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Abstract

Stars form in clumpy, highly substructured environments. In this thesis I set up
N -body simulations of substructured star forming regions and investigate the impact
that the substructure has on the survival of the star forming regions.

I also present a broad range of methods used in other fields to quantify and identify
structure. I discuss their strengths and shortcomings and assess their suitability for
use in astronomical contexts.

I use the Q and Λ methods to compare the distributions of class I and class II
sources in observed star forming regions to learn more about the dynamical evolution
of systems and infer whether they are bound or unbound.
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3.14 Caliński-Harabasz index (CH) as a function of the number of clus-

ters (k). The index for the UPGMA method is shown by the black

symbols. The purple symbols represent the result for the DIANA algo-

rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.15 Dendrograms of the test case with three clusters. The dendrogram in

the top panel was constructed using the UPGMA method, while the

bottom two were generated using the DIANA algorithm. The coloured

boxes (black, red, green, blue, cyan, magenta, and yellow) highlight

the clusters identified in the data – three in panel (a), four in panel

(b) and seven in panel (c). . . . . . . . . . . . . . . . . . . . . . . . . 72

3.16 Plots of the test case with three clusters after applying the cuts to

the dendrograms. The colours (black, red, green, cyan, magenta, and

yellow) correspond to the clusters identified by the hierarchical al-

gorithms. Panel (a) shows the result of UPGMA analysis for three

clusters, panels (b) and (c) show the results of the DIANA algorithm

for four and seven clusters respectively. . . . . . . . . . . . . . . . . . 73

xiii



3.17 The results of the DBSCAN algorithm for different values of ε (0.1,

0.2, 0.3, and 0.4). The value of k is fixed at 3 for all the cases. The

colours represent the membership to different clusters identified by the

algorithm. Triangles are the points classified as core points, circles are

the outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.18 Reachability plots of the triple cluster case (panel a), single cluster case

(panel b) and a random distribution (panel c) for ε=10 and k=10. The

spatial ordering is shown on the horizontal axis, while the vertical axis

represents the reachability – the lower the value, the more reachable

the point is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.19 An example region consisting of 10 Plummer spheres containing 100

stars each. The 10 pc×10 pc fields are projections of the same region

along the orthogonal axes onto the planes x-y (panel a), z-x (panel b),

and z-y (panel c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Schematic of the hierarchy of timesteps in the block step method . . . 91

5.1 2D projection onto the x-y plane of a set of initial conditions containing

10 sub-clusters. The big Plummer sphere has Rbig=1 pc and Nsub=10,

while each sub-cluster has a Plummer radius of 0.1 pc and contains

100 stars. The big Plummer sphere has a virial ratio Qbig=0.5, while

each of the sub-clusters has Qsub=4.0, however, the chosen value of

virial ratio has no influence on the spatial distribution. . . . . . . . . 99

5.2 Spatial distributions of stars for sample sets of initial conditions with

Q=1.5. Left-hand column shows systems at the start of the simula-

tion (t=0), while the right-hand column shows the state of the same

systems after 10 Myr. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiv



5.3 Bound fraction (Nbound/Ntot) after 10 Myr as a function of number of

sub-clusters for systems with constant sub-cluster size (top panel) and

density (bottom panel). Green line represents systems with initial sub-

cluster virial ratio of 0.5. Red line corresponds to Q = 1.0. Systems

with initial virial ratio Q = 1.5 are represented by the black line.

Orange line corresponds to Q = 2.0 and blue to Q = 4.0. . . . . . . . 105

5.4 Bound fraction as a function of 1/2Qtot (eSFE). Grey points represent

the results of our simulations, while blue points represent equivalent

results by Baumgardt & Kroupa (2007) . . . . . . . . . . . . . . . . . 110

5.5 Bound fraction as a function of 1/2Q (eSFE). The results of simula-

tions outlined in the earlier sections of this chapter are shown in grey;

red points represent the messy initial conditions that were generated

to by randomly picking parameters from a permitted range rather than

strictly adhering to a prescribed grid. . . . . . . . . . . . . . . . . . . 113

xv



List of Tables

2.1 The properties of all the regions included in Gutermuth et al. (2009).

Ntot is the total number of objects in the region, NclassI is the number

of class I sources, NclassII is the number of class II objects, Qtot is the

value of the Q parameter calculated for the entire region, QclassI is the

Q parameter of the class I sources, QclassII is the Q parameter of the

class II sources, the next column is the value of Λ and the flag in the

last column indicates whether I classified the object as bound (B) or

unbound (U). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Initial conditions for sub-clusters of constant radius (above the line)

and constant density (below the line). Nsub is the number of sub-

clusters, Nlittle is the number of stars in a sub-cluster, Rsub is the

sub-cluster half-mass radius in pc. Qsub is the virial ratio of the sub-

clusters, while Qbig is the virial-ratio of the system. ρsub is the half-

mass number density of the sub-clusters. 10 runs with different random

number seeds were simulated for each set. . . . . . . . . . . . . . . . 102

xvi



5.2 An example of 3 subclusters from randomly generated set of initial

conditions. Nlittle is the number of stars in a subcluster, Qsub is the

virial ratio of the subcluster, and Rsub is the radius of the subcluster.

The virial ratio of the big Plummer sphere is Qbig=0.3, the total virial

ratio of the system is Qtot=0.84, the system consists of Ntot=647 with

a total mass of Mtot=192 M�. . . . . . . . . . . . . . . . . . . . . . . 112

xvii



Chapter 1

Introduction

Star formation is one of the main fields of interest in contemporary astrophysics.

Electromagnetic radiation is the primary source of information about the baryonic

Universe and most of the radiation that astronomers observe comes directly or indi-

rectly from stars.

Stars are the building blocks of galaxies and act as cosmic furnaces that enrich the

interstellar medium by producing heavier elements necessary for the existence of life.

They may also harbour planetary systems that could support life. The environment

and interactions with other stars also shape the fates of planetary systems, therefore

understanding of star formation and the conditions in which stars form is crucial, if

we want to learn more about planet formation and the origins of life.

The complexity of star formation lies in the great range of physical scales involved

and multitude of processes whose understanding is required, if we wish to describe

accurately the process of star formation. The main ones are gravity, chemistry,

hydrodynamics, turbulence, magnetic fields and radiative transfer.

1
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1.1 Star formation

The idea that stars form when cold gas fragments gravitationally is not new; it can

be traced back to 18th century philosophers Swedenborg and Kant who postulated

that the Sun formed from a cloud of gas that collapsed under its own gravity.

Until recently star formation was believed to be a slow, quasi-static process (Shu

et al., 1987), however, advances in technology (increased computational power and

bigger telescopes) allowed astronomers to better appreciate the impact of turbulence

which points towards much shorter timescales of the order of star forming region’s

crossing time (a few Myr) (Elmegreen, 2000).

1.1.1 Molecular Clouds

In order for gas to cool down sufficiently for stars to form (10s of K), it needs to

be shielded from external sources of heating hence star formation can only occur

at high column densities. First stars formed in the early, metal free Universe, in

which the the conditions were vastly different; high densities mean that exotic forms

of heating such as cosmic rays and self-annihilation of WIMP dark matter become

important (Bromm, 2013). Furthermore, the lack of heavier elements made cooling

more difficult and as a result the temperatures are much higher (300K; Larson, 2000).

In the present day Universe the conditions that allow stars to be formed are

usually found in giant molecular clouds (GMCs). The sizes of GMCs range from 10s

of pc to ∼ 100 pc (Kennicutt & Evans, 2012) and they can have masses between 102

M� (Magnani et al., 1985; Heyer et al., 2001) for the small clouds on the outskirts of

the Milky Way, to 107 M� for the biggest GMCs found close to the galactic centre

(Oka et al., 2001). Typical surface densities of molecular clouds in the Galaxy are

ΣGMC ∼ 100 M� pc−2 (Heyer et al., 2009). Observations indicate, however, that this

value could be different in other galaxies – as low as 50 M� pc−2 in the LMC (Hughes
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et al., 2010) and higher than 180 M� pc−2 in M51 (Colombo et al., 2014), and it is

also dependent on the galactocentric radius at which the GMC is found (Adamo

et al., 2015).

Since GMCs contain mostly molecular hydrogen (H2) they are very difficult to

observe since H2 has no excited states at <200K. Fortunately, there are other molec-

ular species, known as tracers, that are observable at such low temperatures and

whose density is proportional to the density of H2. CO is an example of a commonly

used tracer. In high density areas where CO lines saturate or CO freezes-out, other

tracers such as HCN, NH3 or CS can be used (Evans, 1999).

The dust grains are kept in thermal and radiative equilibrium with the gas by

constant collisions with the gas particles and will emit as a ‘grey body’. If we assume

that dust constitutes approximately 1 per cent of the total mass of the cloud (100

to 1 gas-to-dust ratio), we can use dust emission as a tracer of gas column density

(Evans, 1999; Longmore et al., 2014).

In addition to mapping out the density of the gas, the emission lines from the

molecular tracers provide information about the gas velocities. The width of the

lines provides us with a velocity dispersion that measures both the thermal and non-

thermal motions, while the ratios of different emission lines allow us to deduce the

kinetic temperature of the gas. Larson (1981) found a set of empirical power law

relationships, known as the Larson Relations, that describe the structure of GMCs.

One of the relations shows a dependence of the velocity dispersion (σ, km/s) on the

size of the region (L, pc):

σ ∝ Lβ (1.1)

where β = 0.38 - 0.5 (McKee & Ostriker, 2007). This behaviour is interpreted as a

signature of turbulence which explains why linewidths corresponding to supersonic
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Figure 1.1: A Herschel image of the Aquila cloud (Men’shchikov et al., 2010). Colours
correspond to gas column density with white being the densest and black being
the least dense. The ellipses correspond to starless cores identified through source
extraction. Notice that the cores lie along filaments of enhanced density.
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velocities with Mach number (ratio of the observed velocity to the speed of sound)

M∼ 5− 20 are observed in GMCs (Williams et al., 2000; Ballesteros-Paredes et al.,

2007).

Turbulence is a dissipative process whereby energy cascades to increasingly smaller

scales via eddies until it reaches a dissipation scale. The energy spectrum follows a

power-law relationship:

E(k) = k−n (1.2)

where k is the wavenumber (the inverse of scale). The Kolmogorov (1941) spectrum

for transonic turbulence predicts an exponent n = 5/3, which is consistent with

β = 0.38. In the supersonic regime, however, the Kolmogorov-Burgers model of

turbulence (Boldyrev, 2002) predicts a value of n ∼ 1.75 which is consistent with

β ∼ 0.5 (McKee & Ostriker, 2007).

The turbulent nature of the GMCs also is the basis for the theory that star

formation is a quick process, since supersonic turbulence is a transient phenomenon

and unless driven, will die away on the scale of the system crossing time (Ballesteros-

Paredes, 2006).

Eqn. 1.1 indicates that on large scales the turbulence is supersonic which causes

shocks in the gas. The shocks can result in formation of overdense sheets that frag-

ment into filaments (Bhattal et al., 1998). Observations suggest that filaments are

ubiquitous in GMCs (see fig. 1.1) and the overdense clumps within them are the loci

of star formation (Williams et al., 2000; André et al., 2014).

1.1.2 Cores

The density enhancements in GMCs can lead to formation of bound prestellar cores

with sizes ∼ 104 AU (Ward-Thompson et al., 2007). A core can collapse further to
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form a stellar system, if it is dense enough for gravity to overcome the thermal and

magnetic support (Crutcher, 1999).

The critical mass above which a gaseous object will undergo collapse is known as

the Jeans mass:

MJeans =
π

6

c3
s

G3/2ρ1/2
(1.3)

where ρ is the gas density, cs is the sound speed and G is the gravitational constant.

Prestellar cores with masses greater than MJeans will collapse to form protostars.

A related quantity is the Jeans length (RJeans) which is equal to the radius of a

sphere of mass MJeans:

RJeans =

(
MJeans

4π
3
ρ

)1/3

(1.4)

Objects larger than the local Jeans length will undergo fragmentation. Considering

the conditions in the GMCs (cs ∼ 0.2 km s−1 at T = 10 K and ρ ∼ 10−19 g cm−3)

a typical Jeans mass is ∼ 1 M� and Jeans length is ∼ 0.1 pc.

It is important to keep in mind that as the core collapses the value of MJeans

will change since it depends on the density of gas and the sound speed/temperature.

Assuming a barotropic equation of state (one where pressure depends only on density;

P (ρ) = ργ):

c2
s =

P (ρ)

ρ
= ργ−1 (1.5)

where γ is the polytropic index. Since the Jeans mass of a fragment depends on the

temperature and density (eqn. 1.4; Low & Lynden-Bell, 1976; Masunaga & Inutsuka,

2000):
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Figure 1.2: Central temperature Tc as a function of central density ρc for a collapsing
core as simulated by Masunaga & Inutsuka (2000). The boundary between the first
and second collapse corresponds to the value of Tc ∼ 2000K, at which the H2 dissoci-
ation commences.The plot also shows an approximate fit to each stage of the collapse.
The slope of each segment is γ − 1 for that stage’s γ. Adapted from Masunaga &
Inutsuka (2000) by Rawiraswattana (2012).
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MJeans ∝ ρ3/2γ−2 (1.6)

Fig. 1.2 shows the dependence of central core temperature on the density; the

slopes of the segments correspond to the value of γ − 1 during that stage. Initially

the collapse is isothermal (γ = 1) since the radiative cooling is efficient. The gas is

optically thin and excess energy is radiated away as blackbody radiation from dust

(Masunaga et al., 1998). This stage happens roughly on a free fall timescale, tff ,

tff =

(
3π

32Gρ

)
(1.7)

The increase in density due to collapse results in a decreased Jeans length and

causes fragmentation. In the long run, however, the increasing density makes the

opacity increase and results in decreased efficiency of the cooling. Once the density

reaches ρ ∼ 10−13g cm−3 the collapse becomes adiabatic (γ = 5/3) and the tempera-

ture starts going up (Larson, 1969; Masunaga & Inutsuka, 2000).

During this adiabatic heating phase, H2 behaves like a monatomic gas (γ = 5/3)

until the temperature reaches ∼ 100K, at which point the excitation of the rotational

states becomes possible and the behaviour changes to that of a diatomic gas (γ = 7/5).

At this stage of the collapse, the Jeans mass reaches its minimum at ∼ 10−2M�.

This point is known as the opacity limit for fragmentation and corresponds to the

smallest mass an object that formed through fragmentation can have (Rees, 1976;

Low & Lynden-Bell, 1976). This value is remarkably close to the planet - brown

dwarf boundary as defined by the deuterium burning limit (13 MJ, where MJ is

a Jupiter mass ∼ 10−3 M�). The opacity limit for fragmentation creates a more

intuitive distinction between these two types of objects that also provides insight

into the physics and origin of the formation mechanism – brown dwarfs form by

fragmentation, planets form via core accretion (Whitworth, 2000; Basri & Brown,
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2006).

Once the core reaches the opacity limit it is usually referred to as a protostar. It

is close to hydrostatic equilibrium and slowly contracts adiabatically on the Kelvin-

Helmholtz timescale, tKH,

tKH =
GM2

RL
(1.8)

where L is the luminosity of the protostar.

Once the temperature of the core reaches ∼ 2000 K molecular hydrogen dissoci-

ates. This acts as a heat sink and makes rapid further collapse possible. Moreover,

the dust evaporates around this temperature thus reducing the collective opacity

(Masunaga & Inutsuka, 2000). It is, however, not clear whether during this second

collapse the core might fragment further (Bate, 1998).

During this stage, the gas is approximately isothermal with an adiabatic index

γ ∼ 1.1 (see Figure 1.2). The second collapse results in a decrease in the Jeans mass

and it might explain the formation of very close binaries (Bonnell & Bate, 1994;

Masunaga & Inutsuka, 2000; Whitworth & Stamatellos, 2006).

The dissociation is followed by a phase of Kelvin-Helmholtz contraction which

continues until the temperature is high enough for hydrogen burning to be ignited,

at which point the main sequence is reached.

1.1.3 Stages of star formation

Based on observations of the spectral energy distribution (SED) the pre-main se-

quence evolution of stars is divided into four classes (Lada, 1987; Evans et al., 2009;

Dunham et al., 2014). When analysing the shape of the SED, the spectral index (α)

is used to discriminate between the classes (Lada, 1987),
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α =
d log(λFλ)

dlog λ
(1.9)

where Fλ is the flux density (energy per unit area per unit wavelength) at wave-

length λ. The index α is calculated for wavelengths λ > 2 µm and is the slope of the

SED longward of 2 µm (see fig. 1.4).

Class 0

During the earliest stage of star formation the core starts collapsing to form a pro-

tostar. This phase is short-lived and lasts roughly for the duration of a free-fall

timescale. The temperature of the core is a few 10s of K and it emits as a blackbody

peaking in the sub-mm (λpeak . 100 µm; first panel of fig. 1.4). Since the source is

heavily embedded it is not often directly detectable in the infrared. Radio observa-

tions of class 0 objects show collimated CO outflows stronger than in class I sources

(Bontemps et al., 1996; Evans et al., 2009).

Class I

The next stage starts when roughly half of the core mass has been accreted onto the

central object. The luminosity and gravitational energy from the collapse increases

the temperature of the envelope to>70 K. The SED is a combination of the blackbody

radiation from the protostar and the contribution from the envelope. Most of the

energy radiated by the protostar is reprocessed by the surrounding gas and results

in a very large IR excess (panel 2 of fig. 1.4). Because of this excess class I sources

have a positive spectral index (α ≥ 0.3).

Flat Spectrum

Greene & Wilking (1994) identified a class with a flat IR SED (−0.3 ≤ α < 0.3). The

exact nature of these objects is not clear, however, a bolometric temperature between

350 K and 950 K (Evans et al., 2009) suggests that at least some of them could

belong to an intermediate phase between class I and class II (Calvet & Hartmann,
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1994; Dunham et al., 2014).

Class II

Once most of the envelope has been accreted the protostar becomes a class II also

known as classical T Tauri star (CTT). Compared with class I most of the energy

now comes from the central object and the peak of the SED has shifted towards the

optical. Due to light being re-radiated by the disc, there is still a pronounced, albeit

smaller, infrared excess (fig. 1.4) corresponding to a spectral index between -1.6 and

-0.3. Observationally T Tauri stars are characterised by strong Hα emission as well

as coronal X-ray signatures (Soderblom et al., 2014) in addition to an IR excess. This

phase lasts until the disc is depleted, which takes a few Myr (Armitage et al., 2003).

The rate of accretion throughout this phase is not constant – eventually matter

will start building up in the inner part of the disc. Once enough material has been

accumulated, a period of rapid accretion commences and the object undergoes a

brightening of the order of several magnitudes that subsequently decays over the

course of several decades (Greene et al., 2008). This scenario is believed to be the

explanation for the behaviour of a class of objects known as FU Orionis stars.

Class III

Once most of the material in the disc has been depleted the star reaches class III

stage. The SED might still exhibit a small IR excess due to traces of a disc but the

accretion signatures have nearly disappeared hence the name weak-lined T ; stars

(WTT). During this phase the star is very similar to a main sequence star, but still

emits strongly in X-ray (Preibisch & Kim, 2005). Since it has not fully contracted it

is also more luminous than a main sequence star of the same colour i.e. it lies above

the main sequence on the H-R diagram. Fig. 1.3 shows the main sequence (black

line) and the pre-main sequence tracks of 0.1 M�, 1.0 M� and 5.0 M� stars. Objects

with masses <0.5 M� are almost fully convective and they simply contract towards

the main sequence on what is known as the Hayashi track. More massive stars (0.5
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M� – 3.0 M� follow the Hayashi track at first, however, once they become partially

radiative they start following the Henyey track to the left. Stars with masses over 3

M� are fully radiative and start on the Henyey track (Palla, 2012). Once an object

starts burning hydrogen in its core, the object becomes a zero-age main sequence

star.

1.1.4 Pre-main-sequence lifetimes

It can take up to 108 yrs for a star to reach the main sequence, however, based on

evolutionary models, the discs surrounding classical T Tauri stars have a median

estimated half-life ∼ 2 Myr (Evans et al., 2009). The majority of observed pre-main-

sequence objects fall into this category – even if we consider all the protostellar (class

0 and class I) sources together, CTTs are still ∼ 10 times more common.

The relative populations of the classes can be used to estimate the lifetimes of the

stages leading up to CTTs. If we assume a constant star formation rate, it implies

a tenfold difference in the expected lifetimes. By compiling information from several

surveys Dunham et al. (2014) estimated the protostellar lifetime ∼ 0.5 Myr, which is

consistent with observations of core kinematics (André et al., 2007). Using the same

method a flat spectrum lifetime ∼ 0.4 Myr was derived, one should however keep in

mind that the exact nature of these sources is unclear. The relative scarcity of class

0 is consistent with the stage being very short lived (0.05 Myr) due to the rapid infall

of the gas (Ward-Thompson et al., 2007; Evans et al., 2009).

1.1.5 Initial mass function

The definition of star as an object capable of hydrogen burning in its core sets the

lower stellar mass limit at ∼0.08 M�. On the other end of the mass spectrum stars

as massive as 300 M� are thought to exist (Crowther et al., 2010). The distribution
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Figure 1.3: Hertzsprung-Russell diagram. The main sequence is represented by the
black line, the blue lines are pre-main sequence evolutionary tracks for stars of masses
0.1 M�, 1.0 M� and 5.0 M�. Adapted from (Palla, 2012).
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Figure 1.4: A comparison of spectral energy distribution shapes of young stellar
objects of class 0 to class III. Class 0 sources are deeply embedded protostars, whose
SED resembles that of a blackbody and peaks in the sub-mm (top left). Class I
objects have accreted ∼ 50 per cent of the surrounding envelope. Their SED consists
of a warmer black body corresponding to the central object and an IR excess due to
the envelope (top right). During the class II phase most of the envelope has been
cleared, except for a disc which still results in an IR excess (bottom left). Class III
sources are very similar to main sequence stars but they might also exhibit a very
small IR excess due to a debris disc. Adapted from Lada (1987).
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of masses is referred to as the mass function. Of particular interest is the distribution

of masses at birth – the initial mass function (IMF) and its apparent universality.

Salpeter (1955) described the initial mass function using a power-law of the form:

dN ∝ m−α dm (1.10)

and observationally obtained a value for the exponent α = 2.35. Sixty years later

this slope is still applicable for stars above 1 M�.

Remarkably, the shape of the initial mass function does not change across a range

of different environments and populations (Bastian et al., 2010). Since Salpeter’s

original publication there has been a multitude of attempts at explaining this univer-

sality, however, most of the simulations simply manage to reproduce the shape but

lack predictive powers (see Bonnell et al. 2007 and the references therein).

More recently Chabrier (2003) proposed a different fit that uses a two-piece de-

scription consisting of a log-normal distribution at the low-mass end and a Salpeter

slope for the higher masses. Another prominent contemporary formulation by Kroupa

(2002) consists of three power laws with different slopes: one for substellar regime,

one for average-mass stars, and a high mass slope similar to Salpeter (1955).

The work included in this thesis uses the L3 parametrisation of the IMF pro-

posed by Maschberger (2013). This approach uses fewer free parameters than the

other formulations and its probability distribution function is given by the following

formula:

pL3(m) = A

(
m

µ

)−α(
1 +

(
m

µ

)1−α
)−β

(1.11)

where:
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A =
(1− α)(1− β)

µ

1

G(mu)−G(ml)
(1.12)

and G(m) is the auxiliary function defined as:

G(m) =

(
1 +

(
m

µ

)1−α
)1−β

. (1.13)

Parameters ml and mu set the lower and upper mass limits respectively, while α,

β and µ determine the shape of the IMF. The following values recommended by

Maschberger (2013) were used: α=2.3, β=1.4, µ=0.2 M�, ml=0.01 M�, mu=150

M�.

In order to sample a mass from the IMF one only needs to generate a uniform

random number R in the range between 0 and 1 and substitute it into the equation:

m(u) = µ
(

[R(G(mu)−G(ml)) +G(ml)]
1

1−β − 1
) 1

1−α
. (1.14)

Figure 1.5 compares the mass probability distribution function of the Maschberger

(2013) IMF (solid black line), Chabrier (2003) (dashed green line) and Kroupa (2002)

(dashed blue line). The shape of the Maschberger formulation is a very good fit to

the data and is similar to the other two.

1.1.6 Binary and multiple systems

When the prestellar core collapses it is very likely that it will fragment into more than

one protostar and the observations indeed indicate that multiple systems are very

common (Duchêne & Kraus, 2013). It is too difficult to form multiples dynamically

to explain the large numbers of observed multiple systems, hence they must have

formed as such (Clarke & Pringle, 1991; Goodman & Hut, 1993).

Not all stars have the same likelihood of having companions – the frequency of
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multiplicity depends on the primary mass. While virtually all the O stars have a

companion; the frequency falls to only 30 per cent of M-dwarfs. (Duchêne & Kraus,

2013; Ward-Duong et al., 2014).

Pre-main-sequence stars are young and have had fewer opportunities to interact,

hence they tend to have higher multiplicity frequency than field stars. Furthermore,

dynamically young associations have higher binary fractions than denser, more dy-

namically evolved regions. The differences between the Taurus-Auriga complex and

the Orion Nebula Cluster are, however, so dramatic (Taurus has twice the binary

fraction of the ONC) that they beget the question of whether the dynamical process-

ing is sufficient to account for them or perhaps the populations were initially different

(Parker et al., 2009; Goodwin, 2010; King et al., 2012).

1.2 Stellar Clusters

Observations suggest that most stars are not born in isolation but in star forming

regions (SFRs), which can have vastly different masses and appearances: from low

surface density associations such as Taurus (102 M�; ∼ 5 stars pc−3, Kenyon et al.

2008) to massive clusters such as Westerlund 1 (105 M�; ∼ 104 stars pc−2; Clark

et al. 2005). It is important to study the environment in which the stars form since it

can affect their future evolution; frequent interactions in a cluster can result in disc

disruption, planet ejection and a change in the binary properties.

Traditionally SFRs were thought of as dense clusters (Lada & Lada, 2003). More

recently, however, there has been a shift towards a hierarchical picture of star for-

mation. Bressert et al. (2010) compared the stellar surface densities of nearby star

forming regions and concluded that the number of stars that form in ‘clusters’ is

very strongly dependent on the definition of ‘cluster’ and only ∼ 25 per cent of stars

form in environments dense enough to actually affect their evolution. The encounter
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Figure 1.5: Mass probability distribution function against stellar mass. Black line
corresponds to Maschberger (2013), green dashed line to Chabrier (2003), blue dashed
line to Kroupa (2002). Adapted from Maschberger (2013)
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timescale of a star can be approximated as:

tenc ∼
1

πd2
· 1

v
· 1

n
(1.15)

where d is the distance at which the encounter occurs, v is the star’s velocity, and

n is the number density. The separation at which an encounter can disrupt the disc

and affect the evolution is 200 AU ∼ 10−3 pc. A typical value of velocity of a few

km s−1 gives:

tenc ∼ 105 · 1

n
(1.16)

For the density of Taurus (n ∼ 10 pc−3) the encounter timescale is ∼ 104 Myr, while

for Westerlund 1 it is ∼ 10 Myr. Given the approximate ages of ∼ 5 Myr, one can

conclude that significant encounters in Taurus are rare and unlikely to have affected

the evolution of the stars. On the other hand, the dense environment of Westerlund 1

makes significant encounters fairly frequent and they are likely to have an effect on

the stellar evolution.

In the hierarchical paradigm there is no preferred scale for star formation, instead

there is a hierarchy of structures – SFRs may form double clusters (de la Fuente

Marcos & de la Fuente Marcos, 2009), but they may also consist of sub-clusters

perhaps containing even smaller clumps (Elmegreen, 2006; Allison et al., 2009a). This

can be interpreted as an imprint of the scale-free nature of turbulence, especially given

the correlation between the structure in the star forming region and the underlying

gas distribution (Gutermuth et al. 2011; see sec. 1.1.1).

If the star forming region is dynamically cold, it will rapidly collapse to form

a bound cluster (Elmegreen, 2006). On the scale of a crossing time the mixing

will erase the substructure and result in mass segregation (Allison et al., 2009a).

If a region is unbound it will not undergo collapse, instead it will become an OB
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association – a loose group of comoving stars. These associations are unbound and

slowly drift apart, therefore they retain their initial structure and do not undergo

mass segregation (Goodwin & Whitworth, 2004; Parker et al., 2014). Analysing the

mass segregation and the amount of substructure in a region can provide a lot of

insight into its dynamical history and whether it formed as an association (Parker

et al., 2014; Wright et al., 2014).

1.2.1 Dynamical Evolution

Over time stars in a bound cluster will undergo relaxation – a process whereby their

energies are changed in an attempt to reach dynamical equilibrium. The associated

timescale known as the relaxation time (trelax) is the time it takes for a star’s velocity

to change significantly (|δv| ∼ |v| i.e. for it to lose all information about the initial

conditions):

trelax ∼
N

8 lnN
tcr (1.17)

where N is the number of stars in the system and tcr is the crossing time(Spitzer,

1969).

In the process known as two-body relaxation a star can exchange a portion of

its energy with another star during a (close) encounter. Through the interaction

typically the energy will be transferred from the more energetic star to the less

energetic ones. In an idealised scenario of an ensemble of particles in a box with

perfectly elastic walls this process will continue until the system reaches a Maxwellian

distribution. In reality, however, the low-mass stars may occasionally be ejected from

the system, if their subsequent velocity exceeds the escape speed (this phenomenon

is called evaporation). On the other end of the spectrum, the encounters make the

high mass stars lose energy and sink deeper into the cluster potential well. This gives
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rise to dynamical mass segregation – the most massive stars are preferentially found

close to the centre of the cluster (Spitzer, 1969).

The speed of mass segregation is dependent on the mass of the star (it scales as

M
〈M〉 , where M is the mass of the star and 〈M〉 is the mean stellar mass.) and happens

quickly (on the scale of several crossing times) for the massive stars (Allison et al.,

2009a). High mass stars attract the other ones more strongly hence their interactions

are more frequent (gravitational focussing) and they segregate on a shorter timescale.

The above picture holds for a fairly smooth background potential with local per-

turbations. In a more substructured environment such as a collapsing SFR, however,

bulk flows due to infalling clumps of stars will cause a substantial change to the po-

tential experienced by the stars. Lynden-Bell (1967) demonstrated that these changes

to the potential cause a period of violent relaxation, which lasts until the distribution

has been smoothed out. Since the violent relaxation happens on a short timescale (of

the order of crossing time), the presence of substructure in a region implies that it is

dynamically young and has not had enough time to erase it (Parker et al., 2014).

1.2.2 Gas expulsion

During the early stages of their evolution star forming regions are embedded in the

natal gas, only a fraction of which is turned into stars. Over time, feedback from

the most massive stars (ionisation, radiation pressure, supernovae, winds etc.) will

result in the removal of gas on the timescale of a few Myr. Loss of mass from the

system is dynamically important as it reduces the potential energy felt by the stars

and will often lead to the destruction of the system.

Assuming that initially the gas and stars are well mixed and close to equilibrium,

the effective star formation efficiency (eSFE) can be used to describe the dynami-

cal state of the cluster post-gas-expulsion (Verschueren & David, 1989; Goodwin &
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Bastian, 2006; Goodwin, 2009). Under these conditions the cluster can lose up two

thirds of its initial mass and still retain some stars (Goodwin, 1997; Baumgardt &

Kroupa, 2007).

In reality, however, SFRs are not virialised Plummer spheres – the distribution

can be clumpy and dynamically cold (Goodwin & Whitworth, 2004). Smith et al.

(2011) showed that eSFE is not a good predictor of the cluster’s fate if the cluster is

substructured. I pursue this idea further in chapter 5 where after the expulsion the

star forming region is considered as a whole.

1.3 Thesis Outline

This thesis follows the structure outlined below. Chapter 2 contains my analysis of

the structure of star forming regions contained in the Gutermuth et al. (2009) survey.

I use the difference between the values of Q of class I and class II sources to infer

whether a cluster is bound or unbound. In chapter 3 I present a range of methods

that can be used to find and quantify structure and I discuss their suitability for

being applied to the SFRs. Chapter 4 is an outline of the principles behind N -body

simulations and a discussion of the algorithms. Finally, in chapter 5 I present the

results of N-body simulations performed on a simple model of substructured initial

conditions in order to investigate the influence of the virial ratio of the sub-clusters

on the fate of the system.



Chapter 2

Analysing the Structure of Star

Forming Regions

In this chapter I discuss methods that allow us to quantify the substructure in star

forming regions. Furthermore, I present the results obtained by applying these meth-

ods to the Gutermuth et al. (2009) data set.

2.1 The data

Gutermuth et al. (2009) conducted a Spitzer survey of 36 nearby star forming regions.

They performed observations using the mid infrared IRAC instrument operating in

high dynamic range mode and the far infrared photometer MIPS. IRAC allows for

simultaneous imaging in four bands: 3.6, 4.5, 5.8, and 8.0 µm, while MIPS operates

in three bands: 24, 60, and 160 µm.

Source extraction and aperture photometry methods as outlined in Gutermuth

et al. (2008) were then performed on the images and the fluxes of the objects were

obtained. The ratios of fluxes in different bands were used to classify Class I and

Class II sources.

23
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Objects with stellar photospheres have [3.6]− [4.5] and [5.8]− [8.0] colours close

to zero and therefore lie close to the origin of a colour-colour diagram (Hartmann

et al., 2005). Class I and class II sources, however, are characterised by an infrared

excess due to the presence of an envelope or a disk, hence they will exhibit redder

infrared colours (see sec. 1.1.3).

Gutermuth et al. (2009) used the following colour cuts to identify class I sources:

[4.5]− [5.8] > 0.7

[3.6]− [4.5] > 0.7 (2.1)

where [3.6] is the objects magnitude in the 3.6 µm band, [4.5] is the magnitude in the

4.5 µm band, and [5.8] is the magnitude in the 5.8 µm band. Note: the difference in

magnitudes is equivalent to the ratio of fluxes. Remaining objects that satisfied the

following criteria were then classified as class II sources:

[4.5]− [8.0] > 0.5

[3.6]− [5.8] > 0.35

[3.6]− [4.5] > 0.15 (2.2)

MIPS 24 µm fluxes were then used to double check the data. Objects with

insufficient 24 µm excess that had been previously classified as class I were moved to

the class II category. MIPS data was also used to identify transition disks - objects

with a substantial gap between the PMS star and the disk which show photospheric

signatures in IRAC colours but exhibit an excess at 24 µm; such sources are classified

as class II for the purpose of the survey.

Gutermuth et al. (2009) also provide column density maps of gas in the regions,
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however, we do not use them since we are interested in the relative distributions of

class I and class II sources.

Fig. 2.1 shows plots of the spatial distribution of protostars in two regions from

the survey – AFGL490 and Serpens. Red points represent class I sources, while black

points correspond to class II objects.

We want to investigate the clumpiness and segregation of the two classes in the

regions which is impossible to quantify by visual inspection – the regions in both

panels look rather ‘messy’.

Further problems are caused by the limited field of view which makes it impossible

to identify the ‘centre’ of the region (if that even makes sense), hence the need for

methods that are not biased by the location of the centre of mass.

2.2 Minimum Spanning Tree

The methods described in this chapter use a graph theory concept known as minimum

spanning tree (MST). A graph is a set of points known as vertices connected by

line segments called edges. A graph that connects all the vertices and whose edges

do not form any closed loops is called a spanning tree. For a set of vertices it is

possible to create a whole family of spanning trees, the shortest of which is known

as the minimum spanning tree. By definition the length of the MST is unique for a

distribution and in the astronomical problems where MST might be applied (all the

edges have different lengths) there is only one way of drawing it. Fig. 2.2 shows an

MST of a sample distribution: the thick lines are edges of the MST and the thinner

lines are the remaining edges of the underlying distribution.

In order to calculate the distances between the points I converted the right ascen-

sion from sexagesimal system to decimal degrees. It is also important to point out

that in order to calculate the angular separation between two objects (ω) we need to
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(b) Serpens

Figure 2.1: Distribution of class I (red points) and class II (black points) objects in
AFGL490 and Serpens regions. Both declination and right ascension are given in
decimal degrees.
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calculate the great circle distance:

ω = arccos (sin δ1 sin δ2 + cos δ1 cos δ2 cos ∆α) (2.3)

Where δ1 and δ2 are the declinations of objects 1 and 2 respectively and ∆α is the

difference in right ascensions between object 1 and object 2. If the difference between

the declinations is small, this can be approximated by the formula for objects at the

same declination: ω = (δ2 + α2 cos 2( δ1+δ2
2

))0.5, where α is the right ascension of the

object.

2.2.1 Prim’s Algorithm

While there are many algorithms that can be used to construct an MST, the work

included in this thesis uses Prim’s algorithm (Jarńık, 1930; Prim, 1957; Dijkstra,

1959). We need to prepare two lists of points, T containing the points that have

already been added to the tree and L containing the points yet to be added to the

tree. Initially T is empty and all the points in the set are in L. The algorithm is

started by picking an arbitrary point and adding it to the tree (we remove this entry

from the L and add it to T ). Now we look for the shortest edge connecting any point

in T with any point in L, we add this edge to the tree and move the point from L to

T . We iterate this process until all the points have been moved from L to T

2.3 MST Λ parameter

Since the MST length is a measure of separation of objects within a population, we

can use it to compare the distribution of a subset of N special objects (e.g. class I

sources or most massive stars within the region) with the rest of the cluster (Allison

et al., 2009b).
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First we need to obtain the MST length of the subset containing only theN special

points, lspecial. Then we create a subset of N points chosen randomly from the whole

population and calculate the associated MST length. We repeat this process a large

number of times and get the median MST value, 〈lnorm〉, along with the variance,

σnorm.

Allison et al. (2009b) proposed a Λ parameter that used MSTs to determine the

degree of mass segregation in star forming regions:

Λ =
〈lnorm〉
lspecial

± σnorm

lspecial

(2.4)

where the variables have the same meaning as above and the subset of interest con-

sisted of the N most massive stars.

A value of Λ ∼ 1 means that the typical separation of the most massive stars

is similar to that of all the stars in the region i.e. there is no mass segregation.

Λ significantly greater than 1 means that the typical separation of stars in the region

is greater than that of the most massive ones i.e. the region is mass segregated. The

higher the value of Λ the stronger the mass segregation. Conversely, Λ significantly

smaller than unity is an indicator of inverse mass segregation.

While Allison et al. (2009b) used the parameter to look for mass segregation in

star forming regions it is possible to choose another group of stars whose distribution

we want to investigate e.g. class I sources within a region, instead of N most massive

stars.

2.4 Q-parameter

Cartwright & Whitworth (2004) proposed a Q-parameter as a statistical means to

quantify structure and distinguish between ‘clumpy’ and smooth regions:
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Q =
m̄

s̄
(2.5)

where m̄ is the normalised mean MST edge length and s̄ is the normalised correlation

length defined as the average separation between objects in the region divided by the

region radius. The mean edge length is given by l̄ = ltotal
Ntotal−1

, where ltotal is the MST

length and Ntotal is the number of vertices. Cartwright & Whitworth (2004) pointed

out, however, that if we wish to compare regions with different N and size, the value

of l̄ should be normalised. Instead they used a normalised mean edge length, m̄,

defined as:

m̄ = l̄/
(NtotalA)0.5

Ntotal − 1
(2.6)

where A is the area of the region.

Fig. 2.3 taken from Cartwright & Whitworth (2004) illustrates how the value of

Q for computer generated regions is related to the values of fractal dimension F and

radial density exponent α. For Q ≤ 0.8 the plot shows F against Q; the values of F

from 1.5 (highly fractal) for Q=0.45 to 3.0 (uniform density) for Q=0.8 can be read

from the left-hand axis. The right-hand side of the figure (Q ≥ 0.8) shows α, against

Q. The values of α increase from 0 (uniform density) for Q=0.8 to ∼ 3 (density

n ∝ r−3) for Q=1.5.

There is a slight kink in the plot at Q=0.8 due to the fact that the F = 3.0

fractal has the points distributed uniformly in a grid-like fashion, while the stars

in the α = 0 cluster are distributed randomly and small density fluctuations may

happen.

TheQ-parameter allows us to distinguish between clumpy (Q < 0.8) and centrally

concentrated systems (Q > 0.8) and quantify the degree of substructure. It has to

be pointed out, however, that the method is not very sensitive at Q ∼ 0.8 due to the
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steep gradient in that section of the plot.

Since the method uses region radius and region area calculated as a circle for

normalisation and the value of Q is correlated with the radial density distribution

exponent, it is well suited for analysis of circular clusters. Bastian et al. (2009)

pointed out that there is a correlation between the elongation of the region and the

Q-parameter. Cartwright & Whitworth (2009) revisited the method and proposed

a correction, however, they also pointed out that for regions with aspect ratio < 3

there is no need to apply it, since the effects of elongation have little impact.

2.5 Results

Some of the regions had class I sources mapped over a larger field than class IIs due

to different instrument coverage. Those extra sections of the field were disregarded

in order to keep our analysis consistent. Furthermore, we discarded 5 regions with

the fewest sources (Ntot < 20) because a meaningful analysis of these regions was not

possible.

We used the methods outlined above to compare the distributions of sources in

the Gutermuth et al. (2009) data. For each region we obtained the value of the Q

parameter for class I and class II objects (QclassI and QclassII respectively) and the

whole region (Qtot). Additionally, we calculated the value of Λ for every region using

class I sources as the smaller special subset. The results are presented in tab. 2.1.

2.6 Discussion

Parker et al. (2014) demonstrated how Q evolves with time for systems with different

initial virial ratios. If a system is bound (low virial ratio), it will relax on the scale

of a crossing time and erase the structure; Q will go up as time progresses (Parker
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et al., 2015). For an unbound system, however, Q will stay roughly constant – the

substructure is ‘frozen in’ as the system expands – an unbound system has far fewer

interactions between stars and on average its members tend to move away from each

other.

We observe a range of Qs in Gutermuth et al. (2009) data which means that

SFRs form with different values of Q and/or the Q changes as the regions evolve.

Assuming that class II objects are older than class Is we can postulate that SFRs

form at low Q – if we see high values of Q, it is an indicator of dynamical evolution.

Measuring the current value of Q can provide clues about the dynamical age of a

system and whether it is bound or not. A low value of Q indicates that a system is

dynamically young; it could be unbound but could also be bound and too young to

have erased the substructure. On the other hand, a high Q suggests that the system

is bound and dynamically old (has evolved) or simply formed at high Q. However,

QclassI tends to be low (tab. 2.1) which suggests that all stars form at low Q. This

is not unexpected given the clumpy appearance of the gas in star forming regions.

We applied this line of thought to 10 Gutermuth et al. (2009) regions with the

‘best data’ – i.e. reasonably large number of class I sources, sufficiently large total

number of objects and no discrepancies between the class I and class II coverage

(these objects have an entry in the last column of the Table 2.1).

We found that for the 4 regions with the highest Qtotal the Q parameter of class

II sources was also higher than that of class I protostars. The value of p = 0.003

calculated using the paired t-test comparing the values of Q of class I and class II

indicates that the difference is indeed significant. This is consistent with class II

objects being older and more evolved than class Is, hence they will have had more

time to relax and delete their structure. Based on our previous assumptions we

classify these regions as bound (B in the last column of tab. 2.1).

The other 6 ‘good’ SFRs have a lower Qtotal which indicates that they are dy-
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namically younger or unbound (U in the last column). The p value for paired t-test

comparing Q of class I and class II distributions is much higher(p = 0.563). This

result is however not unexpected since between class I and class II the value of Q goes

down, while for others it goes up. The SFRs for which the value of QclassII is greater

than QclassI yet the overall value of Q is still quite low (CepC, S140, OphL1688) could

be young objects in the process of erasing its structure that are still too young to have

erased it all. This result is, however, inconclusive due to small number statistics.

Interestingly, in some regions QclassI is clearly larger than QclassII (AFGL 490,

IRAS20050+2720). This suggests that the younger population is distributed more

smoothly than the older one and could be caused by the the fact that the gas from

which the stars form has moved between the formation of the objects that are now

class II and ones that are class I. Parker et al. (2014) also showed that for simulated

regions the value of Q can sometimes temporarily drop due to stochastic effects.

Furthermore, this result could be caused by the way that Q is calculated – the area

of the cluster is used to normalise the result and in some of the cases the area covered

by class I sources could be different than the area covered by class IIs.

Since the way that Q is calculated is not stochastic in nature, the only uncertainty

comes from astrometric errors and incompleteness of the sample. For systems with

fewer stars, however, the method suffers from low number statistics and is not very

reliable (Parker et al., 2014). This means that the results presented above are not

conclusive – they are am interpretation of the differences between the values of Q for

class I and class II sources, which in an idealised case could allow us to infer whether

a cluster is bound or unbound.
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Figure 2.2: Example MST. Numbers give lengths of the edges, the thin grey lines
represent the edges of the underlying network, while the thicker black lines are the
shortest tree that joins all the points – the minimum spanning tree. Taken from
wikipedia.org.
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Figure 2.3: Fractal dimension F and spherical density exponent α as a function of
Q for simulated star clusters. For values of Q ≤ 0.8 the fractal dimension F can
be read on the left-hand y-axis. The values of the spherical density exponent, α,are
shown on the right-hand axis for Q ≥ 0.8 . Taken from Cartwright & Whitworth
(2004)
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Table 2.1: The properties of all the regions included in Gutermuth et al. (2009).
Ntot is the total number of objects in the region, NclassI is the number of class I
sources, NclassII is the number of class II objects, Qtot is the value of the Q parameter
calculated for the entire region, QclassI is the Q parameter of the class I sources,
QclassII is the Q parameter of the class II sources, the next column is the value of Λ
and the flag in the last column indicates whether I classified the object as bound (B)
or unbound (U).

Region name Ntot NclassI NclassII Qtot QclassI QclassII Λ B/U
AFGL490 157 32 125 0.74 0.81 0.71 1.45± 0.08 U
IRAS06046-0603 26 3 23 0.92 0.49 0.91 1.26± 0.06
BD+404124 34 8 26 0.82 0.68 0.82 2.11± 0.07
IRAS20050+2720 177 53 124 0.74 0.84 0.72 1.11± 0.05 U
CB34 23 7 16 0.91 0.66 0.87 1.48± 0.02
L1206 25 3 22 0.63 0.49 0.81 0.65± 0.06
S106 79 11 68 0.76 0.66 0.78 1.27± 0.06
CepA 94 9 85 0.76 0.68 0.75 1.58± 0.11
L1211 59 12 47 0.75 0.62 0.74 2.57± 0.11
CepC 114 22 92 0.61 0.50 0.61 1.30± 0.08 U
L988-e 75 8 67 0.84 0.76 0.80 2.52± 0.09
S140-North 24 13 11 0.74 0.80 0.60 1.81± 0.07
ChaI 38 4 34 0.62 0.58 0.59 0.99± 0.38
LkHalpha101 102 8 94 0.84 0.82 0.88 0.75± 0.07
S140 48 15 33 0.61 0.49 0.62 1.60± 0.10 U
CrA 34 9 25 0.77 0.81 0.66 1.74± 0.17
LupusIII 39 2 37 0.86 0.40 0.84 0.88± 0.12
S171 48 11 37 0.92 0.84 0.81 0.90± 0.12
GGD12-15 118 16 102 0.89 0.61 0.87 1.93± 0.06 B
MWC297 23 3 20 0.69 0.49 0.70 1.08± 0.05
Serpens 97 24 73 0.91 0.64 0.90 3.00± 0.13 B
GGD17 53 11 42 0.91 0.66 0.86 3.02± 0.07
MonR2 230 29 201 0.82 0.80 0.81 1.54± 0.07 U
TauL1495 38 9 29 0.45 0.58 0.47 0.97± 0.15
GGD4 31 7 24 0.58 0.70 0.50 1.06± 0.04
NGC1333 133 36 97 0.91 0.72 0.91 1.06± 0.13 B
IC348 158 14 144 0.89 0.75 0.91 0.97± 0.15 B
NGC7129 57 8 49 0.93 0.75 0.93 1.16± 0.09
VYMon 48 7 41 0.96 0.72 0.96 1.10± 0.07
IC5146 149 7 142 0.77 0.55 0.78 0.91± 0.12
OphL1688 146 32 114 0.72 0.60 0.75 1.20± 0.11 U



Chapter 3

Finding structure

The star forming regions are not smooth but have a clumpy substructure that might

affect their evolution (chapter 6). Even visual inspection of Taurus and Orion Nebula

Cluster reveals, however, that the degree to which these systems are substructured

is different. In order to properly assess its impact, we need a way of identifying and

quantifying the substructure.

In this chapter I will describe methods that can be used to find structure in

data. The presented methods cover a range of approaches – some are density based,

while other use graphs and dendrograms. Since many of the methods presented in

this chapter have not been previously used in the context of star forming regions, I

will also assess their suitability and identify their shortcomings. It is important to

emphasise that in this chapter clusters should be understood as groupings of stars;

the ‘clusters’ found by the structure finding algorithms will not necessarily satisfy

the formal definition of a stellar cluster (Gieles & Portegies Zwart, 2011), or even be

physical groupings.

36
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3.1 MST methods

The minimum spanning tree contains information about the structure and the lengths

of the edges in a graph and can be used as a measure of the ‘density’; it has also

been successfully used to quantify the mass segregation in star forming regions (see

sec. 2.3). Gutermuth et al. (2009) proposed a way of cutting the MST in an attempt

to look for sub-clusters in nearby star forming regions.

First, a minimum spanning tree that includes all the identified young stellar ob-

jects in the region is constructed. Then one needs to plot the cumulative distribution

function of the edge lengths in the MST. The next step is to fit two straight lines

to the distribution; one fits the steep part of the curve (short edges), the other one

the shallow part (longer edges). The points around the ‘bend’ of the function are

omitted from the fit since they do not adhere to the proposed distribution and would

affect the quality of the fit at the shallow end.

The idea behind this fit is that the slopes correspond to two regimes – the steep

part of the distribution contains the short edges found in the sub-clusters, while

the longer edges typically connect the background points. The point where the two

lines meet marks the critical cutting length; edges shorter than that value belong

to connections within clusters. The longer edges are removed from the graph; this

cuts the tree and the result is no longer a complete graph but a collection of smaller

subtrees which are interpreted as sub-clusters.

The length of an edge in the MST graph is related to the local surface density

of the objects, therefore using the cutting length method will indeed identify the

densest regions of the distribution. While using the critical length approach helps

remove the background stars, it can also affect real structure and mistakenly split

a single dominant cluster into smaller ones (see fig. 3.3), while in other cases two

nearby objects could get blended into one.
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By using a single cutting length for the entire observed SFR one assumes that

all the sub-clusters have similar densities. Should well defined clusters of different

densities be present in the region, this method will fail to identify them. The fact that

in the fitting process the central part of the CDF is disregarded also raises concerns,

especially given the fact that the cutting length falls in the region of the plot that is

not being fitted by definition.

I used this method to analyse a set of four two dimensional test cases generated

on a 10 pc×10 pc field (the units are arbitrary) shown in fig. 3.1.

a) Clusters of different densities – three clusters consisting of 300 stars each, with

radii 0.5pc, 1pc and 2pc; plotted against a random background of 100 stars.

b) A single cluster of 500 stars on a 500 star random background.

c) A random field of 1000 stars.

d) A random distribution with Binaries. First I generated a random distribution of

680 stars, then I added binary companions to 320 randomly chosen stars. The

separation of the binaries was drawn from a gaussian (µ = 0.13pc, σ = 0.08pc)

and the orientation was a random number in range [0, 2π].

The above cases are intended as simple tests that allow us to reject methods that

fail to pass them. More realistic test scenarios could be generated in three dimensions

and then be projected onto a plane. They could also include filamentary and fractal

structure. Performing such test, however, is not necessary if the methods do not

perform well in the idealised cases outlined above.
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Figure 3.1: Plots of distributions used to test the algorithms presented in this chapter.
The fields are 10 pc×10 pc and contain 1000 points each.
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Fig. 3.2 shows the cumulative distribution functions of the MST edge lengths for

each of the above cases. The green line represents the multiple cluster case, the black

line corresponds to the single cluster, blue to the random distribution, while the red

one illustrates the random distribution with binaries.

Of particular interest is the similarity between the single cluster and the random

distribution with binaries. The critical cutting length method has trouble distin-

guishing between these two cases, since both have two typical lengths – the longer

one due to the random distribution and a shorter one due the connections within the

cluster in the single cluster case, or the binaries in the case of a random distribution

with binaries. This example illustrates how important for any method whose goal is

find or quantify structure to be unbiased by binaries.

Fig. 3.3 shows the test regions after the the cutting length method was applied

to them. The red symbols are the points that were discarded from the distribution

because the edges leading to them exceeded the critical cutting length. The black

symbols are the points that were identified as the cluster members and the lines

joining them represent the MST edges that were shorter than the cutting length. In

the triple cluster case (top left panel) the method identified only the most compact

cluster and split the less dense ones into smaller fragments. In the single cluster case

(top right panel) applying the critical cutting length method identified the cluster,

however, it also classified points from the random background as members of the

cluster. The case of a random distribution (bottom left) resulted in a false detection

of structure that is not actually present in the data. Similarly, applying the method

to the random distribution with binaries (bottom right panel) returned a cutting

length that identified clustering where it is actually absent.

Based on the above results, I concluded that this method is not suitable for identi-

fying structure in star forming regions (for an in-depth discussion of the shortcomings

of a related method see Parker & Goodwin 2015).
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Figure 3.2: Cumulative distribution functions of MST edge lengths for the test cases
in fig. 3.1. Three cluster case is represented by the green line, the single cluster by
the black line, the random distribution by the blue line and the random distribution
with binaries by the red line.
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Figure 3.3: Plots of the test regions after cutting the MST. The black symbols
connected by black lines represent the points that were classified as cluster members
i.e. the edges joining them are shorter than the critical cutting length. The red
points are the outliers that were removed by the cutting length method.
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3.2 Graph Methods

There is a wide range of graph theory based methods that are used to quantify

structure. Unfortunately their implementation in astronomical context is not trivial.

These methods are primarily used to analyse social, economical and technological

networks, in which connections are pre-defined; in star forming regions, however, it

is not obvious how the stars should be connected to each other.

The MST is a special type of graph which is not always the best choice. We need

to choose a suitable underlying graph; ideally, the ‘connectivity’ of a point should

depend on the proximity to other points, but it also should not have a pre-defined

length scale.

A way of achieving this is by connecting each point to its n nearest neighbours.

In the previous examples the distance to the n-th nearest neighbour is larger in the

more diffuse cluster, the stars in the clusters will be connected in a similar way. To

create the underlying network we connect each point to its Nn closest neighbours

to create a directed graph i.e. a graph where the edges have a direction: if point i

is connected to point j, it does not necessarily mean that point j is connected to

point i. Then we choose all the bidirectional connections (i→ j, j → i) and discard

all the one way connections leaving only the mutual nearest neighbours. Now we

can construct an adjacency matrix for the graph – an N ×N matrix (N is the total

number of points), whose entry aij represents the number of connections between

points i and j (in this case 0 or 1).

3.2.1 Clustering Coefficient

A commonly used measure of clustering is ‘transitivity’, also referred to as the global

clustering coefficient, C (Costa et al., 2007). It is defined as the ratio of the number

of closed triples of points to the total number of connected triples.
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C =
3N4
N3

(3.1)

where N4 is the number of triangles in the graph and N3 is the number of connected

triples. Points P1, P2 and P3 form a connected triple, if P1 is connected to P2 and P2 is

connected to P3. For a triple to be considered a triangle the additional requirement

of P1 being connected to P3 has to be satisfied. A social network equivalent of a

triangle would be two of my friends independently being friends with each other.

Note the factor of 3 used to account for the fact each triangle can be interpreted as

3 closed triples (P1P2P3, P2P3P1 and P3P1P2).

The adjacency matrix can then be used to identify triples, triangles and other

types of structure within the graph (if there is a connection between point i and j,

then aij = 1; if the points are not connected aij = 0). Points i, j and k form a triple

when aij = ajk = 1 i.e. there is a connection between points i and j and between

points j and k . For these three edges to form a triangle an additional requirement of

aik = 1 needs to be satisfied, i.e. there is also an edge that connects points i and k.

In order to calculate the clustering coefficient in an efficient way I used the igraph

package in R and C++ (Csardi & Nepusz, 2006; R Core Team, 2012).

A related concept is the local clustering coefficient, Ci, defined as the ratio of

the number of edges connecting the neighbours of the i-th point to the number of

possible connections between the neighbours:

Ci =
2li

ki(ki − 1)
(3.2)

where ki is the number of neighbours of the i-th point and li is the number of

connections between them (Watts & Strogatz, 1998). The local clustering coefficient

can also be interpreted as the ratio of the number of triangles that a point belongs to

to the number of triples. The average of the local clustering coefficients is known as
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the network clustering coefficient, C̃ = 1
N

∑
Ci and it is not the same as the global

clustering coefficient.

In order to choose the most suitable value of Nn I investigated how the transitivity

coefficient changes with Nn. I generated 1000 underlying graphs for values of Nn in

range [1,1000] for each of the four test cases from the previous section. The results are

shown in fig. 3.4; green line corresponds to the three clusters case, black to the single

cluster, red to random distribution with binaries and blue to random distribution.

In the limit of Nn → N the underlying distribution is a complete graph i.e. each

point is connected to every other point and C tends to unity. On the opposite extreme

are the triangle-free graphs; trivially, C = 0 for Nn = 1.

A striking feature of the plot is the very well pronounced local maximum of

the three clusters case (green line) that occurs around the value Nn = 300. This

represents the points in the dense regions preferentially forming triples – among 300

nearest neighbours of a point in the clump most are also in the same clump because

each cluster has N = 300. For higher values of Nn the transitivity decreases again,

because not all triples are now closed – some of the connections are now reaching to

points in two distinct clumps that are less likely to be connected to each other and

form triangles.

The random distribution with binaries (red line) exhibits a very small spike at

lower values of Nn. This is caused by the presence of binaries – every binary member’s

nearest neighbour is the other member; if a point is connected to a binary member

it is also likely connected to the other one and together they form a triangle. If one

naively tried to identify the best connected points by simply using Nn = 2, the result

would be misleading – the binary members are the best connected ones, however, that

does not imply that there is an underlying structure associated with this increased

transitivity.
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Figure 3.4: Plot of global clustering coefficient against Nn for the multiple clusters
case (green line), single cluster case (black), random distribution with binaries (red)
and random distribution (blue).
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3.2.2 Cliques

A clique is an extension of the triangle concept – it is a subset of points in a graph

that are all connected to each other i.e. all the neighbours of a given point in the

clique are also each other’s neighbours. To explore possible applications of cliques

in identifying the structure in star forming regions I used the same test cases as in

the previous sections i.e. I constructed an underlying graph in which each point is

connected to its Nn nearest neighbours and chose the bidirectional connections (i is

connected to j and j is connected to i) for the distribution.

When looking for cliques in a network it is important to keep in mind a property

of cliques that any subset of the points in a clique is also a clique. This gives rise

to the notion of a maximal clique i.e. a clique that is not a subset of another larger

clique. This is not necessarily the same as the maximum clique which is the largest

clique in the graph.

To find a maximal clique we start with a single point and add a connected point

to the clique, then we look for a point connected to both of the members. We repeat

this process until there are no more points that are connected to every point in our

clique. However, a single point can belong to more than one maximal clique as shown

in fig. 3.5. There are two maximal cliques in this network – one containing points 1,

2, 3, 4 and another one consisting of points 1, 2, 3, 5. This illustrates a problem for

the clique finding algorithm as at each step we need to keep track of all the points

that could be added to the clique. This process can become very complicated for

large data sets, therefore I used the implementation of the algorithm provided in the

igraph library in C and in R (Csardi & Nepusz, 2006).

In order to identify regions of the graph where the points are particularly well

connected, I investigated how the clique membership depends on Nn. When Nn = N

the graph is complete and all the points belong to one maximal clique. On the other
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Figure 3.5: Two maximal cliques that differ only by one point. Points 1, 2, 3, and 4
form a maximal clique, but so do point 1, 2, 3, and 5.

end of the spectrum, for Nn = 2 the only cliques present (other than the trivial cases

of individual edges and points) are triangles.

The background points will form small cliques too, but are less likely to form

large ones, therefore we discard cliques with n < 10 in order to only keep the cluster

members. This method, however, is flawed too – a single cluster could consist of

several maximal cliques, some of which might contain fewer than 10 objects. This

would result in some of the cluster members being discarded.

The parameter Nn sets the maximum size of a clique, therefore it should be higher

than the cutoff value of 10. Setting it to too high a number, however, will result in

connections between unrelated regions. Fig. 3.6 shows the cliques extracted from

the distribution of three clumps used in the previous sections. Black points are the

members of maximal cliques with 10 or more members, red points belong to the

original distribution but were discarded since they do not belong to a clique that
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satisfies the above requirements.

For an underlying network with Nn = 25 (top left panel) the clique extraction

discards all the background points, but it does not identify all the members of the

clusters – it discards the points that only belong to maximal cliques with fewer than

10 members. For a network with Nn = 30 (top right panel), almost all the cluster

members are identified correctly and the background points are still discarded. When

the Nn value is further increased to 35 the clusters members are identified correctly,

however, there are also false positives – some of the background points start forming

cliques with 10 or more members.

In comparison with the critical cutting method (panel (a) of fig. 3.3) the results

produced by the cliques based method are more satisfactory. Three clusters of dif-

ferent densities are identified correctly because there is no implicit density cutoff,

instead the method relies on local connectivity and the difference in densities be-

tween the clusters and the background is the deciding factor. Among Nn nearest

neighbours of a background point many will be cluster members; on the other hand,

a cluster member is far less likely to have a background point as one of its Nn nearest

neighbours.

Clique extraction, however, suffers from a major shortcoming that makes it not

suitable for detecting substructure – the choice of the parameter Nn and the minimum

clique size n is arbitrary and based on visual inspection. Furthermore the method

does not provide a meaningful statistic that would describe the extent of clustering

in the region.

3.2.3 Small-world networks

Small-world networks are a concept related to the transitivity and clustering, they

are locally clustered, but have a short average path length which is a property of
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Figure 3.6: Plots of the distribution with three clusters following a clique extraction.
The black points are members of cliques with 10 ≥ members, the red points are
members of the original distribution that do not belong to such cliques. Top left
panel shows the result of clique extraction for Nn = 25; top right panel for Nn = 30;
the bottom panel for Nn = 35.
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random graphs (Watts & Strogatz, 1998). Examples of small-world networks range

from connections between actors (Six Degrees of Kevin Bacon) or scientists (Erdős

number) to power grids and neural networks.

Humphries & Gurney (2008) proposed a measure of small-world-ness (S) which

makes it possible to quantitatively decide whether a graph is a small-world network.

In order to calculate S of a graph g we need to introduce two parameters:

γg =
Cg

Crandom

(3.3)

where Cg is the clustering coefficient of the graph g and Crandom is the clustering

coefficient of a random graph with the same number of edges and points.

λg =
Lg

Lrandom

(3.4)

where Lg is the average path length of the graph g and Lrandom is the average path

length of a corresponding random graph. For a small-world network typically Lg >

Lrandom.

A random graph with a given number of edges and vertices, where each possible

vertex pair has an equal probability of having an edge connecting them is known as an

Erdős-Rényi (Erdős & Rényi, 1959) graph. To create an Erdős-Rényi graph we choose

the number of edges (m) and points (N) and generate m pairs of random integers in

range [0,N ], for each pair we draw an edge between the corresponding points. One

of the properties of the Erdős-Rényi graphs is that they have fewer closed loops than

real-life networks (their transitivity is lower), therefore for a small-world network

Cg � Crandom.

For each value of Nn in the range [1,50] I generated 100 Erdős-Rényi graphs with

different random number seeds in order to obtain the mean values of γg and λg. The

small-world coefficient is defined as the ratio of these parameters:
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S =
γg
λg

(3.5)

By combining the above equation with inequalities Lg > LER and Cg � CER, one

can deduce that a graph is small-world network if S > 1. Humphries & Gurney

(2008) show that using the average local clustering coefficient instead of the global

coefficient gives slightly different results, however, the behaviour of the coefficient S

does not change.

Fig. 3.7 shows small-world coefficient S as a function of Nn for the range [1,50]

for the test cases. In multiple cluster case (green line) the value of S drops very

quickly and stays very close to zero for the rest of the range. This is caused by

the increase of the average path length as connections between the clusters start

appearing. The sharp initial decline is similar for the single cluster (black line), the

random distribution (blue line), and the random distribution with binaries. Between

7 and 10, however, the value of S rises again for these distributions, because in this

range γg increases faster than λg for these distributions. Beyond the range of the plot

the values of the S coefficient fall monotonically for all four test cases. While this

figure shows that the behaviour of the small-world coefficient is different for the case

with three clusters, it still fails to distinguish between the single cluster case and

the random distribution based cases, which disqualifies this coefficient as a useful

diagnostic of clustering.

3.2.4 Rich-club coefficient

In social networks in addition to cliques and small-world networks a phenomenon

known as a rich-club can also be observed. Let us define the prominence of a point

as its degree i.e. the number of edges connected to it. A rich-club is defined as

a subset of the network consisting of the most prominent points that are also well
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Figure 3.7: The dependence of the small world coefficient S on the number of nearest
neighbour connections in the underlying distribution(Nn). The green line correspond
to the distribution with three clusters, the black one to the single cluster case, the
red one to the random distribution with binaries, and the blue one to the random
distribution.



3.2. Graph Methods 54

connected to each other. Zhou & Mondragon (2005) proposed a rich-club coefficient,

φ(k), that quantifies how well the points with a degree ≥ k are connected to each

other:

φ(k) =
2E>k

N>k(N>k − 1)
(3.6)

where E>k is the number of edges connecting the members of the club and N>k is

the number of points with degree greater than k (rich-club members).

To choose a value of k, one needs to construct a cumulative distribution function

of the degrees of the points in the graph and find a value for the upper 20th percentile.

However, the discrete nature of the degree distribution will often result in the same

value being shared by several points and therefore more than 20 per cent of the points

might belong to such a rich club.

I applied this method to the previously described underlying distributions that

join each point to its Nn nearest neighbours for the four test cases. Fig. 3.8 shows the

dependence of φ(k) on Nn. Interestingly, the distribution with three clusters (green

points) behaves differently to the single cluster, binaries and random distribution

(black, red and blue symbols respectively). For Nn < 150 the green points have

substantially lower values and the curve they trace is shallower until ∼ 300 where

it becomes steeper until it meets the other lines at Nn ∼ 500. The shallow shape

between 150 and 300 is due to the fact that the most connected points will lie in

different clusters and will be relatively poorly connected to each other. For Nn > 300

the connections between clusters start appearing and the amount of connections

between the members of the rich-club increases rapidly. The test case is set up from

three clusters with the same N , therefore φ is showing a particular mode of clustering

particular to this (not very realistic) distribution. If the clusters had different number

of members, the distribution would be much smoother and similar to the other cases.
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Therefore, I concluded that this method is not well suited for analysing this kind of

underlying graph.

3.2.5 Weighted rich-club coefficient

The rich-club coefficient also has a weighted form which can be applied to a different

kind of underlying network (Opsahl et al., 2008). Instead of finding Nn nearest

neighbours of each point, let us consider a complete graph i.e. one in which each point

is connected to all the other points. Each of the edges has a weight wi dependent

on its length (ri). We want the shorter edges to have a higher weight therefore we

choose an inverse square law: wi = r−2
i .

We define the weight of a point (Wi) as the sum of all the edge weights originating

in this point. We then construct a CDF of point weights and make a cutoff to identify

the rich-club of k best connected points. We define s as the weight of the point with

the lowest weight in the rich-club.

The next step is to find all the connections between the members of the rich club.

From basic combinatorics, if each point is connected to every other point, there are

n = k(k − 1)/2 edges in a graph of k points. The weighted rich-club coefficient is

defined as the ratio of the sum of the weights of edges connecting the rich-club points

to the sum of k points with the highest weights in the entire distribution.

φw =
W≥s
n∑
i=1

wrank
i

(3.7)

The parameter W≥s is the total weight of the points in the rich club and wrank
i is the

edge with the i-th highest weight.

Fig. 3.9 shows the dependence of the weighted rich club coefficient (φw) on the size

of the rich-club (k) for the previously described test cases. Red symbols correspond
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Figure 3.8: The rich-club coefficient (φ) as a function of the number of nearest
neighbours connections in the underlying distribution (Nn) for the test cases. The
green points represent the distribution with three clusters, the black ones the single
cluster case, the red ones the random distribution with binaries, and the blue ones
the random distribution.
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Figure 3.9: The dependence of the weighted rich-club coefficient (φw) on the size of
the rich club (k) for the test cases. The green points correspond to the distribution
with three clusters, the black ones to the single cluster case, the red ones to the
random distribution with binaries, and the blue ones to the random distribution.



3.2. Graph Methods 58

to the random distribution with binaries, green points to the three clusters case,

black to a single cluster and blue to a random distribution). As k tends to 1000 all

the curves approach unity, however, one should bear in mind that it conceptually

makes little sense to define the rich-club as a subset of more than 50 per cent of the

region.

Remarkably, the random distribution with binaries boasts the highest values of

φw, while the single cluster case has the lowest rich-club coefficient. This method is

obviously biased by binaries – points that belong to the binaries will typically have

higher values of Wi and will be well connected to other binary members. Given the

ubiquity of binary systems this method can not be successfully applied to SFRs.

Opsahl et al. (2008) proposed a parameter ω which compares the network against

a null-case constructed by reshuffling the weights of the edges and calculating the

weighted rich-club coefficient for the new distribution. To find a typical value of φ

for a randomised network this process is repeated 1000 times and then the average

(φw
null) is taken. Dividing φw by the average null-model result provides a normalisation

factor:

ω =
φw

φw
null

(3.8)

To create a null model we need to reshuffle the weights of the edges, however in

the case where the weights depend on Euclidean distances in a spatial distribution

such a randomisation means that the edge weights of the reshuffled graph no longer

correspond to the physical distances between the points. Instead I chose to pick k

points at random and find the weights of the edges that connect them. This allowed

me to calculate the value of φ for this subgraph by summing the total weight of

these connections. This approach make calculating φw
null analogous to finding the

normalisation factor in the MST Λ method (see eqn. 2.4).
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Figure 3.10: The null case normalised weighted rich-club coefficient (ω) as function
of rich club size (k) for the previously outlined test cases. The green symbols rep-
resent the case with three clusters, the black ones represent the single cluster case,
the red ones correspond to the random distribution with binaries, and the random
distribution is represented by the blue ones.
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Figure 3.11: The logarithm of the null case normalised weighted rich-club coefficient
(ω) as a function of the vertex strength( s) for the test cases. The multiple clusters
case is represented by the green symbols, the single cluster case by the black ones,
the random distribution with binaries by the red ones, and the random distribution
by the blue ones.
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Fig. 3.10 shows the dependence of the null model normalised weighted rich-club

coefficient ω on the size of the rich club (k). The vertical scatter is caused by the

random nature of the null case sampling. All the test cases show a sharp decay with

increasing k. The red points (random distribution with binaries) lie slightly higher

than the the green points (three clusters) which in turn take higher values than the

black (single cluster) and blue ones (random distribution). Overall, however, there

is little quantifiable information that can be extracted from this plot.

An alternative presentation of the results of the same analysis is shown in fig. 3.11.

Parameter ω is plotted against the cutoff strength (s) on a log-log scale. The promi-

nent points in the three clusters region (green symbols) have higher absolute strength,

but as the previous plot demonstrated they are not necessarily well connected to each

other. The strength of the point can be interpreted as a measure of local density

and this plot indicates that the points in the triple cluster case are typically found

in denser environments than the single cluster case, which is denser than the ran-

dom distribution based ones. This behaviour, however, is specific to the test cases;

in practice the clusters could have a range of densities and the one with the most

subclusters will not necessarily have the strongest points.

3.2.6 Discussion

Methods of quantifying structure based on graph theory have been studied extensively

and are frequently applied in the context of social and computer networks. The results

they produce when applied to star forming regions, however, are rather unsatisfactory.

The principal difference is that the connections between computers or people are

well defined and can be described in a binary fashion – either the connection exists

or it does not. I tried to circumvent this problem by using an inverse square edge

weighting for an underlying distribution wherein each point is connected to every
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other point in the distribution. By doing so I made the notion of connectivity more

‘fuzzy’ and reduced the power of the methods.

Furthermore, many methods described in this section are strongly affected by

binaries and short connections; in a social network the most important connections

are to ones immediate neighbours – friends of ones friends have a lesser impact. In

the case of a star forming region it is important to treat the system as a whole and

not get fixated on the short links since the more distant objects can still dramatically

impact the cluster’s evolution.

3.3 Hierarchical Clustering

Hierarchical clustering encompasses a family of methods in the field of cluster analysis

used to construct a hierarchy of structures in the data. This approach could be

appropriate for the analysis of SFRs given their hierarchical nature; clusters may

consist of smaller subclusters and might themselves be parts of a structure on a larger

scale (see sec. 1.2).

There are two strategies for constructing the hierarchy of clusters: bottom up

(agglomerative) and top down (divisive). The agglomerative methods start with

each point belonging to a separate cluster at each step two clusters with the smallest

intergroup dissimilarity are merged into one. The process is repeated until only one

cluster encompassing all the data remains. Conversely, the divisive methods start

with a single cluster that is divided into two parts. The resulting subclusters have

largest possible dissimilarity. At each subsequent step one of the clusters is divided

again until each point is in a separate cluster

While the two approaches are quite similar, the results they produce might differ.

The work in this thesis focuses on the agglomerative paradigm, since in addition to

being computationally less demanding, it also ensures that objects with low dissimi-
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larity are clustered together.

3.3.1 Measures of dissimilarity

Dissimilarity is a measure of ‘distance’ between objects. In case of the spatial clus-

tering of stars it is appropriate to use a Euclidean metric. However, the concept of

dissimilarity encompasses more than just physical distance – it can also be applied

to families of languages, gene groups, etc.

While finding the distance between two individual points is trivial, finding the

dissimilarity between two clusters is more challenging - we need to assume an ap-

propriate definition of intercluster dissimilarity and keep it consistent throughout

the analysis. In the following subsections I will outline methods of calculating the

dissimilarity between sets based on an example of two sets Q and R shown in fig. 3.12.

Single-linkage clustering

Single-linkage clustering (SLINK) is perhaps the most intuitive way of finding the

distance between clusters Q and R. The dissimilarity between clusters Q and R is

simply the smallest distance between an object in Q and an object in R:

dSLINK(Q,R) = min
i∈Q,j∈R

dij (3.9)

where i is a point in set Q and j is a point in set R (panel a) of fig. 3.12). This

method (also referred to as nearest neighbour linkage) has the property of chaining

– whenever two clusters come too close to each other they will merge. The resulting

cluster might contain members that are very far away from each other, therefore the

method excels at finding elongated clusters.
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Complete-linkage clustering

Conversely, we can choose complete-linkage clustering (CLINK) which defines the

dissimilarity between two sets as the maximum separation between members of Q

and R (see panel b) of fig. 3.12):

dCLINK(Q,R) = max
i∈Q,j∈R

dij (3.10)

This approach does not suffer from chaining, but it has the opposite property – it

identifies compact clusters that might not have well defined boundaries.

Group average method

An alternative definition of intercluster dissimilarity is offered by the unweighted

pair-group average method (UPGMA, panel c) of fig. 3.12) which is the average of

all dissimilarities dij:

dUPGMA(Q,R) =
1

|Q||R|
∑
i∈Q

∑
∈R

dij (3.11)

where i is any object in Q and j is any object in R (Sokal & Michener, 1958). This

method is impervious to chaining effects and is particularly well suited for identifying

ball shaped clusters (Kaufman & Rousseeuw, 1990).

3.3.2 Divisive methods

The DIvisive ANAlysis clustering method (DIANA) is a divisive hierarchical algorithm

popularised by Kaufman & Rousseeuw (1990). We start with a single cluster and

find an outlier with the highest average dissimilarity (in the Euclidean case it is the

point with the highest average distance from the other points). This point is then

removed from the cluster and becomes the first member of a ‘splinter group’. Then
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Figure 3.12: Measures of dissimilarity between sets R and Q for different linkage
types. Panel a) shows single linkage clustering, panel b) shows complete linkage
clustering and panel c) demonstrates the group average method.
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we iterate over all the points in the cluster; each point whose dissimilarity with the

splinter group is lower than its dissimilarity with the rest of the cluster is added

to the splinter group. Once no new points can be added to the splinter group, it

becomes a new cluster. This process is then repeated for the cluster with the highest

dissimilarity radius, i.e. the largest dissimilarity between two members of the same

cluster, until each point belongs to a separate cluster.

Divisive methods are more computationally expensive than the agglomerative;

this particular algorithm has an exponential scaling withN . In our case, however, this

is not a major problem since we are dealing with relatively small datasets. A bigger

shortcoming is the fact that mutual nearest neighbours can be put in different clusters

even at the top levels of this algorithm (see sec. 3.3.5).

3.3.3 Dendrograms

The results of a hierarchical clustering analysis can be conveniently presented on

a dendrogram – a tree diagram. The bottom row of a dendrogram consists of indi-

vidual data points, while the top row corresponds to a single cluster encompassing all

the points in the distribution. The height at which two points are merged represents

the intercluster dissimilarity – in this case the length of the link between the clusters.

In the agglomerative scenario we start at the bottom and join the two least dissim-

ilar points together and join them with a horizontal line at the height corresponding

to their dissimilarity. Conversely, in the divisive scenario we start at the top and

divide the clusters in two at appropriate heights.

Fig. 3.13 shows the dendrograms generated for the the previously described test

case consisting of three clusters. The top panel is an agglomerative dendrogram

constructed using the UPGMA method; the bottom panel was created using the

DIANA algorithm.
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In the next section I shall outline a method of quantifying the information con-

tained in a dendrogram, but even by visual inspection of the top plot we can identify

three well defined areas that one could intuitively ascribe to the three clusters in the

distribution. The divisive case, on the other hand, seems to contain four major com-

ponents and the cuts divide the clusters into subclusters containing similar number

of points.

3.3.4 Number of clusters

In order to learn more about the clusters in a distribution we need to cut the den-

drogram first to identify the clusters, which requires us to make a priori assumptions

about their number, or what dissimilarity is important. Since the goal of our analysis

is to learn about the clustering we need a way of deciding on the number of clusters

based on the dendrogram. Calinski & Harabasz (1974) proposed a CH index that

acts as a sui generis goodness-of-fit parameter:

CH(k) =
B(k)

W(k)

n− k
k − 1

(3.12)

where B(k) is a measure of the scatter of the clusters, W(k) is a measure of the

scatter of points within the clusters (defined by Calinski & Harabasz 1974), n is the

number of points and k is the number of clusters. A high value of B(k) and a low

value of W(k) mean that the clusters are well defined, therefore a high value of CH(k)

is desirable.

Fig. 3.14 shows how CH varies with the number of clusters for the UPGMA

(black symbols) and DIANA analysis (purple symbols) of the three cluster test case.

The range of k on the plot is [2,25] since CH is not defined for a single cluster (k = 1).

For the group average method the diagram has a well pronounced maximum for k = 3.

The divisive case has highest value at k = 4 and k = 7. Another local maximum can
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Figure 3.13: Plots of dendrograms of the test case containing three clusters of different
densities. The dendrogram in the top panel is the result of UPGMA analysis, while
the bottom panel is the result of the DIANA divisive method.
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be found at k=13 and it corresponds to a similar feature found in the UPGMA case.

3.3.5 Results

Fig. 3.15 shows the dendrograms with the clusters identified by the CH method

imposed on them. The top panel shows the UPGMA dendrogram with k = 3 clusters,

two bottom panels show the DIANA dendrogram with k = 4 and k = 7 clusters

respectively. Fig. 3.16 depicts what these clusters look like in x-y plane; the colours of

the points (black, red, green, blue, cyan, magenta, and yellow) represent membership

to the groups identified in fig. 3.15.

Visual inspection reveals that in the UPGMA case the members of the individual

sub-clusters are identified correctly, however, the background points are also classified

as members of the clusters. The results of the DIANA algorithm are much worse –

in both k = 4 and k = 7 cases the most diffuse subcluster is split into two. The

division splits the cluster into two sub-clusters of similar size and there is a clear

boundary between the regions. This is caused by the symmetry of the region. Since

the densities on both sides of the boundary are the same, the cut occurs exactly in the

middle in order to minimise the dissimilarity. The divisive methods are particularly

biased by the background points that increase the dissimilarity radius. In this case,

the lower density region on the right hand side of the plot is split into two lower

density clusters. As a result, points that are very close to each other end up being

assigned to different groups. This is further exacerbated by the fact that once two

points have been assigned to two different clusters they can never be joined further

down the dendrogram.

Increasing the value of k leads to some parts of the background being identified as

individual ‘clusters’. We could then discard them based on the lowN ; this approach is

based on visual inspection and is therefore biased by human perception. Furthermore,
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Figure 3.14: Caliński-Harabasz index (CH) as a function of the number of clusters (k).
The index for the UPGMA method is shown by the black symbols. The purple
symbols represent the result for the DIANA algorithm.
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in addition to splitting the background into small groups, increasing k also results

in the actual clusters being further fragmented (as demonstrated in the lower right

panel of fig. 3.16), which renders this approach unacceptable, especially given the

tenuous distinction between a small fragment of the cluster and a portion of the

background.

3.4 Density based methods

An alternative approach to identifying clusters in data is offered by the family of

density-based methods. They operate on the intuitive principle that the dense regions

in the distribution are clusters while the more diffuse ones are the background. In

this section I outline two methods that go beyond the näıve approach and enable us

to find clusters of different shapes and densities.

3.4.1 DBSCAN

Ester et al. (1996) proposed a method called ‘density-based spatial clustering of

applications with noise’ (DBSCAN). This algorithm uses a core radius ε to identify

three classes of points in the data: core points, edge points and background points

(outliers) by comparing the distance to the k-th nearest neighbour of each point with

the radius ε.

A point p1 is classified as a core point when a circle of radius ε drawn around it

contains at least k other points. All the points within radius ε around a core point

are referred to as directly reachable. Non-core points may be reachable from the core

points (in this case they are known as edge points), but no points are reachable from

them. The non-core points that are not reachable from any other points are classified

as outliers.

In order to identify the members of a cluster we need to start with a single
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Figure 3.15: Dendrograms of the test case with three clusters. The dendrogram in
the top panel was constructed using the UPGMA method, while the bottom two
were generated using the DIANA algorithm. The coloured boxes (black, red, green,
blue, cyan, magenta, and yellow) highlight the clusters identified in the data – three
in panel (a), four in panel (b) and seven in panel (c).
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Figure 3.16: Plots of the test case with three clusters after applying the cuts to the
dendrograms. The colours (black, red, green, cyan, magenta, and yellow) correspond
to the clusters identified by the hierarchical algorithms. Panel (a) shows the result of
UPGMA analysis for three clusters, panels (b) and (c) show the results of the DIANA

algorithm for four and seven clusters respectively.
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core point. All the points directly reachable from this point are added to the same

cluster; we can then expand the cluster further by looking for points that are directly

reachable from the newly added cluster members. This process is repeated until no

more points can be added to the cluster, at which point we move to another core

point that does not belong to the cluster and repeat the process. This procedure is

reminiscent of the nearest neighbour clustering, but it is based on reachablility to k

nearest neighbours rather than distance alone.

Fig. 3.17 shows the results of the DBSCAN analysis performed on the test case

containing three clusters. The calculations were performed for a fixed value of k = 3

and three values of ε were used (0.1, 0.2, 0.3, 0.4). The triangles represent the

core points, while the circles are the outliers. In all the cases the densest cluster is

identified correctly (red symbols). For the lowest value of ε the detection of the two

more diffuse clusters fails – they are split in numerous small groups and many of

the cluster member are classified as background (black circles). Increasing ε to 0.2

results in the intermediate density cluster being identified correctly (green symbols),

however, the most diffuse one is still not treated in a satisfactory manner. A further

increase of ε to 0.3 mostly detects the members of the low density cluster correctly

(blue), albeit there is still a small group of points classified as a separate cluster (cyan

symbols). This problem is finally solved for ε = 0.4; at this point, however, the value

is so large that some parts of the background are mistakenly classified as clusters.

The above example is intended to exemplify two major shortcomings of the DB-

SCAN method: the sensitivity to input parameters and the inability to handle clus-

ters of different densities. HDBSCAN (hierarchical DBSCAN) is modified version of

the algorithm designed to fix this flaw. Unfortunately, HDBSCAN fails and detects

structure in random distributions. Similarly to the MST cutting approach and other

previously mentioned methods this approach requires us to set some parameters be-

fore we start the analysis. It is possible to estimate appropriate values of k and ε
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Figure 3.17: The results of the DBSCAN algorithm for different values of ε (0.1, 0.2,
0.3, and 0.4). The value of k is fixed at 3 for all the cases. The colours represent the
membership to different clusters identified by the algorithm. Triangles are the points
classified as core points, circles are the outliers.
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based on the dimensions of the data and the distribution function of k-th nearest

neighbour distances, however, the result is still quite sensitive to the values chosen

which becomes even more apparent when the cluster has a fairly low density. If the

value of ε is too high the algorithm will not be able to identify the cluster against

the background, if it is too low the cluster will be fragmented into smaller pieces.

The biggest flaw of DBSCAN that disqualifies it as a structure finding algorithm for

star forming regions is the fact that it has trouble identifying clusters of different

densities as demonstrated in fig. 3.17.

3.4.2 OPTICS algorithm

Ankerst et al. (1999) proposed a modification of the approach used in DBSCAN

– ‘ordering points to identify the clustering structure’ (OPTICS) algorithm. This

method still requires us to input values of k and ε, however, the latter is now treated

as an upper limit (we can choose one as large as the region since we are dealing with

relatively small datasets and the speed of the calculation is not paramount).

The implementation of the algorithm requires the introduction of the core dis-

tance: the distance to the k-th nearest neighbour. This value is defined only for

points that have > k neighbours within the radius ε (core points). The reachability

distance of point p2 with respect to point p1 is defined as the distance from p1 to p2,

if p2 is within the radius ε. If p2 is among k nearest neighbours of p1, the reachability

is instead set to the core distance. Points outside the radius of ε are not reachable

and their reachability distance is undefined.

We start by picking an arbitrary point from a list of all points in the region. We

calculate its core distance, set its reachability distance to undefined (since there

is no point that we are reaching from) and write this information to a file. If the

selected point is not a core point, we simply move to the next point on the list. If
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it is a core point, we find its ε-neighbourhood (Nε(p)) i.e. the points that lie within

a radius ε from p. We sort them in order of increasing reachability and add them to

a queue ordered by reachability.

We then pull the top point of the queue (i.e. the point with the lowest reachability

value) and consider its ε-neighbourhood. The operation of pulling (also referred to as

dequeueing) removes the top entry from an ordered queue and returns its value. If the

reachability from p2 to any of the points in the queue is lower than the reachability

value from any of the previously analysed points, we update the value. We then

add to the queue all the points in p2’s neighbourhood that were not previously on

the list and again sort the queue in order of increasing reachability. We iterate the

neighbourhood queries until the queue has been emptied. If there are still unprocessed

points in the region, we move to the next point on the list and repeat the process.

One of the shortcomings of DBSCAN was the fact that we had to choose a priori

a single value of ε for the entire field. OPTICS, however, allows us to set ε to an

arbitrarily large value, so that the radius encompasses all the points. This way they

are all included in the queue at the beginning and later on we shift them appropriately,

depending on their reachability distances.

Patwary et al. (2013) pointed out similarities between the OPTICS algorithm and

Prim’s MST algorithm. Their goal was to speed up OPTICS for large datasets by

adapting it for parallel computing, however, I suggest the use of the Prim algorithm

as an alternative formulation of OPTICS for arbitrarily large ε. When ε is larger than

the spatial extent of the dataset, pulling the top entry from the queue and adding it

to the set of the processed points is analogous to constructing a minimum spanning

tree by nearest neighbour linkage (Prim’s algorithm – see sec. 2.2.1 for a detailed

explanation). We can simply run Prim’s algorithm on the dataset – we start with

a single point and at each iteration we add a point that is the closest to any point

already in the tree. We compare the core distance distance of the newly added point
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with the length of the edge leading to it – the larger of these values is this points

reachability distance.

Once we have obtained reachability distances for all the points we can plot them

against the order of the points. The resulting plot shown in fig. 3.18 (generated using

ELKI data mining environment; Schubert et al. 2015), also known as reachability plot,

represents the density based spatial clustering. The ‘valleys’ correspond to regions

with low reachability (i.e. points that are easy to reach) – the points are close to each

other so these are the cluster candidates. The points with higher values are harder

to reach and represent the background.

A reachability plot contains all the information that could be obtained from a

CDF of MST edge lengths, but it does not lose the information about the relative

spatial distributions. The reachability plot is also similar to a dendrogram in that

the points that are close on the plot are also close to each other in the x-y plane even

if they are not directly connected.

The top panel represents the test case of three clusters against a random back-

ground. The depth of the valleys corresponds to the density of the clusters – the

deepest valley (leftmost one) contains the points that belong to the densest clump,

while the valley with the highest ‘floor’ contains the points from the clump with the

lowest density.

The second panel shows the reachability plot of the single cluster against a random

background. In this case the valley is less pronounced, especially the right hand slope

is shallower. This is caused by the lower density contrast between the cluster and

the background which makes it harder to distinguish the ‘edge’ of the cluster.

The reachability plot of the random distribution is shown in the bottom case. It

contains several small dips that correspond to local overdensities in the distribution,

but there is no well pronounced valley that could be interpreted as the signature of

a cluster.
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(a) Three clusters against a random background

(b) Single cluster against a random background

(c) Random distribution with binaries

Figure 3.18: Reachability plots of the triple cluster case (panel a), single cluster case
(panel b) and a random distribution (panel c) for ε=10 and k=10. The spatial order-
ing is shown on the horizontal axis, while the vertical axis represents the reachability
– the lower the value, the more reachable the point is.
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This way of presenting the data retains information about the hierarchical struc-

ture of the regions and can be used to find subclusters within a cluster with deeper

dips within the valleys representing regions of even higher density.

Setting ε to an arbitrarily large number is akin to scanning over all the values

of ε. If we set a lower value of ε all the points with a reachability above ε would be

undefined and considered to be background noise, while the points with reachability

values below ε would be classified as cluster members. By setting ε to a lower value

we recreate the results of DBSCAN for parameters k and ε′. Due to the distinction

between the core distance and reachability, the bottom of the valley will have a

slightly different shape than it would have in DBSCAN, but the cut would normally

happen high enough for this not to change the outcome. Furthermore, the MST

formulation of the OPTICS algorithm also shows that DBSCAN is analogous to

MST cutting which explains why it suffers from the same problems.

OPTICS algorithm on its own gives a way of constructing the reachability plot,

but it does not offer a way of identifying the clusters in the structure. Ankerst

et al. (1999) proposed a ξ parameter (this approach is occasionally referred to as

OPTICSxi) that gives a cutoff contrast between the valleys and the peaks. How-

ever, it is not appropriate for use in the SFR context because the clusters might

have different densities and density profiles which will result in different contrasts.

Sander et al. (2003) introduced a method that identifies significant local maxima in

the reachability plot and constructs a single-linkage dendrogram based on the reach-

abilities, however, the applicability of this method in astronomical context remains

to be tested.
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3.5 Problems

When using a structure finding algorithm we need to keep in mind the issues associ-

ated with the field of view. Observations tend to be centred around the brightest and

densest parts of the star forming regions and the coverage of the outer reaches of the

region might be incomplete. Conversely, some of the algorithms might not work for

very large fields that cover vast amounts of background in addition to the structure.

Furthermore, if we zoomed in far enough into the clusters they would look the

same as the field looked on the larger scale (save perhaps for any density profile

that the cluster might have). This becomes apparent for underlying graphs that do

not have a pre-determined density scale such as the Nn-th nearest neighbour graph.

When the background is much larger than the cluster the distant points have similar

connectivity to the ones in the cluster. In the case of clique extraction method

performed on such a field, the background points that are far away from the clusters

will start forming their own cliques that are indistinguishable from the ones found in

the cluster.

These problems are further exacerbated by the fact that we lack robust data

about the third dimension. While most of the methods outlined in this chapter are

compatible with multidimensional data we only have a 2D projection available. As a

result sub-clusters might be superimposed and it is not possible to disentangle them

without making assumptions about their density profiles. Such assumptions, how-

ever, are unlikely to hold in real life applications and could result in false detections

and artefacts. What is more, projecting the same region along a different line of sight

might yield different results.

I generated a three dimensional distribution consisting of 10 Plummer spheres

containing 100 stars each distributed inside a larger Plummer sphere (see sec. 5.1 for

details) in order to demonstrate the problems caused by projection effects. Fig. 3.19
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shows projections of this dataset along three orthogonal axes (z on panel (a), y on

panel (b) and z on panel (c)). The field of view in all three plots is 10 pc×10 pc and

the barycentre can be found at (0,0). Panel (a) contains all the points in this dataset

but two of the spheres are blended into one elongated object. The other two panels

only contain 9 of the Plummer spheres as one of them now falls outside the field of

view. Additionally, in panel (c) two of the spheres are blended along the line of sight

thus making it appear as if there were only 8 subclusters in the distribution.
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Figure 3.19: An example region consisting of 10 Plummer spheres containing 100
stars each. The 10 pc×10 pc fields are projections of the same region along the
orthogonal axes onto the planes x-y (panel a), z-x (panel b), and z-y (panel c).



Chapter 4

N-body methods

In this chapter I outline the fundamentals of the N -body simulations. I describe

the basic principle of N -body integration and discuss some algorithms that can be

implemented in order to improve the accuracy of the simulation and reduce the com-

putational expense. The work presented in this thesis used the nbody6 integrator

(Aarseth, 1999) whose accuracy is comparable to that of starlab/kira (Anders

et al., 2012).

4.1 Method basics

The N -body method is a way of simulating the dynamical evolution of a system of

particles under the influence of forces. In this thesis it is used to analyse the dynamics

of stellar clusters in which the stars interact with each other via Newtonian gravity.

In an N -body simulation each star is treated as a point mass that experiences the

combined gravitational influence of all the other particles in the system. Knowing

the positions of all the particles at a time t makes it possible to calculate the net force

acting on every star, which in turn allows one to predict the positions and velocities

of all the stars after a time increment dt. This process can then be repeated until

84
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t = tfinal, where tfinal is the desired length of the simulation.

The net force acting on the i-th particle is equal to the sum of all the forces acting

on it, and the acceleration is obtained using Newton’s second law of motion:

ai = −
N∑

j=1,j 6=i

Gmj(ri − rj)

|ri − rj|3
(4.1)

In Eqn. 4.1 ai is the total acceleration experienced by the i-th particle, obtained by

summing the contributions from all the other particles; ri and rj are the position

vectors of the i-th and j-th particle respectively, while mi and mj are their masses;

G is the gravitational constant.

4.2 Improvements

The concept behind N -body simulations is very simple indeed, however, not unlike

other numerical integration problems, it suffers from inaccuracies caused by the finite

length of the timestep dt. The simple N -body method operates under the assumption

that between time t0 and t0 + dt the motion of the particles is linear, which is,

obviously, not the case.

Due to the sheer scale of the N -body simulations in this thesis, a brute force

approach of simply choosing a very short timestep is not feasible. Simple improve-

ments, such as second order Runge-Kutta integrator, also prove inadequate, hence

the need for more sophisticated algorithms.

4.2.1 Hermite interpolation

The integration method adopted by the nbody6 code is the fourth order Hermite

interpolation (Makino & Aarseth, 1992). It uses the higher derivatives of acceleration

to apply a correction to the position and velocity at the end of every timestep.
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Hermite integration is a self-starting scheme i.e. it does not require any memory of

the conditions at previous timesteps. We start by calculating the acceleration (a)

and jerk (first time derivative of acceleration; a(1)) at time t0. We can obtain the

value of the jerk if the i-th particle( a
(1)
i ) analytically by differentiating Eqn. 4.1,

a
(1)
i = −

N∑
j=1,j 6=i

Gmj(vi − vj)

|ri − rj|3
+ 3

N∑
j=1,j 6=i

(ri − rj)(vi − vj)aij
|ri − rj|2

(4.2)

where vi and vj are the velocities of particles i and j respectively, and aij is the j-th

addend of ai. We can use the calculated values of ai and a
(1)
i to express the position

and velocity vectors at the end of the step (at time t + ∆t) in the form of a Taylor

series:

ri = r0 + v0∆t+
1

2
a0∆t2 +

1

6
a

(1)
0 ∆t3,

vi = v0 + a0∆t+ a
(1)
0 ∆t2,

(4.3)

where the zero in the subscript denotes value at time t0.

We can now calculate the values of a1 and a
(1)
1 at the end of the timestep and

also express them as a Taylor series truncated after a(3):

a1 = a0 + a
(1)
0 ∆t+

1

2
a

(2)
0 ∆t2 +

1

6
a

(3)
0 ∆t3,

a
(1)
1 = a

(1)
0 + a

(2)
0 ∆t+ a

(3)
0 ∆t2.

(4.4)

We can now solve the above system of equations to obtain the values of a(2) and a(3):

a
(2)
0 = 2(−3(a0 − a)− 2(a

(1)
0 + a(1))∆t)∆t2,

a
(3)
0 = 6(2(a0 − a) + (a

(1)
0 + a(1))∆t)∆t3

(4.5)
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These higher order derivatives can now be used to further extend the series in Eqn.

4.3 and apply a correction to the final position and velocity:

ri = r0 + v0∆t+
1

2
a0∆t2 +

1

6
a

(1)
0 ∆t3 +

1

24
a

(2)
0 ∆t4 +

1

120
a

(3)
0 ∆t5,

vi = v0 + a0∆t+ a
(1)
0 ∆t2 +

1

6
a

(2)
0 ∆t3 +

1

24
a

(3)
0 ∆t4.

(4.6)

The Hermite scheme offers a fourth order polynomial fit for velocity and fifth order

fit for position, hence the truncation error (τn) can be expressed as τn = O(∆t5).

This is consistent with this integrator being a fourth order method (a method is

of order p if τn = O(hp+1), where h is the size of the step). Higher order Hermite

methods exist but do not necessarily give a substantial advantage in terms of striking

a balance between accuracy and computational cost and have not been implemented

in nbody6 (Aarseth, 2003).

Compared with the previously popular force integral method, Hermite interpola-

tion allows for a longer timestep without compromising the accuracy (Makino, 1991).

It has also the advantage of being a self starting method which means that the only

initial conditions required are the positions and velocities of the particles.

4.2.2 Timestep

The length of the timestep is one of the crucial parameters that determine the ac-

curacy of an N -body simulation. While sophisticated integration schemes such as

the Hermite interpolation can improve the accuracy for a given timestep, ultimately,

shortening the timestep will yield a more accurate result. The tradeoff, however,

is the greater number of steps that have to be performed over the duration of the

simulation and as a result an increase in the runtime. Furthermore, if the timestep

is too short, the rounding errors become exacerbated.
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Stellar systems exhibit a wide range of densities, hence the forces experienced by

individual stars can also vary substantially (consider the differences between a tight

binary near the centre of a cluster and a star travelling through the halo). This leads

to a range of timescales at which the orbital parameters of stars change. In order to

minimise the computational effort while preserving accuracy it makes sense to allow

individual stars to have different timesteps. That way the stars on the outskirts of the

system, which interact with a lower force, can have their accelerations recalculated

less frequently.

The work included in this thesis used the nbody6 code, which adopts the follow-

ing timestep:

∆ti =

(
η
|ai||a(2)

i |+ |a
(1)
i |2

|a(1)
i ||a

(3)
i |+ |a

(2)
i |2

)1/2

, (4.7)

where η is a dimensionless factor that controls the accuracy. I used the standard value

of η ∼ 0.2 given by Aarseth (2003). In order to implement the individual timesteps

each particle needs to have the following parameters: its individual time(ti; initially

set to zero) and timestep (∆ti), position (ri) and velocity (vi) at time ti, as well as

ai and a
(1)
i calculated at time ti.

To perform the integration with individual timesteps we need to apply the fol-

lowing steps:

(i) Find the particle i for which ti + ∆ti is the smallest and advance the global

time (t) to that value.

(ii) Predict the positions and velocities of all the other particles at that time.

(iii) Perform the Hermite integration on the particle i to calculate its position and

velocity using the predicted information. Recalculate the timestep and set the

value of ti to the global time.
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(iv) go back to step 1.

In a simpler integration scheme step (ii) would be equivalent to advancing the

entire system by a timestep ∆ti, however, the Hermite method is an interpolation

i.e. it allows us to predict the positions of the stars at any point between ti and

ti + ∆ti without the need to recalculate the forces.

Nonetheless, the overheads associated with the calculations are substantial, hence

nbody6 uses the block step method in order to streamline the integration. The

method uses a hierarchically quantised set of timesteps, which allows groups of par-

ticles with similar ∆ti to be advanced at as a block at the same time, thus saving

computational expense. Timestep of level n is given by the formula:

∆tn =
∆tmax

2n−1
, (4.8)

where ∆tmax is the maximum timestep. The number of levels varies between systems

but rarely exceeds 12 (Aarseth, 2003).

At the start of the simulation the timestep is calculated using formula given in

Eqn. 4.7 and then rounded down to the nearest value given by Eqn. 4.8. Thoughout

the simulation the timestep is determined by comparing the previously used timestep

(∆tp) with ∆ti from Eqn. 4.7, which results in one of three possible outcomes:

• set new timestep to ∆tp/2, if ∆ti < ∆tp

• set new timestep to 2∆tp, if ∆ti > ∆tp and t is commensurable with 2∆tp i.e.

t = x · 2∆tp, where x is an integer

• no change, if ∆tp < ∆ti < 2∆tp

The timestep can be halved at any point point during the integration, however,

doubling is only permitted at every other step. This rule is imposed in order to keep
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the blocks synchronised – all the blocks with a timestep ∆tn should be advanced at

the same time in order to reap the benefits of this method. Furthermore, this ensures

that all the blocks are in synchronisation at the end of the longest timestep.

The hierarchy of timesteps is represented schematically in Fig. 4.1, where n is an

arbitrary level. The vertical scale represents timestep length decreasing from top to

bottom while the global time increases on the horizontally from left to right. Let us

consider two particles: Particle 1 starts at level n+1 which corresponds to a timestep

∆tn/2, Particle 2 is a level higher n+ 2 and has half the timestep. Initially, at time

t0, both particles are synchronised. As the time progresses, Particle 1 at any of its

steps will always be in synchronisation with Particle 2 and all the particles occupying

the levels ≥ n + 1, but Particle 2 will only be synchronised with the level n + 1 at

every other step.

At time tb, if the above-mentioned conditions are satisfied, both particles could

have their timesteps halved. Depending on the value returned by Eqn. 4.7 Particle

2 could also have its timestep doubled since tb + ∆tn/2 is commensurable with t.

Should that happen both particles would be henceforth synchronised and occupy the

same level in the hierarchy. At time ta, however, the level of Particle 2 cannot be

decreased, since ta + ∆tn/2 would not be commensurable with the global time and

it could not be moved in a block with Particle 1 despite having the same timestep.

4.2.3 N-body units

In order to avoid rounding errors due to repeated multiplication by a constant and

storing the exponents in memory, N -body integrators often adopt their internal unit

systems in which the gravitational constant, G, is usually set to unity. In order to

avoid the frequent use of large exponents associated with stellar masses, the total

mass of the system is also set to 1. Furthermore, the total energy of the system is
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Figure 4.1: A schematic that demonstrates the hierarchical distribution of timesteps
in the block step method. Horizontal scale represents the advancing time of the sim-
ulation, vertical scale corresponds to timestep length decreasing from top to bottom.

set to −1/4 (Heggie & Mathieu, 1986). More intuitive physical units are restored

in output files which are written in the common units of solar masses, parsecs and

km/s.



Chapter 5

Surviving Gas Expulsion With

Substructure

In this chapter I discuss the setup of the initial conditions of the simulations whose

results are included in this thesis. I explain how the initial positions and velocities

are generated and how the substructure found in star forming regions is reflected in

the initial setup of the simulations. I also outline how the stellar masses are sampled

from the initial mass function.

It is important to keep in mind that the simulations should be treated as a

numerical experiment conducted on a simplified model. The goal of a simulation

is not to reproduce ‘real life’ with the myriad of parameters, but rather to observe

some patterns of behaviour in the dynamics of the system. By beginning with a basic

model and gradually increasing the complexity we can explore the parameter space

and determine which parameters and physical phenomena have the most impact on

the final outcome.

92
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5.1 Plummer sphere

Stellar systems in spherical potentials are often represented using a simple density law

proposed by Plummer (1911, 1915) which is usually referred to as Plummer sphere:

ρ(r) =

(
3Mtot

4πa3

)(
1 +

r2

a2

)−5/2

, (5.1)

where Mtot is the total mass of the system and a is the Plummer radius – a scale

parameter that defines the spatial extent of the Plummer sphere, Spitzer (1987) gives

the relationship between the half-mass radius (rh) of the cluster and the Plummer

radius as 1.3a = rh. This distribution is a polytrope of index n=5 and is formally

infinite.

It is also useful to know the gravitational potential at radius r. The relationship

between density and gravitational potential is given by the Poisson equation:

∇2Φ = 4πGρ (5.2)

For a spherically symmetric system (no dependency on the azimuthal angle), such as

a Plummer sphere, the Poisson equation can be expressed in spherical coordinates

as:

1

r2

∂

∂r
(r2∂Φ

∂r
) = 4πGρ (5.3)

Integrating eqn. 5.3 and applying the fundamental theorem of calculus results in:

Φ = 4πG

∫
r−2(

∫
ρr2dr)dr (5.4)

which after substituting eqn 5.1 for ρ reduces to:
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Φ =
−GM

(r2 + a2)1/2
(5.5)

5.1.1 Spatial distribution

Generating a set of positions and velocities based on the Plummer density profile is a

non-trivial task, since stars are discrete objects while the potential is formulated for

a continuous mass distribution. A prescription that allows us to randomly distribute

a number of stars while keeping the potential unaltered in the limit of large N was

given by Aarseth et al. (1974).

For the sake of simplicity, gravitational constant (G), Plummer radius (a), and

the total system mass (M) are set to unity. Integrating eqn. 5.1 allows us to calculate

the mass enclosed within the radius r:

M(r) = r3(1 + r2)−3/2 (5.6)

We can now generate X1 – a random number with a uniform distribution between

0 and 1 and equate it to M(r) since M(r) ≤ 1. Rearranging the equation allows us

to obtain r corresponding to that mass:

r = (X
−2/3
1 − 1)−1/2 (5.7)

Once the radius is known the next step is to generate a set of suitable spatial

coordinates (x, y, z). This is done by using the usual recipe for uniformly distributed

points on the surface of a sphere. We generate two more random numbers: X2

and X3. The azimuthal coordinate, φ is picked from the the uniform probability

distribution φ ∈ [0, 2π), this is done by simply multiplying one of the normalised

random numbers by 2π:
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φ = 2πX2 (5.8)

The polar coordinate, θ, however cannot be generated in a similar fashion since

it would result in an increased surface density close to the poles, while our goal

is a uniform distribution. Instead, we can choose to pick cos θ from the uniform

distribution cos θ ∈ [−1, 1]:

cos θ = 1− 2X3 (5.9)

Using elementary trigonometry we can now retrieve the cartesian coordinates

(x, y, z):

z = r(1− 2X3)

x = r sin θ cos(2πX2) = (r2 − z2) cos(2πX2)

y = r sin θ sin(2πX2) = (r2 − z2) sin(2πX2)

(5.10)

5.1.2 Particle velocities

Since the Plummer sphere is initially virialised, no star can have a velocity exceeding

the escape velocity at its location:

Ve = (−2Φ(r))1/2 =
√

2(1 + r2)−1/4 (5.11)

where Φ(r) is the potential at radius r as calculated in eqn. 5.5. Let us define q = V
Ve

where V is the velocity of the star we wish to sample. The probability distribution

of q is given by: g(q) = q2(1 − q2)7/2 (Aarseth et al., 1974). We then generate two

random numbers X4 and X5. Since q can take values in the range [0,1] and q < 0.1,

if 0.1X5 < X4 we set q = X4. Otherwise, we draw another pair of random numbers
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until these conditions are satisfied.

We then need to generate another pair of random numbers (X6 and X7) in order

to obtain the cartesian components of velocity (vx, vy and vz) in a way analogous to

eqn. 5.10:

vz = V (1− 2X6)

vx = (V 2 − v2
z) cos(2πX7)

vy = (V 2 − v2
z) sin(2πX7)

(5.12)

5.2 Stellar masses

When generating Plummer spheres it is essential to know the masses of the points in

order to set the virial ratio of the entire system. The distribution of stellar masses in

the population is known as the initial mass function (IMF). The work included in this

thesis uses the L3 parametrisation of the IMF (Maschberger, 2013). This formulation

is remarkably easy to implement, in order to sample a mass from the IMF one only

needs to generate a uniform random number u in the range between 0 and 1 and

substitute back the equation:

m(u) = µ
(

[u(G(mu)−G(ml)) +G(ml)]
1

1−β − 1
) 1

1−α
, (5.13)

where G(m) is the auxiliary function defined as G(m) =

(
1 +

(
m
µ

)1−α
)1−β

. Param-

eters ml and mu set the lower and upper mass limits respectively, while α, β and

µ determine the shape of the IMF. We used the following values recommended by

Maschberger (2013): α=2.3, β=1.4, µ=0.2 M�, ml=0.01 M�, mu=150 M�.



5.3. Physical scaling 97

5.3 Physical scaling

A great advantage of the Plummer sphere lies in how easy it is to adjust its param-

eters. Should we choose to use a Plummer radius value other than unity we can

now multiply the resulting coordinates by the chosen value of a. Now we can set a

virial ratio defined as Q = T
|Ω| , where T is kinetic energy and Ω is potential energy.

This can be achieved by scaling the velocities appropriately. In order to change the

virial ratio of the sphere to Qnew, one needs to multiply the velocities by the factor

of (Qnew
|Ω|
T

)1/2.

5.4 Clumpy substructure

While a Plummer sphere might be a reasonable approximation for a spherically sym-

metric cluster, in reality young star forming regions are not as uniform and exhibit

some substructure – see Sec. 1.2 for details. In order to reflect this and introduce a

degree of ‘clumpiness’ to our simulations we created a simple set of initial conditions

consisting of Plummer spheres embedded within a larger Plummer sphere. We start

by generating Nsub Plummer spheres, each of which could have a different virial ratio

(Qsub), radius (Rsub), and contain a different number of stars (Nlittle). We then create

a bigger Plummer sphere with radius Rbig, virial ratio Qbig containing Nsub points.

The next step involves replacing the points in the big sphere with the smaller

Plummer spheres; we place them in such a way that the centre of mass of the small

spheres coincides with the coordinates of the points in the big sphere. Their velocity

vectors are simply added to the velocities of the stars in the small Plummer spheres.

It is important to note that we generate the smaller spheres first in order to know

the exact masses of the points in the bigger sphere since they are required to set its

virial ratio.
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Baumgardt & Kroupa (2007) investigated how the bound fraction depends on

the initial virial ratio for a single Plummer sphere. Our setup, however, allows us

to perform analogous analysis on systems with a varying degree of substructure and

investigate how its presence affects the cluster survivability.

Furthermore, the virial ratio of the big Plummer sphere can be varied to produce

a situation where the individual sub-clusters are supervirial (hence would be unbound

if treated in isolation) yet they feel the presence of other sub-clusters moving at low

relative velocities since the bigger sphere is initially in virial equilibrium

Fig. 5.1 shows an example of a clumpy initial conditions set produced with this

method – a substructured region in which 10 sub-clusters form a bigger cluster.

Simulating the evolution of such a system allows us to investigate the impact that

the clumpiness might have on the outcome of the simulations.

5.5 Gas expulsion

Initially the natal gas from which stars form is ubiquitous in the SFR. As the star

formation progresses, the feedback from supernova explosions, winds and radiation

will result in gas being expelled from the region on the timescale of a few Myr. For

a more detailed explanation see Sec. 1.2.2.

In our simulations we do not model the gas expulsion and assume it is instanta-

neous. Instead, we consider the dynamical state of the system immediately after gas

expulsion. It can be described using the effective star formation efficiency (eSFE),

which is defined as ε = 1
2Q

, where Q is the virial ratio (Verschueren & David, 1989;

Goodwin & Bastian, 2006; Goodwin, 2009). We define Q as the ratio of kinetic and

potential energies of the system (Q = T
|Ω|) which means that for a system in virial

equilibrium Q=0.5. Systems with high virial ratios (low eSFE) have a large excess of

kinetic energy and will evaporate quickly, while systems with high eSFE will contract
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Figure 5.1: 2D projection onto the x-y plane of a set of initial conditions containing
10 sub-clusters. The big Plummer sphere has Rbig=1 pc and Nsub=10, while each
sub-cluster has a Plummer radius of 0.1 pc and contains 100 stars. The big Plum-
mer sphere has a virial ratio Qbig=0.5, while each of the sub-clusters has Qsub=4.0,
however, the chosen value of virial ratio has no influence on the spatial distribution.



5.6. Initial conditions grid 100

and remain bound. Baumgardt & Kroupa (2007) showed that for a single Plummer

sphere the eSFE value of 33 per cent is critical and systems with lower eSFE can-

not survive. As explained in Sec. 1.2.2, the simple relationship between eSFE and

and survival holds only if prior to the gas expulsion the gas and stars are in virial

equilibrium (Goodwin, 2009).

5.6 Initial conditions grid

Our systems are set up as Plummer spheres embedded in a larger Plummer sphere,

as outlined in Sec. 5.4. We can vary the initial virial ratios of the sub-clusters and

investigate how the bound fraction depends on the number of sub-clusters for any

given virial ratio.

We set up systems containing Ntot=1000 stars each. While it is possible to choose

a different value of Nlittle for every sub-cluster, initially we chose to keep the Ntot

constant for all the simulations. This results in a typical system mass of ∼ 300 M�

for stellar masses sampled from the Maschberger formulation of the IMF. We divide

the stars into Nsub=2, 5, or 10 identical sub-clusters, each containing Nlittle=500,

200, or 100 stars respectively. To illustrate the difference between a regular Plummer

sphere and one with sub-clusters, for the virial ratios Q = 0.5, 1.0, 1.5, 2.0, and 4.0

we also set up a control run with just a single Plummer sphere which is analogous to

the Baumgardt & Kroupa (2007) simulations.

Each of these sub-clusters is then put in a cluster represented by a larger Plummer

sphere as prescribed in Sec. 5.4.The radius (Rbig) and virial ratio (Qbig) of the larger

sphere are kept constant throughout all the sets of input parameters and are set to:

Rbig=1 pc and Qbig=0.5.

For each Nsub, however, we generate a set of initial conditions with sub-cluster

internal virial ratio Qsub = 1/2ε. We choose five different virial ratios: Qsub = 0.5,
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1.0, 1.5, 2.0, and 4.0. These correspond to effective star formation efficiencies of

100%, 50%, 33%, 25%, and 13%. According to Baumgardt & Kroupa (2007) the

value of 33 per cent is critical for a single Plummer sphere and systems with lower

eSFE do not survive.

In order to investigate the stochastic effects on each set of initial conditions we set

up an ensemble of simulations with the same input parameters but different random

number seeds.

5.6.1 Sub-cluster radii

We considered two cases – one assuming constant sub-cluster radius (Rsub) and one

assuming constant sub-cluster density (ρsub). For the first case we choose Rsub=0.1

pc and apply it to all the systems generated. In the latter case we fix the half-mass

density of sub-clusters and adjust the radii accordingly. We choose the half-mass

density of 21733 stars pc−3 which is the same as the density in the 5 sub-clusters

case of the constant size run, which we consider ‘fiducial’. The half-mass density is

defined as the average density of the stars within the half-mass radius. For a Plummer

sphere the half mass radius is ∼ 1.3Rplum (Spitzer, 1987). Table 5.1 contains a full

list of the input parameters for all the cases mentioned above.

5.7 Results

We used nbody6 to evolve the systems for 10 Myr. At the end of the simulation

we calculate the fraction of stars still bound. In order to do so we calculate the

kinetic (T ) and potential (Ω) energies of all the stars in the centre of mass frame of

reference, and find the stars for which T + Ω < 0. Then we find the centre of mass of

the bound stars and move the coordinate system to coincide with this newly found

centre of mass being at the origin. We also translate the velocities so that the new
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Table 5.1: Initial conditions for sub-clusters of constant radius (above the line) and
constant density (below the line). Nsub is the number of sub-clusters, Nlittle is the
number of stars in a sub-cluster, Rsub is the sub-cluster half-mass radius in pc. Qsub

is the virial ratio of the sub-clusters, while Qbig is the virial-ratio of the system. ρsub

is the half-mass number density of the sub-clusters. 10 runs with different random
number seeds were simulated for each set.

Nsub Nlittle Rsub[pc] Qsub Qbig ρsub[stars pc−3]
1 1000 0.1 0.5 0.5 108662
1 1000 0.1 1.0 0.5 108662
1 1000 0.1 1.5 0.5 108662
1 1000 0.1 2.0 0.5 108662
1 1000 0.1 4.0 0.5 108662
2 500 0.1 0.5 0.5 54331
2 500 0.1 1.0 0.5 54331
2 500 0.1 1.5 0.5 54331
2 500 0.1 2.0 0.5 54331
2 500 0.1 4.0 0.5 54331
5 200 0.1 0.5 0.5 21733
5 200 0.1 1.0 0.5 21733
5 200 0.1 1.5 0.5 21733
5 200 0.1 2.0 0.5 21733
5 200 0.1 4.0 0.5 21733
10 100 0.1 0.5 0.5 10866
10 100 0.1 1.0 0.5 10866
10 100 0.1 1.5 0.5 10866
10 100 0.1 2.0 0.5 10866
10 100 0.1 4.0 0.5 10866
1 1000 0.17 0.5 0.5 21733
1 1000 0.17 1.0 0.5 21733
1 1000 0.17 1.5 0.5 21733
1 1000 0.17 2.0 0.5 21733
1 1000 0.17 4.0 0.5 21733
2 500 0.14 0.5 0.5 21733
2 500 0.14 1.0 0.5 21733
2 500 0.14 1.5 0.5 21733
2 500 0.14 2.0 0.5 21733
2 500 0.14 4.0 0.5 21733
5 200 0.1 0.5 0.5 21733
5 200 0.1 1.0 0.5 21733
5 200 0.1 1.5 0.5 21733
5 200 0.1 2.0 0.5 21733
5 200 0.1 4.0 0.5 21733
10 100 0.08 0.5 0.5 21733
10 100 0.08 1.0 0.5 21733
10 100 0.08 1.5 0.5 21733
10 100 0.08 2.0 0.5 21733
10 100 0.08 4.0 0.5 21733
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centre of mass is at rest. Now we recalculate the potential and kinetic energies and

repeat the process, unless the change in Nbound from the previous step is less than 2.

This is done to ensure that the bound stars are identified correctly, since a group of

stars could be bound to each other but have a bulk motion with respect to the initial

centre of mass.

Figure 5.2 shows the spatial distributions of stars in the clusters at the start of

the simulation (left-hand column) and after 10 Myr (right-hand column) for systems

with initial sub-cluster virial ratio of 1.5. While the system with Nsub=2 disperses

after 10 Myr, the systems with higher Nsub = 5 retain about half of the stars. This

fraction is even higher for systems with Nsub=10.

The top panel of figure 5.3 shows how the bound fraction of stars after 10 Myr

(Nbound/Ntot) changes with initial Nsub for the constant sub-cluster size case. The

lines represent different values of initial sub-cluster virial ratios (Qsub), while the x-

axis corresponds to increasing Nsub. The error bars show the standard error in the

mean calculated for ensembles of 10 simulations for each set of initial conditions.

The green line represents the initially virial system with Qsub = 0.5. After 10 Myr

the system has lost some of its mass, but 80 per cent remain bound. The line is fairly

flat and the bound fraction does not depend on the number of sub-clusters. A system

of identical particles loses approximately 1 per cent of stars per relaxation time (in

this case ∼ 10 Myr; from eqn. 1.17) due to evaporation (Spitzer, 1987). The presence

of a mass function, however, increases the probability of ejections. Furthermore, trelax

changes as the system evolves which also affects the evaporation timescale (Bastian

et al., 2008).

Bound fractions of systems with an initial sub-clump virial ratio of Qsub = 1.0

are represented by the red symbols. The change in bound fraction between a single

Plummer sphere and one containing 10 sub-clusters is of the order of 10 per cent and

with the exception of the Nsub = 1 this case is indistinguishable from the Qsub = 0.5
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Figure 5.2: Spatial distributions of stars for sample sets of initial conditions with
Q=1.5. Left-hand column shows systems at the start of the simulation (t=0), while
the right-hand column shows the state of the same systems after 10 Myr.
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Figure 5.3: Bound fraction (Nbound/Ntot) after 10 Myr as a function of number of sub-
clusters for systems with constant sub-cluster size (top panel) and density (bottom
panel). Green line represents systems with initial sub-cluster virial ratio of 0.5. Red
line corresponds to Q = 1.0. Systems with initial virial ratio Q = 1.5 are represented
by the black line. Orange line corresponds to Q = 2.0 and blue to Q = 4.0.
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line.

The bottom line (blue) corresponds to systems with initial sub-cluster virial ratio

of 4.0. It is fairly flat and stays close to zero at all times, barely reaching 10 per cent

for 10 sub-clusters.

Systems with a virial ratio of Qsub = 1.5 (black), however, show a more dramatic

change. In the case of a single Plummer sphere the bound fraction is less than 20 per

cent, while in the case of 10 sub-clusters the bound fraction increases to 60 per cent.

Similarly, initial sub-clump virial ratio of 2.0 (orange line) results in an increase from

zero per cent for a single Plummer sphere to 50 per cent bound fraction for the case

of 10 sub-clumps.

As expected, systems with the same Nsub but higher Qsub have a lower virial ratio.

Interestingly, however, systems with the same Qsub but higher Nsub have higher bound

fractions.

This behaviour can be explained by comparing the average velocities with the

escape velocity. In virial equilibrium the kinetic energy is twice the magnitude of

the potential energy of the cluster. Assuming stars of equal masses, the velocity

dispersion of a Plummer sphere is:

v2 = α
GMtot

R
, (5.14)

where Mtot is the mass of the Plummer sphere, and α = 3π/32 (Binney & Tremaine,

2008). From the formula it follows that the velocity dispersion is smaller for systems

with a lower mass. Splitting the cluster mass into smaller sub-clusters will result in

lower velocity dispersions: a system consisting of 2 sub-clusters, each with a mass of

Mtot/2 will have a velocity dispersion larger by a factor of
√

5 compared to a system

of 10 sub-cluster, each with a mass of Mtot/10.

The escape velocity of the cluster, however, depends solely on its total system



5.7. Results 107

mass and radius: vesc =
√

2GMtot

Rbig
. Since these values are the same in both of the

above cases, substructure increases the chances of survival of a cluster by lowering

the average velocity, which results in fewer stars exceeding the escape speed.

The bottom panel of figure 5.3 shows the bound fraction after 10 Myr for systems

with constant sub-cluster density. The meaning of colours is analogous to the bottom

panel. Systems with initial sub-cluster Qsub=0.5 are represented by the green lines.

Red lines correspond to Qsub=1.0. Black ones represent Qsub=1.0 while orange and

blue lines correspond to Qsub=2.0 and Qsub=4.0 respectively.

For Nsub=1 there is no change as the only difference is the radius of the system.

Altering the size of a Plummer sphere is just a scaling and ultimately it is the virial

ratio that determines the fate of the system.

Similarly, for Nsub=5 the results are identical in both cases, due to the same initial

conditions. Since all the sub-cluster radii in this case were adjusted for the density

to be the same as the density of the Nsub = 5 constant radius case, bound fractions

for systems with Nsub = 5 are also exactly the same as in the left-hand panel.

For systems with Nsub=2 a slight increase in the bound fraction can be observed.

This behaviour is expected since, as shown in Tab. 5.1, the sub-clusters are larger

(Rsub=0.14 pc) than in the constant radius case (Rsub=0.1 pc). Increasing their size

causes a velocity dispersion decrease which results in more stars remaining bound.

On the other hand, systems with Nsub=10, exhibit a smaller bound fraction since

their radii decreased (Rsub=0.08 pc) with respect to the previous case, which leads

to a higher velocity dispersion. Larger velocities in a system whose size was not

altered (the size of the whole cluster remains unchanged throughout) should lead to

the system expanding more and losing more stars.

Overall, however, the differences between the plots are not significant and all the

points are within their constant radius counterpart’s error bars which suggests that
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the stochastic effects due to the random positioning of the sub-clusters outweigh the

differences due to different sub-cluster radii.

The behaviour of a single Plummer sphere was investigated by Lada et al. (1984),

Goodwin (1997) as well as Baumgardt & Kroupa (2007), who showed that 33 per

cent (equivalent to Q=1.5) is the critical eSFE value for instantaneous gas expulsion.

For eSFE values lower than that no stars remain bound. Our results show that, if

substructure is taken into account, this does not apply to the individual sub-clusters.

A system comprised of Plummer spheres with Q=2 could indeed survive if the number

of sub-clusters is high enough.

Star forming regions exhibit a large degree of substructure and tend to be ini-

tially subvirial with low core velocity dispersion (Kirk et al., 2007; Allison et al.,

2010). The above example could represent a situation when a sub-cluster becomes

locally supervirial following the gas expulsion, but is still part of a global virialised

distribution.

We find that the substructure increases the chances of survival of the clusters in

the post-gas-expulsion stage of their evolution. The more sub-clusters there are, the

more likely it is that a significant fraction of stars is retained. Figure 5.3 also demon-

strates a trend that the higher the virial ratio, the more substructure is required for

survival. This happens because the average velocities of the individual stars become

lower for sub-clusters with lower Nsub while the escape velocity of the whole cluster

stays unchanged. Hence, fewer stars exceed the escape velocity and a larger fraction

is retained.

5.8 Global virial ratio

In addition to trends described in Sec. 5.7, Figure 5.3 also shows that two systems

with different initial sub-cluster virial ratios can result in very similar bound fractions
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for example, in the constant size case, the bound fraction of a 10 sub-cluster system

with a virial ratio Qsub=1.5 is the same as the bound fraction of a single Plummer

sphere with Qsub = 1.

The above findings suggest that the sub-cluster virial ratio is not necessarily

a good predictor of the systems fate. The survival of the cluster depends on the

comparison between typical stellar velocity and the escape velocity. Therefore, we

investigate how the cluster survivability is affected by the total initial virial ratio of

the entire system (Qtot).

Fig. 5.4 shows the dependence of the bound fraction on 1/2Qtot. The grey points

are the results of our simulations, while the blue ones correspond to the equivalent

Baumgardt & Kroupa (2007) data.

Overall, the plot shows a strong dependence of the bound fraction on the global

initial virial ratio and follows the results of the Baumgardt & Kroupa (2007) simula-

tions for single cluster. The only noticeable difference being the point corresponding

to eSFE of 75 per cent which lies higher than our result. This is caused by the fact

that Baumgardt & Kroupa (2007) included 10 times more stars in the simulations,

hence their crossing time is greater. After 10 Myr, fewer crossing times have passed,

therefore the systems are dynamically younger and have lost less mass through re-

laxation.

At the lower end of the eSFE scale it is possible to distinguish two populations,

because both the Qsub=2.0 and Qsub=4.0 case result in systems that disperse, hence

their bound fractions are scattered around 0.

On the opposite end there is very little horizontal scatter around the value of 1.0

– these are all the cases with Qsub=0.5. Putting a virialised Plummer sphere inside a

bigger virialised Plummer sphere will result in a system whose Qtot will also be close

to 0.5. It is worth pointing out that one point is clearly above eSFE of 1.0. While it

might seem counterintuitive, it is correct – one should not forget that effective star
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Figure 5.4: Bound fraction as a function of 1/2Qtot (eSFE). Grey points represent the
results of our simulations, while blue points represent equivalent results by Baum-
gardt & Kroupa (2007)
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formation efficiency is essentially just the inverse of virial ratio and the name is based

on the assumption that initially the star-gas mix is virialised, see Sec. 1.2.2.

It might therefore seem more appropriate to plot the bound fraction against Q,

however we decided to retain the eSFE convention, since the result is an analogue of

the Baumgardt & Kroupa (2007) plot for individual Plummer spheres.

5.9 Messy initial conditions

We have made a few simplifying assumptions in setting up the initial conditions for

the simulations. Firstly, the systems are set up as a Plummer sphere of Plummer

spheres, which is not a very realistic model. While it is not unreasonable for a small,

dense clump to be represented by a Plummer sphere, there is no physical reason for

these sub-clusters to form a larger Plummer sphere. This setup was chosen purely

due to the ease of its implementation.

Furthermore, we also make the assumption that the gas expulsion is instanta-

neous. Gradual gas expulsion could affect the velocity distributions but the change

should not be critical.

We were trying to establish a relationship between Nsub, Qsub and the final bound

fraction, hence we needed these values to be well defined for the systems. Moreover,

the clusters in our simulations all have constant N and Qbig = 0.5. In the runs we

also keep sub-cluster size or density constant.

Now that we know that the global virial ratio is a better predictor of the fate

of the system, these restrictions can be quite easily relaxed and we can generate

randomised messy initial conditions.

I created a routine that randomly allocates values to the input parameters –

following ranges: Nsub [3, 10], Qbig [0.25, 0.75], each sub-cluster can have a different

Nlittle [100, 300] and Qsub [0.5, 3.0], and Rlittle [0.75, 1.5]. Tab. 5.2 contains the
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Table 5.2: An example of 3 subclusters from randomly generated set of initial con-
ditions. Nlittle is the number of stars in a subcluster, Qsub is the virial ratio of the
subcluster, and Rsub is the radius of the subcluster. The virial ratio of the big Plum-
mer sphere is Qbig=0.3, the total virial ratio of the system is Qtot=0.84, the system
consists of Ntot=647 with a total mass of Mtot=192 M�.

Nlittle Qsub Rsub

221 1.92 0.94
166 1.44 1.39
260 0.82 1.26

parameters of one set of initial conditions generated this way. It contains Nsub = 3

subclusters, the big Plummer sphere has a virial ratio of Qbig = 0.3, its total virial

ratio is Qtot=0.84 (hence 1/2Q=0.6). The parameters of the individual subclusters

(number of stars, virial ratio, and radius) are listed in the table. After evolving this

system for 10 Myr its bound fraction is 0.84 which is a value that we expected based

on the trend from Fig. 5.4.

This set of initial conditions is shown in red in Fig. 5.5, the messy initial condi-

tions are represented by the red points, while the grey points are the results of the

previous simulations.

We found that the red points follow a distribution similar as the previously dis-

cussed clusters, albeit their bound fractions tend to be slightly higher than the average

for their ε. This result is broadly consistent with our postulate that the fate of a

system is determined by the global virial ratio. The size and number of clusters,

however, can also affect the result. This is the reason why at higher virial ratios it

is possible to distinguish between the Qsub = 4.0 and Qsub = 2.0 populations in Fig.

5.5.

The red points having slightly higher bound fractions than the grey points sug-

gests that the sub-clusters within one region having different sizes and different num-

ber of stars (i.e. ‘messy’ initial conditions) might also have an effect. This could be

verified by performing more simulations of ‘messy’ style initial conditions and com-
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Figure 5.5: Bound fraction as a function of 1/2Q (eSFE). The results of simulations
outlined in the earlier sections of this chapter are shown in grey; red points represent
the messy initial conditions that were generated to by randomly picking parameters
from a permitted range rather than strictly adhering to a prescribed grid.
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paring whether the points from the previous initial conditions grid typically lie below

them.



Chapter 6

Conclusions

In this thesis I investigated how the presence of structure affects the evolution of

star forming regions. I calculated Q for observed regions to find out whether they

are bound or unbound. I performed N -body simulations in order to investigate how

substructure affects the fate of the regions after gas expulsion. I also outlined a broad

range of structure finding methods used in other fields and assessed their suitability

for use in the context of star forming regions.

6.1 Parameter Q and dynamical evolution

I explained how the Q parameter can be used to quantify the clumpiness of a system

and how it can provide clues about the dynamical evolution of the system. I calcu-

lated Q of class I and class II populations in regions observed by Gutermuth et al.

(2009) and used it predict if the systems are bound.

Based on the assumption that the class II sources are older, comparing the Q can

tell us if the system is bound. Low values of Q are indicative of a fractal distribution,

while high values mean a smoother centrally concentrated distribution. A bound

system should undergo relaxation, which results in the substructure being deleted,
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therefore a significant increase in Q implies a bound system. Conversely, if the value

of Q stays the same, it suggests that the system is unbound and the structure has

not been erased.

6.2 N-body simulations

I set up a simple model of clumpy initial conditions – several Plummer spheres, each

containing a few hundred stars, distributed within a larger Plummer potential. I then

varied the virial ratio of the sub-clusters and used nbody6 to evolve the systems for

10 Myr in order to investigate how the virial ratio of the sub-clusters affects the fate

of the system.

I found out, however, that it is the global virial ratio that matters – looking at an

individual sub-cluster is insufficient as the region might be bound as a whole even if

the individual members are supervirial. This result emphasises the need to treat the

regions as a whole and demonstrates how the substructure can bias the interpretation

of the observations.

6.3 Structure finding algorithms

I also explored structure finding methods frequently used in computer science and

data mining and investigated if they can be used to obtain more information about

star forming regions.

I have found that most of the algorithms that pick up the substructure are not

satisfactory. Many are graph theory based and therefore better suited for analysing

networks with explicitly defined connections between the points. However, the den-

sity based methods also performed rather poorly in situations where one region con-

tained sub-clusters with different densities. The extent of the field of view and the
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projection effects also have a detrimental effect that can bias the results. It is ex-

tremely difficult to disentangle superimposed clumps without making assumptions

about the distributions or number of sub-clusters in the region. This ties in to the

previously raised concerns regarding the completeness of the data and the problems

caused by looking at individual sub-clusters instead of considering the region as a

whole.

Some of the shortcomings could perhaps be overcome by using more advanced

machine learning methods such as self organising maps, but this goes beyond the

scope of this thesis.
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