femur area 

Medial femur Coefficient (95%CI) p-value Adjusted r-
squared 

Osteophytes (ref 0) 
Grade1 
Grade2 
Grade 3 

 
23.48 (3.21,43.76) 
91.40 (64.28,118.52) 
242.46 
(219.71,265.21) 

 
 
 
<0.001 

 
 
 
0.149 

 
Sclerosis (ref zero) 
Grade1 
Grade2 
Grade 3 

 
23.80 (2.33,45.27) 
164.02 
(141.10,186.94) 
301.54 
(257.76,352.33) 

 
 
 
<0.001 

 
 
 
0.102 

 
Min JSW 

 
-35.46 (-40.87,-30.06) 

 
<0.001 

 
0.053 

 
KL grade(ref zero) 
Grade1 
Grade2 
Grade3 
Grade4  
 

 
 
30.89 (12.60,49.19) 
63.97 (48.78,79.16) 
170.37 
(153.36,187.38) 
383.64 
(358.22,409.06) 

 
 
 
 
 
<0.001 

 
 
 
 
 
0.203 
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Table 29 Univariable regression analysis of non-KL radiographic 
variables with medial tibia area 

Medial tibia Coefficient (95%CI) p-value Adjusted r-
squared 

Osteophytes (ref 0) 
Grade1 
Grade2 
Grade 3 

 
23.18 (13.83,32.53) 
69.57 (56.08,83.06) 
133.00 
(116.52,149.47) 

 
 
 
<0.001 

 
0.102 

 
Sclerosis (ref zero) 
Grade1 
Grade2 
Grade 3 

 
 
22.75 (12.83,32.66) 
67.00 (56.17,77.84) 
124.94 
(103.13,146.75) 

 
 
 
 
<0.001 

 
 
 
 
0.083 

 
Min JSW 

 
-17.54 (-20.02,-15.06) 

 
<0.001 

 
0.061 

 
KL grade(ref zero) 
Grade1 
Grade2 
Grade3 
Grade4  
 

 
 
13.51 (4.71,22.32) 
12.47 (5.16,19.78) 
60.09 (51.91,68.28) 
140.78 
(128.55,153.02) 

 
 
 
 
 
<0.001 

 
 
 
 
 
0.131 
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Table 30 Multivariable associations between OA-attributable medial femur area and radiographic variables 

Clinical 
characteristic 

Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

Alignment** 
Less than -6º 
Greater than 6º 

 
39.58 (6.44, 72..73) 
146.53 (111.49, 181.58) 

  
71.59 (30.84, 112.33) 
131.78 (89.61, 173.96) 

 
8.09 (-30.87, 47.05) 
158.18 (116.53, 199.84) 

 
53.37 (13.06, 93.68) 
124.89 (81.09, 168.70) 

 
17.21 (-22.44, 56.87) 
131.39 (88.97, 173.81) 

 
-3.04 (-32.91, 26.84) 
82.54 (50.79, 114.29) 

Radiographic 
variables 

       

JSW  2.92 (-5.21, 11.06) -33.17 (-38.69, -27.64)   3.91(-4.24, 12.05)  

Osteophytes* 
Grade1 
Grade2 
Grade3 

  
12.58 (-8.55, 33.70) 
58.89 (29.75, 88.02) 
193.38 (166.87, 219.90) 

  
23.98 (3.90, 44.06) 
90.39 (63.44, 117.35) 
240.28 (217.65, 262.92) 

  
13.52 (-7.53, 34.57) 
59.56 (30.44, 88.68) 
195.92 (169.36, 222.49) 

 

Sclerosis* 
Grade1 
Grade2 
Grade3 

  
-0.17 (-24.72, 24.38) 
89.53 (55.95, 123.11) 
171.52 (109.59, 233.44) 

   
24.55 (3.12, 45.99) 
157.30 (134.30, 180.30) 
276.89 (225.62, 328.15) 

 
-0.23 (-24.66, 24.20) 
83.74 (50.32, 117.18) 
147.19 (85.14, 209.25) 

 

KL grade* 
Grade1 
Grade2  
Grade3 
Grade4 

       
32.20 (13.52, 50.88) 
66.42 (50.91, 81.93) 
170.33 (153.03,187.63) 
375.86 (349.88, 401.74) 

        

R-squared 0.02 0.174 0.067 0.172 0.115 0.187 0.209 

Model F (p=) 36 (p<0.001) 70 (p<0.001) 52 (p<0.001) 93(p<0.001) 58 (p<0.001) 60 (p<0.001) 161 (p<0.001) 

JSW – joint space width, KL – Kellgren Lawrence. *For all categorical variable models, the reference group is grade zero. ** The alignment reference group is -6 to +6 º 
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Table 31 Multivariable associations between OA-attributable medial tibia area and radiographic variables 

Clinical 
characteristic 

Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 

Alignment ** 
Less than -6º 
Greater than 6º 

 
4.25 (-11.07, 19.57) 
60.72 (44.52, 76.91) 

  
20.46 (1.82, 39.09) 

52.43 (33.14, 71.72) 

 
5.80 (-12.71, 24.30) 
52.00 (31.97, 72.05) 

 
12.53 (-6.28, 31.35) 
51.54 (30.95, 71.93) 

 
10.06 (-8.79, 28.91) 
44.82 (24.47, 65.17) 

 
-10.66 (-24.96, 3.65) 
37.00 (21.80, 52.20) 

Radiographic 
variables 

       

JSW  -2.93 (-6.80, 0.93) -16.69 (-19.22, -14.16)   -2.87 (-6.76, 1.02)  

Osteophytes * 
Grade1 
Grade2 
Grade3 

  
15.47 (5.37, 25.58) 

48.20 (32.61, 63.80) 
98.60 (78.49, 118.72) 

  
22.56 (13.32, 31.81) 
67.91 (54.51, 81.32) 

128.28 (111.85, 144.72) 

  
15.26 (5.16, 25.37) 

46.65 (31.04, 62.26) 
96.14 (76.02, 116.25) 

 

Sclerosis* 
Grade1 
Grade2 
Grade3 

  
7.93 (-3.48, 19.35) 

26.08 (10.32, 41.84) 
45.07 (15.95, 74.20) 

   
23.28 (13.42, 33.15) 
63.20 (52.39, 74.01) 

113.66 (91.69, 135.63) 

 
8.54 (-2.87, 19.97) 
24.71 (8.96, 40.46) 
38.42 (9.15, 67.68 

 

KL grade* 
Grade1 
Grade2  
Grade3 
Grade4 

       
14.76 (5.82, 23.71) 
15.56 (8.13, 22.99) 

62.04 (53.76, 70.33) 
138.47 (126.08, 150.87) 

        

R-squared 0.012 0.129 0.083 0.128 0.104 0.135 0.147 

Model F (p=) 27 (p<0.001) 49 (p<0.001) 66 (p<0.001) 66 (p<0.001) 53 (p<0.001) 41 (p<0.001) 106 (p<0.001) 

JSW – joint space width, KL – Kellgren Lawrence. *For all categorical variable models, the reference group is grade zero. ** The alignment reference group is -6 to +6 º 
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4.4 Discussion 

This cross-sectional analysis is the first to establish the proportion of OA-

attributable tAB variance explained by a comprehensive set of traditional 

radiographic measures of OA using automated imaging analysis technology 

in a large OA cohort. The accuracy of the relationship between radiographic 

OA and tAB is uniquely described with the use  of 3D images of knee bones 

and the lowest coefficient of the variance of tAB measurement, in the 

published literature, of less than 1%[632]. 

When considering the regression models of ‘normal’ knees the largest 

proportion of variance in tAB in the current study was described by 

participant height for both MF and MT tAB. This allometric relationship has 

previously been described in young healthy individuals with normal knee 

joints using manual segmentation of knee MRIs and multi-linear regression 

modelling [257]. We similarly observed that this allometric relationship 

explained a greater proportion of variance in tAB  in females.  

Tibial tAB has been reported to significantly correlate with increasing age in 

healthy populations [258, 638]. A similar relationship has been described 

both in populations with knee OA and in healthy participants, although this 

correlation significantly reduced in magnitude  after adjusting for the 

presence of radiographic OA, suggesting tAB enlargement is directly 

relevant to OA [639]. In this analysis of a population with normal knees a 

linear relationship between tAB and age was also noted. However this 

association was not considered substantive; age explained only 0.1% of the 

variance in tAB and thus may only be a minor determinant of tAB. 

Gender appeared to explain a large amount of the variance of tAB in this 

analysis. However the magnitude decreased substantively when adjusted for 

height. Similar gender differences in height have been observed in patients 

with healthy knees which accounts for the large proportion of tAB variance 

explained by gender in unadjusted regression modelling [256]. 
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When considering radiographic data, osteophytes, joint space narrowing and 

KL grade correlated with tAB in previous cross-sectional analyses of OA 

knees [31, 269, 483, 560]. These analyses did not adjust for the tAB 

attributable to OA. This study used OA-attributable tAB and demonstrated 

the same statistically significant associations, however they did not explain a 

substantive proportion of OA-attributable tAB variance in uni- and multi-

variable models. This may reflect the lack of sensitivity of traditional 

radiographic measures in detecting structural progression and the additional 

structural information afforded by the 3D measure we employed. Indeed 

approximately 80% of the variance of OA-attributable tAB was not explained 

by radiographic covariates. The apparent lack of substantive association 

with the radiographic measures may reflect the limitations of 2D projection 

images of conventional radiography. Semi-quantitative MRI scores (2.11.2.2 

MRI semi-quantitative measures) based on similar 3D imaging may prove to 

be more strongly associated with 3D bone area that is attributable to OA. 

Unfortunately only 115 OAI knee MRI scans have this scoring available in 

the public domain which currently precludes an analysis of significant size. 

Of the three non-KL radiographic variables, osteophytes explained the 

largest variance in tAB. This may reflect the expansion of subchondral tAB in 

OA being largely a product of endochondral and direct bone formation in the 

medial and lateral peripheral articular cartilage plate [640](2.6.1.2 

Subchondral bone and the osteochondral junction).   

4.5 Limitations 

There are limitations to this study. We have aimed to be cautious in only 

presenting substantive associations. The OAI is a large cohort and therefore 

we wanted to demonstrate whether significant statistical associations were 

substantiated by a significant proportion of tAB variance explained. Although 

JSW and KL grades were available for 4490 participants in the OAI 

database, we were limited to approximately 2588 participants by the 

availability of osteophyte and sclerosis variables.  
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Bone shape or bone area may be influenced by confounding factors that we 

did not adjust for, including the use of bisphosphonates. 

Magnetic resonance cannot directly identify the presence of calcium. In the 

segmentation of knee DESS-we MRI sequence the material imaged is 

assumed to represent bone rather than another tissue type. Confirmation 

that these surfaces are actually bone requires further work. Finally the 

automated segmentation used here is both accurate and repeatable 

however all subtle details of particular diseases may not be identified [259, 

267]. The majority of the cohort was Caucasian with smaller numbers of 

other ethnic groups. Therefore conclusions cannot be readily generalised to 

non-Caucasian groups  

4.6 Conclusions 

The analyses within this chapter confirm that radiographic measures, 

derived from a single radiographic projection, are significantly associated 

with OA-attributable bone area measured in 3D but do not explain a 

substantive proportion of OA-attributable bone area. This may reflect the 

additional 3D MRI structural information, unaccounted for by these 2D 

radiographic measures. We also confirmed the substantive allometric 

relationship of bone area with body size. Future analyses of bone area as a 

measure of structural progression should adjust for OA-attributable bone 

area.  
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Chapter 5 The relationship between three-dimensional knee 

MRI bone shape and total knee replacement – a case control 

study 

5.1 Introduction 

In chapter three the systematic literature review identified the need for 

evidence of the validity of 3D bone measures as imaging biomarkers. In 

chapter four the significant association of 3D bone structure of OA with 

conventional radiographic OA measures provided evidence of construct 

validity but also highlighted the additional structural information provided by 

3D bone measures that could not be substantively explained by the 2D 

projection images of conventional radiography. Conventional radiographic 

measures of OA are associated with outcomes such as joint replacement. 

Therefore it is important to know the relationship of the novel bone shape 

biomarker with important clinical outcomes such as joint replacement, 

independent of the structural assessment of conventional 2D radiography. 

This chapter describes evidence of criterion validity by describing the 

association of 3D bone shape with the patient-centred outcome of total knee 

replacement.  

5.2 Methods 

Data used for this nested case-based, case-control analysis, with cumulative 

incidence sampling, were obtained from the NIH Osteoarthritis Initiative 

(OAI) database, which is available for public access at 

http://www.oai.ucsf.edu/ (2.12 Summary of the OAI). This database houses 

a multi-centre, prospective, longitudinal observational study of knee OA 

currently including approximately 4,796 participants[515]. Baseline 

demographic data were collected and MRI scans were performed for all 

participants. At each site the institutional review board approved the study 

and informed consent was given by all patients. The OAI study and public 

use of clinical and imaging data used in this study was approved by the 

http://www.oai.ucsf.edu/
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committee on Human Research, University of California, San Francisco (IRB 

approval number 10-00532). 

During the eight-year period of follow up for the OAI cohort, the MRI systems 

at all four recruiting centres underwent one hardware upgrade[641]. The 

timing of this upgrade varied by recruiting centre and by stage of each 

participant’s follow up. This upgrade created a statistically significant 

difference in the geometric measurement of a phantom[642] that is used to 

assess reproducibility of MRI scans in the OAI by independent centralized 

QA analyses[641]. The MRI upgrade conferred a systematic change in 3D 

bone shape equivalent to about 2-years change. This therefore precluded a 

longitudinal analysis of 3D bone shape. The decision to use a case-control 

analysis rather than a time-survival analysis was based upon the following 

factors. The outcome of TKR is rare and there is significant variation in 

multiple strong confounding factors for TKR incidence between participants 

at baseline in the OAI. These include pain, radiographic severity, obesity and 

previous injury. The primary objective was not to estimate the effect of these 

well described, strong predictors of TKR but to determine if 3D bone shape 

vectors were independently associated with the outcome of TKR after 

effectively adjusting for these confounding factors. Therefore a case-control 

analysis was chosen 

For the current study, definition of case knee or control knee status required 

baseline records of age, gender, knee numeric pain scale, weight and 

Kellgren Lawrence (KL) grade.  A pre-requisite for eligibility also included 

having a baseline MRI knee scan and confirmed knee replacement status by 

the 72 month follow-up visit. Cases were defined as any knee with; 

confirmed TKR status(patient-reported TKR and adjudicated confirmed 

status on subsequent radiograph between baseline and the 72 month follow-

up visit); confirmed OA indication for TKR or, where this was unrecorded, an 

OA indication was highly likely (the presence of baseline radiographic and 

symptomatic evidence of OA) for the replaced knee. Where a participant had 

both knees replaced during the follow-up (n=69), the first knee to be 

replaced was included (n=50).  Where both knees were replaced on the 
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same day (n=19) one knee was randomly selected. Knees that ‘survived’ 

were eligible for selection as controls if they had neither patient-reported nor 

post-knee replacement adjudicated confirmation on follow-up radiograph at 

the 6 year follow up point. The OAI cohort has excellent follow up retention 

rates at 6 years (approximately 88%).  Where two ‘control’ knees were 

available for the same participant, the knee with the highest pain score, or 

the right side if they reported equal pain, was selected. Control knees were 

matched 1:1 with case knees using propensity score (PS) matching 

(described below). With multiple strong confounders (e.g. age, gender and 

body mass index), PS matching was chosen as an efficient way of creating 

an unbiased comparison and improving precision. 

MRI sequences collected in the OAI are described in detail by Peterfy and 

colleagues [497].  The current study utilised the double-echo-in-steady-state 

sequence (DESS-we) of the Siemens 3T trio systems [497].  

The quantitative analysis of 3D bone shape was achieved by automated 

segmentation of the 3D MRI double-echo steady-state water excitation 

sequences. Active appearance models (AAMs) are statistical shape 

modelling methods that learn the variation in shape and gray-scale texture 

(‘appearance’) of objects from a training set (such as the bones from an 

MRI), and encodes shape and appearance as principal components [629, 

630](2.10 Statistical Shape modelling, active shape modelling and active 

appearance modelling). 

The AAM methodology has been previously published [75]. In summary a 

training set of 96 knees with equal numbers of knees from each KL grade 

was used to build AAMs for each knee bone so that the trained AAMs can 

automatically segment bones in MR images. The validation of the accuracy 

of the knee segmentations has been previously described [630, 643]. For 

each particular models, the accuracy of the automated segmentations was 

further assessed using test–retest MRIs for 19 participants (38 images) with 

no OA to moderate degrees of clinical OA, prepared as a pilot study for the 

OAI, using the same MRI sequence [644]. The bone surface was manually 

segmented as previously described[632]. Mean point-to-surface distances 
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were calculated between the manual and automated segmentations. Mean 

point-to-surface errors were as follows: for the femur, 0.49 mm; for the tibia, 

0.53 mm; and for the patella, 0.57 mm (i.e. each approximately the size of 1 

voxel)[75]. The reliability of the automated segmentations has been 

established [632, 644]. The reliability of the automated segmentations of 

bone and cartilage has been described [632, 644] While segmentation for 

cartilage thickness has a coefficient of the variance of over 2%, bone 

segmentation has a coefficient of the variance of 0.8-1.9%[632] 

In order to identify vectors within this shape space that represented average 

change of the bone with disease we separated the 96 training set cases into 

OA (KL grade 2-4, n =53) and non-OA groups (KL0-1, n=43)  

The shape vector for each bone is calculated by taking the principal 

components of the mean shape of the OA and non-OA groups, and drawing 

a straight line through them.   Individual bone shapes from knees in this 

study, represented as principal components following the AAM search, were 

projected orthogonally onto the vector.   The distance along the vector was 

normalized by treating the mean non-OA shape as -1 and the mean OA 

shape as +1 (Figure 51, Figure 52). 

The reproducibility or test-retest reliability of the method was described in a 

set of 35 OA knees that underwent magnetic resonance imaging one week 

apart at one single OAI site, using the same OAI image acquisition 

sequence [632]. The reproducibility for the OA vector was good, with the 

smallest detectable difference for the femur, tibia and patella bone shape 

vectors was 0.22, 0.86 and 0.24 units normalised to the mean non-OA 

shape respectively[625].  [75].  

5.2.1 Statistical analysis 

Statistical analysis was conducted using STATA software, version 13 

(College Station, TX, 2013). Matching of control knees  to case knees 1:1 

was performed using PS matching. The PS is the conditional probability of 

assignment to a particular treatment given a vector of covariates and has 

been shown to be sufficient in removing bias due to observed covariates in 
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observational studies [645]. In this analysis the PS is the conditional 

probability of receiving a TKR given a vector of covariates. The model was 

based on the probability of having the outcome of TKR conditional on 

observed covariates. This is stratification score matching which has been 

previously described [646] and is referred to as PS matching in this 

retrospective analysis. The propensity model was estimated using logistic 

regression based on a priori known relationships between the outcome TKR, 

and clinically important risk factors such as age, gender, weight, KL grade, 

and pain [647], which may influence the surgeon`s decision to operate. We 

considered whether health insurance could affect the outcome with 

participants potentially not offered a TKR for financial reasons; however on 

exploration of the data we found that 98% of participants that had a TKR had 

some form of health insurance while 96% of those not having a TKR  had 

insurance. 

The final logistic regression model included baseline age, gender, weight 

category, ipsilateral knee pain severity numeric rating scale (Range 0-10), 

and knee side (right or left) (Table 42). KL grade was deliberately omitted 

because it directly influences the decision for TKR by the orthopaedic 

surgeon, resulting in over-matching. Furthermore the KL grade is used to 

define the scalar 3D bone shape variable and hence the two are moderately 

correlated (unpublished data).  

Age was categorised into 5-year groupings prior to inclusion in the PS 

model. Weight was categorised using WHO BMI categories, underweight 

(<18.5kg/m²), normal (18.5-24.9), overweight (25-29.9) and obese (≥30). 

Underweight and normal categories were subsequently merged because 

very few patients were underweight (n=10). Control knees were matched to 

case knees with the nearest PS (nearest neighbour matching) without 

replacement. Matching between case and control knees was confirmed 

graphically and by comparing the means or medians for the PS and the 

distribution of the components of the PS between case and control knees. 

Age, BMI and pain were analysed as continuous variables and gender kept 

as dichotomous. The variables were considered well balanced if the 
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standardised difference percentage (the mean difference as a percentage of 

the average standard deviation) for continuous variables was less than 10% 

as values greater than this are reported to represent meaningful imbalance 

[648], and for dichotomous variables a standardised difference (difference 

between prevalence in treatment and control group divided by an estimate of 

with-in group standard deviation) less than 0.1 represented good balance 

[649]. 

For simple comparison between the matched groups, Student`s t-tests for 

paired samples were used to compare 3D bone shapes of the femur, tibia 

and patella between case and control knees. Univariable and multivariable 

conditional logistic regression analyses were performed to establish the 

association of each baseline 3D bone shape vector as continuous variables 

with the outcome of TKR. Multivariable analyses included KL grade and the 

Akaike information criterion (AIC) was used to compare models with and 

without 3D bone shape, in order to assess any additional association beyond 

that between KL grade and TKR.  Model fit was assessed by examining 

leverage plots to identify pairs that did not fit the data well, and also 

observations exerting a strong influence on the estimated coefficients. The 

model fitted the data well based on diagnostic checks. We also analysed 3-D 

bone shape vectors categorized into tertiles with the highest tertile 

containing values closer to mean OA shape and the lowest tertile contained 

values closer to the mean non-OA shape. 

 Additional exploratory analyses (conditional logistic regression models) 

aimed to determine if any association of bone shape with TKR was 

maintained over all KL grades and to establish if there were any differences 

in association between 3D bone shape and TKR depending on the time from 

baseline to TKR date in years.  
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Figure 51 Scalar continuous vector of 3D bone shape of the femur 

 

Legend: Anterior and posterior views of right knees. The femoral shape 

vector is scaled to -1 as the mean shape without radiographic OA and +1 

with established radiographic OA 

 

Figure 52 Scaling of the 3D bone shape vectors relative to KL grade 

 

The distance along the vector was normalized by treating the mean non-OA 

shape as -1 and the mean OA shape as +1 

5.3 Results 
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Of the 4,796 participants in the OAI database, 336 individuals with at least 

one confirmed knee replacement during follow-up were identified. In total 

405 knees had been replaced (right 198, left 207). Of the 69 patients who 

had both knees replaced; 50 patients’ knees were replaced on separate 

days, and from them 25 right knees and 25 left knees were selected for 

analysis on the basis that they were replaced first. From the remaining 19 

patients whose knees were replaced on the same day; 11 right knees and 8 

left knees were randomly selected. Only one knee was excluded by TKR 

indication which was recorded as rheumatoid arthritis. Having excluded 

patients with missing MRI data, 310 cases knees met the selection criteria 

and were suitable for PS matching (Figure 53). The 336 individuals with 

knee replacements differed from the rest of the OAI cohort in baseline mean 

age (3 years older), KL grades, obesity and  numeric rating scale pain 

scores (Table 32). The number of exact PS matches was 244 (79%) with all 

remaining case knees having a PS within 0.01 PS units of their control knee. 

A minority of case knees had been matched with contralateral control knees 

(n=12[4 %]). There was a concordant gender match in all case-control knee 

pairs.  

There were no substantive differences between the cases and matched 

controls (Table 33). The distribution of the PSs in the two groups was similar 

(Figure 54). 
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Figure 53 Participant flow diagram for the selection of case knees 
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Table 32 Characteristics of 4796 participants according to presence or 
absence of at least one (1) confirmed, adjudicated total knee 
replacement (TKR) before matching 

 TKR, n=336 No TKR, n=4460 

Age, years, mean (SD) 
 
Gender ,female,% 
 
Health  insurance,%  
 
Weight  
Normal/underweight  
Overweight 
Obese  

64.1 (8.39) 
 

60 
 

98 
 
 

44 (13) 
131 (39) 
161 (48) 

60.8 (9.19) 
 

58 
 

96 
 
 

2004 (25) 
1746 (39) 
1610(36) 

KL grade 

0 
1 
2 
3 
4 
Missing  

 

11 (3) 
15 (5) 

74 (22) 
136 (41) 

94 (28) 
6 (1) 

 

1560 (35) 
715 (16) 

1112 (25) 
591 (13) 

157 (4) 
325 (7) 

 

NRS, median(IQR) 
 

5 (3-7) 
 

3 (1-5) 
   

Figures are n (%) unless stated. 

NRS – Numerical Rating Scale for pain 

KL - Kellgren Lawrence grade 

SD – Standard deviation 

IQR – Inter-Quartile Range 

TKR – Total Knee Replacement 

 

 

  



- 296 - 

296 

 

 

Table 33 Demographics characteristics of participants with knee 
replacement and their controls from propensity matching 

    TKR cases 
n=310 

Controls 
n=310 

Gender, male 

 
Age categories 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75+ 
 

123 (40) 
 
 
12 (4) 
34 (11) 
53 (17) 
53 (17) 
64 (21) 
52 (17) 
42 (13) 

123 (40) 
 
 
17 (5) 
35 (11) 
45 (15) 
59 (19) 
59 (19) 
56 (18) 
39 (13) 

Weight category 
Normal/underweight 
Overweight 
 
*Health insurance 
 

 

165 (53) 
156 (47) 
 
301 (98) 
 

 

157 (51) 
153 (49) 
 
292 (95) 
 

Side, right 159 (51) 161 (52) 
 
NRS ,median (IQR) 
Left knee score 
Right knee score 

 
 
5 (3-7) 
5 (2-7) 

 
 
5 (3-6) 
5 (3-7) 

 
 
*KL grade 
0 
1 
2 
3 
4 
Missing 

 
 
 
10 (3) 
12 (4) 
69 (22) 
128 (42) 
85 (27) 
6 (2) 
 

 
 
 
93 (30) 
49 (16) 
85 (27) 
47 (15) 
13 (4) 
23 (7) 
 
 

Figures are n (%) unless stated. 

*not used in propensity matching 

NRS – Numerical Rating Scale for pain 

KL - Kellgren Lawrence grade 

SD – Standard deviation 

IQR – Inter-Quartile Range 

TKR – Total Knee Replacement 
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Figure 54 The distribution of propensity scores amongst cases and 
controls 

 

 

The standardised differences for age, BMI and NRS pain were 3.3%; 0.5% 

and 1.8% respectively (all within 10%) while gender was matched perfectly. 

The mean baseline 3D bone shape scalar variable indicated significantly 

greater structural severity in cases of TKR than in controls. Mean, (SD) in 

the femur cases was 0.98 (1.51) compared with controls mean of -0.11 

(1.40), with a statistically significant difference of 1.10 (95% CI, 0.89 to 1.31), 

t (309) =10.31, p<0.001. Mean, (SD) in the patella cases was 0.95 (1.86) 

compared with controls mean of 0.03 (1.83), with a statistically significant 

difference of 0.92 (95% CI, 0.65 to 1.20), t (309) =6.61, p<0.001. The femur 

had the largest mean difference in 3D shape of the three knee bones (Table 

34). 

The conditional logistic regression models of each individual bone estimated 

increased odds of TKR with more positive 3D bone shape, indicating greater 

OA structural severity (Table 35).
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Table 34 The mean differences between bone shape vectors of cases and controls 

Bone vector Mean Control Mean TKR Mean difference 95% CI Paired T-test 

  (mean, SD) (mean, SD)     p value 

Femur -0.11, 1.40 0.98, 1.51 1.10 0.88, 1.31 <0.001 

Tibia -0.07, 1.39 0.86, 1.42 0.94 0.72, 1.16 <0.001 

Patella +0.03, 1.83 0.95, 1.84 0.92 0.65, 1.20 <0.001 

SD – Standard deviation 
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Table 35 The associations between 3D bone shape vectors or KL grade with TKR 

 
Univariable (unadjusted) Multivariable* 

Imaging 
variable 

OR 95% CI p value AIC OR 95% CI p value AIC 

Femur vector 1.85 1.59, 2.16 <0.001 341.11 1.24 1.02, 1.51 0.03 241.33 

Tibia vector 1.64 1.42, 1.89 <0.001 367.80 1.09 0.90, 1.32 0.40 245.60 

Patella vector 1.36 1.22, 1.50 <0.001 390.84 1.06 0.92, 1.23 0.40 245.58 

Combined bone vectors 
 

    

Femur vector     1.26 1.00, 1.60 0.05  

Tibia vector     0.97 0.78, 1.21 0.80  

Patella vector     1.00 0.85, 1.17 0.96 245.26 

KL grade 
(ref=KL zero)  

    

1 1.66 0.58, 4.73 0.34 
 

    

2 5.66 2.55, 12.55 <0.001      

3 17.18 7.43, 39.72 <0.001 
 

    

4 39.77 14.64,108.0 <0.001 244.31     

* Adjusted for KL grade 

OR – Odds ratio from conditional logistic regression, KL - Kellgren Lawrence grade, CI – Confidence Interval, AIC – Akaike’s 
Information Criterion, TKR – Total Knee Replacement 
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Odds ratios (95% confidence intervals) per normalised unit of 3D bone 

shape vector for the femur, tibia and patella were 1.85 (1.59, 2.16), 1.64 

(1.42, 1.89), 1.36 (1.22, 1.50) respectively, all p<0.001. The order of strength 

of association of bone shape with TKR, from strongest to weakest, was 

therefore the femur, the tibia and finally the patella. The odds on TKR 

increased significantly with KL grade. When KL was included in multivariable 

conditional logistic regression models, the femur remained significantly 

associated with TKR but the association with the tibia and patella was 

attenuated. The odds ratios (95% confidence intervals) per normalised unit 

of 3D bone shape vector were 1.24 (1.02, 1.51), 1.09 (0.90, 1.32), 1.06 

(0.92, 1.23) for the femur, tibia and patella respectively.  The AIC of the 

univariable KL model was lower than any of the univariable bone vector 

models and multivariable tibia and patella models and the strength of 

association was in the expected direction (OR for KL3 were greater than that 

of KL2 when compared to KL0 as reference). However the multivariable 

model of the femur vector had a small improvement in AIC indicating 

including bone shape contributes to the association with TKR in addition to 

KL grade.Those in the highest tertile for the femur bone shape vector had 

12.7 times higher chance than those in the lowest tertile group of having a 

TKR (95% CI 6.93-23.40, P<0.001). In all analyses a similar trend was noted 

with those in the highest tertile having increased chances of having a TKR 

than both the middle tertile and lowest tertile. After adjusting for KL grade in 

the tertile model, only the highest tertile of the femur model remained 

significantly associated with TKR (Table 36). The association between bone 

shape and TKR was not significantly modified when stratified by KL grade 

severity (Table 37,Table 38,Table 39).  
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Table 36 The associations between 3D bone shape vectors TKR using lowest tertile as reference 

3-D bone shape vector  Odds ratio (95% CI)  p-value Adjusted odds (95% CI) P-value 

Femur 
Highest tertile 
Middle tertile 
Lowest tertile (ref) 

 
12.73 (6.93-23.40) 
2.55 (1.60-4.05) 
1.0 
 

 
 
 
<0.001 
 

 
3.47 (1.62-7.47) 
1.17 (0.65-2.08) 

 
0.001 
0.610 
 
 

Tibia 
Highest tertile 
Middle tertile 
Lowest tertile(ref) 

 
6.32 (3.84-10.40) 
2.80 (1.72-4.56) 
1.0 
 

 
 
 
<0.001 
 
 

 
1.95 (0.99-3.82) 
1.64 (0.85-3.15) 

 
0.052 
0.140 
 

Patella 
Highest tertile 
Middle tertile 
Lowest tertile(ref) 

 
3.81 (2.40-6.08) 
2.26 (1.47-3.49) 
1.0 

 
 
 
<0.001 

 
1.78 (0.92-3.44) 
1.84 (1.01-3.35) 
 

 
0.088 
0.046 
 

Ref = reference 

95% CI= 95% confidence interval. 
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Table 37 The number of propensity score matched pairs of cases and 
controls with equal KL knee grades 

Kellgren Lawrence 
grade 

 

Pairs of knees Number of knees 

0 2 4 

1 4 8 

2 14 28 

3 18 36 

4 3 6 

Total 41 82 

 

 

 

Table 38 The number of propensity score matched pairs of cases and 
controls with equal KL knee grades after grouping into KL grade 
strata 

Kellgren Lawrence 
grade 

 

Pairs of knees Number of knees 

0,1 6 12 

2 14 28 

3,4 21 42 

Total  41 82 
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Table 39 The difference in mean bone shape vector between propensity 
score matched cases and controls with equal KL grades after 
division into strata 

Bone  
Kellgren 
Lawrence 
grade 

 

Mean bone 
shape 
vector 
difference 
between 
vectors 
matched 
cases and 
controls 
with 
identical KL 
grade 

Standard 
deviation 

Confidence 
interval 

Effect size 
(Mean/SD)a 

Femur 0,1 0.78 1.56 -0.85, 2.42 0.50 

 2 0.66 1.55 -0.23, 1.56 0.43 

 3,4 0.12 2.45 -0.99, 1.23 0.05 

Tibia 0,1 0.45 0.99 -0.58, 1.50 0.46 

 2 0.59 1.39 -0.21, 1.39 0.42 

 3,4 0.38 2.17 -0.61, 1.37 0.18 

Patella 0,1 0.07 1.43 -1.43, 1.57 0.05 

 2 0.74 2.77 -0.86, 2.35 0.27 

 3,4 0.32 2.66 -0.89, 1.53 0.12 

The difference in mean bone shape vector between propensity score 

matched cases and controls with equal KL grades after division into strata. 

The association between bone shape and TKR was not significantly 

modified by KL grade severity strata. However this is an exploratory analysis 

with large confidence intervals, using small numbers of matched case 

control pairs. aThe mean bone shape vector difference (column 3) divided by 

the standard deviation (column 4). TRK: Total Knee Replacement; KL: 

Kellgren Lawrence grade. 

 

The association between bone shape and TKR was not significantly 

modified by KL grade severity strata. However this is an exploratory analysis 

with large confidence intervals, using small numbers of matched case 

control pairs. 

Similarly the association between bone shape and TKR was not significantly 

modified by the length of the interval between baseline and TKR incidence 
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(Table 40, Table 41). However these were exploratory analyses which 

included small numbers in each stratum with large confidence intervals. The 

cumulative incidence of the 310 TKR cases over approximately seven years 

is relatively stable over the first seven years (Table 40). 

  

 

 

Table 40 The cumulative incidence of the TKR cases used for the case-
control analysis 

Year of case TKR Incidence of case 
TKRs 

Cumulative 
Incidence of case 

TKRs 

0-1 23 23 

1-2 37 60 

2-3 39 99 

3-4 52 151 

4-5 54 205 

5-6 48 253 

6-7 51 304 

7-8 6 310 

Total 310 310 

 

Table 41 The association of 3D femur bone shape vector with TKR by 
annual TKR incidence 

The year of 
incidence of case 
TKR 

OR 95% CI P value 

All years 
combined 

1.85 1.59, 2.16 <0.001 

0 to 1 1.92 1.17, 3.18 0.010 

1 to 2 1.85 1.20, 2.87 0.006 

2 to 3 2.68 1.44, 4.99 0.002 

3 to 4 1.57 1.12, 2.18 0.008 

4 to 5 1.82 1.25, 2.66 0.002 

5 to 6 2.30 1.39, 3.81 0.001 

6 to 8 1.60 1.15, 2.24 0.006 
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Table 42 Results from propensity model used to match cases and 
controls 

Outcome -TKR Coefficient  95% CI P value 

Age category (ref 0)    
 1 0.58 -0.05, 1.22 0.072 
2 1.15 0.55, 1.76 <0.001 
3 1.28 0.68, 1.88 <0.001 
4 1.60 1.00, 2.19 <0.001 
5 1.47 0.87, 2.08 <0.001 
6 1.76 1.13, 2.39 <0.001 
    

Sex (ref male)    
Female  -0.00027 -0.24, 0.24 0.99 

    
NRS 0.17 0.13, 0.21 <0.001 

    
    

Weight category(ref 
normal) 

   

Overweight  0.38 0.14, 0.62 0.002 
    

Side (ref Right) 0.60 0.36, 0.84 <0.001 
    

Constant  -4.87 -5.47, -4.27 <0.001 

NRS – numeric rating scale for pain 
 

5.4 Discussion 

This is the first study to describe the association between 3D bone shape 

and TKR. We demonstrated that people having TKR exhibited significantly 

more advanced 3D shape changes of OA structural progression than 

controls at baseline. Total knee replacement has been previously associated 

with age, obesity, pain characteristics, radiographic OA severity and MRI 

features such as cartilage damage [105, 479, 540, 600, 650]. MRI-

determined bone shape is related to OA structural progression[75]. The 

association of OA subchondral bone pathology with TKR is supported by the 

association of bone marrow lesions with TKR, though bone shape and BMLs 

are likely to be measuring a different pathological construct [105, 540, 600]. 
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The odds ratio of TKR per normalised unit of 3D bone shape vector 

increased with greater baseline 3D shape structural severity for each of the 

femur, tibia and patella. However femoral bone shape has the strongest 

association with TKR. It is worth noting that the femoral bone shape had the 

largest scalar value difference between case and control knees and is the 

only bone shape that, after adjusting for KL grade, remained significantly 

associated with the outcome of TKR.  These findings concur with the same 

3D femur shape having the largest hazard ratio of the three knee bones in 

predicting incident radiographic knee OA [605].  

Furthermore the 3D bone area of femoral trochlear and tibio-femoral 

articulations were the most responsive and had the greatest percentage 

change in size of all articulating surfaces in the knee[604]. Cartilage loss 

from the femur was better than loss from the tibia in distinguishing OA knees 

requiring and not requiring knee replacement in a previous study [647]. 

Femoral bone undergoes greater 3D shape change than tibial bone after 

anterior cruciate ligament rupture[651]. In knee OA the tibial 3D shape 

changes in a more uniform and symmetric pattern than the femur where the 

shape change distinctly occurs around the cartilage plates where an 

increased ridge of “osteophytic” material forms[75]. This may explain why 

femoral 3D shape has a greater responsiveness and association with TKR. 

While bone shape readily changes in response to mechanical forces acting 

upon it (Wolff’s law) [173, 197] it is reasonable that the femur shape should 

change more than the tibia or patella because the femur receives more load 

from twice the number of weight bearing surfaces of the tibia and patella. 

The association of TKR with femoral, but not tibial or patellar bone shape 

persists after adjusting for KL grade and is greatest for the femur in the 

higher tertiles (Table 5). This may reflect the observation that in more 

advanced structural progression, tibial and patellar shape change is more 

uniform and symmetrical than the femur [75, 652]. This more readily 

detectable shape change in the femur may explain the stronger association 

with TKR in more advanced structural progression (the higher tertiles). The 

additional structural information provided by 3D bone imaging compared to 
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conventional radiography[516] may explain why in the exploratory analyses 

the association with TKR was maintained after stratifying for KL grade 

severity, indicating the stage of structural severity does not affect this 

association.  

The requirements of biomarker validation have been described [653]. The 

findings of this study in conjunction with previous data on construct validity, 

reliability and responsiveness of 3D bone shape, indicates that novel 

quantitative measures of bone shape are  increasingly validated biomarkers 

of OA structural progression [75, 605, 652]. 3D bone shape has advantages 

over conventional ordinal and metric radiographic measures of structural 

progression in that it provides a continuous measurement variable that is a 

more responsive measure than radiographic measures of knee OA[652] and 

it is sensitive to pre-radiographic knee OA[75].   

5.5 Limitations 

There are limitations to this study. Joint arthroplasty is an end-point 

reflecting symptom and structural damage severity, but many variables 

influence both the timing and the decision to perform this outcome measure. 

The surgeon’s opinion and the patient’s comorbidities and willingness to 

undergo surgery are examples of these, in addition to local and national 

health system variations in surgical waiting lists which may cause residual 

confounding. 

There is no consensus on which variables to include in the propensity model 

with studies showing a similar effect if all measured baseline covariates, all 

potential confounders or all true confounders are used interchangeably 

[649].  It has however been demonstrated that in order to maximize the 

number of matched pairs, the propensity model specified should have only 

the true or potential confounders [648]. In the final sample 79% of case and 

control knees were matched exactly. This PS method adjusted for 

imbalances at baseline but not over time. Body mass index may increase 

before TKR and this may cause residual confounding conceivably with 
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greater BMI increases in the TKR cases than in the controls. This may 

influence the size of the associations described in this analysis.  

An alternative study design considered was cox-regression analysis, 

modelling the time-to-event (in this case TKR) which could have compared 

different survival times based on the 3D bone vector as well as estimates of 

covariates using the full cohort. However since the stated objectives did not 

include estimating the effect of these well described and strong predictors of 

TKR, and knee replacement satisfied the “rare outcome” assumption 

(prevalence of 7%), we chose to perform a well-matched case-control 

analysis instead of a whole cohort survival analysis. Essebag and 

colleagues highlighted this relative advantage of well-matched case-control 

analysis where the effect of the confounding factors is ‘not of interest’[654]. 

A case-control analysis therefore represented a more precise analysis by 

efficient matching of multiple strong confounding factors to minimise the 

effect of bias. 

We also acknowledge that by effectively matching cases and controls we 

may inadvertently ‘overmatch’ which may reduce any effect of 3D bone 

shape on the outcome of TKR and my chosen method was therefore at risk 

of underestimating the magnitude of the association of bone shape vector 

with the outcome of TKR. 

The multivariable analyses are potentially subject to the effects of multiple 

collinearity. This is because KL grade is moderately correlated with bone 

shape vectors and the three bone shape vectors from within the same knee 

are used in the same multivariable models,  

Bone shape or bone area may be influenced by confounding factors that we 

did not adjust for, including the use of bisphosphonates. 

The OAI is predominantly a caucasian cohort with smaller numbers of other 

ethnic groups. This means that any attempt to match cases and controls 

based on ethnicity would limit the available pool for matching. We 

acknowledge that by not matching on ethnicity there may be residual 

confounding although race was not associated with TKR incidence after 
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covariate adjustment in the OAI dataset [479]. Health insurance was 

available for 98% of participants in the study suggesting any differences in 

ethnicity between cases and controls did not reflect their access to TKR 

surgery.  The associations reported in this analysis should not be 

generalised to non-caucasian populations due to the lower representation of 

non-white participants in this analysis. 

Additionally, as with any observational study, it is impossible to rule out 

residual bias from unknown or unmeasured confounders. 

Magnetic resonance cannot directly identify the presence of calcium. In the 

segmentation of knee DESS-we MRI sequence the material imaged is 

assumed to represent bone rather than another tissue type. Confirmation 

that these surfaces are actually bone requires further work. Finally the 

automated segmentation used here is both accurate and repeatable; 

however some subtle details of particular diseases may not have been 

identified [259, 267].  

5.6 Conclusions 

This chapter has demonstrated that 3D bone shape was associated with the 

important patient-centred outcome of total knee replacement. The femur  

had the greatest association of the three 3D knee bone shape vectors. This 

may reflect the superior responsiveness of this bone shape in the structural 

progression of knee OA. The predictive (criterion) validity demonstrated here 

further underpins the value of quantitative bone measures in future 

therapeutic trials of DMOADs.  
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Chapter 6 The relationship between 3D MRI bone shape and 

knee osteoarthritis symptoms in knees with and without 

radiographic knee osteoarthritis. 

 

6.1 Introduction 

The systematic literature review in chapter three identified the requirement 

for evidence of the validity of 3D bone measures as imaging biomarkers. In 

chapter four the significant association of 3D bone structure of OA with 

conventional radiographic OA measures provided evidence of construct 

validity but also highlighted the additional structural information provided by 

3D bone measures that could not be substantively explained by the 2D 

projection images of conventional radiography. This additional structural 

‘information’ appeared to confer an association of 3D bone shape with joint 

replacement, that is independent of the structural assessment of 

conventional 2D radiography. This provided evidence of criterion validity, 

This chapter describes evidence of criterion validity by describing the 

association of 3D bone shape with the patient-centred outcome of current 

and incident knee OA symptoms. OA is a major cause of chronic pain and 

disability and by 2020 is estimated to be the commonest chronic condition 

seen in primary care [655]. OA is a heterogenous condition characterised by 

the failure of the whole synovial joint organ[656] (2.4.2 Microscopic). It is 

widely accepted that OA is present when typical structural pathology is 

identified by conventional radiography. However the concordance between 

structural pathology determined by radiographic knee OA (ROA) and knee 

OA symptoms is poor. Only 50% of knees with ROA have knee OA 

symptoms [17] and little change is observed in knee pain in knees with ROA 

over six years [97] except when large increases in radiographic structural 

severity are observed[98]. However conventional radiography is less 

sensitive and specific in detecting structural pathology and progression than 

magnetic resonance imaging (MRI)[23, 86]. MRI-detected OA joint tissue 
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lesions and structural pathology are prevalent in knees without ROA[23] and 

these (including bone marrow lesions, cartilage damage and meniscal tears) 

are associated with incident symptomatic [131] and radiographic OA[75]. As 

discussed in chapter 5 three dimensional MRI scans can be segmented 

manually or in an automated manner with methods such as active 

appearance modelling (AAM) that permit the analysis of large data sets such 

as the OAI (2.10 Statistical Shape modelling, active shape modelling and 

active appearance modelling). 

Subchondral bone pathology, in particular bone marrow lesions (BMLs), is 

important in the pathogenesis of knee OA pain in established ROA and in 

knees at risk of knee OA but without radiographic OA. In cohort studies of 

knees with prevalent ROA, ranging from 18-71%, longitudinal increase in 

BML size or baseline BML size are associated with longitudinal increase in 

knee OA pain severity in the Osteoarthritis Initiative[100], the Tasmanian 

Older Adult Cohort[99] and the Michigan site of the Study of Women’s 

Health Across the Nation[530]. In cohort studies of knees at risk of OA but 

without radiographic knee OA, BMLs are also associated with incident 

frequent knee OA pain. This includes a subcohort study of knees at risk of 

OA but without any ROA (Kellgren Lawrence zero) within the OAI 

cohort[131] and the longitudinal structural progression of BMLs in these ‘pre-

radiographic’ OA  knees is associated with incident radiographic knee OA 

and persistence of knee symptoms[622]. This association of BMLs and 

incident knee pain is also observed in the MOST cohort study where the 

majority of knees (60%) lacked radiographic knee OA[26]. While much of the 

relevant OA literature has focussed on MRI-detected BMLs, several recent 

studies have suggested the importance of bone shape in the structural 

progression of OA including the pre-radiographic OA stage[75, 197, 604, 

605]. The association of OA symptoms with structure in early knee OA 

represents an important but understudied stage in knee OA. The association 

of ‘pre-radiographic’ OA knee bone shape with prevalent frequent knee 

symptoms (PFKS) and incident persistent knee symptoms (IPKS) in persons 
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with no evidence of OA anatomical changes on plain radiography has not 

been previously reported.  

The objective of this analysis was to determine the relationship between 

scalar 3D bone shape with PFKS and IPKS in all knees in the OAI but also 

in knees without ROA but at risk of OA. 

6.2 Methods 

Data used for this were obtained from the NIH Osteoarthritis Initiative (OAI) 

database, which is available for public access at http://www.oai.ucsf.edu/ 

(2.12 Summary of the OAI). This database houses a multi-centre, 

prospective, longitudinal observational study of knee OA currently including 

approximately 4,796 participants[515] . Baseline demographic data were 

collected and MRI scans were performed for all participants. At each site the 

institutional review board approved the study and informed consent was 

given by all patients.  

Prevalent frequent knee symptoms (PFKS) was defined as having  knee 

symptoms (pain aching or stiffness) or medication use for knee symptoms 

most days of one month in the past 12 months which was assessed at 

baseline and subsequently at every annual review up to the 60-month OAI 

visit. The outcome of PFKS for the PFKS analysis was defined at the 12-

month visit. The outcome of IPKS varied by analysis but universally required 

the absence of PFKS at enrolment and incident PFKS reported after 

enrolment at two consecutive annual OAI visits by the 60-month visit. All 

analyses used 3D bone shape derived from right knee MRIs performed at 

the 12-month visit to determine its association with PFKS and IPKS. 

The inclusion criteria for each analysis is summarised in the figures below 

(Figure 55, Figure 56). The eligibility for the first subcohort analysis identified 

all knees within the OAI, with or without radiographic OA, and is referred to 

as the ‘whole’ OAI subcohort. The eligibility criteria for the PFKS analysis in 

this subcohort included adequate right knee MRI scans at 12 months with 

available covariate data at 12 months(see ‘covariate measurement’ below) 

http://www.oai.ucsf.edu/
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along with PFKS status data. Eligibility criteria for the IPKS analysis of all 

knees in the OAI required adequate right knee MRI scans at 12 months with 

available covariate data at 12 months and PFKS status data from enrolment 

up to the 60 month visit. Further enrolment knee symptom data was also 

required to help identify knees with no previous history of knee pain 

including any history of previous knee pain, any difficulty walking downstairs 

or upstairs. This stricter eligibility criteria differed for the subcohort without 

radiographic OA, in an attempt to more precisely identify knees with early 

symptomatic OA amongst a subcohort of knees with prevalent radiographic 

OA that were more likely to have had historic pain. Therefore to be eligible 

for the IPKS subcohort amongst all knees, this required the lack of any of 

these previous knee symptoms and PFKS at enrolment (Figure 55).  

The eligibility criteria for the second subcohort without radiographic OA but 

‘at risk’ of knee OA, were deliberately chosen to replicate (and facilitate 

comparison of findings with) the dataset used by Sharma and colleagues in 

their recent study of the association of pre-radiographic structural lesions 

(e.g. BMLs) with PFKS and IPKS[131]. However unlike Sharma and 

colleagues we stratified analyses by gender. The eligibility criteria for the 

subcohort without radiographic OA,  for the analysis of the association of 3D 

bone shape with PFKS and IPKS, required individuals to have the absence 

of radiographic OA with Kellgren Lawrence (KL) grades available and equal 

to zero in both knees at the twelve month visit from the OAI. This minimised 

the risk of the presence of OA in this subcohort because the risk of incident 

knee OA is increased by contralateral knee OA. Inclusion required both 

knees had available MRI scans of adequate quality at 12 and 48 months. 

Finally each participant required appropriate covariate data and PFKS 

outcome data for defining PFKS and IPKS respectively. The right knees of 

all eligible individuals were selected for the PFKS subcohort. The right knees 

with a lack of PFKS at enrolment were eligible for the IPKS subcohort.   

6.2.1 Knee radiograph acquisition and assessment. 

The OAI protocol utilised postero-anterior fixed-flexion weight-bearing knee 

radiography with a Plexiglas positioning frame (Syna-Flexer see  
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2.12.4 Knee radiography protocol). All knee radiographs were assessed by 

two separate experts that were blinded from each other’s assessments and 

all data. The weighted kappa coefficient for inter-reader K/L grade 

agreement was 0.79. A third expert resolved pre-specified radiograph 

assessment discrepancies in a consensus session. 

 

6.2.2 MRI acquisition and assessment 

MRI sequences collected in the OAI are described in detail by Peterfy and 

colleagues [497].  The current study utilised the double-echo-in-steady-state 

sequence (DESS-we) of the Siemens 3T trio systems [497].  

The quantitative analysis of 3D bone shape was achieved by automated 

segmentation of the 3D MRI double-echo steady-state water excitation 

sequences and 3D bone shape in a similar manner to chapter 5 (5.2 

Methods).  

Bone shape varies between males and females and therefore 3D bone 

shape should be defined separately for men and women. In order to identify 

gender specific vectors within this shape space that represented average 

change of the bone with disease we separated  training set cases for men 

and women separately into OA (one knee per individual with KL grade two to 

four at all time points up to four years) and non-OA groups (KL grade zero at 

all time points up to four years in both knees and picked one knee from each 

individual).  

The gender-specific shape vector for each bone was calculated by taking the 

principal components of the mean shape of the OA and non-OA groups, and 

drawing a straight line through them.  

Individual bone shapes from  knees used in this analysis, represented as 

principal components following the AAM search, were projected orthogonally 

onto the appropriate  vector. This raw vector data for every bone in every 

knee was scaled or normalised. This was achieved by subtracting the 

gender- and bone-specific mean non-OA shape from the corresponding raw 

vector data for each bone. The result of this subtraction was then divided by 
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one standard deviation of the normally distributed gender- and bone-specific 

non-OA shape raw vector values to provide the final normalised 3D bone 

shape for use in these analyses. Approximately 400 male and 400 female 

knees fulfilled the non-OA criteria (KL zero at baseline and for the first 4 

years) and were used to scale or normalise the vector. Previous analyses 

have used bone shape vectors normalised using KL grade. To minimise the 

dependence on KL grade to define the presence of OA, this latest method 

was used to normalise the vector based upon mean non-OA shape and 

hence the absence of radiographic OA.  

The reproducibility or test-retest reliability of the method has been described 

in 5.2 Methods). 

6.2.3 Covariate measurement 

Body mass index (BMI) was calculated from body weight, measured with a 

standard balance beam scale, and height, measured with a wall-mounted 

stadiometer at the 12 months visit. The definition of knee injury was if the 

study knee was “ever injured badly enough to limit walking ≥2 days” and 

surgery as “any previous surgery”. 

6.2.4 Statistical analysis 

Statistical analysis was conducted using STATA software, version 13 

(College Station, TX, 2013). All analyses used one right knee per person. 

For all analyses, BMI was categorized as normal (<25 kg/m²), overweight (≥ 

25 to < 30 kg/m²), or obese (≥30 kg/m²), and age as < 60 years, >60 to < 70 

years, or >70 years at enrolment into the OAI.  

We used separate logistic regression models to estimate the direction and 

magnitude of association between each 3D bone shape measure and PFKS 

at 12-month visit and IPKS up to 60-month visit and adjusting for age, sex, 

BMI, and previous knee injury and previous surgery. The analyses were not 

adjusted for KL grade in the first ‘whole’ OAI subcohort because the bone 

shape vectors were derived from KL grade and there was a significant risk of 

over-adjustment. KL grade adjustment was not required in analyses of the 

second ‘at-risk’ subcohort because all knees were KL grade zero, None of 
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the analyses were adjusted for MRI features known to be associated with 

knee pain (e.g. BMLs or synovitis) because the semi-quantitative scores of 

these were available in too few knees. Results are reported as unadjusted 

and adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs).  

6.3 Results 

 6.3.1 PFKS in the ‘whole’ OAI subcohort 

The participant flow chart for this analysis is described in (Figure 55). Of the 

4,796 participants in the OAI database, 4048 right knees with and without 

radiographic knee OA had available bone vector data for PFKS unadjusted 

analysis. This included 1718 males and 2330 females of which 610 (36%) 

males and 921 (40%) females had PFKS at the 12-month visit. The 

distribution of the 3D bone shape vector values is described in (Table 43) for 

males and females and those with PFKS had generally larger vector values 

than those without PFKS, indicating greater structural severity.  

The unadjusted logistic regression models of each individual male bone 

estimated increased odds of PFKS with more positive 3D bone shape, 

indicating greater OA structural severity (Table 44). Odds ratios (95% 

confidence intervals) per normalised unit of 3D bone shape vector for the 

femur, tibia and patella were 1.32 (1.23, 1.42), 1.31 (1.20, 1.43), 1.30 (1.19, 

1.41) respectively, all p<0.001. The strength of association of 3D bone 

shape with PFKS was similar for all male bones. In logistic regression 

models the femur, tibia and patella remained significantly associated with 

PFKS, after adjustment for covariates, with modest attenuation of the 

association for all bones. The adjusted odds ratios (95% confidence 

intervals) per normalised unit of 3D bone shape vector were 1.25 (1.16, 

1.35), 1.25 (1.14, 1.37), 1.25 (1.14, 1.37) for the femur, tibia and patella 

respectively, all p<0.001.    

The same analyses amongst females identified very similar findings (Table 

44). Similarly no single bone demonstrated a greater association with PFKS 

than any other. In both males and female adjusted models, the covariates of 
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body mass index and previous surgery were both significantly associated 

with PFKS, all p<0.01 (Table 45, Table 46). 

 

Figure 55 Participant flow diagram for the case selection of knees 
regardless of the presence of radiographic OA 

 

KL – Kellgren Lawrence grade 

M:F - male to female ratio 

PFKS – Prevalent frequent knee symptoms 

IPKS – Incident persistent knee symptoms 
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Table 43 The distribution of 3D bone shape vectors in male and female 
participants a) with and without prevalent frequent knee 
symptoms and b) with and without incident persistent knee 
symptoms in the ‘whole OAI’ subcohort of right knees. 

 Mean (SD) Mean (SD) Mean (SD) 

(a) Outcome: prevalent frequent knee symptoms  

3D Bone 
shape 
vector(males)  

PFKS 
n=610 

No PFKS 
n=1108 

Full group 
n=1718 

   Femur 1.09 (1.53) 0.55 (1.28) 0.75 (1.40) 

   Tibia 0.72 (1.21) 0.36 (1.10) 0.49 (1.16) 

   Patella 0.79 (1.25) 0.43 (1.14) 0.55 (1.19) 

3D Bone 
shape 
vector(females)  

PFKS 
n=921 

No PFKS 
n=1409 

Full group 
n=2330 

   Femur 1.69 (1.82) 0.86 (1.51) 1.18 (1.69) 

   Tibia 0.39 (1.10) 0.12 (1.09) 0.23 (1.10) 

   Patella 1.20 (1.43) 0.59 (1.25) 0.83 (1.35) 

(b) Outcome: incident persistent knee symptoms  

3D Bone 
shape vector 
(males) 

IPKS 
n=42 

No IPKS 
n=316 

Full group 
n=358 

   Femur 0.80 (1.44) 0.39 (1.17) 0.42 (1.20) 

   Tibia 0.24 (1.20) 0.12 (1.05) 0.15 (1.06) 

   Patella 0.50 (0.88) 0.38 (1.18) 0.41 (1.15) 

3D Bone 
shape vector 
(females) 

IPKS 
n=69 

No IPKS 
n=407 

Full group 
n=476 

   Femur 0.98 (1.61) 0.53 (1.32) 0.59 (1.37) 

   Tibia 0.16 (0.99) -0.01 (1.08) 0.02 (1.06) 

   Patella 0.59 (1.26) 0.31 (1.22) 0.37 (1.24) 

Mean 3D bone shape vectors (SD) 

PFKS – persistent frequent knee symptoms 

IPKS - incident persistent knee symptoms 
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Table 44 Associations between 3D bone shape vectors and prevalent 
frequent knee symptoms at 12 month visit (cross-sectional) and 
incident persistent knee symptoms by 60-month visit 
(longitudinal) of all right knees 

 OR (95%CI)¥ Adjusted OR (95%CI)† 

(a) Outcome: prevalent frequent knee symptoms 

3D Bone shape 
vector(males)  

n=1718 
(610 with pain) 

n=1692 

   Femur 1.32 (1.23, 1.42)** 1.25 (1.16, 1.35)** 

   Tibia 1.31 (1.20,1.43)** 1.25 (1.14, 1.37)** 

   Patella 1.30 (1.19, 1.41)** 1.25 (1.14, 1.37)** 

3D Bone shape 
vector(females)  

n=2330 
(921 with pain) 

n=2308 

   Femur 1.35 (1.28, 1.43)** 1.29 (1.22, 1.37)** 

   Tibia 1.26 (1.17,1.36)** 1.24 (1.14, 1.34)** 

   Patella 1.41(1.32, 1.51)** 1.33 (1.24, 1.43)** 

(b) Outcome: incident persistent knee symptoms 

3D Bone shape 
vector (males) 

n=358 
(42 with pain) 

n=353 

   Femur 1.31 (1.01, 1.69) p=0.04* 1.20 (0.91, 1.59) p=0.20 

   Tibia 1.11 (0.83, 1.50) p=0.47 1.06 (0.78, 1.44) p=0.71 

   Patella 1.10 (0.83, 1.45) p=0.52 0.97 (0.71, 1.32) p=0.83 

3D Bone shape 
vector(females) 

n=476 
(69 with pain) 

n=472 

   Femur 1.25 (1.05, 1.49) p=0.01* 1.17 (0.97, 1.41) p=0.09 

   Tibia 1.15 (0.91, 1.46) p=0.24 1.16(0.91, 1.48) p=0.22 

   Patella 1.20 (0.98, 1.46) p=0.08 1.12 (0.90, 1.38) p=0.30 

¥ Right knees with MRIs at 12 months with adequate quality 

† Right knees adjusted for age (categorical age (<60, 60-70, >70); BMI 

(categorical normal <25 kg/m2, overweight ≥25 to <30kg/m2, obese ≥30 

kg/m2), previous injury (yes/no), previous surgery (yes/no) 

*p<0.05, **p<0.001, 
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Table 45 The associations between 3D bone shape vectors with 
prevalent frequent knee symptoms at 12 months – Multivariable 
models in males. 

MALES (n=1692) OR 95% CI p-value 

Bone – Femur (n=1692) 1.25 1.16, 1.35 <0.01* 

Age (ref <60) 
Between 60-70 
>70 years 

 
0.95 
1.03 

 
0.74, 1.22 
0.80, 1.33 

 
0.68 
0.83 

BMI (ref normal) 
Overweight 
Obese  

 
1.37 
1.80 

 
1.03, 1.83 
1.34, 2.43 

 
0.03 
<0.01* 

Injury (ref No injury) 1.11 0.88,1.41 0.37 

Surgery (ref No surgery) 1.60 1.20, 2.12 <0.01* 

Bone – tibia (n=1692) 1.25 1.14, 1.37 <0.01* 

Age (ref <60) 
Between 60-70 
>70 years 

 
0.98 
1.08 

 
0.76, 1.25 
0.84, 1.39 

 
0.87 
0.56 

BMI (ref normal) 
Overweight 
Obese  

 
1.44 
1.91 

 
1.08, 1.92 
1.42, 2.57 

 
0.01 
<0.01* 

Injury(ref No injury) 1.13 0.90, 1.43 0.30 

Surgery(ref No surgery) 1.69 1.27, 2.23 <0.01* 

Bone - Patella (n=1692) 1.25 1.14, 1.37 <0.01* 

Age (ref <60) 
Between 60-70 
>70 years  

 
0.96 
1.02 

 
0.75, 1.23 
0.79, 1.31 

 
0.75 
0.91 

BMI (ref normal) 
Overweight 
Obese  

 
1.36 
1.81 

 
1.02, 1.81 
1.34, 2.44 

 
0.04 
<0.01* 

Injury(ref No injury) 1.14 0.90, 1.44 0.27 

Surgery(ref No surgery) 1.76 1.33, 2.33 <0.01* 

*p<0.05, **p<0.001, Bone - refers to bone shape vector 
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Table 46 The associations between 3D bone shape vectors with 
prevalent frequent knee symptoms at 12 months – Multivariable 
models in females. 

FEMALES (n=2308) OR 95% CI p-value 

Bone – Femur (n=2308) 1.25 1.16, 1.35 <0.01* 

Age (ref <60) 
Between 60-70 
>70 years 

 
0.95 
1.03 

 
0.74, 1.22 
0.80, 1.33 

 
0.68 
0.83 

BMI (ref normal) 
Overweight 
Obese  

 
1.37 
1.80 

 
1.03, 1.83 
1.34, 2.43 

 
0.03 
<0.01* 

Injury (ref No injury) 1.11 0.88,1.41 0.37 

Surgery (ref No surgery) 1.60 1.20, 2.12 <0.01* 

Bone – tibia (n=2308) 1.25 1.14, 1.37 <0.01* 

Age (ref <60) 
Between 60-70 
>70 years 

 
0.98 
1.08 

 
0.76, 1.25 
0.84, 1.39 

 
0.87 
0.56 

BMI (ref normal) 
Overweight 
Obese  

 
1.44 
1.91 

 
1.08, 1.92 
1.42, 2.57 

 
0.01 
<0.01* 

Injury(ref No injury) 1.13 0.90, 1.43 0.30 

Surgery(ref No surgery) 1.69 1.27, 2.23 <0.01* 

Bone - Patella (n=2308) 1.25 1.14, 1.37 <0.01* 

Age (ref <60) 
Between 60-70 
>70 years  

 
0.96 
1.02 

 
0.75, 1.23 
0.79, 1.31 

 
0.75 
0.91 

BMI (ref normal) 
Overweight 
Obese  

 
1.36 
1.81 

 
1.02, 1.81 
1.34, 2.44 

 
0.04 
<0.01* 

Injury(ref No injury) 1.14 0.90, 1.44 0.27 

Surgery(ref No surgery) 1.76 1.33, 2.33 <0.01* 

*p<0.05, **p<0.001, Bone - refers to bone shape vector 

 

 

6.3.2 IPKS in the ‘whole’ OAI subcohort 

The participant flow chart for this analysis is described in (Figure 55). Of the 

4,796 participants in the OAI database, 834 right knees with and without 

radiographic knee OA had available bone vector data for IPKS unadjusted 

analysis. This included 358 males and 476 females of which 42 (12%) males 
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and 69 (14%) females had IPKS by the 60-month visit. The distribution of the 

3D bone shape vector values is described in Table 43)for males and females 

and those developing IPKS had generally larger vector values than those not 

developing IPKS, indicating greater structural severity.  

The unadjusted logistic regression models of individual male bones 

estimated increased odds of IPKS with more positive 3D femoral bone 

shape, indicating greater OA structural severity (Table 44) but there was no 

association of the tibia or patella with IPKS. Odds ratios (95% confidence 

intervals) per normalised unit of 3D bone shape vector for the femur, tibia 

and patella were 1.31 (1.01, 1.69), 1.11 (0.83, 1.50), 1.10 (0.83, 1.45) 

respectively. The association of femoral 3D bone shape with IPKS was 

significant (p=0.04). In logistic regression models neither the femur, tibia nor 

the patella were significantly associated with IPKS, after adjustment for 

covariates, with attenuation of the unadjusted femoral association. The 

adjusted odds ratios (95% confidence intervals) per normalised unit of 3D 

bone shape vector were 1.20 (0.91, 1.59), 1.06 (0.78, 1.44), 0.97 (0.71, 

1.32) for the femur, tibia and patella respectively, all p>0.05.    

The same analyses amongst females identified very similar findings (Table 

44). Similarly no single bone demonstrated a greater association with IPKS 

than any other.  

 

6.3.3 PFKS in the ‘at-risk’ subcohort without radiographic OA 

The participant flow chart for this analysis is described in (Figure 56). Of the 

4,796 participants in the OAI database, 858 right knees without radiographic 

knee OA had available bone vector data for PFKS unadjusted analysis. This 

included 370 males and 488 females of which 91 (25%) males and 112 

(23%) females had PFKS at the 12-month visit. The distribution of the 3D 

bone shape vector values is described in (Table 47) for males and females 

and those with and without PFKS had generally similar vector values 

indicating similar structural severity.  
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The unadjusted logistic regression models of each individual male bone 

estimated no association of PFKS with any 3D bone shape (Table 48). Odds 

ratios (95% confidence intervals) per normalised unit of 3D bone shape 

vector for the femur, tibia and patella were 1.03 (0.81, 1.32), 1.15 (0.90, 

1.46), 1.17 (0.92, 1.48) respectively, all p>0.05. In adjusted logistic 

regression models the femur, tibia and patella remained unassociated with 

PFKS   

The same analyses amongst females identified very similar findings (Table 

48) although the unadjusted logistic regression models of only the patella 

female bone estimated increased odds of PFKS with more positive 3D 

patellar bone shape, indicating greater OA structural severity (Table 49). 

Odds ratios (95% confidence intervals) per normalised unit of 3D bone 

shape vector for the femur, tibia and patella were 1.17 (0.95, 1.43), 1.11 

(0.91, 1.37), 1.25 (1.01, 1.55). However the association of the patellar bone 

shape with PFKS was attenuated after adjustment for covariates (Table 5 & 

6) especially BMI and previous injury. 
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Figure 56 Participant flow diagram for the case selection of knees without radiographic OA 

 

M:F male to female ratio 

PFKS – Prevalent frequent knee symptoms 

IPKS – Incident persistent knee symptoms 
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Table 47 The distribution of 3D bone shape vectors in male and female 
participants a) with and without prevalent frequent knee 
symptoms and b) with and without incident persistent knee 
symptoms in all right knees without radiographic knee OA at 12 
months. 

 Mean (SD) Mean (SD) Mean (SD) 

(a) Outcome: prevalent frequent knee symptoms  

3D Bone 
shape 
vector(males)  

PFKS 
n=91 

No PFKS 
n=279 

Full group 
n=370 

   Femur 0.09 (0.97) 0.06 (0.98) 0.07 (0.99) 

   Tibia -0.01 (1.04) -0.14 (0.96) -0.11 (0.98) 

   Patella 0.21 (1.02) 0.05 (0.99) 0.09 (1.00) 

3D Bone 
shape 
vector(females)  

PFKS 
n=112 

No PFKS 
n=376 

Full group 
n=488 

   Femur 0.19 (1.07) 0.02 (1.03) 0.07 (1.04) 

   Tibia -0.06 (0.97) -0.17 (1.04) -0.14 (1.03) 

   Patella 0.18 (1.00) -0.04 (0.99) 0.01 (0.99) 

(b) Outcome: incident persistent knee symptoms  

3D Bone 
shape vector 
(males) 

IPKS 
n=35 

No IPKS 
n=222 

Full group 
n=257 

   Femur -0.04 (0.92) 0.01 (0.98) 0.01 (0.97) 

   Tibia 0.15 (1.13) -0.19 (0.96) -0.14 (0.99) 

   Patella -0.01 (0.82) 0.01 (1.00) 0.01 (0.97) 

3D Bone 
shape vector 
(females) 

IPKS 
n=52 

No IPKS 
n=277 

Full group 
n=329 

   Femur 0.24 (0.98) -0.01 (1.00) 0.04 (1.02) 

   Tibia 0.01 (1.05) -0.22 (1.00) -0.18 (1.01) 

   Patella 0.15 (0.87) -0.03 (1.01) -0.01 (0.98) 

Mean 3D bone shape vectors (SD) 

PFKS – persistent frequent knee symptoms 

IPKS - incident persistent knee symptoms 
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Table 48 Associations between 3D bone shape vectors and prevalent 
frequent knee symptoms at 12 month visit (cross-sectional) and 
incident persistent knee symptoms by 60-month visit 
(longitudinal) of all right knees without radiographic OA at 12 
months 

 OR (95%CI) ¥ Adjusted OR (95%CI)† 

(a) Outcome: prevalent frequent knee symptoms 

3D Bone shape 
vector (males) 

n=370 
(91 with pain) 

n=365 

   Femur 1.03 (0.81, 1.32) p=0.81 0.93 (0.72, 1.20) p=0.58 

   Tibia 1.15 (0.90, 1.46) p=0.27 1.20 (0.93, 1.55) p=0.16 

   Patella 1.17 (0.92, 1.48) p=0.20 1.08 (0.84, 1.40) p=0.53 

3D Bone shape 
vector (females) 

n=488 
(112 with pain) 

n=485 

   Femur 1.17 (0.95, 1.43) p=0.13 1.12 (0.91, 1.38) p=0.31 

   Tibia 1.11 (0.91, 1.37) p=0.30 1.14 (0.92, 1.41) p=0.23 

   Patella 1.25 (1.01, 1.55) p=0.04* 1.19 (0.95, 1.49) p=0.12 

(b) Outcome: incident persistent knee symptoms 

3D Bone shape 
vector (males) 

n=257 
(35 with pain) 

n=254 

   Femur 0.94 (0.65,1.36) p=0.76 0.86 (0.58,1.27) p=0.45 

   Tibia 1.42 (0.99,2.05) p=0.06 1.47(1.00, 2.17) p=0.05 

   Patella  0.98(0.68, 1.42) p=0.93 0.90 (0.60, 1.35) p=0.62 

3D Bone shape 
vector (females) 

n=329 
(52 with pain) 

n=327 

   Femur 1.27 (0.94,1.71) p=0.11 1.21 (0.89,1.64) p=0.23 

   Tibia 1.26 (0.94,1.69) p=0.13 1.28 (0.94, 1.73) p=0.11 

   Patella 1.19 (0.88, 1.61) p=0.25 1.14 (0.84, 1.56) p=0.4 

¥ Right knees with MRIs at 12 months with adequate quality 
† Right knees adjusted for age (categorical age (<60, 60-70, >70); BMI 
(categorical normal <25 kg/m2, overweight ≥25 to <30kg/m2, obese ≥30 
kg/m2), previous injury (yes/no), previous surgery (yes/no) 
*p<0.05 
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Table 49 The associations between patellar 3D bone shape vector with 
prevalent frequent knee symptoms in right knees without 
radiographic osteoarthritis at 12 months – Multivariable model 

FEMALES (n=488) OR 95% CI p-value 

Bone - Patella (n=488) 1.19 0.95, 1.49 0.121 

Age (ref <60) 
Between 60-70 
>70 years  

 
1.12 
0.96 

 
0.68, 1.85 
0.52, 1.76 

 
0.65 
0.89 

BMI (ref normal) 
Overweight 
Obese  

 
1.90 
2.01 

 
1.17, 3.09 
1.06, 3.81 

 
<0.01* 
0.03 

Injury(ref No injury) 2.03 1.19, 3.45 <0.01* 

Surgery(ref No surgery) 2.63 0.85, 8.18 0.09 

Bone - refers to bone shape vector 

 

 

6.3.4 IPKS in the ‘at-risk’ subcohort without radiographic OA 

The participant flow chart for this analysis is described in (Figure 56). Of the 

4,796 participants in the OAI database, 586 right knees without radiographic 

knee OA had available bone vector data for IPKS unadjusted analysis. This 

included 257 males and 329 females of which 35 (14%) males and 52 (16%) 

females had IPKS by the 60-month visit. The distribution of the 3D bone 

shape vector values is described in (Table 47) for males and females and 

those with IPKS had generally no difference in bone shape vector values, 

than those not developing IPKS.  

The unadjusted logistic regression models of each individual male bone 

estimated no association with PFKS (Table 48). Odds ratios (95% 

confidence intervals) per normalised unit of 3D bone shape vector for the 

femur, tibia and patella were 0.94 (0.65, 1.36), 1.42 (0.99, 2.05), 0.98 (0.68, 

1.42) respectively, all p>0.05. 

In logistic regression models the femur, tibia and patella remained 

unassociated with the development of IPKS, after adjustment for covariates 

although the tibia approached borderline significance. The same analyses 

amongst females identified very similar findings (Table 48).  
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6.3.5 Diagnostics and linearity checks 

In order to check whether the linearity assumption holds between log 

Incidence pain and outcome variable (bone shape) a formal statistical test 

was performed for each shape model (linktest) and this was found not to be 

significant. In other words the null model was that the model is linear.  

 

P-value for _hatsq=0.89, however linktest alone cannot be used to rule out 

misspecification therefore a collection of other checks were performed. I 

have explored the use of Box-Tidwell transformations on bone shape 

because it is the only one that may have linearity issues to check because  

the other predictors are categorical (BMI, age, surgery, injury, sex) and I’ve 

explored if there are any differences if I have BMI and age maintained as a 

continuous variable. Results from this suggest that the predictor should be 

modelled in its current form and there are no misspecification errors in 

specifying the model in this form and no transformations are needed .Non 

linearity is related to misspecification.  

                                                                              

       _cons     .1077006   .9288484     0.12   0.908    -1.712809     1.92821

      _hatsq     .0524457   .3950597     0.13   0.894    -.7218571    .8267485

        _hat     1.158629   1.223321     0.95   0.344    -1.239036    3.556294

                                                                              

   Incidence        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood = -235.07716                       Pseudo R2       =     0.0298

                                                  Prob > chi2     =     0.0007

                                                  LR chi2(2)      =      14.44

Logistic regression                               Number of obs   =        573
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6.3.5.1Diagnostics plots 

Leverage  

Figure 57 Leverage Plot 1 

 

After dropping all the IDs with leverage greater than 0.04 and refitting the 

model there were no differences hence everyone retained. 

-Pregibon`s beta was assessed and not many individuals had values that 

had undue influence. This is similar to leverage and assesses if there are 

any individuals with undue influence on covariate estimates. 
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Figure 58 Leverage Plot 2 

 

 

6.3.5.2 Use of polynomials and interactions 

From earlier diagnostics there was no suggestion to use any polynomial 

terms but I just explored these and the results suggested the original form of 

the variable was sufficient as there was no association seen when the 

polynomial terms for each bone were included. I have modelled interaction 

terms separately for the bone measure with BMI and age and no significant 

interactions were seen and also no change to the odds ratios and therefore 

the more parsimonious model has been kept in all instances. 
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6.4 Discussion 

This is the first study to describe the relationship of 3D bone shape with 

PFKS and IPKS in knees with or at risk of OA. This analysis identifies that 

3D bone shape is associated with current knee symptoms amongst knees 

with radiographic OA but not in the ‘at risk’ subcohort without radiographic 

OA. 3D bone shape is not associated with incident persistent knee OA 

symptoms regardless of the presence or absence of radiographic knee OA 

after adjusting for known associations of IPKS. IPKS is associated with 

female gender, obesity, and knee injury[657].  

The analyses within this chapter imply that 3D bone shape is not involved in 

the pathogenesis of incident knee OA symptoms.  Amongst cohorts of knees 

with prevalent radiographic OA, other subchondral bone pathologies of knee 

OA have been analysed for their relationship with knee OA symptoms. The 

best described of these is the bone marrow lesion. BMLs are independently 

associated with incident frequent knee pain[26, 456] and this has been 

reported in a recent systematic literature review[658]. However current knee 

pain in similar cohorts has been reported to have both an association [133, 

575, 577] and the absence of a clear association with concurrent BMLs [319, 

456, 559, 571]. Systematic literature reviews have identified the association 

of BMLs with current knee pain in radiographic knee OA as moderate [132] 

or inconsistent[658]. With appropriate adjustments for important covariates 

an increasingly larger weight-bearing femoral relative to the tibial 

subchondral surface area was protective against the incidence of knee OA 

symptoms in a subcohort of the OAI that included individuals with prevalent 

knee ROA[102]. Amongst ‘at risk’ subcohorts of knees without  radiographic 

knee OA, PFKS and IPKS in knees at risk of OA have been associated with 

BMLs, cartilage lesions and meniscal degeneration and these lesions are 

independently associated with risk of IPKS [131]. In contrast, this study 

found no clear or consistent evidence that in the same population 3D bone 

shape vectors for the femur, tibia and patella were related to current frequent 

knee symptoms or with an increased future risk of the persistence of such 

symptoms up to 4 years. 
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The TASmanian Older Adult Cohort examined the relationship between 

change in BML size and change in ipsilateral knee pain with and without 

radiographic OA. A change in BML size was associated with changes in 

ipsilateral pain in those without and not with established ROA implying a 

greater significance of BMLs in early stage disease [99] 

Therefore there is no single knee OA subchondral bone imaging biomarker 

that has consistently demonstrated both concurrent and predictive criterion 

validity in relation to knee OA symptoms in knees with and without 

radiographic OA. However the greatest evidence supporting an association 

of OA subchondral bone pathology with pain is provided by BMLs and these 

are likely to be measuring a different pathological construct to bone shape. 

The pathophysiology by which BMLs may cause pain is unknown but this 

might include a decreased blood supply causing ischaemia, subchondral 

microfractures, and raised intraosseous pressure[136-138].  BMLs are and 

3D bone shape is not associated with current and future knee symptoms in 

the ‘at risk’ subcohort without radiographic OA. 3D bone shape is derived 

from the difference in shape of knees with and without radiographic  knee 

OA. However  BMLs are prevalent  in knees at risk of OA without 

radiographic OA and are associated in this group with incident symptoms 

and radiographic OA[131, 622]. Therefore BMLs may be a more sensitive 

measure of ‘early’ or pre-radiographic knee OA. The evidence supporting 

this explanation from my analysis and the association of 3D bone shape with 

knee OA symptoms  is discussed here.3D bone shape change may be 

involved in the pathogenesis of incident knee symptoms at a more advanced 

stage of OA, but may be relatively insensitive to knee symptoms in the pre-

radiographic phase due to the very narrow distribution of bone vector values 

at this stage. This is suggested by the fact that the femur, which is the most 

responsive of the three bone shape vectors[652], was associated with IPKS 

in univariable analyses in males and females in the ‘whole’ OAI subcohort 

(Table 2b) but not in the ‘at risk’ subcohort without radiographic OA(Table 

5b). It is noteworthy that femoral 3D bone shape changes in a less uniform 

and symmetric manner in OA progression than the tibia and patella with its 
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two articulating surfaces and bone expansion occurring around the cartilage 

plates where increased ridges of “osteophytic” material form[75].  BMLs may 

represent an early OA focal remodelling that causes future knee symptoms 

and macroscopic bone remodelling which confers the change in 3D bone 

shape which is most readily detected in radiographic stages of OA when 

changes to the bone and joint geometry can adversely affect the congruity of 

the joint surfaces and impair the effective dissipation of load through the joint 

tissues. This overloading of the articulating tissues may indirectly cause pain 

through microfractures and further BMLs or drive cartilage degradation and 

subsequent synovitis which are both associated with knee pain in a 

systematic literature review[132]. 

Amongst knees without radiographic OA BMLs are whilst 3D bone shape is 

not associated with knee OA symptoms. Amongst knees with established 

radiographic OA, the association of current knee OA symptoms appears to 

be more consistent with 3D bone shape than with BMLs after covariate 

adjustment. This may reflect different mechanisms of pain in radiographic 

and pre-radiographic OA. 3D bone shape change is closely associated with 

3D osteophyte formation (endochondral ossification) which is initiated by 

vascular invasion of cartilage along with osteoclastogenesis [201-203] which 

are involved in the innervation and neurovascular invasion of premorbidly 

aneural cartilage. Therefore 3D bone shape change may correlate with the 

potential for nociception in cartilage[15]. 3D bone shape change may 

therefore better reflect the concurrent innervation of cartilage and the 

potential for concurrent nociception rather than predicting this mechanism of 

nociception in the future.  

3D bone shape was independently associated with TKR in Chapter 5, but 

the association with knee OA symptoms in this chapter was limited to the 

presence of radiographic OA. Similarly Waarsing and colleagues[292] 

identified that 2D bone shape models of the hip correlated well with 

structural severity but did not correlate well with clinical symptoms and vice-

versa.  
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The validity of 3D bone shape as an outcome measure in clinical trials of 

knee OA, in light of this chapter’s analysis, should be considered. 

Participants enrolled in all knee OA trials have required symptomatic knee 

OA and therefore no clinical trial has used incident knee OA symptoms as 

an outcome.  However future clinical trials may attempt to prevent the 

incidence of knee OA symptoms. If a clinical trial were to attempt to prevent 

the incidence of knee OA symptoms by targeting the subchondral bone, 

patients could be selected on the presence of BMLs and incident symptoms 

would be the primary outcome. However the change in BML size could be a 

secondary mechanistic outcome[330, 659]. In this context 3D bone shape 

change could also be used as a sensitive secondary outcome measure of 

OA structural progression but not for incident symptoms. 

6.5 Limitations 

There are limitations to this study. Covariates such as BMI may increase 

between baseline and the onset of IPKS and therefore any association of 

IPKS may in fact be a consequence of the residual confounding of weight 

gain. We did not include BML, synovitis, cartilage or meniscal lesion scores 

because of the limited availability of MOAKs scores in the OAI participants 

and there could be additional unknown or unmeasured confounders, as with 

any observational study, that may confer bias. Unmeasured confounders 

may systematically be different in the subcohorts where we selected right 

knees only and knees ‘at risk’ without radiographic OA.  

Confounding factors that might influence bone shape could include use of 

bisphosphonates. Confounding factors for knee OA symptoms could include 

bone marrow lesions, synovitis, level of activity, muscle strength and 

increasing BMI after baseline which we did not account for. BMLs and 

synovitis may reflect failure of the joint to dissipate load effectively and the 

amount of load put through the joint.  Therefore BMLs and synovitis may be 

on the causal pathway to pain and driven by increased level of activity[660], 

reduced by pain-related avoidance of activity[661], increased loading of the 
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joint conferred by increasing BMI or weak muscles which are independently 

associated with knee OA pain[662, 663].  

While the association of 3D bone shape with knee symptoms is conditional 

to the symptoms being current, and the subcohort including radiographic 

OA, the limitations of annual pain measurement may confound this analysis. 

With such large intervening periods between measurement of knee 

symptoms, these may not be representative of actual knee symptoms. More 

frequently assessed knee symptoms may be a more precise method for 

determining pain. 

Activity-related pain of OA is typically present in a prodromal phase of ‘early’ 

OA before the incidence of ROA[18]. This pain in early OA is typically 

mechanical [128] and pain on stair climbing appears to be the first 

mechanical symptom to manifest amongst knees with ROA and at risk of 

ROA[32]. Therefore incident pain might better be assessed more frequently 

than annually and with more precise symptoms.  

The analysis within this chapter relies upon a single time-point measure of 

3D bone shape. It remains possible that longitudinal changes in 3D bone 

shape (within-person pattern of bone shape growth) may confer greater 

precision, sensitivity to change and association with knee OA 

symptoms[625]. 

Magnetic resonance cannot directly identify the presence of calcium. In the 

segmentation of knee DESS-we MRI sequence the material imaged is 

assumed to represent bone rather than another tissue type. Confirmation 

that these surfaces are actually bone requires further work. We are 

reassured that the automated segmentation used here is both accurate and 

repeatable.  

6.6 Conclusions 

This chapter has demonstrated that 3D bone shape vectors are associated 

with current frequent knee symptoms but not with incident persistent 

symptoms of knees with radiographic OA. This chapter therefore provides 
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evidence of concurrent validity of 3D bone shape which is restricted to knees 

with radiographic knee OA. This chapter also identified that unlike bone 

marrow lesions, 3D bone shape is not associated with either current knee 

symptoms or incident persistent knee symptoms in knees without 

radiographic OA but at risk of knee OA. Therefore 3D bone shape has 

evidence of validity for use as an outcome measure in interventional clinical 

trials and may represent and important tissue target for knee OA structural 

modification. However 3D bone shape is unlikely to be an important tissue 

target for preventing the onset of symptomatic knee OA.   

 

 

6.7 Recent evidence for  3D bone biomarker validation 

Further validation work has recently been published in parallel with the novel 

research contained within this PhD. This includes evidence of the reliability 

and responsiveness and further construct validity of the 3D bone shape 

biomarkers. This is described here using the domains of the Outcome 

Measures in Rheumatology (OMERACT) filter[355, 356] which are described 

in 2.7.2 Validation of biomarkers using the OMERACT filter 

6.7.1  Construct validity 

Longitudinal change in 3D bone area was described in approximately 1300 

knees with established radiographic OA and in 900 knees without 

radiographic OA. The longitudinal percentage increase in bone area was 

three fold greater in knees with than those without radiographic OA. 

Furthermore all bones in the knee increased in 3D bone area, particularly 

around each cartilage plate in a circumferential pattern, which is likely to 

represent the 3D characteristics of the 2D osteophytes ‘lip’ seen on 

conventional radiography. Together this provides evidence of construct 

validity as bone area correlated with established features of pathology within 

the same domain of structure[664].  

6.7.2  Predictive validity  
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The association of the longitudinal change in 3D bone shape or bone area 

with longitudinal medial tibiofemoral radiographic structural progression and 

pain progression was recently described in a case-control study of knees 

nested within the OAI [625]. Case knees (n=200) were defined as knees with 

mild to moderate structural disease with structural and pain progression over 

48 months. Controls (n=400) were defined as neither structural or pain 

progression or only progression in either structure or pain.  

Both of the 3D bone biomarkers were independently associated with 

structural progression but only weakly with pain progression. However this 

highlights their potential use in prospective DMOAD clinical trials as 

surrogate measures of these important patient-centred endpoints[625].  

A similar hierarchy of strength of association of each of the bones, to the 

associations identified in this PhD, was observed. The medial femur 3D 

bone area was most strongly associated with radiographic progression and 

pain progression. The 3D femoral shape vector was most strongly 

associated with structural progression but not with pain progression as in the 

analysis in Chapter 6. It is interesting to note that a similar analysis using 

change in cartilage thickness instead of bone biomarkers identified similar 

associations[665]. 

 

6.7.3 Reliability 

For the active appearance models used in this thesis, the accuracy of the 

automated segmentations has been further assessed using test–retest MRIs 

for 19 participants (38 images) with no OA to moderate degrees of clinical 

OA, that were originally prepared as a pilot study for the OAI, to test the 

accuracy and precision of knee cartilage qMRI with a fast double echo, 

steady state (DESS) sequence which is the same as used in the OAI [644]. 

The bone surface was manually segmented as previously described[632]. 

Mean point-to-surface distances were calculated between the manual and 

automated segmentations. Mean point-to-surface errors were as follows: for 
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the femur, 0.49 mm; for the tibia, 0.53 mm; and for the patella, 0.57 mm (i.e. 

each approximately the size of 1 voxel)[75]. 

It is often difficult to obtain inter-occasion reliability data as this involves re-

imaging subjects within a short period of time and causes patient 

inconvenience. The reliability of the method of measuring 3D bone area and 

3D bone shape vector was assessed in a set of 35 knees with OA that 

underwent the same image acquisition as in the OAI on two separate 

occasions one week apart. The inter-occasion reliability for the 3D bone 

shape vector was good with the smallest detectable difference (SDD) for the 

femur, tibia and patella vectors as 0.22, 0.86 and 0.24 units normalised to 

the mean non-OA shape respectively [625].  

The reliability of the tAB or 3D bone area was also good with the SDD (SDD 

%  of baseline bone area) being described in units of area (mm2) for the 

medial femur, medial femoral trochlea, medial tibia and medial patella as 

24.4 (1.07%), 12.8 (1.98%), 21.6 (1.99%), 20.6 (4.02%)[625].  

The root-mean-square coefficient of the variance (CoV) has been calculated 

to describe the repeatability of bone area within the same test-retest 

assessment of 35 knees. The CoV of medial femur, medial trochlea femur, 

medial tibia and medial patella were 0.38%, 0.67%, 0.69%, 1.45% 

respectively[625]. This compares favourably to a mean CoV of 

approximately 2-3% for automated segmentations of cartilage thickness in 

the same test-retest reliability assessment[632].  

The reliability of the method of measuring 3D bone area (tAB) and medial 

joint space (mJSW) width was assessed in a set of 147 knees without 

radiographic OA that underwent the same image acquisition as in the OAI on 

two separate occasions one year apart. Considering the absence of 

radiographic OA, it was therefore expected that little real difference should 

be expected. The CoV of 3D bone areas and mJSW was <1% and 5.1% 

respectively[664]. Therefore the reliability of 3D bone shape biomarkers is 

good and superior to the current standard of measuring structural 

progression that relies upon JSW. There is substantial measurement error in 
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JSW and using 3D bone biomarkers may therefore improve the 

measurement noise to signal ratio.  

 

6.7.4 Responsiveness 

The responsiveness of bone area, cartilage thickness and joint space 

narrowing (JSN) was determined by describing the change in these 

measures in 350 knees with radiographic OA within the OAI cohort, over two 

years. Bone area was measured by automated segmentation using active 

appearance models and cartilage thickness was computed from manual 

segmentations of the femorotibial joint. JSN was measured using mJSW 

measures provided by the OAI. The mJSW was measured using a 

semiautomated tool shown to be as sensitive as manual measures. The 

responsiveness over two years (standardised response mean) for the medial 

femur bone area, the most responsive cartilage thickness measure (central 

medial femorotibial composite) and mJSW was 0.83, 0.38 and 0.35 

respectively. The longitudinal changes in bone area in the medial 

tibiofemoral joint are displayed in (Figure 59). Therefore in comparison to 

cartilage volume or mJSW, 3D bone area was much more responsive. The 

responsiveness of 3D bone area is also highlighted by the fact that almost 

half of all individuals had a change in bone area during the two year period 

that was greater than the SDD[664].  
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Figure 59 The longitudinal changes in bone area in the medial 
tibiofemoral joint 

 

Legend: Percentage change in bone area (tAB) from baseline for medial 

regions in OA (dark grey) and non-OA groups (light grey) (95% CI). All 

changes were highly significant (p<0.0001) except * 
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6.7.5  Feasibility 

3D bone shape biomarkers require specialised automated segmentation and 

imaging analysis technology along with technical experts in image analysis 

and MRI radiographers. 

While proprietary software was used for the active appearance models that 

defined the 3D bone shape biomarkers in this thesis, there are several other 

research groups that are using similar segmentation methods to define 3D 

shape of joint structures and the importance of these in OA. These include 

researchers at Imperial College, London, that have defined the 3D shape of 

the meniscus and its relationship to cartilage load [666, 667], and 

researchers at the University of North Carolina that have described the 3D 

shape of the mandible in temporomandibular joint OA at [668]. Researchers 

at Parcelsus University have used automated segmentation to describe 3D 

shape of bone and cartilage[102]. Semi-automated shape recognition 

technology has been used by researchers at the University of Cambridge to 

investigate the shape of the femoral head in hip OA[669] and at University of 

California San Francisco to investigate the shape of the tibia and femur after 

anterior cruciate ligament injury.[670]. As this technology becomes more 

readily available, the access to bone shape and joint tissue biomarkers will 

continue to increase. 

The superior responsiveness and reliability of 3D bone shape biomarkers 

over conventional radiography, should very substantially reduce the number 

of participants and duration of a clinical trial required, to adequately power a 

study of a prospective DMOAD[664]. While manual semi-quantitative or 

quantitative scoring of joint images can be expensive and hugely time 

consuming for radiologists in clinical and observational trials, the bone shape 

biomarkers for all 4790 participants in the OAI, in all knees at all time points 

can be generated using automated active appearance modelling in 24-48 

hours. Furthermore a substantial reduction in the number of trial participants 

required to adequately power a trial, may similarly substantially reduce the 

burden and practical demands associated with conducting interventional 

clinical trials in OA. The overall reduction in cost, size and duration of trials 
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and clinical trial staff labour may substantially facilitate interventional OA 

researchers in performing vital trials to identify novel therapies in OA.   

In the future it remains possible that these bone shape biomarkers and this 

technology may enter routine clinical practice. Patients at-risk of OA or with 

OA could be appropriately stratified into those in need of intervention by 

using  bone shape biomarkers. This could be feasible in the clinic setting, if 

the cost of AAM software becomes cheaper and appropriate decision 

making tools are developed tool, in a similar manner to the FRAX tool 

(University of Sheffield) that is used for the management of osteoporosis. 
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Chapter 7 Discussion, future directions and conclusions 

7.1 Thesis synopsis 

This thesis is concerned with the role of subchondral bone in knee OA and 

specifically describes the relationship of 3D knee bone shape with 

established measures of OA structural severity and important patient-

centred outcomes in knee OA including total knee replacement and knee OA 

symptoms. This provides evidence supporting the validity of bone shape for 

use as a biomarker in OA clinical trials. The analyses performed in this 

thesis in Chapters three, four, five and six are summarised as follows: 

 

Chapter 3 

The aim of this chapter was to systematically collect all literature pertaining 

to the relationship between imaging-assessed subchondral bone pathology 

and the important outcomes of joint replacement, structural progression and 

pain, with a suitable systematic stratification by quality scoring system and 

assessment of adequacy of confounder adjustment. This systematic 

literature review concluded that there were independent associations 

between imaging-assessed bone pathologies and TKR, structural 

progression and pain in the knee, hand, and hip. The most substantive 

evidence for independent associations was for knees: 

 MRI BMLs were independently associated with structural progression, 

TKR and  longitudinal change in knee pain severity 

 MRI osteophytes were independently associated with knee structural 

progression only 

 MRI 2D tibial bone area was independently associated with structural 

progression, TKR and the ratio of the medial tibiofemoral articulating 

bone surface areas was independently associated with incident 

frequent knee pain  

 Trabecular morphometry and bone densitometry were associated with 

structural progression but this was not independent of confounders 
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 MRI bone attrition and cysts were not associated with structural 

progression and may be epiphenomenon of knee OA rather than 

being on the causal pathway.  

2D hip bone shape measures were independently associated with structural 

progression and total hip replacement. Hand OA structural progression was 

independently associated with BMLs. The existing standard for measuring 

structural progression, radiographic (JSN), poorly correlated with the clinical 

syndrome and remains a relatively insensitive measure (see 2.11 OA 

biomarkers). When JSN is used as a trial outcome measure this demands 

that clinical trials are large, long  and expensive. Therefore the unmet need 

for more sensitive and validated imaging biomarkers is huge. 

The independent associations of certain subchondral bone features with 

important patient-centred outcomes (pain and TKR) and structural 

progression suggest subchondral bone can provide valid surrogate 

measures of these outcomes. While many of these are MRI-derived 

measures, they are intrinsically more sensitive than radiographic JSN (see 

2.11 OA biomarkers), their use as clinical outcomes may substantially 

reduce the cost, duration and size of future trials. Bone measures may also 

improve the precision of OA phenotypic stratification to facilitate pathology-

specific treatment, prioritisation of individuals most in need of structure 

modification and measuring treatment response.  

This systematic review highlighted the need for greater information on the 

validity of subchondral bone features to be used as surrogate measures of 

OA patient-centred outcomes in all joints. There was very little evidence 

describing the validity of 3D bone shape as a surrogate measure. This 

unmet need was addressed in studies presented in the subsequent 

chapters. 

 

Chapter 4 

The aim of this chapter was to describe the association of the 3D bone 

structure of OA with established constructs of radiographic structural OA. 
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The objective was to determine if there was evidence of construct validity of 

the 3D bone structure. The articulating regions of knee bones typically 

expand in 3D with structural progression of OA. Their physiological ‘starting’ 

shape is determined by height, age, weight. The 3D bone structure of OA 

(described as OA-attributable bone area) was determined by subtracting the 

actual bone area from the predicted physiological bone area based upon 

available demographic data.  Regression analyses were then performed to 

establish whether conventional radiographic measures of knee OA were 

independently associated with corresponding OA-attributable bone area 

after adjusting for alignment and other conventional radiographic features.  

This analysis confirmed metric JSW, osteophyte grade, subchondral 

sclerosis grade and KL grade all were significantly associated with OA-

attributable bone area. None of these measures explained a substantive 

proportion of the OA-attributable bone area. However the greatest 

explanation of area variance was provided by osteophyte score. An 

explanation for this is that OA-attributable bone area is in part a 

representation of three-dimensional endochondral ossification and 

osteophyte formation which is less precisely quantified by the 2D projection 

images of conventional radiography.  

The association of OA-attributable 3D bone area with established standards 

of radiographic OA provides evidence of construct validity. The association 

of this 3D knee bone shape change of OA with important knee outcomes 

such as TKR and knee symptoms was subsequently explored and is 

described in Chapters 5 and 6.  

 

Chapter 5 

The aim of this chapter was to establish if 3D bone shape was associated 

with the important patient-centred outcome of total knee replacement (TKR). 

A case-control analysis, nested within the OAI, achieved effective matching 

of multiple strong confounding factors using propensity score matching 

(without matching for radiographic severity). The 3D bone shape vectors of 
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the femur, tibia and patella were all significantly associated with the outcome 

of TKR with the femur having the strongest association which is concordant 

with other analyses of femur shape. After adjustment for KL grade, the 

association of TKR with the patella and tibia shape was attenuated but the 

femur remained associated and improved the model ‘fit’ indicating femoral 

bone shape has an independent association with TKR after adjustment for 

KL grade. This was considered to reflect the additional 3D structural 

information that is not captured by conventional radiography in addition to 

the observation that femoral bone shape is more responsive and changes in 

more heterogenous manner with OA structural progression, indicating it may 

be a more suitable biomarker for use in clinical trials. This provided evidence 

of predictive validity and further underpinned the value of quantitative bone 

measures in future therapeutic trials of disease modifying osteoarthritis 

drugs.  

 

Chapter 6  

The aim of this chapter was to establish if 3D bone shape was independently 

associated with current knee OA symptoms (concurrent validity) and incident 

persistent knee symptoms (predictive validity). The first analysis was 

performed upon the ‘whole’ OAI subcohort of knees which included knees  

with and without radiographic OA with available demographic covariate data 

and an MRI of suitable quality at the 12 month visit in the OAI. In this 

analysis 3D bone shape was independently associated with current  

symptoms but not incident persistent symptoms. The second analysis was 

performed upon knees ‘at-risk’ of knee OA but without radiographic knee 

OA. Neither current nor incident knee symptoms were associated with 3D 

bone shape. In conclusion 3D bone shape was independently associated 

with current knee OA symptoms when extant radiographic knee OA is 

present. This provided evidence of conditional concurrent validity. It may be 

that knee bone shape is more relevant to pain when more advanced 

structural severity is present, such as when endochondral ossification occurs 

and the neurovascular invasion of cartilage occurs. However while the 



- 347 - 

347 

 

association of 3D bone shape with knee symptoms was conditional, the 

limitations of annual pain measurement may have confounded this analysis. 

With such large intervening periods between measurements of knee 

symptoms, these may not be representative of actual knee symptoms.  

 

Overall Summary 

The hypothesis underlying this thesis was that subchondral knee bone 3D 

shape, defined using 3D knee MRI segmentation and (AAM), would 

demonstrate validity as a biomarker through association with existing 

radiographic measures of structural knee OA pathology, TKR and knee OA 

symptoms as part of the validation of biomarkers for use in knee OA clinical 

trials. In summary, this thesis has indeed provided evidence supporting the 

OMERACT biomarker tool validation domain of truth, that 3D knee bone 

shape biomarkers have construct validity as measures of knee OA 

radiographic severity, predictive validity by association with total knee 

replacement (TKR) and concurrent validity by association with knee OA 

symptoms in knees with radiographic OA. While 3D bone shape is 

independently associated with knee OA radiographic structural disease and 

total knee replacement, like many other structural imaging biomarkers, the 

association with symptoms is weaker.  

Evidence for 3D bone shape biomarkers fulfilling the OMERACT domain of 

discrimination has been provided by the demonstration of good reliability and 

responsiveness in work performed in parallel to this PhD which is described 

in full in (6.7.3 Reliability, 6.7.4 Responsiveness). 

Finally 3D bone shape biomarkers may fulfil the OMERACT domain of 

feasibility. The cost and technical demands of performing clinical trials with 

endpoints defined by conventional radiography and MRI might favour 

conventional radiography at first glance. However while conventional 

radiography is inexpensive and easily accessible, the relative insensitivity 

and poor responsiveness confers the need for relatively large number of 

participants with long duration compared to MRI bone biomarkers. The 
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additional expense of MRI and image analysis is very likely to be offset by 

the substantial reduction in trial size and duration.  

 

7.2 Improving understanding of the relationship between 

bone features and symptoms 

The unmet need for evidence describing the association of 3D bone shape 

with patient-centred outcomes (e.g. TKR and pain) was highlighted in 

Chapter 3. In Chapter 3 the only previous analysis of knee bone shape with 

knee OA symptoms reported an increasingly larger medial weight-bearing 

femoral relative to tibial subchondral surface area (mSSR) was protective 

against the incidence of knee OA symptoms in a subcohort of the OAI that 

included individuals with prevalent knee ROA[102]. This association was 

independent of important determinants of knee OA symptoms. This applied 

outcome of incident knee OA symptoms referred to the incidence of these 

symptoms at one time point in this study which should be distinguished from 

the definition used in Chapter 6 where the incidence of frequent knee OA 

symptoms must have been reported at two consecutive annual reviews. 

Everhart and colleagues used a less strict definition of pain incidence and 

used bone area measurements focussing on the medial joint space where 

greater pathological bone shape changes are observed relative to the whole 

bone shape. These differences in methodology may explain why the vectors 

of whole 3D bone shape (tibia, femur and patella) used in this thesis were 

not associated with incident persistent knee OA symptoms in Chapter 6 

whilst Everhart and colleagues found an association of mSSR with incident 

knee OA symptoms in Chapter 3[102].  

As described in Chapter 3 BMLs were independently associated with 

incident frequent knee pain[26, 456, 658] . However in a systematic literature 

review, BMLs were only moderately associated with knee pain [132]. In 

cross-sectional analyses BMLs have [133, 575, 577] and have not been 

found to be associated with current knee pain[319, 456, 559, 571]. However 
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Sharma and colleagues established that BMLs were associated with current 

frequent knee symptoms and incident persistent knee symptoms in a 

subcohort of knees in the OAI that are at risk of knee OA but without 

radiographic OA knee[131]. By replicating this analysis and replacing BMLs 

with 3D bone shape, we established that bone shape has neither concurrent 

nor predictive validity. However by including all knees, including those with 

radiographic OA, bone shape demonstrated concurrent validity.  

The evidence from Chapter 3 and Chapter 6 identified that BMLs and 3D 

bone shape respectively, are independently associated with future total knee 

replacement and both have construct validity[516, 671].  

There are several possible (non-exclusive) explanations for the variation in 

association of knee OA symptoms with BMLs and 3D bone shape: firstly the 

measurement of prevalent frequent knee symptoms in the preceding year is 

prone to recall bias and fails to distinguish activity-related pain and resting 

pain which may be measuring different pathologies; secondly knee OA 

symptoms may be caused by different pathologies at different stages of 

structural progression; thirdly that unmeasured confounding factors may be 

responsible for all or some associations observed; fourthly that BMLs cause 

both knee symptoms and 3D bone shape changes. 

In the first explanation it should be acknowledged that self-reported chronic 

pain assessments are prone to recall biases (e.g. recency and memory 

effects)[672] particularly where participants are asked to recall frequency of 

pain over the preceding year as in the methods used by Sharma and 

colleagues[131] and in Chapter 6. Furthermore by not distinguishing whether 

the pain described is present whilst resting or on activity, the composite 

measure of the two of these that is used to describe prevalent knee 

symptoms may represent residual confounding with a greater association 

with BMLs rather than bone shape. It is possible that different associations 

of the BMLs and bone shape may be observed with more precise definitions 

of pain.  

In the second explanation knee OA symptoms may be caused by different 

pathogenic mechanisms within the subchondral bone and these 
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predominate at different stages of structural progression. For example BMLs 

may predominate in the pre-radiographic phase whilst 3D bone shape 

changes may be the predominant cause of symptoms in the radiographic 

stages. This is supported by an analysis within the TASmanian Older Adult 

Cohort which examined the relationship between change in BML size and 

change in ipsilateral knee pain in knees with and without radiographic OA. A 

change in BML size was associated with changes in ipsilateral pain in those 

without and not with established ROA implying a greater significance of 

BMLs in early stage disease [99]. BMLs are likely to be measuring a different 

pathological construct to bone shape. The pathophysiology by which BMLs 

may cause pain is unknown but this might include a decreased blood supply 

causing ischaemia, subchondral microfractures, and raised intraosseous 

pressure[136-138].These processes may be more relevant to pain in the 

pre-radiographic stage of OA.  

3D bone shape change is closely associated with 3D osteophyte formation 

(endochondral ossification) which is initiated by vascular invasion of cartilage 

along with osteoclastogenesis [201-203] which are involved in the 

innervation and neurovascular invasion of premorbidly aneural cartilage. 

Therefore 3D bone shape change may correlate with the potential for 

nociception in cartilage[15]. 3D bone shape change may therefore better 

reflect the concurrent innervation of cartilage and the potential for concurrent 

nociception rather than predicting future nociception. This issue of the 

change in bone shape is important because this occurs most noticeably in 

the non-weight bearing regions of the knee which can be described 

histologically but can also be quantified more specifically using AAMs. This 

quantitative measure may represent a better biomarker than existing bone 

shape measures (see 7.4.1.1 Future analyses to elucidate the validity of 3D 

bone shape as a surrogate measure of knee OA)  

3D bone shape, which is in part determined by radiographic severity, may 

also be relatively insensitive to knee symptoms in the pre-radiographic 

phase due to the very narrow distribution of bone vector values at this stage. 

This is suggested by the fact that the femur, which is the most responsive of 
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the three bone shape vectors[664], was associated with IPKS in univariable 

analyses in males and females in the ‘whole’ OAI subcohort (Table 2b) but 

not in the ‘at risk’ subcohort without radiographic OA(Table 5b).  

 

In the third explanation it is important to consider that while we have 

identified associations of bone features with knee symptoms, these do not 

imply causation. There may be additional unknown or unmeasured 

confounders that may directly cause both BMLs and symptoms and future 

change in 3D bone shape and therefore the subchondral bone features are 

not on the causal pathway of knee OA symptoms. For example knee OA 

pain is typically activity-related. The level of activity (or load placed through 

the joint) is recognised to correlate with BMLs [673], knee OA symptoms and 

may drive bone remodelling with future 3D change in knee bone shape. 

Therefore neither BMLs nor 3D bone shape may be independently 

associated with knee OA symptoms after adjustment for level of activity.  

In the fourth explanation bone shape may not be associated with knee OA 

symptoms but is a consequence of bone remodelling driven by BMLs. In this 

scenario BMLs may directly cause knee pain and after adjusting the 3D 

bone shape model for BMLs, 3D bone shape would no longer be 

independently associated with pain.  

7.3 Future Directions 

Conventional radiography (CR) is inexpensive and widely available. CR  joint 

space width (JSW) is the traditionally used surrogate for assessing hyaline 

articular cartilage thickness and is used to define and measure structural 

progression of OA. Joint space narrowing (JSN) remains the current 

standard for measuring cartilage loss or structural progression in disease 

modification trials, where it is used as a primary end point[367]. However 

there are a number of limitations of using JSN. 

Knee JSN lacks tissue-specificity because it reflects a construct of reduction 

in hyaline articular cartilage thickness along with meniscal extrusion and 
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degeneration[86]. The measurement of JSN has relatively poor reliability and 

responsiveness in comparison to MRI-based measures[664] which is in part 

due to significant repositioning variability (2.11.1.1 Conventional 

radiographic quantitative measures)[402, 414]. The smallest detectable 

difference  least 0.2mm is large relative to the mean rate of annual knee JSN 

of 0.13 ± 0.15mm/year, with change occurring in only a small group of 

“progressors”[93, 94]. 

There is no consensus on the threshold for defining relevant structural 

progression using JSN[485], which was highlighted by a systematic literature 

review describing the heterogeneity of opinion amongst experts [415]. 

OA is a whole joint disease and can involve a heterogenous combination of 

joint tissues that are indistinguishable by clinical or conventional 

radiographic assessment[25]. Participants in clinical trials are typically 

recruited by the presence of a homogenous clinical and CR phenotype 

which belies the heterogeneity in tissue pathology. Therefore CR fails to 

distinguish the variation in OA tissue phenotype. CR is also insensitive to 

pre-radiographic structural pathology or early OA which is prevalent in 

individuals at risk of OA with and without symptoms[23]. The presence and 

changes in tissue pathologies (e.g. BMLs) are relevant to knee OA 

symptoms and structural progression at this stage but are not detectable by 

CR[131, 622].  

The severity of CR knee OA is also poorly correlated with knee OA 

symptoms[674], where only 50% of knees with radiographic OA have 

symptoms  and only large changes in conventional radiographic knee OA 

severity are associated with changes in knee pain[98]. 

JSN is used by orthopaedic surgeons to determine the need for joint 

replacement and therefore is associated with TKR[675]. However using JSN 

as a clinical endpoint in clinical trials  confers the need for large numbers of 

participants for two years or more in order to adequately power the study. 

This represents a major barrier to performing trials of prospective disease 

modifying agents. This highlights the need for better biomarkers. This 

section will discuss further important research required to determine the 
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validity of 3D bone shape as a surrogate measure of patient-centred 

outcomes and the potential to segment all of the joint tissues with AAM to 

provide quantitative measures of whole joint OA-tissue pathology. This 

section will also describe the potential advantages of using more precisely 

defined OA phenotypes using multiple modalities in addition to imaging 

biomarkers and developing improved concepts of early OA. Finally I will 

discuss the implications of the application of the novel imaging analysis 

technology used in this thesis in other joints and clinical scenarios beyond 

the knee.  

 

7.3.1. Further validation and use of bone and multi-tissue 

biomarkers in clinical research as outcome measures 

7.3.1.1 Future analyses to elucidate the validity of 3D bone shape as an 

outcome for knee OA trials.  

While this thesis has provided evidence for the validity of novel imaging 

bone shape biomarkers towards their use as surrogate measures in future 

clinical OA trials and parallel work has identified that they 3D bone area is 

highly responsive and associated with knee OA pain progression, further 

analyses of their validity will be required. 

 A better understanding of the relationship between BMLs and bone shape 

and their relationship with patient centred outcomes such as TKR and OA 

symptoms is of great interest and relevance to understanding the 

pathogenesis of OA. With this in mind a number of future analyses should be 

considered. 

The first analysis would be to establish the construct validity of the novel 3D 

bone shape and tAB (bone area) bone biomarkers in relation to important 

MRI bone pathologies, including BMLs and osteophytes measured semi-

quantitatively using the MOAKs scores (which are publically available for 

600 knees in the OAI including knees with both structural and pain 

progression, knees with structural progression only, knees with pain 

progression only and knees with neither progression). This could be 
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performed by establishing the correlation coefficients for corresponding 

regional tAB and BMLs or osteophytes. For whole 3D bone shape the BMLs 

and osteophyte scores could be summated for each bone for each region.  

The objective of this analysis would be to explore the association of these 

subchondral bone pathologies at various stages of disease.  

A second analysis would explore the association of different anatomical 

regions within the current 3D bone shape with knee OA pain and symptoms. 

This comes from the observation that knee OA pain progression was 

associated with change in tAB. I have also observed that the 3D change in 

knee bone shape occurs in two distinct regions of the bones involved. There 

is a weight-bearing bone area (A) on each knee bone, and the non-weight-

bearing area (B) (Figure 60,Figure 61). I have briefly explored the data and 

realise the weight-bearing area (A) undergoes minor expansion in area 

whilst the non-weight-bearing area (B) undergoes significant increase in 

area. The objective would be to first repeat the case-control analysis 

conducted by Hunter and colleagues[625] to establish if the change in areas 

A and B are more strongly associated with pain progression or incidence. A 

subsequent analysis of interest would also be to repeat analysis of Chapter 

6 using areas A and B to establish if the specific changes in bone shape are 

independently associated with incident and prevalent pain. This analysis 

should include adjustment for confounding factors for pain such as level of 

activity. A more precise definition of knee OA symptoms could also be used 

including the prodromal symptoms of pain that precede radiographic OA[18] 

and the first symptoms of knee OA pain that appear to occur during weight-

bearing activities involving bending of the knee, such as using stairs[32] in 

addition to pain at rest (7.2 Improving understanding of the relationship 

between bone features and symptoms). The association of the 3D bone 

shape biomarkers should also be assessed with these measures. 

Future validation of bone biomarkers may also include a composite measure 

of BMLs and bone shape to enhance the validity of the biomarker. This may 

draw upon the concurrent and predictive validity against knee OA symptoms 

in the pre-radiographic phase of BMLs.  



- 355 - 

355 

 

Clinical trials of knee OA enrol symptomatic knee OA and therefore no 

clinical trial has used incident knee OA pain as an outcome. However future 

clinical trials may attempt to prevent the incidence of knee OA pain. If a 

clinical trial were to attempt to prevent the incidence of knee OA pain by 

targeting the subchondral bone, patients could be selected on the presence 

of BMLs and incident pain would be the primary outcome. However the 

change in BML size could be a secondary mechanistic outcome[330, 659].  

Therapeutic interventions targeting or inhibiting the general expansion of 3D 

knee bone shape would be unlikely to prevent the onset of knee OA 

symptoms. However 3D bone shape expansion measures a construct called 

“OA structural progression” and is the most responsive measure of OA 

structural progression. Therefore 3D bone shape change could be used as a 

sensitive secondary outcome measure of OA structural progression in 

clinical trials attempting to prevent the onset of symptomatic knee OA.  

More suitable tissue targets for such a clinical trial would include BMLs and 

synovitis. This contrasts with the findings of Chapter 5 that indicate that 3D 

bone shape is associated with TKR and has validity for use as an outcome 

measure in typical interventional OA trials attempting to modify structural 

progression. Therapies inhibiting the changes observed in 3D bone shape in 

knee OA might therefore be targeting an important structural process in the 

pathogenesis of joint failure and may be an important tissue target in trials 

attempting to modify structural progression. 
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Figure 60 Area A – Weight-bearing 

 

The area of the femur shown in red represents the weight-bearing 
region 

 

Figure 61 Area B  Non-weight-bearing 

 

The area of the femur shown in red represents the non-weight-bearing 
region 
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7.3.1.2 Future analyses to elucidate the validity of quantitative multi-

tissue measures and a whole joint biomarker as a surrogate 

measure of knee OA.  

The technology to automatically segment and quantify the structural status 

of all the joint tissues represents a unique opportunity to provide highly 

accurate quantitative biomarkers describing the phenotype and extent of 

tissue damage in a precise manner. For example, the articular cartilages, 

subchondral bone and menisci are segmented separately in the image 

below (Figure 62).  

Quantitative measures would be provided more rapidly with an automated 

segmentation, than semi-quantitative scoring such as the WORMS scores. 

Multiple quantitative tissue scores could facilitate a more appropriate 

description of the association of pathology within each of the tissues of the 

joint in OA. This provides an advantage over semi-quantitative scores which 

are time-consuming to score and may not represent interval measures.   

Finally a composite quantitative measure of whole joint OA pathology may 

better capture the extent of global structural pathology and in doing so 

confer greater validity in terms of its association with patient centered 

variables such as symptoms and TKR which would be re-examined in a 

similar manner to chapters 5 and 6.   

For example BMLs can be subdivided on the basis of their location and 

association with adjacent tissues. BMLs occurring at the ligament and 

meniscal attachments may be typical of tractional or repetitive microtrauma 

whilst ‘kissing’ BMLs may occur where two bones impact as a consequence 

of meniscal and hyaline cartilage defects are likely a consequence of 

trauma[671]. 

In section 7.3, the advantages of using BMLs as surrogate measures of 

patient-centered outcomes are highlighted. These include construct validity 

along with predictive and concurrent criterion validity for structural 

progression and symptoms. One might consider why bone shape should be 

further pursued as a biomarker. For the purposes of clinical trials, BMLs as 
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clinical endpoints have several limitations. These included the fact they can 

change in size over 6 weeks. Any clinical trial without regular monitoring with 

MRI scans may not capture this rapid variation and false conclusions may be 

drawn about the trend in BML size or volume based upon two 

measurements at the beginning and end of the trials. In contrast bone shape 

and bone area do not reduce in size but continue to increase in OA and 

therefore are more reliable in considering the underlying trend in structure. 

Furthermore the identification of the edge of singe, multiple or coalescing 

BMLs in multiple regions of the knee is a more complex segmentation than 

bone shape and tAB. This potential error may influence any association with 

knee pain and highlights the importance of the use of composite measures 

of joint structure. Bone shape provides a convenient continuous scale which 

can be measured less frequently to determine the true trend in bone shape.  

Figure 62 A whole joint biomarker 

 

A knee joint with articular cartilage (orange), meniscus (blue) and bone 

(grey) segmented.  
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7.3.1.3 The suitability of 3D bone shape biomarkers for use as outcome 

measures in knee OA trials 

To date all clinical knee OA trials have investigated the potential for 

structural or symptomatic disease modification in established knee OA. The 

suitability of the two bone shape biomarkers described in this thesis (3D 

bone shape and bone area) for use as outcome measures in disease 

modification trials is supported by the predictive validity for TKR described in 

Chapter 5, the concurrent validity for frequent pain in Chapter 6 and the work 

done in parallel with this thesis indicating the predictive validity for pain and 

structural progression[625]. However the lack of predictive validity for 

incident persistent knee pain reflects the lack of predictive validity for 

symptomatic disease onset. Therefore clinical trials of prospective structural 

or symptom disease modification could arguably use these bone shape 

biomarkers as outcome measures. However the lack of predictive validity for 

symptom onset indicates these bone shape biomarkers would not be 

suitable for clinical trials of interventions designed to prevent the onset of 

symptomatic knee OA. There are other structural biomarkers that have 

predictive validity for symptom onset including bone marrow lesions and 

cartilage defects [131, 134, 607] and synovitis [26] and for incident 

radiographic structural disease including BMLs, cartilage defects and 

meniscal degeneration and extrusion[622]. 

 

7.3.2 Towards a more precisely defined OA phenotype and tissue 

target  

7.3.2.1 The benefits of an improved OA phenotype 

The immense burden of OA on a personal, health service and 

socioeconomic level highlights the need for disease modifying therapies. 

With each and every failure of prospective DMOADs, the OA research 

community has attempted to better define the tissue targets and the OA 

phenotype and this progressive approach may hold future merit with the 

application of 3D structural biomarkers. 
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In chondroprotection trials to date, the failure to modify structure and 

symptoms of knee OA was explained by the chondro-centric approach failing 

to target non-cartilaginous pathologies in the multi-tissue pathology setting. 

Thus when oral bisphosphonates failed to modify radiographic structural 

progression in knee OA in the KOSTAR trial, this was explained by the 

failure to target individuals with knee OA with confirmed subchondral bone 

pathology[676]. By selecting an OA subchondral bone phenotype of 

prevalent BMLs in knee OA, the ZAP trial demonstrated structural 

modification but not a sustained reduction in symptoms[330]. More recently 

BMLs are recognised to be phenotypically heterogenous because those 

appearing on T1 and T2 sequences are more likely to be associated with 

more cartilage loss and pain[623] than those appearing on T1 alone. This 

may, in part, explain why treating the acutely painful OA knee with 

intravenous neridronate or placebo in a randomised placebo controlled trial 

was able to demonstrate structural modification and sustained reduction in 

pain[677]. This more recent success in apparently fulfilling the FDA’s 

DMOAD requirement, to improve structure and symptoms, highlights the 

possible advantages of a more precise definition of OA pathology and 

phenotype. An imprecise population of knees selected from a population 

with heterogenous pathologies may represent important confounding factors 

compared to a more homogenous tissue-pathology-specific cohort. The 

interaction of different tissue pathologies may establish a non-modifiable and 

irreversible degeneration trajectory and hence explain the failure of previous 

DMOAD trials.  

Acknowledging the limitations of existing bone biomarkers, I would  better 

define OA phenotypes by using a broad range of potential phenotype 

determinants. This includes symptom and demographic data, MRI imaging 

biomarkers, serological soluble biomarkers, along with genetic and 

epigenetic data. Kerkhof and colleagues have used similar methods[678].  

Patients may be better stratified by ‘whole joint’ quantitative assessments as 

described above (7.4.1.4). For example, individuals with BMLs and articular 

cartilage degeneration and pain may be best treated using weight loss and 
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intravenous bisphosphonates. In the absence of obesity, such individuals 

should be considered for knee braces to reduce BMLs and symptoms of 

OA[659] . Knee OA phenotypes and their prognosis have previously been 

described by stratifying individuals by their trajectories of structural and 

symptomatic progression as described by Felson and colleagues[92]. 

Although this phenotyping with greater precision has not been used in 

clinical trials or in general clinical practice, the broader application of this 

concept introduces the opportunity for targeted interventions.  

A further advantage of improved phenotyping of patients with OA is that the 

identification of novel genetic associations with these more precise tissue 

phenotypes is more likely. Currently the known genetic associations are 

weak, complex, polygenic and are unlikely alone to stratify individuals into 

those who will or will not develop the generic clinical syndrome of knee OA. 

However genetic and epigenetic associations exist in OA and these should 

ideally be incorporated in phenotyping. Should these match the tissue 

pathology observed, this provides a potentially important tissue target for 

individual joints[82] and important novel therapeutic targets [83]. 

 

7.3.2.2 Improved concepts of early OA 

Advances in MRI techniques have facilitated the identification of the pre-

radiographic stage of OA, in particular demonstrating pathology of the 

menisci, synovitis and BMLs[679]. These pathologies play an integral role in 

the multi-tissue concept of OA pathogenesis. Attempts to define pre-

radiographic or ‘early’ OA of the knee using MRI features have been 

previously described[680]. Should attempts to precisely define ‘early’ OA be 

enhanced by quantitative bone or whole-joint composite measures, this may 

significantly improve the prospects of capturing the early interaction of these 

important tissue pathologies for a more validated ‘whole joint’ clinical 

staging. This could be used to optimally describe the natural history of 

structural progression in knee OA and the inter-relationship between tissues 

in the pathogenesis of OA at early. This may process may also identify 

potential pathogenic tissue targets of particular interest in ‘early’ OA when 
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disease modification is more feasible. In summary a validated definition of 

such a clinical stage would significantly improve the prospects of 

interventional clinical studies identifying strategies for prevention and 

modification of structural and symptomatic  OA progression. 

7.3.3 Implications for novel imaging analysis  

This thesis has been concerned with the validation of two novel AAM -

derived bone shape biomarkers in the knee. Their validation may 

substantially reduce the practical and financial barriers to performing clinical 

trials of prospective DMOADs in the future.  

However there is clearly a massive potential for applying the same 

technology to other weight-bearing as well as non-weight-bearing joints, has 

the potential to advance our understanding of the pathogenesis of OA, to 

identify prospective tissue targets and to yield more imaging biomarkers. 

 

7.3.3.1 Other peripheral joints 

The limitations of conventional radiography in describing complex 3D 

structures has been described earlier for knees. These same limitations 

apply to other joints as well and many other joints are being described using 

3D imaging techniques in order to improve the precision of the diagnosis and 

severity of OA along with identifying patients that may benefit from surgery. 

Hip bone shape is known to be integral in the pathogenesis of hip OA. 

Turmezei and colleagues have established a 3D computerised tomography 

cortical bone mapping tool of the proximal femur. This is an accurate and 

reliable novel quantitative grading system for hip OA[681]. Turmezei and 

colleagues have recently reported evidence of construct validity in relation to 

radiographic measures of hip OA. Increases in KL grade corresponded with 

increasing cortical bone thickness which was typically seen at the 

superolateral femoral head-neck junction and superior subchondral bone 

plate. Increasing severity of CT-defined osteophytes corresponded to an 

increase in circumferential cortical thickness and also joint space loss[682, 

683]. Further validation of this application of novel AAM technology  to 
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provide apparently superior biomarkers may establish the concurrent and 

predictive nature of this biomarker and facilitate clinical trials of hip OA as 

well[669]. 

Dysplasia of the hip joint is associated with increased risk of hip OA[287]. 

The structural abnormalities within dysplastic hips are now being more 

accurately described using 3D CT [684]. The identification of global 

incongruity of the dysplastic femoro-acetabular joint with 3D imaging, may 

stratify those in need of earlier surgical intervention and may permit custom 

made prosthetic joint replacements[685, 686].  

Finally 3D imaging of the hip may improve the identification of both cartilage 

and bone pathology in individuals at risk of OA[687] and this can be used to 

better determine the suitability of surgical or non-surgical intervention. This 

may also facilitate pre-operative planning in femoro-acetabular 

impingement[688]. 

The relevance of 3D imaging includes other joints including the jaw, 

shoulder, hand and foot. The relevance to the temporomandibular joint 

(TMJ) has been described [689] and this is being used to better define the 

presence of OA of the TMJ[668]. The effect of glenohumeral joint (GHJ) 

morphology on GHJ movement may be relevant to the pathogenesis of 

rotator cuff pathology, is of great interest[690] and may lead to a more 

precise way to predict and treat the pathogenesis of shoulder pathology. 

Finally 3D imaging of the hand [691] and foot [692] may better stratify 

patients into those that will or will not benefit from surgery.  

 

7.3.3.2 The spine 

Vertebrae can now be segmented from 3D CT and MR imaging. The shape 

modelling may be more able to discriminate normal vertebral deformities 

from pathological one. This may improve the diagnosis of vertebral 

fractures[693] and abnormal shapes in individuals at risk of osteoporotic 

fracture for suitable osteoporosis prophylaxis[694] 



- 364 - 

364 

 

Spinal OA is common and an important cause of chronic back pain. The 

normal kinematics and articulation of intervertebral joints has been poorly 

understood. These joints can now be imaged in three dimensions during 

movement in healthy individuals and individuals with degenerative changes. 

This may facilitate better understanding of the pathogenesis of 

discovertebral degeneration and biomechanical interventions to help restore 

‘normal’ movement[695]. This may be used before and after surgical 

interventions to assess the correlation of structural biomechanical changes 

in relation to symptomatic changes and determine the efficacy of such 

interventions.[696] 

There are also great potential advantages for the use of AAM technology in 

inflammatory arthritis where shape change is an important feature in the 

articular and periarticular tissues. This particularly includes axial and 

peripheral spondyloarthritis and rheumatoid arthritis. 

In summary 3D imaging may improve the precision of defining joint 

pathology, our ability to describe pathogenesis and the potential to measure 

the success or failure of any intervention in all joints. 

7.4 Conclusions 

The hypothesis underlying this thesis was that knee OA subchondral bone, 

defined using 3D knee MRI segmentation with AAMs, would provide novel 

imaging biomarkers that demonstrate associations with existing radiographic 

measures of structural knee OA pathology, total knee replacement and knee 

OA symptoms as part of the validation of biomarkers for use in knee OA 

clinical trials. A systematic literature review identified the limited validity of 

existing imaging biomarkers, and hence the need for the work presented in 

this thesis, but also the potential importance of MRI-assessed bone shape. 

In conclusion, this thesis has provided good evidence supporting the 

OMERACT biomarker tool validation domain of truth: 3D knee bone shape 

biomarkers have construct validity as measures of knee OA radiographic 

severity, predictive validity by association with total knee replacement and 

concurrent but not predictive validity by association with knee OA symptoms 
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in knees with radiographic OA. While 3D bone shape is independently 

associated with knee OA radiographic structural disease and total knee 

replacement, like other structural imaging biomarkers, the association with 

symptoms is weaker.  

Evidence for 3D bone shape biomarkers fulfilling the OMERACT domain of 

discrimination has been provided by the demonstration of good reliability and 

reproducibility in work performed in parallel to this PhD which is described in. 

This is the first stage in improving existing biomarkers of OA. Future 

surrogate measures of patient-centred outcomes are likely to include 

composite quantitative whole-joint biomarkers along with novel genetic 

biomarkers. Clinical trials in OA will seek to use these measures to reduce 

the size, duration and cost of clinical trials that currently hinder progression 

in interventional clinical trials in OA.  

 

 

 

 



- 366 - 

366 

 

Chapter 8 List of References 

1 Care A. OANation Survey 2012 
http://www.arthritiscare.org.uk/LivingwithArthritis/oanation-2012. 
2 Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the 
prevalence of arthritis and other rheumatic conditions in the United States. 
Part II. Arthritis Rheum. 2008;58(1):26-35. 
3 Turkiewicz A, Petersson IF, Bjork J, et al. Current and future impact of 
osteoarthritis on health care: a population-based study with projections to 
year 2032. Osteoarthritis Cartilage 2014;22(11):1826-32. 
4 Jordan JM, Helmick CG, Renner JB, et al. Prevalence of knee 
symptoms and radiographic and symptomatic knee osteoarthritis in African 
Americans and Caucasians: the Johnston County Osteoarthritis Project. J. 
Rheumatol. 2007;34(1):172-80. 
5 Jordan JM, Helmick CG, Renner JB, et al. Prevalence of hip 
symptoms and radiographic and symptomatic hip osteoarthritis in African 
Americans and Caucasians: the Johnston County Osteoarthritis Project. J. 
Rheumatol. 2009;36(4):809-15. 
6 Murray CJ, Vos T, Lozano R, et al. Disability-adjusted life years 
(DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a 
systematic analysis for the Global Burden of Disease Study 2010. Lancet 
2012;380(9859):2197-223. 
7 Hubertsson J, Petersson IF, Thorstensson CA, Englund M. Risk of 
sick leave and disability pension in working-age women and men with knee 
osteoarthritis. Ann. Rheum. Dis. 2013;72(3):401-5. 
8 Hiligsmann M, Cooper C, Arden N, et al. Health economics in the field 
of osteoarthritis: an expert's consensus paper from the European Society for 
Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). 
Semin. Arthritis Rheum. 2013;43(3):303-13. 
9 Kingsbury SR, Gross HJ, Isherwood G, Conaghan PG. Osteoarthritis 
in Europe: impact on health status, work productivity and use of 
pharmacotherapies in five European countries. Rheumatology (Oxford) 
2014;53(5):937-47. 
10 Zhang W, Nuki G, Moskowitz RW, et al. OARSI recommendations for 
the management of hip and knee osteoarthritis: part III: Changes in evidence 
following systematic cumulative update of research published through 
January 2009. Osteoarthritis Cartilage 2010;18(4):476-99. 
11 Roberts E, Delgado Nunes V, Buckner S, et al. Paracetamol: not as 
safe as we thought? A systematic literature review of observational studies. 
Ann. Rheum. Dis. 2015. 
12 Patricio JP, Barbosa JP, Ramos RM, Antunes NF, de Melo PC. 
Relative cardiovascular and gastrointestinal safety of non-selective non-
steroidal anti-inflammatory drugs versus cyclo-oxygenase-2 inhibitors: 
implications for clinical practice. Clin Drug Investig 2013;33(3):167-83. 
13 Doherty M, Hawkey C, Goulder M, et al. A randomised controlled trial 
of ibuprofen, paracetamol or a combination tablet of ibuprofen/paracetamol 

http://www.arthritiscare.org.uk/LivingwithArthritis/oanation-2012


- 367 - 

367 

 

in community-derived people with knee pain. Ann. Rheum. Dis. 
2011;70(9):1534-41. 
14 Guermazi A, Roemer FW, Felson DT, Brandt KD. Motion for debate: 
osteoarthritis clinical trials have not identified efficacious therapies because 
traditional imaging outcome measures are inadequate. Arthritis Rheum. 
2013;65(11):2748-58. 
15 Suri S, Walsh DA. Osteochondral alterations in osteoarthritis. Bone 
2012;51(2):204-11. 
16 Osteoarthritis Initiative database. http://www.oai.ucsf.edu/. 
17 Hannan MT, Felson DT, Pincus T. Analysis of the discordance 
between radiographic changes and knee pain in osteoarthritis of the knee. J. 
Rheumatol. 2000;27(6):1513-7. 
18 Case R, Thomas E, Clarke E, Peat G. Prodromal symptoms in knee 
osteoarthritis: a nested case-control study using data from the Osteoarthritis 
Initiative. Osteoarthritis Cartilage 2015;23(7):1083-9. 
19 Kellgren JH, Lawrence JS. Radiological assessment of osteo-
arthrosis. Ann. Rheum. Dis. 1957;16(4):494-502. 
20 Altman R, Alarcon G, Appelrouth D, et al. The American College of 
Rheumatology criteria for the classification and reporting of osteoarthritis of 
the hip. Arthritis Rheum. 1991;34(5):505-14. 
21 Altman R, Alarcon G, Appelrouth D, et al. The American College of 
Rheumatology criteria for the classification and reporting of osteoarthritis of 
the hand. Arthritis Rheum. 1990;33(11):1601-10. 
22 Altman R, Asch E, Bloch D, et al. Development of criteria for the 
classification and reporting of osteoarthritis. Classification of osteoarthritis of 
the knee. Diagnostic and Therapeutic Criteria Committee of the American 
Rheumatism Association. Arthritis Rheum. 1986;29(8):1039-49. 
23 Guermazi A, Niu J, Hayashi D, et al. Prevalence of abnormalities in 
knees detected by MRI in adults without knee osteoarthritis: population 
based observational study (Framingham Osteoarthritis Study). BMJ 
2012;345. 
24 Conaghan P. Is MRI useful in osteoarthritis? Best Practice & 
Research in Clinical Rheumatology 2006;20(1):57-68. 
25 Conaghan PG, Felson D, Gold G, Lohmander S, Totterman S, Altman 
R. MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthritis 
Cartilage 2006;14 Suppl A:A87-94. 
26 Zhang Y, Nevitt M, Niu J, et al. Fluctuation of knee pain and changes 
in bone marrow lesions, effusions, and synovitis on magnetic resonance 
imaging. Arthritis Rheum. 2011;63(3):691-9. 
27 Keen HI, Wakefield RJ, Grainger AJ, Hensor EM, Emery P, 
Conaghan PG. Can ultrasonography improve on radiographic assessment in 
osteoarthritis of the hands? A comparison between radiographic and 
ultrasonographic detected pathology. Ann. Rheum. Dis. 2008;67(8):1116-20. 
28 Vlychou M, Koutroumpas A, Malizos K, Sakkas LI. Ultrasonographic 
evidence of inflammation is frequent in hands of patients with erosive 
osteoarthritis. Osteoarthritis Cartilage 2009;17(10):1283-7. 
29 Wenham CY, Conaghan PG. Imaging the painful osteoarthritic knee 
joint: what have we learned? Nat Clin Pract Rheumatol 2009;5(3):149-58. 

http://www.oai.ucsf.edu/


- 368 - 

368 

 

30 Crema MD, Guermazi A, Sayre EC, et al. The association of magnetic 
resonance imaging (MRI)-detected structural pathology of the knee with 
crepitus in a population-based cohort with knee pain: the MoDEKO study. 
Osteoarthritis Cartilage 2011;19(12):1429-32. 
31 Jones G, Ding C, Scott F, Glisson M, Cicuttini F. Early radiographic 
osteoarthritis is associated with substantial changes in cartilage volume and 
tibial bone surface area in both males and females. Osteoarthritis Cartilage 
2004;12(2):169-74. 
32 Hensor EM, Dube B, Kingsbury SR, Tennant A, Conaghan PG. 
Toward a clinical definition of early osteoarthritis: onset of patient-reported 
knee pain begins on stairs. Data from the osteoarthritis initiative. Arthritis 
Care Res (Hoboken) 2015;67(1):40-7. 
33 Binks DA, Hodgson RJ, Ries ME, et al. Quantitative parametric MRI 
of articular cartilage: a review of progress and open challenges. Br. J. 
Radiol. 2013;86(1023):20120163. 
34 Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer 
FW. Compositional MRI techniques for evaluation of cartilage degeneration 
in osteoarthritis. Osteoarthritis Cartilage 2015;23(10):1639-53. 
35 Wenham CY, Conaghan PG. The role of synovitis in osteoarthritis. 
Ther Adv Musculoskelet Dis 2010;2(6):349-59. 
36 Baker K, Grainger A, Niu J, et al. Relation of synovitis to knee pain 
using contrast-enhanced MRIs. Annals of the Rheumatic Diseases 
2010;69(10):1779-83. 
37 Conaghan P RL, Hensor EM, Thomas C, Emery P, Grainger AJ. A 
MRI Study of the Extent of “Gold Standard”-Evaluated Synovitis and its 
Relationship to Pain in Osteoarthritis of the Knee. American College of 
Rheumatology 2006;Abstract No 2094 
 
38 Roemer FW, Kassim Javaid M, Guermazi A, et al. Anatomical 
distribution of synovitis in knee osteoarthritis and its association with joint 
effusion assessed on non-enhanced and contrast-enhanced MRI. 
Osteoarthritis Cartilage 2010;18(10):1269-74. 
39 Haugen IK, Slatkowsky-Christensen B, Boyesen P, Sesseng S, van 
der Heijde D, Kvien TK. MRI findings predict radiographic progression and 
development of erosions in hand osteoarthritis. Ann. Rheum. Dis. 2014. 
40 Kortekaas MC, Kwok WY, Reijnierse M, et al. Magnetic Resonance 
Imaging in Hand Osteoarthritis: Intraobserver Reliability and Criterion 
Validity for Clinical and Structural Characteristics. J. Rheumatol. 
2015;42(7):1224-30. 
41 Marshall M, Nicholls E, Kwok WY, et al. Erosive osteoarthritis: a more 
severe form of radiographic hand osteoarthritis rather than a distinct entity? 
Ann. Rheum. Dis. 2015;74(1):136-41. 
42 Marshall M, Peat G, Nicholls E, van der Windt D, Myers H, Dziedzic 
K. Subsets of symptomatic hand osteoarthritis in community-dwelling older 
adults in the United Kingdom: prevalence, inter-relationships, risk factor 
profiles and clinical characteristics at baseline and 3-years. Osteoarthritis 
Cartilage 2013;21(11):1674-84. 
43 Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, 
Arden NK. Incidence and risk factors for clinically diagnosed knee, hip and 



- 369 - 

369 

 

hand osteoarthritis: influences of age, gender and osteoarthritis affecting 
other joints. Ann. Rheum. Dis. 2014;73(9):1659-64. 
44 Belo JN, Berger MY, Reijman M, Koes BW, Bierma-Zeinstra SM. 
Prognostic factors of progression of osteoarthritis of the knee: a systematic 
review of observational studies. Arthritis Rheum. 2007;57(1):13-26. 
45 Nelson AE, Smith MW, Golightly YM, Jordan JM. "Generalized 
osteoarthritis": a systematic review. Semin. Arthritis Rheum. 2014;43(6):713-
20. 
46 Parsons C, Clynes M, Syddall H, et al. How well do radiographic, 
clinical and self-reported diagnoses of knee osteoarthritis agree? Findings 
from the Hertfordshire cohort study. Springerplus 2015;4:177. 
47 Knoop J, van der Leeden M, Thorstensson CA, et al. Identification of 
phenotypes with different clinical outcomes in knee osteoarthritis: data from 
the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2011;63(11):1535-
42. 
48 Dillon CF, Rasch EK, Gu Q, Hirsch R. Prevalence of knee 
osteoarthritis in the United States: arthritis data from the Third National 
Health and Nutrition Examination Survey 1991-94. J. Rheumatol. 
2006;33(11):2271-9. 
49 Dillon CF, Hirsch R, Rasch EK, Gu Q. Symptomatic hand 
osteoarthritis in the United States: prevalence and functional impairment 
estimates from the third U.S. National Health and Nutrition Examination 
Survey, 1991-1994. Am. J. Phys. Med. Rehabil. 2007;86(1):12-21. 
50 Zhang Y, Niu J, Kelly-Hayes M, Chaisson CE, Aliabadi P, Felson DT. 
Prevalence of symptomatic hand osteoarthritis and its impact on functional 
status among the elderly: The Framingham Study. Am. J. Epidemiol. 
2002;156(11):1021-7. 
51 Felson DT, Naimark A, Anderson J, Kazis L, Castelli W, Meenan RF. 
The prevalence of knee osteoarthritis in the elderly. The Framingham 
Osteoarthritis Study. Arthritis Rheum. 1987;30(8):914-8. 
52 ARUK. http://www.arthritisresearchuk.org/arthritis-information/data-
and-statistics/musculoskeletal-
calculator/analysis.aspx?ConditionType=1&ChartType=1. 2015. 
53 Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. 
A meta-analysis of sex differences prevalence, incidence and severity of 
osteoarthritis. Osteoarthritis Cartilage 2005;13(9):769-81. 
54 Muthuri SG, McWilliams DF, Doherty M, Zhang W. History of knee 
injuries and knee osteoarthritis: a meta-analysis of observational studies. 
Osteoarthritis Cartilage 2011;19(11):1286-93. 
55 Roddy E, Thomas MJ, Marshall M, et al. The population prevalence of 
symptomatic radiographic foot osteoarthritis in community-dwelling older 
adults: cross-sectional findings from the clinical assessment study of the 
foot. Ann. Rheum. Dis. 2015;74(1):156-63. 
56 Teichtahl AJ, Smith S, Wang Y, et al. Occupational risk factors for hip 
osteoarthritis are associated with early hip structural abnormalities: a 3.0 T 
magnetic resonance imaging study of community-based adults. Arthritis Res 
Ther 2015;17:19. 

http://www.arthritisresearchuk.org/arthritis-information/data-and-statistics/musculoskeletal-calculator/analysis.aspx?ConditionType=1&ChartType=1
http://www.arthritisresearchuk.org/arthritis-information/data-and-statistics/musculoskeletal-calculator/analysis.aspx?ConditionType=1&ChartType=1
http://www.arthritisresearchuk.org/arthritis-information/data-and-statistics/musculoskeletal-calculator/analysis.aspx?ConditionType=1&ChartType=1


- 370 - 

370 

 

57 Rossignol M, Leclerc A, Allaert FA, et al. Primary osteoarthritis of hip, 
knee, and hand in relation to occupational exposure. Occup. Environ. Med. 
2005;62(11):772-7. 
58 Cooper C, Snow S, McAlindon TE, et al. Risk factors for the incidence 
and progression of radiographic knee osteoarthritis. Arthritis Rheum. 
2000;43(5):995-1000. 
59 Bierma-Zeinstra SM, Koes BW. Risk factors and prognostic factors of 
hip and knee osteoarthritis. Nat Clin Pract Rheumatol 2007;3(2):78-85. 
60 Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM. Incidence of 
symptomatic hand, hip, and knee osteoarthritis among patients in a health 
maintenance organization. Arthritis Rheum. 1995;38(8):1134-41. 
61 Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RF. 
Obesity and knee osteoarthritis. The Framingham Study. Ann. Intern. Med. 
1988;109(1):18-24. 
62 Blagojevic M, Jinks C, Jeffery A, Jordan KP. Risk factors for onset of 
osteoarthritis of the knee in older adults: a systematic review and meta-
analysis. Osteoarthritis Cartilage 2010;18(1):24-33. 
63 Muthuri SG, Hui M, Doherty M, Zhang W. What if we prevent obesity? 
Risk reduction in knee osteoarthritis estimated through a meta-analysis of 
observational studies. Arthritis Care Res (Hoboken) 2011;63(7):982-90. 
64 Zhou ZY, Liu YK, Chen HL, Liu F. Body mass index and knee 
osteoarthritis risk: a dose-response meta-analysis. Obesity (Silver Spring) 
2014;22(10):2180-5. 
65 Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, 
Jordan KP. Current evidence on risk factors for knee osteoarthritis in older 
adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 
2015;23(4):507-15. 
66 Zhang Y, Niu J, Felson DT, Choi HK, Nevitt M, Neogi T. Methodologic 
challenges in studying risk factors for progression of knee osteoarthritis. 
Arthritis Care Res (Hoboken) 2010;62(11):1527-32. 
67 Yusuf E, Nelissen RG, Ioan-Facsinay A, et al. Association between 
weight or body mass index and hand osteoarthritis: a systematic review. 
Ann. Rheum. Dis. 2010;69(4):761-5. 
68 Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. 
Body mass index in young men and the risk of subsequent knee and hip 
osteoarthritis. Am. J. Med. 1999;107(6):542-8. 
69 Mork PJ, Holtermann A, Nilsen TI. Effect of body mass index and 
physical exercise on risk of knee and hip osteoarthritis: longitudinal data 
from the Norwegian HUNT Study. J. Epidemiol. Community Health 
2012;66(8):678-83. 
70 Magnusson K, Slatkowsky-Christensen B, van der Heijde D, Kvien T, 
Hagen K, Haugen I. Body mass index and progressive hand osteoarthritis: 
data from the Oslo hand osteoarthritis cohort. Scand. J. Rheumatol. 2015:1-
6. 
71 Malemud CJ. Biologic basis of osteoarthritis: state of the evidence. 
Curr. Opin. Rheumatol. 2015;27(3):289-94. 
72 Kluzek S, Newton JL, Arden NK. Is osteoarthritis a metabolic 
disorder? Br. Med. Bull. 2015. 



- 371 - 

371 

 

73 Driban JB, Eaton CB, Lo GH, Ward RJ, Lu B, McAlindon TE. 
Association of knee injuries with accelerated knee osteoarthritis progression: 
data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 
2014;66(11):1673-9. 
74 Agricola R, Heijboer MP, Bierma-Zeinstra SM, Verhaar JA, Weinans 
H, Waarsing JH. Cam impingement causes osteoarthritis of the hip: a 
nationwide prospective cohort study (CHECK). Ann. Rheum. Dis. 
2013;72(6):918-23. 
75 Neogi T, Bowes MA, Niu JB, et al. Magnetic Resonance Imaging-
Based Three-Dimensional Bone Shape of the Knee Predicts Onset of Knee 
Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Rheum. 
2013;65(8):2048-58. 
76 Felson DT, Niu J, Gross KD, et al. Valgus malalignment is a risk 
factor for lateral knee osteoarthritis incidence and progression: findings from 
the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis 
Rheum. 2013;65(2):355-62. 
77 Sharma L, Chmiel JS, Almagor O, et al. The role of varus and valgus 
alignment in the initial development of knee cartilage damage by MRI: the 
MOST study. Ann. Rheum. Dis. 2013;72(2):235-40. 
78 arc OC, arc OC, Zeggini E, et al. Identification of new susceptibility 
loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 
2012;380(9844):815-23. 
79 Panoutsopoulou K, Metrustry S, Doherty SA, et al. The effect of FTO 
variation on increased osteoarthritis risk is mediated through body mass 
index: a Mendelian randomisation study. Ann. Rheum. Dis. 
2014;73(12):2082-6. 
80 Baker-Lepain JC, Lynch JA, Parimi N, et al. Variant alleles of the Wnt 
antagonist FRZB are determinants of hip shape and modify the relationship 
between hip shape and osteoarthritis. Arthritis Rheum. 2012;64(5):1457-65. 
81 Evangelou E, Kerkhof HJ, Styrkarsdottir U, et al. A meta-analysis of 
genome-wide association studies identifies novel variants associated with 
osteoarthritis of the hip. Ann. Rheum. Dis. 2014;73(12):2130-6. 
82 Hochberg MC, Yerges-Armstrong L, Yau M, Mitchell BD. Genetic 
epidemiology of osteoarthritis: recent developments and future directions. 
Curr. Opin. Rheumatol. 2013;25(2):192-7. 
83 Zhang M, Wang J. Epigenetics and Osteoarthritis. Genes Dis 
2015;2(1):69-75. 
84 Altman RD, Gold GE. Atlas of individual radiographic features in 
osteoarthritis, revised. Osteoarthritis Cartilage 2007;15 Suppl A:A1-56. 
85 Altman RD, Hochberg M, Murphy WA, Jr., Wolfe F, Lequesne M. 
Atlas of individual radiographic features in osteoarthritis. Osteoarthritis 
Cartilage 1995;3 Suppl A:3-70. 
86 Hunter DJ, Zhang YQ, Tu X, et al. Change in joint space width: 
hyaline articular cartilage loss or alteration in meniscus? Arthritis Rheum. 
2006;54(8):2488-95. 
87 Roemer FW GA, Hannon MJ, Hunter DJ, Fujii T, Eckstein F, 
Boudreau RM, Kwoh CK. Incident MRI features during 4 years prior increase 
risk for radiographic osteoarthritis development. Osteoarthritis and cartilage / 
OARS, Osteoarthritis Research Society 2015;23(Suppl 2): A234. 



- 372 - 

372 

 

88 Guermazi A, Hayashi D, Roemer F, et al. Severe radiographic knee 
osteoarthritis - does Kellgren and Lawrence grade 4 represent end stage 
disease? - the MOST study. Osteoarthritis Cartilage 2015. 
89 Dougados M, Gueguen A, Nguyen M, et al. Radiological progression 
of hip osteoarthritis: definition, risk factors and correlations with clinical 
status. Ann. Rheum. Dis. 1996;55(6):356-62. 
90 Felson DT, Zhang Y, Hannan MT, et al. The incidence and natural 
history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis 
Study. Arthritis Rheum. 1995;38(10):1500-5. 
91 Paradowski PT, Lohmander LS, Englund M. Natural history of 
radiographic features of hand osteoarthritis over 10 years. Osteoarthritis 
Cartilage 2010;18(7):917-22. 
92 Felson D, Niu JB, Sack B, Aliabadi P, McCullough C, Nevitt MC. 
Progression of osteoarthritis as a state of inertia. Annals of the Rheumatic 
Diseases 2013;72(6):924-9. 
93 Brandt KD, Mazzuca SA, Katz BP, et al. Effects of doxycycline on 
progression of osteoarthritis: results of a randomized, placebo-controlled, 
double-blind trial. Arthritis Rheum. 2005;52(7):2015-25. 
94 Le Graverand MP, Vignon EP, Brandt KD, et al. Head-to-head 
comparison of the Lyon Schuss and fixed flexion radiographic techniques. 
Long-term reproducibility in normal knees and sensitivity to change in 
osteoarthritic knees. Ann. Rheum. Dis. 2008;67(11):1562-6. 
95 Raynauld JP, Martel-Pelletier J, Berthiaume MJ, et al. Long term 
evaluation of disease progression through the quantitative magnetic 
resonance imaging of symptomatic knee osteoarthritis patients: correlation 
with clinical symptoms and radiographic changes. Arthritis Res Ther 
2006;8(1):R21. 
96 Ding C, Martel-Pelletier J, Pelletier JP, et al. Two-year prospective 
longitudinal study exploring the factors associated with change in femoral 
cartilage volume in a cohort largely without knee radiographic osteoarthritis. 
Osteoarthritis Cartilage 2008;16(4):443-9. 
97 Collins JE, Katz JN, Dervan EE, Losina E. Trajectories and risk 
profiles of pain in persons with radiographic, symptomatic knee 
osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage 
2014;22(5):622-30. 
98 Wesseling J, Bierma-Zeinstra SM, Kloppenburg M, Meijer R, Bijlsma 
JW. Worsening of pain and function over 5 years in individuals with 'early' 
OA is related to structural damage: data from the Osteoarthritis Initiative and 
CHECK (Cohort Hip & Cohort Knee) study. Ann. Rheum. Dis. 
2015;74(2):347-53. 
99 Dore D, Quinn S, Ding CH, et al. Natural history and clinical 
significance of MRI-detected bone marrow lesions at the knee: a prospective 
study in community dwelling older adults. Arthritis Research & Therapy 
2010;12(6):R223. 
100 Driban JB, Price LL, Lo GH, et al. Evaluation of bone marrow lesion 
volume as a knee osteoarthritis biomarker - longitudinal relationships with 
pain and structural changes: Data from the Osteoarthritis Initiative. Arthritis 
Research and Therapy 2013;15(5). 



- 373 - 

373 

 

101 Foong YC, Khan HI, Blizzard L, et al. The clinical significance, natural 
history and predictors of bone marrow lesion change over eight years. 
Arthritis Res Ther 2014;16(4):R149. 
102 Everhart JS, Siston RA, Flanigan DC. Tibiofemoral subchondral 
surface ratio (SSR) is a predictor of osteoarthritis symptoms and 
radiographic progression: data from the Osteoarthritis Initiative (OAI). 
Osteoarthritis Cartilage 2014;22(6):771-8. 
103 Raynauld JP, Martel-Pelletier J, Dorais M, et al. Total Knee 
Replacement as a Knee Osteoarthritis Outcome: Predictors Derived from a 
4-Year Long-Term Observation following a Randomized Clinical Trial Using 
Chondroitin Sulfate. Cartilage 2013;4(3):219-26. 
104 Bruyere O, Richy F, Reginster JY. Three year joint space narrowing 
predicts long term incidence of knee surgery in patients with osteoarthritis: 
an eight year prospective follow up study. Ann. Rheum. Dis. 
2005;64(12):1727-30. 
105 Roemer FW, Kwoh CK, Hannon MJ, et al. Can structural joint 
damage measured with MR imaging be used to predict knee replacement in 
the following year? Radiology 2015;274(3):810-20. 
106 Dibonaventura MD, Gupta S, McDonald M, Sadosky A, Pettitt D, 
Silverman S. Impact of self-rated osteoarthritis severity in an employed 
population: cross-sectional analysis of data from the national health and 
wellness survey. Health Qual Life Outcomes 2012;10:30. 
107 Smith TO, Purdy R, Lister S, Salter C, Fleetcroft R, Conaghan P. 
Living with osteoarthritis: a systematic review and meta-ethnography. Scand. 
J. Rheumatol. 2014;43(6):441-52. 
108 Gandhi R, Zywiel MG, Mahomed NN, Perruccio AV. Depression and 
the Overall Burden of Painful Joints: An Examination among Individuals 
Undergoing Hip and Knee Replacement for Osteoarthritis. Arthritis 
2015;2015:327161. 
109 Berger A, Hartrick C, Edelsberg J, Sadosky A, Oster G. Direct and 
indirect economic costs among private-sector employees with osteoarthritis. 
J. Occup. Environ. Med. 2011;53(11):1228-35. 
110 Culliford DJ, Maskell J, Kiran A, et al. The lifetime risk of total hip and 
knee arthroplasty: results from the UK general practice research database. 
Osteoarthritis Cartilage 2012;20(6):519-24. 
111 Chen A, Gupte C, Akhtar K, Smith P, Cobb J. The Global Economic 
Cost of Osteoarthritis: How the UK Compares. Arthritis 2012;2012:698709. 
112 Nuesch E, Dieppe P, Reichenbach S, Williams S, Iff S, Juni P. All 
cause and disease specific mortality in patients with knee or hip 
osteoarthritis: population based cohort study. BMJ 2011;342:d1165. 
113 Liu R, Kwok WY, Vliet Vlieland TP, et al. Mortality in osteoarthritis 
patients. Scand. J. Rheumatol. 2015;44(1):70-3. 
114 Hoeven TA, Leening MJ, Bindels PJ, et al. Disability and not 
osteoarthritis predicts cardiovascular disease: a prospective population-
based cohort study. Ann. Rheum. Dis. 2015;74(4):752-6. 
115 Barbour KE, Lui LY, Nevitt MC, et al. Hip osteoarthritis and the risk of 
all-cause and disease-specific mortality in older women: Population-based 
cohort study. Arthritis & rheumatology 2015. 



- 374 - 

374 

 

116 Mow VC, Holmes MH, Lai WM. Fluid transport and mechanical 
properties of articular cartilage: a review. J. Biomech. 1984;17(5):377-94. 
117 Hunziker EB, Quinn TM, Hauselmann HJ. Quantitative structural 
organization of normal adult human articular cartilage. Osteoarthritis 
Cartilage 2002;10(7):564-72. 
118 Mow VC, Ateshian GA, Spilker RL. Biomechanics of diarthrodial 
joints: a review of twenty years of progress. J. Biomech. Eng. 
1993;115(4B):460-7. 
119 Cicuttini F, Ding C, Wluka A, Davis S, Ebeling PR, Jones G. 
Association of cartilage defects with loss of knee cartilage in healthy, middle-
age adults: a prospective study. Arthritis Rheum. 2005;52(7):2033-9. 
120 Englund M, Guermazi A, Gale D, et al. Incidental meniscal findings on 
knee MRI in middle-aged and elderly persons. N. Engl. J. Med. 
2008;359(11):1108-15. 
121 Davies-Tuck ML, Wluka AE, Wang Y, English DR, Giles GG, Cicuttini 
F. The natural history of bone marrow lesions in community-based adults 
with no clinical knee osteoarthritis. Ann. Rheum. Dis. 2009;68(6):904-8. 
122 Roemer FW, Kwoh CK, Hannon MJ, et al. What Comes First? 
Multitissue Involvement Leading to Radiographic Osteoarthritis: Magnetic 
Resonance Imaging-Based Trajectory Analysis Over Four Years in the 
Osteoarthritis Initiative. Arthritis & rheumatology 2015;67(8):2085-96. 
123 Pelletier JP, Raynauld JP, Berthiaume MJ, et al. Risk factors 
associated with the loss of cartilage volume on weight-bearing areas in knee 
osteoarthritis patients assessed by quantitative magnetic resonance 
imaging: a longitudinal study. Arthritis Res Ther 2007;9(4):R74. 
124 Guermazi A, Eckstein F, Hayashi D, et al. Cartilage damage, bone 
marrow lesions and meniscal lesions predict quantitatively measured loss of 
cartilage over 30-months: The most study. Osteoarthritis Cartilage 
2014;22:S356. 
125 Guermazi A, Eckstein F, Hayashi D, et al. Baseline radiographic 
osteoarthritis and semi-quantitatively assessed meniscal damage and 
extrusion and cartilage damage on MRI is related to quantitatively defined 
cartilage thickness loss in knee osteoarthritis: the Multicenter Osteoarthritis 
Study. Osteoarthritis Cartilage 2015. 
126 Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. 
Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. 
Nat Rev Rheumatol 2011;7(1):33-42. 
127 Felson DT. The sources of pain in knee osteoarthritis. Curr. Opin. 
Rheumatol. 2005;17(5):624-8. 
128 Hawker GA, Stewart L, French MR, et al. Understanding the pain 
experience in hip and knee osteoarthritis--an OARSI/OMERACT initiative. 
Osteoarthritis Cartilage 2008;16(4):415-22. 
129 Bajaj P, Bajaj P, Graven-Nielsen T, Arendt-Nielsen L. Osteoarthritis 
and its association with muscle hyperalgesia: an experimental controlled 
study. Pain 2001;93(2):107-14. 
130 Liu A, Kendzerska T, Stanaitis I, Hawker G. The relationship between 
knee pain characteristics and symptom state acceptability in people with 
knee osteoarthritis. Osteoarthritis Cartilage 2014;22(2):178-83. 



- 375 - 

375 

 

131 Sharma L, Chmiel JS, Almagor O, et al. Significance of 
preradiographic magnetic resonance imaging lesions in persons at 
increased risk of knee osteoarthritis. Arthritis & rheumatology 
2014;66(7):1811-9. 
132 Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M. Do 
knee abnormalities visualised on MRI explain knee pain in knee 
osteoarthritis? A systematic review. Ann. Rheum. Dis. 2011;70(1):60-7. 
133 Felson DT, Chaisson CE, Hill CL, et al. The association of bone 
marrow lesions with pain in knee osteoarthritis. Ann. Intern. Med. 
2001;134(7):541-9. 
134 Felson DT, Niu J, Guermazi A, et al. Correlation of the development 
of knee pain with enlarging bone marrow lesions on magnetic resonance 
imaging. Arthritis Rheum. 2007;56(9):2986-92. 
135 Torres L, Dunlop DD, Peterfy C, et al. The relationship between 
specific tissue lesions and pain severity in persons with knee osteoarthritis. 
Osteoarthritis Cartilage 2006;14(10):1033-40. 
136 Simkin PA. Bone pain and pressure in osteoarthritic joints. Novartis 
Found. Symp. 2004;260:179-86; discussion 86-90, 277-9. 
137 Arnoldi CC, Linderholm H, Mussbichler H. Venous engorgement and 
intraosseous hypertension in osteoarthritis of the hip. J. Bone Joint Surg. Br. 
1972;54(3):409-21. 
138 Burr DB. The importance of subchondral bone in the progression of 
osteoarthritis. J. Rheumatol. Suppl. 2004;70:77-80. 
139 Hernandez-Molina G, Neogi T, Hunter DJ, et al. The association of 
bone attrition with knee pain and other MRI features of osteoarthritis. Ann. 
Rheum. Dis. 2008;67(1):43-7. 
140 Neogi T, Nevitt MC, Yang M, Curtis JR, Torner J, Felson DT. 
Consistency of knee pain: correlates and association with function. 
Osteoarthritis Cartilage 2010;18(10):1250-5. 
141 Hawker GA, Mian S, Kendzerska T, French M. Measures of adult 
pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for 
Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain 
Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 
Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant 
Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken) 2011;63 Suppl 
11:S240-52. 
142 Baker PN, van der Meulen JH, Lewsey J, Gregg PJ, National Joint 
Registry for E, Wales. The role of pain and function in determining patient 
satisfaction after total knee replacement. Data from the National Joint 
Registry for England and Wales. J. Bone Joint Surg. Br. 2007;89(7):893-900. 
143 Brander VA, Stulberg SD, Adams AD, et al. Predicting total knee 
replacement pain: a prospective, observational study. Clin Orthop Relat Res 
2003(416):27-36. 
144 Wylde V, Hewlett S, Learmonth ID, Dieppe P. Persistent pain after 
joint replacement: prevalence, sensory qualities, and postoperative 
determinants. Pain 2011;152(3):566-72. 
145 Lane NE, Schnitzer TJ, Birbara CA, et al. Tanezumab for the 
treatment of pain from osteoarthritis of the knee. N. Engl. J. Med. 
2010;363(16):1521-31. 



- 376 - 

376 

 

146 Zhang W, Doherty M, Leeb BF, et al. EULAR evidence-based 
recommendations for the diagnosis of hand osteoarthritis: report of a task 
force of ESCISIT. Ann. Rheum. Dis. 2009;68(1):8-17. 
147 Zhang W, Doherty M, Peat G, et al. EULAR evidence-based 
recommendations for the diagnosis of knee osteoarthritis. Ann. Rheum. Dis. 
2010;69(3):483-9. 
148 NICE. Osteoarthritis Care and management in adults. 
http://guidance.nice.org.uk/cg177 2014. 
149 Fransen M, McConnell S, Harmer AR, Van der Esch M, Simic M, 
Bennell KL. Exercise for osteoarthritis of the knee. Cochrane Database Syst 
Rev 2015;1:CD004376. 
150 Fransen M, McConnell S, Hernandez-Molina G, Reichenbach S. 
Exercise for osteoarthritis of the hip. Cochrane Database Syst Rev 
2014;4:CD007912. 
151 Hunter DJ, Beavers DP, Eckstein F, et al. The Intensive Diet and 
Exercise for Arthritis (IDEA) trial: 18-month radiographic and MRI outcomes. 
Osteoarthritis Cartilage 2015;23(7):1090-8. 
152 Messier SP, Mihalko SL, Legault C, et al. Effects of intensive diet and 
exercise on knee joint loads, inflammation, and clinical outcomes among 
overweight and obese adults with knee osteoarthritis: the IDEA randomized 
clinical trial. JAMA : the journal of the American Medical Association 
2013;310(12):1263-73. 
153 Fernandes L, Hagen KB, Bijlsma JW, et al. EULAR recommendations 
for the non-pharmacological core management of hip and knee 
osteoarthritis. Ann. Rheum. Dis. 2013;72(7):1125-35. 
154 Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of 
paracetamol for spinal pain and osteoarthritis: systematic review and meta-
analysis of randomised placebo controlled trials. BMJ 2015;350:h1225. 
155 Fransen M, Agaliotis M, Nairn L, et al. Glucosamine and chondroitin 
for knee osteoarthritis: a double-blind randomised placebo-controlled clinical 
trial evaluating single and combination regimens. Ann. Rheum. Dis. 
2015;74(5):851-8. 
156 Clegg DO, Reda DJ, Harris CL, et al. Glucosamine, chondroitin 
sulfate, and the two in combination for painful knee osteoarthritis. N. Engl. J. 
Med. 2006;354(8):795-808. 
157 Barr A, Conaghan P.G. Osteoarthritis: recent advances in diagnosis 
and management. Prescriber 2014;25(21):26-33. 
158 Hochberg MC, Altman RD, April KT, et al. American College of 
Rheumatology 2012 recommendations for the use of nonpharmacologic and 
pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis 
Care Res (Hoboken) 2012;64(4):465-74. 
159 Lyons TJ, McClure SF, Stoddart RW, McClure J. The normal human 
chondro-osseous junctional region: evidence for contact of uncalcified 
cartilage with subchondral bone and marrow spaces. BMC Musculoskelet 
Disord 2006;7:52. 
160 Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: insight 
into risk factors and microstructural changes. Arthritis Res Ther 
2013;15(6):223. 

http://guidance.nice.org.uk/cg177


- 377 - 

377 

 

161 Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, 
Kainberger F. Subchondral bone and cartilage disease: a rediscovered 
functional unit. Invest. Radiol. 2000;35(10):581-8. 
162 Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ 
measurement of transport between subchondral bone and articular cartilage. 
J. Orthop. Res. 2009;27(10):1347-52. 
163 Ogata K, Whiteside LA, Lesker PA. Subchondral route for nutrition to 
articular cartilage in the rabbit. Measurement of diffusion with hydrogen gas 
in vivo. J. Bone Joint Surg. Am. 1978;60(7):905-10. 
164 Lories RJ, Luyten FP. The bone-cartilage unit in osteoarthritis. Nat 
Rev Rheumatol 2011;7(1):43-9. 
165 Charles JF, Aliprantis AO. Osteoclasts: more than 'bone eaters'. 
Trends in molecular medicine 2014;20(8):449-59. 
166 Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. 
Activation of bone remodeling after fatigue: differential response to linear 
microcracks and diffuse damage. Bone 2010;47(4):766-72. 
167 Collet P, Uebelhart D, Vico L, et al. Effects of 1- and 6-month 
spaceflight on bone mass and biochemistry in two humans. Bone 
1997;20(6):547-51. 
168 Vico L, Collet P, Guignandon A, et al. Effects of long-term 
microgravity exposure on cancellous and cortical weight-bearing bones of 
cosmonauts. Lancet 2000;355(9215):1607-11. 
169 Schaffler MB, Cheung WY, Majeska R, Kennedy O. Osteocytes: 
master orchestrators of bone. Calcif. Tissue Int. 2014;94(1):5-24. 
170 Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes 
induces osteoporosis with defective mechanotransduction. Cell Metab 
2007;5(6):464-75. 
171 Kringelbach TM, Aslan D, Novak I, et al. Fine-tuned ATP signals are 
acute mediators in osteocyte mechanotransduction. Cell. Signal. 2015. 
172 Spatz JM, Wein MN, Gooi JH, et al. The Wnt Inhibitor Sclerostin Is 
Up-regulated by Mechanical Unloading in Osteocytes in Vitro. J. Biol. Chem. 
2015;290(27):16744-58. 
173 Chen JH, Liu C, You L, Simmons CA. Boning up on Wolff's Law: 
mechanical regulation of the cells that make and maintain bone. J. Biomech. 
2010;43(1):108-18. 
174 Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in 
bone mechanotransduction. Ann. N. Y. Acad. Sci. 2010;1192:422-8. 
175 Lewiecki EM. New targets for intervention in the treatment of 
postmenopausal osteoporosis. Nat Rev Rheumatol 2011;7(11):631-8. 
176 Burr DB, Radin EL. Microfractures and microcracks in subchondral 
bone: are they relevant to osteoarthrosis? Rheum. Dis. Clin. North Am. 
2003;29(4):675-85. 
177 Burr DB, Schaffler MB. The involvement of subchondral mineralized 
tissues in osteoarthrosis: quantitative microscopic evidence. Microsc. Res. 
Tech. 1997;37(4):343-57. 
178 Vener MJ, Thompson RC, Jr., Lewis JL, Oegema TR, Jr. Subchondral 
damage after acute transarticular loading: an in vitro model of joint injury. J. 
Orthop. Res. 1992;10(6):759-65. 



- 378 - 

378 

 

179 Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner 
CH. Bone microdamage and skeletal fragility in osteoporotic and stress 
fractures. J. Bone Miner. Res. 1997;12(1):6-15. 
180 Lories RJ, Corr M, Lane NE. To Wnt or not to Wnt: the bone and joint 
health dilemma. Nat Rev Rheumatol 2013;9(6):328-39. 
181 Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation 
of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. 
Chem. 2008;283(9):5866-75. 
182 Gaudio A, Pennisi P, Bratengeier C, et al. Increased sclerostin serum 
levels associated with bone formation and resorption markers in patients 
with immobilization-induced bone loss. J. Clin. Endocrinol. Metab. 
2010;95(5):2248-53. 
183 Power J, Poole KE, van Bezooijen R, et al. Sclerostin and the 
regulation of bone formation: Effects in hip osteoarthritis and femoral neck 
fracture. J. Bone Miner. Res. 2010;25(8):1867-76. 
184 Xiong J, O'Brien CA. Osteocyte RANKL: new insights into the control 
of bone remodeling. J. Bone Miner. Res. 2012;27(3):499-505. 
185 Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte 
regulation of bone homeostasis through RANKL expression. Nat. Med. 
2011;17(10):1231-4. 
186 Intema F, Hazewinkel HA, Gouwens D, et al. In early OA, thinning of 
the subchondral plate is directly related to cartilage damage: results from a 
canine ACLT-meniscectomy model. Osteoarthritis Cartilage 2010;18(5):691-
8. 
187 Boyd SK, Matyas JR, Wohl GR, Kantzas A, Zernicke RF. Early 
regional adaptation of periarticular bone mineral density after anterior 
cruciate ligament injury. J Appl Physiol (1985) 2000;89(6):2359-64. 
188 Batiste DL, Kirkley A, Laverty S, Thain LM, Spouge AR, Holdsworth 
DW. Ex vivo characterization of articular cartilage and bone lesions in a 
rabbit ACL transection model of osteoarthritis using MRI and micro-CT. 
Osteoarthritis Cartilage 2004;12(12):986-96. 
189 Walsh DA, McWilliams DF, Turley MJ, et al. Angiogenesis and nerve 
growth factor at the osteochondral junction in rheumatoid arthritis and 
osteoarthritis. Rheumatology (Oxford) 2010;49(10):1852-61. 
190 Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and 
nerve growth in osteoarthritis. Nat Rev Rheumatol 2012;8(7):390-8. 
191 Ashraf S, Wibberley H, Mapp PI, Hill R, Wilson D, Walsh DA. 
Increased vascular penetration and nerve growth in the meniscus: a 
potential source of pain in osteoarthritis. Ann. Rheum. Dis. 2011;70(3):523-
9. 
192 Shibakawa A, Yudoh K, Masuko-Hongo K, Kato T, Nishioka K, 
Nakamura H. The role of subchondral bone resorption pits in osteoarthritis: 
MMP production by cells derived from bone marrow. Osteoarthritis Cartilage 
2005;13(8):679-87. 
193 Gray AW, Davies ME, Jeffcott LB. Localisation and activity of 
cathepsins K and B in equine osteoclasts. Res. Vet. Sci. 2002;72(2):95-103. 
194 Logar DB, Komadina R, Prezelj J, Ostanek B, Trost Z, Marc J. 
Expression of bone resorption genes in osteoarthritis and in osteoporosis. J. 
Bone Miner. Metab. 2007;25(4):219-25. 



- 379 - 

379 

 

195 Pfander D, Cramer T, Weseloh G, et al. Hepatocyte growth factor in 
human osteoarthritic cartilage. Osteoarthritis Cartilage 1999;7(6):548-59. 
196 Sanchez C, Deberg MA, Piccardi N, Msika P, Reginster JY, Henrotin 
YE. Osteoblasts from the sclerotic subchondral bone downregulate 
aggrecan but upregulate metalloproteinases expression by chondrocytes. 
This effect is mimicked by interleukin-6, -1beta and oncostatin M pre-treated 
non-sclerotic osteoblasts. Osteoarthritis Cartilage 2005;13(11):979-87. 
197 Goldring SR. The role of bone in osteoarthritis pathogenesis. Rheum. 
Dis. Clin. North Am. 2008;34(3):561-71. 
198 Suri S, Gill SE, Massena de Camin S, Wilson D, McWilliams DF, 
Walsh DA. Neurovascular invasion at the osteochondral junction and in 
osteophytes in osteoarthritis. Ann. Rheum. Dis. 2007;66(11):1423-8. 
199 Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. 
Endochondral ossification: how cartilage is converted into bone in the 
developing skeleton. Int. J. Biochem. Cell Biol. 2008;40(1):46-62. 
200 Bittner K, Vischer P, Bartholmes P, Bruckner P. Role of the 
subchondral vascular system in endochondral ossification: endothelial cells 
specifically derepress late differentiation in resting chondrocytes in vitro. 
Exp. Cell Res. 1998;238(2):491-7. 
201 Kurz B, Lemke AK, Fay J, Pufe T, Grodzinsky AJ, Schunke M. 
Pathomechanisms of cartilage destruction by mechanical injury. Annals of 
anatomy = Anatomischer Anzeiger : official organ of the Anatomische 
Gesellschaft 2005;187(5-6):473-85. 
202 Pufe T, Lemke A, Kurz B, et al. Mechanical overload induces VEGF in 
cartilage discs via hypoxia-inducible factor. Am. J. Pathol. 2004;164(1):185-
92. 
203 Hashimoto S, Creighton-Achermann L, Takahashi K, Amiel D, Coutts 
RD, Lotz M. Development and regulation of osteophyte formation during 
experimental osteoarthritis. Osteoarthritis Cartilage 2002;10(3):180-7. 
204 Petersson IF, Boegard T, Svensson B, Heinegard D, Saxne T. 
Changes in cartilage and bone metabolism identified by serum markers in 
early osteoarthritis of the knee joint. Br. J. Rheumatol. 1998;37(1):46-50. 
205 Messent EA, Buckland-Wright JC, Blake GM. Fractal analysis of 
trabecular bone in knee osteoarthritis (OA) is a more sensitive marker of 
disease status than bone mineral density (BMD). Calcif. Tissue Int. 
2005;76(6):419-25. 
206 Lo GH, Tassinari AM, Driban JB, et al. Cross-sectional DXA and MR 
measures of tibial periarticular bone associate with radiographic knee 
osteoarthritis severity. Osteoarthritis Cartilage 2012;20(7):686-93. 
207 Li B, Aspden RM. Composition and mechanical properties of 
cancellous bone from the femoral head of patients with osteoporosis or 
osteoarthritis. J. Bone Miner. Res. 1997;12(4):641-51. 
208 Lo GH, Zhang Y, McLennan C, et al. The ratio of medial to lateral 
tibial plateau bone mineral density and compartment-specific tibiofemoral 
osteoarthritis. Osteoarthritis Cartilage 2006;14(10):984-90. 
209 Bruyere O, Dardenne C, Lejeune E, et al. Subchondral tibial bone 
mineral density predicts future joint space narrowing at the medial femoro-
tibial compartment in patients with knee osteoarthritis. Bone 2003;32(5):541-
5. 



- 380 - 

380 

 

210 Dore D, Quinn S, Ding C, Winzenberg T, Cicuttini F, Jones G. 
Subchondral bone and cartilage damage: a prospective study in older adults. 
Arthritis Rheum. 2010;62(7):1967-73. 
211 Kraus VB, Feng S, Wang S, et al. Trabecular morphometry by fractal 
signature analysis is a novel marker of osteoarthritis progression. Arthritis 
Rheum. 2009;60(12):3711-22. 
212 Buckland-Wright JC, Lynch JA, Macfarlane DG. Fractal signature 
analysis measures cancellous bone organisation in macroradiographs of 
patients with knee osteoarthritis. Ann. Rheum. Dis. 1996;55(10):749-55. 
213 Wong AK, Beattie KA, Emond PD, et al. Quantitative analysis of 
subchondral sclerosis of the tibia by bone texture parameters in knee 
radiographs: site-specific relationships with joint space width. Osteoarthritis 
Cartilage 2009;17(11):1453-60. 
214 Bennell KL, Creaby MW, Wrigley TV, Hunter DJ. Tibial subchondral 
trabecular volumetric bone density in medial knee joint osteoarthritis using 
peripheral quantitative computed tomography technology. Arthritis Rheum. 
2008;58(9):2776-85. 
215 Chiba K, Ito M, Osaki M, Uetani M, Shindo H. In vivo structural 
analysis of subchondral trabecular bone in osteoarthritis of the hip using 
multi-detector row CT. Osteoarthritis Cartilage 2011;19(2):180-5. 
216 Dieppe P, Cushnaghan J, Young P, Kirwan J. Prediction of the 
progression of joint space narrowing in osteoarthritis of the knee by bone 
scintigraphy. Ann. Rheum. Dis. 1993;52(8):557-63. 
217 Radin EL, Parker HG, Pugh JW, Steinberg RS, Paul IL, Rose RM. 
Response of joints to impact loading. 3. Relationship between trabecular 
microfractures and cartilage degeneration. J. Biomech. 1973;6(1):51-7. 
218 Radin EL, Ehrlich MG, Chernack R, Abernethy P, Paul IL, Rose RM. 
Effect of repetitive impulsive loading on the knee joints of rabbits. Clin 
Orthop Relat Res 1978(131):288-93. 
219 Radin EL, Rose RM. Role of subchondral bone in the initiation and 
progression of cartilage damage. Clin Orthop Relat Res 1986(213):34-40. 
220 Fazzalari NL, Parkinson IH. Fractal properties of subchondral 
cancellous bone in severe osteoarthritis of the hip. J. Bone Miner. Res. 
1997;12(4):632-40. 
221 Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP. Subchondral 
bone in osteoarthritis. Calcif. Tissue Int. 1991;49(1):20-6. 
222 Mansell JP, Bailey AJ. Abnormal cancellous bone collagen 
metabolism in osteoarthritis. J. Clin. Invest. 1998;101(8):1596-603. 
223 Pugh JW, Radin EL, Rose RM. Quantitative studies of human 
subchondral cancellous bone. Its relationship to the state of its overlying 
cartilage. J. Bone Joint Surg. Am. 1974;56(2):313-21. 
224 Day JS, Van Der Linden JC, Bank RA, et al. Adaptation of 
subchondral bone in osteoarthritis. Biorheology 2004;41(3-4):359-68. 
225 Ding M. Microarchitectural adaptations in aging and osteoarthrotic 
subchondral bone issues. Acta Orthop Suppl 2010;81(340):1-53. 
226 Day JS, Ding M, van der Linden JC, Hvid I, Sumner DR, Weinans H. 
A decreased subchondral trabecular bone tissue elastic modulus is 
associated with pre-arthritic cartilage damage. J. Orthop. Res. 
2001;19(5):914-8. 



- 381 - 

381 

 

227 Burr DB. Anatomy and physiology of the mineralized tissues: role in 
the pathogenesis of osteoarthrosis. Osteoarthritis Cartilage 2004;12 Suppl 
A:S20-30. 
228 Li B, Aspden RM. Mechanical and material properties of the 
subchondral bone plate from the femoral head of patients with osteoarthritis 
or osteoporosis. Ann. Rheum. Dis. 1997;56(4):247-54. 
229 Matsui H, Shimizu M, Tsuji H. Cartilage and subchondral bone 
interaction in osteoarthrosis of human knee joint: a histological and 
histomorphometric study. Microsc. Res. Tech. 1997;37(4):333-42. 
230 Klose-Jensen R, Hartlev LB, Boel LW, et al. Subchondral bone 
turnover, but not bone volume, is increased in early stage osteoarthritic 
lesions in the human hip joint. Osteoarthritis Cartilage 2015. 
231 Marijnissen AC, van Roermund PM, TeKoppele JM, Bijlsma JW, 
Lafeber FP. The canine 'groove' model, compared with the ACLT model of 
osteoarthritis. Osteoarthritis Cartilage 2002;10(2):145-55. 
232 Mastbergen SC, Marijnissen AC, Vianen ME, van Roermund PM, 
Bijlsma JW, Lafeber FP. The canine 'groove' model of osteoarthritis is more 
than simply the expression of surgically applied damage. Osteoarthritis 
Cartilage 2006;14(1):39-46. 
233 Sniekers YH, Intema F, Lafeber FP, et al. A role for subchondral bone 
changes in the process of osteoarthritis; a micro-CT study of two canine 
models. BMC Musculoskelet Disord 2008;9:20. 
234 Intema F, Sniekers YH, Weinans H, et al. Similarities and 
discrepancies in subchondral bone structure in two differently induced 
canine models of osteoarthritis. J. Bone Miner. Res. 2010;25(7):1650-7. 
235 Botter SM, van Osch GJ, Waarsing JH, et al. Quantification of 
subchondral bone changes in a murine osteoarthritis model using micro-CT. 
Biorheology 2006;43(3-4):379-88. 
236 Sniekers YH, Weinans H, van Osch GJ, van Leeuwen JP. Oestrogen 
is important for maintenance of cartilage and subchondral bone in a murine 
model of knee osteoarthritis. Arthritis Res Ther 2010;12(5):R182. 
237 Botter SM, van Osch GJ, Waarsing JH, et al. Cartilage damage 
pattern in relation to subchondral plate thickness in a collagenase-induced 
model of osteoarthritis. Osteoarthritis Cartilage 2008;16(4):506-14. 
238 Botter SM, Glasson SS, Hopkins B, et al. ADAMTS5-/- mice have less 
subchondral bone changes after induction of osteoarthritis through surgical 
instability: implications for a link between cartilage and subchondral bone 
changes. Osteoarthritis Cartilage 2009;17(5):636-45. 
239 Hayami T, Pickarski M, Wesolowski GA, et al. The role of 
subchondral bone remodeling in osteoarthritis: reduction of cartilage 
degeneration and prevention of osteophyte formation by alendronate in the 
rat anterior cruciate ligament transection model. Arthritis Rheum. 
2004;50(4):1193-206. 
240 Boyd SK, Muller R, Leonard T, Herzog W. Long-term periarticular 
bone adaptation in a feline knee injury model for post-traumatic experimental 
osteoarthritis. Osteoarthritis Cartilage 2005;13(3):235-42. 
241 Pastoureau PC, Chomel AC, Bonnet J. Evidence of early subchondral 
bone changes in the meniscectomized guinea pig. A densitometric study 



- 382 - 

382 

 

using dual-energy X-ray absorptiometry subregional analysis. Osteoarthritis 
Cartilage 1999;7(5):466-73. 
242 Christiansen BA, Anderson MJ, Lee CA, Williams JC, Yik JH, 
Haudenschild DR. Musculoskeletal changes following non-invasive knee 
injury using a novel mouse model of post-traumatic osteoarthritis. 
Osteoarthritis Cartilage 2012;20(7):773-82. 
243 Lavigne P, Benderdour M, Lajeunesse D, et al. Subchondral and 
trabecular bone metabolism regulation in canine experimental knee 
osteoarthritis. Osteoarthritis Cartilage 2005;13(4):310-7. 
244 Bolbos RI, Zuo J, Banerjee S, et al. Relationship between trabecular 
bone structure and articular cartilage morphology and relaxation times in 
early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage 
2008;16(10):1150-9. 
245 van Meer BL, Waarsing JH, van Eijsden WA, et al. Bone mineral 
density changes in the knee following anterior cruciate ligament rupture. 
Osteoarthritis Cartilage 2014;22(1):154-61. 
246 Davies-Tuck ML, Martel-Pelletier J, Wluka AE, et al. Meniscal tear 
and increased tibial plateau bone area in healthy post-menopausal women. 
Osteoarthritis Cartilage 2008;16(2):268-71. 
247 Antony B, Ding C, Stannus O, Cicuttini F, Jones G. Association of 
baseline knee bone size, cartilage volume, and body mass index with knee 
cartilage loss over time: a longitudinal study in younger or middle-aged 
adults. J. Rheumatol. 2011;38(9):1973-80. 
248 Mrosek EH, Lahm A, Erggelet C, et al. Subchondral bone trauma 
causes cartilage matrix degeneration: an immunohistochemical analysis in a 
canine model. Osteoarthritis Cartilage 2006;14(2):171-8. 
249 Muraoka T, Hagino H, Okano T, Enokida M, Teshima R. Role of 
subchondral bone in osteoarthritis development: a comparative study of two 
strains of guinea pigs with and without spontaneously occurring 
osteoarthritis. Arthritis Rheum. 2007;56(10):3366-74. 
250 Hulet C, Sabatier JP, Souquet D, Locker B, Marcelli C, Vielpeau C. 
Distribution of bone mineral density at the proximal tibia in knee 
osteoarthritis. Calcif. Tissue Int. 2002;71(4):315-22. 
251 Wada M, Maezawa Y, Baba H, Shimada S, Sasaki S, Nose Y. 
Relationships among bone mineral densities, static alignment and dynamic 
load in patients with medial compartment knee osteoarthritis. Rheumatology 
(Oxford) 2001;40(5):499-505. 
252 Lo GH, Niu J, McLennan CE, et al. Meniscal damage associated with 
increased local subchondral bone mineral density: a Framingham study. 
Osteoarthritis Cartilage 2008;16(2):261-7. 
253 Ledingham J, Regan M, Jones A, Doherty M. Factors affecting 
radiographic progression of knee osteoarthritis. Ann. Rheum. Dis. 
1995;54(1):53-8. 
254 Wirth WEF. A technique for regional analysis of femorotibial cartilage 
thickness based on quantitative magnetic resonance imaging. IEEE Trans. 
Med. Imaging 2008;27:737-44. 
255 Ding C, Cicuttini F, Jones G. Tibial subchondral bone size and knee 
cartilage defects: relevance to knee osteoarthritis. Osteoarthritis Cartilage 
2007;15(5):479-86. 



- 383 - 

383 

 

256 Otterness IG, Eckstein F. Women have thinner cartilage and smaller 
joint surfaces than men after adjustment for body height and weight. 
Osteoarthritis Cartilage 2007;15(6):666-72. 
257 Otterness IG, Le Graverand MP, Eckstein F. Allometric relationships 
between knee cartilage volume, thickness, surface area and body 
dimensions. Osteoarthritis Cartilage 2008;16(1):34-40. 
258 Wang Y, Wluka AE, Davis S, Cicuttini FM. Factors affecting tibial 
plateau expansion in healthy women over 2.5 years: a longitudinal study. 
Osteoarthritis Cartilage 2006;14(12):1258-64. 
259 Wang Y, Wluka AE, Cicuttini FM. The determinants of change in tibial 
plateau bone area in osteoarthritic knees: a cohort study. Arthritis Res Ther 
2005;7(3):R687-93. 
260 Ding C, Cicuttini F, Scott F, Cooley H, Jones G. Knee structural 
alteration and BMI: a cross-sectional study. Obes. Res. 2005;13(2):350-61. 
261 Ding C, Cicuttini F, Scott F, Cooley H, Boon C, Jones G. Natural 
history of knee cartilage defects and factors affecting change. Arch. Intern. 
Med. 2006;166(6):651-8. 
262 Bloecker K, Englund M, Wirth W, et al. Revision 1 size and position of 
the healthy meniscus, and its correlation with sex, height, weight, and bone 
area- a cross-sectional study. BMC Musculoskeletal Disorders 2011;12:248. 
263 Ding C, Martel-Pelletier J, Pelletier JP, et al. Knee meniscal extrusion 
in a largely non-osteoarthritic cohort: association with greater loss of 
cartilage volume. Arthritis Res Ther 2007;9(2):R21. 
264 Ding C, Martel-Pelletier J, Pelletier JP, et al. Meniscal tear as an 
osteoarthritis risk factor in a largely non-osteoarthritic cohort: a cross-
sectional study. Journal of Rheumatology 2007;34(4):776-84. 
265 Wang Y, Wluka AE, Pelletier JP, et al. Meniscal extrusion predicts 
increases in subchondral bone marrow lesions and bone cysts and 
expansion of subchondral bone in osteoarthritic knees. Rheumatology 
(Oxford) 2010;49(5):997-1004. 
266 Stein V, Li L, Lo G, et al. Pattern of joint damage in persons with knee 
osteoarthritis and concomitant ACL tears. Rheumatol. Int. 2012;32(5):1197-
208. 
267 Eckstein F, Hudelmaier M, Cahue S, Marshall M, Sharma L. Medial-
to-lateral ratio of tibiofemoral subchondral bone area is adapted to alignment 
and mechanical load. Calcif. Tissue Int. 2009;84(3):186-94. 
268 Zhai G, Ding C, Cicuttini F, Jones G. A longitudinal study of the 
association between knee alignment and change in cartilage volume and 
chondral defects in a largely non-osteoarthritic population. J. Rheumatol. 
2007;34(1):181-6. 
269 Wluka AE, Wang Y, Davis SR, Cicuttini FM. Tibial plateau size is 
related to grade of joint space narrowing and osteophytes in healthy women 
and in women with osteoarthritis. Ann. Rheum. Dis. 2005;64(7):1033-7. 
270 Cicuttini FM, Jones G, Forbes A, Wluka AE. Rate of cartilage loss at 
two years predicts subsequent total knee arthroplasty: a prospective study. 
Ann. Rheum. Dis. 2004;63(9):1124-7. 
271 Eckstein F, Ateshian G, Burgkart R, et al. Proposal for a 
nomenclature for magnetic resonance imaging based measures of articular 
cartilage in osteoarthritis. Osteoarthritis Cartilage 2006;14(10):974-83. 



- 384 - 

384 

 

272 Nakamura M, Sumen Y, Sakaridani K, Exham H, Ochi M. 
Relationship between the shape of tibial spurs on X-ray and meniscal 
changes on MRI in early osteoarthritis of the knee. Magn. Reson. Imaging 
2006;24(9):1143-8. 
273 Miura H, Noguchi Y, Mitsuyasu H, et al. Clinical features of multiple 
epiphyseal dysplasia expressed in the knee. Clin Orthop Relat Res 
2000(380):184-90. 
274 Stefanik JJ, Roemer FW, Zumwalt AC, et al. Association between 
measures of trochlear morphology and structural features of patellofemoral 
joint osteoarthritis on MRI: the MOST study. Journal of Orthopaedic 
Research 2012;30(1):1-8. 
275 Matsuda S, Miura H, Nagamine R, et al. Anatomical analysis of the 
femoral condyle in normal and osteoarthritic knees. J. Orthop. Res. 
2004;22(1):104-9. 
276 Haverkamp DJ, Schiphof D, Bierma-Zeinstra SM, Weinans H, 
Waarsing JH. Variation in joint shape of osteoarthritic knees. Arthritis 
Rheum. 2011;63(11):3401-7. 
277 Bredbenner TL, Eliason TD, Potter RS, Mason RL, Havill LM, 
Nicolella DP. Statistical shape modeling describes variation in tibia and 
femur surface geometry between Control and Incidence groups from the 
osteoarthritis initiative database. Journal of Biomechanics 2010;43(9):1780-
6. 
278 Tanamas SK, Teichtahl AJ, Wluka AE, et al. The associations 
between indices of patellofemoral geometry and knee pain and patella 
cartilage volume: a cross-sectional study. BMC Musculoskelet Disord 
2010;11:87. 
279 Lievense A, Bierma-Zeinstra S, Verhagen A, Verhaar J, Koes B. 
Influence of work on the development of osteoarthritis of the hip: a 
systematic review. J. Rheumatol. 2001;28(11):2520-8. 
280 Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. 
Joint injury in young adults and risk for subsequent knee and hip 
osteoarthritis. Ann. Intern. Med. 2000;133(5):321-8. 
281 MacGregor AJ, Antoniades L, Matson M, Andrew T, Spector TD. The 
genetic contribution to radiographic hip osteoarthritis in women: results of a 
classic twin study. Arthritis Rheum. 2000;43(11):2410-6. 
282 Doherty M, Courtney P, Doherty S, et al. Nonspherical femoral head 
shape (pistol grip deformity), neck shaft angle, and risk of hip osteoarthritis: 
a case-control study. Arthritis Rheum. 2008;58(10):3172-82. 
283 Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet 
2015;386(9991):376-87. 
284 Agricola R, Waarsing JH, Arden NK, et al. Cam impingement of the 
hip: a risk factor for hip osteoarthritis. Nat Rev Rheumatol 2013;9(10):630-4. 
285 Jacobsen S, Sonne-Holm S, Soballe K, Gebuhr P, Lund B. Hip 
dysplasia and osteoarthrosis: a survey of 4151 subjects from the 
Osteoarthrosis Substudy of the Copenhagen City Heart Study. Acta Orthop 
2005;76(2):149-58. 
286 Sandell LJ. Etiology of osteoarthritis: genetics and synovial joint 
development. Nat Rev Rheumatol 2012;8(2):77-89. 



- 385 - 

385 

 

287 Reijman M, Hazes JM, Pols HA, Koes BW, Bierma-Zeinstra SM. 
Acetabular dysplasia predicts incident osteoarthritis of the hip: the 
Rotterdam study. Arthritis Rheum. 2005;52(3):787-93. 
288 Lane NE, Lin P, Christiansen L, et al. Association of mild acetabular 
dysplasia with an increased risk of incident hip osteoarthritis in elderly white 
women: the study of osteoporotic fractures. Arthritis Rheum. 2000;43(2):400-
4. 
289 Cootes TF, Taylor CJ, Cooper DH, Graham J. Active Shape Models - 
Their Training and Application. Comput Vis Image Und 1995;61(1):38-59. 
290 Gregory JS, Waarsing JH, Day J, et al. Early identification of 
radiographic osteoarthritis of the hip using an active shape model to quantify 
changes in bone morphometric features: can hip shape tell us anything 
about the progression of osteoarthritis? Arthritis Rheum. 2007;56(11):3634-
43. 
291 Lynch JA, Parimi N, Chaganti RK, Nevitt MC, Lane NE, Study of 
Osteoporotic Fractures Research G. The association of proximal femoral 
shape and incident radiographic hip OA in elderly women. Osteoarthritis 
Cartilage 2009;17(10):1313-8. 
292 Waarsing JH, Rozendaal RM, Verhaar JA, Bierma-Zeinstra SM, 
Weinans H. A statistical model of shape and density of the proximal femur in 
relation to radiological and clinical OA of the hip. Osteoarthritis Cartilage 
2010;18(6):787-94. 
293 Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema 
pattern in osteoarthritic knees: correlation between MR imaging and 
histologic findings. Radiology 2000;215(3):835-40. 
294 Felson DT, McLaughlin S, Goggins J, et al. Bone marrow edema and 
its relation to progression of knee osteoarthritis. Ann. Intern. Med. 
2003;139(5 Pt 1):330-6. 
295 Lo GH, Hunter DJ, Nevitt M, Lynch J, McAlindon TE, Group OAII. 
Strong association of MRI meniscal derangement and bone marrow lesions 
in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis 
Cartilage 2009;17(6):743-7. 
296 Hovis KK, Alizai H, Tham SC, et al. Non-traumatic anterior cruciate 
ligament abnormalities and their relationship to osteoarthritis using 
morphological grading and cartilage T2 relaxation times: Data from the 
Osteoarthritis Initiative (OAI). Skeletal Radiology 2012;41(11):1435-43. 
297 Hunter DJ, Gerstenfeld L, Bishop G, et al. Bone marrow lesions from 
osteoarthritis knees are characterized by sclerotic bone that is less well 
mineralized. Arthritis Research and Therapy 2009;11(1). 
298 Driban JB, Tassinari A, Lo GH, et al. Bone marrow lesions are 
associated with altered trabecular morphometry. Osteoarthritis Cartilage 
2012;20(12):1519-26. 
299 Kazakia GJ, Kuo D, Schooler J, et al. Bone and cartilage demonstrate 
changes localized to bone marrow edema-like lesions within osteoarthritic 
knees. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 
2013;21(1):94-101. 
300 Roemer FW, Neogi T, Nevitt MC, et al. Subchondral bone marrow 
lesions are highly associated with, and predict subchondral bone attrition 
longitudinally: the MOST study. Osteoarthritis Cartilage 2010;18(1):47-53. 



- 386 - 

386 

 

301 Davies-Tuck ML, Wluka AE, Forbes A, et al. Development of bone 
marrow lesions is associated with adverse effects on knee cartilage while 
resolution is associated with improvement--a potential target for prevention 
of knee osteoarthritis: a longitudinal study. Arthritis Res Ther 
2010;12(1):R10. 
302 Kornaat PR, Kloppenburg M, Sharma R, et al. Bone marrow edema-
like lesions change in volume in the majority of patients with osteoarthritis; 
associations with clinical features. European Radiology 2007;17(12):3073-8. 
303 Crema MD, Roemer FW, Marra MD, Guermazi A. MR imaging of 
intra- and periarticular soft tissues and subchondral bone in knee 
osteoarthritis. Radiologic Clinics of North America 2009;47(4):687-701. 
304 Neogi T, Nevitt M, Niu J, et al. Subchondral bone attrition may be a 
reflection of compartment-specific mechanical load: the MOST Study. Ann. 
Rheum. Dis. 2010;69(5):841-4. 
305 Hunter DJ, Zhang Y, Niu J, et al. Structural factors associated with 
malalignment in knee osteoarthritis: the Boston osteoarthritis knee study. 
Journal of Rheumatology 2005;32(11):2192-9. 
306 Reichenbach S, Guermazi A, Niu J, et al. Prevalence of bone attrition 
on knee radiographs and MRI in a community-based cohort. Osteoarthritis 
Cartilage 2008;16(9):1005-10. 
307 Neogi T, Felson D, Niu J, et al. Cartilage Loss Occurs in the Same 
Subregions as Subchondral Bone Attrition: A Within-Knee Subregion-
Matched Approach From the Multicenter Osteoarthritis Study. Arthrit Rheum-
Arthr 2009;61(11):1539-44. 
308 van der Kraan PM, van den Berg WB. Osteophytes: relevance and 
biology. Osteoarthritis Cartilage 2007;15(3):237-44. 
309 Panzer S, Augat P, Atzwanger J, Hergan K. 3-T MRI assessment of 
osteophyte formation in patients with unilateral anterior cruciate ligament 
injury and reconstruction. Skeletal Radiol. 2012;41(12):1597-604. 
310 Mazzuca SA, Brandt KD, Lane KA, Chakr R. Malalignment and 
subchondral bone turnover in contralateral knees of overweight/obese 
women with unilateral osteoarthritis: implications for bilateral disease. 
Arthritis Care Res (Hoboken) 2011;63(11):1528-34. 
311 Lerer DB, Umans HR, Hu MX, Jones MH. The role of meniscal root 
pathology and radial meniscal tear in medial meniscal extrusion. Skeletal 
Radiol. 2004;33(10):569-74. 
312 Hayes CW, Jamadar DA, Welch GW, et al. Osteoarthritis of the knee: 
comparison of MR imaging findings with radiographic severity 
measurements and pain in middle-aged women. Radiology 
2005;237(3):998-1007. 
313 Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. 
Subjects with higher physical activity levels have more severe focal knee 
lesions diagnosed with 3T MRI: Analysis of a non-symptomatic cohort of the 
osteoarthritis initiative. Osteoarthritis Cartilage 2010;18(6):776-86. 
314 Pouders C, De M, Van P, Gielen J, Goossens A, Shahabpour M. 
Prevalence and MRI-anatomic correlation of bone cysts in osteoarthritic 
knees. AJR. American Journal of Roentgenology 2008;190(1):17-21. 



- 387 - 

387 

 

315 Crema MD, Roemer FW, Marra MD, et al. Contrast-enhanced MRI of 
subchondral cysts in patients with or at risk for knee osteoarthritis: the 
MOST study. European Journal of Radiology 2010;75(1):e92-6. 
316 Chen Y, Wang T, Guan M, et al. Bone turnover and articular cartilage 
differences localized to subchondral cysts in knees with advanced 
osteoarthritis. Osteoarthritis Cartilage 2015. 
317 Chiba K, Burghardt AJ, Osaki M, Majumdar S. Three-dimensional 
analysis of subchondral cysts in hip osteoarthritis: an ex vivo HR-pQCT 
study. Bone 2014;66:140-5. 
318 Crema MD, Roemer FW, Zhu Y, et al. Subchondral cystlike lesions 
develop longitudinally in areas of bone marrow edema-like lesions in 
patients with or at risk for knee osteoarthritis: detection with MR imaging--the 
MOST study. Radiology 2010;256(3):855-62. 
319 Link TM, Steinbach LS, Ghosh S, et al. Osteoarthritis: MR imaging 
findings in different stages of disease and correlation with clinical findings. 
Radiology 2003;226(2):373-81. 
320 Reid IR. Bisphosphonates: new indications and methods of 
administration. Curr. Opin. Rheumatol. 2003;15(4):458-63. 
321 Jones MD, Tran CW, Li G, Maksymowych WP, Zernicke RF, Doschak 
MR. In vivo microfocal computed tomography and micro-magnetic 
resonance imaging evaluation of antiresorptive and antiinflammatory drugs 
as preventive treatments of osteoarthritis in the rat. Arthritis Rheum. 
2010;62(9):2726-35. 
322 Kadri A, Funck-Brentano T, Lin H, et al. Inhibition of bone resorption 
blunts osteoarthritis in mice with high bone remodelling. Ann. Rheum. Dis. 
2010;69(8):1533-8. 
323 Moreau M, Rialland P, Pelletier JP, et al. Tiludronate treatment 
improves structural changes and symptoms of osteoarthritis in the canine 
anterior cruciate ligament model. Arthritis Res Ther 2011;13(3):R98. 
324 Strassle BW, Mark L, Leventhal L, et al. Inhibition of osteoclasts 
prevents cartilage loss and pain in a rat model of degenerative joint disease. 
Osteoarthritis Cartilage 2010;18(10):1319-28. 
325 Muehleman C, Green J, Williams JM, Kuettner KE, Thonar EJ, 
Sumner DR. The effect of bone remodeling inhibition by zoledronic acid in 
an animal model of cartilage matrix damage. Osteoarthritis Cartilage 
2002;10(3):226-33. 
326 Hellio Le Graverand-Gastineau MP. OA clinical trials: current targets 
and trials for OA. Choosing molecular targets: what have we learned and 
where we are headed? Osteoarthritis Cartilage 2009;17(11):1393-401. 
327 Garnero P, Aronstein WS, Cohen SB, et al. Relationships between 
biochemical markers of bone and cartilage degradation with radiological 
progression in patients with knee osteoarthritis receiving risedronate: the 
Knee Osteoarthritis Structural Arthritis randomized clinical trial. Osteoarthritis 
Cartilage 2008;16(6):660-6. 
328 Buckland-Wright JC, Messent EA, Bingham CO, 3rd, Ward RJ, 
Tonkin C. A 2 yr longitudinal radiographic study examining the effect of a 
bisphosphonate (risedronate) upon subchondral bone loss in osteoarthritic 
knee patients. Rheumatology (Oxford) 2007;46(2):257-64. 



- 388 - 

388 

 

329 Spector TD, Conaghan PG, Buckland-Wright JC, et al. Effect of 
risedronate on joint structure and symptoms of knee osteoarthritis: results of 
the BRISK randomized, controlled trial [ISRCTN01928173]. Arthritis Res 
Ther 2005;7(3):R625-33. 
330 Laslett LL, Dore DA, Quinn SJ, et al. Zoledronic acid reduces knee 
pain and bone marrow lesions over 1 year: a randomised controlled trial. 
Ann. Rheum. Dis. 2012;71(8):1322-8. 
331 Neogi T, Nevitt MC, Ensrud KE, Bauer D, Felson DT. The effect of 
alendronate on progression of spinal osteophytes and disc-space narrowing. 
Ann. Rheum. Dis. 2008;67(10):1427-30. 
332 Carbone LD, Nevitt MC, Wildy K, et al. The relationship of 
antiresorptive drug use to structural findings and symptoms of knee 
osteoarthritis. Arthritis Rheum. 2004;50(11):3516-25. 
333 Cauley JA, Black D, Boonen S, et al. Once-yearly zoledronic acid and 
days of disability, bed rest, and back pain: randomized, controlled HORIZON 
Pivotal Fracture Trial. J. Bone Miner. Res. 2011;26(5):984-92. 
334 Koivisto K, Kyllonen E, Haapea M, et al. Efficacy of zoledronic acid for 
chronic low back pain associated with Modic changes in magnetic 
resonance imaging. BMC Musculoskelet Disord 2014;15:64. 
335 Reginster JY, Badurski J, Bellamy N, et al. Efficacy and safety of 
strontium ranelate in the treatment of knee osteoarthritis: results of a double-
blind, randomised placebo-controlled trial. Ann. Rheum. Dis. 
2013;72(2):179-86. 
336 Pelletier JP, Roubille C, Raynauld JP, et al. Disease-modifying effect 
of strontium ranelate in a subset of patients from the Phase III knee 
osteoarthritis study SEKOIA using quantitative MRI: reduction in bone 
marrow lesions protects against cartilage loss. Ann. Rheum. Dis. 
2015;74(2):422-9. 
337 Bruyere O, Delferriere D, Roux C, et al. Effects of strontium ranelate 
on spinal osteoarthritis progression. Ann. Rheum. Dis. 2008;67(3):335-9. 
338 Pelletier JP, Kapoor M, Fahmi H, et al. Strontium ranelate reduces the 
progression of experimental dog osteoarthritis by inhibiting the expression of 
key proteases in cartilage and of IL-1beta in the synovium. Ann. Rheum. Dis. 
2013;72(2):250-7. 
339 Kyrkos MJ, Papavasiliou KA, Kenanidis E, Tsiridis E, Sayegh FE, 
Kapetanos GA. Calcitonin delays the progress of early-stage mechanically 
induced osteoarthritis. In vivo, prospective study. Osteoarthritis Cartilage 
2013;21(7):973-80. 
340 Behets C, Williams JM, Chappard D, Devogelaer JP, Manicourt DH. 
Effects of calcitonin on subchondral trabecular bone changes and on 
osteoarthritic cartilage lesions after acute anterior cruciate ligament 
deficiency. J. Bone Miner. Res. 2004;19(11):1821-6. 
341 Esenyel M, Icagasioglu A, Esenyel CZ. Effects of calcitonin on knee 
osteoarthritis and quality of life. Rheumatol. Int. 2013;33(2):423-7. 
342 Manicourt DH, Azria M, Mindeholm L, Thonar EJ, Devogelaer JP. 
Oral salmon calcitonin reduces Lequesne's algofunctional index scores and 
decreases urinary and serum levels of biomarkers of joint metabolism in 
knee osteoarthritis. Arthritis Rheum. 2006;54(10):3205-11. 



- 389 - 

389 

 

343 Chang JK, Chang LH, Hung SH, et al. Parathyroid hormone 1-34 
inhibits terminal differentiation of human articular chondrocytes and 
osteoarthritis progression in rats. Arthritis Rheum. 2009;60(10):3049-60. 
344 Sampson ER, Hilton MJ, Tian Y, et al. Teriparatide as a 
chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med 
2011;3(101):101ra93. 
345 Bellido M, Lugo L, Roman-Blas JA, et al. Improving subchondral bone 
integrity reduces progression of cartilage damage in experimental 
osteoarthritis preceded by osteoporosis. Osteoarthritis Cartilage 
2011;19(10):1228-36. 
346 Lane NE, Gore LR, Cummings SR, et al. Serum vitamin D levels and 
incident changes of radiographic hip osteoarthritis: a longitudinal study. 
Study of Osteoporotic Fractures Research Group. Arthritis Rheum. 
1999;42(5):854-60. 
347 McAlindon TE, Felson DT, Zhang Y, et al. Relation of dietary intake 
and serum levels of vitamin D to progression of osteoarthritis of the knee 
among participants in the Framingham Study. Ann. Intern. Med. 
1996;125(5):353-9. 
348 McAlindon T, LaValley M, Schneider E, et al. Effect of vitamin D 
supplementation on progression of knee pain and cartilage volume loss in 
patients with symptomatic osteoarthritis: a randomized controlled trial. JAMA 
: the journal of the American Medical Association 2013;309(2):155-62. 
349 Chiba K, Uetani M, Kido Y, et al. Osteoporotic changes of 
subchondral trabecular bone in osteoarthritis of the knee: a 3-T MRI study. 
Osteoporos. Int. 2012;23(2):589-97. 
350 Lindsey CT, Narasimhan A, Adolfo JM, et al. Magnetic resonance 
evaluation of the interrelationship between articular cartilage and trabecular 
bone of the osteoarthritic knee. Osteoarthritis Cartilage 2004;12(2):86-96. 
351 Wu H, Webber C, Fuentes CO, et al. Prevalence of knee 
abnormalities in patients with osteoarthritis and anterior cruciate ligament 
injury identified with peripheral magnetic resonance imaging: a pilot study. 
Can. Assoc. Radiol. J. 2007;58(3):167-75. 
352 Reichenbach S, Dieppe PA, Nuesch E, Williams S, Villiger PM, Juni 
P. Association of bone attrition with knee pain, stiffness and disability: a 
cross-sectional study. Annals of the Rheumatic Diseases 2011;70(2):293-8. 
353 Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G. Knee 
cartilage defects: association with early radiographic osteoarthritis, 
decreased cartilage volume, increased joint surface area and type II 
collagen breakdown. Osteoarthritis Cartilage 2005;13(3):198-205. 
354 Lassere MN, Johnson KR, Boers M, et al. Definitions and validation 
criteria for biomarkers and surrogate endpoints: development and testing of 
a quantitative hierarchical levels of evidence schema. J. Rheumatol. 
2007;34(3):607-15. 
355 Boers M, Brooks P, Strand CV, Tugwell P. The OMERACT filter for 
Outcome Measures in Rheumatology. J. Rheumatol. 1998;25(2):198-9. 
356 Boers M KJ, Tugwell P, et al. The Omeract Handbook. OMERACT 
2015;www.omeract.org/pdf/OMERACT_Handbook.pdf. 
357 van Spil WE, DeGroot J, Lems WF, Oostveen JC, Lafeber FP. Serum 
and urinary biochemical markers for knee and hip-osteoarthritis: a 

http://www.omeract.org/pdf/OMERACT_Handbook.pdf


- 390 - 

390 

 

systematic review applying the consensus BIPED criteria. Osteoarthritis 
Cartilage 2010;18(5):605-12. 
358 Bauer DC, Hunter DJ, Abramson SB, et al. Classification of 
osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage 
2006;14(8):723-7. 
359 Blumenfeld O, Williams FM, Hart DJ, Spector TD, Arden N, Livshits 
G. Association between cartilage and bone biomarkers and incidence of 
radiographic knee osteoarthritis (RKOA) in UK females: a prospective study. 
Osteoarthritis Cartilage 2013;21(7):923-9. 
360 Golightly YM, Marshall SW, Kraus VB, et al. Biomarkers of incident 
radiographic knee osteoarthritis: do they vary by chronic knee symptoms? 
Arthritis Rheum. 2011;63(8):2276-83. 
361 Reijman M, Hazes JM, Bierma-Zeinstra SM, et al. A new marker for 
osteoarthritis: cross-sectional and longitudinal approach. Arthritis Rheum. 
2004;50(8):2471-8. 
362 Lotz M, Martel-Pelletier J, Christiansen C, et al. Value of biomarkers 
in osteoarthritis: current status and perspectives. Ann. Rheum. Dis. 
2013;72(11):1756-63. 
363 Arden N, Richette P, Cooper C, et al. Can We Identify Patients with 
High Risk of Osteoarthritis Progression Who Will Respond to Treatment? A 
Focus on Biomarkers and Frailty. Drugs Aging 2015. 
364 Chan WP, Lang P, Stevens MP, et al. Osteoarthritis of the knee: 
comparison of radiography, CT, and MR imaging to assess extent and 
severity. AJR. American Journal of Roentgenology 1991;157(4):799-806. 
365 Hunter DJ, Zhang W, Conaghan PG, et al. Systematic review of the 
concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis 
Cartilage 2011;19(5):557-88. 
366 Hunter DJ, Zhang W, Conaghan PG, et al. Responsiveness and 
reliability of MRI in knee osteoarthritis: a meta-analysis of published 
evidence. Osteoarthritis Cartilage 2011;19(5):589-605. 
367 Conaghan PG, Hunter DJ, Maillefert JF, Reichmann WM, Losina E. 
Summary and recommendations of the OARSI FDA osteoarthritis 
Assessment of Structural Change Working Group. Osteoarthritis Cartilage 
2011;19(5):606-10. 
368 Hutton TJ, Cunningham S, Hammond P. An evaluation of active 
shape models for the automatic identification of cephalometric landmarks. 
Eur. J. Orthod. 2000;22(5):499-508. 
369 Heimann T, Meinzer HP. Statistical shape models for 3D medical 
image segmentation: a review. Med. Image Anal. 2009;13(4):543-63. 
370 Deligianni F, Chung AJ, Yang GZ. Nonrigid 2-D/3-D registration for 
patient specific bronchoscopy simulation with statistical shape modeling: 
phantom validation. IEEE Trans. Med. Imaging 2006;25(11):1462-71. 
371 King AP, Blackall JM, Penney GP, Hawkes DJ. Tracking liver motion 
using 3-D ultrasound and a surface based statistical shape model. Ieee 
Workshop on Mathematical Methods in Biomedical Image Analysis, 
Proceedings 2001:145-52. 
372 Lee SL, Horkaew P, Caspersz W, Darzi A, Yang GZ. Assessment of 
shape variation of the levator ani with optimal scan planning and statistical 
shape modeling. J. Comput. Assist. Tomogr. 2005;29(2):154-62. 



- 391 - 

391 

 

373 Andresen PR, Bookstein FL, Conradsen K, Ersboll BK, Marsh JL, 
Kreiborg S. Surface-bounded growth modeling applied to human mandibles. 
IEEE Trans. Med. Imaging 2000;19(11):1053-63. 
374 Miller NA, Gregory JS, Aspden RM, Stollery PJ, Gilbert FJ. Using 
active shape modeling based on MRI to study morphologic and pitch-related 
functional changes affecting vocal structures and the airway. J. Voice 
2014;28(5):554-64. 
375 Rueckert D, Frangi AF, Schnabel JA. Automatic construction of 3-D 
statistical deformation models of the brain using nonrigid registration. IEEE 
Trans. Med. Imaging 2003;22(8):1014-25. 
376 Ferrarini L, Olofsen H, Palm WM, van Buchem MA, Reiber JH, 
Admiraal-Behloul F. GAMEs: growing and adaptive meshes for fully 
automatic shape modeling and analysis. Med. Image Anal. 2007;11(3):302-
14. 
377 Cates J MA, Bieging E, Kholmovski E, Bengali S, MacLeod R, 
McGann C. TOWARDS A PRACTICAL CLINICAL WORKFLOW FOR 
CARDIAC SHAPE MODELING, WITH APPLICATION TO ATRIAL 
FIBRILLATION AND STROKE. 
http://www.shapesymposium.org/2014/Proceedings.pdf 2014;(Abstract):15. 
378 Roberts MG, Oh T, Pacheco EM, Mohankumar R, Cootes TF, Adams 
JE. Semi-automatic determination of detailed vertebral shape from lumbar 
radiographs using active appearance models. Osteoporos. Int. 
2012;23(2):655-64. 
379 Roberts MG, Pacheco EM, Mohankumar R, Cootes TF, Adams JE. 
Detection of vertebral fractures in DXA VFA images using statistical models 
of appearance and a semi-automatic segmentation. Osteoporos. Int. 
2010;21(12):2037-46. 
380 Bansal R, Staib LH, Xu D, Zhu H, Peterson BS. Statistical analyses of 
brain surfaces using Gaussian random fields on 2-D manifolds. IEEE Trans. 
Med. Imaging 2007;26(1):46-57. 
381 McClure RK, Styner M, Maltbie E, et al. Localized differences in 
caudate and hippocampal shape are associated with schizophrenia but not 
antipsychotic type. Psychiatry Res. 2013;211(1):1-10. 
382 Styner M, Lieberman JA, McClure RK, Weinberger DR, Jones DW, 
Gerig G. Morphometric analysis of lateral ventricles in schizophrenia and 
healthy controls regarding genetic and disease-specific factors. Proc. Natl. 
Acad. Sci. U. S. A. 2005;102(13):4872-7. 
383 Wang YM, Peterson BS, Staib LH. 3D Brain surface matching based 
on geodesics and local geometry. Comput Vis Image Und 2003;89(2-3):252-
71. 
384 Fritscher KD, Peroni M, Zaffino P, Spadea MF, Schubert R, Sharp G. 
Automatic segmentation of head and neck CT images for radiotherapy 
treatment planning using multiple atlases, statistical appearance models, 
and geodesic active contours. Med. Phys. 2014;41(5):051910. 
385 Viswanath S, Bloch BN, Genega E, et al. A comprehensive 
segmentation, registration, and cancer detection scheme on 3 Tesla in vivo 
prostate DCE-MRI. Med Image Comput Comput Assist Interv 2008;11(Pt 
1):662-9. 

http://www.shapesymposium.org/2014/Proceedings.pdf


- 392 - 

392 

 

386 Sierra R, Zsemlye G, Szekely G, Bajka M. Generation of variable 
anatomical models for surgical training simulators. Med. Image Anal. 
2006;10(2):275-85. 
387 Jolesz FA, Nabavi A, Kikinis R. Integration of interventional MRI with 
computer-assisted surgery. J. Magn. Reson. Imaging 2001;13(1):69-77. 
388 Barratt DC, Chan CS, Edwards PJ, et al. Instantiation and registration 
of statistical shape models of the femur and pelvis using 3D ultrasound 
imaging. Med. Image Anal. 2008;12(3):358-74. 
389 Chan CSK, Edwards PJ, Hawkes DJ. Integration of ultrasound based 
registration with statistical shape models for computer assisted orthopaedic 
surgery. Medical Imaging 2003: Image Processing, Pts 1-3 2003;5032:414-
24. 
390 Fleute M, Lavallee S. Building a complete surface model from sparse 
data using statistical shape models: Application to computer assisted knee 
surgery. Lect Notes Comput Sc 1998;1496:879-87. 
391 Fleute M, Lavallee S, Julliard R. Incorporating a statistically based 
shape model into a system for computer-assisted anterior cruciate ligament 
surgery. Med. Image Anal. 1999;3(3):209-22. 
392 Paulsen RR, Nielsen C, Laugesen S, Larsen R. Using a shape model 
in the design of hearing aids. P Soc Photo-Opt Ins 2004;5370:1304-11. 
393 Toth R, Bloch BN, Genega EM, et al. Accurate prostate volume 
estimation using multifeature active shape models on T2-weighted MRI. 
Acad. Radiol. 2011;18(6):745-54. 
394 Agricola R, Heijboer MP, Roze RH, et al. Pincer deformity does not 
lead to osteoarthritis of the hip whereas acetabular dysplasia does: 
acetabular coverage and development of osteoarthritis in a nationwide 
prospective cohort study (CHECK). Osteoarthritis Cartilage 
2013;21(10):1514-21. 
395 Cicuttini FM, Wluka AE, Stuckey SL. Tibial and femoral cartilage 
changes in knee osteoarthritis. Ann. Rheum. Dis. 2001;60(10):977-80. 
396 Jones G, Glisson M, Hynes K, Cicuttini F. Sex and site differences in 
cartilage development: a possible explanation for variations in knee 
osteoarthritis in later life. Arthritis Rheum. 2000;43(11):2543-9. 
397 Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and 
bone: degenerative changes in osteoarthritis. NMR Biomed. 2006;19(7):822-
54. 
398 Eckstein F, Wirth W, Nevitt MC. Recent advances in osteoarthritis 
imaging--the osteoarthritis initiative. Nat Rev Rheumatol 2012;8(10):622-30. 
399 Marsh M, Souza RB, Wyman BT, et al. Differences between X-ray 
and MRI-determined knee cartilage thickness in weight-bearing and non-
weight-bearing conditions. Osteoarthritis Cartilage 2013;21(12):1876-85. 
400 Buckland-Wright C. Which radiographic techniques should we use for 
research and clinical practice? Best Pract Res Clin Rheumatol 
2006;20(1):39-55. 
401 Buckland-Wright JC, Macfarlane DG, Williams SA, Ward RJ. 
Accuracy and precision of joint space width measurements in standard and 
macroradiographs of osteoarthritic knees. Ann. Rheum. Dis. 
1995;54(11):872-80. 



- 393 - 

393 

 

402 Peterfy C, Li J, Zaim S, et al. Comparison of fixed-flexion positioning 
with fluoroscopic semi-flexed positioning for quantifying radiographic joint-
space width in the knee: test-retest reproducibility. Skeletal Radiol. 
2003;32(3):128-32. 
403 Vignon E, Piperno M, Le Graverand MP, et al. Measurement of 
radiographic joint space width in the tibiofemoral compartment of the 
osteoarthritic knee: comparison of standing anteroposterior and Lyon schuss 
views. Arthritis Rheum. 2003;48(2):378-84. 
404 Radiography Working Group of the O-OIW, Le Graverand MP, 
Mazzuca S, et al. Assessment of the radioanatomic positioning of the 
osteoarthritic knee in serial radiographs: comparison of three acquisition 
techniques. Osteoarthritis Cartilage 2006;14 Suppl A:A37-43. 
405 Buckland-Wright JC, Wolfe F, Ward RJ, Flowers N, Hayne C. 
Substantial superiority of semiflexed (MTP) views in knee osteoarthritis: a 
comparative radiographic study, without fluoroscopy, of standing extended, 
semiflexed (MTP), and schuss views. J. Rheumatol. 1999;26(12):2664-74. 
406 Buckland-Wright JC, Ward RJ, Peterfy C, Mojcik CF, Leff RL. 
Reproducibility of the semiflexed (metatarsophalangeal) radiographic knee 
position and automated measurements of medial tibiofemoral joint space 
width in a multicenter clinical trial of knee osteoarthritis. J. Rheumatol. 
2004;31(8):1588-97. 
407 Mazzuca SA, Hellio Le Graverand MP, Vignon E, et al. Performance 
of a non-fluoroscopically assisted substitute for the Lyon schuss knee 
radiograph: quality and reproducibility of positioning and sensitivity to joint 
space narrowing in osteoarthritic knees. Osteoarthritis Cartilage 
2008;16(12):1555-9. 
408 Le Graverand MPH, Clemmer RS, Brunell RM, Hayes CW, Miller CG, 
Vignon E. Considerations when designing a disease-modifying osteoarthritis 
drug (DMOAD) trial using radiography. Seminars in Arthritis and 
Rheumatism 2013;43(1):1-8. 
409 Manual OO. Radiographic Procedure Manual for Examinations of the 
Knee, Hand, Pelvis and Lower Limbs. 
http://www.oai.ucsf.edu/datarelease/OperationsManuals.asp 2006. 
410 Ravaud P, Chastang C, Auleley GR, et al. Assessment of joint space 
width in patients with osteoarthritis of the knee: a comparison of 4 measuring 
instruments. J. Rheumatol. 1996;23(10):1749-55. 
411 Hellio Le Graverand MP, Mazzuca S, Duryea J, Brett A. Radiographic 
grading and measurement of joint space width in osteoarthritis. Rheum. Dis. 
Clin. North Am. 2009;35(3):485-502. 
412 Duryea J, Zaim S, Genant HK. New radiographic-based surrogate 
outcome measures for osteoarthritis of the knee. Osteoarthritis Cartilage 
2003;11(2):102-10. 
413 Duryea J, Neumann G, Niu J, et al. Comparison of radiographic joint 
space width with magnetic resonance imaging cartilage morphometry: 
analysis of longitudinal data from the Osteoarthritis Initiative. Arthritis Care 
Res (Hoboken) 2010;62(7):932-7. 
414 Conrozier T, Favret H, Mathieu P, et al. Influence of the quality of 
tibial plateau alignment on the reproducibility of computer joint space 

http://www.oai.ucsf.edu/datarelease/OperationsManuals.asp


- 394 - 

394 

 

measurement from Lyon schuss radiographic views of the knee in patients 
with knee osteoarthritis. Osteoarthritis Cartilage 2004;12(10):765-70. 
415 Ornetti P, Brandt K, Hellio-Le Graverand MP, et al. OARSI-
OMERACT definition of relevant radiological progression in hip/knee 
osteoarthritis. Osteoarthritis Cartilage 2009;17(7):856-63. 
416 Bruyere O, Cooper C, Pavelka K, et al. Changes in structure and 
symptoms in knee osteoarthritis and prediction of future knee replacement 
over 8 years. Calcif. Tissue Int. 2013;93(6):502-7. 
417 Madan-Sharma R, Kloppenburg M, Kornaat PR, et al. Do MRI 
features at baseline predict radiographic joint space narrowing in the medial 
compartment of the osteoarthritic knee 2 years later? Skeletal Radiology 
2008;37(9):805-11. 
418 Crema MD, Nevitt MC, Guermazi A, et al. Progression of cartilage 
damage and meniscal pathology over 30 months is associated with an 
increase in radiographic tibiofemoral joint space narrowing in persons with 
knee OA--the MOST study. Osteoarthritis Cartilage 2014;22(10):1743-7. 
419 Huebner JL, Bay-Jensen AC, Huffman KM, et al. Alpha C-telopeptide 
of type I collagen is associated with subchondral bone turnover and predicts 
progression of joint space narrowing and osteophytes in osteoarthritis. 
Arthritis & rheumatology 2014;66(9):2440-9. 
420 Haugen IK, Boyesen P, Slatkowsky-Christensen B, Sesseng S, Van 
DH, Kvien T. Radiographic joint space narrowing, malalignment and clinical 
soft tissue swelling are associated with mridefined bone marrow lesions in 
hand osteoarthritis. Osteoarthritis Cartilage 2012;20:S14-S5. 
421 Oak SR, Ghodadra A, Winalski CS, Miniaci A, Jones MH. 
Radiographic joint space width is correlated with 4-year clinical outcomes in 
patients with knee osteoarthritis: data from the osteoarthritis initiative. 
Osteoarthritis Cartilage 2013;21(9):1185-90. 
422 Hunter DJ, Niu J, Zhang Y, et al. Change in cartilage morphometry: a 
sample of the progression cohort of the Osteoarthritis Initiative. Ann. Rheum. 
Dis. 2009;68(3):349-56. 
423 Eckstein F, Buck RJ, Burstein D, et al. Precision of 3.0 Tesla 
quantitative magnetic resonance imaging of cartilage morphology in a 
multicentre clinical trial. Ann. Rheum. Dis. 2008;67(12):1683-8. 
424 Reichmann WM, Maillefert JF, Hunter DJ, Katz JN, Conaghan PG, 
Losina E. Responsiveness to change and reliability of measurement of 
radiographic joint space width in osteoarthritis of the knee: a systematic 
review. Osteoarthritis Cartilage 2011;19(5):550-6. 
425 Cooke TD, Sled EA, Scudamore RA. Frontal plane knee alignment: a 
call for standardized measurement. J. Rheumatol. 2007;34(9):1796-801. 
426 Felson DT, Cooke TD, Niu J, et al. Can anatomic alignment 
measured from a knee radiograph substitute for mechanical alignment from 
full limb films? Osteoarthritis Cartilage 2009;17(11):1448-52. 
427 van der Esch M, Steultjens M, Wieringa H, Dinant H, Dekker J. 
Structural joint changes, malalignment, and laxity in osteoarthritis of the 
knee. Scand. J. Rheumatol. 2005;34(4):298-301. 
428 Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart 
DM. Does knee malalignment increase the risk of development and 



- 395 - 

395 

 

progression of knee osteoarthritis? A systematic review. Arthritis Rheum. 
2009;61(4):459-67. 
429 Cerejo R, Dunlop DD, Cahue S, Channin D, Song J, Sharma L. The 
influence of alignment on risk of knee osteoarthritis progression according to 
baseline stage of disease. Arthritis Rheum. 2002;46(10):2632-6. 
430 Felson DT, Gale DR, Elon Gale M, et al. Osteophytes and 
progression of knee osteoarthritis. Rheumatology (Oxford) 2005;44(1):100-4. 
431 Cicuttini F, Wluka A, Hankin J, Wang Y. Longitudinal study of the 
relationship between knee angle and tibiofemoral cartilage volume in 
subjects with knee osteoarthritis. Rheumatology (Oxford) 2004;43(3):321-4. 
432 Moisio K, Chang A, Eckstein F, et al. Varus-valgus alignment: 
reduced risk of subsequent cartilage loss in the less loaded compartment. 
Arthritis Rheum. 2011;63(4):1002-9. 
433 Sharma L, Eckstein F, Song J, et al. Relationship of meniscal 
damage, meniscal extrusion, malalignment, and joint laxity to subsequent 
cartilage loss in osteoarthritic knees. Arthritis Rheum. 2008;58(6):1716-26. 
434 Kastelein M, Luijsterburg PA, Belo JN, Verhaar JA, Koes BW, 
Bierma-Zeinstra SM. Six-year course and prognosis of nontraumatic knee 
symptoms in adults in general practice: a prospective cohort study. Arthritis 
Care Res (Hoboken) 2011;63(9):1287-94. 
435 Waarsing JH, Bierma-Zeinstra SM, Weinans H. Distinct subtypes of 
knee osteoarthritis: data from the Osteoarthritis Initiative. Rheumatology 
(Oxford) 2015;54(9):1650-8. 
436 Shimura Y, Kurosawa H, Sugawara Y, et al. The factors associated 
with pain severity in patients with knee osteoarthritis vary according to the 
radiographic disease severity: a cross-sectional study. Osteoarthritis 
Cartilage 2013;21(9):1179-84. 
437 Hayashi D, Englund M, Roemer FW, et al. Knee malalignment is 
associated with an increased risk for incident and enlarging bone marrow 
lesions in the more loaded compartments: the MOST study. Osteoarthritis 
Cartilage 2012;20(11):1227-33. 
438 Moyer R, Wirth W, Duryea J, Eckstein F. Anatomical Alignment, But 
Not Goniometry, Predicts Femorotibial Cartilage Loss as well as Mechanical 
Alignment: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 
2015. 
439 Wirth W, Hellio Le Graverand MP, Wyman BT, et al. Regional 
analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis 
Initiative progression subcohort. Osteoarthritis Cartilage 2009;17(3):291-7. 
440 Reichenbach S, Yang M, Eckstein F, et al. Does cartilage volume or 
thickness distinguish knees with and without mild radiographic 
osteoarthritis? The Framingham Study. Ann. Rheum. Dis. 2010;69(1):143-9. 
441 Eckstein F, Guermazi A, Roemer FW. Quantitative MR imaging of 
cartilage and trabecular bone in osteoarthritis. Radiol. Clin. North Am. 
2009;47(4):655-73. 
442 Stahl R, Jain SK, Lutz J, et al. Osteoarthritis of the knee at 3.0 T: 
comparison of a quantitative and a semi-quantitative score for the 
assessment of the extent of cartilage lesion and bone marrow edema pattern 
in a 24-month longitudinal study. Skeletal Radiology 2011;40(10):1315-27. 



- 396 - 

396 

 

443 Roemer FW, Guermazi A, Javaid MK, et al. Change in MRI-detected 
subchondral bone marrow lesions is associated with cartilage loss: the 
MOST Study. A longitudinal multicentre study of knee osteoarthritis. Ann. 
Rheum. Dis. 2009;68(9):1461-5. 
444 Roemer FW, Zhang Y, Niu J, et al. Tibiofemoral joint osteoarthritis: 
Risk factors for MR-depicted fast cartilage loss over a 30-month period in the 
multicenter osteoarthritis study. Radiology 2009;252(3):772-80. 
445 Schneider E, Nevitt M, McCulloch C, et al. Equivalence and precision 
of knee cartilage morphometry between different segmentation teams, 
cartilage regions, and MR acquisitions. Osteoarthritis Cartilage 
2012;20(8):869-79. 
446 Buck RJ, Wyman BT, Graverand MPHL, Wirth W, Eckstein F. An 
efficient subset of morphological measures for articular cartilage in the 
healthy and diseased human knee. Magnetic Resonance in Medicine 
2010;63(3):680-90. 
447 Eckstein F, Mc Culloch CE, Lynch JA, et al. How do short-term rates 
of femorotibial cartilage change compare to long-term changes? Four year 
follow-up data from the osteoarthritis initiative. Osteoarthritis Cartilage 
2012;20(11):1250-7. 
448 Raynauld JP, Martel-Pelletier J, Berthiaume MJ, et al. Quantitative 
magnetic resonance imaging evaluation of knee osteoarthritis progression 
over two years and correlation with clinical symptoms and radiologic 
changes. Arthritis Rheum. 2004;50(2):476-87. 
449 Wluka AE, Forbes A, Wang Y, Hanna F, Jones G, Cicuttini FM. Knee 
cartilage loss in symptomatic knee osteoarthritis over 4.5 years. Arthritis Res 
Ther 2006;8(4):R90. 
450 Eckstein F, Wirth W, Hudelmaier M, et al. Patterns of femorotibial 
cartilage loss in knees with neutral, varus, and valgus alignment. Arthritis 
Rheum. 2008;59(11):1563-70. 
451 Saunders J, Ding C, Cicuttini F, Jones G. Radiographic osteoarthritis 
and pain are independent predictors of knee cartilage loss: a prospective 
study. Intern Med J 2012;42(3):274-80. 
452 Eckstein F, Le Graverand MP, Charles HC, et al. Clinical, 
radiographic, molecular and MRI-based predictors of cartilage loss in knee 
osteoarthritis. Ann. Rheum. Dis. 2011;70(7):1223-30. 
453 Eckstein F, Nevitt M, Gimona A, et al. Rates of change and sensitivity 
to change in cartilage morphology in healthy knees and in knees with mild, 
moderate, and end-stage radiographic osteoarthritis: results from 831 
participants from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 
2011;63(3):311-9. 
454 Wirth W, Nevitt M, Hellio Le Graverand MP, et al. Lateral and medial 
joint space narrowing predict subsequent cartilage loss in the narrowed, but 
not in the non-narrowed femorotibial compartment--data from the 
Osteoarthritis Initiative. Osteoarthritis Cartilage 2014;22(1):63-70. 
455 Cotofana S, Wyman BT, Benichou O, et al. Relationship between 
knee pain and the presence, location, size and phenotype of femorotibial 
denuded areas of subchondral bone as visualized by MRI. Osteoarthritis 
Cartilage 2013;21(9):1214-22. 



- 397 - 

397 

 

456 Moisio K, Eckstein F, Chmiel JS, et al. Denuded subchondral bone 
and knee pain in persons with knee osteoarthritis. Arthritis Rheum. 
2009;60(12):3703-10. 
457 Raynauld JP, Martel-Pelletier J, Haraoui B, et al. Risk factors 
predictive of joint replacement in a 2-year multicentre clinical trial in knee 
osteoarthritis using MRI: Results from over 6 years of observation. Annals of 
the Rheumatic Diseases 2011;70(8):1382-8. 
458 Eckstein F, Boudreau RM, Wang Z, et al. Trajectory of cartilage loss 
within 4 years of knee replacement--a nested case-control study from the 
Osteoarthritis Initiative. Osteoarthritis Cartilage 2014;22(10):1542-9. 
459 Buck RJ, Wyman BT, Le Graverand MP, et al. Osteoarthritis may not 
be a one-way-road of cartilage loss--comparison of spatial patterns of 
cartilage change between osteoarthritic and healthy knees. Osteoarthritis 
Cartilage 2010;18(3):329-35. 
460 Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and 
osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 
1998;47:487-504. 
461 Dunham J, Chambers MG, Jasani MK, Bitensky L, Chayen J. 
Changes in the orientation of proteoglycans during the early development of 
natural murine osteoarthritis. J. Orthop. Res. 1990;8(1):101-4. 
462 Dunham J, Shackleton DR, Nahir AM, et al. Altered orientation of 
glycosaminoglycans and cellular changes in the tibial cartilage in the first two 
weeks of experimental canine osteoarthritis. J. Orthop. Res. 1985;3(3):258-
68. 
463 Mori Y, Kubo M, Okumo H, Kuroki Y. A scanning electron microscopic 
study of the degenerative cartilage in patellar chondropathy. Arthroscopy 
1993;9(3):247-64. 
464 Muir H, Bullough P, Maroudas A. The distribution of collagen in 
human articular cartilage with some of its physiological implications. J. Bone 
Joint Surg. Br. 1970;52(3):554-63. 
465 Burstein D, Gray M, Mosher T, Dardzinski B. Measures of molecular 
composition and structure in osteoarthritis. Radiol. Clin. North Am. 
2009;47(4):675-86. 
466 Allen RG, Burstein D, Gray ML. Monitoring glycosaminoglycan 
replenishment in cartilage explants with gadolinium-enhanced magnetic 
resonance imaging. J. Orthop. Res. 1999;17(3):430-6. 
467 Bashir A, Gray ML, Boutin RD, Burstein D. Glycosaminoglycan in 
articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced 
MR imaging. Radiology 1997;205(2):551-8. 
468 Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage 
degradation. Magn. Reson. Med. 1996;36(5):665-73. 
469 Bashir A, Gray ML, Hartke J, Burstein D. Nondestructive imaging of 
human cartilage glycosaminoglycan concentration by MRI. Magn. Reson. 
Med. 1999;41(5):857-65. 
470 Burstein D, Velyvis J, Scott KT, et al. Protocol issues for delayed 
Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular 
cartilage. Magn. Reson. Med. 2001;45(1):36-41. 
471 Vandecasteele J, De Deene Y. On the validity of 3D polymer gel 
dosimetry: I. reproducibility study. Phys. Med. Biol. 2013;58(1):19-42. 



- 398 - 

398 

 

472 Owman H, Ericsson YB, Englund M, et al. Association between 
delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and joint space 
narrowing and osteophytes: a cohort study in patients with partial 
meniscectomy with 11 years of follow-up. Osteoarthritis Cartilage 
2014;22(10):1537-41. 
473 Crema MD, Hunter DJ, Burstein D, et al. Association of changes in 
delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) with changes in 
cartilage thickness in the medial tibiofemoral compartment of the knee: a 2 
year follow-up study using 3.0 T MRI. Ann. Rheum. Dis. 2014;73(11):1935-
41. 
474 Anandacoomarasamy A, Leibman S, Smith G, et al. Weight loss in 
obese people has structure-modifying effects on medial but not on lateral 
knee articular cartilage. Ann. Rheum. Dis. 2012;71(1):26-32. 
475 Newbould RD, Miller SR, Upadhyay N, et al. T1-weighted sodium MRI 
of the articulator cartilage in osteoarthritis: a cross sectional and longitudinal 
study. PLoS One 2013;8(8):e73067. 
476 Stewart RC, Bansal PN, Entezari V, et al. Contrast-enhanced CT with 
a high-affinity cationic contrast agent for imaging ex vivo bovine, intact ex 
vivo rabbit, and in vivo rabbit cartilage. Radiology 2013;266(1):141-50. 
477 Pang J, Driban JB, Destenaves G, et al. Quantification of bone 
marrow lesion volume and volume change using semi-automated 
segmentation: data from the osteoarthritis initiative. BMC musculoskeletal 
disorders 2013;14:3. 
478 Kothari A, Guermazi A, Chmiel JS, et al. Within-subregion relationship 
between bone marrow lesions and subsequent cartilage loss in knee 
osteoarthritis. Arthritis Care Res. 2010;62(2):198-203. 
479 Hochberg M, Favors, KJ., Sorkin, D. Quality of life and radiographic 
severity of knee osteoarthritis predict total knee arthroplasty: Data from the 
osteoarthritis initiative. Osteoarthritis Cartilage 2013;21:S11. 
480 Schiphof D, Boers M, Bierma-Zeinstra SM. Differences in descriptions 
of Kellgren and Lawrence grades of knee osteoarthritis. Ann. Rheum. Dis. 
2008;67(7):1034-6. 
481 Felson DT, Nevitt MC, Yang M, et al. A new approach yields high 
rates of radiographic progression in knee osteoarthritis. J. Rheumatol. 
2008;35(10):2047-54. 
482 Felson DT, Niu J, Guermazi A, Sack B, Aliabadi P. Defining 
radiographic incidence and progression of knee osteoarthritis: suggested 
modifications of the Kellgren and Lawrence scale. Ann. Rheum. Dis. 
2011;70(11):1884-6. 
483 Eckstein F, Wirth W, Hunter DJ, et al. Magnitude and regional 
distribution of cartilage loss associated with grades of joint space narrowing 
in radiographic osteoarthritis - data from the Osteoarthritis Initiative (OAI). 
Osteoarthritis Cartilage 2010;18(6):760-8. 
484 Gossec L, Jordan JM, Mazzuca SA, et al. Comparative evaluation of 
three semi-quantitative radiographic grading techniques for knee 
osteoarthritis in terms of validity and reproducibility in 1759 X-rays: report of 
the OARSI-OMERACT task force. Osteoarthritis Cartilage 2008;16(7):742-8. 
485 Guermazi A, Hunter DJ, Li L, et al. Different thresholds for detecting 
osteophytes and joint space narrowing exist between the site investigators 



- 399 - 

399 

 

and the centralized reader in a multicenter knee osteoarthritis study-data 
from the Osteoarthritis Initiative. Skeletal Radiology 2012;41(2):179-86. 
486 Neogi T, Felson D, Niu JB, et al. Association between radiographic 
features of knee osteoarthritis and pain: results from two cohort studies. Br. 
Med. J. 2009;339. 
487 Kallman DA, Wigley FM, Scott WW, Jr., Hochberg MC, Tobin JD. 
New radiographic grading scales for osteoarthritis of the hand. Reliability for 
determining prevalence and progression. Arthritis Rheum. 
1989;32(12):1584-91. 
488 Verbruggen G, Veys EM. Numerical scoring systems for the anatomic 
evolution of osteoarthritis of the finger joints. Arthritis Rheum. 
1996;39(2):308-20. 
489 Maheu E, Cadet C, Gueneugues S, Ravaud P, Dougados M. 
Reproducibility and sensitivity to change of four scoring methods for the 
radiological assessment of osteoarthritis of the hand. Ann. Rheum. Dis. 
2007;66(4):464-9. 
490 Felson DT, Hodgson R. Identifying and treating preclinical and early 
osteoarthritis. Rheum. Dis. Clin. North Am. 2014;40(4):699-710. 
491 Brouwer GM, van Tol AW, Bergink AP, et al. Association between 
valgus and varus alignment and the development and progression of 
radiographic osteoarthritis of the knee. Arthritis Rheum. 2007;56(4):1204-11. 
492 Runhaar J, van Middelkoop M, Reijman M, Vroegindeweij D, Oei EH, 
Bierma-Zeinstra SM. Malalignment: a possible target for prevention of 
incident knee osteoarthritis in overweight and obese women. Rheumatology 
(Oxford) 2014;53(9):1618-24. 
493 Yusuf E, Bijsterbosch J, Slagboom PE, Rosendaal FR, Huizinga TW, 
Kloppenburg M. Body mass index and alignment and their interaction as risk 
factors for progression of knees with radiographic signs of osteoarthritis. 
Osteoarthritis Cartilage 2011;19(9):1117-22. 
494 Sharma L, Song J, Dunlop D, et al. Varus and valgus alignment and 
incident and progressive knee osteoarthritis. Ann. Rheum. Dis. 
2010;69(11):1940-5. 
495 Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD. 
The role of knee alignment in disease progression and functional decline in 
knee osteoarthritis. JAMA : the journal of the American Medical Association 
2001;286(2):188-95. 
496 Roemer FW, Nevitt MC, Felson DT, et al. Predictive validity of within-
grade scoring of longitudinal changes of MRI-based cartilage morphology 
and bone marrow lesion assessment in the tibio-femoral joint--the MOST 
study. Osteoarthritis Cartilage 2012;20(11):1391-8. 
497 Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report 
on the design rationale for the magnetic resonance imaging protocol for the 
knee. Osteoarthritis Cartilage 2008;16(12):1433-41. 
498 Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. 
The reliability of a new scoring system for knee osteoarthritis MRI and the 
validity of bone marrow lesion assessment: BLOKS (Boston Leeds 
Osteoarthritis Knee Score). Ann. Rheum. Dis. 2008;67(2):206-11. 
499 Laberge MA, Baum T, Virayavanich W, et al. Obesity increases the 
prevalence and severity of focal knee abnormalities diagnosed using 3T MRI 



- 400 - 

400 

 

in middle-aged subjects--data from the Osteoarthritis Initiative. Skeletal 
Radiol. 2012;41(6):633-41. 
500 Roemer FW, Kwoh CK, Hannon MJ, et al. Risk factors for magnetic 
resonance imaging-detected patellofemoral and tibiofemoral cartilage loss 
during a six-month period: the joints on glucosamine study. Arthritis Rheum. 
2012;64(6):1888-98. 
501 Crema MD, Guermazi A, Li L, et al. The association of prevalent 
medial meniscal pathology with cartilage loss in the medial tibiofemoral 
compartment over a 2-year period. Osteoarthritis Cartilage 2010;18(3):336-
43. 
502 Guermazi A, Roemer FW, Hayashi D, et al. Assessment of synovitis 
with contrast-enhanced MRI using a whole-joint semiquantitative scoring 
system in people with, or at high risk of, knee osteoarthritis: the MOST 
study. Ann. Rheum. Dis. 2011;70(5):805-11. 
503 Berthiaume MJ, Raynauld JP, Martel-Pelletier J, et al. Meniscal tear 
and extrusion are strongly associated with progression of symptomatic knee 
osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann. 
Rheum. Dis. 2005;64(4):556-63. 
504 Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ Magnetic 
Resonance Imaging Score (WORMS) of the knee in osteoarthritis. 
Osteoarthritis Cartilage 2004;12(3):177-90. 
505 Lynch JA, Roemer FW, Nevitt MC, et al. Comparison of BLOKS and 
WORMS scoring systems part I. Cross sectional comparison of methods to 
assess cartilage morphology, meniscal damage and bone marrow lesions on 
knee MRI: data from the osteoarthritis initiative. Osteoarthritis Cartilage 
2010;18(11):1393-401. 
506 Kornaat PR, Ceulemans RY, Kroon HM, et al. MRI assessment of 
knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)--inter-
observer and intra-observer reproducibility of a compartment-based scoring 
system. Skeletal Radiol. 2005;34(2):95-102. 
507 Felson DT, Lynch J, Guermazi A, et al. Comparison of BLOKS and 
WORMS scoring systems part II. Longitudinal assessment of knee MRIs for 
osteoarthritis and suggested approach based on their performance: data 
from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2010;18(11):1402-7. 
508 Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative 
whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee 
Score). Osteoarthritis Cartilage 2011;19(8):990-1002. 
509 Guermazi A, Roemer FW, Haugen IK, Crema MD, Hayashi D. MRI-
based semiquantitative scoring of joint pathology in osteoarthritis. Nat Rev 
Rheumatol 2013;9(4):236-51. 
510 OAI. https://oai.epi-ucsf.org/datarelease/operationsManuals.asp. 
Osteoarthritis Initiaitive. 
511 Buckland-Wright JC, Macfarlane DG, Lynch JA, Jasani MK, 
Bradshaw CR. Joint space width measures cartilage thickness in 
osteoarthritis of the knee: high resolution plain film and double contrast 
macroradiographic investigation. Ann. Rheum. Dis. 1995;54(4):263-8. 
512 Kothari M, Guermazi A, von Ingersleben G, et al. Fixed-flexion 
radiography of the knee provides reproducible joint space width 
measurements in osteoarthritis. Eur. Radiol. 2004;14(9):1568-73. 



- 401 - 

401 

 

513 Buckland-Wright JC, Bird CF, Ritter-Hrncirik CA, et al. X-ray 
technologists' reproducibility from automated measurements of the medial 
tibiofemoral joint space width in knee osteoarthritis for a multicenter, 
multinational clinical trial. J. Rheumatol. 2003;30(2):329-38. 
514 Nevitt MC, Peterfy C, Guermazi A, et al. Longitudinal performance 
evaluation and validation of fixed-flexion radiography of the knee for 
detection of joint space loss. Arthritis Rheum. 2007;56(5):1512-20. 
515 OAI Study Protocol. https://oai.epi-
ucsf.org/datarelease/docs/StudyDesignProtocol.pdf. 
516 Barr AJ, Dube B, Hensor EM, et al. The relationship between clinical 
characteristics, radiographic osteoarthritis and 3D bone area: data from the 
osteoarthritis initiative. Osteoarthritis Cartilage 2014;22(10):1703-9. 
517 Betancourt MC, Linden JC, Rivadeneira F, et al. Dual energy x-ray 
absorptiometry analysis contributes to the prediction of hip osteoarthritis 
progression. Arthritis Res Ther 2009;11(6):R162. 
518 Boegard T. Radiography and bone scintigraphy in osteoarthritis of the 
knee--comparison with MR imaging. Acta Radiol. Suppl. 1998;418:7-37. 
519 Boegard T, Rudling O, Dahlstrom J, Dirksen H, Petersson IF, 
Jonsson K. Bone scintigraphy in chronic knee pain: comparison with 
magnetic resonance imaging. Ann. Rheum. Dis. 1999;58(1):20-6. 
520 Temmerman OP, Raijmakers PG, Kloet R, Teule GJ, Heyligers IC, 
Lammertsma AA. In vivo measurements of blood flow and bone metabolism 
in osteoarthritis. Rheumatol. Int. 2013;33(4):959-63. 
521 Johnston JD, Masri BA, Wilson DR. Computed tomography 
topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic 
and normal knees: methodological development and preliminary findings. 
Osteoarthritis Cartilage 2009;17(10):1319-26. 
522 Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational 
studies in epidemiology: a proposal for reporting. Meta-analysis Of 
Observational Studies in Epidemiology (MOOSE) group. JAMA : the journal 
of the American Medical Association 2000;283(15):2008-12. 
523 van Tulder M, Furlan A, Bombardier C, Bouter L. Updated method 
guidelines for systematic reviews in the cochrane collaboration back review 
group. Spine 2003;28(12):1290-9. 
524 Lievense AM, Bierma-Zeinstra SM, Verhagen AP, van Baar ME, 
Verhaar JA, Koes BW. Influence of obesity on the development of 
osteoarthritis of the hip: a systematic review. Rheumatology (Oxford) 
2002;41(10):1155-62. 
525 Aitken D, Khan HI, Ding C, et al. Structural predictors of ten year knee 
cartilage volume loss. Arthritis Rheum. 2013;65:S97-S8. 
526 Knupp M, Pagenstert GI, Barg A, Bolliger L, Easley ME, Hintermann 
B. SPECT-CT compared with conventional imaging modalities for the 
assessment of the varus and valgus malaligned hindfoot. Journal of 
Orthopaedic Research 2009;27(11):1461-6. 
527 Koster IM, Oei EHG, Hensen JHJ, et al. Predictive factors for new 
onset or progression of knee osteoarthritis one year after trauma: MRI 
follow-up in general practice. European Radiology 2011;21(7):1509-16. 



- 402 - 

402 

 

528 McCauley TR, Kornaat PR, Jee WH. Central osteophytes in the knee: 
prevalence and association with cartilage defects on MR imaging. AJR. 
American Journal of Roentgenology 2001;176(2):359-64. 
529 Reichenbach S, Leunig M, Werlen S, et al. Association between cam-
type deformities and magnetic resonance imaging-detected structural hip 
damage: a cross-sectional study in young men. Arthritis Rheum. 
2011;63(12):4023-30. 
530 Sowers M, Karvonen-Gutierrez CA, Jacobson JA, Jiang Y, Yosef M. 
Associations of anatomical measures from MRI with radiographically defined 
knee osteoarthritis score, pain, and physical functioning. Journal of Bone 
and Joint Surgery - Series A 2011;93(3):241-51. 
531 Sowers MF, Hayes C, Jamadar D, et al. Magnetic resonance-
detected subchondral bone marrow and cartilage defect characteristics 
associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis 
Cartilage 2003;11(6):387-93. 
532 Chaganti RK, Parimi N, Lang T, et al. Bone mineral density and 
prevalent osteoarthritis of the hip in older men for the Osteoporotic Fractures 
in Men (MrOS) Study Group. Osteoporos. Int. 2010;21(8):1307-16. 
533 Akamatsu Y, Kobayashi H, Kusayama Y, Kumagai K, Mitsugi N, Saito 
T. Does subchondral sclerosis protect progression of joint space narrowing 
in patients with varus knee osteoarthritis? Osteoarthritis Cartilage 
2014;22:S362. 
534 Antoniades L, MacGregor AJ, Matson M, Spector TD. A cotwin 
control study of the relationship between hip osteoarthritis and bone mineral 
density. Arthritis Rheum. 2000;43(7):1450-5. 
535 Guymer E, Baranyay F, Wluka AE, et al. A study of the prevalence 
and associations of subchondral bone marrow lesions in the knees of 
healthy, middle-aged women. Osteoarthritis Cartilage 2007;15(12):1437-42. 
536 Mazzuca A, Brandt D, Schauwecker S, et al. Bone scintigraphy is not 
a better predictor of progression of knee osteoarthritis than Kellgren and 
Lawrence grade. J. Rheumatol. 2004;31(2):329-32. 
537 Mazzuca A, Brandt D, Schauwecker S, et al. Severity of joint pain and 
Kellgren-Lawrence grade at baseline are better predictors of joint space 
narrowing than bone scintigraphy in obese women with knee osteoarthritis. 
J. Rheumatol. 2005;32(8):1540-6. 
538 Nicholls AS, Kiran A, Pollard TC, et al. The association between hip 
morphology parameters and nineteen-year risk of end-stage osteoarthritis of 
the hip: a nested case-control study. Arthritis Rheum. 2011;63(11):3392-400. 
539 Okazaki N, Chiba K, Kidera K, Yonekura A, Osaki M. Relationship 
between subchondral bone cysts, the severity of knee osteoarthritis, and 
alignments of lower extremities. Osteoarthritis Cartilage 2014;22:S370-S1. 
540 Hochberg MC, Yip A, Favors K, Sorkin J, Martel-Pelletier J, Pelletier 
JP. Features assessed on magnetic resonance images improve prediction of 
total knee arthroplasty in subjects with symptomatic radiographic knee 
osteoarthritis: Data from the osteoarthritis initiative. Osteoarthritis Cartilage 
2014;22:S175. 
541 Liu L, Kaneko H, Sadatsuki R, et al. MRI-detected osteophyte is a 
predictor for receiving total knee arthroplasty in patients with end-stage knee 
osteoarthritis. Osteoarthritis Cartilage 2014;22:S470-S1. 



- 403 - 

403 

 

542 Neumann G, Mendicuti AD, Zou KH, et al. Prevalence of labral tears 
and cartilage loss in patients with mechanical symptoms of the hip: 
evaluation using MR arthrography. Osteoarthritis Cartilage 2007;15(8):909-
17. 
543 Ochiai N, Sasho T, Tahara M, et al. Objective assessments of medial 
osteoarthritic knee severity by MRI: new computer software to evaluate 
femoral condyle contours. International Orthopaedics 2010;34(6):811-7. 
544 Ratzlaff C, Russell R, Duryea J. Quantitatively-measured bone 
marrow lesions in the patellofemoral joint: Distribution and association with 
pain. Osteoarthritis Cartilage 2014;22:S247-S8. 
545 Driban JB, Price LL, Tassinari AM, Lo GH, McAlindon TE. Peri-
articular apparent bone volume fraction is associated with numerous patient 
characteristics in knees with osteoarthritis: Data from the osteoarthritis 
initiative. Arthritis Rheum. 2011;63(10 SUPPL. 1). 
546 Driban JB, Price LL, Tassinari AM, Lo GH, Schneider E, McAlindon 
TE. Trabecular morphology is associated with numerous patient 
characteristics in knees with osteoarthritis: Data from the osteoarthritis 
initiative (OAI). Osteoarthritis Cartilage 2011;19:s169. 
547 Dore D, Quinn S, Ding C, Winzenberg T, Jones G. Correlates of 
subchondral BMD: a cross-sectional study. J. Bone Miner. Res. 
2009;24(12):2007-15. 
548 Lo GH, Schneider E, Price L, et al. Periarticular bone density and 
trabecular morphology predict knee OA structural progression. Osteoarthritis 
Cartilage 2012;20:S76. 
549 Burnett WK, SA. McLennan, CE. Wheaton, D. Talmo, C. Hunter, DJ. 
Wilson, DR. Johnston, JD. Patella Bone density  is lower in knee 
osteoarthritis patients experiencing pain at rest. Osteoarthritis Cartilage 
2012;20(S200-S201). 
550 Kraus VB, McDaniel G, Worrell TW, et al. Association of bone 
scintigraphic abnormalities with knee malalignment and pain. Annals of the 
rheumatic diseases 2009;68(11):1673. 
551 Kraus VB, Worrell TW, Renner JB, Coleman RE, Pieper CF. High 
prevalence of contralateral ankle abnormalities in association with knee 
osteoarthritis and malalignment. Osteoarthritis and cartilage / OARS, 
Osteoarthritis Research Society 2013;21(11):1693. 
552 Macfarlane DG, Buckland-Wright JC, Lynch J, Fogelman L. A study of 
the early and late 99technetium scintigraphic images and their relationship to 
symptoms in osteoarthritis of the hands. Br. J. Rheumatol. 1993;32(11):977-
81. 
553 McCrae F, Shouls J, Dieppe P, Watt I. Scintigraphic assessment of 
osteoarthritis of the knee joint. Annals of the rheumatic diseases 
1992;51(8):938. 
554 Baranyay FJ, Wang Y, Wluka AE, et al. Association of bone marrow 
lesions with knee structures and risk factors for bone marrow lesions in the 
knees of clinically healthy, community-based adults. Semin. Arthritis Rheum. 
2007;37(2):112-8. 
555 Meredith DS, Losina E, Neumann G, Yoshioka H, Lang PK, Katz JN. 
Empirical evaluation of the inter-relationship of articular elements involved in 



- 404 - 

404 

 

the pathoanatomy of knee osteoarthritis using magnetic resonance imaging. 
BMC Musculoskeletal Disorders 2009;10:133. 
556 Dawson L, Bennell, K., Wluka, A., Wang, Y., Cicuttini, F. Hip bone 
marrow lesions in asymptomatic and osteoarthritic adults: Prevalence, risk 
factors and significance. Osteoarthritis and cartilage / OARS, Osteoarthritis 
Research Society 2013;21(Suppl):S241. 
557 Ai F, Yu C, Zhang W, Morelli JN, Kacher D, Li X. MR imaging of knee 
osteoarthritis and correlation of findings with reported patient pain. Journal of 
Huazhong University of Science and Technology - Medical Science 
2010;30(2):248-54. 
558 Bilgici A, Dogan C, Cil E, Sakarya S, Kuru O, Selcuk MB. 
Relationship between pain severity and magnetic resonance imaging 
features in patients with osteoarthritis of the Knee [Turkish]. Turkish Journal 
of Rheumatology 2010;25(4):184-90. 
559 Fernandez-Madrid F, Karvonen RL, Teitge RA, Miller PR, Negendank 
WG. MR features of osteoarthritis of the knee. Magn. Reson. Imaging 
1994;12(5):703-9. 
560 Frobell RB, Nevitt MC, Hudelmaier M, et al. Femorotibial subchondral 
bone area and regional cartilage thickness: a cross-sectional description in 
healthy reference cases and various radiographic stages of osteoarthritis in 
1,003 knees from the Osteoarthritis Initiative. Arthritis Care Res. 
2010;62(11):1612-23. 
561 Gosvig KK, Jacobsen S, Sonne-Holm S, Palm H, Troelsen A. 
Prevalence of malformations of the hip joint and their relationship to sex, 
groin pain, and risk of osteoarthritis: a population-based survey. J. Bone 
Joint Surg. Am. 2010;92(5):1162-9. 
562 Gudbergsen H, Lohmander LS, Jones G, et al. Correlations between 
radiographic assessments and MRI features of knee osteoarthritis - a cross-
sectional study. Osteoarthritis Cartilage 2013;21(4):535-43. 
563 Haugen IK, Boyesen P, Slatkowsky-Christensen B, Sesseng S, van 
der Heijde D, Kvien TK. Associations between MRI-defined synovitis, bone 
marrow lesions and structural features and measures of pain and physical 
function in hand osteoarthritis. Ann. Rheum. Dis. 2012;71(6):899-904. 
564 Haugen IK. BP, Slatkowsky-Christensen B., Sesseng S., van der 
Heijde D., Kiven TK. Associations between radiographic and clinical 
osteoarthritis features and mri-defined bone marrow lesions in the finger 
joints. Annals of the Rheumatic Diseases 2012;71(Suppl 3):299. 
565 Haugen IK, Boyesen P, Slatkowsky-Christensen B, et al. Comparison 
of features by MRI and radiographs of the interphalangeal finger joints in 
patients with hand osteoarthritis. Ann. Rheum. Dis. 2012;71(3):345-50. 
566 Hayashi D, Xu L, Roemer FW, et al. Detection of osteophytes and 
subchondral cysts in the knee with use of tomosynthesis. Radiology 
2012;263(1):206-15. 
567 Ip S, Sayre EC, Guermazi A, et al. Frequency of bone marrow lesions 
and association with pain severity: results from a population-based 
symptomatic knee cohort. J. Rheumatol. 2011;38(6):1079-85. 
568 Kalichman L, Zhang Y, Niu J, et al. The association between patellar 
alignment on magnetic resonance imaging and radiographic manifestations 
of knee osteoarthritis. Arthritis Research & Therapy 2007;9(2). 



- 405 - 

405 

 

569 Kalichman L, Zhang Y, Niu J, et al. The association between patellar 
alignment and patellofemoral joint osteoarthritis features - An MRI study. 
Rheumatology 2007;46(8):1303-8. 
570 Kim IJ, Kim DH, Jung JY, et al. Association between bone marrow 
lesions detected by magnetic resonance imaging and knee pain in 
community residents in Korea. Osteoarthritis Cartilage 2013;21(9):1207-13. 
571 Kornaat PR, Bloem JL, Ceulemans RY, et al. Osteoarthritis of the 
knee: association between clinical features and MR imaging findings. 
Radiology 2006;239(3):811-7. 
572 Kornaat PR, Watt I, Riyazi N, Kloppenburg M, Bloem JL. The 
relationship between the MRI features of mild osteoarthritis in the 
patellofemoral and tibiofemoral compartments of the knee. European 
Radiology 2005;15(8):1538-43. 
573 Kumar D, Wyatt CR, Lee S, et al. Association of cartilage defects, and 
other MRI findings with pain and function in individuals with mild-moderate 
radiographic hip osteoarthritis and controls. Osteoarthritis Cartilage 
2013;21(11):1685-92. 
574 Lo GH, Hunter DJ, Zhang Y, et al. Bone marrow lesions in the knee 
are associated with increased local bone density. Arthritis Rheum. 
2005;52(9):2814-21. 
575 Lo GH, McAlindon TE, Niu J, et al. Bone marrow lesions and joint 
effusion are strongly and independently associated with weight-bearing pain 
in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis 
Cartilage 2009;17(12):1562-9. 
576 Maksymowych WP, Cibere J, Loeuille D, et al. Preliminary validation 
of 2 magnetic resonance image scoring systems for osteoarthritis of the hip 
according to the OMERACT filter. J. Rheumatol. 2014;41(2):370-8. 
577 Ratzlaff C, Guermazi A, Collins J, et al. A rapid, novel method of 
volumetric assessment of MRI-detected subchondral bone marrow lesions in 
knee osteoarthritis. Osteoarthritis Cartilage 2013;21(6):806-14. 
578 Roemer FW, Guermazi A, Niu J, Zhang Y, Mohr A, Felson DT. 
Prevalence of magnetic resonance imaging-defined atrophic and 
hypertrophic phenotypes of knee osteoarthritis in a population-based cohort. 
Arthritis Rheum. 2012;64(2):429-37. 
579 Scher C, Craig J, Nelson F. Bone marrow edema in the knee in 
osteoarthrosis and association with total knee arthroplasty within a three-
year follow-up. Skeletal Radiology 2008;37(7):609-17. 
580 Sengupta M, Zhang YQ, Niu JB, et al. High signal in knee 
osteophytes is not associated with knee pain. Osteoarthritis Cartilage 
2006;14(5):413-7. 
581 Stefanik J, Gross K, Felson D, et al. Does medial patellofemoral 
osteoarthritis matter? the relation of mri-detected structural damage in the 
medial and lateral patellofemoral joint to knee pain: the most and 
framingham osteoarthritis studies. Osteoarthritis Cartilage 2014;22:S54-S5. 
582 Zhai G, Blizzard L, Srikanth V, et al. Correlates of knee pain in older 
adults: Tasmanian Older Adult Cohort Study. Arthritis Rheum. 
2006;55(2):264-71. 
583 Agricola R, Reijman M, Bierma-Zeinstra SM, Verhaar JA, Weinans H, 
Waarsing JH. Total hip replacement but not clinical osteoarthritis can be 



- 406 - 

406 

 

predicted by the shape of the hip: a prospective cohort study (CHECK). 
Osteoarthritis Cartilage 2013;21(4):559-64. 
584 Carnes J, Stannus O, Cicuttini F, Ding C, Jones G. Knee cartilage 
defects in a sample of older adults: natural history, clinical significance and 
factors influencing change over 2.9 years. Osteoarthritis Cartilage 
2012;20(12):1541-7. 
585 Carrino JA, Blum J, Parellada JA, Schweitzer ME, Morrison WB. MRI 
of bone marrow edema-like signal in the pathogenesis of subchondral cysts. 
Osteoarthritis Cartilage 2006;14(10):1081-5. 
586 Crema MD, Felson DT, Roemer FW, et al. Prevalent cartilage 
damage and cartilage loss over time are associated with incident bone 
marrow lesions in the tibiofemoral compartments: the MOST study. 
Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 
2013;21(2):306-13. 
587 Crema MD, Cibere J, Sayre EC, et al. The relationship between 
subchondral sclerosis detected with MRI and cartilage loss in a cohort of 
subjects with knee pain: the knee osteoarthritis progression (KOAP) study. 
Osteoarthritis Cartilage 2014;22(4):540-6. 
588 Davies-Tuck ML, Wluka AE, Wang Y, et al. The natural history of 
cartilage defects in people with knee osteoarthritis. Osteoarthritis Cartilage 
2008;16(3):337-42. 
589 de_Lange BJ, Ioan-Facsinay A, Bijsterbosch J, et al. The 
patellofemoral and femorotibial joints are related based on patterns of MRI 
features and their association with radiologic progression. Osteoarthritis 
Cartilage 2014;22:S254-S5. 
590 Dore D, Martens A, Quinn S, et al. Bone marrow lesions predict site-
specific cartilage defect development and volume loss: a prospective study 
in older adults. Arthritis Res Ther 2010;12(6):R222. 
591 Driban JB, Lo GH, Lee JY, et al. Quantitative bone marrow lesion size 
in osteoarthritic knees correlates with cartilage damage and predicts 
longitudinal cartilage loss. BMC Musculoskelet Disord 2011;12:217. 
592 Driban JB, Pang J, Miller E, et al. Quantitative bone marrow lesion 
changes relate to cartilage parameter changes. Osteoarthritis Cartilage 
2012;20:S217-S8. 
593 Haugen IK. KE, Slatkowsky-Christensen B., Sesseng S., Kiven TK. 
Predictive value of mri-defined synovitis, bone marrow lesions and central 
erosions on pain and physical function in hand osteoarthritis. Osteoarthritis 
Cartilage 2014;22:S386. 
594 Hernandez-Molina G, Guermazi A, Niu J, et al. Central bone marrow 
lesions in symptomatic knee osteoarthritis and their relationship to anterior 
cruciate ligament tears and cartilage loss. Arthritis Rheum. 2008;58(1):130-
6. 
595 Hudelmaier M, Wirth W, Nevitt M, Eckstein F. Longitudinal rates of 
change in subchondral bone size in healthy knees and knees with 
radiographic osteoarthritis. Osteoarthritis Cartilage 2013;21(April 
Suppl):S242. 
596 Hunter DJ, Zhang Y, Niu J, et al. Increase in bone marrow lesions 
associated with cartilage loss: a longitudinal magnetic resonance imaging 
study of knee osteoarthritis. Arthritis Rheum. 2006;54(5):1529-35. 



- 407 - 

407 

 

597 Kubota M, Ishijima M, Kurosawa H, et al. A longitudinal study of the 
relationship between the status of bone marrow abnormalities and 
progression of knee osteoarthritis. Journal of Orthopaedic Science 
2010;15(5):641-6. 
598 Parsons C. EMH, Bruye`re O., Belissa P., Genant H.K., Guermazi A., 
Roemer F., Zaim S., Reginster J.-Y., Dennison E.M., Cooper C. Impact of 
bone marrow lesion on the progression of knee osteoarthritis in the sekoia 
study. Rheumatology 2014;53(Suupl 1):i130. 
599 Raynauld JP, Martel-Pelletier J, Berthiaume MJ, et al. Correlation 
between bone lesion changes and cartilage volume loss in patients with 
osteoarthritis of the knee as assessed by quantitative magnetic resonance 
imaging over a 24-month period. Annals of the Rheumatic Diseases 
2008;67(5):683-8. 
600 Tanamas SK, Wluka AE, Pelletier JP, et al. Bone marrow lesions in 
people with knee osteoarthritis predict progression of disease and joint 
replacement: a longitudinal study. Rheumatology 2010;49(12):2413-9. 
601 Tanamas SK, Wluka AE, Pelletier JP, et al. The association between 
subchondral bone cysts and tibial cartilage volume and risk of joint 
replacement in people with knee osteoarthritis: a longitudinal study. Arthritis 
Res Ther 2010;12(2):R58. 
602 Wildi LM, Raynauld JP, Martel-Pelletier J, Abram F, Dorais M, 
Pelletier JP. Relationship between bone marrow lesions, cartilage loss and 
pain in knee osteoarthritis: results from a randomised controlled clinical trial 
using MRI. Ann. Rheum. Dis. 2010;69(12):2118-24. 
603 Barr RJ, Gregory JS, Reid DM, et al. Predicting OA progression to 
total hip replacement: can we do better than risk factors alone using active 
shape modelling as an imaging biomarker? Rheumatology (Oxford) 
2012;51(3):562-70. 
604 Bowes MA, Wolstenholme CB, Hopkinson D, Vincent GR, Conaghan 
PG. Changes in subchondral bone provide a sensitive marker for 
osteoarthritis and its progression: Results from a large osteoarthritis initiative 
cohort. Arthritis Rheum. 2012;64. 
605 Hunter DJ, Bowes M, Boudreau RM, Hannon MJ, Kwohx KC. Does 
bone shape predict the development of incident knee oa? Osteoarthritis 
Cartilage 2013;21. 
606 Javaid MK, Kiran A, Guermazi A, et al. Individual magnetic resonance 
imaging and radiographic features of knee osteoarthritis in subjects with 
unilateral knee pain: The health, aging, and body composition study. Arthritis 
Rheum. 2012;64(10):3246-55. 
607 Javaid MK, Lynch JA, Tolstykh I, et al. Pre-radiographic MRI findings 
are associated with onset of knee symptoms: the most study. Osteoarthritis 
Cartilage 2010;18(3):323-8. 
608 Ratzlaff C. RLR, K. Kwoh, M. Hannon, J. Grago, A. Guermazi, F. 
Roemer, M. Jarraya, D. Hunter, J. Duryea. Quantitative MRI measures of 
bone marrow lesion volume predict total knee replacement. Osteoarthritis 
Cartilage 2014;22:S238-S9. 
609 Zhao J, Li X, Bolbos RI, Link TM, Majumdar S. Longitudinal 
assessment of bone marrow edema-like lesions and cartilage degeneration 



- 408 - 

408 

 

in osteoarthritis using 3 T MR T1rho quantification. Skeletal Radiol. 
2010;39(6):523-31. 
610 Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong 
le T. Characterization of articular cartilage and subchondral bone changes in 
the rat anterior cruciate ligament transection and meniscectomized models 
of osteoarthritis. Bone 2006;38(2):234-43. 
611 Bettica P, Cline G, Hart DJ, Meyer J, Spector TD. Evidence for 
increased bone resorption in patients with progressive knee osteoarthritis: 
longitudinal results from the Chingford study. Arthritis Rheum. 
2002;46(12):3178-84. 
612 Roemer F, Felson DT, Wang K, et al. Co-localization of non-
cartilaginous articular pathology and cartilage damage in regard to 
subsequent cartilage loss in subjects with or at risk for knee osteoarthritis - 
The most study. Annals of Rheumatic Diseases 2013;72(6):942-8. 
613 Henriksen M, Christensen R, Hunter DJ, et al. Structural changes in 
the knee during weight loss maintenance after a significant weight loss in 
obese patients with osteoarthritis: a report of secondary outcome analyses 
from a randomized controlled trial. Osteoarthritis Cartilage 2014;22(5):639-
46. 
614 Kwoh CK, Roemer FW, Hannon MJ, et al. Effect of oral glucosamine 
on joint structure in individuals with chronic knee pain: a randomized, 
placebo-controlled clinical trial. Arthritis & rheumatology 2014;66(4):930-9. 
615 Bowes M, Lohmander S, Wolstenholme C, Vincent G, Frobell R. 
Significant change of bone shape occur over the first five years after acl 
injury. Osteoarthritis Cartilage 2013;21(April Suppl):S220. 
616 Barr A DB, Hensor E, Kingsbury S, Peat G, Sharples L, Bowes M, 
Conaghan P.G. . Three-Dimensional Magnetic Resonance Imaging Knee 
Bone Shape Predicts Total Knee Replacement: Data from the Osteoarthritis 
Initiative. Annals of Rheumatic Diseases 2015;74(Suppl 2):185. 
617 Bobinac D, Spanjol J, Zoricic S, Maric I. Changes in articular cartilage 
and subchondral bone histomorphometry in osteoarthritic knee joints in 
humans. Bone 2003;32(3):284-90. 
618 Ding M, Odgaard A, Hvid I. Changes in the three-dimensional 
microstructure of human tibial cancellous bone in early osteoarthritis. J. 
Bone Joint Surg. Br. 2003;85(6):906-12. 
619 Phan CM, Link TM, Blumenkrantz G, et al. MR imaging findings in the 
follow-up of patients with different stages of knee osteoarthritis and the 
correlation with clinical symptoms. European Radiology 2006;16(3):608-18. 
620 Hunter DJ, Beavers D, Eckstein F, et al. The intensive diet and 
exercise for arthritis trial (IDEA): 18-month radiographic and MRI outcomes. 
Arthritis Rheum. 2012;64(Suppl S10):S1070. 
621 Iagnocco A, Ceccarelli F, Perricone C, Valesini G. The role of 
ultrasound in rheumatology. Semin. Ultrasound. CT MR 2011;32(2):66-73. 
622 Sharma L, Nevitt M, Hochberg M, et al. Clinical significance of 
worsening versus stable preradiographic MRI lesions in a cohort study of 
persons at higher risk for knee osteoarthritis. Ann. Rheum. Dis. 2015. 
623 Wluka AE, Teichtahl AJ, Maulana R, et al. Bone marrow lesions can 
be subtyped into groups with different clinical outcomes using two magnetic 
resonance imaging (MRI) sequences. Arthritis Res Ther 2015;17:270. 



- 409 - 

409 

 

624 Wang J, Antony B, Zhu Z, et al. Association of patellar bone marrow 
lesions with knee pain, patellar cartilage defect and patellar cartilage volume 
loss in older adults: a cohort study. Osteoarthritis Cartilage 2015;23(8):1330-
6. 
625 Hunter D, Nevitt M, Lynch J, et al. Longitudinal validation of 
periarticular bone area and 3D shape as biomarkers for knee OA 
progression? Data from the FNIH OA Biomarkers Consortium. Ann. Rheum. 
Dis. 2015. 
626 Stefanik JJ, Gross KD, Guermazi A, et al. The relation of MRI-
detected structural damage in the medial and lateral patellofemoral joint to 
knee pain: the Multicenter and Framingham Osteoarthritis Studies. 
Osteoarthritis Cartilage 2015;23(4):565-70. 
627 Agricola R, Leyland KM, Bierma-Zeinstra SM, et al. Validation of 
statistical shape modelling to predict hip osteoarthritis in females: data from 
two prospective cohort studies (Cohort Hip and Cohort Knee and Chingford). 
Rheumatology (Oxford) 2015. 
628 Hafezi-Nejad N, Zikria B, Eng J, Carrino JA, Demehri S. Predictive 
value of semi-quantitative MRI-based scoring systems for future knee 
replacement: data from the osteoarthritis initiative. Skeletal Radiol. 2015. 
629 Cootes TF EG, Taylor CJ. Active Appearance Models. IEEE Trans 
Patt Anal Mach Intell 2001;23(6):681-85. 
630 Williams TG VG, Bowes M, et al. Automatic segmentation of bones 
and inter-image anatomical correspondence by volumetric statistical 
modelling of knee MRI. Proceedings of the 2010 IEEE international 
conference on Biomedical imaging: from nano to Macro. 2010:Rotterdam, 
Netherlands: IEEE Press, 2010:432-35. 
631 Karsdal MA, Bay-Jensen AC, Lories RJ, et al. The coupling of bone 
and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives 
and anabolics as potential treatments? Annals of the Rheumatic Diseases 
2014;73(2):336-48. 
632 Hunter DJ, Bowes MA, Eaton CB, et al. Can cartilage loss be 
detected in knee osteoarthritis (OA) patients with 3-6 months' observation 
using advanced image analysis of 3T MRI? Osteoarthritis Cartilage 
2010;18(5):677-83. 
633 Duryea J, Li J, Peterfy CG, Gordon C, Genant HK. Trainable rule-
based algorithm for the measurement of joint space width in digital 
radiographic images of the knee. Med. Phys. 2000;27(3):580-91. 
634 OAI imaging assessment. https://oai.epi-
ucsf.org/datarelease/docs/ImageAssessments/ImageAssessmentDataOvervi
ew.pdf. 
635 Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new 
insights. Part 1: the disease and its risk factors. Annals of Internal Medicine 
2000;133(8):635-46. 
636 Zhang W, McWilliams DF, Ingham SL, et al. Nottingham knee 
osteoarthritis risk prediction models. Ann. Rheum. Dis. 2011;70(9):1599-604. 
637 Shrier I, Platt RW. Reducing bias through directed acyclic graphs. 
BMC medical research methodology 2008;8:70. 



- 410 - 

410 

 

638 Russo CR, Lauretani F, Bandinelli S, et al. Aging bone in men and 
women: beyond changes in bone mineral density. Osteoporosis International 
2003;14(7):531-8. 
639 Ding C, Cicuttini F, Scott F, Cooley H, Jones G. Association between 
age and knee structural change: a cross sectional MRI based study. Annals 
of the Rheumatic Diseases 2005;64(4):549-55. 
640 Felson DT, Neogi T. Osteoarthritis: is it a disease of cartilage or of 
bone? Arthritis Rheum. 2004;50(2):341-4. 
641 Schneider E, Nessaiver M. The Osteoarthritis Initiative (OAI) 
magnetic resonance imaging quality assurance update. Osteoarthritis 
Cartilage 2013;21(1):110-6. 
642 Price RR, Axel L, Morgan T, et al. Quality assurance methods and 
phantoms for magnetic resonance imaging: report of AAPM nuclear 
magnetic resonance Task Group No. 1. Med. Phys. 1990;17(2):287-95. 
643 Solloway S, Hutchinson CE, Waterton JC, Taylor CJ. The use of 
active shape models for making thickness measurements of articular 
cartilage from MR images. Magn. Reson. Med. 1997;37(6):943-52. 
644 Eckstein F, Hudelmaier M, Wirth W, et al. Double echo steady state 
magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot 
study for the Osteoarthritis Initiative. Ann. Rheum. Dis. 2006;65(4):433-41. 
645 Rosenbaum PR, Rubin DB. The Central Role of the Propensity Score 
in Observational Studies for Causal Effects. Biometrika 1983;70(1):41-55. 
646 Epstein MP, Duncan R, Broadaway KA, He M, Allen AS, Satten GA. 
Stratification-score matching improves correction for confounding by 
population stratification in case-control association studies. Genet. 
Epidemiol. 2012;36(3):195-205. 
647 Eckstein F, Kwoh CK, Boudreau RM, et al. Quantitative MRI 
measures of cartilage predict knee replacement: a case-control study from 
the Osteoarthritis Initiative. Ann. Rheum. Dis. 2013;72(5):707-14. 
648 Austin PC, Grootendorst P, Anderson GM. A comparison of the ability 
of different propensity score models to balance measured variables between 
treated and untreated subjects: a Monte Carlo study. Stat. Med. 
2007;26(4):734-53. 
649 Austin PC. An Introduction to Propensity Score Methods for Reducing 
the Effects of Confounding in Observational Studies. Multivariate Behav Res 
2011;46(3):399-424. 
650 Pelletier JP, Cooper C, Peterfy C, et al. What is the predictive value of 
MRI for the occurrence of knee replacement surgery in knee osteoarthritis? 
Annals of the Rheumatic Diseases 2013;72(10):1594-604. 
651 Hunter DJ, Lohmander LS, Makovey J, et al. The effect of anterior 
cruciate ligament injury on bone curvature: exploratory analysis in the 
KANON trial. Osteoarthritis Cartilage 2014;22(7):959-68. 
652 Bowes MA, Wolstenholme CB, Souza KD, Vincent GR, Conaghan P. 
The responsiveness of 3D bone shape compared with radiographic joint 
space width and MR cartilage thickness. Osteoarthritis Cartilage 
2013;21:S177-S8. 
653 D'Agostino MA, Boers M, Kirwan J, et al. Updating the OMERACT 
filter: implications for imaging and soluble biomarkers. J. Rheumatol. 
2014;41(5):1016-24. 



- 411 - 

411 

 

654 Essebag V, Platt RW, Abrahamowicz M, Pilote L. Comparison of 
nested case-control and survival analysis methodologies for analysis of time-
dependent exposure. BMC medical research methodology 2005;5(1):5. 
655 Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. 
Bull. World Health Organ. 2003;81(9):646-56. 
656 Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: 
a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697-707. 
657 Ingham SL, Zhang W, Doherty SA, McWilliams DF, Muir KR, Doherty 
M. Incident knee pain in the Nottingham community: a 12-year retrospective 
cohort study. Osteoarthritis Cartilage 2011;19(7):847-52. 
658 Barr AJ, Campbell TM, Hopkinson D, Kingsbury SR, Bowes MA, 
Conaghan PG. A systematic review of the relationship between subchondral 
bone features, pain and structural pathology in peripheral joint osteoarthritis. 
Arthritis Res Ther 2015;17(1):228. 
659 Callaghan MJ, Parkes MJ, Hutchinson CE, et al. A randomised trial of 
a brace for patellofemoral osteoarthritis targeting knee pain and bone 
marrow lesions. Ann. Rheum. Dis. 2015;74(6):1164-70. 
660 Lo GH, McAlindon TE, Hawker GA, et al. Symptom Assessment in 
Knee Osteoarthritis Needs to Account for Physical Activity Level. Arthritis & 
rheumatology 2015;67(11):2897-904. 
661 Holla JF, van der Leeden M, Knol DL, et al. Predictors and outcome 
of pain-related avoidance of activities in persons with early symptomatic 
knee osteoarthritis: a five-year followup study. Arthritis Care Res (Hoboken) 
2015;67(1):48-57. 
662 Reid KF, Price LL, Harvey WF, et al. Muscle Power Is an Independent 
Determinant of Pain and Quality of Life in Knee Osteoarthritis. Arthritis & 
rheumatology 2015;67(12):3166-73. 
663 Oiestad BE, Juhl CB, Eitzen I, Thorlund JB. Knee extensor muscle 
weakness is a risk factor for development of knee osteoarthritis. A 
systematic review and meta-analysis. Osteoarthritis Cartilage 
2015;23(2):171-7. 
664 Bowes MA, Vincent GR, Wolstenholme CB, Conaghan PG. A novel 
method for bone area measurement provides new insights into osteoarthritis 
and its progression. Ann. Rheum. Dis. 2015;74(3):519-25. 
665 Eckstein F, Collins JE, Nevitt MC, et al. Cartilage thickness change as 
an imaging biomarker of knee osteoarthritis progression - data from the fnih 
OA biomarkers consortium. Arthritis & rheumatology 2015. 
666 Zhang KY, Kedgley AE, Donoghue CR, Rueckert D, Bull AM. The 
relationship between lateral meniscus shape and joint contact parameters in 
the knee: a study using data from the Osteoarthritis Initiative. Arthritis Res 
Ther 2014;16(1):R27. 
667 Zhang KY, Wiktorowicz-Conroy A, Hutchinson JR, et al. 3D 
Morphometric and posture study of felid scapulae using statistical shape 
modelling. PLoS One 2012;7(4):e34619. 
668 Gomes LR, Gomes M, Jung B, et al. Diagnostic index of three-
dimensional osteoarthritic changes in temporomandibular joint condylar 
morphology. J Med Imaging (Bellingham) 2015;2(3):034501. 



- 412 - 

412 

 

669 Turmezei TD, Treece GM, Gee AH, Fotiadou AF, Poole KE. 
Quantitative 3D analysis of bone in hip osteoarthritis using clinical computed 
tomography. Eur. Radiol. 2015. 
670 Pedoia V, Lansdown D, Zaid M, Jung P, Ma C, Li X. Longitudinal 
analysis of the shape changes of the knee in patients with anterior cruciate 
ligament injuries. Osteoarthritis Cartilage 2014;22:S248-S9. 
671 Bowes MA, McLure SW, Wolstenholme CB, et al. Osteoarthritic bone 
marrow lesions almost exclusively colocate with denuded cartilage: a 3D 
study using data from the Osteoarthritis Initiative. Ann. Rheum. Dis. 2015. 
672 Patel KV, Dansie EJ, Turk DC. Impact of chronic musculoskeletal 
pain on objectively measured daily physical activity: a review of current 
findings. Pain Manag 2013;3(6):467-74. 
673 Beckwee D, Vaes P, Shahabpour M, Muyldermans R, Rommers N, 
Bautmans I. The Influence of Joint Loading on Bone Marrow Lesions in the 
Knee: A Systematic Review With Meta-analysis. Am. J. Sports Med. 
2015;43(12):3093-107. 
674 Bedson J, Croft PR. The discordance between clinical and 
radiographic knee osteoarthritis: a systematic search and summary of the 
literature. BMC Musculoskelet Disord 2008;9:116. 
675 Maillefert JF, Gueguen A, Nguyen M, et al. Relevant change in 
radiological progression in patients with hip osteoarthritis. I. Determination 
using predictive validity for total hip arthroplasty. Rheumatology (Oxford) 
2002;41(2):142-7. 
676 Bingham CO, 3rd, Buckland-Wright JC, Garnero P, et al. Risedronate 
decreases biochemical markers of cartilage degradation but does not 
decrease symptoms or slow radiographic progression in patients with medial 
compartment osteoarthritis of the knee: results of the two-year multinational 
knee osteoarthritis structural arthritis study. Arthritis Rheum. 
2006;54(11):3494-507. 
677 Varenna M, Zucchi F, Failoni S, Becciolini A, Berruto M. Intravenous 
neridronate in the treatment of acute painful knee osteoarthritis: a 
randomized controlled study. Rheumatology (Oxford) 2015;54(10):1826-32. 
678 Kerkhof HJ, Bierma-Zeinstra SM, Arden NK, et al. Prediction model 
for knee osteoarthritis incidence, including clinical, genetic and biochemical 
risk factors. Ann. Rheum. Dis. 2014;73(12):2116-21. 
679 Roemer FW, Eckstein F, Hayashi D, Guermazi A. The role of imaging 
in osteoarthritis. Best Pract Res Clin Rheumatol 2014;28(1):31-60. 
680 Hunter DJ, Arden N, Conaghan PG, et al. Definition of osteoarthritis 
on MRI: Results of a Delphi exercise. Osteoarthritis Cartilage 
2011;19(8):963-9. 
681 Turmezei TD, Fotiadou A, Lomas DJ, Hopper MA, Poole KE. A new 
CT grading system for hip osteoarthritis. Osteoarthritis Cartilage 
2014;22(10):1360-6. 
682 Turmezei T.D. DJL, M.A. Hopper, K.E. Poole. 3D FEATURE 
SEVERITY MAPPING OF THE HIP WITH COMPUTED TOMOGRAPHY 
REVEALS PATTERNS OF RADIOLOGICAL OSTEOARTHRITIS. 
Osteoarthritis Cartilage 2013;21:S189. 



- 413 - 

413 

 

683 Turmezei TD, Lomas DJ, Hopper MA, Poole KE. Severity mapping of 
the proximal femur: a new method for assessing hip osteoarthritis with 
computed tomography. Osteoarthritis Cartilage 2014;22(10):1488-98. 
684 van Bosse H, Wedge JH, Babyn P. How are dysplastic hips different? 
A three-dimensional CT study. Clin Orthop Relat Res 2015;473(5):1712-23. 
685 Popov I, Onuh SO. Reverse engineering of pelvic bone for hip joint 
replacement. J. Med. Eng. Technol. 2009;33(6):454-9. 
686 Xuyi W, Jianping P, Junfeng Z, Chao S, Yimin C, Xiaodong C. 
Application of three-dimensional computerised tomography reconstruction 
and image processing technology in individual operation design of 
developmental dysplasia of the hip patients. Int. Orthop. 2015. 
687 Link TM, Schwaiger BJ, Zhang AL. Regional Articular Cartilage 
Abnormalities of the Hip. AJR. Am. J. Roentgenol. 2015;205(3):502-12. 
688 Kuhn AW, Ross JR, Bedi A. Three-dimensional Imaging and 
Computer Navigation in Planning for Hip Preservation Surgery. Sports Med 
Arthrosc 2015;23(4):e31-8. 
689 Relvas C, Ramos A, Completo A, Simoes JA. The influence of data 
shape acquisition process and geometric accuracy of the mandible for 
numerical simulation. Comput Methods Biomech Biomed Engin 
2011;14(8):721-8. 
690 Park HJ, Lee SY, Rho MH, Kwon HJ, Kim MS, Chung EC. The 
usefulness of the three-dimensional enhanced T1 high-resolution isotropic 
volume excitation MR in the evaluation of shoulder pathology: comparison 
with two-dimensional enhanced T1 fat saturation MR. Br. J. Radiol. 
2015;88(1054):20140830. 
691 Shahabpour M, Staelens B, Van Overstraeten L, et al. Advanced 
imaging of the scapholunate ligamentous complex. Skeletal Radiol. 
2015;44(12):1709-25. 
692 Jamal B, Pillai A, Fogg Q, Kumar S. The metatarsosesamoid joint: an 
in vitro 3D quantitative assessment. Foot Ankle Surg 2015;21(1):22-5. 
693 Stern D, Likar B, Pernus F, Vrtovec T. Parametric modelling and 
segmentation of vertebral bodies in 3D CT and MR spine images. Phys. 
Med. Biol. 2011;56(23):7505-22. 
694 Stern D, Njagulj V, Likar B, Pernus F, Vrtovec T. Quantitative 
vertebral morphometry based on parametric modeling of vertebral bodies in 
3D. Osteoporos. Int. 2013;24(4):1357-68. 
695 Aiyangar AK, Zheng L, Tashman S, Anderst WJ, Zhang X. Capturing 
three-dimensional in vivo lumbar intervertebral joint kinematics using 
dynamic stereo-X-ray imaging. J. Biomech. Eng. 2014;136(1):011004. 
696 Svedmark P, Berg S, Noz ME, et al. A New CT Method for Assessing 
3D Movements in Lumbar Facet Joints and Vertebrae in Patients before and 
after TDR. Biomed Res Int 2015;2015:260703. 
 

 

 

 



- 414 - 

414 

 



- 415 - 

415 

 

 


