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Abstract

Climate change, national and international targets and a possible impending fuel

scarcity is driving the need for a clean, cheap and sustainable energy source. Al-

though onshore wind is currently the most economically viable source of renewable

energy, high failure rates often occurring many years prior to their design life, are

increasing the cost through additional maintenance and downtime. The gearbox, and

in particular the bearings within the gearbox are the components responsible for the

largest proportion of downtime. Field studies have shown damage to the inner race of

the planetary support bearings found in the epicyclic stage of the gearbox is restricted

to an arc of approximately 40° centered on the point of maximum load. Engineers at

Ricardo have designed an actuation system to overcome this problem which allows the

raceway to be rotated periodically thus distributing damage and increasing bearing

life.

The monitoring of planetary support bearings typically found in the epicyclic stage

of wind turbine gearboxes has been investigated in this thesis using acoustic emission

technology due to its reported increase in sensitivity in detecting damage at low speeds

compared to vibration analysis in addition to its ability to locate damage. Primarily,

accelerated life tests were performed on a rolling element bearing seeded with a defect

mounted in a bespoke full scale test rig designed to mimic loading conditions experi-

enced by the planetary support bearings. In addition, data was recorded and analysed

from a split bearing test rig and the high speed shaft bearing of a recommissioned

600kW wind turbine gearbox.

Initial experiments considered the influence of the lubrication regime on the mea-

sured acoustic emission signal. It was found that as the oil film reduces, asperity

contact, typical of mixed or boundary lubrication, manifests itself as high amplitude

transient events. Typical measures of bearing health in the time domain, such as peak

values or kurtosis, become unreliable and demonstrates a need for a novel approach.

Previous investigations into the use of acoustic emission for the purpose of bearing

condition monitoring has focused on instances where full separation between bearing

components occurred whereas this work considers a mixed lubrication regime. To over-

come the drawbacks of the traditional measures, this work has investigated a process

employing wavelet packet decomposition, autocorrelation and cepstrum to reduce the



noise and boost the periodicity of a signal from a defected bearing. Outlier analysis

was shown to be able to determine the presence of a seeded defect and indicate which

bearing component is defected. Such approach was shown to provide a more robust

measure than time domain methods. In contrast, this approach was compared to one

employing time domain measures for a fully lubricated split bearing. In this case, a

time domain approach was more successful at determining the presence of damage

than the approach taken for the partially lubricated bearing.

An attempt was made to improve the localisation of defects on a bearing which had,

until now, relied on analytical time-of-flight methods. In this work artificial sources,

rather than those resulting from a rolling element impinging on a defect, were generated

by a standardised pencil lead break and used as training data for two methods namely

Delta T mapping and neural networks. The neural networks in particular were shown

to reduced the average error from 42mm to 17mm however given the time consuming

nature of generating the training data a decision must be made regarding the relative

importance of accuracy and ease of implementation.
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Chapter 1

Introduction

1.1 Background

By the end of 2011, global installations of wind turbines had reached a total capacity

of 238GW [1] representing an annual market growth of 20% over the previous year.

Despite the fact that annual growth over the prior ten years averaged 28% and pro-

jected annual growth in the period 2012-2016 is expected to fall further to 16% [1],

the wind industry continues to be a growing sector amidst a global economic crisis as

shown in Figure 1.1. Such growth can be attributed to an increase in global demand

for electricity, an impending scarcity of fossil fuels, environmental concern, regional

targets for renewables production, renewed reservations about the safety of nuclear

power and most significantly to investors: falling costs and increased revenue.

Estimates have suggested the global demand for energy in 2040 is likely to be

30% higher than in 2010 [2]. Any increases in efficiency and investment in energy

efficient equipment will be more than offset by population growth, rising disposable

incomes and a population shift towards warmer climates resulting in an increased

use of cooling equipment [3]. Such increase in demand is likely to coincidence with

peak oil and peak gas, although when this is expected to occur is the source of much

debate and uncertainty. Some studies believe oil production could peak before 2030

[4] whereas others suggest global demand will continue to be met well into the 21st

century [5, 6]. Mohr investigated a number of possible scenarios and reported that

natural gas production will peak between 2025 and 2066 [7]. Despite the lack of
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Figure 1.1: Global Cumulative Installed Wind Capacity (1996-2011) [1]

consensus regarding when peak oil and gas will occur, there is a clear agreement that

resources are finite. This has led to a number of countries and regions imposing

mandatory renewable energy targets (MRETs).

The 2009 European Union (EU) Renewables Directive requires 20% of the EU

member states’ and 15% of the UK’s gross energy consumption to be produced from

renewable sources by 2020 [8]. This would require the total renewable capacity in the

UK to increase from 6.45GW as it stood at the end of 2011 [9] to roughly 33GW: some

35-45% of the UK’s total electricity production. The vast majority of such an increase

would be acheived through the installation of onshore and offshore wind. Similar

MRETs have been implemented in, amongst other countries, Australia [10], Japan

[11] and certain states in the USA [12]. The likelihood of these targets being met is

somewhat dependent upon the cost of wind energy in the coming years.

Between the early 1980s and the early 2000s, the capital cost of wind energy de-

clined significantly. The average capital costs in the United States and Denmark in

2004 were approximately 65% and 55% lower than costs during the early 1980s re-

spectively [13, 14]. The combination of falling capital costs and an increase in turbine

performance resulted in a dramatic reduction of the levelised cost of energy (LCOE)

over the same period. The LCOE, usually measured in cents/kWh, is defined as the

cost required for a project to break even over its lifetime and therefore includes the

initial capital, cost of operation and maintenance and fuel in addition to discount

rates. A report published by the Danish Energy Agency (DEA) estimates the LCOE

of onshore wind had fallen by a factor of four by the late 1990s [15]. With the ex-
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ception of a period between 2004 and 2009 during which an increase in cost occured

due to turbine upscaling and increases in material prices, energy prices and labour

[16], the downward trend has since continued and is expected to fall further. Lantz

et al [17] collated a number of recent studies covering 18 possible scenarios estimating

cost reductions through to 2030. Each scenario is shown in Figure 1.2 where each line

represents an estimate of the LCOE of wind energy over time. All but one scenario

estimated a decrease to less than 88% of the LCOE in 2010, the majority of which

estimating a reduction between 20 and 30%. A number of factors, including man-

ufacturing improvements, reduced component loading and cost effective scaling, will

determine whether such reductions are achievable.

Figure 1.2: Estimated Wind LCOE Projections [17]

Capital expenditure dominates the overall cost of both onshore and offshore wind

but operation and maintenance (O&M) costs are not insignificant and are likely to

influence future investment. It has been reported that O&M costs in the UK account

for approximately 15% of the LCOE for both onshore and offshore wind [18] and 10%

in the US [19]. However this is subject to a high degree of uncertainty, particularly for

offshore wind since there are few large offshore wind farms that have been in operation

for a significant period of time [20]. Large maintenance tasks requiring access to the

nacelle of the turbine, such as replacing a gearbox, are both time consuming and

expensive onshore but the cost is much higher in hostile offshore environments. The

Energy Centre of the Netherlands (ECN) reports that major lifting operations can

increase cost up to five to ten times when performed offshore compared to onshore

[20]. There is therefore a compound effect of these costs plus the additional downtime
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due to reduced accessibility which can be as low as 15% in the most hostile offshore

environments. Figure 1.3 shows the LCOE for a range of renewable and conventional

energy sources taken from a report published by the Fraunhofer Institute [21]. It can

be seen that the cheapest onshore wind at 0.045¿/kWh, usually from turbines situated

in the best wind locations, is marginally more expensive than the cheapest brown coal

at 0.038¿/kWh. Any modifications that can improve reliability and reduce the O&M

costs will make wind energy a more attractive proposition for investors and potentially

the cheapest source of energy in the case of onshore wind.
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Figure 1.3: LCOE of Renewable and Conventional Energy Sources [21]

1.2 Wind Turbine Failures

In most cases, wind turbines are designed to operate for 20 years [22]. However, since

wind energy is a relatively new technology it has not yet been possible to provide an

accurate life expectancy for larger turbines which have, in general, accumulated fewer

operational years. Reliability is often less than expected since operational conditions

and loading patterns are not yet fully understood. Since the 1980s the average ca-

pacity of wind turbines has gradually increased. By means of illustration, the average

capacity of a single installed turbine in the US doubled from 0.9MW to nearly 1.8MW
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between 2001 and 2010 (Figure 1.4) [16] while the current largest turbines are rated

at 8MW. If this trend continues, failure rates may also increase before the technology

has sufficient time to mature. A study of failure rates of more than 1500 turbines from

the German ‘250MW Wind’ Program found that larger turbines (>1MW capacity)

required significantly more unplanned maintenance activities compared to smaller tur-

bines (Figure 1.5) [22]. Similarly, Spinato et al. [23] reported higher failure rates for

larger turbines. For example, in the period 1993-2004, the Vestas V27 turbines with

a rated power of 225kW experienced an average failure frequency of 1yr−1 whereas

the failure frequency of Tacke TW 1.5s turbines rated at 1.5MW increased to approx-

imately 3.5yr−1.
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Figure 1.4: Average Turbine Capacity (2001-2010) [16]

A study of wind turbine failures in Sweden between 1997 and 2005 categorised fail-

ures by sub-assembly [24]. Figure 1.6 shows the percentage each component contributes

to the total number of failures and the corresponding proportion of total downtime.

Whilst the gearbox experiences comparatively moderate failure rates the downtime

required to carry out a repair or replacement is higher than that of any other single

subsystem. More recently, GCube, the leading provider of renewable energy insurance

published a report into the most common failures, reasons for failure and claim costs

covering all reported wind turbine claims from the US in 2012 [25]. It was found that

the 35.1% of claims related to the gearbox, second only to the turbine blades. The

success and viability of wind energy in the years to come will be somewhat dependent

upon increasing gearbox reliability and this challenge forms the basis and motivation

for the following thesis.
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1.3 Wind Turbine Gearboxes

The compound effect of higher than expected failure rates, long periods of downtime

and the fact that the gearbox is one of the most expensive components in a turbine

is adding to the LCOE. Additionally, manufacturers are adding contingencies to sale

prices in order to cover warranties protecting against gearbox failure [26]. It has

been reported that German insurers, Allianz received around 1000 claims for damaged

gearboxes in 2006 alone [27] while GCube report that the average gearbox claim in

2012 stood at $240 000 [25]. In order to help bring the cost of wind energy down, the

causes of failure must be understood so remedial action can be taken. A number of

observations have been presented by Musial et al [26] regarding this problem. These

are summarised as follows:� The majority of reported issues are common to all models and manufacturers.

As the industry has matured and reliability increased, gearbox designs have

converged to a similar architecture indicating that failures generally relate to

the generic design rather than manufacturing or quality issues.� Most wind turbine gearbox failures are due to failures of particular bearings in

spite of being designed to the best bearing practices available. The resultant

debris or increased clearances may then cause secondary damage to gear teeth.� Approximately 10% of failures relate to manufacturing or quality issues support-

ing the evidence that this is not the primary cause of the problem.

Table 1.1 provides a breakdown of gearbox failures by sub-component of nearly all

Swedish wind turbines during the period 1997-2005 [24]. Bearing failures account for

nearly half of the total failures. Approximately half of the cases where the compo-

nent was not specified, a serious failure had occurred resulting in a complete gearbox

replacement. Many of these failures may have been initiated in the bearings. The

average downtime for a bearing failure was 562 hours representing a significant period

of lost revenue.

According to Musial et al [26], there are three critical bearing locations which

experience high failure rates irrespective of gearbox manufacturer, model or size:� Planetary bearings� Intermediate shaft-locating bearings
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Table 1.1: Gearbox Subcomponent Failures [24]

Component Number of Failures Average Downtime (hrs)
Bearings 41 562

Gearwheels 3 272
Shaft 0 0
Sealing 8 52

Oil System 13 26
Not Specified 44 230� High speed shaft bearing

The location of these bearings is shown in Figure 1.7 taken from [28]. The rotor

shaft rotates the low speed epicyclic planetary gears between 5 and 22rpm. The central

sun pinion drives the intermediate shaft which in turn increases the rotational speed of

the high speed shaft via two parallel gears to 1000-1600rpm required for the generator.
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Figure 1.7: Typical Wind Turbine Gearbox [28]
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On closer inspection of planetary bearing failures, it has been found that damage

is often limited to a localised arc on the inner raceway [29]. This is believed to be

due to the uni-directional loading and non-conformal contact which is exacerbated by

overload events occurring during emergency stops or periods of high turbulence. It is

believed that this leads to a series of indentations on the raceway at the spacing of the

rollers which act as stress raisers, thus initiating fatigue damage across the loaded zone

of the bearing. Such damage can be seen on the inner raceway of the bearing shown in

Figure and 1.8 taken from the epicyclic stage of a decommissioned V42 Scottish Power

gearbox.

Figure 1.8: Damaged planetary inner race from a decommissioned V42 gearbox

1.4 Motivation

The nature of the localised damage on the inner raceway of the planet bearings in-

tuitively calls for an indexing solution which can rotate the damage away from the

loaded region. Engineers at Ricardo have designed such a mechanism which allows

damage to be distributed around the inner raceway [29]. The MultiLife� bearing is a

series of hydraulic actuators which can be fitted onto the stationary shaft of a planet

bearing allowing the race to be rotated. Schematics of the first prototype design are

shown in Figure 1.9 and Figure 1.10. To give an indication of the size of the device, the

9



diameter of the outside surface of the outer raceway is 400mm and the bore diameter

is 220mm.

Figure 1.9: MultiLife� Assembly [29]

Twelve chambers, each housing a piston contributing to the overall torque, are

located within a casing fixed to the inner race. When the chambers are pressurised

the pistons rotate the casing and raceway relative to the shaft in 5° steps. A 10bar oil

supply is required to generate the 500Nm torque necessary to rotate the raceway. The

mechanism has been designed in order allow retrofitting to existing gearboxes and can

index a number of raceways on a single shaft assuming accessibility allows them to be

connected.

The success of the MultiLife� concept will be largely dependent upon the operating

strategy employed; that is, how often and to what extent indexing will take place. Such

a strategy must be optimised to ensure damage is rotated away from the loaded region

before reaching a critical level and a maximum increase in bearing life is attained.

Prior to experimental testing, an analytical model was developed to provide initial

estimations of potential increases in life [29]. The model applied the ISO standard

L10 bearing life equation for a bearing with a dynamic load rating C subjected to a

combined radial and axial load P (Equation (1.1)) on an elemental basis by dividing

10



Figure 1.10: MultiLife� Components [29]

the inner race into 360 arcs of equal width (Equation (1.2)). Equations 1.1 and 1.2

give the life in millions of revolutions after which 10% of bearings are expected to fail.

The exponent n is 10/3 for a cylindrical rolling element bearing.

L10 =

(

C

P

)n

(1.1)

L10θ
=

(

C

Pθ

)n

(1.2)

The fatigue life therefore becomes a function of the circumferential position of the

element. This allows a number of potential of strategies to be investigated. Figure 1.11

shows the predicted L10 life for a range of index angles and frequencies. It shows there

are a number of possible strategies that would maximise bearing life. The first distinct

line from the left, the border between the red and blue zone, represents a single rotation

of the inner race and subsequent lines represent additional full rotations. Despite the

increase in potential bearing life being the same for each full rotation, there is some
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benefit in employing a strategy whereby the raceway is indexed multiple times. A

single rotation is a risky strategy since there is potential to ‘fall’ into the red zone

which would reduce bearing life significantly.
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Figure 1.11: Predicted Life for a Range of Indexing Strategies [29]

This model provides an initial estimate that bearing life could be increased by a

factor of five however the model has its limitations. Operating conditions are assumed

constant whereas in reality speeds and loads may fluctuate dramatically. Furthermore,

the model assumes failure by high cycle fatigue whereas field experience suggests the

majority of failures occur due to overload events creating stress concentrations. An

additional model, taking into account the transient forces experienced by an operating

gearbox, is currently being developed while experimental work will validate potential

increases in bearing life.

A full-scale bearing test rig, described in greater detail in Section 4.1, has been

designed to run accelerated life tests of planet bearings and to validate the use of

acoustic emissions (AE) and ultrasound as effective monitoring techniques. The rig

12



will be used to test the concept behind the MultiLife� device and assess a number of

indexing strategies.

This work forms part of a larger project which is looking to prove the Multilife�
concept and potentially adopt an intelligent indexing strategy based on the bearing

condition. This thesis will focus on the measuring and the processing of acoustic

emission data with the aim of determining bearing condition.

1.5 Aims and Objectives

The overall aim of this work is to develop a means of assessing the condition of bearings

typically found in wind turbines using acoustic emission signals. In order to achieve

this, the following objectives must be met.

Determine a method for reducing signal noise and dimensionality

As will be demonstrated later, the oil film thickness is expected to be of a similar

magnitude to the composite roughness of the contact. This prevents full separa-

tion between the raceway and rolling element causing asperity contact and high

amplitude, transient features in the acoustic emission signal. The defect sig-

nals are therefore unlikely to be distinguishable from the noise. Previous studies

regarding the acoustic emission monitoring of bearings have only considered in-

stances of full film separation. The first challenge is to reduce the noise so that

smaller defects are detectable. Additionally, since large quantities of data will

be produced due to the high sampling frequency, the relevant features of the raw

data should be extracted with a much smaller dimension for ease of storage and

further processing.

Derive a suitable measure of bearing degradation.

Such a measure should be at least as sensitive to incipient damage as current

state of the art methods. The suitability of the methods will be quantified

and judged according to the degree of consistency, sensitivity and whether the

measure exhibits monotonic behaviour.

Investigate suitable algorithms to estimate the position of a defect.

An accurate method for locating the source of emissions and therefore the damage

position is deemed to be vital for the efficient operation of the Multilife� bearing.
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Previous work has focused on using time of flight calculations to estimate the

source position. This work will investigate two other data driven methods in an

attempt to improve accuracy. A recommendation will be made based upon the

accuracy, suitability and computational requirements to carry out such a task.

1.6 Thesis Outline

The remainder of this thesis is organised into seven additional chapters which are

summarised as follows.� Chapter 2 introduces AE technology and provides a brief overview of the history

and typical applications of AE. Various mechanisms by which AE sources are

generated are described followed by a summary of some parameters which are

commonly monitored during a test. The instrumentation and hardware required

for AE monitoring are also discussed.� Chapter 3 summarises the current techniques used for monitoring rotating ma-

chinery and in particular bearings, most of which have been applied to vibration

data. The chapter concludes with a review of previous studies investigating AE

monitoring of rolling element bearings.� The bearing test rigs and acoustic emission instrumentation used throughout

this work is described and shown in Chapter 4.� Chapter 5 describes a proposed method for the defect detection of a bearing,

illustrated using simulated data.� Chapter 6 introduces various means of locating the source of an emission and

proceeds to test the suitability of the most relevant methods on a bearing raceway

using artificially generated emissions. The methods are confirmed using a bearing

seeded with a real defect.� Chapter 7 brings together the theory introduced in previous chapters and presents

the results and main findings using data measured from two run-to-failure bear-

ing tests. Further data is presented from a instrumented gearbox and a split race

bearing test rig.

14



� Chapter 8 discusses the findings of this thesis and makes recommendations for

future work in this area.
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Chapter 2

Acoustic Emissions

This chapter provides an overview of acoustic emission technology. A brief history

outlining the origins of AE testing is presented. Four categories of AE sources, namely

primary, secondary, noise and artificial, are identified alongside the factors affecting

their output followed by a description of features and parameters commonly observed

during a typical AE test. The chapter concludes with an overview of wave propagation

characteristics and the instrumentation required for AE monitoring.

2.1 Definition

Acoustic Emission (AE) technology is a non-destructive testing (NDT) method used

in a wide range of industrial applications to detect and locate defects in mechanically

loaded specimens. An acoustic emission has been formally defined as “the class of

phenomena where transient elastic waves are generated by the rapid release of energy

from localized sources within a material, or transient elastic waves so generated” [30].

Such waves usually take the form of high frequency broadband stress waves which are

received and converted into electrical signals by piezoelectric transducers. Although

the set-up and hardware of AE systems may vary upon application there are four

common components required to obtain AE data; a source, a structure through which

the source can propagate, the sensor (transducer) and electronics to record and process

the data. Later sections will provide more information on each of these stages.
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2.2 A Short History of AE

Whilst audible sounds have been used since the beginning of mankind to judge the

structural integrity of materials, technical investigations into acoustic emissions from

the deformation of materials were first carried out during the early 20th century. In

1917, Czochralski reported the ‘cry’ of tin and zinc crystals as twinning occurs when

the materials are subjecting to a bending action [31]. Six years later, Portevin and Le

Chatelier noted high frequency audible sounds during the deformation of an alloy of

aluminium, manganese and copper. Further progress took place in 1933 when Kishi-

nouye first developed AE instrumentation to monitor deformation in wood in order to

understand and develop methods for studying the fracture of the earths crust. The sys-

tem employed by Kishinouye used a phonograph pick-up with a steel needle to monitor

stress waves [32]. In 1936, Forster and Scheil had independently built instrumentation

to monitor acoustic emissions generated during martensitic transformations [30]. In

1950 Kaiser, as a part of his doctorate research, undertook the first comprehensive

investigation into acoustic emissions. The phenomenon of irreversibility, the Kaiser

effect, described in Section 2.6.1 was his most significant discovery [33]. Until the mid-

1950s acoustic emission monitoring was limited to frequencies of around 60kHz. This

restricted the practical applications of AE since the presence of external noise required

experimentation to take place in soundproof facilities in order to achieve meaningful

results. In 1964, Dunegan, Tatro and Harris extended the range of frequencies up to

1MHz [34]. This development bought about a rapid increase in applications in areas

as broad as materials research, non-destructive testing (NDT), structural evaluation

and even cavity detection in fluid systems. In the USA, Greene, Lockman and Steele

used AE to assess the structural integrity of rocket motor cases [35] while Dunegan

proposed the use of AE to monitor pressure vessels. In 1969, he and Knauss founded

the first company producing AE instrumentation: the Dunegan Research Corporation.

Independently several research institutions in the former Soviet Union were develop-

ing techniques to be used in mostly military applications. Today, applications can be

found in almost all industries.
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2.3 AE Sources

Acoustic emission sources arising during structural monitoring can be broadly classified

into three classes; primary activity, secondary activity, and noise. Artificial sources

may also be generated for calibration purposes. The following section describes the

most common mechanisms for each of these sources. It is not expected that all of these

sources will be detected in this work.

In general, AE sources emit a broadband signal, which can range from sub-audible

frequencies during seismic events to frequencies of the order of MHz under certain

conditions. However, most commercial AE sensors operate with a frequency response

within the range 20kHz-1MHz. At lower frequencies, mechanical and external noise

will often dominate the signal whereas at higher frequencies attenuation reduces the

applicability and effectiveness of AE as an NDT method with applications usually

restricted to the laboratory.

2.3.1 Primary Sources

Primary activity occurs when the original material undergoes new, permanent changes

relating to deformation and fracture development arising due to local stresses being

higher than the original stress levels. Stress concentrations occur at changes in section,

weld details, cracks and structural discontinuities in general. There are a number of

types of permanent deformation. The amplitude of source events can vary enormously

depending upon both the deformation mechanism taking place and the properties of

the material. Factors affecting the amplitude of an AE event are listed in Table 2.1

[31].

Dislocations

All AE processes begin with a material undergoing stress. The structure responds to

the stress by changing its shape, or in other words, it experiences strain. If the stress

is high enough to exceed the yield stress of the material, plastic deformation will oc-

cur whereby the relative position of atoms in the material are changed permanently.

Irregularities in the crystalline structure of a material known as dislocations enable
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Table 2.1: Factors Affecting AE Response [31]

Factors increasing AE amplitude Factors decreasing AE amplitude

High strength Low strength
High strain rate Low strain rate
Low temperature High temperature

Anisotropy Isotropy
Non-homogeneity Homogeneity
Thick sections Thin sections

Brittle failure (cleavage) Ductile fracture (shear)
Materials containing discontinuities Materials without discontinuities
Martensitic phase transformations Diffusion controlled phase transformation

Crack propagation Plastic deformation
Cast materials Wrought materials
Large grain size Small grain size

Mechanically induced twinning Thermally induced twinning

the mechanism of atomic planes to slide over one another resulting in acoustic emis-

sions. This phenomenon was first investigated by Mason et al [36] who suggested that

dislocations in fine tin structures produced high frequency vibrations. Single isolated

dislocations tend not to produce detectable emissions. However, as a material yields

many dislocations occur simultaneously and the stress waves interact and superimpose

to form a detectable signal. In fact, during tensile tests of low carbon steel, Akbari

and Ahmadi [37] claim that the main source of AE at all stages of deformation is due

to massive dislocation motion.

Precipitates and Inclusions

On a microscopic scale, specks of carbide, sulphide and oxide, amongst other non-

metallic materials, are scattered through steel. Specks of carbides are usually very

small, to the order of a few hundred atoms, and are more often referred to as precipi-

tates. The breakage of precipitates and larger inclusions, such as manganese sulphide

particles which are formed during the manufacturing process, is the main source of

acoustic emission when crack free metals are deformed. All these non-metallic com-

ponents are more brittle than the surrounding metallic matrix so break more easily

when the material is strained. Again, the amplitude of such emissions are generally

quite small and do not represent a significant threat to the structural integrity.
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Crack Propagation

Dislocations within a specimen subjected to a large number of loading cycles will

tend to pile up resulting in the movement of material along slip planes. Consequently

material can rise above or fall below the surface creating what is called a persistent slip

band (PSB). This discontinuity at the edge of a PSB acts as a stress concentrator and

an initiation point for cracks. Crack nucleation and propagation represents a significant

threat to the structural integrity of a material and the detection of such processes is

the most common goal of not only acoustic emission testing but indeed the majority of

non-destructive evaluation techniques. Emissions from crack propagation or initiation

tend to produce signals of higher amplitude than the breakage of inclusions.

2.3.2 Secondary Sources from Repetitive Mechanisms

Acoustic emissions can arise due to repetitive processes such as friction, impact or

high pressure leaks. These processes and therefore the emissions they produce do

not, in contrast to primary sources, cause permanent changes to the original material.

Instead, they may be used to provide an indication of the structure’s condition. It is

important to differentiate this class of activity from noise which is always seen as a

nuisance during acoustic emission inspection. In addition to the emissions produced

by the release of energy during the development of cracks, emissions of lower amplitude

can occur from the rubbing or fretting of the crack surfaces as they open and close

under an oscillating load.

2.3.3 Non-Material Secondary Sources

Secondary activity can arise from material that is not a part of the original fabrication

such as the cracking of corrosive products which form on the surface. These tend to

cause small amplitude AE waves compared to those arising from primary sources. The

emissions can be enhanced through the formation of corrosive products on the surface

as discussed in Section 2.3.3 which make the crack more emissive.
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2.3.4 Noise

In terms of AE testing, noise refers to any unwanted components of the signal and

is a major drawback of the technique. The two main sources of noise arising from

environmental conditions are friction and impact. Frictional sources can, for example,

be a result of connections or bolts working themselves loose under a changing structural

load. Impact sources include rain, wind driven dust or other flying objects. However, as

will be shown later, emissions arising from these sources are not always unwanted and

can be used to determine the condition of a component. Electromagnetic interference

is another significant source of noise which can be minimised using an integrated pre-

amplifier sensor combined with careful grounding and cabling. Understanding and

eliminating, or at least reducing, noise is a crucial part of any AE testing system

enabling the user to focus on the relevant information within the signal.

2.3.5 Artificial Sources

Artificial sources are used in AE testing for a number of reasons. By assessing the

attenuation properties of a structure prior to loading the user is provided with valuable

information when deciding upon the placement of the sensors. Often, it is desirable

to use the minimum number of sensors without losing relevant information due to

attenuation. Secondly, a strong response indicates the sensors are in good acoustic

contact with the surface of the structure being monitored and can ensure a similar

response between experiments. Finally, artificial sources can be used to verify the

accuracy of the source location methods, a technique employed in Chapter 6. This

can indirectly lead to the calculation of the wave propagation speed. The Hsu-Nielsen

source has been used in this work for speed and simplicity however there are other

more advanced methods of generating an AE source such as pulsing a transducer or

by thermoelastic expansion by laser.

Hsu-Nielsen Source

The Hsu-Nielsen (H-N) source [38, 39] generates an AE event by breaking a brittle

0.5mm 2H graphite pencil lead against a specimen. A Teflon seat fitted to a retractable

pencil, as shown in Figure 2.1 ensures the pencil is in the same position every time
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a source is generated. The fracture produces a monopole, point, step source and is

widely used by AE researchers being both cheap and portable [40]. Care must be

taken since reproducibility of this method is poor due to the variance in human use.

Lead: 2H

Width: 0.5mm

Length: 3mm

Figure 2.1: Hsu-Nielsen Source

2.4 AE Modes

Acoustic emission signals can be characterised as continuous, burst or a combination

of both sometimes referred to as mixed emission; a distinction first made by Kaiser in

his seminal work on acoustic emissions [33].

2.4.1 Continuous Emission

Continuous emissions are typically low energy emissions which occur when friction

mechanisms or dislocation movements occur on or within a structure and do not display

any visually obvious features in the time domain. The amplitude of the emission

increases with applied load [41]. Noise can also be a component attributing to a signal

exhibiting continuous emission. The monitoring of continuous emission is suited to the

detection and analysis of signals produced by plastic deformation in ductile materials,

stress corrosion cracking and creep. It has been suggested that this type of emission

is best measured with RMS or energy rate measuring circuitry; parameters which are

calculated over the entire signal for a predefined period [31].
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2.4.2 Burst Emission

Burst emission signals have definite start and end points with distinct peaks of sig-

nificantly larger amplitude than the background noise. Such bursts tend to be no

longer than a few hundredths of a second long. Deformation mechanisms which tend

to exhibit burst type emissions include the fracture of non-metallic inclusions, break-

age of corrosive products or crack propagation in brittle materials. Impact, which is

particularly relevant when monitoring bearing damage, can also be a source of burst

emissions. Situations may occur where burst and continuous emissions are present

creating a mixed emission. The following section describes the parameters most com-

monly used to measure burst type emissions.

2.5 AE Signal Features

A transient AE burst occurs when the received signal exceeds a given threshold. The

threshold, set by the user, is chosen to be high enough to eliminate any events which

may arise due to the presence of low amplitude noise whilst simultaneously capturing

genuine AE events. Mba [42] suggests that the relationship between the mechanical

integrity of the bearing and AE counts is independent of the chosen threshold level.

Some AE systems use a floating threshold which varies with time as a function of

background noise. Such thresholds are used to distinguish between noise and genuine

events in variable operating conditions or noise. Other methods of determining the

presence of an event have also been investigated. For example, Hensman et al [43]

noted that the use of a standard threshold crossing would overestimate the start of

an event, an error which would increase with distance the wave has travelled due to

dispersion. To remedy this error, the use of the Aikaike Information Criterion (AIC)

is proposed to detect a more accurate onset of the waveform. This method divides the

signal into two and finds the point where the difference in entropy between the first

and second section is at a maximum.

Bursts may be characterised by a number of parameters, the most common of

which are described in the following sections. These parameters are shown in Figure

2.2. This list is far from comprehensive and further parameters can be derived from

those mentioned. The average frequency, for example, is defined as the ring down
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counts divided by burst duration.

Volts

Time
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Crossing
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Counts
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Figure 2.2: Features of an AE Burst

2.5.1 Amplitude

The amplitude is the greatest measured voltage of the signal, corresponding to the

greatest surface displacement, and is closely related to the magnitude of the source

event. Evidently, only events with an amplitude greater than the threshold will be

recorded and subsequently analysed.

2.5.2 Ring Down Counts

Ring down counts (sometimes simply referred to simply as counts) are a count of the

number of the times during a single event the signal exceeds the threshold. Counts

are often combined with another parameter such as duration or amplitude to pro-

vide information about the shape of the signal. The number of counts depends upon
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the transducer frequency, the damping characteristics of the transducer, the damp-

ing characteristics of the structure and the pre-defined threshold [31]. Counts can be

used in conjunction with the amplitude to act as a filter against noise, the idea being

that amplitude is likely to correlate with counts and high amplitude events with a low

number of counts is more likely to be a result of electromagnetic noise.

2.5.3 MARSE

The Measured Area of the Rectified Signal Envelope (MARSE) is a regularly used

parameter in acoustic emission testing. The MARSE represents the energy content of

a signal although different system suppliers use variations in the method of calculation.

MARSE is often preferred over parameters such as counts since it is less dependent on

operating frequency and the threshold but is sensitive to amplitude and duration.

2.5.4 Duration

Duration is measured as the period between the first and last threshold crossings. In a

similar manner to counts, the duration can be used to differentiate between sources of

acoustic emissions and therefore act as a filter. Short duration events, for example, are

more likely to be a result of electromagnetic noise rather than genuine event whereas

long duration waveforms may, for example, be a result of delamination in composite

materials. Duration is highly dependent upon the acoustic properties of the material

and, like counts, the threshold. The duration is usually expressed in microseconds.

2.5.5 Rise Time

The rise time is a measure of the time difference between the first threshold crossing

and the peak amplitude. It can be used to classify the type of fracture or, as with

counts and the duration, eliminate noise signals.
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2.5.6 Decay Times

The decay time is a measure of the time difference between the peak amplitude and

the final threshold crossing.

2.6 Structural Loading

2.6.1 Kaiser Effect

This effect was first investigated by Joseph Kaiser in the 1950s. When permanent

deformation such as that caused by the mechanisms described in Section 2.3.1 occurs,

energy is released through stress waves (acoustic emissions) and heat in order to relieve

elevated local stresses. This has a stabilising effect since the load is transferred to

another part of the structure. If the structure was to be unloaded and reloaded to

the same level, the regions which deformed on the first loading will tend to be stable

the second time around. No further deformation would take place and no stress waves

would be emitted. This principle is called the Kaiser effect and is shown graphically in

Figure 2.3. Load is plotted against cumulative AE counts. As the structure is initially

loaded (AB) the number of AE events generated increases with load. At point B, the

load is partially removed and under reloading (CB) no further activity takes place until

the previous maximum load has been exceeded at point C. Structures, and therefore

the flaws, which exhibit this behaviour tend to be insignificant and are unlikely to

be a threat to structural integrity. The Kaiser effect is most likely to be exhibited in

homogeneous materials such as metals whereas it does not occur when deformation is

controlled by time dependent mechanisms such as rheological flow or relaxation of the

matrix in highly stressed composites, corrosion and hydrogen embrittlement. Other

source mechanisms, such as friction in fatigue cracks or between surfaces in composites,

can also contravene the Kaiser effect but are still useful for damage detection [31].

The principle of the Kaiser effect naturally leads to the Dunegan corollary; a di-

agnostic technique developed by Dunegan and Harris used in the field testing of pres-

surised systems . This approach is based upon the idea that if an operating structure

is subjected to periodic proof loads (which are higher than the normal operational

loads) emissions will only occur if damage has taken place in the intervening period
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due to the introduction of stress concentrations [44]. In other words, diagnoses can be

made by repeated loads rather than by ever increasing loads.
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Figure 2.3: AE Activity due to Structural Loading

2.6.2 Felicity Effect

In contrast to the Kaiser effect, whereby a structure will only emit stress waves once

a previous maximum load has been exceeded, a structure exhibiting the Felicity effect

will become active before a previous maximum load has been reached. With reference

to Figure 2.3, the structure will continue to be a source of AE activity as it is loaded to

point D. The applied load is reduced (DE) and will begin to re-emit at point F before

the previous maximum is reached. The effect can be quantified by dividing the load

at which significant AE activity resumes by the maximum applied load (F/D). This

quantity is the Felicity Ratio. Structures exhibiting this behaviour infer structurally

significant flaws. Likewise, structures which emit during a load hold (GH) also indi-

cate instability. The Felicity effect is more likely to occur in composite materials with

inhomogeneous structures such as fibre reinforced plastics (FRP) and concrete. Ac-
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cording to American Society of Mechanical Engineers (ASME) Article II, FRP tanks

or pressure vessels are rejected when the Felicity Ratio is less than 0.95 [30].

2.6.3 Structural Fatigue

Extensive investigations have been carried out on the AE monitoring of structural

fatigue. It has been found under laboratory conditions there are three distinct stages

to a fatigue test. These are shown in Figure 2.4. The stress ratio R is defined in

Equation 2.1 as the ratio of minimum and maximum applied stresses.

R =
σmin

σmax
(2.1)

Stage I relates to the first few cycles where dislocation movement and cyclic hard-

ening or softening are the primary sources of the AE activity. Very few emissions take

place in stage II. During these cycles steady state dislocation motion occurs which

will eventually initiate microcracks as described in Section 2.3.1. During stage III, AE

activity increases significantly as the crack propagates, the principle sources during

this stage are crack tip movement, fracture of inclusions, microcrack coalescence, and

fracture along grain boundaries [45]. The number of cycles to failure and therefore AE

activity depend greatly upon the stress range applied to the structure as indicated by

the different curves in Figure 2.4.

2.7 Wave Propagation

The signal received at an AE sensor is significantly different to that which occurs at

the source. This is due to the propagation of the wave through the structure. This

propagation largely determines the signal shape and size. A typical AE event generated

by a Hsu-Nielsen source is shown in Figure 2.5. It is characterised by a fast rise time

and a relatively slow decay. The first part of the waveform is from waves propagating

directly from the source whereas the later part is formed from waves reflected before

reaching the sensor. The rising part comprises of strong reflections from surfaces close

to the sensor whilst the decaying part is shaped by reflections from distant surfaces

and acoustic damping.
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Figure 2.4: Cumulative AE counts for specimen subjected to fatigue loading
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Figure 2.5: Typical AE Event
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Waves of different types propagate in different directions with different velocities.

According to acoustic theory, wave modes propagate independently and do not inter-

fere with one another. The motion at any point in a structure is the sum of all modes

which are present. Source events, such as crack jumps, can last less than a microsecond

whereas the time it takes for the wave to reach the sensor and for all reflections to die

away can range from 100 microseconds for highly damped non-metallic structures to

tens of milliseconds in a lightly damped metallic material [46]. The following factors

affect how emissions propagate.

2.7.1 Attenuation

Attenuation of AE waves occur through three mechanisms; geometric spreading, scat-

ter and absorption. Geometric spreading relates to a decrease in amplitude as the

wave travels away from the source as the wave energy must be spread over an ever

increasing larger wave front. The rules of conservation of energy show that the de-

gree to which attenuation through geometric spreading occurs is dependent upon the

structure through which the wave is passing. For example, when propagating through

a 2D surface, the amplitude will decrease by 30% every time the distance from the

source is doubled whereas this figure increases to 50% in 3D structures [46]. Rods,

on the other hand, which do not allow the wave to spread, have much lower rates of

attenuation. Geometric spreading is most influential when the sensors are position

close to the source.

Scatter is the result of reflections which occur at discontinuities, such as non-

metallic inclusions and grain boundaries, and structural boundaries [31]. Scatter be-

comes increasingly important in complex geometries where there are a number of

discontinuities between the source and sensor.

Absorption is the process of kinetic and acoustic energy converting into heat due to

internal friction. The rate of absorption is greater at higher frequencies owing to the

shorter wavelengths. In contrast to geometric spreading where the rate of attenuation

is a function of the distance from source, amplitude reduction due to absorption occurs

at a constant rate. Absorption, therefore, becomes relatively more important further

from the source. At typical AE frequencies steel absorbs very little energy as heat

however non-metallic materials such as paint tend to absorb significantly more.
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Attenuation can be measured easily by simulating an AE source. This can be

done using a Hsu-Nielson source; a technique which involves breaking a pencil lead

of a given size against the material at a set angle (Section 2.3.5). The stress waves

produced from the deformation of the lead are fairly reproducible and are of similar

amplitude and frequency content to a typical crack source. An attenuation graph can

be created by carrying out this technique at a number of distances from a sensor and

plotting the peak amplitude against the distance. Such an exercise can aide a user

when deciding where to place AE sensors to ensure all relevant events will be captured.

2.7.2 Wave Velocity

Wave velocity is an important characteristic of acoustic emission testing, especially for

the purpose of locating source events. A typical event may excite a number of types of

waves. The source mechanism, material properties, and geometry influence which type

and the degree to which different waves are excited. Sound waves can propagate in four

principle modes; as longitudinal, shear, surface or plate waves. These are discussed in

the following sections. Anelastic waves can also be generated however these tend to

attenuate at short distances from the source so are rarely detected by AE transducers

and will not be discussed here.

2.7.3 Longitudinal Waves

Longitudinal waves (otherwise known as dilatational, compressional or P-waves) are

waves in which the direction of oscillation occurs in the same direction as the wave

propagation. Due to their compressional nature, longitudinal waves can be transmitted

through fluids as well as solids.

2.7.4 Shear Waves

Shear waves (otherwise known as transverse, distortional or S-waves) are waves in

which the particle oscillations occur perpendicular to the direction of wave propagation.

Unlike longitudinal waves, shear waves cannot propagate through liquids since there

are no strong bonds to support shear forces. Shear waves are usually weaker compared

to longitudinal waves.
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2.7.5 Surface Waves

Surface waves (or Rayleigh waves) propagate along the surface of thick materials.

Particle motion occurs to about the depth of one wavelength. Surface waves are

essentially a combination of shear and longitudinal waves which results in the particles

experiencing elliptical motion. Surface waves are useful to many NDT techniques since

they can follow the surface of curves and are very sensitive to surface defects.

2.7.6 Lamb Waves

Lamb waves only propagate through thin sections; the maximum thickness of which

is to the order of a few wavelengths. There are two families of modes of Lamb waves,

symmetrical and asymmetrical. The motions of which are shown in Figure 2.6. The

parent modes of these families are a0 and s0 respectively. The symmetric mode s0 is

always symmetrical about the median of the plate. The rippling effect is a result of

the plate alternately stretching and compressing. This mode requires an exciting force

applied parallel to the plate. This can be achieved by a sudden release of in-plane

tension.

The motion which occurs in the asymmetric mode a0 is perpendicular to the plate.

Both surfaces move in the same direction. In contrast to the s0 mode, the exciting

force must be perpendicular to the plate. The s0 mode is important in the acoustic

emission testing of thin plates. They usually propagate faster than the a0 mode so,

in most structures, reach the sensor first. The difference in arrival times between the

s0 and a0 mode has previously been used as a means of source location [47]. The

amplitude produced by the a0 mode tends to be greater than the s0 mode.

Both families include an infinite number of modes (a1, s1, etc) which can travel

faster than both the a0 and s0 mode. These are of little importance in AE testing

because the amplitudes of which are small in comparison to the zero modes. Lamb

waves are dispersive meaning their velocity is dependent on frequency. The speeds

of each mode is a function of the frequency thickness product (frequency of wave

multiplied by plate thickness).
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(a) (b)

Figure 2.6: Lamb wave modes: (a) Asymmetric and (b) Symmetric

2.8 AE Instrumentation

A schematic of a typical AE system is shown later in Chapter 4, Figure 4.9. The

sensor (also discussed later in Section 2.8.1) produces an electrical signal proportional

to the displacement at the sensors surface. Preamplifiers amplify the initial signal to

reduce noise. Typical values of gain are 20, 40 or 60dB. The signal then undergoes

conditioning; this usually includes at least a band pass filter to remove low frequency

mechanical noise.

2.8.1 Sensors

The vast majority of AE transducers are made from piezoelectric elements. Capacitive

transducers and laser interferometers have been used but have found limited applica-

tion outside the laboratory. A schematic of the typical construction of an AE sensor

in contact with a test object is shown in Figure 2.7.

Piezoelectric elements produce an electrical voltage proportional to the deforma-

tion it experiences. The deformation is produced by the motion of the stress waves

propagating in the material. The ratio of output voltage amplitude to input motion
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Figure 2.7: Schematic of Typical AE Sensor

amplitude is a measure of the sensitivity of the sensor. Sensitivity is highly dependent

upon frequency and the direction of motion. The sensitivity of a sensor is greatest

at its resonant frequency. The smallest electrical signal that can be detected is about

10mV, this corresponds to a surface displacement of about 25pm [48]. The thickness

of the piezoelectric element defines the sensors resonant frequency and the bandwidth

is determined by the properties of the damping material. A calibration certificate with

the frequency response is usually supplied with each individual sensor.

There are two principle types of AE sensor; resonant and broadband sensors. Reso-

nant (or narrowband) sensors have a non-linear response; the sensitivity being greatest

at the centre or resonant frequency. The resonant frequency of most commonly used

commercial sensors is between 100 and 300 kHz. Other operating frequencies can be

used but the limitations of which are significant. At higher frequencies attenuation

occurs more rapidly therefore a greater number of sensors are required to monitor the

same structure. Coupled with the increased sampling rate required, data storage and

processing power become the limiting factors. At lower frequencies, mechanical noise

becomes prevalent.

Broadband sensors, on the other hand, have a linear response over a range of fre-

quencies but also generally a lower sensitivity. Broadband sensors have been used by

researchers to determine the source waveform through detailed (and computationally

expensive) analysis of the first part of the received signal characterised by the direct

component and early reflections of the wave. In contrast, the majority of practical ap-

plications use narrowband sensors to measure broad statistical features of AE activity.

Since narrowband sensors measure only a few signal features, hundreds of events can

be processed every second, the trend of which can be monitored over time [48].
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Desirable characteristics that manufacturers of AE sensors aim for are; high sen-

sitivity, consistent frequency response, robust performance and immunity to noise. In

order to achieve a high immunity to noise, some manufacturers have introduced an

integrated pre-amplifier to reduce the relative effect of electromagnetic interference in

the cabling.

In order to detect the surface motion and produce a strong signal the sensor must be

in good acoustic contact with the surface. A couplant must be used to remove any air

pockets from the interface. The degree of transmission of a signal across the boundary

of two materials is dependent on the similarity of acoustic impedance between the two

materials. The acoustic impedance of air is much less than that of the sensor and the

surface which would cause large reflections at the interface and therefore a significant

loss in transmission. Suitable couplants usually take the form of adhesives, viscous

liquids or greases. The surface may require preparation since the surface to which

the sensor is to be mounted must be smooth and clean. The couplant and mounting

method is dependent upon application and environmental conditions.

The temperature of the structure to which the sensors is mounted must be taken

into account when selecting a suitable sensor. A property of piezoelectric elements

called the Curie Point is defined as the temperature at which piezoelectric elements

permanently lose their piezoelectric properties. This is usually between 125-400�.

2.9 Other NDT techniques

There are many different applications and components that require condition moni-

toring. The following section gives a brief overview of the techniques that are most

applicable to monitoring rolling element bearings.

2.9.1 Vibration Analysis

Vibration analysis is usually performed by attaching a seismic or piezo-electric ac-

celerometer to the bearing casing. The condition of the bearing can be estimated by

comparing vibration levels to historic baseline data. In most cases, the data is anal-

ysed in the frequency domain courtesy of a fast Fourier transform (FFT) whereby the
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examination of prominent frequencies and harmonics can provide an indication of the

location, type and possibly the root cause of any defects. Vibration is widely used in

industry however the defect signal can often be obscured in the spectrum since the

relevant frequencies are often of a similar order to mechanical noise which is present.

2.9.2 Lubricant Analysis

Lubricant analysis is the process of examining a lubricant’s properties including the

base oil and its additives, suspended contaminants and wear debris from the ma-

chinery. Lubricant samples can be taken at regular intervals to provide information

about the lubricant and machine condition and can inform maintenance decisions.

The analysis is usually performed by off-site laboratories although on-site laborato-

ries and portable analysis tools are becoming more common with the benefit of faster

results and earlier maintenance. There are many analytical techniques that can be

employed when performing lubricant analysis including spectroscopy, particle counts,

infrared, gas chromatography amongst many others. The decision to use a technique

or not is application dependent, rotating machinery, for example, tends to generate

large wear particles for which rotrode filtration spectroscopy is suitable whereas recip-

rocating engines tend to generate fine metal elements for which rotating disc electrode

spectroscopy or inductive coupling plasma spectroscopy is more suitable [49].

2.9.3 Infrared Thermography

Infrared thermography is method whereby the infrared energy emitted by a surface is

detected, converted into a temperature and displayed as a temperature distribution.

The use of infrared thermography as an NDT technique is based upon the principle

that most components will get hotter or cooler prior to failure. Most commercial

cameras are able to capture temperatures ranging from -20 to 500°C. Since contact

with the component is not required, it allows moving or dangerous objects to be easily

monitored however since direct line of sight to the surface of the object is required it

becomes unsuitable for many bearing application which are often enclosed by a housing

unit. Once the temperature of the housing increases, it is likely that significant damage

will have accrued on the bearing.
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2.9.4 Motor Current Signature Analysis

Motor current signature analysis employs the spectral analysis of the stator current of

an induction motor to detect both electrical and mechanical defects. Defected rolling

element bearings which support the rotor will cause a radial motion between the rotor

and the stator. This displacement causes the air gap to vary, resulting in anomalies

in the air-gap flux density. The current therefore generates frequencies related to

the characteristic defect frequency of the bearing (see Section 3.2.2) which can be

monitored over time [50].

2.9.5 Eddy Current Transducers

Eddy current transducers use electromagnetic induction to detect defects in conduc-

tive components. The most common method involves placing a circular coil carrying

current placed near to the specimen. An alternating current in the coil generates a

changing magnetic field which in turn produces eddy current. variations of the phase

and magnitude of these currents can be monitored by either a secondary receiver coil

or by the primary excitation coil. A change in the phase and magnitude of the eddy

current can be a results of changes in conductivity, permeability or due to the presence

of flaws. There are a number of limitations of eddy-current monitoring including: only

conductive materials may be tested, the surface of the component must be accessible,

flaws which lay parallel to the probe may go undetected and the depth to which a

defect may be detected is limited by the conductivity of the material.

2.10 Advantages & Disadvantages

The benefits and shortcomings of acoustic emission monitoring compared to other

common NDT techniques are summarised as follows.

Advantages� Ability to determine location of defects since emissions from source emanate in

all directions.
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� Able to monitor entire structures with a sparse array of transducers but care must

be taken that sensors are not so far apart that attenuation becomes significant.� High signal to noise ratio since mechanical noise tends to occur at lower frequen-

cies.

Disadvantages� Given the passive nature of acoustic emission technology, it is only possible to

detect events such as crack growth or propagation when the system is record-

ing and the monitored component is under load. However, there are instances

such as during bearing monitoring where repeated impacts or the testing of pres-

sure vessels for leaks where secondary sources can provide an indication of the

component’s condition.� A large amount of data can be acquired which requires storage and computational

power to process. This becomes more significant when monitoring low speed

machinery since longer samples need to be taken in order to record at least a full

rotation of the bearing.� Due to high frequency, attenuation is significant. Care must taken when placing

sensors that the whole structure is monitored.� The voltages induced in the transducer are very small. Care must be taken to

ensure noise does not corrupt the signal before it is amplified.
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Chapter 3

Rolling Element Bearing

Monitoring

Given the importance of rolling element bearings in virtually all rotating machinery,

condition monitoring of bearings has become a well developed technology. Although

vibration analysis is the most common method of determining the condition of a

bearing, a number of other techniques may also be employed. These include oil debris

analysis, temperature monitoring and, in recent years, AE analysis. This chapter

begins by examining the common failure modes experienced by rolling element bearings

followed by a description of typical parameters and methods used in vibration analysis

to diagnose a bearing, all of which are equally applicable to AE analysis. The chapter

concludes with a review of the previous studies and diagnostic capabilities of AE

technology in relation to rolling element bearing analysis.

3.1 Bearing Failures

3.1.1 Fatigue

A bearing operating under optimum conditions will tend to fail by rolling element

fatigue after a given period. The distribution of such failures will follow a Weibull

distribution given a sufficient number of repeats. The L10 life, introduced in Section

1.4, gives the life after which 10% of a significantly large sample of bearings will have
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expected to fail. Fatigue is attributed to the Hertzian contact stresses, which are

at a maximum below the surface, developed under cyclic loading. This initiates the

formation of subsurface cracks which propagate and interact as loading continues. As

the cracks reach the surface, a segment of material can break loose creating a spall

as shown in Figure 3.1. Damage will spread due to the increase in localised stress

around the defect and will severely impact on bearing performance before eventually

leading to catastrophic failure unless remedial action is taken. Having said this, often

bearings operate under sub-optimal conditions and other failure modes become more

prominent.

Figure 3.1: Example of advanced fatigue damage. Copyright Schaeffler Group.

3.1.2 False Brinelling

False brinelling is caused by excessive external vibrations while the bearing is sta-

tionary. Since the rolling elements are not rotating no lubricant is entrained into the

contact, preventing the formation of an oil film. The small relative motion of the

elements and the raceway creates wear particles which oxidise and accelerate the wear

process. The presence of bright wear marks surrounded by brown rings at the spacing

of the rolling elements indicate that false brinelling has taken place.
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3.1.3 True Brinelling

True brinelling occurs when a static load or impact exceeds the elastic limit of the

raceway material. This causes a series of indentations on the raceway which increases

the vibration within the bearing leading to the rapid onset of fatigue damage.

3.1.4 Overheating

Temperatures in excess of 200°C can anneal the raceway and rolling element materi-

als. The resulting loss of hardness reduces the load capacity of the bearing causing

early failures. At even higher temperatures, the bearing components can deform. Ad-

ditional damage can occur due to the high temperature degrading or destroying the

lubricant. The rolling elements, raceways and cage will discolour, turning gold or blue,

in subjected to excessive temperatures.

3.1.5 Corrosion

The presence of water, acids or other contaminants in the bearings for prolonged

periods of time causes corrosion damage. Rust on the bearing surfaces produces uneven

operation which can also lead to abrasive wear. Rust pits can also act as localised stress

concentrators leading to the formation of further spalls. Typical corrosion damage is

shown in Figure 3.2.

3.1.6 Lubricant Failure

Rolling element bearings require the presence of a thin lubricant film to prevent the

rolling elements coming into contact with the raceways. Insufficient lubrication or

excessive temperatures which degrades lubricant properties will result in asperity con-

tacts which will weld together under stress and be torn apart as the rolling element

passes. Initially, the bearing will become discoloured before excessive wear will result

in overheating and catastrophic failure.
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Figure 3.2: Example of corrosion damage. Copyright Schaeffler Group.

3.1.7 Micropitting

Micropitting is a prominent failure mode in wind turbine gearboxes, affecting both

bearings and gear teeth. It has been reported that micropitting is a fatigue phe-

nomenon that occurs under mixed film elastohydrodynamic lubrication (EHL) where

the lubricant film thickness is of the same order of magnitude as the surface rough-

ness (Ra) [51]. Under such conditions a proportion of the load is supported by the

asperities in contact resulting in elastic and plastic deformation and the initiation of

small cracks. Micropits are formed when these cracks grow and interact resulting in

small bits of materials, micrometers in size, breaking off. This process changes the ge-

ometry and internal clearance of the bearing, increasing stress concentrations leading

to secondary damage mechanisms such as macropitting, scuffing, bending fatigue and

polishing [51].

3.1.8 White Structure Flaking

White structure flaking (WSF) is another prominent failure mode of wind turbine

gearboxes and is thought to be the principal cause of wind turbine bearing failures

that occur within the first 3 years of operation, at 1-10% of their rated L10 life [52].

Conditions which are often found in wind turbines and other large industrial appli-
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cations can alter the subsurface microstructure of a raceway. These areas, which are

more brittle than the surrounding material, appear white when etched with nital solu-

tion and viewed under reflective light and are hence called white etching areas (WEA)

[53]. Subsurface defects, such as inclusions and voids, in WEAs act as stress concen-

trators and act as initiation points for cracks to form and grow. Cracks which have

formed close to the surface can weaken the region and cause spalling as larger bits of

material break away. An example of such a crack, which has propagated towards the

rolling surface, in a bearing taken from a 600kW wind turbine gearbox is shown in Fig-

ure 3.3. Although there is currently no consensus regarding the mechanisms through

which WSF occurs, it has been suggested that a complex interaction of a number a

factors could be the root cause [52]. These factors include but are not limited to stress

levels, impacts, lubricant decomposition, percentage of retained austenite, hydrogen

embrittlement and the presence of inclusions, vacancies, voids or carbides.

Figure 3.3: Example of White Etching Crack. Copyright Tom Bruce.
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3.2 Signal Processing Techniques for Bearing Mon-

itoring

The following section introduces some of the common techniques employed to monitor

rolling element bearings. The methods and techniques presented here can be applied

to both conventional vibration analysis and AE. Other methods, such as oil debris

and temperature monitoring, can also be used to monitor bearing health but have not

been included here for the sake of brevity.

3.2.1 Time Domain

The simplest approach when monitoring bearing damage is in the time domain whereby

the measured data is displayed or analysed as a function of time [54]. The most

common parameters are described in this section. The trend of each parameter can be

monitored over time and any significant changes can be either attributed to changes

in operational conditions or are indicative of damage. Most of these techniques have

been developed for the analysis of traditional vibration signals however they are equally

applicable to AE signals.

RMS

The root mean square (RMS) provides a measure of the overall energy of a signal and

is commonly used in industry due to its simplicity and ability to be run online. The

RMS is given by Equation 3.1

RMS =

√

√

√

√

1

N

N
∑

t=1

x(t)2 (3.1)

where x(t) is a discrete time series signal composed of N data points. The RMS is

a robust measure of bearing health when operating conditions are constant and can

indicate the presence of significant defects. However, since the RMS is calculated over

a pre-defined time constant it fails to take into account the transient nature of a defect

signal. The interval between impulses arising due to a rolling element impinging on
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the raceway is usually large in comparison to the duration of the impulses themselves,

this is especially true for small defects on slow rotating bearings. Transient bursts with

an amplitude significantly smaller than the noise, such as those arising from incipient

damage will therefore form a minimal contribution to the overall energy. Damage will

have often progressed significantly before it can be detected by the RMS.

Peak Value

The peak of the signal can be defined as the mean of the absolute maximum and

minimum of a signal and is therefore given by Equation 3.2. The idea being that

larger defects will produce higher amplitude events however since the peak value is

not a statistical measure calculated using all data points, it is not seen as a reliable

indicator of bearing health as noise and spurious data may skew results.

Peak =
1

2
(max(x(t)) −min(x(t)) (3.2)

Kurtosis

Kurtosis k, the fourth standardised moment, measures the degree of ‘peakedness’ of a

signal and is given by Equation 3.3.

k =
N

∑N
t=1

(x(t)− x̄)4

(
∑N

t=1
(x(t)− x̄)2)2

(3.3)

The kurtosis of a Gaussian distribution, as is typical of an undamaged bearing, is 3.

When damage progresses, the amplitude of the impulses due to the defect will increase

along with the kurtosis. Unfortunately, kurtosis is sensitive to spurious vibrations and

noise; the effects of which can outweigh its benefit as a degradation indicator [55].

As these defects interact and grow, the impulses merge and the signal reverts back

towards a Gaussian distribution resulting in a subsequent decrease in kurtosis. It

has been reported that kurtosis is only effective when monitoring for localised defects

since distributed damage is similar to asperities but on a larger scale, therefore also

producing a Gaussian distribution [56].
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Other statistical moments, such as skewness, have been used for condition moni-

toring of rotating machinery and are based upon the same principle; that a deviation

from a Gaussian distribution is indicative of damage. Since these moments provide

a measure of the distribution or ‘shape’ of the data they are not dependent upon

operating conditions.

Crest Factor

The crest factor is the ratio of the peak value to the RMS of a signal given by Equation

3.4.

Crest Factor =
Peak

RMS
(3.4)

The crest factor will increase as discrete defects cause sparse but high amplitude

peaks in the signal but as these defects grow and form distributed damage around

the raceway the RMS will increase, decreasing the crest factor. Thus, whilst able

to indicate the presence of an early defect the measure is not a suitable measure to

characterise bearing degradation.

K-S Test

The Kolmogorov-Smirnov (K-S) test provides a measure of similarity between the

distribution of a sample data set and that of a reference set. The K-S statistic D

quantifies the distance between the cumulative distribution functions (CDF) of two

distributions and is given by

D = supx|Fn(x)− F (x)| (3.5)

where Fn and F are the CDFs of test and reference samples respectively and supx

is the supremum of x. The double ended arrow in Figure 3.4 shows D graphically.

The reference distribution may be either empirical (two-sample K-S test), for example,

from an undamaged bearing or that of a known distribution, typically Gaussian. A

sample taken from the time series data of an undamaged bearing after the running-in

period is normally taken to form the reference CDF. The idea being that as a defect
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grows, a greater proportion of the samples will be of a larger amplitude thus increasing

the K-S statistic.
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Figure 3.4: K-S Test Example

3.2.2 Frequency Domain

The main purpose of analysing data in the frequency domain is to identify the presence

of peaks in the spectrum which relate to specific failure modes or certain damaged

components. Degradation can be monitored by tracking the trend of these amplitudes

over time. Any stationary signal, that is a signal whose frequency components do not

vary with time, can be expressed by a Fourier series, the addition of any number of

sine waves of different amplitude and frequency. The Fourier series expansion of a

discrete time series x(t) of period T can be given by Equation 3.6

X(f) =
1

T

∫ T/2

−T/2

x(t)e−j2πftdt (3.6)

where f represents equally spaced frequencies at multiples of period T . The power

spectrum density estimates the portion power in each frequency bin obtained by the

Fourier series and is given by Equation 3.7

P (f) = E[X(f)X∗(f)] (3.7)

where ∗ is the complex conjugate and E[] the expected value.
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As a rolling element passes over a small defect, a pulse of vibration is generated.

However, due to the short duration of the pulse and the presence of vibrations from

other machine elements, detecting the additional energy via traditional spectral anal-

ysis is difficult and almost impossible when analysing AE signals. Extraneous noise

can sometimes be reduced through spectral averaging but additional techniques are

usually required to extract the relevant frequencies. Furthermore, the defect signal

is a high frequency wave modulated at a lower frequency dependent on the damaged

component.

Characteristic Defect Frequencies

When a rolling element passes over discrete, rather than distributed, defects, such as

those arising due to fatigue spalls or plastic deformation, the raceway is subjected to

an impulse load which generates a broadband stress wave. The frequency at which

these impulses occur is a function of operating conditions and bearing geometry. Each

bearing component; the inner race, outer race and rolling elements, has a different de-

fect frequency and the inner race defect frequency fir, the outer race defect frequency

for and the rolling element defect frequency fre are given by Equations 3.8-3.10 re-

spectively [57].

fir =
n

2
fs

(

1 +
BD

PD
cosβ

)

(3.8)

for =
n

2
fs

(

1− BD

PD
cosβ

)

(3.9)

fre =
BD

PD
fs

[

1 +

(

PD

BD

)2

cosβ

]

(3.10)

where n is the number of rolling elements, fs the rotational frequency of the bearing

shaft, β the contact angle between the raceway and the rolling element, BD the roller

diameter and PD the bearing pitch diameter. The dimensions are shown in Figure 3.5.

Many bearing monitoring techniques are based upon extracting these frequencies from

an enveloped signal thus indicating which component is damaged. These equations are

approximations based on the assumptions of pure rolling contact and minimal elastic
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deformation. Defect frequencies of bearings operating under normal conditions are

not expected to deviate significantly from those calculated given by Equations 3.8-

3.10 however those subjected to light loads and high shaft speeds have been reported

to experience slip at levels up to 50% [58].

PD

BD

β

Figure 3.5: Bearing Dimensions

High Frequency Resonance Technique

The high frequency resonance technique (HFRT), sometimes referred to as envelope

analysis, is one method to overcome the difficulties of noise and modulation presented

in Section 3.2.2 and is based upon the principle that when an element passes over

a defect the system generates a resonance at a much higher frequency than those

generated by other machine elements. Therefore, the additional energy is concentrated

in a narrowband which can be more readily detected than in the entire spectrum. The

resonance is generally considered to be amplitude modulated at the characteristic

defect frequency of the damaged component [59]. The aim of the HFRT is increase

the signal to noise ratio and demodulate the signal in order to analyse the envelope

signal.

The HFRT involves three stages. The process is shown graphically in Figure 3.6.
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Firstly, the measured signal shown in (a) which contains unwanted broadband noise

in addition to the frequencies generated by the defect, the spectrum of which is shown

in (b), is bandpass filtered. The bandwidth contains the resonant frequency, boosting

the presence of the defects in the time domain (c). The corresponding spectrum is

shown in (d). Secondly, the filtered signal is enveloped to find the defect frequencies.

This can be done efficiently via the Hilbert transform (e). Finally, the spectrum can

be analysed since, in theory, any non zero values will occur at integer harmonics of

the defect frequency (f). The enveloped signal can be downsampled at this point to

reduce storage requirements as the resulting frequencies will be lower than those in

the original measured signal.
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Figure 3.6: HFRT Procedure

Cepstrum

Cepstrum is the general term used to refer to the inverse Fourier transform of the

logarithm of a signal’s spectrum [60] and provides a measure of periodicity in a signal.
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Such analysis can be used to indicate the presence of multiple faults which may not

be clear in an FFT derived spectrum. A number of cepstrum exist including the

real, complex and phase however the power cepstrum given in Equation 3.11 was first

defined by Bogert et al [61] in 1963 and has found many applications in the condition

monitoring of rotating machinery. An example of the cepstrum is shown in Figure

3.7. The independent variable here is called the quefrency which has the units of time.

Any periodicity in the signal will manifest itself as a peak at the reciprocal of the

quefrency. The peak in Figure 3.7 at 0.066s corresponds to the defect frequency of

15.1Hz. it should be noted that the plot has been zoomed in to show the peak clearly.

Power Cepstrum = |F−1{log(|F{f(t)}|2)}|2 (3.11)
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Figure 3.7: Measured data from (a) a damaged bearing and (b) the corresponding
cepstrum

3.2.3 Time-Frequency Domain

The Fourier transform assumes that the signal being analysed is stationary. Since

defect signals are transient in nature, a better approach may be to analyse signals in
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the time-frequency domain.

Short Time Fourier Transform

The short time Fourier transform (STFT) is the simplest method of analysing the

frequency content of non-stationary signals. A window function, often a Hann or

Gaussian window, is multiplied by the signal and the Fourier transform is calculated.

The window is shifted in time to generate a 2D time-frequency representation of the

signal which can be viewed graphically as a spectrogram, an example of which is

shown in Figure 3.8 where the defect signals can be seen as an increase in frequency

content between 0 and 400kHz at approximately 0.045 and 0.11 seconds where the

rolling element impinges on the defect. The principal drawback of the STFT is one

of resolution. A compromise between time and frequency resolution must be met by

choosing a suitable window width for the application in question. A wide window

gives good frequency resolution where similar frequencies may be separated in the

spectrum however it is impossible to know at which point in the window each frequency

occurs. The length of window can be reduced to improve the time resolution. Taking

this to its extreme the window could be reduced to a Dirac impulse, the Fourier

transform of which contains all possible frequencies meaning the frequency components

will be smeared across the frequency axis. This compromise describes Heisenberg’s

uncertainty principle which states it is impossible to know the exact frequency of a

signal at any given point in time.

Wavelet Analysis

Given the drawback of the STFT, the next logical step is to take an approach whereby

the size of the window is no longer fixed allowing the data to be analysed at different

scales. This idea forms the basis of wavelet analysis, a relatively recent mathematical

development which has since found diverse applications in areas of signal processing

such as noise reduction, data compression and the analysis of non-stationary signals.

In comparison to Fourier analysis whereby the basis function is a sine or cosine wave

which by definition extends from minus to positive infinity and therefore is suitable for

analysing stationary signals, the basis function for the wavelet transform is a wavelet

which has been defined as “a ‘small wave’, which has its energy concentrated in time to
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Figure 3.8: Measured data from (a) a damaged bearing and (b) corresponding spec-
trogram

give a tool for the analysis of transient, non-stationary, or time-varying phenomena”

[62]. A number of common wavelets exist and the shape of the wavelet is largely

determined by the application with researchers often attempting to match the wavelet

to features in the signal of interest. Previous researchers, for example, have used the

Morlet wavelet in detecting bearing damage due to its similarity to an impulse signal

[63, 64]. Four commonly used wavelets are shown in Figure 3.9. In their unmodified

form these wavelets will be referred to as mother wavelets denoted by Ψ . Although

there is a potentially infinite choice of wavelets, they must fulfil certain criteria such

as integrating to zero and having finite energy, properties which mean the wavelet

must be oscillatory in nature. Wavelets of similar properties form a part of a family of

wavelets, the name gives the family while the number denotes the how many vanishing

moments.

The mother wavelet can undergo a number of translations and dilations. The

resulting daughter wavelet is related to the mother wavelet by Equation 3.12 where

τ and s govern the translation and dilation respectively. As will be shown, time

resolution is governed by translation τ while s determines the frequency, or more
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Figure 3.9: Examples of wavelets (a) Haar (b) Symlets 4 (c) Coiflets 4 (d) Daubechies
4

accurately scale, resolution of the analysis. The constant 1√
s
is a normalising factor to

preserve energy of the transform.

Ψs,τ(t) =
1√
s
Ψ (

t− τ

s
) (3.12)

The continuous wavelet transform (CWT) is generated by calculating the inner

product of the daughter wavelet and the signal x(t) for every possible combination of

τ and s according to Equation 3.13

WTs,τ =

∫

R

x(t)Ψ ∗
s,τ(t)dt (3.13)

where * denotes the complex conjugate. The coefficients therefore provides a measure

of similarity or correlation between the daughter wavelet and the corresponding section

of the signal. A visual representation of these coefficients is called a scaleogram.

Lin and Qu [63] explored the use of the CWT applied to the vibration signals of

bearings and gears. Wavelet parameters were optimised by minimising the entropy

of the transform and it was found that a superior denoising results could be achieved

using the Morlet wavelet compared to Donoho’s soft thresholding method [65].

54



Discrete Wavelet Transform

To calculate the wavelet coefficients at every scale and translation is computationally

expensive. The discrete wavelet transform (DWT) has been developed as a practical

means of overcoming this problem. Rather than compute wavelet coefficients for every

possible value of τ and s, it is possible to interpret the transform as a subset of those

which will accurately represent the contents of the data so that Equation 3.12 becomes

Ψj,k(t) =
1

√

sj0

Ψ (
t− kτ0s

j
0

sj
0

) (3.14)

for integers j and k. In order to maintain the possibility of reconstructing the signal

this subset may be sampled on a dyadic grid whereby s0 = 2 and τ0 = 1. A coarser

sampling would prevent the signal to be accurately reconstructed.

In reality, the DWT is performed by convolution of the signal x(t) with the wavelet

coefficients thereby acting as a low pass finite impulse response (FIR) filter g(z) where

the bandwidth is a quarter of the sampling frequency. The signal is simultaneously

filtered by a high pass quadrature mirror filter h(z). Since a quadrature mirror filter

is a filter whose frequency response is a mirror image of another filter around π/2,

the resulting bandwidth covers the remainder of the spectrum. The initial signal x(t)

is represented by two new signals of equal lengths to x(t) which introduces a level

of redundancy. To overcome such redundancy, both signals are downsampled by two.

The result is a series of approximation coefficients (cA) and a series of detail coefficients

(cD). This process can be repeated any number of times whereby the approximation

coefficients are decomposed at each level until the number of coefficients is reduced to

two, each time the time resolution is halved and the frequency resolution is doubled.

For n levels of decomposition, n+ 1 sets of coefficients will be generated. A two level

DWT is shown in Figure 3.10. An important property of the DWT is that each set of

coefficients can be reconstructed to form a signal of equal length to the original x(t)

relating to its frequency band so for example cAA of N/4 samples can be reconstructed

to AA of N samples. The original signal can then be restored through the addition of

all reconstructed signals from the same level. For example, x(t) = A+D after a single

level decomposition. The use of the DWT has been shown to be effective in isolating

the defect frequencies of bearings with single and multiples fault on both the inner
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and outer race [66].

Figure 3.10: Two Level DWT

Wavelet Packet Decomposition

Wavelet packet decomposition (WPD) is a generalisation of the DWT which offers a

richer degree of analysis. Rather than filtering the approximations at each level, the

WPD high and low pass filters both the approximation and the detail resulting in 2n

sets of coefficients for an n level decomposition compared to n + 1 as would be the

case for the DWT. Figure 3.11 shows a two level decomposition with the extra sets of

coefficients compared to Figure 3.10. The bandwidth is equal for all sets of coefficients

in each level. Nikolaou and Antoniadis take this approach employing an automated

selection criterion to find the vector where the characteristic defect frequency is most

prominent [67].

3.3 Review of AE Monitoring of Rolling Element

Bearings

Conventional vibration analysis is a well established method for the diagnosis of rolling

element bearings. Many parameters and signal processing techniques have been in-

vestigated, the majority of which are either directly applicable to AE data or initially

56



Figure 3.11: Wavelet Packet Decomposition

require a degree of preprocessing. Rather than providing a complete review of such

techniques, the following section chronologically introduces methods explored by AE

researchers for bearing monitoring, some of which being unique to AE technology.

Modern AE research began in the 1950s however, the first known study of acoustic

emissions from rolling element bearings was performed by Rogers [68] in 1979 following

concern regarding the safety and performance of slewing cranes on offshore gas pro-

duction platforms. The use of AE was initially proposed as vibration analysis in the

range of 1 to 20kHz and strain gauges were not deemed sensitive enough to detect in-

cipient damage and fatigue cracks in slow speed bearings. Two diametrically opposed

sensors were bonded to the slew ring and discrete AE events were recorded whilst the

crane was in motion. A fixed threshold of one volt was used to count events. The

amplitude and spatial distribution of events above the level of background noise could

then provide a basis against which bearings of an unknown state could be compared.

No comment was able to be made regarding the sensitivity of AE in detecting damage

since only an undamaged bearing was monitored.

In 1982 Smith [69] carried out a comparison of AE monitoring with not only vi-

bration analysis but also shock pulse metering (SPM) and jerk. The stationary outer

race of a test rig was instrumented with a high frequency accelerometer, a shock pulse

transducer and an acoustic emission transducer while the inner race was seeded with a

20µm scratch. Furthermore a back-to-back gear test rig was mounted on the same base

in order to provide some typical background noise. In the first instance the bearing
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test rig was run without the gear test rig running and it was found that the signal

to noise ratio of each method was similar. However, when the noise from the gears

was present, it was not possible to visually detect the defect from the acceleration or

acoustic emission data below 1000rpm. The SPM and jerk measurements showed it

was capable of detecting defects at speeds above 500rpm. Additional experiments were

performed at very low speeds and, even in the absence of the background noise, the

defect signals of all methods, the exception of acoustics emissions, were not detectable

in the electrical noise of the measurement system and the transducer was responding

to every time a ball came into contact with the defect. It was suggested that this was

due to the sensitivity of the transducer to base bending. Although no lower speed limit

was established, the defect was detectable from 10rpm up to approximately 300rpm.

This study suggests that the use of acoustic emissions should be considered in slow

rotating bearings.

A direct comparison between AE and conventional vibration monitoring was made

by Hawman and Galinaitis [70] to determine the minimum detectable defect size of

each method. The digitised signal of a single AE sensor bonded to the stationary outer

race of a ball bearing was analysed in both the time and frequency domain. Defects

were scratched on the outer race, the size of which was increased after each test. The

inner race was rotating at a fixed speed of 5700rpm, much faster than previous studies.

Peaks in the spectrum of the demodulated signal at the outer race defect frequency

indicated that AE was capable of detecting defects with a width of 0.001in (0.0254mm).

The spectrum of the vibration data did not clearly indicate the presence of a defect

until the width had reached 0.065in (1.65mm), an increase of over 6 times. At this

point the RMS had increased by 38% indicating that AE is not only more suitable for

detecting incipient damage in high noise environments but is also capable of indicating

which component is damaged.

The early detection of defects was investigated through the use of advanced signal

processing and pattern recognition techniques by James Li and Li [71]. Bearings with

and without damaged components were monitored with AE sensors of bandwidth 20-

90kHz, lower than is used in most AE monitoring, in order to reduce the amount

of data after sampling. The ‘peaks and valleys’ derived from the auto-correlation of

two features, namely the short-time energy function and the zero crossing rate, were

used as inputs to a pattern classifier which plotted the two features and attempted

to find a boundary separating the damaged from undamaged bearings. The classifier
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was trained by a gradient descent algorithm to label new data as damaged or not. A

success rate of 94% indicated a significant improvement over vibration monitoring and

the previous state of the art AE technique HFRT whose success rate was reported to

be 86%. Furthermore, the study both demonstrated the success of monitoring damage

on rolling elements which introduces an additional challenge due to its time varying

position and transmission path and found that signal to noise ratios were stronger in

AE transducers than accelerometers when placed remotely to bearing.

The aim of an investigation by Shiroishi et al [56] was to not only indicate the

presence of a defect by AE monitoring but also attempt to establish a relationship

between signal features and defect size. A cup and cone Timken bearing operating

at 1200rpm was scratched with a diamond scribe to replicate natural damage. The

HFRT and an adaptive line enhancer (ALE) were used to enhance the signal and

increase the signal to noise ratio (SNR). Results were compared with both commonly

used statistical parameters and those obtained from vibration signals processed in the

same manner. Through the use of a peak ratio, defined as the ratio of the sum of

the defect frequency and its harmonics to the average of the whole spectrum, the

minimum detectable defect size was found to be 38µm; larger than the smallest defect

size detectable by vibration analysis; 15µm. No meaningful correlation was found

between any of the AE features investigated and the defect width whereas the peak

value of the accelerometer signal demonstrated a strong relationship. Furthermore,

it was recommended that time domain methods are employed when monitoring for

distributed damage.

The monitoring of contaminants or starved lubrication introduces a further chal-

lenge since induced vibrations are not periodic and cannot, therefore, be monitored

by traditional methods such as enveloping the measured signal and tracking the char-

acteristic defect frequencies. Miettinen and Andersson [72] compared the use of AE

with a number of vibration based methods to monitor bearings lubricated with con-

taminated grease. Under laboratory conditions a number of bearings were tested with

and without contaminated grease. The pulse count method and RMS were used as

AE measures. A clear increase in AE activity was demonstrated with the introduction

of contaminants and amongst the methods investigated, AE was found to be the most

sensitive. Further laboratory investigations by the same authors found that weight

concentrations of contaminants as low as 0.02% could induce a clear increase in AE

activity however such a relationship did not increase linearly with concentration as
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the pulse count measure became saturated [73]. The results also showed greases con-

taminated with the same proportion of ferrous material gave rise to higher levels of

acoustic emission and that bearings replaced with clean grease exhibited higher lev-

els of AE activity compared to a new bearing with clean lubricant. Miettinen and

Leinonen [74] recognised the limitations of laboratory investigations and carried out a

study aiming to determine how wear particles can be monitored in a field environment

and to gain some experience in the type and level of disturbance that can be expected.

In order to differentiate changes in AE activity arising from the bearing from external

influences a reference sensor was used that was in the vicinity of but not bonded to

the bearing. Measurements were taken from four scenarios; from a bearing which had

been re-greased two years prior, the same bearing with clean grease, following the in-

troduction of contaminated grease and finally, after two months of running in normal

production with the contaminated grease. The results clearly show how environmental

disturbances influence AE activity and the reference sensor, used in pulse count mode,

could be used to correct the data from the bearing sensor. It was also concluded that

from the measures investigated, kurtosis is the most sensitive to the introduction of

contaminants into the grease.

The use of ring down counts, as described in Section 2.5.2, for defect detection

was evaluated by Choudhury and Tandon [75]. The sensitivity to operating conditions

was determined as bearings of different bore diameters were run under a range of

loads and speeds. An automatic threshold was employed to eliminate the variance

in background noise. The value of counts exhibited a sharp rise over the range of

smallest tested defects but showed no further increase once the defect had progressed

to 0.5-1mm indicating the parameter would be useful for defect detection but not size

estimation. The results have been reproduced in 3.12. The number of ring down

counts was shown to be insensitive to bearing size and applied load but increased with

rotational speed as presented in Figure 3.13.

Further investigations into emissions from low speed machinery were presented by

Jamaludin et al [76]. Two explanations for the difficulties in monitoring bearings at

low speeds are presented: firstly, that acceleration is the most widely used parameter to

measure vibration which reduces with a reduction in rotational speed. It is suggested

that below 600rpm, displacement is a more suitable parameter. Secondly, at low

speeds, the low frequency components of a defect signal are likely to be lower than

the cut-off frequency of the high pass filters used in many instrumentation systems
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Figure 3.12: Ringdown counts at 75kg and 1500rpm [75]

to reduce inherent instrument noise. Previous studies had tested bearings operating

at rotational speeds of no less than 10rpm [69]. Bearings were run at 1rpm with

defects generated by electrodischarge machining (EDM) and spark erosion to imitate

the progression of damage. However at this speed it was not possible to detect defects

representative of early damage. The measured signal was represented by a number

of auto-regressive coefficients which provided an efficient means of classification into

damage states.

Mba validated the use of RMS to aid diagnosis and extended the work of Choudhury

and Tandon [75] by determining the significance of the threshold on AE counts for the

suitability of bearing monitoring [42]. Bearings, seeded with artificial defects, were

run under a range of speeds (600-3000rpm) and loads (0-4.8kN). It was concluded that

RMS provides a robust means of bearing diagnosis, generally demonstrating an increase

with increasing load, speed and defect size. The relationship between the mechanical

integrity of the bearing and the value of AE counts was found to be independent of

the threshold which was calculated as a percentage of the peak amplitude for each

loading case. A similar procedure was undertaken by Morhain and Mba [77] however

the use of maximum event amplitude and energy was also investigated. In addition
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Figure 3.13: Ringdown counts under varying conditions �Rolling element (no defect)
N Inner race (no defect) x Rolling element � Inner race [75]

to RMS and counts, the energy of AE events was found to correlate with load, speeds

and defect size however such a relationship did not exist for the maximum amplitude.

Although Al-Ghamd and Mba [78] reinforced the use of commonly used AE pa-

rameters as a robust means of bearing diagnosis, their most significant findings related

to the fundamental source of AE activity and an attempt to establish a relationship

between defect size and signal features. Defects were seeded by a carbide tip engrav-

ing machine with and without protrusions above the mean surface roughness of the

bearing raceway. Since the presence of smooth defects could not be distinguished from

the bearings with no defect it was assumed the principal source of AE activity was

a result of direct material contact. A direct relationship between defect length and

burst duration was established while a comparison was made between AE and vibra-

tion analysis as a means of determining defect size. Figure 3.14 shows how both the
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AE RMS and maximum amplitude increase with defect sizes while the bearing was ro-

tating at 2000rpm, D1(0.85x1.35mm)-D7(13x10mm), whereas the equivalent vibration

measures decrease at the largest defect sizes; a finding which may prove significant for

bearing prognostics.

A
E
R
M
S
(V

)

V
ib
ra
ti
on

R
M
S
(V

)

A
E
M
ax

.
A
m
p
li
tu
d
e
(V

)

V
ib
ra
ti
on

M
ax

.
A
m
p
li
tu
d
e
(V

)

D1 D2D3 D4 D5 D6 D7D1 D2 D3 D4 D5D6 D7
0

2

0

0.5

0

1

0

0.05

0.1

Figure 3.14: Comparison of AE and vibration RMS and maximum amplitudes [78]

In response to the high failure rates experienced by ball bearings in induction mo-

tors, Tandon et al [79] carried out a comparison of the commonly used condition mon-

itoring methods; vibration, stator current, SPM and AE measurements at 1440rpm.

AE measurements were shown to exhibit the greatest percentage increase in peak am-

plitude compared to the equivalent parameters measured for the other methods for

both the minimum and maximum defect size tested.

Couturier and Mba [80] first investigated the importance of the specific film thick-

ness λ in relation to AE levels under near iso-thermal conditions. The RMS of a grease

lubricated Cooper split bearing was recorded whilst varying speed and load. As ex-

pected the RMS demonstrated an inverse relationship with λ; as the load increases,

the film thickness decreases therefore increasing the number and severity of asperity

contacts. However, a similar relationship did not exist whilst varying the speed, rather

the opposite. Although higher speeds result in larger film thicknesses, it was postu-

lated that the resultant increase in strain rates experienced by asperities in contact

was the reason for the increase in AE RMS indicating that AE activity is not merely a

function of specific film thickness. It is also suggested that as speed increases further

and bearing moves towards hydrodynamic lubrication, AE levels will then decrease as

no asperity contact is taking place.
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The majority of previous studies have focused on validating the use of AE tech-

nology for condition monitoring by correlating the size of seeded defects or operating

conditions with parameters characterising the defect signal. Elforjani and Mba [81]

performed accelerated life tests on thrust bearings to monitor natural degradation.

One raceway was replaced with a flat plate to increase contact stresses and induce

fatigue. Traditional parameters were monitored but the authors recognised the limi-

tations of these methods when monitoring signals exhibiting transient behaviour. To

overcome this, the concept of the energy index (EI) and the K-S test were investigated.

Both methods were shown to be more sensitive to the onset of fatigue when compared

to the signal energy calculated over a predefined time constant.

Al-Dossary et al [82] aimed to further the work of [78] by investigating the re-

lationship between defect size and various AE waveform parameters. A correlation

between defect size and AE burst duration was demonstrated for outer race defects

however such a relationship could not be observed for inner race defects due to, it is

believed, variation in the transmission path as the bearing rotates. This difference is

shown in Figure 3.15. The theoretical values, based upon the size of the defect and

the relative speed of the passing elements, is consistently smaller than the measured

burst duration. This is assumed to be a result of the signal decay which is not taken

into account when calculating the theoretical values.
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Defect frequencies were extracted by the short-time RMS and autocorrelation func-

tions in a study by He at al [83]. A close match was noted between the theoretical and

measured frequencies confirming the use of such a method to determine which compo-

nent is damaged. The sensitivity of various AE parameters was investigated under a

range of operating conditions. Radial load was shown to be insensitive to AE counts,

energy, amplitude and kurtosis whereas rotational speed had a strong influence on all

of the parameters reinforcing the findings of Choudhury and Tandon [75]. Increasing

defect size was responsible for a less marked increase suggesting that such parameters

may not be suitable in situations of variable speed and more complex signal processing

techniques may be more suitable.

Widodo et al [84] developed a technique to successfully diagnose and classify bear-

ing damage in low speed machinery rotating at a minimum speed of 10rpm. The

bearings were seeded with defects representing both cracks and spalls on the inner

race, outer race and rolling elements. The defects, which were created by a diamond

cutting bit and an air-speed grinding tool, ranged in widths from 0.1-1.6mm. AE and

vibration signals were enveloped and a number of time and frequency domain param-

eters were extracted. The dimensionality was reduced through component analysis to

increase the performance of the classifier. The suitability of a multi-class relevance

machine (RVM) and a support vector machine (SVM) was compared. The RVM was

able to successfully differentiate between hairline cracks and spalls on the inner and

outer race and rolling element defects. Furthermore, it was noted that AE signals were

more sensitive to damage than vibration signals at rotational speeds less than 80rpm.

The concept of EI, initially investigated by [81], was examined in greater detail by

Al-Balushi et al [85]. Defect signals were simulated by superposing Gaussian white

noise upon a sequence of rapidly decaying high frequency sinusoidal waves; in a similar

manner to the process followed in Section 5.1.1. By varying the amplitude of the

bursts it was found that the EI could pick out transients when the SNR was 25%.

The technique was also applied successfully to experimental signals contaminated with

noise. It was suggested that by choosing a suitable window length the effect of electrical

noise, which tends to be of shorter duration than defect signals, can be minimised.

Further parameters were investigated by Elforjani and Mba [86] to increase sensitiv-

ity to bearing degradation. In particular, information entropy (IE) was demonstrated

to outperform both kurtosis and crest factor. Additionally, three non-linear power
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spectral methods; Prony energy, eigen-analysis and auto-regressive spectra, were inves-

tigated due to limitations of the FFT: notably leakage and resolution. Peaks appeared

in all three spectrum before the FFT while the Prony energy spectrum exhibited the

best performance. An attempt was made to provide a relationship between burst du-

ration and defect length on naturally degrading bearings however no indication of the

accuracy was provided. Maps of the coefficients derived from the continuous wavelet

transform (CWT) were presented to provide a time-frequency representation of the

signal. These maps provided an indication of periodicity at the defect frequency but

no further use was made of this potentially useful tool.

3.4 Conclusion

The decision to employ one method of NDT must take into account, amongst other

factors such as cost and ease of obtaining and analysing data, the sensitivity to damage.

A number of authors have attempted to determine whether AE is more sensitive to

damage than conventional vibration analysis [56, 69, 70, 71, 78, 79, 84]. While it does

not seem to be clear which method is more effective, there is a general consensus that

AE is more suitable at low rotational speeds [69, 76, 84]. Kuboyama suggests that at

high rotational speeds the defect vibrations have a large amount of energy concentrated

over a short period of time whereas at lower speeds the vibrations have less energy

spread over a longer period thus obscuring the defect signal in the background noise

[87]. Jamaludin et al also state that conventional vibration systems tend to employ

accelerometers whereas displacement sensors would be better suited to low-frequency

analysis and the cut-off frequency of the high pass filters found in many systems is

higher than the defect frequency of many slowly rotating bearings [76].

Another common thread running through many studies concerns the variation of

AE parameters with operating conditions such as load, speed, defect size and bearing

size. Although a number of common findings exist, many papers report seemingly

contradictory results. For example, [75] and [83] found counts to be insensitive to

load but strongly influenced by speed whereas [77] found that counts demonstrated

a marked increase with load. It could be argued that film thickness or lubrication

regime which is a function of all these conditions can explain AE activity better than

any single condition. The only study to take this approach and focus on film thickness
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rather than individual conditions was performed Couturier and Mba [80] and could

explain these apparent conditions. For example, an increase in speed may increase AE

activity if the film thickness is too small to prevent full separation due to the increased

strain rates. However a further increase may reduce emissions as the film thickness

grows and no asperity contact takes place.

A handful of studies attempted to correlate defect size with various AE measures.

The most successful of which were made by correlating the burst duration to the size of

the defect [82, 86]. It must be noted however that such an approach will only work in

those cases where the load on the defect is constant, therefore the damaged component

must be stationary. No relationship could be established between defect size and AE

parameters; RMS, kurtosis and crest factor [56].

Although not explicitly stated, it is assumed that previous studies have generally

concentrated on cases where a full lubricant film is formed and no or little asperity

contact takes place. The findings are likely to be significantly different under mixed or

boundary lubrication where asperity contact could lead to increased emissions. Whilst

similarities can be drawn between asperity contact and lubricant contamination which

has been investigated, this appears to be a significant void in the field of AE bearing

monitoring.
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Chapter 4

Bearing Test Rig &

Instrumentation

This chapter presents the experimental test rigs used throughout this thesis. Informa-

tion regarding the design, the bearings and the seeded defects is provided followed by

a description of the acoustic emission instrumentation and sensors.

4.1 MultliLife� Bearing Rig

In order to both validate acoustic emissions as a means of monitoring bearing health

and to test the concept of the MultiLife� bearing, engineers at Ricardo have designed

and built a full scale test rig to perform accelerated bearing life tests with loading

conditions representative of those experienced by planetary support bearings. The

rig has been designed to also allow the monitoring of the oil film thickness through

ultrasound transducers bonded to inner surface of the inner race and is the focus of

another doctoral project. The assembled rig and a sectioned schematic are shown in

Figures 4.1 and 4.2 respectively.

The outer race of the test bearing is belt driven to reduce noise by a 7.5kW external

motor and can reach a rotational velocity of 100rpm. The outer race is allowed to rotate

by a larger self-aligning bearing which is shown in Figure 4.3 taken during disassembly

of the rig. The inner race is fixed to the rig housing via a steel brace to prevent the

inner race rotating during operation. A solid shaft fits through the inner race and
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Figure 4.1: Photograph of Bearing Test Rig
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Figure 4.2: Schematic of Bearing Test Rig

69



is attached to two loading arms at either end designed to apply a purely radial load

up to 1500kN. The inner race thus experiences uni-directional loading; representative

of an epicyclic gear. Between the shaft and the inner race sits a sleeve which has

been modified to allow sensors access to the inner race. Three equally spaced sensors,

described in more detail in Section 4.3.1 are bonded to metal plugs machined to the

correct radius and are spring loaded against the raceway. The rig was designed in

this way as to allow the raceway to be rotated while the carrier and sensors remained

stationary. A schematic and photo of the carrier is shown in Figures 4.4 and 4.5

respectively. The test bearing is pumped with a thin automotive oil of viscosity VG32

(see Table 4.1), whereas the support bearing is filled with a high viscosity VG320 oil in

order to encourage the initiation of damage in the test bearing and prevent damage in

the support bearing. The motor and oil pump is controlled by a PC running Labview

which simultaneously records a low frequency log of bearing, inlet oil and ambient

temperature in addition to oil pressure, applied load and rotation count of the outer

race.

Figure 4.3: Support Self-Aligning Bearing
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Table 4.1: Oil Viscosity

Temperature (° C) Viscosity (cSt)
40 32
100 5.3

AE Sensors

Figure 4.4: CAD Diagram of Sensor Carrier and AE Sensors

Carrier AE sensor
Inner
raceway

Figure 4.5: Sensor Carrier with and without Inner Raceway

4.1.1 Bearing

The specification of the cylindrical roller bearings (specification NU2244) manufac-

tured by PSL in Slovakia and used for all testing on the MultiLife� test rig is shown

in Table 4.2.
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Table 4.2: Bearing Specification

Dynamic load rating 1600kN
Static load rating 2300kN

Pitch diameter (PD) 313mm
Roller diameter (BD) 54mm
Inner race diameter 259mm

No. of rollers 15
Contact Angle 0°

Defect Frequencies

Using Equation 3.8 and the dimensions of the test bearing the inner race defect fre-

quency can be calculated as a function of operating speed. Since the rotational speed

experienced by a bearing in a wind turbine will not be constant, it is useful to express

the defect frequency as a factor by which the shaft frequency fs will be multiplied.

This approach is generally referred to as order analysis rather than frequency analysis.

In this case the inner race defect frequency is 8.79fs or 14.65Hz when the fs=100rpm.

Likewise, the defect frequencies for the outer race and the rolling elements are 6.2fs

(10.33Hz) and 5.97fs (9.95Hz) respectively.

Surface Roughness

In order to later calculate the specific film thickness of the bearing it is necessary

to measure the surface roughness of the surfaces in contact. The profile of the inner

raceway and a rolling element were measured with a 2D stylus based profilometer.

Five measurements were taken at random points across both components only in the

axial direction due to limitations of the profilometer. The value of Rq, the root mean

squared roughness, given by Equation 4.1 was calculated for each measurement and

averaged where n is the number of data points and yi is the distance from the mean

once the data has been corrected for waviness and tilt. The results are shown in Table

4.3. The composite surface roughness given by Equation 4.2 is therefore 0.195µm.

Rq =

√

√

√

√

1

n

n
∑

i=1

y2i (4.1)
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Rq,T =
√

(R2
q,re +R2

q,ir) (4.2)

Table 4.3: Bearing Surface Roughness (µm)

Measurement No.
Component 1 2 3 4 5 6 Average
Inner Race 0.131 0.172 0.181 0.193 0.175 0.128 0.173
Rolling Element 0.145 0.087 0.087 0.092 0.093 0.081 0.090

Seeded Defects

To minimise the length of each experiment and accelerate damage mechanisms the

test rig will operate at a constant speed of 100rpm with a radial load of 1200kN;

75% of the bearing’s dynamic load rating. The contact pressure between the inner

race and the rolling element bearing can be calculated for a given load based upon

the Hertzian theory of elastic contact. In the case of a cylindrical rolling bearing, the

contact between the two components is assumed to be a line contact where the reduced

radius R′ can be derived from the radius of the rolling element R1 and the radius of

the surface of the inner race R2 given by Equation 4.3.

1

R′
=

1

R1

+
1

R2

(4.3)

Using the dimensions provided in Table 4.2 the reduced radius is 22.3mm. For any

applied load per unit length P ′, half the contact width b can then be estimated by

Equation 4.4

b =

√

4P ′R′

πE∗ (4.4)

where E∗ is the reduced modulus given by Equation 4.5.

1

E∗ =
1

2
(
1− v2

1

E1

+
1− v2

2

E2

) (4.5)

Since the load applied to the bearing will be distributed over a number of rolling ele-

ments it is also necessary to calculate the load on the most heavily loaded element. The
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maximum load for rolling elements bearings with nominal clearance can be estimated

by;

Pmax =
5Fr

Zcosα
(4.6)

where Fr, Z and α are the radial load, number of rolling elements and contact angle

respectively [88]. For an applied radial load of 1200kN, the most heavily loaded element

is therefore subjected to 400kN. The width of the rolling elements is 108mm giving a

load per unit width P ′ of 3.7MN. The full contact width 2b is therefore calculated as

1.35mm while the average pavg and maximum contact pressures p0 are 2.75GPa and

3.48GPa respectively according to Equations 4.7 and 4.8.

pavg =
P ′

2b
(4.7)

p0 =
2P ′

πb
(4.8)

Given such conditions and assuming the test bearing is well lubricated and free of

contaminants, the L10 life for the NU2244 bearing, as calculated using Equation 1.1

on page 11, is approximately 8.7x106 revolutions. This corresponds to about 2 months

when operating continuously at 100rpm. Clearly such a period is restrictive when

attempting to perform a number of run to failure tests. It has, therefore, been deemed

necessary to seed small defects on the raceway surface to act as a stress concentrator

and thus an initiation point for further damage. An electrical-discharge machined

(EDM) groove was eroded across the surface of the inner raceway on the two NU2244

bearings. The profile of the seeded defect measuring 100µm wide by 60µm deep taken

from a scan using an optical interferometer is shown in Figure 4.6. It can be seen from

Figure 4.6 that the erosion process has caused protrusions above the surface roughness

on either side of the defect increasing the chance of metal-to-metal contact.
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Figure 4.6: Profile of EDM Groove across Inner Raceway

4.2 Split Raceway Bearing Rig

Cooper Bearings manufacture split bearings whereby both raceways and the cage and

roller assembly are each made of two semi-annular components to facilitate the instal-

lation and replacement of bearings since the shaft does not need to be removed during

maintenance. The use of such bearings, but on a large scale, has been suggested to

replace failed main shaft bearings on direct drive wind turbines to reduce downtime.

One half of the cage and outer raceway are shown in Figure 4.7.

Figure 4.7: Photograph of Rolling Elements, Cage and Outer Race

Cooper Bearings have supplied the university with a test rig to test such bearings

as shown in Figure 4.8. Two AE sensors were coupled to either end of the split
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outer raceway that is under load since damage is most likely to occur between these

two points. Load is applied by a tightening a nut and measured by a load cell with

a digital read-out. The bearing is grease lubricated. Results from this test rig are

presented in Section 7.3. Two sensors were spring loaded and coupled against either

end of the split outer race which was under load.

Figure 4.8: Split Race Bearing Test Rig

4.2.1 Bearing

The specification of the cylindrical roller split bearings (01E B 400EX) manufactured

by Cooper and used for all the testing in this study is shown in Table 4.4.

Table 4.4: Cooper Split Bearing Specification

Dynamic load rating 320kN
Static load rating 421kN

Pitch diameter (PD) 138mm
Roller diameter (BD) 18mm

No. of rollers 16
Contact Angle 0°

The inner race, outer race and rolling element defect frequencies are therefore

9.05fs, 6.94fs and 7.71fs respectively.
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4.3 Instrumentation

A schematic of the data acquisition employed for this work is shown in Figure 4.9. A

Physical Acoustics Corporation PCI-2 based system was used to digitise and store the

AE waveform data with a 16bit analogue/digital converter. The specialist software

AEWin was used to record the waveform data and process the hit-based data. Each

sensor was connected to a PAC 2/4/6 pre-amplifier with a selectable gain of 20, 40 or

60dB. An anti-aliasing filter was contained in each pre-amplifier. The system includes

low and high pass filters which were set to the widest bandwidth of 20Hz-1MHz so the

least information was lost during the acquisition stage. The sampling rate employed

for all channels in this work was 2MHz. The same acquisition system was used on

both test rigs. All subsequent processing was performed in Matlab.

AE sensor Preamp HP filter LP filter 16 bit A/D converter

AE sensor Preamp HP filter LP filter 16 bit A/D converter

AE sensor Preamp HP filter LP filter 16 bit A/D converter

Data

PCI-2 based AE system

Processing

Figure 4.9: Schematic of DAQ system

4.3.1 Sensors

The sensors used on the Multilife� test rig were three Physical Acoustics Nano 30

sensors measuring 8mm diameter by 8mm in height. The bandwidth of sensors is 125-

750kHz with a resonant frequency of approximately 300kHz. A reproduction of the

calibration certificate showing the sensor’s frequency response curve is shown in Figure

4.10. The split bearing rig used two Physical Acoustic Pico sensors with a bandwidth

of 200-750kHz and a resonant frequency of 250kHz. The Pico sensors measure 5mm

in diameter by 4mm in height.

4.4 Conclusion

In this work, the majority of the testing is performed on a full scale bespoke test rig

designed to replicate the loading scenario experienced by a planetary gear support
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Figure 4.10: Sensitivity of PAC Nano 30 Sensor

bearing in a wind turbine gearbox whereby the inner race is stationary, experiencing

uni-directional loads over a non-conformal contact. Operating conditions have been

specified to reduce the expected life of the bearings as much as practically possible.

Further tests are performed with a split bearing test rig. Both test rigs are instru-

mented with acoustic emission sensors and damage is seeded onto the raceways using

electro-discharge machining.
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Chapter 5

Feature Extraction and Damage

Detection

This chapter presents a proposed method for determining the condition of a rolling

element bearing using acoustic emission technology. The aim is to reduce the high

dimensionality measured data to a vector of just a few dimensions whilst retaining the

important characteristics of the original signal. Such an approach, reduces computa-

tional memory and prevents the overtraining of classification algorithms. The chapter

initially describes the concepts at each stage of the proposed process and these are

demonstrated using simulated defect signals. The creation of which is described in

Section 5.1.1. A demonstration of outlier analysis, a technique used to highlight the

degree of novelty of an unseen observation, again using simulated defect signals are

included in this chapter. The techniques proposed in this chapter are applied to data

from accelerated life tests later in Chapter 7.

5.1 Feature Extraction

Section 2.5 described a number of commonly recorded parameters when employing

a hit-based monitoring system. This process relies on the amplitude of the defect

signal being significantly higher than the background noise. In the case of incipient

damage, the amplitude of such a signal is likely to be less or of a similar magnitude

to the noise so such events will be missed. It is for this reason that in this work,
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raw waveform data, rather than hit based parameters, will be periodically analysed

to determine the bearing condition. This section outlines the proposed process that

will be followed when performing run-to-failure tests in Chapter 7. The aim of this

process is to increase the signal to noise ratio, reduce the dimensionality of the signal

for reduced storage requirements, demodulate the high frequency component of the

defect signal and determine the presence of any dominate frequencies which relate to

the characteristic defect frequencies presented in 3.2.2.

Initially, the use of the wavelet packet decomposition will act as a filter bank. The

idea being that the defect frequencies will be concentrated in frequency bins of limited

bandwidth and therefore will be more prominent in some reconstructed signals than

others. The short time energy function will act as means of enveloping the signal and

downsampling while the combination of the autocorrelation function and cepstrum will

further reduce noise and indicate an periodicity in the signal. The proposed process

is shown in a flow chart in Figure 5.1.

5.1.1 Creation of Simulated Data

The process outlined in Figure 5.1 will be demonstrated in the following sections using

a simulated defect signal. This section describes the process for generating such a

signal. A defect signal x(t) can be assumed to be the sum of a measurement signal

y(t) and Gaussian noise n(t) given by Equation 5.1.

x(t) = y(t) + n(t) (5.1)

The measurement signal is transient series of short impulses representing each

instance at which a rolling element strikes a defect whereas the additive background

noise from other vibrations in the system is assumed stationary. Based upon the

assumption that each impact generates the same waveform, a more general expression

for a rolling element bearing defect signal can be given by Equation 5.2 [89].

x(t) =
M
∑

i=1

Ai.s(t− iT − τi) + n(t) (5.2)
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Figure 5.1: Flow Diagram of Signal Processing Procedure
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This represents a series of M impulses occurring at an interval T , each subjected

to a minor and random fluctuation τi due to slip or skid. Ai denotes the amplitude

modulator and is periodic with shaft speed. This is either constant or approximately

sinusoidal depending on whether the component is rotating or not and therefore ex-

periencing a periodic load cycle. Some studies have modelled the waveform s(t) as a

heavily damped sinusoid at the resonant frequency fr as given by Equation 5.3.

s(t) = e−Btcos(2πfnt) (5.3)

The damping coefficient B should be high enough to replicate attenuation in a real

system ensuring the oscillations have disappeared prior to the following impulse.

Prior to obtaining the run to failure data of a number of bearings, a range of

defect signals were simulated to provide an initial indication of the effectiveness of

the diagnostic technique. The idealised case described above can sufficiently describe

incipient faults in rolling element bearings [89]. However, in the following work a series

of repeated artificial sources have been used to form s(t). A Hsu-Nielsen source, was

performed on the inner raceway of the bearing described in Section 4.1.1 and recorded

with a Physical Acoustic Nano 30 sensor. The measured response is shown in Figure

5.2. This approached is preferred to using a synthesised waveform since finding the

transients of a single frequency becomes a relatively trivial task.

A clean defect signal composed of a series of these sources is shown in Figure 5.3

at 16Hz, roughly typically of a defect frequency found in on the MultiLife� bearing

at rotational speeds slightly greater than 100rpm. Since the inner race is stationary

and any defects would experience a constant load the signal has not been amplitude

modulated by the shaft frequency.

Finally, Gaussian white noise is superposed upon the signal. Since the aim of this

work is to determine the sensitivity of the proposed diagnostic methods to incipient

damage, the scaling of the defect signal is adjusted to vary the signal to noise ratio

(SNR). Conventionally, the SNR is the ratio of the power of the signal to power of

the noise. However, given the transient nature of the defect signal the SNR has been

defined as the ratio of the maximum amplitude A of the defect signal to three standard
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Figure 5.2: Hsu-Nielsen Source

Time (s)

A
m
p
li
tu
d
e
(V

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.3: Pure Defect Signal

deviations σ of the noise (Equation 5.4). Previous work defined the SNR as the ratio

of maximum amplitude of the signal to the maximum amplitude of the noise [85]

however it was found that this produced too much variation between signals with the
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same SNR.

SNR =
max(Asignal)

3σnoise
(5.4)

Two examples of the simulated signals with SNRs of 0.4 and 1.5 are shown in

Figure 5.4. A random fluctuation up to 10% of the period T will also be introduced

to verify the robustness of each diagnostic technique to slip and skid.
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Figure 5.4: Simulated Defect Signals (a) SNR = 0.4, (b) SNR = 1.5

5.1.2 Wavelet Packet Decomposition

The theory behind the WPD is presented in Chapter 3. In this section, the decompo-

sition will be demonstrated using simulated data described in Section 5.1.1. The data

is one second in length and is sampled at 2MHz with a defect frequency of 16Hz. The

SNR for the example shown is 0.8. In its unprocessed state no regular features can be
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seen in the signal and thus provides a good example for the subsequent demonstra-

tion. The frequency content of this signal is shown in Figure 5.6. The use of modelled

white noise gives a uniform distribution across the frequency range whereas most of

the additional content due to the modelled defect falls in the range of 75-300kHz. The

inset plot in Figure 5.6 has zoomed in on the spectrum to the range relevant to the

defect frequencies and the position of the defect frequency is shown by the dashed

red line. Since the defect signal is buried within noise in addition to the fact that it

manifests itself as an amplitude modulated high frequency signal, the characteristic

defect frequency is not visible on the spectrum.
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Figure 5.5: Simulated Defect Signal

When carrying out wavelet packet decomposition, two choices must be made; the

wavelet used and the level of the decomposition. For all this work, the Debauchies

12 (db12) was used. The number relates to the number of vanishing moments. More

vanishing moments tend to give more accurate results at the expense of computational

power and time. In past studies, the db12 wavelet has been considered a reasonable

compromise between accuracy and resources [67]. A level 5 decomposition gives 25 =

32 sets of coefficients giving a filter bank where each set of coefficients has a bandwidth

of approximately 31kHz. The signal shown in Figure 5.5 has been decomposed to 5

levels using the Wavelets Toolbox in Matlab and the signal reconstructed from the

coefficients cAADDD is shown in Figure 5.7. A regular series of events due to the
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Figure 5.6: Frequency Content of Defected Bearing

simulated roller impacts is now visible at 16Hz.
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Figure 5.7: Reconstructed signal ADDAD
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5.1.3 Short Time Energy Function

The purpose of the short time energy function (STEF) is to envelope the signal and act

as a means of downsampling thus reducing the data storage requirements which is one

of the major disadvantages of acoustic emission monitoring. The signal is divided into

windows of equal length and the RMS is calculated for each window. This approach

has the additional benefits of reducing the effect of spurious spikes of noise which

tend to be of a shorter duration than that of an event due to roller impingement. A

suitable window length must be chosen to achieve satisfactory demodulation and data

reduction whilst ensuring that genuine events due to bearing damage are not smeared

out in the averaging process. The window length was optimised by repeating the steps

shown in Figure 5.1 using window lengths ranging from 10 to 10000 at intervals of 10

and summing the amplitude of the quefrencies in the cepstrum relating to the defect

frequencies. The results are shown in Figure 5.8 with the red line indicating the trend

following a median filter. It can be seen that the maximum occurs when the window

length is about 750 samples. The STEF of the signal shown in Figure 5.7 is shown in

Figure 5.9.

Window Length (Samples)

A
m
p
li
tu
d
e
at

D
ef
ec
t
F
re
q
.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

Figure 5.8: Window Length Optimisation for Short Time Energy Function
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Figure 5.9: Short Time Energy Function of Reconstructed Signal

5.1.4 Autocorrelation

Cross-correlation is a mathematical function which gives a measure of similarity be-

tween two signals. Equation 5.5 describes cross correlation function between two

continuous signals; f(t) and g(t)

CC(τ) =

inf
∫

− inf

f(t)g(t+ τ)dt (5.5)

where τ is the time lag. Autocorrelation extends this idea and is defined as the cross

correlation of a signal with itself and can be used to find periodicity within a signal.

Equation 5.5 is therefore modified and the autocorrelation is defined by Equation 5.6.

AC(τ) =

inf
∫

− inf

f(t)f(t+ τ)dt (5.6)

The autocorrelation function will have a maximum at zero lag (τ = 0) and sub-

sequent peaks indicate a periodicity of 1/lag. As mentioned in Section 5.1.1, a defect

signal can be assumed to be the sum of a regular pulse due to roller infringement on
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the defect and a random noise. If then, for example, the lag τ is equal to the time

between the pulses, the correlation due to the defect signal will be large whereas the

interval between the peaks should show no significant correlation thus increases the

relative amplitude of the defect signal compared to the noise. Therefore the autocor-

relation is used as a means of increasing the prominence of the defect frequencies in

the subsequent stages. The autocorrelation of the STEF signal shown in Figure 5.9 is

shown in Figure 5.10.
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Figure 5.10: Autocorrelation of Enveloped Defect Signal

5.1.5 Cepstrum

The cepstrum, introduced in Section 3.2.2, gives a measure of periodicity in the signal.

Figure 5.11 shows the cepstrum applied to the autocorrelation signal shown in Figure

5.10. The dominant peak at 0.062s relates to the defect frequency of 16Hz.

5.1.6 Feature Vector

The idea of generating a feature vector is to represent a large data set with a high

level of redundancy by a much smaller dimension whilst retaining the relevant char-

acteristics. In this work, three vectors, one relating to each bearing component, will
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Figure 5.11: Cepstrum of Autocorrelation Signal

be retained for every sample. Each feature vector is formed by taking the amplitude

of the quefrency corresponding to the defect frequency of either the inner race, outer

race or rolling element for each of the reconstructed signals of the WPD. A fifth level

decomposition, would therefore result in a vector of 32 dimensions. However, since

the frequency content of the real signals is almost negligible above 400kHz, only the

first thirteen reconstructed sets of coefficients will be used resulting in three thirteen

dimension vectors for each sample.

5.2 Outlier Analysis

Outlier analysis is a multivariate statistical method that highlights previously unseen

data which exhibits a degree of novelty. If a datum is deemed an outlier, it is assumed

to be generated from a mechanism other than that which formed the training data.

In the field of damage detection, data from the undamaged structure is used as the

training data and outliers are therefore assumed to be indicative of damage. Section

5.2.1 describes the theory behind outlier analysis whilst Section 5.2.2 outlines a method

for determining a suitable threshold above which a signal can be considered an outlier.

Finally, the whole concept is demonstrated using simulated data in Section 5.2.3.
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5.2.1 Outlier Identification

Rytter [90] established a natural hierarchy for problems of damage detection and iden-

tification as follows.

Level 1 - Damage Detection: Provides a qualitative indication that the component in

question may be damaged.

Level 2 - Damage Location: Once the presence of damage has been confirmed the

next level is to provide an estimation of the probable position of the damage.

Level 3 - Damage Classification: Provides an indication of the type of damage that

has occurred.

Level 4 - Damage Assessment: Provides an estimation of the severity of the damage.

Level 5 - Damage Prognosis: Provides information regarding the safety of the compo-

nent such as the remaining useful life that can be expected.

Identifying the presence of a fault is the most fundamental aspect of damage de-

tection and forms the lowest level of the hierarchy. This must be fulfilled before other

stages of the hierarchy are attempted. Outlier analysis is a multivariate statistical

technique which can be used as a novelty detector thereby fulfilling this objective.

The technique was first applied to the field of damage detection by Worden et al [91].

The technique does not necessarily provide information about the severity or location

of the damage; concepts which occupy higher levels on Rytters hierarchy, however in

some instances as will be shown later, a measure of distance from the normal state

may be used for such purpose.

The technique of outlier analysis can be applied to univariate data. An observation

will simply be deemed an outlier if it protrudes from either end of the data set. If

a measure of discordancy of a given observation exceeds a pre-determined threshold,

for example three standard deviations away from the mean, the observation will be

classified as an outlier. The z-score zξ is one measure of discordancy which will later

be extended to the multivariate equivalent and is given by Equation 5.7

zξ =
|xξ − x̄|

σ
(5.7)
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where xξ is the data of the potential outlier and x̄ and σ are the sample mean and

standard deviation respectively.

The problem of novelty detection becomes more involved when applied to multivari-

ate data since an outlier may not protrude from either end of any individual dimension

yet can still exhibit discordancy. This is demonstrated graphically in Figure 5.12 with

an artificially generated two variable example.
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Figure 5.12: Two Variable Outlier Example

The data points in red are clearly outliers despite falling within the normal range

for each individual variable. The Mahalanobis squared distance Dξ is a multivariate

extension of Equation 5.7 and is given by Equation 5.8

Dξ = ({xξ} − {x̄})T [S]−1({xξ} − {x̄}) (5.8)

where {xξ} is the feature vector of the potential outlier for which the discordancy

will be calculated and {x̄} and [S] are the sample mean vector and sample covariance

matrix respectively. The Mahalanobis squared distance is often preferred to the Eu-

clidean distance in multivariate analysis since it takes into account correlations of the
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data and is scale invariant. In other words, it compensates for differences in variance

between dimensions. The suitability of using the Mahalanobis squared distance as a

degradation indicator will be investigated.

5.2.2 Monte Carlo Threshold

As with the univariate equivalent, a multivariate observation is deemed an outlier if the

Mahalanobis squared distance exceeds a given threshold. The Monte Carlo method

is one method of statistically determining a suitable threshold. In general, Monte

Carlo methods are a class of computational algorithms which rely on repeated random

sampling in order to achieve numerical results. In this case, the principle is based on

finding the extreme values which could be generated from the same mechanisms as

the sample data. The calculation of the threshold is explained in detail in [91] and is

summarised as follows:

Step 1 A matrix of p dimensions by n observations is generated whereby each element

is randomly generated with a zero mean and unit standard deviation.

Step 2 The Mahalanobis squared distances are calculated for each observation where

x̄ and [S] are calculated from the same matrix. The largest distance is stored.

Step 3 Steps 1 and 2 are repeated a large number of times. The stored distances

are ordered by magnitude. The value above which 1 or 5% of the distances

occur are commonly used thresholds. The 1% threshold will be used in the

remainder of this work to reduce the likelihood of false alarms.

The mean vector and the covariance matrix may be calculated with or without

the potential outliers. The threshold is said to be inclusive if calculated with the

outliers and exclusive otherwise. The steps above calculate the inclusive threshold

since each of the potential outliers have contributed to the calculation of the mean

and the covariance matrix. Equation 5.9 allows the inclusive threshold Tinc to be

converted to the exclusive threshold Texc where n is the number of observations [91].

Texc =
((n− 1)(n+ 1)2)Tinc

n(n2 − (n+ 1)Tinc)
(5.9)

93



The 1% exclusive threshold for an 13 dimension, 1000 observation case was found

to be 48 after 10000 trials. The steps outlined in this section have been validated in

the following section through the use of simulated defect signals before being applied

to real data recorded from the test rig presented in Section 4.1 in Chapter 7.

5.2.3 Outlier Analysis with Simulated Data

The procedure outlined in Sections 5.1 and 5.2 was applied to a number of simulated

signals with SNRs ranging from 0 to 0.5 in steps of 0.05 in order to determine the

point at which defects may be detected. One thousand signals were simulated to

represent the undamaged state and were used to form the mean vector x̄ and the

sample covariance matrix [S] used for the outlier analysis. A further 100 signals for

each damage condition were generated. The results of are shown in Figure 5.13. The

1% Monte Carlo threshold of 48 is marked in red.
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Figure 5.13: Outlier analysis results for range of simulated signals

Figure 5.13 shows outlier analysis can successfully differentiate between undam-
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aged and damaged signals in cases where the signal to noise ratio is greater than

approximately 0.4 or 40%. An example signal where the SNR is 0.4 is shown in Figure

5.4(a) at which point the transient signal representing the roller impingements are not

visible to the eye. Figure 5.13 also demonstrates the potential to use discordancy,

the Mahalanobis distance, as an indicator of bearing health once a defect has been

detected since the increase in SNR shown in the plot is representative of a growing

defect.

For sake of completeness, an outlier analysis has also been carried out by forming

feature vectors comprising four of the traditional metrics presented in Section 3.2.1:

RMS, peak, kurtosis and crest factor. The results are shown in Figure 5.14. This

method demonstrates a clear difference in discordancy between the undamaged and

all damaged signals suggesting this would be more successful than the method pre-

sented in Figure 5.13 however such a conclusion would be misleading. The simulated

signals have been created by superimposing a defect signal of increasing amplitude on

artificially generated Gaussian white noise of constant standard deviation. Therefore

both the variance of the measures within each SNR group and the difference between

the undamaged signals and those with a SNR of 50% are very small. For example,

the average RMS when the SNR is 50% is just 0.45% greater than the non-damaged

state while the increase in kurtosis is even smaller at 0.073%. In reality, the variance

between signals in the same damage state would be much greater due to non-steady

operating conditions, background noise and material imperfections. It is likely that

there would be a overlap between signals of different SNRs in terms of RMS, peak and

kurtosis values. Chapter 7 compares outlier analysis with the traditional measures and

the proposed method presented in this chapter.

5.3 Conclusion

This chapter has presented a method of detecting bearing damage using acoustic emis-

sions. It has been shown that with suitable processing techniques, it is possible to

increase the signal to noise ratio of a signal from a defected bearing. In this instance

this has been achieved through the use of wavelet packet decomposition acting as a

filter bank, the short time energy function and autocorrelation while any periodicity

can be measured using the cepstrum and has been used to form a suitable feature
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Figure 5.14: Outlier Analysis Traditional Metrics

vector.

Finally, outlier analysis has been presented with the aim of providing an indication

of whether a bearing is damaged or not given the presence of undamaged training

data. Furthermore the potential of the Mahalanobis distance as a measure of damage

severity has been demonstrated with the use of a simulated defect signals.
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Chapter 6

Source Location

This chapter investigates and compares three methods for estimating the position of

a defect on a bearing using the arrival times of discrete events at AE transducers.

An analytical approach is compared to two data driven techniques, namely Delta T

mapping and neural networks. Errors are compared for artificial sources created with

a pencil lead break and for a real, yet seeded, defect at a known position.

6.1 Introduction

One of the most commonly cited benefits of AE testing over other techniques lies

in its ability to locate the sources of emissions of an entire structure during online

monitoring. This chapter will introduce and compare a number of methods available

for this purpose and make recommendations based on the findings. Other methods for

source location using AE have been presented in the literature but are not relevant to

this work. For example single sensor modal analysis is only suitable when monitoring

plate like structures with low levels of background noise [92].

Techniques such as ultrasound which scan the structure’s surface generally require

complete access to the entire structure which, in the case of most machinery, will incur

significant periods of downtime and therefore loss of production and reduced profits.

Other methods, such as dye penetrant inspection can only locate surface damage and

are subject to human error.

Since proximity to the source is not required, AE has the ability to locate damage
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on an entire structure with a sparse array of transducers. The attenuation of the wave

when propagating through the structure should be taken into account when deciding

where sensors are to be positioned. Since the transducers can be left in position

during a complete life test, AE is particularly suited to online monitoring in hostile

environments. Furthermore, source location is not restricted to material damage and

techniques have been developed to locate continuous signals generated by mechanisms

such as friction or leaks [31]. The majority of studies looking at source location have

focused on low noise environments or simple geometries on applications such as thin

plates, wires and pressure vessels.

Source location techniques have been developed for the two modes of AE introduced

in Section 2.4; continuous and burst emission. The localisation of continuous signals

is generally based on the cross-correlation function to find the delay between signals

[93, 94] whereas a number of techniques have been developed for the source location

of discrete events; the choice of which depends upon the application and accuracy

required. Since a defected bearing is characterised by such events, this chapter will

examine some commonly used techniques for the localisation of such signals. Many

of these use arrival times of events at a given sensor based upon the time of the first

threshold crossing or the arrival time of a given mode however in the cases where the

transient signals do not exceed the noise the cross correlation of the signals may be

used to find the difference in arrival times.

The majority of bearing maintenance decisions focus upon deciding at what point

the bearing should be replaced so bearing life is maximised without risking catastrophic

failure. Localising the point of damage has, until now, received little attention since

bearings generally require a complete replacement once damage has been detected.

However, further decisions must be made when bearings fitted with the Multilife�
actuator are considered. A suitable indexing strategy designed to maximise bearing

life is dependent on how often and by how much the inner raceway is rotated. An

accurate technique to locate the damage is required to optimise such a strategy. An

intelligent indexing strategy will require knowledge of defect positions to ensure large

or significant defects are rotated away from the loaded zone in order to prevent catas-

trophic failure. It will also allow the user to judge whether the defects progress once

they are rotated away from the loaded region. Tracking damage in this manner will

validate whether the assumptions made in the model described in Section 1.4 hold

true and whether bearing life can indeed be extended by a factor of five. Finally, the
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positions of defects may provide an indication of the failure modes and causes. For

example, a concentration of located emissions at one edge of the raceway may indicate

side loading or misalignment, however given the number and position of sensors used

in this work this is not possible and only the circumferential position will be estimated.

Both analytical and data driven methods will be investigated and recommendations

will be made based upon accuracy and computational requirements. This chapter

will present a number of techniques currently employed for source location of other

components and compare the performance of two techniques namely Delta T mapping

and neural networks with an analytical solution where assumptions regarding the wave

propagation are required.

6.2 Review of Source Location on Bearings

Comparatively few studies have been published regarding AE source location in rolling

element bearings. Many bearings are small and relatively easy to replace when damage

occurs. This means the location of defects is not important when making maintenance

decisions. However in large bearings, such as those found in wind turbines or power

plants, knowledge of where the failure occurs helps identify the root cause and may

inform remedial operation.

The first investigation into source location of acoustic emissions from rolling el-

ement bearings was performed in the previously cited study by Rogers [68] whilst

monitoring large slew ring bearings on platform cranes. Two sensors were bonded dia-

metrically opposite each other on the fixed inside race of a bearing. The linear location

of any bursts significantly above the background noise was calculated. This enabled

the user to determine whether the bearing was damaged if a concentration of bursts

developed in a given region. However, in this case the location is ambiguous since the

emission may have originated on either side of the bearing and the use of just two

sensors would not be able to differentiate between them. Since the bearing was only

monitored in an undamaged state, the positions of the recorded events were evenly

distributed; concentrations of hits would be indicative of damage. Furthermore, the

lack of a damaged bearing meant there was no way of correlating the true position of

the source with the estimations and therefore no indication of the error was provided.

Yoshioka and Fujiwara [95] developed a novel source location system using a single

99



AE transducer and magnetic detector to determine the position of a ball at the time

of an emission. Such a method, whilst providing an accurate location of the emission,

would also locate emissions at the position of each rolling element. The exact defect

position would, therefore, not be clear until the raceway is visually examined. No

indication of the errors introduced by this system was provided.

More recently, Elforjani and Mba [86] carried out source location whilst investigat-

ing the natural degradation of slow speed thrust bearings. The circumferential location

was established in a similar manner to Rogers [68] however 4 sensors were employed

allowing an exact circumferential estimation to be calculated. The estimated posi-

tions of a series of H-N sources were reported to be within 4% of the exact location.

Eftekharnejad et al [96] extended this work to source location of high speed bearings

and found similar errors. Both studies have made assumptions on wave propagation

and wave speed.

6.3 Methods

The remainder of this chapter is concerned with validating which method of source

location is most suitable in a large bearing application. The time of arrival (TOA)

and Delta T methods are investigated. Furthermore, a method using neural networks,

is explored.

Artificial sources have been used to train and validate each method. In this study

the artificial sources were generated by a Hsu-Nielsen source [38, 39]; a standardised

lead break of a retractable pencil is described with dimensions in Section 2.3.5.

The arrival time of each AE burst was taken as the time of first threshold crossing

(FTC) as indicated in Figure 6.1. In most AE monitoring the threshold is defined by

the user and usually dependent upon the level of background noise. In this work the

threshold was set at 56dB.

As previously stated, the efficient operation of the MultiLife� actuator is dependent

upon being able to accurately estimate the position of damage and track this position

during operation. Clearly only the circumferential position is required since the Mul-

tiLife� actuators act in this direction. Furthermore, the positions of the sensors with

respect to the raceway (Figure 4.4) restricts itself to estimating the circumferential
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position since there is no way of differentiating between sources emitted from the front

and back of the bearing. Therefore, the following methods will only be concerned with

the circumferential position of the damage.

Amplitude

Time

FTC Threshold

Figure 6.1: First threshold crossing of a simplified AE burst

6.3.1 Zone Location

For those cases where only coarse location is required, zone location may be employed.

The arrival times of a given event at each sensor will depend upon its the distance

from the source. The first arrival time will be experienced by the closest sensor.

Therefore the source position can be reduced to an area around that sensor. The

lightly shaded region in Figure 6.2 shows the position of a source if an event first

arrives at sensor 1 (S1). The size of the area can be reduced by taking into account

the order of subsequent arrival times, for example the darker region in Figure 6.2 if

the event subsequently arrives at sensor 2 (S2). This darker region could be further

subdivided again by taking into account the arrival times at sensors 3 and 7 (S3 &

S7).

A similar principle may be employed for continuous signals. Rather than arrival

times, the RMS at each sensor can be examined. The source can therefore be positioned

within the zone around the sensor with the highest RMS assuming the sensitivity of

the sensors and the coupling are similar.
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Figure 6.2: Zone Location

This technique can only estimate a zone within which the damage should be rather

than provide an exact position. The accuracy depends upon the spacing of the sensors;

the greater the distance between sensors, the larger the possible zones. Guard sensors

may be also used to prevent the source location of events occurring outside the sensor

array whereby those events which arrive at a guard sensor first are discarded.

If this technique were to be employed on the MultiLife� test rig as described in

Section 4.1 the maximum error that would be expected 271mm if using the arrival

at the first sensor or 136mm if using the arrival times of the first two sensors given

that the circumference of the rolling surface of the inner raceway is 814mm and three

sensors are equally spaced around the raceway. Although this error is large, it can be

used as a baseline by which other methods of source location may be compared.

6.3.2 Time of Arrival methods

Due to the limitations of zone location, time of arrival (TOA) methods are commonly

used and employed by most commercial systems. TOA methods are analytical by

nature and therefore require the wave propagation speed V and position of sensors to

estimate the source position of a given event. The suitability of TOA methods depend
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upon the application; a number of applications are presented in the following sections.

Linear Location

The linear location of an AE event between two sensors is restricted to applications

where one dimension is much greater than the other two; long struts, pipes and wires

being typical examples. In general, the source location d between two sensors separated

by a distance D is given by Equation 6.1.

d =
1

2
(D −∆tV ) (6.1)

where d is measured from the first hit sensor and ∆t is the difference in arrival times

between the sensors. The localisation of events is only meaningful when the source

occurs between the sensors otherwise the difference in arrival times will be constant

and the estimated source position will be located at either sensor.

2D Source Location

The principle of linear location can be extended to the location of sources in two

dimensions assuming the speed of propagation is the same in all directions. If two sen-

sors are bonded to an infinite plate, a hyperbola on which a source can be positioned,

shown in Figure 6.3, can be described by Equation 6.2.

R =
1

2

D2 −∆t2V 2

∆tV +Dcosθ
(6.2)

Since the use of two sensors is insufficient to pinpoint the source a third sensor

must be used. This allows two hyperbolae to be calculated whereby the intersection

determines the source location. Equations 6.3 and 6.4 can be solved simultaneously

to find the intersection. A third hyperbole can also be calculated allowing for greater

accuracy in the presence of noise. this principle is shown diagrammatically in Figure

6.4.

R =
1

2

D2
1 −∆t21V

2

∆t1V +D1cos(θ − θ1)
(6.3)

103



Sensor Sensor

D

Source

R

θ

Locus of
constant ∆12

Figure 6.3: 2D Source Location with Two Sensors

R =
1

2

D2

2
−∆t2

2
V 2

∆t2V +D2cos(θ − θ2)
(6.4)

Sensor 1 Sensor 2
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y

x

Figure 6.4: 2D Source Location by Triangulation

One of the first investigations to provide a solution for such a problem was un-

dertaken by Tobias [97]. A general method providing an exact solution for a two

dimensional problem is presented given the arbitrary placement of three sensors. It

is shown however, that such a method can produce ambiguous results if the source

is in the proximity of one of the sensors, in other words, two possible locations are
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calculated. The position of the sensors is shown to be important in the likelihood of

producing an ambiguous result although the use of fourth sensor can overcome such

a problem. Asty [98] extended the method outlined in [97] to develop a mathematical

method to locate sources on a spherical surface and demonstrated how this method

may be applied equally to planar surfaces if the radius of curvature is increased to

infinity. In a similar manner, Barat et al [99] defined the method required for localiza-

tion on a cylindrical surface based upon the principle of geodesics: the shortest route

between two points. Such techniques provide a reasonable estimation of source posi-

tion when simple geometries and homogeneous materials are used; however significant

errors are introduced as the complexity of the structure increases. These principles

can be extended to a third dimension by considering the intersection of hyperbolic

surfaces however this introduces a number of problems [31].

Calculating the linear position of an AE hit between two sensors given a difference

in arrival times ∆t is a trivial matter (Equation 6.1). However the process becomes

a little more involved when considering the location of a source on a bearing. Two

potential positions can be calculated for any given difference in arrival times since an

event will propagate clockwise and counter-clockwise around the raceway. Therefore

potential positions may be calculated for double the number of sensor pairs. Thus

three sensors, as in this case, will produce six potentials positions. A plot of all the

positions will result in a cluster of three positions whereas the other will be spaced

out.

Figure 6.5 shows this graphically. A hundred sources were created around the

raceway using the Hsu-Nielsen pencil lead break as described in Section 2.3.5 and the

time differences based on the FTC were calculated. The three sensors are were po-

sitioned at 0, 0.27 and 0.54m. The x-axis gives the actual position of these sources.

For each position on the x-axis, the six potential positions have been calculated using

Equation 6.1 and are each represented by a different colour. The concentration of esti-

mated positions, three for each source, along the x = y line shows the true estimations

whereas the three other positions which deviate significantly from this line represented

sources which have been incorrectly on the other side of the bearing. The correct three

estimations must be identified and reduced to a single position.

k-means clustering is an algorithm which allows vectors of n dimensions to be quan-

tised into k clusters. Further explanation of the algorithm is given in Appendix A.
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Figure 6.5: Six potential positions represented by each colour for each AE hit

Therefore, if the six dimension vector of potential positions are grouped into four clus-

ters it would be expected that one cluster would contain three positions, the centroid

of which can be taken as the estimate of source location.

This method requires a suitable wave propagation speed V . It would be possible

to calculate V through simple time of flights of ultrasound pulses. However, rather

than use a pre-determined value of V , the mean squared error (MSE) for a range of

speeds was calculated and the minimum error taken to be the most suitable speed.

This approach was taken since the FTC tends to underestimate the speed of sound

since a finite time will elapse between the burst reaching the sensor and the threshold

being exceeded; therefore a higher threshold equates to a lower effective wave speed.

To find a suitable wave propagation speed V for the TOA method, the average

squared error between the predicted and target positions for a hundred artificial sources

was calculated using the process of determining all potential positions and finding the

centroid of those relating to those found in the cluster. This was repeated for a range
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of speeds from 10 to 10000ms−1. The results are shown in Figure 6.6. The optimum

propagation speed that minimises the error was found to be 3700ms−1. This closely

corresponds to a typical value for the speed of secondary waves in steel.
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Figure 6.6: Mean squared error for range of propagation speeds

The estimated locations of the hundred artificial sources calculated when V =

3700ms−1 are shown in Figure 6.7. Each datum in Figure 6.7 represents a source

where the correct prediction of circumferential position would fall on the diagonal red

line. A greater deviation from the line signifies a greater error. The error, defined as

the average absolute difference between the expected and estimated position around

the raceway, for this method is 42mm. Given the circumference of the inner race is

0.814m, this corresponds to a mean percentage circumferential error of 5.2%. Although

most sources are located with reasonable accuracy there are three significant anomalies

introduced by this method.

6.3.3 Delta T Mapping

The Delta T mapping method for source location was first proposed by Baxter et al

[92] in order to overcome inaccuracies introduced by complex geometric structures and

composite materials highlighted in previuosly in Section 6.3.2. Artificial AE sources

performed on the area of interest enable maps of differences in arrival times (∆T )

between sensor pairs to be constructed; one for each sensor pair. The location of real
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Figure 6.7: Predicted Positions using TOA Method

sources can then be estimated by the intersection of possible contours on the ∆T maps.

This method eliminates the need for both a theoretical analysis of wave propagation

and an accurate measurement of wave propagation speed. Furthermore, knowledge of

the position of the sensors is not required assuming the sensors do not move during or

between tests. A detailed methodology is provided in [92] and is summarised below.

Step 1 - Define area of interest: Restrict area to regions of high importance or high

stress since conducting artificial sources can be time consuming. The rest of

the structure may be monitored by analytical or zonal methods.

Step 2 - Determine grid density: Accuracy is determined by the density of artificial

sources. This can be increased by bilinear interpolation.

Step 3 - Conduct artificial events at grid nodes: Previous work has suggested that be-

tween 5 and 10 sources are required at each node to reduce error to an ac-

ceptable level [92, 100].

Step 4 - Create ∆T maps: The differences in arrival times can be calculated and av-

eraged for each sensor pair and plotted to form a contour map. By overlaying

the maps from each of the sensor pairs, the location of an actual source can
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be estimated by identifying the intersection point of an actual AE event.

Baxter et al reported a reduction in source location error from 4.81% to 1.77 %

when using the Delta T method compared to the analytical solutions to locate sources

on a specific landing gear component [92].

These steps were carried out on the rolling surface of the inner raceway of the rolling

element bearing. A grid was constructed with 40 nodes around the circumference and

5 across the raceway at approximately 20mm spacing in both directions. In order to

verify how many sources were required at each node a number of Hsu-Nielsen sources

were performed at an arbitrary point on the raceway, after approximately twenty five

sources were generated, the percentage standard error of the mean difference in arrival

time between two sensors was reduced to less than 1% (Figure 6.8). Therefore, twenty

five sources were conducted at each node. The time differences, based on the FTC

described in Section 6.3, for each sensor pair were calculated and averaged for each

node.
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Figure 6.8: Percentage standard error of the mean time difference for a number of H-N
sources

The three resulting ∆T maps are shown in Figure 6.9. Each map represents the

inner raceway ‘unwrapped’ starting from sensor 1 at x = 0 following the race counter

clockwise. Bilinear interpolation increased the resolution of the grid by a factor of

20 to approximately 1mm. Each source was located by finding the minimum of the
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sum of the differences between the arrival times of real data and the theoretical arrival

times at each point on the ∆T maps.
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Figure 6.9: Delta T maps for sensor pairs (a) S1-S2, (b) S1-S3 and (c) S2-S3

The positions of the same hundred artificial sources used previously in Section 6.3.2

were estimated using the Delta T method to provide a direct comparison. The average

error in this case is 29mm, a mean percentage error of 3.6%. The difference between

the actual and estimated locations are shown graphically in Figure 6.10.

6.3.4 Neural Networks

Artificial neural networks (ANNs) are a series of connections mapping inputs to out-

puts designed to mimic the functionality of biological neural networks [101]. Each

connection has an associated weight which is optimised during an iterative training

process to minimise the MSE between the expected and actual output [102]. Neural

networks are well suited to processing noisy data and given enough units are able to

closely approximate any function. A typical multilayer feed forward network consists
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Figure 6.10: Predicted Positions using Delta T Maps

of an input layer, output layer and one or more hidden layers. The number of input

and output units depends solely upon the number of inputs and outputs whereas each

hidden layer in between can contain any of a number of units. Each unit takes the

weighted sum of the previous layer and applies a non-linear activation function allow-

ing a large range of inputs to be mapped onto a smaller domain often between -1 and

1. The function should be differentiable to allow backpropagation to train the net-

work. The log-sigmoid and hyperbolic tangent are examples of such functions. Each

layer may also have a bias which can be added to the weighted input of each unit. An

example of a two layer feed forward network with 4 inputs (x1-x4), 3 hidden units and

2 outputs (y1-y2) is shown in Figure 6.11. A weight bias is added to the output layer.

The network is said to be fully connected since every unit takes the weighted sum of

every unit from the previous layer.

The most common method of training neural networks is through backpropaga-

tion [103]. This is a process whereby the error between target and output values for

a training set are propagated backwards through the network (hence the need for a

differentiable activation function) and the weights are updated to reduce the MSE.

This process continues until the network convergences or reaches a satisfactory level

111



x1

x2

x3

x4

y1

y2

Input Layer Hidden Layer Output Layer

Bias Weight

Σ

Σ

Σ

f

f

f

Σ

Σ

f

f

Figure 6.11: Example of Multilayer Feedforward Network

of performance. There are, however, a number of limitations associated with back-

propagation. The most significant of which being the result may get caught in a local

minima, training can be slow and that convergence is not guaranteed. Various modifi-

cations of the basic algorithm have been proposed to overcome these limitations. The

Levenberg-Marquardt [104, 105] backpropagation algorithm, for example, has been

designed to speed up the training process and other methods employ the use of mo-

mentum to prevent the algorithm getting caught in a local minima. Neural networks

are proposed here for the purpose of source location by using arrival times as the inputs

and training the network to output the coordinates of the source position.

In order to train and simulate a neural network, the architecture must first be

defined. There are, however, no clear guidelines governing the optimum network ar-

chitecture required for a given problem. A number of activation functions exist and

any number of layers, hidden units or biases may be used to form a network. The most

suitable architecture is often found through trial and error or from previous experi-

ence. This work has used a genetic algorithm to find the optimum topology in order

to map differences in arrival times between sensors to source locations on the bearing

raceway. A genetic algorithm is a problem solving technique designed to mimic natu-

ral evolution. This method follows an approach previously used to find the optimum

network architecture for credit risk and credit analysis problems [106, 107]. A fully

connected three layer network can be represented by a chromosome; in this case, a 26

digit binary string as shown in Figure 6.12.
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Figure 6.12: Binary Representation of a Neural Network

Each section of the binary string represents a feature of the network. Table 6.1

shows how these features can be decoded.

Table 6.1: Decoded Neural Network

Number of hidden units

00000 0 . . . . . .
00001 1 11111 32

Bias Weight

0 No 1 Yes

Activation Function

000 Hard Limit 100 Tan-Sigmoid
001 Log-Sigmoid 101 Softmax
010 Linear 110 Inverse
011 Positive Linear 111 Radial Basis

Training Algorithm

0000 Levenberg-Marquardt back
propagation

1000 One-step secant backpropaga-
tion

0001 Bayesian regulation back prop-
agation

1001 One-step secant Gradient de-
scent with momentum and
adaptive learning rate back-
propagation

0010 BFGS quasi-Newton back prop-
agation

1010 Gradient descent with momen-
tum backpropagation

0011 Resilient backpropagation 1011 Gradient descent with adaptive
learning rate backpropagation

0100 Scaled conjugate gradient back-
propagation

1100 One-step secant Gradient de-
scent backpropagation

0101 CG backpropagation with
Powell-Beale restarts

1101 One-step secant Sequential or-
der incremental training with
learning functions

0110 CG backpropagation with
Fletcher-Reeves updates

1110 Cyclical order weight/bias
training

0111 CG backpropagation with
Polak-Ribiere updates

1111 One-step secant random order
incremental training with learn-
ing functions
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The algorithm randomly generates an initial population of 22 networks. Each

network is trained using the Neural Networks Toolbox in Matlab and the cost function;

the MSE of the predicted location, is calculated. The two networks resulting in the

lowest cost function (the elite children) are retained to form a part of the following

generation. The bulk of subsequent populations can be generated either by crossover

or mutations of parents from the current generation.

In this work the remainder of the population is generated by three parent, eight

point crossover plus the introduction of two random networks to ensure genetic diver-

sity. The probability of a parent being chosen for crossover is inversely proportional to

the ranking of the errors. This process is continued until convergence occurs and the

cost function has reached a minimum. The network is trained with three inputs; the

difference in arrival times between each sensor pair and a single output; the circumfer-

ential position of the source. Each network is trained 20 times and the cost function

averaged since the same network architecture may produce different cost function due

to the random initialisation of weights and random division of available data into

training, validation and test sets. The cost function is calculated using an extra val-

idation data set; the same as those used in the previous methods to provide a direct

comparison. The same data used to create the ∆T maps has been used to train the

networks; 5 artificial sources at 200 equally spaced nodes on the inner raceway. The

data is randomly divided so that 70% of the data makes up the training set and 15%

make up both the validation and testing sets. Figure 6.13 shows the convergence of

the minimum mean-squared error of each population which occurs after approximately

40 generations. Table 6.2 shows the network architecture found by the algorithm.

Table 6.2: Optimum Neural Network Topology

No. of units in 1st layer 23
No. of units in 2nd layer 27
Bias weight in 1st layer Yes
Bias weight in 2nd layer No

Bias weight in output layer No
Activation function in 1st layer Hyperbolic Tangent Sigmoid
Activation function in 2nd layer Softmax

Activation function in output layer Hyperbolic Tangent Sigmoid
Training algorithm Levenberg-Marquardt backpropagation

The optimised network, found by the genetic algorithm, was simulated, again with
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Figure 6.13: Convergence of Genetic Algorithm

the same hundred artificial sources. The average error is 17mm or 2.1%. The predicted

positions are shown in Figure 6.14.

6.4 Sources Location of a Real Defect

The Multilife� test rig described in Chapter 4 was run at 200kN and 100rpm with an

artificially damaged bearing. A line defect, the details of which are given in Section

4.1.1, was created across the contact surface of the inner raceway and was positioned

at top dead bottom (TDB) where the load is at a maximum. Under these conditions, a

full lubricant film is expected (see Chapter 7), therefore any hits that arise are assumed

to be generated by rollers impinging on the defect rather than due to asperity contact.

The accuracy of the methods can be validated in a real situation by comparing the

estimated positions to the position of the defect. A short sample of time series data

is shown in Figure 6.15. A threshold of 0.015V (or 63dB) was chosen to capture

the transient signals. This is significantly higher than background noise but chosen

to ensure that the recorded hits were caused by the defect rather than noise for the

purpose of validation. In reality a lower threshold would be used but in such case
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Figure 6.14: Predicted Positions using Neural Networks

concentrations of events in a single position would be used to determine the position

of a defect rather than the estimated position of individual events.
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Figure 6.15: Signal from a Damaged Bearing with Threshold

The times of all threshold crossing were recorded until 30,000 individual hits had

taken place across all channels. The data was cleaned up by only retaining data where
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the time difference between the earliest and latest threshold crossing was less than

the time it would take a wave to propagate between the sensors. This removes any

data where a threshold crossing occurred at only one or two sensors and increases the

possibility that threshold crossings which occur at all three sensors within the this time

are caused by the same source. As a result, just less than 2,000 events were analysed.

A histogram of the estimated position of each approach, TOA, Delta T and neural

networks, is shown in Figure 6.16. The average error, defined as the difference between

the estimated and real position of the defect, associated with each of the methods is

given in Table 6.3.

Table 6.3: Mean Error for each Source Location Method

Method Average Error (mm) % Error
Time of Arrival 40 4.9
Delta T Mapping 25 3.1
Neural Networks 22 2.7

6.5 Discussion

A comparison and summary of the accuracy of the three source location methods

investigated in this study in addition to the maximum error expected by the zone

location is shown in Figure 6.17.

Initially the methods were tested using artificial pencil lead breaks. It is clear

that in this case both the Delta T mapping technique and neural networks offer an

improved performance over the TOA method whose mean error is 42mm. Neural

networks in particular have the capability of reducing circumferential error to 17mm.

This corresponds to a percentage error in source location of just 2.1%. The Delta T

technique has also been shown to reduce mean circumferential error to 29mm or 3.6%.

The artificial sources allowed many events to be generated quickly over the entire

surface of the raceway and obtain an idea of the efficiency of each method before the

test rig was commissioned. However, the introduction of background noise, different

mechanisms for generating the transient bursts and potentially different propagation

paths meant it was necessary to test each method using sources generated by a real

defect. The corresponding errors were similar to those for the artificial sources, the
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TOA and Delta T mapping errors were slightly lower at 40 and 25mm respectively

whereas the performance of the neural network was less accurate at 22mm.

The TOA method provides a reasonable estimation of AE source location and

would be suitable for large scale applications with simple geometries. Due to the

limitations and time constraints of Delta T mapping and neural networks it would be

better practice to restrict these techniques to areas of high importance or stress and

monitor the rest of the structure by the TOA method.

The major drawback of both Delta T mapping and neural networks is in obtaining

the data to create the ∆T maps and train the networks. This can be time consuming

if the structure is large and there may be cases where access to the surface, for the

purpose of performing artificial sources, is difficult or indeed impossible. This would be

the case for ball bearings where the raceway cannot be removed. In these situations

TOA methods may have to suffice. However, the training data only needs to be

obtained once and can be used for any identical systems in the future.

During the early stages of damage when the amplitude of the AE events are small

and background noise is greater due the rolling contact it is unsuitable to use the

FTC. In this case, the use of cross-correlation of the enveloped signal or the use of a

decomposed signal with a higher SNR as described in Section 5.1.2 may be required.

However, such techniques may introduce slight errors due to the difference in time

difference calculation.
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The decision to use one method over another may be based on efficiency in addition

to accuracy. Online application requires the computational time per event to be shorter

than the hit definition time; the time the system waits after a hit is triggered to prevent

multiple hits being recorded from a single event. The neural network method was

most computationally expensive; the system used for this work took 0.0096 seconds

to compute the position of the 100 events. The TOA method was faster, taking 67%

of the time of the neural network while the Delta T method was a significantly faster

still, only taking 15% of the time.

Since the indexing strategy of the MultiLife� bearing will depend upon the position

of the defect circumferentially the accuracy across the width of the raceway is of

little importance. Any increase in axial accuracy would be impossible to achieve with

a similar placement of sensors as used in this work since all three are positioned

halfway across the raceway axially, 120° apart. Two emissions at the same angle but

on opposing sides on the raceway axially would appear very similar to the sensors. By

repositioning the sensors, greater accuracy may be possible potentially informing the

user of instances of, for example, misalignment however this is beyond the scope of

the project due to design restrictions.

6.6 Conclusion

The use of the Delta T method and neural networks for the purpose of estimating the

source location of AE bursts has been investigated. Artificial sources generated on the

removed inner race of a bearing taken from a planet gear of a wind turbine gearbox

have been used to train and validate each method before being used to estimate the

position of a real defect when run in a test rig. Both methods have been shown to offer

an increase in accuracy when compared to TOA methods which have been used for

bearing source location until present. The circumferential error for the real defect was

shown to be 4.9% for the TOA method whereas this error was reduced to 3.1% and

2.7% for Delta T mapping and neural networks respectively. The use of a particular

method should be dependent on the application. In those cases where many tests are

being performed on identical bearings, such as in a laboratory, it may be preferable to

invest some time in generating artificial sources and thus training data for an increase

in accuracy whereas the time of arrival method would be more suited to those instances
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where time or access is restricted or if the bearing in question is only one of that size

being investigated. Moreover, it may be considered that neural networks would be

more suitable for online application due to a reduced computational time. Owing to

the design of the test rig and configuration of the sensors it has not been possible to

calculate the position of the defect axially.
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Chapter 7

Test Cases

This chapter initially looks at the expected lubrication regime of the MultiLife� bear-

ing rig and how the AE signal responds to changes in oil film thickness. The findings

suggest that the expected lubrication regime should influence how a bearing is mon-

itored. The results of two run-to-failure tests with seeded defects are then presented

using the proposed approach for damage detection described in Chapter 5. A brief

remark is made concerning the instrumentation of the high speed shaft bearings of a

600kW wind turbine gearbox and some initial data under different loading conditions is

presented. The chapter concludes by investigating data measured from an undamaged

and damaged split race bearing test rig under various conditions.

7.1 MultiLife� Rig Results

7.1.1 Oil Film Thickness

The expected lubrication regime can be estimated by the specific film thickness λ; a

ratio of the minimum film thickness to the composite root mean squared roughness

of the mating surfaces Rq,T given by Equation 7.1. According to Khonsari [108], full

surface separation and no asperity contact is expected when λ exceeds three while

Williams [109] suggests asperity contact should be taken into account when 1 < λ <
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5.

λ =
hmin

Rq,T
(7.1)

Based upon the simultaneous numerical solutions of Hertzian contact stresses, lu-

brication behaviour and the effect of pressure on increasing oil viscosity the minimum

film thickness of a line contact can be estimated by;

hmin

R
=

2.65U0.7G0.54

W 0.13
(7.2)

where U , G and W are the dimensionless speed, material and load parameters respec-

tively and R is the conjunction radius between the rolling element and the inner race

[110]. Further details of which are given in Appendix B.

In order to calculate the minimum film thickness the load on the most heavily

loaded rolling element in a bearing calculated according to Equation 4.6. Prior to

performing full bearing life tests under steady conditions the bearing was run whilst

subjected to a range of loads to vary the film thickness. The data required to calculate

the film thickness is shown in Table 7.1.

Table 7.1: Experimental Constants for Calculating Film Thickness

Radius of rolling element (R1) 27 mm
Radius of inner raceway surface (R2) 129 mm

Width of contact (L) 72 mm
Dynamic viscosity of lubricant (µ) 1.13× 10−8 Pa.s
Pressure viscosity coefficient (α) 0.02 Pa−1

Elastic modulus (E) 210 GPa
Poisson’s ratio (v) 0.3

Rotational speed (n) 100 rpm

Samples of AE data taken over a range of loads from 0-1000kN at 100rpm were

recorded once the temperature had stabilised at 65±2° C. The RMS, maximum am-

plitude, kurtosis and crest factor, concepts introduced in Section 3.2 is calculated at

each load while the specific film thickness λ is calculated using the composite surface

roughness of 0.195µm given in Section 4.1.1. The results are shown in Figure 7.1.
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The operating conditions correspond to a range of specific film thicknesses from

0.8 to 1.5. Graph (a) shows that the RMS of the measured signal is relatively stable

when λ > 1 suggesting the asperity contact is minimal and mechanisms through which

the signal is generated is constant. As λ drops below 1, the film thickness is not large

enough to ensure full separation between the components and asperity contact takes

place. This manifests as an increase in RMS, the magnitude of which increases sharply

with thinner film thickness as the rate and severity of the contacts increase. The kur-

tosis shows a similar pattern but suggests that some asperity contact may occur at

slightly larger film thicknesses when λ ≤1.1. A t this point, the resulting transient

signals, although sparse and of low amplitude, will increase the kurtosis but have a

negligible effect on the RMS. As the film thickness decreases further, asperity contact

becomes increasingly regular and the resulting transient signals start to blend together.

As such, the signal approaches a Gaussian distribution and the kurtosis reduces. At

larger film thickness the kurtosis is around three, typical of a fully lubricated undam-

aged bearing. The peak to peak value as shown in (c) also shows the maximum value

decreasing as film thickness increases. At the smallest film thickness recorded, some

of the samples were clipped due to the range of the ADC which otherwise would have

resulted in larger amplitudes. The crest factor, the ratio of peak value to RMS, shown

in (d) increases once metal to metal contact occurs but decreases at even smaller film

thicknesses as the RMS increases at a faster rate than the peak value.

Measured AE waveforms are shown in Figure 7.2. Under a nominal load, the wave-

form shows an almost typically Gaussian distribution (a). There are some features in

the signal but no events greatly exceed the background noise. At 300kN, the emergence

of high amplitude events is clear (b), the frequency and amplitude of which become

greater with increasing load (c). The presence of such events, indicative of boundary

lubrication, means that many methods common to bearing monitoring such as peak

value or kurtosis which relate to individual events of high amplitude are redundant

since smaller events due to roller impingement will not affect such measures.

The data shown in Figure 7.1 suggests the transition from a fully lubricated contact

to mixed lubrication takes place when λ ≈1.1. This specific film thickness is thinner

than that suggested by Khonsari [108] and Williams [109]. A closer look at the surface

profile, an example of which is shown in Figure 7.3, of the rolling element shows that

the largest deviations away from the mean are on the negative side. In other words,

the troughs are of a greater magnitude than the peaks which means the calculated
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Rq will suggest a higher level of asperity contact than actually takes place. Without

these troughs the specific film thickness would be higher, closer to the values suggested

by Khonsari and Williams. The oil temperature used in these calculations introduces

further uncertainty. The samples were only taken once the temperature had stabilised

but given the temperature was measured at the inlet it is likely to have cooled a small

amount whilst passing through the pump meaning the temperature in the contact may

be a slightly higher than the measured temperature giving a thinner lubricant film.
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Figure 7.3: Surface Profile of Rolling Element

7.1.2 Run-to-Failure Tests

After some initial tests during commissioning of the rig, two run-to-failure tests were

performed on the MultiLife� rig under a constant radial load of 1200kN and constant

speed of 100rpm. In each of the experiments the bearing was run initially in an

undamaged state before being disassembled allowing a defect to be seeded on the

inner raceway. The details of each experiment are given in the following sections.

Bearing 1

Test Sequence

After 700,000 revolutions of a new undamaged bearing, a defect measuring 100µm

wide by 60µm deep machined on to the bearing surface, as shown in Figure 4.6, was
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positioned under maximum load. After a further 300,000 revolutions the defect had

propagated significantly. The resulting damage is shown in Figure 7.4. It can be seen

that the damage has propagated ’downstream’ of the initial defect, potentially due to

the rolling elements ’bouncing’ off the defect and therefore dynamically loading the

raceway causing higher contact stresses.

Figure 7.4: Inner Raceway Failure

The damaged inner race way was then manually indexed 180° whereby the de-

fect would experience the minimal load while an undamaged part of the bearing was

subjected to the maximum load. The test was continued for approximately 500,000

revolutions and on the subsequent inspection no further damage had taken place. This

test sequence is summarised in Table 7.2.

Traditional Metrics

During the test, two seconds of acoustic emission data was recorded every 15 minutes

across three channels. An average of the RMS, kurtosis, peak value and crest factor

across the channels was calculated for each set of samples, plots of which are shown

in Figure 7.5.
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Table 7.2: Bearing 1 Test Sequence

Phase Bearing State Revolutions
I Bearing undamaged 0-700,000
II Seeded defect positioned under maxi-

mum load
700,000-1,000,000

III Raceway rotated 180°Ḋefect not under
load

1,000,000-1,500,000

Figure 7.5 only shows the data when the test rig was running at or near to the

stated conditions. After the inner raceway was rotated, the rig was disassembled at

regular intervals to check the condition of the bearing and visually inspect for further

damage. On each start-up it was necessary to gradually increase the load to allow the

system to warm up, otherwise the drive belts would slip and melt (a mistake learnt

the hard way). It is for this reason there are some gaps in the data. The dashed lines

indicate the three sections of the experiment; the bearing in an undamaged state on

the left hand side, the introduction and subsequent propagation of a seeded defect in

the centre and the period following the indexing of the inner raceway on the right.

Figure 7.5 (a) shows that on the whole, the RMS is fairly constant, with the

exception of a few high amplitude anomalies until the seeded defect propagates. At

this point, the RMS rises sharply over a period of approximately 3 hours, or 14,000

revolutions. Once the damaged raceway has been indexed the RMS decreases but to

levels marginally higher than prior to the failure. As the bearing condition continues

to deteriorate, probably due to an increased level of debris denting the raceways and

rolling elements, the RMS gradually increases. There is a temporary but significant

increase in RMS at around 1.1×106 revolutions. The reason for such an increase is

not clear but a possible explanation could relate to how the rig was assembled. It is

noted that the increase in RMS falls between two disassemblies and could be a result of

misalignment or looseness of a component in the rig. This shows that RMS can detect

damage either when it is localised and significantly advanced or when the damage is

distributed (as in the case of denting due to debris). This confirms the point made in

Section 3.2.1 which states that when considering slow speed bearings, the additional

energy due to localised defects is negligible compared to the background noise.

Figure 7.5 (b) shows the kurtosis is very susceptible to noise. Over the course of

the test the value of kurtosis is spread over a range of three orders of magnitude due
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to the noise caused by asperity contact. Both the peak value (c) and the crest factor

(d) are also unable to distinguish the difference between a damaged and undamaged

bearing. The inability to detect incipient damage and determine the failed component

in addition to the susceptibility to noise, confirms the need for a different approach. It

should be noted here that after approximately 700,000 revolutions the gain setting of

the pre-amplifier was changed from 40 to 60dB in an attempt to use the full dynamic

range of the A/D converter. Unfortunately, this led to a number of signals clipping

at 10V. This is addressed in the following section. The gain was increased during

post-processing for those signals measured with a 40dB gain.

Outlier Analysis

The steps outlined in Chapter 5 were performed using the same raw data of a second

sampled every 15 minutes used to generate the plot in Figure 7.5. The results are shown

in Figure 7.6 with the three graphs (a)-(c) showing the results for the inner race, outer

race and rolling elements respectively. The data representing the undamaged bearing

is randomly divided into training and validation sets at a ratio of 85:15, the training

data represented by green markers and the validation data represented by red markers.

The blue markers represent the bearing in a damaged state. The horizontal green line

represents the Monte Carlo threshold, the calculation of which is detailed in Section

5.2.2. It can be seen that across the three plots all but one datum in the validation set

is correctly classified as undamaged, a rate of 95.2%. Once a defect is introduced, the

measure of discordancy representing the inner race increases significantly above the

threshold in contrast to the other plots representing the outer race and rolling element

which generally remain below the threshold. This demonstrates that such a method

is capable of detecting both early stage damage and determining which component is

affected. It should be noted here that the threshold is a theoretical value based on a

thirteen dimension vector under the assumption that the data will follow a Gaussian

distribution. The threshold therefore is not necessarily fixed and another method of

determining the threshold may be used depending on the relative importance of false

positives and false negatives. For example, a second validation set could be used where

the threshold is set as the maximum value of discordancy of this set.

The propagation of the defect can be seen prior to indexing the inner race however

the logarithmic scale perhaps visually understates the degree of the damage. Between

the introduction of damage and the point at which the defect propagates, the discor-
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dancy decreases slightly over time. It is likely that this is due to the raised lips on

the artificial defect, which can be seen in Figure 4.6, being rounded off over time and

thus reducing the impact energy. This agrees with the findings of [78] who found that

smoothed off defects were not detectable compared to new defects of the same size

with protrusions at the edge. Once the inner race is rotated, the defect is no longer

subjected to a high load and the impact of the rolling elements is reduced. This is man-

ifested as a reduction in discordancy to a level slightly higher than in the undamaged

state. At this point it would be difficult to say which component is damaged.
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Figure 7.6: Outlier analysis of Bearing 1 for (a) inner race, (b) outer race and (c)
rolling element
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As noted in the previous section, a number of the signals clipped; limiting the

peak values to 10V. To ensure this has not affected the results shown in Figure 7.6,

the analysis was re-run excluding any signals in which clipping had taken place, a

process which removed 10% of the signals. The results are shown in Figure 7.7. In

this case, all but one of the validation data were correctly classified as undamaged, a

rate of 94.7% while 99% of the damaged signals with the defect under load are correctly

classified as damaged. Removing the clipped signals therefore had little effect on the

performance.

As a means of comparison, outlier analysis has been performed with four dimension

feature vectors comprising the traditional metrics shown in Figure 7.5. The same ratio

of training and validation data has been used while the clipped signals were again

excluded from the analysis. The results are shown in Figure 7.8. In this case, the

metrics are not related to the characteristic defect frequencies and therefore are not

component specific. It can be seen that in the undamaged state 100% of the validation

set is correctly classified although only 2.5% of the signals are correctly classified once

the seeded defect is introduced. In fact, the discordancy only increases above the

Monte Carlo threshold once the damage has propagated significantly. As the damage

is indexed away from the load, the discordancy falls below the threshold. The increase

at 1.1x106 revolutions is driven by the increase in RMS at this point, the reason for

which is postulated in Section 7.1.2.

Bearing 2

Test Sequence

The test sequence for the second bearing is summarised in Table 7.3. Again, a bearing

was initially run in an undamaged state prior to being seeded with an EDM defect

on the inner race after approximately 1.1×106 revolutions. With the defect acting

as stress concentrator, coupled with the non-conformal contact and uni-directional

loading, it was expected that the bearing would fail at the inner race with damage

propagating from the seeded defect in a similar manner to the previous test. However,

after 1.95×106 revolutions, the RMS of the bearing had increased sufficiently to war-

rant an inspection which revealed the outer race of the bearing had in fact failed (see

photo in Figure 7.9) while no further damage had taken place on the inner race. One

large spall can be seen clearly while smaller spalls were distributed around the entire
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circumference on one side of the bearing. The photo also shows a number of small

dents on the raceway surface caused by rolling elements rolling over debris. Similar

dents could also be seen on the inner race and rolling elements. The pitting that

occurred at the edge of the raceway is likely to be due to misalignment caused by the

self-aligning bearing shown previously in Figure 4.3. The misalignment meant the load

was applied over a small contact area resulting in higher pressures ultimately leading

to failure.

Table 7.3: Bearing 2 Test Sequence

Phase Bearing State Revolutions
I Bearing undamaged 0-1,100,000
II Seeded defect positioned under maximum

load
1,100,000-1,950,000

Figure 7.9: Pitting to the Outer Raceway

Outlier Analysis

The results of the outlier analysis for this bearing are shown in Figure 7.10. On

this occasion 99.2% of the validation set is correctly classified as undamaged. The

introduction of the seeded defect on the inner race can clearly be seen in (a) with all

but a few samples well exceeding the threshold. It should also be noted that the outlier
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analysis fails to classify the damage to the outer race towards the end of the test. The

emissions resulting from damage to the outer race must propagate across two extra

interfaces including the interface between the sensor face and metal plug to which it

is bonded which will significantly reduce the energy reaching the AE transducers to

such an extent that the signal becomes indistinguishable from the noise. There have

been studies such as [75] that have shown it is possible to detect localised damage to a

component other than that which the transducers is coupled to, however in that case

the rotational speed was 1500rpm rather than 100rpm. Here, however, it is likely that

the compound effect of the low rotational speed reducing the energy of the signal and

the thin oil film increasing the background noise means the presence of a defect can

not be detected and localised.

Figure 7.11 shows the specific film thickness falls between 0.52 and 0.7 with an

average value of 0.6 over the duration of the experiment. Earlier in Section 7.1.1 it was

shown that when λ <1, noise, assumed due to asperity contact, increases significantly.

Furthermore, the distributed damage around the circumference of the outer race means

that a single frequency related to the damage will not be evident in the spectrum.

Such damage lends itself to a different approach employing measures that are more

suitable to continuous signals such as RMS, kurtosis and peak-to-peak value as shown

in Figure 7.12. However, looking at the RMS in (a), it can be seen that highest values

are found while the bearing is undamaged, at some point two orders of magnitude

higher than when the defect is seeded. Such an increase was seen in Bearing 1 and

it was postulated that another mechanism relating to the assembly of the rig could

have been responsible. A similar level of disorder is seen with kurtosis (b), crest factor

(c) and peak-to-peak (d) values since these are heavily affected by peaks and extreme

values which can arise from means other than damage.

Again, these measures were used to form a four-dimension feature vector to directly

compare with the method proposed in Chapter 5. The results are shown in Figure 7.13.

In this case, 100% of the validation set is correctly identified as undamaged. There

is a clear increase in discordancy once the defect has been seeded onto the raceway

however not enough to satisfactorily distinguish the data from the undamaged case

and only 13% of the samples are classified as damaged. Furthermore, no additional

increase in discordancy is seen once the bearing condition starts to worsen at about

1.8x106 revolutions.
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Figure 7.11: Specific Film Thickness during Bearing 2 Test

A more successful effort to monitor the degradation of the bearing towards failure

is performed by using a method employed by environmental acousticians whereby the

background noise is estimated by calculating the first percentile of the measured data.

The first percentile value of each two second sample is shown in Figure 7.14. While

no increase can be seen when the defect is introduced, which can be expected since

the emissions due to the defect are of a much shorter duration than the time between

them, there is a clear increase towards the end of the test as the outer race damage

propagates towards failure.

7.2 Gearbox Commissioning

Wind turbines at the Barnesmore Wind Farm owned by Scottish Power situated on

the border of the Republic of Ireland and Northern Ireland experience high failure

rates due to the turbulent nature of the wind at the site. The increased chance of

failure means that a turbine on this farm has been chosen to investigate the use of

acoustic emissions and ultrasound as a means condition monitoring in an industrial

environment. In the first instance, the outer race of a high speed shaft bearing on

the gearbox of a Vestas V42 600kW wind turbine was instrumented with Physical

Acoustics Micro-30D sensors due to relative ease of access, rather than having to

deal with the problem of transferring the signal from a rotating component to the
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Figure 7.12: Trend of traditional metrics during Bearing 2 test
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acquisition hardware. Prior to installation the gearbox was run on a test bed which

allowed the integrity of the sensors to be checked and the noise assessed, providing

a more realistic environment compared to the laboratory. The gearbox is shown in

Figure 7.15, the low speed shaft driving the epicyclic gear can be seen on the right

and the high speed shaft exiting on the left with an input to output ratio of 1:50.6.

The gearbox was run under a number of test conditions, initially the speed at the high

speed shaft was ramped up in three steps at 200, 1000 and 1500rpm followed by an

increase in torque at 0, 50 and 100% of the maximum torque of the test bed which

is approximately 30% of the rated torque of the gearbox. This process was repeated

four times over a period of almost 5 hours. It is important to assess whether there is

a marked increase in noise in the signals when the system is no longer in a laboratory

environment.

C
C
C
C
C
C
C
C
C
C
C
C
C
CC

High speed shaft Low speed shaft

Figure 7.15: Instrumented V42 Gearbox on Test Bed

The AE RMS for the test schedule as described above is shown in red in Figure

7.16. The RMS demonstrates a marked increase with speed from 200 to 1000rpm and

again from 1000 to 1500rpm. This in direct contrast to the situation in which there is

no discernible pattern with change in torque. While the bearing is rotating at 200rpm

under no load, a number of short duration events are visible. These events correspond
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to actuations of the MultiLife� device suggesting the system is susceptible to noise

and that care must be taken to ensure signals are only analysed when the device is

out of use.
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Figure 7.16: AE RMS of HSS at Different Conditions

7.3 Split Race Bearing Rig Results

The Cooper Bearing rig allows tests to be performed on a split bearing. Due to a lack

of a control system and limited access to acquisition hardware, the tests carried out on

this rig are limited to recording data over a range of operating conditions for the case

of an undamaged and damaged bearing. The following section presents the results of

such tests.

7.3.1 Typical Data

Data measured from a bearing with and without an artificially seeded defect on the

outer race is shown in Figure 7.17. In both instances the bearings were running
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at 50rpm under a load of 18kN which is approaching the capability of the motor.

It can be seen that under such operating conditions asperity contact does not play

such an important role as is the case with the MultiLife� rig due to the absence

of random transient bursts. The undamaged case (a) shows a typically Gaussian

distribution (kurtosis=2.9) with no distinct features in the data whereas peaks due

to roller impingement are clearly visible in the damaged case (b). The measured

defect frequency (8.81Hz) closely matches the theoretical defect frequency (8.87Hz)

calculated by Equation 3.9.
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Figure 7.17: Measured data from (a) undamaged and (b) damaged bearing

7.3.2 Operating Conditions

The review of acoustic emission monitoring of rolling element bearings undertaken in

Section 3.3 concludes that it has been difficult to establish a clear relationship between

operating conditions and the measured signal with some studies reporting seemingly

contradictory results. As suggested in previous sections this could be due to differences

in lubrication regime where a fully lubricated contact may exhibit different behaviour

in response to changes in operating conditions compared to a mixed contact. Therefore,

it would be preferable to calculate the film thickness and infer the lubrication regime

for the following work but limited access to test rig meant that a thermocouple was
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not bonded to the bearing and no temperature readings were taken. As a result, the

film thickness was not calculated but a direct comparison could be made between an

undamaged and a damaged bearing under like for like conditions. The lowest applied

load was 3kN and was increased incrementally by 3kN to 18kN whilst for each load

case, measurements were taken at 10-60rpm increasing by 10rpm at a time. For each

operating condition, five data files of two seconds were recorded, the results of which

were then averaged to reduce the effects of noise. Data was recorded from both an

undamaged bearing and a bearing seeded with a localised artificial defect. Figures

7.18-7.22 show the effect of load and speed on the kurtosis, RMS, crest factor, K-S

statistic and peak-to-peak values respectively.

(b)

Speed (rpm)

K
u
rt
os
is

Speed (rpm)

K
u
rt
os
is

(a)

3kN
6kN
9kN
12kN
15kN
18kN

10 20 30 40 50 60 10 20 30 40 50 60
0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350

Figure 7.18: Kurtosis of (a) undamaged and (b) damaged bearing
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Figure 7.19: RMS of (a) undamaged and (b) damaged bearing
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Figure 7.20: KS Statistic of (a) undamaged and (b) damaged bearing
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Figure 7.21: Crest Factor of (a) undamaged and (b) damaged bearing
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Figure 7.22: Peak to peak value of (a) undamaged and (b) damaged bearing
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Since the value of kurtosis increases with sparse, high amplitude peaks, care must

be taken when analysing signals from different bearing speeds. Two samples of a

given length taken from a bearing with the same defect but run at different speeds will

produce different kurtosis values since peaks due to roller impact will occur more often

at higher speeds. To counter this effect, the theoretical outer race defect frequency

was calculated and the signal was divided in such a way that each segment would

contain one peak if present. The final value was then taken to be the median of all

the segments. The same approach was applied to all the measures to reduce the effect

of spurious noise which was present in some of the data files.

All parameters, with perhaps the exception of the KS statistic, demonstrate a clear

increase with the introduction of damage. To quantify the sensitivity of each measure,

the percentage increase for each operating condition was calculated and averaged. The

results are shown in Table 7.4.

Table 7.4: AE Parameter Sensitivity

Parameter Average % increase
Kurtosis 5480
RMS 384

KS Statistic 82
Crest Factor 359
Peak to Peak 2517

Clearly, kurtosis and the peak value show the greatest increase indicating such

measures are the most suited to determining whether a bearing has suffered localised

damage or not. However this experiment fails to highlight the subsequent decrease

in kurtosis as damage increases. The sensitivity of the measures are clearly visible at

the highest speeds and loads yet while the bearing is running at 10-30rpm at 3kN the

presence of damage is much less distinct. In order to attempt to clearly distinguish the

damaged bearings a multivariate approach may be taken again using outlier analysis.

Each sample used to generate Figures 7.18-7.22 (5x1 second for each condition) is

again described by a thirteen dimension feature vector, each dimension representing

the amplitude of the cepstrum at the defect frequency for each reconstructed signal

as described in Chapter 5. The covariance matrix is formed from samples taken from

the undamaged bearing with 15% of samples reserved for validation. The results are

shown in Figure 7.23. The operating conditions for each sample number are shown
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in Tables 7.5 and 7.6. The samples from the undamaged bearing are on the left side

of the plot in a red and green, the samples in red being the training data used to

form the covariance matrix while those in green are used to validate the analysis.

The samples from the damaged bearing are on the right side in blue. A percentage

of correctly classified samples is calculated using the validation set of the undamaged

bearings and all the samples from a damaged bearing. In this case only 47% of samples

were correctly classified. All the validation observations were correctly classified as

undamaged however the analysis failed to classify many of the observations from the

damaged bearing with the only success occurring when the bearing speed was greater

than 30rpm.
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Figure 7.23: Outlier Analysis for Damage Detection of Cooper Bearing.

Due to the full lubricant film and lack of asperity contact, the same process is

repeated but rather than use the feature vectors described in Chapter 5, this time

they are formed using the measures presented earlier in this section in Figures 7.18-

7.22. In this case 95% of samples were correctly classified, with all the incorrectly

classified samples falling between 10 and 20rpm at 3kN. At these speeds and loads the

impact energy generated during a roller impingement is insufficient to cause a burst of

energy that can be distinguished from the background noise and the signal remains a

Gaussian distribution. Interestingly once the bearing is operating at loads and speeds

above 3kN and 30rpm, the measure of discordancy is relatively stable with respect

to operating conditions indicating that within these bounds such technique may be

148



suitable for severity assessment in transient conditions.
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Figure 7.24: Outlier Analysis for Damage Detection of Cooper Bearing.

Table 7.5: Sample Numbers for Undamaged Bearing

Speed (rpm)
Load (kN) 10 20 30 40 50 60

3 1-5 6-10 11-15 16-20 21- 25 26-30
6 31-35 36-40 41-45 46-50 51-55 56-60
9 - 61-65 66-70 71-75 76-80 81-85
12 - 86-90 91-95 96-100 101-105 106-110
15 - 111-115 116-120 121-125 126-130 131-135
18 - 136-140 141-145 146-150 151-155 156-160

7.4 Conclusion

The results in this chapter demonstrate the importance of the lubrication regime on

bearing monitoring. Section 7.1.1 shows that as film thickness decreases high ampli-

tude events due to asperity contact become prominent reducing the effectiveness of

more traditional measures of bearing health such as RMS, kurtosis and crest factor.
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Table 7.6: Sample Numbers for Damaged Bearing

Speed (rpm)
Load (kN) 10 20 30 40 50 60

3 161-165 166-170 171-175 176-180 181- 185 186-190
6 191-195 196-200 201-205 206-210 211-215 216-220
9 221-225 226-230 231-235 236-240 241-245 246-250
12 - 251-255 256-260 261-265 266-270 271-275
15 - 276-280 281-285 286-290 291-295 296-300
18 - 301-305 306-310 311-315 316-320 321-325

The presence of transient signals due to incipient damage would have little or no effect

on such measures as proved by the RMS trend in the run to failure tests presented

in Section 7.1.2. The method proposed in Chapter 5, designed to reduce noise and

boost the periodicity relating to localised defects, has been shown to be a more effec-

tive means of determining the bearing condition and can indicate which component is

damaged in the case of a partially lubricated bearing.

This has been compared to a similar approach using traditional bearing measures

for a fully lubricated split race bearing. In this case, these traditional measures are

more capable of indicating the presence of a defect confirming the importance of un-

derstanding the lubrication regime.

Data has also been presented from an instrumented wind turbine gearbox on a

factory test bed showing how the energy of the AE signal is highly dependent on the

rotational speed but not on the torque the gearbox experiences while it has also been

shown that care must be taken that other systems in the vicinity do not corrupt the

AE data.
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Chapter 8

Conclusion

The use of acoustic emissions as a means of monitoring the condition of the planetary

support bearings of wind turbine gearboxes has been investigated. Despite best design

practice being followed, high failure rates and the resulting loss of production during

maintenance have lead to engineers seeking novel solutions to the problem. As a result,

Ricardo have patented the Multilife� bearing, based on the premise that bearing life

can be increased by periodically rotating the inner raceway and thus distributing

damage. The efficient use of which requires knowledge about the bearing condition

and the position of any damage if present.

Previous studies have shown that in certain cases acoustic emission technology can

provide an earlier warning to the onset of catastrophic failure compared to vibration

analysis. A review of the literature suggests that this advantage is most distinct when

monitoring low speed bearings, which in general refers to rotational speeds of 100rpm

and less; speeds typically found in the planetary support bearings in question.

The work presented here has attempted to derive a suitable means of detecting

incipient damage and if present, estimating its severity and location. The data has

been recorded from two test rigs; the first, a bespoke full scale test rig designed to

replicate the damage seen on planetary support bearings in wind turbine gearboxes,

the second supplied by Cooper Bearings designed to run smaller split type bearings.

The following sections highlights the main findings.
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8.1 Defect Detection

In order to encourage the initiation and propagation of damage on the MultiLife�
bearings, conditions were chosen as to reduce the expected bearing life as much as

practically possible. A high radial load, low speed and low viscosity lubricant meant

the oil film was thinner than the composite roughness of the raceway and rolling

element surfaces resulting in a mixed lubrication regime characterised by asperity

contact. Until now, the monitoring of acoustic emissions in bearings under such a

regime had not been investigated. Analysing data from the Multilife� bearing at

different conditions clearly shows a distinct change in the signature with the onset of

asperity contact with RMS, kurtosis and peak values all rising sharply. This suggests

such measures are not suitable if a mixed lubrication regime is expected and different

approach is required.

8.1.1 Feature Extraction

To reduce the dimensionality of the acoustic emission data, a process, described in

Chapter 5, was proposed to highlight any periodicity in the signal which occurs for

localised defects. Wavelet packet decomposition breaks a signal down into a set of

groups of coefficients which represent the original signal at different scales (or frequen-

cies). Reconstructing individual groups of coefficients acts as a filter bank whereby the

presence of a defect will be more prominent at some scales than others. At this point

the signals need to be enveloped since the frequency content of the defect signal is

modulated at the characteristic defect frequency of the damaged component, this was

achieved using the short time energy function. Finally, the autocorrelation function,

the cross correlation of a signal with itself, was employed to boost the periodicity and

reduce noise between the events due to roller impact. A measure of the periodicity

was provided by the cepstrum and a feature vector was formed of the amplitude of the

quefrency relating to the defect frequency for each component.

8.1.2 Run-to-Failure Tests

Run-to-failure bearing tests on the Multilife� rig showed that this process, in con-

junction with outlier analysis, was possible to detect the presence of inner race defects
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measuring 100µm wide by 60µm deep by calculating the Mahalanobis distance from

the normal condition. Smaller defects may have been detectable but were not investi-

gated. The results were compared with the RMS trend which only increased once the

seeded defect had propagated into a large spall or the general condition of the bearing

had deteriorated due to debris denting the raceways and rollers. The first of the two

tests showed that the Mahalanobis distance decreased once the defected raceway was

rotated away from the loaded zone however the average value of discordancy was still

greater than that of the undamaged bearing. The Monte Carlo method was used to

determine a suitable damage threshold and provided a reasonable means of determin-

ing the condition of the bearing. However in this field, a false positive would prove

more costly than failing to detect the smallest defects. It may therefore be preferable

to use a higher threshold for future work.

The second run-to-failure test was stopped prior to the inner race failing due to

significant damage to the outer raceway, presumably caused by edge loading, in the

form of a single large localised spall in addition to a number of smaller distributed spalls

around the raceway circumference. The outlier analysis failed to detect this damage.

It is believed that this is due to a combination of high attenuation since the signal

needed to propagate across three component interfaces and high levels of background

noise due to the mixed lubrication regime. Previous studies have demonstrated the

possibility of detecting damage to the non-stationary raceway [75] however the higher

rotational speeds result in a greater energy loss and thicker film thickness reducing

the occurrence of asperity contact. In this case, using the first percentile as a measure

of background noise indicated the deteriorating condition of the bearing as damage

occurred to the outer race.

The same processing techniques were employed on the split raceway bearing test

rig to determine the presence of a defect. In this instance, the raw data suggested

that a full lubricant film was formed and the undamaged bearing followed a Gaussian

distribution. In this case, the technique was only successful at determining the state of

the bearing at speeds greater than 30rpm. A more successful attempt was made when

a feature vector was formed using the statistical parameters in the time domain. The

lack of asperity contact during normal operation meant that any transient signals were

the result of roller impingement on a defect. Therefore increases in these measures,

which are heavily dependent on the peak values, reflected the bearing condition. The

results from both test rigs highlights the importance of understanding the expected
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lubrication regime prior analysing acoustic emission data.

8.2 Source Location

Previously the position of the source of acoustic emissions from bearings had been

investigated using time of flight methods. In this work, three methods of defect location

on rolling element bearings employing the transient features of an AE signal have been

investigated. A series of artificially generated sources were created on a bearing inner

race and the errors were compared. Initially, the positions were estimated analytically

based upon geometry and assumptions on the wave propagation which provided a

reasonable degree of accuracy comparable to previous studies. Further improvements

could be achieved using Delta T mapping or neural networks which could reduce the

average error from 42mm to 29mm or 17mm respectively. The time and effort required

to obtain the training data for these two methods will determine which method is likely

to be used in practice.

The same methods were investigated whilst the bearing was in operation following

the introduction of a seeded defect at a known location. The accuracy of the methods

were similar to those when performed with artificial sources, with the average error

for TOA method being slightly less at 40mm while the errors of Delta T mapping and

neural networks were 25mm and 22mm respectively.

The choice of source location method will be dependent on the application in

question. In those cases where accuracy is paramount neural networks may offer the

best solution however the process of obtaining training data may be time consuming or

indeed impossible if access is restricted. The geometry of a bearing is relatively simple

however the difference in accuracy between the analytical and data driven methods is

likely to increase with geometric complexity. This is demonstrated using a plate with

a number of holes of different sizes by Hensman et al [43].

8.3 Future Work

Whilst seeded surface defects, such as those created by EDM, allow the duration

of accelerated bearing life tests to be significantly reduced and provide a means for
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researchers to assess the use of defect detection algorithms, the resulting damage is not

representative of the mechanisms by which the failure tends to occur. Field studies

have suggested that a large proportion of planetary bearing damage is initiated via

overload events which are likely to occur during emergency shutdowns and/or turbulent

wind conditions. Further experiments will be conducted on bearings that have been

subjected to loading conditions to replicate such damage. A modification to an impact

rig situated in Cranfield University has been designed by engineers at Ricardo whereby

a roller is dropped onto the raceway surface so that the subsurface shear stress exceeds

the elastic limit of the material but the surface remains undamaged. A colleague is in

the process of cutting up a bearing subjected to such loading to investigate whether

any subsurface cracks have appeared. If this approach has not been successful, a

different approach may be required whereby a roller is repeated pressed against the

raceway to initiate fatigue damage

After the problems with misalignment during the second test causing the outer

race to fail, the self-aligning bearing has been replaced by a parallel bearing to reduce

chance of edge loading and therefore outer race fatigue damage. The new bearing is

shown in Figure 8.1 before being reassembled with a new test bearing. It is hoped

that the resulting damage will be more representative of the field conditions with the

inner race failing in the loaded zone.

Figure 8.1: New Parallel Support Bearing for MultiLife� Rig
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The first run-to-failure bearing test presented in Section 7.1.2 proved that bearing

life can be increased by rotating the damage 180° away from the most heavily loaded

point and continuing to operate the bearing. This does not however provide any

indication of the possible percentage increase in bearing life that can be expected

with the introduction of the MultiLife� actuators. Further experiments are required

whereby an indexing strategy similar to those suggested by Figure 1.11 is employed.

A larger data set will also allow data driven models to be designed that will enable the

prediction of remaining useful life of the bearing. It would also be preferable to rotate

the inner raceway using the MultiLife� device to test the mechanical reliability in a

laboratory environment and to reduce the labour required to regularly disassemble and

reassemble the test rig, which could be the cause of noise in some of the experiments.

Finally, since the noise levels are at present unknown and potentially variable in

an operating wind turbine, the use of a reference sensor as employed by Miettinen

and Leinonen [74] means that the signal could be corrected for noise. Such a process

would be relatively simple to perform with certain measures such as RMS or ring down

counts and could be initially validated in the laboratory.
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Appendix A

k-means clustering

k-means clustering is a simple, efficient algorithm designed to allocate n observations

(x1, x2, ...,xn) to one of k clusters defined by its centroid where k is defined before

the algorithm starts. The aim of the algorithm is to minimise the objective function

J given:

J =

k
∑

j=1

n
∑

i=1

‖xj
i − cj‖2 (1)

The iterative process of the algorithm is described below.� The number of k clusters is first chosen.� Each cluster is assigned a centroid at random.� Each observation is assigned to the cluster whose centroid is closest.� The position of each centroid is recalculated as the average of the observations

assigned to it.� The previous two steps are repeated until no further re-assignments take place.

It has been shown that this algorithm will always converge yet the solution will

not necessarily be the optimum.
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Appendix B

Oil Film Thickness Calculations

Equations 2-4 give the dimensionless speed, material and load parameters required to

calculate the minimum film thickness of a line contact [110]

U =
µu

E∗R
(2)

G = αE∗ (3)

W =
P

E∗RL
(4)

where U , G and W are the dimensionless speed, material and load parameters respec-

tively. The conjunction radius R formed between the surfaces in contact is given by

Equation 5 where R1 is the radius of the rolling element and R2 is the radius of the

rolling surface of the inner raceway.

R =
R1R2

R1 +R2

(5)

The entraining velocity u is the speed the element passes over the race. If pure

rolling contact is assumed it is given by Equation 6.

u =
πR2n

30
(6)
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The equivalent elasticity modulus E∗ for similar materials of elastic modulus E

and Poisson’s ratio v is given by Equation 7.

E∗ =
E

1− v2
(7)
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